Z'l—_l turnitin Similarity Report ID: 0id:27535:17754735

PAPER NAME AUTHOR

Final thesis.pdf Mritunjay D

WORD COUNT CHARACTER COUNT

8444 Words 43908 Characters

PAGE COUNT FILE SIZE

39 Pages 1.3MB

SUBMISSION DATE REPORT DATE

May 27,2022 6:20 PM GMT+5:30 May 27,2022 6:22 PM GMT+5:30

® 9% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

* 8% Internet database « 1% Publications database
» Crossref database » Crossref Posted Content database
* 6% Submitted Works database

® Excluded from Similarity Report

« Bibliographic material * Quoted material

Summary

CORS VULNERABILITY TESTER FOR WEB APPLICATION

% DISSERTATION
SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE
OF

MASTER OF
TECHNOLOGY
IN

COMPUTER SCIENCE & ENGINEERING
Submitted by

MRITYUNJAY DUBEY
2K20/CSE/13

Under the supervision of

Dr. Prashant Giridhar Shambharkar

(Assistant Professor)

QEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-11004
MAY, 2022

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CANDIDATE’S DECLARATION

I, Mrityunjay Dubey, Roll No. 2K20/CSE/22 student of M. Tech (Computer
Science and Engineering), hereby declare that the project Dissertation titled
“CORS Vulnerability Tester for Web Applications’QIhich is submitted by me to
the Department of Computer Science & Engineering, Delhi Technological
University, Delhi in partial fulfilment of the requirement for the award of the
degree of Master of Technology, is original and not copied from any source
without proper citation. This work has not previously formed the basis for the
award of and Degree, Diploma Associateship, Fellowship or other similar title or

recognition.

o e

Place : Delhi Mrityunjay Dubey
Date : 2K20/CSE/13

QEPARTMENT OF COMPUTER SCIENCE & ENGINEERING
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “CORS Vulnerability Tester
for Web Applications’qrhich is submitted by Mrityunjay Dubey, 2K20/CSE/13
Department of Computer Science & Engineering, Delhi Technological
University, Delhi in partial fulfillment of the requirement for the award of the
degree of Master of Technology, is a record of the project work carried out by the
students under my supervision. To the best of my knowledge, this work has not

been submitted in part or full for any Degree or Diploma to this University or

elsewhere.
Place : Delhi Dr. Prashant Giridhar Shambharkar
Date : Assistant Professor

Department of CSE

DTU

il

QC KNOWLEDGMENT

The success of this project requires the assistance and input of numerous people
and the organization. I am gratefu@o everyone who helped in shaping the result

of the project.

I express my sincere thanks to Dr. Prashant Giridhar Shambharkar, my
roject guide, for providing me with the opportunity to undertake this project
énder his guidance. His constant support and encouragement have made me
realize that it is the process of learning which weighs more than the end result. |
am highly indebted to the panel faculties during all the progress evaluations for
their guidance, constant supervision and for motivating me to complete my
work. They helped me throughout with new ideas, provided information
necessary and pushed me to complete the work.

I also thank all my fellow students and my family for their continued support.

(\":‘)byiov) a1

Mrityunjay Dubey
2K20/CSE/13
il

ABSTRACT

The problems that were caused by the same-origin policy and the incorrect setup
of it led to the development of a protocol known as cross-origin resource sharing
(CORS). This protocol was designed to solve these problems. Current versions of
web browsers come equipped with a feature known as the same-origin policy..
Scripts that are housed on one domain are unable to make calls to scripts that are
placed on another website as a result of this functionality. This security policy
may ban certain legitimate use cases that pose no security risky. Utilizing CORS
is the optimal option for ensuring that those valid situations are able to work

correctly.

During the process of designing, implementing, and deploying CORS, we

discovered a number of additional security problems, including the following:

1) CORS diminishes cross-origin "write" privilege in practical ways.

2) CORS introduces additional trust requirements the web of different
interactions.

3) CORS is something which isn’t well understood for being developers, most
likely as a result of its.

opaque policy and complicated and complex linkages with other web protocols,
which results in a variety of misconfigurations. This is the case since CORS is

notoriously difficult to understand.

In conclusion, we provide simplified and clarified versions of the protocol in
order to solve the security problems that were uncovered by our study. Both the
CORS standard and the most common web browsers have taken some of our

suggestions and implemented them in a variety of different ways.

v

CONTENT

QANDIDATE’S DECLARATION Q
CERTIFICATE il
ACKNOWLEDGMENT il
ABSTRACT iv
CONTENT v
LIST OF FIGURES Vi
LIST OF TABLES vii
LIST OF ABBREVIATIONS viii
CHAPTER : 1 Introduction 1

1.1 CORS OVERVIEW 1

1.2 OBJECTIVE 3

1.3 METHODOLOGY 3
Mistakes in validation: 6
CHAPTER 2: LITERATURE SURVEY 8
QHAPTER 3: PROPOSED WORK 13
3.1: Identification of Problem 13

3.2 :Solution and Approach 14

The tool: CORStest 14
CHAPTER 4: ARCHITECTURE 16

QHAPTER 5:RESULT AND DISCUSSION 18
CHAPTER 6 : CONCLUSION 26

REFERENCES 29

QIST OF FIGURES

Figure 1. A timeline of events relating to the development of CORS and

cross-origin network access.

Figure 2. Basic idea of CORS [16

Figure 3. Access control cross-origin server [16]
Figure 4. CORS configurations found in 1 million websites

3
16
17
18

Figure 5. Access control allow credentials misconfiguration found in 1 million

websites

Figure 6. Running code with configuration -q: allow credentials only

Figure 7. Running code with configuration -v: verbose result

Figure 8. Running code without any configuration set

20
22
23
23

vi

LIST OF TABLES

m “Table 2. { Header size limitations for browsers and servers (single/all headers)}

iable 1. {Overview of CORS security problems }

Table 3. { CORS misconfigurations and its description}
Table 4. {CORS configurations found in 1 million websites

