
A

Dissertation

On

REDESIGN OF XFORMS + XFDL AND

ENRICHING WITH FEATURES FROM XFA

Submitted in Partial fulfillment of the requirements

for the award of Degree of

MASTER OF ENGINEERING
(Computer Technology and Application)

Submitted By

KALPESH KUMAR MEENA

College Roll No: 12/CTA/05

University Roll No. 2011

Under the Guidance of:

Prof. D Roy Choudhury

Department Of Computer Engineering

Delhi College of Engineering, Delhi

DEPARTMENT OF COMPUTER ENGINEERING

DELHI COLLEGE OF ENGINEERING

DELHI UNIVERSITY

2005-2007

CERTIFICATE

This is to certify that the work contained in this dissertation entitled “Redesign of

XForms + XFDL and Enriching with features from XFA” by Kalpesh Kumar

Meena in the requirement for the partial fulfillment for the award of the degree of

Master of Engineering in Computer Technology & Application, Delhi College of

Engineering is an account of his work carried out under my guidance in the academic

year 2006-2007.

This work embodies in this dissertation has not been submitted for the award of any

other degree to the best of my knowledge.

Prof. D Roy Choudhury

Head of Department

Department of Computer Engineering

Delhi College of Engineering

 Dr. S C Gupta

 Sr. Technical Director

 National Informatics Center

 Delhi

Delhi

ACKNOWLEDGEMENT

It is a great pleasure to have the opportunity to extent my heartiest felt gratitude to everybody

who helped me throughout the course of this project.

It is distinct pleasure to express my deep sense of gratitude and indebtedness to my learned

supervisors Dr. S C Gupta and Prof. D Roy Choudhury for their invaluable guidance,

encouragement and patient reviews. Their continuous inspiration only has made me complete

this dissertation. Both of them kept on boosting me time and again for putting an extra ounce

of effort to realize this work.

I would like to specially thank Minakshi Anand and Dhiraj Kumar Singh for their constant

support in the lab. I would also like to take this opportunity to present my sincere regards to

my teachers Prof. Goldie Gabrani, Dr. S. K. Saxena, Mrs. Rajni Jindal, Mr. Manoj Sethi and

Mr. Rajeev Kumar for their support and encouragement.

I am grateful to my parents for their moral support all the time, they have been always around

to cheer me up in the odd times of this work. I am also thankful to my classmates for their

unconditional support and motivation during this work. Living at DCE with them has been a

lifetime experience for me, all the time we spend together enjoying life to its fullest, the

birthday parties, placement parties and photo sessions discussing new topic or technology

would remain with me forever.

I want to thank the IBM Research Scientist Dr. John M. Boyer for his valuable suggestions

which helped us a lot during this project. Last but not least, special thanks to the members of

World Wide Web Consortium (W3C).

Kalpesh Kumar Meena

M.E. (Computer Technology and Applications)

College Roll No. 12/CTA/05

University Roll No. 2011

Department of Computer Engineering

Delhi College of Engineering, Delhi-110042

ABSTRACT

At the time HTML was developed, it was identified that the simplest way to create web

pages, was to use declarative tags. Initially, web was only perceived as the data distribution

medium and not for data collection. But as web pages became more and more interactive,

HTML was no longer sufficient. Today, we find form code containing a large amount of

scripting. To simplify coding of such forms, W3C introduced a declarative alternative to

scripting called XForms (An XML based language).

XForms is a device-independent standard and requires a specific presentation language like

XFDL, XFA for display of information. XFDL (eXtensible Forms Description Language) has

graduated to include XForms whereas XFA (XML Forms Architecture) still follows the

approach without XForms. Though XFA does not include XForms, it has certain important

features like the prototype tag which are missing in XFDL. But XFDL provides for more

security, important for e-commerce transactions. After a detailed comparison between the

two, we found XFDL to be a better alternative.

So, in this thesis, we have included the missing features into XFDL. Use attribute has

been included in XFDL to provide the same functionality as the prototype tag of XFA.

Also, some of XFA functions are also included. Also, we have simplified some of XFDL’s

existing tags. As it integrates XForms, we have simplified the XForms tags as well. This

helps make XFDL, a more complete and designer-friendly language.

A converter has been designed which converts the simplified XFDL code to the original

code. This converter is designed using DOM package within JAXP (Java API for XML

Processing).

TABLE OF CONTENTS

ABSTRACT

TABLE OF CONTENTS

LIST OF FIGURES

LIST OF TABLES

LIST OF ABBREVIATIONS

1. INTRODUCTION.. 1

1.1 Evolution of Forms Technology .. 1

1.2 Motivation ... 2

1.3 HTML ... 2

1.4 XML .. 3

1.5 Objective .. 4

2. XFORMS .. 5

2.1 Introduction ... 5

2.2 Basis of XForms .. 7

2.2.1 XML Namespaces .. 7

2.2.2 XML Schema ... 8

2.2.3 XPath .. 9

2.2.4 XML Events ... 11

2.3 The XForms Model .. 11

2.3.1 Structural Elements .. 12

2.3.2 Binding Attributes .. 13

2.3.3 Binding ... 14

2.4 XForms User Interface ... 15

2.5 XForms Actions ... 15

2.5.1 The Old Way .. 16

2.5.2 Declarative Actions .. 17

3. XFDL and Other Standards .. 19

3.1 Language Structure .. 19

3.2 The Structure of XFDL Forms ... 21

3.2.1 Top-Level Structure ... 21

3.2.2 XFDL Items .. 22

3.2.3 XFDL Options .. 25

3.2.4 Implicit Options .. 27

3.3 XFDL and XForms .. 28

3.3.1 Location of XForms Model .. 28

3.3.2 XFDL Skin Items ... 29

3.4 XFA .. 31

3.4.1 Key Features ... 32

3.4.2 Major Components of an XFA Form ... 33

3.5 Comparison of XFA and XFDL .. 34

3.5.1 Major Elements in XFA and XFDL ... 34

3.5.2 Formatting Elements and available options ... 35

3.5.3 Graphical User Interface Elements ... 36

3.5.4 Drawing Elements .. 37

3.5.5 Other useful Elements .. 38

4. DESIGN ... 39

4.1 XML – Based Language ... 39

4.2 MVC Model .. 39

4.3 Default Namespaces .. 40

4.4 Grouping of similar tags ... 41

4.5 Default Presentation Options .. 42

4.6 Seperation of Layout Information ... 43

4.7 Modifications in the <table> .. 45

4.8 The <select> clause ... 48

4.9 The use attribute .. 50

4.10 Additional Functions ... 52

5. IMPLEMENTATION .. 53

5.1 XML Parsers .. 53

5.2 The DOM Parser .. 55

5.2.1 DOM APIs .. 56

5.2.2 Reading XML Data into a DOM .. 57

5.2.3 Creating a new DOM ... 60

5.3 The Conversion .. 61

5.4 Architecture of the converter .. 62

5.4.1 The main package ... 62

5.4.2 The model package ... 63

5.4.3 The control package ... 65

5.4.4 The view package ... 65

6. RESULTS (SAMPLE FORMS).. 71

6.1 SAMPLE FORM (HealthDemoInsurance Form) .. 71

7. CONCLUSION AND FUTUTRE WORK ... 87

8. APPENDIX .. 88

A Mapping Tables .. 88

9. REFERENCES .. 93

LIST OF FIGURES

Fig 2.1 Architecture of XForms .. 6

Fig 2.2 Basis of XForms ... 7

Fig. 3.1 XFDL Document Structure .. 21

Fig. 4.1 Architecture of the modified Language ... 40

Fig. 5.1 The DOM Interface Hierarchy .. 57

Fig. 5.2 Steps in creating a DOM Tree ... 59

Fig. 5.3 Conversion Steps ... 62

Fig. 5.4 Parts of the converter ... 62

Fig. 5.5 The main package .. 63

Fig. 5.6 model and control packages .. 65

Fig. 5.7 The view Package .. 66

Fig. 5.8 The select Package .. 67

Fig. 5.9 The pane package .. 68

Fig. 5.10 The table package .. 69

Fig. 5.11 The action package .. 70

LIST OF TABLES

Table 2.1 XForms Form Controls .. 15

Table 4.1 List of Default Skins .. 43

Table 5.1 A Comparison of the SAX and DOM Parsers ... 54

LIST OF ABBREVIATIONS

API Application Program Interface

CSS Cascading Style Sheets

DOM Document Object Model

DTD Document Type Definition

HTML Hyper Text Markup Language

JAXP Java API for XML Parsing

MIP Model Item Properties

MVC Model-View-Controller

P3P Platform for Privacy Preferences

RFC Request for Comments

SAX Simple API for XML

UI User Interface

URI Uniform Resource Identifier

W3C World Wide Web Consortium

XHTML eXtensible Hyper Text Markup Language

XFDL eXtensible Forms Description Language

XML eXtensible Markup Language

XSL eXtensible Style Sheets Language

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 1

1. INTRODUCTION

1.1 Evolution of Forms Technology

As a general rule, the more interactive a web site is, the more heavily the site's

designers rely on web forms, a general term for all different kinds of technologies

used to gather information from users. Without forms, web sites are far less

interesting. Form-less web sites were the norm in the early days of the Web and

provided a one-way deluge of static information.

The addition of forms to Hypertext Markup Language (HTML), the primary language

used in web pages, launched an entirely new way of surfing the Web. Using HTML

forms, searching for information became possible on a worldwide scale. Sites such as

Yahoo! quickly became the most popular "portals" of entry on the Web. Later, as

developers pushed the limits of forms technology farther, web sites became even

more interactive and customizable.

Shortly after the initial tempering of HTML, various individuals began considering

the usefulness of forms alongside hypertext. HTML Version 2.0, as presented in a

document called Request for Comments (RFC) 1866, was the first time that web

forms were seriously considered for standardization. That RFC captured HTML as

found in common use prior to June 1994. At this point, HTML already included

forms, thanks to a 1993 proposal called HTML+.

Care and maintenance of the HTML family of specifications have since been handed

over to the World Wide Web Consortium, or W3C. The last non-XML-based version

of HTML was version 4.01, which didn't change forms processing much. New

development of the standard is taking place on a closely related technology called

XHTML, where the X indicates an XML foundation. XHTML 1.0 and 1.1 were

largely concerned with details of the transition to XML and ways to combine

vocabularies, not with major changes to the language.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 2

XHTML 2.0, in contrast, is making some improvements that aren't compatible with

earlier flavors of HTML. The largest such change is the adoption of XForms as a

replacement for the older HTML forms technology.

The XForms standard is device- independent and therefore can be combined with any

presentation language like HTML, XFDL(eXtensible Forms Description Language),

SMIL(Simple Multimedia Integration Language), SVG(Scalar Vector Graphics) etc.

1.2 MOTIVATION

I always faced a lot of problems coding forms in HTML. Though, at a time when

HTML was developed, it changed the entire web scenerio, coding of today‘s forms in

HTML requires use of large amount of scripting and finally the code becomes

unmanagable. So, much simpler standards based on XML are being developed. One

such standard, I happened to use was XForms. It follows the basic rule that everything

can be specified using markup, and there is no need of scripting. But, XForms has

certain tags that difficult are to understand. So,I have tried to simplify these.

I found 2 new generation languages – XFDL and XFA as suitable presentation

options for XForms. I prefer the first as it already incooprates XForms and provides

more security. But, I identified some XFA features missing in XFDL and added those

to it.

1.3 HTML

HTML is a non-proprietary format based upon SGML, and can be created and

processed by a wide range of tools, from simple plain text editors - you type it in from

scratch- to sophisticated WYSIWYG authoring tools. HTML uses tags such as <h1>

and </h1> to structure text into headings, paragraphs, lists, hypertext links etc.

The introduction of the forms chapter in HTML 4.01 reads: "An HTML form is a

section of a document containing normal content, markup, special elements called

controls (checkboxes, radio buttons, menus, etc.), and labels on those controls. Users

generally 'complete' a form by modifying its controls (entering text, selecting menu

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 3

items, etc.), before submitting the form to an agent for processing (e.g., to a web

server, to a mail server, etc.)."

Forms represent a structured exchange of data. In HTML forms, the structure of the

collected data, called a form data set, is a set of name/value pairs. The names and

values that are included in this set are solely determined by the controls present within

the form, so that adding a new control element, as well as adding to the user interface,

also adds a new name/value pair to the data set. Many authors take for granted this

basic violation of the separation between the data layer and the user interface layer—a

problem that XForms has gone to considerable lengths to alleviate.

1.4 XML

XML is a text-based markup language that is fast becoming the standard for data

interchange on the Web. XML(eXtensible Markup Language) provides a tag-based

syntax for structuring data and applying markups to documents. But unlike HTML,

XML tags identify the data, rather than specifying how to display it. Where an HTML

tag says something like "display this data in bold font"(...), an XML tag acts

like a field name in your program. It puts a label on a piece of data that identifies it

(for example: <message>...</message>).

There are a number of reasons for XML's surging acceptance. This section lists a few

of the most prominent.

1. Plain Text

Since XML is not a binary format, you can create and edit files with anything from a

standard text editor to a visual development environment. That makes it easy to debug

your programs, and makes it useful for storing small amounts of data. At the other end

of the spectrum, an XML front end to a database makes it possible to efficiently store

large amounts of XML data as well. So XML provides scalability for anything from

small configuration files to a company-wide data repository.

2. Data Identification

XML tells you what kind of data you have, not how to display it. Because the

markup tags identify the information and break up the data into parts, an email

program can process it, a search program can look for messages sent to particular

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 4

people, and an address book can extract the address information from the rest of the

message. In short, because the different parts of the information have been identified,

they can be used in different ways by different applications.

3. Easily Processed

As mentioned earlier, regular and consistent notation makes it easier to build a

program to process XML data. For example, in HTML a <dt> tag can be delimited by

</dt>, another <dt>, <dd>, or </dl>. That makes for some difficult programming. But

in XML, the <dt> tag must always have a </dt> terminator, or else it will be defined

as a <dt/> tag. (Otherwise, the XML parser won't be able to read the data.) And since

XML is a vendor-neutral standard, you can choose among several XML parsers,

any one of which takes the work out of processing XML data.

4. Hierarchical

Finally, XML documents benefit from their hierarchical structure. Hierarchical

document structures are, in general, faster to access because you can drill down to the

part you need, like stepping through a table of contents.

1.5 OBJECTIVE

The objective of this thesis is to

 Introducing modifications to XForms + XFDL in order to simplify coding

using these languages.

 Design a converter that converts the simplified code into XForms + XFDL

code which can be displayed using the IBM Workplace Forms Viewer.

 Compare the XFDL and XFA Specifications and introduce missing features

into XFDL.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 5

2. XFORMS

2.1 Introduction

XForms has been designed on the basis of several years' experience with HTML

forms. HTML Forms have formed the backbone of the e-commerce revolution, and

having shown their worth, have also indicated numerous ways they could be

improved.

The primary difference when comparing XForms with HTML Forms, apart from

XForms being in XML, is the separation of the data being collected from the

markup of the controls collecting the individual values. By doing this, it not only

makes XForms more tractable by making it clear what is being submitted where, it

also eases reuse of forms, since the underlying essential part of a Form is no longer

irretrievably bound to the page it is used in.

A second major difference is that XForms, while designed to be integrated into

XHTML, is no longer restricted only to be a part of that language, but may be

integrated into any suitable markup language. XForms has striven to improve

authoring, reuse, internationalization, accessibility, usability, and device

independence. Here is a summary of the primary benefits of using XForms:

1. Strong typing - Submitted data is strongly typed and can be checked using off-

the-shelf tools. This speeds up form filling since it reduces the need for round trips

to the server for validation.

2. XML submission - This obviates the need for custom server-side logic to marshal

the submitted data to the application back-end. The received XML instance

document can be directly validated and processed by the application back-end.

3. Existing schema re-use - This obviates duplication, and ensures that updating the

validation rules as a result of a change in the underlying business logic does not

require re-authoring validation constraints within the XForms application.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 6

4. External schema augmentation - This enables the XForms author to go beyond

the basic set of constraints available from the back-end. Providing such additional

constraints as part of the XForms Model enhances the overall usability of the

resulting Web application.

5. Internationalization - Using XML 1.0 for instance data ensures that the

submitted data is internationalization ready.

6. Enhanced accessibility - XForms separates content and presentation. User

interface controls encapsulate all relevant metadata such as labels, thereby

enhancing accessibility of the application when using different modalities.

XForms user interface controls are generic and suited for device-independence.

7. Multiple device support - The high-level nature of the user interface controls,

and the consequent intent-based authoring of the user interface makes it possible

to re-target the user interaction to different devices.

