
oid:27535:17754735Similarity Report ID: 

PAPER NAME

Final thesis.pdf
AUTHOR

Mritunjay  D

WORD COUNT

8444 Words
CHARACTER COUNT

43908 Characters

PAGE COUNT

39 Pages
FILE SIZE

1.3MB

SUBMISSION DATE

May 27, 2022 6:20 PM GMT+5:30
REPORT DATE

May 27, 2022 6:22 PM GMT+5:30

9% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

8% Internet database 1% Publications database

Crossref database Crossref Posted Content database

6% Submitted Works database

Excluded from Similarity Report

Bibliographic material Quoted material

Summary



CORS VULNERABILITY TESTER FOR WEB APPLICATION

A DISSERTATION

SUBMITTED IN PARTIAL FULFILMENT OF THE

REQUIREMENTS FOR THE AWARD OF DEGREE
OF

MASTER OF

TECHNOLOGY

IN

COMPUTER SCIENCE & ENGINEERING

Submitted by

MRITYUNJAY DUBEY

2K20/CSE/13

Under the supervision of

Dr. Prashant Giridhar Shambharkar

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi-11004
MAY, 2022

6

7



DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CANDIDATE’S DECLARATION

I, Mrityunjay Dubey, Roll No. 2K20/CSE/22 student of M. Tech (Computer

Science and Engineering), hereby declare that the project Dissertation titled

“CORS Vulnerability Tester for Web Applications” which is submitted by me to

the Department of Computer Science & Engineering, Delhi Technological

University, Delhi in partial fulfilment of the requirement for the award of the

degree of Master of Technology, is original and not copied from any source

without proper citation. This work has not previously formed the basis for the

award of and Degree, Diploma Associateship, Fellowship or other similar title or

recognition.

Place : Delhi Mrityunjay Dubey

Date : 2K20/CSE/13

i

4



DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Bawana Road, Delhi - 110042

CERTIFICATE

I hereby certify that the Project Dissertation titled “CORS Vulnerability Tester

for Web Applications” which is submitted by Mrityunjay Dubey, 2K20/CSE/13

Department of Computer Science & Engineering, Delhi Technological

University, Delhi in partial fulfillment of the requirement for the award of the

degree of Master of Technology, is a record of the project work carried out by the

students under my supervision. To the best of my knowledge, this work has not

been submitted in part or full for any Degree or Diploma to this University or

elsewhere.

Place : Delhi Dr. Prashant Giridhar Shambharkar

Date : Assistant Professor

Department of CSE

DTU

ii

3

8



ACKNOWLEDGMENT

The success of this project requires the assistance and input of numerous people

and the organization. I am grateful to everyone who helped in shaping the result

of the project.

I express my sincere thanks to Dr. Prashant Giridhar Shambharkar, my

project guide, for providing me with the opportunity to undertake this project

under his guidance. His constant support and encouragement have made me

realize that it is the process of learning which weighs more than the end result. I

am highly indebted to the panel faculties during all the progress evaluations for

their guidance, constant supervision and for motivating me to complete my

work. They helped me throughout with new ideas, provided information

necessary and pushed me to complete the work.

I also thank all my fellow students and my family for their continued support.

Mrityunjay Dubey
2K20/CSE/13

iii

5

10

13



ABSTRACT

The problems that were caused by the same-origin policy and the incorrect setup

of it led to the development of a protocol known as cross-origin resource sharing

(CORS). This protocol was designed to solve these problems. Current versions of

web browsers come equipped with a feature known as the same-origin policy..

Scripts that are housed on one domain are unable to make calls to scripts that are

placed on another website as a result of this functionality. This security policy

may ban certain legitimate use cases that pose no security risky. Utilizing CORS

is the optimal option for ensuring that those valid situations are able to work

correctly.

During the process of designing, implementing, and deploying CORS, we

discovered a number of additional security problems, including the following:

1) CORS diminishes cross-origin "write" privilege in practical ways.

2) CORS introduces additional trust requirements the web of different

interactions.

3) CORS is something which isn’t well understood for being developers, most

likely as a result of its.

opaque policy and complicated and complex linkages with other web protocols,

which results in a variety of misconfigurations. This is the case since CORS is

notoriously difficult to understand.

In conclusion, we provide simplified and clarified versions of the protocol in

order to solve the security problems that were uncovered by our study. Both the

CORS standard and the most common web browsers have taken some of our

suggestions and implemented them in a variety of different ways.

iv



CONTENT

CANDIDATE’S DECLARATION i

CERTIFICATE ii

ACKNOWLEDGMENT iii

ABSTRACT iv

CONTENT v

LIST OF FIGURES vi

LIST OF TABLES vii

LIST OF ABBREVIATIONS viii

CHAPTER : 1 Introduction 1
1.1 CORS OVERVIEW 1
1.2 OBJECTIVE 3
1.3 METHODOLOGY 3

Mistakes in vaIidation: 6

CHAPTER 2: LITERATURE SURVEY 8

CHAPTER 3: PROPOSED WORK 13
3.1: Identification of Problem 13
3.2 :Solution and Approach 14

