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ABSTRACT 
 

Today a majority of security exploits have a memory corruption component. These attacks 

depend on corrupting some process memory and either injecting a shellcode and executing that 

or using some system calls with malicious parameters to harm victim machine and to replicate. 

The existing approaches either provide insufficient randomness or require source code 

modification. Insufficient randomness allows attacker to use Brute-Force attacks and source code 

modification doesn’t seem to be viable solution for all the software available on the internet 

which are the biggest reservoir of the memory corruption attacks. In this paper we propose 

PriCryp, a prophylactic security technique that makes efficient and effective use of ASLR and 

ISR to provide prioritized cryptographic runtime code block randomization. Here we make key 

observation that system calls are almost always used in memory corruption attacks by the 

attackers. We make use of cryptographic algorithms to scramble data variables and security 

critical instructions which we say including system call instruction and other application binary 

interface (ABI) functions. We prioritize the code blocks according to the system calls within 

them. PriCryp intercepts the process before execution and disassembles it to identify code blocks 

of related instructions. These code blocks are then assigned priority according to the number of 

system calls within them. Based on this priority the code blocks are then randomized during 

runtime. PriCryp randomizes the very components of a process including Stacks, Heaps, Data 

segments and Code segments. Further randomizes the code segment internally. 
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Chapter 1. Introduction 

1.1 Background 

Memory corruption exploits are most common vulnerabilities among the software 

vulnerabilities through which attacker can take control of the computers.  More than 50 

percent of today’s widely exploited vulnerabilities are caused by buffer overflow and this 

percentage is increasing as time passes. An increasingly used attack is the Code Injection, 

to exploit the software vulnerability on the victim machine and execute either the 

remotely injected code or an existing malicious code. The worms like Sasser [1], Blaster 

[2], Code Red [3], and Code Red II use this attack to execute the injected code on the 

victim to infect and replicate. The Code Red, Code Red II and their variations exploited 

the known vulnerability in the Microsoft Index Service DLL. In 2003, Sapphire [4](SQL 

Slammer), and MSBlaster [2] took advantage of buffer overflow vulnerabilities to inject 

into systems.  As attributed in the US-CERT Cyber Security Advisories [5] of recent 

years, a majority of security exploits are based on memory corruption component. In 

2003, buffer overflow accounted for 70.4% (19 of 27) of the serious vulnerability reports 

from CERT advisories. 

These memory corruption vulnerabilities are usually caused by insecure programming 

style and unavailability of secure libraries in the programming languages like C. These 

vulnerabilities are mostly occurred due to the lack of input validation in the C 

programming language, due to which programmers are free to decide when and how to 

tackle the input. However these programming styles sometimes result in improved 

performance of the application. Again the difficulty in source code analysis forces 
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programmers to make assumptions or simplification that causes a huge number of false 

positives or false negatives. The techniques for exploiting memory corruption 

vulnerabilities depend on the memory layout of the executing program under target. 

These vulnerabilities include Stack and Heap Overflows, and Underflows, Format 

Strings, Array Index overflows, and uninitialized variables. Typically these attacks are 

designed to enable the remote attacker to execute some arbitrary code on the victim 

remote machine. This execution may provide the attacker the full control of the victim 

system or may be used to propagate worms, data corruption or some hidden installation. 

These factors have fueled a lot of research into defenses against exploitation of memory 

corruption vulnerabilities. Early research targeted specific exploit types such as stack 

smashing, etc. but attackers soon discovered alternative ways to exploit memory errors. 

Table 1: CERT Advisories (1999-2002) 

Vulnerability Number Percentage 

Buffer Overflow 49 44.95% 

Double Free 2 1.83% 

Format Strings 9 8.26% 

Backdoor/Trojan Horses 8 7.34% 

Others 41 37.62 

Total 109 100% 

 

As it is well known, diversity plays an essential role for the survivability of every 

biological species; recently this theory has also been applied to computer programs. 

Computer scientists started to apply different types of transformations to computer 
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programs such as Instruction Set Randomization (ISR), Absolute Address Randomization 

(AAR), Address Space Layout Randomization (ASLR), and several other program 

transformation techniques. These techniques either help in combating against memory 

corruption attacks or extenuate the chances of them being successful. 

The recent release of Microsoft’s latest PC operating system Windows Vista included an 

implementation of Address Randomization [6] which if analyzed is not up to the security 

requirements of current systems. Wehntrust [7] and Ozone [8] are other implementations 

available for address randomization. These products have one or more of the following 

negatives: 

Randomization Incompleteness: Windows Vista’s Address Randomization randomizes 

only the base addresses of the executables and the DLLs. Wehntrust also don’t randomize 

some memory regions and for Ozone no other information is available except it 

randomizes the stack and the DLLs. 

Randomization Deficiency: In Windows Vista Address Randomization is provided only 

over 256 possible values for the base address. This range of randomization hardly seems 

to be sufficient to counter a targeted attack. The attacker may use Brute-Force techniques 

to succeed and needs a mere 128 tries, on an average, before succeeding. 

1.2 Motivation 

Our initial work involved the study of system security related issues and we found that 

buffer overflow is a major threat to system and internet security. These attacks are not 

just a few kind but many kinds emerge as the time passes and break the security 

mechanism developed for the previous attack methods. As described above, many 
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techniques have evolved from the time the buffer overflow attacks came into light but no 

technique has been successful in preventing the majority of these attacks. Studying these 

attack methods and the security mechanism motivated us to design a system which can 

counter against the vast choices of these kinds of attacks. Our system not only provides 

the randomization at load time of the process but also at the runtime and with the 

application of cryptographic techniques and prioritization mechanisms. 

1.3 Objective 

The goal of this thesis is to study various randomization techniques for process memory 

organization with the application of cryptographic techniques to make them more secure 

and to design a randomization technique which can work with existing architectures on 

top of the system kernel. The applicability of the design to the existing architectures & 

applications requires the design to be application & infrastructure transparent. 

1.4 Proposed Work 

In this thesis we propose an improved version of the idea of diversity which, besides 

being simpler, is able to handle a broader range of memory error exploits. In particular 

we make the following contributions: 

1.  We apply a cryptographic model for data transformation. The data when being 

written in memory is scrambled using some transformation function and when 

being used is unscrambled using the reverse transformation function. 

2.  We formulate a model which combats memory corruption attacks based on 

knowledge of absolute addresses as well as those which partially overwrite a 

memory address. The first attack type refers to all those exploitation techniques 
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an attacker may use to corrupt a particular memory address value with the 

objective of hijacking the process execution control flow. 

1.5 Thesis Organization 

The thesis is organized as follows: 

Chapter 2 describes the various kinds of buffer overflow attacks and the techniques 

which have developed so far to counter these attacks & then conclude how these 

techniques are weak in preventing such attacks. 

In Chapter 3 we describe our system, i.e. PriCryp’s Model and the various components 

of the design. 

