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NOMENCLATURE 

 
a, b    parameters for estimating pile response 
A    factor to account for cyclic or static loading 
B(z), and C(z)   reflect pile-base conditions 
c    Shear strength at depth z 
Cl, C2 , C3  Coefficients as a function of  'φ
Cg, eg, and ng  Regression constants that depend solely on the soil 
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(Ep/G*)c   The critical pile-soil stiffness  
FeHCP   Free-head, clamped pile  
FeHFP   Free-head, floating pile 
FxHCP   Fixed-head, clamped pile  
FxHFP   Fixed-head, floating pile 
GS     The shear modulus 
G*   The modified soil shear modulus  
H(z), and I(z)   reflect pile-head boundary conditions, 
J    Constant taken as 0.5 for soft clay and 0.25 for medium clay 
Ko(γ )   Modified Bessel functions of the second kind of order zero  
k    The modulus of subgrade reaction for the Winkler’s springs 
kh    The modulus of horizontal subgrade reaction in N/m3

L    Length of the pile 
Lc    Critical pile length,  
Mo   Moment 
nh    The constant of horizontal sub grade reaction expressed in  
N    The fictitious tension  
PA     Reference stress in the same units as 'σ m i.e. kPa 
Pu    Ultimate resistance (force/unit length) (s=shallow, d=deep) 
P   Lateral load 
p    Soil reaction at a point along the pile in N/m 
q c    Cone penetration resistance kPa 
ro     Radius of the pile 
Uk    The energy for unit pile movement (y = 1) per unit pile length;  
UN     The energy for unit pile rotation (dy/dz = 1) per unit pile length; 
Um  The energy for unit radial rotation (dφ /dr = 1) per unit radial 

length  



Un    The energy for unit radial variation (φ  =1) per unit radial length 
'

OV    The volume of the measuring cell at average pressure 
y(z)   The pile displacement 
Z    Depth 

sλ     Lami’s constant 
sν        Poisson’s ratio 
'σ m    Mean effective stress; 

zr σσσ θ ,,  Radial, circumferential and vertical stresses within the surrounding 
soil 

zr εεε θ ,,  Radial, circumferential and vertical strains within the surrounding 
soil 

rzzr γγγ θθ ,,    Shear strains within the zrzr −−− &,θθ   planes 

ijij εσ &    The stress and strain components in the surrounding soil of the pile 
Uδ    The variation of potential energy of the pile-soil system 
Wδ    The virtual work  
φ (r)   The radial attenuation function 
γ     Load transfer factor 

'γ    Average effective unit weight from ground surface to p-y curve 
'φ     Angle of internal friction in sand 

50ε     Strain at 50 percent of the ultimate strength from a laboratory 
stress-strain curve. 

θ   Angle between the line joining the center of the pile cross-section 
to the point of interest and the direction of the nth loading 
component. 

 
 

 

 

 

 

 

 

 

 

 

 

 



 
 
 
 

ABSTRACT 
 

As a foundation problem, the analysis of a pile under lateral loading is 

complicated by the fact that the soil reaction is dependent on the pile movement, and the 

pile movement, on the other hand, is dependent on the soil response. Thus, the problem is 

one of soil-structure interactions. Many methods such as the subgrade reaction method, 

the elastic continuum approaches that have been developed for the analysis of laterally 

loaded soil-pile system modeled piles as a flexible beam. But the available experiments 

demonstrate that the displacement field around a laterally loaded pile is significantly 

different from that around a beam overlying on an elastic medium. Thus, different 

modulus for beams and lateral piles should be adopted.  

It is with this background in this thesis an attempt has been made to implement a 

load transfer approach to simulate the response of laterally loaded single piles embedded 

in a homogeneous medium, by introducing a rational stress field. In the present work, 

generalized solutions for a single pile and the surrounding soil under various pile-head 

and base conditions were established. With the solutions, a load transfer factor, 

correlating the displacements of the pile and the soil has been adopted. Expressions are 

also developed for fictitious tension and the modulus of subgrade reaction in terms of the 

load transfer factor. The model parameters such as load transfer factor, Poisson’s ratio, 

slenderness ratio, the soil-pile relative stiffness are investigated in order to have a better 

understanding of the relationship between these parameters. The effects of the results of 

this load transfer approach are compared with Winkler’s model. The results for the pile 

rotation, pile deflection and maximum bending moment are evaluated for sandy soils of 

varying fine contents. 
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CHAPTER 1 
INTRODUCTION 

 
It was once said that it is wise to build your house on a rock. However, what if the 

closest rock that is big enough is 10 meters under the soil? What happens when a 

structure much larger than a house needs to be built? It was these questions that guided 

engineers towards the concept of pile design. Piles are long, firm, column-like members 

that are embedded in the soil to provide axial as well as lateral support of structures such 

as buildings, piers and bridges. Often, piles are installed near each other to create groups 

to optimize the support of the structure. Both a single pile and groups of piles rely 

significantly upon the conditions of the surrounding soil. Piles are often the first members 

of a structure to be installed. They are also some of the most expensive members. 

Therefore, it is very important to analyze piles under various loadings i.e. under axial and 

lateral loadings.  

Most of the methods that are developed to analyze the piles, assume piles as 

flexible beams. In the uncoupled (Winkler) model, the elastic springs are generally 

represented by modulus of subgrade reaction. This modulus was obtained through fitting 

with relevant rigorous numerical solutions (e.g., Vesic, Terzaghi etc). The problem is that 

the fitting to different reactions (e.g. deflection or moment of a beam or a pile) generally 

leads to different values of modulus. This difference in modulus implies that (1) the 

uncoupled model is not sufficiently accurate for simulating the pile-soil interaction; and 

(2) the use of the available modulus developed for beams to pile analysis is only an 

interim measure. The available experiments demonstrate that the displacement field 

around a laterally loaded pile is significantly different from that around a beam sitting on 

an elastic medium. Thus, different modulus for beams and lateral piles should be adopted. 

As in the analysis of vertically loaded piles, the subgrade modulus is affected by 

the soil response in radial direction. To accommodate this effect, a two parameter model 

has been developed with suitable uncoupled expressions relating the pile displacement to 

a radial attenuation function for soil displacement are generally assumed for 

displacements in the radial and circumferential directions, which are then implicitly 
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linked (coupled) through a fitting factor. This two parameter model that has been 

developed is not providing reliable results at high Poisson’s ratios. It is with this 

background in this thesis an attempt has been made to develop a load transfer approach to 

simulate the response of laterally loaded single piles embedded in a homogeneous 

medium, by introducing a rational stress field. 

 In the present work, generalized solutions for a single pile and the 

surrounding soil under various pile-head and base conditions were established. With the 

solutions, a load transfer factor, correlating the displacements of the pile and the soil, was 

estimated and expressed as a simple equation. Expressions were developed for the 

modulus of subgrade reaction for a Winkler model as a unique function of the load 

transfer factor. Expressions are also developed for fictitious tension in terms of the load 

transfer factor. The model parameters such as load transfer factor, Poisson’s ratio, 

slenderness ratio and the soil-pile relative stiffness are investigated in order to have a 

better understanding of the relationship between these parameters. The entire analysis has 

been done using Mathematica 5.1 and MATLAB 7.0 

 

ORGANISATION OF THE THESIS 

Chapter 2 includes about the classification of piles, soil parameters and the importance of 

their relationship. An introduction about the laterally loaded piles is also presented. 

Chapter 3 presents various methods of analysis of laterally loaded piles and their 

significance. 

Chapter 4 gives preliminary investigation of the laterally loaded pile behavior using 

Winkler’s model. Analysis of piles for various piles cross sectional types, sizes, soil types 

etc has been done. 

Chapter 5 deals with the load transfer approach analysis of laterally loaded piles. In this 

chapter, various relations for different pile base and head conditions have been given. 

The inter relationship between various model parameters like load transfer factor, pile-

soil stiffness, slenderness ratio, Poisson’s ratio etc are investigated. 

Chapter 6 presents conclusions of the present work and future scope of the study. 

Appendix A deals with the computational procedure for determination of the shear 

modulus of elasticity. 
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CHAPTER 2 

SOIL-PILE INTERACTION 
 

Piles are driven in weak soils to support heavy structures and transfer their loads 

to the surrounding soils. They are usually subjected to lateral forces and moments as well 

as axial forces. Unlike axial forces, which normally produce deformations in the direction 

of the pile axis, lateral forces may produce deformations in any direction of the pile. The 

design of pile foundations under lateral loads normally is governed by the maximum 

deflection of the pile. 

2.1 CLASSIFICATION OF PILES 

Piles can be classified in many ways, for example, by the material it’s made of, by 

method of load transfer, by amount of ground disturbance, by fabrication method, and by 

method of installation. 

• Pile material: Piles can be made of different materials such as, concrete, steel, 

timber and composite. Traditional composite piles are made of steel and concrete or 

timber and concrete. 

• Method of load transfer: Piles can be classified according to the method of load 

transfer into; end-bearing piles, friction piles, combined end-bearing and friction piles, 

and laterally loaded piles. 

• Amount of ground disturbance during installation: Large-displacement piles, 

small-displacement piles, and non-displacement piles. 

• Pile fabrication method: prefabricated or cast in place. 

• Method of installation, driven piles, bored piles and a combination of driven and 

bored piles. 

2.2 PILING MATERIALS 

The commonly used materials for piling are steel, concrete and timber. Because of 

their high performance as construction materials, they have been recommended over 

other materials. 

Steel piles 

Steel piles are normally used in the form of H or pipe piles. Steel has very high 

compressive and tensile strengths in addition to its high modulus of elasticity. It has a 
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high capability of carrying heavy loads down to deep bearing strata. Steel piles have the 

advantages of high load capacity and ease of splicing so that they can be shipped in any 

required length. They also have the ability of being driven through different soil layers 

even soft rocks and hard material layers. 

Concrete piles 

Concrete is the most common traditional construction material used today. It has 

the ability to carry large axial forces and bending forces when reinforced with steel bars. 

Concrete members can be designed for the desired shape and strength. They are easy to 

drive and have the ability to withstand hard driving. Concrete piles are available in the 

following main categories: 

1. Pre-cast concrete piles 

2. Cast-in place concrete piles 

3. Composite concrete piles. 

Timber piles 

Timber piles are usually made of straight tree trunks after removing their 

branches. They are easy to cut, easy to handle and can last for long periods of time under 

normal environmental conditions. Timber piles can be found as round untrimmed logs or 

sawed square sections. They are usually used as friction piles in granular soils, sands, 

silts and clays. 

2.3 PILE SECTIONS 
Piles can be found in different types of cross sections as shown below. The most 

common shapes are the H-section for steel piles, circular sections for concrete piles and 

polygonal sections for pre-stressed piles. 

                             
Fig 2.1: Different types of pile cross sections 

 5



 
2.4 SOIL PARAMETERS  
 

Before going further, it is important to discuss the importance of the soil 

parameters like modulus of elasticity of soil, modulus of subgrade reaction, shear 

modulus of the soil etc.  

2.4.1 Soil Modulus 

The modulus of a soil is the most difficult parameter estimate because it depends 

on so many factors such as the state of soil, loading conditions, etc. The following section 

will discuss some of the aspects involved in the soil moduli. In the first part, the modulus 

is defined then the factors effecting like the state of soil and then its applications, and its 

relation to the soil coefficient of sub grade reaction and shear modulus of soil. 