4

5
13
19

Table 5. {Access control allow credentials misconfiguration found in 1 million

websites }

21

Vii

LIST OF ABBREVIATIONS

1. CORS: Cross-Origin Resource Sharing
@. XSS: Cross-Site Scripting

3. CSRF: Cross-Site Request Forgery

4. JSON: JavaScript Object Notation

5. QCAO: Access-Control-Allow-Origin

6. ACAC: Access-Control-Allow-Credentials

Qii

CHAPTER : 1 Introduction

1.1 CORS OVERVIEW

When it comes to protecting data on the client side of a website, the same-origin policy is an
absolute must (SOP). It runs scripts that were obtained from a great number of different
online pages, and these scripts may be accessed from a wide range of places. There is not an
explicit access control and authorization mechanism included in the default standard
operating procedure (SOP) for sharing resources across networks of diverse origins.
According to the Standard Operating Procedure, It is permissible for the side of client and the
scripts to create GET requests or POST requests to servers hosted by 3rd parties.. These
requests may be sent by connecting to the pages of other websites or by completing
cross-origin forms. On the other hand, these programmes do not have a straightforward and

safe method of communicating with these servers.

despite the fact that data was collected from a source that is not immediately clear. Because
most online applications need the reading of cross-origin network resources, but browsers do
not have the skills required to do so, developers came up with an ad-hoc solution in order to
meet the demand for the service. Because imported cross-origin JavaScript is permitted, there
is a potential loophole that might be utilised to get around the limitation. This could be done
by using a cross-origin JavaScript library.

However, this kind of creative workaround method is loaded with safety hazards at every turn
of the corner.

Cross-origin resource sharing, more often referred to as CORS, is a technique that may be
implemented in a web browser to provide restricted access to resources that are hosted
outside of a certain domain. CORS is also known by its acronym, "cross-origin." The
acronym CORS is often used to refer to the practise of cross-origin resource sharing. It
provides more flexibility and broadens the range of scenarios in which the same-origin
concept may be used (SOP). On the other hand, it enables cross-domain assaults to take
place, which opens the door to the possibility of such attacks happening in the event that the
CORS policy of a website is not adequately set up and followed out by the website's
administrators, which in turn opens the door. CORS is not a defence mechanism that may be
utilised against attacks that come from other domains. One example of this would be forgery

from the cross request site (CSRF).

As purpose for this study is to give a complete security all round analysis of CORS as given
terms of the concord's architecture, performance of the implemented, and deployment, as well
as to discover new forms of security vulnerabilities connected with CORS implementations in

real-world websites.

The issues that we came across while doing our investigation may be split up into these

distinct categories:

1) Cross-origin transmission permits granted by overly liberal. Additional default
transmission rights have been accidentally granted by the CORS n protocol, allowing for new
security vulnerabilities to be introduced. In order to exploit previously unexploited CSRF
vulnerabilities, we observed that an attacker might exploit a perpetrator's web application as a
conduit to target binary protocol services within the victim's home network by utilising this
newly relaxed authorisation to send messages to the victim's web browser.

2) CORS has flaws in its security that are built in. CORS requires the trusting of third-party
domains by resource servers in order to facilitate resource sharing. The use of websites
operated by third parties expands the attack surface and puts users in a position where they
are vulnerable to new security threats. There are a few details that may be overlooked, which
can lead to a ﬂoocgf misconfigurations and security vulnerabilities in the real world. Even if

the fundamental approach for CORS is simple, there are a few details that can be overlooked.

After running misconfiguration in 132476 sub-domain on alexa top 50000 webpages ,we
found 27.5 percent CORS set accordingly to sub-domain , 13.2 percent set as base domain.

Theft of data, fraudulent activity on accounts, and even identity theft might all be the result of
these settings mistakes. Those who make these errors should be aware of the potential
consequences. In order to get a more in-depth knowledge of the implications that the issues
that were previously brought to light have in the actual world, we conducted an analysis of
CORS implementations on important websites. Using a passive Domain Name System
(DNS) database that is open to researchers at no cost and is controlled by a prominent
security business, we were able to extract all of the subdomains that were included in the
Alexa Top 50,000 websites. We discovered a total of 97,199,966 unique subdomains inside
all, which were then broken down into a total of 49,729 different base domains. In separate
test requests, we experimented with the Origin header value for each subdomain by changing
it to a number of different values that may lead to errors. After that, we determined the CORS
setups for each subdomain by using the response headers as our primary source of

information.

In order to identify whether or not an domain of HTTPS (such as www.example.com) get
assure about its domain of the HTTP, we modify the entreaty of the header from the Origin to
read "Origin: http://example.com." In the Topside that is header of given responses sent by

the HTTPS website, there is a string that reads "Access-Control-Allow-Origin".

JSONP vulnerablity discovered
“COF{S accepted as W3C recommendation
US-CERT vulnerablility note on HFPA|attacks

JS and SOP introduced CORS shipped by IE, Chrome, Firefox, Safari
|| L B B L L | | Tl L I B L ||
1991 (1994 1997 2000 2003 IZOOG 2009 2012 2015 (2018
HTML proposed JSONP proposed
CORS included in WHATWG's Fetch standard
CSRF vulnerablity discovered)i W3C CORS proposed obsolete

First CORS draft submitted

Figure 1. A timeline of events relating to the development of CORS and cross-origin network access.

1.2 OBJECTIVE

The primary purpose of this study is to identify, via the use of a variety of methods, the
CORS vulnerabilities that arise from its misconfigurations and that, if discovered, may be

exploited through the use of XSS and CSRF.

1.3 METHODOLOGY

We looked at the W3C's CORS standard, of the standard of the WHATWG's Fetch, and
COR-interconnected argumentation on W3C to remember and memorize the lists of mailing
more about how CORS is built and certainity of the vulnerabilities.as the individual looked at
CORS fulfilment and implemented part of the given info in five web applications also eleven
source web which provides open access to it frameworks to get a sense of how they perform
in practice. While doing so, we uncovered possible links in the given subjects of these two
that is CORS features with the attacks which are known to us (both of them specific also the

wide one too), as well as their repercussions. We also measure CORS rules on real-world

websites to assess the given subject implementation out of the provided the shown wild one.
On a scale amount of hugeness, we assessed the Alexa Top 50,000 websites, including their
97,177,988 individual subdomains. To evaluate their CORS rules, we sent cross-origin

requests to each domain using different asking identities.