The tooI: CORStest 14

CHAPTER 4: ARCHITECTURE 16

CHAPTER 5:RESULT AND DISCUSSION 18

CHAPTER 6 : CONCLUSION 26

REFERENCES 29

v

9 11

17

21



LIST OF FIGURES

■ Figure 1. A timeline of events relating to the development of CORS and

cross-origin network access. 3

■ Figure 2. Basic idea of CORS [16] 16

■ Figure 3. Access control cross-origin server [16] 17

■ Figure 4. CORS configurations found in 1 million websites 18

■ Figure 5. Access control allow credentials misconfiguration found in 1 million

websites 20

■ Figure 6. Running code with configuration -q: allow credentials only 22

■ Figure 7. Running code with configuration -v: verbose result 23

■ Figure 8. Running code without any configuration set 23

vi

22



LIST OF TABLES

■ Table 1. {Overview of CORS security problems } 4
■ Table 2. { Header size limitations for browsers and servers (single/all headers)} 5
■ Table 3. { CORS misconfigurations and its description} 13
■ Table 4. {CORS configurations found in 1 million websites } 19
■ Table 5. {Access control allow credentials misconfiguration found in 1 million

websites } 21

vii

1



LIST OF ABBREVIATIONS

1. CORS: Cross-Origin Resource Sharing

2. XSS: Cross-Site Scripting

3. CSRF: Cross-Site Request Forgery

4. JSON: JavaScript Object Notation

5. ACAO: Access-Control-Allow-Origin

6. ACAC: Access-Control-Allow-Credentials

viii

12

14

20



CHAPTER : 1 Introduction

1.1 CORS OVERVIEW

When it comes to protecting data on the client side of a website, the same-origin policy is an

absolute must (SOP). It runs scripts that were obtained from a great number of different

online pages, and these scripts may be accessed from a wide range of places. There is not an

explicit access control and authorization mechanism included in the default standard

operating procedure (SOP) for sharing resources across networks of diverse origins.

According to the Standard Operating Procedure, It is permissible for the side of client and the

scripts to create GET requests or POST requests to servers hosted by 3rd parties.. These

requests may be sent by connecting to the pages of other websites or by completing

cross-origin forms. On the other hand, these programmes do not have a straightforward and

safe method of communicating with these servers.

despite the fact that data was collected from a source that is not immediately clear. Because

most online applications need the reading of cross-origin network resources, but browsers do

not have the skills required to do so, developers came up with an ad-hoc solution in order to

meet the demand for the service. Because imported cross-origin JavaScript is permitted, there

is a potential loophole that might be utilised to get around the limitation. This could be done

by using a cross-origin JavaScript library.

However, this kind of creative workaround method is loaded with safety hazards at every turn

of the corner.

Cross-origin resource sharing, more often referred to as CORS, is a technique that may be

implemented in a web browser to provide restricted access to resources that are hosted

outside of a certain domain. CORS is also known by its acronym, "cross-origin." The

acronym CORS is often used to refer to the practise of cross-origin resource sharing. It

provides more flexibility and broadens the range of scenarios in which the same-origin

concept may be used (SOP). On the other hand, it enables cross-domain assaults to take

place, which opens the door to the possibility of such attacks happening in the event that the

CORS policy of a website is not adequately set up and followed out by the website's

administrators, which in turn opens the door. CORS is not a defence mechanism that may be

utilised against attacks that come from other domains. One example of this would be forgery

from the cross request site (CSRF).

1



As purpose for this study is to give a complete security all round analysis of CORS as given

terms of the concord's architecture, performance of the implemented, and deployment, as well

as to discover new forms of security vulnerabilities connected with CORS implementations in

real-world websites.

The issues that we came across while doing our investigation may be split up into these

distinct categories:

1) Cross-origin transmission permits granted by overIy IiberaI. Additional defauIt

transmission rights have been accidentally granted by the CORS n protocol, allowing for new

security vulnerabilities to be introduced. In order to exploit previously unexploited CSRF

vulnerabilities, we observed that an attacker might exploit a perpetrator's web application as a

conduit to target binary protocol services within the victim's home network by utilising this

newly relaxed authorisation to send messages to the victim's web browser.

2) CORS has flaws in its security that are built in. CORS requires the trusting of third-party

domains by resource servers in order to facilitate resource sharing. The use of websites

operated by third parties expands the attack surface and puts users in a position where they

are vulnerable to new security threats. There are a few details that may be overlooked, which

can lead to a flood of misconfigurations and security vulnerabilities in the real world. Even if

the fundamental approach for CORS is simple, there are a few details that can be overlooked.

After running misconfiguration in 132476 sub-domain on alexa top 50000 webpages ,we

found 27.5 percent CORS set accordingly to sub-domain , 13.2 percent set as base domain.

Theft of data, fraudulent activity on accounts, and even identity theft might all be the result of

these settings mistakes. Those who make these errors should be aware of the potential

consequences. In order to get a more in-depth knowledge of the implications that the issues

that were previously brought to light have in the actual world, we conducted an analysis of

CORS implementations on important websites. Using a passive Domain Name System

(DNS) database that is open to researchers at no cost and is controlled by a prominent

security business, we were able to extract aII of the subdomains that were included in the

AIexa Top 50,000 websites. We discovered a total of 97,199,966 unique subdomains inside

aII, which were then broken down into a total of 49,729 different base domains. In separate

test requests, we experimented with the Origin header value for each subdomain by changing

it to a number of different values that may lead to errors. After that, we determined the CORS

setups for each subdomain by using the response headers as our primary source of

information.

2

1



In order to identify whether or not an domain of HTTPS (such as www.exampIe.com) get

assure about its domain of the HTTP, we modify the entreaty of the header from the Origin to

read "Origin: http://exampIe.com." In the Topside that is header of given responses sent by

the HTTPS website, there is a string that reads "Access-ControI-AIIow-Origin".

Figure 1. A timeline of events relating to the development of CORS and cross-origin network access.

1.2 OBJECTIVE

The primary purpose of this study is to identify, via the use of a variety of methods, the

CORS vulnerabilities that arise from its misconfigurations and that, if discovered, may be

exploited through the use of XSS and CSRF.

1.3 METHODOLOGY

We looked at the W3C's CORS standard, of the standard of the WHATWG's Fetch, and

COR-interconnected argumentation on W3C to remember and memorize the lists of mailing

more about how CORS is built and certainity of the vulnerabilities.as the individual looked at

CORS fulfilment and implemented part of the given info in five web applications also eleven

source web which provides open access to it frameworks to get a sense of how they perform

in practice. While doing so, we uncovered possible links in the given subjects of these two

that is CORS features with the attacks which are known to us (both of them specific also the

wide one too), as well as their repercussions. We also measure CORS ruIes on reaI-worId

3

15



websites to assess the given subject implementation out of the provided the shown wild one.

