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MODELING AND SIMULATION OF INFECTIOUS DISEASE
USING FRACTIONAL CALCULUS

Abhay Srivastava

ABSTRACT

In recent years, the world has faced a sharp rise in infectious diseases, which continue

to be a serious threat to public health. Despite progress in medical science, surveillance

systems, and control measures, outbreaks such as influenza, SARS, and most recent-

ly COVID-19 have shown that our societies remain highly vulnerable. These events

have also revealed some of the limitations of the classical models used to study and

predict the spread of infections. In particular, standard models often ignore memory

effects, individual behaviour, and environmental influences. To overcome these gap-

s, this thesis applies fractional calculus in the modeling and simulation of infectious

diseases. Fractional-order models have the advantage of incorporating memory and

history, which makes them more realistic for studying epidemics where past exposure,

immunity, and behavioural changes play an important role.

The work begins with a study of vaccination strategies followed in five countries

that were badly affected during the first half of 2022: the USA, India, Brazil, France,

and the UK. A detailed comparison shows that most countries gave priority first to

frontline workers and health professionals, and then to elderly or immunocompromised

people. The main difference was how countries divided the age groups for priority. By

comparing these strategies with confirmed cases and deaths per population, as well as

with population density and median age, the study highlights how vaccine distribution

policies must be designed carefully to suit the demographics of each country.

Motivated by these findings, different fractional-order models are developed in

this thesis. The first is an SIS model with Beddington-De Angelis incidence, used to

capture the effect of fear-driven behaviour. When people become afraid of infection,

they may self-isolate or reduce contact with others. Such actions can strongly influence

disease spread, and fractional calculus is especially suitable to model this because fear

and behaviour are shaped by past experiences.

A second contribution is an SVIR model that divide vaccinated people into two

groups: partially vaccinated (those who did not complete the prescribed course of

the doses) and fully vaccinated (those who completed the vaccination schedule and

followed health guidelines). This distinction is important, as many people worldwide

xiii
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showed hesitancy in taking vaccines, often due to doubts about safety or mistrust of

governments. The model allows us to study how partial vaccination affects recovery

compared with full vaccination, giving a clearer picture of real vaccination outcomes.

The thesis also extends the SEIQR model by including two realistic features: psy-

chological effects during transmission (using Monod-Haldane incidence) and a limited

quarantine capacity (Holling type-III function). These changes reflect how quarantine

in practice cannot be increased indefinitely and is often constrained by resources. An

associated fractional optimal control problem is studied using Pontryagin’s principle,

showing how time-dependent controls can be used to reduce infections at minimum

cost.

Beyond vaccination and quarantine, the thesis considers environmental effect-

s. A Susceptible-Pollution affected-Infected-Recovered (SPIR) model is proposed to

study how exposure to pollutants weakens immunity and increases vulnerability to in-

fections. This model even accounts for prenatal exposure in newborns, reflecting the

long-term consequences of pollution. A fractional optimal control problem with two

controls is solved to examine how information campaigns and other interventions can

help reduce infections in polluted environments.

Another area studied is the role of bacteria. Due to rising household waste and

urbanization, bacterial populations in the environment are growing, leading to more

bacterial and vector-borne diseases. To address this, a fractional SIR model with bac-

teria in the environment and in organisms is developed. An optimal control problem

with three controls is analyzed to show how disease transmission can be reduced effi-

ciently.

Across all these models, the unifying theme is the use of fractional-order system-

s. By including memory, they allow us to model more realistic epidemic behaviours,

whether due to human psychology, environmental stress, or bacterial growth. Nu-

merical simulations are carried out using the Adams-Bashforth-Moulton predictor-

corrector method, which validates the theoretical results and demonstrates how the

models behave under different conditions.

In summary, this thesis presents a set of new fractional-order models that bring

together vaccination strategies, fear and behaviour, quarantine measures, environmen-

tal pollution, and bacterial effects in infectious disease dynamics. The results show

that fractional models are not only mathematically richer but also practically more

meaningful, as they reflect the role of memory and history in epidemic processes. By

combining theory, simulations, and control strategies, the thesis provides insights that
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can support better decision-making in managing infectious diseases and preparing for

future outbreaks.

Page 25 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 25 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



Page 26 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 26 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



Table of Contents

ACKNOWLEDGMENTS v

Declaration ix

Certificate xi

Abstract xiii

List of Figures xxi

List of Tables xxv

1 Introduction 1
1.1 Fractional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Epidemiology: A brief overview . . . . . . . . . . . . . . . . . . . . 6

1.2.1 Mathematical modeling of infectious diseases . . . . . . . . . 7

1.2.2 Modes of Transmission . . . . . . . . . . . . . . . . . . . . . 11

1.3 Incidence and Treatment rates . . . . . . . . . . . . . . . . . . . . . 12

1.4 Disease prevention and control . . . . . . . . . . . . . . . . . . . . . 14

1.4.1 Awareness . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4.2 Fear effect . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.4.3 Testing and treatment . . . . . . . . . . . . . . . . . . . . . . 15

1.4.4 Vaccination . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.5 Mathematical Preliminaries and Methodology . . . . . . . . . . . . . 18

1.6 Fractional order optimal control . . . . . . . . . . . . . . . . . . . . 23

1.7 Chapter-wise Overview of the Thesis . . . . . . . . . . . . . . . . . . 25

xvii

7

Page 27 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 27 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



xviii Table of Contents

2 A study of Fractional order SIS model with fear effect and Beddington-De
Angelis incidence rate 29
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Formulation of fractional order epidemic model . . . . . . . . . . . . 30

2.3 Non-negativity and Boundedness . . . . . . . . . . . . . . . . . . . . 31

2.4 Basic Reproduction Number and Equilibria . . . . . . . . . . . . . . 32

2.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.1 Local stability of disease-free equilibrium . . . . . . . . . . . 34

2.6 Numerical Simulation and Discussion . . . . . . . . . . . . . . . . . 36

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3 Stability Analysis and Quantification of Effects of Partial and Full Vacci-
nation Using Fractional Order SVIR model 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Formulation of fractional order epidemic model . . . . . . . . . . . . 46

3.3 Positivity and boundedness . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Possible Equilibria and Basic Reproduction Number . . . . . . . . . 51

3.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.5.1 Local stability of DFE and endemic equilibrium . . . . . . . . 54

3.5.2 Global stability of disease-free equilibrium (DFE) . . . . . . 59

3.5.3 Global stability of endemic equilibrium . . . . . . . . . . . . 60

3.6 Sensitivity analysis of R0 . . . . . . . . . . . . . . . . . . . . . . . . 62

3.7 Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.7.1 Quantification of effects partial and full vaccination . . . . . 70

3.8 Discussion and Conclusion . . . . . . . . . . . . . . . . . . . . . . . 72

4 Optimal Control of a Fractional Order SEIQR Epidemic Model with Non-
monotonic Incidence and Quarantine class 75
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Formulation of fractional order epidemic model . . . . . . . . . . . . 80

4.3 Basic Properties and Equilibria . . . . . . . . . . . . . . . . . . . . . 82

4.3.1 Positivity and Boundedness of solutions . . . . . . . . . . . . 82

4.3.2 The Basic Reproduction Number and Equilibria . . . . . . . . 82

4.4 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.1 Local Stability . . . . . . . . . . . . . . . . . . . . . . . . . 87

5

7

14

Page 28 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 28 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



Table of Contents xix

4.4.2 Global Stability . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.5 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.6 Optimal Control Problem . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7 Numerical Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.8 Numerical Simulations and Discussion . . . . . . . . . . . . . . . . . 105

4.8.1 Numerical Analysis without Control Strategy . . . . . . . . . 106

4.8.2 Numerical Analysis with Control Strategy . . . . . . . . . . . 111

4.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5 Mathematical Modeling and Qualitative Analysis of a Fractional-Order
SPIR Epidemic Model with Non-monotonic Incidences and Optimal Con-
trol 119
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.2 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.3 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.3.1 Existence and uniqueness . . . . . . . . . . . . . . . . . . . 125

5.3.2 Non-negativity and boundedness . . . . . . . . . . . . . . . . 127

5.4 Equilibria and the basic reproduction number . . . . . . . . . . . . . 127

5.5 Stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.5.1 Local stability . . . . . . . . . . . . . . . . . . . . . . . . . 130

5.5.2 Global stability . . . . . . . . . . . . . . . . . . . . . . . . . 134

5.6 Bifurcation analysis at R0 = 1 around E0 . . . . . . . . . . . . . . . 137

5.7 Optimal Control Formulations . . . . . . . . . . . . . . . . . . . . . 140

5.8 Simulation and Discussion . . . . . . . . . . . . . . . . . . . . . . . 144

5.8.1 Simulation without control strategy . . . . . . . . . . . . . . 144

5.8.2 Numerical Analysis with Control Strategy . . . . . . . . . . . 149

5.8.3 Comparative study . . . . . . . . . . . . . . . . . . . . . . . 155

5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

6 Analysis of a fractional order SIR model for infectious diseases spread by
household waste with optimal control strategies 161
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162

6.2 Model development . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

6.3 Positivity and Boundedness . . . . . . . . . . . . . . . . . . . . . . . 167

6.4 Existence and Uniqueness . . . . . . . . . . . . . . . . . . . . . . . 168

1

7

36

Page 29 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 29 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



xx Table of Contents

6.5 Basic Reproduction number and its Sensitivity Analysis . . . . . . . . 173

6.5.1 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . 174

6.6 Ulam-Hyers Stability . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.7 Optimal Control Formulations . . . . . . . . . . . . . . . . . . . . . 178

6.7.1 Combined objective functional . . . . . . . . . . . . . . . . . 180

6.7.2 Existence of optimal control . . . . . . . . . . . . . . . . . . 180

6.7.3 Characterization of optimal control function . . . . . . . . . . 181

6.8 Numerical Scheme Adams-Bashforth-Moulton Predictor-Corrector

Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.9 Simulation and Discussion . . . . . . . . . . . . . . . . . . . . . . . 184

6.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

7 Conclusion, Future scope and Social Impact 197
7.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

7.2 Future Directions and Research Plans . . . . . . . . . . . . . . . . . 200

7.3 Social Impact . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201

References 203

List of Publications 223

Page 30 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 30 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



List of Figures

1.1 Mathematical modeling. . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Stability regions (shaded area) for (a) fractional order system and (b)

integer order systems. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Time series plot of susceptible population for different values of frac-

tional order α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.2 Time series plot of infected population for different values of fractional

order α . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.3 Phase diagram for susceptible and infected population for fractional

order α = 0.8. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.4 Effect of fear level δ on I for fractional order α = 0.8. . . . . . . . . 40

2.5 Effect of preventive measures ρ on S for fractional order α = 0.8. . . 41

2.6 Effect of preventive measures γ on S for fractional order α = 0.8. . . 41

3.1 Propagation diagram of disease. . . . . . . . . . . . . . . . . . . . . 48

3.2 Diagram for forward bifurcation in (R0, I) plane for the data set given

in Table 3.2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3 Sensitivity indices of R0. . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4 Effect of fractional order α on the susceptible population. . . . . . . 65

3.5 Effect of fractional order α on the partially vaccinated population. . . 65

3.6 Effect of fractional order α on the fully vaccinated population. . . . . 66

3.7 Effect of fractional order α on the infected population. . . . . . . . . 66

3.8 Effect of full vaccination rate on the Infected population. . . . . . . . 66

3.9 Phase plot of susceptible-infected-recovered population. . . . . . . . 67

3.10 Phase plot of susceptible-fully vaccinated-infected population. . . . . 68

3.11 Phase plot of susceptible-partially vaccinated-infected population. . . 68

3.12 Phase plot of partially vaccinated-fully vaccinated-infected population. 69

xxi

Page 31 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 31 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



xxii List of Figures

3.13 Phase plot of partially vaccinated-fully vaccinated-recovered population. 69

3.14 Variation in partially vaccinated and recovered individuals with respect

to time at different values of α. . . . . . . . . . . . . . . . . . . . . . 71

3.15 Variation in fully vaccinated and recovered individuals with respect to

time at different values of α. . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Plot of T0 versus I(t). . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.2 Sensitivity indices of R0. . . . . . . . . . . . . . . . . . . . . . . . . 97

