Please use this identifier to cite or link to this item: http://dspace.dtu.ac.in:8080/jspui/handle/repository/16023
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUTTAM, GAURAV-
dc.date.accessioned2017-11-02T13:10:53Z-
dc.date.available2017-11-02T13:10:53Z-
dc.date.issued2016-07-
dc.identifier.urihttp://dspace.dtu.ac.in:8080/jspui/handle/repository/16023-
dc.description.abstractElectromyography (EMG) signals are becoming important in many applications, including clinical/biomedical, prosthesis or rehabilitation devices, human machine interactions, etc. This work present classification of Surface Electromyography (sEMG) using four different methods, namely, Artificial Neural Network (ANN), Discriminant analysis, Multi-Support Vector Machine (m-SVM) and K-Nearest Neighbour (KNN) method and compares the accuracy of classification of these methods. Also, all the four methods use two methods, namely the nonnegative matrix factorization (NMF) and principal component analysis (PCA) for dimensionality reduction of data. MATLAB simulations show that ANN classifier gives the best accuracy among the four classifier used in this work. The percentage accuracy of ANN classifier is 95% using NMF method and 84.5% using PCA method.en_US
dc.language.isoenen_US
dc.relation.ispartofseriesTD-3005;-
dc.subjectMATRIX FACTORISATIONen_US
dc.subjectEMG FINGER MOVEMENTSen_US
dc.subjectELECTROMYOGRAPHYen_US
dc.subjectANNen_US
dc.subjectKNNen_US
dc.subjectPCAen_US
dc.titleNON NEGATIVE MATRIX FACTORISATION FOR IDENTIFICATION OF EMG FINGER MOVEMENTSen_US
dc.typeThesisen_US
Appears in Collections:M.E./M.Tech. Electronics & Communication Engineering

Files in This Item:
File Description SizeFormat 
grv_final__1_ (1)1233.pdf1.26 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.