A

Dissertation

On
“A Pursuit-Evasion Game Based On Mental Functions

And Rational-Choice Theory”
Submitted in partial fulfilment of the requirement

For the award of the degree of

MASTER OF ENGINEERING

(Computer Technology and Application)
By

Anuradha Oberoi

College Roll No: 01/CTA/08

Delhi University Roll No: 8401

Under the guidance of

Dr. Daya Gupta

(Head of Department)
[image: image1.png]
Department of Computer Engineering

Delhi College of Engineering

 Bawana Road, Delhi – 110042

(2008-2010)

CERTIFICATE
[image: image2]
[image: image3.png]

 DELHI COLLEGE OF ENGINEERING
(Govt. of National Capital Territory of Delhi)

BAWANA ROAD, DELHI – 110042
Date:___________
This is to certify that the work presented in this project entitled “Pursuit-Evasion Game Based On Mental Functions and Rational-Choice Theory”, in partial fulfilment of the requirement for the award of the degree of Master of Engineering in Computer Technology and Application submitted by Anuradha Oberoi, Roll No. 01/CTA/08 and University Roll No. 8401 to the Department of Computer Engineering, is a record of the student’s work carried out under my supervision and guidance.

 (Dr. DAYA GUPTA)

 HOD & PROJECT GUIDE

(Dept. of Computer Engineering)

 DELHI COLLEGE OF ENGINEERING

 BAWANA ROAD, DELHI – 110042
ACKNOWLEDGEMENT

This project would not be what it is if it hadn’t been for the people whose constant comments and valuable guidance had made this project successful.
I would like to thank Dr. Daya Gupta, my guide in this project for the constant motivation and support during the duration of this project. It is my privilege and honour to have worked under her supervision.
 I would also like to present my special thanks to Dr. A. K. Sinha from Defence Terrain Research Lab-DRDO, for suggesting the given area and his valuable suggestions from time to time.
I would also like to thank Mr. Ambrish Awasthi (Scientist-C), Mr. Devender Saini (STA-A) and Mr. Gaurav (JRF) for their genuine support, valuable advice which helped me a lot to finish this study.
I would also like to take this opportunity to present my sincere regards to my teachers for their support and encouragement.
Last but not least, I am thankful to my parents, my siblings, and my friends, without whose constant moral support and motivation, I would not have been able to complete the project.

Thank you all!
Anuradha Oberoi.

ABSTRACT

In the most general sense human-level Artificial Intelligence is essentially an attempt to understand and imbibe human mind and its functions in machines. The effort has driven man to understand how humans accomplish cognitive tasks like reasoning, learning, planning, acting, problem solving etc. in the first place.

Artificial Intelligence constitute a continuum of attempts to model adaptive, learning and cognitive abilities in all the varying degrees of complexities we know from biology and psychology.

The purpose of present research project is to design a pursuit – evasion game model for a dynamic environment with both the pursuer and evader having partial information about the environment.

Both pursuer and evader are designed as cognitive cellular automata agent with conflict-level spatial problem-solving abilities. Such an agent will have the capability to reason, learn and plan in a manner similar to a human being.

The architecture of pursuer and evader has a fuzzy inference system to implement the “perceive-reason-act” decision cycle of a mobile cellular automata reflex agent. In essence both the pursuer and evader are expected to execute an Observe-Orient-Decide-Act (OODA) loop. A cognitive model is developed to compute the best-next-move at each time instant for the goal oriented, rational and utility-driven mobile cellular automata agents. Experiments are to be planned and conducted to evaluate the problem solving abilities of such an agent when immersed in a conflict situation
TABLE OF CONTENTS

Certificate……………………………………………………………………………..2
Acknowledgement…………………………………………………………………….3
Abstract……………………………………………………………………………….4
9List of Figures

11List of Tables

12CHAPTER – 1

12INTRODUCTION

121.1 Introduction to Pursuit-Evasion Games

121.1.1 Related Work

131.1.2 Applications of Pursuit – Evasion Game

141.2 Motivation

141.3 Problem Statement

151.4 Scope of Work

161.5 Organization of Thesis

17Chapter -2

17Literature Review

172.1 Path Planning

182.2 Two-person Games

202.3 Pursuit-Evasion Games

222.4 Reinforcement Learning

242.5 Conclusion

25CHAPTER -3

25Artificial Intelligence Techniques and Cellular Automata Paradigm

253.1 Fuzzy Inference System Fundamentals

253.1.1 Membership Functions

263.1.2 Fuzzy Inference process

273.2 Fundamentals of Reinforcement Learning

283.2.1 Basics of Reinforcement Learning

293.2.2 Reinforcement Learning Algorithms

303.3 Introduction to Cellular Automata

303.3.1 Building Cellular Automata

323.3.2 Characteristics of Cellular Automata Space

323.3.3 Cellular Automata and Games

323.4 Rational Choice Theory and Game Theory

333.4.1 Rational Choice Theory

343.4.2 Game Theory

353.4.3 Game Theory as Theory of Rationality

363.5 Conclusion

37Chapter – 4

37Design of Pursuit-Evasion Game Model

374.1 The Common Framework

384.1.1 Assumptions

384.1.2 Environment

394.1.3 Zone Division for Agent

404.1.4 Inputs

424.1.5 Designing Fuzzy Inference Systems

524.1.6 Designing of Metarules

534.1.7 Mental Map Design

544.2 Two person game – Nature as Adversary, No Learning

554.3 Two person game – Nature as Adversary with Learning

564.4 Pursuit Evasion Game, No Learning

564.4.1 Assumptions

564.4.2 FIS Design for Evader

594.4.3 FIS Design for Pursuer

594.4.4 Mental Map Design for Evader

604.4.5 Mental Map Design for Pursuer

614.5 Pursuit Evasion Game, With Learning.

614.5.1 Assumptions

614.5.2 Design of Mental Maps for Evader

634.5.3 Mental Map Design for Pursuer

644.6 Conclusion

65Chapter 5

65Implementation Details of Pursuit-Evasion Game Model

655.1 Two Person Game with Nature as Adversary, No learning

655.1.1 Image Draping

655.1.2 Initialization

675.1.3 Algorithm for Two Person Game with Nature as Adversary, No Learning

795.2 Two Person Game Nature as Adversary, with Learning

795.2.1 Image Draping

795.2.2 Initialization

795.2.3 Algorithm for Two Person Game Nature as Adversary, with Learning

835.3 Pursuit –Evasion Game with No learning

835.3.1 Algorithm for Pursuit –Evasion Game with No learning

985.4 Pursuit – Evasion Game, with Learning

995.4.1 Algorithm for Pursuit-Evasion Game with learning

1085.5 Conclusion

109Chapter 6

109Simulations and Results

1106.1 Statistics for Good Path

1106.2 Simulations and Results for Two Person Game with Nature as Adversary, No Learning

1106.2.1 Simulations

1236.2.2 Results

1236.3 Simulations and Results for Two Person Game with Nature as Adversary, with Learning

1236.3.1 Simulations

1336.3.2 Results

1346.4 Simulations and results for Pursuit-Evasion Game without learning

1346.4.1 Simulations

1456.4.2 Results

1456.5 Simulations and Results for Pursuit-Evasion Game with Learning

1456.5.1 Simulations

1566.5.2 Results

158Chapter 7

158Conclusion and Future Work

References…………………………………………….…………………………….159
Appendix A…………………………………………………………………………161
List of Figures

25Figure 1: Triangular membership function

25Figure 2: Trapezoidal membership function

27Figure 3: Reinforcement Learning System.

30Figure 4: Types of Neighbourhood

36Figure 5: Agent Architecture for implementing Perceive-Reason-Act Cycle

37Figure 6: Cellular Space and its Entities

38Figure 7: Metazone, Percept Zone and Movement Zone

42Figure 8: First Fuzzy Inference System

45Figure 9: Second Fuzzy Inference System

48Figure 10: Third Fuzzy Inference System

53Figure 11: Designing of Mental Maps

54Figure 12: Designing of Mental Maps for Two Person Game, Nature as Adversary with Learning

56Figure 13: Fourth Fuzzy Inference System

57Figure 14: Fifth Fuzzy Inference System

59Figure 15: Mental Map Design for Evader

61Figure 16: Mental Map Design for Evader for Selecting Temporary Destination

62Figure 17: Mental Map Design for Evader for Selecting Next Best Move

63Figure 18: Mental Map Design for Pursuer for Selecting Next Best Move

71Figure 19: Separation Radius for Obstacles.

77Figure 20: Algorithm for Two Person Game with Nature as Adversary, No Learning

97Figure 21: Algorithm for Pursuit-Evasion Game, Without Learning

108Figure 22: 2-Dimensional of Cellular Space.

109Figure 23: 3-Dimensional View of the Cellular Space

110Figure 24: Graphical User Interface

111Figure 25: Initialization for Simulation 1

111Figure 26: Temporary Location and Mental Maps for Temporary Location

112Figure 27: Next Best Move Selected and Mental Maps for Next Best Move

113Figure 28: Simulation 1- Path taken by Agent (1)

113Figure 29: Simulation 1 – Path taken by Agent (2)

114Figure 30: Simulation 1 - Violation Count and Path Length

114Figure 31: Simulation 1 in 3-Dimensional Cellular Space (1)

114Figure 32: Simulation 1 in 3-Dimensional Cellular Space (2)

115Figure 33: Initialization for Simulation 2

116Figure 34: Simulation 2 – Path taken by Agent

116Figure 35: Simulation 2 – Variation in Path due to changes in Attributes of Agent and Obstacles

117Figure 36: Simulation 2- Violation Count and Path Length

117Figure 37: Initialization for Simulation 3

118Figure 38: Simulation 3 – Path taken by Agent

118Figure 39: Simulation 3 - Violation Count and Path Length

119Figure 40: Initialization for Simulation 4

120Figure 41: Simulation 4 – Path taken by Agent

120Figure 42: Simulation 4 – Wetting by Agent along No-Go-Region

120Figure 43: Simulation 4 - Violation Count and Path Length with wetting not handled

121Figure 44: Simulation 4 - Path Taken by Agent when Wetting is handled.

121Figure 45: Simulation 4 – Reduction in Wetting by Agent along No-Go- Region

122Figure 46: Simulation 4 – Violation count and Path Length with wetting handled.

123Figure 47: Graphical User Interface

124Figure 48: Initialization for Simulation 5

125Figure 49: Simulation 5 without learning – Path Taken by agent

125Figure 50: Simulation 5 without learning – Violation Count and Path Length

125Figure 51: Simulation 5 with learning, run1–Path taken by Agent

126Figure 52: Simulation 5 with learning, run 1 – Changes in Agent’s Path due to Learning

126Figure 53: Simulation 5 with learning, run 1 – Violation Count and Path length

127Figure 54: Simulation 5 with learning, run 2 – Path Taken by Agent.

127Figure 55: Simulation 5 with learning, run 2 – Changes in the Agent’s Path

127Figure 56: Simulation 5 with learning, run 2 – Violation Count and Path Length

128Figure 57: Simulation 5 with learning, run 3 – Path Taken by Agent

128Figure 58: Simulation 5 with learning, run 3 – Change in Agent’s Path

129Figure 59: Simulation 5 with learning, run 3 – Violation Count and Path Length

129Figure 60: Initialization for Simulation 6.

130Figure 61: Simulation 6 without learning – Path Taken by Agent

131Figure 62: Simulation 6 without learning – Violation Count and Path Length

131Figure 63: Simulation 6 with learning, run 1 – Path taken by Agent

131Figure 64: Simulation 6 with learning, run1 – Changes in Agent’s Path due to Learning

132Figure 65: Simulation 6 with learning, run 1 – Violation Count and Path Length

133Figure 66: Graphical User Interface

135Figure 67: Initialization for Simulation 7

135Figure 68: Simulation 7 – Path Taken by Pursuer and Evader

136Figure 69: Simulation 7 – Distance Minimization between Pursuer and Evader

136Figure 70: Simulation 7 – Pursuer’s and Evader’s Final Location

137Figure 71: Simulation 7 – Violation Count for Evader and Pursuer

138Figure 72: Initialization for Simulation 8

138Figure 73: Simulation 8 – Path Taken by Pursuer and Evader

139Figure 74: Simulation 8 – Distance Minimization between Evader and Pursuer

139Figure 75: Simulation 8 – Pursuer Tracing the path of evader.

140Figure 76: Simulation 8 – Capture of Evader by Pursuer

140Figure 77: Simulation 8 – Violation Count for Evader and Pursuer

141Figure 78: Initialization for Simulation 9

142Figure 79: Simulation 9 – Path taken by Pursuer and Evader

142Figure 80: Simulation 9 – Distance Minimization between Pursuer and Evader and Change in Evader’s Path due to change in its Attributes.

143Figure 81: Simulation 9 - Pursuer tracing the Evader’s Path

143Figure 82: Simulation 9 – Capture of Evader by Pursuer

143Figure 83: Simulation 9 – Violation Count for both Evader and Pursuer

144Figure 84: Graphical User Interface

146Figure 85: Initialization for Simulation 9

146Figure 86: Simulation 10 without learning – Path Taken by Pursuer and Evader.

147Figure 87: Simulation 10 without learning – Evader’s Path

147Figure 88: Simulation 10 without learning– Final Locations of Evader and Pursuer

147Figure 89: Simulation 10 without learning– Violation Count of Pursuer, Violation Count and Path Length of Evader

148Figure 90: Simulation 10 with learning, run 1 – Path taken by Pursuer and Evader

148Figure 91: Simulation 10 with Learning, run 1 – Change in Evader’s Path due to Learning

149Figure 92: Simulation 10 with Learning, run 1 – Change in Pursuer’s Path due to Learning

149Figure 93: Simulation 10 with Learning, run 1 – Final Locations of Evader and Pursuer

150Figure 94: Simulation 10 with Learning, run 1– Violation Count of Pursuer, Violation Count and Path Length of Evader

150Figure 95: Simulation 10 with learning, run 2 – Path taken by Pursuer and Evader

151Figure 96: Simulation 10 with learning, run 2 – Change in Evader’s Path due to Learning

151Figure 97: Simulation 10 with learning, run 2 – Change in Pursuer’s Path due to Learning

152Figure 98: Simulation 10 with Learning, run 2 – Final Locations of Evader and Pursuer

152Figure 99: Simulation 10 with Learning, run 2 – Violation Count of Pursuer, Violation Count and Path Length of Evader

153Figure 100: Simulation 10 with learning, run 3 – Path taken by Pursuer and Evader

153Figure 101: Simulation 10 with learning, run 3 – Change in Evader’s Path due to Learning

154Figure 102: Simulation 10 with learning, run 3 – Change in Pursuer’s Path due to Learning

154Figure 103: Simulation 10 with Learning, run 3 – Final Locations of Evader and Pursuer

155Figure 104: Simulation 10 with Learning, run 3– Violation Count of Pursuer, Violation Count and Path Length of Evader

List of Tables
41Table 1: Direction Distribution

42Table 2: Details of Membership Functions for Camouflage

42Table 3: Details of Membership functions of Obstacle Altitude

43Table 4: Details of Membership functions of Region Trafficability

43Table 5: Details of Membership Functions of Target Direction.

44Table 6: Details of Membership functions of Climb

44Table 7: Details of Membership Functions of Time-Delay-Region

46Table 8: Details of Membership Functions for Armour

46Table 9: Membership functions of Obstacle Altitude.

46Table 10: Details of Membership functions of Penetrability

46Table 11: Membership Functions of Lethality.

47Table 12: Details of Membership functions of Separation Distance

47Table 13: Details of Membership Functions of Time-Delay-Obstacle

48Table 14: Details of Membership Functions of Probability Trap.

49Table 15: Membership functions of Obstacle Distance.

49Table 16: Membership functions of Clutter Density

50Table 17: Membership functions of Separation Distance.

50Table 18: Membership Functions of Probability Trap

56Table 19: Details of Membership Functions for Camouflage

65Table 20: Obstacle Initialization

66Table 21: Agent Initialization

122Table 22: Results for Two Person with Nature As Adversary, without Learning

132Table 23: Simulation 5 - Results for Two Person with Nature As Adversary, with Learning

133Table 24: Simulation 6 - Results for Two Person with Nature As Adversary, with Learning

155Table 25: Results for Pursuit Evasion Game with Learning

CHAPTER – 1
 INTRODUCTION

This chapter gives an introduction about pursuit-evasion games and describes the problem statement in detail and gives an idea about the issues covered under this project and the areas of artificial intelligence touched upon by me.
1.1 Introduction to Pursuit-Evasion Games
Pursuit-evasion game is about how to guide an individual or a group of pursuers to catch a single or a group of moving evaders. A PEG presents a mathematical abstraction of many practical problems, e.g. surveillance using mobile robots where a swarm of robots act as a pursuer trying to capture the evader.
The two types of players in a pursuit-evasion game are the pursuer and the evader, respectively. Both types of players could be either an individual or a group. The loss of a player with a policy is the cost of the player executing the policy. The cost might be related to the execution time of the policy, consumed energy, or whether the evader is caught. Because the objectives of pursuers and evaders are opposite to each other and in most cases the loss of pursuer is the gain of the evader, the pursuer-evasion game could be thought as a zero-sum game.
1.1.1 Related Work
1.1.1.1 Approach for Problems with Differential Motion Models

If motion models of players in the pursuit-evasion game are differential equations, the game is also called differential games. The objective of game is to find the saddle-point equilibria. Obstacles normally do not exist in the environment to relieve the complexity of the problem. The key idea of solutions to differential games is to solve Isaacs’s equations, which is the necessary and sufficient condition for saddle- point equilibria.
1.1.1.2 Approach using Worst Case Analysis

This type of approach assumes that environment is known to pursuers and evaders work as Nature. The basic idea of the method is to decompose the space based on critical events into conservative regions. Moving in a conservative region will not provide any new information to pursuers. Each conservative region corresponds to several information states, each of which represents the pursuer’s current knowledge about pursuers, that is, whether pursuers are possibly in regions that border gap edges of current visibility polygon. Based on the space decomposition and information state, the pursuit-evasion problem is transformed into a search problem in the information graph, i.e., searching for a path from an information state, at which pursuers know nothing about evaders, to an information state, at which pursuers know for sure that there are no evaders in the environment.
1.1.1.3 Approach using Probabilistic Analysis

When environment is unknown to the pursuer, one way is to first build the map and then solve the pursuit-evasion problem in a known environment. Another way is to use probabilistic pursuit-evasion game framework to solve both map building and pursuit-evasion game at the same time.

The basic idea behind the probabilistic pursuit-evasion game is based on information space and Bayesian reasoning. Information state in the paper is the sequence of observation of the position of pursuers, evaders and obstacles up to the current time. According to the observation and parameters of uncertainty of sensor (probability of false negative and false positive), pursuers could estimate the position of evaders and obstacles using Bayesian rules. Based on the estimation, two greedy algorithms are designed to provide pursuers policies to catch evaders. The local-max algorithm will guide pursuers to their neighbour states which have the highest probability to catch an evader. The global-max algorithm will guide pursuers one-step closer to states which have the highest probability over the whole state space to catch evaders.
1.1.2 Applications of Pursuit – Evasion Game

The pursuit-evasion game is applied to variety of real time situations. Some of the applications of Pursuit-Evasion Game are given below.

i. Searching buildings for intruders.

ii. Traffic control.

iii. Military strategy and surgical operation.

iv. Missile guidance systems.
1.2 Motivation
The current project work was carried out at Defence Terrain Research Lab, DRDO. The pursuit - evasion games and path finding is applied to number of real times situations in military applications such as:

1. Search and rescue operations in regions for which the entire navigation map is not available. Robots with limited perception ability can be employed and using the game model developed for two person game with nature playing the role of adversary, robots can carry out these search and rescue operations.

2. The game model developed for pursuit-evasion game with both pursuer and evader having the limited perception ability can be employed in infiltration models along the borders of the country.
There are number of approaches for handling pursuit-evasion games and path finding, but the challenge here is to model the real time inputs which include terrain inputs, agent related and obstacle related inputs with agents having limited perception and partial information about its environment. Along with this a learning component is added to make the agents more autonomous. As currently no such model is there that takes into account all these features so this problem is taken up here as a research work.
1.3 Problem Statement

The aim of the present research project is to:

Design and simulate a pursuit – evasion game model in a dynamic environment with both the pursuer and evader having limited perception and partial information about their environment.

Both pursuer and evader are designed as cognitive cellular automata agent with conflict-driven spatial problem-solving abilities. The agents have the capability to Perceive (Reason (Decide (Act (Learn.

At the core of the architecture of the pursuer and evader agents is a network of fuzzy inference system to implement the “Perceive (Reason (Act” decision cycle of a mobile cellular automata reflex agent. In essence both the pursuer and evader are expected to execute an Observe-Orient-Decide-Act (OODA) loop. A cognitive model is developed to compute the best-next-move at each time instant for the goal oriented, rational and utility-driven mobile cellular automata agents.
The salient features of the project are described as follows.

1. A 300 by 300 cellular space is constructed to visualize a three dimensional terrain embedded with real time terrain parameters.
2. The problem is modelled using real time features of region (region trafficability, clutter density), of obstacles (lethality and penetrability), of agents (armour and camouflage) etc. All these are the inputs to the pursuit evasion game.

3. Both the evader and pursuer have the local perception about the terrain features, which are region trafficability, obstacle distribution and height distribution.

4. Both the pursuer and evader have a limited sensor field which allows them to perceive the neighbouring cellular automata space. This sensor field breaks the local cellular space surrounding them into three zones to start a three tier decision making process: 15 by 15 metazone which feeds a network of fuzzy inference systems for firing the first tier decision making process, a 9 by 9 percept zone which goes into deciding the second level temporary target location process and a final 3 by 3 movement zone for deciding the best cell for occupancy.

5. Summing up negotiating real time terrain parameters, working with three level decision zones, modelling ten inputs by creating a network of fuzzy inference engines, building mental maps with fuzzy outputs etc add to the complexity and novelty of the problem

1.4 Scope of Work

The work carried out in this project aims to cover the following things.
1. Path finding by rational agent on a three-dimensionally visualized cellular space using fuzzy inference system, mental maps and working with real time terrain parameters as inputs. An agent’s goal is to search for an optimum path to reach its target destination negotiating real time complex terrain and obstacles.
2. A reinforcement learning module is then added on top of the existing network of decision making processes so that the agent is able to learn a path which is more optimal with respect to obstacle avoidance and distance to the target destination. The positive effects of reinforcement learning on the length of agent’s path are shown in simulations.

3 The single agent path finding game is then extended to a two agent pursuit-evasion game on a three-dimensionally visualized cellular space using fuzzy logic. Here the evader is an agent who is guided by two main goals: one is to maintain a safe distance from pursuer and other to find an optimum path to its target destination.

4. Reinforcement learning module is then added for both evader and pursuer.
At DRDO pursuit-evasion game model will be incorporated in infiltration models and path finding model will be incorporated in a TRS project (a terrain navigation system), developed by the DTRL team (DRDO) under Dr. A.K. Sinha. The developed model needs to be tailored according to the requirements of the infiltration model and to incorporate the multi agent concept. The inputs to the models developed in this project are given by Dr. A.K. Sinha and his team members.

1.5 Organization of Thesis

The remainder part of this thesis is organised in the following sections.

Chapter 2 – This chapter gives an extensive literature review in the field of path planning, two person games, pursuit –evasion games and reinforcement learning.

Chapter 3 – This chapter describes in detail the fundamentals of fuzzy inference systems, fundamentals and basic features of cellular automata, reinforcement learning, rational agents, rational choice theory, game theory and relation between rational choice theory and games. It also describes how cellular automata are used to model games.
Chapter 4- This chapter describes in detail the designing of the pursuit – evasion game developed in this project.

Chapter 5- This chapter deals with the implementation details and describes in details the algorithm for modelling the pursuit-evasion game

Chapter 6 - The simulation results obtained for pursuit-evasion game are given in this chapter.
Chapter 7- In this section the conclusion of the thesis work and the future scope of the work are presented.

References: this section gives the references details of the thesis.

Appendix A: Introduction to Matlab Software
Chapter -2
Literature Review

A number of researchers have suggested various approaches for modelling pursuit –evasion games. An extensive literature study has been carried out in this work. A number of research papers in the field of path planning, reinforcement learning, two person games and pursuit evasion games have been studied. The review of the literature studies is presented in this section.