8. Less use of scripting - By defining XML-based declarative event handlers that

cover common use cases, the majority of XForms documents can be statically

analyzed, reducing the need for imperative scripts for event handlers.

XForms has three parts—XForms model, instance data, and user interface—it

separates presentation from content, allows reuse, gives strong typing—reducing the

number of round-trips to the server, as well as offering device independence and a

reduced need for scripting.

Fig. 2.1 Architecture of XForms

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 7

An important concept in XForms is that forms collect data, which is expressed as

XML instance data. Among other duties, the XForms Model describes the structure

of the instance data. This is important, since like XML, forms represent a structured

interchange of data. Workflow, auto-fill, and pre-fill form applications are supported

through the use of instance data.

2.2 Basis of XForms

XForms is based on various XML Technologies – XML Schema, XML Events,

XPath, Namespaces etc. As can be seen from Fig.2.2, various standards have been

developed based on XML and XForms is in turn based on these. Thus, XForms occurs

at the third level in the XML hierarchy.

Fig. 2.2 Basis of XForms

2.2.1 XML Namespaces

Because XML allows designers to chose their own tagnames, it is possible that two or

more designers may choose the same tagnames for some or all of their elements.

XML namespaces provide a way to distinguish deterministically between XML

elements that have the same local name but are, in fact, from different vocabularies.

This is done by associating an element with a namespace. A namespace acts as a

scope for all elements associated with it. Namespaces themselves also have names. A

namespace name is a uniform resource identifier (URI). Such a URI serves as a

unique string and need not be able to be dereferenced. The namespace name and the

local name of the element together form a globally unique name known as a qualified

name.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 8

Namespace declarations appear inside an element start tag and are used to map a

namespace name to another, typically shorter, string known as a namespace prefix.

The syntax for a namespace declaration is xmlns:prefix='URI'. It is also possible to

map a namespace name to no prefix using a default namespace declaration. The

syntax for a default namespace declaration is xmlns='URI'. In both cases, the URI

may appear in single quotes (') or double quotes ("). Only one default namespace

declaration may appear on an element. Any number of nondefault namespace

declarations may appear on an element, provided they all have different prefix parts.

2.2.2 XML Schema

An XML schema describes the structure of an XML document. The XML Schema

language is also referred to as XML Schema Definition (XSD).They are XML-based

alternative to DTD(Document Type Definition). An XML Schema:

 defines elements that can appear in a document

 defines attributes that can appear in a document

 defines which elements are child elements

 defines the order of child elements

 defines the number of child elements

 defines whether an element is empty or can include text

 defines data types for elements and attributes

 defines default and fixed values for elements and attributes

Advantages of XML Schema over the DTD are :

1. XML Schemas are richer and more powerful than DTDs

2. XML Schemas support data types

3. XML Schemas use XML Syntax - Some benefits of that XML Schemas are

written in XML are – we can use XML editor to edit Schema files, XML parser to

parse Schema files, manipulate Schema with the XML DOM and transform with

XSLT.

4. XML Schemas are Extensible

Well formed and Valid XML

A well-formed XML document is a document that conforms to the XML syntax rules,

like:

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 9

 it must begin with the XML declaration

 it must have one unique root element

 start-tags must have matching end-tags

 elements are case sensitive

 all elements must be closed

 all elements must be properly nested

 all attribute values must be quoted

 entities must be used for special characters

Even if documents are well-formed they can still contain errors, and those errors can

have serious consequences.With XML Schemas, most of these errors can be caught

by your validating software. An XML file that conforms to a Schema is called a valid

XML file.

2.2.3 XPath

XPath is a language for addressing parts of an XML document. In support of this

primary purpose, it also provides basic facilities for manipulation of strings, numbers

and booleans. XPath uses a compact, non-XML syntax to facilitate use of XPath

within URIs and XML attribute values. XPath operates on the abstract, logical

structure of an XML document, rather than its surface syntax. XPath gets its name

from its use of a path notation as in URLs for navigating through the hierarchical

structure of an XML document. XPath models an XML document as a tree of

nodes. There are different types of nodes, including element nodes, attribute nodes

and text nodes.

Simple XPath expressions resemble file system paths, except that instead of

navigating across directories and files, XPath expressions navigate across XML

nodes. For example, the expression:

/html/head/title

represents an absolute path through XML, starting at a special root node, then

progressing through child elements html, head, and title. The XML referenced by

this path might look something like this:

<html>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 10

 <head>

 <title>Push Button Paradise</title>

...

Since XML names can be qualified with a namespace, it's also possible to use

colonized names at any step. Relative paths are also possible, in which case it's

important to know what the context node (similar in concept to the current directory)

is. Additionally, attributes can be addressed with a leading @ character, leading to

XPath expressions like this:

html:head/xforms:model/@id

Note that when the leading slash is omitted, the path expression is relative.

Path expressions can be said to return a node-set. Both of the above examples

conveniently returned a node-set consisting of a single node, but in the general case,

node-sets can have zero, one, or a multitude of nodes. XForms includes a first node

rule, that in certain circumstances, will reduce a larger node-set down to a single

node, namely, the first one according to the order the elements appear in the

document. Also, node-sets can be filtered manually using a predicate. Predicates are

identified using square brackets as follows:

purchaseOrder/items/item[3]

XPath expressions can also be more than just paths, and can be thought of as a kind of

lightweight scripting language. Besides node-sets, an expression can evaluate to a

Boolean value, a string, or a number. For example, the expression:

string-length('hello world')

would always return 11 as a number, and the expression:

purchaseOrder/subtotal * instance('taxtable')/tax

represents a full-blown calculation that might appear in a real-world form. On the

right-hand side of the multiplication symbol, note that the path expression begins with

a function call that can return a node-set from another location (a different XForms

instance, in this case).

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 11

Context

Just as a relative directory path is relative to a current directory, XPath expressions

are evaluated relative to a "context," which consists of the following:

 A context node

 A pair of non-zero positive integers (the context position and the context size)

 Variable bindings (not used in XForms)

 A function library

 The set of namespace declarations in scope for the expression

In Xpath, default namespace is not part of the context. Therefore, every namespace

referenced in an XPath expression needs to be associated with a specific prefix at the

point where the XPath expression occurs.

An XPath expression of ‗.‟ selects the context node, and ‗..‟ selects the parent node

of the context node. Any expression that begins with ‗/‟ is an absolute path and

independent from the context node.

2.2.4 XML Events

An event is the representation of some asynchronous occurrence (such as a mouse

click on the presentation of the element, or an arithmetical error in the value of an

attribute of the element, or any of unthinkably many other possibilities) that gets

associated with an element (targeted at it) in an XML document.

In the DOM model of events, the general behavior is that when an event occurs it is

dispatched by passing it down the document tree in a phase called capture to the

element where the event occurred (called its target), where it then may be passed back

up the tree again in the phase called bubbling. In general an event can be responded to

at any element in the path (an observer) in either phase by causing an action, and/or

by stopping the event, and/or by cancelling the default action for the event.

2.3 The XForms Model

XForms Model is the name given to the form description. That name was chosen

mainly because it wasn't "data model," but also to evoke thoughts of the Model-View-

Controller (MVC) design pattern in programming. In MVC, a model contains all

the essential data, and one or more views provide a viewpoint to examine or interact

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 12

with the data. The XForms Model is analogous to a MVC model, and form controls

serve the function of views. (There's nothing that directly maps to a controller in

XForms, though portions of the processing model and XForms Events play a similar

role.)

A model item is the name for an XPath node with the addition of certain XForms

properties, formally called model item properties. The connection between model

item properties and form controls is called binding, which is accomplished through a

set of XML elements that comprise the XForms Model.

2.3.1 Structural Elements

The XForms Model is made up of a number of different elements, outlined here.

1. The model Element - This element is the local root of the definition of the

XForms Model. It is typically found in a non-rendered area of the containing

document. Eg -the head section in XHTML can contain an XForms Model.

2. The instance Element - This element serves as a container for initial instance

data. The contents of this element are simply data that will be both read and

written during form interaction, nothing more.

Instead of inline content, instance may use Linking Attributes (that is to say,

src) to point to external instance data.

3. The bind Element - This element establishes conditions that are continuously

applied to the instance data. With instance data defined neatly by the instance

element, the question remains of how to annotate instance data nodes with

properties necessary for forms. Each model item property is represented by an

attribute on this element- type, readonly, Required, relevant, calculate,

constraint, p3ptype.

The properties are applied through an additional attribute, nodeset, which selects

a node-set.

4. The submission Element – Specifies how,where and what data is submitted.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 13

2.3.2 Binding Attributes

The Common attribute collection contains the Binding Attributes—Single Node and

Node-set. A number of situations in XForms call for a reference into instance data.

Binding attributes provide this feature. The following section describes these

attributes :

 ref - Whenever the intent of the binding attributes is to select a single node, the

ref attribute will be present. It contains an XPath path expression. In cases where

the selected node-set happens to have more than one node, the first node rule

applies, which removes all nodes other than the first, according to the order the

nodes appear in the document.

 nodeset - Whenever the intent of the binding attributes is to select a node-set of

any size, the nodeset attribute will be present. It contains an XPath path

expression.

 model - In larger or more complex documents, it will be common to have

multiple XForms Models. When this is the case, an additional attribute is needed

to indicate to which XForms Model the binding attaches. The value of this

attribute is of type IDREF, and so a model element in the same document must

have an attribute of type ID with a matching value.

 bind - In some cases, such as when a graphic design professional who isn't

concerned with XPath is laying out a form, it isn't desirable to have XPath strewn

about on every set of binding attributes. The bind attribute, which takes

precedence over any of ref, nodeset, or model, refers back to an already-defined

node-set on a bind element. The value of this attribute is of type IDREF, and so a

bind element in the same document must have an attribute of type ID with a

matching value.

It's worth noting that the term binding, as used in XForms, can refer to two separate

things. UI Binding occurs on an attribute of a form control element, and binds the

form control to a particular model item. In dynamic forms, the association to a model

item can jump around, causing the form control to be a window to different parts of

the data at different times. The other use of binding, Model Binding, occurs on the

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 14

element bind, selecting an entire node-set to which a set of model item properties gets

applied. It is a serious problem to have a dynamic model binding expression, since

that complicates life behind-the-scenes for an XForms Processor, which can cause

difficult-to-detect errors.

2.3.3 Binding

A bind has two ends, one side in the XForms Model, and the other side at a form

control. On the bind element within the XForms Model, the nodeset attribute holds

the Model Binding Expression. On the other end, in the user interface, is the UI

Binding Expression. This end may be bound two ways, using either IDREFs or

XPath.

1. With IDREFs - The recommended way to perform binding is to put an id

attribute on each bind element, and refer back to this with a bind attribute on

each form control:

 <!-- in the XForms Model -->
<xforms:bind nodeset="email" id="mybind"

required="true()"/>

 ...

 <!-- later in the document -->

 <xforms:input bind="mybind"...>

This approach is distinguished by the use of the bind attribute on form controls.

The main advantage of this approach is that it maintains separation between the model

and the view. If the structure of the instance data were to change, only the attributes

on the bind elements would need to be updated.

2. With XPath - Another way to bind is with XPath expressions on the form

controls:

 <!-- in the XForms Model -->
<xforms:bind nodeset="email" id="mybind"

required="true()"/>

 ...

 <!-- later in the document -->

 <xforms:input ref="email"...>

This approach is distinguished by the use of ref attributes on form controls. Many

view this approach as simpler, since it cuts out one level of indirection. It is also more

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 15

fragile, however, since the XPath expressions to locate nodes appear in two places. If

the structure of the instance data were to change, both the attributes on the bind

element and the ref attributes on the form controls would need to change.

2.4 XForms User Interface

The following table lists the various form controls with their specific purposes –

Purpose

Form control

Entering information into the form

input

Writeonly control (non-readable,used for passwords)

secret

Displaying information output

Upload a file(eg- image) to a form

upload

To get a bounded value

range

To trigger an action

trigger

Submission of data

submit

Selection of multiple values from a set

select

Selection of one value from a set

select1

Dynamic Presentation – To dynamically vary the

number of rows in the table

repeat

Dynamically choose from one of the several options

for display

switch

Table 2.1 XForms Form Controls

For detailed code, refer to section 3.3 (XForms and XFDL).

2.5 Xorms Actions

An event is the representation of some asynchronous occurrence (such as a mouse

click on the presentation of the element, or an arithmetical error in the value of an

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 16

attribute of the element, or any of unthinkably many other possibilities) that gets

associated with an element (targeted at it) in an XML document.

In the DOM model of events, the general behavior is that when an event occurs it is

dispatched by passing it down the document tree in a phase called capture to the

element where the event occurred (called its target), where it then may be passed back

up the tree again in the phase called bubbling. In general an event can be responded to

at any element in the path (an observer) in either phase by causing an action, and/or

by stopping the event, and/or by cancelling the default action for the event.

An action is some way of responding to an event; a handler is some specification for

such an action, for instance using scripting or some other method. A listener is a

binding of such a handler to an event targeting some element in a document.

2.5.1 The Old Way

In the design of HTML forms, script is used whenever some specific action is needed.

For example, a form might have a button that copies values from a "ship to" section

onto a "bill to" section. In HTML forms plus script, the following code would

accomplish this:

<script type="text/javascript"> <!--

function copyAddresses() {

 var frm = document.forms[0];

 frm.shipAddr.value = frm.billAddr.value;

 frm.shipCity.value = frm.billCity.value;

 frm.shipProv.value = frm.billProv.value;

 frm.shipPostCode.value = frm.billPostCode.value;

} --> </script>

It would then be activated by a button, with an event-specific attribute, specified like

this:

<input type="button" id="cp" value="Copy values"

onclick="copyAddresses()"/>

In terms of DOM Level 2 Events, this represents a registration of an observer on the

input element, watching for the DOM click event at the target, and handling the

event by calling a short script. As a result, the script in the onclick attribute will get

called when the user clicks on the button.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 17

Disadvantages of this approach:

 A special hardwired attribute, in this case onclick, is needed. This is inflexible

and clutters the language.

 Script is difficult to maintain, especially when bits of script are scattered

throughout the document.

 This won't work in browsers that don't support scripting.

2.5.2 Declarative Actions

XML Events help specify the same thing as above, declaratively, that is, without the

use of scripting. Handlers can come from two sources. XForms defines a number of

handlers, called XForms Actions, discussed below. Additionally, the host language

can define handlers, as is the case with script. With XForms Actions, the earlier

example can be done without any script at all, like this:

<trigger>

 <label>Copy values</label>

 <action ev:event="DOMActivate">

<setvalue ref="Shipping/Addr"

value="../Billing/Addr"/>

<setvalue ref="Shipping/City"

value="../Billing/City"/>

<setvalue ref="Shipping/Prov"

value="../Billing/Prov"/>

<setvalue ref="Shiping/PostCode"

value="../Billing/PostCode"/>

 </action>

</trigger>

The following section describes all of the XForms Actions defined in XForms. Any of

the following can be invoked in such a way that the processing described for the

element happens in response to a given event.

 xforms:delete Deletes a row of elements from a table. The elements are first

deleted from the XForms model, then the table‘s repeat deletes the visible items

that were linked to those data elements.

 xforms:insert Allows you to add a row of elements to a table. This function

copies a row of elements in the data model, then inserts the copy in the desired

location in the data model. Once the copy is inserted in the data model, the table‘s

repeat creates corresponding items that are displayed to the user.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 18

 xforms:message Sets a message that is displayed to the user in a small dialog

box. 3 levels of messages are provided – modal, modeless and ephemeral.

 xforms:rebuild Causes the form viewing application to rebuild any internal data

structures that are used to track computational dependencies within a particular

model.

 xforms:recalculate Causes the forms viewing application to recalculate any

instance data that is affected by computations and is not up-to-date. This affects

all data instances in the designated model.

 xforms:refresh Causes the forms viewing application to update all user interface

elements linked to a particular model, so that they match the underlying data in

the XForms model.

 xforms:revalidate Causes the forms viewing application to validate all instance

data in a particular model. This ensures that all validation checks have been

performed. In general, the XForms processor automatically runs the above 4

actions when required.

 xforms:reset Returns a particular XForms model to the state it was in when the

form was opened. This allows the user the reset the contents of the form to their

″starting point″, which can increase usability of the form.

 xforms:send Triggers an XForms submission. The submission must already be

defined in the XForms model.

 xforms:setfocus Sets the focus to a particular presentation element in the form.

 xforms:setindex Sets the index for the xforms:repeat element in a table. This

determines which row in the table receives the focus. Rows use one-based

indexing. This means that the first row has an index of 1, the second and index of

2, and so on.

 xforms:setvalue Sets the value for a specified element in the data model.

 xforms:toggle Selects one of the cases in an xforms:switch and makes it active.