Categories Problems Attacks
Overly permissive
sending permission Qverly permissive header formats and values QCE via crafting headers
Few limitations on header size Infer privacy information for any
website

Format of body too felible

CSRF’s upload of the file
Very limited limitations on body value

protocol services’ attack which are

binary
Risky trust
dependency QTTPS domain trust their own HTTP domain Q/IITM attacks on HTTPS websites
Trust in other domains Info theft or acc hijacking
Policy complexity
Qoor expressiveness of access control policies Infaleft or acc hijacking
Forgeable "null" Origin values Info theft or acc hijacking
Security mechanism complexity Info theft or acc hijacking
Complex interactions with caching Cache poisoning

Table 1. {Overview of CORS security problems }

Browser

Limitation

Server

Limitation

Chrome browser

>16MEGA BYTE

Apache server

8 KILO BYTE/< 96

/ \> 16 MEGA KILO BYTE
BYTE

Edge browser >16MEGA BYTE | IIS server 16KILO BYTE/
/ \> 16 MEGA 16KILO BYTE

BYTE

Firefox browser

>16MEGA BYTE
/> 16 MEGA
BYTE

Nginx server

8 KILO BYTE /<30
KILO BYTE

IE browser >16MEGA BYTE | Tomcat server 8 KILO BYTE/
/ \> 16 MEGA 8KILO BYTE
BYTE

Safari browser >16MEGA BYTE | Squid server 64KILO BYTE/
/ \> 16 MEGA 64 KILO BYTE

BYTE

aable 2. { Header size limitations for browsers and servers (single/all headers)}

In some cases, human error was to blame; in other others, the design and execution of iCORS

were to blame. iCORS is unpleasant to developers because of these issues, which render it

vulnerable to configuration errors.

The causes may be categorised into several groups but we managed to provide it in four

ways:

1) The articulacy which have some of the policy governing control which provide access and

does not live up to the standards that have been set, which is an issue. When an application is

being developed, a large number of websites are necessary to design error-prone dynamic

CORS rules.

2) It's possible that the origin nu vaue was conceived of in response to a set of peculiar

stimuli.

3) Operators who are not acquainted with the security processes of the CORS network are to
blame for the majority of the misconfigurations that occur. This is where the trouble started in
the first place.

4) The inclusion of cross-origin resource sharing (CORS) and web caching adds an additional
layer of complication to the equation. This element adds another layer of difficulty to an

already challenging circumstance.

A header with the value Access-ControlAllow-Origin The origin header value in the W3C
CORS standard may be either a single origin, "null," or "*," however when we discuss about
the Fetch of WHATWG standard, the main and provided origin from the single, "null," or
"*" According to the provided research, the WHATWG's Fetch standard is supported by all
five of the most popular browsers. This access control method, which is too tight, fails to
satisfy the requirements of the vast majority of web developers. It is hectic and hard for the
creator of web application to reprovide the resources from one side to other several names
under that domain when using a normal configuration of the server, for example, because of
the limitations imposed by such arrangements. In its place, they are required to develop code
that is specific to their needs or make use of a web framework in order to dynamically

establish alternative CORS rules for requests coming from a variety of sources.

Mistakes in validation:

Web developers need to be adaptable since the CORS standards only allow for a certain
amount of expressiveness. We came to the realisation that it is possible to check the Origin
header of the request and produce suitable CORS rules. When users have faith in validation
procedures that may be controlled by an attacker, the likelihood that a website will be

compromised increases.

There are four distinct types of errors:

1) If the value in the Origin header is same to the domain that is trusted, any domain preceded
by the most reliable domain prefix is trusted by the resource server. Consider the scenario in
which a server prefers to trust example.com but forgets the last dot in the domain name,
example.com.attacker.com. On popular websites such as tv.sohu.com, His error was

identified as myaccount.realtor.com.

2) The process through which a resource server does a check to determine value matches with
trusted subdomain , the suffix matching is incompletle, allowing any domain ending in the
suffix to be allowed trusted domain status. It merely verifies that the Origin header value
ends in the subdomain example.com. "example.com," which enables attacker registration on

attackexample.com. These issues may be identified on websites like m.hulu.com.

3) Failing to escape ".": Example.com is designed to accept www.example.com via the use of
regular expression matching; however, its configuration fails to escape ".", which results in
wwwaexample.com. This issue has been discovered on other websites, including

www.nim.nth.gov, among others.

4) We found that a number of websites, including subscribe.washingtonpost.com, had
validation issues, which allowed anybody to register ashingtonpost.co. These issues made it
possible for anyone to register ashingtonpost.co.“During the course of our research, I came

across the fact that 50,216 domain names, or around 10.4 percent, had these validation issues.

CHAPTER 2: LITERATURE SURVEY

As shown in [1] Cookies have no real substance(integrity). Despite the fact that it has been
part of community legend for a long time, the community has a limited understanding of the
ramifications. Creating the attack for the real-world where the major websites are opposition
some examples of these site are Alphabet and B O A, which carries inside it as some subtle
accounts like XSS or any other account hijack those are used using injecting these cookies,
and then this help us to provide a different web application and it provide us with the
development of policies which indulge cookies and all these processing contains threat from
different attackers which have several levels of attacks are some of the things that we have
attempted to do in an effort to conduct a systematic analysis of the implications of cookie

integrity.

As studied in paper [2] application of content limitations under the name Content
Security Policy, which may be used to lock down the behaviour of websites through use of
information limitations as a method for controlling user behaviour on websites. CSP not just
empowers websites to proclaim what types of content may be crammed (and from where),
but it also provides some protection against bridge scripting and other common web-based
dangers such as clickjacking. CSP facilitates sites on the internet to declare what types of
content may be loaded (and from where). CSP gives websites the ability to designate the kind

of material that can be loaded on their pages (and from where).

It may have precedingly published a policy which are having same of the origin
(SOP) that is more restricted. This policy is intended to protect victims of assaults such as
intrusive browser history sniffing [3]. Their concept is that the history and cache associated
with each individual domain need to be fully separate from one another. This results in a
sandbox being generated of the every domain in it; nevertheless, it is not being addressed by
point of the risk provided by the penmanship being accelerated accidentally or by accident
from different website or webpages. It does provide new and enhanced privacy as the form
being provided to us from preventing a website all the loads. All the data being inputed in a
browser which belongs to a visitor after that we provide an information which is inferring and
restating several other web pages or sites; however, it does not provide the inverse, which is
the prevention of a website X releasing the data by mistake to someone about his own
information to a webpage or a site A, which is an site that is external website that has still not

burdened by the browser of the individual or the visitor.

