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ABSTRACT

Tanner codes represent a broad class of graph-based coding schemes, including low-density parity-check (LDPC) and turbo codes. Whereas many different classes of LDPC and turbo codes have been proposed and studied in the past decade, very little work has been performed on the broader class of Tanner codes. In this major project work, a novel methodology for designing structured generalized LDPC (G-LDPC) codes is presented. The proposed design results in quasi-cyclic G-LDPC codes for which efficient encoding is feasible through shift-register-based circuits.  The structure imposed on the bipartite graphs, together with the choice of simple component codes, leads to a class of codes suitable for fast iterative decoding. 

A pragmatic approach to the construction of Generalized-LDPC codes is proposed. The approach is based on the substitution of check nodes in the protograph of a low-density parity-check code with stronger nodes based, for instance, on Hamming codes. Such a design approach, which we call LDPC code doping, leads to low-rate quasi-cyclic Generalized-LDPC codes with excellent performance in both the error floor and waterfall regions on the additive white Gaussian noise channel. 
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CHAPTER-1
INTRODUCTION


1.1 
BACKGROUND
In  1948,  Shannon  [12]  proved  that  for  any  channel  there exist families of block codes that achieve arbitrarily small probability  of error at any  communication  rate  up  to  the capacity of the channel. We will refer to such code families as “very good” codes. By “good” codes we mean code families that achieve  arbitrarily  small  probability  of  error  at  nonzero communication  rates  up  to  some  maximum  rate  that  may  be less than  the  capacity  of  the  given  channel.  By “bad” codes we mean code families that can only achieve arbitrarily small probability of error by decreasing the information rate to zero. (Bad codes are not necessarily useless for practical purposes.) By  “practical”  codes we  mean  code  families  which  can  be encoded  and  decoded  in  time  and  space  polynomial in  the block length. Shannon’s proof was non constructive and employed random codes for which there is no practical encoding or decoding algorithm.  Since 1948, it has been proved that there exist very good cyclic codes (non constructively) [11], and that very good codes with a short description in terms of permutations can  be  produced  [1]; and an explicit algebraic  construction of  very  good  codes  for  certain  channels  was  given  in  1982 [4]. But no practical decoding algorithm is known for any of these codes, and it is known that the general linear decoding problem (find the maximum-likelihood source vector in the equation , where is a generator matrix, is a  noise vector, and  is  the  received  vector)  is  NP- complete  [2]. 

Convolutional codes (which can be viewed as  block  codes  with memory) can approach  the  Shannon limit  as  their  constraint  length  increases  but  the  complexity of their best known decoding algorithms grows exponentially with  the  constraint  length.  For  a  long  time  a  generally  held view  was  that  for  practical  purposes  a  channel’s  effective capacity  was a rate “R0” which is smaller  than the  Shannon capacity, if convolutional codes were used; and many believed this conjecture applied to all codes, speculating that practical communication  beyond  R0 was impossible.  Forney proved that  there  do  exist  very  good  “concatenated” codes  that  are practical [6]; but the proof was also nonconstructive [11]. When it comes to practical, constructive codes, constructions have been demonstrated of codes based on concatenation that  are  good,  though  not  very  good,  but  most  known  practical  codes  are  asymptotically  bad  [11]. Goppa’s algebraic- geometry codes, reviewed in [13], appear to be both practical and  good  (with  practical  decoding  proven  possible  up  to  the Gilbert  bound), but  we believe that the  literature has not established  whether they  are very  good.  The  best  practical decoding algorithm that is known for these codes [5] appears to be  prohibitively  costly to  implement,  and algebraic- geometry  codes  do  not  appear  to  be  destined  for  practical use.


Thus  the  conventional  view  is  that  there are  few  known constructive codes that are good, fewer still that are practical, and none at all that are both practical and very good. It seems to  be  widely  believed  that  while almost  any  random  linear code is good, codes with structure that allows practical coding are likely to be bad [11], [3]. Battail expresses an alternative view, however, that “we can think of good codes, and we can decode  them”  [2].  This statement is supported by the results of the work.
Gallager’s low-density parity-check codes are defined in terms of a very  sparse  random  parity- check matrix  [7], [8], [10]. “MN  codes” are also defined in terms of  very sparse random matrices, and were first presented in [9]. (MN stands for MacKay–Neal; MacKay and Neal generalized MN codes to Gallager codes, then realized that  they  had rediscovered  Gallager’s work.) MN codes are unconventional in that redundancy can be incorporated in the transmitted codewords not only by using a generator matrix with transmitted blocklength greater than the source blocklength, but  also  by  using a source that is itself redundant. These code families both have two important properties.

First, because the codes are constructed from sparse matrices, they  have  simple  and  practical  decoding  algorithms  which work,  empirically,  at good  communication  rates.  Second,  we prove  that  in  spite  of  their  simple  construction  these  codes are “very good” that is, sequences of codes exist which, when optimally decoded, achieve information rates up to the Shannon limit of the binary-symmetric channel. We further prove that the same codes are in fact good for any ergodic symmetric channel. Our proof may be viewed as a semiconstructive proof of Shannon’s noisy channel coding theorem (semiconstructive in the sense that, while the proof still relies on an average over a set of codes, the set of codes in question is unusually small). It is indeed easy to think of good codes.

1.2
SHANNON'S THEOREMS
The year 1948 marks the birth of information theory. In that year,                  Claude E. Shannon published his epoch making paper [14] on the limits of reliable transmission of data over unreliable channels and methods on how to achieve these limits. Among other things, this paper formalized the concept of information, and established bounds for the maximum amount of information that can be transmitted over unreliable channels.

A communication channel is usually defined as a triple consisting of an input alphabet, an out-put alphabet, and for each pair (i, o) of input and output elements a transition probability p(i, o). Semantically, the transition probability is the probability that the symbol o is received given that I was transmitted over the channel. 

Given a communication channel, Shannon proved that there exists a number, called the capacity of the channel, such that reliable transmission is possible for rates arbitrarily close to the capacity, and reliable transmission is not possible for rates above capacity. 
The notion of capacity is defined purely in terms of information theory. As such it does not guarantee the existence of transmission schemes that achieve the capacity. In the same paper Shannon introduced the concept of codes as ensembles of vectors that are to be transmitted. In the following I will try to motivate the concept. It is clear that if the channel is such that even one input  element can be received in at least two possible ways (albeit with different probabilities), then reliable communication over that channel is not possible if only single elements are sent over the channel. This is the case even if multiple elements are sent that are not correlated (in a manner to be made precise). To achieve reliable communication, it is thus imperative to send input elements that are correlated. This leads to the concept of a code, defined as a (finite) set of vectors over the input alphabet. We assume that all the vectors have the same length, and call this length the block length of the code. If the number of vectors is K = 2k, then every vector can be described with k bits. If the length of the vectors is n, then in n times use of the channel k bits have been transmitted. We say then that the code has a rate of k/n bits per channel use, or k/n bpc. 
Suppose now that we send a codeword, and receive a vector over the output alphabet. How do we infer the vector that we sent? If the channel allows for errors, then there is no general way of telling which codeword was sent with absolute certainty. However, we can find the most likely codeword that was sent, in the sense that the probability that this codeword was sent given the observed vector is maximized. To see that we really can find such a codeword, simply list all the K codewords, and calculate the conditional probability for the individual codewords. Then find the vector or vectors that yield the maximum probability and return one of them. This decoder is called the maximum likelihood decoder. It is not perfect: it takes a lot of time (especially when the code is large) and it may err; but it is the best we can do. 
Shannon proved the existence of codes of rates arbitrarily close to capacity for which the probability of error of the maximum likelihood decoder goes to zero as the block length of the code goes to infinity. (In fact, Shannon proved that the decoding error of the maximum likelihood decoder goes to zero exponentially fast with the block length, but we will not discuss it here.)

Codes that approach capacity are very good from a communication point of view, but Shannon's theorems are non-constructive and don't give a clue on how to find such codes. More importantly, even if an oracle gave us sequences of codes that achieve capacity for a certain rate, it is not clear how to encode and decode them efficiently. Design of codes with efficient encoding and decoding algorithms which approach the capacity of the channel is the main topic of this note.

An example of two communication channels are: the binary erasure channel (BEC), and the binary symmetric channel (BSC). These channels are described in     Figure 1.1. In both cases the input alphabet is binary, and the elements of the input alphabet are called bits. In the case of the binary erasure channel the output alphabet consists of 0, 1, and an additional element denoted e and called erasure. Each bit is either transmitted correctly (with probability 1- p), or it is erased (with probability p). The capacity of this channel is 1 - p.
                  
