
Chapter - 4
SIMULATION EXAMPLES

4.1 
INTRODUCTION

In the previous Chapter, two algorithms have been suggested based upon the concept of eigen spectrum analysis for deriving the reduced order models of high order linear time-invariant dynamic systems.  The algorithms presented were described only for the systems having real poles. In this Chapter, a wide variety of numerical/simulation examples are chosen from the literature to demonstrate the algorithms suggested in the previous Chapter. 

4.2
Illustrative examples for algorithm no. 1
Four numerical/simulation examples are chosen from the literature for the comparison of the LOS with the original HOS. The proposed algorithm is described in detail for one example while only the results of the other three examples are given. 

An error index ISE [79] known as integral square error in between the transient parts of original and reduced order systems is calculated to measure the goodness/quality of the LOS (i.e. the smaller the ISE, the closer is 
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where, 
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 are the unit step responses of original and reduced order systems, respectively.

Also, the impulse response energy (IRE) [24, 75] is calculated for original and various reduced order models, which is given by :

IRE = 
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where, 
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 is the impulse response of the system.

Example 1. Consider a 10th order system previously investigated by Edgar [16] and Mukherjee [48]. The poles of the system are all real and the system is without any numerator dynamics having very high gain.

The HOS transfer function 
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 is given as :
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                                                                                   (4.3)                                                                      
where, 
(1 = 2.04, (2 = 18.3, (3 = 50.13, (4 = 95.15, (5 = 148.85, (6 = 205.16, 

            (7 = 257.21, (8 = 298.03, (9 = 320.97, (10 = 404.16.

The above system is having IRE of 0.9032. If a 2nd order model 
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 is to be synthesized using the algorithm no. 1, then steps to be followed are as under :

Step-1: Fixing of ESZ of HOS :

Since all poles are real, it will be a line joining the nearest and farthest poles.

Step-2: Quantification of pole centroid and stiffness of HOS :
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Step-3: Determination of eigen spectral points of LOS :

Equation (3.10) can be formed as under :
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                (4.4)

where, the values of 
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, Q, p' and N are to be put as 5.0475 x 10-3, 0, 2, 360, respectively.

Solution of the (4.4) gives the location of the farthest pole 
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 and M, where         M = (Farthest pole  Nearest pole)/( p' – 1) and since p' = 2; Re('p' = 358.19202; M=356.38404 ESPs of LOS are its two poles as ('1 = 1.8079742 and ('2 = 358.19202. 

Therefore, 
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Step-4: Following (3.12), we have :
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Therefore, finally 
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with an ISE and IRE of 1.5 x 10-3, 2.1867, respectively. The unit step responses of original and reduced order models are shown in Fig. 4.1.

[image: image22.png]12

- 10th Order System; (Original Model)

2nd Order Model, (By Proposed Method)

15 2 25 3 35
TIME (secs)




Fig. 4.1   Step responses of 
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 for example 1. 

Example 2. Consider a 4th order system investigated by Moore [47] :
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with an IRE of 2.736 x 10-4. If a 2nd order model 
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 is required, then by following the steps, as described in  Section 3.3 ,we will get the 
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with an ISE and IRE of 1.561 x 10-6, 3.122x10-4, respectively. The unit step responses of original and reduced order models are shown in Fig. 4.2.

[image: image29.png]AMPLITUDE

003

0025

002

0015

001

0005

-0.005
0

4th Order System ; (Original Model)
2nd Order Model ; (By Proposed Method)

3 4 5 6 7
TIME (secs)




Fig. 4.2   Step responses of 
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 for example 2. 

Example 3.  This example is chosen to compare the proposed algorithm [29] with some           well-known existing methods of order reduction. Consider a 4th order system taken from Mittal et al. [45] and Mukherjee & Mishra [49] :
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with an IRE of 4.66251 x 10-1. If a 2nd order model 
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is required, then by following the steps, as described in  Section 3.3 ,we will get the 
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with an ISE and IRE of 2.64337x10-4, 4.61297x10-1, respectively. The unit step and frequency responses of original and reduced order models are shown in                    Fig. 4.3 (a)-(b) and a comparison of the proposed algorithm with some well-known existing order reduction techniques for a 2nd order reduced model is given in Table 4.1. Further, a qualitative comparison in terms of transient response parameters [53] for original and various reduced order models is also shown as given in Table 4.2.
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Fig. 4.3   (a) Step responses (b) Frequency responses of 
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                                for example 3. 
Table 4.1 
Comparison of reduced order models obtained through proposed and                      other methods for example 3

	Method of order reduction
	Reduced models; 
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	2.64337 x 10-4
	4.61297 x 10-1

	Chen et al. [12]
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	2.6655 x 10-3
	4.24378 x 10-1

	Chidambara [13]
	
[image: image43.wmf]2

2

2

32

s

ss

-+

++


	220.2379 x 10-3
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	Davison [15]
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	Gutman et. al [23]
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	Hutton and Friedland [24]
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	4.51312 x 10-1

	Krishnamurthy and Seshadri [34]
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	4.71699 x 10-1
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	2.3785 x 10-4
	4.61187 x 10-1