In the paper [4] they conducted an investigation into the frequency with which these
vulnerabilities are found on the top 10,000 websites ranked by Alexa and found that 1,712
hosts make use of 79 different receivers that have a semantically flawed or completely absent
origin check. These mistakes lead to exploitable vulnerabilities on 84 hosts, including
cross-site scripting and the injection of arbitrary material into local storage. These
vulnerabilities can be exploited by hackers. We suggested a straightforward defence that
makes it possible for third-party content to validate the authenticity of the origin of messages
received via post Message. A supplementary defence that is based on an addition to the
Material Security Policy was also outlined by us, and it is intended for use on pages that
incorporate content provided by third parties. This technique requires support from the user's
browser, but site owners can utilise it without making any changes to the third-party code that

is already in place.

Within the scope of this research shown by [5] they investigated the existing status of
the policies that have control and also provide the access to browser they investigate all
incoherencies which also have surface as a result of browsers' improper handling of their
principals. generally, the work which is overall show and put up the community's
acknowledgement of web-applications that provide the access to the policies which have
control, after this progress this model provides result that has been sorely needed to the
affinity versus the dilemma of the security that plagues browsers. Specifically, it identifies
policies which are not safe and also it can be discriminated with small effort and impact on

the affinity.

The results of [6] investigation illustrate how critical it is to investigate each and every
conceivable interaction between browsers and the SOPDOM. Various browser data sets may
be utilised to locate differences among implementations, which, if not addressed, might result
in security issues. Their discoveries can be utilised by browser implementations in order to
more explicitly characterise the SOP-DOM implementation and hence avoid SOP bypasses in
advance. We are certain that a more rigorous SOP-DOM definition will assist the scientific
community as well as the pen testing community in locating vulnerabilities that are of a more
serious kind.As penetration testers or ethical hackers, it is our responsibility to be familiar
with the many utilities available so that we may complete our work effectively.as given in [7]
they came to the conclusion that there are too many different types of vulnerabilities for a
single technique to allow us to find them all. As a result, the pen tester needs to think

creatively in order to

perform penetration testing that will be of use to the customer. If the cost of the testing is

higher than the organization's profit, then the testing should not be performed.

It is vitally necessary to have a dependable protection strategy in place in order to shield a
web application against attacks like these as described in [8]. There is a wide variety of
available safeguards that may be integrated into a web application in order to protect it from
CSREF attacks. The most efficient method among them is to validate an unexpected token on
the server after passing it through a hidden field with the help of an unpredictable token. The
next best solution is to provide the token together with the URL request. Ongoing research is
being carried out at this time in order to create approaches that are even more severe in order

to thwart CSRF assaults.

The author also provide the phases which are divided into four sections of vulnerability
assessment and after that we also provide testing of the penetration in [11]. As an additional
point of discussion, we have gone over the stages of the VAPT as well as its methodology.
When working with VAPT, one can make use of a variety of commercial and open-source
tools that are readily available. As a result of this, we have created a list of the Open Source
and Free Tools that are regarded as the finest and most popular options for each sort of testing
that is included in VAPT. These tools are available for download on the VAPT website. In
addition to the criteria, we have included a comparative analysis of each of the techniques,
methods, and approaches that were used in the VAPT. This research was included alongside

the criteria

They offered a categorization of SSRs that was based on the type of defect, the extent of
control that was exerted over the messages, as shown in[10] the behaviour of the susceptible
services, and the possible attack targets. In addition, we uncovered previously undisclosed
exploitation techniques, in which a combination of services that appear to be harmless may
be used to create complex assaults targeting people and servers on the Internet. These attacks
can be mounted by using a combination of services. In addition, we reported the results of
trials conducted on 68 widely used online apps. Our research has shown that the majority of
online apps may be exploited by malicious actors to carry out a wide variety of operations,
ranging from server-side code execution to denial-of-service attacks.The work that is being
presented by [12] provides a framework that makes it possible to automate operations related
to penetration testing. An Executor module will deliver attack payloads to the target and will
also offer an interface to the user for the purpose of notifying them of potential
vulnerabilities. A communication protocol that is both general and adaptable is used between

an Orchestrator module and an Executor module. The Orchestrator

10

module retains knowledge about the target and proposes best candidate assaults to the
Executor. All of the requests are snatched up by a MitmProxy component, which provides the
Executor with a clearer picture of how they might launch their assault on the target. An
example of behavioural model integration is presented, as is a description of how the
framework models the domain of attack, and a demonstration of how it can integrate current
tools in a seamless manner is given. The suggested architecture has the potential to serve as

the foundation for the actualization of distributed attack systems.

The primary objective of the ongoing research field known as adversarial learning is to
develop classification algorithms that can withstand the presence of adversaries who are
attempting to deceive them into making incorrect predictions in the [13] paper. Our collection
of characteristics and classifiers is not designed to be resistant to the manipulations of a
malicious actor. As the classifiers meant for the aid testers of the penetration in locating
vulnerabilities of the CSRF and are not built for the detection of the attack which are being
directed on CSREF, this is, in fact, outside the scope of our current attempts and so cannot be

addressed.

Because of this, we believe that CSRF’s detection of the adversarial which also comprehend
the attacks they might be an intriguing avenue for future research. This would include the
development of system which have detection works for the online regime for CSRF attacks
that are resistant to attempt them but also sophisticated at the same time which disguise

critical problems of the innocuous ones.

The author of [14] observed CORS are not that much defined and acknowledge it by doing a
wide also the measurement of its scale which is being provided for the CORS and defining its
deployment in many websites which are located to real world. So that the determined result is
27.5 percent that is configured for CORS, domains is unsafe and may calculate
mis-configurations. After doing more research into the factors that contribute to these
problems, we discovered that while some of these issues are the result of carelessness on the
part of developers, the majority of security flaws are due to flaws in the design and
implementation of the CORS protocol. The terrible truth that is CORS security is an example
of online security at its finest. As new features are continually being added to the web, many
of which are released prematurely, unanticipated interactions are causing new security risks.
The elimination of new dangers necessitates the addition of new defences, which, in the event
that they are not carefully crafted, might bring about the emergence of more hazards. The

addition of backward compatibility just serves to further confuse the issue.

11

In the paper [15] , a novel online privacy attack was presented. This attack made use of
HTMLS AppCache rather than client-side scripts or plug-ins in order to determine the status
of cross-origin URLs in an indirect manner. We were able to validate that our assaults were
capable of successfully exploiting all of the main web browsers that supported AppCache. A
Cache-Origin request-header field was another solution that we recommended as an effective

countermeasure. The countermeasure was effective in reducing the impact of our strikes.