4.3 Effect of fractional order ρ on susceptible and exposed populations. . 107

4.4 Effect of fractional order ρ on infected and quarantined populations. . 108

4.5 Effect of different initial conditions I(0) on infected population and

the phase diagram of infected vs recovered population at fixed ρ = 0.7. 109

4.6 Phase diagram at fixed ρ = 0.7. . . . . . . . . . . . . . . . . . . . . . 109

4.7 Phase diagram at fixed ρ = 0.7. . . . . . . . . . . . . . . . . . . . . . 110

4.8 Profiles of susceptible and exposed population with applied optimal

control of response via information u for ρ = 0.9. . . . . . . . . . . . 112

4.9 Profiles of infected and quarantined population with applied optimal

control of response via information u for ρ = 0.9. . . . . . . . . . . . 112

4.10 Optimal control path of response via information u for ρ = 0.9. . . . . 113

4.11 Optimal control path of response via information u with different val-

ues of contact rate β for ρ = 0.9. . . . . . . . . . . . . . . . . . . . . 113

5.1 Schematic diagram of disease progression dynamics. . . . . . . . . . 125

5.2 Transcritical forward bifurcation. . . . . . . . . . . . . . . . . . . . . 140

5.3 Time series plot of susceptible population with different fractional order.145

5.4 Time series plot of pollution affected population with different frac-

tional order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

5.5 Time series plot of infected population with different fractional order. 146

5.6 Time series plot of recovered population with different fractional order. 146

5.7 Time series plot of infected population with for R0 = 0.60762 < 1 with dif-

ferent fractional order. . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.8 Variation of psychological effect γ and their effect on suscep- tible population

for fixed α = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.9 Variation of psychological effect γ and their effect on pollution affected pop-

ulation for fixed α = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . 148

Page 32 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 32 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



List of Figures xxiii

5.10 Variation of psychological effect γ and their effect on infected population for

fixed α = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.11 Effect of pollution related transmission β ′ on pollution affected population

for fixed α = 0.9. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

5.12 Optimal control path of single control v1(t) when v2(t) = 0. . . . . . . 150

5.13 Effect of applying only v1(t) on susceptible individuals compared to

the case when no con- trol is applied (v1(t) = 0 = v2(t)). . . . . . . . 150

5.14 Effect of applying only v1(t) on pollution-affected individuals com-

pared to the case when no control is applied (v1(t) = 0 = v2(t)). . . . 150

5.15 Effect of applying only v1(t) on infected individuals compared to the

case when no control is applied (v1(t) = 0 = v2(t)). . . . . . . . . . . 151

5.16 Effect of applying only v1(t) on recovered individuals compared to the

case when no control is applied (v1(t) = 0 = v2(t)). . . . . . . . . . . 151

5.17 Optimal control path of single control v2(t) when v1(t) = 0. . . . . . . 152

5.18 Effect of applying only v2(t) on susceptible individuals compared to

the case when no con- trol is applied (v1(t) = 0 = v2(t)). . . . . . . . 152

5.19 Effect of applying only v2(t) on pollution-affected individuals com-

pared to the case when no control is applied (v1(t) = 0 = v2(t)). . . . 152

5.20 Effect of applying only v2(t) on infected individuals compared to the

case when no con- trol is applied (v1(t) = 0 = v2(t)). . . . . . . . . . 153

5.21 Effect of applying only v2(t) on recovered individuals compared to the

case when no control is applied (v1(t) = 0 = v2(t)). . . . . . . . . . . 153

5.22 Optimal control path of v1(t) when both controls are applied. . . . . . 154

5.23 Optimal control path of v2(t) when both controls are applied. . . . . . 154

5.24 Effect of applying both v1(t) and v2(t) simultaneously on susceptible

individuals compared to the case when no control is applied (v1(t) =

0 = v2(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.25 Effect of applying both v1(t) and v2(t) simultaneously on pollution

affected individuals compared to the case when no control is applied

(v1(t) = 0 = v2(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.26 Effect of applying both v1(t) and v2(t) simultaneously on infected in-

dividuals compared to the case when no control is applied (v1(t) = 0 =

v2(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

Page 33 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 33 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



xxiv List of Figures

5.27 Effect of applying both v1(t) and v2(t) simultaneously on recovered

individuals compared to the case when no control is applied (v1(t) =

0 = v2(t)). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

5.28 Profiles of susceptible population (S) with different control strategies. . . . . . . 156

5.29 Profiles of pollution-affected (P) with different control strategies. . . . . . . . . 157

5.30 Profiles of infected population (I) with different control strategies. . . . . . . . . 157

5.31 Profiles of recovered population (R) with different control strategies. . . . . . . . 158

6.1 Flow diagram of the model (6.1). . . . . . . . . . . . . . . . . . . . . 166

6.2 Sensitivity indices of R0. . . . . . . . . . . . . . . . . . . . . . . . . 176

6.3 Time series plot of susceptible population with different fractional order.184

6.4 Time series plot of infected population with different fractional order. 185

6.5 Time series plot of recovered population with different fractional order. 185

6.6 Time series plot of environmental bacteria population with different

fractional order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.7 Time series plot of organism bacteria population with different frac-

tional order. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.8 Profiles of susceptible population (S) with different control strategies. 187

6.9 Profiles of infected population (I) with different control strategies. . . 188

6.10 Profiles of recovered population (R) with different control strategies. . 188

6.11 Profiles of organism bacteria (Bo) with different control strategies. . . 189

6.12 Profiles of environmental bacteria (Be) with different control strategies. 189

Page 34 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 34 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



List of Tables

2.1 Parameters of the model SIS. . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Parameter values for simulation. . . . . . . . . . . . . . . . . . . . . 37

3.1 Parameter descriptions of the model SV IR and the their units. . . . . . 49

3.2 Numerical values of parameters of the model. . . . . . . . . . . . . . 64

4.1 Parameters of the model SEIQR. . . . . . . . . . . . . . . . . . . . . 106

5.1 Parameters of the model SPIR and their numerical values for simulation. 144

6.1 Values of cost function (unit), maximum number of infected individ-

uals per day (Imax), and the number of infected individuals in the end

(Iend), for α = 0.7. . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

xxv

Page 35 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 35 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



Page 36 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 36 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



Chapter 1

Introduction

“The important thing is not to stop questioning. Curiosity has its own reason for existing."

-Albert Einstein.

1.1 Fractional Calculus
Fractional Calculus, a branch of Calculus dealing with integrals and derivatives of arbi-

trary orders (including complex orders), has been in the priority of the mathematicians

in last few decades [132; 148]. Its applications can be seen in all the classical fields of

Mathematics and Physics like Epidemiology, Mathematical Biology, Fluid dynamics

etc. Actually, this subject translates the reality of nature in a more better and precise

way. In other words, fractional calculus is what nature understands and talking with

nature in this language is therefore efficient [104]. The conventional integer order

calculus being a part of it, where differintegration is an operator doing differentiation

and integration in general sense [42]. In this introductory chapter, the development of

fractional calculus is discussed, with several definitions of fractional-order operators

presented.

The idea of Fractional Calculus originates from a conversation between

L’Hospital and Leibniz in 1695 where L-Hospital asked Leibniz about the nth deriva-

tive of a smooth function if n = 1
2 i.e. differentiation for a non-integer order, a far

aspect from classical calculus. In reply from Leibniz to L’Hospital, dated on Septem-

ber 30, 1695, Leibniz wrote: ‘This is an apparent paradox from which, one day, useful

1
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2 Introduction

consequences will be drawn . . . ’ [94] and here from, the origin of fractional calcu-

lus is accepted. Throughout the 18th and 19th centuries, several prominent scientists,

including Euler, Abel, Laplace, Grunwald-Letnikov, Riemann-Liouville, Weierstrass,

Reisz-Feller Mittag-Leffler, Caputo, Fabrizio, Atangana, Baleanu, and others made

substantial contribution to the advancement of fractional calculus. The very first con-

ference with proceedings on ‘Fractional calculus and its applications’ (Ed. Ross, Lect.

Notes Math. 1975, vol. 38) was held in 1974 at the University of New Haven, USA

[1]. The second conference with proceedings on ‘Fractional Calculus’ (Eds A. C. M-

cbride and G. F. Roach, Res. Notes Math, 1985 vol. 138). The guesswork of Leibniz

(1695-1697) and Euler (1730) start the journey of this field of mathematical analysis.

The first book devoted to fractional calculus was a joint contribution of two special-

ists Oldham (in chemistry) and Spanier (in mathematics) [144] in 1974. The main

focus of this monograph is on the evaluation of the fractional integrals and derivatives

of the concrete functions and to the applications of the diffusion problems. A book

by Podlubny [148] with main focus on fractional differential equations published in

1999 is among most recent work in fractional calculus. Other numerous works include

the work done by Hilfer [78] in 2000 on fractional models of anomalous kinetics of

complex processes, monograph by Samko [165] which is popular as ‘Encyclopedia

of Fractional Calculus’. This monograph first published in 1987 in Russian and later

was translated in English in 1993 which substantially deals with fractional differential

equations.

In modeling physical and engineering processes fractional differential equations

are very useful. It is worth noting that in many cases the standard mathematical mod-

els incorporating integer order derivatives are not adequate. The beauty of this topic

is in its fractional derivatives and integrals, which are not just a local property but

also take into account history and locally dispersed effects. That is why this subject

better translates nature’s reality! Non-integer order fractional derivatives and integral-

s can be utilized to explain processes with memory. If at each time t, the output of

a system depends only upon the input at time t, such system are called memory-less

systems while to find the current value of the output of the system need to remember

previous values of the input, non memory-less or memory systems. Fractional calculus

has expanded its wings even more in the modern age to embrace the complexities of

the real world. The first stage of the Memory Revolution in economics is associated

with the accomplishments of Granger [70], who received the ‘Nobel Memorial Prize in
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1.1 Fractional Calculus 3

Economic Sciences’; in 2003. He presented the importance of long range time depen-

dence. Because an integer order dynamic system’s future states are dependent on the

current one (memory-less), but a fractional order system’s current state is dependent

on the whole history (long memory). This large memory is often used as a nameplate

for many fractional order systems

Besides FC, while looking another useful aspect to be analyzed in medical sci-

ences, we see various mathematical models have been modeled to investigate the dy-

namics of infectious diseases. In recent years, there is a great increase in trend of

application of mathematics in infectious diseases which resulted in the emergence of

mathematical epidemiology [19; 84; 180; 196]. It is obvious that fractional calculus

presents the nature of resultant finer than integral order. It is important to mention that

fractional-order system possess the infinite memory which makes the discussion inter-

esting rather than to talk about integer order in new generation researches. Considering

these facts, inclusion of memory is important in epidemiology for infectious diseases

to improvise the proposed model. Therefore, fractional differential equations (FDEs)

in mathematical epidemiology has become a trend of research field in theoretical and

as well as in practical sense.

From the discussion mentioned above, it can be concluded that researchers now

prefer fractional-order system over the traditional differential equations models mainly

because of the following reasons:

• Fractional-order system allow greater degrees of freedom over its integer-order

counterpart due to the additional parameter that represents its order [156; 177],

and are more suitable for those systems having higher-order dynamics and com-

plex nonlinear phenomena.

• Secondly and more importantly, fractional-order derivatives not only depend on

the local conditions but also on the previous history of the function and, there-

fore, the fractional derivative has become an efficient tool for those systems,

where consideration of memory or hereditary properties of the function is essen-

tial to represent the system [5].

Before moving further, it is important to recall some basic mathematical tools

from fractional calculus that will be used throughout this work. These preliminaries

form the foundation for defining fractional derivatives and integrals.

37
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4 Introduction

Definition 1.1.1 [148] Euler’s gamma function
The Euler’s gamma function Γ(x) is defined by

Γ(x) =
∫

∞

0
tx−1e−tdt, for x ∈ C, Re(x)> 0.

Definition 1.1.2 [148] Mittag-Leffler function

(i) The one parameter Mittag-Leffler function Eα(z) is defined by

Eα(z) =
∞

∑
i=0

zi

Γ(αi+1)
; z, α ∈ C, Re(α)> 0.

(ii) The two parameter Mittag-Leffler function Eα,β (z) is defined by

Eα,β (z) =
∞

∑
i=0

zi

Γ(αi+β )
; z, α, β ∈ C, Re(α)> 0.

