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ABSTRACT

Today a majority of security exploits have a memaogyrruption component. These attacks
depend on corrupting some process memory and eitjesting a shellcode and executing that
or using some system calls with malicious paramseti@harm victim machine and to replicate.
The existing approaches either provide insufficieehdomness or require source code
modification. Insufficient randomness allows at&cto use Brute-Force attacks and source code
modification doesn’t seem to be viable solution &birthe software available on the internet
which are the biggest reservoir of the memory qurom attacks. In this paper we propose
PriCryp, a prophylactic security technique that eslkfficient and effective use of ASLR and
ISR to provide prioritized cryptographic runtimedeoblock randomization. Here we make key
observation that system calls are almost alwaysl usememory corruption attacks by the
attackers. We make use of cryptographic algorithonscramble data variables and security
critical instructions which we say including systesll instruction and other application binary
interface (ABI) functions. We prioritize the codétks according to the system calls within
them. PriCryp intercepts the process before exacwutnd disassembles it to identify code blocks
of related instructions. These code blocks are #esigned priority according to the number of
system calls within them. Based on this prioritg #tode blocks are then randomized during
runtime. PriCryp randomizes the very components grocess including Stacks, Heaps, Data

segments and Code segments. Further randomizesdbesegment internally.
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Chapter 1. Introduction

1.1 Background

Memory corruption exploits are most common vulnéitsds among the software
vulnerabilities through which attacker can taketoamnof the computers. More than 50
percent of today’s widely exploited vulnerabilitiase caused by buffer overflow and this
percentage is increasing as time passes. An inoghasised attack is the Code Injection,
to exploit the software vulnerability on the victimachine and execute either the
remotely injected code or an existing maliciousecothe worms liké&Sassel1], Blaster
[2], Code Red3], andCode Red lluse this attack to execute the injected code en th
victim to infect and replicate. The@ode RedCode Red lland their variations exploited
the known vulnerability in the Microsoft Index Sex@ DLL. In 2003,Sapphire[4](SQL
Slammer), andMSBlaster[2] took advantage of buffer overflow vulnerabdgii to inject
into systems. As attributed in the US-CERT Cybecu8ity Advisories [5] of recent
years, a majority of security exploits are basednwmory corruption component. In
2003, buffer overflow accounted for 70.4% (19 oj @¥the serious vulnerability reports

from CERT advisories.

These memory corruption vulnerabilities are usualyised by insecure programming
style and unavailability of secure libraries in fm®gramming languages like C. These
vulnerabilities are mostly occurred due to the lawk input validation in the C

programming language, due to which programmerdrageto decide when and how to
tackle the input. However these programming stydemetimes result in improved

performance of the application. Again the diffigulin source code analysis forces
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programmers to make assumptions or simplificatieat tauses a huge number of false
positives or false negatives. The techniques fopla#ing memory corruption
vulnerabilities depend on the memory layout of thecuting program under target.
These vulnerabilities include Stack and Heap Owedl and Underflows, Format
Strings, Array Index overflows, and uninitializedriables. Typically these attacks are
designed to enable the remote attacker to exeartes sarbitrary code on the victim
remote machine. This execution may provide theckdtathe full control of the victim
system or may be used to propagate worms, dataptmm or some hidden installation.
These factors have fueled a lot of research inferdes against exploitation of memory
corruption vulnerabilities. Early research targesgcific exploit types such as stack

smashing, etc. but attackers soon discovered atteenways to exploit memory errors.

Table 1: CERT Advisories (1999-2002)

Vulnerability Number Percentage
Buffer Overflow 49 44.95%
Double Free 2 1.83%
Format Strings 9 8.26%
Backdoor/Trojan Horses 8 7.34%
Others 41 37.62
Total 109 100%

As it is well known, diversity plays an essentialer for the survivability of every
biological species; recently this theory has alserbapplied to computer programs.

Computer scientists started to apply different $ypd transformations to computer

7 I Rahul Kumar Agrawal, Delhi College of Engineering, 2008



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation

programs such as Instruction Set Randomization)(I8Bsolute Address Randomization
(AAR), Address Space Layout Randomization (ASLR)d aseveral other program
transformation technigues. These techniques ehiby in combating against memory

corruption attacks or extenuate the chances of teing successful.

The recent release of Microsoft’s latest PC opegasiystem Windows Vista included an
implementation of Address Randomization [6] whithnalyzed is not up to the security
requirements of current systems. Wehntrust [7]@adne [8] are other implementations
available for address randomization. These produat® one or more of the following

negatives:

Randomization Incompletenesd¥indows Vista’'s Address Randomization randomizes
only the base addresses of the executables a2l ttee Wehntrust also don’t randomize
some memory regions and for Ozone no other infdomats available except it

randomizes the stack and the DLLs.

Randomization Deficiencyln Windows Vista Address Randomization is proviaedy
over 256 possible values for the base address.rahge of randomization hardly seems
to be sufficient to counter a targeted attack. ati@cker may use Brute-Force techniques

to succeed and needs a mere 128 tries, on an ayéefgre succeeding.

1.2 Motivation

Our initial work involved the study of system saturelated issues and we found that
buffer overflow is a major threat to system anckiinét security. These attacks are not
just a few kind but many kinds emerge as the timssps and break the security

mechanism developed for the previous attack methéds described above, many
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techniques have evolved from the time the buffertbow attacks came into light but no
technique has been successful in preventing therityapf these attacks. Studying these
attack methods and the security mechanism motivagetd design a system which can
counter against the vast choices of these kindsgtatks. Our system not only provides
the randomization at load time of the process bsb at the runtime and with the

application ofcryptographic techniqueandprioritization mechanisms

1.3 Objective

The goal of this thesis is to study various rand@atidon techniques for process memory
organization with the application of cryptograptéchniques to make them more secure
and to design a randomization technique which carkwith existing architectures on
top of the system kernel. The applicability of thesign to the existing architectures &

applications requires the design to be applicationfrastructure transparent.

1.4 Proposed Work

In this thesis we propose an improved version efittea of diversity which, besides
being simpler, is able to handle a broader rangeerhory error exploits. In particular

we make the following contributions:

1. We apply a cryptographic model for data transforomatThe data when being
written in memory is scrambled using some transéiom function and when
being used is unscrambled using the reverse tnanatmn function.

2. We formulate a model which combats memory corruptaitacks based on
knowledge of absolute addresses as well as thosehwdartially overwrite a

memory address. The first attack type refers tdhase exploitation techniques
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an attacker may use to corrupt a particular menaagress value with the

objective of hijacking the process execution cdrftoov.

1.5 Thesis Organization

The thesis is organized as follows:

Chapter 2 describes the various kinds of buffer overflowaelks and the techniques
which have developed so far to counter these at#ckthen conclude how these

techniques are weak in preventing such attacks.

In Chapter 3 we describe our system, i.e. PriCryp’s Model amal arious components

of the design.

Then in Chapter 4 we evaluate the design against various kinds dfebwverflow
attacks, compare the model with other techniques describe the limitations of the

design.

In Chapter 5, we demonstrate our initial implementation worlated to the PriCryp’s

model and the other techniques.

Finally we conclude it€hapter 6 and describe our future work related to the warked
in the thesis. At the last the publication madenfithe thesis are listed. These include the

accepted paper and the communicated journals witie of the related details.
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Chapter 2. Memory Exploitation & Preclusion

2.1 Memory ill-treatment Techniques

2.1.1 Introduction

A buffer overflow occurs in a program when the peog stores more information in an
array, the buffer, than the space reserved fofhis causes the areas adjacent to the
buffer to be overwritten, corrupting the valuesviwesly stored there. Buffer overflows
are always programming errors which are typicaltlyaduced into a program because the
programmer failed to anticipate that the informaticopied into the buffer by the
program may exceed its size. Unfortunately, as hall ssoon see, buffer overflow
programming errors are quite common because odinertidely used and dangerous C
programming practices. Once buffer overflow vulhdity is present in a program,
inadequate testing may not uncover it, so thatvthieerability may lurk in the program
hidden, undiscovered and silent for years. Thisemilly opens up the program to be the
target of a sudden attack which exploits the viahiity to gain unauthorized access to a
system. A buffer overflow may happen accidentallyiny the execution of a program.
When this happens, however, it is very unlikelyt ihavill lead to a security compromise
of the system. Most often the clobbering of infotimra in areas adjacent to the buffer
will cause the program to crash or produce obvioustorrect results. In a buffer
overflow attack, on the other hand, the objectizéhe attacker is to use the vulnerability
to corrupt information in a carefully designed way order to execute attack code

previously planted by the attacker. If this sucsgdhle attacker effectively hijacked the
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control of the program. Once control is transferried the attack code, it grants

unauthorized access to the attacker.