12

CHAPTER 3: PROPOSED WORK

3.1: Identification of Problem

CORS is a method which provide and give access to us and has been purposefully devised
to subvert the same-origin policy (SOP). Web servers have the ability to expressly give them
access for the cross-site for a resource after being provided for ACAO which is the header if
it and then the requesting client. The utility is occasionally dynamic and it is constructed on
user input’s dependency ,also Origin header of the web apps. This may happen at any
moment. It is possible that an undesirablgebsite will be able to access the resource if it is
set incorrectly. In addition, if the Access-Control-Allow-Credentials (ACAC) server header is
enabled, an attacker has the potential to steal confidential info from a logged-in user, it is
really harmful like XSS on website itself.

The following provide a inventory of the possible misconfigurations of the CORS that might

be relative and supportive for the subject:

Misconfiguration Description

Developer backdoor Access to the resource is permitted even when it comes from insecure
development or debug sources like JSFiddler CodePen.

Origin reflection Any website is able to get access to the resource since the origin is just
repeated in the ACAO header.

Null misconfiguration By requiring a null origin and using a sandboxed iframe, access may be
granted to any website.

Qre-domain wildcard notdomain.com is given permission to access, which means that the
attacker may easily register it.

Post-domain wildcard If access to domain.com.evil.com is permitted, then the attacker may
easily configure their malicious website.

Subdomains allowed sub.domain.com access is peﬁi‘tted; nonetheless, the vulnerability may
be exploited if XSS is presentin any subdomain.

Non-SSL sites allowed If an HTTP origin is granted access to an HTTPS resource, then a
MitM attacker will be able to decrypt the data.

Invalid CORS header Incorrect usage of the wildcard character or numerous origins; this is
not a security issue but should be corrected.

Table 3. { CORS misconfigurations and its description}

13

3.2 :Solution and Approach

The tool: CORStest

Checking for potential vulnerabilities like this is made much easier by Curl. We built
CORStest, a fundamental CORS misconfiguration tester that is based on Python, to allow for
some additional features such as parameterization. It includes the following characteristics
and functions, and it takes as inpug text file that contains a list of URLs or domain names to

check for incorrect configurations:

QSage: corstest.py [arguments] infile
positional arguments:

infile File with domain or URL list
optional arguments:
-h, --help depart and show help

-c name=value Cookie all requests

-p processes Qlultiprocessing (default: 32)

-S always force ssl/tls requests
-q quiet, allow-credentials
-V generate output that is more verbose

CORStest has the ability to unearth potential vulnerabilities by requiring the user to provide
several Oit request headers and check for the Access-Control-Allow Origin answer. The
websites listed below are only one example of those that are included in the Alexa top 750

that make use of credentials for CORS requests.

Instructions on how to use the CORS tester to identify potential vulnerabilities
We performed*CORStest on the Alexa top 1 million sites to determine the percentage of
websites that have wide-open CORS configurations on a larger scale. These percentages are

as follows:

14

gget -q http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

$ unzip top-1m.csv.zip

$ awk -F, "{print $2}' top-1m.csv> alexa.txt $./corstest.py alexa.txt

$./coretest.py alexa.txt

15

CHAPTER 4: ARCHITECTURE

CORS is security standard which is implemented by browsers which specify set of

rules to share data between website and users , The Cross-Origin Resource Sharing

(CORS) protocol is made up of a group of headers that signal whether or not a

response may be shared across different domains. For requests that are more

sophisticated than what is allowed with HTML's form element, a CORS-preflight

request is made in order to guarantee that the request's current URL supports the

CORS protocol. This request is only carried out if the request's current URL already

exists.

Browser

Cross-Origin

Origin Server Server

% PageURL |
—_—

Request Web Page with URL

User

R

Response HTML

N

XMLFMpReqﬁest or Fetch request

Response cdntrolled by CORS policy

Figure 2. Basic idea of CORS [1]

Browsers send set of CORS header to cross-origin server and cross-origin server

respond back with headers value , so by the headers returned value browsers

decided to “block” or “allow” to show content .

16

c.com a.com b.com
Browser
Server Server Server

Load JS

GET request
Origin: http://a.com

Access-Control-Allow-Origin:http://a.com
Load IS Access-Control-Allow-Credentials: tfue

GET request
Origin: http://c.com

v

Acce trol-Allow-Origin: http://a.com, http://c.com
Access-Control-Allow-Credentials: true

Figure 3. Access control cross-origin server [1]

In our project we have sent http requests to websites to and we analyse return
headers value of thesis websites cross-origin and we can classify what kind of

CORS vulnerability exists in CORS configuration of websites .

These vulnerabilities are caused by the misconfiguration of CORS There is a

possibility that nefarious domains will be able to access the APl endpoints if certain
settings are incorrect.

17

CHAPTER 5:

RESULT AND DISCUSSION

This test took around 14 hours to complete and yielded the following results when performed

on a reliable connection:

CORS CONFIGURATIONS

Developer Backdoor: 8 - 0.0%
Mull Misconfiguration: 57 - 0.2%
*pet-Domain Wildcard: 147 - 0.5%
Pra-Domaln Wildcard: 159 - 0.5%
Subdomalin Allowed: 460 - 1.6
Invalid CORS haadar: 1015 - 3.5%
* MNon-S5L shtes allowed: 1677

Origin Raflection: 1702 - 5.8%

DEVELOPEr Backooaor NuLL misconriguracion Il posc-nomain wiLocaro
B rre-oomain wiLocaro sugpomain Atowen B invaLio coRs Heaper
M NOn-SSLSICES ALLOWRD OTIGIN REFLECEION VvaLio CORS HeaDer

Figure 4. CORS configurations found in 1 million websites

18

S.NO. | Misconfigurations No. of websites Percentage of websites
1 Developer backdoor 8 ~0.0

2 Origin reflection 1702 5.8

3 Null misconfiguration 57 0.2

4 Pre-domain wildcard 159 0.5

5 Post-domain wildcard 147 0.5

6 Subdomains allowed 460 1.6

7 Non-ssl sites allowed 1677 5.7

8 Invalid CORS header 1019 3.5

9 Valid CORS header 24258 82.3

Table 4. {CORS configurations found in 1 million websites }

Only 29,514 websites, or around 3 percent, answered with Access-Control-Allow-Origin
when asked whether CORS was enabled on their main page. Of On the other hand, many
websites, like Google, only enable CORS headers for certain URLs rather than using them
globally throughout the site. CORStest might have been fed the information that we gathered
by crawling a few websites, including their subdomains. On the other hand, this would have
required a significant amount of time, and our quick and dirty solution should be sufficient

for statistical purposes.