Definition 1.1.3 [33] Riemann-Liouville fractional integral and derivative
The Riemann-Liouville fractional integral is given by

RL
a Iq

x f (x) =
1

Γ(q)

x∫
a

(x−u)q−1 f (u)du,

and the Riemann-Liouville fractional derivative is defined as

RL
a Dq

x f (x) =
dn

dxn
1

Γ(n−q)

x∫
a

(x−u)n−q−1 f (u)du, (n−1)< q < n,

where q is fractional order and f is a continuous function.

Definition 1.1.4 [33] Caputo fractional derivative
Caputo fractional derivative was introduced by Michele Caputo in 1967. This deriva-

tive proved its identity due to two facts. One is the Caputo fractional derivative of a

constant function is equal to zero. Second, the initial conditions depend on integer-

order derivative. The Caputo factional derivative is given by:

c
aDq

x f (x) =
1

Γ(n−q)

x∫
a

(x−u)n−q−1 f n(u)du, q > 0, (n−1)< q < n.

For n = 1 we have

c
aDq

x f (x) =
1

Γ(1−q)

x∫
a

(x−u)−q f ′(u)du, q > 0, 0 < q < 1.

where, (x−u)−q is called the singular kernel of the integral.

13
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1.1 Fractional Calculus 5

Definition 1.1.5 [15] Laplace transform of Caputo fractional derivative
Let a piece-wise continuous function Dq

t f (t) in Caputo sense, then

L {c
0Dq

t f (t)}= sqL ( f (t))−
n−1

∑
k=0

sq−k−1g(k)(0), 0 < q≤ 1

where, L (Dq
t f (t)) stands for the Laplace transform of f (t).

Definition 1.1.6 [142] Generalized mean value theorem
Suppose that f (t) ∈ C[a,b] and Dq

t f (t) ∈ C(a,b] with 0 < q ≤ 1. Then we have ∀t ∈
[a,b], there exists ξ (t) ∈ [a, t], such that

f (t) = f (a)+
1

Γ(q)
(Dq

t f (ξ ))(t−a)α .

After recalling these definitions, some important results from fractional calculus,

which will be instrumental in the present study, are subsequently presented.

Lemma 1.1.7 [148] Let α1 > 0, α2 > 0, and w ∈C. Define

y(t) = tα2−1Eα1,α2(±wtα1),

where Eα1,α2(z) denotes the two-parameter Mittag-Leffler function with parameters α1

and α2. Then the Laplace transformation of y is given by

L [y(t)] =
sα1−α2

sα
1 ∓w

.

Lemma 1.1.8 [148] Let α2 is and arbitrary real number. If α1 < 2, then there is a

constant CE such that, for all w in the complex plane,

|Eα1,α2(w)| ≤
CE

1+ |w|
.

Lemma 1.1.9 [147] Let h(t) ∈ R+ be a differentiable function, then

cDq
t

[
h(t)−h∗−h∗ ln

h(t)
h∗

]
≤
(

1− h∗

h(t)

)
cDq

t (h(t)), h∗ ∈ R+,∀ q ∈ (0,1).

Lemma 1.1.10 [109] Given a continuous function u(t) on the interval [t0,∞) that sat-

isfies {
t0Dq

t u(t)≤−λu(t)+µ,

u(t0) = ut0

, (1.1)

where 0 < q < 1, (λ ,µ) ∈ R2 and λ , 0, and t0 ≥ 0 is the initial time. Then

u(t)≤
(

ut0−
µ

λ

)
Eq[−λ (t− t0)q]+

µ

λ
.

6
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6 Introduction

Lemma 1.1.11 [114] For the Caputo fractional order system,

t0Dq
t y(t) = f (t,y) with y(t0) = y0 and t0 > 0,

where q ∈ (0,1] and f : [t0,∞]×Ω→ Rn is piecewise continuous on [t0,∞]×Ω and

Ω∈Rn. If f (t,y) satisfies the Lipschitz condition in y then there exist a unique solution

on [t0,∞]×Ω.

Theorem 1.1.12 [148] Consider a fractional order non-autonomous system

c
t0Dq

t x(t) = f (t,x), t > t0 (1.2)

with initial condition xt0 , where 0 < q ≤ 1, f : [t0,∞)×Ω→ Rn, Ω ∈ Rn. If f (t,x)

is a real-valued continuous function defined in the domain [t0,∞)×Ω, satisfying the

locally Lipschitz condition with respect to x, i.e.,

| f (t,x1)− f (t,x2)| ≤ K |x1− x2|,

where K is a positive constant, and

| f (t,x)| ≤M < ∞, ∀(t,x) ∈ [t0,∞)×Ω,

then the above system has a unique solution in [t0,∞)×Ω.

Lemma 1.1.13 [49] Assume that q ∈ (0,1] and that both the function f (t) and its

fractional derivative t0Dq
t f (t) belong to the metric space C[a,b]. If t0Dq

t f (t) ≥ 0 for

all t ∈ [a,b], then f (t) is monotonically increasing. Conversely, if t0Dq
t f (t)≤ 0 for all

t ∈ [a,b], then f (t) is monotonically decreasing.

The mathematical tools introduced above are useful in modeling real-world prob-

lems using fractional calculus. One of the most important areas where these tools have

found growing applications is epidemiology, which deals with the study of diseases in

populations. To illustrate how fractional models can be employed in this domain, a

brief overview of epidemiology is first presented.

1.2 Epidemiology: A brief overview
Epidemiology is the study of the distribution and patterns of disease in a defined popu-

lation and finding the causes of disease occurrence. The word epidemiology is derived

2
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1.2 Epidemiology: A brief overview 7

from Greek word pi means ‘upon or among’, demos means ‘people’ and logos means

‘study’. Thus, epidemiology literally means “the study of what is upon the people". It

is a foundation of public health, based on which public decision makers can identify

risk factors for various diseases and employ preventive measures.

The major areas of epidemiology include finding the causes of diseases, how

diseases spread, investigating outbreaks, controlling diseases, forensic studies, envi-

ronmental factors, workplace - related health issues, tracking exposure to harmful sub-

stances, and studying the effects of treatments. To better understand how diseases

work, epidemiologists use knowledge from different fields - like biology to study life

processes, statistics to analyze data and draw conclusions, social sciences to under-

stand both direct and indirect causes, and engineering to measure exposure to risks.

Epidemiology is a term that is now commonly used to describe and explain the caus-

es of infectious diseases, epidemics, and diseases in general. Thus, the basis of this

epidemiology is the way in which pattern of disease changes human functions.

1.2.1 Mathematical modeling of infectious diseases

Infectious diseases have always been a major threat to human health. It is well

known that several factors such as, the type of infectious agent, how it spreads, how

vulnerable people are, and what treatments are available - play a role in how these

diseases spread. An abstract representation of real-world problems in the framework

of mathematics is called a mathematical model and the process is called mathematical

modeling. In epidemiology, mathematical modeling is used to investigate the detail

mechanisms of disease transmission, to predict disease outbreaks in future, and to

analyse effective control measures. Mathematical modeling has been widely utilised

in past decades to study various diseases, including dengue, HIV/AIDS, malaria, H-

BV, SARS, Influenza, COVID-19 etc. Since the beginning of the twentieth century,

researchers have developed numerous mathematical models to explain the dynamics

of infectious diseases. Depending on the objective and perspective, the mathematical

models are formulated in different forms including differential equation models, dif-

ferintegral equation models, statistical models, models of difference equation etc., and

various techniques are employed for theoretical as well as numerical analyses. The

parameter values used basically for simulation purposes could be theoretical, or taken

from scientific researches, or extracted from statistical modeling.

2

6
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8 Introduction

Epidemic models are broadly classified into two main types: stochastic models

and deterministic (or compartmental) models. Stochastic models account for random-

ness in one or more parameters over time, making them particularly useful for estimat-

ing the probability distribution of potential outcomes, especially in small populations

or early outbreak stages. In contrast, deterministic models, which are more common-

ly used in this study, assume a fixed relationship between variables and are typically

applied to large populations where random effects are negligible.

Mathematical models of diseases start from the population that can be divided

into a set of distinct compartments dependent upon experience with respect to the

relevant disease, which provide a significant contributions to Mathematics and public

health . The process of mathematical modeling is shown in the Figure 1.1, as below:

Figure 1.1: Mathematical modeling.

The journey of mathematical modeling of infectious diseases started long back

ago. Daniel Bernoulli was the first person who introduced mathematical modeling to

study the smallpox outbreak in 1760 [20]. Then the first contributions to the mod-

ern Mathematical Epidemiology were set up by P.D. En’ko from 1873 to 1894 [54].

Another revolutionary work is due to Sir Ronald Ross on malaria [154]. He studied

malaria transmission dynamics between mosquitoes and humans and was awarded the

second Nobel Prize in Medicine. The most well-known and commonly used compart-
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1.2 Epidemiology: A brief overview 9

mental model in mathematical epidemiology was introduced and studied by Kermack

and McKendrick [92]. They proposed a model by categorizing the population into the

S-I-R classes and assuming that the total population remains constant at all times in

which the infections occur by way of contact between susceptible and infected. Based

on these assumptions, they derived the following first-order coupled nonlinear differ-

ential equation describing the movement of the population in the three compartments

as follows:

dS
dt

=−βSI

dI
dt

= βSI− γI

dR
dt

= γI

where, β denotes the transmission rate and γ is defined as the removal or recovery rate.

Further, in 1990, Anderson [11] and May proposed a model for infectious dis-

eases by introducing and incorporating the natural mortality rate for a fixed population

into the above defined Kermack and Mckendrick’s model by the following equations:

dS
dt

= µN−µS−βSI

dI
dt

= βSI− (µ +δ )I

dR
dt

= δ I−µR

with the initial conditions S(0) = S0, I(0) = I0 and R(0) = R0, where t ≥ 0. Through

the analysis of this model, they showed that the disease will be eliminated from the

society if R0 > 1.

After that, as time progress, this subject has also been enriched gradually. Due to

the advancement of scientific computing, mathematical epidemiology has taken a new

shape with more popularity and acceptability (Hethcote [76], Murray [138], Keeling

and Rohani [91]). It has been possible for the researchers of interdisciplinary fields

to formulate a specific model to analyze the dynamical behaviors of various emerging

and re-emerging infectious diseases like malaria, dengue, cholera, HIV-AIDS, zika,

influenza, COVID-19, etc. [7; 64; 135; 167; 176].

Since infectious disease models aim to predict whether an outbreak will persist

or die out, the study of equilibrium states and stability conditions becomes essen-

tial. Accordingly, some fundamental notions from dynamical systems, to be employed

throughout the subsequent analysis, are first reviewed.

7
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Definition 1.2.1 Fractional-order Autonomus System
Consider the following fractional-order system

c
0Dq

t x(t) = f (x), x(0) = x0 (1.3)

with 0 < q≤ 1, x ∈ Rn and f : E(⊂ Rn)→ Rn, it is said to be autonomus if f does not

depend on t explicitly. Here c
0Dq

t is the Caputo fractional derivative of order q.

Definition 1.2.2 Equilibrium Solution
An equilibrium solution (steady state solution or fixed point or critical point) of the

system (1.3) is a solution x̄ ∈ E(⊂ Rn) satisfying

f (x̄) = 0.

Definition 1.2.3 Local Stability
An equilibrium solution x̄ ∈ E(⊂ Rn) of (1.3) is said to be locally stable if for each

ε > 0 there exists a δ > 0 such that every solution x(t) of (1.3) with initial condition

x(0) = x0 and ‖x0− x̄‖< δ =⇒ ‖x(t)− x̄‖< ε for all t > 0, where ‖.‖ is the Euclidean

norm. If the equilibrium solution is not locally stable, it is said to be unstable.

Definition 1.2.4 Local Asymptotic Stability
An equilibrium solution x̄ ∈ E(⊂ Rn) of (1.3) is said to be locally asymptotically

stable if it is locally stable and if there exists a σ > 0 such that

‖x0− x̄‖< σ =⇒ lim
t→+∞

‖x(t)− x̄‖= 0.