Then in Chapter 4 we evaluate the design against various kinds of buffer overflow 

attacks, compare the model with other techniques and describe the limitations of the 

design. 

In Chapter 5, we demonstrate our initial implementation work related to the PriCryp’s 

model and the other techniques. 

Finally we conclude in Chapter 6 and describe our future work related to the work done 

in the thesis. At the last the publication made from the thesis are listed. These include the 

accepted paper and the communicated journals with some of the related details. 
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Chapter 2. Memory Exploitation & Preclusion 

2.1 Memory ill-treatment Techniques 

2.1.1 Introduction 

A buffer overflow occurs in a program when the program stores more information in an 

array, the buffer, than the space reserved for it. This causes the areas adjacent to the 

buffer to be overwritten, corrupting the values previously stored there. Buffer overflows 

are always programming errors which are typically introduced into a program because the 

programmer failed to anticipate that the information copied into the buffer by the 

program may exceed its size. Unfortunately, as we shall soon see, buffer overflow 

programming errors are quite common because of certain widely used and dangerous C 

programming practices. Once buffer overflow vulnerability is present in a program, 

inadequate testing may not uncover it, so that the vulnerability may lurk in the program 

hidden, undiscovered and silent for years. This potentially opens up the program to be the 

target of a sudden attack which exploits the vulnerability to gain unauthorized access to a 

system. A buffer overflow may happen accidentally during the execution of a program. 

When this happens, however, it is very unlikely that it will lead to a security compromise 

of the system. Most often the clobbering of information in areas adjacent to the buffer 

will cause the program to crash or produce obviously incorrect results. In a buffer 

overflow attack, on the other hand, the objective of the attacker is to use the vulnerability 

to corrupt information in a carefully designed way in order to execute attack code 

previously planted by the attacker. If this succeeds, the attacker effectively hijacked the 
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control of the program. Once control is transferred to the attack code, it grants 

unauthorized access to the attacker. 

Typically the attack code just spawns a shell, which allows the attacker to execute 

arbitrary commands on the system. When a new shell is spawned in a UNIX system, it 

inherits the access privileges of the process that spawned it. Consequently, if the attacked 

process containing the buffer overflow vulnerability runs with root privileges, the 

attacker will also get a root shell. 

A buffer overflow attack may be local or remote. In a local attack the attacker already has 

access to the system and may be interested in escalating her access privilege. A remote 

attack is delivered through a network port, and may achieve simultaneously both gaining 

unauthorized access and maximum access privilege. 

Summarizing, we see that a buffer overflow attack usually consists of three parts: 

1. The planting of the attack code into the target program; 

2. The actual copying into the buffer which overflows it and corrupts adjacent 

data structures; 

3. The hijacking of control to execute the attack code; 

2.1.1.1 Basic Example 

In the following example, a program has defined two data items which are adjacent in 

memory: an 8-byte-long string buffer, A, and a two-byte integer, B. Initially, A contains 

nothing but zero bytes, and B contains the number 3. Characters are one byte wide.  
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Now, the program attempts to store the character string "excessive" in the A buffer, 

followed by a zero byte to mark the end of the string. By not checking the length of the 

string, it overwrites the value of B: 

 

Although the programmer did not intend to change B at all, B's value has now been 

replaced by a number formed from part of the character string. In this example, on a big-

endian system that uses ASCII, "e" followed by a zero byte would become the number 

25856. If B was the only other variable data item defined by the program, writing an even 

longer string that went past the end of B could cause an error such as a segmentation 

fault, terminating the process. 

2.1.2 Exploiting Buffer Overruns 

A buffer overrun is characterized as a stack buffer overrun or heap buffer overrun 

depending on what memory gets overrun. C and C++ compilers typically use the stack 

for local variables as well as parameters, frame pointers, and saved return addresses. 

Heaps, in this context, refer to any dynamic memory implementations such as the C 

standard library’s malloc/free, C++’s new/delete, or the Microsoft Windows APIs 

HeapAlloc/HeapFree. 
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Published general-purpose exploits for buffer overruns typically involve two steps: 

1. Change the program’s flow of control. (Pure data exploits in which the buffer 

happens to be adjacent to a security-critical variable operate without changing the 

program’s flow of control 

2. Execute some code (potentially supplied by the attacker) that operates on some 

data (also potentially supplied by the attacker). 

The term payload refers to the combination of code or data that the attacker supplies to 

achieve a particular goal (for example, propagating a worm). The attacker sometimes 

provides the payload as part of the operation that causes the buffer overrun, but this need 

not be the case. All that is required is that the payload be at a known or discoverable 

location in memory at the time that the unexpected control-flow transfer occurs. 

The exploits can be broadly divided into two categories: those that exploit the call-stack 

and those that exploit the heap. Exploits on the stack include stack-smashing, Arc-

Injection, function pointer clobbering, and exception handler hijacking. Heap-based 

exploits include attacks on function pointers, C++ vtables, executable sections and the 

malloc internal data-structure. First we will look at stack exploits. 
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2.1.2.1 Stack Based Exploits 

 

Figure 1: Structure of a Stack in a Process 

2.1.2.1.1 Stack Smashing 

One classification of buffer overflow attacks depends on where the buffer is allocated. If 

the buffer is a local variable of a function, the buffer resides on the run-time stack. This is 

by far the most prevalent form of buffer overflow attack. 

When a function is called in a C program, before the execution jumps to the actual code 

of the called function, the activation record of the function must be pushed on the run-

time stack. In a C program the activation record consists of the following fields: 

1. Space allocated for each parameter of the function; 

2. the return address; 

3. the dynamic link; 

4. Space allocated to each local variable of the function. 
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The address of the dynamic link field is to be considered as the base address of the 

activation record. The function must be able to access its parameters and local variables. 

This requires that during the execution of the function a register hold the base address of 

the activation record of the function, i.e. the address of the dynamic link field. Parameters 

are below this address on the stack, and local variables above. When the function returns, 

this register must be restored to its previous value, to point to the activation record of the 

calling function. To be able to do this, when the function is called the value of this 

register is saved in the dynamic link field. Thus the dynamic link field of each activation 

record points to the dynamic link field of the previous activation record on the stack, 

which in turn points to the dynamic link field of the previous activation record, and so on, 

all the way to the bottom of the stack. The first activation record on the stack is that of 

main (). This chain of pointers is called the dynamic chain. 

In many C compilers the buffer grows towards the bottom of the stack. Thus if the buffer 

overflows and the overflow is long enough the return address will be corrupted, (as well 

as everything else in between, including the dynamic link.) If the return address is 

overwritten by the buffer overflow so as to point to the attack code, this will be executed 

when the function returns. Thus, in this type of attack, the return address on the stack is 

used to hijack the control of the program. 