In addition, the test was executed only via the use of GET requests sent to the http:// versions
of websites (and did not include any CORS preflight) (with redirects followed). It is
important for everyone of them to give the web applications for e.g., includes the top heading
having the origin that doesn’t guarantee that certain website is necessarily valid. This is
something that should be kept in mind. It is essential to consider the context; a setup of this
kind may function faultlessly for public websites or API endpoints that are accessible to the
public. As a consequence of this, it is possible that social networking platforms and payment

websites may have difficulties.

19

Additionally, the Access-Control-Allow-Credentials: true (ACAC) header has to be set in
order for it to be functional. As a consequence of this, we concatenated it and re arrange the
test , but for this clock range we are restricted it for just those websites which are sent back
the following topper or the header (CORStest -q flag):

Jcorstest.py -q alexa.txt

Vast majority of websites accpet ACAC and ACAO which can exploited by attacker

ACCESS-CONTROL-ALLOW-CREDENTIALS

Valid CORS headar: 1179 - 34 .8

Null misconfiguration: 20 - 0.8%

Invalid CORS header: 113 - 3.3% : 1 Pre-domain wildcard: 78 - 2.2%

MNon-ssl sites allowed: 38¢ g Post-domain wildcard: 83 - 2.7%

Subdomains allowed: 194 - 5.7

Pre-0D0omain wiLocaro

Figure 5. Access control allow credentials misconfiguration found in 1 million websites

20

S.NO. | Misconfigurations No. of websites Percentage of websites
1 Developer backdoor 2 0.1

2 Origin reflection 1330 39.2

3 Null misconfiguration 20 0.6

4 Pre-domain wildcard 76 2.2

5 Post-domain wildcard 93 2.7

6 Subdomains allowed 194 5.7

7 Non-ssl sites allowed 385 11.4

8 Invalid CORS header 113 33

9 Valid CORS header 1179 34.8

Table 5. {Access control allow credentials misconfiguration found in 1 million websites }

In particular, we were interested in determining whether or not there is a connection between
applied technology and incorrect setup. As a direct consequence of this, we made use of
WhatWeb in order to conduct a web technology fingerprint analysis on two separate websites.
CORS is often enabled in one of two ways: for that we directly having the settings of the
server of the HTTP, or indirectly via the web device, browser, applications or any certain
framework. Although these were unable to identify the basic or the single fundamental reason
for misconfigurations’ CORS, they may find a variety of possible explanations for why they

occur.

The majority of potentially harmful Access-Control-* headers were almost certainly added
by developers. On the other hand, some of these headers are the result of flaws and unethical

practises that were included in some products.

Insights are as follows:
e Invalid CORS headers are returned by a number of different websites; in addition to
the erroneous operation of some of the certain wildcards like *.domain.com, also the

21

header of the ACAO with that may have multiple sources are than observed. Other
unauthorised ACAO values that we came across were the following: domain, origin,
SAMEORIGIN, self, true, false, undefined, None, 0, (null), domain, origin,
SAMEORIGIN, and domain, origin.

CORS for Ruby on Rails is supported by Rack::Cors, the de facto standard library.
This is problematic because developers may believe that "allows nothing and '*' acts
in accordance with the spec: most harmless since it cannot be used to create
'credentialed' requests;

The vast number of websites that allow CORS to access us through IIS on an http
resource may or may not have the allowance of it; the problem that may be caused by
faulty advice published on the Internet rather than a flaw in IIS itselfelf.

However, this is because to unsafe configurations acquired from Stackoverflow; the
same problem applies for Phusion Passenger. Nginx comes out on top when it comes
to serving websites with origin references.

We haven't found a specific framework, but the null ACAO value could be depends
and run on some certain languages which could be a programming one as it just return
null if no match found. Another example is that a popular book on CORS has code
like var originWhitelist = ['null',...], which developers might think is safe.

Some sites, including or, have their ACAO values permanently set. In this scenario,
what actions should browsers take? Inconsistency is the undisputed champion at Ieast!
While Internet Explorer and Edge do not, Firefox, Chrome, Safari, and Opera both

allow and disallow content from arbitrary sources.

Figure 6. Running code with configuration -q: allow credentials only

22

S] S

Mot vulrarsBle: Ascais-Contrs Sw-OTLgLa Paddal SSE BEeiant

Net welnsrable: Acceii-Cantral iA Baadef Aot presest

Mot wulrerable: Afewiv-Comt rel-A) Low-(in Faadet fet! pEesant

fgin Fdet Aol SfERES

esearchprospect.com - Mo
linaty Mot vulneranl Control=~ Origin header mot
Contial-AllowOrigin Feadet
-Allow—Origin hesde
ss-Control-Al Low

Nt
not present
chokassa. Ty = Not vulmerable: Accsss-Control-Allow-Or

tasotravel . tas.gov.au - Kot valnersble:

pausduue , com - Nat vulmarable: A

resgechns . com - Kat vulrersbl t 1 mot preseat
ationalskillsnetwork.in - Mot w : t 1 hesdEr ROt present
watrading . com - Kot vulrersbl LFS 1 ow—03 mol present
Hrakorasia,sh Mot wulnerable: - EBSET RSl PTESENt

pi {1=family.com = Mot wulmerab £ - % 0 rasdaT RSl preREnt
vttpi//omall, com = Alartc A - -

umbarflre. com - Mot valrarsble:
oWkl oom - Mot vulnerable:
shwinary . com HNat vulmers
aram, con, tr

lordfilime. biz = Mot w

layd.da = Mot wulnarable

thabell. la = Not wulnerab

apantl.com - Mot vulnerable 1= -Origin header ot present
soinator. o Mot wulnersble: Ac i - Origin hesdsr not pressnt
umpsaller.com = Kot vialrers trel-Allew-Qrigin Fesder sot present
om = Mot vulnarable: mtrol-Allow-Origin hesder
ntrol -Al low-Origin header
8= 1=All w0 hepdeT NOl present
n header mat present

ya.ir - Wot vulnerabl
chaslpage.com.hik = Mot Accass~Control-Allow-Origin header
fms.pk = Mot vulnersble: Access-Control-Allow-0Origin Fesder Aol Sresent

zrunch.com = Mot vulmerable: Ac i gin haader not
= Mot valmerabl ntral-Allow—0rig
.net - Mot wulnerabile: Access—Control-#llow-0r

Figure 8. Running code without any configuration set
When CORS interacts with an HTTP cache, an additional error-prone corner case might

develop. When a resource server is used by many domain names at the same time, individual
CORS rules have to be set up for each of the domains that are making requests. On the other
hand, the majority of HTTP have the proxies that are cache to it material, making it

23

impossible for them to comply with CORS limitations. A violation of the CORS policy for
one domain will prevent other domains from being able to access a resource that is shared by

many domains and is cached using the CORS policy for that domain.

