PAGE
88

CHAPTER 1
INTRODUCTION
1.1 INTRODUCTION OF THE PROJECT

 This project is based on PIC (Peripheral Interface Controller) 16F877A Microcontroller. The great advantage of Microcontroller is that in order to change the circuit’s structure and operation, all that is needed is a change in the program – very little, if any, circuit modifications are necessary. An alternative view is that a microcontroller is a state machine whose logic states are defined by it’s program.

 Data acquisition system demonstrated here is shown to measure three analog quantities viz. input voltage, temperature and light. Data is acquired via 3-analog input channels of the microcontroller. PIC16F877A microcontroller has eight analog input channels. We have used three to show data-acquisition system. For temperature sensing we have used LM35, a temperature sensor. For sensing light we have used light dependent resistor (LDR). To measure input voltage we have used a 10K potentiometer at the output of 7805 regulator.

 The PCW C-Compiler features are utilised to program the microcontroller. It’s a PIC (peripheral interface controller) based C-compiler with integrated development environment (IDE). In the program we have set values for temperature, input AC voltage and light. These set values can be changed in the program while running. However after every reset, the set values are the same what we have put in ROM (in the burnt program) of the PIC16F877A microcontroller.

 The measured values are displayed on the LCD interfaced and are compared with these set values. The program is such that if input voltage is less than the set value, only then other quantities are compared otherwise the relay_volt is on and the corresponding LED glows. If temperature is more than the set value and input voltage is less than the set value then the DC Motor connected will run which may be a fan to cool the surrounding temperature. If light is less than the set value and the input voltage is less than the set value the corresponding relay_light will be on and the LED connected glows. LEDs are just the indicators of response of the microcontroller. Which can be utilised effectively for various activities e.g. if light is less than set value the relay may switch on the light button etc.

 The LCD interfaced with PIC 16F877A is programmed in 4-bit mode and 2-line display. A driver IC ULN 2003A is used here. It is actually an array of seven Darlington pair transistors. This Driver IC is used because the Microcontroller IC is unable to run the motor drawing high current.

 There are five possible source options for the instruction cycle clock oscillator, the simplest being an RC network. There are three crystal oscillator options – low power, LP, medium speed, XT and high speed, HS. The low power option is intended for use with crystals with frequencies up to 200KHz; the XT option for crystals up to 4MHz and the HS option for crystals operating up to 10MHz. We have used 4 MHz crystal in this application because its cheap.

 So we have shown a data acquisition system acquiring data from 3-analog input channels and measuring their values, displaying as well as taking necessary / preset actions.

1.2 Dissection of dissertation
 The material of this dissertation is arranged in eight chapters. The contents of the remaining eight chapters are outlined in the following paragraph.
Chapter 2 covers the salient features of PIC 16F877 Microcontroller. From pin details to peripheral details are incorporated in this chapter.
Chapter 3 gives details of ADC module in-built in the Microcontroller. The sequential procedure of configuring the ADC module is explained in this chapter.
Chapter 4 explains Timer 1 module. Timer 1 interrupt is used for calculating the time each display should appear on the LCD or in other words the frequency of data acquisition is decided by configuring / programming this timer.
Chapter 5 is about interfacing 2-line LCD with the microcontroller. The instruction set along with the importance of different delays in the initialisation of LCD is also explained.
Chapter 6 explains the PCW C-compiler features along with different important built in functions and pre-processor directives. It is just a small part of the great features of this C-compiler.
Chapter 7 is all about the experimental work done with the program in c-language. The sequence of implementation is kept as simple as possible, starting from flow chart and ending up the programmer, which ultimately burns the program into the Microcontroller.
Chapter 8 is finally for the conclusion of the dissertation and what immediate further improvements can be done with the present shown experimentation.

Datasheets of different components used are also enclosed with some details of the important components.
CHAPTER 2
PIC 16F877 Microcontroller
2.1 Introduction

 PIC Microcontrollers are small Integrated Circuits (ICs) that can be programmed to control devices such as small robotic vehicles, alarm circuits and they can mimic almost any circuit produced in a school workshop. Many devices in the home use programmable chips including; alarm systems, central heating systems, microwaves and many more. The PIC Microcontroller is reprogrammable and if a mistake is made while programming it can simply be reprogrammed. Alternatively, a completely new program can replace an existing program already in the PIC Microcontroller.
As you learn to program and then use ‘PICs’ you will see how useful they are when designing a circuit or a control system. PICs have INPUTS and OUTPUTS. The inputs can be devices such as sensors and the outputs can be LEDs, motors, sound etc...

 PIC stands for Peripheral Interface Controller and is a registered trade mark of “microchip technology inc.” The pic is a low cost, low power high-speed risc micro controller used in many embedded control system application.

 Micro controllers are available with a range of capabilities packaged in both dual-in line (DIP) packages and surface mount packages .The largest parts (PIC 16CXX) are packaged in either a 40-pin DIP package or a 44- pin surface mount packages. The 28 pin parts possess virtually the same array of features as the 40/44 pin parts but are housed in a smaller package and are supported by eleven fewer input/output lines The 18 pin parts on the other hand, have greatly reduced functionality.

 In 1970-80 the cost of equipment for developing pic-based system was beyond the reach of small company. But now it’s very reasonable.

 To get started we need the following equipments.

1. One or more PIC.

2. A pc running Windows 95 or above.

3. MPLAB software.

4. PIC micro controller data sheets.

5. A power supply.

6. Some interfacing modules for testing the code you write.

7. PIC C-compiler installed in the PC
2.2 What is PIC Microcontroller
· The PIC was developed as a peripheral controller

PIC (Peripheral Interface Controller) is the IC which was developed to control peripheral devices, alleviating the load from the main CPU. Compared to a human being , the brain is the CPU and the PIC is equivalent to the automatic nervous system.
[image: image92.png]O-oukopIEn
o=suopsfay
o=suopefay
o=suopzfey
o=suop e

3 A

py— [p—
ke nd zeoukexpren 1=oukaipren
' '
s s o o
Finoi Fono Fonoi A
o o7 o =) o o1 o iy

I

I

I

aswas A

s

40-PIN PIC 16F877A MICROCONTROLLER

· The PIC is the small computer

[image: image1.png]

[image: image85.png][ssnien o5 pamauai
abusyosiep
I
\-euuet
‘o-spoutiont

TR

o

suopaker

sm

P
ukorpio
5

B

Jopous

TR
=Wbies

T-duar e
=dwar s

=

apousos

)

=

[spousosd

0+9POOI 0+0UADYIEA O=3UTPADY
0=2uoppke) 0=auopziey_g=auoplfay

o

spousoss

ns A

Soute
pomauas

2.3 Advantages of PIC Microcontroller

SPEED:

When operated at its maximum clock rate, a PIC executes most of its instructions at 0.2μs, or five instructions per microsecond.
INSTRUCTION SIMPLICITY:
The Instruction set consists of just 33 (minimum) or 77 (maximum) instructions. (Typically 35 instructions)
INTEGRATION of OPERATIONAL FEATURES:
Power-on reset and brown – out protection ensure that the chip operates only when the supply voltage is within specifications. A watchdog timer resets the PIC if the chip ever malfunctions and deviates from its normal operation.

VARIOUS CLOCK OPTIONS:
The PIC supports four clock options, including a low – cost RC oscillator and a high –accuracy crystal oscillator.
PROGRAMMABLE TIMER OPTION:

Three versatile timers can characterize inputs, control outputs, and provide internal timing for program execution.
INTERRUPT CONTROL:
Up to 12 independent interrupt sources can control when the central processing unit (CPU) will deal with each source.
POWERFUL OUTPUT PIN CONTROL:
A single instruction can select and drive a single output pin high or low in its 0.2μs instruction execution time. The pin can drive a load of up to 25mA.
I/O PORT EXPANSION:
The built-in serial peripheral interface can make use of a standard 16-pin shift-register parts to add any number of I/O pins.
SERIAL PROGRAMMING:
The PIC can be easily programmed with a programmer whose cost would work out approximately $ 100.
EPROM / FLASH / OTP / ROM OPTIONS:

Development is supported by UV erasable programmable (EPROM) parts. FLASH is the most widely used device in experimental studies. Once tested the design can be put into OTP devices. ROMed versions are available for customers with large production runs.
2.4 Selecting PIC Microcontroller
2.4.1 PICs come with 1 of 4 CPU ‘cores’
	TYPE
	WORD LENGTH
	INSTRUCTIONS

	BASELINE
	12 BIT CORE
	33

	MIDRANGE
	14 BIT CORE
	35

	HIGH END
	16 BIT CORE
	58

	ENHANCED
	16 BIT CORE
	77

2.4.2 PICs come in a variety of packages:

8 Pin DIP, SOIC : 12C50X(12BIT) and 12C67X(14bit)

18PIN DIP, SOIC : 16C5X(12bit), 16Cxxx(14bit)

28PIN DIP, SOIC : 16C5X(12bit), 16CXXX(14bit)

40PIN DIP, SOIC : 16CXXX(14bit), 17C4X(16bit)

44 – 68 PIN PLCC : 16CXXX(14bit), 17C4X/17CXXX(16bit)

2.4.3 PIC Program space is different for each chip e.g.
12C508 512 12bit instructions

16C71C 1024 (1K) 14bit instructions

16F877 8192 (8K) 14bit instructions

17C766 16384 (16K) 16bit instructions

2.4.4 PICs have two different types of program storage:
1. EPROM (Erasable Programmable Read Only Memory)

e.g. Any ‘C’ part: 12C50x, 17C7xx, etc.

2. FLASH

e.g. Any ‘F’ part: 16F84, 16F87x, 18Fxxx(Future)

2.4.5 PIC Family Data Memory
PICs use general purpose “file registers” for RAM (each register is 8-bits for all PICs)

e.g. 12C508 25Bytes RAM

 16C71C 36 Bytes RAM

 16F877 368 Bytes (plus 256 Bytes of non-volatile EEPROM)

 17C766 902 Bytes RAM

2.4.6 PIC Peripheral: ADC
Only available in 14 bit and 16bit cores.

Sample rate (Fs) < 54KHz

Most 8-bits, newer PICs have 10 or 12 bits

for Selecting your pic
See Microchip Line card for the entire list of PICs:

http://www.microchip.com/10/Lit/rLit/00148d1/index.htm
See the digikey catalog for pricing information.

http://www.digikey.com
While choosing a PIC Microcontroller we can make use of http://melabs.picbasic.com/Scripts/perl/picsearch.pl
by filling different parameters we can find a suitable Microcontroller.
Finally The PIC 16F877A Microcontroller was chosen with the following technical specifications.

