Please use this identifier to cite or link to this item: http://dspace.dtu.ac.in:8080/jspui/handle/repository/16789
Full metadata record
DC FieldValueLanguage
dc.contributor.authorDEO, NAOKANT-
dc.contributor.authorDHAMIJA, MINAKSHI-
dc.contributor.authorPRATAP, RAM-
dc.date.accessioned2019-11-01T06:53:24Z-
dc.date.available2019-11-01T06:53:24Z-
dc.date.issued2018-
dc.identifier.issn00963003-
dc.identifier.urihttp://dspace.dtu.ac.in:8080/jspui/handle/repository/16789-
dc.description.abstractIn the present article, we consider the Kantorovich type generalized Szász–Mirakyan op- erators based on Jain and Pethe operators [32]. We study local approximation results in terms of classical modulus of continuity as well as Ditzian–Totik moduli of smoothness. Further we establish the rate of convergence in class of absolutely continuous functions having a derivative coinciding a.e. with a function of bounded variation.en_US
dc.language.isoen_USen_US
dc.publisherELSEVIERen_US
dc.relation.ispartofseriesVOL.317;-
dc.subjectSTANCHU OPERATORSen_US
dc.subjectSZASZ-MIRAKYAN OPERATORSen_US
dc.subjectMODULUS OF CONTINUITYen_US
dc.subjectKANTOROVICHen_US
dc.subjectBOUNDED VARAIATIONen_US
dc.subjectELSEVIERen_US
dc.titleAPPROXIMATION BY KANTOROVICH FORM OF MODIFIED SZASZ-MIRAKYAN OPERATORSen_US
dc.typeArticleen_US
Appears in Collections:Faculty Publications Applied Maths



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.