For example, a cached resource from domain c.com has to be accessible by browsers that also
share the same cache with domains a.com and b.com. The quick iterative development
strategy that is used for the web does not do enough verification of new protocols before
introducing them. Browsers quickly integrate new features and disseminate them to users
before they have been completely tested; as a result of this, some immature designs are

difficult to update after they have been widely used on the Internet.

The CORS protocol underwent significant changes during the second half of 2008, and the
W3C is now debating whether or not to approve these changes. The demands of web
developers or the results of browser competitions led several vendors to incorporate this
immature protocol into browsers as new capabilities in January 2009. These new capabilities
have certain immature designs, such as CORS regulations only supporting a single origin, but

they were included in browsers as a result of the competitions.

As can be seen in the diagram, a total of 481,589 sub-domains were set up to use CORS
across 22,049 base domains. Of these, 61,347 HTTPS sub-domains (approximately 12.7
percent) trusted the HTTP domain over 1,031 base domains (approximately 4.7 percent), and
84,327 sub-domains (approximately 17.5 percent) trusted any of its own subdomains over
1,010 base We go even further into the factors that led to the considerable prevalence of these

two security vulnerabilities.

We found three reasons for the first danger after doing research on CORS standards, web

frameworks, and online applications. These are as follows:

1) The guidelines don't really go into detail about the potential safety risks.

2) Certain web frameworks do not do checks for the kind of protocol. When analysing a
entreaty's header of an origin to determine the policy which are provided by CORS,
popular webapp frameworks like django-cors-headers, for example, just look at the
domain and disregard the protocol type. This is done to redraw or provide back the
policy of the CORS

24

3) Many different online plea also have support of both of these that are HTTP and the

HTTPS protocols, which contributes to a greater level of interoperability.

25

CHAPTER 6 : CONCLUSION

The consequence of this is that payment and taxpayer sites are going around SOP/SSL.

It should be brought to everyone's attention that not even half of the websites that
were examined were really credible.

Some only had public data, while others, like Bitbucket, also have the CORS which is
authorize as the main paper and not the user data sub-pages. The public information
was only available for some of the sites.

After manually evaluating each site, we found that the following ones met our criteria
for viability.

We were able to set up a test account with many of the different banking which are
online also it have bitcoin, and several system that pays in a certain manner, which
allowed us to develop a code of the proof-of-concept it do might might potentially
money stealing can be done through it in many different manners.

There are hundreds of businesses which are online and sites are e-commerce , in
addition to a few websites that allow users to book hotels and flights online.

Several social networks and more websites that enable users to log in and
communicate with one another are referred to as "social networking sites."

The website of the tax filing department of one of the states in the United States

(unfortunately, this particular one was deleted by a federal agency).

During the course of the analysis, we came across a wide range of CORS-related security

issues, all of which may be categorised into one of the following three high-risk buckets:

1) A monitor that isn't functioning to its full potential

In order to maintain continuity with the past plan, allowance of the CORS "basic
requests" is the default option for the freely sent. On the other hand, the scope of basic
CORS inquiries is far more extensive than what was previously possible in a variety
of different subtle ways. Online attackers are now able to take use of the new by
default sending capabilities offered by CORS in order to carry out a number of attacks
that were before difficult to carry out in the context of a web attacker attack scenario.

26

2)

3)

Competition with high stakes

some webpages and sites employ error-prone CORS which is dynamic and also have
the policy of development’s stage of its application because the policy which are
being conducted by CORS itself it won’t be able to define and acknowledge the
process in a simple manner. This is because is itself can’t be stated in a normal way.
These advanced policies seem to be the root cause of a wide range of CORS policy
misconfigurations, as our team has discovered.

Authorization to Send Messages in a Manner That Is Considerably More Relaxed

The cross-origin transmitting authorization that is provided by the default SOP
already presents substantial security risks, including those posed by CSRF and HFPA
attacks (Section 2.2). If backward compatibility hadn't been taken into account, CORS
may have allowecéross-origin access to soive and unified defences against CSRF,
HFPA, and other cross-origin network resource access at the protocol level. Both of

these things would have been undesirable. On the other hand, CORS ensured that the

compatibility oale previous policy was maintained.

CORS enables "simple requests" to be sent for free by default in its new JavaScript
APIs. This is made possible via the CORS protocol (e.g., XMLHttpRequest Level2,
fetch). On the other side, these new interfaces unintentionally facilitate the transfer of
permissions since they allow for the crafty customisation of HTTP headers and

contents within CORS basic requests.

On CORS, we carried out an empirical security investigation. We found a number of
new security flaws in the CORS standards as well as the implementations of those
requirements in web browsers and web frameworks. by taking a comprehensive look

at the implementation of CORS on websites that include real-world content.

After doing more research into the underlying reasons for these problems, we came to
the conclusioralat the design and implementation of the CORS protocol are to blame
for a number of security flaws, despite the fact that some of these vulnerabilities are

the result of developer error.

Finally, in order to address these issues, we proposed a number of changes that would
enhance the situation and clarify some aspects of it. A number of our proposals have

27

been included into the most current version of the CORS specification, and the most
popular web browsers have already begun to implement them. We aIS(grovide an
open-source tool to assist web developers and security practitioners in determining if
a website is vulnerable to the misconfiguration vulnerabilities that we discovered.
This tool was developed to assist in determining if a website is vulnerable to the

vulnerabilities that we discovered.