	Model
	Memory (bytes)
	I/O Pins
	A / D
	Serial I/O
	Max. Clock

	
	FLASH
	EEPROM
	RAM
	
	
	
	

	PIC 16F877A
	14336
	256
	368
	33
	8×10 bit
	A USART, MII / SPI
	20MHz

2.5 Characteristics of PIC Microcontroller
MICROCONTROLLER CORE FEATURES

High performance RISC CPU

Only 35 single word instructions to learn

All single cycle instructions except for program branches which are of two cycle
Operating speed: DC – 20 MHz clock input

 DC – 200 ns instruction cycle

Up to 8K×14 words of FLASH Program Memory

Up to 368×8 bytes of Data Memory (RAM)
UP to 256×8 bytes of EEPROM Data Memory
Interrupt capability (up to 14 sources)

Eight level deep hardware stack

Direct, indirect and relative addressing mode

Power-on Reset(POR)

Power-up Timer (PWRT) and

Oscillator Start-up Timer (OST)

Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
Programmable code protection

Power saving SLEEP mode

Selectable Oscillator options

Low power, high speed CMOS FLASH/EEPROM technology

Fully static design

In-circuit serial programming via two pins

In Circuit Debugging via two pins

Processor read/write access to program memory

Wide operating voltage range: 2.2 V to 5.5V

High sink source current: 25Ma
Commercial, industrial and extended temperature ranges

Low power consumption:
< 0.6 Ma typical @3V, 4MHz

20 Μa typical @ 3V, 32MHz

< 1Μa typical standby current

BALLOON DIAGRAM OF PIC 16F877A

[image: image2.png]Bk : 8192 words

PROGPAM
MEMOHY

2558yies

88 Bytes

33 Pins. AN / 4 Modes

16F877A

PERIPHERAL FEATURES
Timer0: 8-bit timer/counter with 8-bit prescalar
Timer1: 16-bit timer/counter with prescalar, can be incremented during SLEEP via external crystal/clock

Timer2: 8-bit timer/counter with 8-bit period register, prescalar and postscalar

Two Capture, Compare, PWM modules

 Capture is 16-bit, max. resolution is 12.5 ns

 Compare is 16-bit, max. resolution is 200ns

 PWM max. resolution is 10-bit

10-bit multi-channel Analog-to-Digital converter

Synchronous Serial Port (SSP) with SPI (Master mode) and IIC (Master/Slave)
Universal Synchronous Asynchronous Receiver Transmitter (USART/SCI) with 9-bit address detection

Parallel Slave Port (PSP) 8-bits wide, with external RD(bar), WR(bar), and CS(bar) controls (40/44-pin only)

Brown-out detection circuitry for Brown-out Reset (BOR)
 2.6 Architecture of PIC 16F877 Microcontroller
Harvard Block Architecture
[image: image3.png]Deta
memary

fetn CPU

Harvard

von-Neumann

(n

cpu

Program memory

Program and deta

memary

Harvard vs. von Neuman Block Architectures

 In Harvard architecture, the data bus and address bus are separate. Thus a greater flow of data is possible through the central processing unit, and of course, a greater speed of work. Separating a program from data memory makes it further possible for instructions not to have to be 8-bit words. It is also typical for Harvard architecture to have fewer instructions than Von-Neumann’s, and to have instructions usually executed in one cycle.
 2.7 PIN DIAGRAM OF PIC 16F877 MICROCONTROLLER:
[image: image4.png]ut

—f weLanve
RAVANO
RAV/ANT
RAZANZVREF-
RATANSVREF-
RA4TOCKI
RAS/ANASS)

REO/ANSRDn

REVANSWRN
04 Rezanzicsn
1 vaar

—12{ vesy

131 oscrcLkin
44 osca/cLkour
—51 RcomiosorTicki
—&1 reimiosicepz
71 Rezicept

181 RearscriscL
21 poopspo

20 Rp1/PSP1

RB7IPGD (40

rBaPGC (232

Res |38

RE4

REIPGH

RE2 | 35

RE1

REOINT |35

Vo |2

vss2 (3L

RD7/PSP7 (30

RDE/PSPs [22

RDs/PsPs (28

RD4/PsPa (21

Ro7RX/DT |2

RACBTXICK

Ros/so |24

RC4/SDISDA

RD3PSP3

RD2/PSP2

PICISFa77

PIN DETAILS OF PIC 16F877

	Pin Name
	DIP Pin#
	I/O/P Type
	Description

	OSC1/CLKIN
	13
	I
	Oscillator crystal input/external clock source input.

	OSC2/CLKOUT
	14
	O
	Oscillator crystal output. Connects to crystal or resonator in crystal oscillator mode. In RC mode, OSC2 pin outputs CLKOUT which has ¼ the frequency of OSC1 and denotes the instruction cycle rate.

	mclr/Vpp
	1
	I
	Master clear (reset) input or programming voltage input. This pin is an active low RESET to the device.

	RA0/AN0
	2

	I/O
	PORTA is a bi-directional I/O port.

RA0 can also be analog input 0.

	RA1/AN1

	3

	I/O

	RA1 can also be analog input 1.

	RA2/AN2/VREF-

	4

	I/O

	RA2 can also be analog input 2 or negative analog reference voltage.

	RA3/AN3/ VREF+

	5

	I/O
	RA3 can also be analog input 2 or positive analog reference voltage.

	RA4/T0CKl
	6
	I/O
	RA4 can also be the clock input to the Timer0 timer/counter.

	RA5/ss/AN4
	7
	I/O
	RA5 can also be analog input 4 or the slave select for the synchronous serial port.

	RB0/INT
	33
	I/O
	PORTB is a bi-directional I/O port, PORTB can be software programmed for internal weak pull-up on all inputs.

RB0 can also be the external interrupt pin.

	RB1
	34
	I/O
	

	RB2
	35
	I/O
	

	RB3/PGM
	36
	I/O
	RB3 can be the low voltage programming onput.

	RB4
	37
	I/O
	Interrupt on change pin.

	RB5
	38
	I/O
	Interrupt on change pin.

	RB6/PGC
	39
	I/O
	Interrupt on change pin or In-circuit Debugger pin. Serial programming clock.

	RB7/PGD
	40
	I/O
	Interrupt on change pin or In-circuit Debugger pin. Serial programming data.

	RC0/T1OO/T1CKl
	15
	I/O
	PORTC is a bi-directional I/O port.

RC0 can also be the Timer1 oscillator output or a Timer1 clock input.

	RC1/T1OS1/CCP2
	16
	I/O
	RC1 can also be the Timer1 oscillator input or capture2 input/compare2 output/PWM2 output.

	RC2/CCP1
	17
	I/O
	RC2 can also be the Capture1 input/compare1 output/PWM1 output.

	RC3/SCK/SCL
	18
	I/O
	RC3 can also be synchronous serial clock input/output for both SPI and IIC mode.

	RC4/SDl/SDA
	23
	I/O
	RC4can also be the SPI Data in (SPI mode) or data I/O (IIC mode).

	RC5/SD0
	24
	I/O
	RC5 can also be the SPI Data Out (SPI mode).

	RC6/TX/CK
	25
	I/O
	RC6 can also be the USART Asynchronous Transmit or Synchronous Clock.

	RC7/RX/DT
	26
	I/O
	RC7 can also be the USART Asynchronous Transmit or Synchronous Data.

	RD0/PSP0
	19
	I/O
	PORTD is a bi-directional I/O port or parallel slave port when interfacing to a microprocessor bus.

	RD1/PSP1
	20
	I/O
	

	RD2/PSP2
	21
	I/O
	

	RD3/PSP3
	22
	I/O
	

	RD4/PSP4
	27
	I/O
	

	RD5/PSP5
	28
	I/O
	

	RD6/PSP6
	29
	I/O
	

	RD7/PSP7
	30
	I/O
	

	RE0/rd/AN5
	8
	I/O
	PORTE is a bi-directional I/O port.

RE0 can also be read control for the parallel slave port, or analog input5.

	RE1/wr/AN6
	9
	I/O
	RE1 can also be write control for the parallel slave port, or analog input6.

	RE2/cs/AN7
	10
	I/O
	RE2 can also be select control for the parallel slave port, or analog input7.

	VSS
	12,31
	P
	Ground reference for logic and I/O pins.

	VDD
	11,32
	P
	Positive supply for logic and I/O pins.

	NC
	--
	
	These pins are not internally connected. These pins should be left unconnected.

Legend: I= input O= output I/O= input/output P= Power

-- = Not used

Note: For pin names small letters are used to show active low.

BLOCK DIAGRAM OF PIC 16F877 MICROCONTROLLER
[image: image5.emf]
Memory Organisation
There are three memory blocks in each of the PIC16F877 MCUs. The Program Memory and Data Memory have separate buses so that concurrent access can occur.
Program Memory Organisation
[image: image86.png]

 [image: image6.emf]
Data Memory Organization
 The data memory is partitioned into multiple banks which contain the General Purpose Registers and the Special Function Registers. Bits RP1 (STATUS<6>) and RP0 (STATUS<5>) are the bank select bits.
	RP1:RP0
	BANK

	OO
	0

	O1
	1

	10
	2

	11
	3

Each bank extends up to 7Fh (128 bytes). The lower locations of each bank are reserved for the Special Function Registers. Above the Special Function Registers are General Purpose Registers, implemented as static RAM. All implemented banks contain Special Function Registers. Some frequently used Special Function Registers from one bank may be mirrored in another bank for code reduction and quicker access.
[image: image7.emf]
2.8 Instructions
Description Convention
	Field
	Description

	f
	Register file address (0×00 to 0×7F)

	w
	Working register (accumulator)

	b
	Bit address within an 8-bit file register (0 to 7)

	k
	Literal field, constant data or label (may be either an 8-bit or an 11-bit value 0

	x
	Don’t care (0 or 1)

The assembler will generate code with x=0. It is the recommended form of use for compatibility with all Microchip software tools.

	d
	Destination select:
d=0 : store result in W

d=1 : store result in file register f.