2.1 Path Planning
Steven M. LaValle [1] proposes a dynamic game-theoretic framework that is used as an analytical tool and unifying perspective for a wide class of problems in motion planning. This approach is inspired by the foundation laid by configuration space concepts for basic path planning. A general algorithm for computing approximate optimal solutions to a broad class of motion planning problems, including those involving uncertainty in sensing and control, environment uncertainties and the coordination of multiple robots is obtained using this approach. The basic problem considered in this paper is to find a continuous path from initial position to goal position using set of configurations in which robot is not in collision with static obstacles in the world.
An algorithm to compute the optimal strategies builds approximate representations of the cost–to-go functions, where cost-to-go functions expresses the cost that is received under the implementation of an optimal strategy from that particular state and time. The cost-to-go is computed by selecting the action that produces minimum expectation over the actions of nature. To execute the optimal strategy an appropriate action is chosen using cost-to-go representation from any given state. Once the action is taken, an exact next state is obtained and iteration continues until goal is reached.
Anthony Stentz [2] proposed a new algorithm for generating optimal paths for a robot operating with a sensor and a map of the environment. The map can be complete, empty, or contain partial information about the environment. For regions of the environment that are unknown, the map may contain approximate information, stochastic models for occupancy, or even a heuristic estimates. The algorithm is functionally equivalent to the brute-force, optimal replanner, but it is far more efficient. The algorithm is formulated in terms of an optimal find-path problem within a directed graph, where the arcs are labelled with cost values that can range over a continuum. The robot’s sensor is able to measure arc costs in the vicinity of the robot, and the known and estimated arc values comprise the map.
2.2 Two-person Games
D. GARAGIC and J. B. CRUZ [3] proposed a method which utilize fuzzy set theory in order to incorporate the players’ heuristic knowledge of decision making into the framework of conventional game theory or ordinal game theory.
The proposed approach divides the process of playing the fuzzy game into three processes, called fuzzification, inference, and defuzzification, which are defined for each of the player’s fuzzy preference matrices. These processes automate the selection by the players of the fuzzy strategies chosen and their corresponding fuzzy preferences needed to play a fuzzy game.
Chunyan Han, Zuofeng Gao, Yongbo Yu, Hua Zhang, Suting Zhang and Hongxin Bai [4] considered a fuzzy bimatrix games with fuzzy payoffs. The game theory when applied to some practical problems encountered in real situations requires knowing the values of payoffs exactly. However, it is difficult to know the exact values of payoffs and the values of payoffs can only be known approximately. In such situations, it is useful to model the problems as games with fuzzy payoffs. In this case, since the expected payoffs of the game should be fuzzy-valued, there are no concepts of equilibrium strategies to be accepted widely.

In this paper, fuzzy bimatrix games, namely, the games where the number of players are two and fuzzy payoffs is considered and three kinds of concepts of minimax equilibrium strategies are defined for such games.
Elisabeth Rakus-Andersson, Maria Salomonsson and Hang Zettervall [5] expanded the classical model of a two-player game to select the best strategies, whose action is expected to maintain the values of a certain variable on the neutral level. Payoff values in the game matrix are represented using fuzzy sets facilitating the procedure of formulations of payoff expectations by players. Instead of making difficult decisions about the choice of accurate numerical entries of the matrix the players are able to use words, which should simplify a communication between them when designing the preliminaries of the game. The players also have the possibility of making a ranking of their favourite strategies.
The proposed version of two-player fuzzy games can be used in the imprecise circumstances of variable changes, when a saddle point for strategies cannot be found.
N. Javadian and Y. Maali [6] introduced a concept of solution for non cooperative with fuzzy payoffs based on the concept of credibility measure.
The approach first defines the possibility measure and necessity measure of fuzzy sets. Credibility measure is taken to be the average of both possibility measure and necessity measure. Using these definitions, based on the utility of each player; credibility of each payoff under the utility is then calculated and then it is used as payoffs of new game and the new crisp game is solved using min-max approach to find the optimal strategy.
Adem C. Cevikel and Mehmet Ahlatcioglu [7] in their paper presented new concepts of solutions for a two-person zero-sum games with fuzzy payoffs and fuzzy goals. It is assumed that each player has a fuzzy goal for each of the payoffs. A degree of attainment of the fuzzy goal is defined and the max-min strategy with respect to the degree of attainment of the fuzzy goal is examined. If all of the membership functions both for the fuzzy payoffs and for the fuzzy goals are linear, the max-min solution is formulated as a nonlinear programming problem.
Friedel PELDSCHUS [8] proposed model of a multicriteria fuzzy game for solving various engineering problems. The algorithm developed for fuzzy matrix games is a fuzzy concept for multi-criteria decisions fuzzy matrix games multi-criteria model for decision-making in engineering. This concept takes into consideration both internal and external influential variables. Internal influential variables have an experiential character and will be effective until the system is made use of (building or manufacturing phase, respectively). External influential variables describe a new quality.
The algorithm follows three steps. In the first step, a fuzzy set is defined for the set of strategies of first player. The set of strategies and the criteria quantitatively describing the strategies are assumed to be known. An association function is calculated for each of the criteria, i.e., standard values are relativized to give the values of association. Thus, for each strategy of first player, a value of association for different criteria is obtained. A set of values of association is expressed as an arithmetic mean (Laplace criterion). In step two, which is concerned with strategies of second player, fuzzy sets are defined for the set of strategies of second player, and the values of association are calculated. The mapping of sets is in the form of a matrix. In the third step average of the strategy sets of players first and second is calculated, with min being chosen as a logic operator. Result is fuzzy game matrix. Finally min -max principle is used to solve the matrix.
Qian Song and Abraham Kandel [9] proposed a fuzzy approach to solve the strategic game problem in which the pure strategy set for each player is already defined. Based on the concepts of fuzzy set theory, this approach uses a multicriteria decision-making method to obtain the optimal strategy in the game.
This paper introduces the concept of conditional fuzzy sets, which is similar to the conditional distribution in probability and statistics. This fuzzy approach combines the multiple goals of a player into one fuzzy model by using the multicriteria method. Using the weight vector to represent the philosophical motives or moral characteristics of a player makes it more general than the maximin principle in classical game theory.

 2.3 Pursuit-Evasion Games
Joao P. Hespanha and Hyoun Jin Kim and Shankar Sastry [10] developed a probabilistic framework for pursuit-evasion games. They proposed a “greedy" policy to control a swarm of autonomous agents in the pursuit of one or several evaders. At each instant of time this policy directs the pursuers to the locations that maximize the probability of finding an evader at that particular time instant.
The proposed approach combines exploration (or map-learning) and pursuit in a single problem. This is done in a probabilistic framework to avoid the conservativeness inherent to worst-case assumptions on the motion of the evader. A probabilistic framework also takes into account the fact that sensor information is not precise and that only an inaccurate a priori map of the terrain may be known
René Vidal and Omid Shakernia and H. Jin Kim and David Hyunchul Shim and Shankar Sastry [11] in their paper considered the problem of having a team of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) pursue a second team of evaders while concurrently building a map in an unknown environment. The problem is modelled in a probabilistic game theoretical framework, and two computationally feasible greedy pursuit policies: local-max and global-max are considered. In local max policy pursuer moves to the cell in the one-step reachable set with the highest probability of containing an evader over all the evader maps. This policy is computationally efficient, and can be computed independently by each pursuer in a decentralized pursuit–evasion game. However, the local-max policy is not persistent on the average. The global-max policy searches over the entire map in order to compute the control that maximizes the probability of capturing an evader. Therefore, it is more computationally intensive and does not scale as well as the local-max policy.
Marcos A. M. Vieira and Ramesh Govindan and Gaurav S.Sukhatme [12] in their paper implemented a partition strategy where pursuers capture evaders by decomposing the game into multiple multi-pursuer single-evader games. The proposed algorithm terminates, has bounded capture time, is robust, and is scalable in the number of robots. There is a sensor network which provides sensing-at-a-distance, as well as a communication backbone that enables tighter coordination between pursuers.
According partition strategy proposed in the paper, the pursuers divide the evaders amongst themselves and play n-1 sub games where n is the minimum number of pursuers required to guarantee the termination. In each of these sub-games, the pursuers and the evader each play the optimal strategy, where optimal strategy for pursuer is to capture the evaders in the shortest time, and for the evader, to avoid capture for the longest possible time. The paper also proposes an assignment algorithm that allocates n pursuers to one evader.
Yifan Li, Petr Musilek and Loren Wyard-Scott [13] provided an anatomy of how agent technology, incorporated with fuzzy logic, can be applied to game design. The game design is decomposed into autonomous entities and inanimate objects. The nine types of entities considered in the design are four terrain elements, three different enemy tanks, the base, and the player’s tanks.
The design is based on BDI model. BDI features three major mental attitudes as its building blocks - belief, desire, and intention.

i. Belief – It is the agent’s knowledge about its environment and itself.

ii. Desire – It describes agent’s goal.

iii. Intention – It is the course of action that the agent has chosen to achieve the goal.

This model constitutes of many execution cycle. At the beginning of each cycle, the agent senses its environment and updates its belief. Consequently, desires may arouse in response to the newly received stimulations. The agent then matches its stock plans against the desires to find out the best applicable plan for each desire and initiates new intentions of execution. Upon the end of the cycle, the intention that serves the most urgent desire is chosen from the intention library to be actually carried out.

The fuzzy rule based system is designed which takes as input enemies strength, player’ shield and time elapsed since last attack; based on these inputs it gives the desired radius of player tanks.

 This game modelling showed that the agent-oriented approach to game development provides a natural way of modelling the game creatures.
2.4 Reinforcement Learning
Gedson Faria and Rosell A. Francelin Romero [14] presented a sensor based navigation method that utilizes fuzzy logic into reinforcement learning algorithms for navigation of mobile robot in uncertain environment. The sonar readings are codified in distance notions by fuzzy sets and R-learning algorithm is modified by incorporating fuzzy logic. The fuzzy logic have been used for weighting the immediate reward value, immediate reward value is the immediate reward obtained by performing an action in a particular state.

In this method a new variable, certainty degree ф, is introduced which is taken to be the arithmetic mean of the membership degrees received from those fuzzy functions that codify the input signals. The reason for introducing this variable is to consider the fact that the robot can belong to the frontier of the two neighbouring fuzzy sets. Thus immediate reward value r’ is given by following equation:

r’ = r, if robot has certainty where it is .

 фr otherwise

An advantage of using fuzzy logic is the reduction of the error in the evaluation of distance made by the robot. The sonar usually presents a certain variation. If the variation belongs to a same fuzzy set none misclassification problem occurs.

D. Xiao and A. H. Tan [15] illustrate how a self-organizing cognitive architecture, known as TD-FALCON, can learn to function and cooperate in a dynamic environment. TD-FALCON learns the value functions of the state- action space estimated through a temporal difference (TD) method. The learned value functions are then used to determine the optimal actions based on an action selection policy. To tackle a multi-agent predator/prey pursuit task, cooperative strategy using a high-level compressed state representation and a hybrid reward function is developed.
This paper presents two important issues of multi-agent systems scalability and co-adaptation dynamics. The work presented in this paper indicates that appropriate coding of state representation can greatly enhance the scalability of the multi-agent systems.
Dongbing Gu and Huosheng Hu [16] presented in their paper a cooperative reinforcement learning algorithm of multi-agent systems. The cooperative behaviour is established within a leader-following framework. The cooperative dynamics is modelled as a Stackelberg game. A Stackelberg game is mostly appropriate in nonzero-sum games when one of the players (the leader) has the ability to declare and impose its policy before other players (the followers). The roles of the players are asymmetric. The leader’s main task is to design its policy to maximise its payoff by taking into account the followers’ rational responses. In other words, the leader is able to induce the follower to behave as if the followers are also optimising the payoff of the leader, and thus achieve the cooperative optimum. The followers’ rational response is to maximise their payoffs given the leader’s policy.
Kathryn Merrick and Mary Lou Maher [17] proposed a motivated reinforcement learning using context-free grammars as a means of representing unpredictable, evolving worlds for character reasoning.
The model developed in the paper introduces a motivation function because life-long learning required by agents in complex, dynamic environments such as game worlds is characterised not by the learning of a single task but by adaptive learning which focuses on different tasks at different times. Learning which focuses attention on more than one task, requires a reward signal which represents the union of several reward functions, likewise learning adaptive behaviours by focusing attention on different tasks at different times, requires a reward signal that represents a progression between different reward signals. The motivation function is the expected motivation for a transition between one state to another when an action is taken. This function is an approximation of the progression between reward signals for one or more tasks. The aim of the motivation function is to produce motivation values which will motivate the RL process to focus on executing actions which support the emergence of focused behavioural cycles in the character actions.

Lori L. DeLooze and Wesley R. Viner [18] presented a variation of fuzzy Q-learning algorithm, using which an intelligent agent is trained to play Ms. Pac-Man video game. The strategy presented is a table based learning strategy, in which the intelligent agent analyzes the current situation of the game, stores various membership values for each of the several contributors to the situation and makes decisions based on these values.
The learning algorithm used in this paper is Q-learning which assigns values to state-action pairs Q(s, a) which implicitly represents a policy. The algorithm works by selecting one action from many possible given the current state. The action with the highest Q-value is selected. After selecting the action, a, the Q-value representing the state-action pair is updated based on a reward r received as a result of the action and an expected reward given by examining the Q values of the next state, s.

The proposed approach can be applied in a simulated environment for autonomous vehicles that are required to rally at several defined areas on a map, which may have varying strategic values, while avoiding potentially lethal obstacles.

2.5 Conclusion
An extensive literature review of work done on path planning, two person games, pursuit evasion games and reinforcement learning was studied in this chapter. By combining these different areas of research and using these ideas current project has been developed.
CHAPTER -3

Artificial Intelligence Techniques and Cellular Automata Paradigm

This chapter describes in detail the fundamentals of artificial intelligence techniques and concepts used in this project. These techniques involve fuzzy inference system and reinforcement learning. The concepts of artificial intelligence which are employed in this project and described in this chapter are cellular automata, rational choice theory and game theory. The association between rational choice theory and game theory and how the cellular automata can be used to model games is also described in the chapter.
3.1 Fuzzy Inference System Fundamentals
Fuzzy inference is the process of formulating the mapping from a given input to an output using fuzzy logic. The mapping then provides a basis from which decisions can be made, or patterns discerned.
In this project Mamdani's fuzzy inference method has been used. Mamdani-type inference, expects the output membership functions to be fuzzy sets. After the aggregation process, there is a fuzzy set for each output variable that needs defuzzification. The various steps of fuzzy inference system are defined below.
3.1.1 Membership Functions
 Fuzzy sets describe vague concepts; the degree an object belongs to a fuzzy set is denoted by a membership value between 0 and 1. A membership function (MF) is a curve that defines how each point in the input space is mapped to a membership value. The input space is sometimes referred to as the universe of discourse.

The two built-in membership functions used in this project are described below.

1. Triangular membership function- Its function name is trimf. It is shown in Figure 1.

[image: image4.png]
Figure 1: Triangular membership function
2. Trapezoidal membership function- It has a flat top and is a truncated triangle curve. Its function name is trapmf. It is shown in Figure 2.

[image: image5.png]
Figure 2: Trapezoidal membership function
3.1.2 Fuzzy Inference process

There are five parts of the fuzzy inference process as explained below.

1. Fuzzify Inputs
The first step is to take the inputs and determine the degree to which they belong to each of the appropriate fuzzy sets via membership functions. In the Fuzzy Logic Toolbox, the input is always a crisp numerical value limited to the universe of discourse of the input variable and the output is a fuzzy degree of membership in the qualifying linguistic which is always set between 0 and 1. Fuzzification of
the input amounts to either a table lookup or a function evaluation.

2. Apply Fuzzy operator
Once the inputs have been fuzzified, the degree to which each part of the antecedent has been satisfied for each rule is known. If the antecedent of a given rule
has more than one part, the fuzzy operator is applied to obtain one number that represents the result of the antecedent for that rule. This number will then be applied to the output function. The input to the fuzzy operator is two or more membership values from fuzzified input variables. The output is a single truth value. OR operation and AND operation are the two fuzzy logical operations which are used in this step. Two built-in OR methods are max (maximum), and the probabilistic OR method probor, calculated according to the equation, probor (a, b) = a + b – ab.
3. Apply Implication Method
Every rule has a weight (a number between 0 and 1), which is applied to the number given by the antecedent. Once proper weighting has been
assigned to each rule, the implication method is implemented. A consequent is a fuzzy set represented by a membership function, which weights appropriately the linguistic characteristics that are attributed to it. The consequent is reshaped using a function associated with the antecedent. The input
for the implication process is a single number given by the antecedent, and the output is a fuzzy
set. Implication is implemented for each rule. Two built-in methods for implication are min (minimum), which truncates the output fuzzy set, and
prod (product), which scales the output fuzzy set.
4. Aggregate All Outputs
Aggregation is the process by which the fuzzy sets that represent the outputs of each rule are combined into a single fuzzy set. Aggregation only occurs
once for each output variable. The input of the aggregation process is the list of truncated output functions returned by the implication process for each rule.
The output of the aggregation process is one fuzzy set for each output variable. The three built in methods for aggregation are max (maximum), probor (probalistic OR), and sum (simply the sum of each rule's output set).

5. Defuzzify
The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy set) and the output is a single number. Thus the final desired output for
each variable is a single number. However, the aggregate of a fuzzy set encompasses a range of output values, and so must be defuzzified in order to resolve a single output value from the set. The most popular defuzzification method is the centroid calculation, which returns the centre of area under the curve. Five built-in methods for defuzzification are centroid, bisector, middle of maximum, largest of maximum, and smallest of maximum.

3.2 Fundamentals of Reinforcement Learning
Reinforcement learning is a term that is attached to a family of unsupervised learning algorithms. Unsupervised algorithms force the learner to try to learn from its experiences. These algorithms build a mapping of situations onto actions. The learner is never told what actions to take but rather what results are desired.

3.2.1 Basics of Reinforcement Learning
Let X is the set of states and A is the set actions. The reinforcement r (t) is the consequence of action a(t) chosen in state s(t). The reinforcement function is an application of the product space X * A in R. The general process of reinforcement learning consists of following steps. The scheme is shown in Figure 3.

1. At time t agent is in state x (t).

2. It chooses one of the possible actions in this state, a (t).

3. It applies that action which results in: the passage to a new state, x (t+1) and the receipt of the reinforcement, r (t).

4. Time t is incremented i.e. t = t+1.

5. If the new state is terminal state, process is stopped else entire process is repeated again.

[image: image6]
Figure 3: Reinforcement Learning System.

Reinforcement learners have four main elements described as follows.

1. Policy

The policy defines how the learner reacts to the environment. A learner’s policy aids them in making decisions regarding their actions. For example if the learner is faced with choosing between two paths, the learner’s current policy will help it decide which path to take.

2. Reward function

This function defines what is good and what is bad. The reward function provides immediate feedback in the form of a numerical value to the learner.

3. Value function

The value function defines what is good in the long run. In contrast to the reward, which is immediate depending on the learner’s current state, a value function describes all times the learner has been in a similar type of situation.

4. Model of the environment.
It describes the environment with which the agent interacts while performing actions to attain its goal.

3.2.2 Reinforcement Learning Algorithms

There are number of algorithms for reinforcement leaning. Some of the algorithms which are most commonly used and are important in context with project are described below.

3.2.2.1 Q-Learning Algorithm

Q-learning algorithm consists of updating the expected discounted reinforcement, Q(s, a) by taking action a in state s. The q-learning rule is given by:

Q(s, a)

Q(s,a) + α[r + γmaxa’Q(s’,a’) – Q(s,a)]

Where γ is the discount factor used to guarantee that the values are finite, 0<= γ<1

α is the learning constant , 0< α<=1.

After executing action agent leaves state s and goes to state s’, receiving by this action instantaneous reward r. maxa’Q (s’, a’) is the future evaluation of reward for the next state. Some of the characteristics of Qlearning are described below:

i. The evaluations of Q, the Q-values, are independent of the policy followed by the agent. Agent can follow any policy, while continuing to construct correct evaluations of the value of actions.

ii. Q-values are exploitable a long time before the formal convergence that can be sometimes very slow.

3.2.2.2 R-Learning Algorithm

R-learning algorithm uses average – reward framework. It has a rule based on deduction of values R(s, a), choosing an action a in state s. For each situation learner chooses the action that has the largest value Ra. The values of R are adjusted for each action based on following learning rule.

R(s, a)

R(s,a) + α[r - ρ + maxa’R(s’, a’) – R(s,a)]

ρ is the medium reward and is calculated as follows:

ρ
ρ + β[r- ρ + maxa’R (s’, a’) - maxaR(s, a)
The key point is that ρ is always updated when a non-randomly action R(s, a) is taken. The medium reward does not depend on some private state; it is a constant for the whole group of states.

3.3 Introduction to Cellular Automata
A Cellular Automaton (CA) is an infinite, regular lattice of simple finite state machines that change their states synchronously, according to a local update rule that specifies the new state of each cell based on the old states of its neighbours.

The reason behind the popularity of cellular automata can be traced to the enormous potential they hold in modelling complex systems, in spite of their simplicity. Cellular automata can be viewed as a simple model of a spatially extended decentralized system made up of a number of individual components called cells. The communication between constituent cells is limited to local interaction. Each individual cell is in a specific state which changes over time depending on the states of its local neighbours. However, this simple structure when iterated several times produces complex patterns displaying the potential to simulate different sophisticated natural phenomena. The main features of cellular automata are as follows.

1. Cellular automata are a regular n-dimensional lattice, where each cell of this lattice has a discrete state.
2. Cellular automata have a dynamical behaviour, described by so called rules. These rules describe the state of a cell for the next time step, depending on the states of the cells in the neighbourhood of the cell.
3. They operate in parallel.

4. They evolve based on local interactions and are homogenous in time and space.

3.3.1 Building Cellular Automata
The components that build up cellular automata are cell (computational unit), lattice and neighbourhood.

3.3.1.1 The Cell

The basic element of a CA is the cell. A cell is a kind of a memory element and stores states. In the simplest case, each cell can have the binary states 1 or 0. In more complex simulation the cells can have more different states.
3.3.1.2 Lattice

The cells are arranged in a spatial web - a lattice. The simplest one is the one dimensional "lattice", meaning that all cells are arranged in a line. The most common CA's are built in one or two dimensions.
3.3.1.3 Neighbourhood

Up to now, these cells arranged in a lattice represent a static state. To introduce dynamic into the system, we have to add rules. The "job" of these rules is to define the state of the cells for the next time step. In cellular automata a rule defines the state of a cell in dependence of the neighbourhood of the cell.
Different definition of neighbourhoods is possible. Considering a two dimensional lattice the following definitions are common:

1. Von Neumann Neighbourhood - Four cells, the cell above and below, right and left from each cell are called the von Neumann neighbourhood of this cell. The radius of this definition is 1, as only the next layer is considered.

2. Moore Neighbourhood - The Moore neighbourhood is an enlargement of the von Neumann neighbourhood containing the diagonal cells too. In this case, the radius is equal to one.

3. Extended Moore Neighbourhood - Equivalent to description of Moore neighbourhood above, but neighbourhood reaches over the distance of the next adjacent cells. Hence the radius is two or it cab be larger.
	[image: image7.png]
VonNeumann neighbourhood
	[image: image8.png]
Moore
Neighbourhood

	[image: image9.png]
Extended Moore Neighbourhood

Figure 4: Types of Neighbourhood

Figure 4 above shows the three types of neighbourhood. The red cell is the centre cell; the blue cells are the neighbourhood cells. The states of these cells are used to calculate the next state of the (red) centre cell according to the defined rule.
3.3.2 Characteristics of Cellular Automata Space
Characteristics of cellular automata space are described as follows:

1. State – It is the number of distinct states a cell can be in.

2. Neighbourhood – It describes how the cells are connected to one another.

3. Update Rule – Update rule changes the state of the cell based on the state of its neighbours.

3.3.3 Cellular Automata and Games

Cellular automata have been used to model different games, the most famous one proposed by Conway and his colleagues. They have illustrated how extremely simple CA rules can be used to characterize highly complex system behaviour such as the game of life. There are different variations of the game of life like games of proto-life which provides a model for the emergence of a crystalline precursor to life from an initial random prebiotic soup. Besides the game of life, there are other games which have been modelled through CA. Notable among these are the games which provide insights into the synchronization problems for example, the firing squad, firing mob, and queen bee. A CA simulation of the famous game of iterated prisoner’s dilemma has also been proposed.
3.4 Rational Choice Theory and Game Theory
Rational choice theory, as well as game theory, assesses the rationality of decisions in the light of preferences over outcomes and beliefs about the likelihood of these outcomes to appear. The basic difference between the two lies in the way they view the likelihood of outcomes. Decision theory treats all outcomes as exogenous events, ‘moves of nature’. Game theory, in contrast, focuses on those situations in which outcomes are determined by interactions of deliberating agents. It proposes that agents take outcomes as determined by other agents’ reasoning, and that agent therefore assess the likelihood of an outcome by trying to figure out how the other agents, they interact with will reason.