Typically the attack code just spawns a shell, whadlows the attacker to execute
arbitrary commands on the system. When a new ghsjpawned in a UNIX system, it
inherits the access privileges of the processgpatvned it. Consequently, if the attacked
process containing the buffer overflow vulnerabilituns with root privileges, the

attacker will also get a root shell.

A buffer overflow attack may be local or remote alfocal attack the attacker already has
access to the system and may be interested inaiagaher access privilege. A remote
attack is delivered through a network port, and mayieve simultaneously both gaining

unauthorized access and maximum access privilege.

Summarizing, we see that a buffer overflow attaslally consists of three parts:

1. The planting of the attack code into the tapgegram;

2. The actual copying into the buffer which overfloit and corrupts adjacent

data structures;

3. The hijacking of control to execute the attacke

2.1.1.1 Basic Example
In the following example, a program has defined theda items which are adjacent in
memory: an 8-byte-long string buffer, A, and a tiyde integer, B. Initially, A contains

nothing but zero bytes, and B contains the numb@haracters are one byte wide.
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Now, the program attempts to store the charactérgstexcessive" in the A buffer,
followed by a zero byte to mark the end of thengtriBy not checking the length of the

string, it overwrites the value of B:

Although the programmer did not intend to changeatBall, B's value has now been
replaced by a number formed from part of the charastring. In this example, on a big-
endian system that uses ASCII, "e" followed by eozgyte would become the number
25856. If B was the only other variable data itegfirted by the program, writing an even
longer string that went past the end of B couldseaan error such as a segmentation

fault, terminating the process.

2.1.2 Exploiting Buffer Overruns

A buffer overrun is characterized asstack buffer overruror heap buffer overrun
depending on what memory gets overrun. C and C+npders typically use the stack
for local variables as well as parameters, frammtprs, and saved return addresses.
Heaps, in this context, refer to any dynamic memanplementations such as the C
standard library’s malloc/free, C++'s new/delete, the Microsoft Windows APIs

HeapAlloc/HeapFree.

13 I Rahul Kumar Agrawal, Delhi College of Engineering, 2008



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation

Published general-purpose exploits for buffer auesrtypically involve two steps:

1. Change the program’s flow of control. (Pure datploits in which the buffer
happens to be adjacent to a security-critical égiaperate without changing the

program’s flow of control

2. Execute some code (potentially supplied by ttecker) that operates on some

data (also potentially supplied by the attacker).

The termpayloadrefers to the combination of code or data thatattecker supplies to

achieve a particular goal (for example, propagatinggorm). The attacker sometimes
provides the payload as part of the operationdhases the buffer overrun, but this need
not be the case. All that is required is that thglgad be at a known or discoverable

location in memory at the time that the unexpectarol-flow transfer occurs.

The exploits can be broadly divided into two catégg those that exploit the call-stack
and those that exploit the heap. Exploits on tleekstinclude stack-smashing, Arc-
Injection, function pointer clobbering, and exceptihandler hijacking. Heap-based
exploits include attacks on function pointers, C#tables executable sections and the

malloc internal data-structure. First we will loakstack exploits.
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2.1.2.1 Stack Based Exploits

Function m Used to implement procedure
argumenis abstraction

ISR m Stack composed of frames, each of

Fsrfaariz which corresponds to a unique function
Frame pointer Invocation

m function arguments
m return address

m frame pointer (usually)
m local “automatic” data

Local variables

m Grows downward from higher to lower
memory addresses

Figure 1: Structure of a Stack in a Process

2.1.2.1.1 Stack Smashing

One classification of buffer overflow attacks degieion where the buffer is allocated. If
the buffer is a local variable of a function, thdfbr resides on the run-time stack. This is

by far the most prevalent form of buffer overflottaak.

When a function is called in a C program, before élecution jumps to the actual code
of the called function, the activation record oé ttunction must be pushed on the run-

time stack. In a C program the activation reconasgsis of the following fields:

1. Space allocated for each parameter of the function;
2. the return address;
3. the dynamic link;

4. Space allocated to each local variable of the fanct
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The address of the dynamic link field is to be ddeed as the base address of the
activation record. The function must be able toeasdts parameters and local variables.
This requires that during the execution of the fiomca register hold the base address of
the activation record of the function, i.e. the 3@ of the dynamic link field. Parameters
are below this address on the stack, and locahbims above. When the function returns,
this register must be restored to its previouseao point to the activation record of the
calling function. To be able to do this, when thmdtion is called the value of this
register is saved in the dynamic link field. Thhe tynamic link field of each activation
record points to the dynamic link field of the pias activation record on the stack,
which in turn points to the dynamic link field dfe previous activation record, and so on,
all the way to the bottom of the stack. The firstivation record on the stack is that of

main (). This chain of pointers is called the dymaohain.

In many C compilers the buffer grows towards thtdso of the stack. Thus if the buffer
overflows and the overflow is long enough the netaddress will be corrupted, (as well
as everything else in between, including the dywahmk.) If the return address is
overwritten by the buffer overflow so as to pointthe attack code, this will be executed
when the function returns. Thus, in this type a¢&ek, the return address on the stack is

used to hijack the control of the program.

Overwriting the return address, as explained abgwees the attacker the means of
hijacking the control of the program, but where dtahe attack code be stored? Most
commonly it is stored in the buffer itself. Thug thayload string which is copied into the
buffer will contain both the binary machine langaagtack code (shellcode) as well as

the address of this code which will overwrite theturn address. There are a few
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difficulties that the attacker must overcome torganut this plan. If the attacker has the
source code of the attacked program it may be plesw determine exactly how big the
buffer is and how far it is from the return addresstermining how big the payload string
must be. Also, the payload string cannot contagnrthll character since this would abort
the copying of the payload into the buffer. Someywiog routines of the C library use
carriage returns and new lines as a delimiter austso these characters should also be

similarly avoided in the payload string.

2.1.2.1.2 Arc Injection

As an alternative to supplying executable codeatacker might simply be able to
supply data that—when a program’s existing codeaips on it—will lead to the desired
effect. One such example occurs if the attacker tggply a command line that the
program under attack will use to spawn anothergssrcthis essentially allows arbitrary
code execution. Arc injection exploits are an exienyd this data-oriented approach—
indeed, the first such published exploit allowed #ttacker to run an arbitrary program.
The term “arc injection” refers to how these exidmperate: the exploit just inserts a
new arc (control-flow transfer) into the prograrntntrol-flow graph, as opposed to code

injection-exploits such as stack smashing, whisb alsert a new node.

2.1.2.1.3 Function Pointer Clobbering

Function-pointer clobbering is exactly what it sdarike: modifying a function pointer
to point to attacker supplied code. When the prnogexecutes a call via the function
pointer, the attacker’'s code is executed insteaitheforiginally intended code. This can

be an effective alternative to replacing the saxetdrn value address in situations in
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which a function pointer is a local variable (ofield in a complex data type such as a

C/C++ struct or class).