Overwriting the return address, as explained above, gives the attacker the means of 

hijacking the control of the program, but where should the attack code be stored? Most 

commonly it is stored in the buffer itself. Thus the payload string which is copied into the 

buffer will contain both the binary machine language attack code (shellcode) as well as 

the address of this code which will overwrite the return address. There are a few 
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difficulties that the attacker must overcome to carry out this plan. If the attacker has the 

source code of the attacked program it may be possible to determine exactly how big the 

buffer is and how far it is from the return address, determining how big the payload string 

must be. Also, the payload string cannot contain the null character since this would abort 

the copying of the payload into the buffer. Some copying routines of the C library use 

carriage returns and new lines as a delimiter instead, so these characters should also be 

similarly avoided in the payload string. 

2.1.2.1.2 Arc Injection 

As an alternative to supplying executable code, an attacker might simply be able to 

supply data that—when a program’s existing code operates on it—will lead to the desired 

effect. One such example occurs if the attacker can supply a command line that the 

program under attack will use to spawn another process; this essentially allows arbitrary 

code execution. Arc injection exploits are an example of this data-oriented approach— 

indeed, the first such published exploit allowed the attacker to run an arbitrary program. 

The term “arc injection” refers to how these exploits operate: the exploit just inserts a 

new arc (control-flow transfer) into the program’s control-flow graph, as opposed to code 

injection-exploits such as stack smashing, which also insert a new node. 

2.1.2.1.3 Function Pointer Clobbering 

Function-pointer clobbering is exactly what it sounds like: modifying a function pointer 

to point to attacker supplied code. When the program executes a call via the function 

pointer, the attacker’s code is executed instead of the originally intended code. This can 

be an effective alternative to replacing the saved return value address in situations in 
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which a function pointer is a local variable (or a field in a complex data type such as a 

C/C++ struct or class). 

2.1.2.1.4 Exception Handler Hijacking 

Several variations of exploit techniques target the Microsoft Windows Structured 

Exception Handling (SEH) mechanism. When an exception (such as an access violation) 

is generated, Windows examines a linked list of exception handlers (typically registered 

by a program as it starts up) and invokes one (or more) of them via a function pointer 

stored in the list entry. Because the list entries are stored on the stack, it is possible to 

replace the exception-handler function pointer via buffer overflow (a standard example of 

function pointer clobbering), thus allowing an attacker to transfer control to an arbitrary 

location—typically a trampoline to code injected by the attacker. Versions of Windows 

starting with Windows Server 2003 perform some validity checking of the exception 

handlers that limit the feasibility of this straightforward attack. An alternative to 

clobbering an individual function pointer is to replace the field of the thread environment 

block (a per-thread data structure maintained by the Windows operating system) that 

points to the list of registered exception handlers. The attacker simply needs to “mock 

up” an apparently valid list entry as part of the payload and, using an arbitrary pointer 

write, modify the “first exception handler” field. 

2.1.2.2 Heap Based Exploits 

2.1.2.2.1 Heap Structure 

Heap is a reserved address space region at least one page large from which the heap 

manager can dynamically allocate memory in smaller pieces. The heap manager is 
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represented by a set of function for memory allocation/freeing which are localized in two 

places: ntdll.dll and ntoskrnl.exe.  

 

Figure 2: General Structure of a Heap 

2.1.2.3 Heap Smashing 

The key insight behind heap smashing is to exploit the implementation of the dynamic 

memory allocator by violating some assumed invariants. (Published source code for the 

dynamic memory allocator makes explanation easier, but is not needed in practice, so 

these techniques apply equally well on closed-source systems.) Many allocators, for 

example, keep headers for each heap block chained together in doubly linked lists of 

allocated and freed blocks, and update these during operations such as freeing a memory 

block. If there are three adjacent memory blocks X, Y, and Z, an overrun of a buffer in X 

that corrupts the pointers in Y’s header can thus lead to modification of an arbitrary 

memory location when X, Y, or Z is freed. In many cases, the attacker can also control the 

value being put into that location, thus accomplishing an arbitrary memory write, which 

leads to the exploitation possibilities. In practice, heap smashing is thus typically coupled 

with function-pointer clobbering. Three factors complicate heap-smashing exploits. Most 
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obviously, the attacker typically does not know the heap block’s location ahead of time, 

and standard trampolining approaches are typically not effective. In many cases, it is 

somewhat difficult to predict when the heapFree operation will occur, which could mean 

that the payload is no longer available at the time that the call via the clobbered function 

pointer occurs.  Finally, in some situations (especially with multithreaded programs), it is 

difficult to predict whether the next block has been allocated at the time the overrun 

occurs. Surprisingly enough, however, these are no longer significant roadblocks for 

exploitation of many heap buffer overruns. Attackers typically work around them by 

transferring the payload to an easy-to-find location as part of a separate operation (a 

technique first developed as a stack-smashing enhancement). There are typically enough 

such locations available that attackers can choose a location that will still be available at 

the time the call occurs. For cases where it is difficult to predict the next block, attackers 

can attempt to influence the size and order of heap operations to position the heap block 

of interest at a known location and to disambiguate the following blocks’ behavior. 

2.2 Thwarting Memory Corruption 

Many techniques have been proposed till date to prevent and to detect memory corruption 

attacks, but no technique till date has been successful in countering all types of 

vulnerabilities. The technique proposed here is also not defending against all the 

vulnerabilities but this defends against most of them and more effectively. 

The main proposed techniques for memory corruption related vulnerabilities are the 

following: 
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Figure 4: i386 Stack Layout with StackGuard 

2.2.2 Code Obfuscation 

The word “obfuscation” literally translates to “making something less clear and harder to 

understand”. Code Obfuscation is a method to transform the program into a different 

internal architecture but keeping the semantics, i.e. the instructions will be transformed or 

even the gap between the instructions will be changed but the original and the 

transformed programs will work the same. This is the concept taken from the diversity in 

biological species. So one type of attack designed for one copy of the program may not 

work successfully on another copy of the program. But these techniques were usually 

employed at compile time or link time, i.e. they usually required source code of the 

program to transform them into a different design. Because of these disadvantages these 
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techniques were never used for the commodity software which is the biggest source of 

available vulnerabilities on the internet. 

2.2.3 Absolute Address Randomization 

This technique randomizes the absolute address of the various segments of a process 

[17][18].  At the process startup the very components of the process including the code 

segment, data segment are randomized within the process memory space. These blocks 

are randomized but the relative distance between these is kept the same. This type of 

technique can prevent several pointer corruption attacks because attacker cannot predict 

the object pointed by the corrupted pointer. Through this stack smashing attacks can be 

prevented. The problem with this technique, however, is it doesn’t randomize the relative 

distances between segments. The Relative Address attacks which don’t rely on data’s 

absolute locations can defeat AAR techniques. Also AAR depends on the secrecy of 

randomization key. Since it’s hard to keep it secret from local users AAR is basically 

limited to defend against the remote attacks. 