On a scale amount of hugeness, we assessed the AIexa Top 50,000 websites, including their

97,177,988 individual subdomains. To evaluate their CORS ruIes, we sent cross-origin

requests to each domain using different asking identities.

Categories Problems Attacks

Overly permissive

sending permission Overly permissive header formats and values

Few limitations on header size

Format of body too felible

Very limited limitations on body value

RCE via crafting headers

Infer privacy information for any

website

CSRF’s upload of the file

protocol services’ attack which are

binary

Risky trust

dependency HTTPS domain trust their own HTTP domain

Trust in other domains

MITM attacks on HTTPS websites

Info theft or acc hijacking

Policy complexity

Poor expressiveness of access control policies

Forgeable "null" Origin values

Security mechanism complexity

Complex interactions with caching

Info theft or acc hijacking

Info theft or acc hijacking

Info theft or acc hijacking

Cache poisoning

Table 1. {Overview of CORS security problems }

4

1 1

1 1

1 1



Browser Limitation Server Limitation

Chrome browser >16MEGA BYTE

/ \> 16 MEGA

BYTE

Apache server 8 KILO BYTE/< 96

KILO BYTE

Edge browser >16MEGA BYTE

/ \> 16 MEGA

BYTE

IIS server 16KILO BYTE/

16KILO BYTE

Firefox browser >16MEGA BYTE

/ \> 16 MEGA

BYTE

Nginx server 8 KILO BYTE /<30

KILO BYTE

IE  browser >16MEGA BYTE

/ \> 16 MEGA

BYTE

Tomcat server 8 KILO BYTE/

8KILO BYTE

Safari browser >16MEGA BYTE

/ \> 16 MEGA

BYTE

Squid server 64KILO BYTE/

64 KILO BYTE

Table 2. { Header size limitations for browsers and servers (single/all headers)}

In some cases, human error was to blame; in other others, the design and execution of iCORS

were to blame. iCORS is unpleasant to developers because of these issues, which render it

vulnerable to configuration errors.

The causes may be categorised into several groups but we managed to provide it in four

ways:

1) The articulacy which have some of the policy governing control which provide access and

does not live up to the standards that have been set, which is an issue. When an application is

being developed, a large number of websites are necessary to design error-prone dynamic

CORS rules.

2) It's possible that the origin nu vaue was conceived of in response to a set of peculiar

stimuli.

5

1



3) Operators who are not acquainted with the security processes of the CORS network are to

blame for the majority of the misconfigurations that occur. This is where the trouble started in

the first place.

4) The inclusion of cross-origin resource sharing (CORS) and web caching adds an additional

layer of complication to the equation. This element adds another layer of difficulty to an

already challenging circumstance.

A header with the value Access-ControIAIIow-Origin The origin header value in the W3C

CORS standard may be either a singIe origin, "nuII," or "*," however when we discuss about

the Fetch of WHATWG standard, the main and provided origin from the single, "nuII," or

"*." According to the provided research, the WHATWG's Fetch standard is supported by aII

five of the most popular browsers. This access control method, which is too tight, fails to

satisfy the requirements of the vast majority of web developers. It is hectic and hard for the

creator of web application to reprovide the resources from one side to other several names

under that domain when using a normal configuration of the server, for example, because of

the limitations imposed by such arrangements. In its place, they are required to develop code

that is specific to their needs or make use of a web framework in order to dynamically

establish alternative CORS rules for requests coming from a variety of sources.

Mistakes in vaIidation:

Web developers need to be adaptable since the CORS standards only allow for a certain

amount of expressiveness. We came to the realisation that it is possible to check the Origin

header of the request and produce suitable CORS rules. When users have faith in validation

procedures that may be controlled by an attacker, the likelihood that a website will be

compromised increases.

There are four distinct types of errors:

1) If the value in the Origin header is same to the domain that is trusted, any domain preceded

by the most reliable domain prefix is trusted by the resource server. Consider the scenario in

which a server prefers to trust exampIe.com but forgets the last dot in the domain name,

exampIe.com.attacker.com. On popular websites such as tv.sohu.com, His error was

identified as myaccount.reaItor.com.

6



2) The process through which a resource server does a check to determine value matches with

trusted subdomain , the suffix matching is incompIetIe, allowing any domain ending in the

suffix to be aIIowed trusted domain status. It merely verifies that the Origin header value

ends in the subdomain example.com. "exampIe.com," which enables attacker registration on

attackexampIe.com. These issues may be identified on websites like m.huIu.com.

3) Failing to escape ".": ExampIe.com is designed to accept www.exampIe.com via the use of

regular expression matching; however, its configuration fails to escape ".", which results in

wwwaexampIe.com. This issue has been discovered on other websites, including

www.nim.nih.gov, among others.

4) We found that a number of websites, including subscribe.washingtonpost.com, had

validation issues, which allowed anybody to register ashingtonpost.co. These issues made it

possible for anyone to register ashingtonpost.co. During the course of our research, I came

across the fact that 50,216 domain names, or around 10.4 percent, had these validation issues.

7

18



CHAPTER 2: LITERATURE SURVEY
As shown in [1] Cookies have no real substance(integrity). Despite the fact that it has been

part of community legend for a long time, the community has a limited understanding of the

ramifications. Creating the attack for the real-world where the major websites are opposition

some examples of these site are Alphabet and B O A, which carries inside it as some subtle

accounts like XSS or any other account hijack those are used using injecting these cookies,

and then this help us to provide a different web application and it provide us with the

development of policies which indulge cookies and all these processing contains threat from

different attackers which have several levels of attacks are some of the things that we have

attempted to do in an effort to conduct a systematic analysis of the implications of cookie

integrity.