2.1.2.1.4 Exception Handler Hijacking

Several variations of exploit techniques target te&rosoft Windows Structured
Exception Handling (SEH) mechanism. When an exoagdtsuch as an access violation)
is generated, Windows examines a linked list ofepxion handlers (typically registered
by a program as it starts up) and invokes one (@mejnof them via a function pointer
stored in the list entry. Because the list entdes stored on the stack, it is possible to
replace the exception-handler function pointerbuéfer overflow (a standard example of
function pointer clobbering), thus allowing an aker to transfer control to an arbitrary
location—typically a trampoline to code injected tine attacker. Versions of Windows
starting with Windows Server 2003 perform some ditli checking of the exception
handlers that limit the feasibility of this stratfgrward attack. An alternative to
clobbering an individual function pointer is to t&ge the field of the thread environment
block (a per-thread data structure maintained gy Windows operating system) that
points to the list of registered exception handl@ise attacker simply needs to “mock
up” an apparently valid list entry as part of theylpad and, using an arbitrary pointer

write, modify the “first exception handler” field.

2.1.2.2 Heap Based Exploits

2.1.2.2.1 Heap Structure

Heap is a reserved address space region at leaspage large from which the heap

manager can dynamically allocate memory in smabieces. The heap manager is
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represented by a set of function for memory allocéfreeing which are localized in two

places: ntdll.dll and ntoskrnl.exe.

Size / status Size / status
Allocated User data
Free ‘ [ Unused space
ize / Forw .
Size / status orward painter Size / status
Back pointer

Figure 2: General Structure of a Heap

2.1.2.3 Heap Smashing

The key insight behind heap smashing is to expl@timplementation of the dynamic
memory allocator by violating some assumed invasiafPublished source code for the
dynamic memory allocator makes explanation eabat,is not needed in practice, so
these techniques apply equally well on closed-sowystems.) Many allocators, for
example, keep headers for each heap block chaogathier in doubly linked lists of
allocated and freed blocks, and update these dopegations such as freeing a memory
block. If there are three adjacent memory blok¥, andZ, an overrun of a buffer iX
that corrupts the pointers s header can thus lead to modification of an eabyt
memory location wheiX, Y, or Z is freed. In many cases, the attacker can alsoadhe
value being put into that location, thus accomjighan arbitrary memory write, which
leads to the exploitation possibilities. In praetibeap smashing is thus typically coupled

with function-pointer clobbering. Three factors quimate heap-smashing exploits. Most
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obviously, the attacker typically does not know Heap block’s location ahead of time,
and standardrampolining approaches are typically not effective. In mangesa it is
somewhat difficult to predict when the heapFreerag@n will occur, which could mean
that the payload is no longer available at the ftiha the call via the clobbered function
pointer occurs. Finally, in some situations (esgdcwith multithreaded programs), it is
difficult to predict whether the next block has bealocated at the time the overrun
occurs. Surprisingly enough, however, these ardonger significant roadblocks for
exploitation of many heap buffer overruns. Attaskéypically work around them by
transferring the payload to an easy-to-find locatas part of a separate operation (a
technique first developed as a stack-smashing eeh@nt). There are typically enough
such locations available that attackers can chadseation that will still be available at
the time the call occurs. For cases where it iscdit to predict the next block, attackers
can attempt to influence the size and order of logagations to position the heap block

of interest at a known location and to disambigtiag¢efollowing blocks’ behavior.

2.2 Thwarting Memory Corruption

Many techniques have been proposed till date tegmteand to detect memory corruption
attacks, but no technique till date has been ssgbdesn countering all types of
vulnerabilities. The technique proposed here i® aigt defending against all the

vulnerabilities but this defends against most efittand more effectively.

The main proposed techniques for memory corruptiglated vulnerabilities are the

following:

20 I Rahul Kumar Agrawal, Delhi College of Engineering, 2008



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation

2.2.1 StackGuard

StackGuard defends against staclashing [11] attacl as shown in figure. The stacl

smashing attacks usually overwrite the return axidweithin the stack and perform t

attack usincreturr-into-libc [12][27] technique. StackGuard places a canary bit ne

the return address in theack and before jumping to the return address thargabit is

checkeras shown in figure. If it's corrupt the process is considered to bmpromised

But StackGuard is the compile time technique,the.programs are compiled using t

technique to rake use of canary bit because of which its usamigeld. This techniqu

too addresses only specific types of attacks andateébe used to defend against cur

day attacks such as those which modify code paintethe static or code area. Th

types of attacks successfully bypass the canary bit ptioie and execute the shellcc

Process Memory Layout

0x0000
Buffer
1 Local Variables...
Stack
Growth Return Address
Shellcode
OxEEEE Top of Stack

Figure 3: Stack Smashing Attacl

String
Growth
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Figure 4:i386 Stack Layout with StackGuard
2.2.2 Code Obfuscation

The word “obfuscation” literally translates to “ma§ something less clear and harder to
understand”. Code Obfuscation is a method to toansfthe program into a different
internal architecture but keeping the semantiesthe instructions will be transformed or
even the gap between the instructions will be chdngut the original and the
transformed programs will work the same. This & ¢bncept taken from the diversity in
biological species. So one type of attack desigone@ne copy of the program may not
work successfully on another copy of the programt Bese techniques were usually
employed at compile time or link time, i.e. theyually required source code of the

program to transform them into a different desi@acause of these disadvantages these
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techniques were never used for the commodity soétwéhich is the biggest source of

available vulnerabilities on the internet.

2.2.3 Absolute Address Randomization

This technique randomizes the absolute addresbieovarious segments of a process
[17][18]. At the process startup the very compdsei the process including the code
segment, data segment are randomized within theepsomemory space. These blocks
are randomized but the relative distance betweegethis kept the same. This type of
technique can prevent several pointer corruptitecks because attacker cannot predict
the object pointed by the corrupted pointer. Thiotlgs stack smashing attacks can be
prevented. The problem with this technique, howeiget doesn’t randomize the relative
distances between segments. Ralative Addressittacks which don’t rely on data’s
absolute locations can defeat AAR techniques. M#d&R depends on theecrecyof
randomization keySince it's hard to keep it secret from local 8sAAR is basically

limited to defend against the remote attacks.

2.2.4 Instruction Set Randomization

ISR creates randomized instruction set for eaclkga® at startup. Even the two images
of the same program may have different internahiggcture. This technique is an
enhancement of the code obfuscation technique wiias basically a compile time
technique. The addresses of the instructions withén code segment are randomized
before startup and thus the attacker cannot |lcaayedesired instruction directly. With
ISR in effect attacker fails to execute the injdatede even if she has already corrupted
the victim process’s control flow. But ISR also feu$ from the type of attacks which

don’t use injected code. The ISR cannot preventehen-into-libc attacks which call a
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library or system function rather than the injectede and piss the malicious argumer

in this function to perform the attack ta as shown in figure.

Stack
libc.so
Aroument
Return
Address o I:I:]
LSFP
“/bin/bash"
Local
Buffer

Figure 5: Return into libc Attack

2.2.5 NX/XD Bit

The NX bit, which stands foNo eXecute, is a technology used in CPUs to segre
areas of memory for use by eit storage of processor instructions (or code) or
storage of data, a feature normally only found iantdrd architecture processc
However, the NX bit is being increasingly used ioneentional Von Neumar

architecture processors, for security reas

Any section of memory designated with the NX atttdbomeans that it's only to be us
for storing data, so that processor instructionsukh not reside there, and cannot
executed if they do. The general technique, knosvexacutable space protec, is usec

to prevent certain types of malicious software frtaking over computers by inserti
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their code into another program's data storage anelarunning their own code from
within this section. Microsoft employed this tealure in their PC operating system,
Windows XP SP2, with the name DEP [15] (Data ExecutionPrevention). Windows

XP SP2 used software based DEP to protect agaiestony corruption attacks on the

processors which don’t support NX/XD bit.

If an application attempts to run code from a poted page, the application receives an
exception with the status code STATUS_ACCESS VIOI®@N. If your application
must run code from a memory page, it must alloeaid set the proper virtual memory
protection attributes. The allocated memory must rbarked PAGE_EXECUTE,
PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, or
PAGE_EXECUTE_WRITECOPY when allocating memory. Hedlpcations made by

calling themalloc andHeapAlloc functions are non-executable.