2.2.4 Instruction Set Randomization 

ISR creates randomized instruction set for each process at startup. Even the two images 

of the same program may have different internal architecture. This technique is an 

enhancement of the code obfuscation technique which was basically a compile time 

technique. The addresses of the instructions within the code segment are randomized 

before startup and thus the attacker cannot locate any desired instruction directly. With 

ISR in effect attacker fails to execute the injected code even if she has already corrupted 

the victim process’s control flow. But ISR also suffers from the type of attacks which 

don’t use injected code. The ISR cannot prevent the return-into-libc attacks which call a 
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their code into another program's data storage area and running their own code from 

within this section. Microsoft employed this technique in their PC operating system, 

Windows XP SP2, with the name of DEP [15] (Data Execution Prevention). Windows 

XP SP2 used software based DEP to protect against memory corruption attacks on the 

processors which don’t support NX/XD bit. 

If an application attempts to run code from a protected page, the application receives an 

exception with the status code STATUS_ACCESS_VIOLATION. If your application 

must run code from a memory page, it must allocate and set the proper virtual memory 

protection attributes. The allocated memory must be marked PAGE_EXECUTE, 

PAGE_EXECUTE_READ, PAGE_EXECUTE_READWRITE, or 

PAGE_EXECUTE_WRITECOPY when allocating memory. Heap allocations made by 

calling the malloc and HeapAlloc functions are non-executable. 

2.2.5.1 Hardware Enforced DEP 

Hardware-enforced DEP marks all memory locations in a process as non-executable 

unless the location explicitly contains executable code. There is a class of attacks that 

attempt to insert and execute code from non-executable memory locations. DEP helps 

prevent these attacks by intercepting them and raising an exception. 

Hardware-enforced DEP relies on processor hardware to mark memory with an attribute 

that indicates that code should not be executed from that memory. DEP functions on a 

per-virtual memory page basis, usually changing a bit in the page table entry (PTE) to 

mark the memory page. 
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The actual hardware implementation of DEP and marking of the virtual memory page 

varies by processor architecture. However, processors that support hardware-enforced 

DEP are capable of raising an exception when code is executed from a page marked with 

the appropriate attribute set. 

Both Advanced Micro Devices (AMD) and Intel Corporation have defined and shipped 

Windows-compatible architectures that are compatible with DEP.  

Beginning with Windows XP Service Pack 2, the 32-bit version of Windows utilizes the 

no-execute page-protection (NX) processor feature as defined by AMD or the Execute 

Disable bit feature as defined by Intel. In order to use these processor features, the 

processor must be running in Physical Address Extension (PAE) mode. The 64-bit 

versions of Windows XP uses the NX processor feature on 64-bit extensions and certain 

values of the access rights page table entry (PTE) field on IPF processors. 

2.2.5.2 Software Enforced DEP 

An additional set of data execution prevention security checks have been added to 

Windows XP SP2. These checks, known as software-enforced DEP, are designed to 

mitigate exploits of exception handling mechanisms in Windows. Software-enforced 

DEP runs on any processor which is capable of running Windows XP SP2. By default, 

software-enforced DEP only protects limited system binaries, regardless of the hardware-

enforced DEP capabilities of the processor. 

But these both, software enforced DEP and hardware enforced DEP can be bypassed and 

the attack can be performed as shown in the recent studies [16]. 
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2.2.6 Address Space Layout Randomization [17] 

ASLR randomizes the memory layout of an executing process including the DLLs, heaps, 

stack and the gap between the data and the code segments. This technique can be seen as 

an enhancement to the previous Absolute Address Randomization techniques because in 

this scheme all of the sections of a process are randomized and the relative distance 

between them as well. So in this scheme even if the attacker succeeds in injecting a 

malicious code, shellcode, becomes hard to locate and execute. This way it prevents the 

attacker hijacking the process’s control flow. However ASLR is also not unbreakable. It 

is easy to guess the shellcode location in this scheme too using the techniques like Code 

Spraying and AddressSpraying [18]. Code Spraying is a technique where attacker 

“sprays” the shellcode repetitively over a large writable user-level memory area and thus 

leaves only a little range for attacker to guess the location of shellcode. Also the limited 

range of randomization as used in the recent release of Microsoft’s PC operating system, 

Windows Vista, is vulnerable to Brute Force attacks and the attacker can succeed in 128 

tries on an average because of the total 256 available locations of randomization. 

2.2.7 DAWSON [19]] 

According to this proposed technique, a DLL is injected into every process before the 

start of its execution. This DLL hooks Windows API functions relating to memory 

allocation and randomizes the base address of all the regions. Further some of the 

randomizations is provided with a custom designed loader which randomizes the memory 

allocated prior to the injection of described DLL. This technique doesn’t randomize the 

relative distances between objects and also there is no security for the data overwrites. 
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This technique cannot defend against relative distance attacks and the ones caused by 

data overwrite. 

2.2.8 ASLP (Address Space Layout Permutation) [20] 

Address Space Layout Permutation, as proposed, makes use of both ISR and ASLR to 

prevent such kind of attacks. However this technique randomizes all the instructions 

without prioritizing the instructions which are usually used to accomplish the attacker’s 

target. Further it doesn’t provide any mechanism to secure data from overwrite and the 

misuse of these overwrites. In our view the randomization of all the instructions is 

inefficient because not all the instructions are security critical. Typically the injected 

shellcode makes use of system calls to harm victim machine and to replicate, thus from 

our perspective the technique is a little expensive. 

2.2.9 RISE (Randomized Instruction Set Emulation) [27] 

RISE uses a machine emulator to transform a program into a diverse program at runtime. 

The transformed program has a different, secret instruction set. The machine emulator in 

this technique produces automatically diversified instruction sets. In RISE each byte of 

original program code is scrambled using pseudorandom numbers seeded with a unique 

random key unique to each program in execution. Since this technique scrambles each 

instruction, it is real slow. And again there is no other technique other than scrambling 

which defends the system and if the secret key is compromised the system becomes 

vulnerable. This technique thus cannot defend against local attacks. 
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2.3 Conclusion 

The techniques developed so far have some or more weaknesses which certainly cause 

the risks to the system security. We identified some weaknesses which need to be 

overcome to better secure the system from memory corruption attacks. 

1. The use of source code transformation is not at all efficient & also not possible for 

commodity software which is the major source of vulnerabilities on the web. 

2. The NX/XD Bit prevents write & execute at the same time but recent studies have 

shown that this technique can also be bypassed. 

3. ISR techniques randomize the instructions but keep the data intact. The attackers 

can overwrite the data & can hijack the process control flow by overwriting the 

data & passing wrong arguments to the system functions, i.e. return into libc. 

4. AAR techniques randomize the absolute address of the various components of the 

process including code segment, data, stacks, heaps, DLLs. But the relative 

distances are kept same. The attacker can succeed if the attack doesn’t depend on 

the absolute address and can be done according to the relative address. 