When one case is selected, all other cases in the switch are deselected.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 19

3. XFDL and Other Standards

From 1993 to 1998, UWI.Com developed the Universal Forms Description Language

(UFDL). XFDL is the result of developing an XML syntax for the UFDL, thereby

permitting the expression of powerful, complex forms in a syntax that promotes

application interoperability and adherence to worldwide Internet standards. The

current design goals of XFDL are to create a high-level computer language that

1. represents forms as single objects without dependencies on externally defined

entities

2. is a human readable plain text

3. is a publicly accessible open standard

4. provides a syntax for inline mathematical and conditional expressions

5. permits the enclosure of an arbitrary size and number of base-64 encoded

binary files

6. offers precision layout needed to represent and print dense

business/government forms

7. facilitates server-side processing via client-side input validation and

formatting

8. permits extensibility including custom items, options and external code

functions

9. offers comprehensive digital signature support, including

a. capture of the whole context of a business transaction

b. multiple signers

c. different signers of (possibly overlapping) portions of a form

d. freezing computations on signed portions of a form

3.1 Language Structure

A digital signature attached to a file accurately identifies the individual who used it,

based on the digital certificate provider‘s security and the security of the user‘s

hardware. However, to provide full non-repudiation and auditability, a business

transaction not only needs to be signed by someone whose identity is verifiable, it

also needs to be representative of the context in which it was signed.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 20

With paper-based forms and documents, this is easily accomplished. Everything that

appears on the signed document is considered part of the transaction. Electronic

forms and documents, however, present a more complex problem in that the exact

appearance and functionality of the document must be signed as well as the user‘s

input, or the transaction is meaningless. Legal standards for font size and color must

also be observed both when the document is signed and when it is subsequently

examined.

Digital signature technology alone can provide the first part of the solution, but not

the second. XFDL can be used to create forms that satisfy the second, by presenting a

business transaction as a single entity, which is updated as the user fills it in. Item

values are stored in XForms instance data, which appears in the same file that

contains the user interface and presentation layer markup. When a user digitally signs

a form, the XFDL markup for the presentation layer as well as the underlying XForms

instance data is signed. Subsequently, when the form is opened in an XFDL viewing

or processing application, the current XFDL markup and XForms instance data are

compared to those that were used to create the digital signature.

If any discrepancies exist, the signature is flagged as invalid, and the form no longer

provides non-repudiation or auditability. Secondary documents can also be placed

into an XFDL form as attachments, thus enabling the user to sign both the

attachments and the form itself. This method of representing and collecting

information in forms and digitally signing and encrypting them ensures that the

identity of the signer can be confirmed and that the signer can be proven to have

signed the full content and context of the form.

Digital Signatures on text copy of XFDL form = Signature on data, presentation

and logic = Transaction Non-Repudiation

XFDL can be said to be divided into the following layers:

1. Data Layer - Data layer includes the user data that is stored as XML and the

attachments stored in the <data> tag.

2. Presentation Layer - This includes the presentation elements.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 21

3. Presentation Logic - Presentation elements contain current value and an

expression representing logic.

3.2 The Structure of XFDL Forms

Fig. 3.1 XFDL Document Structure

3.2.1 Top-Level Structure

An XFDL form is an XML 1.0 document whose root element tag is XFDL. This

element must be in the XFDL namespace,

<XFDL xmlns="http://www.ibm.com/xmlns/prod/X 7.1">

...</XFDL>

The XFDL element may contain many namespace attributes. By convention, the

XFDL namespace is declared to be the default and it is also assigned to the prefix

‘xfdl‘.The XFDL element must contain a <globalpage> element as the first child

element, followed by one or more <page> elements.

<!ELEMENT XFDL (globalpage, page+)>

The <globalpage> element must contain a single <global> element, which can

contain zero or more option elements. These are referred to as form global options;

they typically contain information applicable to the whole form or default settings for

options appearing in the element content of pages. The <globalpage> and <global>

elements must contain an attribute called sid which must be set to the value global.

<!ELEMENT XFDL (globalpage, page+)>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 22

<!ELEMENT global (%options;*)>

<!ATTLIST globalpage sid CDATA #REQUIRED #FIXED "

global">

A <page> element contains a <global> element followed by zero or more ‘item‘

elements. The options in the page‘s global element typically contain information

applicable to the whole page or default settings for options appearing within element

content of items. The page global options take precedence over form global options.

A page is also required to have a ‘sid‘ attribute, which provides an identifier that is

unique among all <page> elements (sid is short for scope identifier).

<!ELEMENT page (global, %items;*)>

3.2.2 XFDL Items

An item is a single object in a page of a form. Some items represent GUI widgets,

such as buttons, check boxes, popup lists, and text fields. Other items are used to

carry information such as attached word processing documents or digital

signatures.Each item must have a sid attribute, which provides a scope identifier that

uniquely identifies the item from among all child items of its parent element.

An item can contain zero or more option elements. The options define the

characteristics of the item. XForms user interface controls appear as options of XFDL

The Root XFDL Element

<?xml version="1.0"?>

<XFDL

xmlns="http://www.PureEdge.com/XFDL/6.0"

>

 <!-- Form Global Options Contain

 1) XML instances in any Schema

 2) Bindings to presentation

layer -->

 <!-- Page(s) of Presentation Layer --

>

</XFDL>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 23

items, and the XFDL item is said to be the skin of the XForms form control that it

contains. XFDL allows elements in custom namespaces to appear at the item level (as

long as they contain an xfdl:sid attribute. Following are the various XFDL Items :

 action - A non-visible item that can perform similar tasks to a button (print,

cancel, submit, and so on) either after a certain period of time or with a regular

frequency.

Skin for: <xforms:submit>, <xforms:trigger>

 box - An item that provides a graphic effect used to visually group a set of the

GUI widgets on the page. A box is drawn under all widgets on a page. This item is

useful in some circumstances, but it is usually better to use a pane item (see

below) to both visually and logically group related user interface elements.

 button - Performs one of a variety of tasks when pressed by the user, such as

saving, printing, canceling, submitting, digitally signing the form, viewing

documents enclosed in the form, and so on. A button can have a text or image

face.

Skin for: <xforms:submit>, <xforms:trigger>, <xforms:upload>

 check - Defines a single check box.

Skin for: <xforms:input>

 checkgroup - Defines a group of checkboxes that operate together to provide a

multiselection capability.

Skin for: <xforms:select>, <xforms:select1>

 combobox - An edit field combined with a popup list; its value can be either

selected or typed.

Skin for: <xforms:select1> (select or type input), <xforms:input> (date selector)

 data - Used to carry binary information using base-64 encoding and compression,

such as enclosed files or digital images, using base-64 encoding. This item

appears when advanced XFDL enclosure mechanisms are used. When a basic

<xforms:upload> is used, the data appears in an <xforms:instance> data node.

 field - Used to capture single- or multiple-line textual input from the user; it

includes input validation and formatting features as well as enriched text

capabilities.

Skin for: <xforms:input> (single-line text), <xforms:secret> (single-line, write-

only), <xforms:textarea> (for multiline plain text or enriched text)

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 24

 label - Shows either an image or a single or multiple line text value.

 Skin for: <xforms:output>

 line - A simple graphic effect used as a separator.

 list - Shows a list box populated with choices from which the user may select one.

Skin for: <xforms:select>, <xforms:select1>

 pane - Provides an hierarchic grouping capability for other items that are defined

within the content of the pane. Also, may provide the ability to switch between

multiple groupings.

Skin for: <xforms:group>, <xforms:switch>

 popup - Shows either the text of the currently selected choice or a label if there is

no selection; the popup provides a small button that causes the list of selectable

choices to appear, from which the user may select one.

Skin for: <xforms:select1>

 radiogroup - Defines a group of radio buttons. Initially none may be selected, but

a maximum of one radio button can be selected within the group.

 signature - Receives the signature that ultimately results when a user presses a

signature button.

Skin for: <xforms:select1>

 slider - Creates a sliding control, similar to a volume control, that lets the user set

a value within a specific range.

Skin for: <xforms:range>

 spacer - An invisible GUI widget that facilitates spacing in the relational

positioning scheme.

 table - Provides a template of XFDL items that are to be duplicated according to

the amount of data available to be displayed. This item provides the ability to

dynamically adjust the form rendition based on the amount of data and the amount

of changes to that data.

Skin for: <xforms:repeat>

 toolbar - Items associated with a toolbar item appear in a separate window pane

above the pane for the form page; it is the typical location for page switching and

other buttons as its contents are not printed if the form is rendered on paper.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 25

3.2.3 XFDL Options

An option defines a named property of an item, page, or form. Options can appear as

form globals, page globals, or as the contents of items.

 acclabel - Provides a special description of input items that is read by screen

reading software.

 active - Specifies whether an item is active or inactive. In XFDL items containing

XForms controls, the default for this option is set by the relevant model item

property.

 bgcolor, fontcolor, labelbgcolor, and labelfontcolor - Specify the colors for an

item or its label using either predefined names or RGB triplets in decimal or

hexadecimal notation.

 border and labelborder - Control whether an item or its label has a border.

 colorinfo - Records the colors used to draw the form when the user signs the

form.This is only necessary when the operating system colors are used instead of

the colors defined in the form (which is a feature for users with vision

impairments).

 coordinates - Receives the location of a mouse click on an image, if the image is

in a button.

 cursortype - Displays different cursor icons when the user hovers over a button.

 data and datagroup - Used to create an association between data items and the

buttons that provide file enclosure functionality.

 delay - Used in an action item to specify the timing for the event and whether it

should be repeated.

 excludedmetadata - Used to store special information that is automatically

excluded from signatures.

 filename and mimetype - Give additional information about an enclosed

document.

 fontinfo and labelfontinfo - Defines the typeface, point size, and special effects

(bold, italics, and underline) for the font used to display the item‘s value or label.

 format - Contains sub-elements that parameterize input validation for the item‘s

value.

 formid - Defines a unique identifier for the form, such as a serial number.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 26

 image - Identifies the data item containing the image for the button or label.

 imagemode - Specifies the display behavior of the image within the data item; the

image may be clipped, resized, or scaled to fit the item.

 itemlocation, size and thickness - Help to define the location and size of the item.

 justify - Controls whether text in the item should be left, center, or right justified.

 label - Associates a simple text label with the item; labels can also be created

independently with a label item.

 linespacing - Adjusts the spacing between lines of text in an item.

 mimedata - Used to store large binary data blocks encoded in bas-64 gzip

compressed or base-64 format.

 next and previous - Link the item into the tab order of the page.

 padding - Defines how much extra whitespace is put around the pane item.

 pageid - Defines a unique identifier for a page, such as a serial number.

 printbgcolor, printlabelbgcolor, printfontcolor, and printlabelfontcolor - Provide

the ability to set printing colors for each indicated option different from the

display colors on the screen.

 printvisible - Determines whether an item should be visible when the form is

printed. Has no effect on the visibility of the item on the screen.

 Printsettings - Parameterizes the paper rendition of a form.

 readonly - Sets the item to be readonly. In XFDL items containing XForms

controls, the default for this option is set by the readonly model item property.

 rowpadding - Defines how much space is applied to the top and bottom of a table

row.

 rtf - Contains the rich text value of rich text fields.

 requirements - Specifies the requirements for the Web Services to be used by the

form.

 saveformat and transmitformat - Control how the form is written (XFDL,

HTML) when it is saved or submitted.

 scrollhoriz and scrollvert - Control whether a text field item has horizontal and

vertical scroll bars or whether it wordwraps, allows vertical sliding, and so on.

 texttype - Sets whether a field contains plain text or rich text.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 27

 transmitdatagoups, transmitformat, transmitgroups, transmititiemrefs,

transmititems, transmitnamespaces, transmitoptionrefs, transmitoptions, and

transmitpagerefs - Work together to allow you to transmit form submissions.

 triggeritem - Set in the form globals to identify which action, button, or cell

activated a form transmission or cancellation.

 type - Specifies whether the action, button, or cell item will perform a network

operation, print, save, digitally sign, and so on.

 url - Provides the address for a page switch, or for a network link or submission.

 value - Holds the primary text associated with the item. In XFDL items that

contain XForms controls, this option (and all options, such as those that are

computed) are treated as transient, which means that any updates to the content

are not serialized when the form is written because the updates are reflected in

instance data.

 visible - Determines whether the item should be shown to the user or made

invisible.

 webservices - Defines the nameof the Web Services used by the form.

 writeonly - Sets the item to be writeonly. This option is only for use with field

items that do not skin XForms controls.

3.2.4 Implicit Options

There are some options that are defined within XFDL for the purpose of allowing

them to be referenced without being defined by the form author. These options are

dynamically added to the document object model (DOM) of the XFDL form while it

is being processed, and they are removed when it is serialized. These options tend to

be informational in nature or representative of events that can occur while the form is

being processed.

 activated, focused, and mouseover - Indicates whether the form, page or item has

been activated or focused or contains the mouse pointer.

 dirtyflag - In the form global item, this option indicates whether the end-user of

the form viewing program has changed the form.

 focuseditem - At the page global level, records the scope identifier of the item that

currently has the focus.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 28

 itemprevious, itemnext, itemfirst, itemlast - Used to help create a doubly linked

list of items in each page. The itemprevious and itemnext options occur in each

item, and itemfirst and itemlast appear at the page global level.

 keypress - Records a keypress by the user that was not used as input to an XFDL

item. The keypress is propagated upwards to the page and form global items.

 pageprevious, pagenext, pagefirst, pagelast - Used to help create a doubly linked

list of pages in the form. The pageprevious and pagenext options occur in each

page, and pagefirst and pagelast appear at the form global level.

 printing - In the form global item, this option indicates whether the form is

currently printing.

 version - Appears in the form global item and defines the version of XFDL used

to write the form. It is obtained from the XFDL namespace declaration.

3.3 XFDL and XForms

The guiding principle of the integration between XFDL and XForms is that XFDL is

quite literally a skin that provides a sophisticated presentation layer for XForms view

controls. This means that the user interface controls suggested by XFDL and all of its

options and computes are used to style the XForms controls. The XFDL items interact

with XForms view controls to consume the instance data and model item properties

(MIPs) exposed by the XForms view controls.

3.3.1 Location of XForms Model

The form global option xformsmodels is used to contain all xforms:model elements

in an XFDL document. For example,

<XFDL ... >

 <globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <xforms:model ...>

 <!-- [schema], instances, binds, submissions, actions -->

 </xforms:model>

 ...

 </xformsmodels>

 ...

 </global>

 </globalpage>

<page sid="P1">

 <global sid="global"> ... </global>

 ...

</page>

</XFDL>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 29

3.3.2 XFDL Skin Items

1. label for xforms:output

The XFDL item most frequently used to display non-editable text is the label, so that

is the skin for xforms:output.

2. field for xforms:input, xforms:secret and xforms:textarea

The appropriate XFDL item for typed input is the field, which therefore can be the

skin for single-line (xforms:input), single-line write-only (xforms:secret) and

multiline xforms:textarea XForms controls.

3. popup, list, radiogroup and checkgroup Items Skin xforms:select1

Perhaps the most common user interface control for obtaining a user choice is the

popup list (a.k.a. the drop down list). This corresponds to the minimal appearance for

the xforms:select1, which corresponds to the XFDL popup item. However, the form

author may desire the compact appearance of an XFDL list or the full appearance of

either a group of radio buttons (radiogroup) or a even a single-selection group of

check boxes (checkgroup) The skin methodology for these items is the same except

for the use of the appearance attribute. The minimal appearance is considered to be

the default in XFDL, so the form author need not put the attribute when the skin is a

popup, but the appearance attribute is required for the compact and full settings, and

the setting of the appearance attribute must match the XFDL item skinning the

xforms:select1.

<label sid="MonthlyPayment">

 <xforms:output ref="/loan/mpymt"/>

 <format>

 <datatype>currency</datatype>

 </format>

 <xforms:output>

</label>

<field sid="LoanPrincipal">

 <xforms:input ref="/loan/principal">

<xforms:label>Loan

Principal</xforms:label>

 </xforms:input>

</field>

http://www.idealliance.org/proceedings/xml05/ship/74/XFormsAndXFDL_Boyer.HTML#section_select1

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 30

4. The list and checkgroup Items Skin xforms:select

XFDL offers multiselect controls of both compact and full appearance by skinning

xforms:select with the XFDL list and checkgroup items, respectively.

5. slider skins xforms:range

Selection of a value within an integer or floating point range can be accomplished

with the slider item, which skins the xforms:range.