2.4.1.1 Definition 
Let us consider the stress-strain curve obtained from a tri-axial test. The sample is 

a cylinder wrapped in an impermeable membrane and confined by all round (hydrostatic) 

pressure. Then the vertical stress is increased gradually and the nonlinear, stress-strain 

shown in Fig.2.2 is obtained. Elasticity assumes that the strains experienced by the soil 

are linearly related to the stresses applied. In reality, this is not true for the soils and there 

lies one complexity. The equations of elasticity for this axisymmetric loading relate the 

stresses and the strains in the three directions as shown in Fig (2.2). Because of the 

axisymmetry, equations (2.1) and (2.2) in Fig (2.2) are identical. In equations (2.1) and 

(2.3) there are two unknowns: the soil modulus, E and the Poisson's ratio,ν . In the tri-axial 

test, it is necessary to measure the stress applied in both directions as well as the strains 

induced in both directions in order to calculate the modulus of the soil. Indeed, one needs two 

simultaneous equations to solve for E andν . Note that the modulus is not the slope of the 

stress-strain curve. An exception to this statement is the case where the confining stress is 

zero as it is for a typical concrete cylinder test or an unconfined compression test on clay. In 

order to calculate the Poisson's ratio, it is also necessary to measure the stresses applied in 

both directions as well as the strains induced in both directions. Note that the Poisson’s ratio 

is not the ratio of the strains in both directions [equation (2.5) on Fig (2.2)]. An exception to 

this statement is again the case where the confining pressure is zero. Because soils do not 

exhibit a linear stress-strain curve, many moduli can be defined from the tri-axial test results 

for example.  
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In the previous paragraph, it was pointed out that the slope of the stress-strain 

curve is not the modulus of the soil, however the slope of the curve is related to the modulus 

and it is convenient to associate the slope of the stress-strain to a modulus. Indeed this gives a 

simple image tied to the modulus value; note however that in the figure 2.3 the slope is never 

labeled as modulus E but rather as slope S. 

 
Fig 2.2 Calculating a Modulus 

 
 

                           (2.1) 
 

                    (2.2) 

                   (2.3) 

                       (2.4) 

                       (2.5) 

Referring to Fig.2.3, if the slope is drawn from the origin to a point on the curve 

(O to A) in Fig.2.3, the secant slope Ss is obtained and the secant modulus Es is 

calculated from it. One would use such a modulus for predicting the movement due to 

then first application of a load as in the case of a spread footing. If the slope is drawn as 

the tangent to the point considered on the stress-strain curve then the tangent slope St is 

obtained and the tangent modulus Et is calculated from it. One would use such a modulus 

 7



to calculate the incremental movement due to an incremental load as in the case of the 

movement due to one more storey in a high-rise building. If the slope is drawn as the line 

which joins points A and B on Fig.2.3, then the unloading Su is obtained and the 

unloading modulus Eu is calculated from it. One would use such a modulus when 

calculating the heave at the bottom of an excavation or the rebound of a pavement after 

the loading by a truck tire (resilient modulus). If the slope is drawn from point B to point 

D in Fig.2.3, then the reloading slope Sr is obtained and the reload modulus Er is 

calculated from it. One would use this modulus to calculate the movement at the bottom 

of an excavation if the excavated sailor a building of equal weight was placed back in the 

excavation or to calculate the movement of the pavement under reloading by the same 

truck tire. If the slope is drawn from point B to point C on Fig 2.3, then the cyclic slope 

Sc is obtained and the cyclic modulus Ec is calculated from it. One would use such a 

modulus and its evolution as a function of the number of cycles for the movement of a 

pile foundation subjected to repeated wave loading.  

Whichever of these moduli are defined and considered, the state in which the soil 

is at a given time like intensity of packing, structure of the soil i.e., intensity of 

disturbance, water content present in the soil, pre-stressing condition of the soil i.e., over 

consolidated, under consolidated or normally consolidated and also type of load acting 

on the soil also affect the modulus. 

 
Fig 2.3 Definition of soil modulus 
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2.4.1.2 Expressions for stress-strain modulus Es by several test methods: 
 
Cone Penetration Test (CPT):  

Vesic (1970) 

  Sand: Es = (1+ Dr
2) * qc                           (2.6) 

  Dr = relative density 

Briaud (1992) 

  Clay: Es = 2.5 * qc                             (2.7) 

  Sand: Es = 1.15 * qc                            (2.8)  

where q c = cone penetration resistance kPa 

 

Standard Penetration Test (SPT): 
  Es  =   250 ( N + 15) in kPa                    (2.9) 
   
  N = penetration number for a required number of blows 
 
 
Pressure Meter Test (PMT): 
 

Pressure meter operates on the principle of expanding a rigid cylinder into the 

soil and being resisted by an infinitely thick cylinder (the soil). 

  GS =  * (D'
OV p /Dv)                    

(2.10) 

Where GS    = the shear modulus 

  = the volume of the measuring cell at average pressure D'
OV p = Vo+Vc

 Dp    = the change in pressure of the cavity 

Then the pressure meter modulus is calculated from the expression as given below 

  Esp = Es = Gs *[2*(1+ν )]                  (2.11) 
 
Dilatometer test (DMT): 

 According to Marchetti (1980) dilatometer modulus(Ed) is related to modulus 

Es as given below 

Es = Ed *(1-ν 2)                  (2.12) 
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Another term that is sometimes used in place of Es is the coefficient (or modulus) of 

horizontal subgrade reaction, kh, expressed in units of force per unit volume (Terzaghi 

1955). The relationship between Es and kh can be expressed as: 

                                         Es = kh D                    (2.13)  

where D is the diameter or width of the pile.  

Es is a more fundamental soil property as it does not depends on the pile size.  
2.4.2 Modulus of Sub-grade Reaction  
 

In analysis of piles under lateral loads using sub grade reaction approach, two 

stiffness parameters are needed: (1) The flexural stiffness of the pile (EI) and (2) The 

horizontal stiffness of the soil, Es, Gs, or kh. In theory of elasticity, the soil stiffness is 

expressed by Young's modulus Es or shear modulus Gs. However, soil stiffness may also 

be defined by the modulus of horizontal subgrade reaction (FL-2) as:  

  Kh = -p/y                    (2.14) 

where p = Soil reaction at a point on the pile per unit of length along the pile 

(FL-1) y = Deflection at that point (L).  

Thus actual soil reaction becomes independent of the soil continuity and is assumed to be 

replaced by closely spaced independent elastic springs. Figure 2.4 shows the typical soil 

reaction versus deflection curve (p-y curve) for soil surrounding a laterally loaded pile. 

For soil reactions less than one-third to one-half of the ultimate soil reaction, the p-y 

relationship can be expressed adequately by a tangent modulus. The slope of the 

modulus variation with respect to depth is called as coefficient of horizontal subgrade 

reaction, kh. For soil reaction exceeding approximately one-third to one-half of the 

ultimate soil reaction, the secant modulus shown by the dashed line should be 

considered, thus making modulus a function of the deflection. The actual variation of sub 

grade modulus with depth is also shown in Fig.2.4. 
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   Fig.2.4 Variation of soil modulus with depth  

 
It has been explained that both stiffness and the ultimate soil resistance are lower near 

the soil boundary (Davisson, 1963). As discussed earlier, as per the theory of subgrade 

modulus, the soil stiffness is represented by a series of independent elastic springs, while 

in reality they are interrelated in a complex fashion. Researchers have proved and 

validated this theory and have shown that for a long relatively flexible member such as a 

pile, the error in the computed bending moments based on the subgrade modulus 

assumption is no more than a few percent when compared to the theory of elasticity 

solution. Therefore, the subgrade modulus concept has a reasonable theoretical 

foundation and can be used extensively for computing response of piles under lateral 

loads.  

Terzaghi (1955) presented an extensive discussion regarding the effect of the size 

of the loaded area on the subgrade modulus. Davisson (1963) showed for elastic 

approach without plastic soil behaviour, after kh has been determined for a given pile, 

modulus value is unchanged if the pile width D is changed, i.e. irrespective of the 

increase or decrease in the pile depth the deflection of the pile becomes fixed. It was also 

proved by Davisson (1963) that any variation in the inertia of the pile in the lateral 

direction is not going to have any change in the load deflection behaviour for the above 

case, however affecting the ultimate soil reaction.  

Cohesive soils: 

Brooms (1964a) has given for elastic cohesive soils 

  
d
E

kh
5067.1

=                                            (2.15)  

where E50  = secant modulus at half ultimate stress in an un-drained test. 

 11



Cohesion-less soils: 
For granular soils, Terzhaghi (1955) recommends that kh can be considered 

directly proportional to the depth z. The expression for kh is given as  

kh = nh * z                  (2.16) 

where nh is the constant of horizontal sub grade reaction expressed in FL-3  and the values 

as suggested by Terzaghi are given in table 4.2. It can be shown that kh is proportional to 

depth for normally consolidated clays and this assumption is also valid for normally 

consolidated silts. 

Vesic (1961), based on the analysis of an infinite beam on elastic foundation, 

suggested the following expression.  

                          12
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 The term  EpIp  =  the pile flexural stiffness;  

d     =  width of the pile; 

Es    =  soil secant (elastic); and  

ν s    =  Poisson’s ratio. 

2.4.3 Shear Modulus of Soil 

 The shear modulus Gs is defined as the ratio of shear stress to the shear strain and 

is given by 

Gs =   Es / (2* (1+ sν ))        (2.18) 

where sν = Poisson’s ratio. 

Empirical equation that has been provided for the calculation of shear modulus of soil as 

provided by Hardin and Richart (1963) is given as 

   
( )

gg n
m

gn
Ags e

ee
PCG '

2
1

1
σ

+

−
= −        (2.19) 

where Cg, eg, and ng = regression constants that depend solely on the soil (and are 

therefore intrinsic soil variables) as given in the table 2.1 below; 

'σ m = mean effective stress; 

 PA = reference stress in the same units as 'σ m usually taken as 100kPa; and e = void 

ratio. 

 

 12



Table 2.1 Regression parameters for calculation of Gs (Salgado et al, 2000) 

Silt (%) Cg eg ng e 

0 612 2.17 0.439 0.633 

5 454 2.17 0.459 0.609 

10 357 2.17 0.592 0.583 

15 238 2.17 0.745 0.500 

20 270 2.17 0.686 0.423 

The computational procedure for calculating the shear modulus of elasticity has been 

provided in the Appendix A. 

2.5 SOIL-PILE BEHAVIOR 

Analysis and design of piles under the different types of loading usually start with 

the understanding of the soil-pile interaction process. Soils, in general, are non-

homogenous materials that are found in layers along the pile length and each layer may 

have different properties from the next layer. The soil-pile interaction will not have the 

same behavior along the pile shaft; therefore, variation in soil properties has to be taken 

into consideration. Piles embedded in soil can be represented by beam-column elements 

with geometric and material nonlinear behavior. Soil-pile behavior can be classified into 

two categories; the first category is axial load-friction behavior, in which a unique 

relationship is assumed between the skin friction, shear stress, and the relative deflection 

between soil and the pile at each depth. The second category is lateral load-displacement 

behavior, in which the pile will be subjected to a lateral soil pressure if it is battered or 

has a lateral loading in form of shear or moment applied at the top. 

2.5.1 LOAD – DISPLACEMENT BEHAVIOR 

Soil behavior can be represented by a set of load-displacement curves to describe 

its response under different types of loadings. Three major categories of curves are 

usually used in this regard; each of them describes a single characteristic of the soil: 

lateral load-displacement (p-y) curves, load-slip (f-z) curves, and load-settlement (q-z) 

curves. The soil response in all three categories is assumed to be nonlinear. The modulus 

of sub-grade reaction, which was originated by Winkler, is one of the most commonly 

used methods in pile analysis. In this method the surrounding soil to the embedded pile 

can be replaced by a series of vertical and lateral springs to represent both the 
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longitudinal and lateral soil resistance. The spring properties are usually obtained from 

the load–displacements curves that represent the resistance force as a function of the 

displacement in the force direction. The derivation of load displacement curves has been 

performed through means of correlations with results from real field experiments on 

instrumented loaded piles. The accuracy of such curves to represent a particular pile 

behavior depends on the similarity between the pile in the study and the pile test model in 

terms of soil properties and loading conditions. 