5. ASLR also employs only one kind of randomization, i.e. randomization at load 

time. But the techniques like code spraying and address spraying can break the 

system. 

6. ASLP is a better technique than the ones before but it also takes no care of data 

and also no weight is given to the security critical instructions. Also, no runtime 

randomization. 
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7. RISE transforms the process instruction set into a totally different instruction set 

but this technique seems to be infeasible and only one secret key is used to create 

this random set. 
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Chapter 3. PriCryp Model 

3.1 Design Goals 

Observing the above techniques we noticed that these have many positives but many 

negatives too. Many defend against many types of attacks but no technique defends 

against most of the attacks. In this thesis we advocate and demonstrate that by mixing up 

ISR and ASLR and enhancing the ASLP technique with some cryptography, priority 

assignment and data encryption we can offer much more robust protection technique than 

each of them can provide individually. 

In this thesis we suggest the use of a set of components which individually enable the 

system to overcome the weaknesses previously described and together make the system 

robust enough to defend against most of the memory corruption attacks. 

1. The randomization techniques today randomize the components of the process 

like stacks, heaps, code segments, data, & DLLs. We suggest a fine grained 

randomization inside the code segments. This can be accomplished with the help 

of a binary rewriting tool which analyses the process code at load time & 

decomposes it into several segments & then randomize these segments. 

2. To defend against de-randomization attacks we suggest runtime randomization 

according to some kind of prioritized mechanism. What we do in this thesis is 

assign the priority to the code blocks according to the security critical instructions 

within them. We assume system calls to be the security critical instructions. 
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3.2.3 Prioritizing 

On inspecting a number of memory corruption attacks we observe that the system calls 

are almost always used by the malicious codes to perform their malicious tasks such as 

replication, data corruption, etc. Here in this thesis we assign priorities to the code blocks 

so that the randomizations can be done effectively according to the priority. The code 

block with least number of system calls will be assigned the lowest priority and the block 

with the highest number of system calls will be assigned the highest priority. A block’s 

priority basically determines the frequency of runtime randomizations of that block. 

Pi = K (Ns, Mn)      (2) 

Where, 

K = Prioritizing Function, 

Ns = Number of system calls within ith Block, 

Mn = Number of blocks having same number of system calls. 

The prioritizing process is done after the disassembling and the input to the prioritizing 

are the code blocks identified by disassembler as shown in the figure 9. 

3.2.4 Code Scrambler 

In this component of PriCryp we generate a diverse instruction set for some of the 

instructions in the program’s code segment. As suggested in RISE, generating an 

automatic diverse instruction set for each instance of the process helps defending against 

some of code injection attacks. But that scheme is inefficient in a way that all the 

instructions are transformed. Here in this component we suggest transforming only 
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security critical functions; we assume system call wrapper functions & other application 

binary interface (ABI) functions as security critical, which are vital for an attacker to 

successfully perform the malicious tasks on the victim. We keep other instructions 

unchanged and scramble the security critical instruction by a function having two inputs: 

a pseudo random number and the security critical instruction. We pass a secret random 

key to the pseudo random generator to generate a key to scramble the instruction. 

R1 = Y (secret random key)     (3) 

Ci’  = M (Ci, R1)      (4) 

C’ = (C1’, C2’, C3’…, Cn’)      (5) 

Where, 

R1 = Pseudo Random Number, 

Y = Pseudo Random Generator Function, 

M = the scrambling function, 

Ci = ith Code Block. 

Ci’ = Scrambled Ci block. 

The scrambling function here can be any reversible cryptographic algorithm like DES, 

IDEA, etc. The use of cryptographic algorithm makes the scrambling more powerful and 

robust. And the independence of choosing the algorithms in PriCryp makes it more 

favorable to be deployed. 



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation 
 

39 Rahul Kumar Agrawal, Delhi College of Engineering, 2008 

 

The address of the scrambled instruction relative to the base address of the code block it 

belongs is stored in the PriCryp’s virtualization layer’s memory. The virtualization layer 

stores the data on a per process basis. 

During execution whenever there is a call to the scrambled instruction, the instruction is 

unscrambled using the reverse of the algorithm employed in scrambling function and the 

instruction can be executed successfully. 

3.2.5 Code Block Randomizer / Fine Grained Randomizer 

3.2.5.1 Load Time Randomizer 

This code block randomizer is nothing but the implementation of ASLR for fine grained 

randomizations within the code segment. The code blocks identified as C1, C2, C3, etc. 

are randomized using the code block randomizer as shown in the figure 9. These 

randomizations are done without considering the priorities of the code blocks. The 

outcome of these randomizations is a transformed code segment as shown in the figure 9. 

This transformed code segment has the same functionality as the original code segment 

but a different internal architecture. 

3.2.5.2 Runtime Randomizer 

The runtime randomizer randomizes the code blocks identified in section 3.2.2 according 

to the priority level assigned to them in section 3.3.3. The frequency of randomization of 

code blocks depends on the priority, i.e. the number of security critical instructions within 

them. Since the blocks having no security critical instructions are assumed to be having 

no harm, they are not at all randomized during runtime. 

Fi = Z (Pi)      (9) 
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Where, 

Fi = Frequency of randomization of ith code block, 

Z = Randomization Function, 

Pi = Priority of ith code block. 

3.2.6 Data Scrambler 

The data segment D consists of many static data objects D1, D2, D3, etc. In current 

systems these data objects are stored in memory as they are. In these systems the attacker 

sometimes succeeds in overwriting the data with her malicious shellcode and then jump 

to it to execute it and perform the malicious task. What we propose here is to transform 

the data into some unidentifiable form before writing to memory at load time and revert it 

back to the original form before every use. In this scheme even if the attacker succeeds in 

overwriting the data during runtime and jump to it to execute, the runtime mechanism of 

PriCryp would first apply the reverse transformation algorithm on the data before making 

it usable. By this reverse transformation the attacker’s shellcode would probably convert 

into useless binary strings and the execution of these would certainly crash the program. 

D = (D1, D2, D3…, Dm)     (6) 

Di’ = Q (Di, R2)      (7) 

D’ = (D1’, D2’, D3’…, Dm’)      (8) 

Where, 

Di = ith data object in Data Section. 
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Di’ = Scrambled form of Di, 

Q = Any Cryptographic Scrambling Function, 

R2 = Secret Randomization Key for data transformation. 

3.3 Design Strengths 

1.  PriCryp randomizes all the sections of the process memory as done in the 

previous techniques like ASLR, gaining all of the advantages of those techniques, 

& also overcomes the weaknesses of them by further security mechanisms like 

cryptographic application, runtime randomization, and prioritization of the 

security critical instruction related code blocks. 

2.  PriCryp provides a robust, probabilistic technique with prioritization of the 

security critical instructions. This enables the system to withstand a huge variety 

of memory corruption attacks. 