The security provided by CORS is a terrible illustration of how to protect real-world
data online. As the Web evolves to provide new capabilities, which are often provided
ahead of schedule, unanticipated interactions give rise to new security threats. The
incorporation of new features to protect against new hazards necessitates the
installation of new features, which, if they are not well planned, will result in the
introduction of new dangers. The predicament is made more difficult by the presence
of backward compatibility. The design and implementation of web protocols in the

future need to adopt a more methodical approach to ensuring users' safety.

28

REFERENCES

[1].Zheng, X., Jiang, J., Liang, J., Duan, H., Chen, S., Wan, T., & Weaver, N. (2015).
Cookies Lack Integrity:{Real-World} Implications. In24th USENIX Security
Symposium (USENIX Security 15) (pp. 707-721).

[2].Stamm, S., Sterne, B., & Markham, G. (2010, April). Reining in the web with content
security policy. In Proceedings of the 19th international conference on World wide
web (pp. 921-930).

[3].Jakobsson, M., & Stamm, S. (2006, May). Invasive browser sniffing and
countermeasures. In Proceedings of the 15th international conference on World Wide
Web (pp. 523-532).

[4].Son, S., & Shmatikov, V. (2013, February). The Postman Always Rings Twice:
Attacking and Defending postMessage in HTMLS5 Websites. In NDSS.

[5].Singh, K., Moshchuk, A., Wang, H. J., & Lee, W. (2010, May). On the incoherencies
in web browser access control policies. In 2010 IEEE Symposium on Security and
Privacy (pp. 463-478). IEEE.

[6].Schwenk, J., Niemietz, M., & Mainka, C. (2017). {Same-Origin} Policy: Evaluation
in Modern Browsers. In 26th USENIX Security Symposium (USENIX Security 17)
(pp. 713-727).

[7].Shahidullah, M. (2019). Vulnerability Assessment Penetration Testing for Web
Application.

[8].Semastin, E., Azam, S., Shanmugam, B., Kannoorpatti, K., Jonokman, M., Samy, G.
N., & Perumal, S. (2018). Preventive measures for cross site request forgery attacks
on Web-based Applications. International Journal of Engineering and Technology
(UAE).

[9].Sudhodanan, A., Khodayari, S., & Caballero, J. (2019). Cross-origin state inference
(COSI) attacks: Leaking web site states through xs-leaks. arXiv preprint
arXiv:1908.02204.

[10]. Pellegrino, G., Catakoglu, O., Balzarotti, D., & Rossow, C. (2016, September).
Uses and abuses of server-side requests. In International Symposium on Research in

Attacks, Intrusions, and Defenses (pp. 393-414). Springer, Cham.

29

[11]. Shah, S., & Mehtre, B. M. (2015). An overview of vulnerability assessment and
penetration testing techniques. Journal of Computer Virology and Hacking
Techniques, 11(1), 27-49.

[12]. Romano, S. P., Auricchio, N., Cappuccio, A., Caturano, F., & Perrone, G. An
automated approach to Web Offensive Security. Available at SSRN 4057341.

[13]. Calzavara, S., Conti, M., Focardi, R., Rabitti, A., & Tolomei, G. (2019, June).
Mitch: A machine learning approach to the black-box detection of CSRF
vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy
(EuroS&P) (pp. 528-543). IEEE.

[14]. Chen, J., Jiang, J., Duan, H., Wan, T., Chen, S., Paxson, V., & Yang, M. (2018).
We Still {Don’t} Have Secure {Cross-Domain} Requests: an Empirical Study of
{CORS}. In 27th USENIX Security Symposium (USENIX Security 18) (pp.
1079-1093).

[15]. Lee, S., Kim, H., & Kim, J. (2015, February). Identifying Cross-origin Resource
Status Using Application Cache. In NDSS.

[16]. https:/reflectoring.io/complete-guide-to-cors/
[17]. https://www.kaggle.com/datasets/cheedcheed/toplm

30

https://reflectoring.io/complete-guide-to-cors/
https://www.kaggle.com/datasets/cheedcheed/top1m

7 turnitin

® 9% Overall Similarity
Top sources found in the following databases:

* 8% Internet database * 1% Publications database

» Crossref database » Crossref Posted Content database
* 6% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be

displayed.

usenix.org

Internet

alfakirtauhid.blogspot.com

Internet

Delhi Technological University on 2018-05-17

Submitted works

Delhi Technological University on 2019-05-25

Submitted works

National Institute of Technology Karnataka Surathkal on 2022-04-12

Submitted works

Delhi Technological University on 2019-05-25

Submitted works

Delhi Technological University on 2018-07-18

Submitted works

coursehero.com

Internet

Similarity Report ID: 0id:27535:17754735

2%

1%

<1%

<1%

<1%

<1%

<1%

<1%

Sources overview

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
http://alfakirtauhid.blogspot.com/2020/05/cors-misconfigurations-on-large-scale.html
https://www.coursehero.com/file/116729735/A-CASE-STUDY-ON-SINGLE-PHASE-INVERTER-AND-ITS-APPLICATIONSdocx/

7 turnitin

©®© 6 6 © 6 6 6 6 © 6 6 ©

Delhi Technological University on 2018-05-17

Submitted works

Delhi Technological University on 2020-06-30

Submitted works

pt.scribd.com

Internet

protecht.ca

Internet

National Institute of Technology Karnataka Surathkal on 2014-06-15

Submitted works

Singapore Institute of Technology on 2022-03-25

Submitted works

Pondicherry University on 2011-11-28

Submitted works

github.com

Internet

Delhi Technological University on 2018-05-12

Submitted works

Jamia Milia Islamia University on 2013-09-03

Submitted works

National College of Ireland on 2022-03-11

Submitted works

v1.overleaf.com

Internet

Similarity Report ID: 0id:27535:17754735

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

<1%

Sources overview

https://pt.scribd.com/doc/46580899/Usaha-Produksi-Pakan-Ikan-Buatan
http://www.protecht.ca/protecht_ca/bank/pageimages/jan22-preso-posting.pdf
https://github.com/RUB-NDS/CORStest
https://v1.overleaf.com/latex/templates/delhi-technological-university-thesis-template/scqntrwhhmjq.pdf

Z'l—_l turnitin Similarity Report ID: 0id:27535:17754735

@ nith on 2022-05-27 <1%

Submitted works

@ The Robert Gordon University on 2019-06-20 <1%
(o]

Submitted works

Sources overview