Theorem 1.2.5 [131] (Local Asymptotic Stability Theorem) The system (1.3) is said

to be locally asymptotically stable around the equilibrium point x̄ ∈ E(⊂ Rn) if all

eigenvalues λi of the jacobian matrix J =
∂ f
∂x

, x ∈ Rn evaluated at the equilibrium

point x̄ satisfy

|arg(λi)|>
qπ

2
, i = 1,2, · · · ,n, (1.4)

i.e.

arg(λi)>
qπ

2
or arg(λi)<−

qπ

2
, i = 1,2, · · · ,n,

where arg(λi) is the principal value of argument of the eigenvalue λi of the Jacobian

matrix J. If arg(λi) does not satisfy (1.4), then the system is unstable around that

equilibrium point.
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1.2 Epidemiology: A brief overview 11

The graphical representation of the above Theorem (1.2.5) has been shown in Figure

1.2. It clearly shows that the stability region of fractional order system (Figure 1.2 (a))

is greater than the stability region of the integer order system (Figure 1.2 (b))

(a) 0 < q < 1. (b) q = 1.

Figure 1.2: Stability regions (shaded area) for (a) fractional order system and (b) inte-

ger order systems.

1.2.2 Modes of Transmission

There are several ways to transmit infection from natural reservoir to host. The

modes of transmission can be classified as: Direct transmission and Indirect transmis-

sion [130]. In direct transmission, an infectious disease is transferred by direct contact

of infected person through skin-to-skin contact, sexually transmitted disease (STD),

micro organisms in soil etc.. On other hand, droplet spreads the infection which is

produced by sneezing, coughing and talking. Transmission can also be made by carri-

ers indirectly by airborne transmission and vector transmission. The infectious agent

spreads from one place to another or on person to person by dust or micro organisms p-

resented in air. Mosquitoes, ticks and flea act as a vectors for carrying infected agent to

uninfected population. Dengue, Zika, malaria are some examples of vector transmitted

diseases.

Even though, the integer model could be suitable for modeling numerous disease

processes, but it may not be enough to explain the pandemic dynamics. In recent times,

epidemiological research has been diverted to fractional differential research due to its

ability to offer a convincing analysis of certain nonlinear dynamics. The study of
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fractional order differential equations in the past decades has received a significant

attention of researchers [69; 96; 149; 150; 151; 164; 171; 198].

1.3 Incidence and Treatment rates
In the infectious disease model, the incidence rate function has a significant impact on

the behaviour of the disease. The incidence function captures the interactions between

the healthy and infective ones. It gives the number of new cases per unit time coming

from the susceptible population as a result of this interaction. There are many forms

of incidence rate functions that are used in the epidemiological literature. The dynam-

ical behaviour of the system is significantly impacted by the choice of incidence rate

function. A brief review of the literature on incidence rate functions is presented here.

In the classical Kermack - McKendrick model [92], the monotonic and unsat-

urated incidence rate function βSI, β > 0 is proposed. It represents the bilinear (or

mass action) incidence rate. In the bilinear incidence rate, the number of infectives in-

creases linearly, which might be real for a small population of infected individuals, but

impractical for a large number of infectives. Therefore, several studies are devoted to

considering nonlinear incidence rate for disease transmission dynamics [77; 117; 118].

The incidence rate function in saturated form was first introduced by Capasso

and Serio [32] in 1978. They observed population’s inhibitory behavior in interaction

in presence of disease during the Cholera epidemic in 1973. This bounded interaction

pattern inspired them to propose bounded incidence rate function g(I)S provided 0 ≤
g(I)≤ c, 0, g(0) = 0, g′(0)> 0, g(I)≤ g′(0)I, while accounting for the psychological

effect on people’s behavioral responses [155]. Further, they studied an SIR model for

particular choice of incidence function Sg(I) = kSI
1+αI , where k,α > 0.

In 1986, Liu et al.[118] proposed a generalized form of incidence rate function
βSIp

1+mIq , p,q,β ,m > 0. This function can be either monotonic or non-monotonic and

saturated or unsaturated for different values of p,q. Here β Ip indicates the force of

infection of the disease and 1
1+mIq expresses the inhibitory effect of susceptible due to

a large number of infective cases. Ruan and Wang [155] studied the existence and non-

existence of limit cycle in a system choosing p = q = 2 and found Bogdanov-Takens

bifurcation. Gomes et al. [67] observed backward bifurcation in model system when

p = q = 1. In 2005, Xiao and Ruan [194] focused on the importance of inhibitory

effect in disease spread control and proposed the non-monotonic incidence rate taking

1

2
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1.3 Incidence and Treatment rates 13

p = 1,q = 2 i.e., βSI
1+mI2 , also known as Monod-Haldane type incidence rate where m

measures the effect of behavioral change of population.

In addition, some other types of nonlinear incidence rate functions are also estab-

lished in modeling. Further, Yuan and Li [199] proposed the density-dependent inci-

dence function as βS(I/S)p

1+m(I/S)q , β ,m, p,q> 0. The works of researchers [30; 97; 100] for

specific values of p,q, explore the significance of density-dependent incidence func-

tions. When the number of infective case is very high in population, the population

takes protection measures and avoid interactions as much as possible. Therefore the in-

cidence function would become βSI
1+a1S+a2I , β ,a1,a2 > 0, also known as Beddington-

DeAngelis function as Beddington [24] and DeAngelis [43] independently established

it in 1975 which is also studied later in epidemiology [171; 187].

Before 2004, it was common to consider linear treatment rates in the models.

In 2004, Wang and Ruan [186] proposed that disease can be eradicated by using the

maximum treatment facility (constant). In 2006, Wang [185] modified the constant

treatment to account for increasing costs and medical resources. For this purpose a

linear function of infective is used when the number of infective cases is less than the

maximum treatment capacity; whereas, a constant treatment rate is used otherwise.

Analyzing this non-smooth treatment rate it is found that when the threshold quantity

(R0) is less than unity, the disease would persist at the low level of treatment capacity

due to the occurrence of backward bifurcation and bi-stable endemic equilibria [80;

113].

Zhang and Liu [200] underlined that attending to a patient is delayed when the

number of infective cases exceeds the available treatment capacity. They proposed

a treatment function of the form αI
1+µI where α represents the rate of treatment and

µ represents the saturation parameter which may be related to the delay in providing

treatment. This function grows as the number of infectives grows and saturates to

the maximum treatment facility when the number of infectives becomes large. Other

forms of saturated functions with the same property can also be found in the literature

[97; 143; 201], where treatment functions are dependent on the number of available

medical resources. Studying these saturated treatment functions it is observed that if

the value of treatment saturation constant parameter exceeds a certain level, then back-

ward bifurcation occurs and the disease persists when the basic reproduction number

is less than unity. The saturation parameter also affects the local stability of endemic

equilibrium. Upadhyay et al. [183] studied the effect of saturated treatment functions

1
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such as Holling type II and III. They discovered that employing Holling type II treat-

ment is the most effective way to prevent disease spread. Dubey et. al. [58] investigat-

ed the impact of saturated treatment function in Holling types III and IV. This thesis

investigates the effects of different incidence and treatment rates within the framework

of disease transmission dynamics.

1.4 Disease prevention and control
To control the spread of disease, there are several pharmaceutical and non-

pharmaceutical control measures such as testing, media awareness, vaccination, so-

cial distancing, quarantine, hygiene maintenance or cleanliness, fear effect etc. Ef-

fective vaccination and antiviral drugs are the two widely used pharmaceutical inter-

ventions that mitigate the disease outbreak. But sometimes the virus mutates, then

vaccines become less effective, and most vaccinated people may not acquire pro-

tection against new strain of the virus. In that case, antiviral drugs are important

in controlling the disease’s spread until an effective vaccine is available. The large-

scale use of antiviral drugs increases the economic and medical burden. In such sit-

uations, non-pharmaceutical interventions can effectively control the disease spread.

There are several non-pharmaceutical interventions, such as social distancing, wash-

ing hands, wearing face masks, etc. Without an effective vaccine or antiviral drugs,

non-pharmaceutical control are only alternative for controlling disease outbreak.

1.4.1 Awareness

Awareness plays a crucial role in educating people about the prevention of in-

fectious diseases and the necessary steps that can be taken to mitigate and control

outbreaks. In the case of newly emerging infectious diseases, authorities cannot rely

solely on existing vaccines and antiviral drugs, as their efficacy is often uncertain [60].

Therefore, awareness campaigns serve as an essential component of disease control

strategies. Such awareness can be disseminated through newspapers, television, and

social media platforms, which act as important channels for communicating informa-

tion about outbreaks [115].

When an infectious disease emerges within a population, the timely dissemina-

tion of accurate information is vital to inform people about preventive measures. Media

alerts and public health messages guide individuals in reducing their risk of infection.

By raising awareness, individuals are encouraged to adopt protective behaviours that

1
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minimize the rate of disease transmission. Awareness programs are particularly valu-

able for vulnerable populations, as they provide guidance on preventive practices such

as regular hand sanitization, the use of face masks and gloves, vaccination, and quar-

antine measures. The adoption of such practices significantly reduces the impact of

illness and helps to control the spread of infection.

Moreover, awareness levels are strongly influenced by educational attainment.

Higher education not only enhances the understanding of health-related information

but also promotes the adoption of preventive practices. Thus, education plays a critical

role in strengthening awareness and enabling individuals to take proactive measures

against infectious diseases.

1.4.2 Fear effect

People generally get scared and try to make a significant distance from an infect-

ed individual to prevent disease. When the infection increases, it increases the fear

level induced by the information about the disease’s fatality, which spreads through

media. Susceptible individuals try to remain isolated due to fear of contracting the

virus, leading to decrease in infection and birth rate. For example, in Hong Knong,

during the SARS outbreak, which started in November 2002, peaked on March 2003,

and was eliminated on June 2003, the birth rate had fallen from 8742 (in 2002) to 8436

(in 2003) and again increased to 8558 in 2004 [27; 63].

1.4.3 Testing and treatment

Testing is a critical public health strategy that enables authorities to detect and

isolate infected individuals from the population, thereby reducing contact with sus-

ceptible individuals and minimizing disease transmission. Several infectious diseases,

including tuberculosis and HIV/AIDS, underscore the importance of early testing as

a life-saving intervention. Although no definitive cure exists for HIV/AIDS, early de-

tection can prolong life expectancy and reduce the overall infection rate within the

population. In the case of tuberculosis, timely diagnosis and treatment allow infected

individuals to recover fully and lead normal lives. Furthermore, highly transmissible

diseases such as influenza and COVID-19 demonstrate the necessity of early testing in

combination with appropriate treatment. Such measures not only mitigate the severity

of illness but also play a vital role in limiting the spread of infection at the community

level.

1
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1.4.4 Vaccination

It is well known that vaccination is an indispensable tool for the control and

eradication of infectious diseases. Vaccines strengthen the immune system and pro-

tect individuals from life-threatening infections. They lower the risk of contracting

diseases, reduce severity, and support the health system in managing outbreaks. Vac-

cination programs are typically administered to susceptible populations to mitigate

disease transmission. Historical evidence demonstrates the success of vaccination in

preventing diseases such as smallpox, hepatitis B, diphtheria, measles, polio, cholera,

and, more recently, COVID-19. In many cases, a single vaccine dose is insufficient to

provide long-term protection, or vaccine-induced immunity diminishes over time; in

such instances, booster doses are required to sustain immunity.

During the COVID-19 pandemic, vaccination became the most effective and

widely adopted strategy for reducing infection rates, hospitalizations, and deaths

worldwide. To further understand the role and effectiveness of vaccination, a compre-

hensive study has been performed in the review article entitled "Study on Vaccination
strategy employed by the five countries most affected by Covid-19". This review

highlights how large-scale immunization programs, booster campaigns, and policy de-

cisions shaped the trajectory of the pandemic in the USA, India, Brazil, France, and

the UK - the five most affected countries during the first half of 2022.

• USA: The United States launched Operation Warp Speed to accelerate vaccine

development and delivery. Pfizer, Moderna, and Johnson & Johnson vaccines

were domestically produced. Vaccination was carried out in phases: Phase 1a

prioritized health care workers and long-term care residents; Phase 1b included

frontline essential workers and people aged 75+; Phase 1c covered adults aged

65 - 74 and people with high-risk conditions; and Phase 2 opened vaccination to

all adults aged 16+.

• India: India relied on indigenous production (Covishield and Covaxin) to vac-

cinate its large population. The first phase (January 2021) prioritized health

care workers (HCWs) and frontline workers (FLWs). Phase II (March 2021) ex-

tended to people aged 45+ and those with comorbidities. Phase III (May 2021)

expanded coverage to all adults above 18. The Government of India established

public vaccination centers (free) and permitted private centers at regulated costs

to accelerate nationwide coverage.
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1.4 Disease prevention and control 17

• Brazil: Brazil adopted a four-phase strategy defined by its Health Ministry.