3.4.1 Rational Choice Theory

In Rational Choice Theory 'rationality' simply means that an agent acts as if balancing costs against benefits to arrive at action that maximizes advantage. The agents make decisions about how they should act by comparing the costs and benefits of different courses of action. As a result, patterns of behaviour will develop that result from those choices.
Rational choice theory makes two assumptions about agents' preferences for actions. These assumptions are describes as follows.
1. Completeness which means all actions can be ranked in an order of preference.
2. Transitivity according to which if action a1 is preferred to a2, and action a2 is preferred to a3, then a1 is preferred to a3.
3.4.1.1 Rational Agents

A rational agent is an agent which has clear preferences, models uncertainty via expected values, and always chooses to perform the action that results in the optimal outcome for itself from among all feasible actions. This project deals with rational agents assuming that the agents make rational choices so as to achieve its goal.
The action a rational agent takes depends on following:

1. The preferences of the agent

2. The agents information of its environment, which may come from past experience

3. The actions, duties and obligations available to the agent.

4. The estimated or actual benefits and the chances of success of the actions.

3.4.1.2 Rational Decision Making

A method of analyzing decisions in terms of expected utilities, using a decision tree as a tool, is generally accepted as the rational method of making an ideal decision. Any situation that we would call a decision consists of alternatives, beliefs and consequences as described below.

i. Alternatives – These are different courses of options, actions, choices, and strategies available to the decision maker.
ii. Belief – The term is used in the context of decision making, is our estimate of the likelihood that a particular outcome will occur if we choose a particular alternative.
iii. Consequences – These are the benefits or loses that you receive or experience from the choice of a particular alternative and the events that follow from that choice. The expected utility model provides the framework for most models of decision making, and it assumes rational behaviour on the part of the decision maker.

In expected utility model we combine the information in a three-step process:

1. Evaluate each course of an action under consideration by multiplying the utility of each of its consequences by its probability of occurrence.

2. Add these weighted values – to create a summary evaluation of each alternative.

3. Choose the course of action with the highest expected utility, that is, the one with the largest sum of probability-weighted utilities.
Expected utility = ∑p(xi)u(xi)
Where, p is the probability of each outcome, xi, where the subscript i is a variable representing each possible outcome and u is the utility of that outcome.
3.4.2 Game Theory

In gaming, player’s actions are referred to as moves. The role of analysis is to identify the sequence of moves that player should use. A sequence of moves is called a strategy, so an optimal strategy is a sequence of moves that results in your best outcome.

There are two fundamental types of games, sequential and simultaneous. These types are distinguished because they require different analytical approaches.
3.4.2.1 Sequential Games

To analyze a sequential game, first construct a game tree mapping out all of the possibilities. Then follow the following steps.

1. Look ahead to the very last decision, and assume that if it comes to that point, the deciding player will choose his/her optimal outcome.
2. Back up to the second-to-last decision, and assume the next player would choose his/her best outcome, treating the following decision as fixed.
3. Continue reasoning back in this way until all decisions have been fixed.

A key feature in sequential game is that looking ahead and reasoning back determines not just one player’s optimal strategy, but those for all players.
3.4.2.2 Simultaneous Games

In order to understand how the simultaneous game works consider a simple, but very famous example, called the Prisoner’s Dilemma. In prisoners Dilemma two suspected felons are caught and interrogated by the police in separate rooms. They are each told the following.

1. If you both confess, you will each go to jail for 10 years.

2. If only one of you confesses, he gets only 1 year and the other gets 25 years.

3. If neither of you confesses, you each get 3 years in jail.

In this case looking ahead and reasoning back is not possible, since neither decision is made first. So, all possible combinations need to be considered.

If the other prisoner confesses, the first prisoner will either get 10 years if he confesses or 25 if he doesn’t. So if the other prisoner confesses, the first would also prefer to confess. If the other prisoner holds out, the first prisoner will get 1 year if he confesses or 3 if he doesn’t, so again he would prefer to confess. And the other prisoner’s reasoning would be identical.

Following are the notable features of the game which can lay the ground work for developing strategies for simultaneous game.

1. Both players have dominant strategies. A dominant strategy has payoffs such that, regardless of the choices of other players, no other strategy would result in a higher payoff. Thus, both prisoners should confess.

2. Both players also have dominated strategies, with payoffs no better than those of at least one other strategy, regardless of the choices of other players.
3. A final observation here is that if both prisoners use their optimal strategies (confess), they do not reach an optimal outcome. Consequently, communication between the players can play an important role in this case; they could cooperate and agree to hold out so they would both get lighter sentences.

From above discussion following strategies for simultaneous games can be given:

1. If you have a dominant strategy, use it.

2. Otherwise, look for any dominated strategies and eliminate them.

3.4.3 Game Theory as Theory of Rationality

Game theory has often been interpreted as a part of a general theory of rational behaviour. To evaluate the success of this rational interpretation of game theory means to investigate its justification, in particular the justification of the solution concepts it proposes. This justification is provided by taking into account sufficient epistemic conditions for solution concepts. One way to investigate game theoretic rationality is to reduce its solution concepts to the more intuitively understood notion of rationality under uncertainty in decision theory.

The one solution concept studied previously, elimination of the dominating strategies; devise how to choose one’s action rationally when the outcome of one’s choice depends on the actions of the other players, who in turn base their choices on the expectation of how one will choose. The solution concepts thus not only require the players to choose according to “maximization considerations”; they also require the agent to maximize their expected utilities on the basis of certain beliefs. These beliefs include their expectations about what the other players expect of them, and their expectations what the other players will choose on the basis of these expectations. For the solution of eliminating dominated strategies, nothing is required beyond the rationality of the players and their knowledge of their own strategies and payoffs. Each agent can rule out its dominated strategies on the basis of maximization considerations alone, without knowing anything about the other player. To the extent that maximization considerations are accepted, this solution concept is therefore justified.
3.5 Conclusion

This chapter gives a detail description of fuzzy inference system, reinforcement learning, rational choice theory and game theory. The features of these AI techniques give an idea to design pursuit evasion game model using rational agents along with fuzzy inference system and reinforcement learning. This chapter also gives a detail description about various features of cellular automata and describes how in spite of their simplicity, they have an enormous potential for modelling complex systems. The features and the close association between cellular automata and games studied in this chapter gives an idea on how they can be used in modelling complex pursuit –evasion games with simple rules. Also this chapter throws light on the relation between game theory and rational choice theory. Both these theories rational choice theory and game theory discuss conditions under which agents’ actions, or at least their decision to act, can be said to be rational.

Chapter – 4
Design of Pursuit-Evasion Game Model

This chapter describes in detail the model of pursuit – evasion game developed in this project. The entire design is divided into four steps. First, there is a single agent and agent’s goal is to search for an optimum path to reach its target destination negotiating real time complex terrain and obstacles. Second, a reinforcement learning module is then added on top of the existing network of decision making processes so that the agent is able to learn a path which is more optimal with respect to obstacle avoidance and distance to the target destination. Third, single agent path finding game is then extended to a two agent pursuit-evasion game, here the evader is an agent who is guided by two main goals: one is to maintain a safe distance from pursuer and other to find an optimum path to its target destination. Fourth, Reinforcement learning module is then added for both evader and pursuer. The design part in the above defined four cases contains a common framework described below.
4.1 The Common Framework
The common flow of the design is same for all the four cases. The general flow is shown below in Figure 5, followed by the detailed description of all the components.
 [image: image10.png]
Figure 5: Agent Architecture for implementing Perceive-Reason-Act Cycle
4.1.1 Assumptions
In order to simulate pursuit-evasion game few assumptions are taken. These assumptions are described below.
1. The agent has partial knowledge about the environment. It can perceive only the 9 by 9 cellular space around itself.
2. The agent can make a move only in one of its eight surrounding cells.
3. Obstacles of Type 1 are less lethal and more penetrable as compared to obstacles of type 2.

4.1.2 Environment
The simulations are carried out in 300 by 300 cellular space. Figure 6 shows the cellular space along with the entities in that cellular space. The entire cellular space is divided into six entities.

[image: image11.png]
Figure 6: Cellular Space and its Entities
The detailed description of all the six entities shown in the figure above is described below:

1. Agent - It is an autonomous entity which perceives an environment, reason and then acts upon an environment and directs its activity towards achieving goals. Here goal of the agent is to reach a particular destination.
2. Go-Regions – These identify the regions suitable for agent’s movement and through agent can pass at its normal pace.
3. Slow-Go-Regions – These are regions where agent has to slow its pace. Agent can pass through these regions but has to move slowly.

4. No-Go-Regions – These are the regions where agent is prohibited to enter. These regions are not suitable for agent’s movement and agent must not enter these regions.

5. Obstacles of Type 1 – These are static obstacles and are characterized by how lethal and penetrable they are.
6. Obstacles of Type 2 – These are also static obstacles and have different lethality and penetrability levels as from type 1 obstacles.

7. Neighbourhood - The agent has a Moore Neighbourhood i.e. an agent can move in one of the eight surrounding cells.

4.1.3 Zone Division for Agent
The region with respect to agent is divided into three zones. Figure 7 gives pictorial representation of the three zones.

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

Figure 7: Metazone, Percept Zone and Movement Zone
 As agent has only partial information about the environment, it can perceive and operate in only these three zones. The description about the three zones is given below.

1. Metazones – It is 15 by 15 cellular space around the agent. The information perceived in this zone helps to select a metarule from given set of metarules. Details of metazone and metarule functioning are given in later sections.
2. Percept Zone – It is 9 by 9 cellular space around the agent. The information perceived in this zone forms the input to Fuzzy Inference Systems, details of which are given in the later sections.
3. Movement Zone – It is 3 by 3 cellular space around the agent. This space specifies the region where agent can make its next best move.
4.1.4 Inputs

4.1.4.1 Inputs from Metazone for metarule selection
Metazone is 15 by 15 cellular space around agent as described earlier; the inputs obtained from this zone are used to select a metarule from a given set of metarules. Inputs from this zone are described as follows.

1. Clutter density – It is the measure of number of obstacles present in 15 by 15 space. Clutter density variable can have one of the two values low and high. If number of obstacles in 15 by 15 is greater than certain threshold value clutter density is high else it is low.
2. Region Trafficability – Value of this input depends upon percentage of go-regions, slow region and no-go regions in 15 by 15 cellular space. Region Trafficability can have one of the three values fast, slow, very slow. Number of cells in 15 by 15 cellular space are 225. The formula for calculating region trafficability is given below.

If (% of go-region > 112.5) then region trafficability is fast.

Elseif (% of slow-go region == % of no-region || % of slow-go region > % of no-go region) then region trafficability is slow.

Elseif (% of slow-go region < % of no-go region) then region trafficability is very slow.

3. Height Distribution - This input takes into account percentage distribution of heights in 15 by 15 cellular space. This input is divided into three ranges high, low and average.
4. Number of obstacles of type 1 and type 2 - This input measures the count of obstacles of type 1 and count of obstacles of type 2 in 15 by 15 cellular space.
4.1.4.2 Inputs from Percept Zone for fixing temporary destination and final movement.
The inputs which are modelled in this project are provided by Dr. A.K. Sinha from Defence Terrain Research Lab, DRDO.

As described earlier percept zone is 9 by 9 space. Inputs obtained from this zone are passed to fuzzy inference systems. The information obtained from this zone provides ten inputs. The inputs are described in detail below.
1. Armour – It is the property of the agent and specifies how much arms and ammunition agent is carrying. It can have one of the three values low, medium and high.
2. Camouflage – It is the property of agent and specifies how well agent is able to hide itself. It can have one of the three values low, medium and high.
3. Lethality – It is the property of obstacles. It can take three values low, medium and high.
4. Penetrability – It is the property of obstacles. It determines the radius up to which the obstacle has its influence. It can have one of the three values low, medium and high.
5 Clutter Density - It tells whether the 9 by 9 cellular space is thickly or thinly populated with obstacles. It can have one of the three values low, medium and high.
6. Region Trafficability - It tells whether the 9 by 9 space is fast or slow or very slow trafficable region depending upon the percentages of go-regions, no go regions and slow - go regions in 9 by 9 cellular space. Number of cells in 9 by 9 cellular space are 81. The formula for calculating region trafficability is given below.
If (% of go-region > 40.5) then region trafficability is fast.
Elseif (% of slow-go region == % of no-region || % of slow-go region > % of no-go region) then region trafficability is slow.
Elseif (% of slow-go region < % of no-go region) then region trafficability is very slow.

7 Obstacle Altitude w.r.t. agent – This input determines whether the obstacle under consideration is at the same, higher or lower level with respect to the agent depending upon the height values of obstacle and agent. It can take any one of the three values same, lower, and higher.
8 Obstacle Distance w.r.t. agent – This input determines the distance between the agent and the obstacle under consideration. It can take any one of the three values near, far and very far.
9. Obstacle Direction w.r.t. agent – This input determines the direction of obstacle under consideration with respect to the agent. This input can take 16 values. These values and their corresponding angles are defined below in Table 1.
Table 1: Direction Distribution

	Direction Names
	Angles

	HW
	[-157.5, 157.5]

	LSW
	[-165,-150]

	SW
	[-157.5,-112.5]

	RSS
	[-120,-105]

	HS
	[-112.5,-167.5]

	LSS
	[-75,-60]

	SE
	[-67.5,-22.5]

	RSE
	[-30,-15]

	HE
	[-22.5, 22.5]

	LSE
	[15, 30]

	NE
	[22.5, 67.5]

	RSN
	[60, 75]

	HN
	[67.5, 112.5]

	LSN
	[105,120]

	NW
	[112.5, 157.5]

	RSW
	[150,165]

10. Target Direction – This input determines the direction of destination, destination can be local destination or it can be final target destination, with respect to agent. This input can take 16 values as described for obstacle direction in Table 2.
4.1.5 Designing Fuzzy Inference Systems

The common framework consists of three fuzzy inference systems. The three fuzzy inference systems are described in detail below.
4.1.5.1 First Fuzzy Inference System

Figure 8 shows the first fuzzy inference system

[image: image12.png]
Figure 8: First Fuzzy Inference System

Inputs to FIS

Inputs to the first fuzzy inference system are camouflage, obstacle altitude with respect to rover, region trafficability and target direction. All these inputs are described in detail in earlier section.

Membership Functions for Inputs
A membership function (MF) is a curve that defines how each point in the input space is mapped to a membership value. Membership functions designed for each input are described below.
1. Camouflage – Low, medium and high membership functions are designed for camouflage. All the three membership functions are trapezoidal membership functions. Details of membership functions are given in Table 2.

Table 2: Details of Membership Functions for Camouflage

	Membership Function
	Range
	Type

	Low
	1-4
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	6-10
	Trapezoidal

2. Obstacle –Altitude - Lower, same and higher membership functions are designed for obstacle altitude. Lower and higher membership functions are trapezoidal membership functions. Same membership function is triangular in nature. Table 3 gives the details of membership functions.

Table 3: Details of Membership functions of Obstacle Altitude

	Membership Function
	Range
	Type

	Lower
	-100-0
	Trapezoidal

	Same
	-40-40
	Triangular

	Higher
	0-100
	Trapezoidal

3. Region Trafficability – Low, medium and high membership functions are designed for region trafficability. All the three membership functions are trapezoidal membership functions. Table 4 below gives the details of membership functions.
Table 4: Details of Membership functions of Region Trafficability

	Membership Function
	Range
	Type

	Low
	0-5
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	5-10
	Trapezoidal

4. Target direction – There are seventeen membership functions for target direction. Table 5 below gives the details of all the membership functions.
Table 5: Details of Membership Functions of Target Direction.

	Membership Functions
	Range
	Type

	HW
	[157.5,180]
	Triangular

	LSW
	[-165,-150]
	Triangular

	SW
	[-157.5,-112.5]
	Triangular

	RSS
	[-120,-105]
	Triangular

	HS
	[-112.5,-167.5]
	Triangular

	LSS
	[-75,-60]
	Triangular

	SE
	[-67.5,-22.5]
	Triangular

	RSE
	[-30,-15]
	Triangular

	HE
	[-22.5, 22.5]
	Triangular

	LSE
	[15, 30]
	Triangular

	NE
	[22.5, 67.5]
	Triangular

	RSN
	[60, 75]
	Triangular

	HN
	[67.5, 112.5]
	Triangular

	LSN
	[105,120]
	Triangular

	NW
	[112.5, 157.5]
	Triangular

	RSW
	[150,165]
	Triangular

	HW1
	[-180,-157.5]
	Triangular

Outputs from FIS

Outputs obtained from this fuzzy inference system are described below.

1. Climb – The output of fuzzy inference system is always a crisp value, however one can determine the range in which the output lies and then take the required action. The climb output tells the agent whether it should climb higher, lower or remain at the same altitude depending upon the crisp value obtained from the FIS.
2. Time-Delay-Region – This output of fuzzy inference system gives agent an idea of whether it should move at a slow pace or fast pace while covering the 9 by 9 space which at that particular time is in consideration.

3. Goal –Steer Direction – This output gives agent an idea about the direction in which it should move in order to achieve its goal.

Membership Functions for Outputs
Membership functions designed for each output are described below.

1. Climb – Lower, same and higher membership functions are designed for climb. Lower and higher membership functions are trapezoidal membership functions. Same membership function is triangular in nature. Table 6 gives the details of membership functions.

Table 6: Details of Membership functions of Climb

	Membership Function
	Range
	Type

	Lower
	-100-0
	Trapezoidal

	Same
	-40-40
	Triangular

	Higher
	0-100
	Trapezoidal

2. Time –Delay-Region – Low, medium and high are the three membership functions designed for time-delay-region. Low and high are trapezoidal membership functions. Medium is triangular membership function. Table 7 below gives the details of membership functions.
Table 7: Details of Membership Functions of Time-Delay-Region

	Membership Function
	Range
	Type

	Low
	0-5
	Trapezoidal

	Medium
	3-7
	Triangular

	High
	5-10
	Trapezoidal

3. Goal-Steer direction – There are seventeen membership functions for Goal-Steer direction. These membership functions are same as described in Table 5.
First Fuzzy Inference System – Rules
Rules Description for first fuzzy inference system is as follows.
i. Rules are of type:
“If camouflage is HIGH and obstacle-altitude is LOWER and region-trafficability is HIGH and target-direction is HE then climb is HIGHER and time-delay region is LOW and goal-steer direction is HE.”

Similarly, for other combinations of input values, different combinations of output values are defined.
ii. All the inputs and outputs are joined using AND connector.

iii. All the rules are given weight value one.
4.1.5.2 Second Fuzzy Inference System

Figure 9 shows the second fuzzy inference system

[image: image13.png]
Figure 9: Second Fuzzy Inference System

Inputs to FIS

Inputs to the second fuzzy inference system are armour, obstacle-distance with respect to rover, penetrability and lethality. All these inputs are described in detail in earlier.

Membership Functions for Inputs
Membership functions designed for each input are described below.

1. Armour – Low, medium and high membership functions are designed for armour. All the three membership functions are trapezoidal membership functions. Details of membership functions are given in Table 8.

Table 8: Details of Membership Functions for Armour

	Membership Function
	Range
	Type

	Low
	1-4
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	6-10
	Trapezoidal

2. Obstacle –Distance - Near, far and very far membership functions are designed for obstacle distance. All the membership functions are of trapezoidal type. Table 9 gives the details of membership functions.
Table 9: Membership functions of Obstacle Altitude.
	Membership Function
	Range
	Type

	Near
	0-2.5
	Trapezoidal

	Far
	2.5-4.5
	Trapezoidal

	Very Far
	4-7
	Trapezoidal

3. Penetrability – Low, medium and high membership functions are designed for penetrability. All the three membership functions are trapezoidal membership functions. Table 10 below gives the details of membership functions.
Table 10: Details of Membership functions of Penetrability

	Membership Function
	Range
	Type

	Low
	0-4
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	6-10
	Trapezoidal

4. Lethality – Low, medium and high are the three membership functions designed for lethality. All the three membership functions are trapezoidal membership functions. Table 11 below gives the details of all the membership functions.

Table 11: Membership Functions of Lethality.

	Membership Function
	Range
	Type

	Low
	0-4
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	6-10
	Trapezoidal

Outputs from FIS

Outputs obtained from this fuzzy inference system are described below.

1. Separation Distance – The separation radius output tells the agent how much distance it should maintain from the obstacle under consideration (obstacle for which FIS is called).
2. Time-Delay-Obstacle – This output of fuzzy inference system gives agent an idea of whether it should move at a slow pace or fast pace while passing the obstacle under consideration.
3. Probability Trap – This output gives probability of being trapped under given circumstances.
Membership Functions for Outputs
Membership functions designed for each output are described below.

1. Separation Distance – Small, large and very large are the three membership functions designed for separation distance. All membership functions are trapezoidal membership functions. Table 12 gives the details of membership functions.

Table 12: Details of Membership functions of Separation Distance

	Membership Function
	Range
	Type

	Small
	0-2.5
	Trapezoidal

	Large
	2.5-4.5
	Trapezoidal

	Very Large
	4-7
	Trapezoidal

2. Time-Delay-Obstacle – Low, medium and high are the three membership functions designed for time-delay-region. Low and high are trapezoidal membership functions. Medium is triangular membership function. Table 13 below gives the details of membership functions.

Table 13: Details of Membership Functions of Time-Delay-Obstacle

	Membership Function
	Range
	Type

	Low
	0-5
	Trapezoidal

	Medium
	3-7
	Triangular

	High
	5-10
	Trapezoidal

3. Probability Trap –Low, medium and high are the three membership functions designed for probability trap. Low and high membership functions are of type trapezoidal. Medium membership function is of type triangular. Table 14 below gives the details of all the membership functions.

Table 14: Details of Membership Functions of Probability Trap.

	Membership Function
	Range
	Type

	Low
	0-5
	Trapezoidal

	Medium
	3-7
	Triangular

	High
	5-10
	Trapezoidal

Second Fuzzy Inference System – Rules
Rules Description for second fuzzy inference system is as follows.

i. Rules are of type:
“If armour is HIGH and obstacle-distance is NEAR and lethality is LOW then Separation-radius is SMALL and time-delay obstacle is LOW and probability-trap is LOW.”

 Similarly, for other combinations of input values, different combinations of output values are defined.
ii. All the inputs and outputs are joined using AND connector.

iii. All the rules are given weight value one.
4.1.5.3 Third Fuzzy Inference System

Figure 10 shows the first fuzzy inference system

[image: image14.png]
Figure 10: Third Fuzzy Inference System

Inputs to FIS

Inputs to the first fuzzy inference system are obstacle-direction with respect to agent, obstacle-distance with respect to agent, clutter density and target direction. All these inputs are described in detail earlier.

Membership Functions for Inputs
Membership functions designed for each input are described below.

1. Obstacle Direction – There are seventeen membership functions for Obstacle direction. The membership functions for obstacle direction are same as given in Table 10.
2. Obstacle Distance - Near, far and very far membership functions are designed for obstacle distance. All the three membership functions are trapezoidal membership functions. Table 15 gives the details of membership functions.

Table 15: Membership functions of Obstacle Distance.

	Membership Function
	Range
	Type

	Near
	0-2.5
	Trapezoidal

	Far
	2.5-4.5
	Trapezoidal

	Very Far
	4-7
	Trapezoidal

3. Clutter Density – Low, medium and high are the three membership functions designed for clutter density. All the three membership functions are trapezoidal membership functions. Table 16 below gives the details of membership functions

Table 16: Membership functions of Clutter Density

	Membership Function
	Range
	Type

	Low
	0-0.15
	Trapezoidal

	Medium
	0.075-0.4375
	Trapezoidal

	High
	0.375-1
	Trapezoidal

4. Target direction – There are seventeen membership functions for target direction.
The membership functions for target direction are same as given in Table 5.

Outputs from FIS

Outputs obtained from this fuzzy inference system are described below.

1. Separation Distance – The separation radius output tells the agent how much distance it should maintain from the obstacle under consideration (obstacle for which FIS is called).

2. Probability Trap – This output gives probability of being trapped under given circumstances.

3. Goal –Steer Direction – This output gives agent an idea about the direction in which it should move in order to achieve its goal.

Membership Functions for Outputs
Membership functions designed for each output are described below.

1. Separation Distance – Small, large and very large are the three membership functions designed for separation distance. All membership functions are trapezoidal membership functions. Table 17 gives the details of membership functions.

Table 17: Membership functions of Separation Distance.

	Membership Function
	Range
	Type

	Small
	0-2.5
	Trapezoidal

	Large
	2.5-4.5
	Trapezoidal

	Very Large
	4-7
	Trapezoidal

2. Probability Trap – Low, medium and high are the three membership functions designed for probability trap. Low and high membership functions are of type trapezoidal. Medium membership function is of type triangular. Table 18 below gives the details of all the membership functions.

Table 18: Membership Functions of Probability Trap

	Membership Function
	Range
	Type

	Low
	0-5
	Trapezoidal

	Medium
	3-7
	Triangular

	High
	5-10
	Trapezoidal

3. Goal-Steer direction – There are seventeen membership functions for Goal-Steer direction. The membership functions for goal-steer direction are same as in Table 5.
Third Fuzzy Inference System – Rules
Rules Description for third fuzzy inference system is as follows.

i. Rules are of type:
“If obstacle-direction is HE and obstacle-distance is NEAR and clutter-density is LOW and target-direction is HE then separation-radius is VERY_LARGE and probability-trap is LOW and Goal-steer direction is LSE.”

Similarly, for other combinations of input values, different combinations of output values are defined.
ii. All the inputs and outputs are joined using AND connector.

iii. All the rules are given weight value one.
4.1.6 Designing of Metarules

There are nine Metarules depending upon which it is determined what combination of fuzzy inference systems is to be called. Metarules are based on the inputs received from the metazone. The inputs obtained from metazone are clutter density, region trafficability, height values and count of two types of obstacle. The detailed description of these inputs is given in previous sections.
1. Metarule 1
Condition: Region trafficability in 15 by 15 space is slow or very slow and clutter-density is high and number of obstacles of type 1 are greater than number of obstacles of type 2.