3.  The application of cryptographic techniques in the system to encrypt the 

instructions and the data variables prevents the overwrites of data and instructions 

to work correctly. 

4.  The prioritized runtime randomization adds additional security to the system to 

counter the de-randomization attacks which are the most recent in the generation 

of buffer overflow attacks. 
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Chapter 4. Evaluation & Limitations 

4.1 Evaluation 

We evaluate the design of our proposed technique, PriCryp, from the following aspects: 

4.1.1 Unintentional Memory Corruption 

These memory corruption exploits occur due to the flaws in programs. These would 

certainly result in the crash of the program due to the randomizations & the cryptographic 

techniques and would certainly cause no harm to the system. 

4.1.2 Traditional Attacks 

We consider the stack smashing, heap overflow, stack overflow, & return into libc attacks 

to be the traditional attacks due to their age of usage. 

Stack smashing attacks make use of shellcode to execute harmful code within the 

stack. First of all the attacker needs to have the knowledge of memory allocation within 

process to overwrite the data with shellcode and then execute & then to successfully 

execute the shellcode she needs to be aware of all the cryptographic keys used to 

scramble the security critical instructions and the data variables. The randomizations 

within PriCryp makes it almost impossible for the attacker to find out the memory map of 

the process & even if she succeeds in this, the shellcode would be unscrambled into a 

probably unusable form before execution because the system think of it to be the data 

which was scrambled at the time of write to the memory. 

Almost the same happens with the heap overflow attacks & they would result in the 

crash of the process rather than even start of execution of the attack code. 
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The return into libc attack so far are considered to be the most dangerous attacks in 

the category of memory corruption attacks but the use of cryptographic techniques to 

scramble data before writing it to memory & unscrambling it before using make this 

attack unsuccessful until the attacker knows the secret cryptographic keys used to 

scramble the data & instructions. And since in this design we make use of two different 

secret keys, we assume it to be difficult for the attacker to guess or find the both of them. 

4.1.3 Chained Return-into-Libc Attacks 

These attacks are the modern form of the traditional return-into-libc attacks. The prior 

techniques are not sufficient to defend against chained return-into-lib(c) attacks, each of 

which calls a sequence of system library functions in order. These attacks need the 

location of all the target functions in order to exploit the attack. And due to the multi-

level randomizations in PriCryp it becomes difficult to trace the location mapping of the 

functions. Thus the chained return-into-libc attacks are almost impossible to succeed 

under PriCryp.  

4.1.4 Brute Force Attacks 

The brute force attacks are also the least possible in PriCryp due to the many rounds of 

randomizations and the application of cryptographic transformations. In case of ASLR 

brute force attack had the chances of success for 128 tries because of only 256 locations 

of randomization. In PriCryp we can achieve the randomization up to 232 for 32 bit 

architecture by creating the code blocks to the basic building blocks, i.e. one code block 

for every instruction. This way the PriCryp handsomely defends against brute force 

attacks and such an attack would certainly result in the crash of the program in the early 

phase of the attack. 
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4.1.5 De-Randomization Attacks 

Recently De-Randomization attacks came into the existence to counter the ASR defense. 

These attacks are able to de-randomize the components of the process and find out the 

exact location of the needed component. But these are also limited to the depth of 

randomization. These can de-randomize the effects of ASR but not the effects of PriCryp 

due to the depth of randomization in the design. In PriCryp we have randomizations after 

randomizations, i.e. after randomizations at the course level, we randomize at the fine 

level too. Further the prioritized runtime randomizations just make these attacks the 

benign attacks and cause the program to crash early. 

4.2 PriCryp in Contrast with Others 

In this section we compare our proposed mechanism with the existing techniques against 

various kinds of buffer overflow related attacks and technique features as shown in the 

table 2 on the next page. 

4.3 Limitations 

As with other techniques, PriCryp is also not the single sufficient for all of the attacks. 

PriCryp also has many limitations as described below: 

Since PriCryp has many randomization components and uses cryptographic techniques to 

secure data and security critical instructions, it is slower than the previous techniques. 

The load time overhead is very low but the runtime randomization causes more overhead. 

The PriCryp model is designed such that it makes use of secret keys to encrypt and 

decrypt the data and security critical instructions. On leakage of these secret keys the 
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system cannot prevent the memory corruption attacks crafted carefully with de-

randomization mechanisms. 

Table 2: Comparison between PriCryp and Others 

Techniques 

Attacks & Features 

StackGuard ISR NX/XD ASLP RISE PriCryp 

Unintentional Y Y Y Y Y Y 

Stack Smashing Y N N Y Y Y 

Chained Return into Libc N N N Y Y Y 

Return into Libc N N N N Y Y 

Code Injection N Y N N Y Y 

De-Randomization N N N N N Y 

Address Spraying N N N N N Y 
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Chapter 5. Implementation Details 

Our initial work in this project work included the study of various kinds of buffer 

overflow attacks and the related defense techniques as described in chapter 2 and how to 

bypass these techniques. In this chapter we demonstrate how we can bypass the NX/XD 

mechanism to successfully execute our shellcode and perform the desired task. This 

implementation is an initial work towards the PriCryp’s implementation for the complete 

understanding of the security breaches. 

5.1 Tools Used 

1. Visual C++ 6.0 

2. OllyDBG 

3. Dependency Walker 

4. Metasploit Project 

5.1.1 Visual C++ 6.0 

In this project I have used Microsoft Visual C++ 6.0 for coding because the project 

needed windows console applications. Again since DEP in windows doesn’t check 

applications written in .NET or cygwin based compilers it became mandatory. 

5.1.2 OllyDBG 

OllyDBG is a very powerful debugger with good user interface and disassembly features. 

This enabled to find out the addresses of the functions in running mode and to control the 

execution of the applications step through step while providing much information 

regarding current assembly instruction and its address in the executable. 
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5.1.3 Dependency Walker 

Dependency Walker provides, with good user interface, all the linked libraries that are 

used in the application. All the functions of used libraries in applications are shown and 

the system base addresses of library functions can be observed. 

5.1.4 Metasploit Project 

Metasploit [13] Project is an online database of various exploits found in various 

Operating Systems. This provides creating the required shellcode for execution in 

Windows & Linux like operating systems and for use in many languages like C/C++, 

Ruby, & Perl. 

5.2 Bypassing DEP 

It should be mentioned that upon startup, every application in its memory space, maps 

certain dynamically linked libraries which are needed for the proper functioning of the 

application. There are two libraries that are always present in the application’s address 

space. These libraries are ntdll.dll and kernel32.dll. We mention these two dynamically 

linked libraries because they are mapped in a memory region that is marked as 

executable. By using these dynamically linked libraries we can execute functions that are 

stored in them. This type of attack is called Return to libc. 