Phase 1 prioritized indigenous groups, health professionals, and people aged

75+. Phase 2 included people aged 60 - 74. Phase 3 focused on individuals

with severe health conditions. Phase 4 covered teachers, security forces, and

prison staff before opening to the wider population. Vaccine supply constraints,

however, slowed progress, as Brazil depended on imports (AstraZeneca, Covax

Facility, and J&J).

• France: France planned vaccination in five phases. Phase 1 (December 2020-

January 2021) targeted nursing home residents and staff over 50. Phase 2 ex-

tended to all individuals over 75 and then those aged 65 - 74. Phase 3 (Spring

2021) prioritized adults aged 50 - 64, people with comorbidities, and health pro-

fessionals in high-risk settings. Phase 4 opened vaccination to adults in essential

services and high-exposure occupations. Phase 5 extended to the entire adult

population. France’s dependence on imported vaccines caused delays in reach-

ing later phases.

• UK: The UK followed recommendations from the Joint Committee on Vacci-

nation and Immunisation (JCVI). The first phase prioritized elderly individuals,

care home residents, health care staff, and people with high clinical risk. Age-

based prioritisation was the main criterion, with vaccination rolled out in de-

scending order of age. Phase 2 (from February 2021) continued with age-based

groups until all adults were covered. Occupation-based prioritisation was not

formally adopted, which led to criticism, although JCVI defended age as the

most effective risk-based criterion. Pfizer-BioNTech and AstraZeneca were the

primary vaccines used.

The comparative review makes it clear that while vaccination was universally acknowl-

edged as the most effective preventive tool against COVID-19, the prioritisation s-

trategies varied significantly across countries depending on population structure, vac-

cine availability, and health infrastructure. A common pattern was the prioritisation

of frontline workers and elderly populations, yet differences in the categorization of

age groups and occupational risks directly shaped outcomes in terms of transmission

control and mortality reduction.

From a broader perspective, this study also highlights the importance of country-

specific vaccination policies. Nations with younger populations, like India and Brazil,
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faced challenges of vaccinating large cohorts rapidly, while countries with older popu-

lations, like France and the UK, emphasized early protection of the elderly to minimize

fatalities. Moreover, domestic vaccine production capacity played a decisive role: the

USA and India benefited from self-sufficiency, whereas Brazil and France were heavily

dependent on external suppliers, slowing their rollouts.

In the context of this thesis, the findings from the review article highlight that

vaccination not only reduces disease transmission and mortality but also interacts with

demographic and infrastructural factors, thereby serving as a central pillar of disease

prevention and control strategies. Building on these insights, the challenges and prob-

lem areas identified in the review will be further examined through the development

and analysis of mathematical models presented in the subsequent chapters of this the-

sis.

1.5 Mathematical Preliminaries and Methodology
In this section, some basic definitions and theorems on fractional-order systems are

presented, along with mathematical tools from recent literature, that will be of interest

to the whole thesis.

Definition 1.5.1 Linearization
For the system (1.3), we assume f ∈ C1(E) and x̄ is an equilibrium point. Then the

linarization of c
0Dq

t = f (x), x ∈ Rn at the equilibrium x̄ ∈ E can be expressed as

c
0Dq

t X(t) = JX(t),

where the Jacobian matrix or variational matrix

J =



∂ f1

∂x1

∂ f1

∂x2
· · · ∂ f1

∂xn

∂ f2

∂x1

∂ f2

∂x2
· · · ∂ f2

∂xn

...
...

...
...

∂ fn

∂x1

∂ fn

∂x2
· · · ∂ fn

∂xn


x=x̄

21
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1.5 Mathematical Preliminaries and Methodology 19

is evaluated at x̄ ∈ E(⊂ Rn) and

X =


x1

x2
...

xn

 .

Theorem 1.5.2 [4] Routh-Hurwitz criteria for fractional order system
Let P(λ ) = 0 be a characteristic equation of the jacobian matrix J = ∂ f

∂x , x ∈ Rn of the

fractional order system (1.3), where

P(λ ) = λ
n +a1λ

n−1 + · · ·+an−1λ +an (1.5)

with real coefficients ai, i = 1,2, . . . ,n. The conditions in which all the roots of (1.5)

will satisfy

|arg(λi)|>
qπ

2
, i = 1,2, . . . ,n, 0 < q < 1, (1.6)

are generally known as fractional order Routh-Hurwitz conditions. Following are the

fractional order Routh-Hurwitz criteria for different n ∈ N for which (1.6) is satisfied:

• n = 1: a1 > 0.

• n = 2:

(i) D(P)≥ 0, a1 > 0, a2 > 0.

(ii) D(P)< 0, a1 < 0, and
∣∣∣∣tan−1

(√
4a2−a12

a1

)∣∣∣∣> qπ

2 , where 0 < q < 1.

• n = 3:

(i) D(P)> 0, a1 > 0, a3 > 0, and a1a2−a3 > 0.

(ii) D(P)< 0, a1 ≥ 0, a2 ≥ 0, a3 > 0, and 0 < q < 2
3 .

(iii) D(P)< 0, a1 > 0, a2 > 0, a1a2 = a3, and 0 < q < 1.

Where D(P) is the discriminant for the polynomial P(λ ).

Lemma 1.5.3 [139] Let P , φ be a subset of Banach space which is closed, convex

and bounded. Let the two functions T1, T2 be such that

(i) T1w1 +T2w2 ∈ P whenever w1,w2 ∈ P,

(ii) T2 is compact and continuous, and

17
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20 Introduction

(iii) T1 is contraction.

Then operator equations T1w+T2w = w, for w ∈ P, has at least one solution.

Lemma 1.5.4 [82] Generalized LaSalle’s Invariance Principle
Suppose A ⊂ Rn is a bounded closed set. Every solution of (1.3) starts from A and

remains in A for all time if there exists a Lyapunov function V (x) : A→ Rn with con-

tinuous first order partial derivatives satisfying the following condition:

c
0Dq

t V ≤ 0, ∀q ∈ (0,1]. (1.7)

Let Z = {x ∈ A | c
0Dq

t V = 0} be the set and L is the largest invariant subset of Z. Then

every solution x(t) ∈ Rn originating in A tends to L as t → ∞ and eventually becomes

globally stable in A. Particularly, when L = {0}, then x→ 0 as t→ ∞.

Definition 1.5.5 [168] Bifurcation
The qualitative behavior of a dynamical system changes suddenly when parameter

values change. This phenomenon is known as bifurcation. Bifurcation may alter

equilibrium points, stability, or periodic orbits. The parameter values at which

bifurcations occur are called bifurcation points. Here, different types of bifurcations

are discussed.

Saddle-node bifurcation
This basic mechanism is responsible for the creation or destruction of equilibrium

points for any dynamical system. In this bifurcation, two equilibrium points, out of

which one is a saddle point, and another is a stable node, collide at the bifurcating

point and annihilate each other.

Transcritical bifurcation
In this bifurcation, two equilibria of the system collide and interchange their stability.

In this scenario, one equilibrium point becomes stable from unstable, and another

one becomes unstable from stable, as the parameter passes through its critical value.

However, in this case, no equilibrium point is created or vanished.

Hopf bifurcation
In this bifurcation, an equilibrium point losses its stability, and a limit cycle is cre-

ated at the critical value of the bifurcation parameter. In this case, a pair of purely

13
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1.5 Mathematical Preliminaries and Methodology 21

imaginary eigenvalues crosses the imaginary axis from left to right half-plane. As a

result, a limit cycle exists in the system. There are mainly two types of Hopf bifurcation

depending on the nature of the limit cycle. When the limit cycle is orbitally stable, it is

called Supercritical Hopf bifurcation, and if the limit cycle is orbitally unstable, then

it is called Subcritical Hopf bifurcation.

Definition 1.5.6 [130] Basic reproduction number
A major concern regarding any infectious disease is its potential to spread within a

population. The basic reproduction number, often denoted as R0 is a key concept

in epidemiology which is used to describe this potential of a certain disease would

spread in a population or not. In the context of compartmental models of disease

transmission, it represents the expected number of secondary infections produced by a

typical infected individual in a completely susceptible population. The next generation

matrix, introduced by Diekmann and Heesterbeek in 1990 [48], technique is commonly

used to calculate the basic reproduction number. It is defined as the largest absolute

value of eigenvalue in the spectrum of next generation matrix.

There are several techniques in the literature to derive the next-generation matrix

from compartmental models. The working rule of the most popular approach [56] is

given below.

Let X ∈ Rn and Y ∈ Rm be the n and m dimensional infected and non-infected

population compartments respectively. Consider the following fractional order system

Dq(X j) = F j(X ,Y )−V j(X ,Y ), j = 1, . . . ,n,

and

Dq(Yk) = Hk(X ,Y ), k = 1, . . . ,m,

where F j represents the rate of appearance of new infections in compartment j and

V j denotes the transmission rate of individuals from compartment j because of death

or immunization. This method is based on linearization of the system at disease free

equilibrium (0,Y0) and the functions satisfy the following assumptions:

(A1) If X j≥ 0, then F j≥ 0 and V j≥ 0, for all j = 1, . . . ,n, suggesting all transmission

rates are non-negative.

(A2) If X j = 0, then V j(X ,Y ) = 0. It means that no transfer of individuals from an

empty compartment.

7
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(A3) For X j = 0, F j(X ,Y ) = 0. Suggests that new infections are not possible for

uninfected compartment.

(A4) If X ∈Y , then F j(X ,Y ) = V j(X ,Y ) = 0, for all j = 1, . . . ,n. Indicates a popula-

tion is infection free invariant. That means, there is no entry of infected people.

(A5) The infection free system

Dq(Y ) = H (0,Y ),

has unique fixed point or equilibrium point which is asymptotically stable.

If the above assumptions (A1−A5) are satisfied by F j(X ,Y ) and V j(X ,Y ), then

it is possible to construct the n× n matrices F = [F jk] and V = [V jk] at disease free

equilibrium as follows:

F =

[
∂F j

∂Xk
(0,Y0)

]
and V =

[
∂V j

∂Xk
(0,Y0)

]
.

In addition, F is non-negative and V is invertible. Thus, the basic reproduction

number is given by spectral radius of matrix FV−1.

Definition 1.5.7 [158] Sensitivity analysis
Sensitivity analysis is a useful tool for assessing the influence of model parameters on

disease transmission and prevalence. It quantifies the variation of state variables in

response to changes in biological parameters. Since disease spread is closely linked

to the basic reproduction number, R0, it is crucial to identify the parameters that

most strongly affect it. By evaluating the variation of R0 with respect to different

model parameters, the normalized forward sensitivity index can be computed, thereby

identifying the parameters that play the most significant role in controlling disease

transmission.

The normalized forward sensitivity index of a variable z, which depends on a

parameter x, is defined as

W z
x =

∂ z
∂x
× x

z
.

So, for R0, the sensitivity index is WR0
x =

∂R0

∂x
× x

R0
, which shows how sensitive

R0 to the parameter x.

Definition 1.5.8 [25] Ulam-Hyers stability
The global stability of the fractional-order model is analyzed within the framework of

9
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the Ulam-Hyers stability criteria, following the approach in [83; 179]. To this end, the

following inequality is introduced:∣∣Dq
t M(t)− f (t,M(t))

∣∣≤ ε, t ∈ [0, t0]. (1.8)

A function Mo satisfies (1.8), if there exists χ ∈Ω such that:

• |χ(t)| ≤ ε

• Dq
t Mo(t) = f (t,Mo(t))+χ(t); t ∈ [0, t0].

A fractional order system is Ulam-Hyers stable if ∃ a real number φ > 0 such that for

given ε > 0 and for any solution Mo(t) of equation (1.8), there exists a unique solution

M(t) of corresponding model with

‖M(t)−Mo(t)‖ ≤ εφ ; t ∈ [0, t0].

Consider the inequality,∣∣Dq
t M(t)− f (t,M(t))

∣∣≤ εθ(t), for some θ(t) ∈C([0, t0];R+). (1.9)

A function Mo satisfies equation (1.9) iff there exists a function ν(t) ∈Ω such that

• |ν(t)| ≤ εθ(t)

• Dq
t Mo(t) = f (t,Mo(t))+ν(t); t ∈ [0, t0].

