
Chapter – 1

INTRODUCTION

1.1 
MOTIVATION FOR REDUCED ORDER MODELLING
The large scale systems are all around and exist in diverse fields such as, complex chemical processes, biomedical systems, socio-economic systems, transportation systems, ecological systems, electric power systems, aeronautics, hydraulic, pneumatic, thermal, mechanical, environment systems, etc. or a combination of these. A system is said to be large if it can be decoupled or partitioned into a number of interconnected systems or small scale systems for either computational or practical reasons. Alternatively, a system is large scale when its dimensions are so high, such that the conventional techniques of modelling, analysis, control system design and computation fail to give accurate solutions with reasonable computational efforts. The analysis of such physical systems starts by building up of a model which may be considered as a faithful representation of such systems. The task of a control engineer begins with the formulation of a model. The rest of the analysis and design can be done with this model.

Whether existing or to be designed, when a system is mathematically modelled for analysis and improvement, initially a complex model of high order is obtained. The mathematical models of high order dynamic systems can be described either in the state space form or in transfer function form, which are called time domain and frequency domain representations, respectively. In the state space or time domain representation a high order differential equation is decoupled into a set of first order differential equations. Similarly in the frequency domain representation, the Laplace transform of high order differential equation is taken under zero initial conditions, and the mathematical model of the system is represented as a rational function, called system transfer function. 

So, if the order of the system modelled is high then it may pose difficulties in its analysis, synthesis and identification. An obvious method of dealing with such type of system is to approximate it by a low order model which reflects the important characteristics of the original high order system such as time constant, damping ratio, natural frequency, etc. Thus reduced order modellling techniques help in understanding the system in a better way. Among several reasons for reducing the order of a system, some can be given as follows :

(a) To simplify the understanding of the system.

(b) To reduce computational complexity while analyzing the system.

(c) To economize in terms of hardware while synthesizing the system.

(d) To reduce computation time while using the model.

1.2 LTIC SYSTEMS AND STATEMENT OF MODEL REDUCTION PROBLEM

A system is a combination of elements intended to act together to accomplish an objective. In the present research work, only linear time-invariant continuous (LTIC) systems are taken under consideration. A continuous-time system is a system in which a continuous-time input signal results in a continuous-time output signal. When a system is represented by a differential equation as :
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where, the 
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, the same is called a linear time-invariant system, subject to the following conditions :

(i)   Linearity

A system is said to be linear, if it satisfies the following principle of superposition [21] :

If input 
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. When a system is represented by (1.1), then it will be called linear, if the coefficients 
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’s are either constants or functions of independent variables.  

(ii)   Time Invariance

A system is said to be time-invariant if a time delay or time advance of the input signal leads to an identical time shift in the output signal [21]. Stated in another way, if input 
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. When a system is represented by differential equation given in (1.1), it will be called time-invariant, if the coefficients 
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’s are all constants, i.e., they are not functions of time.

The reduction of a high order system into its low order approximant in frequency domain can be stated as :

If the transfer function description of a high order single-input single-output (SISO) system is :
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where, ‘n’ is the order of the system. 

A reduced order model is desired, which can adequately describe the significant dynamic behavior of the original system and can be expressed as [67] :
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where, ‘r’ is the order of the reduced order system.

In the time domain, the system can be described by the following state space equations [67] :
	Original system (nth order)
	Reduced order system (r < n)
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where,
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 input vector.
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 system matrix.
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 input matrix.
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 output matrix.
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 transmission matrix.
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 output vector.
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 system matrix.
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 output matrix.
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 transmission matrix.
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 output vector of reduced system.


For SISO system, m = p = 1. In general, the transmission matrix for physical systems is zero.

The present work deals with the reduced order modelling of LTIC systems in frequency domain based on a transfer function/transfer function matrix description of the original high order systems.