Action: Call first and third fuzzy inference system.
2. Metarule 2

Condition: region trafficability in 15 by 15 space is slow or very slow and clutter-density is high and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2

Action: Call first, second and third fuzzy inference system.

3. Metarule 3

Condition : Region trafficability in 15 by 15 space is slow or very slow and clutter-density is low and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2 or number of obstacles of type 1 are greater than the number of obstacles of type 2
Action: Call first and second fuzzy inference system.

4. Metarule 4

Condition: Region trafficability in 15 by 15 space is fast and percentage of low peaks is high and clutter-density is high and number of obstacles of type 1 are greater than the number of obstacles of type 2.
Action: Call the third fuzzy inference system.

5. Metarule 5

Condition : region trafficability in 15 by 15 space is fast and percentage of low peaks is high and clutter-density is high and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2
Action: Call second and third fuzzy inference system.

6. Metarule 6

Condition : Region trafficability in 15 by 15 space is fast and percentage of low peaks is high and clutter-density is low and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2 or number of obstacles of type 1 are greater than the number of obstacles of type 2

Action: Call second and third fuzzy inference system.

7. Metarule 7

Condition: region trafficability in 15 by 15 space is fast and percentage of low peaks is low and clutter-density is high and number of obstacles of type 1 are greater than the number of obstacles of type 2

Action: Call first and third fuzzy inference system.

8. Metarule 8

Condition : Region trafficability in 15 by 15 space is fast and percentage of low peaks is low and clutter-density is high and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2.
Action: Call first, second and third fuzzy inference system.

9. Metarule 9

Condition : region trafficability in 15 by 15 space is fast and percentage of low peaks is low and clutter-density is low and number of obstacles of type 1 are less than or equal to the number of obstacles of type 2 or number of obstacles of type 1 are greater than the number of obstacles of type 2
Action: Call first and second fuzzy inference system.
4.1.7 Mental Map Design
Using the outputs of fuzzy inference systems three mental maps are created one for separation radius, one for goal steer direction and one for climb. Mental maps assign utility values to the cells; these utility values give an idea of eligible cells. The three mental maps obtained are then combined to get final mental map. This final mental map gives an idea of the cell which is eligible with respect to climb (measured w.r.t obstacles in 9 by 9 cellular space), separation radius (measured w.r.t obstacles in 9 by 9 cellular space) and goal-steer direction. The mental maps are constructed only when there are obstacles in 9 by cellular space around the current position of the agent. These maps are constructed twice for each and every position of agent, first for selecting the temporary destination in agent’s 9 by 9 cellular space and then for selecting cell for next best move. The entire process of constructing the mental maps is covered in the implementation section, here only the design of mental map is covered. Figure 11 below shows the how the three mental maps are combined to get final map. For common framework the combining procedure remains same for both temporary destination selection and next best move selection.

[image: image15]
Figure 11: Designing of Mental Maps
4.2 Two person game – Nature as Adversary, No Learning

This model contains the common framework in totality. Here there is only one agent and nature plays the role of the adversary. Agent has to start from a given location and reach its destination by following shortest as well as safest path. The design of this model is same as that of the common framework as described in the previous section.
4.3 Two person game – Nature as Adversary with Learning

The fuzzy inference design of this model is similar to the design of two person game with nature as adversary and no learning. The mental map design for selecting the next best move is changed to incorporate the learning part; the mental map design for selecting the temporary location remains same. The next best move is selected based on the four maps; the first three mental maps are obtained from the first three fuzzy inference systems. Fourth one is the map obtained from reinforcement learning module. The fourth map selects that cell as eligible cell which has given maximum reward earlier when the similar state was encountered before. This fourth map is combined with the first three maps to get final mental map.

The figure 12 below shows how the four maps are combined to give final mental map.

[image: image16]
Figure 12: Designing of Mental Maps for Two Person Game, Nature as Adversary with Learning

4.4 Pursuit Evasion Game, No Learning
In the pursuit evasion game model there are two agents one is the evader and the other is pursuer. The goal of evader is to reach a particular target destination while maintaining safe distance from pursuer and the goal of pursuer is to capture the evader in minimal time possible. Both evader and pursuer follow the common framework along with some additions in the design of fuzzy inference systems.
4.4.1 Assumptions

Along with the assumptions given in section 4.2, there are some additional assumptions as given below.

1. Pursuit-Evasion game modelled in this project is a simultaneous game.

2. Pursuer is supplied information about evader’s position after every ten steps taken by pursuer. Pursuer is given information about the octant in which the evader lies.
3. Evader is supplied information of pursuer’s position after every five steps taken by evader. Evader is given information about the octant in which the pursuer lies.

4.4.2 FIS Design for Evader
Evader has two objectives as given below.

1. To reach the destination by following shortest and safest path.
2. To maintain a safe distance from pursuer so as to avoid its capture.

To take into account both these objectives two more fuzzy inference systems are designed for evader in addition to three fuzzy inference systems described for common framework.
4.4.2.1 Fourth Fuzzy Inference System
Figure 13 shows the fourth fuzzy inference system

[image: image17.png]
Figure 13: Fourth Fuzzy Inference System

Inputs to FIS

Inputs to the first fuzzy inference system are pursuer direction, target direction and camouflage. Pursuer direction gives the direction of the pursuer with respect to evader.

Membership Functions for Inputs
Membership functions designed for each input are described below.

1. Pursuer Direction – There are seventeen membership functions for pursuer direction. The membership functions for pursuer direction are same as given in Table 5.

2. Target Direction - There are seventeen membership functions for target direction. The membership functions for target direction are same as given in Table 5.
3. Camouflage – Low, medium and high membership functions are designed for camouflage. All the three membership functions are trapezoidal membership functions. Details of membership functions are given in Table 19.

Table 19: Details of Membership Functions for Camouflage

	Membership Function
	Range
	Type

	Low
	1-4
	Trapezoidal

	Medium
	3-7
	Trapezoidal

	High
	6-10
	Trapezoidal

Outputs from FIS

Outputs obtained from this fuzzy inference system are described below.

1. Goal –Steer Direction – This output gives agent an idea about the direction in which it should move in order to achieve its goal.

Membership Functions for Outputs
Membership functions designed for each output are described below.

1. Goal-Steer direction – There are seventeen membership functions for Goal-Steer direction. The membership functions for goal-steer direction are same as given in Table 5.
Fourth Fuzzy Inference System – Rules
Rules Description for fourth fuzzy inference system is as follows.

i. Rules are of type:
“If pursuer-direction is HE and target-direction is HE and camouflage is high then Goal-steer direction is LSE.”

Similarly, for different combinations of input values goal-steer direction is defined.
ii. All the inputs and outputs are joined using AND connector.

iii. All the rules are given weight value one.
4.4.2.2 Fifth Fuzzy Inference System

Figure 14 shows the fourth fuzzy inference system

[image: image18.png]
Figure 14: Fifth Fuzzy Inference System

Inputs to FIS

Inputs to the first fuzzy inference system are pursuer direction. Pursuer direction gives the direction of the pursuer with respect to evader.

Membership Functions for Inputs
Membership functions designed for each input are described below.

1. Pursuer Direction – There are seventeen membership functions for pursuer direction. The membership functions for pursuer direction are same as given in Table 5.
Outputs from FIS

Outputs obtained from this fuzzy inference system are described below.

1. Goal –Steer Direction – This output gives agent an idea about the direction in which it should move in order to achieve its goal.

Membership Functions for Outputs
Membership functions designed for each output are described below.

1. Goal-Steer direction – There are seventeen membership functions for Goal-Steer direction. The membership functions for goal –steer direction are same as given in Table 5.
Fifth Fuzzy Inference System – Rules
Rules Description for fifth fuzzy inference system is as follows.

i. Rules are of type:
“If pursuer direction is HE then Goal-Steer –Direction is HW1.”

Similarly, Goal-steer direction is defined for each and every pursuer direction input.
ii. All the inputs and outputs are joined using AND connector.

iii. All the rules are given weight value one.
4.4.3 FIS Design for Pursuer

Pursuer has only one objective, to capture evader in minimal possible time. The target direction for pursuer is the direction of evader. So the fuzzy inference design for purser is same as that of the common framework.

4.4.4 Mental Map Design for Evader
As described earlier mental maps are constructed twice, first for temporary destination selection and then for selecting the next best move. Design for each is given below.

Mental Map Design for Evader for choosing Temporary Destination

Evader prepares four mental maps. From the outputs of first three fuzzy inference systems three mental maps are constructed one for separation radius, one for goal steer direction and one for climb. The output of fourth and fifth fuzzy inference system is goal-steer direction and using this output two more maps are created for direction. These maps are called the probability maps and these maps tell the evader where the probability of finding the evader is maximum. In the fourth mental map eligible cells are those which are at safe distance from pursuer and are close enough to target destination. In the fifth mental map eligible cells are those which are at the maximum distance from pursuer, distance to target destination is not taken into consideration for this case. If the pursuer is not in the 15 by 15 cellular space of the evader fourth mental map is combined with the first three mental maps. However, if pursuer is in the 15 by 15 cellular space of the evader then fifth mental map is combined with the first three mental maps. Figure 15 below shows how all the four maps combined to form a final mental map.

[image: image19]
Figure 15: Mental Map Design for Evader

Mental Map Design for Evader for choosing Next Best Move
The design of mental map for selecting next best move is same as it is for selecting the temporary destination.
4.4.5 Mental Map Design for Pursuer

Mental map design for pursuer remains same as that of the common framework for both selecting the temporary destination and for selecting the cell for next best move.
The rest of the design is same as common framework for both pursuer and evader. The difference lies at the point of implementation.

4.5 Pursuit Evasion Game, With Learning.

In this pursuit evasion game model there are two agents one is the evader and the other is pursuer. The goal of evader is to reach a particular target destination while maintaining safe distance from pursuer and the goal of pursuer is to capture the evader in minimal time possible. Both evader and pursuer follow a reinforcement algorithm so as to improve their path by learning to choose a cell which will give maximum reward in the long run. Implementation of the entire reinforcement algorithm is explained in detail in the next chapter. Both evader and pursuer have the same framework as they have in pursuer-evader game model with no learning. Some modifications are made in the design of mental maps so as to incorporate the learning element.
4.5.1 Assumptions

Along with the assumptions given in section 4.2, there are some additional assumptions as given below.

1. Pursuit-Evasion game modelled in this project is a simultaneous game.

2. Pursuer is supplied information of evader’s position after every ten steps. Pursuer is given information about the quadrant in which the evader lies.

3. Evader is supplied information of pursuer’s position after every five steps. Evader is given information about the quadrant in which the evader lies.

4. The reinforcement algorithm considers a pattern of 5 by 5 cellular space around the current position of agent as a state and the movement to the eight surrounding cells of the agent is considered as an action.
4.5.2 Design of Mental Maps for Evader
As described earlier mental maps are constructed twice, first for temporary destination selection and then for selecting the next best move. Design for each is given below.

Mental Map Design for Evader for choosing Temporary Destination

Evader prepares four mental maps. From the outputs of first three fuzzy inference systems three mental maps are constructed one for separation radius, one for goal steer direction and one for climb. The output of fourth and fifth fuzzy inference system is goal-steer direction and using this output two more maps are created for direction. These maps are called the probability maps and these maps tell the evader where the probability of finding the evader is maximum. In the fourth mental map eligible cells are those which are at safe distance from pursuer and are close enough to target destination. In the fifth mental map eligible cells are those which are at the maximum distance from pursuer, distance to target destination is not taken into consideration for this case. If the pursuer is not in the 15 by 15 cellular space of the evader fourth mental map is combined with the first three mental maps. However, if pursuer is in the 15 by 15 cellular space of the evader then fifth mental map is combined with the first three mental maps. Figure 16 below shows how all the four maps combined to form a final mental map.

[image: image20]
Figure 16: Mental Map Design for Evader for Selecting Temporary Destination
Mental Map Design for Evader for choosing Next Best Move
The figure 17 below shows the design of mental maps for choosing next best move, design is similar to design developed for choosing the temporary destination except that a fifth map is added to the mental maps of separation, direction ,climb and probability map of direction. This fifth map is obtained from the reinforcement learning module. This map selects that cell as eligible cell which has given maximum reward earlier when the evader encountered similar state before.

[image: image21]
Figure 17: Mental Map Design for Evader for Selecting Next Best Move

4.5.3 Mental Map Design for Pursuer

Mental map design for pursuer remains same as that of the common framework for selecting the temporary destination.
Mental Map Design for Pursuer for choosing Next Best Move
The next best move is selected based on the four maps; the first three mental maps are obtained from the first three fuzzy inference systems. Fourth one is the map obtained from reinforcement learning module. The fourth map selects that cell as eligible cell which has given maximum reward earlier when the similar state was encountered before. This fourth map is combined with the first three maps to get final mental map.

The figure 18 below shows how the four maps are combined to give final mental map.

[image: image22]
Figure 18: Mental Map Design for Pursuer for Selecting Next Best Move

4.6 Conclusion

This chapter describes in detail the design of the entire project. The design part included the designing of cellular space, fuzzy inference systems, metarule and mental maps. Using these design concepts implementation of the three game models is done. Implementation is described in detail in next chapter.

Chapter 5
Implementation Details of Pursuit-Evasion Game Model

This chapter describes in detail the implementation of the four game models taken up in this project.

1. Two person game with nature playing the role of adversary and no learning is incorporated.

2. Two person game with nature playing the role of adversary and with learning incorporated.

3. Pursuit-Evasion game, where one agent acts an evader and other as pursuer and no learning is incorporated.

4. Pursuit-Evasion game with reinforcement learning.
The algorithm for all the four game models is developed under the guidance of Dr. A.K. Sinha from Defence Terrain Research Lab, DRDO.
5.1 Two Person Game with Nature as Adversary, No learning
In this game there is only one agent. The goal of agent is to reach a particular destination using safest and shortest path, avoiding the collision with obstacles, maintain its pace while passing through slow go regions and avoid entering into no go regions. Following is the step by step description of how the entire game situation has been implemented.

5.1.1 Image Draping

The game model is designed on three dimensionally visualized 300 by 300 cellular space. In order to assign height values to all the cells in this cellular space, image draping is performed by wrapping a 300 by 300 DEM matrix (height matrix) over the two dimensional 300 by 300 cellular space.
5.1.2 Initialization

During initialization properties of agent, obstacle and region are set and two objects of obstacle class and one object of rover class are created.
Properties of Obstacle are:

1. Type – This property determines whether obstacle is of type 1 or type 2.

2. Value – This property assigns a number to obstacle, the obstacles are then referenced using this number only. In this implementation obstacles of type 1 have been assigned number 9 and obstacles of type 2 have been assigned number 7.
3. Lethality – This property determines lethality of obstacle. It can have one of the three values low, medium and high. In this implementation obstacles of type 1 are considered to be less hazardous as compared to obstacles of type 2.
4. Penetrability – This property determines the ease with which obstacle can be breached. It can have one of the three values low, medium and high. In this project obstacles of type 1 are considered to be more penetrable as compared to obstacles of type 2.

Table 20: Obstacle Initialization

Properties of Agent are:

1. Type – This property determines whether agent is evader or pursuer, since in this case there is only one agent it is considered to be a rover.

2. Value – This property assigns a number to an agent, the agent is then referenced using this number only. In this model agent is assigned a number 15
3. Camouflage – This property determines agent’s ability to conceal itself from its surroundings. It can have one of the three values low, medium and high.
4. Armour – This property measures the amount of armour agent is carrying. It can have one of the three values low, medium and high.
Table 21: Agent Initialization

	Agent Initialization

rov = rover ('rover','rover',15,cam_val,arm_val);

cam_val = [low, medium, high]

arm_val = [low, medium, high]

Here, rov is object of class rover, cam_val is the value of camouflage, and arm_val is the value of armour.

Properties of Region:
1. Go region is assigned a value 0.

2. Slow-go region is assigned a value 4.

3. No-go region is assigned a value 8.

Also the initial position of the rover and the final target position where rover has to reach are initialized.

After initialization, all these values are passed as input to entire game model.
5.1.3 Algorithm for Two Person Game with Nature as Adversary, No Learning
This algorithm takes into consideration two cases, first is when there are obstacles in 9 by 9 cellular space around the current position of the agent and second is when there are no obstacles in 9 by 9 cellular space around the current position of the agent. These two cases are handled in different manner as described below.

5.1.3.1 When there are Obstacles in 9 by 9 cellular space

The algorithm takes two passes in order to select best next move. During the first pass a temporary destination is selected in 9 by 9 cellular space. During second pass, cell for next best move is selected considering the temporary destination as its target destination. The algorithm is divided into two passes because agent has partial information about its environment and this division helps to take into account unpredictable things that can happen.

Pass 1 – Selecting Temporary Destination
In this pass temporary destination is calculated for the current position of the agent .Following is the step by step description of how the temporary destination is selected.
1. Calculating Inputs of FIS - The first step is to calculate the inputs which are to be passed to the three fuzzy inference systems. There are total of ten inputs which are passed to the three fuzzy inference systems. Out of these ten inputs, four inputs which are camouflage, armour, lethality and penetrability are obtained from the objects created for obstacle and agent. The other six inputs are retrieved from the 9 by 9 cellular space. The description of how the inputs are calculated is given below.
i. Target Direction – At any particular instant of time, the current position of the agent and final target destination of the agent is known; using these values target direction is calculated.
Once target direction is obtained, it is determined in which direction class it lies. Direction classes are as given in Table 5. After direction class is determined a random value is generated in that class which is the final value of target direction to be passed to the fuzzy inference systems.
ii. Clutter Density – Number of obstacles in the 9 by 9 cellular space around the agent is counted. Depending upon the number it is determined whether clutter density is low, medium or high. If number of obstacles in the 9 by 9 cellular space are greater than equal to 5 then clutter density is taken to be high, if number of obstacles in the 9 by 9 cellular space are greater than equal to 3 and less than 5 then clutter density is taken to be medium and for other lower values of obstacle count, clutter density is taken to be low.
After determining the class(low, medium, high) in which clutter density lies, a random value is selected in that class which becomes final value of clutter
density to be passed to the fuzzy inference system. The ranges for three classes are: low ([0, 0.15], medium ([0.075, 0.4375], high ([0.375, 1].
iii. Region Trafficability – Depending upon the number of cells belonging to go-regions, slow-go regions and no-go regions in 9 by 9 cellular space around the agent, the percentages of these regions is calculated using which region trafficability is determined as explained earlier in chapter 4.
After determining the class(low, medium, high) in which region trafficability lies, a random value is selected in that class which becomes final value of region trafficability to be passed to the fuzzy inference system. The ranges for
three classes are: low ([0, 5], medium ([3, 7], high ([5, 10].
iv. Camouflage – The value of camouflage is passed as input to the entire model. Depending upon the class(low, medium, high) in which camouflage lies, a random value is selected in that class which becomes final value of camouflage to be passed to the fuzzy inference system. The ranges for three classes are: low ([0, 4], medium ([3, 7], high ([6, 10].
v. Armour – The value of armour is passed as input to the entire model. Depending upon the class(low, medium, high) in which armour lies, a random value is selected in that class which becomes final value of armour to be passed to the fuzzy inference system. The ranges for three classes are: low ([0, 4], medium ([3, 7], high ([6, 10].
vi. Lethality – The value of lethality is passed as input to the entire model. Depending upon the class(low, medium, high) in which lethality lies, a random value is selected in that class which becomes final value of lethality to be passed to the fuzzy inference system. The ranges for three classes are: low ([0, 4], medium ([3, 7], high ([6, 10].
vii. Penetrability – The value of penetrability is passed as input to the entire model. Depending upon the class(low, medium, high) in which penetrability lies, a random value is selected in that class which becomes final value of penetrability to be passed to the fuzzy inference system. The ranges for three classes are: low ([0, 4], medium ([3, 7], high ([6, 10].

viii. Obstacle Distance – The obstacle distance is the distance of obstacle present in 9 by 9 cellular space from the current position of the agent. Distance is calculated using the distance formula. Obstacle distance is calculated for each and every obstacle present in 9 by 9 cellular space.
ix. Obstacle direction – The direction of obstacle present in 9 by 9 cellular space around the agent is calculated with respect to the agent. The obstacle direction is calculated for each and every obstacle present in the 9 by 9 cellular space around the agent.
x. Obstacle Altitude – Each and every cell in the cellular space is assigned a height value. The height values are divided into five classes. The ranges of classes are:

Class 1 ([0.0, 0.2]
Class 2 ([0.2, 0.4]
Class 3 ([0.4, 0.6]
Class 4 ([0.6, 0.8]
Class 5 ([0.8, 1.0]
The height value of the cell in which the obstacle lies and height value of cell in which the agent lies is obtained and depending upon in which class height
values of obstacle and agent lies, a random value is calculated in that class and using those random values height percentage is calculated as below.
Height percentage = ((Agent Height – Obstacle Height)/Agent Height) * 100;

Height percentage is further divided into three classes same (-40, 40), lower (-100, 0), and higher (0,100). Depending upon the range in which height percentage lies, a random value is calculated in that range and that input is final input for obstacle altitude to fuzzy inference systems. This process is
repeated for each and
every obstacle present in the 9 by 9 cellular space
around agent.
2. Calculating Inputs for selecting Metarule – Selection of the metarule is dependent on the inputs obtained from the 15 by 15 cellular space (metazone) around the current position of the agent. The description of how the inputs are calculated is given below.
i. Clutter Density – The number of obstacles in the 15 by 15 cellular space around the agent is counted. Depending upon the count, clutter density is determined to be low and high.
ii. Region Trafficability - Depending upon the number of cells belonging to s of go-region, slow-go regions and no-go regions in 15 by 15 cellular space around the agent, the percentages of these regions is calculated, using which region trafficability is determined as explained earlier in chapter 4.
iii. Height Value Distribution – All the cells in the entire cellular space are assigned height values. In the 15 by 15 cellular space around agent, percentage of cells with high height values, average height values and low height values is calculated. Height Values of 0.6 are considered to be high peaks, height Values between 0.3 and 0.6 are considered to be average peaks and other height Values are considered to be low peaks
iv. Distribution of Obstacles of Type 1 and Type 2 – The number of obstacles of type 1 and number of obstacle of type 2 are counted.

3. Selecting a Metarule and firing respective FIS – The inputs obtained from 15 by 15 cellular space (w.r.t. the agent) are used to select a particular metarule. Metarule description is given in detail in chapter 4. Under each metarule combination of fuzzy inference systems are called. So depending upon the metarule selected, fuzzy inference systems under that metarule are called and outputs of fuzzy inference systems are obtained. Selection of metarule and firing of corresponding fuzzy inference systems is carried out for each and every obstacle in 9 by 9 cellular space (w.r.t. the agent). Details of three fuzzy inference systems are given below.
i. First fuzzy inference system takes as input camouflage, obstacle altitude, region trafficability and target direction and gives as output goal- steer direction, climb and time-delay region.
ii. Second fuzzy inference system takes as input armour, obstacle distance, penetrability and lethality and gives as output separation radius, time- delay obstacle and probability trap.
iii. Third fuzzy inference system takes as input obstacle direction, obstacle distance, clutter density and target direction and gives as output goal- steer direction, separation radius and probability trap.
4. Constructing Mental Maps – Once metarule selection and firing of FIS is done for each and every obstacle in 9 by 9 cellular space (w.r.t. the agent), the outputs obtained from fuzzy inference systems are used to make mental maps. Three to six outputs can be obtained from fuzzy inference systems depending upon which combination of fuzzy inference system has been called. These six outputs are: goal-steer direction, separation radius, climb, probability trap, time-delay region, time-delay obstacle. All these outputs are described in detail in earlier sections. Out of these six outputs, three outputs are used for maintaining the pace of the agent while traversing the different regions and obstacles using “pause” command as described below.

i. Time-Delay Region – This output determines the speed with which agent should traverse the region in its vicinity.

ii. Time Delay Obstacle – This output determines the speed with which agent should negotiate the concerned obstacle.

iii. Probability Trap – This output has not been taken into consideration for this work and is there for use in future.

The other three outputs, goal-steer direction, separation radius and climb are the outputs used to make mental maps.
Mental maps assign utility values to the cells; these utility values give an idea of eligible cells. In this project lower values are considered to be high utility values.
Mental Maps are of size 9 by 9, as temporary destination is selected in 9 by 9 cellular space (w.r.t. agent). Construction of three mental maps is described in detail below.
i. Mental Map for Goal-Steer Direction
The goal – steer direction output determines the direction in which temporary destination must be chosen. Mental Map for direction is constructed as follows.

a) The direction class is calculated depending upon the direction range in which the goal-steer direction lies. There are seventeen direction classes as described in Table 5.
b) All the cells in 9 by 9 cellular space around the agent that lie under this direction class are considered to be eligible cells and are assigned higher utility value as compared to the other cells.
c) The cells in 9 by 9 cellular space around the agent that are occupied by obstacles or no-go regions are assigned lowest utility value, so that they are not chosen for occupation.
ii. Mental Map for Separation Radius
For every obstacle in 9 by 9 cellular space (w.r.t agent) separation radius is obtained as output from the fuzzy inference system. Circle with radius equal to separation radius is drawn around each obstacle. Mental map is then
constructed by giving high utility values to those cells which are not inside the area of influence of any obstacle. Figure 19 below gives pictorial description for it.
	