6. button skins upload

The xforms:upload control allows for a single-file attachment. When skinned by an

XFDL button item, the user can activate a file selection dialog by pressing the button,

and the selected file's content will be placed in the referenced instance data node (base

64 encoded).

 <slider sid="OverallRating">

 <xforms:range ref="rating" start="1" end="5" step="1">

 <xforms:label>Overall Rating:</xforms:label>

 </xforms:range>

 </slider>

<list sid="Currency">

 <xforms:select1 ref="principal/@currency" appearance="compact">

 <xforms:label>Choose currency</xforms:label>

 <xforms:item>

 <xforms:label>US Dollars</xforms:label>

 <xforms:value>en_US</xforms:value>

 </xforms:item>

 <xforms:item>

 <xforms:label>Canadian Dollars</xforms:label>

 <xforms:value>en_CA</xforms:value>

 </xforms:item>

 </xforms:select1>

 <itemlocation>

 <after>Principal</after>

 <alignt2t>Principal</alignt2t>

 <expandb2b>Principal</expandb2b>

 </itemlocation>

</list>

http://www.idealliance.org/proceedings/xml05/ship/74/XFormsAndXFDL_Boyer.HTML#section_select

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 31

7. button and action skin xforms:trigger and xgorms:submit

The xforms:trigger is used to activate a sequence of XForms actions, such as

inserting or deleting data, changing the input focus or sending a submission. The

xforms:submit acts as a shorthand for activating an triggering an xforms:send

action. The XFDL button (and the automatic action) skins both of these XForms

controls.

For other enclosures, refer to section 4.5 (Default Presentation Options).

3.4 XFA

The XML Forms Architecture (XFA) provides a template-based grammar and a set of

processing rules that allow businesses to build interactive forms. At its simplest, a

template-based grammar defines fields in which a user provides data.

<!-- The hard way -->

<button sid="Submit">

 <xforms:trigger>

 <xforms:label>Submit Loan</xforms:label>

 <xforms:send ev:event="DOMActivate" submission="S"/>

 </xforms:trigger>

 ...

</button>

<!-- The easy way -->

<button sid="Submit2">

 <xforms:submit submission="S">

 <xforms:label>Submit Loan</xforms:label>

 </xforms:submit>

 ...

</button>

<button sid="GetThePicture">

 <xforms:upload ref="/data" mediatype="image/*">

 <xforms:label>Press me to attach a picture</xforms:label>

 </xforms:upload>

</button>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 32

The open nature of XFA provides a common grammar for describing interactive

forms. This common grammar provides a common basis for form-related interactions

between form processing applications produced by diverse businesses.

Adobe‘s earlier forms standard was called Acroforms. In 2003, Adobe bought

JetForms (then called Accelio). XFA standard was given by JetForms and therefore,

forms developed using this are called Accelio Forms.

3.4.1 Key Features

XFA forms provide a wide range of key features.

 Workflow : Data presentation, data capture and data editing, application

front-end, printing.

 Dynamic interactions : From interactive, human edited forms with dynamic

calculations, validations and other events to server-generated machine-filled

forms.

 Dynamic layout : Forms can automatically rearrange themselves to

accommodate the data supplied by a user or by an external data source, such

as a database server.

 Complexity : Single-page static forms, dynamic document assemblies based

on data content, large production runs containing hundreds of thousands of

transactions.

XFA is similar to PDF interactive forms introduced in PDF 1.2, which is also known

as AcroForm, with the following differences:

 XFA can be used in XML-based workflows.

 XFA separates data from the XFA template, which allows greater

flexibility in the structure of the data supported and which allows data to be

packaged separately from the form.

 XFA can specify dynamically-growing forms.

 XFA can specify Web interactions, such as HTTP and Web Services

(WSDL). Such interactions can be used to submit data to a server or to request

a server perform a calculation and return the result.

 XFA works with other XML grammars.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 33

3.4.2 Major Components of an XFA Form

XFA distinguishes between template and data. The template defines presentation,

calculations and interaction rules. Content is customer's application data. Though

they are often packaged together, template and content are separate entities.

1. XFA Template

XFA template is the XFA subelement that describes the appearance and interactive

characteristics of an interactive form. It was designed from the ground up to be an

XML-based template language.

XFA follows a declarative model in which elements in an XFA template describe the

components of the form. That is, XFA template does not include procedures that draw

the objects on a form.

Most people are consumers of forms, rather than producers or designers of forms. Yet,

in order for a software product to utilize forms, someone first had to expend a degree

of thought and work towards the act of creating a form. This specification is focused

on the task of form creation, and it is important to distinguish between the ―form‖ that

the creator designs, and the ―form‖ that a consumer handles — they both represent the

same form, but at two very different stages in the form's life-cycle. XFA clearly

distinguishes between the two stages via the following terminology:

 Form — what a person filling out a form works with, which is given life by

an XFA processing application such as Acrobat.

 Template — what the form designer creates, which represents the potential

for a form. A template is a collection of related subforms and processing rules.

Templates are containers of content. XFA Template Specification defines 4 types of

Containers.

 Draw – Container of static content. Eg- Lines,Rectangles.

 Field – Container of dynamic Content.

 Area – Static container of other containers.

 Subform – Dynamic container of other containers.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 34

2. XFA Data

Typically, XFA variable content is the customer's XML data, matching the customer's

schema. Data could also come from a database, an HTTP POST response, a web

service interaction, default data supplied by the template or other source. Often, form

data elements are plain text, but may also include rich text and graphics.

XFA defines a data value to be an XFA name/value pair, where the value is plain or

rich text, or a graphic. Data values may contain nested data values. An XFA name is a

string suitable for identifying an object. A valid XFA name must be a valid XML

name, with the additional restriction that it must not contain a colon (:) character.

XFA also defines a data group: the provider of structure in the data. Data groups may

contain data values and other data groups. As stated above, the data is typically

structured according to the customer's schema; data values and data groups are

represented as abstract structures, inferred from the customer's data. The abstract

structure helps the XFA processing application create an XFA form that reflects the

structure and content of the data. This process (called data binding).

3.5 Comparison of XFA and XFDL

3.5.1 Major Elements in XFA and XFDL

Functionality

XFA

XFDL

Root Element XFA XFDL

Workflow Template PAGE

Subsectioning in form Subform, Area PANE

Placing Duplicate Element of form at

oneplace

Prototype Element XXX

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 35

3.5.2 Formatting Elements and available options

Purpose

XFA

XFDL

Determines whether

the item should be

shown to the user or

made invisible.

Presence option

 Set either visible or Hidden

<visible>on/off</visible>

Display specified size

of items at a particular

location

Options available for item containers

are-

X= ― ‖ Y=― ‖ W=― ‖ H=― ‖ MinW=― ‖

MinH=― ‖ MaxW=― ‖ MaxH=― ‖

<itemlocation>

 <x>…</x>

 <y>…</y>

 <width>…</width>

 <height>…</height>

</itemlocation>

Determines if an item

is read only or

read/write

Lock attribute

Set it to –

0- item is not locked from changes

1- 1- item is locked from changes

<readonly>on/off</readonly>

Defines the typeface,

point size, and bold,

italics, or underline for

an item or label

Fon<Font Typeface= “font

name”

Size= “font size” Weight=

“normal/Bold” Posture=

“Normal/Italic”

Underline="0|1|2"

UnderlinePeriod="All|Word">

<Fill>.font color..

</Fill>

<fontinfo / labelfontinfo>

<fontname>…</fontname>

<size>…</size>

<effect>bold/italic/normal

 </effect>

</ fontinfo / labelfontinfo >

<fontcolor>…</fontcolor>

An element that

describes the value of

a container object.

Value Value

An Element that

describes the

alignment of objects

Align Justify

Element that

Describes the

appearance of the

rectangular

surrounding border of

an object‘s enclosing

box

Border border

An element that

describes a color

<Color> or

 <Fill> <Color>…</Color>

<solid/></Fill>

Bgcolor, fontcolor,

labelbgcolor, labelfontcolor

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 36

Element that offsets an

object from an

enclosing nominal

extent

Margin

XXXXX

An Element that

Describes a pattern

<Pattern>

XXXXX

3.5.3 Graphical User Interface Elements

Purpose

XFA

XFDL

Creates a button item and

allows a task (similar to an

action) to be associated with

the button.

Button

Button

Defines a checkbox

CheckButton

check

Defines a combo box

XXXXX combobox

Creates list box ChoiceList

list

Defines the position,

window, and items for a

toolbar

XXXXX toolbar

Element that permits the

entry of date and/or time

data

DateTimeEdit XXXXX

Indicates the application to

select a default interface

object.

DefaultUI XXXXX

Element that provides the

means by which a form

designer can specify a third

party UI

ExObject XXXXX

Element that permits the

entry of numeric data

NumericEdit <format>

 <datatype>integer/float

 </datatype>

 </format>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 37

Specifies a popup menu XXXXX

Popup

Stores a digital signature Signature

signature

Element that permits the

entry of passwords

PasswordEdit secret

Defines a radio button CheckButton

radio

Allows to enter text TextEdit

textarea

Defines the text for help

associated with a given item

Desc help

Defines an edit control Field field

Defines a label to be used

with a control

Caption label

Defines a single entry in a

list, popup or combobox.

XXXXX cell

For positioning other items XXXXX Spacer

Element that allows to

present text in form

Text <field><readonly>

 on</readonly>

 </field>

3.5.4 Drawing Elements

Purpose

XFA

XFDL

Mechanism to draw arc, ellipse

or circles

<Arc Hand= ― ‖ Circular= ― ‖

RadiusX= ― ‖ RadiusY= ― ‖

StartAngle= ― ‖

SweepAngle= ― ‖>

</Arc>

XXXXX

Draws a Rectangle Rectangle XXXXX

Draws a line Line

line

Draw a table Table

table

Creates a rectangular area Box

box

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 38

3.5.5 Other useful Elements

Purpose XFA XFDL

An Element that Describes an

Event Handler

Event event

An Element that Describes

Calculation for a Field

Calculate <xforms:bind calculate=" '' id=" "

nodeset=" "></xforms:bind>

An element that Describes a

validation for a form object

Validate <xforms:bind relevant=" '' id=" "

nodeset=" "></xforms:bind>

An Element that describes a

digital signature operation

Signature Signature

Element specifies a rule for one

type of sequencing operation

Traverse XXXXX

An Element that describes an

arbitrary set of application

specific properties.

Extras XXXXX

An Element that Describes a

Link

Link <button> ……

 <type>link/replace</type>

</button>

An Element that describes a link

within the current form

Ref ref

Defines a task, such as print,

cancel, submit, and so on

XXXXX action

To carry binary information

using base-64 encoding

XXXXX data

Specifies the timing for an event

in an action item and whether it

should be repeated

XXXXX

delay

Defines tab order for items on a

page

Traversal next and previous

Identifies a data item containing

an image for a button or label.

Image

Allows to

specifes both

Image Data and

Image Link

Image allows to

specifies only

Image Data

Specifies a popup menu XXXXX popup

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 39

4. DESIGN

A number of modifications are made in XForms and XFDL. The new language has

the following features –

4.1 XML – Based Language

The WWW Forms technology started with HTML. HTML provided for the

presentation but there was no common format for the representation of data. Then

came XML which provided a common format for representation of data. Today, all

web technologies are being developed around XML. A major criteria for acceptance

of new languages is whether it would fit into the XML Workflows. XForms and

XFDL are XML based. So, we had to ensure that any modifications we make conform

with the XML syntax.

4.2 MVC Model

Our language follows a Model-View-Controller programming model as does XForms.

But there is nothing in XForms that directly maps to the controller layer. Some

consider the control part as the declarative calculations and validations present under

the model tag of XForms. Others may consider the dynamic presentation part as the

control because that helps us control the presentation. Still others consider XML

Events and XFroms Actions as the control. We are in favour of the first concept and

have separated the calculations and validations (which we consider the control) from

the model part into the control part.

Under the model tag are the schema and instance data for the form. We provide a

separate control tag which has 2 child elements - <calc> and <valid> for

calculations and validations respectively.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 40

Fig. 4.1 Architecture of the modified Language

4.3 Default Namespaces

The most commonly used namespaces in XForms + XFDL forms need not be

specified in our language. As the converter knows which tag belongs to which

namespace, it will be assigned the corresponding namespace.

The following namespaces are included into the file by default, others need to be

specified. Or if we want to change the prefixes for the existing namespaces,

namespace needs to be defined explicitly.

<XFDL xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xforms="http://www.w3.org/2002/xforms"

xmlns:custom="http://www.ibm.com/xmlns/prod/XFDL/Custom"

 xmlns:ev="http://www.w3.org/2001/xml-events"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

Namespaces

Form Document

XForms Model +

XML

Data +

Submission *

 Action *

Calc * Valid *

View Control +

Layout + Page +

Control +

XForms

Action *

XML

Schema *

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 41

4.4 Grouping of similar tags

As seen in the <valid> tag above, variables for which same property needs to be

specified are grouped into one <valid>. The same concept in applied throughout the

language. This reduces the length of of the code by a huge ratio. The effect can be

best seen in real-world forms which have thousands of lines of code. Having a look at

such a code reveals there is a large amount of repetition.

To remove this repetitive code, we eg- combine 4 <input> elements into one <input>

element and separate the features of each by commas. This leads to a constraint in our

language as compared to other XML based languages – the text cannot contain

commas. But this problem can be solved by including the comma(,) into the list of

prohibited characters for XML and like apostrophe is represented as &apos: , comma

can be represented as &com; (All prohibited characters begin with a ampersand(&)

and end with a semicolon(;)).

Example :

In the example below, <xforms:output> is enclosed within <xfdl:label> tag. As

specified in the earlier chapters, all XForms tags must be enclosed within XFDL tags

for the form to run on a XFDL processor. 4 outputs are specified. In our language,

these can be grouped to form one <output> tag.

The resultant reduction in length can be noticed by just having a look at the form.

Reducing the size of the code in important for a person who wants to type the form

code in a simple textpad or wordpad because tools may not be always available. This

will also result in minor reduction in the memory occupied by the form code though

this is not a significant factor.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 42

4.5 Default Presentation Options

It is tedious to write code in XFDL using XForms because for the form to run on a

XFDL processor, each XForms tag must be enclosed within a XFDL tag eg-

<xforms:input> may be enclosed within <field>,<check> or <combobox>. But in

most of the forms you see, you will find <xforms:input> enclosed within <field>. So,

we have taken <field> as the default enclosure for <xforms:input>. If <xforms:input>

needs to be enclosed within <combobox>, our language provides a displayType

attribute on each XForms item. If displayType attribute is not provided, default

enclosure is used.

<label sid="cnt">

 <xforms:output ref="/purchaseOrder/totals/rowcount">

 <xforms:label>No. of items = </xforms:label>

 </xforms:output>

</label>

<label sid="sub">

<xforms:output ref="/purchaseOrder/totals/subtotal">

 <xforms:label>Subtotal = </xforms:label>

 </xforms:output>

</label>

<label sid="tax">

 <xforms:output ref="/purchaseOrder/totals/tax">

 <xforms:label>Tax = </xforms:label>

 </xforms:output>

</label>

<label sid="total1">

 <xforms:output ref="/purchaseOrder/totals/total">

 <xforms:label>Total = </xforms:label>

 </xforms:output>

</label>

XForms Code

<output path="purchaseOrder/totals">

 <id> cnt,sub,tax,total1 </id>

<what> /rowcount,/subtotal,tax,total </what>

 <label>No. of items = ,Subtotal = ,

Tax = ,Total = </label>

</output>

New Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 43

This has been done for all the XForms form controls. The following table indicates

the default enclosures for each.

Form Control Possible Skins Default Skin

output label label

input field, check, combobox field

secret, textarea field field

select list, checkgroup list

select1 list, popup, combobox,

radiogroup, checkgroup

popup

range slider slider

upload button button

Submit, trigger button, action button

group, switch pane pane

repeat table table

Table 4.1 List of Default Skins

XForms Code New Code

<check sid="healthPlan_check">

 <xforms:input

ref="healthinfo/healthPlan">

 </xforms:input>

 <label>Active Health Plan</label>

</check>

<input displayType="check"

id="healthPlan_check"

what="healthinfo/healthPlan"

label="Active Health Plan>

</input>

4.6 Seperation of Layout Information

Layout means the size and location of various items on the page being displayed. As

layout information deals with the presentation, it is specified in XFDL and XForms is

not concerned with it. In any real-world form coded using XFDL, you will find the

<itemlocation> tag placed within each and every item of the form.This tag is used to

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 44

specify the x and y coordinates at which the item must be placed on the form. It may

also specify the width and height of the item.