2.6 FORCES ACTING ON PILES 

Pile foundations are structural members that give support and transfer loads from 

one structure to another. A pile can be considered as a special type of column that carries 

axial and flexural loads but with different cases of boundary conditions. Generally, the 

column is a cast-in-place structure whereas the pile is a pre-cast or prefabricated element 

which requires handling, transporting, and driving. Due to the different circumstances 

that involve the whole process of pile construction, the design should include all factors 

affecting its durability and performance. 

Piles may be subjected to different kinds of forces during handling and while they 

are in service. Piles must be designed to handle loads without damage. 

(a) Crushing under the permanent design load, 

(b) Crushing caused by impact force during driving, 

(c) Bending stresses due to horizontal forces, 

(d) Bending stresses due to curvature in the pile. 

Also piles must have adequate surface area, in the case of friction piles, so that they will 

provide the highest contact area to transfer the loads from the pile to the surrounding soil. 

2.6.1 AXIALLY LOADED PILES 
 

Piles are usually designed for full capacity which is the maximum load the pile 

can support without failure. The maximum allowable stress on a pile section should not 

exceed the allowable limits. A pile under axial compression may reach one of the 

following four limit states. 

1. Structural failure of the pile body such as crushing or yielding. 

2. Stability failure due to buckling. 

3. Bearing capacity failure of the soil under the pile 
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4. Excessive pile settlement 

No pile is likely to be entirely straight. Any curvature causes bending stresses. It 

is important to give consideration to lateral as well as eccentric forces on piles, since 

stresses may increase rapidly from these causes when combined with stresses from direct 

axial loads. An axially loaded pile may be subjected to buckling. The pile will buckle 

during service when the loading reaches or exceeds its critical buckling load. This case is 

rare but it may occur for end-bearing piles in soft soils or partially embedded piles. Also 

a pile may buckle during driving which may cause some deviation from the desired 

position. 

The critical buckling load for an ideal pin ended column is given by the Euler equation: 

  2

2

L
EIPcr

π
=           (2.20) 

 where  EI = flexural stiffness of the pile 

   L = Length of the pile 

 
 

Fig 2.5: Lateral deflections in axially loaded pile 
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2.6.2 LATERALLY LOADED PILES 

Lateral loads on piles usually come from different sources like wind pressure, 

horizontal live loads, earth and water pressure, induced lateral soil movements such as 

construction, excavation, tunneling activities and blasts etc to the near by site of the piles, 

and earthquake effects. Piles under lateral loads must be designed to withstand these 

loads or any combinations of loads without failing. Piles in groups are normally subjected 

to a combination of both axial and lateral loads. In the past, designers used to consider 

piles as axially loaded members only, and the lateral loads were assumed to be carried by 

batter piles. Current pile designers consider the full range of vertical (or battered) 

laterally loaded structural members, fully or partially embedded in the ground, as laterally 

loaded piles (Bowles 1996).  

It has been found that the lateral support provided by any soil except the softest or 

most fluid is generally sufficient to prevent pile failure from buckling for the embedded 

portions. For portions in water or above the ground, unsupported, the pile should be 

designed as a column under direct loads unless lateral forces are present, in which case 

the design should include the lateral forces. The design of laterally loaded vertical piles is 

normally governed by the maximum allowed deflection or the structural capacity of the 

pile. It has been found that reaching the ultimate capacity of the soil is something 

unattainable or unacceptable because it requires considerable displacement. Thus, in 

designing a single pile or a group of vertical piles, the lateral deflection and the structural 

capacity of the pile not the soil should be the determining factors. 

2.7 CRITERION FOR SAFE AND ECONOMIC DESIGN 

Like any other structure, piles should be designed to satisfy certain requirements. 

From engineering point of view, the design of piles should be effective, such that, the 

chosen piles have to be practical, economical and have an adequate margin of safety. Pile 

foundations are different from other structures above the ground. Many factors are 

leading to the difficulties in pile design like the uncertainties in loads and in soil 

properties. The variability of soil in combination with unanticipated loads or subsequent 

soil movements can result in settlement problems over which the designer may have little 

control. Environmental effect is another important factor in the selection and design of 
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pile foundations. The loss of pile section due to such problems will result in reduction of 

load capacity. The continuous decrease in cross section with time will lead to a major 

failure of the structure. 

The main factors that determine the selection of the type of piles are the type of 

the structure and soil condition. The likely foundations are deep, large size footings using 

cofferdam construction, caissons, groups of large-diameter drilled shafts, or groups of a 

large number of steel piles. Surface and subsurface geologic and geotechnical conditions 

are also the other main factors in determining the type of foundations. Subsurface 

conditions, especially the depths to the load bearing soil layer or bedrock, are the most 

crucial factors. Diameters of the piles and inclined piles are two important factors to 

consider in terms of deformation compatibility. 

Piles should be designed for both axial and lateral loading conditions. The two 

principal design considerations for piles under axial loads are ultimate load capacity and 

settlement. The ultimate load capacity of a pile may be governed either by the structural 

capacity of the pile or the bearing capacity of the soil. Piles that are subjected to lateral 

loads must also be safe against ultimate failure of the soil or the pile, and excessive 

lateral deflections. Axially loaded piles may fail in compression or by buckling. Buckling 

may occur in long and slender piles that extend for the portion of their lengths through 

water or air. A scour of the soil around the piles could expose portion of their lengths and 

increase the likelihood of buckling. Laterally loaded piles will fail in flexure if the 

induced bending moment exceeds the moment capacity of the pile. The structural 

capacity of the pile is dependent on both the moment and axial load. 

2.8 SUMMARY 

 In this chapter, an overview of the classification of the piles, its cross sectional 

types has been given. A brief discussion about the axially loaded and laterally loaded 

piles has been made. Important soil parameters like soil modulus, the modulus of 

subgrade reaction and shear modulus of the soil details and their interrelationships are 

provided. Soil pile interaction behavior and its significance, important design criterion 

that are needed to be followed are provided at the end of the section. It is with this 

background in next chapter an attempt was made to discuss the various methods that are 

available for analysis of laterally loaded piles.   
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                CHAPTER 3  

METHODS OF ANALYSIS 
3.1 INTRODUCTION 

Piles are primarily designed to carry axial loading, but in several situations they 

are subjected to lateral displacements as well as shear and moment applied at the pile 

head. Therefore, the pile foundation has to be designed to sustain static and cyclic lateral 

loads. The problem of piles under lateral loading is much more complex than that of 

axially loaded piles. Axially loaded piles may be designed using simple static methods, 

while laterally loaded piles require, sometimes, the solution of the fourth-order 

differential equation because of their non-linear behavior. The problem also can be 

solved as a beam on elastic foundation with nonlinear soil-pile interaction behavior. 

Numerous studies have been conducted trying to investigate the behavior of laterally 

loaded piles. Figure 3.1shows a laterally loaded pile subjected to head shear and moment. 

Each point on the pile will undergo a translation y in the y-direction and a rotation dy/dx 

about the x-axis. The soil around the pile will also develop pressure p that resists the 

lateral displacement of the pile. 

 
Fig 3.1: Schematic view of laterally loaded pile 
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The methods used to analyze the response of single piles and pile groups can be 

categorized into two main approaches; empirical (full-scale and model testing) and 

theoretical (analytical and numerical). Empirical methods rely on actual in-situ testing or 

physical laboratory experiments to back figure the characteristics of the pile-soi1 system 

such as p-y curves. Theoretical approaches use analytical methods to characterize the 

pile-soi1 system and are based on derived solutions including the finite element and 

boundary element solutions. The following section provides a brief description of the 

various approaches available. 

3.2 EXPERIMENTAL METHODS  

A wide range of field and laboratory experiments has been performed by 

researchers attempting to provide parameters for and to validate soil-pile-structure 

interaction (SPSI) analytical methods. These experimental methods have been concerned 

with the load-deformation behavior of soil-pile systems both singly and in groups, at 

small to large strains, loaded statically, cyclically, dynamically, or seismically, by 

exciting the pile head or the soil mass, and covering a variety of pile types and soil 

conditions. In-situ tests have the advantage of providing “correct” soil and pile stress 

conditions, whereas laboratory tests offer the flexibility and economy of making 

parametric studies in a controlled environment. Taken together, field and laboratory tests 

of soil-pile interaction complement each other and provide a valuable body of data where 

recorded SPSI response is lacking. The following sections provide a comprehensive 

survey of soil-pile experimental research published in the literature; the purpose of such a 

review is to understand the adequacy of previous work and the dimensions of further 

research needs.  

3.2.1 Full Scale Pile Test Programs  

Pile load test programs conducted in the field offer the distinct advantages of 

utilizing real soil, real piles, and realistic soil-pile stress conditions. They are limited in 

the sense that loading is applied in a “top down” fashion, concentrating the effects of 

inertial interaction and ignoring the effects of kinematics’ interaction.  

Reese and co-workers (Reese and Welch, 1975; Reese et al., 1974; Reese et al.. 

1975) developed a number of criteria for developing single pile p-y curves in clay and 

sand based on experimental studies. The criteria were based on field tests performed on 
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0.3- 1.5 m diameter piles which were fitted with strain gauges to obtain moment data 

over the length of the piles. The experiments were focused primarily on flexible piles and 

static loading. Matlock (1970) also performed experimental tests on soft clay to derive p-

y curves for similar diameter single piles.  

3.2.2 Model Scale Pile Test Programs  

Model pile tests have offered a wealth of information for SPSI studies, but they 

must be carefully considered in the context of the particular scale model testing method 

and its inherent limitations. Scale model tests are economical, versatile, and conducive to 

parametric studies and repeatability tests. A technique known as “modeling of models” 

can improve the confidence of the modeling methodology. Both kinematics and inertial 

interaction effects may be studied, and pile groups with attached superstructures can be 

readily constructed and tested. Principal limitations of scale model testing include the 

difficulty in fully satisfying all relevant scale modeling criteria, adequately replicating 

realistic soil-pile stress fields, and the boundary effects of test containers.  

The use of scale models in geotechnical engineering offers the advantage of 

simulating complex systems under controlled conditions, and the opportunity to gain 

insight into the fundamental mechanisms operating in these systems. In many 

circumstances (e.g., a static lateral pile load test), the scale model may afford a more 

economical option than the corresponding full-scale test. For other investigations (e.g., 

seismic soil-pile interaction), scale model tests allow the possibility of simulating 

phenomena that cannot be achieved “at-will” in the prototype. The practice of conducting 

parameter studies with scale models can be used to augment areas where case histories 

and/or prototype tests provide only sparse data. In addition to qualitative interpretation, 

scale model test results are often used as calibration benchmarks for analytical methods, 

or to make quantitative predictions of the prototype response. For such applications it is 

necessary to have a set of scaling relations that relate the observed model and predicted 

prototype behavior which is described by a theory of scale model similitude. They are 

dimensional analysis, similitude theory, and the method of governing equations.  

A number of centrifuge tests (Mcvay et al. 1995, Barton 1984 etc,.) and 1-g model 

tests (Cox et al.) have been done to know the behavior of piles under various loading 

conditions. 
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3.3 NUMERICAL METHODS  

The numerical methods may be classified as follows:  

 • The finite element method (FEM)  

 • The finite difference method (FDM),  

 • The boundary element method (BEM), and  

 • The discrete element method (DEM).  

 

3.3.1 Finite Element Method  

The finite element method is a numerical approach based on elastic continuum 

theory that can be used to model pile-soil-pile interaction by considering the soil as a 

three-dimensional, quasi-elastic continuum. Finite element techniques have been used to 

analyze complicated loading conditions on important projects and for research purposes. 

The salient features of this method have been discussed in the later sections.  

3.3.2 Boundary Element Method  

Significant advances have been made in the development of the boundary element 

method and as a consequence, this technique provides an alternative to the finite element 

method under certain circumstances, particularly for some problems in rock engineering 

(Beer and Watson, 1992). The main advantages and disadvantages can be summarized as 

follows.  