As studied in paper [2] application of content limitations under the name Content

Security Policy, which may be used to lock down the behaviour of websites through use of

information limitations as a method for controlling user behaviour on websites. CSP not just

empowers websites to proclaim what types of content may be crammed (and from where),

but it also provides some protection against bridge scripting and other common web-based

dangers such as clickjacking. CSP facilitates sites on the internet to declare what types of

content may be loaded (and from where). CSP gives websites the ability to designate the kind

of material that can be loaded on their pages (and from where).

It may have precedingly published a policy which are having same of the origin

(SOP) that is more restricted. This policy is intended to protect victims of assaults such as

intrusive browser history sniffing [3]. Their concept is that the history and cache associated

with each individual domain need to be fully separate from one another. This results in a

sandbox being generated of the every domain in it; nevertheless, it is not being addressed by

point of the risk provided by the penmanship being accelerated accidentally or by accident

from different website or webpages. It does provide new and enhanced privacy as the form

being provided to us from preventing a website all the loads. All the data being inputed in a

browser which belongs to a visitor after that we provide an information which is inferring and

restating several other web pages or sites; however, it does not provide the inverse, which is

the prevention of a website X releasing the data by mistake to someone about his own

information to a webpage or a site A, which is an site that is external website that has still not

burdened by the browser of the individual or the visitor.

8



In the paper [4] they conducted an investigation into the frequency with which these

vulnerabilities are found on the top 10,000 websites ranked by Alexa and found that 1,712

hosts make use of 79 different receivers that have a semantically flawed or completely absent

origin check. These mistakes lead to exploitable vulnerabilities on 84 hosts, including

cross-site scripting and the injection of arbitrary material into local storage. These

vulnerabilities can be exploited by hackers. We suggested a straightforward defence that

makes it possible for third-party content to validate the authenticity of the origin of messages

received via post Message. A supplementary defence that is based on an addition to the

Material Security Policy was also outlined by us, and it is intended for use on pages that

incorporate content provided by third parties. This technique requires support from the user's

browser, but site owners can utilise it without making any changes to the third-party code that

is already in place.

Within the scope of this research shown by [5] they investigated the existing status of

the policies that have control and also provide the access to browser they investigate all

incoherencies which also have surface as a result of browsers' improper handling of their

principals. generally, the work which is overall show and put up the community's

acknowledgement of web-applications that provide the access to the policies which have

control, after this progress this model provides result that has been sorely needed to the

affinity versus the dilemma of the security that plagues browsers. Specifically, it identifies

policies which are not safe and also it can be discriminated with small effort and impact on

the affinity.

The results of [6] investigation illustrate how critical it is to investigate each and every

conceivable interaction between browsers and the SOPDOM. Various browser data sets may

be utilised to locate differences among implementations, which, if not addressed, might result

in security issues. Their discoveries can be utilised by browser implementations in order to

more explicitly characterise the SOP-DOM implementation and hence avoid SOP bypasses in

advance. We are certain that a more rigorous SOP-DOM definition will assist the scientific

community as well as the pen testing community in locating vulnerabilities that are of a more

serious kind.As penetration testers or ethical hackers, it is our responsibility to be familiar

with the many utilities available so that we may complete our work effectively.as given in [7]

they came to the conclusion that there are too many different types of vulnerabilities for a

single technique to allow us to find them all. As a result, the pen tester needs to think

creatively in order to

9



perform penetration testing that will be of use to the customer. If the cost of the testing is

higher than the organization's profit, then the testing should not be performed.

It is vitally necessary to have a dependable protection strategy in place in order to shield a

web application against attacks like these as described in [8]. There is a wide variety of

available safeguards that may be integrated into a web application in order to protect it from

CSRF attacks. The most efficient method among them is to validate an unexpected token on

the server after passing it through a hidden field with the help of an unpredictable token. The

next best solution is to provide the token together with the URL request. Ongoing research is

being carried out at this time in order to create approaches that are even more severe in order

to thwart CSRF assaults.

The author also provide the phases which are divided into four sections of vulnerability

assessment and after that we also provide testing of the penetration in [11]. As an additional

point of discussion, we have gone over the stages of the VAPT as well as its methodology.

When working with VAPT, one can make use of a variety of commercial and open-source

tools that are readily available. As a result of this, we have created a list of the Open Source

and Free Tools that are regarded as the finest and most popular options for each sort of testing

that is included in VAPT. These tools are available for download on the VAPT website. In

addition to the criteria, we have included a comparative analysis of each of the techniques,

methods, and approaches that were used in the VAPT. This research was included alongside

the criteria

They offered a categorization of SSRs that was based on the type of defect, the extent of

control that was exerted over the messages, as shown in[10] the behaviour of the susceptible

services, and the possible attack targets. In addition, we uncovered previously undisclosed

exploitation techniques, in which a combination of services that appear to be harmless may

be used to create complex assaults targeting people and servers on the Internet. These attacks

can be mounted by using a combination of services. In addition, we reported the results of

trials conducted on 68 widely used online apps. Our research has shown that the majority of

online apps may be exploited by malicious actors to carry out a wide variety of operations,

ranging from server-side code execution to denial-of-service attacks.The work that is being

presented by [12] provides a framework that makes it possible to automate operations related

to penetration testing. An Executor module will deliver attack payloads to the target and will

also offer an interface to the user for the purpose of notifying them of potential

vulnerabilities. A communication protocol that is both general and adaptable is used between

an Orchestrator module and an Executor module. The Orchestrator

10



module retains knowledge about the target and proposes best candidate assaults to the

Executor. All of the requests are snatched up by a MitmProxy component, which provides the

Executor with a clearer picture of how they might launch their assault on the target. An

example of behavioural model integration is presented, as is a description of how the

framework models the domain of attack, and a demonstration of how it can integrate current

tools in a seamless manner is given. The suggested architecture has the potential to serve as

the foundation for the actualization of distributed attack systems.

The primary objective of the ongoing research field known as adversarial learning is to

develop classification algorithms that can withstand the presence of adversaries who are

attempting to deceive them into making incorrect predictions in the [13] paper. Our collection

of characteristics and classifiers is not designed to be resistant to the manipulations of a

malicious actor. As the classifiers meant for the aid testers of the penetration in locating

vulnerabilities of the CSRF and are not built for the detection of the attack which are being

directed on CSRF, this is, in fact, outside the scope of our current attempts and so cannot be

addressed.