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	A
	
	
	
	
	
	

	
	
	
	
	
	B
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

	
	
	X1
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	

Figure 19: Separation Radius for Obstacles.

In the Figure 53 shown above, A and B are the two obstacles in 9 by 9 cellular space. Here three possibilities are shown.
a. Cell lying outside all the circles, X1.

b. Cell lying inside a circle, X2.

c. Cell lying in the intersection of two or more circles, X3.

Thus X1 is given high utility value as compared to X2 and X3. In the similar manner each and every cell in 9 by 9 cellular space is checked to find out whether it is under the area of influence of any obstacle or not, depending upon which the utility values are assigned.

The cells in 9 by 9 cellular space around the agent that are occupied by obstacles or no-go regions are assigned lowest utility value, so that they are not chosen for occupation. The utility values for cells X1, X2, X3 are calculated as below.
 X1 = 0 * Wa +0 * Wb.

 X2 = 1 * Wa + 0 * Wb.
 X3 = 1 * Wa + 1 * Wb.

 Where, Wa and Wb are weights for Obstacles A and B.

iii. Mental Map for Climb
For each obstacle in 9 by 9 cellular space climb value is obtained from the fuzzy inference system. Mental map is constructed as follows.
a. Using the climb value new agent height is calculated w.r.t the obstacle height for which climb value has been obtained. New agent height is calculated as below.
 Agent Height = Obstacle height / (1- Climb Value/100);
 where, Agent Height is new agent height w.r.t current obstacle, Obstacle Height is height of current obstacle, Climb Value is the climb value for that current obstacle.
b. Next, it is determined in which height class the new agent height lies. The entire height matrix is divided into five classes as follows.
Class 1 – [0, 0.2]
Class 2 – [0.2, 0.4]
Class 3 – [0.4, 0.6]

Class 4 – [0.6, 0.8]
Class 5 – [0.8, 0.1]
c. All the cells which fall in the height class defined by the new agent height are marked as eligible cells.
d. The cells in 9 by 9 cellular space around the agent that are occupied by obstacles or no-go regions are assigned lowest utility value, so that they are not chosen for occupation.

5. Selecting the Temporary Destination – For selecting the temporary destination, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction as obtained in the
previous section. The three maps are combined as follows.
i. Three maps are combined linearly.
ii. Each of the three maps is given a weight value, such that sum of the three weight values is equal to 1. In this project direction map is
assigned a weight value of 0.5, separation radius map is assigned a weight value of 0.3 and climb map is assigned a weight value of 0.2,
iii. Each of three maps is multiplies with its respective weight value and then the three maps are added together.
 After final mental map is constructed, the cell with the highest utility value is selected as the most eligible cell for temporary destination. However, if there are two or more eligible cells, then in that case distances of those eligible cells from the final destination point are calculated and one having the minimum distance is selected as temporary destination.
Pass 2 – Selecting the Cell for Next Best Move

The next move is made in 3 by 3 cellular space (w.r.t agent current position). For selecting the next best move entire procedure carried out for selecting the temporary destination is repeated by taking the temporary destination as new destination point for agent movement purpose. Following is the description of how the next best move is selected.
1. Steps 1-4 of Pass 1 are repeated in the same manner. The only difference is instead of calculating target direction using final target destination, it is now calculated using temporary destination, which is now the destination for agent movement purpose. The new target direction value is passed to all the fuzzy inference systems. Along with other inputs which are same as that for pass 1. The entire process of constructing the separation, direction and climb mental maps using the outputs of fuzzy inference systems is repeated.
2. From the new final map obtained for this pass, 3 by 3 mental map around the agent is extracted
3. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement

4. If there is more than one cell whose utility value is maximum then in that case distances of those cells from temporary destination point is calculated and the cell with minimum distance is selected as cell for movement.
5. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement. Algorithm of bad cell list is described in detail below.
i. If the bad cell list is not empty go to step ii, else go to step iii.
ii. For all of cells in bad cell list and for all the cells in 3 by 3 final mental
map, check if cell lies in the bad cell list and if it lies, assign cell lowest utility value.
iii. Stop the process.
6. If there are no eligible cells for movement i.e. all the cells ahead of the agent are low utility cells, then the agent goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.
Measuring Violation Counts
Violation count value indicated the number of times agent has entered the radius of the obstacle. The separation radius output of the fuzzy inference system tells the radius of the obstacle for which fuzzy inference system is called. The violation count is displayed at the end of simulation. The violation count is computed as follows.
1. The separation radius for each obstacle in the 9 by 9 cellular space, around the current position of the agent, is retrieved.

2. This separation radius value is not integer value usually and it lies in the range of 0 to 7, so in order to use this value in cellular space it is mapped to numeric value. If separation radius is between 0 and 2.5 then it is mapped to numeric value 1, if separation radius is between 2 and 4.5 then it is mapped to numeric value 2, other separation radius values are mapped to numeric value 3.
3. For each separation radius following is done.
i. If the cell selected by the agent to make the next move falls under that separation radius then violation count is incremented by 1. For example if separation radius is 1 then if the selected cell is in one of the eight neighbouring cells of the obstacle, the violation count is incremented by 1.
ii. If the cell selected by the agent to make the next move does not fall under that separation radius then value of violation count remains unchanged.

Problems Encountered while Selecting Next Cell for Movement
Two problems are usually encountered when a cell is selected for making the next move. Description of these problems and the mechanism to handle these problems is given in detail below.
1. Infinite Loop
Problem Description - This problem occurs when the agent jumps infinitely between two cells and doest not move ahead.
Solution – This problem is handled in following manner.
i. A list is maintained which contains information about how many times agent has visited a particular cell.
ii. If the cell has been visited more than 3 times, then that cell is added to the list of bad cells and is assigned lowest utility value. Bad cell list consists of all the cells which have been visited more than 3 times.

 2. Wetting
 Problem Description - Sometimes because of certain starting – destination points the path of the agent gets highly cluttered at certain points this cluttering of cells is known as wetting.
Solution – To handle the wetting problem followings measures are taken.
i. Agent checks in its 9 by 9 cellular space, number of cells visited by it.

ii. If the number of cells visited by agent in its 9 by 9 cellular space is greater than 23, then the rover backtracks by retracing its steps and comes out of that 9 by 9 region.

iii. After coming out of that 9 by 9 region, agent declares that 9 by 9 region as no-go region.

5.1.4.1 No obstacles in 9 by 9 cellular space

When there are no obstacles in 9 by 9 cellular space with respect to the current position of the agent, then there is no need for firing fuzzy inference systems, constructing the mental maps and choosing temporary destination. In this case following steps are taken to select the cell for next best move.
1. The distances of all the cells in 3 by 3 cellular space around the current position of agent are calculated.

2. If the cell in 3 by 3 cellular space around the current position of agent is occupied by an obstacle or is in no-go region, it is given a high distance value of 500.

3. If the cell in 3 by 3 cellular space around the current position of agent is in the bad cell list, it is given high distances value of 495. So that agent does not enter the no-go region, distance value of 495 (less than 500) is taken for this case.
4. The cell with minimum distance value is chosen as cell for movement.
5. If there are no eligible cells i.e. if the minimum distance comes out to be 495 then the agent backtracks retracing it’s steps until it gets an alternative path based on the second best utility value
This entire procedure of choosing the temporary destination and then choosing cell for next best move, if there are obstacles in 9 by 9 cellular space around current position of the agent or choosing directly choosing the cell for next best move, if there are no obstacles in 9 by 9 cellular space around current position of the agent is repeated for each and every position of the agent starting from the initial position until the agent reaches its final target destination.
The complete algorithm for this game model is given below in Figure 20.

[image: image23]
Figure 20: Algorithm for Two Person Game with Nature as Adversary, No Learning
5.2 Two Person Game Nature as Adversary, with Learning

In this game model a learning module is added so that the agent takes a safest path to the destination. The algorithm is described in detail as follows.

5.2.1 Image Draping

Same as for two person game, nature as adversary, without learning (refer to section 5.2).

5.2.2 Initialization

Same as for two person game, nature as adversary, without learning (refer to section 5.2).

5.2.3 Algorithm for Two Person Game Nature as Adversary, with Learning
5.2.3.1 When there are obstacles in agent’s 9 by 9 cellular space.

The algorithm is divided into two passes as described below.

Pass 1 – Selecting Temporary Destination for agent

Same as for two person game, nature as adversary, without learning (refer to section 5.2).

Pass 2- Selecting the Next Best Move
1. Steps 1-3 are similar to the steps taken by the pursuer in pursuit-evasion game model with no learning.

2. Constructing Mental Maps - In addition to three maps constructed by agent in case of two person game with nature as adversary and without learning, a fourth map is constructed for this model. The construction of first three maps remains same as before (refer to section 5.2). The fourth map is constructed as shown below.

i. As discussed in the reinforcement learning module described below, a reward matrix is constructed which stores the different states, respective actions for those states and the reward value for each state-action pair. If this matrix is empty then fourth map, which is also called reinforcement learning probability map, is not constructed.

ii. If reward matrix is not empty, 5 by 5 cellular space around agent’s current position is extracted and is stored as current state.

iii. For the state obtained in step ii, all the actions for that state and their respective rewards are stored in a matrix. Here, eight actions for each state are considered as there are eight surrounding cells where the agent can make a move.

iv. Now, the fourth probability map is constructed, by assigning utility value in descending order, high utility value (lower numerical value) to the cell (action) with maximum reward and lowest utility value to the cell (action) with minimum reward.

3. Selecting the best next move - – For selecting the best next move, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction with the fourth probability map, obtained from reinforcement learning module. The four maps are combined as follows.

i. The direction mental map, separation mental map, climb mental map and the fourth probability map are combined together linearly. Each of the four maps is given a weight value, such that sum of the four weight values is equal to 1. For this game model direction map is assigned a weight value of 0.4, separation radius map is assigned a weight value of 0.2 and climb map is assigned a weight value of 0.2 and fifth probability map obtained as a result of applying reinforcement learning is assigned a weight value of 0.2.

iii. Each of four maps is multiplied with its respective weight value and then the four maps are added together.

4. From the new final map obtained for this pass, 3 by 3 mental map around the agent is extracted.
5. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement
6. If there is more than one cell whose utility value is maximum, then the distances of those cells from temporary destination point is calculated and the cell with minimum distance is selected as cell for movement.
7. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement.

8. If there are no eligible cells for movement i.e. all the cells ahead of the agent are low utility cells, then the agent goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.
Reinforcement Learning Module for Agent
The learning algorithm used here is R-learning. The R-learning algorithm used here is inspired by the work done by Gedson Faria and Rosell A. Francelin Romero [14]. The R-learning algorithm given in [14] is tailored according to the problem handled in this project. Reinforcement learning is implemented here in order to reduce the number of violations by agent i.e. the number of times agent enters the radius of the concerned obstacle.

After selecting the cell for the next best move, the r-learning module is fired to assign a positive or negative reward to an action leading to the selection of the next cell. The step by step description of how the reinforcement learning is implemented is given below.

1. Initialization
The reward matrix and the medium reward are initialized to random values. Reward matrix consists of 2408 state – action pairs and it stores the reward for each pair. The learning parameters alpha and beta are initialized to 0.3 and 0.01 respectively.
2. Design of States

A state is 5 by 5 cellular space around the agent’s current position, a total of 301 states have been considered. For each state the cells in the 5 by 5 cellular space is occupied by either one or two obstacles. More than two obstacles in 5 by 5 cellular space are seldom found so those states are not considered. For each state there are 8 possible actions corresponding to the eight surrounding cells in which agent can make its next move.
3. Determine the current state and state after making next move for the agent
For the current position of the agent, 5 by 5 cellular space around it is extracted and is assigned a state number depending upon to which state it matches from the above designed states. The cell selected for making the next move is the next position of agent, using this position next state is determined in the similar way.
4. Determine the action

The action which resulted in selection of the cell by agent for making the next move is determined. In the next step a reward value is assigned to the determined action.
5. Calculation of immediate reward

The immediate reward is calculated on the basis of two things.
 i. Distance of the next cell to the destination – If the selected cell has minimum distance to the destination maximum reward value is assigned to the action, if the cell has maximum distance to the destination minimum reward value is assigned to the action and for all other distance values reward value lie in the range of this maximum and minimum value, with values assigned in descending order.

ii. Violation by selected cell - It is checked whether the selected cell falls under the radius of any obstacle that lies in 9 by 9 cellular space around the agent, if it does then a negative reward is assigned to the action and if the selected cell does not lie in the radius of any obstacle, a positive reward is assigned to the action.
The total immediate reward is the sum of the two reward values obtained in step i. and ii.

6. Updating the reward matrix and medium reward.

The reward for current state of the agent and the action taken in this state (as determined in step 4) is updated in the reward matrix R as described below.

Rmax = max(R,[],2);

R (state, action) = R (state, action) + alpha * (immediatereward - mediumreward + Rmax (nextstate) - R (state, action));

If (R (state, action) == Rmax (state)) then medium reward is updated as follows.
mediumreward = mediumreward + beta *(immediatereward - mediumreward + Rmax(nextstate) - Rmax(state));

where, Rmax gives the maximum reward value for each state, R is the reward matrix, state is the current state of agent, action is the action taken in this state which resulted in the selection of the cell for making the next move, alpha and beta are learning constants, nextstate is the state of agent corresponding to its new cell location and medium reward is the reward value is constant for group of states and is updated when the reward value for state/action pair is maximum for that state.
This updated reward matrix is stored and used for making the probability map for selecting the next best move as described earlier.
5.2.3.1 When there are no obstacles in agent’s 9 by 9 cellular space

Same as for two person game, nature as adversary, without learning (refer to section 5.2).

The problems of infinite looping and wetting are handled in same manner as in two-person game without learning (refer to section 5.2).

5.3 Pursuit –Evasion Game with No learning

In this game model there are two agents. First agent plays the role of the evader and the second agent plays the role of the pursuer.

The evader has two goals. First goal is to reach the target destination using the safest and the shortest path by avoiding the collisions with static obstacles and by avoiding entering inside the no-go regions. Second goal is maintain a safe distance from the pursuer.
The pursuer has one goal which to capture the evader in minimal time possible before evader reaches its target destination. Pursuer also follows a safe path by avoiding the collision with static obstacles and by avoiding entering inside the no-go regions.

Both evader and pursuer follow the same algorithm as given for single agent. Some modifications are made in that algorithm so as to incorporate the effect of another agent. These modifications are different for evader and pursuer. Algorithm followed by evader and pursuer are described in detail below.

5.3.1 Algorithm for Pursuit –Evasion Game with No learning
5.3.1.1 Image draping

This is done in the similar manner as it is done for single agent. Refer to section 5.2 for details.
5.3.1.2 Initialization
This step is similar to the initialization step described in section 5.2 for single agent algorithm.
Additional initialization parameter that is passed in the further modules of evader is the octant in which the pursuer lies. For this first the pursuer direction is calculated and then it is determined in which direction class it lies. A random value is selected in that direction class and pursuer direction is initialized with that value.
Initialization parameter that is passed in the further modules of pursuer is the octant in which the evader lies. For this first the evader direction is calculated and then it is determined in which direction class it lies. A random value is selected in that direction class and evader direction is initialized with that value.
5.3.1.3 Algorithm for Evader
Algorithm followed by evader works on same lines as the one followed by the single agent. To incorporate the effect of pursuer some modifications have been made in the algorithm. This algorithm takes into consideration two cases, first is when there are obstacles in 9 by 9 cellular space around the current position of the agent and second is when there are no obstacles in 9 by 9 cellular space around the current position of the evader. These two cases are handled in different manner as described below.

5.3.1.3.1 When there are Obstacles in 9 by 9 cellular space

The algorithm takes two passes in order to select best next move. During the first pass a temporary destination is selected in 9 by 9 cellular space. During second pass cell for next best move is selected considering the temporary destination as its target destination. The algorithm is divided into two passes because agent has partial information about its environment and this division helps to take into account unpredictable things that can happen.

Pass 1 – Selecting Temporary Destination
In this pass temporary destination is calculated for the current position of the agent .Following is the step by step description of how the temporary destination is selected.
1. Calculating Inputs of FIS - The first step is to calculate the inputs which are to be passed to the three fuzzy inference systems. There are total of eleven inputs which are passed to the three fuzzy inference systems. Target Direction, Clutter Density, Region Trafficability, Camouflage, Armour, Lethality, Penetrability, Obstacle Distance, Obstacle Direction and Obstacle Altitude are calculated in the same manner as they are calculated for single agent algorithm (refer to section 5.2). Pursuer Direction the eleventh input and is described below.

The direction class (direction classes are described in detail in Table 5) in which the pursuer lies is passed to the evader, a random value is selected in that direction class and this value is passed to fuzzy inference system as pursuer direction input. Pursuer Direction input gives an idea to the evader about the location of the pursuer with respect to its own position. In this game model direction class in which pursuer lies is updated and supplied to evader after every ten steps taken by the evader.

 2. Calculating Inputs for selecting Metarule – Selection of the metarule is dependent on the inputs obtained from the 15 by 15 cellular space (metazone) around the current position of the agent. The inputs for selecting the metarule are clutter density, region trafficability, height value distribution and distribution of obstacles of type 1 and type2. All these inputs are calculated in the similar manner as are calculated for single agent algorithm (refer to section 5.2).
3. Selecting a Metarule and firing of FIS – The inputs obtained from 15 by 15 cellular space (w.r.t. the agent) are used to select a particular metarule. Under each metarule combination of fuzzy inference systems are called. So depending upon the metarule selected, fuzzy inference systems under that metarule are called and outputs of fuzzy inference systems is obtained. Selection of metarule and firing of corresponding fuzzy inference systems is carries out for each and every obstacle in 9 by 9 cellular space (w.r.t. the agent). Rules for selecting the first three fuzzy inference system remains same as they are for single agent algorithm (refer to section 5.2). In addition to these three fuzzy inference systems, there are two more fuzzy inference systems, the fourth fuzzy inference system and the fifth fuzzy inference system (as described in the design section). Calling mechanism of these two fuzzy inference systems is given below.
i. If the pursuer is not in the evader’s 15 by 15 cellular space, then fourth fuzzy inference system is called which takes as input pursuer direction and target direction and outputs the goal-steer direction. This fuzzy inference system is called along with the other three so that evader is able to choose a cell as temporary destination which is at safe distance from pursuer and is also close enough to target destination
ii. If the pursuer is in the evader’s 15 by 15 cellular space, then based on the position of evader pursuer direction with respect to evader is computed and then the fifth fuzzy inference system is called which takes as input pursuer direction and outputs the goal-steer direction. Fifth fuzzy inference system is
called in this case because if pursuer is in the evader’s 15 by 15 cellular space, then the goal of maintaining a safe distance from pursuer direction is given high priority and target direction is not taken into consideration for this case.

4. Constructing Mental Maps and Probability Map – The three mental maps for separation radius, climb and goal-steer direction, based upon the outputs separation radius, climb and goal-steer direction of the three fuzzy inference systems, are constructed in the similar manner as they are constructed for single agent algorithm (refer to section 4.2). Fourth map is the probability map which tells the evader where the probability of finding the pursuer is maximum. This fourth map is constructed using the output of fourth fuzzy inference system or fifth fuzzy inference system depending upon which FIS is fired. Both these fuzzy inference systems have same output which is goal –steer direction, this output indicates that moving to which direction is most beneficial for evader under the given circumstances. Construction of fourth map is given below.
a. The direction class is calculated depending upon the range in which goal-steer direction (output from fourth FIS) lies.
b. All the cells in 9 by 9 cellular space around the agent that lie under this direction class are considered to be eligible cells and are assigned higher utility value as compared to the other cells.

 c. The cells in 9 by 9 cellular space around the agent that are occupied by obstacles or no-go regions are assigned lowest utility value, so that they are not chosen for occupation.
5. Selecting the Temporary Destination - – For selecting the temporary destination, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction and one probability map as obtained in the previous section. The four maps are combined as follows.
i. If pursuer is in evader’s 15 by 15 cellular space then fourth probability map becomes final map for direction. If pursuer is not in evader’s 15 by 15 cellular space then the mental map for direction is first combined linearly with
probability map which is also a direction map. For linear combination each of these two maps is given a weight value. Each map is multiplied with its weight value and added together. The mental map for direction is assigned weight value of 0.4 and probability map for direction is assigned weight value of 0.6.
ii. The final direction map obtained from step i. is combined with mental maps
for separation and climb. Each of the three maps is given a weight value, such that sum of the three weight values is equal to 1. In this project direction map is assigned weight value of 0.5, separation radius map is assigned a weight
value of 0.3 and climb map is assigned a weight value of 0.2,

iii. Each of three maps is multiplies with its respective weight value and then
the three maps are added together.

After final mental map is constructed, the cell with the highest utility value is selected as the most eligible cell for temporary destination. However, if there are two or more eligible cells, then that case is handled in following manner.

i. If pursuer is not in evader’s 15 by 15 cellular space then the distances of those eligible cells from the final destination point are calculated and one having the minimum distance is selected as temporary destination.
ii. If pursuer is in evader’s 15 by 15 cellular space then the distances of those eligible cells from the pursuer’s position are calculated and one having the maximum distance is selected as temporary destination.

Pass 2 – Selecting the Cell for Next Best Move

The next move is made in 3 by 3 cellular space (w.r.t evader’s current position). For selecting the next best move entire procedure carried out for selecting the temporary destination is repeated by taking the temporary destination as new destination point for agent movement purpose. Following is the description of how the next best move is selected.
1. Steps 1-4 of Pass 1 are repeated in the same manner. The only difference is instead of calculating target direction using final target destination, it is now calculated using temporary destination, which is now the destination for evader movement purpose. The new target direction value is passed to all the fuzzy inference systems. Along with other inputs which are same as that for pass 1. The entire process of constructing the separation, direction and climb mental maps, using the outputs of the first three fuzzy inference systems and fourth probability map, using the output of fourth or fifth fuzzy inference system whichever is fired, is repeated.

2. From the new final map obtained for this pass, 3 by 3 mental map around the evader’s current position is extracted
3. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement

4. If there is more than one cell whose utility value is maximum then that case is handled in the following manner:
i. If pursuer is not in evader’s 15 by 15 cellular space then the distances of those eligible cells from the target destination, which is the temporary destination computed in pass1, are calculated and one having the minimum distance is selected as temporary destination.

ii. If pursuer is in evader’s 15 by 15 cellular space then the distances of those eligible
cells from the pursuer’s position are calculated and one having the maximum distance
is selected as cell for making the next move.
5. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement.
 6. If there are no eligible cells for movement i.e. all the cells ahead of the agent are low utility cells, then the agent goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.

5.3.1.3.2 No obstacles in 9 by 9 cellular space

When there are no obstacles in 9 by 9 cellular space with respect to the current position of the agent, then there is no need for firing fuzzy inference systems, constructing the mental maps and choosing temporary destination. In this case following steps are taken to select the cell for next best move.

Case 1- Pursuer Not in Evader’s 15 by 15 Cellular Space

1. If the pursuer is not in the 15 by 15 cellular space of evader then fourth fuzzy inference system is called and using the output of this fuzzy inference system, a probability map is constructed. This map takes into consideration both pursuer direction and target direction and selects cells which are at safe distance from pursuer and also close to target. The probability map is for 9 by 9 cellular space, so the probability values of the cells in 3 by 3 cellular space of evader are extracted.
2. If the cell in 3 by 3 cellular space around the current position of agent is occupied by an obstacle or is in no-go region, it is given a high distance value of 500.

3. If the cell in 3 by 3 cellular space around the current position of agent is in the bad cell list, it is given high distances value of 495. So that agent does not enter the no-go region, distance value of 495 (less than 500) is taken for this case.
4. The cell with minimum value assigned to it is selected as cell for making the next move. If there is more than one eligible cell, then the one which is closet with respect to target direction is selected.
Case 2- Pursuer in Evader’s 15 by 15 Cellular Space
1. If the pursuer is in the 15 by 15 cellular space of evader then fifth fuzzy inference system is called and using the output of this fuzzy inference system, a probability map is constructed. This map takes into consideration pursuer direction and selects cells which are at safe distance from pursuer. The probability map is for 9 by 9 cellular space, so the probability values of the cells in 3 by 3 cellular space of evader are extracted.