[image: image1]       Figure 1.1: Two examples of channels: (a) The Binary Erasure Channel (BEC) with erasure probability p, and (b) The Binary Symmetric Channel (BSC) with error probability p
In the case of the BSC both the input and the output alphabet is F2. Each bit is either transmitted correctly with probability 1 - p, or it is flipped with probability p. This channel may seem simpler than the BEC at first sight, but in fact it is much more complicated. The complication arises since it is not clear which bits are flipped. (In the case of the BEC it is clear which bits are erased.) The capacity of this channel is 1 + p log2(p) + (1 - p) log2(1 - p). Maximum likelihood decoding for this channel is equivalent to finding, for a given vector of length n over F2, a codeword that has the smallest Hamming distance from the received word. It can be shown that maximum likelihood decoding for the BSC is NP-complete [15]. In contrast, for linear codes maximum likelihood decoding on the BEC is polynomial time, since it can be reduced to solving a system of equations (cf. [16])
1.2.1 Source Coding Theorem
The source coding theorem and the channel coding (channel capacity) theorem are the two main theorems stated by Shannon [14, 17]. The source coding theorem determines a bound on the level of compression of a given information source. The definitions for the different classes of entropies presented in previous sections, and particularly the definition of the source entropy, are applied to the analysis of this theorem. Information entropy has an intuitive interpretation [14, 18]. If the DMS emits a large number of symbols nf taken from an alphabet A = {x1, x2, . . . , xM} in the form of a sequence of nf symbols, symbol x1 will appear nfP(x1) times, symbol x2, nfP(x2) times, and symbol xM, nfP(xM) times. These sequences are known as typical sequences and are characterized by the probability
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Typical sequences are those with the maximum probability of being emitted by the information source. Non-typical sequences are those with very low probability of occurrence. This means that of the total of Mnf possible sequences that can be emitted from the information source with alphabet A = {x1, x2, . . . , xM}, only 2nf H(X) sequences have a significant probability of occurring. An error of magnitude ε is made by assuming that only 2nfH(X) sequences are transmitted instead of the total possible number of them. This error can be arbitrarily small if nf→∞. This is the essence of the data compression theorem.

This means that the source information can be transmitted using a significantly lower number of sequences than the total possible number of them. If only 2nfH(X) sequences are to be transmitted, and using a binary format of representing information, there will be nfH(X) bits needed for representing this information. Since sequences are constituted of symbols, there will be H(X) bits per symbol needed for a suitable representation of this information. This means that the source entropy is the amount of information per symbol of the source. For a DMS with independent symbols, it can be said that compression of the information provided by this source is possible only if the probability density function of this source is not uniform, that is, if the symbols of this source are not equally likely. As seen in previous sections, a source with M equally likely symbols fits the following conditions:
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The number of typical sequences for a DMS with equally likely symbols is equal to the maximum possible number of sequences that this source can emit. This has been a short introduction to the concept of data and information compression. However, the aim of this chapter is to introduce the main concepts of a technique called error-control coding, closely related to the Shannon channel coding (capacity) theorem. 

1.2.2 
Channel Capacity and Coding
Communication between a source and a destination happens by the sending of information from the former to the latter, through a medium called the communication channel. Communication channels are properly modelled by using the conditional probability matrix defined between the input and the output, which allows us to determine the reliability of the information arriving at the receiver. The important result provided by the Shannon capacity theorem is that it is possible to have an error-free (reliable) transmission through a noisy (unreliable) channel, by means of the use of a rather sophisticated coding technique, as long as the transmission rate is kept to a value less than or equal to the channel capacity. The bound imposed by this theorem is over the transmission rate of the communication, but not over the reliability of the communication.

In the following, transmission of sequences or blocks of n bits over a BSC is considered. In this case the input and the output are n-tuples or vectors defined over the extensions Xn and Y n respectively. The conditional probabilities will be used:
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Input and output vectors X and Y are words of n bits. By transmitting a given input vector X, and making the assumption that the number of bits n is relatively large, the error probability p of the BSC determines that the output vector Y of this channel will differ in np positions with respect to the input vector X. On the other hand, the number of sequences of n bits with differences in np positions is equal to
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By using the Stirling approximation [18]
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it can be shown that _n
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This result indicates that for each input block of n bits, there exists 2n_(p) possible output sequences as a result of the errors introduced by the channel. On the other hand, the output of the channel can be considered as a discrete source from which 2nH(Y ) typical sequences can be emitted. Then the amount
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represents the maximum number of possible inputs able to be transmitted and to be converted by the distortion of the channel into non-overlapping sequences. The smaller the error probability of the channel, the larger is the number of non-overlapping sequences. By applying the base 2 logarithmic function,
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and then
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The probability density function of the random variable Y depends on the probability density function of the message and on the statistical properties of the channel. There is in general terms a probability density function of the message X that can maximize the entropy H(Y ). If the input is characterized by a uniform probability density function and the channel is a BSC, the output has a maximum entropy, H(Y )= 1. This makes the expression (50) adopt its maximum value

[image: image17.wmf])

(

1

p

R

s

W

-

=

                                                               (1.11)         
which is valid for the BSC.

This is indeed the parameter that has been defined as the channel capacity. This will therefore be the maximum possible transmission rate for the BSC if error-free transmission is desired over that channel. This could be obtained by the use of a rather sophisticated error coding technique. Equation (1.11) for the BSC is depicted in Figure 1.2. The channel capacity is the maximum transmission rate over that channel for reliable transmission. The worst case for the BSC is given when p = 1/2 because the extreme value p = 1 corresponds after all to a transmission where the roles of the transmitted symbols are interchanged (binary transmission). So far, a description of the channel coding theorem has been developed by analysing the communication channel as a medium that distorts the sequences being transmitted. The channel coding theorem is stated in the following section. 
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Figure 1.2 Channel capacity for the BSC

1.2.3     Channel Coding Theorem
The channel capacity of a discrete memoryless channel is equal to
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The channel capacity per unit time C is related to the channel capacity Cs by the expression C = sCs. If the transmission rate R fits the condition R < C, then for an arbitrary value ε > 0, there exists a code with block length n that makes the error probability of the transmission be less than ε. If R > C then there is no guarantee of reliable transmission; that is, there is no guarantee that the arbitrary value of ε is a bound for the error probability, as it may be exceeded. The limiting value of this arbitrary constant ε is zero.
 Example 1.1: Determine the channel capacity of the channel of Figure 1.3 if all the input symbols are equally likely, and
P(y1/x1) = P(y2/x2) = P(y3/x3) = 0.5

P(y1/x2) = P(y1/x3) = 0.25

P(y2/x1) = P(y2/x3) = 0.25

P(y3/x1) = P(y3/x2) = 0.25

[image: image20]
Figure 1. 3:   Example 1.1
The channel capacity can be calculated by first determining the mutual information and then maximizing this parameter. This maximization consists of looking for the input probability density function that makes the output entropy be maximal. In this case the input probability density function is uniform and this makes the output probability density function be maximum. However this is not always the case. In a general case, the probability density function should be selected to maximize the mutual information. For this example,

H(Y/X) = P(x1)H(Y/X = x1) + P(x2)H(Y/X = x2) + P(x3)H(Y/X = x3)

and

H(Y/X = x1) = H(Y/X = x2) = H(Y/X = x3) =
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=0.5+0.5+0.5=1.5

H(Y/X)=1.5
Therefore,

I (X, Y ) = H(Y ) − 1.5

The output entropy is maximal for an output alphabet with equally likely symbols, so that
H(Y) = 
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Then

Cs = 1.585 − 1.5 = 0.085 bits per symbol

This rather small channel capacity is a consequence of the fact that each input symbol has a probability of 1/2 of emerging from the channel in error.
1.3 
REGULAR AND IRREGULAR LDPC CODES

A LDPC code is called regular if wc is constant for every column and wr = wc · (n/m) is also constant for every row. The example matrix (given below) is regular with wc = 2 and wr = 4. It’s also possible to see the regularity of this code while looking at the graphical representation. There is the same number of incoming edges for every v-node and also for all the c-nodes.
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If H is low density but the numbers of 1’s in each row or column aren’t constant the code is called a irregular LDPC code. 
CHAPTER-2



2.1
INTRODUCTION 
Low-density parity-check (LDPC) codes are a class of linear block codes which provide near-capacity performance on a large collection of data transmission and storage channels while simultaneously admitting implementable decoders. LDPC codes were first proposed by Gallager in his 1960 doctoral dissertation [19] and was scarcely considered in the 35 years that followed. One notable exception is the important work of Tanner in 1981 [20] in which Tanner generalized LDPC codes and introduced a graphical representation of LDPC codes, now called Tanner graphs. The study of LDPC codes was resurrected in the mid-1990's with the work of MacKay, Luby, and others [21], [22], [23] who noticed, apparently independently of the work of Gallager, the advantages of linear block codes which possess sparse (low-density) parity-check matrices. 