2.2.5.1 Hardware Enforced DEP

Hardware-enforced DEP marks all memory locationsaiprocess as non-executable
unless the location explicitly contains executatxdele. There is a class of attacks that
attempt to insert and execute code from non-exbtutamemory locations. DEP helps

prevent these attacks by intercepting them andhgaan exception.

Hardware-enforced DEP relies on processor hardwwaneark memory with an attribute
that indicates that code should not be executed tftat memory. DEP functions on a
per-virtual memory page basis, usually changingt anbthe page table entry (PTE) to

mark the memory page.
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The actual hardware implementation of DEP and markif the virtual memory page
varies by processor architecture. However, proceswt support hardware-enforced
DEP are capable of raising an exception when co@eecuted from a page marked with

the appropriate attribute set.

Both Advanced Micro Devices (AMD) and Intel Corptioa have defined and shipped

Windows-compatible architectures that are compatitith DEP.

Beginning with Windows XP Service Pack 2, the 32varsion of Windows utilizes the
no-execute page-protection (NX) processor featsreedined by AMD or the Execute
Disable bit feature as defined by Intel. In orderuse these processor features, the
processor must be running in Physical Address Eiten(PAE) mode. The 64-bit
versions of Windows XP uses the NX processor featur 64-bit extensions and certain

values of the access rights page table entry (F&l)on IPF processors.

2.2.5.2 Software Enforced DEP

An additional set of data execution prevention s&cwchecks have been added to
Windows XP SP2. These checks, known as softwarereed DEP, are designed to
mitigate exploits of exception handling mechanisimsWindows. Software-enforced

DEP runs on any processor which is capable of nghiVindows XP SP2. By default,

software-enforced DEP only protects limited systenaries, regardless of the hardware-

enforced DEP capabilities of the processor.

But these both, software enforced DEP and hardesmi@ced DEP can be bypassed and

the attack can be performed as shown in the retedies [16].
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2.2.6 Address Space Layout Randomization [17]

ASLR randomizes the memory layout of an executireggss including the DLLs, heaps,
stack and the gap between the data and the codesregy This technique can be seen as
an enhancement to the previous Absolute Addressldtaization techniques because in
this scheme all of the sections of a process amdoraized and the relative distance
between them as well. So in this scheme even ifattecker succeeds in injecting a
malicious codeshellcode becomes hard to locate and execute. This waseitemts the
attacker hijacking the process’s control flow. Ho@eASLR is also notinbreakable It

is easy to guess the shellcode location in thigmehtoo using the techniques likede
Spraying and AddressSprayind18]. Code Spraying is a technique where attacker
“sprays” the shellcode repetitively over a largétable user-level memory area and thus
leaves only a little range for attacker to guesslititation of shellcode. Also the limited
range of randomization as used in the recent releMicrosoft’'s PC operating system,
Windows Vista, is vulnerable to Brute Force attaakd the attacker can succeed in 128

tries on an average because of the total 256 &lailacations of randomization.

2.2.7 DAWSON [19]]

According to this proposed technique, a DLL is atgel into every process before the
start of its execution. This DLL hooks Windows ARInctions relating to memory
allocation and randomizes the base address ofhallrégions. Further some of the
randomizations is provided with a custom desigadiér which randomizes the memory
allocated prior to the injection of described DLIhis technique doesn’t randomize the

relative distances between objects and also tlser® isecurity for the data overwrites.
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This technique cannot defend against relative igtaattacks and the ones caused by

data overwrite.

2.2.8 ASLP (Address Space Layout Permutation) [20]

Address Space Layout Permutation, as proposed, anaee of both ISR and ASLR to
prevent such kind of attacks. However this techaigandomizes all the instructions
without prioritizing the instructions which are adly used to accomplish the attacker’s
target. Further it doesn’t provide any mechanisnsdoure data from overwrite and the
misuse of these overwrites. In our view the randamon of all the instructions is
inefficient because not all the instructions areusiy critical. Typically the injected
shellcode makes use of system calls to harm viptechine and to replicate, thus from

our perspective the technique is a little expensive

2.2.9 RISE (Randomized Instruction Set Emulation) [27]

RISE uses a machine emulator to transform a progmtora diverse program at runtime.
The transformed program has a different, secrétucison set. The machine emulator in
this technique produces automatically diversifiesitiuction sets. In RISE each byte of
original program code is scrambled using pseudanendumbers seeded with a unique
random key unique to each program in executionceéSthis technique scrambles each
instruction, it is real slow. And again there is otber technique other than scrambling
which defends the system and if the secret keyommptomised the system becomes

vulnerable. This technique thus cannot defend ag&cal attacks.
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2.3 Conclusion

The techniques developed so far have some or meakmvesses which certainly cause
the risks to the system security. We identified soweaknesses which need to be

overcome to better secure the system from memarygion attacks.

1. The use of source code transformation is not afadlient & also not possible for
commodity software which is the major source oheundbilities on the web.

2. The NX/XD Bit prevents write & execute at the satinge but recent studies have
shown that this technique can also be bypassed.

3. ISR techniques randomize the instructions but kbepdata intact. The attackers
can overwrite the data & can hijack the procesdrobflow by overwriting the
data & passing wrong arguments to the system fomstii.e. return into libc.

4. AAR techniques randomize the absolute addresseofdhous components of the
process including code segment, data, stacks, héadss. But the relative
distances are kept same. The attacker can sudcteddttack doesn’t depend on
the absolute address and can be done accordihg telative address.

5. ASLR also employs only one kind of randomizatioe, randomization at load
time. But the techniques like code spraying andregidspraying can break the
system.

6. ASLP is a better technique than the ones beforetlalso takes no care of data
and also no weight is given to the security critiogtructions. Also, no runtime

randomization.
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7. RISE transforms the process instruction set intotally different instruction set
but this technique seems to be infeasible and amdysecret key is used to create

this random set.
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Chapter 3. PriCryp Model

3.1 Design Goals

Observing the above techniques we noticed thatthese many positives but many
negatives too. Many defend against many types taclg but no technique defends
against most of the attacks. In this thesis we eat®and demonstrate that by mixing up
ISR and ASLR and enhancing the ASLP technique w@me cryptography, priority

assignment and data encryption we can offer muale mubust protection technique than

each of them can provide individually.

In this thesis we suggest the use of a set of caets which individually enable the
system to overcome the weaknesses previously dedcand together make the system

robust enough to defend against most of the mewmyption attacks.

1. The randomization techniques today randomize thpoments of the process
like stacks, heaps, code segments, data, & DLLs.slgest a fine grained
randomization inside the code segments. This cascbemplished with the help
of a binary rewriting tool which analyses the pxecode at load time &
decomposes it into several segments & then randothese segments.

2. To defend against de-randomization attacks we siggmtime randomization
according to some kind of prioritized mechanism.atVive do in this thesis is
assign the priority to the code blocks accordinthesecurity critical instructions

within them. We assume system calls to be the ggauitical instructions.
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3. Again to defend against control flow hijacking &etheturi-into-libc attacks we
propose the application of cryptographic algorithtostransform some of tr
important instructions to some unidentifiable fc

4. To prevent the cta overwrites and the memory corruptions attacksuiph therr

we suggest data scrambling using some cryptogradpacithms

To integrate these ideas into a complete systemt@mtisign a mechanism to defe
against memory corruption attacks we propche PriCryp design in the next secti
which has many components each doing some impduaation in system and togetr
enabling the system to defend against the so caldory error exploit The suggeste
componentof the system and the sequenc their executiorare shown in figuis 6 and

8 respectivel.