In the language that we propose, we separate this layout information from the actual

item specification. That is ,the properties of the items is specified separately and

layout separately.The itemlocation is also a property of the items, but as it is common

to each item, it can be specified at a separate place.

A XFDL form has a number of pages and therefore, each page will have seperate

layout. The information must be specified in the new <layout> tag which is the

subelement of the <page> element. The example below shows how this can be done.

Notice the reduction in size of the code. This is even more for larger forms.

<page sid="page1">

<global sid="global"/>

<label sid="persInfo_label">

 <value>Personal Information</value>

 <itemlocation>

 <x>20</x>

 <y>30</y>

 </itemlocation>

</label>

<label sid="name">

 <value>Name : </value>

 <itemlocation>

 <x>20</x>

 <y>60</y>

 </itemlocation>

</label>

<label sid="name_out">

 <xforms:output ref="info/name">

 </xforms:output>

 <itemlocation>

 <x>60</x>

 <y>60</y>

 </itemlocation>

</label>

</page>

XForms Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 45

4.7 Modifications in the <table>

Most forms that display or input similar information for more than entity, use tables.

Eg- A shop has several items, each having a name, price and may have some discount

on it. Suppose, we want to represent this information for 10 items, then it is best done

using tables.

XForms supports dynamic presentation through the repeat tag, which helps in

creating a table whose rows can be dynamically increased or decreased. So, most of

the tables seen in real-world forms have 2 buttons at the bottom, one for inserting

rows into the table and other for deleting them.

But, XFDL just provides the table tag, and no explicit support for the header row of

the table and buttons at the bottom. Even HTML tables have a header row but in

XFDL, we have to create the header row using separate label tags as can be seen in

the example below.

Example :

For creating the following table, the original code and the new code are shown –

<page id="page1">

 <label>

 <id> persInfo_label, name </id>

 <value>Personal Information, Name :</value>

 </label>

 <output id="name_out" what="info/name"/>

 <layout>

 <items>

 <id> persInfo_label, name, name_out

 </id>

 <coord> (20,30), (20,60), (60,60)

 </coord>

 </items>

 </layout>

</page>

New Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 46

There are 2 possible syntaxes that we propose for <table> :

 First code below has labels for each input and output within the table. These

labels can be used to provide the header row for the table but remember, these

labels appear only once in the table and not as many times as the input or

output appears.

 The second code shows an explicit heading tag.

XForms Code

<label sid="label1">

<value>Number</value>

</label>

<label sid="label2">

<value>Name</value>

</label>

<label sid="label3">

<value>Price</value>

</label>

<label sid="label4">

<value>Discount</value>

</label>

<label sid="label5">

<value>Discounted Price</value>

</label>

<table sid="itemtable">

<xforms:repeat id="repeat1"

nodeset="/purchaseOrder/items/item">

<field sid="field1">

<xforms:input ref="units">

<xforms:hint> The units of this item

</xforms:hint>

</xforms:input>

</field>

<field sid="field3">

<xforms:input ref="price">

 <xforms:hint>The price of this item

 </xforms:hint>

 </xforms:input>

</field>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 47

<table>

 <repeat what="purchaseOrder/items/item" id="repeat1">

 <input>

 <id>unts,nm,pr </id>

 <label>Number, Name, Price </label>

 <what>/uints,/name,/price</what>

 <hint>The units of this item,

 The name of this item,

 The price of this item </hint>

 </input>

 <output>

 <id>discnt,tot</id>

 <label>Discount, Discounted Price </label>

 <what>/discount,/total </what>

 </output>

 </repeat>

 <trigger>

 <id> insert1, delete1 </id>

 <label> Add item, Delete item </label>

 <type> insert, delete </type>

</trigger>

</table>

<label sid="output1">

<xforms:output ref="discount">

</xforms:output>

</label>

<label sid="output2">

<xforms:output ref="total">

</xforms:output>

</label>

</xforms:repeat>

</table>

<button sid="insert">

 <xforms:trigger id="insert1">

 <xforms:label>Add item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:insert at="index('repeat1')"

nodeset="/purchaseOrder/items/item"

position="after">

</xforms:insert>

 </xforms:action>

 </xforms:trigger>

</button>

<button sid="delete">

 <xforms:trigger id="delete1">

 <xforms:label>Delete item</xforms:label>

 <xforms:action ev:event="DOMActivate">

<xforms:delete at="index('repeat1')"

nodeset="/purchaseOrder/items/item">

</xforms:delete>

 </xforms:action>

 </xforms:trigger>

</button>

First Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 48

Both the tables contain a trigger tag for the insert and delete buttons at the end of the

table. Instead of creating separate buttons, we have included this within the table. The

<type> element specifies the type of the button – whether it is for insertion or

deletion. These types are introduced by us and are not build into XFDL.

4.8 The <select> clause

There are 2 clauses in XForms – select and select1, to specify selection of one or

more and one item respectively. We have combined these into one clause that is

<select> with a type attribute whose possible values are one or many. The default

value for the type attribute is many that means, the <select> without the type attribute

is equivalent to XForms select.

Secondly,XFroms provides 2 versions of select – one contains the itemset element

that refers to the instance data and the in the other, items are explicitly specified.

Following examples show the new code for each of these.

<table>

<heading>

 <id>no1,name1,price1,dis1,disprice1</id>

<value>Number,Name,Price,Discount,Discounted

Price</value>

 </heading>

 <repeat what="purchaseOrder/items/item" id="repeat1">

 <input>

 <id>unts,nm,pr</id>

 <what>/uints,/name,/price</what>

 <hint>The units of this item,

 The name of this item,

 The price of this item

 </hint>

 </input>

 <output>

 <id>discnt,tot</id>

 <what>/discount,/total</what>

 </output>

 </repeat>

 <trigger>

 <id> insert1, delete1 </id>

 <label> Add item, Delete item </label>

 <type> insert, delete </type>

 </trigger>

</table>

Second Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 49

Example (1) :

<checkgroup sid="currency">

<xforms:select ref="currency" appearance="full">

<xforms:label >Select the currencies you accept:

</xforms:label>

<xforms:item>

<xforms:label>US Dollars </xforms:label>

<xforms:value> USD </xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>CDN Dollars </xforms:label>

<xforms:value> CDN </xforms:value>

</xforms:item>

<xforms:item>

<xforms:label>Euro</xforms:label>

<xforms:value>Euro</xforms:value>

</xforms:item>

</xforms:select>

</checkgroup>

XForms Code

<select id=”currency” displayType =”checkgroup”

what=“currency”>

<label> Select the currencies you accept:</label>

<items>

<label>US Dollars, CDN Dollars, Euro </label>

 <value> USD, CDN, Euro </value>

</items>

</select>

New Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 50

Example (2) :

4.9 The use attribute

A reduction in size of the form can be provided by defining something common,

which can be reused again and again. This helps the developer as he need not repeat

the same things again and again. The use attribute suffixes to do this.

The new attribute called use helps us to use a preexisting feature. We can specify

some common features of the form in the globals section of the form or the globals

section of the page, which can be inherited using the use attribute. Eg – A action may

have to be repeated again and again, so we define it in the globals section and

whenever it is required, we can refer to it through the use attribute.

<select id=”currency” what="currency">

<label>Select the currencies you accept: </label>

<items what="instance(‟currency‟)/choice">

<label what="@show"> </label>

<value what="instance(„currency‟)/choice">

</value>

</items>

</select>

New Code

<checkgroup sid="currency">

<xforms:select ref="currency" appearance="full">

<xforms:label>Select the currencies you accept:

</xforms:label>

<xforms:itemset

nodeset="instance(‟currency‟)/choice">

<xforms:label ref="@show"> </xforms:label>

<xforms:value ref="."> </xforms:value>

</xforms:itemset>

</xforms:select>

</checkgroup>

XForms Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 51

The globals and pageglobals are the only 2 places where we can define the common

features, not anywhere else in the form. Also,this can be done only for inbuilt XFDL

tags and options. That is, we cannot define a new tag. New tag concept is already

provided in XFDL through custom namespaces.

The common feature is given an id which is then refered to by the use attribute. The

new feature forms a kind of prototype. The options in this prototype can be

overridden by specifying new options at the place of reference.Eg- if the labels have

the same fontname and size, we can define the fontinfo in the globals section. But

different labels may have different effects (some may be bold and others italic), so

this feature can be overridden.

Example :

In the example above, we define a prototype font with the id of ―fnt‖. Once defined in

the globals section, these font characterstics can be used anywhere in the form by just

referring to the id fnt. We can define a new font prototype in terms of the first, as

shown above.

<global>
<fontinfo id="fnt">

 <fontname>Arial</fontname>
 <size>8<size>
 <effect>italic</effect>
 </fontinfo>

 <fontinfo id="fnt1" use=”fnt”>
 <effect>bold</effect>
 </fontinfo>
 </fontinfo>

</global>

<output id= "LABEL1">
 <label>Client Information</label>
 <fontinfo use="fnt1">
 <size>10</size>
 </fontinfo>
</output>

New Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 52

As mentioned earlier, some properties can be overridden by specifying a new property

at the place of use. In the example above, the fnt specifies a font size of 8 which is

inherited by fnt1. But output field specifies font size of 8 which will override the font

size mentioned in the prototype.

4.10 Additional Functions

XFDL provides a number of function. We added some new ones :

(I) String Functions

concat(str1, str2) – To concatenate 2 strings.

str(number) – converts a number to a string.

(II) Math Functions

 max(number1, number2, ….) – Maximum of a set of numbers.

 min(number1, number2, ….) – Minimum of a set of numbers.

 avg(number1, number2, …) – Average of a set of numbers.

 count(number1, number2, …) – Number of elements in a set.

 atan2(numerator,denominator) – the arc tangent of quotient of 2 given

numbers.

(III) Financial Functions – XFDL being a language for E-commerce forms must

have some inbuilt financial functions.

Functions for simple interest

 interest(principle, rate, period)

 principle(interest,rate,period)

 rate(interest,principle,period)

 period(interest,principle,rate)

Functions for compound interest

 cinterest(principle, rate, period)

 cprinciple(interest,rate,period)

 crate(interest,principle,period)

 cperiod(interest,principle,rate)

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 53

5. IMPLEMENTATION

5.1 XML Parsers

A parser is a piece of program that takes a physical representation of some data and

converts it into an in-memory form for the program as a whole to use. An XML

Parser is a parser that is designed to read XML and create a way for programs to use

XML. The main types of parsers are : SAX, DOM and pull.

1. SAX

SAX stands for Simple API for XML. Its main characteristic is that as it reads each

unit of XML, it creates an event that the calling program can use. This allows the

calling program to ignore the bits it doesn't care about, and just keep or use what it

likes. The disadvantage is that the calling program must keep track of everything it

might ever need.

2. DOM

DOM (Document Object Model) is an official recommendation of the W3C. It differs

from SAX in that it builds the entire XML document representation in memory

and then hands the calling program the whole chunk of memory. DOM can be very

memory intensive as the entire tree has to be stored in the memory.

line with the philosophy of the local language. Examples in Java include TinyTree

(used only in Saxon), JDOM, DOM4J and XOM.

3. Pull Parser

SAX is a push parser, since it pushes events out to the calling application. Pull

parsers, on the other hand, sit and wait for the application to come calling. They ask

for the next available event, and the application basically loops until it runs out of

XML.

It is designed to be used with large data sources, and unlike SAX which returns every

event, the pull parser can choose to skip events (or in some implementations, whole

sections of the document) that it is not interested in. The adapters are designed to

work with both the SAX and the pull parser interfaces.

http://www.stylusstudio.com/xml/parser.html#sax
http://www.stylusstudio.com/xml/parser.html#dom
http://www.stylusstudio.com/xml/parser.html#pull
http://www.stylusstudio.com/api/jdom10/overview-summary.htm

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 54

SAX

DOM

Origin Previously result of xml-dev

community, started as Java

only interface. Now maintained

by the SourceForge organization.

W3C Organization

recommendation.

DOM is not an API.

Interface type

Primarily a java interface only.

Now interfaces available on most

programming languages

Language and platform –

neutral recommendation.

Resource

consumption

Limited impact

High impact on memory and

processing resource as the

DOM create in-memory

representation of the XML

document

How it

operates

Event based interface. Events

are triggered where the SAX

parser encounters an XML tag.

Parses the XML document first,

and then creates an in-memory

representation of XML file as a

nodes tree.

Document

handling

Read-only parser Can manipulate nodes and add ,

delete nodes.

Examples

of Ideal

situations

for use

When memory/processing power

is restricted. When XML

documents size is very large and

no random access is required.

When Random access of XML

documents is required. For

manipulation of in-memory

structure of an XML document.

When support for Namespaces

is desirable.

Table 5.1 A Comparison of the SAX and DOM Parsers

Another way that parsers are classified is - Validating versus non-validating

parsers.Validating parsers validate XML documents as they parse them, while non-

validating parsers don't. In other words, if an XML document is well-formed, a non-

validating parser doesn't care if that document follows the rules defined in a DTD or

schema, or even if there are any rules for that document at all.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 55

There are 2 reasons that we use a non-validating parser :

 Speed and efficiency. It takes a significant amount of effort for an XML parser to

read a DTD or schema, then set up a rules engine that makes sure every element

and attribute in an XML document follows the rules.

 If you're sure that an XML document is valid (maybe it's generated from a

database query, for example), you may be able to get away with skipping

validation. Depending on how complicated the document rules are, this can save a

significant amount of time and memory.

How to use a parser

Generally, the following 3 steps are involved in programs using parsers :

1. Create a parser object

2. Point the parser object at your XML document

3. Process the results

5.2 The DOM Parser

When you parse an XML document with a DOM parser, you get a hierarchical data

structure (a DOM tree) that represents everything the parser found in the XML

document. You can then use functions of the DOM to manipulate the tree. You can

search for things in the tree, move branches around, add new branches, or delete parts

of the tree.

From a Java-language perspective, a Node is an interface. The Node is the base

datatype of the DOM; everything in a DOM tree is a Node of one type or another.

DOM also defines a number of subinterfaces to the Node interface:

 Element : Represents an XML element in the source document.

 Attr : Represents an attribute of an XML element.

 Text : The content of an element. This means that an element with text

contains text node children; the text of the element is not a property of the

element itself.

 Document : Represents the entire XML document. Exactly one Document

object exists for each XML document you parse.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 56

Additional node types are: Comment, ProcessingInstruction, and CDATASection,

which represents a CDATA section.

5.2.1 DOM APIs

JAXP, the Java API for XML Parsing specifies certain common tasks that the

DOM and SAX standards leave out. Specifically, creating parser objects is not

defined by the DOM or SAX standards.

The Document Object Model implementation is defined in the following packages:

 org.w3c.dom - Defines the DOM programming interfaces for XML (and,

optionally, HTML) documents, as specified by the W3C.

 javax.xml.parsers - Defines the DocumentBuilderFactory class and the

DocumentBuilder class, which returns an object that implements the W3C

Document interface. This package also defines the ParserConfigurationException

class for reporting errors.

We can use the DocumentBuilder newDocument() method to create an empty

Document that implements the org.w3c.dom.Document interface. Alternatively, we

can use one of the builder's parse methods to create a Document from existing XML

data.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 57

Fig. 5.1 The DOM Interface Hierarchy

5.2.2 Reading XML Data into a DOM

The following steps are involved in creating a DOM from an existing XML file :

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 58

1. Import the Required Classes

These lines import the JAXP APIs that we will be using :

import javax.xml.parsers.DocumentBuilder;

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.FactoryConfigurationError;

import javax.xml.parsers.ParserConfigurationException;

These lines import the exception details for exceptions that can be thrown when the

XML document is parsed. DOMExceptions are only thrown when traversing or

manipulating a DOM. Errors that occur during parsing are reported using a same

mechanism as SAX :

import org.xml.sax.SAXException;

import org.xml.sax.SAXParseException;

Finally, import the W3C definition for a DOM and DOM exceptions:

import org.w3c.dom.Document;

import org.w3c.dom.DOMException;

2. Declare the DOM

The org.w3c.dom.Document class is the W3C name for a Document Object Model

(DOM). Whether we parse an XML document or create one, a Document instance

will result.

static Document document;

3. Handle Errors

Next, we put in the error handling logic. The error-handling code for DOM and SAX

applications are very similar:

try {

} catch (SAXException sxe) {

// Error generated during parsing

Exception x = sxe;

if (sxe.getException() != null)

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 59

x = sxe.getException();

x.printStackTrace();

} catch (ParserConfigurationException pce) {

// Parser with specified options can't be built

pce.printStackTrace();

} catch (IOException ioe) {

// I/O error

ioe.printStackTrace();

}

4. Instantiate the Factory

Next, we add the code highlighted below to obtain an instance of a factory that can

give us a document builder:

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

5. Get a Parser and Parse the File

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.parse(new File(argv[0]));

Fig. 5.2 Steps in creating a DOM Tree

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 60

6. Setting DOM parser features

After getting the document object, we may want to configure the factory. The most

important methods are:

setValidating(boolean) - Sets the factory's validation property.

isValidating() - Returns true if the factory creates validating parsers, false otherwise.

setNamespaceAware(boolean) - Sets the factory's namespace-aware property.

isNamespaceAware() - Returns true if the factory creates namespace-aware parsers,

false otherwise.

setIgnoringElementContentWhitespace(boolean) - Sets the factory's whitespace

property. If this is true, the parsers created by the factory won't create nodes for the

ignorable whitespace in the document.

isIgnoringElementContentWhitespace() - Returns true if the factory creates parsers

that ignore whitespace, false otherwise.