7 CLASSIFICATION OF REDUCED ORDER MODELLING TECHNIQUES

During the last few decades, a wide variety of reduced order modelling methods have been proposed by several authors in the area of model reduction. An extensive bibliography in this area has been given in the papers [6, 17, 19, 69, and 81]. Also many text books [18, 28, 44, and 80] have been written on this topic. The reduced order modeling methods can be classified mainly into two categories: (i) time domain order reduction methods; (ii) frequency domain order reduction methods. When the model order reduction methods are applied to reduce the state space models of the system they are called time domain order reduction methods whereas when applied to the transfer function models of the system they are called frequency domain order reduction methods. Whatever be the approach to the model order reduction problem, the main objective of reduced order modelling is that the reduced order approximant should reproduce the significant characteristics of the parent system as closely as possible.  

1.3.1    Time Domain Order Reduction Methods  
These techniques are characterized by a common aim, i.e., for a specified input the time response of the reduced order model be as close as possible to the time response of the large order system. In time domain reduction techniques, the original and reduced systems are expressed in state space form [67]. The order of matrices
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1.3.2    Frequency Domain Order Reduction Methods

Many frequency domain reduced order modelling techniques start with a transfer function description of the original high order systems. These techniques are normally intuitively appealing and computationally easy to handle. The frequency domain order reduction methods may be subdivided into three groups [67] :

(a) Classical Reduction Methods (CRM)

(b) Stability Preservation Methods (SPM)  

(c) Stability Criterion Methods (SCM)  

The methods of first group (CRM) are based on the classical theories of mathematical approximation or mathematical concepts such as continued fraction expansion and truncation [83], Pade approximation [3], and the time moments matching method [20], etc. These methods are algebraic in nature and it can be proved that the classical reduction approaches are equivalent to each other. The problems such as instability, non-minimum phase behavior and low accuracy in the mid and high frequency range of reduced order models limit the application of CRM. 

The stability of the original system is inherited in the reduced order model by the methods of second group. That is why the methods of this group are known as SPM. The methods under this group are Routh approximation method [24], Hurwitz polynomial approximation method [2], Routh-Hurwitz array method [33, 34], stability equation method [11], dominant pole retention method [15], differentiation method [23], reduction using Mihailov criterion [84], factor division method [39], etc. The SPM suffer from a serious drawback of lack of flexibility when the reduced model does not produce a good enough approximation. 

The third group includes the mixed methods and can be called as stability criterion methods, in which the denominator of the reduced order model is derived by one of the SPM, while the numerator coefficients of the reduced model are determined by using one of the CRM. Although, this improves the degree of accuracy in the low frequency range but the absolute stability of SCM is achieved only at the cost of a serious loss of accuracy [85].  

1.4 OBJECTIVE OF THE DISSERTATION
The objectives of this dissertation are as under :

· To develop two algorithms for reduced order modelling of single-input single-output (SISO) linear time-invariant continuous systems in frequency domain and to compare them with some well-known existing order reduction techniques available in the literature. 

· Further, these algorithms have also been extended for the order reduction of multi-input multi-output (MIMO) linear time-invariant continuous systems. 

1.5 ORGANIZATION OF THE DISSERTATION
The entire work of this dissertation is presented through five Chapters and a brief overview of each Chapter is given below :

In Chapter 1, the necessity of model order reduction methods has been discussed. The statement of model order reduction in both time and frequency domains is also given in this Chapter. 
In Chapter 2, a brief literature review of existing frequency domain order reduction techniques is given, which are used in the development of algorithms.
In Chapter 3, two algorithms have been suggested based upon the eigen spectrum analysis to overcome some of the following drawbacks associated with the Factor division and Continued fraction expansion techniques :

· The reduced order model may be unstable (stable) although the parent system is stable (unstable).

· The reduced model often shows poor matching in the transient zone.

· The steady state value of the original system is not preserved.

Further, these algorithms have also been extended for the order reduction of linear multivariable systems. The algorithms developed in this Chapter have also been compared with some well-known existing order reduction techniques available in the literature. These algorithms have been implemented in Matlab 7.0.1 on a Pentium-IV processor.
In Chapter 4, a wide variety of numerical/simulation examples are chosen from the literature to demonstrate the algorithms suggested in Chapter 3. 
In Chapter 5, the work reported has been concluded. Based on the experience of developing reduced order modelling algorithms, some suggestions are also given in this Chapter for further research work in this area. 
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