Because of this, we believe that CSRF’s detection of the adversarial which also comprehend

the attacks they might be an intriguing avenue for future research. This would include the

development of system which have detection works for the online regime for CSRF attacks

that are resistant to attempt them but also sophisticated at the same time which disguise

critical problems of the innocuous ones.

The author of [14] observed CORS are not that much defined and acknowledge it by doing a

wide also the measurement of its scale which is being provided for the CORS and defining its

deployment in many websites which are located to real world. So that the determined result is

27.5 percent that is configured for CORS, domains is unsafe and may calculate

mis-configurations. After doing more research into the factors that contribute to these

problems, we discovered that while some of these issues are the result of carelessness on the

part of developers, the majority of security flaws are due to flaws in the design and

implementation of the CORS protocol. The terrible truth that is CORS security is an example

of online security at its finest. As new features are continually being added to the web, many

of which are released prematurely, unanticipated interactions are causing new security risks.

The elimination of new dangers necessitates the addition of new defences, which, in the event

that they are not carefully crafted, might bring about the emergence of more hazards. The

addition of backward compatibility just serves to further confuse the issue.

11



In the paper [15] , a novel online privacy attack was presented. This attack made use of

HTML5 AppCache rather than client-side scripts or plug-ins in order to determine the status

of cross-origin URLs in an indirect manner. We were able to validate that our assaults were

capable of successfully exploiting all of the main web browsers that supported AppCache. A

Cache-Origin request-header field was another solution that we recommended as an effective

countermeasure. The countermeasure was effective in reducing the impact of our strikes.

12



CHAPTER 3: PROPOSED WORK

3.1: Identification of Problem

CORS  is a method which provide and give access to us and  has been purposefully devised

to subvert the same-origin policy (SOP). Web servers have the ability to expressly give them

access for the  cross-site for a resource after being provided for ACAO which is the header if

it and then the requesting client. The utility is occasionally dynamic and it is constructed  on

user input’s dependency ,also Origin header of the web apps. This may happen at any

moment. It is possible that an undesirable website will be able to access the resource if it is

set incorrectly. In addition, if the Access-ControI-AIIow-CredentiaIs (ACAC) server header is

enabled, an attacker has the potential to steal confidential info from a logged-in user, it is

really harmful like XSS on website itself.

The following provide a inventory of the possible misconfigurations of the CORS that might

be relative and supportive for the subject:

Misconfiguration Description

Developer backdoor Access to the resource is permitted even when it comes from insecure
development or debug sources like JSFiddler CodePen.

Origin reflection Any website is able to get access to the resource since the origin is just
repeated in the ACAO header.

Null misconfiguration By requiring a null origin and using a sandboxed iframe, access may be
granted to any website.

Pre-domain wildcard notdomain.com is given permission to access, which means that the
attacker may easily register it.

Post-domain wildcard If access to domain.com.evil.com is permitted, then the attacker may
easily configure their malicious website.

Subdomains allowed sub.domain.com access is permitted; nonetheless, the vulnerability may
be exploited if XSS is present in any subdomain.

Non-SSL sites allowed If an HTTP origin is granted access to an HTTPS resource, then a
MitM attacker will be able to decrypt the data.

Invalid CORS header Incorrect usage of the wildcard character or numerous origins; this is
not a security issue but should be corrected.

Table 3. { CORS misconfigurations and its description}

13

2

2

19



3.2 :Solution and Approach

The tooI: CORStest

Checking for potential vulnerabilities like this is made much easier by CurI. We built

CORStest, a fundamental CORS misconfiguration tester that is based on Python, to allow for

some additional features such as parameterization. It includes the following characteristics

and functions, and it takes as input a text file that contains a list of URLs or domain names to

check for incorrect configurations:

usage: corstest.py [arguments] infile

positional arguments:

infile               File with domain or URL list

optional arguments:

-h, --help               depart and show help

-c name=value      Cookie all requests

-p processes         multiprocessing (default: 32)

-s                           always force ssl/tls requests

-q                           quiet, allow-credentials

-v                           generate output that is more verbose

CORStest has the ability to unearth potential vulnerabilities by requiring the user to provide

several Oit request headers and check for the Access-ControI-AIIow Origin answer. The

websites listed below are only one example of those that are included in the AIexa top 750

that make use of credentials for CORS requests.

Instructions on how to use the CORS tester to identify potential vulnerabilities

We performed CORStest on the AIexa top 1 million sites to determine the percentage of

websites that have wide-open CORS configurations on a larger scale. These percentages are

as follows:

14

2

2

2

16



$wget -q http://s3.amazonaws.com/alexa-static/top-1m.csv.zip

$ unzip top-1m.csv.zip

$ awk -F, '{print $2}' top-1m.csv> alexa.txt $ ./corstest.py alexa.txt

$./coretest.py alexa.txt

15

2



CHAPTER 4: ARCHITECTURE

CORS is security standard which is implemented by browsers which specify set of

rules to share data between website and users , The Cross-Origin Resource Sharing

(CORS) protocol is made up of a group of headers that signal whether or not a

response may be shared across different domains. For requests that are more

sophisticated than what is allowed with HTML's form element, a CORS-preflight

request is made in order to guarantee that the request's current URL supports the

CORS protocol. This request is only carried out if the request's current URL already

exists.

Figure 2. Basic idea of CORS [1]

Browsers send set of CORS header to cross-origin server and cross-origin server

respond back with headers value , so by the headers returned value browsers

decided to “block” or “allow” to show content .

16



Figure 3. Access control cross-origin server [1]

In our project we have sent http requests to websites to and we analyse return

headers value of thesis websites cross-origin and we can classify what kind of

CORS vulnerability exists in CORS configuration of websites .