	dest
	Destination either the W register or the specified register file location

	label
	Label name

	TOS
	Top of Stack

	PC
	Program counter

	PCLATH
	Program counter high latch

	GIE
	Global Interrupt Enable bit

	WDT
	Watchdog Timer

	TO
	Time-out bit

	PD
	Power-down bit

	[]
	Optional

	()
	Contents

	
[image: image8]
	Assigned to

	< >
	Register field bit

INSTRUCTION SET
[image: image9.png]Wemonc Desarpion Speron Fog [Gyee [
et ramster
WOV o s B = 7
VoV W Wit ot 1
VovE—ra e =1 z T
R [[Ea T 1
G Gt 5o 7 1z
E A] [N e T
Aertmetc and logic
GO [corstartand W W ez T
Sobir—{a[Rawanit e oz [Tz
O U e e cpcz |1
ST ST T o
OO 1A corsrt win WA W 7 i
) Wk AN £ 7 -
ORI [OR carsr Wy fWoRE=w 7 :
o [OR W Wortoa z 12
FOROA— ¢ [Belie OR S W SoR z -
R 1,3 [pele G| teorany : !
e i fF=r 7 -
Decr——74Joemarert ey 7 e
Fir 7[R Lo ey i e -
R[] eEEeete e -
SR 4 [conpimertT = 7 S
B operations
7 orceat (LD 2
b = [
ireing s pragram o
SiFST 5 i TesH SipiT Cear [@
Sirss ' Jpiesr ST i 0 ol
CECFST T 4 [Dereneit, Sp 10 EEXYTY i [125
Wersz—7d Jperenent 1,590 IFT= & g 2 ENRES
Sor ool addiess ABE=W ;
AL [casuadne N T 5
RETURY [fon Sufadie orE=w 3
R Jretumwihcondat 0 [WORI3E 7
RETFE———Jretun on et [WEoRI= W 3
Other nstructions
T A—lYe e 7
CLRADT - [Clear Watchdog Timer [0 = WDT,PTO,1>FD TOR [1
SLEEP B |Gajinto standby mode- [0~ WDT,T0,0~ PD TOR |1

*1 If I/O port is source operand, status on microcontroller pins is read
*2 If this instruction is executed on TMR register and if d=1, prescaler assigned to that timer will automatically be cleared
*3 If PC was modified, or test result =1, instruction was executed in two cycles.

CHAPTER 3
ANALOG-TO-DIGITAL CONVERTER (A/D) MODULE
3.1 Introduction
The Analog-to-digital (A/D) Converter module has eight inputs.

 The analog input charges a sample and hold capacitor. The output of the sample and hold capacitor is the input into the converter. The converter then generates a digital result of this analog level via successive approximation. The A/D conversion of the analog input signal results in a corresponding 10-bit digital number. The A/D module has high and low voltage reference input that is software selectable to some combination of VDD, VSS, RA2, or RA3.

 The A/D module has four registers. These registers are:

(a) A/D Result High Register (ADRESH)
(b) A/D Result Low Register (ADRESL)

(c) A/D Control Register (ADCON0)

(d) A/D Control Register1 (ADCON1)

The ADCON0 register controls the operation of the A/D module. The ADCON1 register configures the functions of the port pins. The port pins can be configured as analog inputs or as digital I/O.

3.2 ADC Registers
ADCON0 REGISTER (ADDRESS: 1Fh)
[image: image10.emf]
[image: image11.emf]
ADCON1 REGISTER (ADDRESS 9Fh)
[image: image12.emf]
[image: image13.emf]
REGISTERS ASSOCIATED WITH ADC MODULE
[image: image14.emf]
The ADRESH:ADRESL registers contain the 10-bit result of the A/D conversion. When the A/D conversion is complete, the result is loaded into this A/D result register pair, the GO/DONE bit (ADCON0<2>) is cleared and the A/D interrupt flag bit ADIF is set.

 After the A/D module has been configured as desired, the selected channel must be acquired before the conversion is started. The analog input channels must have their corresponding TRIS bits selected as inputs.

These steps should be followed for doing an A/D conversion:

A. Configure the A/D module:
1. Configure analog pins/voltage reference and digital I/O (ADCON0)

2. Select A/D input channel (ADCON0)

3. Select A/D conversion clock (ADCON0)

4. Turn on A/D module (ADCON0)
B. Configure A/D interrupt (if desired)
 1. Clear ADIF bit

 2. Set ADIE bit

 3. Set PEIE bit

 4. Set GIE bit

C. Wait the required acquisition time.

D. Start conversion:

 Set GO/DONE bit (ADCON0)

E. Wait for A/D conversion to complete, by waiting for the A/D interrupt.

F. Read A/D result register pair (ADRESH:ADRESL), clear bit ADIF if required.

G. For the next conversion, go to step 1 or step 2, as required. The A/D conversion time per bit is defined as TAD . A minimum wait of 2 TAD is required before the next acquisition starts.
A/D BLOCK DIAGRAM
[image: image15.emf]
3.3 REQUIREMENTS FOR A/D CONVERSION

A/D ACQUISITION REQUIREMENTS
 For the A/D converter to meet its specified accuracy, the charge holding capacitor (CHOLD) must be allowed to fully charge to the input channel voltage level. The source impedance (RS) and the internal sampling switch (RSS) impedance directly affect the time required to charge the capacitor CHOLD. The sampling switch (RSS) impedance varies over the device voltage (VDD). The maximum recommended impedance for analog sources is 10 KΩ. As the impedance is decreased, the acquisition time may be decreased.
 After the analog input channel is selected , this acquisition must be done before the conversion can be started.
[image: image16.emf]
SELECTING THE A/D CONVERSION CLOCK

 The A/D conversion time per bit is defined as TAD . The A/D conversion requires a minimum 12 TAD per 10-bit conversion. The source of the A/D conversion clock is software selected. The four possible options for TAD are:

* 2TOSC
* 8TOSC
* 32TOSC
* Internal A/D module RC oscillator (2-6 μs)

 For correct A/D conversions, the A/D conversion clock (TAD) must be selected to ensure a minimum TAD time of 1.6μs.
Configuring Analog Port Pins:

 The ADCON1 and TRIS registers control the operation of the A/D port pins. The port pins that are desired as analog inputs must have their corresponding TRIS bits set (input). If the TRIS bit is cleared (output) , the digital output level will be converted.
A/D CONVERSIONS

 Clearing the GO/DONE bit during a conversion will abort the current conversion. The A/D result register pair will not be updated with the partially completed A/D conversion sample. After the A/D conversion is aborted, a 2 TAD wait is required before the next acquisition is started. After this 2 TAD wait, acquisition on the selected channel is automatically started. Yhe GO/DONE bit can then be set to start the conversion.

A/D RESULT REGISTERS

 The ADRESH:ADRESL register pair is the location where the 10-bit A/D result is loaded at the completion of the A/D conversion. This register pair is 16-bit wide. The A/D module gives the flexibility to left or right justify the 10-bit result in the result register. The A/D Format select bit (ADFM) controls this justification. The extra bits are loaded with ‘0’s.
CHAPTER 4
TIMER 1 MODULE
 4.1 Introduction
 This is a 16 bit timer that generates an overflow interrupt when it goes from 65535 to zero. It has an 8 bit programmable prescaler and you can drive it from the internal clock (Fosc/4) or an external pin.
To eliminate false triggering it also has an optional input synchronizer for external pin input.
This timer can be used in sleep mode and will generate a wakeup interrupt on overflow.
Timer 1 is also read by the CCP module to capture an event time.
Note: Using this timer in sleep mode will use more current.

In addition it can be used to drive a low power watch crystal. The TMR1 interrupt, if enabled, is generated on overflow, which is latched in interrupt flag bit TMR1IF (PIR1<0>). This interrupt can be enabled/disabled by setting/clearing TMR1 interrupt enable bit TMR1IE (PIE1<0>).
Timer1 can operate in one of two modes:

 As a timer

 As a counter

The operating mode is determined by the clock select bit, TMR1CS (T1CON<1>).

 In Timer mode, Timer1 increments on every instruction cycle. In counter mode, it increments on every rising edge of the external lock input.
4.2 Timer 1 Control Register

[image: image17.emf]
[image: image18.emf]
[image: image19.emf]
Timer1 Operation in Timer Mode

 Timer mode is selected by clearing the TMR1CS (T1CON<1>) bit. In this mode, the input clock to the timer is Fosc/4.

Timer1 Operation in Synchronised Counter Mode

 Counter mode is selected by setting bit TMR1CS. In this mode, the timer increments on every rising edge of clock input on pin RC1/T1OSC1/CCP2, when bit T1OSCEN is set, or on pin RC0/T1OSCO/T1CKI, when bit T1OSCEN is cleared.
 In this configuration, during SLEEP mode, Timer1 will not increment even if the external clock is present, since the synchronisation circuit is shut-off.
Timer1 operation in Asynchronous counter mode

 If control bit T1SYNC (T1CON<2>) is set, the external clock input bit not synchronised. The timer continues to increment asynchronous to the internal phase clocks. The timer will continue to run during SLEEP and can generate an interrupt-on-overflow, which will wake-up the processor.
CHAPTER 5
INTERFACING A (16×2) LCD WITH PIC 16F877A
5.1 Introduction
Some of the most common LCDs connected to the PIC 16F877A Microcontroller are 16x2 and 20x2 displays. This means 16 characters per line by 2 lines and 20 characters per line by 2 lines, respectively.

	More microcontroller devices are using ‘smart LCD’ displays to output visual information. The following discussion covers the connection of a Hitachi LCD display to a PIC microcontroller. LCD displays designed around Hitachi’s LCD HD44780 module, are inexpensive, easy to use, and it is even possible to produce a readout using the 8 x 80 pixels of the display. Hitachi LCD displays have a standard ASCII set of characters plus Japanese, Greek and mathematical symbols.
	[image: image20.png]

	
	A 16x2 line Hitachi HD44780 display

 For a 8-bit data bus, the display requires a +5V supply plus 11 I/O lines. For a 4-bit data bus it only requires the supply lines plus seven extra lines. When the LCD display is not enabled, data lines are tri-state which means they are in a state of high impedance (as though they are disconnected) and this means they do not interfere with the operation of the microcontroller when the display is not being addressed. Eight bit mode is best used when speed is required in an application and at least ten I/O pins are available. Four bit mode requires a minimum of six bits. To wire a microcontroller to an LCD in four bit mode, just the top four bits (DB4-7) are written to.

The LCD also requires 3 “control” lines from the microcontroller.

	Enable (E)
	This line allows access to the display through R/W and RS lines. When this line is low, the LCD is disabled and ignores signals from R/W and RS. When (E) line is high, the LCD checks the state of the two control lines and responds accordingly.

	Read/Write (R/W)
	This line determines the direction of data between the LCD and microcontroller. When it is low, data is written to the LCD. When it is high, data is read from the LCD.

	Register select (RS)
	With the help of this line, the LCD interprets the type of data on data lines. When it is low, an instruction is being written to the LCD. When it is high, a character is being written to the LCD.