2. If the cell in 3 by 3 cellular space around the current position of agent is occupied by an obstacle or is in no-go region, it is given a high distance value of 500.
3. If the cell in 3 by 3 cellular space around the current position of agent is in the bad cell list, it is given high distances value of 495. So that agent does not enter the no-go region, distance value of 495 (less than 500) is taken for this case.
4. The cell with minimum value assigned to it is selected as cell for making the next move. If there is more than one eligible cell, then the one which is farthest with respect to pursuer direction is selected.
The number of violation counts are computed in the similar manner as done for single agent (refer to section 5.2).
The problem of wetting and infinite loop are encountered by evader also and are handled in the similar manner as they are handled in the algorithm for single agent (refer to section 5.2).
This entire procedure of choosing the temporary destination and then choosing cell for next best move, if there are obstacles in 9 by 9 cellular space around current position of the evader or choosing directly choosing the cell for next best move, if there are no obstacles in 9 by 9 cellular space around current position of the evader is repeated for each and every position of the evader starting from the initial position until the evader reaches its final target destination or is captured by the pursuer.
5.3.1.4 Algorithm for Pursuer

Algorithm followed by pursuer works on same lines as the one followed by the single agent. To incorporate the effect of evader some modifications have been made in the algorithm.

This algorithm takes into consideration two cases, first is when there are obstacles in 9 by 9 cellular space around the current position of the pursuer and second is when there are no obstacles in 9 by 9 cellular space around the current position of the pursuer. These two cases are handled in different manner as described below.

5.3.1.4.1 When there are Obstacles in 9 by 9 cellular space

The algorithm takes two passes in order to select best next move. During the first pass a temporary destination is selected in 9 by 9 cellular space. During second pass cell for next best move is selected considering the temporary destination as its target destination. The algorithm is divided into two passes because agent has partial information about its environment and this division helps to take into account unpredictable things that can happen.

Pass 1 – Selecting Temporary Destination
In this pass temporary destination is calculated for the current position of the pursuer .Following is the step by step description of how the temporary destination is selected.
1. Calculating Inputs of FIS - The first step is to calculate the inputs which are to be passed to the three fuzzy inference systems. There are total of eleven inputs which are passed to the three fuzzy inference systems. Clutter Density, Region Trafficability, Camouflage, Armour, Lethality, Penetrability, Obstacle Distance, Obstacle Direction and Obstacle Altitude are calculated in the same manner as they are calculated for single agent algorithm (refer to section 5.2). The target direction is calculated as described below.
i. If evader is not in pursuer’s 15 by 15 cellular space - The direction class (direction classes are described in detail in previous chapter) in which the evader lies is passed to the pursuer, a random value is selected in that direction class and this value is passed to fuzzy inference system as target direction input. Target Direction input gives an idea to the pursuer about the location of the evader with respect to its own position. In this game model direction class in which evader lies is updated and supplied to evader after every five steps taken by the evader.

ii. If evader is in pursuer’s 15 by 15 cellular space – In this case using the evader’s position, pursuer itself calculates the direction of evader with respect to its own position and that becomes value of target direction.

 2. Calculating Inputs for selecting Metarule – Selection of the metarule is dependent on the inputs obtained from the 15 by 15 cellular space (metazone) around the current position of the agent. The inputs for selecting the metarule are clutter density, region trafficability, height value distribution and distribution of obstacles of type 1 and type2. All these inputs are calculated in the similar manner as are calculated for single agent algorithm (refer to section 5.2).

3. Selecting a Metarule and firing of FIS – The inputs obtained from 15 by 15 cellular space (w.r.t. the agent) are used to select a particular metarule. Under each metarule combination of fuzzy inference systems are called. So depending upon the metarule selected, fuzzy inference systems under that metarule are called and outputs of fuzzy inference systems is obtained. Selection of metarule and firing of corresponding fuzzy inference systems is carries out for each and every obstacle in 9 by 9 cellular space (w.r.t. the agent). Rules for selecting the first three fuzzy inference system remains same as they are for single agent algorithm (refer to section 5.2).
 4. Constructing Mental Maps – The separation radius, goal-steer direction and climb outputs of the three fuzzy inference systems are combined together linearly to get final mental map. These three maps are combined in the similar manner as they are combined in the algorithm for single agent (refer section 5.2).
5. Selecting the Temporary Destination - For selecting the temporary destination, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction as obtained in the
previous section. The three maps are combined as follows.

i. Three maps are combined linearly.

ii. Each of the three maps is given a weight value, such that sum of the three weight values is equal to 1. In this project direction map is
assigned a weight
value of 0.5, separation radius map is assigned a weight value of 0.3 and
climb
map is assigned a weight value of 0.2,

iii. Each of three maps is multiplies with its respective weight value and then the three maps are added together.
After final mental map is constructed, the cell with the highest utility value is selected as the most eligible cell for temporary destination. However, if there are two or more eligible cells, then that situation is handled as follows.
i. If evader is not in pursuers’ 15 by 15 cellular space, then cell whose direction is closet to the direction of evader is chosen as a temporary destination.

ii. If evader is in pursuer’s 15 by 15 cellular space, then the distances of all the eligible cells to the evader’s position are calculated and the cell with minimum distance is selected as the temporary destination.

Pass 2 – Selecting the Cell for Next Best Move

The next move is made in 3 by 3 cellular space (w.r.t pursuer current position). For selecting the next best move entire procedure carried out for selecting the temporary destination is repeated by taking the temporary destination as new destination point for agent movement purpose. Following is the description of how the next best move is selected.

1. Steps 1-4 of Pass 1 are repeated in the same manner. The only difference is instead of calculating target direction using final target destination, it is now calculated using temporary destination, which is now the destination for pursuer movement purpose. The new target direction value is passed to all the fuzzy inference systems. Along with other inputs which are same as that for pass 1. The entire process of constructing the separation, direction and climb mental maps using the outputs of fuzzy inference systems is repeated.

2. From the new final map obtained for this pass, 3 by 3 mental map around the pursuer is extracted
3. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement

4. If there is more than one cell whose utility value is maximum, then that case is handles in following manner

i. If evader is not in pursuers’ 15 by 15 cellular space then distances of those cells from temporary destination point is calculated and the cell with minimum distance is selected as cell for movement.

ii. If evader is in pursuer’s 15 by 15 cellular space then distances of those cells from evader position are calculated and the cell with minimum distance is selected as cell for movement.

5. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement.
6. If there are no eligible cells for movement i.e. all the cells ahead of the agent are low utility cells, then the agent goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.

5.3.1.4.2 When there are Obstacles in 9 by 9 cellular space

When there are no obstacles in 9 by 9 cellular space with respect to the current position of the agent, then there is no need for firing fuzzy inference systems, constructing the mental maps and choosing temporary destination. In this case following steps are taken to select the cell for next best move.

Case 1- Evader Not in Pursuer’s 15 by 15 Cellular Space

1. If the evader is not in the 15 by 15 cellular space of pursuer then a probability map is constructed using the direction class in which evader lies, the evader’s direction class is passed as input to pursuer and is updated after every five steps taken by pursuer. All the cells in 3 by 3 cellular space that lie in that direction class are given a high utility value.

2. If the cell in 3 by 3 cellular space around the current position of agent is occupied by an obstacle or is in no-go region, it is given a high distance value of 500.

3. If the cell in 3 by 3 cellular space around the current position of agent is in the bad cell list, it is given high distances value of 495. So that agent does not enter the no-go region, distance value of 495 (less than 500) is taken for this case.
4. The cell with minimum value assigned to it is selected as cell for making the next move. If there is more than one eligible cell, then the one which is closet with respect to evader direction is selected.
Case 2- Evader in Pursuer’s 15 by 15 Cellular Space

1. If the evader is in the 15 by 15 cellular space of pursuer then the distances of all the cells in 3 by 3 cellular space to the evader position are calculated.

2. If the cell in 3 by 3 cellular space around the current position of agent is occupied by an obstacle or is in no-go region, it is given a high distance value of 500.
3. If the cell in 3 by 3 cellular space around the current position of agent is in the bad cell list, it is given high distances value of 495. So that agent does not enter the no-go region, distance value of 495 (less than 500) is taken for this case.
4. The cell with minimum value assigned to it is selected as cell for making the next move.
The number of violation counts are computed in the similar manner as done for single agent (refer to section 5.2).
The problem of wetting and infinite loop are encountered by pursuer also and are handled in the similar manner as they are handled in the algorithm for single agent (refer to section 5.2).
This entire procedure of choosing the temporary destination and then choosing cell for next best move, if there are obstacles in 9 by 9 cellular space around current position of the pursuer or directly choosing the cell for next best move, if there are no obstacles in 9 by 9 cellular space around current position of the pursuer is repeated for each and every position of the pursuer starting from the initial position until the evader reaches its final target destination or is captured by the pursuer.

Capture Condition
If evader is in pursuer’s 5 by 5 cellular space, evader is considered to be captured.

Figure 21 below gives the complete algorithm for pursuit-evasion with no learning.

[image: image24]

[image: image25]

[image: image26]

[image: image27]
Figure 21: Algorithm for Pursuit-Evasion Game, Without Learning
5.4 Pursuit – Evasion Game, with Learning

In this game model there are two agents. First agent plays the role of the evader and the second agent plays the role of the pursuer.

The evader has two goals. First goal is to reach the target destination using the safest and the shortest path by avoiding the collisions with static obstacles and by avoiding entering inside the no-go regions. Second goal is to maintain a safe distance from the pursuer.
The pursuer has one goal which to capture the evader in minimal time possible before evader reaches its target destination. Pursuer also follows a safe path by avoiding the collision with static obstacles and by avoiding entering inside the no-go regions.

In this game model a reinforcement learning module has been implemented. Both evader and pursuer use the learning module in order to improve the path which they both follow in order to achieve their goals. During the course of their movement both evader and pursuer learns and selects the cell which gives maximum reward and is most beneficial in the current situation.

Both evader and pursuer follow the same algorithm as given for single agent. Some modifications are made in that algorithm so as to incorporate the effect of another agent and to introduce learning for both evader and pursuer. These modifications are different for evader and pursuer. The Algorithm followed by evader and pursuer are described in detail below.

5.4.1 Algorithm for Pursuit-Evasion Game with learning
Step by step description of algorithm is given below.

5.4.1.1 Image draping

This is done in the similar manner as it is done for single agent. Refer to section 6.2 for details.

5.4.1.2 Initialization

This step is similar to the initialization step described in section 6.2 for single agent algorithm.

Additional initialization parameter that is passed in the further modules of evader is the octant in which the pursuer lies. For this first the pursuer direction is calculated and then it is determined in which direction class it lies. A random value is selected in that direction class and pursuer direction is initialized with that value.

Initialization parameter that is passed in the further modules of pursuer is the octant in which the evader lies. For this first the evader direction is calculated and then it is determined in which direction class it lies. A random value is selected in that direction class and evader direction is initialized with that value.

5.4.1.3 Algorithm for Evader
This algorithm is similar to the algorithm for evader in pursuit- evasion game with no learning. The difference comes only in pass 2 when the cell is selected to make the next move. This algorithm takes into consideration two cases, first is when there are obstacles in 9 by 9 cellular space around the current position of the agent and second is when there are no obstacles in 9 by 9 cellular space around the current position of the evader. These two cases are handled in different manner as described below.

5.4.1.3.1 When there are Obstacles in 9 by 9 cellular space

The algorithm takes two passes in order to select best next move. During the first pass a temporary destination is selected in 9 by 9 cellular space. During second pass cell for next best move is selected considering the temporary destination as its target destination. The algorithm is divided into two passes because agent has partial information about its environment and this division helps to take into account unpredictable things that can happen.

Pass 1 – Selecting Temporary Destination
Selection of the temporary destination is done in the similar manner as it is done for evader algorithm in pursuit-evasion game model with no learning. All the steps from 1 to 5 are repeated without any modifications (refer to section 5.3).

Pass 2- Selecting the Next Best Move
1. Steps 1-3 are similar to the steps taken by the evader in pursuit-evasion game model with no learning.
2. Constructing Mental Maps - In addition to four maps constructed by evader in case of pursuit-evasion game with no learning, a fifth map is constructed for this model. The construction of first four maps remains same as before (refer to section 6.3). The fifth map is constructed a shown below.
i. As discussed in the reinforcement learning module, a reward matrix is constructed which stores the different states, respective actions for those states and the reward value for each state-action pair. If this matrix is empty then fifth map, which is also called reinforcement learning probability map, is not constructed.
ii. If reward matrix is not empty, 5 by 5 cellular space around evader’s current position is extracted and is stored as current state.

iii. For the state obtained in step ii, all the actions for that state and their respective rewards are stored in a matrix. Here, eight actions for each state are considered as there are eight surrounding cells where the evader can make a move.

iv. Now, the fifth probability map is constructed, by assigning utility value in descending order, high utility value (lower numerical value) to the cell (action) with maximum reward and lowest utility value to the cell (action) with minimum reward.

3. Selecting the best next move – For selecting the best next move, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction with the fourth probability map obtained from fourth or fifth fuzzy inference system depending upon which FIS is called and the fifth map, obtained from reinforcement learning module. The five maps are combined as follows.

i. If pursuer is in evader’s 15 by 15 cellular space then fourth probability map becomes final map for direction. If pursuer is not in evader’s 15 by 15 cellular space then fourth probability map becomes final map for direction then the mental map for direction is first combined linearly with probability map which is also a direction map. For linear combination each of these two maps is given a weight value. Each map is multiplied with its weight value and added together.

ii. The final direction map obtained from step i. is combined with mental maps for separation and climb and the fifth probability map. Each of the four maps is given a weight value, such that sum of the four weight values is equal to 1. For this game model direction map is assigned a weight value of 0.4, separation radius map is assigned a weight value of 0.2 and climb map is assigned a weight value of 0.2 and fifth probability map obtained as a result of applying reinforcement learning is assigned a weight value of 0.2.
iii. Each of four maps is multiplied with its respective weight value and then the four maps are added together.

4. From the new final map obtained for this pass, 3 by 3 mental map around the evader’s current position is extracted
5. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement

6. If there is more than one cell whose utility value is maximum then that case is handled in the following manner

i. If pursuer is not in evader’s 15 by 15 cellular space then the distances of those eligible cells from the target destination, which is the temporary destination computed in pass1, are calculated and one having the minimum distance is selected as temporary destination.

ii. If pursuer is in evader’s 15 by 15 cellular space then the distances of those eligible
cells from the pursuer’s position are calculated and one having the maximum distance
is selected as cell for making the next move.
7. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement.

 8. If there are no eligible cells for movement i.e. all the cells ahead of the evader are low utility cells, then the evader goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.

Reinforcement Learning Module for Evader
The learning algorithm used here is R-learning. The R-learning algorithm used here is inspired by the work done by Gedson Faria and Rosell A. Francelin Romero [14]. The R-learning algorithm given in [14] is tailored according to the problem handled in this project. Reinforcement learning is implemented here in order to reduce the number of violations by evader i.e. the number of times evader enters the radius of the concerned obstacle.

After selecting the cell for the next best move, the r-learning module is fired to assign a positive or negative reward to an action leading to the selection of the next cell. The step by step description of how the reinforcement learning is implemented is given below.

1. Initialization

The reward matrix and the medium reward are initialized to random values. Reward matrix consists of 2408 state – action pairs and it stores the reward for each pair. The learning parameters alpha and beta are initialized to 0.3 and 0.01 respectively.

2. Design of States

A state is 5 by 5 cellular space around the evader’s current position, a total of 301 states have been considered. For each state the cells in the 5 by 5 cellular space is occupied by either one or two obstacles. More than two obstacles in 5 by 5 cellular space are seldom found so those states are not considered. For each state there are 8 possible actions corresponding to the eight surrounding cells in which evader can make its next move.

3. Determine the current state and state after making next move for the agent

For the current position of the evader, 5 by 5 cellular space around it is extracted and is assigned a state number depending upon to which state it matches from the above designed states. The cell selected for making the next move is the next position of evader, using this position next state is determined in the similar way.

4. Determine the action

The action which resulted in selection of the cell by evader for making the next move is determined. In the next step a reward value is assigned to the determined action.

5. Calculation of immediate reward

The immediate reward is calculated on the basis of two things.

 i. Distance of the next cell to the destination – If the selected cell has minimum distance to the destination maximum reward value is assigned to the action, if the cell has maximum distance to the destination minimum reward value is assigned to the action and for all other distance values reward value lie in the range of this maximum and minimum value.

ii. Direction of the cell w.r.t pursuer - If the selected cell is closet to the direction of pursuer, minimum reward value is assigned to the action. If the selected cell is farthest from the direction of pursuer maximum reward is assigned to the action. For the other values reward value lies in the range of this maximum and minimum value.

iii. Violation by selected cell - It is checked whether the selected cell falls under the radius of any obstacle that lies in 9 by 9 cellular space around the evader, if it does then a negative reward is assigned to the action and if the selected cell does not lie in the radius of any obstacle, a positive reward is assigned to the action.

The total immediate reward is the sum of the two reward values obtained in step i, ii and iii.
6. Updating the reward matrix and medium reward.

The reward for current state of the evader and the action taken in this state (as determined in step 4) is updated in the reward matrix as described below.

Rmax = max(R, [], 2);

R (state, action) = R (state, action) + alpha * (immediatereward - mediumreward + Rmax (nextstate) – R (state, action));
If (R (state, action) == Rmax (state)) then medium reward is updated as follows.
mediumreward = mediumreward + beta *(immediatereward - mediumreward + Rmax(nextstate) - Rmax(state));

where, Rmax gives the maximum reward value for each state, R is the reward matrix, state is the current state of evader, action is the action taken in this state which resulted in the selection of the cell for making the next move, alpha and beta are learning constants, nextstate is the state of evader corresponding to its new cell location and medium reward is the reward value is constant for group of states and is updated when the reward value for state/action pair is maximum for that state.
This updated reward matrix is stored and used for making the probability map for selecting the next best move as described earlier.

5.4.1.3.2 When there are no Obstacles in 9 by 9 cellular space

This case is handled in the similar manner as it is handled for evader algorithm in pursuit-evasion game model with no learning. All the steps are repeated without any modifications (refer to section 5.3).

5.4.1.4 Algorithm for Pursuer

This algorithm is similar to the algorithm for pursuer in pursuit- evasion game with no learning. The difference comes only in pass 2 when the cell is selected to make the next move. This algorithm takes into consideration two cases, first is when there are obstacles in 9 by 9 cellular space around the current position of the pursuer and second is when there are no obstacles in 9 by 9 cellular space around the current position of the pursuer. These two cases are handled in different manner as described below.

5.4.1.4.1 When there are Obstacles in 9 by 9 cellular space

The algorithm takes two passes in order to select best next move. During the first pass a temporary destination is selected in 9 by 9 cellular space. During second pass cell for next best move is selected considering the temporary destination as its target destination. The algorithm is divided into two passes because pursuer has partial information about its environment and this division helps to take into account unpredictable things that can happen.

Pass 1 – Selecting Temporary Destination
Selection of the temporary destination is done in the similar manner as it is done for pursuer algorithm in pursuit-evasion game model with no learning. All the steps from 1 to 5 are repeated without any modifications (refer to section 5.3).

Pass 2- Selecting the Next Best Move
1. Steps 1-3 are similar to the steps taken by the pursuer in pursuit-evasion game model with no learning.

2. Constructing Mental Maps - In addition to three maps constructed by pursuer in case of pursuit-evasion game with no learning, a fourth map is constructed for this model. The construction of first three maps remains same as before (refer to section 5.3). The fourth map is constructed a shown below.

i. As discussed in the reinforcement learning module, a reward matrix is constructed which stores the different states, respective actions for those states and the reward value for each state-action pair. If this matrix is empty then fourth map, which is also called reinforcement learning map, is not constructed.

ii. If reward matrix is not empty, 5 by 5 cellular space around pursuer’s current position is extracted and is stored as current state.

iii. For the state obtained in step ii, all the actions for that state and their respective rewards are stored in a matrix. Here, eight actions for each state are considered as there are eight surrounding cells where the pursuer can make a move.

iv. Now, the fourth probability map is constructed, by assigning utility value in descending order, high utility value (lower numerical value) to the cell (action) with maximum reward and lowest utility value to the cell (action) with minimum reward.

3. Selecting the best next move – For selecting the best next move, final mental map is constructed by combining the three mental maps for separation radius, climb, and goal-steer direction with the fourth probability map, obtained from reinforcement learning module. The four maps are combined as follows.

i. The direction mental map, separation mental map, climb mental map and the fourth probability map are combined together linearly. Each of the four maps is given a weight value, such that sum of the four weight values is equal to 1. For this game model direction map is assigned a weight value of 0.4, separation radius map is assigned a weight value of 0.2 and climb map is assigned a weight value of 0.2 and fifth probability map obtained as a result of applying reinforcement learning is assigned a weight value of 0.2.

iii. Each of four maps is multiplied with its respective weight value and then the four maps are added together.
4. From the new final map obtained for this pass, 3 by 3 mental map around the pursuer is extracted
5. From this new 3 by 3 mental map cell with highest utility value is selected as cell for movement.
6. If there is more than one cell whose utility value is maximum, then that case is handles in following manner

i. If evader is not in pursuers’ 15 by 15 cellular space then distances of those cells from temporary destination point is calculated and the cell with minimum distance is selected as cell for movement.

ii. If evader is in pursuer’s 15 by 15 cellular space then distances of those cells from evader position are calculated and the cell with minimum distance is selected as cell for movement.
7. If the selected cell is in the bad cell list, its assigned lowest utility value and cell with second highest utility value is chosen for movement.
8. If there are no eligible cells for movement i.e. all the cells ahead of the pursuer are low utility cells, then the pursuer goes for backtrack , moving to cells visited previously and continues backtracking or retracing its previous steps until it finds the alternate path based on the second best utility value.
Reinforcement Learning Module for Pursuer
The learning algorithm used here is R-learning. The R-learning algorithm used here is inspired by the work done by Gedson Faria and Rosell A. Francelin Romero [14]. The R-learning algorithm given in [14] is tailored according to the problem handled in this project. Reinforcement learning is implemented here in order to reduce the number of violations by agent i.e. the number of times pursuer enters the radius of the concerned obstacle.

After selecting the cell for the next best move, the r-learning module is fired to assign a positive or negative reward to an action leading to the selection of the next cell. The step by step description of how the reinforcement learning is implemented is given below.

1. Initialization

The reward matrix and the medium reward are initialized to random values. Reward matrix consists of 2408 state – action pairs and it stores the reward for each pair. The learning parameters alpha and beta are initialized to 0.3 and 0.01 respectively.

2. Design of States

A state is 5 by 5 cellular space around the pursuer’s current position, a total of 301 states have been considered. For each state the cells in the 5 by 5 cellular space is occupied by either one or two obstacles. More than two obstacles in 5 by 5 cellular space are seldom found so those states are not considered. For each state there are 8 possible actions corresponding to the eight surrounding cells in which pursuer can make its next move.

3. Determine the current state and state after making next move for the pursuer
For the current position of the pursuer, 5 by 5 cellular space around it is extracted and is assigned a state number depending upon to which state it matches from the above designed states. The cell selected for making the next move is the next position of agent, using this position next state is determined in the similar way.

4. Determine the action

The action which resulted in selection of the cell by pursuer for making the next move is determined. In the next step a reward value is assigned to the determined action.

5. Calculation of immediate reward

The immediate reward is calculated on the basis of two things.

 i. Direction of the cell w.r.t evader- If the selected cell is closet to the direction of evader, maximum reward is assigned to the action. If the selected cell is farthest from the direction of evader, minimum reward value is assigned to the action. For the other values reward value lies in the range of this maximum and minimum value.

ii. Violation by selected cell - It is checked whether the selected cell falls under the radius of any obstacle that lies in 9 by 9 cellular space around the pursuer, if it does then a negative reward is assigned to the action and if the selected cell does not lie in the radius of any obstacle, a positive reward is assigned to the action.

The total immediate reward is the sum of the two reward values obtained in step i and ii.
6. Updating the reward matrix and medium reward.

The reward for current state of the pursuer and the action taken in this state (as determined in step 4) is updated in the reward matrix as described below.

Rmax = max(R, [], 2);

R (state, action) = R (state, action) + alpha * (immediatereward - mediumreward + Rmax (nextstate) – R (state, action));

If (R (state, action) == Rmax (state)) then medium reward is updated as follows.
mediumreward = mediumreward + beta *(immediatereward - mediumreward + Rmax(nextstate) - Rmax(state));

where, Rmax gives the maximum reward value for each state, R is the reward matrix, state is the current state of pursuer, action is the action taken in this state which resulted in the selection of the cell for making the next move, alpha and beta are learning constants, nextstate is the state of pursuer corresponding to its new cell location and medium reward is the reward value is constant for group of states and is updated when the reward value for state/action pair is maximum for that state.
5.4.1.4.2 When there are no Obstacles in 9 by 9 cellular space

This case is handled in the similar manner as it is handled for pursuer algorithm in pursuit-evasion game model with no learning. All the steps are repeated without any modifications (refer to section 5.3).

5.5 Conclusion

This chapter describes the implementation details of the game models designed and simulated in the current project. The entire flow of inputs from metazone to percept zone and then finally to movement zone is described in detail. The implementation comprises of how using the limited perception, the agents build the map of the terrain by sewing together the patches of information they perceive during their course of movement and then use this information to achieve their specific goals.
Chapter 6
Simulations and Results
In this chapter simulation results for the game models designed in this project and the results obtained after carrying out the simulations are given.