Process
| . I

PriCryp
| I
| I
. Course Grglned Disassembler PFIDrItI.EIr‘lg |
. Randomizer Function .
| I
| I
| I
. Code Scrambler Data Scrambler Code BIF":k .
I Randomizer 1
| I

Figure 6: PriCryp Components and the interface withthe Process and the Kern
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3.2 PriCryp Design

What we propose here is the randomization on acpée block basis, which can be
specific set oinstructions identified by PriCryp’s runtime semwitterface. Besides tr
we also employ some cryptographic transformatiandransform static data in de
section and a fraction of the important instrucsionithin program’s code. PriCry
performs radomization at both lo«time and runtime. At load time it perforr
randomization through a thin transparent virtuagioralayer which is basically a syste
service and consists of a disassembler to identify code fragments within tl
executable and ~randomizes them at runtime through the mappingetatdred in thi
memory. PriCryp would run as a system specific isenand would be complete

transparent to the process, enabling each process in a secure environme

PriCryp has many componentfor randomizations & various cryptograpl
transformations. In this section we describe owrs® grained randomizer, fine grair

randomizers and various cryptographic transformai

Code a . ”
Segment Datasegment ﬁ o B Kernel
= W

Figure 7: Normal Process Memory Layout
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Figure 8: PriCryp’s progr am flow desigr

3.2.1 Course Grained Randomizer

This component is the implementation of Addressc8paandomization in the kern
The components of the process including code segmata segment, stacks, heaps,
DLLs are randomized. The components are rmized in such ways that the relat
distance between them is also unpredictable. Tlakes)the system more powerful
defend against memory corruption attacks evendfdtiacker succeeds in guessing
absolute location of one segment. The relatistance randomization is achieved us

padding. The padding incurs wastage of memory spatce& becomes reasonable whe
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comes to defense against memory corruption attatke. unpredictability of futur

randomizations causes the future attack atts to fail. And because of relative addr

randomization the brute force attacks also becormee rifficult if not impossible The

outcome of the course grained randomizer can khasn in figure 9, extreme left,

opposed to the normal process laycf figure 7.
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Prioritizing Code Blocks
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Figure 9: PriCryp Design Internals

3.2.2 Disassembler

Heap

Transformed
Code
Segment

Stack

Transformed
Data
Segment

Randomized Process
Layout

Disassembler is the part of our binary rewritingltoAt the time of creation of tr

process the PriCryp takes control of the processnt®rceptingsys_execycall to the

kernel to perform tr randomizations & transformations. The disassembtaks on the
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code segment only and performs a quick analysih@fcode segment to identify t
instruction blocks of usually a single high el function as shown in figure . These
instruction blocksare marked by the start address and the end addnelssre givel
proper numbers, e.g.1, Cs..., G, etc. A concejual example is shown in figure . The

figure shows two instruction blocks identified netdisassemble

C=(C,C,GCs..., Gy (1)

00401308 |. €A 00 PUSH 0 ; /5tyle = ME OK|MB_APPLMODAL
0040130& |. 68 4C004200 PUSH OFFSET DEF.?? C@_OSEFDDEERRORZSHAE ; |Title = "ERROR"
0040130F |. &8 2C004200 PUSH OFFSET DEP.??_C@_OEJ@N}WD@SomethingH |Text = "Something i=s screwed up!"™
00401314 |. 6 00 PUSH 0 ; |hOwner = NULL
00401316 |. FF15 ES8624200 CALL DWORD PTR DS:[<&USER32.MessageBoxA»>; \MessageBoxi
0040131C |. 3BF4 CMP ESI,ESP
0040131E |. ES 0D040000 CALL DEP._chkesp
00401323 |. 33CO XOR ERX,ERX
00401325 |. EB 72 [JMMF SHORT DEF.004013383 |
00401399 |> 5F POP EDI |
0040139A |. SE POP ESI
00401398 |. 5B POP EBX
0040139C |. B81C4 90000000 ADD ESP, 90
004013A2 |. 3BEC CMP EBF,ESP
00401324 |. E8 87030000 CALL DEF.__chkesp
0040138 |. BBES MOV ESP,EBP
0040138 |. 5D POP EBP
004013AC \. C2 1000 RETN 10
Figure 10: Two Code Blocks Identified Using Disassembl:
00401308 |. &A 00 PUSH 0 : /Style = MB OK|MBE RPPLMODAL
00401308 |. 68 4C004200 PUSH OFFSET DEP.?? C@ OSEFDD@ERRORZSAZAE ; |Title = "ERROR"
0040130F |. €8 2C004200 PUSH CFFSET DEP.??_C@_OBJ@N}ND@Somethingtr; |Text = "Something is screwed up!"™
00401314 |. 6A 00 PUSH 0 : |nOwner = NULL
00401316 |. FF15 E8624200 CALL DWORD PTR DS: [<&USER3Z.MessageBoxA>>; \MessageBoxi
0040131C |. 3BF4 CMP ESI,ESP
0040131E |. E8 0D040000 CALL DEP._ chkesp
00401323 |. 33C0 XOR EAX,ERX
00401325 |. EB 72 [JMP SHEORT DEF.0040721D |
[0040721D | > SF POP EDI |
0040721E |. SE POP ESI
0040721F |. 5B POP EBX
00407220 |. 81C4 90000000 ADD ESP, 90
00407226 |. 3BEC CMP EBF,ESP
00407228 |. E8 87030000 CRLL DEF._ chkesp
0040722D |. 8BES MOV ESP,EBP
0040722F |. 5D POP EBP
00407230 \. €2 1000 RETN 10

Figure 11: Randomized Code Blocks of figurel0
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3.2.3 Prioritizing

On inspecting a number of memory corruption attagksobserve that the system calls
are almost always used by the malicious codes itimnpe their malicious tasks such as
replication, data corruption, etc. Here in thissieeave assign priorities to the code blocks
so that the randomizations can be done effectigelyording to the priority. The code

block with least number of system calls will beigised the lowest priority and the block

with the highest number of system calls will beigrssd the highest priority. A block’s

priority basically determines the frequency of rn& randomizations of that block.
Pi = K (Ns, Mn) (2)
Where,
K = Prioritizing Function,
Ns = Number of system calls withif{ Block,
M, = Number of blocks having same number of systela.ca

The prioritizing process is done after the disasdirg and the input to the prioritizing

are the code blocks identified by disassemblehaw/s in the figure 9.

3.2.4 Code Scrambler

In this component of PriCryp we generate a divenstruction set for some of the
instructions in the program’s code segment. As sstgl in RISE, generating an
automatic diverse instruction set for each instasfade process helps defending against
some of code injection attacks. But that schemeneficient in a way that all the

instructions are transformed. Here in this componga suggest transforming only
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security critical functions; we assume system walipper functions & other application
binary interface (ABI) functions as security crdicwhich are vital for an attacker to
successfully perform the malicious tasks on thdimic We keep other instructions
unchanged and scramble the security critical iocftsn by a function having two inputs:
a pseudo random number and the security critictuntion. We pass a secret random

key to the pseudo random generator to generatg olseramble the instruction.

R1 =Y (secret random kegy 3)
G’ =M (Ci, Ry) (4)
C = (Cll, Cz’, C3’..., Cn’) (5)

Where,

Ri1 = Pseudo Random Number,

Y = Pseudo Random Generator Function,
M = the scrambling function,

Ci =i" Code Block.

C = Scrambled ¢Cblock.

The scrambling function here can be any reversibfptographic algorithm like DES,
IDEA, etc. The use of cryptographic algorithm makwes scrambling more powerful and
robust. And the independence of choosing the dlgos in PriCryp makes it more

favorable to be deployed.
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The address of the scrambled instruction relativihé base address of the code block it
belongs is stored in the PriCryp’s virtualizati@yér's memory. The virtualization layer

stores the data on a per process basis.

During execution whenever there is a call to thamsbled instruction, the instruction is
unscrambled using the reverse of the algorithm eysal in scrambling function and the

instruction can be executed successfully.

3.2.5 Code Block Randomizer / Fine Grained Randomizer

3.2.5.1 Load Time Randomizer

This code block randomizer is nothing but the imptatation of ASLR for fine grained
randomizations within the code segment. The codekisl identified as ¢ C,, Cs, etc.
are randomized using the code block randomizer hasvis in the figure 9. These
randomizations are done without considering therjiiés of the code blocks. The
outcome of these randomizations is a transforme@ segment as shown in the figure 9.
This transformed code segment has the same fuatitioms the original code segment

but a different internal architecture.