This chapter provides the foundations for the study and practice of LDPC codes. We will start with the fundamental representations of LDPC codes via parity-check matrices and Tanner graphs. Classification of LDPC ensembles via Tanner graph degree distributions will be introduced, but we will only superficially cover the design of LDPC codes with optimal degree distributions via constrained pseudo-random matrix construction. We will also review some of the other LDPC code construction techniques which have appeared in the literature. The encoding problem for such LDPC codes will be presented and certain special classes of LDPC codes which resolve the encoding problem will be introduced. Finally, the iterative message-passing decoding algorithm (and certain simplifications) which provides near-optimal performance will be presented. 

2.2 REPRESENTATIONS OF LPDC CODES 
Basically there are two different possibilities to represent LDPC codes. Like all linear block codes they can be described via matrices. The second possibility is a graphical representation.

2.2.1
Matrix Representation 

Although LDPC codes can be generalized to non-binary alphabets, we shall consider only binary LDPC codes for the sake of simplicity. Because LDPC codes form a class of linear block codes, they may be described as a certain k-dimensional subspace C of the vector space F
[image: image24.wmf]n
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of binary n-tuples over the binary field F2. Given this, we may find a basis B = {go, gl, ..., gk-l} which spans C so that each c 
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 C may be written as c = uogo + ulgl + ...+ uk-l gk-1 for some {ui}; more compactly, c = uG where u = [uo u1 …
[image: image26.wmf]…. Uk-1] and G is the so-called k x n generator matrix whose rows are the vectors {gi} (as is conventional in coding, all vectors are row vectors). The   (n -k)-dimensional null space C┴ of G comprises all vectors x 
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 for which xGT = 0 and is spanned by the basis B┴ = {ho,hl, ...,hn-k-l}. Thus, for each c 
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 for all i or, more compactly, cHT = 0 where H is the so-called ( n -k) x n parity-check matrix whose rows are the vectors {hi}, and is the generator matrix for the null space C┴ . The parity-check matrix H is so named because it performs m = n -k separate parity checks on a received word. 

Let’s look at an example for a low-density parity-check matrix first. The matrix defined in equation (2.1) is a parity check matrix with dimension n ×m for a (8, 4) code.

A low-density parity-check code is a linear block code for which the parity-check matrix H has a low density of 1’s. A regular LDPC code is a linear block code whose parity-check matrix H contains exactly wc 1's in each column and exactly wr = wc(nlm) 1's in each row, where wc < <  m (equivalently, wc < < m). The code rate R = k/n is related to these parameters via R = 1- wclwr (this assumes H is full rank). If H is low density, but the, number of 1's in each column or row is not constant, then the code is an irregular LDPC code. It is easiest to see the sense in which an LDPC code is regular or irregular through its graphical representation. 

We can now define two numbers describing this matrix. wr for the number of 1’s in each row and wc for the columns. For a matrix to be called low-density the two conditions wc << n and wr  << m must be satisfied. In order to do this, the parity check matrix should usually be very large, so the example matrix can’t be really called low-density.
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(2.1)  
    
[image: image32]
Figure 2.1: Tanner graph corresponding to the parity check matrix in equation (2.1). The marked path      c2 → f1→ c5 → f2 → c2 is an example for a short cycle. Those should usually be avoided since they are bad for decoding performance.

2.2.2 Graphical Representation 
Tanner considered LDPC codes (and a generalization) and showed how they may be represented effectively by a so-called bipartite graph, now call a Tanner graph [20].The Tanner graph of an LDPC code is analogous to the trellis of a convolutional code in that it provides a complete representation of the code and it aids in the description of the decoding algorithm. A bipartite graph is" a graph (nodes connected by edges) whose nodes may be separated into two types, and edges may only connect two nodes of different types. The two types of nodes in a Tanner graph are the variable nodes and the check nodes (which we shall call v-nodes and c-nodes, respectively). The Tanner graph of a code is drawn according to the following rule: check node j is connected to variable node i whenever element hji in H is a 1. One may deduce from this that there are m = n - k check nodes, one for each check equation, and n variable nodes, one for each code bit ci. Further, the m rows of H specify the m c-node connections, and the n columns of H specify the n v-node connections. 
Example: Consider a (10, 5) linear block code with wc = 2 and wr = wc(n/m) = 4 with the following H matrix: 
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The Tanner graph corresponding to H is depicted in Fig. 2.2. Observe that v-nodes co, c1, c2. and c3 are connected to c-node f0 in accordance with the fact that, in the zeroth row of H , h00 = h01 = h02 = h03 = 1 (all others are zero). Observe that analogous situations holds for c-nodes f1, f2, f3, and f4 which corresponds to rows 1, 2, 3, and 4 of H, respectively. Note, as follows from the fact that cHT = 0, the bit values connected to the same check node must sum to zero. We may also proceed along columns to construct the Tanner graph. For example, note that v-node c0 is connected to c-nodes f0 and f1 in accordance with the fact that, in the zeroth column of H, h00= h10 = 1.
Note that the Tanner graph in this example is regular: each v-node has two edge connections and each c-node has four edge connections (that is, the degree of each v-node is 2 and the degree of each c-node is 4). This is in accordance with the fact that wc = 2 and wr = 4. Is is also clear from this example that  mwr = nwc. 


For irregular LDPC codes, the parameters wc and wr are functions of the column and row numbers and so such notation is not generally adopted in this case. Instead, it is usual to specify the v-node and c-node degree distribution polynomials, denoted by 
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d denotes the fraction of all edges connected to degree-d c-nodes and dc denotes the maximum c-node degree. Note for the regular code above, for which wc = dv = 2 and wr = dc = 4, we have 
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(x) = x and 
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(x) = x3.
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Figure 2.2:  Tanner graph for example code.

A cycle ( or loop) of length ν in a Tanner graph is a path comprising ν edges which closes back on itself. The Tanner graph in the above example possesses a length-6 cycle as exemplified by the six bold edges in the figure. The girth γ of a Tanner graph is the minimum cycle length of the graph. Th~ shortest possible cycle in a bipartite graph is clearly a length-4 cycle, and such cycles manifest themselves in the H matrix as four 1's that lie on the corners of a submatrix of H. We are interested in cycles, particularly short cycles, because they degrade the performance of the iterative decoding algorithm .used for LDPC codes. This fact will be made evident in the discussion of the iterative decoding algorithm. 

2.3 
LDPC CODE DESIGN APPROACHES 
Several different algorithms exist to construct suitable LDPC codes. Gallager himself introduced one. Furthermore MacKay proposed one to semi-randomly generate sparse parity check matrices. This is quite interesting since it indicates that constructing good performing LDPC codes is not a hard problem. In fact, completely randomly chosen codes are good with a high probability. The problem that will arise is that the encoding complexity of such codes is usually rather high.

Clearly, the most obvious path to the construction of an LDPC code is via the construction of p low-density parity-check matrix with prescribed properties. A large number of design techniques exist in the literature, and we introduce some of the more prominent ones in this section, albeit at a superficial level. The design approaches target different design criteria, including efficient encoding and decoding, near-capacity performance, or low-error rate floors. (Like turbo codes, LPDC codes often suffer from low-error rate floors, owing both to poor distance spectra and weaknesses in the iterative decoding algorithm) 

2.3.1.
 Gallager Codes 

The original LDPC codes due to Gallager [19] are regular LDPC codes with an H matrix of the form 

H =
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where the submatrices Hd have the following structure. For any integers μ and wr than greater than 1, each submatrix Hd is μ × μwr  with row weight  wr and column weight 1. The submatrix Hl has the following specific form: for i = 1,2, ..., μ the i-th row contains all of its wr  1 's in columns (i - 1) wr + 1 to iwr. The other submatrices are simply column permutations of H1. It is evident that H is regular, has dimension μwc × μwr and has row and column weights wr and wc, respectively. The absence of length-4 cycles in H is not guaranteed, but they can be avoided via computer design of H. Gallager showed that the ensemble of such codes has excellent distance properti-es provided wc ≥ 3 and wr > wc . Further, such codes have low-complexity encoders since parity bits can be solved for as a function of the user bits via the parity-check matrix [19]. 

Gallager codes were generalized by Tanner in 1981 [20] and were studied for application to code-division multiple-access communication channel in [27]. Gallager codes were extended by MacKay and others [21], [22]. 
2.3.2. 
MacKay Codes 

MacKay had independently discovered the benefits of designing binary codes with sparse H matrices and was the first to show the ability of these codes to perform near capacity limits [21], [22]. MacKay has archived on a web page. [28] a large number of LPDC codes he has designed for application to data communication and storage, most of which are regular. He provided in [22] algorithms to semi-randomly generate sparse H matrices. A few of these are listed below in order of increasing algorithm complexity (but not necessarily improved performance). 