The simulations are carried out on Matlab. Following is the 2-Dimensional view of the cellular space on which the simulations are carried out.
[image: image28.png]
Figure 22: 2-Dimensional of Cellular Space.

Following is the 3-Dimensional view of cellular space on which the simulations are carried out.
[image: image29.png]
Figure 23: 3-Dimensional View of the Cellular Space

6.1 Statistics for Good Path

The following characteristics are taken as statistics to determine the goodness of the path.

1. Low Violation Count – The number of violation counts i.e. number of times agent enters the radius of obstacles encountered in is path is one statistic to determine safety of path. A low value of violation count indicates that a path is good with respect to safety.

2. Shorter Path length – Shorter path length is the second statistic to determine the goodness of path with respect to distance to target destination.

6.2 Simulations and Results for Two Person Game with Nature as Adversary, No Learning
6.2.1 Simulations

The procedure to carry out the simulations for two person game with nature playing the role of an adversary is described in detail below.

1. First, the properties of agent, obstacles are set and the starting position and final position (destination) for the agent are specified. All this is done using a graphical user interface as shown below in Figure 24.
[image: image30.png]
Figure 24: Graphical User Interface

2. Once the initial and final position of agent is specified and properties of agent and obstacles are set, click the “Two Person Game, Nature as Adversary – No Learning” button to start the simulation.
Simulations are carried out for different scenarios i.e. for different agent attributes, different obstacle attributes and different initial and final positions for agent. The results of these simulations are shown below, for each simulation obstacles are placed randomly.

Simulation – 1
1. Set the properties of agent and obstacles as shown in Figure 25.
Agent Attributes:

Armour – High

Camouflage – High

Initial Position – (20, 30)

Final Position – (260, 290)

Type 1 Obstacle – Attributes

Lethality – Low

Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Medium

[image: image31.png]
Figure 25: Initialization for Simulation 1
2. Click the “Two Person Game, Nature as Adversary – No Learning” button.
Details for the first move from initial position are as follows.

i. Agent starts from initial coordinates (20, 30). For this position, first temporary location is selected. Temporary Location selected for initial coordinates (20, 30) is (21, 32). Mental Maps for temporary location are given below in Figure 26.
[image: image32.png]
[image: image33.png]
Figure 26: Temporary Location and Mental Maps for Temporary Location

In the above figure:

a. Red depicts the forbidden cells.

b. Light Green depicts highest utility cells.

c. Blue depicts eligible cells but with lower utility values.

d. Dark Green depicts selected cell.

ii. After the selection of temporary location, next cell for movement is selected. Next cell selected for movement is (21,31). Mental Maps for next best move are given below in Figure 27.
[image: image34.png]
[image: image35.png]
Figure 27: Next Best Move Selected and Mental Maps for Next Best Move
In the above figure:

a. Orange depicts the forbidden cells.

b. Light Blue depicts highest utility cells.

c. Blue depicts eligible cells but with lower utility values.

d. Dark Green depicts selected cell.
Similarly temporary location and best next move is selected using mental maps at each step of agent for the rest of the path until target is reached.
This process remains same for all the rest of the simulations.
Figure 28 and Figure 29 below shows the path taken by agent.
[image: image36.png]
Figure 28: Simulation 1- Path taken by Agent (1)
[image: image37.png]
Figure 29: Simulation 1 – Path taken by Agent (2)
Figure 30 below shows the number of violations made by the agent and the length of the path taken by the agent.
[image: image38.png]
Figure 30: Simulation 1 - Violation Count and Path Length

The simulation as seen in the 3-Dimensional cellular space is shown in Figure 31 and 32.
[image: image39.png]
Figure 31: Simulation 1 in 3-Dimensional Cellular Space (1)

[image: image40.png]
Figure 32: Simulation 1 in 3-Dimensional Cellular Space (2)
All the rest of simulations in this chapter are shown in 2-Dimensional cellular space as path is not clearly visible in 3-Dimensional space.
Simulation -2

For this simulation, obstacle placement, initial and final position of agent are same as that of the previous simulation, but the attributes of obstacle and agent are changed to see the effect on the path.
1. Set the properties of agent and obstacles as shown in Figure 33.
Agent Attributes:

Armour – Low

Camouflage – High

Initial Position – (20, 30)

Final Position – (260, 290)

Type 1 Obstacle – Attributes

Lethality – Medium

Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Low

[image: image41.png]
Figure 33: Initialization for Simulation 2

2. Click the “Two Person Game, Nature as Adversary – No Learning” button. Figure 34 below shows the path taken by agent and Figure 35 shows the variation in path taken by agent due to change in attributes of obstacles and agent.
[image: image42.png]
Figure 34: Simulation 2 – Path taken by Agent
 [image: image43.png]
Figure 35: Simulation 2 – Variation in Path due to changes in Attributes of Agent and Obstacles
Figure 36 below shows the number of violations made by the agent and the length of the path taken by the agent

[image: image44.png]
Figure 36: Simulation 2- Violation Count and Path Length
Simulation – 3
For this simulation, obstacle placement is changed everything else remains same as that for simulation 1.

1. Set the properties of agent and obstacles as shown in Figure 37.

Agent Attributes:

Armour – High

Camouflage – High

Initial Position – (20, 30)

Final Position – (260, 290)

Type 1 Obstacle – Attributes

Lethality – Low

Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Medium

[image: image45.png]
Figure 37: Initialization for Simulation 3

2. Click the “Two Person Game, Nature as Adversary – No Learning” button. Figure 38 below shows the path taken by agent.

[image: image46.png]
Figure 38: Simulation 3 – Path taken by Agent
Figure 39 below shows the number of violations made by the agent and the length of the path taken by the agent.

[image: image47.png]
Figure 39: Simulation 3 - Violation Count and Path Length

Both violation count and path length are different from the one obtained for simulation 1. This change occurs because of the modification in obstacle placement.
Simulation -4
For this simulation, obstacle placement, initial and final position of agent is changed to see the handling of wetting problem.

1. Set the properties of agent and obstacles as shown in Figure 40.

Agent Attributes:

Armour – High
Camouflage – High

Initial Position – (30, 40)

Final Position – (250, 190)

Type 1 Obstacle – Attributes

Lethality – Low
Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Low

[image: image48.png]
Figure 40: Initialization for Simulation 4
2. Click the “Two Person Game, Nature as Adversary – No Learning” button.
Figure 41 below shows the path taken by agent under given scenario and Figure 42 shows wetting by along the boundary of the no-go region.

[image: image49.png]
Figure 41: Simulation 4 – Path taken by Agent
 [image: image50.png]
Figure 42: Simulation 4 – Wetting by Agent along No-Go-Region
Figure 43 below shows the number of violations made by the agent and the length of the path taken by the agent

[image: image51.png]
Figure 43: Simulation 4 - Violation Count and Path Length with wetting not handled
3. Click the “Two Person Game, Nature as Adversary – No Learning” button.
Repeat the simulation to see the impact on agent’s path length when the wetting problem is handles.

Simulation results when wetting problem is handled are shown below in Figure 44 and Figure 45.
[image: image52.png]

Figure 44: Simulation 4 - Path Taken by Agent when Wetting is handled.

 [image: image53.png]
 Figure 45: Simulation 4 – Reduction in Wetting by Agent along No-Go- Region
Figure 46 below shows the number of violations made by the agent and the length of the path taken by the agent.

[image: image54.png]
Figure 46: Simulation 4 – Violation count and Path Length with wetting handled.

6.2.2 Results

The results obtained from the simulations for two person game with nature playing the role of adversary and no learning are summarized below.

1. When the obstacle placement is modified, it changes path of the agent along with the number of violations made by the agent and the length of the path taken by an agent.
2. The change in the attributes of obstacles and agent also results in the change of the path, violation count and the length of path taken by an agent

3. The simulations show that the wetting problem results in increase in the length of the path taken by the agent and agent spends a lot of time negotiating a small chunk of region. When the wetting is handled, there is remarkable reduction in the length of the path which saves lots of time of an agent. Results obtained from above simulations after handling the wetting problem are tabulated below.
Table 22: Results for Two Person with Nature As Adversary, without Learning
	With Wetting
	Without Wetting

	Path Length = 590
	Path Length = 349

6.3 Simulations and Results for Two Person Game with Nature as Adversary, with Learning

6.3.1 Simulations

The procedure to carry out the simulations for two person game with nature playing the role of an adversary and with learning module incorporated is described in detail below.

1. First, the properties of agent, obstacles are set and the starting position and final position (destination) for the agent are specified. All this is done using a graphical user interface as shown below in Figure 47.

[image: image55.png]
Figure 47: Graphical User Interface

2. Once the initial and final position of agent is specified and properties of agent and obstacles are set, click the “Two Person Game, Nature as Adversary with learning” button to start the simulation.
The simulations are carried out for different scenarios i.e. for different obstacle placement and different initial and final positions of agent. In these simulations, path taken by an agent, when there is no learning, is compared with the path taken by an agent with the learning module incorporated. Learning is incorporated in order to reduce the number of violations made by an agent i.e. the number of times it enters the radius of obstacles encountered by it during its path.

Simulation 5
This simulation shows the effect of reinforcement learning on the path taken by an agent. To see the impact of reinforcement learning, simulation without any learning is carried out first and then for the same scenario simulation is repeated with learning component incorporated.
1. Set the attributes of agent and obstacles as shown below in Figure 48.
Agent Attributes:

Armour – High

Camouflage – High

Initial Position – (25, 35)

Final Position – (250, 250)

Type 1 Obstacle – Attributes

Lethality – Low

Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Low

[image: image56.png]
Figure 48: Initialization for Simulation 5

2. Click the “Two Person Game, Nature as Adversary – No Learning” button.
Figure 49 below shows the path taken by agent and Figure 50 shows the violation count and path length.

[image: image57.png]
[image: image58.png]
Figure 49: Simulation 5 without learning – Path Taken by agent
[image: image59.png]
Figure 50: Simulation 5 without learning – Violation Count and Path Length

3. Click “Two Person Game with Nature as Adversary, with learning” button.

Figure 51 below shows path taken by agent when learning is employed and Figure 52 elaborates the changes in agent’s path.
[image: image60.png]
Figure 51: Simulation 5 with learning, run1–Path taken by Agent

[image: image61.png]
Figure 52: Simulation 5 with learning, run 1 – Changes in Agent’s Path due to Learning
[image: image62.png]
Figure 53: Simulation 5 with learning, run 1 – Violation Count and Path length
Comparing Figure 50 and 53, it can be seen there is remarkable reduction in the value of violation count, however in an attempt to reduce violation count path length has increased. However, the path obtained by incorporating learning is more optimal as compared to one obtained by using the algorithm without learning.

4. Repeat step 3 by clicking “Two Person Game with Nature as Adversary, with learning” button. In this simulation the reward matrix obtained in step 3 is reused to further improve the violation count and to make path length more optimal. Figure 54 shows the path taken by agent and Figure 55 elaborates the changes in agent’s path due to learning.
[image: image63.png]
Figure 54: Simulation 5 with learning, run 2 – Path Taken by Agent.

 [image: image64.png]
Figure 55: Simulation 5 with learning, run 2 – Changes in the Agent’s Path
 [image: image65.png]
Figure 56: Simulation 5 with learning, run 2 – Violation Count and Path Length
5. Repeat the simulation 5 again, for this simulation updated reward matrix obtained in step 4 is used. Figure 57 below shows the path taken by agent; Figure 58 shows the change in the path of the agent. This change occurs due to use of reward matrix, updated in previous run, in learning process. Figure 59 shows both the number of violations made by agent during the path and the length of the path followed by agent.
[image: image66.png]
Figure 57: Simulation 5 with learning, run 3 – Path Taken by Agent

[image: image67.png]
Figure 58: Simulation 5 with learning, run 3 – Change in Agent’s Path
[image: image68.png]
Figure 59: Simulation 5 with learning, run 3 – Violation Count and Path Length

Simulation 6

1. Set the attributes of agent and obstacles as shown in Figure 60.
Agent Attributes:

Armour – High

Camouflage – High

Initial Position – (250, 30)

Final Position – (35, 250)

Type 1 Obstacle – Attributes

Lethality – Low

Penetrability – High

Type 2 Obstacle – Attributes

Lethality – High

Penetrability – Low

[image: image69.png]
Figure 60: Initialization for Simulation 6.

2. Click “Two Person Game with Nature as Adversary - No learning” button.
Figure 61 below shows the path taken by agent and Figure 62 shows the violation count and path length.

[image: image70.png]
[image: image71.png]
Figure 61: Simulation 6 without learning – Path Taken by Agent

[image: image72.png]
Figure 62: Simulation 6 without learning – Violation Count and Path Length

Step 3 - Click “Two Person Game with Nature as Adversary, with learning” button.
Figure 63 shows the path taken by agent and Figure 64 elaborates the changes in agent’s path due to learning.

[image: image73.png]
Figure 63: Simulation 6 with learning, run 1 – Path taken by Agent

[image: image74.png]
Figure 64: Simulation 6 with learning, run1 – Changes in Agent’s Path due to Learning
Figure 65 below shows the violation count and path length for the new path taken by agent.

[image: image75.png]
Figure 65: Simulation 6 with learning, run 1 – Violation Count and Path Length
In the above simulation, violation count becomes equal to zero and path length is slightly increased giving an optimal path overall.

From the above simulations it can be seen that repetitive application of reinforcement learning gives an optimal combination of safer and shortest path. These simulations are repeated until no more improvement in the violation count and path length can be achieved.

6.3.2 Results
The results obtained from above simulations carried out for two person game with nature playing the role of adversary and with learning component incorporated are summarized as below.

1. The agent while moving interacts with its surrounding environment receiving positive and negative rewards, due to this interaction number of violations made by the agent are reduced making agents path safer.

2. The path length may increase at first, but repetitive application of reinforcement learning reduces both violation count and path length making path much more optimal. The result is a path which is optimal with respect to both safety and distance to target destination. The results obtained after learning is incorporated are tabulated below.
Table 23: Simulation 5 - Results for Two Person with Nature As Adversary, with Learning

	Simulation 5

	Without Learning
	With Learning Run 1
	With Learning Run 2
	With Learning Run 2

	Path Length
	Violation count
	Path Length
	Violation Count
	Path Length
	Violation Count
	Path Length
	Violation Count

	283
	13
	397
	5
	319
	3
	279
	2

Table 24: Simulation 6 - Results for Two Person with Nature As Adversary, with Learning

	Simulation 6

	Without Learning
	With Learning Run 1

	Path Length
	Violation count
	Path Length
	Violation Count

	245
	6
	0
	265

6.4 Simulations and results for Pursuit-Evasion Game without learning
6.4.1 Simulations

The procedure to carry out the simulations for pursuit-evasion game without learning is described in detail below.

1. First, the properties of evader, pursuer and obstacles are set and the starting position and final position (destination) of the evader and starting position of pursuer is specified. All this is done using a graphical user interface as shown below in Figure 66.

[image: image76.png]
Figure 66: Graphical User Interface

2. Once the initial and final position of evader and initial position of pursuer is specified and properties of evader, pursuer and obstacles are set, click the “Pursuit-Evasion Game without Learning” button to start the simulation.
Simulations are carried out for different scenarios i.e. for different evader and pursuer attributes, different obstacle attributes and different initial and final positions of evader and pursuer. The results of these simulations are shown below, for each simulation obstacles are placed randomly.

Simulation 7
1. Set the attributes of evader, pursuer and obstacles as shown below in Figure 67.
Evader Attributes:

Armour – high

Camouflage – high

Initial Position – (30, 29)

Destination – (260, 290)

Purser Attributes:

Armour – high

Camouflage – high

Initial Position – (250, 30)

Type 1 Obstacle Attributes:

Lethality - Low

Penetrability – High

Type 2 Obstacle Attributes:

Lethality - High

Penetrability – Low

[image: image77.png]
Figure 67: Initialization for Simulation 7

2. Click “Pursuit-Evasion Game without Learning”.
Figure 68 below shows the path taken by both evader and pursuer.
[image: image78.png]
Figure 68: Simulation 7 – Path Taken by Pursuer and Evader

Figure 69 below shows how the pursuer traces the path of evader by minimizing the distance between itself and evader.

[image: image79.png]
Figure 69: Simulation 7 – Distance Minimization between Pursuer and Evader

Figure 70 below shows the final locations of evader and pursuer after the simulation is over.

[image: image80.png]
Figure 70: Simulation 7 – Pursuer’s and Evader’s Final Location

Figure 71 below shows the violation count for both evader and pursuer.

[image: image81.png]
Figure 71: Simulation 7 – Violation Count for Evader and Pursuer
In this simulation evader reaches its target, however pursuer is able to assess the path of evader correctly.
Simulation 8
1. Set the attributes of evader, pursuer and obstacles as shown below in Figure 72.

Evader Attributes:

Armour – high

Camouflage – high

Initial Position – (20, 30)

Destination – (250, 250)

Purser Attributes:

Armour – high

Camouflage – high

Initial Position – (250, 200)

Type 1 Obstacle Attributes:

Lethality - Low

Penetrability – High

Type 2 Obstacle Attributes:

Lethality - High

Penetrability – Low

[image: image82.png]
Figure 72: Initialization for Simulation 8
 2. Click “Pursuit-Evasion Game without Learning”.

Figure 73 and 74 below shows the path taken by pursuer and evader for he given scenario.
[image: image83.png]
Figure 73: Simulation 8 – Path Taken by Pursuer and Evader

[image: image84.png]
Figure 74: Simulation 8 – Distance Minimization between Evader and Pursuer

Figure 75 below shows how the pursuer traces the path of evader, incessantly trying to minimize the distance between itself and evader. Figure 76 shows the capture of evader by the pursuer.

[image: image85.png]
Figure 75: Simulation 8 – Pursuer Tracing the path of evader.

[image: image86.png]
Figure 76: Simulation 8 – Capture of Evader by Pursuer

Figure 77 below gives the violation count for both evader and pursuer.
[image: image87.png]
Figure 77: Simulation 8 – Violation Count for Evader and Pursuer
In this simulation pursuer catches the evader near evader’s target destination.
Simulation 9

For this simulation attributes of evader, initial and target position of evader and initial position of pursuer is modified. The change in the camouflage value of evader affects the path taken by evader to its target. This is shown in simulation below.

Step 1- Set the attributes of evader, pursuer and obstacles as shown below in Figure 78.

Evader Attributes:

Armour – high

Camouflage – low

Initial Position – (50, 30)

Destination – (250, 250)

Purser Attributes:

Armour – high

Camouflage – high

Initial Position – (250, 245)

Type 1 Obstacle Attributes:

Lethality - Low

Penetrability – High

Type 2 Obstacle Attributes:

Lethality - High

Penetrability – Low

[image: image88.png]
Figure 78: Initialization for Simulation 9
 Step 2 - Click “Pursuit-Evasion Game without Learning”
Figure 79 below shows the path followed by both pursuer and evader under given scenario. Figure 80 below shows the changes in the path of the evader due to change in it camouflage value and change in the direction of pursuer.

[image: image89.png]
Figure 79: Simulation 9 – Path taken by Pursuer and Evader

[image: image90.png]
Figure 80: Simulation 9 – Distance Minimization between Pursuer and Evader and Change in Evader’s Path due to change in its Attributes.

Figure 81 below shows how the pursuer traces the path of evader and Figure 82 shows the capture scenario of evader.

[image: image91.png]
Figure 81: Simulation 9 - Pursuer tracing the Evader’s Path

[image: image92.png]
Figure 82: Simulation 9 – Capture of Evader by Pursuer

Figure 83 below gives the violation count of both evader and pursuer.

[image: image93.png]
Figure 83: Simulation 9 – Violation Count for both Evader and Pursuer
6.4.2 Results
From the above simulations carried out for pursuit-evasion game without learning following results are obtained.

1. The capture of evader by pursuer depends upon many details like clutter density in the path of evader and pursuer, regions encountered by evader and pursuer during their course and initial position of evader and pursuer.

2. In the above simulations it can be seen that pursuer minimizes the distance between itself and evader as it moves along its path and is able to trace the path of the evader irrespective of whether it captures the evader or not.

3. The effect of change in camouflage value of evader can be seen on the path taken by the evader to its target, evader tries to take such a path which is optimal with respect to both: distance to target and distance to pursuer.
6.5 Simulations and Results for Pursuit-Evasion Game with Learning
6.5.1 Simulations

The procedure to carry out the simulations for pursuit-evasion game with learning is described in detail below.

1. First, the properties of evader, pursuer and obstacles are set and the starting position and final position (destination) of the evader and starting position of pursuer is specified. All this is done using a graphical user interface as shown below in Figure 84.

[image: image94.png]
Figure 84: Graphical User Interface

2. Once the initial and final position of evader and initial position of pursuer is specified and properties of evader, pursuer and obstacles are set, click the “Pursuit-Evasion Game with learning” button to start the simulation.
Simulations are carried out for different scenarios i.e. for different evader and pursuer attributes, different obstacle attributes and different initial and final positions of evader and pursuer. The results of these simulations are shown below, for each simulation obstacles are placed randomly.

Simulation 10
1. Set the attributes of evader, pursuer and obstacles as shown below in Figure 85.
Evader Attributes:

Armour – high

Camouflage – high

Initial Position – (20, 30)

Destination – (250, 260)

Purser Attributes:

Armour – high

Camouflage – high

Initial Position – (250, 220)

Type 1 Obstacle Attributes:

Lethality - Low

Penetrability – High

Type 2 Obstacle Attributes:

Lethality - High

Penetrability – Low

[image: image95.png]
Figure 85: Initialization for Simulation 9
2. Click “Pursuit-Evasion Game without Learning”
Figure 86 below shows the path taken by pursuer and evader.

[image: image96.png]
Figure 86: Simulation 10 without learning – Path Taken by Pursuer and Evader.

Figure 87 below shows the initial path taken by the evader. Figure 88 shows the final locations of evader and pursuer after the simulation is over. In this simulation evader reaches its destination, however pursuer is able to trace the path of evader successfully. Figure 89 shows the violation count of pursuer and violation count, path length of evader.
[image: image97.png]
Figure 87: Simulation 10 without learning – Evader’s Path
[image: image98.png]

 Figure 88: Simulation 10 without learning– Final Locations of Evader and Pursuer

[image: image99.png]
Figure 89: Simulation 10 without learning– Violation Count of Pursuer, Violation Count and Path Length of Evader
3. For the same attributes of evader, pursuer and obstacles and with same obstacle placement, above simulation is repeated but with learning component incorporated. To start the simulation, click “Pursuit-Evasion Game with Learning” button.
Figure 90 below shows the path taken by evader and pursuer when the learning is incorporated for both.

[image: image100.png]
Figure 90: Simulation 10 with learning, run 1 – Path taken by Pursuer and Evader

Figure 91 below shows how the evader changes its path as it learns during the course of it movement while interacting with its environment

[image: image101.png]
Figure 91: Simulation 10 with Learning, run 1 – Change in Evader’s Path due to Learning

Figure 92 below shows how the pursuer changes its path as it learns during the course of it movement while interacting with its environment

[image: image102.png]
Figure 92: Simulation 10 with Learning, run 1 – Change in Pursuer’s Path due to Learning

Figure 93 below shows the final locations of evader and pursuer. In this simulation evader is able to reach its destination.
[image: image103.png]
Figure 93: Simulation 10 with Learning, run 1 – Final Locations of Evader and Pursuer

[image: image104.png]
Figure 94: Simulation 10 with Learning, run 1– Violation Count of Pursuer, Violation Count and Path Length of Evader
In this simulation violation count of both evader and pursuer is lowered, leading to a safer path. Path length of evader is slightly more but overall path is more optimal for both evader and pursuer.
4. For the same attributes of evader, pursuer and obstacles and with same obstacle placement, above simulation is repeated to get better results. To start the simulation, click “Pursuit-Evasion Game with Learning” button.

Figure 95 below shows the path taken by evader and pursuer when the learning is incorporated for both.

[image: image105.png]
Figure 95: Simulation 10 with learning, run 2 – Path taken by Pursuer and Evader
Figure 96 below shows how the evader changes its path as it learns during the course of it movement while interacting with its environment

[image: image106.png]
Figure 96: Simulation 10 with learning, run 2 – Change in Evader’s Path due to Learning

Figure 97 below shows how the pursuer changes its path as it learns during the course of it movement while interacting with its environment

[image: image107.png]
Figure 97: Simulation 10 with learning, run 2 – Change in Pursuer’s Path due to Learning

Figure 98 below shows the final locations of evader and pursuer. In this simulation evader is able to reach its destination
[image: image108.png]
 Figure 98: Simulation 10 with Learning, run 2 – Final Locations of Evader and Pursuer

[image: image109.png]
Figure 99: Simulation 10 with Learning, run 2 – Violation Count of Pursuer, Violation Count and Path Length of Evader
In this simulation violation count of both evader and pursuer is further lowered. Path length of evader is slightly more but overall path is more optimal.

Step 5 - For the same attributes of evader, pursuer and obstacles and with same obstacle placement, above simulation is repeated to get better results. To start the simulation, click “Pursuit-Evasion Game with Learning” button.