Advantages  

 Pre- and post-processing efforts are reduced by an order of magnitude (as 

a result of surface discretisation rather than volume discretisation). 

 The surface discretisation leads to smaller equation systems and less disk 

storage requirements, thus computation time is generally decreased. 

  Distinct structural features such as faults and interfaces located in 

arbitrary positions can be modeled very efficiently, and the nonlinear 

behavior of the fault can be readily included in the analysis (Beer, 1995). 

Disadvantages 

 Except for interfaces and discontinuities, only elastic material behavior 

can be considered with surface discretisation.   
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 In general, non-symmetric and often fully-populated equation systems are 

obtained. 

 A detailed modeling of excavation sequences and support measures is 

practically impossible.  

 The standard formulation is not suitable for highly jointed rocks when the 

joints are randomly distributed. 

 The method has only been used for solving a limited class of problems, 

e.g., tunneling problems, and thus less experience is available than with 

finite element models.  

3.3.3 Discrete Element Method  

The methods described so far are based on continuum mechanics principles and 

are therefore restricted to problems where the mechanical behavior is not governed to a 

large extent by the effects of joints and cracks. If this is the case, discrete element 

methods are much better suited for numerical solution. These methods may be 

characterized as follows:  

 Finite deformations and rotations of discrete blocks (deformable or rigid) 

are calculated.  

 Blocks that are originally connected may separate during the analysis. 

 New contacts which develop between blocks due to displacements and 

rotations are detected automatically.  

Due to the different nature of a discrete analysis, as compared to continuum 

techniques, a direct comparison seems to be not appropriate. The major strength of the 

discrete element method is certainly the fact that a large number of irregular joints can be 

taken into account in a physically rational way. The drawbacks associated with the 

technique are that establishing the model, taking into account all relevant construction 

stages, is still very time consuming, at least for 3-D analyses. In addition, a lot of 

experience is necessary in determining the most appropriate values of input parameters 

such as joint stiffness. These values are not always available from experiments and 

specification of inappropriate values for these parameters may lead to computational 

problems. In addition, runtimes for 3-D analyses are usually quite high.  

 

 22



3.3.4 Explicit Finite Difference Method  

The finite difference method does not have a long-standing tradition in 

geotechnical engineering, perhaps with the exception of analyzing flow problems 

including those involving consolidation and contaminant transport. However, with the 

development of the finite difference code FLAC (Cundall and Board, 1988), which is 

based on an explicit time marching scheme using the full dynamic equations of motion, 

even for static problems, an attractive alternative to the finite element method was 

introduced. Any disturbance of equilibrium is propagated at a material dependent rate. 

This scheme is conditionally stable and small time steps must be used to prevent 

propagation of information beyond neighboring calculation points within one time step. 

Artificial nodal damping is introduced for solving static problems in FLAC. The method 

is comparable to the finite element method (using constant strain triangles) and therefore 

some of the arguments listed above basically hold for the finite difference method as 

well. However, due to the explicit algorithm employed some additional advantages and 

disadvantages may be identified.  

Advantages  

 The explicit solution method avoids the solution of large sets of equations. 

 Large strain plasticity, strain hardening and softening models and soil-

structure interaction are generally easier to introduce than in finite 

elements. 

 The model preparation for simple problems is very easy. 

Disadvantages 

 The method is less efficient for linear or moderately nonlinear problems. 

 Until recently, model preparation for complex 3-D structures has not been 

particularly efficient because sophisticated pre-processing tools have not 

been as readily available, compared to finite element preprocessors. 

 Because the method is based on Newton’s law of motion no converged 

solution for static problems exists, as is the case in static finite element 

analysis.  
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3.4 ANALYTICAL METHODS 

Three criterion must be satisfied in the design of pile foundations subjected to 

lateral forces and moments: 1) the soil should not be stressed beyond its ultimate 

capacity, 2) deflections should be within acceptable limits, and 3) the structural integrity 

of the foundation system must be assured.  

The first criteria can be addressed during design using ultimate resistance theories 

such as those by Brooms (1964a, 1964b) or Brinch Hansen (1961). The second and third 

criteria apply to deflections and stresses that occur at working loads. The behavior of 

piles under working load conditions has been the focus of numerous studies over the past 

40 to 50 years. Many of these techniques which are mainly used for single piles can be 

modified to predict the behavior of closely spaced piles, or pile groups. Modifications for 

group response are often in the form of empirically or theoretically derived factors that 

are applied, in various ways, to account for group interaction effects such as pile spacing, 

group arrangement, group size, pile-head fixity, soil type and density, pile displacement 

etc.  

Analytical methods for predicting lateral deflections, rotations and stresses in 

single piles can be grouped under the following four headings: 

 Winkler approach, 

 p-y method,  

 Elastic continuum approach, and 

 Finite element methods. 

3.4.1 Beam on Winkler Foundation Model  

The Winkler approach, also called the subgrade reaction theory, is the oldest 

method for predicting pile deflections and bending moments. The pile is modeled as a 

beam while the surrounding soil is modeled using continuously distributed springs and 

dashpots (in presence of dynamic loads). Pile nonlinearity may be considered in the 

analysis using an appropriate nonlinear material model. The details of this approach will 

be discussed in the next chapter.  

The subgrade reaction method is widely employed in practice because it has a 

long history of use, and because it is relatively straight forward to apply using available 

chart and tabulated solutions, particularly for a constant or linear variation of Es with 
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depth. Despite its frequent use, the method is often criticized because of its theoretical 

shortcomings and limitations. The primary shortcomings of this approach are:  

1. The modulus of subgrade reaction is not a unique property of the soil, but depends 

intrinsically on pile characteristics and the magnitude of deflection,  

2. The method is semi-empirical in nature,   

3. Axial load effects are ignored, and  

4. The soil model used in the technique is discontinuous. That is, the linearly elastic 

Winkler springs behave independently and thus displacements at a point are not 

influenced by displacements or stresses at other points along the pile. 

3.4.2 p –y Curve Analysis 

The common approach in solving laterally loaded piles is through using p-y 

curves that represent the soil behavior under various loading. The p-y approach for 

analyzing the response of laterally loaded piles is essentially a modification of the basic 

Winkler model, where p is the soil pressure per unit length of a pile and y is the pile 

deflection. The soil is represented by a series of nonlinear p-y curves that vary with depth 

and soil type. The p-y curves for laterally loaded piles can be established based on 

calculations from test results of instrumented full-scale piles. Several factors may 

influence the accuracy of the p-y curves such as soil properties, number of tests, pile 

geometry, layers of soil, and nature of loading. Figure 3.2 shows a representation of a 

nonlinear p-y curves and their variation along the pile depth. 

The American Petroleum Institute (API, 1994) recommended practice for offshore 

platforms gives guidance in determining p-y curves. The origin of the API equation for 

sand evolved from work by Reese, Cox, and Koop (1974) who established a set of 

equations based on the forces associated deformation of a soil wedge and the lateral 

deformation of a rigid cylinder into soil. They established the early shape of the soil load 

deflection p-y curve based on the soil sub-grade modulus. The procedure was modified 

by Bogard and Matlock (1980) principally as a simplification by consolidation of terms. 

The shape of the p-y curve was finally based on work by Parker and Reese (1970). 
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Fig 3.2: Nonlinear p-y curves for laterally loaded piles at various depths x. 

3.4.2.1 Piles in Soft Clay 

 Matlock (1970) performed a series of lateral load tests on some instrumented 320 

mm diameter and 12.8 meters long steel pipe piles driven in clays and subjected to static 

loads.  

The lateral soil resistance was expressed in the following form 
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where 

pu     =  ultimate lateral soil resistance per unit length of the pile 

y50   =   lateral movement of the soil corresponding to 50% of the ultimate 

lateral soil resistance. 

y    =    lateral movement of the soil 

The ultimate lateral resistance pu can be calculated as the smaller of 
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'γ = average effective unit weight from ground surface to p-y curve 
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 c = shear strength at depth z 

 d = width of pile or diameter of the pile 

 J = constant taken as 0.5 for soft clay and 0.25 for medium clay 

 z = depth from ground surface to the p-y curve 

Zr = depth below soil surface to bottom of reduced resistance zone. Equations 3.2 

and 3.3 can be solved simultaneously to get the value of Zr, for a condition of constant 

strength with depth. 

Figure 3.3 shows the shapes of the p-y curves for static and cyclic loading recommended 

by Matlock (1970) for soft clays above the water table. 

                     

 
Fig 3.3: Characteristic shapes of the p-y curves for soft clay 

The lateral displacement at 50% of the ultimate soil resistance can be calculated from the 

following equation 

     dy 5050 5.2 ε=          (3.4) 

where  50ε    =  Strain at 50 percent of the ultimate strength from a laboratory stress-strain 

curve. These values are found to vary in between 0.004 to 0.020 after filed 

tests were conducted. 
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3.4.2.2 Piles in Stiff Clay 

Stiff clay with free water  

Reese et al. (1975) describe lateral load tests employing two steel-pipe piles that 

were 15.2 m long, with a diameter of 610 mm. The piles were driven in a stiff clay site 

near Manor, Texas. The clay at the site was strongly over consolidated and fissured. The   

undrained shear strength of the clay was measured by unconsolidated undrained triaxial 

tests with confining pressure equal to the overburden pressure. The undrained shear 

strengths varied from around 70 kPa near the surface to 1100 kPa at the toe of the piles. 

The site was excavated to a depth of about 0.9 m and water was kept above the surface of 

the site for several weeks prior to obtaining data on the soil properties. The values of ε50 

were found from experiment but scatter was great. On an average, the ε50 values ranged 

from 0.004 to 0.007.  

Both of the piles were instrumented using electrical-resistance strain gauges for 

measurement of bending moment. The gauge readings were taken with a rapid electronic 

data-acquisition system. Curvature was calculated from these readings, which in turn was 

used to infer moment (assuming a linear moment-curvature relationship). The loads were 

applied 0.3 m above ground line. One pile was loaded under static loading with the load 

being increased until the bending moment was near yield moment. The second pile was 

tested under cyclic loading and the loads were cycled under each increment until 

deflections were stabilized. The number of cycles of loading was on the order of 100 and 

applied at a rate of two cycles per minute.  

Experimental p-y curves were derived through a combination of methods. First, p 

was obtained by double-differentiating the bending moment diagram using the following 

procedure. The modulus of subgrade reaction for a particular moment curve was assumed 

to be described by a two-parameter function, i.e. k=αz
n
. Non-dimensional solutions for 

soil reaction profiles were developed that are a function only of α and n. Using these 

relations, numerical values of α and n were obtained by a fitting technique described in 

Reese and Cox (1968). This procedure was repeated for each load and corresponding 

moment curve. Values of y were obtained through double integration of curvature 

readings. The p and y values were coupled to generate p-y curves, and the characteristic 

shapes of these p-y curves for static and cyclic loading are shown in Figure 3.4.  
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Fig 3.4: Characteristic shape of p-y curves for static and cyclic loading in stiff clay in the 

presence of free water (Reese et al., 1975) 

Stiff clay without free water 

  Reese and Welch (1975) reported the results of a test of a drilled shaft with a 

diameter of 760 mm and penetration length of 12.8 m. An instrumented steel pipe, with a 

diameter of 260 mm formed the core of the shaft. Concrete was placed around the shaft 

along with a rebar cage, consisting of 44.5 mm diameter bars. The site, near Houston, 

Texas, consisted of overconsolidated, fissured clay, locally known as Beaumount clay. 

The water table was at a depth of 5.5m.The measured undrained shear strength, which 

averaged between 75kPa to163kPa, was evaluated with unconsolidated-undrained triaxial 

compression tests with confining pressures equal to the overburden pressure. Values of 

ε50 averaged 0.005. 

