Please use this identifier to cite or link to this item: http://dspace.dtu.ac.in:8080/jspui/handle/repository/16513
Full metadata record
DC FieldValueLanguage
dc.contributor.authorABROL, ABHITI-
dc.date.accessioned2019-09-24T07:06:15Z-
dc.date.available2019-09-24T07:06:15Z-
dc.date.issued2017-06-
dc.identifier.urihttp://dspace.dtu.ac.in:8080/jspui/handle/repository/16513-
dc.description.abstractThis work presents the statistic cyclostationary feature detection algorithm that uses the analytic signal via Wavelet Transform (W.T.) and compares the proposed method with the cyclostationary feature detection algorithm using analytic signal via Hilbert Transform (H.T.). The method has the advantage of providing flexible sampling rate and step size of cyclic frequency. The wavelet transform based method presents higher signal-to noise ratio as compared to the Hilbert Transform method, as wavelet transform has time frequency localization characteristics.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTD-4337;-
dc.subjectCYCLOSTIONARY FEATURE DETECTIONen_US
dc.subjectWAVELET TRANSFORMen_US
dc.subjectHILBERT TRANSFORMen_US
dc.titleCYCLOSTIONARY FEATURE DETECTION USING WAVELET TRANSFORMen_US
dc.typeThesisen_US
Appears in Collections:M.E./M.Tech. Electronics & Communication Engineering

Files in This Item:
File Description SizeFormat 
Abhiti_Thesis_MOC-2k15Moc02.pdf2.18 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.