Definition 1.5.9 [25] The fractional order model is generalized Ulam-Hyers stable

with respect to function θ(t) if there exists real number φ > 0 such that for given ε > 0

and for any solution Mo(t) of equation (1.9), there exists a unique solution M(t) of

model equation with

‖M(t)−Mo(t)‖ ≤ εφθ(t); t ∈ [0, t0].

1.6 Fractional order optimal control
The applications of Fractional ordered optimal control problem (FOCP) have grown

in recent decades. Agrawal [2] explored fractional-order variational problems of the

Riemann-Liouville type in 2002 and developed a framework for studying fractional

optimal control problems (FOCP) and suggests a numerical method to solve FOCP

using Lagrange multiplier technique. Building on this framework, Ding studied the

23
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FOCP of the Caputo HIV model in 2012 and presented related numerical techniques

[55]. Pontryagin’s principle is one of the most useful approaches to solve optimal con-

trol problem. There are several works where these methods are employed in Fractional

ordered optimal control problems [62; 169].

Here a brief review of the mathematical formulation of Caputo fractional optimal

control model.

Let u = [u1(t),u2(t), . . . ,um(t)] ∈ U ⊂ Rm be the time-dependent control vari-

ables and U be the set of admissible controls of the dynamical system

cDq
t x(t) = f (x(t),u(t)), x(0) = x0,

where cDq
t denotes the Caputo fractional derivative of order 0 < q < 1.

The control u ∈ U must be chosen for all t ∈ [0,Tf ] to minimize the objective

functional J , where Tf is the final time, which is defined by

J [u] = Θ(x(Tf ))+
∫ Tf

0
F (x(t),u(t))dt,

where Θ(x(T )) is the terminal cost and F (x(t),u(t)) is the running cost.

Step 1. Hamiltonian construction.
Introduce the adjoint (co-state) vector λ (t) and define the Hamiltonian as

H (x(t),u(t),λ (t)) = λ
T (t) f (x(t),u(t))+F (x(t),u(t)),

where λ T stands for transpose of λ .

Step 2. Necessary conditions (Fractional Pontryagin’s Principle).
The following conditions must be satisfied for the optimal state trajectory x∗(t), opti-

mal control u∗(t), and adjoint λ ∗:

1. H (x∗(t),u(t),λ (t))≤H (x∗(t),u∗(t),λ (t))

2. ∂Θ(x)
∂Tf

∣∣∣
x=x(Tf )

+H (Tf ) = 0

3. cDq
t λ T (t) = ∂H

∂x

∣∣∣
x=x∗

with transversality conditions λ (Tf ) = 0.

4. ∂H
∂u

∣∣∣
u=u∗

= 0 and ∂ 2H
∂u2

∣∣∣
u=u∗
≤ 0

These four conditions are the necessary conditions for optimal control.

17

29

32

Page 60 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 60 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



1.7 Chapter-wise Overview of the Thesis 25

1.7 Chapter-wise Overview of the Thesis
The thesis consists of seven chapters, including a concluding chapter on future scope,

followed by a bibliography. The organization of the thesis is as follows:

Chapter 1 presents an introduction and background literature relevant to the title

of the thesis. It provides a comprehensive overview of a fractional-order mathematical

model for analyzing the dynamics of infectious diseases, along with the fundamental

terminologies and key concepts associated with the study. The preliminary section

of this chapter includes essential definitions, theorems, and lemmas that form the

foundation for the subsequent work. In addition, the chapter offers a concise outline of

the overall structure of the thesis, summarizing the content of the following chapters.

Disease prevention and control measures, with particular emphasis on vaccination, are

also discussed.

The work reported in this chapter has been communicated in a research paper

entitled “Study on Vaccination Strategy Employed by the Five Countries Most
Affected by Covid-19”, which has been submitted for publication.

Chapter 2 focuses on the formulation and analysis of a fractional-order SIS

compartmental model that incorporates the influence of fear on disease dynamics. The

presence of fear induces behavioural changes such as reduced social interactions and

adoption of preventive measures, which significantly affect the transmission process.

To capture these effects, the model employs a Beddington-De Angelis type incidence

rate, which provides a realistic representation of interactions between susceptible

and infected individuals, as it accounts for inhibition measures adopted by both

groups. The chapter establishes fundamental mathematical properties of the system,

derives the basic reproduction number R0, and examines the existence and stability

of both disease-free and endemic equilibria. Furthermore, numerical simulations are

presented to validate and illustrate the analytical results.

The work reported in this chapter has been communicated in the paper entitled

“A Study of Fractional Order SIS Model with Fear Effect and Beddington-De

22
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Angelis Incidence Rate” for publication.

Chapter 3 deals with the formulation and analysis of a fractional-order SV IR

model that incorporates different vaccination strategies. The model distinguishes

between partially and fully vaccinated individuals, thereby providing a more realistic

framework for studying the role of vaccination in disease dynamics. To reflect con-

straints such as limited medical resources and the possibility of disease reemergence,

a Holling type-III saturated treatment function is included. The chapter establishes

well-posedness of the system and examines the stability of both the disease-free and

endemic equilibria. Local stability is analyzed using the linearization method and

the Routh-Hurwitz criterion, while global stability is investigated through suitable

Lyapunov functions. In addition, numerical simulations are performed to validate

the analytical results. The quantification of vaccination effects demonstrates that full

vaccination leads to a higher proportion of recovered individuals compared to partial

vaccination, underscoring the importance of effective full vaccination strategies in

public health planning.

The work reported in this chapter has been published as “Stability Analysis and
Quantification of Effects of Partial and Full Vaccination Using Fractional Order
SV IR Model”, in Mathematical Medicine and Biology: A Journal of the IMA, (SCIE

Indexed), Impact Factor: 1.5, Oxford University Press (2025).

Chapter 4 presents a fractional-order SEIQR model that incorporates quarantine

measures and behavioural responses during an epidemic outbreak. To capture

psychological effects in disease transmission, the Monod-Haldane incidence rate is

adopted, while a Holling type-III saturated quarantine function is employed to reflect

the limitations of quarantine facilities arising from the unavailability of a sufficient

number of quarantine places. The system is formulated using Caputo fractional

derivatives, allowing the inclusion of memory effects in epidemic dynamics. The

chapter establishes the well-posedness of the model, ensuring nonnegativity and

boundedness of solutions, and identifies two possible equilibria: the disease-free

and endemic states. Stability analysis is carried out for both equilibria, where

local stability is studied using the linearization method and the Routh-Hurwitz

criterion, while global stability is investigated with the help of Lyapunov functions

2
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for fractional-order systems. The thresholds governing these stability behaviours,

including the basic reproduction number R0 and its alternative T0, are derived

using the Next-Generation Matrix method. In addition, a fractional optimal control

problem is formulated using Pontryagin’s maximum principle to minimize disease

spread while balancing control costs, introducing a time-dependent control function

representing behavioural interventions. Numerical simulations using the Adams-

Bashforth-Moulton scheme are provided to illustrate and validate the analytical results.

The work reported in this chapter has been published as “Optimal Control of
a Fractional Order SEIQR Epidemic Model with Non-monotonic Incidence and
Quarantine Class”, in Computers in Biology and Medicine (SCIE Indexed, Impact

Factor: 6.3), Elsevier (2024).

Chapter 5 introduces a fractional-order SPIR model to study the impact of

environmental pollution on disease dynamics. The model developed in this chap-

ter accounts for the role of long-term exposure to polluted environments, which

increases susceptibility to infection, and incorporates prenatal exposure effects

through a Monod-Haldane incidence rate to capture psychological influences during

transmission. The system is formulated using Caputo fractional derivatives, and

its well-posedness is established by proving existence, uniqueness, positivity, and

boundedness of solutions. The chapter investigates the disease-free and endemic

equilibria, with stability analyzed using the basic reproduction number R0, derived via

the Next-Generation Matrix method. Local stability is examined using the lineariza-

tion method and the Routh-Hurwitz criterion, while global stability is studied with

Lyapunov functions. The model also reveals the occurrence of a forward transcritical

bifurcation at R0 = 1. Furthermore, a fractional optimal control problem is devel-

oped using Pontryagin’s maximum principle, introducing two non-pharmaceutical,

time-dependent control measures. Numerical simulations, carried out using the

Adams-Bashforth-Moulton scheme, support the theoretical findings and show that

the simultaneous implementation of both controls is most effective in flattening the

epidemic curve within a short time frame.

The work reported in this chapter has been communicated in the paper entitled

“Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR

3

7

Page 63 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 63 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



28 Introduction

Epidemic Model with Non-monotonic Incidences and Optimal Control” for

publication.

Chapter 6 develops a fractional-order SIR model to investigate the impact of

household waste on the spread of infectious diseases. The model incorporates two

bacterial populations, namely bacteria present in the environment (Be) and bacteria

within organisms (Bo), to capture the dual role of pathogens in transmission. The

system is formulated using Caputo fractional derivatives, and its well-posedness is

established by proving existence and uniqueness through the Banach contraction

principle and Schaefer’s fixed point theorem. The basic reproduction number R0

is derived, and a sensitivity analysis is carried out to identify the most influential

parameters affecting disease dynamics. Stability is further studied in the sense

of Ulam-Hyers criteria. In addition, an optimal control problem is formulated to

minimize the disease burden and associated costs, introducing three time-dependent

controls that target transmission reduction. The existence and characterization of these

controls are derived using Pontryagin’s maximum principle. Numerical simulations,

performed with the Adams-Bashforth-Moulton method, illustrate the effectiveness of

the proposed strategies and highlight cost-effective approaches to mitigating health

risks associated with household waste.

The work reported in this chapter has been communicated in the paper entitled

“Analysis of a Fractional Order SIR Model for Infectious Diseases Spread by
Household Waste with Optimal Control Strategies” for publication.

Chapter 7 presents a comprehensive summary of the work along with an outline

of the future scope and social impact of the research. The thesis concludes with a

bibliography and a list of the author’s publications.

7
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Chapter 2

A study of Fractional order SIS model
with fear effect and Beddington-De
Angelis incidence rate

Many studies have demonstrated that, during epidemics, fear can significantly influ-

ence human behavior, often leading to a decline in birth rates. This chapter presents a

fractional-order SIS compartmental model that incorporates the effects of fear and em-

ploys a Beddington-De Angelis type incidence rate. This incidence function captures

the impact of preventive measures taken by both susceptible and infected individuals,

thereby providing a more realistic representation of disease transmission dynamic-

s. Following the model formulation, fundamental properties such as positivity and

boundedness of solutions are established. The basic reproduction number, R0, is then

computed, and the existence of an endemic equilibrium for R0 > 1 is demonstrat-

ed. Furthermore, the local stability of both the disease-free and endemic equilibria

is analyzed using the linearized system. Numerical simulations, conducted via the

Adams-Bashforth-Moulton Predictor-Corrector method, are provided to support the

analytical results.

2.1 Introduction
Infectious diseases continue to pose a significant threat to public health and human

lifestyles. Illnesses such as chickenpox, measles, cholera, tuberculosis, and influenza

29
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incidence rate

have far-reaching societal impacts due to their ability to spread rapidly through di-

rect contact or intermediary carriers. Because of this high transmissibility, outbreaks

can escalate into regional or even global epidemics in a short period. Consequent-

ly, researchers from diverse disciplines are increasingly involved in understanding the

transmission dynamics of infectious diseases and developing strategies for their con-

trol.

Public awareness and behavioural responses to infectious disease outbreaks have

also intensified in recent times. The fear of infection often drives individuals to limit

social interactions, thereby influencing the spread of the disease. Such fear-induced

behaviour can result in self-isolation, reduced fertility rates, and changes in survival

outcomes. Furthermore, studies in pathology suggest that psychological stress, in-

cluding fear, can impair immune function, particularly the body’s capacity to produce

antibodies. Media coverage plays a pivotal role in amplifying this fear, as evidenced

during the SARS outbreak (November 2002 to June 2003), which coincided with a

noticeable drop in Hong Kong’s birth rate- from 8,742 births in 2002 to 8,436 in 2003

[22; 27; 63].