3.2.5.2 Runtime Randomizer

The runtime randomizer randomizes the code bladéstified in section 3.2.2 according
to the priority level assigned to them in sectiod.3. The frequency of randomization of
code blocks depends on the priority, i.e. the nurobsecurity critical instructions within
them. Since the blocks having no security critiogtructions are assumed to be having

no harm, they are not at all randomized duringinoet

Fi =Z (Pi) (9)
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Where,

F = Frequency of randomization 8t code block,
Z = Randomization Function,

P, = Priority of i code block.

3.2.6 Data Scrambler

The data segment D consists of many static datectsbp1, D2, D3, etc. In current
systems these data objects are stored in memdhegpare. In these systems the attacker
sometimes succeeds in overwriting the data withnhaicious shellcode and then jump
to it to execute it and perform the malicious tagkat we propose here is to transform
the data into some unidentifiable form before wgtto memory at load time and revert it
back to the original form before every use. In 8theme even if the attacker succeeds in
overwriting the data during runtime and jump ttoitexecute, the runtime mechanism of
PriCryp would first apply the reverse transformatadgorithm on the data before making
it usable. By this reverse transformation the &ttds shellcode would probably convert

into useless binary strings and the execution @¢hwould certainly crash the program.

D= (Dl, D2, D3..., Dm) (6)
D' =Q (D), R) (7)
D'=(D+, D2, D3..., Dm) (8)

Where,

D; = i" data object in Data Section.
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Di’ = Scrambled form of B
Q = Any Cryptographic Scrambling Function,

R, = Secret Randomization Key for data transformation

3.3 Design Strengths

1. PriCryp randomizes all the sections of the procemsnory as done in the
previous techniques like ASLR, gaining all of thidvantages of those techniques,
& also overcomes the weaknesses of them by fugbeurity mechanisms like
cryptographic application, runtime randomizatiomdaprioritization of the
security critical instruction related code blocks.

2. PriCryp provides a robust, probabilistic technigwéh prioritization of the
security critical instructions. This enables thsteyn to withstand a huge variety
of memory corruption attacks.

3. The application of cryptographic techniques in tégstem to encrypt the
instructions and the data variables prevents tieevmites of data and instructions
to work correctly.

4. The prioritized runtime randomization adds addilosecurity to the system to
counter the de-randomization attacks which arentbet recent in the generation

of buffer overflow attacks.
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Chapter 4. Evaluation & Limitations

4.1 Evaluation

We evaluate the design of our proposed technigu@ry®p, from the following aspects:

4.1.1 Unintentional Memory Corruption
These memory corruption exploits occur due to tlgvd in programs. These would
certainly result in the crash of the program duth®orandomizations & the cryptographic

techniques and would certainly cause no harm teyktem.

4.1.2 Traditional Attacks
We consider the stack smashing, heap overflowk staerflow, & return into libc attacks

to be the traditional attacks due to their agesaige.

Stack smashing attacks make use of shellcode twuexéarmful code within the
stack. First of all the attacker needs to havektimvledge of memory allocation within
process to overwrite the data with shellcode areh texecute & then to successfully
execute the shellcode she needs to be aware dhalcryptographic keys used to
scramble the security critical instructions and tleta variables. The randomizations
within PriCryp makes it almost impossible for thigaeker to find out the memory map of
the process & even if she succeeds in this, thécede would be unscrambled into a
probably unusable form before execution becausesystem think of it to be the data

which was scrambled at the time of write to the rmgm

Almost the same happens with the heap overflovelatt& they would result in the

crash of the process rather than even start ofudiracof the attack code.
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The return into libc attack so far are consideretld the most dangerous attacks in
the category of memory corruption attacks but tee af cryptographic techniques to
scramble data before writing it to memory & unsdoéing it before using make this
attack unsuccessful until the attacker knows theresecryptographic keys used to
scramble the data & instructions. And since in theésign we make use of two different

secret keys, we assume it to be difficult for tttacker to guess or find the both of them.

4.1.3 Chained Return-into-Libc Attacks

These attacks are the modern form of the traditiogtarn-into-libc attacks. The prior
techniques are not sufficient to defend agathstined return-into-lib(chttacks each of
which calls a sequence of system library functiomsorder. These attacks need the
location of all the target functions in order tgptoit the attack. And due to the multi-
level randomizations in PriCryp it becomes diffictd trace the location mapping of the
functions. Thus the chained return-into-libc atea@e almost impossible to succeed

under PriCryp.

4.1.4 Brute Force Attacks

The brute force attacks are also the least possidRiCryp due to the many rounds of
randomizations and the application of cryptograghamsformations. In case of ASLR
brute force attack had the chances of succes2®tries because of only 256 locations
of randomization. In PriCryp we can achieve thedmmization up to % for 32 bit
architecture by creating the code blocks to thecdasilding blocks, i.e. one code block
for every instruction. This way the PriCryp handstyndefends against brute force
attacks and such an attack would certainly resulbé crash of the program in the early

phase of the attack.
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4.1.5 De-Randomization Attacks

Recently De-Randomization attacks came into thetemce to counter the ASR defense.
These attacks are able to de-randomize the comfnérthe process and find out the
exact location of the needed component. But thesealso limited to the depth of
randomization. These can de-randomize the effdAS® but not the effects of PriCryp
due to the depth of randomization in the desigrRri€ryp we have randomizations after
randomizations, i.e. after randomizations at thers®e level, we randomize at the fine
level too. Further the prioritized runtime randoatians just make these attacks the

benign attacks and cause the program to crash early

4.2 PriCryp in Contrast with Others

In this section we compare our proposed mechanigmtie existing technigues against
various kinds of buffer overflow related attackslaachnique features as shown in the

table 2 on the next page.

4.3 Limitations

As with other techniques, PriCryp is also not thgle sufficient for all of the attacks.

PriCryp also has many limitations as describedveelo

Since PriCryp has many randomization componentsuaed cryptographic techniques to
secure data and security critical instructionss islower than the previous techniques.

The load time overhead is very low but the runtimaredomization causes more overhead.

The PriCryp model is designed such that it makes afssecret keys to encrypt and

decrypt the data and security critical instructio®s leakage of these secret keys the

44| Rahul Kumar Agrawal, Delhi College of Engineering, 2008



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation

system cannot prevent the memory corruption attaciefted carefully with de-

randomization mechanisms.

Table 2: Comparison between PriCryp and Others

Techniques StackGuard ISR NX/XD ASLP RISE PriCryp

Attacks & Features

Unintentional Y Y Y Y Y Y
Stack Smashing Y N N Y Y Y
Chained Return into Libc N N N Y Y Y
Return into Libc N N N N Y Y
Code Injection N Y N N Y Y
De-Randomization N N N N N Y
Address Spraying N N N N N Y
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Chapter 5. Implementation Details

Our initial work in this project work included thgtudy of various kinds of buffer
overflow attacks and the related defense technigaetescribed in chapter 2 and how to
bypass these techniques. In this chapter we demat@stow we can bypass the NX/XD
mechanism to successfully execute our shellcode pamtbrm the desired task. This
implementation is an initial work towards the Pgf@s implementation for the complete

understanding of the security breaches.

5.1 Tools Used

1. Visual C++ 6.0
2. OllyDBG
3. Dependency Walker

4. Metasploit Project

5.1.1 Visual C++ 6.0
In this project | have used Microsoft Visual C+4 Gor coding because the project
needed windows console applications. Again since® DiE windows doesn’t check

applications written in .NET or cygwin based corapslit became mandatory.

5.1.2 OllyDBG

OllyDBG is a very powerful debugger with good usgerface and disassembly features.
This enabled to find out the addresses of the fonstin running mode and to control the
execution of the applications step through steplewiproviding much information

regarding current assembly instruction and its esklin the executable.
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5.1.3 Dependency Walker
Dependency Walker provides, with good user intexsfadl the linked libraries that are
used in the application. All the functions of udixdaries in applications are shown and

the system base addresses of library functionbearbserved.

5.1.4 Metasploit Project

Metasploit [13] Project is an online database ofiotes exploits found in various
Operating Systems. This provides creating the redushellcode for execution in
Windows & Linux like operating systems and for usemany languages like C/C++,

Ruby, & Perl.