Logic status on control lines:
E 0 Access to LCD disabled
 1 Access to LCD enabled
when you bring EN low and the LCD executes your instruction, it requires a certain amount of time to execute the command. The time it requires to execute an instruction depends on the instruction and the speed of the crystal which is attached to the 44780’s oscillator input.
R/W 0 Writing data to LCD
 1 Reading data from LCD
RS 0 Instruction
 1 Character
The most common connector used for the 44780 based LCDs is 14 pins in a row, with pin centers 0.100” apart. The pins are wired as:

[image: image21.png]PICI6FETIA

o fee w
T o i f{Ca———) &
[10k Hessmocn osct |
{iew ose2| T:] -
l l—tv | ~ || LCD DISPLAY
i~] + .
3
3 = Data =
potC lines.
L1 ,., \ e
" &
x® 5
W (Cantrast
&e

Control linés

	Pins
	Description

	1
	Ground or VSS

	2
	Vcc or VDD

	3
	Contrast Voltage

	4
	“R/S” _Instruction/Register Select

	5
	“R/W” _Read/Write LCD Registers

	6
	“E” Clock

	7 – 14
	Data I/O Pins

 The interface is a parallel bus, allowing simple and fast reading/writing of data to and from the LCD.
Writing data to the LCD is done in several steps:
Set R/W bit to low
Set RS bit to logic 0 or 1 (instruction or character)
Set data to data lines (if it is writing)
Set E line to high
Set E line to low
Read data from data lines (if it is reading)
 Reading data from the LCD is done in the same way, but control line R/W has to be high. When we send a high to the LCD, it will reset and wait for instructions. Typical instructions sent to LCD display after a reset are: turning on a display, turning on a cursor and writing characters from left to right. When the LCD is initialized, it is ready to continue receiving data or instructions. If it receives a character, it will write it on the display and move the cursor one space to the right. The Cursor marks the next location where a character will be written. When we want to write a string of characters, first we need to set up the starting address, and then send one character at a time. Characters that can be shown on the display are stored in data display (DD) RAM. The size of DDRAM is 80 bytes.

 The LCD display also possesses 64 bytes of Character-Generator (CG) RAM. This memory is used for characters defined by the user. Data in CG RAM is represented as an 8-bit character bit-map. Each character takes up 8 bytes of CG RAM, so the total number of characters, which the user can define is eight.

 The LCD controller needs 40 to 120 microseconds (µS) for writing and reading. Other operations can take up to 5 Ms. During that time, the microcontroller can not access the LCD, so a program needs to know when the LCD is busy. We can solve this in two ways.

 One way is to check the BUSY bit found on data line D7. This is not the best method because LCD’s can get stuck, and program will then stay forever in a loop checking the BUSY bit. The other way is to introduce a delay in the program. The delay has to be long enough for the LCD to finish the operation in process.

 Instead of reading the busy flag (which is somewhat trickier than it is in 8 bit modus) we have to use delay loops. These delay loops have to be recalculated when using other oscillator frequencies.
 At the beginning we mentioned that we needed 11 I/O lines to communicate with an LCD. However, we can communicate with an LCD through a 4-bit data bus. Thus we can reduce the total number of communication lines to seven.
5.2 INSTRUCTIONS FOR LCD (WRITE)
[image: image22.emf]
[image: image23.emf]
	No.
	Instruction
	Hex
	Decimal

	1
	Function Set: 8-bit, 1 Line, 5x7 Dots
	0x30
	48

	2
	Function Set: 8-bit, 2 Line, 5x7 Dots
	0x38
	56

	3
	Function Set: 4-bit, 1 Line, 5x7 Dots
	0x20
	32

	4
	Function Set: 4-bit, 2 Line, 5x7 Dots
	0x28
	40

	5
	Entry Mode
	0x06
	6

	6
	Display off Cursor off
(clearing display without clearing DDRAM content)
	0x08
	8

	7
	Display on Cursor on
	0x0E
	14

	8
	Display on Cursor off
	0x0C
	12

	9
	Display on Cursor blinking
	0x0F
	15

	10
	Shift entire display left
	0x18
	24

	12
	Shift entire display right
	0x1C
	30

	13
	Move cursor left by one character
	0x10
	16

	14
	Move cursor right by one character
	0x14
	20

	15
	Clear Display (also clear DDRAM content)
	0x01
	1

	16
	Set DDRAM address or cursor position on display
	0x80+add*
	128+add*

	17
	Set CGRAM address or set pointer to CGRAM location
	0x40+add**
	64+add**

Instruction Description

Clear Display
 Clear display writes space code 20H (character pattern for character code 20H must be a blank pattern) into all DDRAM addresses. It then sets DDRAM address 0 into address counter and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if two lines are displayed). It also sets I / D to 1 (increment mode) in entry mode. S of entry mode does not change.
Return Home
 Return home sets DDRAM address 0 into the address counter and returns the display to its original status if it was shifted. The DDRAM contents do not change. The cursor or blinking go to the left edge of the display (in the first line if two lines are displayed).
Entry Mode Set

 I/D : Increments (I/D =1) or decrements (I/D =0) the DDRAM address by1 when a character code is written into or read from DDRAM.
 The cursor or blinking moves to the right when incremented by 1 and to the left when decremented by 1. The same applies to reading and writing the CGRAM.
 S : Shifts the entire display either to the right (I/D =0) or to the left (I/D=1) when S is 1. The display does not shift if S = 0.
 If S is 1, it will seem as if the cursor does not move but the display does. The display does not shift when reading from DDRAM. Also writing into or reading out from the CGRAM does not shift the display.

Display on / off control :

 D: The display is on when D is 1 and off when D is 0. When off, the display data remains in DDRAM, but can be displayed instantly when setting D to1.
 C: The cursor is displayed when C is 1 and not displayed when C is 0. Even if cursor disappears, the function of I/D or other specifications will not change during display data write. The cursor is displayed using 5-dots in the 8th line for 5×8 dot character font selection and in the 11th line for 5×10 dot character font selection.
 B: The character indicated by the cursor blinks when B is 1. The blinking is displayed as switching between all blank dots and displayed characters at a speed of 409.6 ms intervals when fcp or fosc is 250 KHz. The cursor and blinking can be set to display simultaneously (the blinking frequency changes according to fosc or the reciprocal of fcp . For example, when fcp is 270 KHz , 409.6 × 250 / 270 =379.2 ms.)
Cursor or Display Shift
 Cursor or display shift shifts the cursor position or display to the right or left without writing or reading display data. This function is used to correct or search the display. In a 2-line display, the cursor moves to the second line when it passes the 40th digit of the first line. Note that the first and second line displays will shift at the same time. When the displayed data is shifted repeatedly each line moves only horizontally. The second line display does not shift into the first line position.
 The address counter (AC) contents will not change if the only action performed is a display shift.

Function set:

 DL: Sets the interface data length. Data is sent or received in 8-bit lengths (DB7 to DB0) when DL is and in 4-bit lengths (DB7 to DB4) when DL is 0. When 4-bit length is selected, data must be sent or received twice.
 N: Sets the number of display lines.
 F: Sets the character font.
 The 44780 contains a certain amount of memory which is assigned to the display. All the text we write to the 44780 is stored in this memory, and the 44780 subsequently reads this memory to display the text on the LCD itself. This memory can be represented with the following "memory map":

[image: image24.png]Display 8901 82 33 84 25 26 a7 23 23 19 11 12 13 14 15 16
Line 1
Line 2

 In the above memory map, the area shaded in blue is the visible display. As you can see, it measures 16 characters per line by 2 lines. The numbers in each box is the memory address that corresponds to that screen position.
 We need to send a command to the LCD that tells it to position the cursor on the second line. The "Set Cursor Position" instruction is 80h. To this we must add the address of the location where we wish to position the cursor. Referring again to the memory map, we see that the tenth character position of the second line is address 4Ah.We must send a "Set Cursor Position" instruction--the value of this command will be 80h (the instruction code to position the cursor) plus the address 4Ah. 80h + 4Ah = CAh. Thus sending the command CAh to the LCD will position the cursor on the second line at the tenth character position:
 Before you can send commands or data to the LCD module, the Module must be initialized. For eight bit mode, this is done using the following series of operations:

1. Wait more than 15 msecs after power is applied.

2. Write 0x030 to LCD and wait 5 msecs for the instruction to complete

3. Write 0x030 to LCD and wait 160 µsecs for instruction to complete

4. Write 0x030 AGAIN to LCD and wait 160 µsecs or Poll the Busy Flag

5. Set the Operating Characteristics of the LCD

· Write "Set Interface Length"

· Write 0x010 to turn off the Display

· Write 0x001 to Clear the Display

· Write "Set Cursor Move Direction" Setting Cursor Behaviour Bits

· Write "Enable Display/Cursor" & enable Display and Optional Cursor

5.3 LCD INTERFACING IN 4-BIT MODE
 In describing how the LCD should be initialized in four bit mode, we will specify writing to the LCD in terms of nibbles. The only drawback using 4 bits is that commands and data have to be sent in two nibbles (4bit parts) to the display, which take slightly more time. When a byte is sent, the high nibble is sent before the low nibble and the "E" pin is toggled each time four bits is sent to the LCD. To initialize in four bit mode:

LCD Initialisation flow chart

[image: image25.emf]
 In 4-bit mode, we have to read and write data bytes and command bytes in two separate 'nibbles' (4bit parts).
 The first instruction we send must tell the LCD we'll be communicating with it with a 4-bit data bus. We also select a 5x8 dot character font. These two options are selected by sending the command 28h to the LCD as a command. After powering up the LCD, it is in 8-bit mode. Because only four bits are connected, the first command has to be send twice; the first time to switch to 4-bits mode, (the lower 4 bits of the command are not seen), the second time to send it as two nibbles so the lower part is received, too. The LCD command 28h is really the sum of a number of option bits. The instruction itself is the instruction 20h ("Function set"). However, to this we add the values 0h to indicate a 4-bit data bus plus 08h to indicate that the display is a two-line display.
Wait more than 15 msecs after power is applied.