1.  H is created by randomly generating weight-wc columns and (as near as possible)   uniform row weight. 

2.  H is created by randomly generating weight-wc columns, while ensuring weight-wr rows, and no two columns having overlap greater than one. 

3.   H is generated as in 2, plus short cycles are avoided. 

4.  H is generated as in 3, plus H = [H1  H2] is constrained so that H2 is invertible (or at  least H  is full rank)
One drawback of MacKay codes is that they lack sufficient structure to enable low-complexity encoding. Encoding is performed by putting H in the form [PT I] via Gauss-Jordan elimination, from which the generator matrix can be put in the systematic form G = [I  P]. The problem with encoding via G is that the submatrix P is generally not sparse so that, for codes of length n = 1000 or more, encoding complexity is high. An efficient encoding technique employing only the H matrix was proposed in [26]. 

2.3.3. Irregular LDPC Codes 
Richardson et al. [25] and Luby et al. [26] defined ensembles of irregular LDPC codes parameterized by the degree distribution polynomials λ(x) and ρ(x) and showed how to optimize these polynomials for. a variety of channels. Optimality is in the sense that, assuming message-passing decoding (described below), a typical code in the ensemble was capable of reliable communication in worse channel conditions than codes outside the ensemble are. The worst-case channel condition is called the decoding threshold and the optimization of λ(x) and ρ(x) is found by a combination of a so-called density evolution algorithm and an optimization algorithm. Density evolution refers to the evolution of the probability density functions (pdf's) of the various quantities passed around the decoder's Tanner graph. The decoding threshold for a given λ(x)-ρ(x) pair is determined by evaluation the pdf's of computed log-likelihood ratios (see the next section) of the code bits. The separate optimization algorithm optimizes over the λ(x)-ρ(x) pairs. 

Using this approach an irregular LDPC code has been designed whose simulated performance was within 0.045 dB of the capacity limit for a binary-input AWGN channel [29]. This code had length n = 107 and rate R = 1/2. It is generally true that designs via density evolution are best applied to codes whose rate is not too high (R ≤ 3/4) and whose length is not too short   (n ≥ 5000). The reason is that the density evolution design algorithm assumes n → ∞ (hence, m → ∞), and so λ(x)-ρ(x) pairs which are optimal for very long codes, will not be optimal for medium-length and short codes. As discussed in [30], [31], [32], [31], such λ(x)-ρ(x) pairs applied to medium-length and short codes gives rise to a high error-rate floor. 

Finally, we remark that, as for the MacKay codes, these irregular codes do not intrinsically lend themselves to efficient encoding. However, as mentioned above, Richardson and Urbanke [24] have proposed algorithms for achieving linear-time encoding for these codes. 

2.3.4. Finite Geometry Codes
In [33], [34], regular LDPC codes are designed using old-fashioned textbook [35] techniques based on finite geometries. The resulting LDPC codes fall into the cyclic and quasi-cyclic classes of block codes and lend themselves to simple encoder implementation. via shift-register circuits. The cyclic finite geometry codes tend to have relatively large minimum distances, but the quasi- cyclic codes tend to have somewhat small minimum distances. Also, short LDPC codes ( n on the order of 200 bits) designed using these techniques are generally better than short LDPC codes designed using pseudo-random H matrices. 

The cyclic finite geometry codes have. the drawback that the parity-check matrix used in decoding is n x n instead of ( n -k) × n. (It is possible to choose an ( n -k) × n submatrix of the n×n matrix to decode, but the loss in performance is generally non-negligible. ) The n x n matrix is circulant, with its first row equal to a certain incidence vector [33]. Another drawback is that the values of wr and wc are relatively large which is undesirable since the complexity of the iterative message-passing decoder is proportional to these values. One final drawback is that there is not a flexibility in the choice of length and rate, although this issue can be dealt with by code shortening and puncturing. 

2.3.5.
 Repeat-Accumulate Codes
A type of code, called a repeat-accumulate (RA) code, which has the characteristics of both serial turbo codes and LDPC codes, was proposed in [37]. The encoder for an RA code is shown in Fig. 2 where it is seen that user bits are repeated (2 or 3 times is typical), permuted, and then sent through an accumulator (differential encoder) .These codes have been shown to be capable of operation near capacity limits, but they have the drawback that they are naturally low rate (rate 1/2 or lower). 
                           
[image: image48]
Fig.2.3 :    Encoders for the repeat-acccumulate (RA),
2.3.6. 
Irregular Repeat–Accumulate Codes( IRA)
The RA codes were generalized in such away that some bits were repeated more than others yielding irregular repeat-accumulate (IRA) codes [40]. As shown in Fig. 2.4, the IRA encoder comprises a low-density generator matrix, a permuter, and an accumulator. Such codes are capable of operation even closer to theoretical limits than RA codes, and they permit higher code rates. A drawback to IRA codes is that they are nominally non-systematic codes, although they be put in a systematic form, but it is at the expense of greatly lowering the rate as depicted in   Fig. 2.4. 
                   
[image: image49]
Fig. 2.4:  Encoders for the irregular RA (IRA) code
Figure 2.5 shows a Tanner graph of an IRA code with parameters (f1, . . . , fJ ; a), where fi ≥ 0,  
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 fi = 1 and a is a positive integer. The Tanner graph is a bipartite graph with two kinds of nodes: variable nodes (open circles) and check nodes (filled circles). There are k variable nodes on the left, called information nodes; there are r = (k 
[image: image51.wmf]å
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 ifi) /a check nodes; and there are r variable nodes on the right, called parity nodes. Each information node is connected to a number of check nodes: the fraction of information nodes connected to exactly i check nodes is fi. Each check node is connected to exactly a information nodes. These connections can made in many ways, as indicated in Figure 2.5 by the “arbitrary permutation” of the ra edges joining information nodes and check nodes. The check nodes are connected to the parity nodes in the simple zigzag pattern shown in the figure.

[image: image52.emf]
Figure 2.5  : Tanner graph for IRA code with parameters
If the “arbitrary permutation” in Figure 2.5 is fixed, the Tanner graph represents a binary linear code with k information bits (u1, . . . , uk) and r parity bits (x1, . . . , xr), as follows. Each of the information bits is associated with one of the information nodes; and each of the parity bits is associated with one of the parity nodes. The value of a parity bit is determined uniquely by the condition that the mod-2 sum of the values of the variable nodes connected to each of the check nodes is zero. To see this, let us conventionally set x0 = 0. Then if the values of the bits on the ra edges coming out of the permutation box are (v1, . . . , vra), we have the recursive formula
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for j = 1, 2, . . . , r. This is in effect the encoding algorithm, and so if a is fixed and n→∞, the encoding complexity is O(n).

There are two versions of the IRA code in Figure 1: the nonsystematic and the systematic verisons. The nonsystematic version is an (r, k) code, in which the codeword corresponding to the information bits (u1, . . . , uk) is (x1, . . . , xr). The systematic version

is a (k + r, k) code, in which the codeword is 

(u1, . . . , uk ; x1, . . . , xr).                          

The rate of the nonsystematic code is easily seen to be

                                                                  Rnsys=
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whereas for the systematic code the rate is

                                                                  Rsys=
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For example, the original RA codes are nonsystematic IRA codes with a = 1 and exactly one fi equal to 1, say fq = 1, and the rest zero, in which case (2) simplifies to         R = 1/q. (However, in this paper we will be concerned almost exclusively with systematic IRA codes.).
In an iterative sum-product message-passing decoding algorithm, all messages are assumed to be loglikelihood ratios, i.e., of the form m = log(p(0)/p(1)). The outgoing message from a variable node u to a check node v represents information about u, and a message from a check node u to a variable node vrepresents information about u. Intially, messages are sent from variable nodes which represent transmitted symbols.

The outgoing message from a node u to a node v depends on the incoming messages from all neighbors w of u except v. If u is a variable message node, this outgoing message is
                                                  m(u→v)=
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where m0(u) is the log-likelihood message associated with u. ( If u is not a codeword node, this term is absent.) If u is a check node the corresponding formula is [49]
                                                   tanh
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2.3.7 Extended Irregular Repeat-Accumulate Codes( eIRA)
Yang and Ryan [30], [32], [31] have proposed a class of efficiently encodable irregular LDPC codes which might be called extended IRA (eIRA) codes. (These codes were independently proposed in [39]). The eIRA encoder is shown in Fig. 2.6. shows that the eIRA encoder is systematic and permits both low and high rates. Further, encoding can be efficiently performed directly from the H matrix which possesses an m × m submatrix which facilitates computation of the parity bits from the user bits [39], [31]. 
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[image: image60]
Fig. 2.6  :  Encoders for the extended IRA code (eIRA).