5.2.3 Creating a new DOM

We are still going to create a document builder factory, but this time you're going to

tell it create a new DOM instead of parsing an existing XML document.

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

try {

DocumentBuilder builder = factory.newDocumentBuilder();

document = builder.newDocument();

In this code, you replaced the line that does the parsing with one that creates a DOM.

And since we are going to be working with Element objects, we add the statement to

import that class at the top of the program:

import org.w3c.dom.Document;

import org.w3c.dom.DOMException;

import org.w3c.dom.Element;

//create an element XFDL and its children

Element root = (Element) document.createElement(―XFDL");

document.appendChild(root);

root.appendChild(document.createTextNode("some"));

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 61

root.appendChild(document.createTextNode(" "));

root.appendChild(document.createTextNode("text"));

For more details on DOM methods, refer [20] .

5.3 The Conversion

The design chapter describes the modifications made to the XForms and XFDL. Our

implementation part includes the conversion of this code into the XFDL code. The

final form can be displayed in the IBM Workplace Forms Viewer which supports

XForms + XFDL.

For the conversion, we have used the Java Apache Xerces Parser which comes with

Java v1.4 and above. For lower versions of java, it can be integrated by downloading

it from http://xerces.apache.org.

It is a fully conforming XML Schema processor.

 Supports Simple API for XML (SAX) 2.0.2

 Supports Document Object Model (DOM) Level 3

 Support XML 1.0 and Namespaces in XML 1.1 Recommendation

The conversion involves the following steps :

1. Read in the modified code and create a DOM Tree from it, by using a DOM

Parser as decribed above.

2. This DOM Tree is subjected to the conversion code, which performs the

appropriate conversion. The result is a new DOM tree.

3. The final DOM tree is then serialized to get an XML document (actually a

XForms + XFDL document).

http://xerces.apache.org/

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 62

Fig. 5.3 Conversion Steps

5.4 Architecture of the converter

Fig. 5.4 Parts of the converter

As can be seen from the figure above, the converter consists of 4 major parts (coded

in java as 4 separate packages).

5.4.1 The main package

This package contains the beginning code for the converter that is, code for parsing

the XML file and create DOM tree. Also, it contains code to create the final XFDL

document. It contains the following classes.

Converter

model control view main

 DOM Tree

Modified

DOM Tree

Modified

Code File

(XML)

CONVERTER

(Java Code)

Serialize

XForms

+

XFDL

Code

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 63

(i) convert – parses our modified code file and creates the DOM tree. It instantiates

the createXFDL, createModelObject and createViewObject classes.

(ii) createXFDL – This class creates a new Document object, adds root element to

it, and prints this to a XFDL file. It also sets the namespace attributes on the root

element which specifies all the namespaces that can be used within the document.

(iii) separate - This class contains the code for converting the comma-seperated list

of parameters into individual elements and appends the value of path to relative

parameters. It is placed in the main class as it is a common class instantiated by

various other classes. The code present here helps us to separate the similar tags that

we did combine in our language

Fig. .5.5 The main package

(iv) prototype Cache – protoCache is used to store the prototype information.

Whenever a new prototype is encountered in the globals section of the form, an

instance of this class is created and it stores the prototype for later reference by

any of the form controls.

(v) layout Cache – layoutCache reads the layout information within the

<layout> tag and creates a cache that stores the ids and the corresponding location

and size in formation. Each form control can call this class to obtain its location

information.

5.4.2 The model package

This package contains the model part of the MVC paradigm. It contains the classes

shown in the figure below :

convert

createXFDL

separate

protoCache

layoutCache

main

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 64

(i) createModelObject – This class reads in the model elements and their properties

from the modified code file, and creates the model objects. It also instantiates the

createControlObject and createModelElement classes.

(ii) model – This class stores the model item properties namely model id, data file

name or the actual data and schema.

(iii) createModelElement – This class takes the model object as input, and creates

a model Element from it for storage in the new file. It instantiates the

createBindSubmissionElement class as in the final XFDL file, bind and submission

elements are part of the model itself.

(iv) createInstanceObject – A model can have various instances that represent the

data instance. Each instance may be identified by an id. In our language, within the

instance tag, we may give the file name or the actual data. This class reads the data

within the <data> tag and stores it within the instance object.

(v) instance – This class stores the instance properties like nodelist of the children

and the id.

(vi) createInstanceElement – This class creates the appropriate instance tag from

the instance object. It checks if the child node of instance element is a text node. If it

is, that means the user has given a file name which contains the instance, so it copies

the file name into the src attribute. If the child is an element node, it imports all the

children as such.

In the same way, there are 3 classes for handling the schema namely,

createSchemaObject, schema, createSchemaElement.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 65

Fig. 5.6 model and control packages

5.4.3 The control package

It contains the code for calculations, validations and submissions. All these

elements are converted to binds. It contains the following classes. The classes provide

the similar functionalities as the corresponding classes in the model package. That is,

createControlObject creates the control object that stores the control properties. As the

name signifies, createBindSubmissionElement creates the bind elements from calc

and valid elements and submission elements from the corresponding submission

elements.

The Encryption handler

One modification made is the option for submission of encrypted data. In the

encryption element, the user can mention encryption method to use. We use java

inbuilt functions for the encryption. Whenever the submit button is clicked and

encryption is set, the handler corresponding to the encryption is activated and data is

submitted in the encrypted form. The handler is of course provided on the submit

event.

5.4.4 The view package

This package contains a number of sub-packages for each specific presentation

element. Following figure shows the view package, its classes and its sub-packages.

View contains the following classes –

createControlObject

control

createCalcObject

calc

createValidObject

valid

createSubmissionObject

submission

createBindSubmissionElement

Control

model

createModelObject

model

createModelElement

createSchemaObject

schema

createSchemaElement

createInstanceObject

instance

createInstanceElement

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 66

se
le

ct

cr
ea

te
V

ie
w

O
b
je

ct

v
ie

w

cr
ea

te
P

ag
eO

b
je

ct

p
ag

e

cr
ea

te
P

ag
eE

le
m

en
t

cl
a
ss

es

cr
ea

te
S

u
b
m

it
O

b
je

ct

su
b
m

it

cr
ea

te
S

u
b
m

it
E

le
m

en
t

su
b

m
it

v
ie

w

in
p

u
t

cr
ea

te
In

p
u
tO

b
je

ct

in
p

u
t

cr
ea

te
In

p
u
tE

le
m

en
t

cr
ea

te
T

ri
g
g
er

O
b
je

ct

tr
ig

g
er

cr
ea

te
T

ri
g
g
er

E
le

m
en

t

cr
ea

te
O

u
tp

u
tO

b
je

ct

o
u
tp

u
t

cr
ea

te
O

u
tp

u
tE

le
m

en
t

cr
ea

te
U

p
lo

ad
O

b
je

ct

u
p
lo

ad

cr
ea

te
U

p
lo

ad
E

le
m

en
t

cr
ea

te
R

an
g
eO

b
je

ct

ra
n
g
e

cr
ea

te
R

an
g
eE

le
m

en
t

re
p

ea
t

sw
it

c
h

g
ro

u
p

a
ct

io
n

o
u

tp
u

t

tr
ig

g
er

u

p
lo

a
d

ra
n

g
e

F
ig

.
5
.7

 T
h

e
v
ie

w
 P

a
ck

a
g
e

la
b

el

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 67

 createViewObject

 view

 createPageObject

 page

 createPageElement

There is no view element present in the XFDL file. The packages input, output,

range, submit, trigger and upload have been specified in detail. The other packages

namely action, select, switch, repeat, group further contain sub-packages which are

depicted in separate package diagrams.

1. The select package – It contains the 3 files for creating the select element itself

and a package items for creating the item or itemset element from the items

element. Items further calls the label,value and copy classes.

Fig. 5.8 The select package

2. The pane package – An XFDL pane may contain xforms:switch and

xforms:group. The switch inturn contains case and its classes. Group module may

call any of the form controls.

select

createSelectObject

select

createSelectElement

classes

items

classes

createItemsObject

items

createItemsElement

value

createValueObject

value

createValueElement

createCopyObject

copy

createCopyElement

copy

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 68

Fig. 5.9 The pane package

3. The table package – The table package contains classes for drawing the table,

extracting the heading form the labels, creating the repeat construct and the default

buttons – add and delete.

pane

switch group

createPaneObject

pane

createPaneElement

classes

classes

createSwitchObject

switch

createSwitchElement

case

createCaseObject

case

createCaseElement

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 69

3. The action package – The action package contains the following classes –

createActionObject, action, createActionElement and the subpackages as

mentioned in the figure.

cr
ea

te
T

ab
le

O
b
je

ct

ta
b
le

cr
ea

te
T

ab
le

E
le

m
en

t

cl
a
ss

es

cr
ea

te
R

ep
ea

tO
b
je

ct

re
p
ea

t

cr
ea

te
R

ep
ea

tE
le

m
en

t

cl
a
ss

es

ta
b

le

cr
ea

te
H

ea
d
O

b
je

ct

h
ea

d

cr
ea

te
H

ea
d

E
le

m
en

t

cr
ea

te
A

d
d
O

b
je

ct

ad
d

cr
ea

te
A

d
d
E

le
m

en
t

cr
ea

te
D

el
et

eO
b
je

ct

d
el

et
e

cr
ea

te
D

el
et

eE
le

m
en

t

h
ea

d
in

g

a
d

d
B

u
tt

o
n

d

el
B

u
tt

o
n

F
ig

.
5
.1

0
 T

h
e

ta
b

le
 P

a
ck

a
g
e

re
p

ea
t

b
u

tt
o
n

s

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 70

cr
ea

te
A

ct
io

n
O

b
je

ct

ac
ti

o
n

cr
ea

te
A

ct
io

n
E

le
m

en
t

cl
a
ss

es

cr
ea

te
D

el
et

eO
b
je

ct

d
el

et
e

cr
ea

te
D

el
et

eE
le

m
en

t

d
el

et
e

a
ct

io
n

d
is

p
a
tc

h

cr
ea

te
D

is
p
at

ch
O

b
je

ct

d
is

p
at

ch

cr
ea

te
D

is
p
at

ch
E

le
m

en
t

cr
ea

te
R

ec
al

cu
la

te
O

b
je

ct

re
ca

lc
u

la
te

cr
ea

te
R

ec
al

cu
la

te
E

le
m

en
t

cr
ea

te
S

en
d
O

b
je

ct

se
n
d

cr
ea

te
S

en
d
E

le
m

en
t

cr
ea

te
R

es
et

O
b
je

ct

re
se

t

cr
ea

te
R

es
et

E
le

m
en

t

cr
ea

te
R

ef
re

sh
O

b
je

ct

re
fr

es
h

cr
ea

te
R

ef
re

sh
E

le
m

en
t

se
n

d

re
ca

lc
u

la
te

re
se

t

re
fr

es
h

F
ig

.
5
.1

1
 T

h
e

a
ct

io
n

 P
a
ck

a
g
e

cr
ea

te
T

o
g
g
le

O
b
je

ct

to
g
g
le

cr
ea

te
T

o
g
g
le

E
le

m
en

t

to
g
g
le

in
se

r
t

cr
ea

te
In

se
rt

O
b
je

ct

in
se

rt

cr
ea

te
In

se
rt

E
le

m
en

t

cr
ea

te
M

es
sa

g
eO

b
je

ct

m
es

sa
g
e

cr
ea

te
M

es
sa

g
eE

le
m

en
t

m
es

sa
g
e

re
v
a
li

d
a
te

cr
ea

te
R

ev
al

id
at

eO
b
je

ct

re
v
al

id
at

e

cr
ea

te
R

ev
al

id
at

eE
le

m
en

t

lo
a
d

cr
ea

te
L

o
ad

O
b
je

ct

lo
ad

cr
ea

te
L

o
ad

E
le

m
en

t

re
b

u
il

d

cr
ea

te
R

eB
u
il

d
O

b
je

ct

re
b
u
il

d

cr
ea

te
R

eb
u
il

d
E

le
m

en
t

se
tf

o
cu

s

cr
ea

te
S

et
fo

cu
sO

b
je

ct

se
tf

o
cu

s

cr
ea

te
S

et
fo

cu
sE

le
m

en
t

cr
ea

te
S

et
in

d
ex

O
b
je

ct

se
ti

n
d
ex

cr
ea

te
S

et
in

d
ex

E
le

m
en

t

se
ti

n
d

ex

se
tv

a
lu

e

cr
ea

te
S

et
v
al

u
eO

b
je

ct

se
tv

al
u
e

cr
ea

te
S

et
v
lu

eE
le

m
en

t

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 71

6. RESULTS

6.1 SAMPLE FORM (HealthDemoInsurance FORM)

The form is taken from the samples forms provided with the IBM Viewer v2.6. It

consists of 2 pages shown below. This is a very complicated form and has been

simplified using our design.The original code was about 48 pages in length and the

modified code is 28 pages, a reduction of about 42%. We present here, only the

code for page 1(case 1) of the form as given below.

PAGE 1 (View 1)

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 72

XForms + XFDL Form

<?xml version="1.0" encoding="UTF-8"?>

<XFDL xmlns:custom=”http://www.ibm.com/xmlns/prod/XFDL/Custom”

xmlns:ev="http://www.w3.org/2001/xml-events"

xmlns:xfdl="http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xforms="http://www.w3.org/2002/xforms"

xmlns="http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<globalpage sid="global">

 <global sid="global">

 <xformsmodels>

 <xforms:model>

 <xforms:instance id="INSTANCE1" xmlns="">

 <claimRequest>

 <client>

 <clientNum></clientNum>

 <id></id>

 <fname></fname>

 <mname></mname>

 <lname></lname>

 <addressInfo>

 <street></street>

 <city></city>

 <state></state>

 <code></code>

 </addressInfo>

 </client>

 <dependents>

 <dependent>

 <depID></depID>

 <fname></fname>

 <lname></lname>

 </dependent>

 <dependent>

 <depID></depID>

 <fname></fname>

 <lname></lname>

 </dependent>

 </dependents>

 <claim>

 <drug>

 <drugClaim>no</drugClaim>

 <drugItem>

 <id></id>

 <date></date>

 <amount>0</amount>

 </drugItem>

 <drugItem>

 <id></id>

 <date></date>

 <amount>0</amount>

 </drugItem>

 <totalAmount></totalAmount>

 </drug>

 <services>

 <serviceClaim>no</serviceClaim>

 <serviceItem>

http://www.ibm.com/xmlns/prod/XFDL/Custom

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 73

 <id></id>

 <date></date>

 <doctor></doctor>

 <amount>0</amount>

 </serviceItem>

 <serviceItem>

 <id></id>

 <date></date>

 <doctor></doctor>

 <amount>0</amount>

 </serviceItem>

 <totalAmount></totalAmount>

 </services>

 <totalClaim></totalClaim>

 </claim>

 <claimReceipt></claimReceipt>

 </claimRequest>

 </xforms:instance>

 <xforms:instance id="prepop" xmlns="">

 <states>

 <state abbrev="AL">Alabama</state>

 <state abbrev="AK">Alaska</state>

 <state abbrev="AS">American Samoa</state>

 <state abbrev="AA">APO FPO Americas</state>

 <state abbrev="AE">APO FPO Can Euro</state>

 <state abbrev="AP">APO FPO Pacific</state>

 <state abbrev="AZ">Arizona</state>

 <state abbrev="IA">Iowa</state>

 <state abbrev="KS">Kansas</state>

 </states>

 </xforms:instance>

 <xforms:instance id="calculations" xmlns="">

 <data>

 <dependentAddBtn></dependentAddBtn>

 <drugAddBtn></drugAddBtn>

 <servicesAddBtn></servicesAddBtn>

 </data>

 </xforms:instance>

<xforms:bind nodeset="dependents/dependent[position()=last()]"

relevant="false()"> </xforms:bind>

<xforms:bind nodeset="claim/drug/drugItem[position()=last()]"

relevant="false()"> </xforms:bind>

<xforms:bind nodeset="claim/services/serviceItem[position()=last()]"

relevant="false()"> </xforms:bind>

<xforms:bind calculate="sum(instance('INSTANCE1')/claim/services/

serviceItem/amount)" nodeset="instance('INSTANCE1')/claim/services/

totalAmount"> </xforms:bind>

<xforms:bind calculate="sum(instance('INSTANCE1')/claim/drug/drugItem

/amount)" nodeset="instance('INSTANCE1')/claim/drug/totalAmount">

</xforms:bind>

<xforms:bind calculate="instance('INSTANCE1')/claim/drug/totalAmount

+ instance('INSTANCE1')/claim/services/totalAmount" nodeset="instance

('INSTANCE1')/claim/totalClaim"> </xforms:bind>

<xforms:bind id="dependentAddBtnRelevant" nodeset="instance

('calculations')/dependentAddBtn" relevant="(count(instance

('INSTANCE1')/dependents/dependent) < 11)"> </xforms:bind>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 74