5.2 Bypassing DEP

It should be mentioned that upon startup, evenfiegdpon in its memory space, maps
certain dynamically linked libraries which are neddor the proper functioning of the
application. There are two libraries that are alsvayesent in the application’s address
space. These libraries are ntdll.dll and kernelB2Mde mention these two dynamically
linked libraries because they are mapped in a mgmegion that is marked as
executable. By using these dynamically linked lileswe can execute functions that are

stored in them. This type of attack is calRelturn to libc

In order to gain control over the program we needverflow the stack in such a way
that we will overwrite the saved return addresshwite address of the WinExec
functions. The WinExec function is part of the dyneally linked library ntdll.dll. After

the address of WinExec we need a memory addresshwi¥ill be used for WinExec to

return to. At the end of the exploited string wdl wiut the arguments of WinExec(),
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which are going to be executed after we take cobrawer the program. Figure 12

illustrates our attack string.

Eeturn addres=s of WinExec argumnent 2
A = x om A

AN
20 bytes  iddress of WinExec argument 1

Figure 12: The return to libc attack string

The program that constructs the exploit strindghesfollowing:

#include <stdio.h>

#include <string.h>

#include <windows.h>

main (int argc, char **argv) {
char buf[512];
memset (buf,’A’,sizeof(buf));
*(long*)&buf[20] = 0x77¢293c7,
*(long*)&buf[24] = O0x7c81caaZ;
*(long*)&buf[28] = getenv("envx");
buf[32] = 0x00;
printf ("%s\n",buf);

}

Our exploit fills the buffer as shown in Figure % it can be seen from the exploit, the
first argument is stored in an environment variabid the second argument is null. The
first argument contains a command prompt commaird ddl). We can see that Data

Execution Prevention did not stop the attack. Tih@neer why it did not stop the attack
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can be found in the dynamically linked library hidll. WinExec and all functions that
can be found in ntdll.dll were stored in a memagion that was executable, making our
attack successful. The attack that uses WinExémited to execution of one command
at a time, which is an issue if the attacker wdntk control of the system. During
initialization of the memory, Data Execution Pretten uses VirtualAlloc and
VirtualProtectto manage the non-executable feature. By u¥iinigialProtectwe could
try to mark the memory region where our code isestas executable and then jump to
our code. The second idea that arises vathrn into libis to copy our malicious code to
a static memory location that is marked as exeteitabd call the malicious code from
there. Both of the mentioned attack vectors camdes successfully to take control of

applications/services.

Every process at creation time is granted with fawdeheap, which is 1MB large (by
default) and grows automatically as need arise.ddfault heap is used not only by the
win32 apps, but also by many runtime library fuocs which need temporary memory
blocks. A process may create and destroy additiprahte heaps by callingeapCreate
()/HeapDestroy () Use of the private heaps’ memories is establishgdcalling

HeapAlloc (JandHeapFree ()

Memory in heaps is allocated by chunks called calfion units' or ‘indexes' which are 8-
byte large. Therefore, allocation sizes have arab8ibyte granularity. For example if an
application needs a 24-byte block the number ofcation units it gets 3 allocation units.
In order to manage memory for every block a spdwalder is created, which also has a

size divisible by 8 (fig. 13, 14). Therefore a trmemory allocation size is a total of the
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requested memory size, rounded up towards a nealest divisible by 8 and the size of

the header.
Size Previous Size
Segment
Flags Unused Tag Index
Index
Figure 13: Busy Block Header
Size Previous Size
Segment Flags Unused Tag Index
Index
Flink
Blink
Figure 14: Free Block Header
Where:

Size - memory block size (real block size with rexadB);

Previous Size - previous block size (real blocle sitth header / 8);
Segment Index - segment index in which the memtogikresides;
Flags - flags:

- Ox01 - HEAP_ENTRY_BUSY
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- 0x02 - HEAP_ENTRY_EXTRA_PRESENT

- 0x04 - HEAP_ENTRY_FILL_PATTERN

- 0x08 - HEAP_ENTRY_VIRTUAL_ALLOC

- 0x10 - HEAP_ENTRY_LAST_ENTRY

- 0x20 - HEAP_ENTRY_SETTABLE_FLAG1

- Ox40 - HEAP_ENTRY_SETTABLE_FLAG2

- 0x80 - HEAP_ENTRY_SETTABLE_FLAG3

Unused - amount of free bytes (amount of additituyés);

Tag Index - tag index;

Flink - pointer to the next free block;

Blink - pointer to the previous free block.

The specification of the allocation size in allegatunits is important for the free block
list management of Heaps. Those free block listssarted by size and the information
about them is stored in an array of 128 doublyditists inside the heap header (fig. 15,
16, 17). Free blocks in the size diapason from 2123 units are stored in lists
corresponding to their size (index). For exampllefree blocks with the size of 24 units
are stored in a list with index 24, i.e. in Freg#i4]. The list with index 1 (Freelist[1]) is
unused, because blocks of 8 bytes can't exist ladidt with index 0 is used to store

blocks larger than 127 allocation units (biggenti16 bytes).
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Heap header

Free list 0

[Freotry Y] Frectry |

Free list 1

Free list 2

Free list 127

Lookaside list 0

Lookaside list 1

Lookaside list 2

Lookaside list 127

Figure 15: Lookaside Lists for Heap Management

If, during the heap allocation, the HEAP_NO_SERIZEI flag was unset but the

HEAP_GROWABLE flag was set (which is actually thefallt), then in order to speed

up allocation of the small blocks (under 1016 byt@28 additional singly-linked

lookaside lists (fig. 15, 16, 17) are created ia lieap. Initially lookaside lists are empty

and grow only as the memory is freed. In this cdigeng allocation or freeing these

lookaside lists are checked for suitable blocketsethe Freelists.

The heap allocation routines automatically tuneahmunt of the free blocks to store in

the lookaside lists, depending on the allocati@ydiency for certain block sizes. The

more often memory of certain size is allocatedhe-more can be stored in the respective

lists, and vice versa -- underused lists are trichanad the pages are freed to the system.

52|

Rahul Kumar Agrawal, Delhi College of Engineering, 2008



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation

Because the main goal of the heap is to store sm&thory blocks this scheme results in

relatively quick memory allocation/freeing.

FreelistN Free entry

Last Free entry

Flink (Next block) i Flink

Flink

F

Blink (Prev Block) Blink L

Blink

doubly-linked freelist

Figure 16: Freelist Entries of free heap blocks

| nnkaside list N Fraas antry Fraa antry
rree enll rree entl

llllllllllllllll

Flink > Flink

v

Flink (Next block)

¥

NULL

singly-linked lookaside list

Figure 17: Lookaside List of heap blocks

The heap overflow exploitation scenario usuallycgexls on like this:

If during the buffer overflow the neighboring bloekists, and is free, then the Flink and

Blink pointers are replaced (Fig. 18).

At the precise moment of the removal of this frésck from the doubly-linked freelist a

write to an arbitrary memory location happens:

mov dword ptr [ecx],eax

mov dword ptr [eax+4],ecx
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EAX - Flink

ECX - Blink

For example, the Blink pointer could be replacedthg unhandled exception filter
address (UEF -- UnhandledExceptionFilter), andi;laccordingly, by the address of the

instruction which will transfer there executiontb@ shellcode.