Figure 100 below shows the path taken by evader and pursuer when the learning is incorporated for both.

[image: image110.png]
Figure 100: Simulation 10 with learning, run 3 – Path taken by Pursuer and Evader

Figure 101 below shows how the evader changes its path as it learns during the course of it movement while interacting with its environment

[image: image111.png]
Figure 101: Simulation 10 with learning, run 3 – Change in Evader’s Path due to Learning

Figure 102 below shows how the pursuer changes its path as it learns during the course of it movement while interacting with its environment

[image: image112.png]
Figure 102: Simulation 10 with learning, run 3 – Change in Pursuer’s Path due to Learning

Figure 103 below shows the final locations of evader and pursuer. In this simulation evader is able to reach its destination
[image: image113.png]
Figure 103: Simulation 10 with Learning, run 3 – Final Locations of Evader and Pursuer
[image: image114.png]
Figure 104: Simulation 10 with Learning, run 3– Violation Count of Pursuer, Violation Count and Path Length of Evader
In this simulation violation count of both evader and pursuer is further lowered. Path length of evader is slightly more but overall path is more optimal.

6.5.2 Results

From the above simulations following results can be inferred.

1. The incorporation of reinforcement learning results in lower violation count for both evader and pursuer and follows a safer path. The results obtained from above simulations for violation count are tabulated below.

Table 25: Results for Pursuit Evasion Game with Learning

	Simulation 10

	Without Learning
	With Learning Run 1
	With Learning Run 2
	With Learning Run 3

	Violation count(evader)
	Violation count(pursuer)
	Violation count(evader)
	Violation Count(pursuer)
	Violation count(evader)
	Violation Count(pursuer)
	Violation count(evader)
	Violation Count(pursuer)

	9
	17
	7
	6
	4
	2
	1
	0

2. Pursuer is able to trace the path of evader with more precision and accuracy as compared to when no learning is incorporated.
3. Evader follows a better path to its destination as compared to the path it follows when there is no learning module. The length of the path may increase slightly because evader changes its path in order to maintain a safe distance from pursuer (which also now follows a better path) as well as obstacles encountered by it in its path.
4. Repetitive application of reinforcement learning further lowers the violation count for both evader and pursuer.
Thus, application of reinforcement learning allows both evader and pursuer to follow a path which is more optimal with respect to safety and distance to the target.
Chapter 7
 Conclusion and Future Work

The work presented in this project is aimed at designing a pursuit-evasion game model for a dynamic environment with both evader and pursuer having partial information about the environment. In order to design a cognitive model to compute the best-next-move at each time instant for the goal oriented, rational and utility-driven mobile cellular automata agents, the entire problem is divided into three steps. First, only single agent is considered which has a fuzzy inference system to implement the “perceive-reason-act” decision cycle. This single agent plans its path to its target destination by using its local information about the environment. Second, another agent is introduced; now the first agent has two goals of reaching the target destination and maintaining a safe distance from the second agent. Second agent has only one goal of capturing the first agent. Both first and second agents plan their paths using their local information about environment and during their course of movement they also avoid collision with obstacles and avoid going into regions prohibited for them. Third, reinforcement learning module is implemented which gives both the agents capability learn along with reasoning and deciding in a manner similar to a human being. As both the agents move step by step by choosing the best next move, they interact with their environment, which returns the rewards for the actions taken by them. Based on these reward values both the agents learn which actions are more beneficial in long run and help them to achieve their goals.
The simulations carried out for single agent game show that the single agent follows a shortest and safest path to the target destination by choosing a step which is optimal with respect to the obstacle radius, direction of the target destination and the height. The solution to the wetting problem works well and saves a lot of time of agent. The simulations for the pursuer-evasion game show that the pursuer (second agent) is able to trace the path of the evader (first agent) perfectly well and the evader makes its move in such a manner that it is able to maintain a safe distance from pursuer. The use of reinforcement learning showed its impact by lowering the number of violations i.e. number of times agent enters the radius of the obstacle. Many simulation runs are carried out for pursuit –evasion game and it is seen that the capture of evader by pursuer depends upon many factors as given below.

1. Initial positions of both evader and pursuer.
2. Regions encountered by both evader and pursuer during their course of
movement.
3. Number of obstacles encountered by both evader and pursuer during their course of movement.

The importance of the work carried out in this project comes from its following described features

1. The use of fuzzy logic in path planning helps to handle complex problems with low computational costs. The use of metarules is an important feature which further minimizes the computational cost.

2. The terrain features and the inputs considered in this project are very close to the real time inputs, so the model developed in this project for path planning and pursuit-evasion can be applied to a variety of fields like military infiltration models, gaming, rescue operations, ocean exploration and many more.

3. The models designed in this project are based on the assumption that agents have partial information about their surroundings, so this model can work well in comparison to models designed using graphs and geometrical construction and require complete information about the terrain.

4. The learning capability of the agents makes the model much more autonomous.
Future Work
The pursuit evasion game based on learning algorithms and rational choices modelled in this project can be improved further by taking following measures.

1. A behavioural model can be incorporated. This model can tell the evader about pursuers’ past behaviour and can tell pursuer about evader’s past behaviour. For example whether the other agent is assertive or is docile can affect the choices of the other agent.
2. Here the sensor field is taken to be 15 by 15 cellular space. Instead a variable sensor field can be taken such that its strength and its reliability decrease with the distance. The map building can be then done using this sensor field. Such a sensor field can greatly improve the pursuit – evasion game but it will be less dynamic.
References

[1]. Steven M. LaValle, Robot Motion Planning: A Game Theoretic Foundation, Department of Computer Science Towa State University, Ames USA.

[2]. Anthony Stentz, Optimal and Efficient Path Planning for Partially known Environments. In Proceedings IEEE International Conference on Robotics and Automation, May 1994.

[3]. D. Garagic and J.B. Cruz, Jr, An Approach to Fuzzy Noncooperative Nash Games. Journal of Optimization Theory and Applications, pp- 475-491, 2003.

[4]. Chunyan Han, Zuofeng Gao, Yongbo Yu, Hua Zhang, Suting Zhang and Hongxin Bai, Two-Person Non Zero –Sum Bimatrix Game with Fuzzy Payoffs and Its Equilibrium Strategy. College of Science, Yan Shan University, China. Journal of Mathematics Research, 2009.

[5]. Elisabeth Rakus-Andersson, Maria Salomonsson and Hang Zettervall, Ranking of Weighted Strategies in the Two-Player Games with Fuzzy Entries of the Payoff Matrix. Blekinge Institute of Technology, Department of Mathematics and Science, Sweden. Eighth International Conference on Hybrid Intelligent Systems, 2008.

[6]. N. Javadian and Y. Maali, A New Approach for Solving Noncooperative Fuzzy Game. Department of Industrial Engineering, Mazandaran University of Science and Technology, Babol, Iran. International Conference on Computational Intelligence for Modeling Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, IEEE 2006.

[7]. Adem C. Cevikel and Mehmet Ahlatcioglu, A New Solution Concept in Fuzzy Matrix Games. Yildiz Technical University, Art-Science Faculty, Department of Mathematics, Istanbul, Turkey. World Applied Sciences Journal 7, 2009.

[8]. Friedel PELDSCHUS, Fuzzy Matrix Games Multi-Criteria Model for Decision-Making in Engineering. Leipzig University of Applied Sciences Karl Liebknecht Strasse, Germany. Informatica, 2005.

[9]. Qian Song and Abraham Kandel, A Fuzzy Approach to Strategic Games. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 1999
[10]. Joao P. Hespanha, Hyoun Jin Kim and Shankar Sastry, Multiple-Agent
Probabilistic Pursuit-Evasion Games. In Proceedings of the 38th Conference
on Decision and Contr., Dec. 1999.

[11]. René Vidal, Omid Shakernia, H. Jin Kim, David Hyunchul Shim and

Shankar Sastry, Probabilistic Pursuit–Evasion Games: Theory,
Implementation, and Experimental Evaluation. IEEE TRANSACTIONS ON
ROBOTICS AND AUTOMATION, 2002.

[12]. Marcos A. M. Vieira, Ramesh Govindan and Gaurav S.Sukhatme, Scalable
and Practical Pursuit-Evasion. Department of Computer Science University of
Southern California.
[13]. Yifan Li, Petr Musilek and Loren Wyard-Scott, Fuzzy Logic in Agent-Based
Game Design. Department of Electrical and Computer Engineering,
University of Alberta, Canada. IEEE,2004
[14]. Gedson Faria and Rosell A. Francelin Romero, Incorporating Fuzzy Logic to
Reinforcement Learning.

[15]. D. Xiao and A. H. Tan, Cooperative Cognitive Agents and Reinforcement Learning in Pursuit Game. School of Computer Engineering, Nanyang Technological University, Singapore.

[16]. Dongbing Gu and Huosheng Hu, Fuzzy Multi-Agent Cooperative Q-learning. Department of Computer Science University of Essex Colchester, UK. Proceedings of the 2005 IEEE International Conference on Information Acquisition.

[17]. Kathryn Merrick and Mary Lou Maher, Motivated Reinforcement Learning for Adaptive Characters in Open-Ended Simulation Games. ACM 2007.

[18]. Lori L. DeLooze and Wesley R. Viner, Fuzzy Q-Learning in a Nondeterministic Environment: Developing an Intelligent Ms. Pac-Man Agent, IEEE 2009.

[19]. MATLAB, http://www.mathworks.com/

Appendix A

Introduction to Matlab
MATLAB is a high-performance language for technical computing. It integrates computation, visualization, and programming in an easy-to-use environment where problems and solutions are expressed in familiar mathematical notation.

Typical uses include

1. Math and computation

2. Algorithm development

3. Data acquisition

4. Modeling, simulation, and prototyping

5. Data analysis, exploration, and visualization

6. Scientific and engineering graphics

7. Application development, including graphical user interface building.

MATLAB is an interactive system whose basic data element is an array that does not require dimensioning. This allows you to solve many technical computing problems, especially those with matrix and vector formulations, in a fraction of the time it would take to write a program in a scalar non interactive language such as C or Fortran.

Matlab System

The MATLAB system consists of five main parts:

1. Desktop Tools and Development Environment
This is the set of tools and facilities that help use MATLAB functions and files. Many of these tools are graphical user interfaces. It includes the MATLAB desktop and Command Window, a command history, an editor and debugger, a code analyzer and other reports, and browsers for viewing help, the workspace, files, and the search path.

2. The MATLAB Mathematical Function Library
This is a vast collection of computational algorithms ranging from elementary functions, like sum, sine, cosine, and complex arithmetic, to more sophisticated functions like matrix inverse, matrix eigenvalues, Bessel functions, and fast Fourier transforms.

3. The MATLAB Language
This is a high-level matrix/array language with control flow statements, functions, data structures, input/output, and object-oriented programming features. It allows both "programming in the small" to rapidly create quick and dirty throw-away programs, and "programming in the large" to create large and complex application programs.

4. Graphics
MATLAB has extensive facilities for displaying vectors and matrices as graphs, as well as annotating and printing these graphs. It includes high-level functions for two-dimensional and three-dimensional data visualization, image processing, animation, and presentation graphics. It also includes low-level functions that allow you to fully customize the appearance of graphics as well as to build complete graphical user interfaces on your MATLAB applications.

5. The MATLAB External Interfaces/API
This is a library that allows you to write C and FORTRAN programs that interact with MATLAB. It includes facilities for calling routines from MATLAB (dynamic linking), calling MATLAB as a computational engine, and for reading and writing MAT-files.
Matlab File Types
 MATLAB can read and write several types of files. There are mainly five different
types of files used in MATLAB which is used for storing data or programs.

1. M-FILES
They are the standard ASCII files, with a .m extension to the file name. There are basically two types of files and they are SCRIPT and FUNCTION file. In general, mostly MATLAB files are saved as M-FILES.

2. MAT-FILES
They are the binary data-files, with a .mat extension to the filename. These files are created when you save the MATLAB data with the save command. The data which you save in MATLAB can only be read by mat lab as it save in a special format.

3. FIG-FILES
They are the binary figure-file, with a .fig extension to the filename. Such files are created by saving a figure in this format by using the save and save as option in it. These files basically create all kind of information which is used for again recreating a figure and can be opened by filename.fig.

4. P-FILES
These are the compiled M-File, with a .p extension to the filename. These file can be executed directly without using any compiler and parsed in it. These files are created with the P-CODE command.
 5. MEX-FILES
These are MATLAB-callable FORTRAN and C programme, with the .mex extension to the filename. Use of these file require some experience in MATLAB and lot of patience in it.
Matlab Fuzzy Inference System

There are five primary GUI tools for building, editing, and observing fuzzy inference systems in the Fuzzy Logic Toolbox. These GUIs are dynamically linked, in that changes made to the FIS using one of them, can affect any of the other open GUIs.
1. FIS Editor

The FIS Editor displays general information about a fuzzy inference system. It displays the inputs being passed to the fuzzy inference system and outputs coming out of it. It also displays the AND method, OR method, aggregation method, implication method and defuzzification method used in fuzzy inference process.
 2. Membership Function Editor

The Membership Function Editor is the tool that lets you display and edit all of the membership functions associated with all of the input and output variables for the entire fuzzy inference system.

3. Rule Editor

The Rule Editor allows constructing the rule statements automatically, by
clicking on and selecting one item in each input variable box, one item in each
output box, and one connection item. Choosing none as one of the variable
qualities will exclude that variable from a given rule. Choosing not under any
variable name will negate the associated quality. Each rule has a certain weight associated with it which can be specified by typing a value between 0 and 1 in the rule editor. If no weight is specified, the weights are assumed to be unity.

4. Rule Viewer

The Rule Viewer displays a roadmap of the whole fuzzy inference process. The Rule Viewer allows you to interpret the entire fuzzy inference process at once. The Rule Viewer also shows how the shape of certain membership functions influences the overall result.

5. Surface Viewer

It presents the three-dimensional curve that represents the mapping from inputs to outputs. In two inputs –one output case entire mapping can be seen in one plot.

Agent’s path is different from previous path followed by it in run 2

Yes (5)

Violation count

x (t+1)

r (t)

r (t-1)

x (t)

a (t)

R

R

Environment

Agent

Inputs to FIS

Outputs from FIS

Outputs from FIS

Inputs to FIS

Outputs from FIS

Inputs to FIS

Evader’s Destination

X3

				

X2

If purser is in 15 by 15 cellular space of evader

Y

N

+

Traversing the no-go region

FIS (5)

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

Obstacle Initialization

obs1 = obstacle ('1','1', 9, leth_val, pen_val);

obs2 = obstacle ('2','2', 7, leth_val, pen_val);

leth_val = [low, medium, high]

pen_val = [low, medium, high]

Where obs1 and obs2 are two objects of class obstacle, leth_val is value of lethality and pen_val is the value of lethality.

Agent

Slow-Go Region

NO –Go Region

Go Region

Obstacle-Type 2

Obstacle-Type 2

Metazone

(15 * 15)

 Percept Zone

(9 * 9)

Movement

Zone (3 * 3)

Outputs from FIS

Inputs to FIS

Output

from FIS

Input to FIS

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

Evader’s Path

Mental Map for Separation Radius

Mental Map for Goal-Steer Direction

Mental Map for Climb

Final Mental Map

Separation Radius

Climb

Goal-Steer Direction

Climb

Goal –Steer Direction

Separation Radius

Final Map for Goal Steer Direction

Mental Map for Separation Radius

FIS (4)

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

Goal-Steer Direction

Final Mental Map

Mental Map for Climb

Mental Map for Goal-Steer Direction

+

+

+

+

+

End

NO

If next cell is target destination

Flag =1

No

Yes

If there are obstacles in the 9x9 space?

Flag =0 (process is repeated to select next move cell with temporary location as destination)

Yes

No

If flag = 1?

Most eligible cell is selected as the next move for agent.

 In 15x15 space (metazone), calculate the value of clutter density, region trafficability, percentage of different obstacles types, percentage of different peaks, depending upon there values one of the nine metarules is fixed. For each metarule different combinations of 3 FIS are called. This process is repeated for each obstacle in 9x9 space.

No Conflict

Final map is generated by combining the three mental maps for climb, direction and separation radius

Most eligible cell is selected as temporary destination for agent.

Output from Fuzzy inference systems

FIS returns the value of goal direction, separation radius and climb. For each of these mental maps are generated.

Starting and target position of agent is set. Agent and obstacles are initialized

 No mental maps are created and cell with shortest distance to the target is selected for movement

In 9x9 space, the inputs for three FIS systems are calculated and the value are passed to metarules module

If purser is in 15 by 15 cellular space of evader

Y

N

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

FIS (4)

Mental Map for Separation Radius

Mental Map for Climb

Mental Map for Goal-Steer Direction

Final Map for Goal Steer Direction

Final Mental Map

Separation Radius

Goal –Steer Direction

Climb

Goal-Steer Direction

+

+

+

+

+

FIS (5)

If purser is in 15 by 15 cellular space of evader

Y

N

Mental Map for Climb

Mental Map for Goal-Steer Direction

Climb

Final Mental Map

Reinforcement Learning Map (Fourth Map)

Reinforcement Learning Map (Fourth Map)

Reinforcement learning Module

+

+

+

Goal-Steer Direction

Mental Map for Separation Radius

Climb

Separation Radius

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

Final Mental Map

Mental Map for Goal-Steer Direction

Mental Map for Climb

Separation Radius

Mental Map for Separation Radius

Goal-Steer Direction

+

+

+

Reinforcement learning Module

Reinforcement Learning Map (Fourth Map)

+

+

+

+

Goal-Steer Direction

Climb

Goal –Steer Direction

Separation Radius

Final Mental Map

Final Map for Goal Steer Direction

Mental Map for Goal-Steer Direction

Mental Map for Climb

Mental Map for Separation Radius

FIS (4)

Fuzzy Inference Systems

(FIS (1), FIS (2), FIS (3))

Reinforcement learning Module

+

Initialization

Set the properties of evader, pursuer and obstacles. Set the octant in which the pursuer lies, this value is passed to the evader, also set the octant in which evader lies, this value is passed to pursuer

Evader’s Algorithm

Pursuer’s Algorithm

Are there obstacles in evader’s 9 by 9 cellular space?

No

Pass the sensory input about the octant in which pursuer lies to evader

Get the inputs Target Direction, Clutter Density, Region Trafficability, Camouflage, Armour, Lethality, Penetrability, Obstacle Distance, Obstacle Direction and Obstacle Altitude from evader’s 9 by 9 cellular space

Get the inputs clutter density, region trafficability, height value distribution and distribution of obstacles of type 1 and type2 from evader’s 15 by 15 cellular space

Depending upon the inputs from 15 by 15 metazone, select a metarule.

Fire the respective fuzzy inference systems of selected metarule

Perform For each and every obstacle

C1

C9

Inputs to Fuzzy Inference Systems

C2

C4

C3

Pursuer Direction input to FIS(4) and FIS(5)

Target Direction input to FIS(4)

C6

C5

Yes

Is pursuer in evader’s 15 by 15 cellular space?

Fire FIS (5) and make probability map using its output and select most eligible cell for movement

 No mental maps are created and cell with shortest distance to the target is selected for movement

Yes

No

C7

C8

Flag =1

C4

C1

Retrieve the goal direction, separation radius and climb outputs of FIS for making the mental maps.

Is pursuer in evader’s 15 by 15 cellular space

Climb

Mental Map for Climb

Separation Radius

Mental Map for Separation Radius

Goal-Steer Direction

Mental Map for Direction

Yes

Fire FIS(5)

C2

Goal-Steer Direction

Probability Map for Direction

Fire FIS(4)

No

C3

Final Mental Map

Final Map for Direction

If flag =1?

Yes

Most eligible cell is selected as temporary destination for rover.

Flag =0 (process is repeated to select next move cell with temporary location as destination)

No

Most eligible cell is selected as the next move for evader.

End

Yes

If next cell is target destination

No

C5

C6

C7

C8

C9

Are there obstacles in pursuer’s 9 by 9 cellular space?

Pass sensory input about the octant in which evader lies to pursuer

Get the inputs Clutter Density, Region Trafficability, Camouflage, Armour, Lethality, Penetrability, Obstacle Distance, Obstacle Direction and Obstacle Altitude from evader’s 9 by 9 cellular space.

Yes

Get the inputs clutter density, region trafficability, height value distribution and distribution of obstacles of type 1 and type2 from evader’s 15 by 15 cellular space

Depending upon the inputs from 15 by 15 metazone, select a metarule.

Fire the respective fuzzy inference systems of selected metarule

Inputs to Fuzzy Inference Systems

Target Direction Input to Fuzzy Inference Systems

Retrieve the goal direction, separation radius and climb outputs of FIS for making the mental maps.

Climb

Separation Radius

Goal-Steer Direction

Mental Map for Climb

Mental Map for Separation Radius

Mental Map for Direction

C10

C11

C12

No

C13

C14

Flag =1

Perform For each and every obstacle

Is evader in pursuer’s 15 by 15 cellular space?

C15

C12

C11

Most eligible cell is selected as temporary destination for pursuer.

Yes

Flag =0 (process is repeated to select next move cell with temporary location as destination)

If flag =1?

Final Mental Map

Most eligible cell is selected as the next move for pursuer.

If next cell is target destination /evader captured

No

End

Yes

C13

No

C14

C10

Make a probability map using the evader direction, cell which fall in the direction class of evader’s direction is given high utility value and is selected for movement

C16

Cell which is closet to the evader direction is selected for movement

C17

C15

Yes

No

C16

C17

Path Length

Target Destination

Variation in Path taken by agent as compared to in simulation 1.

Path Length

Violation count

Wetting

Path Length

Violation count

Reduction in Wetting

Path Length reduced to 349 from 590 because of reduction in wetting

Violation count

Starting position

Path Length

Path Length

Violation count

Violation count

Change in Path due to learning

Path Length is slightly increased

Violation count reduced to 5 from 13

Agent takes entirely different path

Path Length is also reduced

Violation count is further reduced to 3 from 5

Path Length is also reduced

Violation count is further reduced to 2 from 3

Starting position

Starting position

Target Destination

Starting position

Target Destination

Target Destination

Starting position

Target Destination

Starting position

Target Destination

Starting position

Target Destination

Starting position

Target Destination

Starting position

Target Destination

Path Length

Violation count

Path Length is increased slightly

Violation count is reduced to 0 from 6

Changes in the path due to learning

Starting position

Target Destination

Starting position

Target Destination

Starting position of pursuer

Starting position of evader

Evader reaches its target

Pursuer

is here when evader reaches its target

Pursuer’s Trail

Evader’s Trail

Minimization of distance between pursuer and evader

Evader reaches its target

Pursuer is here

Violation count of evader

Violation count of pursuer

Staring position of evader

Evader’s Trail

Pursuer’s Trail

Staring position of pursuer

Evader’s Destination

Pursuer Tracing the path of evader

Minimization of distance between evader and pursuer

Evader Destination

Evader in pursuer’s 5 by 5 cellular space, thus captured

Violation count of pursuer

Violation count of evader

Agent’s Path

Selected Temporary Location

Mental Map for Climb

Mental Map for Direction

Final Mental Map

Mental Map for Separation

Evader’s Path Length

Cell Selected for Next Best Move

Mental Map for Separation

Final Mental Map

Mental Map for Direction

Mental Map for Climb

Violation Count for Evader

Violation Count for Pursuer

Evader’s Destination

Staring position of pursuer

Pursuer’s Trail

Evader’s Trail

Staring position of evader

Evader’s reaches its Destination

Pursuer is here

Staring position of pursuer

Pursuer’s Trail

Evader’s Trail

Staring position of evader

Minimization of distance between evader and pursuer

Pursuer Tracing the path of evader

Evader in pursuer’s 5 by 5 cellular space, thus captured

Staring position of evader

Violation count of pursuer

Violation count of evader

Change in evader’s path due to low camouflage and pursuer’s direction

Staring position of pursuer

Evader’s Destination

Pursuer’s Trail

Evader’s Trail

Pursuer is here

Evader’s reaches its Destination

Violation Count for Pursuer reduced to 6 from 17

Violation Count for Evader is reduced to 7 from 9

Change in path of evader due to learning

Change in path of pursuer due to learning, it follows a better path

Evader’s path length is slightly increased

Staring position of pursuer

Evader’s Destination

Staring position of evader

Evader’s Trail

Pursuer’s Trail

Change in path of evader due to learning

Change in path of pursuer due to learning ,it follows a better path

Pursuer is much closer to evader

Evader’s reaches its Destination

Violation Count for Evader is reduced to 1 from 4

Evader’s path length is slightly increased

Violation Count for Pursuer reduced to 0 from 2

Violation Count for Pursuer reduced to 2 from 6

Evader’s path length is slightly increased

Violation Count for Evader is reduced to 4 from 7

Evader’s reaches its Destination

Pursuer is here

Change in path of pursuer due to learning ,it follows a better path

Change in path of evader due to learning

Pursuer’s Trail

Evader’s Trail

Staring position of pursuer

Staring position of evader

Evader’s Destination

PAGE
164