	Moore [47]              
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	1.56955 x10-4
	4.62532 x 10-1

	Mukherjee and Mishra [49]
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	4.61248 x 10-1

	Pal [54]
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	3.97301 x 10-1

	Prasad and Pal [68]
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	Shamash [74] 
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	4.71828 x 10-1


Table 4.2   Qualitative comparison in terms of transient response parameters for

                       example 3

	System
	Method of order reduction
	Rise Time

tr (secs)
	Peak Overshoot

Mp
	Settling Time

ts (secs)

	Original 4th Order [45, 49]
	………………..            
	2.26
	0 %
	3.93

	2nd Order
	Proposed algorithm [29]
	2.26
	0 %
	4.02

	"        "
	Chidambara [13]
	1.7
	-200 %
	3.26

	"        "
	Davison [15]
	1.7
	-200 %
	3.26

	"        "
	Gutman et al.[23]
	1.54
	0 %
	2.73

	"        "
	Krishnamurthy and Seshadri [34]
	1.93
	3.59 %
	5.59

	"        "
	Pal [54]
	2.20
	2.69 %
	5.57

	"        "
	Prasad and Pal [68]
	15.4
	0 %
	27.4


It can be seen in Tables 4.1 and 4.2 that the proposed algorithm is comparable in quality with the other existing techniques. Further, the step and frequency responses of original and various reduced order models are comparable as shown in Fig. 4.1-4.3(a) and Fig. 4.3(b), respectively.

Example 4. This example is chosen to illustrate the extension of the proposed algorithm for the order reduction of linear multivariable systems. 

Consider a 6th order two-input two-output system [4, 66] described by the transfer function matrix :
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where, the common denominator 
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The proposed algorithm [29] is successively applied to each element of the transfer function matrix of the above multivariable system and the reduced order models  
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 of the LOS (
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) are obtained. The general form of the reduced second order model is taken as  :
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where,  
[image: image67.wmf]2

()13.66668.4707

=++

%

Dsss

.

and  

[image: image68.wmf]11

()6.04298.4707

=+

bss

,   
[image: image69.wmf]12

()3.94193.3883

=+

bss

,


[image: image70.wmf]21

()2.80974.2354

=+

bss

,  
[image: image71.wmf]22

()8.01958.4707

=+

bss

.
The step responses of original and reduced order models are compared in                Fig. 4.4(a)-(d).
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(a) u1 = 1, u2 = 0
[image: image73.png]Amplitude

- Original Systern ; ( 6th Order)
Reduced System ; (2nd Order)

5
Time(secs)

10




(c) u1 = 1, u2 = 0
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(b) u1 = 0, u2 = 1
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(d) u1 = 0, u2 = 1

Fig. 4.4   Comparison of step responses for example 4.

4.3 
Illustrative examples for algorithm no. 2
Four numerical examples are chosen from the literature for the comparison of the LOS with the original HOS. The results using various reduction methods are given in tabular forms.

An error index ISE [79] known as integral square error in between the transient parts of original and reduced order systems is calculated for unit step input to measure the goodness of the LOS, which is given by (4.1).

Also, the IRE [24, 75] is calculated and compared in the tabular form for original and various reduced order models, which is given by (4.2).

Example 5. Consider the same 10th order system [16, 48, and 82] taken earlier in       example 1 and given by (4.3). The system is having IRE of 0.9032. If a 2nd order model 
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 is to be synthesized using the proposed algorithm, steps to be followed are as under :

Step-1: The denominator of the 
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 can be obtained in a similar way as in example 1. Therefore, the denominator polynomial is given by :
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Step-2: By using Cauer second form [8], as described earlier in Section 3.4, we have :
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Therefore, finally 
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is given as :
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with an ISE and IRE of 1.5 x 10-3, 2.1868, respectively. 

The unit step responses of original and reduced order models are shown in            Fig. 4.5, and a comparison of the proposed method with some other existing methods for this example is given in Table 4.3.

Table 4.3   Comparison of the methods for example 5
	Method of order reduction
	Reduced models; 
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	Proposed algorithm 
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	Edgar [16]
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	Mukherjee [48]
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	Therapos and Diamessis [82]
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It can be seen in Table 4.3 that, the IRE value is very high for Mukherjee’s method [48], which is not desirable. On the other hand, the values of IRE are comparable for the proposed and the other order reduction techniques [16, 82], which are also close to the IRE value of the original 10th order system, which is 0.9032.   
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Fig. 4.5   Step responses of 
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 for example 5. 

Example 6. Consider the same 4th order system [47, 56] taken earlier in example 2 and given by (4.6). The system is having IRE of 2.736 x 10-4. If a 2nd order model 
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 is required, then by following the steps, as described in  Section 3.4, we will get the 
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with an ISE and IRE of 1.5618 x 10-6, 3.122 x 10-4, respectively. 