Block_header

Overflow
buffer direction

Block_header

Flink
Blink

Figure 18: Direction of Heap Overflow
In Windows XP SP2 the allocation algorithm was deh-- now before the removal of a
free block from the freelist, a pointer sanity dhes performed with regard to the
previous and next block addresses (safe unlinkiggl9.):
1. Free_entry2 -> Flink -> Blink == Free_entry2 -> Blink

-> Flink
2. Free_entry2 -> Blink -> Flink == Free_entry2
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Allocate

v

—M Flink
<—|— Blink
Free entry 1

Flink

h 4

Flink

Blink

Free entry 2

r 3

Blink

———»

Free entry 3

Figure 19: Safe Unlink Operation

Then that block gets deleted from the list. The memheader block was changed,

besides other things (fig. 20.). A new one-bytgiaicookie' field was introduced, which

holds a unique pre-computed token -- undoubtedlgiged to ensure header

consistency. This value is calculated from the keaaddress and a pseudorandom

number generated during the heap creation:

(&Block_header >> 3) xor (&(Heap_header + 0x04))

The consistency of this token is checked only dputime allocation of a free memory

block and only after its deletion from the fred.lis

Size

Previous Size

Cookie

Flags

Segment

Unused Index

Flink

Blink

Figure 20: Free Block Header in Windows XP SP2 (Cdde Added)
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If at least one of these checks fails the heapoisidered destroyed and an exception

follows.

The first weak spot -- the fact that the cookiesggtecked at all only during free block
allocation and hence there are no checks upon bteekng. However in this situation
there is nothing you can do except changing thekbsize and place it into an arbitrary

freelist.

And the second weak spot — the manipulation ofidb&aside lists doesn't assume any
header sanity checking, there isn't even a simpd&ie check there, which, theoretically,

results in possibility to overwrite up to 1016 by/te an arbitrary memory location.

The exploitation scenario could proceed as follows:

If, during the overflow the coincidental memory tH#ois free and is residing in the
lookaside list, then it becomes possible to repldeeFlink pointer with an arbitrary

value.

Then, if the memory allocation of this block happetine replace&link pointer will be
copied into the header of the lookaside list andnduthe next allocatiomeapAlloc ()

will return this fake pointer.

The prerequisite for successful exploitation isseeqice of a free block in lookaside list

which neighbors with the buffer we overflow.

The effect of a successful attack:

1. Arbitrary memory region write access (smaller anado 1016 bytes).

2. Arbitrary code execution.
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3. DEP bypass.

5.3 Code

The Code consists of the following C++ files.

1. DEP.cpp
2. DEPl.c

3. DEP2.c

5.3.1 DEP.cpp
This file is the main GUI code in Visual C++ foremuting the other both programs

which bypass the data execution prevention.

5.3.2 DEP1.c

This file contains the code to bypass the softvearrced DEP. It does so by making
use of a shellcode crafted to execute the windoalsutator and is manipulated to
contain the address of system function from theadyinally allocated library msvcrt.dll.
This shellcode is then copied on to an overflowedpmblock so that the system function
is executed. Since the system function resideshenekecutable pages our shellcode
executes successfully and the calculator is exdcilteery time the calculator is closed
the system function returns to its own address usraf overwrite so it executes again

and again indefinitely.

5.3.3 DEP2.c
This file contains the code to bypass the hardwaferced DEP. It does so by making
use of buffer overruns and lookaside list ovengritgy intelligently crafted lookaside list

overwrite and buffer overruns we put the fake metaddress in the stack and copy our
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shellcode to be executed and the address of thensyfsinction from dynamic library

msvcrt.dll into heap. This way the system functexecutes without making windows

aware of data execution prevention has been bypasse
5.4 Screenshots

5.4.1 Bypassing Software Enforced DEP

: BA351E?8 -

: @BA351ED@ E calculator

: BA351E98 " .

: BA351EDA Edit  Wiew NgEE
Heap block 3:<HH12FFEZ-

| [Backspace] [ ] [

Address supplied by us lM':] l 7 ” g H 5 H J ] Sq[t]
[wa ) (e J{s L L )0 =]
(=) D0

e | [ o ][]0 ]+ )

P TR

Figure 21: Shellcode execution bypassing softwaraferced DEP
As you can see the calculator executed as a refstiie execution of our shellcode from
within the system function taken from msvcrt.dllefiwhich we dynamically loaded
within our program and thus succeed in executing flam non-executable pages, i.e.
bypassing software enforced data execution premeniThe shellcode, i.e. calculator

executes again and again we close it until we adoseonsole application.
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5.4.2 Bypassing Hardware Enforced DEP

As can be seen from figure 21, th® Beap block is assigned the address which we
supplied during the overflow and since we have ed@ur shellcode with address of
system function here, our shellcode is executenh ftike data pages which are in fact
non-executable and thus windows hardware enforcad @xecution prevention is

bypassed and we succeed in executing the requisdidade.

Heap block 2: AA341EDA
Heap block 3:{0B12FF84
Address of msvcPt.dIlfs @ ?IC293C7 Calculator

2 Yiew Help

| [Backspace|| H C l
(] (2 ][ J(s ) ) wt]
DEDR B
ojonaEn
Lo L)L

Figure 21: Shellcode execution bypassing hardware®rced DEP.
As you can see from the screenshot of the execirtifigure 22, on closing the windows
calculator which was executed as a result of harelwaforced DEP bypass, the windows
detects that execution is going on from non-exddatpages and so a windows pops out

to warn and to close the application. But all thegpens long after we did what we
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wanted, i.e. executing our shellcode from the g¢etges and thus bypassing hardware

enforced data execution prevention.

i: BAA3I41E98
2: BB341EDR
1: B8341E78
2: BB341EDR
3: BB12FF34
Addresz of msvcrt.dlltsystem(>: T7C293C7

[ata Execution Prevention - Microsoft Windows

To help protect your computer, Windows has closed this program.

Marne: DEP2

Change Settings J [ Close Message _l

Diata Execution Prevention helps prokect against damage Fram viruses or ather
threats, Some programs might not run correcthy when it is turned on, For
an Updated version of this program, contact the publisher, What else should I do?

Figure 22: Popped Up Warning Message on Closing Witows Calculator
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Chapter 6. Conclusion & Future Work

In this thesis we presented the theoretical aspafctbe PriCryp design which helps
defending against today’s major source of vulnditads, i.e. the memory corruption.

The major contributions of this thesis are:

* PriCryp provides probabilistic defense against mgmoorruption attacks by
prioritizing the code blocks having security crtidnstructions. Since system
calls or other application binary interface are @ialways used by attackers to
perform malicious tasks, it becomes difficult ftvetattacker to succeed in the

presence of probabilistic runtime randomization.

» PriCryp employs cryptographic techniques to protibet system from attacks

resulting from malicious data overwrites.

* PriCryp transforms the security critical instrucigointo unintelligible form to

protect the instructions from being used harmfbijythe attacker.

* PriCryp provides very fine control over the gramifyaof the randomization
which can reach the basic building block (one imdion per code block) if
desired. This provision provides favors for easy @®d deployment in the

variations of systems.

* PriCryp randomizes all the components of the pdesluding stacks, heaps,
code segments, data segments and DLLs. The reldistance between the

segments is also randomized using padding.
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* The startup performance overhead of PriCryp is Jew because it does not
randomize all the instructions, rather randomizely code blocks having group

of instructions.

* The performance overhead of PriCryp during runtmhehe process is slightly
higher, however, due to runtime randomization of ttode blocks. But the
compound overhead becomes reasonable when it popidbabilistic proactive

defense mechanism against memory corruption attacks

We believe that PriCryp has significant potentiakktenuate the wide threat of memory
corruption attacks. By randomizing the memory sphokling the program the core

vulnerability that memory corruption attacks usedgressed- namely the predictability
of control information and critical data. Furthéettransformation of data variables and
security critical instructions provides the systerare strength against modern memory

corruption attacks.

Our future work includes the implementation of twmplete PriCryp design in Linux
system & enhancing the application of cryptogragbihniques in ASR to improve the

design of PriCryp.
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Chapter 7. Publications from the Thesis

7.1 Accepted Paper

Title: HighRAND: High Priority Instruction Block Randonaz

Abstract: A majority of security exploits today are memoryoerexploits. Address
Space Randomization is a broadening and promisiathod of preventing a vast range
of memory corruption attacks. ASR shifts criticalnnory regions at process initialization
time which causes an otherwise successful maliattask to crash like a trivial attack.
Insufficient randomness as provided in Microsafésent PC operating system Windows
Vista (256 Locations), is also not likely to sigeahtly slow down self replicating worms.
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