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Chapter - 3
REDUCED ORDER MODELLING USING EIGEN SPECTRUM ANALYSIS
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3.1 
INTRODUCTION

The importance and necessity of the model order reduction of high order complex systems have been discussed in the previous Chapters along with a brief literature review of frequency domain order reduction techniques. Each of these methods has both advantages and disadvantages when tried on a particular system. Inspite of several methods available, no approach always gives the best results for all systems. In this Chapter, two algorithms have been suggested based upon the eigen spectrum analysis to overcome some of the following drawbacks associated with the Factor division algorithm and Continued fraction expansion techniques : 

(a) The reduced order model may be unstable (stable) although the parent system is stable (unstable).

(b) The reduced order model often shows poor matching in the transient zone.

(c) The steady state value of the original system is not preserved.

The order reduction algorithms presented in this Chapter have been described only for the systems having real poles and are also compared with some other well-known existing order reduction techniques available in the literature. These algorithms guarantee the stability of the reduced order model if the original high order system is stable and are comparable in quality with some other existing order reduction techniques. Firstly, these algorithms are discussed for the order reduction of single-input single-output (SISO) systems and then these algorithms have also been extended for the order reduction of multi-input multi-output (MIMO) systems. 

The concept of eigen spectrum analysis was introduced in [48, 51] based upon the following criteria : 

(a) Arithmetic mean of the real parts of the poles (Centroid) of high order system (HOS) should coincide with that of low order system (LOS).                      

(b) Ratio of the real parts of nearest to farthest poles (Stiffness) of HOS should be same as that of LOS.

(c) Steady state parts of the responses (unit step input) of HOS and LOS should match exactly.

3.2 EIGEN SPECTRUM ANALYSIS

The order reduction algorithms presented herein are based upon the eigen spectrum analysis, in which the denominator of the reduced order model is obtained by eigen spectrum analysis. Pole centroid and system stiffness of both original and reduced order systems remain same in this method. 

Let the transfer function of the HOS of order 'n' be :
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where, - (1 < - (2 < …….< - (n are poles of HOS and let the transfer function of LOS of order 'r' be :
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where, - 
[image: image3.wmf]'

1

l

 < - 
[image: image4.wmf]'

2

l

 < …….< - 
[image: image5.wmf]'

r

l

 are poles of LOS then steps are as under :

Step-1: Fixing of the eigen spectrum zone (ESZ) of the HOS as shown in Fig. 3.1 : 


Fig. 3.1   Eigen spectrum zones and points of system.
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Step-2: Quantification of pole centroid and stiffness of HOS :

Pole centroid is defined as the mean of real parts of the poles and is expressed as :
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System stiffness is defined as the ratio of the nearest to the farthest pole of a system in terms of real parts only and is put as :
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Step-3: Determination of eigen spectral points of LOS :

If 
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where, 
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Now if,
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i.e., Re('1 + M = Re('2, Re('2 + M = Re('3 and so on till Re('p'-1 + M = Re('p' then (3.5) can be put as :
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where, 
N = (m p'  and  QM = M +2M +…….. + ( p' - 2) M.

By putting Re('1 = (s Re('p', equations (3.6) and (3.7) will be as under :

      Re('p' - (s Re('p' = M ( p' - 1)



                            (3.8)

      (s Re('p' (p' - 1) + Re('p' + QM = N

                                        (3.9)

Equations (3.8) and (3.9) can be put as :

      Re('p' (1 - (s) + M (1 - p' ) = 0

      Re('p' [(s (p' - 1) + 1] + MQ = N

or,
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Equation (3.10) can be solved for Re('p' and M enabling thereby to locate the eigen spectral points (ESP) as shown in Fig. 3.1.

3.3 ALGORITHM NO. 1: REDUCED ORDER MODELLING USING Eigen Spectrum Analysis and Factor Division Algorithm
The proposed algorithm [29] consists of pole synthesis of the LOS using eigen spectrum analysis while the factor division algorithm has been used to determine the zeros of the reduced order system transfer function. The pole centroid and system stiffness of both original and reduced order systems are kept exactly same during the reduction procedure. Though the algorithm is computationally complex, since the factor division algorithm has been used, but it only requires linear algebraic equations to be solved to arrive at reduced order models. Further, the proposed algorithm leads to a stable LOS, if the original high order system is stable. For a stable system, all the poles should lie in the left half of the complex s-plane. So, if the original high order system is stable with all its poles lying in the left-hand side of the complex s-plane, the poles lying in the ESZ zone will always give a stable reduced order model as shown in Fig. 3.1.

The algorithm consists of following steps : 

Step-1: The denominator 
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Step-2: By using the factor division algorithm [39], 
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where, 
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Therefore, the numerator 
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This is easily obtained by modified form of a moment generating algorithm [36], which uses the familiar Routh recurrence formula to generate the third 3rd, 5th, 7th, etc., rows as :
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Therefore, the numerator 
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3.3.1
Extension to Multivariable Systems

The proposed algorithm [29] has also been extended for the order reduction of linear multivariable system, which is a direct application of the SISO method on the elements of the transfer function matrix of MIMO system.

Let the transfer function matrix of the HOS of order 'n' having ‘p’ inputs and ‘m’ outputs be :
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or,         
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The general form of 
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Let the transfer function matrix of the LOS of order 'r' having ‘p’ inputs and ‘m’ outputs be :
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or,    
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is a 
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The general form of 
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The proposed algorithm [29] consists of pole synthesis of the LOS by eigen spectrum analysis of the HOS and zeros are synthesized by using factor division algorithm. Basically; the algorithm starts with fixation of the denominator of the LOS by eigen spectrum analysis followed by the determination of coefficients of the numerator polynomials of each element (
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) of the LOS transfer matrix 
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 by factor division algorithm. 

3.4 
Algorithm No. 2: Reduced Order Modelling using Eigen Spectrum Analysis and Cauer Second Form

A popular approach for deriving reduced order models has been based on expanding the given transfer function into Cauer second form of continued fraction expansion (CFE) due to Chen and Shieh [8]. The reduced order model is derived by truncating some higher order terms of CFE. Although, this method is very powerful and computationally simple, but it has an inherent disadvantage that sometimes the reduced model may become unstable even though the original system is stable. The proposed algorithm circumvents this stability problem associated with the CFE type methods [8, 9]. The algorithm consists of pole synthesis of the LOS by eigen spectrum analysis of the HOS and zeros are synthesized by using Cauer second form.

Let the transfer function of the HOS of order 'n' be : 
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or,
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where, 
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 are poles of HOS.

Let the transfer function of the LOS of order 'r' be :
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where, 
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 are poles of LOS, then steps are as under :

Step-1 : The denominator of the LOS in (3.22) can be obtained by eigen spectrum analysis using (3.10), as described earlier. Therefore, the denominator polynomial in (3.22) is now known, which is given by :
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Step-2 : Evaluate Cauer second form coefficients 
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 (p = 1, 2, 3,…, r) by forming Routh array as :
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where, first two rows of this array are copied from the denominator and numerator coefficients, respectively of 
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 in (3.20), and rest elements are computed by well known Routh's algorithm [9] : 
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Step-3 : Match the coefficients 
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3.4.1
Extension to Multivariable Systems

The proposed algorithm has also been extended for the order reduction of linear multivariable system, which is a direct application of the SISO method on the elements of the transfer function matrix of MIMO system, as described earlier in Section 3.3.1. Basically; the method starts with fixation of the denominator of the LOS by eigen spectrum analysis followed by the determination of coefficients of the numerator polynomials of each element of the LOS transfer matrix by Cauer second form.
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