2.3.8 Array Codes 
Fan has shown that a certain class of codes called array codes can be viewed as LDPC codes and thus can be decoded with a message passing algorithm [40], [41]. Subsequent to Fan's work, Eleftheriou and Olcer [42] proposed a modified array code employing the following H matrix format 
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 where k and j are two integers such that k ,j ≤ p where p denotes a prime number. I is the  p × p identity matrix, O the p × p null matrix, and α a p × p permutation matrix representing a single left- or right-cyclic shift. The upper triangular nature of H guarantees encoding linear in the codeword length (encoding is essentially the same as for eIRA codes). 

These modified array codes have very low error rate floors, and both low- and high-rate codes may be designed. However, as is clear from the description of H above, only selected code lengths and rates are available. 

2.3.9 Combinatorial LDPC Codes 
In view of the fact that LDPC codes may be design by constrained random construction of H matrices, it is not difficult to imagine that good LDPC codes may be designed via the application of combinatorial mathematics. That is, design constraints (such as no cycles of length four) applied to an H matrix of size( n -k) × n may be cast as a problem in combinatorics. Several researchers have successfully approached this problem via such combinatorial objects as Steiner systems, Kirkman systems, and balanced incomplete block designs [43], [44], [45], [46], [33].
2.4    ACCUMULATE-REPEAT-ACCUMULATE CODES     
In this section, we present our ensemble of ARA codes. Density evolution (DE) analysis of this ensemble is presented in the second part of this section using two different approaches which lead to the same “DE fixed point equation”; this equation characterizes the fixed points of the iterative message-passing decoder. The connection between these two approaches is used later in this paper to state some symmetry properties which serve as an analytical tool for designing various c.a. ensembles for the BEC (e.g., ARA, IRA and ALDPC codes).

2.4.1 Description of ARA Codes

[image: image63]
Figure 2.7 : Block diagram for the systematic ARA ensemble (’Irr.’ and ’SPC’ stand for ’irregular’and ’single-parity check’, respectively, and _ stands for a bit interleaver.)
ARA codes can be viewed either as interleaved serially concatenated codes (i.e., turbo-like codes) or as sparse-graph codes (i.e., LDPC-like codes). From an encoding point of view, it is more natural to view them as interleaved serially concatenated codes (see Fig. 2.7). Since the decoding algorithm of ARA codes is simply belief propagation on the appropriate Tanner graph (see Fig. 3.3), this leads one to view them as sparse-graph codes from a decoding point of view. Treating these codes as sparse-graph codes also allows one to build large codes by “twisting” together many copies of a single small protograph [20, 68]. In general, this approach leads to very good codes with computationally efficient decoders. In this work, we consider the ensemble of irregular ARA codes which is the natural generalization of the IRA codes from [38]. The ensemble of irregular ARA codes differs slightly from those proposed in [65, 66, 67]. For this ensemble, we find that DE for the BEC can be computed in closed form and that algebraic methods can be used to construct c.a. sequences. 

2.5
LOW-DENSITY PARITY-CHECK (LDPC) CODES CONSTRUCTED FROM   PROTOGRAPHS
2.5.1 Introduction
Low-density parity-check (LDPC) codes have emerged as one of the top contenders for near-channelcapacity error correction. Recently, more and more sophisticated classes of LDPC codes have been forwarded by members of the research community, each offering advances in one area or another.

An LDPC code is described by its (sparse) parity-check matrix. Such matrices can be efficiently represented by a bipartite (Tanner) graph. The standard iterative decoding algorithm, known as belief propagation (BP), passes messages along the edges of this graph. Much research has gone into understanding the properties required of a Tanner graph to produce an LDPC code that performs well under this decoding algorithm.

In this, we introduce a new class of LDPC codes constructed from a template called a protograph. The protograph serves as a blueprint for constructing LDPC codes of arbitrary size whose performance can be predicted by analyzing the protograph. Standard density evolution techniques were applied to predict the performance of large protograph codes. Randomized search algorithms were used to find good protographs.

2.5.2
Protographs and Protograph Codes
A protograph can be any Tanner graph, typically one with a relatively small number of nodes. A protograph G = (V,C,E) consists of a set of variable nodes V , a set of check nodes C, and a set of edges E.  Each edge e 
[image: image64.wmf]Î

 E connects a variable node v
[image: image65.wmf]Î

V to a heck node c
[image: image66.wmf]Î

C. Parallel edges are permitted, so the mapping e → (v, c)
[image: image67.wmf]Î

V × C is not necessarily 1:1.

As a simple example, we consider the protograph shown in Fig. 2.8. This graph consists of |V | = 4 variable nodes and |C| = 3 check nodes, connected by |E| = 8 edges. The four variable nodes in the protograph are denoted by “Type 1, 2, 3, 4,” and the three check nodes by “Type A, B, C.” By itself, this graph may be recognized as the Tanner graph of an (n = 4, k = 1) LDPC code (in this case, a repetition code).

We can obtain a larger graph by a “copy-and-permute” operation, illustrated in Figs. 2.9 and 2.10. In Fig. 2.9, the protograph has been copied three times. Here the three copies are overlaid so that same-type vertices are in close proximity, but the overall graph consists of three disconnected subgraphs. In Fig. 2.10, the endpoints of the three copies of each edge in the protograph have been permuted among the three copies of the corresponding variable and check nodes. After this swapping of endpoints of edges, the three subgraphs are now interconnected. The graph in Fig. 2.10 is the Tanner graph of an (n = 12, k = 3) LDPC code. We call this graph the derived graph, and the corresponding LDPC code a protograph code.

[image: image68]
Fig. 2.8.:  A simple protograph.

[image: image69]
Fig. 2.9 : A protograph copied three times.

[image: image70]
Fig. 2.10. : A derived graph.
In general, we can apply the copy-and-permute operation to any protograph to obtain derived graphs of different sizes. This operation consists of first making T copies of the protograph, and then permuting the endpoints of each edge among the T variable and T check nodes connected to the set of T edges copied from the same edge in the protograph. Formally, we have the following definitions.
Definition 1. Let G = (V,C,E) be a protograph. Let T be any positive integer and, for each e 
[image: image71.wmf]Î

 E, let πe be an arbitrary permutation of {1, 2, · · · T}. The derived graph is                  G = (V’, C’, E’), where V’ =V ×{1, 2, …. T}, C’ = C ×{1, 2, · · · T},  E’ = E ×{1, 2, · · · T}, and an edge (e, t) 
[image: image72.wmf]Î

 E’ connects the variable node (v, t) 
[image: image73.wmf]Î

 V’  to the check node               (c, π(t))
[image: image74.wmf]Î

C’.

Definition 2. A protograph code is an LDPC code whose Tanner graph is a derived graph.
The usual mapping of Tanner graphs to LDPC codes makes the implicit assumption that each variable node in the graph corresponds to a code symbol that will be transmitted over a channel. However, a useful refinement [65] is to allow the variable node set V to contain untransmitted variables. Under this refinement, each variable node v
[image: image75.wmf]Î

V may be designated a transmitted node or an untransmitted node. The number of transmitted nodes is denoted n, and the number of untransmitted nodes is denoted u; thus n + u = |V |. The number of check nodes is denoted r = |C|. The dimension k of a code with untransmitted variables is k = n + u − r, and its rate is R = (n + u − r)/n.

A variable node (v, t) in G’ has the same transmitted/untransmitted designation as v. The derived graph contains nT transmitted and uT untransmitted variable nodes, as well as rT check nodes. Thus, any derived graph has the same rate R as its protograph. 
Untransmitted variables can improve the performance of protograph codes. These variables are decoded by the decoder in the same way as if the channel had yielded an “erasure.”

CHAPTER-3


3.1
ITERATIVE DECODING ALGORITHMS
3.1.1 
Overview 
In addition to introducing LDPC codes in his seminal work in 1960 [19], Gallager also provided a decoding algorithm that is typically near optimal. Since that time, other researchers have independently discovered that algorithm and related algorithms, albeit sometimes for different applications [22], [47]. The algorithm iteratively computes the distributions of variables in graph-based models and comes under different names, depending on the context. These names include: the sum-product algorithm (SPA), the belief propagation algorithm (BPA), and the message passing algorithm (MPA). The term “message passing" usually refers to all such iterative algorithms, including the SPA (BPA) and its approximations. 