Based on these observations, a fractional-order SIS (Susceptible-Infected-

Susceptible) epidemic model is proposed, in which individuals who recover from the

infection can become susceptible again. The model incorporates fear-driven behav-

ioral changes that affect both susceptible and infected individuals. To more accurately

represent contact dynamics under such behavioral responses, a Beddington-De Angelis

type incidence function is employed, accounting for mutual interference and saturation

effects during disease transmission.

The chapter is organized as follows: Section 2.2 presents the assumptions and

mathematical formulation of the model. Sections 2.3 and 2.4 analyze the non-

negativity and boundedness of solutions, derive the basic reproduction number, and

examine the existence of equilibria. Section 2.5 investigates the local stability of the

equilibrium points using linearization. Numerical simulations validating the theoreti-

cal results are provided in Section 2.6. Finally, Section 2.7 concludes the chapter with

a summary and potential directions for future research.

2.2 Formulation of fractional order epidemic model
This section develops a fractional-order SIS (Susceptible-Infected-Susceptible) epi-

demic model based on the Caputo derivative framework, incorporating both treatment

2
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2.3 Non-negativity and Boundedness 31

interventions and fear-driven behavioral changes. The total population is divided into

two distinct and time-dependent compartments: the susceptible class, S(t), consisting

of individuals vulnerable to infection, and the infected class, I(t), which includes indi-

viduals currently carrying and capable of transmitting the disease. The dynamics of the

epidemic are described using the following system of nonlinear fractional differential

equations:

0Dα
t S(t) =

Λ

1+δ I
− βSI

1+ρS+ γI
+(ψ +u) I−µS,

0Dα
t I(t) =

βSI
1+ρS+ γI

− (ψ +u) I− (µ +d) I,
(2.1)

subject to the conditions

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, (2.2)

and the different model parameters are defined in Table 2.1.

Table 2.1: Parameters of the model SIS.

Parameter Description

Λ Birth rate of susceptible population

β Disease transmission rate

δ Level of fear

ρ Preventive measures taken by susceptibles

γ Preventive measures taken by infectives

µ Natural death rate

ψ Natural recovery rate

u Recovery rate due to treatment

d Disease induced death rate

2.3 Non-negativity and Boundedness
To ensure biological relevance, the solutions of system (2.1) must remain non-negative

and bounded over time. In this context, the feasible region is defined as Ω+ =

(S, I) ∈Ω : S, I ∈ R+, where R+ denotes the set of non-negative real numbers. This

ensures that population variables retain meaningful interpretations within a biological

framework.

15
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incidence rate

Theorem 2.3.1 Every solution of the system (2.1) remain non-negative and uniformly

bounded starting in Ω+.

Proof 2.3.2 Let the initial solution of the system be Γt0 =(St0, It0)∈Ω+. It then follows

from system (2.1) that,

DαS|St0=0 =
Λ

1+δ I
+(ψ +u)I > 0,

Dα I|It0=0 = 0.

Using Lemma 1.1.13, we have S(t), I(t) ≥ 0 for any t ≥ t0. Therefore, the solution of

the system (2.1) will remain in Ω+.

Again, consider the function N(t) = S(t)+ I(t), then

DαN = DαS+Dα I

≤ Λ−µN−dI

i.e. DαN +µN ≤ Λ as I > 0.

So, N(t)≤
(

N(t0)− Λ

µ

)
Eα [−µ(t− t0)]+ Λ

µ
→ Λ

µ
as t→ ∞.

Therefore, solutions of the system (2.1) starting in the region Ω+ are always lying

in the region
{
(S, I) ∈Ω : 0≤ S+ I ≤ Λ

µ

}
.

2.4 Basic Reproduction Number and Equilibria
It is straightforward to observe that the system (2.1) admits a disease-free equilibrium

(DFE) given by E0 = E0

(
Λ

µ
,0
)

, where the entire population is susceptible and no in-

fection is present. Our next objective is to determine the basic reproduction number,

denoted by R0, which quantifies the expected number of secondary infections gener-

ated by a single infectious individual introduced into a fully susceptible population.

The value of R0 is a crucial threshold parameter for assessing the potential for disease

spread or elimination. We compute R0 using the next-generation matrix approach as

outlined in [47]. To proceed, it is assumed that

Dρ

t X = F (X)−V (X),

where X = (I)T and F (X) be the matrix of new infection term, V (X) be the matrix of

outgoing terms. The Jacobian matrices F and V of F (X) and V (X), respectively, are

given as:

F =

[
βS(1+ρS)

(1+ρS+ γI)2

]
,

2
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2.4 Basic Reproduction Number and Equilibria 33

V = [ψ +u+µ +d] .

The next generation matrix, at infection-free equilibrium E0 is,

FV−1 =

[
βΛ

(µ +ρΛ)(ψ +u+µ +d)

]
.

Thus,

R0 =
βΛ

(µ +ρΛ)(ψ +u+µ +d)
.

In addition, it will be shown that the model (2.1) admits an endemic equilibrium

when R0 > 1. Let E1 =E1(S∗, I∗) denote an endemic equilibrium such that S∗> 0, I∗>

0 and 
Λ

1+δ I∗
− βS∗I∗

1+ρS∗+γI∗
+(ψ +u) I∗−µS∗ = 0,

βS∗I∗
1+ρS∗+γI∗

− (ψ +u) I∗− (µ +d) I∗ = 0,
(2.3)

It follows that,

S∗ =
(ψ +u+µ +d)(1+ γI∗)

β − (ψ +u+µ +d)ρ
and I∗ can be obtained by solving the following equation:

A2I∗2 +A1I∗+A0 = 0, (2.4)

where,

A2 = δ
(
d2

ρ +d(−β − γµ +ρ(2µ +u+ψ))−µ(β +(γ−ρ)(µ +u+ψ))
)
,

A1 = d2ρ−d(β + γµ +δ µ−2µρ−ρψ−ρu)−µ(β +(γ +δ −ρ)(µ +u+ψ)),

A0 = (R0−1)(Λρ +µ)(d +µ +u+ψ).
(2.5)

Thus, it can be observed that, A2 and A1 can be positive or negative but A0 > 0

for R0 > 1. So, according to Descarte’s rule of sign, the polynomial (2.4) will have

at least one positive root I∗ for R0 > 1. The present study focuses on the existence

of a unique positive equilibrium point. Consider R0 > 1, then the combinations of

signs of coefficients A1 and A2 that allow the existence of a unique positive root for the

polynomial (2.4) are as follows:

(i) A2 < 0 and A1 < 0,

(ii) A2 < 0 and A1 > 0.

Once the value of I∗ is determined, the unique positive endemic equilibrium point

can be obtained as E1 = E1(S∗, I∗).

3
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incidence rate

2.5 Stability Analysis
This section presents the stability analysis of the equilibrium points of the system.
Local stability determines whether small perturbations around an equilibrium point
will return to the equilibrium (stable) or move away from it (unstable). Let us as-
sume the subsequent coordinate transform S(t) = S∗(t)+s(t); I(t) = I∗(t)+ i(t), where
(S∗(t), I∗(t)) denotes the equilibrium point of the model. The linearised system at any
steady state is given by

0Dα
t S(t) =−

(
β I∗(1+ γI∗)

(1+ρS∗+ γI∗)2 +µ

)
S−
(

δΛ

(1+δ I∗)2 +
βS∗(1+ρS∗)

(1+ρS∗+ γI∗)2 − (ψ +u)
)

I,

0Dα
t I(t) =

(
β I∗(1+ γI∗)

(1+ρS∗+ γI∗)2

)
S+
(

βS∗(1+ρS∗)
(1+ρS∗+ γI∗)2 − (ψ +u+µ +d)

)
I.

(2.6)

Applying the Laplace transform on both side of equation (2.6), the reduced system

can be written in the following matrix form:

5(s)

(
L {S(t)}
L {I(t)}

)
=

(
ν1(s)

ν2(s)

)
,

where,

ν1(s) = sα−1S(0), ν2(s) = sα−1I(0),

and

5(s)=


sα +

β I∗(1+ γI∗)
(1+ρS∗+ γI∗)2 +µ

δΛ

(1+δ I∗)2 +
βS∗(1+ρS∗)

(1+ρS∗+ γI∗)2 − (ψ +u)

− β I∗(1+ γI∗)
(1+ρS∗+ γI∗)2 sα −

(
βS∗(1+ρS∗)

(1+ρS∗+ γI∗)2 − (ψ +u+µ +d)
)
 .

(2.7)

In this case, the characteristic polynomial of system (2.1) is det(5(s)), and the

characteristic matrix is5(s). The distribution of eigenvalues of the characteristic poly-

nomial det(5(s)) provides a means to analyze the local stability of the system (2.1).

2.5.1 Local stability of disease-free equilibrium

This subsection establishes the local stability of the disease-free equilibrium

(DFE) point, E0 = E0

(
Λ

µ
,0
)
, for which the characteristic matrix at the DFE is giv-

en by:

5 (s) =


sα +µ δΛ+

βΛ

µ +ρΛ
− (ψ +u)

0 sα −
(

βΛ

µ+ρΛ
− (ψ +u+µ +d)

)
 , (2.8)

3
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2.5 Stability Analysis 35

or

5 (s) =

 sα +µ δΛ+
βΛ

µ +ρΛ
− (ψ +u)

0 sα − (ψ +u+µ +d)
(
R0−1

)
 . (2.9)

Since stability is determined by the eigenvalues of the characteristic matrix (2.9),

we obtain two eigenvalues: ω1 =−µ and ω2 = (ψ +u+µ +d)
(
R0−1

)
. The disease-

free equilibrium is locally asymptotically stable if all eigenvalues are negative. In

particular, the second eigenvalue ω2 is negative when R0 < 1, indicating local stability,

and becomes positive when R0 > 1, leading to instability. Thus, the following theorem

holds.

Theorem 2.5.1 The disease-free equilibrium E0 is locally asymptotically stable if and

only if the threshold value R0 is less than one, otherwise unstable.

2.5.1.a Local stability of endemic equilibrium

This subsection examines the local stability of the endemic equilibrium, E1 =

E1(S∗, I∗). The characteristic matrix5(s) corresponding to equation (2.7) at E1 is giv-

en by:

5(s)=


sα +

β I∗(1+ γI∗)
(1+ρS∗+ γI∗)2 +µ

δΛ

(1+δ I∗)2 +
βS∗(1+ρS∗)

(1+ρS∗+ γI∗)2 − (ψ +u)

− β I∗(1+ γI∗)
(1+ρS∗+ γI∗)2 sα −

(
βS∗(1+ρS∗)

(1+ρS∗+ γI∗)2 − (ψ +u+µ +d)
)
 .

(2.10)

Let sα = λ , then the characteristic equation corresponding to characteristic matrix

(2.10) is:

I2
∗βγδΛ

(I∗δ +1)2(I∗γ +ρS∗+1)2 +
I2
∗βγλ

(I∗γ +ρS∗+1)2 +d
(

I∗β (I∗γ +1)
(I∗γ +ρS∗+1)2 +λ +µ

)
−

βλρS2
∗

(I∗γ +ρS∗+1)2 −
β µρS2

∗
(I∗γ +ρS∗+1)2 +

I∗βδΛ

(I∗δ +1)2(I∗γ +ρS∗+1)2 +
I∗βλ

(I∗γ +ρS∗+1)2

− βλS∗
(I∗γ +ρS∗+1)2 −

β µS∗
(I∗γ +ρS∗+1)2 +u

(
I∗β (I∗γ +1)

(I∗γ +ρS∗+1)2 +λ +µ

)
+λ

2 +ψ(λ +µ)+2λ µ +µ
2 = 0

which can be simplified into the following polynomial form:

λ
2−2A1λ +A0 = 0, (2.11)

1
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where

A1 =
β (S∗(ρS∗+1)− I∗(I∗γ +1))

2(I∗γ +ρS∗+1)2 − (d +2µ +u+ψ)

2
,

A0 =
β
(
I2
∗γ(d +u)+ I∗(d +u)−µS∗(ρS∗+1)

)
(I∗γ +ρS∗+1)2 +

I∗βδΛ(I∗γ +1)
(I∗δ +1)2(I∗γ +ρS∗+1)2

+µ(d +µ +u+ψ).

The eigenvalues are

λ1,2 = A1±
√

A1
2−A0.

The different values of λ1 and λ2 are depending on the coefficients A1 and A0.