Both static and cyclic lateral loads were applied just above ground line. A 

polynomial describing a truncated power series was used to fit the measured moment data 

vs. depth. The deflection of the shaft was determined by double-integrating the 

polynomial fit curve. The second differentiation of this curve yields values of soil 

reaction. Boundary conditions used were the measured deflections at the top of the shaft 

and an assumed zero deflection at the bottom of the shaft. Field measurements of 

moments along the pile were compared to analytical predictions derived using the field 
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derived p-y curves. Figure 3.5 shows the resulting characteristic shape of p-y curves 

 
Fig 3.5: Characteristic shape of p-y curves for static and cyclic loading in stiff clay  

with no free water (Reese and Welch, 1975)  
 
3.4.2.3 Piles in Sand 

Cox et al. (1974) describe lateral load tests employing two steel-pipe piles that 

were nearly 21 m long and 610 mm in diameter. Both piles were driven into sand at a site 

on an island near Corpus Christi, Texas. The soil at the site was uniformly graded, fine 

sand with a friction angle of 39 degrees. The water level was kept just above the mud line 

throughout the test. One pile was subjected to static loading while the second underwent 

cycling loading. Both piles were instrumented with electrical-resistance strain gauges.  

The method for inferring p-y curves from the test results was similar to that employed by 

Reese et al. (1975) for the stiff clay with free water case. Figure 3.6 shows the 

characteristic shape of p-y curves for static loading in sand (Cox et al., 1974).  

Lateral bearing capacity for sand: The ultimate lateral bearing capacity for sand has 

been found to vary from a value at shallow depths determined by Equation 3.5 to a value 

at deep depths determined by Equation 3.6. At a given depth the equation giving the 

smallest value of Pu should be used as the ultimate bearing capacity. 

Pus = (C1Z + C2D) Z           (3.5) 'γ

Pud = C3 D  Z            (3.6) 'γ
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Fig 3.6: Characteristic shape of p-y curves for static loading  

in sand (Cox et al., 1974)  
 
where 

Pu  =  ultimate resistance (force/unit length) (s=shallow, d=deep) 
'γ  = average effective unit weight from ground surface to p-y curve 

Z  = depth 

φ'  = angle of internal friction in sand 

Cl = Coefficient determined from Figure 3.7 as a function of φ' 

C2 = Coefficient determined from Figure 3.7 as a function of φ' 

C3 = Coefficient determined from Figure 3.7 as a function of φ' 

D  = average pile diameter from surface to depth 

The lateral soil resistance-deflection (p-y) relationship for sand is also nonlinear and in 

the absence of more definitive information may be approximated at any specific depth Z, 

by the following expression. 

P = A pu tanh [(k Z y)/ (A pu)]          (3.7) 

where 

A factor to account for cyclic or static loading continued. 

A = 0.9 for cyclic loading. 

A = (3.0 - 0.8 Z/D) ≥  0.9 for static loading. 
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k = initial modulus of subgrade reaction in force per volume units and can be 

determined from Figure 3.8 as a function of angle of internal friction. 

y = lateral deflection. 

 
       Fig 3.7: API Coefficients for sand.                        Fig 3.8: API initial modulus  
        of subgrade reaction. 
 

The p-y method is readily adapted to computer implementation and is available 

commercially in the computer programs LPILEPlus 5.0 (1985 - 2006) and COM624 

(1993). The method is an improvement over the subgrade reaction approach because it 

accounts for the nonlinear behavior of most soils without the numerical limitations 

inherent in the subgrade reaction approach. However, the method has some limitations, as 

described below: 

1. The p-y curves are independent of one another. Therefore, the 

continuous nature of soil along the length of the pile is not explicitly modeled. 

2. Suitable p-y curves are required. Obtaining the appropriate p-y curve is 

analogous to obtaining the appropriate value of Es; one must either perform full 

scale instrumented lateral load tests or adapt the existing available standard curves 

(default curves) for use in untested conditions. These default curves are limited to 

the soil types in which they were developed; they are not universal. 

3. A computer is required to perform the analysis. 
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3.4.3 Elastic Continuum Approach  

Poulos (1971a, 1971b) presented the first systematic approach for analyzing the 

behavior of laterally loaded piles and pile groups using the theory of elasticity. Because 

the soil is represented as an elastic continuum, the approach is applicable for analyzing 

battered piles, pile groups of any shape and dimension, layered systems, and systems in 

which the soil modulus varies with depth. The method can be adapted to account for the 

nonlinear behavior of soil and provides a means of determining both immediate and final 

total movements of the pile. This approach is based on Mindlin’s (1936) closed form 

solution for the application of point loads to a semi-infinite mass. The accuracy of these 

solutions is directly related to the evaluation of the Young’s modulus and the other elastic 

parameters of the soil. 

The pile is assumed to be a vertical strip of length L, width D (or diameter, D, for 

a circular pile), and flexural stiffness EpIp. It is divided into n+1 elements and each 

element is acted upon by a uniform horizontal stress p. The horizontal displacements of 

the pile are equal to the horizontal displacements of the soil. The soil displacements are 

expressed as: 

 }]{[}{ pI
E
dy s

s
s =                     (3.8) 

where  

{ys} = the column vector of soil displacements,  

{p}  = the column vector of horizontal loading between soil and pile, and 

[Is]  =the n+1 by n+1 matrix of soil displacement influence factors 

determined by integrating Mindlin’s equation, using boundary element 

analyses.  

The finite difference form of the beam bending equation is used to determine the pile 

displacements. The form of the equation varies depending on the pile-head boundary 

conditions. Poulos and Davis (1980) present expressions for free-head and fixed-head 

piles for a number of different soil and loading conditions. One of the biggest limitations 

of the method (in addition to computational complexities) is the difficulty in determining 

an appropriate soil modulus, Es. 
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3.4.4 Finite Element Analysis 

The finite element method is a numerical approach based on elastic continuum 

theory that was initially developed for the analysis of problems in structural mechanics, 

but it was realized later that this method can be applied to solutions for many other kinds 

of problems. One such problem where this method can be used was pile-soil-pile 

interaction by considering the soil as a three-dimensional, quasi-elastic continuum. Finite 

element techniques have been used to analyze complicated loading conditions. Main 

features of this powerful method include the ability to simulate any combination of axial, 

torsion, and lateral loads; the capability of considering the nonlinear behavior of structure 

and soil; and the potential to model pile-soil-pile-structure interactions.  

The method works on the principle of solving the problem by going from a small 

part to the whole. The whole medium of the problem is assumed to consist of a 

combination of small parts joined together to form the whole structure. Various types of 

elements are used to represent the different structural components. For instance, we can 

use three-dimensional two-node beam elements to model the piles, pier columns, and pier 

cap, and three-dimensional 9- node flat shell elements for the pile cap. Interface elements 

are often used to model the soil-pile interface. These elements provide for frictional 

behavior when there is contact between pile and soil, and do not allow transmittal of 

forces across the interface when the pile is separated from the soil. The small parts 

(elements) then are assembled to reach the final solution. Solutions resulting from finite 

element analysis are not exact solutions. Pile displacements and stresses are evaluated by 

solving the classic beam bending equation using one of the standard numerical methods.  

Numerous finite element codes are available with high capabilities in handling very 

complicated structures. ANSYS, ABAQUS, NASTRAN etc are such software’s which 

are used nowadays widely for analysis purpose. Analysis of a structural problem using 

finite element method briefly consists of the following three stages: 

1. Building the model (Preprocessing). 

2. Applying loads and obtain solutions (Solution). 

3. Reviewing the results (Post Processing) 
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Advantages 
a) Nonlinear material behavior can be considered for the entire domain analyzed.  
b) Structural features in the soil or rock mass, such as closely spaced parallel sets 

of joints or fissures, can be efficiently modeled. 

c) Time dependent results can be obtained and more intricate conditions such as 

battered piles, slopes, excavations, tie-backs, and construction sequencing can 

be modeled.  

d) Special formulations are now available for other types of geotechnical 

problem, e.g., seepage analysis, and the bound theorem solutions in plasticity 

theory. 

e) The method has been extensively applied to solve practical problems and thus 

a lot of experience can be gained. 

Disadvantages 
The following disadvantages are particularly pronounced for 3-D analyses and are less 
relevant for 2-D models. 

a) The entire volume of the domain analyzed has to be discretized, i.e., large pre- 

and post-processing efforts are required. 

b) Due to large equation systems, run times and disk storage requirements may be 

excessive (depending on the general structure and the implemented algorithms of 

the finite element code).  

c) The method is generally not suitable for highly jointed rocks or highly fissured 

soils when these defects are randomly distributed and dominate the mechanical 

behavior. 

d) Performing three- dimensional finite element analyses requires considerable 

engineering time for generating input and interpreting results. For this reason, the 

finite element method has been used mainly for analysis of piles rather than for 

design. 

3.5 SUMMARY 
 In this chapter an understanding of the various methods of analyses has been 

made. With this background in the next chapter to have a preliminary understanding of 

behavior of piles Winkler’s analyses was done. 
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CHAPTER 4 

 WINKLER’S ANALYSIS OF LATERALLY LOADED PILES 
4.1 BACKGROUND 

Though there are many methods with their advantages the Beam-on-Winkler-

Foundation model, as it is a basic, versatile and efficient approach to pile foundation 

analysis, has been adopted for the preliminary investigation of single piles under lateral 

loading The Winkler approach, also called the subgrade reaction theory, is the oldest 

method for predicting pile deflections and bending moments. The pile is modeled as a 

beam while the surrounding soil is modeled using continuously distributed springs and 

dashpots (if dynamic loads are under consideration) as shown in the Fig.4.1 below.  

         
    Fig.4.1: Single pile model    

The behavior of a single pile can be analyzed using the equation of an elastic 

beam supported on an elastic foundation (Hetenyi 1946), which is represented by the 4th  

order differential beam bending equation: 

02

2

4

4

=++ yE
dz

ydQ
dz

ydIE spp        (4.1) 

where  

Ep = the modulus of elasticity of the pile,  

Ip = the moment of inertia of the pile section,  

Q = the axial load on the pile,  

z = the vertical depth,  

 

 36



y = the lateral deflection of the pile at point z along the length of the pile 

and  Es = the modulus of soil reaction (or soil modulus).  

The approach uses Winkler’s modulus of sub-grade reaction concept to model the 

soil as a series of unconnected linear springs with stiffness, Es, expressed in units of force 

per length squared (FL-2). 

 The governing equation for the deflection of a laterally loaded pile, obtained by 

ignoring the axial component, is: 

    04

4

=+ y
IE

E
dz

yd

pp

s          (4.2) 

Solution to above equation has been obtained by making simplifying assumptions 

regarding the variation of Es (or kh) with depth. Es is the modulus of soil reaction (or soil 

modulus) defined as: 

kh = -p/y                                              (4.3) 

where  

p = the lateral soil reaction per unit length of the pile, and  

y = the lateral deflection of the pile (Matlock and Reese, 1960). The negative sign 

indicates the direction of soil reaction is opposite to the direction of the pile deflection.  

The solution of the differential equation is obtained by employing appropriate boundary 

conditions, soil response and soil modulus values respectively. The boundary conditions 

at the top are shear force is equal to lateral load applied and bending moment applied is 

equal to applied moment (in the present case it is zero). At the bottom of the pile for a 

long length slope and deflections are zero. The numerical solution has been programmed 

using the programming language MATLAB 7.0. 
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 The data that has been used in calculation are as given below. Unless otherwise 

mentioned these are the values that are taken throughout. 