Much like optimal (maximum a posteriori, MAP) symbol-by-symbol decoding of trellis codes, we are interested in computing the a posteriori probability (APP) that a given bit in the transmitted codeword c = [Co Cl ...Cn-l] equals 1, given the received word                            y = [yo  yl ...yn-l]. Without loss of generality, let us focus on the decoding of bit ci so that we are interested in computing the APP 

Pr(ci = 1 │y)
or the APP ratio (also called the likelihood ratio, LR) 
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Later we will extend this to the more numerically stable computation of the log-APP ratio, also called the log-likelihood ratio (LLR): 
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                                              (3.2)
where here and in the sequel the natural logarithm is assumed.

The MPA for the computation of Pr{ci = 1│ y), l{ci), or L{ci) is an iterative algorithm which is based on the code's Tanner graph. Specifically, we imagine that the v-nodes represent processors of one type, c-nodes represent processors of another type, and the edges represent message paths. In one half iteration, each v-node processes its input messages and passes its resulting output messages up to neighboring c-nodes {two nodes are said to be neighbors if they are connected by an edge). This is depicted in Fig. 3.1 for the message m↑O2 from v-node to c0-node f2 {the subscripted arrow indicates the direction of the message, keeping in mind that our Tanner graph convention places c-nodes above v-nodes). The information passed concerns Pr{co = b│input messages), b
[image: image80.wmf]Î

{0, 1}, the ratio of such probabilities, or the logarithm of the ratio of such probabilities. Note in the figure that the information passed to c-node f2 is all the information available to v-node Co from the channel and through its neighbors, excluding c-node f2; that is, only extrinsic information is passed. Such extrinsic information m↑ij is computed for each connected v-node/c-node pair ci / fj at each half-iteration. 
                                   
[image: image81]
Fig. 3.1  Subgraph of a Tanner graph corresponding to an H matrix whose zeroth column is    
[1 1 1 0 0 ... 0]T. The arrows indicate message passing from node co to node f2.
In the other half iteration, each c-node processes its input messages and passes its resulting output messages down to its neighboring v-nodes. This is depicted in Fig. 4 for the message m↓O4 from c-node fo down to v-node c4. The information passed concerns Pr(check equation fo is satisfied │input messages), b
[image: image82.wmf]Î

{0, I}, the ratio of such probabilities, or the logarithm of the ratio of such probabilities. Note, as for the previous case, only extrinsic information is passed to v-node c4. Such extrinsic information m↓ij is computed for each connected c-node/v-node pair fi / ci at each half-iteration.
                                        
[image: image83]
Fig. 3.2 : Subgraph of a Tanner graph corresponding to an H matrix whose zeroth row is

[1 1 1 0 1 0 0  …]T. The arrows indicate message passing from node f0 to node c4.

After a prescribed maximum number of iterations or after some stopping criterion has been met, the decoder computes the APP, the LR, or the LLR from which decisions on ~e bits Ci are made. One example stopping criterion is to stop iterating when cHT = 0, where c is a tentatively decoded codeword. . 

The MP A assumes that the messages passed are statistically independent throughout the decoding process. When the yi are independent, this independence assumption would hold true if the Tanner graph possessed no cycles.. Further, the MP A would yield exact APPs ( or LRs or LLRs, depending on the version of the algorithm) in this case [47] .However, for a graph of girth " the independence assumption is only true up to the 1/2-th iteration, after which messages start to loop back on themselves in the graph's various cycles. Still, simulations have shown that the message passing algorithm is generally very effective provided length-four cycles are avoided. Lin et al. [37] showed that some configurations of length-four cycles are not harmful. It was shown in [48] how the message-passing schedule described above and below (the so-called flooding schedule) may be modified to mitigate the negative effects of short cycles. 


In the remainder of this section we present the "probability domain" version of the SPA (which computes APPs) and its log-domain version, the log-SPA (which computes LLRs), as well as certain approximations. Our treatment considers the special cases of the binary erasure channel (BEC), the binary symmetric channel (BSC), and the binary-input AWGN channel (BI-AWGNC). 


The algorithm iteratively computes the distributions of variables in graph-based models and comes under different names, depending on the context:

· sum-product algorithm

· min-sum algorithm (approximation)

· forward-backward algorithm, BCJR  algorithm (trellis-based graphical models)

· belief-propagation algorithm, message-passing algorithm(machine learning, AI, Bayesian networks)

3.1.2
Message Passing Decoder
The message-passing decoder for doped LDPCC is similar to that of an LDPC code: each node computes the softoutputs (extrinsic information) given the soft-inputs (a priori information) received from the edges connected to it. The extrinsic information propagates along the edges of a node, and constitutes the a priori information for its neighbors. We focus on the decoder for the binary-input additive white Gaussian noise (AWGN) channel. At the first half-iteration, each variable node forwards the message received from the channel observation through the edges connected to it. 
Assuming a log-domain decoder, the channel observation for the j-th variable node is given by the log-likelihood ratio (LLR)
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where xj is the j-th component of the transmitted vector x, and zj is the received soft-value, given by
                                                     zj= xj+nj                                                                 (3.4)
The noise term nj is a zero mean Gaussian random variable with variance σ2n. We assume antipodal signaling for xj:if the corresponding bit of the codeword is cj = 0, then xj = +1; if cj = 1, then xj =-1. It is easily shown that
                                                          m
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To complete the first iteration, constraint nodes compute the extrinsic information given the soft-outputs received from variable nodes. For the i-th constraint node define m
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 as the message received on the l-th edge connected to it. If the node has d
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 edge connections,  then 1 ≤ l ≤ d
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. The i-th constraint node soft-output messages are denoted as m
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, with 1 ≤ s ≤ d
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. If the constraint is represented by a conventional SPC-based node, the soft-output can be computed as
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where α
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 =  sign(m
[image: image94.wmf]i

in

l

,

),  β
[image: image95.wmf]i

l

= │m
[image: image96.wmf]i

in

l

,

│and
                                                   
[image: image97.wmf]÷

÷

ø

ö

ç

ç

è

æ

-

+

=

1

1

ln

)

(

x

x

e

e

x

f

                                                       (3.7)

For constraint nodes based on more complex linear block codes, there are several possibilities for computing the soft output. It can be obtained through the use of a local BCJR [50] decoder working on the trellis of the component code, or through other sub-optimum soft-input soft-output (SISO) decoders for the component code. An example of a SISO processor for a doped constraint node is depicted in Figure 3.3. The soft-input must be subtracted from the soft-output of the BCJR decoder in order to provide the extrinsic information for the iterative decoding procedure.
                             
[image: image98]
Fig. 3.3. Extrinsic information computation based on the BCJR algorithm, at a generic doped constraint node.

The BCJR decoder gives an exact evaluation of soft-outputs, but its complexity is related to the maximum number of states in the trellis of the component code. Since this quantity is often equal to 2n'-k' (where n' and k' are the parameters of the code C' underlying the node), the BCJR algorithm is computationally expensive when applied to long Hamming codes.
Possible sub-optimum local decoders could be based on the modified-Chase algorithm [49], or on the belief propagation applied to the (local) bipartite graph associated with the component code's parity-check matrix. The use of a belief propagation decoder for the component code gives the lowest complexity, but it could substantially degrade performance if the local bipartite graph contains too many length-4 cycles.

For variable nodes, the soft-output is computed as
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namely, the soft-output for a variable node over the s-th edge is the sum of all of the other soft-inputs together with the channel log-likelihood ratio. Note that for j-th variable node, the definitions of  m
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are analogous to those of the constraint nodes.


The message exchange is iterated for a maximum number of iterations, Imax, and the final decision on the j-th symbol is taken according to
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[image: image105.wmf]
However, the iterative procedure can be stopped before the maximum number of iterations is reached if the signs of the messages to the constraint nodes satisfy the parity-check equations underlying each node.
3.2      DENSITY EVOLUTION OF ARA ENSEMBLES
We consider here the asymptotic analysis of ensembles of ARA codes. We assume that the codes are transmitted over a BEC with erasure probability p and decoded with an iterative message-passing decoder.