<xforms:bind id="drugAddBtnRelevant"

nodeset="instance('calculations') /drugAddBtn"

relevant="(count(instance('INSTANCE1')/claim/drug/ drugItem) <

9)"> </xforms:bind>

<xforms:bind id="serviceAddBtnRelevant" nodeset="instance

('calculations')/servicesAddBtn"

relevant="(count(instance('INSTANCE1') /claim/services/serviceItem)

< 9)"> </xforms:bind>

<xforms:bind calculate="if(count(instance('INSTANCE1')/claim/drug

/drugItem) < 3 and instance('INSTANCE1')/claim/drug/drugItem/id =

'', 'no', 'yes')" id="drugIdChange" nodeset="instance('INSTANCE1')/

claim/drug/drugClaim"> </xforms:bind>

<xforms:submission action="file:data.xml" id="submit1" instance=

"INSTANCE1" method="put" ref="/claimRequest" replace="none">

</xforms:submission>

</xforms:model>

</xformsmodels>

 <custom:selectedCase>CASE1</custom:selectedCase>

 <custom:selectedClaim>CASE12</custom:selectedClaim>

 <custom:mainColor>#C1DBA7</custom:mainColor>

 <custom:notFocusedColor>#EFEFE5</custom:notFocusedColor>

 <custom:claimCase>CASE12</custom:claimCase>

</global>

</globalpage>

<page sid="wizardPage1">

 <global sid="global">

 <label>Wizard Page</label>

 </global>

<label sid="mainImage">

 <itemlocation>

 <x>0</x>

 <y>0</y>

 <width>156</width>

 <height>102</height>

 </itemlocation>

 <imagemode>resize</imagemode>

 <value></value>

 <justify>center</justify>

 <bgcolor>#FFFFFF</bgcolor>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>12</size>

 <effect>bold</effect>

 <effect>italic</effect>

 </fontinfo>

 

 </label>

 <box sid="toolbarBox1">

 <itemlocation>

 <x>139</x>

 <y>3</y>

 <width>653</width>

 <height>40</height>

 </itemlocation>

 <border>off</border>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 75

 <!-- changing this background color will change background

color on rest of form-->

 <bgcolor>#4F8FCF</bgcolor>

 </box>

 <box sid="toolbarBox2">

 <itemlocation>

 <x>139</x>

 <y>41</y>

 <width>653</width>

 <height>28</height>

 </itemlocation>

 <border>off</border>

 <!-- changing this background color will change background

color on rest of form-->

 <bgcolor>#F5CA87</bgcolor>

 </box>

 <box sid="toolbarBox3">

 <itemlocation>

 <x>0</x>

 <y>558</y>

 <width>792</width>

 <height>26</height>

 </itemlocation>

 <border>off</border>

 <bgcolor

compute="wizardPage1.toolbarBox2.bgcolor">#F5CA87</bgcolor>

 </box>

 <box sid="toolbarBox4">

 <itemlocation>

 <x>0</x>

 <y>570</y>

 <width>792</width>

 <height>25</height>

 </itemlocation>

 <border>off</border>

 <bgcolor

compute="wizardPage1.toolbarBox1.bgcolor">#4F8FCF</bgcolor>

 </box>

 <line sid="tradTopLine1">

 <itemlocation>

 <x>1</x>

 <y>503</y>

 <width>138</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <line sid="tradTopLine2">

 <itemlocation>

 <x>1</x>

 <y>508</y>

 <width>138</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <line sid="tradBottomLine1">

 <itemlocation>

 <x>1</x>

 <y>543</y>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 76

 <width>138</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <line sid="tradBottomLine2">

 <itemlocation>

 <x>1</x>

 <y>548</y>

 <width>138</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <line sid="titleLine1">

 <itemlocation>

 <x>0</x>

 <y>115</y>

 <width>792</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <line sid="titleLine2">

 <itemlocation>

 <x>0</x>

 <y>120</y>

 <width>792</width>

 <height>3</height>

 </itemlocation>

 <thickness>3</thickness>

 </line>

 <button sid="BUTTON1">

 <xforms:trigger>

 <xforms:label>Client Info</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:toggle case="CASE1"></xforms:toggle>

 </xforms:action>

 </xforms:trigger>

 <itemlocation>

 <x>6</x>

 <y>146</y>

 <width>136</width>

 <height>32</height>

 </itemlocation>

<bgcolor compute="global.global.custom:selectedCase ==

'CASE1' ? (global.global.custom:mainColor) :

(global.global.custom:notFocusedColor)">#EFEFE5</bgcolor>

 <border>off</border>

<custom:onActivated xfdl:compute="toggle(wizardPage1.

BUTTON1.activated, 'on', 'off') == '1'

 ? (set('global.global.custom:selectedCase', 'CASE1'))

 : ''"></custom:onActivated>

 <justify>left</justify>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>8</size>

 <effect>bold</effect>

 </fontinfo>

 <previous>next</previous>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 77

 </button>

 <button sid="BUTTON2">

 <xforms:trigger>

 <xforms:label>Dependent Info</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:toggle case="CASE2"></xforms:toggle>

 </xforms:action>

 </xforms:trigger>

 <itemlocation>

 <x>6</x>

 <y>193</y>

 <width>136</width>

 <height>32</height>

 </itemlocation>

<bgcolor compute="global.global.custom:selectedCase ==

'CASE2' ? (global.global.custom:mainColor) :

(global.global.custom:notFocusedColor)">#C1DBA7</bgcolor>

 <border>off</border>

<custom:onActivated xfdl:compute="toggle(wizardPage1

.BUTTON2.activated, 'on', 'off') == '1'

 ? (set('global.global.custom:selectedCase', 'CASE2'))

 : ''"></custom:onActivated>

 <justify>left</justify>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>8</size>

 <effect>bold</effect>

 </fontinfo>

 </button>

 <button sid="BUTTON3">

 <xforms:trigger>

 <xforms:label>Claim Details</xforms:label>

 <xforms:action ev:event="DOMActivate">

 <xforms:toggle case="CASE3"></xforms:toggle>

 </xforms:action>

 </xforms:trigger>

 <itemlocation>

 <x>6</x>

 <y>240</y>

 <width>136</width>

 <height>32</height>

 </itemlocation>

<bgcolor compute="global.global.custom:selectedCase ==

'CASE3' ? (global.global.custom:mainColor) :

(global.global.custom:notFocusedColor)">#C1DBA7</bgcolor>

 <border>off</border>

 <custom:onActivated xfdl:compute="toggle(wizardPage1

.BUTTON3.activated, 'on', 'off') == '1'

 ? (set('global.global.custom:selectedCase', 'CASE3'))

 : ''"></custom:onActivated>

 <justify>left</justify>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>8</size>

 <effect>bold</effect>

 </fontinfo>

 <next>menuTradForm</next>

 </button>

 <button sid="menuTradForm">

 <value>Traditional Form</value>

 <fontinfo>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 78

 <fontname>Arial</fontname>

 <size>8</size>

 <effect>bold</effect>

 <effect>italic</effect>

 </fontinfo>

 <border>off</border>

 <fontcolor>#000000</fontcolor>

<bgcolor

compute="(global.global.custom:notFocusedColor)">

#EFEFE5</bgcolor>

 <itemlocation>

 <x>6</x>

 <y>516</y>

 <width>127</width>

 <height>22</height>

 </itemlocation>

 <justify>left</justify>

 <type>pagedone</type>

 <url>#PAGE1.global</url>

 </button>

 <pane sid="PANE1">

 <xforms:switch ref="instance('INSTANCE1')">

 <xforms:case id="CASE1" selected="true">

 <label sid="LABEL1">

 <xforms:output>

 <xforms:label>Client Information</xforms:label>

 </xforms:output>

 <itemlocation>

 <x>253</x>

 <y>4</y>

 </itemlocation>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>10</size>

 <effect>bold</effect>

 </fontinfo>

 </label>

 <field sid="FIELD6">

 <xforms:input ref="client/clientNum">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>64</x>

 <y>75</y>

 <width>151</width>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <value></value>

 <label>Client Number</label>

 </field>

 <field sid="FIELD7">

 <xforms:input ref="client/id">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>219</x>

 <y>75</y>

 <width>88</width>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 79

 <value></value>

 <label>ID</label>

 </field>

 <line sid="LINE1">

 <itemlocation>

 <x>56</x>

 <y>148</y>

 <width>536</width>

 </itemlocation>

 </line>

 <field sid="FIELD3">

 <xforms:input ref="client/lname">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>64</x>

 <y>179</y>

 <width>187</width>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <label>Last Name</label>

 </field>

 <field sid="FIELD1">

 <xforms:input ref="client/fname">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>328</x>

 <y>147</y>

 <width>187</width>

 <after>FIELD3</after>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <label>First Name</label>

 </field>

 <field sid="FIELD2">

 <xforms:input ref="client/mname">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>245</x>

 <y>50</y>

 <width>62</width>

 <after>FIELD1</after>

 <after>FIELD1</after>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <label>Initial</label>

 </field>

 <field sid="FIELD4">

 <xforms:input ref="client/addressInfo/street">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>62</x>

 <y>234</y>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <label>Street Address</label>

 </field>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 80

 <field sid="FIELD5">

 <xforms:input ref="client/addressInfo/city">

 <xforms:label></xforms:label>

 </xforms:input>

 <itemlocation>

 <x>312</x>

 <y>234</y>

 <width>196</width>

 </itemlocation>

 <scrollhoriz>wordwrap</scrollhoriz>

 <label>City</label>

 </field>

 <label sid="stateUSLabel1">

 <itemlocation>

 <x>65</x>

 <y>293</y>

 </itemlocation>

 <value>State</value>

 </label>

 <popup sid="stateUS1">

 <itemlocation>

 <x>65</x>

 <y>313</y>

 <width>243</width>

 </itemlocation>

 <size>

 <width>20</width>

 <height>1</height>

 </size>

 <label>Select State</label>

 <xforms:select1 ref="client/addressInfo/state">

 <xforms:label>Select State</xforms:label>

 <xforms:itemset nodeset="instance('prepop')

/state">

 <xforms:label></xforms:label>

 <xforms:value ref="@abbrev"></xforms:value>

 </xforms:itemset>

 </xforms:select1>

 </popup>

 <field sid="zipCode1">

 <format>

 <datatype>string</datatype>

 <constraints>

 <patterns>

 <pattern>(\d{5})</pattern>

 <pattern>(\d{5})-?(\d{4})</pattern>

 </patterns>

 </constraints>

 <presentation>

 <patternrefs>

 <patternref>$1</patternref>

 <patternref>$1-$2</patternref>

 </patternrefs>

 <casetype>upper</casetype>

 </presentation>

 </format>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 81

 <value></value>

 <itemlocation>

 <x>312</x>

 <y>293</y>

 <width>197</width>

 </itemlocation>

 <xforms:input ref="client/addressInfo/code">

 <xforms:label></xforms:label>

<xforms:help>Enter the ZIP Code in either

or #####-#### format</xforms:help>

 </xforms:input>

 <label>Zip Code</label>

 </field>

 <label sid="LABEL2">

 <itemlocation>

 <x>64</x>

 <y>44</y>

 </itemlocation>

<value>Please provide the following

information:</value>

 <fontinfo>

 <fontname>Arial</fontname>

 <size>8</size>

 <effect>bold</effect>

 </fontinfo>

 </label>

 <spacer sid="SPACER1">

 <itemlocation>

 <x>637</x>

 <y>379</y>

 </itemlocation>

 </spacer>

 </xforms:case>

New Code

<xforms>
 <model>
 <instance id="INSTANCE1">
 <claimRequest>
 <client>
 <clientNum></clientNum>
 <id></id>
 <fname></fname>
 <mname></mname>
 <lname></lname>
 <addressInfo>
 <street></street>
 <city></city>
 <state></state>
 <code></code>
 </addressInfo>
 </client>

 <dependents>
 <dependent>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 82

 <depID></depID>
 <fname></fname>
 <lname></lname>
 </dependent>
 <dependent>
 <depID></depID>
 <fname></fname>
 <lname></lname>
 </dependent>
 </dependents>

 <claim>
 <drug>
 <drugClaim>no</drugClaim>
 <drugItem>
 <id></id>
 <date></date>
 <amount>0</amount>
 </drugItem>
 <drugItem>
 <id></id>
 <date></date>
 <amount>0</amount>
 </drugItem>
 <totalAmount></totalAmount>
 </drug>

 <services>
 <serviceClaim>no</serviceClaim>
 <serviceItem>
 <id></id>
 <date></date>
 <doctor></doctor>
 <amount>0</amount>
 </serviceItem>
 <serviceItem>
 <id></id>
 <date></date>
 <doctor></doctor>
 <amount>0</amount>
 </serviceItem>
 <totalAmount></totalAmount>
 </services>
 <totalClaim></totalClaim>
 </claim>
 <claimReceipt></claimReceipt>
 </claimRequest>
 </instance>

 <instance id="prepop">
 <states>
 <state abbrev="AL">Alabama</state>
 <state abbrev="AK">Alaska</state>
 <state abbrev="AS">American Samoa</state>
 <state abbrev="AA">APO FPO Americas</state>
 <state abbrev="AE">APO FPO Can Euro</state>
 <state abbrev="AP">APO FPO Pacific</state>
 <state abbrev="AZ">Arizona</state>
 <state abbrev="IA">Iowa</state>
 <state abbrev="KS">Kansas</state>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 83

 </states>
 </instance>

 <instance id="calculations">
 <data>
 <dependentAddBtn></dependentAddBtn>
 <drugAddBtn></drugAddBtn>
 <servicesAddBtn></servicesAddBtn>
 </data>
 </instance>

 <submission id="submit1"
 how="put"
 where="file:data.xml
 instance="INSTANCE1"/>

 </model>

 <control>

 <calc path="instance('INSTANCE1')/claim">
 <var>/services/totalAmount, /drug/totalAmount, /totalAmount</var>
 <expr>sum(/services/serviceItem/amount),
 sum(/drug/drugItem/amount),
 services/totalAmount + drug/totalAmount
 </expr>
 </calc>

 <valid>
 <var>dependents/dependent[position() = last()],
 claim/drug/drugItem[position() = last()],
 claim/services/serviceItem[position() = last()]
 </var>
 <relevant>false(), false(), false()</relevant>
 </valid>

 <valid path = "instance('calculations')">
 <var>/dependentAddBtn, /drugAddBtn, /servicesAddBtn</var>

<relevant>(count(instance('INSTANCE1')/dependent) < 11,
(count(instance('INSTANCE1')/claim/drug/drugItem) < 9,
(count(instance('INSTANCE1')/claim/services/serviceItem)
< 9 </relevant>

 </valid>

 </control>

 <view>
 <global>

 <custom:selectedCase>CASE1</custom:selectedCase>
 <custom:selectedClaim>CASE12</custom:selectedClaim>
 <custom:mainColor>#C1DBA7</custom:mainColor>
 <custom:notFocusedColor>#EFEFE5</custom:notFocusedColor>
 <custom:claimCase>CASE12</custom:claimCase>

 <fontinfo id="fnt">
 <fontname>Arial</fontname>
 <size>8<size>
 <effect>italic</effect>
 </fontinfo>