1. Write 0x03 to LCD and wait 5 msecs for the instruction to complete

2. Write 0x03 to LCD and wait 160 µsecs for instruction to complete

3. Write 0x03 AGAIN to LCD and wait 160 µsecs (or poll the Busy Flag)

4. Set the Operating Characteristics of the LCD

· Write 0x02 to the LCD to Enable Four Bit Mode

All following instruction/Data Writes require two nibble writes.
· Write "Set Interface Length"

· Write 0x01/0x00 to turn off the Display

· Write 0x00/0x01 to Clear the Display

· Write "Set Cursor Move Direction" Setting Cursor Behaviour Bits

· Write "Enable Display/Cursor" & enable Display and Optional Cursor

 Once the initialization is complete, the LCD can be written to with data or instructions as required. Each character to display is written like the control bytes, except that the "R/S" line is set. During initialisation, by setting the "S/C" bit during the "Move Cursor/Shift Display" command, after each character is sent to the LCD, the cursor built into the LCD will increment to the next position (either right or left). Normally, the "S/C" bit is set (equal to "1") along with the "R/L" bit in the "Move Cursor/Shift Display" command for characters to be written from left to right.
 When working with a microcontroller the numbers are presented in a binary form. As such, they cannot be displayed on a display. That's why it is necessary to change the numbers from a binary system into a decimal system so they can be easily understood.

Chapter 6
PCW C-COMPILER

6.1 INTRODUCTION
 The compiler converts C programming into Machine Language for loading into the processor. Second, hardware devices called Programmers will program a target with the compiled code. Debuggers and emulators allow for debugging to determine what errors may be present in code. The PCB, PCM and PCH are command line compilers, but without the additional features of the IDE such as Editor, Wizard and Debugger. PCB supports 12-bit opcodes, PCM supports 14-bit opcodes and PCH supports 16-bit opcode PIC microcontrollers.

 Windows Integrated Development Environment (IDE) compilers (PCW) offer the same built-in functions of a command-line compiler, plus many other helpful features such as project wizard, help functions, 100+ example programs, C-aware Debugger and consistent colour syntax.

 The Windows graphical interface helps any user perform basic and advanced compiling tasks. In addition to it's user friendly environment the PCW comes complete with text editor, project wizards, special window views, and statistics. PCW has the features of PCB, and PCM, it is capable of supporting the 12 and 14-bit core parts.

Package Includes :
· Reference Manual

· Installation CD-ROM

IDE Features Include:
· PCW includes a full-featured C aware Windows editor. The editor has colour syntax highlighting, tab control, bookmarks, context sensitive help and searches for matching } or). The IDE allows easy access to the call tree, symbol map and other helpful screens. It also includes a direct interface to device programmers and debuggers.

· New Project Wizard generates an initial .H and .C file for your project based on some standard forms that you fill out. Some forms include helpful information such as: interactively calculating and showing the timer options for you based on your clocks, allocating pins for device drivers and setting up pin names.

· PCW includes a Windows based device editor, which edits the device database for each device the compiler is compatible with. This editor can change the RAM and ROM specifications, hardware features and more.

· PCW has a statistics window, which shows lines and statements in each file, and ROM and RAM used by each function along with percentages.

· Special viewers include quick and easy access to data sheets, valid fuses and interrupts for devices, a hex file disassembler, COD file interpreter and an advanced source/list file compare. Shown to the right is just the file/compare.

Compiler Features Include:
· Built in libraries that work with all chips for RS232 serial I/O, I2C, discrete I/O and precision delays.

· Integrates with MPLAB® IDE and other simulators and editors for source level debugging. Standard HEX file and debug files ensure compatibility with all programmers.

· Formatted printf allows easy formatting and display in HEX or decimal.

· Efficient function implementation allows call trees deeper than the hardware stack.

· Source code drivers included for LCD modules, keypads, 24xx and 94xx serial EEPROM's, X10, DS1302 and NJU6355 real time clocks, Dallas touch memory devices, DS2223 and PCF8570 serial SRAM, LTC1298 and PCF8591 A/D converters, temperature sensors, digital pots, I/O expander and much more.

· Access to hardware features from easy to use C functions, timers, A/D, EEPROM, SSP, PSP, USB, I2C and more.

· 1, 8, 16 and 32 bit integer types and 32 bit floating point.

· Assembly code may be inserted anywhere in the source and may reference C variables.

· Automatic linking handles multiple code pages.

· Inline functions supported to save stack space; Linker will automatically determine the best architecture or it can be manually specified.

· Compiler directives determine if tri-state registers are refreshed on every I/O or if the I/O is as fast as possible.

· Constants (including strings and arrays) are saved in program memory.

· Standard one bit type (Short Int) permits the compiler to generate very efficient Bit oriented code.

· #BIT and #BYTE will allow C variables to be placed at absolute addresses to map registers to C variables.

· Reference parameters may be used to improve code readability and inline function efficiency.

· PCW has both an integrated editor/compiler and command line compiler.

· Special windows show the RAM memory map, C/Assembly listing, and the calling tree.

· Plenty of ready to run example programs included.

· Updates via the Internet for 30 days included.

PCW INSTALLATION
 Insert the CD ROM, select each of the programs you wish to install and follow the on-screen instructions.
FILE FORMATS
The compiler can output 8-bit hex, 16-bit hex and binary files.
	.C
	This is the source file containing user C source code.

	.H
	These are standard or custom header files used to define pins, register, register bits, functions and pre-processor directives.

	.PJT
	This is the project file which contains information related to the project.

	.LST
	This is the listing file which shows each C source line and the associated assembly code generated for that line.

	.SYM
	This is the symbol map which shows each register location and what program variables are stored in each location.

	.STA
	The statistics file shows the RAM, ROM, and STACK usage. It provides information on the source codes structural and textual complexities using Halstead and McCabe metrics.

	.TRE
	The tree file shows the call tree. it details each function and what functions it calls along with the ROM and RAM usage for each function.

	.HEX
	The compiler generates standard HEX files that are compatible with all programmers.

	.COF
	This is a binary containing machine code and debugging information.

	.COD
	This is a binary file containing debug information.

	.RTF
	The output of the Documentation Generator is exported in a Rich Text File format which can be viewed using the RTF editor or wordpad.

	.RVF
	The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text File.

	.DGR
	The .DGR file is the output of the flowchart maker.

	.ESYM
	This file is generated for the IDE users. The file contains Identifiers and Comment information. This data can be used for automatic documentation generation and for the IDE helpers.

	.OSYM
	This file is generated when the compiler is set to export a relocatable object file. This file contains a list of symbols for that object.

6.2 PCW OVERVIEW

 [image: image26.emf]
[image: image27.emf]
[image: image28.emf]
[image: image29.emf]
[image: image30.emf]
[image: image31.emf]
[image: image32.emf]
[image: image33.emf]
[image: image34.emf]
[image: image35.emf]
[image: image36.emf]
[image: image37.emf]
[image: image38.emf]
[image: image39.emf]
[image: image40.emf]
[image: image41.emf]
[image: image42.emf]
BASIC TYPES

	TYPE - SPECIFIER

	int1
	Defines a 1 bit number

	int8
	Defines a 8 bit number

	int16
	Defines a 16 bit number

	int32
	Defines a 32 bit number

	char
	Defines a 8 bit number

	float
	Defines a 32 bit floating point number

	short
	By default the same as int16

	Int
	By default the same as int8

	long
	By default the same as int16

	void
	Indicates no specific type

Constant Data:
The CONST qualifier will place the variables into program memory. If the keyword CONST is used before the identifier, the identifier is treated as a constant. Constants should be initialized and may not be changed at run-time. This is an easy way to create lookup tables.

The ROM Qualifier puts data in program memory with 3 bytes per instruction space. The address used for ROM data is not a physical address but rather a true byte address. The & operator can be used on ROM variables however the address is logical not physical.

The syntax is:

const type id[cexpr] = {value}

For example:

Placing data into ROM

const int table[16]={0,1,2...15}

Placing a string into ROM

const char cstring[6]={"hello"}

Creating pointers to constants

const char *cptr;

cptr = string;
Function Definition
The format of a function definition is as follows:

 [qualifier] id ([type-specifier id]) { [stmt] }
Optional See Below Zero or more comma separated. Zero or more Semi-colon
 See Data Types separated. See Statements.

The qualifiers for a function are as follows:

• VOID

• type-specifier

• #separate

• #inline

• #int_..

When one of the above are used and the function has a prototype (forward declaration of the function before it is defined) you must include the qualifier on both the prototype and function definition.

A (non-standard) feature has been added to the compiler to help get around the problems created by the fact that pointers cannot be created to constant strings. A function that has one CHAR parameter will accept a constant string where it is called. The compiler will generate a loop that will call the function once for each character in the string.
6.3 SOME USEFUL BUILT-IN-FUNCTIONS / PRE-PROCESSOR
 DIRECTIVES

[image: image43.emf]
[image: image44.emf]
#INT_XXXX

Syntax: #INT_TIMER1 Timer1 overflow

[image: image45.emf]
[image: image46.emf]
[image: image47.emf]
[image: image48.emf]
[image: image49.emf]
[image: image50.emf]
[image: image51.emf]
Function: This function will read the digital value from the analog to digital converter.

 Call to setup adc(), setup adc ports() and set adc channel() should be made

 sometime before this function is called.
[image: image52.emf]
[image: image53.emf]
[image: image54.emf]

[image: image55.emf]
Example: Output_B(data)
CHAPTER 7
EXPERIMENTAL WORK

7.1 FLOW CHARTS

OUTLINE FLOW CHART
[image: image56.png]Start

niise.

i

[

FKey ey
ressed/ '° ressed,
ves e ves e
Select setvalue. ncrement value Decrement value Enter new
to be changed nstep ofone instep of one set valves
Display Current i Set VR
values of sensors ot >set vali Ves 7| relay_vot Leps
G o e,
ves relay DC-motor LED-t
Set Tight
D2

Ves | relay_loht

TIMER1 ISR FLOW CHART

[image: image57.png]TIMER 1 1SR

o

set_timer (15536)
delay of Soms.

rogmode=0.

ves

eload_var=0

Channek
channel + 1

No

o

reload_var-
reload_var-1

Since Timer1(…) can get 16-bit int. So to get a 50-msec. interrupt.
=216 –(.050/(4/4,00,000))

=65536-50000

=15536
Hence set_timer1(15536) gives an interrupt after 50-msec.
KEY SENSE FLOW CHART

[image: image58]
KEY SERVE FLOW CHART

[image: image59]
DISPLAY LOGIC FLOW CHART

[image: image60]
8.2 CIRCUIT DIAGRAM:

[image: image61]
PICTURE OF ASSEMBLED HARDWARE

[image: image62.png]

[image: image63.png]