A single decoding iteration consists of six smaller steps which are performed on the Tanner graph of Fig. 3.3. Messages are first passed downward from the “systematic bit” nodes through each layer to the “code bit” nodes. Then, messages are passed back upwards from the “code bit” nodes though each layer to the “systematic bit” nodes. Let l designate the iteration number. Referring to Fig. 3.3, let x
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 designate the probabilities of an erasure message from the “parity-check 1” nodes to the “punctured bit”

[image: image108.emf]
Figure 3.3: Tanner graph for the ARA ensemble.
nodes and vice-versa, let x
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 and x
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 be the probabilities of an erasure message from the

“punctured bit” nodes to the “parity-check 2” nodes and vice versa, and finally, let x
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 and x
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 be the probabilities of an erasure message from the “parity-check 2” nodes to “code bit” nodes and vice versa. As the block length goes to infinity, the cycle-free condition holds with probability 1 and this implies that the messages become statistically independent with probability 1. Under this assumption, we obtain the following DE equations (from Fig. 3.3) for the message-passing iterative decoder:
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A fixed point is implied by
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Algebra shows that if x1 [image: image121.emf] x, then we obtain the following equation for the fixed points

of the iterative decoder:
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For ensembles of ARA codes whose transmission takes place over a BEC, the DE fixed point equation (3.9) can be also derived using a graph reduction approach. We start by noting that any “code bit” node whose value is not erased by the BEC can be removed from the graph by merging its value into its two “parity-check 2” nodes. On the other hand, when the value of a “code bit” node is erased, one can merge the two “parity-check 2” nodes which are connected to it (by summing the equations) and then remove the “code bit” node from the graph. This merging of the two “parity-check 2” nodes causes their degrees to be summed. Now, we consider the degree distribution (d.d.) of a single “parity-check 2” node in the reduced graph. This can be visualized as working from left to right in the graph, and assuming the value of the previous “code bit” node was known. The probability that there are k erasures before the next observed “code bit” is given by pk(1 − p). The graph reduction associated with this event causes the degrees of k + 1 “parity-check 2” nodes (from the d.d. R(x)) to be summed. Therefore, the new d.d. of the “parity-check 2” nodes after the graph reduction is given by
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  (3.10)
A similar graph reduction can be also performed on the “systematic bit” nodes in Fig. 3.3. Since degree 1 bit nodes (e.g., the “systematic bit” nodes in Fig. 3.3) only provide channel information, erasures make them worthless. So they can be removed along with their parity-checks (i.e., the “parity-check 1” nodes in Fig. 3.3) without affecting the decoder. On the other hand, whenever the value of a “systematic bit” node is observed (assume the value is zero w.o.l.o.g.), it can be removed leaving a degree 2 parity-check. Of course, degree 2 parity-checks imply equality and allow the connected “punctured bit” nodes to be merged (effectively summing their degrees). This gives a nice symmetry between the information bits and parity bits. Now, we consider the d.d. of a single “punctured bit” node in the reduced graph. This can be seen as working from left to right in the graph, and assuming the value of the previous “systematic bit” node was erased. The probability of the event where the values of k “systematic bit” nodes are observed and the value of the next “systematic bit” node is erased by the channel is given by (1−p)kp. The graph reduction associated with this event causes the degrees of k + 1 “punctured bit” nodes (from the d.d. L(x)) to be summed. Therefore, the new d.d. of the “punctured bit” nodes after graph reduction is given by
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   (3.11)
After the graph reduction, we are left with a standard LDPC code with new edgeperspective degree distributions given by
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After the aforementioned graph reduction, all the “systematic bit” nodes and “code bit” nodes are removed. Therefore the residual LDPC code effectively sees a BEC whose erasure probability is 1, and the DE fixed point equation is given by
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  (3.13)                                                                                 
Based on (6) and (7), the last equation is equivalent to (3). We note that although 
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which are given in (6) and (7), depend on the erasure probability of the BEC (p), for simplicity of notation, we do not write this dependency explicitly in our notation. However, in Section 3, when discussing symmetry properties and replacing p by 1 − p, the erasure probability is written explicitly in these tilted degree distributions.

CHAPTER-4


4.1
RESULT AND DISCUSSION
4.1.1
A Rate-1/2 G-LDPC Code
To demonstrate the performance advantage of G-LDPC, codes, we start with a very simple protograph: 2 CNs, 15 VNs, with both CNs connected to each of the 15 VNs. Thus, the CNs have degree 15 and the VNs have degree 2. Both CNs correspond to the (15,11) Hamming code constraint, but with different code bit orders. Specifically, protograph CN C0 is described by the parity-check matrix
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and protograph CN C1 is described by
            H1=[M2M1]                                                         (4.2)
Next, the protograph is replicated q = 146 times, yielding a derived graph with 2190 VNs and 292 Hamming CNs, 146 of which are described by (4.1) and 146 of which are described by (4.2). Because the number of parity bits is m = 292 · (15 − 11) = 1168, the resulting code has as parameters

   [image: image131.emf]
[image: image132.emf]
Figure 4.1: Adjacency matrix of the (2190, 1022) G-LDPC code and its block-circular parity –check matrix H

(2190, 1022). The connections between the VNs and the CNs are given by the adjacency matrix Γ at the top of Fig. 4.1, which was chosen simply to avoid 4-cycles and 6-cycles in the Tanner graph corresponding to that matrix. Therefore, the girth of the Tanner graph corresponding to Γ is 8. The H matrix (with appropriately re-ordered rows) is given in the bottom of that figure. Observe that an alternative approach for obtaining the re-ordered matrix H is to replace each 1 in the rows of the matrix in (4.1) (the matrix in (4.2)) by the corresponding permutation matrices of the first (second) block row of the adjacency matrix in Fig. 4.1 and to then stack the first resulting matrix on the second. 
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Fig. 4.2. Frame error rate for the (2044,1022) quasi cyclic G-LDPC code, compared to the random coding bound. Imax was set to 50.


We may obtain a quasi-cyclic rate-1/2 (2044, 1022) GLDPC code by puncturing the first 146 bits of each (2190, 1022) codeword. Observe that this corresponds to puncturing a single VN in the code’s protograph and the first column of circulants of Γ. The frame error rate (FER) performance of this rate-1/2 code on the binary-input AWGN channel is depicted in Fig. 4.2. To achieve sufficient reliability, 30 error events were collected for each Eb/N0 value; only at the highest SNR point (Eb/N0 = 2.5 dB) was the decoder stopped after 15 error events (obtained after more than 300 million transmitted codewords). For the simulations, the maximum number of iterations was set to Imax = 50. The GLDPC code does not display a floor down to FER[image: image134.emf]5 ·10−8. As shown in the figure, the code’s performance is within 1 dB from the random coding bound [55] for (2044, 1022) block codes. 
4.1.2

Two G-LDPC Code Families Based on ARA Protographs 

As mentioned at the beginning of this section, G-LDPC code design can be based on density evolution. Or, as seen in the previous example, it is possible to design good codes through techniques that are a combination of coding “art” and coding “science.” An approach to G-LDPC code design that differs from either of these techniques is based on what we call code doping. Code doping was introduced in [51] and consists of the substitution of selected SPC nodes in an LDPC code Tanner graph with more powerful nodes based on less trivial linear block codes. Code doping is conveniently applied at the protograph level: a conventional SPC node in a protograph can be replaced by a more powerful constraint node. The doping will be inherited by the derived graph which will possess q replicas of the constraint node. We begin with LDPC protographs characterized by good decoding thresholds and substitute a fraction of the SPC nodes with stronger constraint nodes, and then we evaluate the resulting graph’s decoding performance through density evolution and computer simulations. The choice of the fraction of doped nodes and of the component codes takes into account requirements on the desired code rate and block length. The set of component codes used for doping is limited to codes with low decoding complexity. This pragmatic approach is less thorough than the         DE-based search used in the design of LDPC codes. However, it permits the design of           G-LDPC codes with both good decoding thresholds and low floors.
Among LDPC codes possessing a protograph representation, accumulate-repeat-accumulate (ARA) codes [54] are among the most interesting for code doping purposes. ARA codes are characterized by good decoding thresholds and simple protograph representations. As an example of code doping on ARA code, we choose the protograph of a rate- 1/4 ARA code [54], depicted in Fig. 4.3 (top). This code has a decoding threshold at (Eb/N0)∗ = 0.34 dB, which can be easily computed from the protograph. By puncturing the nodes corresponding to s0, the code rate becomes 1/3, and the threshold is reduced to (Eb/N0)∗ = −0.048 dB, less than 0.5 dB away from the capacity for the binary-input AWGN channel.

[image: image135.emf]
Fig. 4.3 :  At the top, the protograph for the rate 1/4 ARA code, and at thebottom, the protographs for the rate 1/6 code families, CI (without dottededge) and CII (with dotted edge).