 <fontinfo id="fnt1" use="fnt">

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 84

 <effect>bold</effect>
 </fontinfo>

 </global>

 <page id="wizardPage1" label="Wizard Page">
 <global>
 <fontinfo id="fnt2">
 <fontname>Helvetica</fontname>
 <effect>bold</effect>
 </fontinfo>
 </global>

 <image id="mainImage">
 <filename>PAGE1.Form_Branding_1</filename>
 <imagemode>resize</imagemode>
 <justify>center</justify>
 <fontinfo use="fnt">
 <size>12</size>
 </fontinfo>
 </image>

 <box border="off">
 <id>toolbarBox1,toolbarBox2,toolbarBox3,toolbarBox4</id>
 </box>

 <line thickness="3">

<id>tradTopLine1,tradTopLine2,tradBottomLine1,tradBottomLine2,titl
eLine1, titleLine2</id>

 </line>

 <button border="off">
 <fontinfo use="fnt1">
 </fontinfo>
 <trigger>
 <id>BUTTON1,BUTTON2,BUTTON3</id>
 <label>Client Info,Dependent Info,Claim Details</label>
 <action event="DOMActivate">
 <toggle case="CASE1,CASE2,CASE3"></toggle>
 </action>
 </trigger>
 </button>

 <bgcolor compute="custom:selectedCase == 'CASE1' ? custom:mainColor :
custom:notFocusedColor">#EFEFE5</bgcolor>

 <custom:onActivated compute="toggle(BUTTON1.activated, 'on', 'off') == '1' ?
(set('custom:selectedCase', 'CASE1')) : ''"></custom:onActivated>

 <bgcolor compute="custom:selectedCase == 'CASE2' ? custom:mainColor :
custom:notFocusedColor">#C1DBA7</bgcolor>

 <custom:onActivated compute="toggle(BUTTON2.activated, 'on', 'off') == '1'?
(set('custom:selectedCase', 'CASE2')): ''"></custom:onActivated>

 <bgcolor compute="custom:selectedCase == 'CASE3' ? custom:mainColor :
custom:notFocusedColor">#C1DBA7</bgcolor>

 <custom:onActivated compute="toggle(BUTTON3.activated, 'on', 'off') == '1'?
(set('custom:selectedCase', 'CASE3')): ''"></custom:onActivated>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 85

 <button id="menuTradForm">
 <value>Traditional Form</value>
 <fontinfo use="fnt">
 </fontinfo>
 <border>off</border>
 <fontcolor>#000000</fontcolor>
 <bgcolor>#EFEFE5</bgcolor>

 <type>pagedone</type>
 <url>global</url>
 </button>

 <pane id="PANE1">
 <switch what="instance('INSTANCE1')">

 <case id="CASE1" selected="true">

 <output id= "LABEL1">
 <label>Client Information</label>
 <fontinfo use="fnt1">
 <size>10</size>
 </fontinfo>
 </output>

 <input path="client" scrollhoriz = "wordwrap">
 <id>FIELD6,FIELD7,FIELD3,FIELD1,FIELD2</id>
 <what>/clientNum, /id, lname, fname, mname</what>
 <label>Client Number, ID, Last Name, First Name, Initial</label>
 </input>

 <input path="client/addressInfo" scrollhoriz = "wordwrap">
 <id>FIELD4,FIELD5</id>
 <what> /street, /city</what>
 <label>Street Address, City</label>
 </input>

 <line id="LINE1"></line>

 <label id="stateUSLabel1">
 <value>State</value>
 </label>

 <select type="one" id="stateUS1" what="client/addressInfo/state">
 <label>Select State</label>
 <items what="instance('prepop')/state">
 <value what="@abbrev"></value>
 </items>
 </select>

 <input what="client/addressInfo/code" id="zipCode1">
 <help>Enter the ZIP Code in either ##### or #####-#### format</help>

 <format>
 <datatype>string</datatype>

 <constraints>
 <patterns>
 <pattern>(\d{5})</pattern>
 <pattern>(\d{5})-?(\d{4})</pattern>
 </patterns>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 86

 </constraints>

 <presentation>
 <patternrefs>
 <patternref>$1</patternref>
 <patternref>$1-$2</patternref>
 </patternrefs>
 <casetype>upper</casetype>
 </presentation>

 </format>
 <label>Zip Code</label>
 </input>

 <label id="LABEL2">
 <value>Please provide the following information:</value>
 <fontinfo use="fnt1"/>
 </label>

 <spacer id="SPACER1"> </spacer>

 </case>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 87

7. CONCLUSION AND FUTURE WORK

XForms is an open standard developed in order to eliminate the need for scripting,

provide device independence etc. As it is an XML standard, it fits well into the XML

workflows. XForms is build on the lines of MVC architecture. The view part specifies

the purpose of the form control rather than how it is displayed. So, XForms requires a

Presentation language for display.

XFDL is the best presentation option currently available for XForms. XFA is another

new generation presentation language, but it doesnot support XForms. In this thesis,

certain important features and functions of XFA have been integrated into XFDL.

Also, some of XFDL and XForms tags have been simplified. A converter is designed

that converts this new XFDL code to the original. In the process, we have also

simplified some of XForms tags.

Separate layout tag is provided for specifying the layout information. It helps reduce

the size of the code by a large amount. Because in XFDL code, one finds the

itemlocation tag (specifying the coordinates and size of items), scattered all over the

form. Also, a use attribute is provided for specifying the common information at one

place and reusing it again and again. This corresponds to the prototype tag of XFA.

As future work, instead of converting the modified code to original XFDL code, an

engine can be designed that directly displays the form written using our code.

XHTML is another presentation language that must be improved on the lines of

XFDL and further based on our work. CSS (Cascading Stylesheets) is a language for

styling HTML and other forms. An XML version of this will ensure its better use with

XML based languages.

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 88

APPENDIX A

Mapping Tables

Following are the tables mapping the modified language with XForms + XFDL

languages :

General Features

Purpose

XForms + XFDL

Our Language

XML Based Yes Yes

Root

Element

<XFDL> <xforms>

Default

Namespaces

No, Namespaces must be explicitly defined

<XFDL xmlns=

"http://www.ibm.com/xmlns/prod/XFDL/7.0"

xmlns:xforms=

"http://www.w3.org/2002/xforms"

xmlns:custom="http://www.ibm.com/xmlns/pr

od/XFDL/Custom"

xmlns:ev="http://www.w3.org/2001/xml-

events"

xmlns:xsd=

"http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSch

ema-instance">

Yes, these namespaces are defined

by default.

Other

Namespaces

<XFDL xmlns:prefix=‖URI‖ ……….> <xforms xmlns:prefix=‖URI‖>

globalpage <globalpage sid="global">

XXX

Global

options

<global sid="global"> <global>

Identfier

sid (scope identifier) id (identifier)

Page

definition

<page> <page>

Seperation

of common

information

XXX <global>

 <common tag id=‖id‖>

 common info

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 89

reused

using use

 </common tag>

</global>

<common tag use=‖id‖/>

actions Xforms Actions Same

functions XForms + XPath + XFDL Functions Some additional functions namely

concat, str, max, min, atan2, avg,

count, and some financial functions

events XML Events Same

Custom

options

Allowed Allowed, namespace for custom

items is by default ―custom‖

Model and Control

Purpose

XForms + XFDL

Our Language

XForms

Model

<xformsmodels> (All models within this tag)

XXX

To specify

a data

model

<xforms: model id=‖modelId‖ schema

=‖filename‖ ………>

 <xforms:instance src=‖filename‖/>

 Or

 <xforms:instance>

 ….Instance data…

 </xforms:instance>

 <xforms:schema> Schema

 </xforms:schema>

 . …Control part …

</xforms:model>

<model id=‖modelId‖ schema

=‖filename‖>

 <data>filename

 Or

 ….Data…. </data>

 <schema> filename or

 xml schema </schema>

</model>

To specify

instance

<xforms:instance> <data>

control <xforms:model ….. events=‖ ‖

function=‖QName‖>

 <xforms:bind nodeset=‖Path‖

 calculate or property …. >

 </xforms:bind>

 <xforms:submission …. />

 <xforms:action> ……..

 </xforms:action>

</xforms:model>

<control events=‖ ―

function=‖QName‖>

<calc> calculations </calc>

<valid> validations </valid>

<submission ….. />

<action> …….. </action>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 90

calculations <xforms:bind nodeset=‖Path‖

calculate=‖expr‖/>

<xforms:bind 2 ….

Separate binds <xforms:bind>

<calc>

 <var> var1,var2 … </var>

 <expr> expr1,expr2...

 </expr>

</calc>

validations <xforms:bind nodeset=‖Path‖

relevant or another property …. =‖condition‖/>

<xforms:bind 2 ….

Separate binds <xforms:bind>

<valid>

 <var> var1,var2 … </var>

 <any property>

expr1,expr2...

 </any property>

</valid>

submission <xforms:submission id=‖id‖ action= ―file or

URI‖ ref=‖what to submit ― method= ―http

method (get|put|post)‖ ……. />

<submission id=‖id‖ where= ‖file

or URI‖ what=‖ ‖ how=‖method‖

………. />

Submission

of

encrypted

data

No, data submitted as xml is visible to all Yes,

<submission id=‖id‖ encryption=

‖encryption algo‖ ………. />

View (Form Controls)

Purpose

XForms + XFDL

Our Language

Input (field) <field sid=‖id‖>

<xforms:input ref=‖Path‖ ……. >

 <xforms:label>label

 </xforms:label>

 help|hint|alert|action

</xforms:input>

</field>

<input id=‖id‖ what=‖Path‖ …….

 help|hint|alert|action|label >

</input>

More than

one input

<field sid=‖id1‖>

<xforms:input ref=‖Path‖ ……. >

 <xforms:label>label

 </xforms:label>

 help|hint|alert|action

</xforms:input>

</field>

<field sid=‖id2‖ ….. same as above>

</field>

<input ……. >

 <id> id1,id2 </id>

 <what> Path1 </what>

 <help|hint|alert|action|label>

</input>

Default

Enclosure

No, eg- field must always skin input Yes

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 91

secret <field sid=‖id‖>

<xforms:secret ref=‖Path‖ …… >

 help|hint|alert|action|label

</xforms:secret>

</field>

<input type=‖secret‖ id=‖id‖

what=‖Path‖ …….

 help|hint|alert|action|label >

</input>

textarea <field sid=‖id‖>

<xforms:textarea ref=‖Path‖ …… > ……

</xforms:textarea>

</field>

<input type=‖textarea‖ id=‖id‖

what=‖Path‖ … > ……… </input>

output <label sid=‖id‖>

<xforms:output ref=‖Path‖ …… > ……

</xforms:output>

</label>

<output id=‖id‖ what=‖Path‖ … >

……… </output>

select

<checkgroup sid=‖id‖>

 <xforms:select ref=‖Path‖ …>

 <xforms:label>…

 </xforms:label>

 <xforms:item>...

 <xforms:label>…

 </xforms:label>

 <xforms:value>…

 <xforms:value>

 </xforms:item>

 <xforms:item>...

 <xforms:label>…

 </xforms:label>

 <xforms:value>…

 <xforms:value>

 </xforms:item>

 <xforms:select>

</checkgroup>

<select displayType=‖checkgroup‖

id=‖id‖ what=‖Path‖ >

 <label>… </label>

 <items>

 <label>label1,2,…

 </label>

 <value>value1,2…

 </value>

 </items>

</select>

select1 <select1 …>

<select type=‖one‖ …>

Set of items

within the

select clause

Itemset

items

Table

heading

As separate labels before the table tag Labels within the elements of the

table

Insert/delete

buttons

As separate buttons outside the table, have to

be explicitly linked to the table through the

ref attribute

Part of the table itself. Advantage :

need not be linked to the table

<trigger>

<id>but1,but2</id>

<type>add,delete</type>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 92

<label>……</label>

</trigger>

Seperation of

layout

information

No, coordinate information present in each

item

Yes, separate layout for each page

Location and

size of items

<itemlocation>

 <x> x-coordinate </x>

 <y> y-coordinate </y>

 <width> ….. </width>

 <height> …. </height>

 …………..

</itemlocation> within each item

<layout>

 <items>

 <id> id1, id2 ….</id>

 <coord>(x1,y1), (x2,y2) ,

 </coord>

 <width> … , … </width>

 <height> … , …</height>

 </items>

 …………

</layout> at the end of page

coordinates <x> x -coord </x>

<y> y-coord </y>

<coord> (x,y) </coord>

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 93

REFERENCES

XML

[1] Aaron Skonnard, Martin Gudgin ,―Essential XML Quick Reference, A

 Programmer‘s Reference to XML, XPath,XSLT, XML Schema‖, Addison –

 Wesley Publication

[2] Tim Bray, October, 2000, ―Extensible Markup Language (XML) 1.0 (Second

 Edition)‖, available at http://www.w3.org/TR/REC-xml .

[3] Tim Bray 1998, 2000, ―Namespaces in XML‖, available at

 http://www.w3.org/TR/REC-xml/-names.

[4] developerWorks, August 2002, "Introduction to XML".

[5] Erik T. Ray ,‖Learning XML, 2nd Edition‖, published by O'Reilly.

[6] Elliotte Rusty Harold and W. Scott Means, “XML in a Nutshell, 2nd Edition”,

 published by O'Reilly.

XForms

[7] Micah Dubinko, ―O'Reilly XForms Essentials‖

[8] ―XForms1.0, W3C Recommendation,14Oct,2003 ―,available at

 http://www.w3.org/TR/2003/REC-xforms-20031014/

[9] Steven Pemberton, ―XForms for HTML Authors‖, W3C Submission, 28

October 2003, available at www.w3.org/MarkUp/Forms/2003/xforms-for-

html-authors.html

[10] Steven Pemberton, ―XForms for HTML Authors‖, W3C Submission,2006-
08-08, available at http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-

authors-part2.html

[11] XForms - The Next Generation of Web Forms, W3C Submission, available at

www.w3.org/MarkUp/Forms/

[12] Richard Cardone, Danny Soroker, Alpana Tiwari, ―Using XForms to Simplify

 Web Programming.‖

[13] Steven Pemberton, ―XForms Quick Reference‖, W3C Submission, available at

www.w3.org/MarkUp/Forms/2006/xforms-qr.html

http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml/-names
http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.w3.org/MarkUp/Forms/2003/xforms-for-html-authors.html
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-authors-part2.html
http://www.w3.org/MarkUp/Forms/2006/xforms-for-html-authors-part2.html
http://www.w3.org/MarkUp/Forms/
http://www.cwi.nl/~steven/
http://www.w3.org/MarkUp/Forms/2006/xforms-qr.html

REDESIGN OF XFORMS + XFDL AND ENRICHING WITH FEATURES FROM XFA

Delhi College of Engineering 94

XFDL

[14] ―XFDL Specification‖, IBM Workplace Forms, version 2.7.

[15] J. Boyer, T. Bray, & M. Gordon, ―Extensible Forms Description Language

 (XFDL) 4.0‖, W3C Note, available at: http://www.w3.org/TR/NOTE-XFDL

[16] Barclay T. Blair and John Boyer , ―XFDL: Creating Electronic Commerce

 Transaction Records Using XML‖

[17] John Boyer, ―Enterprise-level Web Form Applications with XForms and

XFDL‖, IBM Corporation, November 2005

XFA

[18] XML Forms Architecture (XFA) Specification Version 2.4

[19] ―XFA-Template, Version 1.0‖, available at

http://www.w3.org/1999/05/XFA/xfa-template

[20] Mike Tardif (JetForm), ―XFA-FormCalc, Version 1.0‖, available at

 http://www.w3.org/1999/05/XFA/xfa-formcalc.html

Parser

[21] Eric Armstrong, ―Working with XML - The Java API for Xml Parsing (JAXP)

 Tutorial‖, [Version 1.1, Update 31 -- 21 Aug 2001]

[22] Xerces Parser, available at http://xerces.apache.org

[23] developerWorks, July 2003, "Understanding DOM".

[24] Brett McLaughlin , ―Java and XML, 2nd Edition‖.

[25] Doug Tidwell , ―XML programming in Java technology, Part 1,2,3‖.

[26] LeHors, Arnaud, ―Document Object Model (DOM) Level 2 Core

Specification‖, available at http://www.w3.org/TR/DOM-Level-2-Core/ ,1999

http://www.w3.org/TR/NOTE-XFDL
http://www.w3.org/1999/05/XFA/xfa-template
http://www.w3.org/1999/05/XFA/xfa-formcalc.html
http://xerces.apache.org/
http://www.w3.org/TR/DOM-Level-2-Core/

	Front Page
	kalpesh certi
	ACKNOWLEDGEMENT
	Table of Contents
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	Main Thesis