Concrete pile elastic modulus of elasticity (Ep) = 2.8e+010 N/m2

Pile diameter in meters (D) = 0.7 

Pile length in meters (L) = 12 

Lateral load in N (P) = 30000 

 
Table 4.1: Value range for the static stress-strain modulus 

Es for selected soils (Bowles, 1996) 
Type of soil Modulus of elasticity, MPa 

Very soft clay 2-15 

Soft clay 5-25 

Medium clay 15-50 

Hard clay 50 – 100 

Sandy clay 25  - 250 

Silt 2 – 20 

Silty sand 5 – 20 

Loose sand 10 – 25 

Dense sand 50 – 81 

Loose sandy gravel 50 – 150 

Dense sandy gravel 100 – 200 

 
 

Table 4.2: Values of modulus of sub-grade reaction (Terzaghi, 1955) 

Type of soil Modulus of sub grade reaction in kN/m3

Loose sand 1100 – 3300 

Medium sand 3300 – 11000 

Dense sand 11000 – 23400 
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4.2 DISCUSSION ON THE RESULTS OF WINKLER’S MODEL 

It was observed from the results that deflections and bending moments of piles in 

sand are almost twice to that of clay. This is due to the fact that the stiffness of soil is 

mainly a function of confining pressure and the soil has low confining pressure at the top. 

In the case of different kinds of same soil type i.e., sand or clay, deflections and bending 

moments are varying depending on the variations in the denseness of the soil depicting 

the effect of considering the variation of modulus. 

In case of piles with varying cross sectional shape (i.e., considering for two cases 

square and circular of side and diameter equal to 0.7m) in sandy soils it has been 

observed that moments generated in circular are less in comparison to square pile. Almost 

same is the case with reference to deflections. This trend of behavior may be attributed to 

the rigidity of the pile.   

 In case of varying pile sizes, it has been observed that piles with small diameter 

are showing larger deflection at shallow depths in comparison with large diameter piles. 

But this trend has been reversed at larger depths.  

  For varying modulus of sub-grade reaction in case of sands the deflections and 

bending moments decreased as the relative density of the soil increased again stressing 

the importance of soil properties. For varying lateral loads it is observed that as the lateral 

load increases pile deflections and moments also increased in proportion. For observed 

behavior of different lateral loads application maximum pile deflection values are taken 

to obtain the relationship between lateral load and pile head deflection. 
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(a) Moment variation with depth 
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        (b) Deflection variation with depth 

Fig 4.2: Comparison of   pile behavior in clay and sand soil 
With respect to (a) moment (b) deflection.(Using Bowles,1996) 
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Fig 4.3:  Moment variation for different types of soils in clay and sand 
   (Using Bowles, 1996) 
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Fig 4.4: Deflection variations for different types of soils in clay and sand 

     (Using Bowles, 1996) 
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   (a) Moment distribution with respected to depth 
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   (b) Deflection variation with respected to depth 

Fig 4.5: Effect of pile cross sectional shape on (a) moment (b) deflection 
 
 

 43



0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

depth in metre

M
om

en
t i

n 
K

N
m

 

At diameter =0.7metres
At diameter =0.8metres
At diameter =0.9metres
At diameter =1metres

 
  (a) Moment variation with respected to depth in clay 
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(b)Deflection variation with respected to depth in clay 

Fig 4.6: Effect of pile cross sections size on (a) moment (b) deflection in clay 
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(b) Deflection variation with respected to depth 

Fig 4.7: Effect of the modulus of sub-grade reaction on (a) moment (b) deflection 
   (Using Terzaghi, 1955) 
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Fig 4.8: Load – deflection curve 

 

4.3 SUMMARY 

 In this chapter, a simplified analysis of the laterally loaded single pile (mainly for 

free head piles) was done using Winkler’s beam on elastic foundation method. Behaviour 

of the piles under varying loads, soil types, pile materials, pile cross sections etc was 

made in detail. A relationship between the lateral load and pile head deflections has been 

obtained. Results obtained using this approach are briefly discussed. As this approach is 

based on the assumption that pile is taken as beam and the soil around it as elastic springs 

which is a limitation. In reality, soil – pile interaction behaviour will vary in the radial 

and circumferential direction also. It is with this motivation a new load transfer approach 

has been developed in the next chapter. 
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CHAPTER 5 

NUMERICAL ANALYSIS OF  
LATERALLY LOADED PILES 

 
5.1 INTRODUCTION 
 

As a foundation problem, the analysis of a pile under lateral loading is 

complicated by the fact that the soil reaction is dependent on the pile movement, and the 

pile movement, on the other hand, is dependent on the soil response. Thus, the problem is 

one of soil-structure interaction. Many methods such as the subgrade reaction method, the 

elastic continuum approaches have been developed as an alternative to the time 

consuming finite element method for the analysis of laterally loaded soil-pile system 

(Broms 1965; Desai 1974; Poulos 1980; and Reese 1986). In most of these methods, the 

pile is modeled as a flexible beam. The main difference among the various methods is the 

approach of the soil behavior used in the model. The majority of the soil models can be 

grouped into two classes. In the first class, the soil behavior is represented by a series of 

independent nonlinear springs. This allows one to follow closely the soil profile by using 

p-y curves (Matlock and Reese 1960; Matlock 1970; Reese et al. 1974). In the second 

class of models, the soil is represented by an elastic continuum. The represented method 

of second class is developed by Poulos (1971a, 1971b, 1972). Poulos has presented an 

approximate numerical solution for laterally loaded pile and the pile is represented as an 

infinitely thin linearly elastic strip embedded in an elastic media. Some further 

developments of elastic continuum analysis (Randolph 1981) and finite-element methods 

(Desai 1974) are also done. 

In the uncoupled (Winkler) model, the elastic springs are generally represented by 

the modulus of subgrade reaction. This modulus was obtained through fitting with 

relevant rigorous numerical solutions (e.g., Vesic, Terzaghi etc). The problem is that the 

fitting to different reactions (e.g. deflection or moment of a beam or a pile) generally 

leads to different values of modulus. This difference in modulus implies that (1) the 

uncoupled model is not sufficiently accurate for simulating the pile-soil interaction; and 
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(2) the use of the available modulus developed for beams to pile analysis is only an 

interim measure. The available experiments demonstrate that the displacement field 

around a laterally loaded pile is significantly different from that around a beam sitting on 

an elastic medium. Thus, different modulus for beams and lateral piles should be adopted. 

As in the analysis of vertically loaded piles, the subgrade modulus is affected by 

the soil response in radial direction. To accommodate this effect, uncoupled expressions 

relating the pile displacement, y(z), to a radial attenuation function for soil displacement, 

)(rϕ  are generally assumed for displacements in the radial (u) and  circumferential (v) 

directions, which are then implicitly linked (coupled) through a fitting factor,γ . The 

principal parameter (γ ) is used in this model to present the elastic foundation, and an 

iterative technique is adopted to obtain a consistent energy solution based on the 

variational approach. The approach also leads to expressions as the sole variables of γ  

for the two parameters, namely the modulus of subgrade reaction, k (for the Winkler 

springs), and the fictitious tension, N (for a stretched membrane used to tie together the 

springs). Thus the model derived from the approach is normally referred to as a two-

parameter (or Vlasov's foundation) model. The challenge of this modeling lies in the 

estimation of the fitting factor,γ  which in turn depends on the uncoupled expressions for 

the (u, v) displacements. The modified Vlasov model for the static analysis of beams on 

elastic foundations has been proposed by Vallabhan and Das (1988, 1991). Both free and 

fixed head piles have been considered. Two kinds of boundary conditions of practical 

interest at the pile tip, floating tip and clamped tip, are also considered. 

In using the variational approach, a potential energy for a pile-soil system is first 

determined in terms of the stress components in the pile and the soil, which, in turn, may 

be derived from the uncoupled expressions of the (u, v) displacements using elastic 

theory. Furthermore, the derived stress field may be simplified by ignoring higher order 

stress components, similar to those for vertical and torsional piles. To distinguish the 

cases using different derived stresses, in the present case the two-parameter model refers 

only to the former case; while the case using the simplified stress field is referred to as 

load transfer model. The fitting factor is termed accordingly as the load transfer factor 

(γ ). The goal, of using assumed displacement (or displacement and stress) expressions, is 
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to estimate the fitting (load transfer) factor. The sacrifice of using an approximate stress 

field often leads to exact closed-form solutions for piles. In contrast, complicated 

expressions for piles may result from using assumed displacement expressions only (e.g. 

those adopted in the two parameter model). Particularly for a laterally loaded pile, the 

results from the two-parameter model are unstable and unreasonable at a high Poisson's 

ratio, e.g. sν  ≥  0.3. 

In brief, the main features of this approach are: 

(1) It shows that the effect of Poisson's ratio on pile response may be accounted 

for through the shear modulus. 

(2) It shows that less important stress components may be ignored, in order to 

generate the load transfer factor. 

(3) It illustrates that the modulus of subgrade reaction and the fictitious tension 

are the energy parameters due to the stress variations in radial direction, and vertical 

direction, respectively. 

(4) It demonstrates that critical pile length depends on loading characteristics 

(lateral concentrated load, or moment) and pile-head, and/or base conditions. 

5.2 DESCRIPTION OF MODEL 
5.2.1 Displacement and stress field 

As depicted in Figure 5.1(a), the problem addressed herein is the response of a 

circular pile subjected to horizontal loading of load P and moment Mo at the pile-head 

level, which is represented (Figure 5.1(b)) by the displacement, y, the bending moment, 

M, and the shear force, Q. The pile is of length, L¸ and radius, ro and is embedded in an 

elastic medium. The medium is assumed to be linear, homogeneous and has isotropic 

properties. The displacement and stress fields in the soil around the pile are described by 

a cylindrical coordinate system r, θ  and z as depicted in Figure 5.2(a). The displacement 

and stress fields in the soil around the pile are described by a cylindrical coordinate 

system r,θ  and z as depicted in Figure 5.2(a). 

The displacement field around the laterally loaded pile is nonaxisymmetric, and 

normally dominated by radial u, and circumferential displacement v; while the vertical 

displacement, w is negligible. Thus, the field may be expressed in Fourier series  
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where yn(z) is the nth component of the pile body displacement at depth, z and in the 

direction of the nth loading component; )(rnϕ the nth component of the attenuation 

function of soil displacement at a radial distance, r from the pile axis; and θ  angle 

between the line joining the center of the pile cross-section to the point of interest and the 

direction of the nth loading component. The elastic constitutive law in the cylindrical 

coordinates is given as  
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where  sλ  = Lami’s constant 
Es  = Modulus of Elasticity of soil 

sν  = poison’s ratio 

Gs = Shear modulus of the soil 

In addition stress strain relationship for an elastic body can be expressed as  
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in which zero circumferential strain is due to assumed displacements as given in the 

equation 5.1. 

Using elastic theory (equations 5.2 & 5.5) and Equation 5.1, the stresses in the 

soil surrounding the pile, may be expressed as 
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In the present case as we are considering only concentrated load, P and moment, 

Mo at the pile head will be considered, there exists only one term in the series of 

Equations (5.1) and (5.6) for n = 1, while the other terms vanish. In the case where the 

applied load and/or moment components are in different directions then other terms also 

may exists (e.g. n = 2, 3). The relevant solution for each term (n) may be obtained in the 

similar lines of the procedure adopted for the condition of n = 1. The solution for each n 

may be superimposed to yield the final results. The displacement and the derived stress 

field may be used directly to establish solutions (e.g. for laterally loaded piles by Sun, 

and beams by Vallabhan and Das). Particularly, under lateral loading, the effect of 

Poisson's ratio on pile response is generally minor, and may be represented well by using 

the modulus, G*, where G* = (1+3/4 sν ) Gs. Thus, the stress field may be simplified by 

taking Poisson's ratio as zero, which is equivalent to a zero value of the Lame's constant. 

By taking the above assumptions, the displacement and new stress fields can be 

expressed as: 
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The new, simplified stress field is exact at sν  = 0, and should gradually diverge from the 

exact by equation (5.6), with a maximum difference probably occurring at sν  = 0.5. 