These vulnerabilities are caused by the misconfiguration of CORS There is a

possibility that nefarious domains will be able to access the API endpoints if certain

settings are incorrect.

17



CHAPTER 5:

RESULT AND DISCUSSION

This test took around 14 hours to complete and yielded the following results when performed

on a reliable connection:

Figure 4. CORS configurations found in 1 million websites

18



S.NO. Misconfigurations No. of websites Percentage of websites

1 Developer backdoor 8 ~0.0

2 Origin reflection 1702 5.8

3 Null misconfiguration 57 0.2

4 Pre-domain wildcard 159 0.5

5 Post-domain wildcard 147 0.5

6 Subdomains allowed 460 1.6

7 Non-ssl sites allowed 1677 5.7

8 Invalid CORS header 1019 3.5

9 Valid CORS header 24258 82.3

Table 4. {CORS configurations found in 1 million websites }

Only 29,514 websites, or around 3 percent, answered with Access-ControI-AIIow-Origin

when asked whether CORS was enabled on their main page. Of On the other hand, many

websites, like Google, only enable CORS headers for certain URLs rather than using them

globally throughout the site. CORStest might have been fed the information that we gathered

by crawling a few websites, including their subdomains. On the other hand, this would have

required a significant amount of time, and our quick and dirty solution should be sufficient

for statistical purposes.

In addition, the test was executed only via the use of GET requests sent to the http:// versions

of websites (and did not include any CORS prefIight) (with redirects foIIowed). It is

important for everyone of them to give the web applications for e.g., includes the top heading

having the origin that doesn’t guarantee that certain website is necessarily valid. This is

something that should be kept in mind. It is essential to consider the context; a setup of this

kind may function faultlessly for public websites or API endpoints that are accessible to the

public. As a consequence of this, it is possible that social networking platforms and payment

websites may have difficulties.

19



Additionally, the Access-ControI-AIIow-CredentiaIs: true (ACAC) header has to be set in

order for it to be functional. As a consequence of this, we concatenated it and re arrange the

test , but for this clock range we are restricted it for just those websites which are sent back

the following topper or the header (CORStest -q fIag):

./corstest.py -q aIexa.txt

Vast majority of websites accpet ACAC and ACAO which can exploited by attacker

Figure 5. Access control allow credentials misconfiguration found in 1 million websites

20



S.NO. Misconfigurations No. of websites Percentage of websites

1 Developer backdoor 2 0.1

2 Origin reflection 1330 39.2

3 Null misconfiguration 20 0.6

4 Pre-domain wildcard 76 2.2

5 Post-domain wildcard 93 2.7

6 Subdomains allowed 194 5.7

7 Non-ssl sites allowed 385 11.4

8 Invalid CORS header 113 3.3

9 Valid CORS header 1179 34.8

Table 5. {Access control allow credentials misconfiguration found in 1 million websites }

In particular, we were interested in determining whether or not there is a connection between

applied technology and incorrect setup. As a direct consequence of this, we made use of

WhatWeb in order to conduct a web technology fingerprint analysis on two separate websites.

CORS is often enabled in one of two ways: for that we directly having the settings of the

server of the HTTP, or indirectly via the web device, browser, applications or any certain

framework. Although these were unable to identify the basic or the single fundamental reason

for misconfigurations’ CORS, they may find a variety of possible explanations for why they

occur.

The majority of potentially harmful Access-ControI-* headers were almost certainly added

by developers. On the other hand, some of these headers are the result of flaws and unethical

practises that were included in some products.

Insights are as foIIows:

● Invalid CORS headers are returned by a number of different websites; in addition to

the erroneous operation  of some of the certain wildcards like *.domain.com, also the

21



header of the ACAO with that may have multiple sources are than observed. Other

unauthorised ACAO values that we came across were the following: domain, origin,

SAMEORIGIN, seIf, true, faIse, undefined, None, 0, (nuII), domain, origin,

SAMEORIGIN, and domain, origin.

● CORS for Ruby on Rails is supported by Rack::Cors, the de facto standard Iibrary.

This is problematic because developers may believe that "allows nothing and '*' acts

in accordance with the spec: most harmIess since it cannot be used to create

'credentiaIed' requests;

● The vast number of websites that aIIow CORS to access us through IIS on an http

resource may or may not have the allowance of it; the problem that may be caused by

faulty advice published on the Internet rather than a flaw in IIS itselfeIf.

● However, this is because to unsafe configurations acquired from Stackoverflow; the

same problem applies for Phusion Passenger. Nginx comes out on top when it comes

to serving websites with origin references.

● We haven't found a specific framework, but the nuII ACAO value could be depends

and run on some certain languages which could be a programming one as it just return

nuII if no match found. Another example is that a popular book on CORS has code

like var originWhiteIist = ['nuII',...], which developers might think is safe.

● Some sites, including or, have their ACAO values permanently set. In this scenario,

what actions should browsers take? Inconsistency is the undisputed champion at Ieast!

While Internet Explorer and Edge do not, Firefox, Chrome, Safari, and Opera both

allow and disallow content from arbitrary sources.

Figure 6. Running code with configuration -q: allow credentials only

22



Figure 7. Running code with configuration -v: verbose result

Figure 8. Running code without any configuration set
When CORS interacts with an HTTP cache, an additional error-prone corner case might

develop. When a resource server is used by many domain names at the same time, individual

CORS rules have to be set up for each of the domains that are making requests. On the other

hand, the majority of HTTP have the proxies that are cache to it material, making it

23



impossible for them to comply with CORS limitations. A violation of the CORS policy for

one domain will prevent other domains from being able to access a resource that is shared by

many domains and is cached using the CORS policy for that domain.

For example, a cached resource from domain c.com has to be accessible by browsers that also

share the same cache with domains a.com and b.com. The quick iterative development

strategy that is used for the web does not do enough verification of new protocols before

introducing them. Browsers quickly integrate new features and disseminate them to users

before they have been compIeteIy tested; as a result of this, some immature designs are

difficult to update after they have been wideIy used on the Internet.