HARDWARE DETAILS

	S.NO.
	COMPONENT
	QUANTITY
	COMPONENT DETAILS
	DATASHEET/DETAILS

	1
	PIC 16F877A
	1
	MICROCONTROLLER - IC
	DETAILED ABOVE

	2
	TRANSFORMER
	1
	9V/14V OUTPUT
	

	3
	D C MOTOR
	1
	12-V PERMANENT MAGNET
	

	4
	DIODES
	9
	IN4007
	DATASHEET

	5
	5-V REGULATOR
	1
	LM7805
	DATASHEET

	6
	LED
	4
	1-RED COLOUR LOW CURRENT
	

	
	
	
	3-GREEN COLOUR
	

	7
	PUSH BUTTONS
	4
	PUSH TO ON TYPE
	

	8
	CRYSTAL
	1
	4-MHz
	

	9
	DRIVER IC
	1
	ULN 2003
	DATASHEET

	10
	RESISTANCE
	6
	10K
	

	
	
	5
	1K
	

	11
	CAPACITOR
	2
	22pF
	

	
	
	1
	470µF
	

	
	
	1
	220µF
	

	
	
	5
	10µF
	

	
	
	2
	100µF
	

	12
	LCD
	1
	
	DETAILS

	13
	RELAYS
	3
	12-V DC
	DETAILS

	14
	TEMPERATURE
	1
	LM-35
	DATASHEET

	
	SENSOR
	
	
	

	15
	LIGHT SENSOR
	1
	LDR
	DETAILS

	16
	POTENTIOMETER
	1
	10K
	

7.3 PROGRAM

#include "C:\Users\AKSHIT\Desktop\MAJOR\tempstudent\tempraturecontrol.h"

/*********************************** SMALL DESCRIPTION OF PROJECT**

 DATA LOGGER IS BASICALLY A PROJECT WHICH WILL CONTINUOUSLY SENSE THE SENSOR COLLECT INFORMATION ABOUT THAT AND DISPLAY IT ON LCD. THERE ARE THREE SENSORS FOR SENSING 1.TEMPRATURE 2. LIGHT AND 3. VOLTAGE

LM35 IS USED FOR TEMPRATURE LDR IS FOR LIGHT

THREE PIN PORT VARIABLE RESISTANCE IS USED FOR VOLTAGE

AND THREE RELAY ARE USED WHICH WILL ON AND OFF ACCORDING TO SETTING AND INSTANT SENSOR VALUE

EXAMPLE:

TEMPRATURE

IF ROOM TEMPERATURE IS GREATER THAN SET VALUE AND VOLTAGE IS LESS THAN SET VALUE THEN FIRST RELAY WIIL BE ON

LIGHT

IF ROOM LIGHT IS LESS THAN SET VALUE AND VOLTAGE IS LESS THAN SET VALUE THEN THIRD RELAY WIIL BE ON

VOLTAGE

IF INPUT AC VALTAGE IS GREATER THAN SET VALUE

 RELAY ONE AND THREE WILL BE OFF AND SECOND RELAY WILL BE ON

*///***

#DEFINE rs PIN_b0

#DEFINE en PIN_b1

#DEFINE f_key PIN_D1

#DEFINE i_key PIN_D0

#DEFINE d_key PIN_c3

#DEFINE e_key PIN_c2

#DEFINE relay PIN_d2

#DEFINE relay_light PIN_d3

#DEFINE relay_volt PIN_c4

void delay(unsigned int16);

void lcd_gotoxy(unsigned char,unsigned char); /* FOR GOING PARTICULAR LOCATION ON LCD ROW AND COLUMN(THERE ARE 2 ROWS AND 16 COLUMNS ON EACH ROW)*/
void send_command(unsigned char); // FOR SENDING COMMAND ON LCD

void send_data(unsigned char);// FOR SENDING DATA ON LCD

void lcd_putc(unsigned char);

void lcd_write_string(char);

void lcd_clr();

void convert_bcd(unsigned char); /*THIS FUNCTION IS USE FOR SENDING THE NUMERIC CHARACTER ON LCD*/
void keysense();

void lcd_init();

void keyserve();

CONST unsigned char a[]= " DATA LOGGER "; /*these characters will display on screen when we call function :-lcd_putc(arrayname)*/;

CONST UNSIGNED CHAR a1[]=" LOGGER ";

CONST UNSIGNED CHAR a2[]=" DEVELOPED BY ";

CONST UNSIGNED CHAR a3[]=" VIJAY SHARMA ";

CONST UNSIGNED CHAR a4[]="Temprature C";

CONST UNSIGNED CHAR a5[]="CUT OFF C";

CONST UNSIGNED CHAR a6[]="SET LIGHT L";

CONST UNSIGNED CHAR a7[]="SET VOLT V";

CONST UNSIGNED CHAR a8[]="LIGHT L";

CONST UNSIGNED CHAR a9[]="AC VOLTAGE V";

short datachange=1;

short key3done=0;

short key4done=0;

short key1done=0;

short key2done=0;

unsigned char progmode=0;

unsigned int validkeyno = 0;

unsigned char set_temp=50;

unsigned char adcval=0,adcval1=0,adcval2=0;

unsigned char set_light=30; //these are the starting set value

unsigned char set_volt=230;

unsigned char chhanel=1;

unsigned char reload_var=80;

#int_TIMER1

void TIMER1_isr() /* THIS IS TIMER INTERRUPT ROUTINE WHICH WILL CHANGE THE SLOGAN ON LCD AFTER EACH FOUR SECOND FOR SENSING NEXT SENSOR*/
{

set_timer1(15536);//THIS INTERRUPT WILL COME AFTER EACH 50 MILISECOND

if(progmode==0)

{

 IF(--reload_var==0) /* 50*80 MILISECOND=4000 mSec = 4 SEC AFTER 4 SER ONE CHANNEL WILL CHANGE FOR SENSING NEXT SENSOR*/
 {

 datachange=1;

 reload_var=80;

 if(++chhanel==4)

 chhanel=1;

 }

}

}

void main()

{

 setup_adc_ports(ALL_ANALOG); /*THIS FUNCTION WILL SET THE ANALOG POIRT FOR A TO D CONVERSION*/
 setup_adc(ADC_CLOCK_INTERNAL);

 setup_psp(PSP_DISABLED);

 setup_spi(FALSE);

 setup_timer_0(RTCC_INTERNAL|RTCC_DIV_1);

 setup_timer_1(T1_INTERNAL | T1_DIV_BY_1);

 setup_timer_2(T2_DISABLED,0,1);

 setup_vref(FALSE);

lcd_init();

output_low(relay); //relay off

lcd_PUTC(a); // THIS FUNCTION WILL PRINT STRING NAME a[]

lcd_gotoxy(2,1);

lcd_PUTC(a1);

delay(60000);

delay(60000);

lcd_clr();

lcd_PUTC(a2);

lcd_gotoxy(2,1);

lcd_PUTC(a3);

delay(60000);

delay(60000);

set_timer1(15536);

enable_interrupts(INT_TIMER1);

enable_interrupts(GLOBAL);

while(1)

{

 keysense(); // FOR CHECKING KEYS WHICH KEYS HAS BEEN USED BY USER

 keyserve(); // FOR PERFORMING TASK ACCORDING TO PRESSED KEY

 delay(5000);

 if(progmode==0)

 {

 if(chhanel==1)

 {

 if(datachange==1)

 {

 lcd_clr();

 lcd_putc(a4);

 datachange=0;

 }

 set_adc_channel(0); /* MEANS SENSING FIRST SENSOR LM35 ON PIN SECOND (A0)*/
 delay(100);

 adcval = read_adc();

 if(adcval>27)

 adcval=adcval-27; // for calibration of temperature

 convert_bcd(adcval);

 if(adcval>set_temp && adcval2<set_volt)

 output_high(relay); //relay on

 else

 output_low(relay);

 }

 else if(chhanel==2)

 {

 if(datachange==1)

 {

 lcd_clr();

 lcd_putc(a8);

 datachange=0;

 }

 set_adc_channel(1); /* MEANS SENSING SECOND SENSOR LDR ON PIN SECOND (A1)*/
 delay(100);

 adcval1 = read_adc(); // && 0x01ff;

 convert_bcd(adcval1);

 if(adcval1<set_light && adcval2<set_volt)

 output_high(relay_light); //relay on

 else

 output_low(relay_light);

 }

 else if(chhanel==3)

 {

 if(datachange==1)

 {

 lcd_clr();

 lcd_putc(a9);

 datachange=0;

 }

 set_adc_channel(2); /* MEANS SENSING THIRD ON PIN SECOND (A2) FOR VOLTAGE*/
 delay(100);

 adcval2 = read_adc(); // && 0x01ff;

 convert_bcd(adcval2);

 if(adcval2>set_volt)

 {

 output_high(relay_volt); //relay on

 output_low(relay_light);

 output_low(relay);

 }

 else

 output_low(relay_volt);// relay off

 }

 }

}

}

//***88

void lcd_init()

{

send_command(0x03);

delay_ms(10);

send_command(0x03);

delay_ms(10);

send_command(0x03);

delay_ms(10);

send_command(0x02);

send_command(0x02);

send_command(0x28);

delay_ms(30);

send_command(0x28);

delay_ms(30);

send_command(0x28); //lcd init

delay_ms(30);

send_command(0x01); //clr scr

delay_ms(30);

send_command(0x0c); //remove cursor

delay_ms(30);

}

//**

void send_command(unsigned char data)

{

 output_b(data);

 output_low(rs);

 output_high(en);

 delay_ms(20);

 output_low(en);

 delay_ms(20);

 data=data<<4;

 output_b(data);

 output_low(rs);

 output_high(en);

 delay_ms(20);

 output_low(en);

 delay_ms(20);

}

//***

void send_data(unsigned char temp)

{

unsigned char data;

 data=temp;

 output_b(data);

 output_high(rs);

 output_high(en);

 delay(10);

 output_low(en);

 delay(10);

 data=temp;

 data=data<<4;

 output_b(data);

 output_high(rs);

 output_high(en);

 delay(10);

 output_low(en);

 delay(10);

}

//***

void lcd_putc(unsigned char data)

{

send_data(data);

}

//**

void lcd_gotoxy(unsigned char row,unsigned char col)

{

unsigned char j;

delay_ms(100);

 if(row==1)

 j=128;

 if(row==2)

 j=192;

 j=j+col-1;

send_command(j);

//delay_ms(100);

}

//***

void lcd_clr()

{

delay_ms(400);

send_command(0x01);

}

//***

 void delay(unsigned int16 i)

 {

 while(i--);

 }

 //**

 void keysense()

{

if(input(f_key) == 0)

 {

 validkeyno = 1;

 }

else

 if(input(i_key) == 0)

 {

 validkeyno = 2;