4.1.3 G-LDPC Code Family CI : 


For this protograph, the sub-graph comprising nodes s0, p0 and p1 represents the protograph of an irregular repeat-accumulate (IRA) code [52], [38]. The remaining check node is connected to node p2, which is in effect precoded by an accumulator [54]. Thus, the overall scheme can be considered to be the concatenation of an accumulator and an IRA code (hence, "ARA"). We chose to dope this protograph by replacing the top SPC node with a more powerful code. In order to maintain a reasonable decoding complexity, we chose a shortened (6, 3) Hamming code. This necessitated the addition of another input to that node (we chose p0) and two outputs, p3 and p4, as depicted in Fig. 4.3 (bottom). This yields a protograph for a rate-1/6 code which has a decoding threshold 0.77 dB from the rate- 1/6 capacity limit. Higher code rates can be achieved by puncturing the rate-1/6 protograph. As an example, puncturing node s0 yields a rate-1/5 code whose threshold is only 0.42 dB from the rate-1/5 capacity limit. Also, puncturing nodes s0 and p4 yields a rate-1/4 code whose threshold is only 0.48 dB from the rate-1/4 capacity limit. In the following, the codes derived from this protograph will be referred to as G-LDPC Code Family I (denoted CI ). 
4.1.4 G-LDPC Code Family CII : 


The protograph in Fig 4.3 (bottom) can be modified by adding one edge (dashed line), connecting s0 to a constraint node of the IRA sub-graph. This rate-1/6 protograph yields a code whose threshold is 0.74 dB from its respective limit. A rate-1/5 code whose threshold is only 0.62 dB from the rate-1/5 capacity limit is obtained by puncturing node s0. A rate-1/4 code whose threshold is only 0.56 dB from the rate-1/4 capacity limit is obtained by puncturing nodes s0 and p4. In the following, the codes derived from this protograph will be referred to as G-LDPC Code Family II (CII). Although this modified protograph possesses slightly worse thresholds than that of CI, it leads to codes with lower floors, as we now demonstrate.
4.2
SIMULATION RESULTS FOR FAMILIES
 4.2.1
Simulation Results for Families CI and CII 
Simulation results are provided here for the binary-input AWGN channel. In all cases, adjacency matrices that are arrays of circulant permutation matrices were used so that the G-LDPC codes are quasi-cyclic. The decoder used in each case is the standard belief-propation algorithm with maximum a posteriori decoding at each VN and CN                    (see a description for the G-LDPC case in [52]). Thus, for the Hamming constraint nodes, soft-outputs are computed using a BCJR decoder [59] working on the BCJR trellis [57], [58] of the component code. 
A rate-1/6 code with information block length k = 1024 was designed according the CII protograph. The BER and FER performance curves are presented in Fig. 4.4, with a maximum of Ima = 200 decoding iterations. For comparison with the FER curve, the Gallager random coding bound [55] for (6144, 1024) codes was added to the figure. The code exhibits excellent performance, within 0.9 dB from the bound down to                      FER [image: image136.emf]3·10−6, owing to the large minimum distance of the code, which is (with high probability) dmin [image: image137.emf]203 (see the next subsection). 
A rate 1/5-code was obtained by puncturing the variable nodes of the previous code corresponding to systematic bits, as described above. The performance of the     (5120, 1024) GLDPC code is presented in Fig. 4.5, and does not show an error floor down to FER [image: image138.emf]10−6. Again, the FER curve is about 0.9 dB from the bound. Similar results are achieved for a rate-1/4 code obtained as described above, as shown in Fig. 4.6. In this case, the FER curve is about 0.7 dB from the bound. 
Two quasi-cyclic rate-1/5 codes with input block length k = 1792 have been constructed from the CI and CII protographs, the higher rate obtained by puncturing the systematic bits. In Fig. 4.7, the FER curves (with Imax = 200) for these two codes are compared to the rate 1/6 convolutional turbo code standardized by CCSDS [29], for which k = 1786. For the turbo code, the maximum number of iterations was set to 10 [59]. That value is usually sufficient to achieve a coding gain near the maximum possible for such turbo schemes. The rate-1/5 code based on the CI protograph has exceptional performance in the waterfall region: at a FER = 10−3 the code is less than 0.5 dB away from the random coding bound, and exhibits almost the same performance as the rate 1/6 turbo code (yet the G-LDPC code has a higher rate). The CII protograph has an additional edge relative to the CI protograph, resulting in a degraded threshold, however, the introduction of this edge lowers the error floor. As seen in Fig. 4.7, the CI code is 0.2 dB superior to the CII code at FER = 10−3, but it has an error floor just below this error rate. The CII code reaches a frame error rate close to 10−6 without a floor, within 0.8 dB from the bound.
In Fig. 4.4, we compare the performance of the (6144, 1024) CII G-LDPC code using two different decoding algorithms. The first decoder was a belief-propagation decoder applied to the code’s Tanner graph based on the adjacency matrix. The BCJR algorithm was employed at each Hamming node. The second decoder was a belief-propagation decoder applied to the code’s Tanner graph based on the H matrix. The standard LDPC code sum-product algorithm (SPA) was used. The reason that this second decoder is possible is because its H-based Tanner graph does not have length-4 loops. This is due to the fact that the parity-check matrix of the shortened (6, 3) Hamming code, given by
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and the bipartite graph corresponding to the adjacency matrix are both 4-cycle free. Both simulations used Imax = 200. The SPA decoder suffers a loss in the waterfall region of only about 0.1 dB.

4.2.2
On Encoders and Minimum Distance for CI and CII Code Families
 The two protographs of the CI and CII code families in Fig. 4.3 suggest an encoding procedure independent of whether or not the codes are quasi-cyclic. The key observation is that the sub-graph involving nodes s0, p0 and p1 in Fig. 4.3 represent the protograph of an IRA code. Thus, an encoder can be configured as a parallel concatenation of an IRA encoder and a shortened (6, 3) Hamming code encoder, so that one need not exploit the quasi-cycle properties of the code to devise an encoder. (IRA code encoders are discussed in [52], [53], [38]). Moreover, because of the observation that the two protographs correspond to the parallel concatenation between an IRA code and a Hamming code, we can explain why the CII code floor is lower than the CI code floor (see Fig. 4.7). In the CI code family protograph, the repetition rate in the IRA subgraph is 3 (corresponding to 3 edges connecting the systematic bit s0 in the protograph and the accumulator). For the CII code family, the repetition rate is 4 (corresponding to 4 edges connecting the systematic bit s0 in the protograph and the accumulator). However, as shown in [52], [53], IRA codes with a repetition rate of 4 tend to have a much larger minimum distance than those with a repetition rate of 3. Additionally, because half of the parity bits for both code families are sent to the Hamming encoder, codeword distances will be increased beyond the distances provided by the IRA component codes. Computing the true minimum distance of any graph-based code is a formidable task. One attempt to toward this problem was presented in [60], [61] and another was given in [62]. We applied the algorithm proposed in [64] to the parity-check matrix of the rate-1/6 CII code (k = 1024), which we have already noted is 4-cycle free. The estimated minimum distance is 203.
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Fig. 4.4. Frame and bit error rates (with BCJR-based decoding for Hamming nodes) of rate 1/6 (6144,1024) G-LDPC code II, compared to the random coding bound. Imax was set to 200. The performance degradation using BPbased decoding at Hamming nodes can be evaluated from the frame error rate plot.
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Fig. 4.5. Frame and bit error rates of rate 1/5 (5120,1024) G-LDPC codeII  (obtained by puncturing of the rate 1/6 code), compared to the random coding bound. Imax was set to 200.
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Fig. 4.6. Frame and bit error rates of rate 1/4 (4096,1024) G-LDPC codeII (obtained by puncturing of the rate 1/6 code), compared to the randomcoding bound. Imax was set to 200.
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Fig. 4.7. Frame error rate of rate 1/5 codes obtained by puncturing (10752,1792) G-LDPC codes I and II, compared to the CCSDS turbo code with rate 1/6 (whose performance was taken from [30]) and to the random coding bound. Imax was set to 200 for G-LDPC codes.
CHAPTER-5

CONCLUSION


In this dissertation a technique for designing quasi-cyclic GLDPC codes is presented. The quasi-cyclic design permits the construction of G-LDPC codes amenable to efficient encoder and decoders implementations. The G-LDPC codes constructed possess remarkable performance in both the error floor and waterfall regions. A pragmatic approach for designing good codes was proposed which is based on the insertion of powerful constraint nodes in an LDPCC bipartite graph. Such a doping technique is most easily performed on the protograph of an LDPCC. The performances of low-rate codes constructed in this manner were presented. The density evolution analysis proposed in this paper permits the analysis of the iterative decoding properties of a G-LDPC code in the earlier steps of the code’s design, constituting a powerful tool for code designers. 
Future Scope 
The results in this dissertation motivate further investigation into the design of quasi-cyclic G-LDPC codes (via protographs) for a wider range of code rates and channels. For example, the use of recursive systematic convolutional constraints is considered in [63]. Alternatively, owing to their attractive trellis representations [64], Reed-Muller codes should also be considered for use in the constraint nodes of G-LDPC codes.
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