Chapter - 2

LITERATURE REVIEW
2.1 FREQUENCY DOMAIN METHODS FOR REDUCED ORDER             MODELLING: A REVIEW

As the list of research workers in the field of reduced order modelling is quite vast and a large number of papers have been published in the area of order reduction of LTIC systems over last couple of decades, so it is not possible for the author to cover the entire available literature here in a limited space and size of the dissertation. Even then, all the efforts have been made to include the key references on the related work. In this Chapter, a brief literature review of the following frequency domain order reduction methods is given, which have been used in the present research work.  

1. Continued fraction expansion method.

2. Factor division method.

2.2    Continued Fraction Expansion Method

The continued fraction expansion (CFE) method to derive reduced order models of linear time-invariant SISO systems was initially suggested by Chen and Shieh [8], which was then extended to multi-input multi-output (MIMO) systems [7, 10]. This approach does not require any knowledge of eigen values/vectors and contains most of the essential characteristics of the original system in first few terms. Before considering the simplification using CFE, it may be worth mentioning the various forms of CFE for the SISO transfer function 
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 written in the following form :
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                                                         (2.1)

where, 
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 are constants. Equation (2.1) can be expanded into several CFE forms [83], out of which the following Cauer forms have been extensively used in the model reduction literature :

Cauer Ist Form [83]
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                                              (2.2a) 

Cauer IInd Form [8]  
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                                                                  (2.2b)

Cauer IIIrd Form [77]
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                    (2.2c)

Cauer Modified Form [61, 63]
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                                                             (2.2d)

Equation (2.2a) has 
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 quotients and represents a Maclaurin’s series expansion about 
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. Equation (2.2b) has 
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 terms in 
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. Equation (2.2 c) has 
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 terms each in 
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 and is equivalent to a Maclaurin’s series expansion about 
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. Infact, (2.2c) is a combination of (2.2a) and (2.2b) in such a way that if we let 
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 or 
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 in (2.2c) approach zero, then (2.2c) will be identical to (2.2a) and (2.2b), respectively. Equation (2.2d) represents an expansion of 
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, alternately.

The quotients 
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 in (2.2a) and quotients 
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 in (2.2b) can be obtained by using Routh’s algorithm [65]. The quotients 
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 in (2.2c) can be evaluated by using the generalized Routh algorithm [77] whereas the same in (2.2d) can be evaluated by modified Routh algorithm [63]. 

In the method of Chen and Shieh, the given high order transfer function is first expanded into a Cauer second form of continued fraction, the insignificant quotients that are beyond the desired order are then truncated, and finally the remaining continued fraction expansion is inverted into a rational form to obtain a reduced transfer function. Lal and Mitra [36] established the equivalence between the method of continued fraction expansion and moments matching method. This method has been shown to be a special case of Pade approximation, which for asymptotically stable systems is equivalent to the time moments matching method [5]. 

The model reduction method based on continued fraction expansion suggested by Chen and Shieh has many useful properties, such as computational simplicity, the fitting of time-moments, and the preservation of steady-state responses in the reduced order models for polynomial inputs of the form 
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. However, this method has the disadvantages of sometimes producing an unstable reduced model even though the original high order system is stable and of not approximating to the transient response very well. To overcome these drawbacks, Chuang [14] modified the continued fraction expansion by combining expansions about 
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 alternately, which improves the initial transient response at the expense of behavior at later times. This modified form has been referred to as the modified Cauer continued fraction and has been shown by Khatwani et al. [32] that it is equivalent to the mixed complete Pade approximation about 
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. The reduced order model obtained by the modified Cauer continued fraction thus fits an equal number of time moments and Markov parameters, and hence it approximates both the initial transient and steady state portions of the system response. However, this modified method still suffers from the problem of stability preservation. This instability problem was partially overcome by Lucas [41]. Further, Shieh and Goldman [77] proposed another version of the mixed Cauer continued fraction, called the Cauer third form for obtaining reduced order models. Since, both the Cauer third form and the Cauer modified form combine expansion about 
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 alternately, so these two forms may be considered equivalent but the former requires less computational efforts [25]. 

Further, it may be noted that the Cauer first form [83] gives good approximations in the transient period only, the Cauer second form [8] ensures good matching in the steady state period only where as the Cauer third form [77] gives good matching in both the transient and steady state periods. These Cauer forms for MIMO systems have also been reported in the references [22, 76]. 

Continued fraction expansion and inversion are the two basic operations very frequently used in such continued fraction expansion methods. The classical approach of continued fraction expansion and inversion is tedious and time consuming because it involves a number of multiplications and divisions. This difficulty led the researchers to develop computerized algorithms for continued fraction expansion and inversion and subsequently many algorithms [1, 35, 65, and 77] have been advanced so far by various researchers. 

The extension of continued fraction expansion methods to the reduction of discrete time systems is also available in the reference [62]. However, these methods have a serious drawback that they may lead to an unstable reduced model for a stable system. To overcome this instability problem many methods [26, 27] have been introduced, that are based on truncating the continued fraction expansion of the squared magnitude function or the tangent phase function of the system frequency response. 

The method of continued fraction expansion has also been combined with stability equation [12], Routh approximation [64], Routh-Hurwitz array [55], polynomial differentiation [57] and dominant pole retention method [78]. Further work on this approach has also been reported by Kalu and Olivier [30], Khatwani [31], Prasad and Pal [68].
2.3    Factor Division Method

The method of factor division algorithm was suggested by Lucas [39], which can be used as an alternative approach to the model reduction by Pade approximation to allow retention of dominant modes [74]. This method is computationally simple and it preserves the initial time moments in the reduced order model from the original high order system without calculating these ​moments beforehand and solving Pade equations [43, 74]. Later on, Lucas [40] extended this approach to produce biased reduced order models by retaining initial Markov parameters as well as time moments. Further, a ‘modified’ factor division approach [42] has been presented by extending the ideas of Lucas [39, 40]. This method [42] guarantees the stability of reduced order models for stable systems and is able to produce families of reduced order models of all orders by varying a single parameter in the modified transfer function denominator. Further, the factor division approach has also been combined with Mihailov criterion [46, 71] and Koenig’s theorem [70] for the order reduction of linear continuous-time systems.
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