 }

else

 if(input(d_key) == 0)

 {

 validkeyno = 3;

 }

 else

 if(input(e_key) == 0)

 {

 validkeyno = 4;

 }

else

 {

 key3done=0;

 key4done=0;

 key1done=0;

 key2done=0;

 validkeyno = 0;

 }

}

//**8

void keyserve()

{

//unsigned char temp,i;

switch(validkeyno)

 {

 case 1:if(!key1done)

 {

 key1done=1;

 lcd_clr();

 if(progmode==3)

 progmode=0;

 IF(progmode==0)

 {

 lcd_PUTC(a5);

 progmode=1;

 convert_bcd(set_temp);

 }

 else if(progmode==1)

 {

 lcd_PUTC(a6);

 progmode=2;

 convert_bcd(set_light);

 }

 else if(progmode==2)

 {

 lcd_PUTC(a7);

 progmode=3;

 convert_bcd(set_volt);

 }

 }

 break;

 case 2:

 if(!key2done)

 {

 key2done=1;

 if(progmode==1)

 {

 if(set_temp<254)

 set_temp++;

 convert_bcd(set_temp);

 }

 else if(progmode==2)

 {

 if(set_light<254)

 set_light++;

 convert_bcd(set_light);

 }

 else if(progmode==3)

 {

 if(set_volt<254)

 set_volt++;

 convert_bcd(set_volt);

 }

 }

 break;

 case 3:

 if(!key3done)

 {

 key3done=1;

 if(progmode==1)

 {

 if(set_temp>0)

 set_temp--;

 convert_bcd(set_temp);

 }

 else if(progmode==2)

 {

 if(set_light>0)

 set_light--;

 convert_bcd(set_light);

 }

 else if(progmode==3)

 {

 if(set_volt>0)

 set_volt--;

 convert_bcd(set_volt);

 }

 }

 break;

 case 4:if(!key4done)

 {

 key4done=1;

 progmode=0;

 lcd_clr();

 chhanel=1;

 reload_var=80;

 datachange=1;

 }

 }

}

//**

void convert_bcd(unsigned char sensor_value)

{

signed int loop=2;

int temp;

unsigned char display_value[3];

lcd_gotoxy(1,13);

//count_digit=0;

while(loop>=0)

 {

 temp=sensor_value%10;

 display_value[loop]=temp;

 sensor_value=sensor_value/10;

 loop--;

 //count_digit++;

 }

for(loop=0;loop<=2;loop++)

 lcd_putc(display_value[loop]+48);

}

 7.4 PROGRAMMER

 Device which makes it possible to write software in microcontroller

 memory, thus enabling the microcontroller to work independently.

 A personal computer and a programmer and a programmer software are used
 to load the contents of the HEX file in PIC.
 [image: image64.png]Personal computer

Progranmer
. sof tuare
— Progranmer
© Serial interface
®
Paratiol nterfece H

CHAPTER 8

CONCLUSION AND FUTURE SCOPE
8.1 CONCLUSION
 We see the hardware produced functions as we intended. So we can say that the PIC 16F877A Microcontroller can be programmed in such a way that, it gathers / acquires, analog / digital data from the desired port pins and displays the same on interfaced LCD display.

 By using different keys we can change the set values. The microcontroller can compare the instant values with the set values and send the evaluated result on proper pins designated. The program is such that it continuously senses the keys and make the corresponding changes in the running program. However after every reset the program already burnt in the microcontroller will be effective.

 Hence we have shown that the PIC 16F877A microcontroller can be used as a data acquisition system acquiring data from different port pins and displaying the same on LCD interfaced.

8.2 FUTURE SCOPE
 The data which is displayed on the LCD interfaced can be replaced with a computer, with data transferred from microcontroller to the computer via RS-232 serial communication. Computer can be used for storing the acquired data. [image: image65.emf]
Further control action may be incorporated in the software of the computer, which may further control the process. Or we may say close loop control action may be implemented.
DATASHEETS[image: image66.emf]
[image: image67.emf]
FEATURES

Output Current up to 1A

Output Voltages of 5, 6, 9,10,12,15,18,24 V

Thermal Overload Protection

Short Circuit Protection

Output Transistor safe Operating Area Protection
[image: image87.jpg]V=vec*t)

R+ Ry

[image: image68.emf]
Description
The MC78XX/LM78XX/MC78XXA series of three terminal positive regulators are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking

is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.
[image: image69.emf]
[image: image70.emf]
[image: image71.emf]
HIGH-VOLTAGE, HIGH-CURRENT

DARLINGTON ARRAYS
Ideally suited for interfacing between low-level logic circuitry and multiple peripheral power loads, the Series ULN20xxA/L high-voltage, high-current Darlington arrays feature continuous load current ratings to 500 mA for each of the seven drivers. At an appropriate duty cycle

depending on ambient temperature and number of drivers turned ON simultaneously, typical power loads totaling over 230 W (350 mA x 7, 95 V) can be controlled. Typical loads include relays, solenoids, stepping motors, magnetic print hammers, multiplexed LED and

incandescent displays, and heaters. All devices feature open-collector outputs with integral clamp diodes.

 The ULN2003A/L and ULN2023A/L have series input resistors selected for operation directly with 5 V TTL or CMOS. These devices will handle numerous interface needs — particularly those beyond the capabilities of standard logic buffers.

 The ULN2004A/L and ULN2024A/L have series input resistors for operation directly from 6 to 15 V CMOS or PMOS logic outputs. The ULN2003A/L and ULN2004A/L are the standard Darlington arrays. The outputs are capable of sinking 500 mA and will withstand

at least 50 V in the OFF state. Outputs may be paralleled for higher load current capability. The ULN2023A/L and ULN2024A/L will withstand 95 V in the OFF state.

 These Darlington arrays are furnished in 16-pin dual in-line plastic packages (suffix “A”) and 16-lead surface-mountable SOICs (suffix “L”). All devices are pinned with outputs opposite inputs to facilitate ease of circuit board layout. All devices are rated for operation over the temperature range of -20°C to +85°C. Most (see matrix, next page) are also available for operation to -40°C; to order, change the prefix from “ULN” to “ULQ”.

_FEATURES

_ TTL, DTL, PMOS, or CMOS-Compatible Inputs

_ Output Current to 500 mA

_ Output Voltage to 95 V

_ Transient-Protected Outputs

_ Dual In-Line Plastic Package or Small-Outline IC Package

ABOUT DARLINGTON CONNECTION

[image: image72.emf]
The circuit uses a ULN2003 - High voltage/High Current Peripheral Driver IC. This device can handle loads of 500 milliamps. The IC is designed to have TTL and CMOS inputs of between 5 and 15 volts. It can be controlled by any clean input voltage.

[image: image73.png]MULTIPLE RELAYS USING A ULN2003 PERIFERAL DRIVER
©RoB PAISLEY 1998

+ oPTOISOLATOR
DRIER CONTROL
VoLTAGE
4 s, Lo pover
RELAY OR OTHER SuPPLY
LOAD UP T0 500
- I» h
s 17
U 2002 w208
i Y
N
VETHOD & METHOD &
s
ULNZ003 CIREUIT DIAGRAM
P P10
Pt w7
e

Drawn Vith MacDrant® 4.2

Multiple Solid State Relays

 Two methods of controlling the ULN2003 are shown on the diagram. Method "A" is preferable and resistor R1 should be sized to pass about 1 milliamp.

 Method "B" is OK but requires an extra diode to compensate for the voltage drop across the optoisolator transistor when it is conducting. If this diode was not used the transistor in the ULN2003 would not be able to turn off fully. Resistor R2 would also be sized to pass about 1 milliamp and the voltage drop across the drivers internal resistor will have to be taken into account.

 As the peripheral drivers in the ULN2003 require only a small control current optoisolators with non darlington transistor outputs such as the 4N35 can be used.

 There are other devices that are similar to the ULN2003, such as the ULN2803, which has eight drivers in an eighteen pin package. Other devices have higher or lower ratings and/or lack the protection diodes built into the ULN2003 package.

One advantage of Solid State relays is that it has no moving parts and are therefore very fast. This can be very helpful for loads that are switched often as relay noise and wear is eliminated.

 Two disadvantages of this type of relay are that three terminals are required for the output side of the higher current version and a voltage drop across the output transistor. In most uses the voltage drop will not affect the circuit load.

 Optoisolators also are available in other output configurations and number of units per package. Consult a suppliers parts catalogue for details. Don't hesitate to experiment with these devices you might find an inexpensive solution to a complicated relay problem.

Warning It should be noted that these circuits, unlike mechanical relays are polarity sensitive and will not handle large current surges that might not otherwise affect mechanical relays. Therefore care should be taken before using them in certain circumstances.

 The common collector configuration is called the emitter follower and is similar to the cathode follower or source follower in its operation. This configuration is having voltage gain close to unity and hence a change in base voltage appears as an equal change across the load at the emitter. In other words, the emitter follows the input signal. This stage , as stated before , is not used an intermediate stage, but rather the most common use for this configuration is as a circuit which performs the function of impedance transformation over a wide range of frequencies with voltage gain close to unity. In addition, the emitter follower increases the power level of the signal.
 The emitter follower is satisfactory if we need low input impedance (<500kΩ). But in some applications the need arises for an amplifier with a high input impedance and to achieve larger input impedance. The circuit is known as Darlington – connection . Thus the Darlington circuit consists of two cascaded emitter followers with infinite emitter resistance in the first stage . Here the two transistors form a composite pair , the input impedance of the second transistor constituting the emitter load resistance for the first transistor.

Characteristics of Darlington connection

1) Darlington emitter follower has a higher input impedance than that of a single stage emitter follower.

2) It has a voltage gain less close to unity than does a single stage emitter follower.

3) The output impedance of the Darlington circuit may be greater or smaller than that

of a single transistor emitter follower, depending upon the value of R, relative to hie2

4) If Rs is =0, then Ro for the Darlington combination is twice Ro for a single stage emitter follower.

5) Major drawback of the Darlington transistor pair is that the leakage current of the first transistor is amplified by the second. Hence the overall leakage current may be high and a Darlington connection of three or more transistors is usually non practicable.