The CORS protocol underwent significant changes during the second half of 2008, and the

W3C is now debating whether or not to approve these changes. The demands of web

developers or the results of browser competitions led several vendors to incorporate this

immature protocol into browsers as new capabilities in January 2009. These new capabilities

have certain immature designs, such as CORS regulations only supporting a single origin, but

they were included in browsers as a result of the competitions.

As can be seen in the diagram, a total of 481,589 sub-domains were set up to use CORS

across 22,049 base domains. Of these, 61,347 HTTPS sub-domains (approximately 12.7

percent) trusted the HTTP domain over 1,031 base domains (approximately 4.7 percent), and

84,327 sub-domains (approximately 17.5 percent) trusted any of its own subdomains over

1,010 base We go even further into the factors that led to the considerable prevalence of these

two security vulnerabilities.

We found three reasons for the first danger after doing research on CORS standards, web

frameworks, and online applications. These are as follows:

1) The guidelines don't really go into detail about the potential safety risks.

2) Certain web frameworks do not do checks for the kind of protocoI. When analysing a

entreaty's header of an origin to determine the policy which are provided by CORS,

popular webapp frameworks like django-cors-headers, for example, just look at the

domain and disregard the protocoI type. This is done to redraw or provide back the

policy of the CORS

24



3) Many different online plea also have support of both of these that are HTTP and the

HTTPS protocols, which contributes to a greater level of interoperability.

25



CHAPTER 6 : CONCLUSION

The consequence of this is that payment and taxpayer sites are going around SOP/SSL.

● It should be brought to everyone's attention that not even half of the websites that

were examined were really credible.

● Some only had public data, while others, like Bitbucket, also have the CORS which is

authorize as the main paper and not the user data sub-pages. The public information

was only available for some of the sites.

● After manually evaluating each site, we found that the following ones met our criteria

for viability.

● We were able to set up a test account with many of the different banking which are

online also it have bitcoin, and several system that pays in a certain manner, which

allowed us to develop a code of the proof-of-concept it do might might potentially

money stealing can be done through it in many different manners.

● There are hundreds of businesses which are online and sites are e-commerce , in

addition to a few websites that allow users to book hotels and flights online.

● Several social networks and more websites that enable users to log in and

communicate with one another are referred to as "social networking sites."

● The website of the tax filing department of one of the states in the United States

(unfortunately, this particular one was deleted by a federal agency).

During the course of the analysis, we came across a wide range of CORS-related security

issues, all of which may be categorised into one of the following three high-risk buckets:

1) A monitor that isn't functioning to its full potential

In order to maintain continuity with the past plan, allowance of the CORS "basic

requests" is the default option for the freely sent. On the other hand, the scope of basic

CORS inquiries is far more extensive than what was previously possible in a variety

of different subtle ways. OnIine attackers are now able to take use of the new by

defauIt sending capabilities offered by CORS in order to carry out a number of attacks

that were before difficult to carry out in the context of a web attacker attack scenario.

26



2) Competition with high stakes

some webpages and sites employ error-prone CORS which is dynamic and also have

the policy of development’s stage of its application because the policy which are

being conducted by CORS itseIf it won’t be able to define and acknowledge the

process in a simple manner. This is because is itself can’t be stated in a normal way.

These advanced policies seem to be the root cause of a wide range of CORS policy

misconfigurations, as our team has discovered.

3) Authorization to Send Messages in a Manner That Is Considerably More Relaxed

The cross-origin transmitting authorization that is provided by the default SOP

already presents substantial security risks, including those posed by CSRF and HFPA

attacks (Section 2.2). If backward compatibility hadn't been taken into account, CORS

may have allowed cross-origin access to soive and unified defences against CSRF,

HFPA, and other cross-origin network resource access at the protocol level. Both of

these things would have been undesirable. On the other hand, CORS ensured that the

compatibility of the previous policy was maintained.

CORS enables "simple requests" to be sent for free by default in its new JavaScript

APIs. This is made possible via the CORS protocol (e.g., XMLHttpRequest LeveI2,

fetch). On the other side, these new interfaces unintentionally facilitate the transfer of

permissions since they allow for the crafty customisation of HTTP headers and

contents within CORS basic requests.

On CORS, we carried out an empirical security investigation. We found a number of

new security flaws in the CORS standards as well as the implementations of those

requirements in web browsers and web frameworks. by taking a comprehensive look

at the implementation of CORS on websites that include real-world content.

After doing more research into the underlying reasons for these problems, we came to

the conclusion that the design and implementation of the CORS protocol are to blame

for a number of security flaws, despite the fact that some of these vulnerabilities are

the result of developer error.

Finally, in order to address these issues, we proposed a number of changes that would

enhance the situation and clarify some aspects of it. A number of our proposals have

27

1

1

1



been included into the most current version of the CORS specification, and the most

popular web browsers have already begun to implement them. We aIso provide an

open-source tool to assist web developers and security practitioners in determining if

a website is vuInerabIe to the misconfiguration vulnerabilities that we discovered.

This tool was developed to assist in determining if a website is vuInerabIe to the

vulnerabilities that we discovered.

The security provided by CORS is a terrible illustration of how to protect real-world

data online. As the Web evolves to provide new capabilities, which are often provided

ahead of schedule, unanticipated interactions give rise to new security threats. The

incorporation of new features to protect against new hazards necessitates the

installation of new features, which, if they are not well planned, will result in the

introduction of new dangers. The predicament is made more difficult by the presence

of backward compatibility. The design and implementation of web protocols in the

future need to adopt a more methodical approach to ensuring users' safety.

28

1



REFERENCES

[1].Zheng, X., Jiang, J., Liang, J., Duan, H., Chen, S., Wan, T., & Weaver, N. (2015).

Cookies Lack Integrity:{Real-World} Implications. In 24th USENIX Security

Symposium (USENIX Security 15) (pp. 707-721).