Therefore, the numerical results that will be found will be focused for the case of sν  = 

0.5. The stresses of θrθz ττ & are proposed to cater for the possible shear in the vertical 
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direction (Figure 5.2(b)) and in the circumferential direction (Figure 5.2(c)) around the 

pile. As mentioned earlier, analysis done using this simplified stresses as shown in Figure 

5.2(d) is referred to as the load transfer approach. 

 
Fig 5.1: Schematic view of pile-soil system: (a) single pile; (b) pile element analysis. 

 
Fig 5.2: Stress and displacement field adopted in the load transfer analysis: (a) cylindrical 
coordinate system with displacements and stresses; (b) vertical loading; (c) torsional 
loading; (d) lateral loading. 
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5.2.2 Solutions for laterally loaded piles 
 

To obtain coupled solutions, between the pile and the soil, for the problem shown 

in Figure 5.1(a), the variational approach is adopted, using the displacement field from 

Equation (5.7) and the stress field from Equation (5.8). The variation of potential energy, 

Uδ ; of the pile-soil system may be expressed as 
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where  

Ep, Ip are the Young's modulus and moment of inertia of an equivalent solid 

cylinder pile, 

ro the radius of an equivalent solid cylinder pile; 

ijij εσ &  the stress (from Equation (5.8)) and strain (from Equation 5.5) 

components in the surrounding soil of the pile, respectively. 

 The virtual work, Wδ , done by the load, P and the moment, Mo due to a small 

displacement, δ y, and rotation, δ (dy/dz), may be expressed as 

 000 )( == Ι+Ι= zz dzdyMyPW δδδ        (5.10) 
For equilibrium of the soil-pile system 

0=+ WU δδ           (5.11) 

For the expansion of the above expression the following energy parameters can be 

introduced 
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where 

Uk  =  the energy for unit pile movement (y = 1) per unit pile length;  

UN  = the energy for unit pile rotation (dy/dz = 1) per unit pile length; 
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Um = the energy for unit radial rotation (dφ /dr = 1) per unit radial length, and  

Un = the energy for unit radial variation (φ  =1) per unit radial length. 

Uk and  Um reflect the potential energy due to the stress variations in radial 

direction. 

UN and Un reflect the potential energy due to the stress variations in vertical 

direction. 

Using Equation (5.8), the expressions for the energy parameters may be rewritten as 
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Using these energy parameters, Equation 5.10 is expanded in order to obtain the 

boundary conditions and relevant solutions. In this expansion the parameters k and N are 

adopted such that 

 k = 2 Uk      and   N = 2 UN          (5.18) 

Expanding the Equation 5.10 , 
(1)  Taking the coefficients of δφ  for ro ≤  r <α . The governing equation for the radial 
attenuation function, φ (r) is obtained as  
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where γ  is load transfer factor, which is given by 
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As r , ∞→ 0)( →∞φ  and at r = ro, 1)( →roφ , the equation 5.19 can be resolved and 
expressed as modified Bessel functions of the second kind of order zero, Ko(γ ) and can 
be given as below 
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(2) Collecting the coefficients of δ y for 0 ≤  z < L, the governing equation for the pile 

displacement, y(z) is obtained as 
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where y(z) is measured in the direction of lateral load P or moment Mo. 
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 k is the modulus of subgrade reaction for the Winkler’s springs 

 N is the fictitious tension of a stretched membrane used to tie together the springs. 

 This is the differential equation which is same as basic differential equation for beam on 

elastic foundation acted upon by axial load and transverse loading. 

(3) Using equations 5.21 and 5.16, and simplifying the equation 5.18 we will get 
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5.2.3 Boundary conditions 

From the equation 5.10 

(i) Collecting the coefficients for δ y at z = 0, free head 
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(ii) Collecting the coefficients for δ (dy/dz) at z = 0, free head 
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(iii) Collecting the coefficients for δ y at z = L, floating base 
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(iv) Collecting the coefficients for δ (dy/dz) at z = L, floating base 
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For a fixed-head and/or clamped-base pile, the rotation at the pile head and/or base is set 

to zero. Also the clamped base required a zero value of the displacement.  

At z = 0, for fixed head pile 

0=
dz
dy           (5.29) 

At z = L, for clamped base pile 

  0=
dz
dy   , y=0          (5.30) 
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The solution of the equation 5.22 has been calculated using Mathematica 5.1 and is given  

( ) ( ) azaz ebzCbzCebzCbzCzy −+++= )sin()cos()sin()cos()( 4321      (5.31) 
 

The constants in the above equation have been found from the boundary conditions given 

by the equations 5.25 – 5.30 and the above solution may be rewritten as follows 
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where 

 H(z), and I(z) are functions used to reflect pile-head boundary conditions, 

B(z), and C(z) reflect pile-base conditions. For the head (with subscript ‘o') and 

base (with ‘B') boundary conditions described in the Figure 5.3, these functions and the 

factor δ are calculated using Mathematica 5.1 as functions of the parameter a and b, 

which are given as below 
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Equation (5.32) is a generalized expression for the deformation of the single pile. The 

derivatives of the equation give expressions for predicting the pile rotation, bending 

moment, deformation and shear force can be obtained using Mathematica 5.1 and 

MATLAB 7.0.  

5.3 CRITICAL PILE LENGTH 

Equation (5.32) and its derivatives may generally be used to predict the response 

of single piles. The prediction may be simplified in some cases, because there exist a 

critical length, Lc¸ beyond which pile-head response and maximum bending moment 

remain essentially at constant values. Various formulas were proposed for estimating the 

critical pile length, in terms of either modulus of subgrade reaction, k or the modified soil 

modulus , G*. As shown later, the modulus, k may be as high as 10Gs, thus the critical 

length; Lc may be as low as 

(( )( ) 25.0
0 )*75.011.2 GEvrL psc +≈         (5.34) 
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From the above expression, the critical pile-soil stiffness (Ep/G*)c can be obtained as  
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When L<Lc or (Ep/G*) > (Ep/G*)c,  the piles are referred to as ‘short piles’, otherwise as 

‘long piles’. It can be seen from this that the critical pile length for lateral loading is 

generally shortest and short piles defined herein are not necessarily equivalent to rigid 

piles. 

 
Fig 5.3 Pile- head and -base conditions.(a) FeHCP (free-head, clamped pile); (b) FxHCP 
(fixed-head, clamped pile); (c) FeHFP (free-head, floating pile); (d) FxHFP (fixed-head, 

floating pile). 
 

5.4 LOAD TRANASFER FACTOR 

As discussed earlier, in order to obtain the coupled response of the pile 

(displacement, y(z)) and the soil around it the radial attenuation function, φ (r) a fitting 

factor known as load transfer factor(γ ) was introduced. From the equation 5.20 it can be 

known that this factor is proportional to the square root of the ratio of the energy 

parameters due to the stress variations in vertical direction, Un over that in radial 

direction, Um. Using the equation 5.17 equation 5.20 can be expressed as  
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Since y(z), k, and the N are all dependent of γ , Equation (5.36) is non-linear, and has to 

be solved numerically. Generally for long piles, the terms including y(L) may be ignored. 

In this situation, γ  is a simple function of the rotation, dy/dz and the lateral displacement, 

y(z) of the pile over the whole length. 

5.4.1 Computational procedure for γ  determination 

1. Calculate the values of k and N for the assumed value of γ  using the 

equations (5.23) and (5.24). 

2. Obtain the values of y(z) and dy/dz using the relation 5.32. 

3. Calculate γ  by solving the equation 5.36 from the values obtained from the 

steps 1 and 2. 

4. Check out for required convergence for the obtained and assumed values ofγ . 

5. If convergence is not obtained repeat the procedure until the required 

convergence is obtained. 

6. Likewise the values of γ  can be obtained for different pile head and base 

conditions under lateral load and moments. 

Following the above procedure an empirical expression that has been suggested by Guo 

(2001) was utilized in the present analysis for calculating load transfer factor which is  
32
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where k1,k2 and k3 the coefficients given in Table 5.1. 
 

Table 5.1: Parameters for estimating the load transfer factor (Guo, 2001) 
Long Piles Short Piles Items K1 K2 K3 K1 K2 K3

FeHCP(P) 1.0 -0.25 0 1.9 0 -1.0 
FeHFP(P) 1.0 -0.25 0 2.14 0 -1.0 
FeHCP(Mo) 2.0 -0.25 0 2.38 -0.04 -0.84 
FeHFP(Mo) 2.0 -0.25 0 3.8 0 -1.0 
FxHCP(P) 0.65 -0.25 -0.04 1.5 -0.01 -0.96 
FxHFP(P) 0.65 -0.25 -0.04 0.76 0.06 -1.24 
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The validity of the above expression has been verified for a particular case of free head 

clamped base pile acted upon by a lateral load P using Mathematica 5.1 and MATLAB 

7.0 programming language. 

 From figure (5.4) and (5.5) it may be noted that for the long piles, the value of  γ  

depends on the pile – soil relative stiffness, Ep/G*, loading characteristics (P or Mo) and 

the pile head and base conditions, but is nearly independent of the slenderness ratio. On 

the other hand, for short piles, the value of γ  is nearly independent of the pile-soil 

relative stiffness and is approximately inversely proportional to the slenderness ratio. The 

effect of the Poisson’s ratio is taken care of in the above equation by incorporating a 

parameter called modified shear modulus, G*. From the figure (5.4) it is clear that there 

is not much difference in the calculated load transfer factors for a particular case with 

varying Poisson’s ratios. 

 The values of parameters that are used for calculating the load transfer factor were 

determined from equation (5.32) for cases where in the pile is subjected to either lateral 

load P or moment Mo. In cases where the pile is subjected to a load and moment 

simultaneously, γ  may be estimated by using the equation (5.36) directly together with 

the displacement y(z) estimated by using equation (5.32) under combined loading. This 

differs from the conventional approach, wherein, the displacement fields due to the load 

P and moment Mo are estimated individually using different values ofγ , and then 

superimposed to yield the displacement under combined loading. The value of γ  for 

combined loading should lie in between the value of γ  for the load P and that for the 

moment Mo. 
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Fig 5.4(a) Effect of slenderness ratio L/ro                           

     
Fig 5.4(b) Effect of Poisson’s ratio 

Fig 5.4: Determination of load transfer factor (clamped base and free head). 
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Fig 5.5: Determination of load transfer factor for various pile  

head and base conditions. 

5.5 MODULUS OF SUBGRADE REACTION AND FICTITIOUS TENSION 

The current solutions (e.g. Equation (5.32)) are essentially represented through 

the two parameters k and N. The parameter k generally represents the energy parameter, 

Uk, due to the stress variations in radial direction, and reflecting the coupling effect of the 

independent springs around the pile shaft through the parameterγ . When y in Equation 

(5.8) is a constant θrθz ττ &  reduce to zero. The factor γ  becomes zero from Equation 

(5.20). Using Equation (5.19),φ  (hence k) becomes independent of variations in vertical 

directions. The parameter k becomes a ratio of an induced intensity of the local, 

uncoupled distributed reaction per unit area of the pile, p, over the pile deflection, y 

(Figure 5.1(b)) (i.e. the modulus of subgrade reaction.) 

The fictitious tension, N is the energy parameter due to the stress variations in 

vertical direction (Equation (5.18)). The parameter N can be a pair of equilibrating 

external forces acting in the centre of gravity of the end cross-sections of the pile or be 

the ratio of the modulus of subgrade reaction, k, over a ‘shear stiffness' of the pile. As a 
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constant along a pile length, the parameter N is not the real tensile force in the pile. In the 

case of laterally loading, tensile force can be induced as noted previously for soil nails. 