The unit step responses of original and reduced order models are shown in            Fig. 4.6 and a comparison of the proposed method with some other existing methods for this example is given in Table 4.4.
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Fig. 4.6   Step responses of 
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Table 4.4   Comparison of the methods for example 6
	Method of order reduction
	Reduced models; 
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	Proposed algorithm 
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	Moore [47]
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	Mukherjee [48]
	
[image: image101.wmf]2

2

0.00183020.030411730.198898

9.57.4586771

ss

ss

-+

++


	3.865 x 10-4

	Pal [56]
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It can be seen in Table 4.4 that, the values of IRE are comparable for the proposed and the other order reduction techniques [47, 48, and 56] and these values are also close to the IRE value of the original 4th order system, which is 2.736 x 10-4.

Example 7. Example 4. Consider a 8th order system investigated by Shamash [74] :
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where,
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The above system is having IRE of 24.2469. By using the proposed algorithm, the following reduced 2nd order approximant is obtained :
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with an ISE and IRE of 4.8090 x 10-2, 37.6894, respectively.

The unit step responses of original and reduced order models are shown in          Fig. 4.7 and a comparison of the proposed method with some other existing methods for this example is given in Table 4.5. Further, a qualitative comparison of the original and reduced order models in terms of transient response parameters [53] is also shown as given in Table 4.6.
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Fig. 4.7   Step responses of 
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Table 4.5.  Comparison of the methods for example 7
	Method of order reduction
	Reduced models; 
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	Krishnamurthy and Seshadri [34]
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Table 4.6   Qualitative comparison in terms of transient response parameters for

                        example 7

	System
	Rise Time

tr (secs)
	Peak Overshoot

Mp
	Settling Time

ts (secs)

	8th Order
	0.0572
	120 %
	4.82

	2nd Order
	0.0409
	142 %
	4.39


It can be seen in Table 4.5 that, the proposed algorithm gives low value of the ISE in comparison to the other existing methods. Also, the value of IRE for the proposed algorithm is close to that of original 8th order system, which is 
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. Further, the transient response parameters for the original and reduced order models are also comparable as shown in Table 4.6.
Example 8. This example is chosen to illustrate the extension of the proposed algorithm for the order reduction of linear multivariable systems. 

Consider the same 6th order two-input two-output system [4, 66] taken earlier in            example 4 and given by (4.10). The proposed algorithm is successively applied to each element of the transfer function matrix of the above multivariable system and the reduced order models 
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 of the LOS (
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) are obtained. The general form of the reduced second order model is given by (4.11),
where,  
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An error index ISE known as integral square error in between the transient parts of original 
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 and reduced order 
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 models is calculated and given in Table 4.7 for each element of the transfer function matrix, which is given by :
ISE = 
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                          (4.13)

where, 
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 are the unit step responses of original and reduced order models, respectively.

The unit step responses of original and reduced order models are compared in  Fig. 4.8 (a)-(d).

Table 4.7   ISE for reduced order models for example 8
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(a) u1 = 1, u2 = 0
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(c) u1 = 1, u2 = 0
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(b) u1 = 0, u2 = 1
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(d) u1 = 0, u2 = 1

Fig. 4.8   Comparison of step responses for example 8.

4.4
CONCLUSIONS

In this Chapter, several simulation/numerical examples have been given to demonstrate the algorithms suggested in the previous Chapter. The concept of eigen spectrum analysis has been used for deriving the reduced order models of high order linear time-invariant dynamic systems. The proposed algorithms have been described for the systems having real poles only. The matching of the unit step responses is quite good but, in some cases the reduced order systems develop tendency to become non-minimum phase. Though not investigated mathematically, the reason seems to be forced equalisation of the system stiffness. The algorithms are simple, rugged and take little computational time. These algorithms have also been extended for the order reduction of linear multivariable systems, which is a direct application of the SISO algorithm on the elements of the transfer function matrix of MIMO system. These algorithms have been implemented in Matlab 7.0.1 on a Pentium-IV processor. The proposed algorithms guarantee the stability of the reduced model if the original high order system is stable and are comparable in quality with some well-known existing methods of order reduction, as shown in the illustrative examples. To be more precise, the salient features of the proposed algorithms can be summarized as follows :

(a) The algorithms are computationally very attractive since only linear algebraic equations are required to be solved to arrive at reduced order models.  

(b) The stability and the steady state values of the original systems are preserved. Therefore, the proposed algorithms overcome the stability problem associated with the continued fraction expansion (CFE) based methods [12, 55, and 68], in which some stability preserving methods have been used to preserve the stability of the original HOS in association with the CFE [8, 9, 77, and 78] methods. 

(c) The algorithms can be easily applied to the systems where there are no dominant poles or where the dominant poles are difficult to identify (e.g. a system with poles at 
[image: image146.wmf]1,127
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, 
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). Therefore, the algorithms circumvent the difficulties associated with some other existing methods [39, 45, 49, and 74]. Further, no error minimization technique                [45, 49, and 52] is required in the proposed algorithms in order to match the step responses of original and reduced order systems. 

(d) The values of the ISE and IRE are compared for the proposed and some well-known existing order reduction techniques as shown in the illustrative examples, from which it is clear that the proposed algorithms are comparable in quality with the other existing techniques. Also, the values of IRE for the proposed algorithms are close to that of original high order systems as shown in the examples.
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