[image: image74.emf]
TEMPERATURE SENSOR
 The LM35 series are precision integrated-circuit temperature sensors, whose output voltage is linearly proportional to the Celsius (Centigrade) temperature. The LM35 thus has an advantage over linear temperature sensors calibrated in ° Kelvin, as the user is not required to subtract a large constant voltage from its output to obtain convenient Centigrade scaling. The LM35 does not require any external calibration or trimming to provide typical accuracies of ±¼°C at room temperature and ±¾°C over a full -55 to +150°C temperature range. Low cost is assured by trimming and calibration at the wafer level. The LM35's low output impedance, linear output, and precise inherent calibration make interfacing to readout or control circuitry especially easy. It can be used with single power supplies, or with plus and minus supplies. As it draws only 60 µA from its supply, it has very low self-heating, less than 0.1°C in still air. The LM35 is rated to operate over a -55° to +150°C temperature range, while the LM35C is rated for a -40° to +110°C range (-10° with improved accuracy). The LM35 series is available packaged in hermetic TO-46 transistor packages, while the LM35C, LM35CA, and LM35D are also available in the plastic TO-92 transistor package. The LM35D is also available in an 8-lead surface mount small outline package and a plastic TO-220 package.
FEATURES OF LM35

	•
	Calibrated directly in ° Celsius (Centigrade)

	•
	Linear + 10.0 mV/°C scale factor

	•
	0.5°C accuracy guaranteeable (at +25°C)

	•
	Rated for full -55° to +150°C range

	•
	Suitable for remote applications

	•
	Low cost due to wafer-level trimming

	•
	Operates from 4 to 30 volts

	•
	Less than 60 µA current drain

	•
	Low self-heating, 0.08°C in still air

	•
	Nonlinearity only ±¼°C typical

	•
	Low impedance output, 0.1 Ohm for 1 mA load

	
	

[image: image75.emf]
LM35 TEMPERATURE SENSOR SERIES SELECTION GUIDE

	PART
	TEMPERATURE RANGE
	ACCURACY
	OUTPUT SCALE

	LM35A
	-55 C to +150 C
	 +1.5 C
	10mV/C

	LM35
	-55 C to +150 C
	 +1.5 C
	10mV/C

	LM35CA
	-40 C to +110 C
	 +1.0 C
	10mV/C

	LM35C
	-40 C to +110 C
	 +1.5 C
	10mV/C

	LM35D
	 0 C to +100 C
	 +2.0 C
	10mV/C

[image: image76.emf]
[image: image77.emf]
[image: image78.emf]
LIGHT DEPENDENT RESISTOR

A photoresistor is a sensor whose resistance varies with light intensity. Most decrease in resistance as the light intensity increases. [image: image79.png]

 A photoresistor or Light Dependent Resistor or CDS Cell is an electronic component whose resistance decreases with increasing incident light intensity. It can also be referred to as a photoconductor.

A photoresistor is made of a high resistance semiconductor. If light falling on the device is of high enough frequency, photons absorbed by the semiconductor give bound electrons enough energy to jump into the conduction band. The resulting free electron (and its hole partner) conduct electricity, thereby lowering resistance.

A photoelectric device can be either intrinsic or extrinsic. An intrinsic semiconductor has its own charge carriers and is not an efficient semiconductor, eg. silicon. In intrinsic devices, the only available electrons are in the valence band, and hence the photon must have enough energy to excite the electron across the entire bandgap. Extrinsic devices have impurities added, which have a ground state energy closer to the conduction band — since the electrons don't have as far to jump, lower energy photons (i.e. longer wavelengths and lower frequencies) are sufficient to trigger the device. If a sample of silicon has some of its atoms replaced by phosphorus atoms(impurities), there will be extra electrons available for conduction. This is an example of an extrinsic semiconductor.

Cadmium sulfide cells
Cadmium sulfide (CdS) cells rely on the material's ability to vary its resistance according to the amount of light striking the cell. The more light that strikes the cell, the lower the resistance. Although not accurate, even a simple CdS cell can have a wide range of resistance from less than 100 Ω in bright light to in excess of 10 MΩ in darkness. Many commercially available CdS cells have a peak sensitivity in the region of 500nm - 600nm (green light). The cells are also capable of reacting to a broad range of frequencies, including infrared (IR), visible light, and ultraviolet (UV). They are often found on street lights as automatic on/off switches. They were once even used in heat-seeking missiles to sense for targets.

Standard cadmium based LDRs have a frequency response that varies according to light level, but is routinely below 1Hz, so they are unsuitable for data links and picture scanning. Silicon based photodiodes and phototransistors are orders of magnitude faster.

Probably the best known LDR is the ORP12. Smaller cheaper devices are more popular today.

 Applications
Photoresistors come in many different types. Inexpensive cadmium sulfide cells can be found in many consumer items such as camera light meters, clock radios, security alarms, street lights and outdoor clocks.

They are also used in some dynamic compressors together with a small incandescent lamp or light emitting diode to control gain reduction.

Lead sulfide- and indium antimonide-LDR are used for the mid infrared spectral region. At the other end of the scale, Ge:Cu photoconductors are among the best far-infrared detectors available, and are used for infrared astronomy and infrared spectroscopy. Continues power dissipation is 80mW and the Maximum voltage which can be applied to its 100V

In a typical microcontroller application, this resistance must be converted to a voltage so that an A2D converter can measure it. The easiest way to do this is with a voltage divider circuit.

A voltage divider is just two resistors in series connected between a voltage supply and ground. If R1 is connected to the voltage supply and R2 is connected to ground then the voltage at the junction between the two resistors is:

If R1 is the photoresistor, the voltage will increase with increasing light intensity. If R2 is the photoresistor, the voltage will decrease with increasing light intensity.

[image: image80.jpg]Vee

Vee

Sample Photoresistor Circuit

RELAY
[image: image81.jpg]

 [image: image82.png]Low-voTaGe HIGHVOLTAGE
Creur REAY Gircur

[image: image88.png]Nomally Connected

Nomally Open
Moving Contact

(Common)

Coil Terminals SYMBOL

A relay is a type of electrically operated switch which is controlled by an electronic circuit. Within the relay is a coil of wire which generates a magnetic field when a current flows through it. If sufficient current at the correct voltage flows through the coil, the generated magnetic field attracts a metal lever which changes the position of the switch.

The advantage of a relay is that it permits a low voltage DC circuit to control a completely separate high-power circuit - for example a 240V AC mains electricity powered appliance.

Why Use a Diode with a Relay

This is a 12 Volt 10 Amp rated SPCO (single pole changeover) miniature relay enclosed in an IP67* sugar cube package. These relays have many uses in renewable energy applications in which a low-power low-voltage solar powered device controls a high-power and/or high-voltage appliance.
* IP67 means dustproof and waterproof for at least 1 hour at a depth of 1 metre.

The relay coil is rated at 12 Volts and has a coil consumption of 360mW. Therefore at 12 Volts a current of just 30mA is sufficient to trigger the relay. The relay contacts are rated at 10 Amps at 240 VAC (mains electricity) or 12-24 VDC and so can easily be used to switch on 12 VDC and mains-powered pumps, lighting and much more.

[image: image83.jpg]

When a relay coil is switched off there can be a short-lived high voltage spike of electricity (aka back-emf) which can damage chips and transistors etc in the circuit. Therefore a diode is placed across the relay coil connections to suppress this spike.

Normally the diode does not conduct however, when the relay coil is switched off, any current which would otherwise have attempted to get through the coil is diverted harmlessly through the diode.
[image: image84.png]

REFERENCES
1. DESIGN WITH PIC MICROCONTROLLERS

 BY: JOHN B. PEATMAN
2. INTERFACING PIC MICROCONTROLLERS
 BY: MARTIN BATES

4 LET US C

 BY: YASHWANT KANITKAR

5. “Course in Electrical & Electronic measurements & Instrumentation”,
 BY: A.K Sawhney
6. SimPIC REFERENCE MANUAL
7. PIC 16F877 DATASHEET
8. DATA SHEET OF HD44780 (LCD-II)
9. REFERENCE MANUAL OF PCW C-COMPILER

10. Silicon Micro Systems Reference Manual.
WEBSITES:
http://melabs.picbasic.com/Scripts/perl/picsearch.pl
http://www.rentron.com/pic.htm
http://www.mikroe.com
http://microchip.com
http://www.mstracey.btinternet.co.uk/pictutorial/picmain.htm
http://www.rentron.com/picBasic2.htm

http://www.futurlec.com/PIC16F877_Controller_Tips.shtml
http://www.embedded.com/story/OEG20030410s50057

http://mic.unn.ac.uk/miclearning/modules/micros/ch1/micro01notes.html#1.2.1
http://www.microchip.com/10/Lit/rLit/00148d1/index.htm
http://www.digikey.com
http://www.sxlist.com/techref/microchip/4bitlcd.src
http://www.ccsinfo.com/content.php?page=compilers
http://www.brouhaha.com/~eric/pic
http://www.ee.pdx.edu/~ieee/helpfiles/PIC Slides 01 16 2000/PIC Seminar 01-16-2000.PPT
http://www.sss-mag.com/pic.html
http://en.wikipedia.org/wiki/PIC microcontroller
http://www.picbook.com
http://www.technologystudent.com/pics/picdex1.htm

The PIC16F877 devices have a 13-bit program counter capable of addressing an

8K×14 program memory space. The PIC 16F877 has 8K×14 words of FLASH program memory. Accessing a location above the physically implemented address will cause a wraparound.

The reset vector is at 0000h and the interrupt vector is at 0004h.

The PIC has calculation functions and memory and is controlled by the software. However, the throughput and the memory capacity are low. Depending upon the kind of PIC, the maximum clock operating frequency is about 20MHz and the memory capacity is about 8K words.

The clock frequency determines the speed at which a program is read and an instruction is executed. The throughput cannot be judged with clock frequency alone. It changes with the processor architecture. However within the same architecture the one with the highest clock frequency has the highest throughput. It uses a 14-bit WORD for program memory capacity. An instruction is a word long.

PAGE
88

[image: image89.png](zp~uid) (zp~uid) e
folindino S3A| Mo Indino by yndyr ~. g La
X < |erope
& orone r
u g |
oean [ybiyTIndino -2t " pE
g LT |BAdpE=
2 IeAdpe.
© N
{(€1'1)@07 uo AX| opepeas=
>Herdpe 2 AX 2imesadwa)
i
H opeTpeal=
8 A AX 36e}0A DY 7V Ziuued)] /] e
g 9pe joaEs. opepeas= "
5 - e A
g E] ape paps
s g s | | 8
o | 1 e e =
s 9
o Uy
e S G
> o
jpusese. o JauuRyD on

"

"

[image: image90.png]€00ZNTIN

Riiia

Y278491

£ o 62 o)

6600000600006 000]

MO13NNOD 001 [[t

$0 anzz

ST

%05 0T

0T

[image: image91.png]7008

ni.

oo