[2].Stamm, S., Sterne, B., & Markham, G. (2010, April). Reining in the web with content

security policy. In Proceedings of the 19th international conference on World wide

web (pp. 921-930).

[3].Jakobsson, M., & Stamm, S. (2006, May). Invasive browser sniffing and

countermeasures. In Proceedings of the 15th international conference on World Wide

Web (pp. 523-532).

[4].Son, S., & Shmatikov, V. (2013, February). The Postman Always Rings Twice:

Attacking and Defending postMessage in HTML5 Websites. In NDSS.

[5].Singh, K., Moshchuk, A., Wang, H. J., & Lee, W. (2010, May). On the incoherencies

in web browser access control policies. In 2010 IEEE Symposium on Security and

Privacy (pp. 463-478). IEEE.

[6].Schwenk, J., Niemietz, M., & Mainka, C. (2017). {Same-Origin} Policy: Evaluation

in Modern Browsers. In 26th USENIX Security Symposium (USENIX Security 17)

(pp. 713-727).

[7].Shahidullah, M. (2019). Vulnerability Assessment Penetration Testing for Web

Application.

[8].Semastin, E., Azam, S., Shanmugam, B., Kannoorpatti, K., Jonokman, M., Samy, G.

N., & Perumal, S. (2018). Preventive measures for cross site request forgery attacks

on Web-based Applications. International Journal of Engineering and Technology

(UAE).

[9].Sudhodanan, A., Khodayari, S., & Caballero, J. (2019). Cross-origin state inference

(COSI) attacks: Leaking web site states through xs-leaks. arXiv preprint

arXiv:1908.02204.

[10]. Pellegrino, G., Catakoglu, O., Balzarotti, D., & Rossow, C. (2016, September).

Uses and abuses of server-side requests. In International Symposium on Research in

Attacks, Intrusions, and Defenses (pp. 393-414). Springer, Cham.

29



[11]. Shah, S., & Mehtre, B. M. (2015). An overview of vulnerability assessment and

penetration testing techniques. Journal of Computer Virology and Hacking

Techniques, 11(1), 27-49.

[12]. Romano, S. P., Auricchio, N., Cappuccio, A., Caturano, F., & Perrone, G. An

automated approach to Web Offensive Security. Available at SSRN 4057341.

[13]. Calzavara, S., Conti, M., Focardi, R., Rabitti, A., & Tolomei, G. (2019, June).

Mitch: A machine learning approach to the black-box detection of CSRF

vulnerabilities. In 2019 IEEE European Symposium on Security and Privacy

(EuroS&P) (pp. 528-543). IEEE.

[14]. Chen, J., Jiang, J., Duan, H., Wan, T., Chen, S., Paxson, V., & Yang, M. (2018).

We Still {Don’t} Have Secure {Cross-Domain} Requests: an Empirical Study of

{CORS}. In 27th USENIX Security Symposium (USENIX Security 18) (pp.

1079-1093).

[15]. Lee, S., Kim, H., & Kim, J. (2015, February). Identifying Cross-origin Resource

Status Using Application Cache. In NDSS.

[16]. https://reflectoring.io/complete-guide-to-cors/

[17]. https://www.kaggle.com/datasets/cheedcheed/top1m

30

https://reflectoring.io/complete-guide-to-cors/
https://www.kaggle.com/datasets/cheedcheed/top1m


oid:27535:17754735Similarity Report ID: 

9% Overall Similarity
Top sources found in the following databases:

8% Internet database 1% Publications database

Crossref database Crossref Posted Content database

6% Submitted Works database

TOP SOURCES

The sources with the highest number of matches within the submission. Overlapping sources will not be
displayed.

1
usenix.org 2%
Internet

2
alfakirtauhid.blogspot.com 1%
Internet

3
Delhi Technological University on 2018-05-17 <1%
Submitted works

4
Delhi Technological University on 2019-05-25 <1%
Submitted works

5
National Institute of Technology Karnataka Surathkal on 2022-04-12 <1%
Submitted works

6
Delhi Technological University on 2019-05-25 <1%
Submitted works

7
Delhi Technological University on 2018-07-18 <1%
Submitted works

8
coursehero.com <1%
Internet

Sources overview

https://www.usenix.org/system/files/conference/usenixsecurity18/sec18-chen.pdf
http://alfakirtauhid.blogspot.com/2020/05/cors-misconfigurations-on-large-scale.html
https://www.coursehero.com/file/116729735/A-CASE-STUDY-ON-SINGLE-PHASE-INVERTER-AND-ITS-APPLICATIONSdocx/


oid:27535:17754735Similarity Report ID: 

9
Delhi Technological University on 2018-05-17 <1%
Submitted works

10
Delhi Technological University on 2020-06-30 <1%
Submitted works

11
pt.scribd.com <1%
Internet

12
protecht.ca <1%
Internet

13
National Institute of Technology Karnataka Surathkal on 2014-06-15 <1%
Submitted works

14
Singapore Institute of Technology on 2022-03-25 <1%
Submitted works

15
Pondicherry University on 2011-11-28 <1%
Submitted works

16
github.com <1%
Internet

17
Delhi Technological University on 2018-05-12 <1%
Submitted works

18
Jamia Milia Islamia University on 2013-09-03 <1%
Submitted works

19
National College of Ireland on 2022-03-11 <1%
Submitted works

20
v1.overleaf.com <1%
Internet

Sources overview

https://pt.scribd.com/doc/46580899/Usaha-Produksi-Pakan-Ikan-Buatan
http://www.protecht.ca/protecht_ca/bank/pageimages/jan22-preso-posting.pdf
https://github.com/RUB-NDS/CORStest
https://v1.overleaf.com/latex/templates/delhi-technological-university-thesis-template/scqntrwhhmjq.pdf


oid:27535:17754735Similarity Report ID: 

21
nith on 2022-05-27 <1%
Submitted works

22
The Robert Gordon University on 2019-06-20 <1%
Submitted works

Sources overview