In order to gain control over the program we need to overflow the stack in such a way 

that we will overwrite the saved return address with the address of the WinExec 

functions. The WinExec function is part of the dynamically linked library ntdll.dll. After 

the address of WinExec we need a memory address which will be used for WinExec to 

return to. At the end of the exploited string we will put the arguments of WinExec(), 
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which are going to be executed after we take control over the program. Figure 12 

illustrates our attack string. 

 
 

Figure 12: The return to libc attack string 

The program that constructs the exploit string is the following: 

 

#include <stdio.h> 

#include <string.h> 

#include <windows.h> 

main (int argc, char **argv) { 

char buf[512]; 

memset (buf,’A’,sizeof(buf)); 

*(long*)&buf[20] = 0x77c293c7; 

 *(long*)&buf[24] = 0x7c81caa2; 

*(long*)&buf[28] = getenv("envx"); 

buf[32] = 0x00; 

printf ("%s\n",buf); 

} 

 
Our exploit fills the buffer as shown in Figure 12. As it can be seen from the exploit, the 

first argument is stored in an environment variable and the second argument is null. The 

first argument contains a command prompt command (dir, del). We can see that Data 

Execution Prevention did not stop the attack. The answer why it did not stop the attack 
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can be found in the dynamically linked library ntdll.dll. WinExec and all functions that 

can be found in ntdll.dll were stored in a memory region that was executable, making our 

attack successful. The attack that uses WinExec is limited to execution of one command 

at a time, which is an issue if the attacker wants full control of the system. During 

initialization of the memory, Data Execution Prevention uses VirtualAlloc and 

VirtualProtect to manage the non-executable feature. By using VirtualProtect we could 

try to mark the memory region where our code is stored as executable and then jump to 

our code. The second idea that arises with return into lib is to copy our malicious code to 

a static memory location that is marked as executable and call the malicious code from 

there. Both of the mentioned attack vectors can be used successfully to take control of 

applications/services. 

Every process at creation time is granted with a default heap, which is 1MB large (by 

default) and grows automatically as need arise. The default heap is used not only by the 

win32 apps, but also by many runtime library functions which need temporary memory 

blocks. A process may create and destroy additional private heaps by calling HeapCreate 

()/HeapDestroy (). Use of the private heaps` memories is established by calling 

HeapAlloc () and HeapFree ().  

Memory in heaps is allocated by chunks called 'allocation units' or 'indexes' which are 8-

byte large. Therefore, allocation sizes have a natural 8-byte granularity. For example if an 

application needs a 24-byte block the number of allocation units it gets 3 allocation units. 

In order to manage memory for every block a special header is created, which also has a 

size divisible by 8 (fig. 13, 14). Therefore a true memory allocation size is a total of the 



Prioritized Runtime Address Randomization for Buffer Overflow Extenuation 
 

50 Rahul Kumar Agrawal, Delhi College of Engineering, 2008 

 

requested memory size, rounded up towards a nearest value divisible by 8 and the size of 

the header.  

 

Figure 13: Busy Block Header 

 

Figure 14: Free Block Header 

Where:  

Size - memory block size (real block size with header / 8);  

Previous Size - previous block size (real block size with header / 8);  

Segment Index - segment index in which the memory block resides;  

Flags - flags:  

- 0x01 - HEAP_ENTRY_BUSY  
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- 0x02 - HEAP_ENTRY_EXTRA_PRESENT  

- 0x04 - HEAP_ENTRY_FILL_PATTERN  

- 0x08 - HEAP_ENTRY_VIRTUAL_ALLOC  

- 0x10 - HEAP_ENTRY_LAST_ENTRY  

- 0x20 - HEAP_ENTRY_SETTABLE_FLAG1  

- 0x40 - HEAP_ENTRY_SETTABLE_FLAG2  

- 0x80 - HEAP_ENTRY_SETTABLE_FLAG3 

Unused - amount of free bytes (amount of additional bytes);  

Tag Index - tag index;  

Flink - pointer to the next free block;  

Blink - pointer to the previous free block. 

The specification of the allocation size in allocation units is important for the free block 

list management of Heaps. Those free block lists are sorted by size and the information 

about them is stored in an array of 128 doubly-linked-lists inside the heap header (fig. 15, 

16, 17). Free blocks in the size diapason from 2 to 127 units are stored in lists 

corresponding to their size (index). For example, all free blocks with the size of 24 units 

are stored in a list with index 24, i.e. in Freelist[24]. The list with index 1 (Freelist[1]) is 

unused, because blocks of 8 bytes can`t exist and the list with index 0 is used to store 

blocks larger than 127 allocation units (bigger than 1016 bytes). 
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Figure 15: Lookaside Lists for Heap Management 

If, during the heap allocation, the HEAP_NO_SERIALIZE flag was unset but the 

HEAP_GROWABLE flag was set (which is actually the default), then in order to speed 

up allocation of the small blocks (under 1016 bytes) 128 additional singly-linked 

lookaside lists (fig. 15, 16, 17) are created in the heap. Initially lookaside lists are empty 

and grow only as the memory is freed. In this case during allocation or freeing these 

lookaside lists are checked for suitable blocks before the Freelists.  

The heap allocation routines automatically tune the amount of the free blocks to store in 

the lookaside lists, depending on the allocation frequency for certain block sizes. The 

more often memory of certain size is allocated -- the more can be stored in the respective 

lists, and vice versa -- underused lists are trimmed and the pages are freed to the system.  
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Because the main goal of the heap is to store small memory blocks this scheme results in 

relatively quick memory allocation/freeing. 

 

Figure 16: Freelist Entries of free heap blocks 

 

 

Figure 17: Lookaside List of heap blocks 

The heap overflow exploitation scenario usually proceeds on like this:  

If during the buffer overflow the neighboring block exists, and is free, then the Flink and 

Blink pointers are replaced (Fig. 18).  

At the precise moment of the removal of this free block from the doubly-linked freelist a 

write to an arbitrary memory location happens: 

mov dword ptr [ecx],eax  

mov dword ptr [eax+4],ecx  
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EAX - Flink  

ECX - Blink  

For example, the Blink pointer could be replaced by the unhandled exception filter 

address (UEF -- UnhandledExceptionFilter), and Flink, accordingly, by the address of the 

instruction which will transfer there execution to the shellcode. 

 

Figure 18: Direction of Heap Overflow 

In Windows XP SP2 the allocation algorithm was changed -- now before the removal of a 

free block from the freelist, a pointer sanity check is performed with regard to the 

previous and next block addresses (safe unlinking, fig. 19.): 

1. Free_entry2 -> Flink -> Blink == Free_entry2 -> Blink 

-> Flink  

2. Free_entry2 -> Blink -> Flink == Free_entry2  
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Figure 19: Safe Unlink Operation 

 
Then that block gets deleted from the list. The memory header block was changed, 

besides other things (fig. 20.). A new one-byte-large 'cookie' field was introduced, which 

holds a unique pre-computed token -- undoubtedly designed to ensure header 

consistency. This value is calculated from the header address and a pseudorandom 

number generated during the heap creation: 

(&Block_header >> 3) xor (&(Heap_header + 0x04)) 

The consistency of this token is checked only during the allocation of a free memory 

block and only after its deletion from the free list. 