The parameter k and N are all functions of the stresses, thus depend on the loading 

properties, the pile slenderness ratio, and the pile-soil relative stiffness. Using Equation 

(5.23 & 5.24), the parameter N and k have been estimated and illustrated in Figure 5.6(a), 

and 5.6(b), due to either the moment (Mo) or the lateral load (P). For a typical slenderness 

ratio, the figure shows that, as the pile-soil relative stiffness increases, the fictitious 

tension increases (Figure 5.6(b)); while the modulus of subgrade reaction reduces (Figure 

5.6(a)). Also the critical stiffness for the moment loading is higher than that for the other 

cases. For short piles, the parameter k and N are approximately independent of the pile-

soil relative stiffness, since the total energy of U, the displacement, y, and the rotation, 

dy/dz, are all independent of the stiffness, but dependent on the slenderness ratio. As it 

can be observed from Figure 5.6 (a) that the maximum difference between the moduli of 

subgrade reaction for the two cases of P and Mo is generally less than 35% particularly 

for rigid piles. Therefore, superposition using two different y (thus k) may be roughly 

adopted for the analysis of piles under combined loading. This is in contrast with the 

current practice of using a single k for the combined loading.  

A comparison has been made with the expressions as given by Vesic and 

Terzaghi with current k and it has been found that the values suggested are very much 

low compared with current k once again stressing the importance of loading conditions, 

slenderness ratio effect etc,. From the figure 5.7 and 5.8 it can be inferred that k and N 

values are inversely proportional to the poisson’s ratio. But figure 5.7 depicts that for the 

long piles there is not much variation in k and N. But with increasing slenderness ratio, k 

values are inversely proportional to the pile-soil relative stiffnesses and reverse is the 

case with respect to N.   
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(a)Modulus of sub-grade reaction 

 
(b)Normalized Fictitious Tension 

 Fig 5.6: Variation of (a) Modulus of sub-grade reaction and (b) Normalized Fictitious 

Tension for various head and base conditions  
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                  (a) Normalized modulus of sub-grade reaction 

 
 
    (b)Normalized Fictitious Tension 
 
Fig 5.7: Variation of (a) the modulus of sub-grade reaction and (b) Normalized Fictitious 

Tension w.r.t. Slenderness ratio (FeHCP(P)) 
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(a)modulus of sub-grade reaction 

 
   (b)Normalized Fictitious Tension 
Fig 5.8: Variation of  (a) the modulus of sub-grade reaction and (b)Normalized Fictitious 

Tension w.r.t. Poisson’s  ratio (FeHCP(P)) 
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5.6 ANALYSIS OF PILE RESPONSE 
 
The pile head deformation, the pile head rotation and the maximum bending moment are 

estimated for various pile head base conditions under different loading conditions, using 

the current approach i.e. equation (5.32) and its 1st & 2nd derivatives. The variations of 

which are represented graphically with discussions in the following sections. 

5.6.1 Effect of various head and base conditions 

The response of short piles may be affected by the pile-head and base conditions, 

which are illustrated below by focusing on the maximum bending moment, the pile-head 

rotation and the pile-head displacement. 

For free-head, clamped piles (FeHCP(P)), the response of the piles has been illustrated as 

functions of the pile slenderness ratio in Figure 5.9(a) to 5.9(c),  the pile-soil relative 

stiffness in Figures 5.10(a) to 5.10(c) and the Poisson’s ratio from Figures 5.11(a) to 

5.11(c). From the figures, the following main points are observed: 

  (1) At a low pile slenderness ratio, L¸/ro, (and/or a high stiffness, Ep/G*), the 

normalized pile head deformation and rotation are negligible; while the moment Mmax  is 

approximately equal to PL. The different gradients, shown in Figure 5.9(c), of the initial 

linear part are due to the fact that the Lc is different for each stiffness. 

(2) At an intermediate pile slenderness ratio or stiffness, with the increases in the 

pile length (or decrease in the logarithmic value of the stiffness), the normalized pile head 

deformation and rotation increases almost linearly; while the normalized maximum 

bending moment, Mmax/(PLc) increases slowly, until a peak is reached.  

(3) After the peak, the normalized deformation and rotation still increases; while 

the slow increase in the Mmax is offset by the faster increase in the critical length, Lc, thus, 

the ratio of Mmax/(PLc) tends to decrease with the increase in pile length (or decrease in 

the logarithmic value of the stiffness). 

(4) From figure 5.11(a) to (c) it can be inferred that the pile head deformation and 

normalized bending moment are increasing with increasing poisson’s ratio and this 

variation is significant for long piles as compared to short piles. But pile head rotation is 

almost independent of the poisson’s ratio. 

For free head, floating piles as can be seen from the figure 5.10 it is found that 

pile head deformation and rotation are 2 to 3 times more than that of free head clamped 
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base pile condition. But this trend was reversed in the case of normalized bending 

moment. 

For fixed-head piles, comparison between Figure 5.10(a) and 5.12(a) shows:  

(1) The normalized pile head deformation for fixed head ( Figure 5.12(a)) is about 

½ to 2/3 that for free head (Figure 5.10(a)), given long, clamped piles; (b) is about 1/3 

that for free head (FeHFP(P)), given short, floating piles. 

 (2) Irrespective of the base conditions, the maximum bending moment for fixed 

head doesn’t have much significance with the stiffness, (Ep/G*). 

The figures 5.10 and 5.12 indicate that 

 (a) For free- or fixed- head Figure 5-10 and 5-12 piles due to lateral load, the 

solutions using Vesic’s k for beams offer invariably biggest difference from the current 

results. Therefore, the proposed ‘k’ may be not suitable for lateral pile analysis. 

(b)They also indicate that the effect of the fictitious tension (N) cannot be 

ignored, since the predictions using N = 0 compares poorly with results taking N and k. 

(c)However, for moment loading, the effect of the fictitious tension may 

fortunately be ignored in the case of clamped piles, since it has a rather limited effect on 

the prediction of pile-head deformation and rotation, as compared floating piles where it 

is of much significant (Figure 5.13). 

 
Fig 5.9 (a) Pile head deformation FeHCP(P) 
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Fig 5.9 (b) Pile head rotation FeHCP(P) 
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Fig 5.9 (c) Maximum bending moment FeHCP(P) 

Fig 5.9 Single pile (free head clamped pile) response due to variation in slenderness ratio 
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 Fig 5.10(a) Pile head deformation (Free Head - P) 

 
 

 
Fig 5.10 (b) Pile head rotation (Free head - P) 
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Fig 5.10(c) Maximum bending moment (Free head - P) 

Fig 5.10 Single pile (free head) response due to variation pile – soil relative stiffness 
 
 

 
Fig 5.11 (a) Pile head deformation FeHCP(P) 
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Fig 5.11(b) Pile head rotation – FeHCP(P) 

                      
                              Fig 5.11 (c) Normalized Bending Moment FeHCP –P 

 
Fig 5.11 Single pile (free head clamped base) response due to variation in soil pile 

relative stiffness with respect to poisson’s ratio 
 
 

 71



 
5.12(a) Pile head deformation (Fixed head-P) 

 

 
5.12(b) Normalized maximum bending moment(Fixed head-P) 

Fig 5.12 Single pile (fixed head) response due to variation in pile – soil relative stiffness 
(a) pile head deformation (b) normalized maximum bending moment 
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 Moment induced pile response 
 

 
5.13 (a) Pile head deformation (Free head-Mo) 

 

 
5.13 (b) Normalized pile head rotation (Free head-Mo) 

 
Fig 5.13 Single pile (free head) response due to variation in pile – soil relative stiffness 

acted upon by a moment Mo (a) pile head deformation (b) pile head rotation 
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5.6.2 Effect of fines content  
 
  For a free head clamped pile acted upon by lateral load P, the behavior of pile has 

been observed and presented graphically for varying fine contents in sand. It has been 

observed that the pile head deformation and rotation decreased steadily with increasing 

fine content later its behavior reversed. But in the case of normalized bending moment 

the behavior is entirely reversed. 

0 2 4 6 8 10 12 14 16 18 20
0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

0.02

0.021

Fines content in percentage

P
ile

 h
ea

d 
ro

ta
tio

n(
-ro

t G
* 

ro
2 / P

)

FeHCP-P

 
 Fig 5.14 Effect of variation in percentage fine content on pile head rotation 
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Fig 5.15 Effect of variation in percentage fine content on pile head deformation 
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Fig 5.16 Effect of variation in percentage fine content on normalized bending moment 
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CHAPTER 6 
    CONCLUSIONS  

 

 

In the present work, for laterally loaded piles a simplified analysis using 

Winkler’s beam on elastic foundation method (mainly for free head piles) was done. 

Behavior of the piles under varying loads, soil types, pile materials, pile cross sections etc 

was made in detail. The relationship between the lateral load and pile head deflections 

has been observed using assumptions of Terzaghi and Bowles.  

To account for the various limitations of the above method a new load transfer 

approach has been adopted to predict response of lateral piles in a homogenous, elastic 

medium. Closed-form expressions for the piles and the surrounding soil have been 

developed as functions of the load transfer factor. In particular, the generalized 

expression for the piles (1) well reflect the effect of the pile head and base conditions; (2) 

avoid the unreasonable predictions at high Poisson's ratio and (3) are applicable to any 

pile - soil relative stiffness. 

The current approach is a coupled approach, represented by the two parameters:  

the modulus of subgrade reaction, k, and the fictitious tension, N, and linking the 

response of the pile and the soil around it by the load transfer factor. The approach can be 

reduced physically to the available uncoupled approach for beam using the Winkler 

model (N=0). A simplified expression provided for the factor under various pile head and 

base conditions has been used. The provided factor was intended for applying either the 

lateral load or the moment, individually. Using the load transfer factor for combined 

loading means that different factor k (and also N) for the P and Mo will be adopted, which 

is different from the current practice of using a single factor k for the loading (Winkler 

model). This new adoption is equivalent to use superposition for displacements derived 

from the load and moment, individually. 
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Short piles of sufficiently high stiffness, or of free head, floating base, may be 

treated as ‘rigid piles'. For rigid piles, the maximum bending moment for the free-head 

case can be 10 times that for the fixed-head case. The model parameters such as load 

transfer factor, Poisson’s ratio, the slenderness ratio and the soil-pile relative stiffness are 

investigated in order to have a better understanding of the relationship between these 

parameters. 

If the values of the modulus of subgrade reaction be adopted as per Terzaghi and 

Vesic, the effect of soil characteristics is not well visible in the evaluation of the 

parameters like pile head deflections, rotations and maximum bending moments. 

Therefore, the modern approach for the prediction of Gs based upon the soil material 

characteristics is coupled with the current load transfer approach to obtain the effect of 

fines contents present in the sand upon pile head deflections, rotations and maximum 

bending moment.  

 
Future Scope of the Study 
 

The current approach was developed for a concentrated lateral load and moment. 

For complicated loading, the loading may be decomposed into a number of components, 

thus allowing the approach to be used directly. The present study has been developed for 

homogeneous elastic soil, so this can be extended to include for non-homogeneous soils. 

Pile group analysis, dynamic analysis of piles can also be made. Work can also be 

extended to include further analysis of piles under lateral soil movements. 
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APPENDIX A 

Computational Procedure for the Determination of Shear Modulus of Elasticity - Gs 

1. Assume a value for Gs. 

2. Calculate modulus of subgrade reaction and fictitious tension. 

3. Evaluate shear force form the equation 5.32 (third derivative) as a function of z. 

4. Integrate the above result from zero to critical pile length to obtain horizontal 

effective stress (σ h ) due to a lateral load. 

5. Vertical effective stress (σ v) due to soil present around pile is found by 

integrating between the limits zero to pile length. 

6. Calculate the mean effective stress (σ ’m)from the following expression  

σ ’m   = (σ v   +   2 σ h) /3 

7. Now calculate Gs from the equation 2.19 

8. Check out for the required convergence between assumed and obtained Gs values. 

9. If the required convergence is not obtained repeat the steps from 2 to 8 until the 

required convergence is obtained. 

10. With the obtained Gs, we can calculate response of piles.  
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