 

Figure 20: Free Block Header in Windows XP SP2 (Cookie Added) 
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If at least one of these checks fails the heap is considered destroyed and an exception 

follows.  

The first weak spot -- the fact that the cookie gets checked at all only during free block 

allocation and hence there are no checks upon block freeing. However in this situation 

there is nothing you can do except changing the block size and place it into an arbitrary 

freelist.  

And the second weak spot – the manipulation of the lookaside lists doesn`t assume any 

header sanity checking, there isn`t even a simple cookie check there, which, theoretically, 

results in possibility to overwrite up to 1016 bytes in an arbitrary memory location.  

The exploitation scenario could proceed as follows:  

If, during the overflow the coincidental memory block is free and is residing in the 

lookaside list, then it becomes possible to replace the Flink pointer with an arbitrary 

value.  

Then, if the memory allocation of this block happens, the replaced Flink pointer will be 

copied into the header of the lookaside list and during the next allocation HeapAlloc () 

will return this fake pointer.  

The prerequisite for successful exploitation is existence of a free block in lookaside list 

which neighbors with the buffer we overflow. 

The effect of a successful attack:  

1. Arbitrary memory region write access (smaller or equal to 1016 bytes). 

2. Arbitrary code execution.  
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3. DEP bypass. 

5.3 Code 

The Code consists of the following C++ files. 

1. DEP.cpp 

2. DEP1.c 

3. DEP2.c 

5.3.1 DEP.cpp 

This file is the main GUI code in Visual C++ for executing the other both programs 

which bypass the data execution prevention. 

5.3.2 DEP1.c 

This file contains the code to bypass the software enforced DEP. It does so by making 

use of a shellcode crafted to execute the windows calculator and is manipulated to 

contain the address of system function from the dynamically allocated library msvcrt.dll. 

This shellcode is then copied on to an overflowed heap block so that the system function 

is executed. Since the system function resides on the executable pages our shellcode 

executes successfully and the calculator is executed. Every time the calculator is closed 

the system function returns to its own address because of overwrite so it executes again 

and again indefinitely. 

5.3.3 DEP2.c 

This file contains the code to bypass the hardware enforced DEP. It does so by making 

use of buffer overruns and lookaside list overwrites. By intelligently crafted lookaside list 

overwrite and buffer overruns we put the fake return address in the stack and copy our 
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shellcode to be executed and the address of the system function from dynamic library 

msvcrt.dll into heap. This way the system function executes without making windows 

aware of data execution prevention has been bypassed. 

5.4 Screenshots 

5.4.1 Bypassing Software Enforced DEP 

 

Figure 21: Shellcode execution bypassing software enforced DEP 

As you can see the calculator executed as a result of the execution of our shellcode from 

within the system function taken from msvcrt.dll file which we dynamically loaded 

within our program and thus succeed in executing data from non-executable pages, i.e. 

bypassing software enforced data execution prevention. The shellcode, i.e. calculator 

executes again and again we close it until we close our console application. 
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5.4.2 Bypassing Hardware Enforced DEP 

As can be seen from figure 21, the 3rd heap block is assigned the address which we 

supplied during the overflow and since we have copied our shellcode with address of 

system function here, our shellcode is executed from the data pages which are in fact 

non-executable and thus windows hardware enforced data execution prevention is 

bypassed and we succeed in executing the required shellcode. 

 

Figure 21: Shellcode execution bypassing hardware enforced DEP. 

As you can see from the screenshot of the execution in figure 22, on closing the windows 

calculator which was executed as a result of hardware enforced DEP bypass, the windows 

detects that execution is going on from non-executable pages and so a windows pops out 

to warn and to close the application. But all this happens long after we did what we 
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wanted, i.e. executing our shellcode from the data pages and thus bypassing hardware 

enforced data execution prevention. 

 

 

Figure 22: Popped Up Warning Message on Closing Windows Calculator 
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Chapter 6. Conclusion & Future Work 

In this thesis we presented the theoretical aspects of the PriCryp design which helps 

defending against today’s major source of vulnerabilities, i.e. the memory corruption. 

The major contributions of this thesis are: 

• PriCryp provides probabilistic defense against memory corruption attacks by 

prioritizing the code blocks having security critical instructions. Since system 

calls or other application binary interface are almost always used by attackers to 

perform malicious tasks, it becomes difficult for the attacker to succeed in the 

presence of probabilistic runtime randomization. 

• PriCryp employs cryptographic techniques to protect the system from attacks 

resulting from malicious data overwrites. 

• PriCryp transforms the security critical instructions into unintelligible form to 

protect the instructions from being used harmfully by the attacker. 

• PriCryp provides very fine control over the granularity of the randomization 

which can reach the basic building block (one instruction per code block) if 

desired. This provision provides favors for easy use and deployment in the 

variations of systems. 

• PriCryp randomizes all the components of the process including stacks, heaps, 

code segments, data segments and DLLs. The relative distance between the 

segments is also randomized using padding. 
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• The startup performance overhead of PriCryp is very low because it does not 

randomize all the instructions, rather randomizes only code blocks having group 

of instructions. 

• The performance overhead of PriCryp during runtime of the process is slightly 

higher, however, due to runtime randomization of the code blocks. But the 

compound overhead becomes reasonable when it provides probabilistic proactive 

defense mechanism against memory corruption attacks. 

We believe that PriCryp has significant potential to extenuate the wide threat of memory 

corruption attacks. By randomizing the memory space holding the program the core 

vulnerability that memory corruption attacks use is addressed- namely the predictability 

of control information and critical data. Further the transformation of data variables and 

security critical instructions provides the system more strength against modern memory 

corruption attacks. 

Our future work includes the implementation of the complete PriCryp design in Linux 

system & enhancing the application of cryptographic techniques in ASR to improve the 

design of PriCryp. 
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time which causes an otherwise successful malicious attack to crash like a trivial attack. 
Insufficient randomness as provided in Microsoft’s recent PC operating system Windows 
Vista (256 Locations), is also not likely to significantly slow down self replicating worms. 
On the other hand other existing techniques require source code modifications, which is 
an inefficient approach for commodity software. Here we propose High Priority 
Instruction Block Randomizer (HighRAND), which introduces randomness over 
randomness with minimal performance overhead.  HighRAND is a prophylactic security 
technology that increases system security by increasing the diversity of attack targets. 
HighRAND runs as an Operating System Service in Microsoft Windows or a Kernel 
Module in a Linux System or others, which Randomizes the procedures in the 
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calls and then randomizes the fragments over the code segment assigned by the Address 
Randomization powered kernel. 
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