Thus, the possibilities arises for which the eigenvalues will be negative and endemic

equilibrium will be locally stable, according to Lemma 1.2.5, are given in the following

theorem:

Theorem 2.5.2 Consider the endemic equilibrium point E1 = (S∗, I∗) of the system.

The local asymptotic stability of E1 depends on the characteristic equation coefficients

A0 and A1, and it is determined by the following conditions:

(i) If A1 < 0 and A2
1 ≥ A0, then the equilibrium E1 is locally asymptotically stable.

(ii) If A1 ≥ 0 and A2
1 ≥ A0, then the equilibrium E1 is unstable.

(iii) If A1 > 0 and A2
1 < A0, then the equilibrium E1 is locally asymptotically stable.

(iv) If A1 < 0 and A2
1 < A0, then the equilibrium E1 is locally asymptotically stable.

(v) If A1 = 0 and A2
1 < A0, then the equilibrium E1 is locally asymptotically stable.

2.6 Numerical Simulation and Discussion
In this section, numerical simulations are carried out using MATLAB 2012b to validate

the theoretical results, employing the set of parameter values listed in Table 2.2. The

simulations utilize the fractional Adams-Bashforth-Moulton method, as described in

[52], to solve the system of equations. For the initial conditions, the susceptible and

infected populations are taken as S(0) = 73 and I(0) = 1, respectively. Based on the

parameter values provided in Table 2.2, the coefficients of the polynomial equation

(2.4) are computed as follows:

A2 =−2.0172×10−6, A1 =−0.000377, A0 = 0.00418.

1

2

8

13

13

Page 72 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 72 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391
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Table 2.2: Parameter values for simulation.

Parameter Values

Λ 3

β 0.004

δ 0.006

ρ 0.002

γ 0.001

µ 0.04

ψ 0.05

u 0.03

d 0.05

These values satisfy the necessary conditions for the existence of a unique, biological-

ly feasible endemic equilibrium. Consequently, the system admits a single endemic

equilibrium point given by E∗ = (S∗, I∗) = (46.9357,10.4979), for which the basic

reproduction number is calculated as R0 = 1.5345.

Figures 2.1 and 2.2, plotted using the initial population values, illustrate the effect

of fractional-order parameter α on the susceptible and infected sub-populations.

Figure 2.1 highlights how variations in α influence the convergence behavior of

system (2.1). An increase in α leads to faster stabilization of the susceptible popula-

tion toward its steady state. In contrast, decreasing α strengthens the memory effect

inherent in the fractional-order system, thereby slowing down the rate of convergence.

In practical terms, a lower value of α results in a prolonged presence of the disease in

the population.
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Figure 2.1: Time series plot of susceptible population for different values of fractional

order α .
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Figure 2.2: Time series plot of infected population for different values of fractional

order α .

Figure 2.2 shows that when α = 1 the infected population quickly reach a steady

state. However, as the value of α decreases, the time it takes for these populations

to reach the steady state increases. This shows how the epidemic evolves over time.
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2.6 Numerical Simulation and Discussion 39

Furthermore, Figures 2.1 and 2.2 indicate that, as the disease progresses, the number of

susceptible individuals decreases while the number of infected individuals increases,

eventually stabilizing at their respective steady states.

Figure 2.3 provides valuable insights into the long-term behaviour of disease

transmission within a population by depicting a phase portrait of susceptible versus

infected individuals. This graphical representation allows us to visualize how the pop-

ulations of susceptible and infected individuals evolve over time and interact with one

another. From the phase portrait, it can be observe that as time progresses, the number

of susceptible individuals increases while the number of infected individuals decreas-

es. This inverse relationship suggests that the disease is gradually being brought under

control. The increase in the susceptible population may initially seem strange, howev-

er this reflects the effect of reduced transmission of infection, that is, fewer individuals

are becoming infected, allowing more individuals to remain in the susceptible class.
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Figure 2.3: Phase diagram for susceptible and infected population for fractional order

α = 0.8.

The work done in this chapter focuses on the role of fear and the Beddington-

De Anglis incidence rate in shaping the dynamics of infectious disease transmission.

Specifically, it explores how behavioural responses driven by fear and preventive ac-

tions influence the susceptible and infected populations. Figures 2.4, 2.5 and 2.6 illus-

1
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trate the impact of these key parameters, namely the level of fear δ and the rates of

preventive measures (ρ and γ), on the disease dynamics.

From Figure 2.4, it is observed that as the fear level within the population in-

creases, there is a decline in the number of infected individuals. This outcome can

be attributed to fear-induced behavioural changes such as social distancing, improved

hygiene, and reduced contact rates, all of which contribute to lowering disease trans-

mission.

Figures 2.5 and 2.6 further demonstrates that higher values of ρ and γ , which rep-

resent the rates at which susceptible individuals adopt preventive measures, lead to an

increase in the susceptible population. This is because effective preventive behaviours

reduce the likelihood of infection, thereby increasing the susceptible population over

time.

Altogether, these findings highlight the critical role of psychological and be-

havioural factors, particularly fear and preventive actions, in modulating epidemic out-

comes. Incorporating these elements into epidemiological models helps capture more

realistic disease dynamics and can inform more effective public health interventions.
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Figure 2.4: Effect of fear level δ on I for fractional order α = 0.8.
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Figure 2.5: Effect of preventive measures ρ on S for fractional order α = 0.8.
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Figure 2.6: Effect of preventive measures γ on S for fractional order α = 0.8.

2.7 Conclusion
Mathematical modeling is a valuable tool for understanding the dynamics of epidemic-

s and for planning and evaluating intervention strategies. This chapter presented and

12
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analyzed a Caputo-type fractional-order Susceptible-Infected-Susceptible (SIS) model

that incorporates the fear effect and preventive measures adopted by both susceptible

and infected individuals. These behavioural effects are modeled through a Beddington-

De Angelis type incidence rate. The well-posedness of the model was first established

by proving the positivity and boundedness of the solutions, ensuring that they remain

positive and uniformly bounded within a biologically relevant region. The analysis

showed that the model admits two equilibria: a disease-free equilibrium point E0, and

an endemic equilibrium point E1, which exists when the basic reproduction number

R0 > 1. The basic reproduction number R0 was derived using the next-generation

matrix approach, and the stability of the disease-free equilibrium was characterized in

terms of R0. Specifically, the disease dies out when R0 < 1 and persists when R0 > 1.

The local stability behaviour of the endemic equilibrium point was also discussed. Fur-

thermore, numerical simulations were conducted to validate theoretical results and to

study the effects of memory (fractional-order dynamics) using the Adams-Bashforth-

Moulton Predictor-Corrector method in MATLAB. The simulations further illustrated

the influence of fear on the infected population, as well as the impact of preventive

measures ρ and γ on the susceptible population. The results indicate that these preven-

tive measures are highly effective in controlling the spread of the disease, and the fear

effect significantly reduces the disease burden in the population. Overall, the proposed

model, incorporating both the fear effect and the Beddington-De Angelis incidence

rate within a fractional-order framework, offers valuable insights for epidemiologists,

policymakers, and public health officials.

1
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Chapter 3

Stability Analysis and Quantification
of Effects of Partial and Full
Vaccination Using Fractional Order
SVIR model

An infectious disease such as COVID-19 poses a global threat to public health due to

its high infection rate and continued mutation into novel variants. Vaccination serves

as a vital tool to interrupt its transmission cycle and mitigate its far-reaching effects.

However, the effectiveness of vaccination depends on a well-planned strategy. This

chapter compares full and partial vaccination strategies using a novel fractional SV IR

mathematical model with a Caputo fractional derivative. The model categorizes vac-

cinated individuals into two groups: partially vaccinated and fully vaccinated. To

account for limited medical resources and the possibility of virus reemergence, the

Holling type III saturated treatment function is adopted for the treatment rate. The

analysis begins by establishing the well-posedness of the model solutions. Subsequent-

ly, the stability of the two equilibria exhibited by the system-the disease-free equilibri-

um (DFE) and the endemic equilibrium (EE)-is examined. It is shown that the DFE is

locally asymptotically stable when R0 < 1, and that the EE is locally asymptotically

stable according to the Routh-Hurwitz criterion. Moreover, both equilibrium points

are proved to be globally stable under certain conditions, using appropriate Lyapunov

functions. Additionally, sensitivity analysis for R0 is performed. Numerical simula-

43
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tions, conducted in MATLAB, validate the analytical findings. The quantification of the

effects of partial and full vaccination reveals that full vaccination results in a higher

percentage of recovered individuals. This demonstrates that policymakers and pub-

lic health professionals should emphasize the importance of effective full vaccination

among susceptible populations.

3.1 Introduction
In late December 2019, a novel respiratory illness emerged in Wuhan, located in Chi-

na’s Hubei Province. This infectious disease, later termed coronavirus disease 2019

(COVID-19), is caused by the newly identified severe acute respiratory syndrome coro-

navirus 2 (SARS-CoV-2) [9; 178]. Initially, the World Health Organization (WHO)

designated the outbreak as a Public Health Emergency of International Concern. How-

ever, as infections rapidly increased both between and within countries, the WHO

subsequently characterized COVID-19 as a global pandemic on 11 March 2020 [191].

The pandemic posed new problems to the worldwide community, particularly in the

context of attempts to ensure equitable vaccine distribution, lessen the load on health-

care systems and mitigate the virus’s economic impact. In response, most countries

adopted rigorous containment strategies to promote physical distancing, which includ-

ed closing schools and workplaces and limiting travel and public gatherings to different

extents [107].

The spread of COVID-19 and the resurgence of the pandemic in 2022 have sig-

nificantly affected people’s mental health, despite the government’s implementation

of various effective measures to control its spread. It is important to note that public

opinion regarding vaccines has undergone a significant shift in light of the pandemic’s

impact. Vaccination is widely regarded as one of the most effective public health mea-

sures and a key strategy for controlling the spread of infectious diseases [12]. However,

sustained progress depends on widespread public acceptance to preserve herd immuni-

ty, curb outbreaks of vaccine-preventable infections, and facilitate the uptake of newly

developed vaccines [31]. The recent resurgence of vaccine-preventable diseases has

even prompted the World Health Organization (WHO) to list vaccine hesitancy as one

of the top ten global health threats in 2019 [190]. There is a considerable number of

individuals worldwide who are hesitant to receive vaccinations [174]. This hesitan-

cy may be attributed to doubts concerning the credibility of vaccine development and

10
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the government’s approval process. Existing research articles, however, have mostly

examined vaccine hesitancy for vaccines with long-term safety records. Such data are

not yet available for novel COVID-19 vaccines, which likely exaggerates existing fears

about vaccine safety resulting in partial vaccination in the population [121].

Several mathematical models have been proposed to evaluate the role of vaccina-

tion, its effectiveness, and the influence of vaccination campaigns on the progression

of COVID-19 [10; 45; 197]. In addition, many studies have employed compartmental

models to examine the impact and significance of vaccination strategies against various

infectious diseases [29; 112]. More recently, mathematical modeling approaches have

been utilized to explore the long-term effects of vaccination on COVID-19 incidence

and control, as can be found in the literature and references therein [106; 172]. To the

best of our knowledge, very few studies have been performed to consider the classes

of vaccinated people bases on their vaccine doses [136; 145] but not much attention

has been paid to investigate the impact of vaccination in a way such that the vaccinat-

ed population is categorised into two parts by considering the fact that some people

take all the doses of vaccine allowed by the health agencies of respective country and

some population could not take all the doses. This chapter incorporates this scenario

by defining two cohorts: the partially vaccinated population and the fully vaccinat-

ed population. Here, the population that cannot follow the SOPs of the government

for vaccination due to vaccine hesitancy, careless human behaviour, lack of awareness

or any other reason will be kept in the Partially Vaccinated class and the others who

follow SOPs and get all the vaccine doses will be kept in the Fully Vaccinated class.

As noted by several researchers, saturation effects in medical treatment can pro-

duce complex and often nonlinear disease dynamics [39; 81; 129]. Wang and Ruan

[186] investigated an SIR model where the treatment rate T (I) is zero at I = 0 and

becomes a constant r once I > 0. In a related study, Dubey et al. [59] considered a

Holling type III treatment rate, which increases rapidly with the number of infectives

in the beginning and then gradually approaches a saturation level as the infectious

population grows. In the context of several infectious diseases, where limited medi-

cal resources can affect the treatment rate and where treatment effectiveness may vary

with disease prevalence, Holling Type III treatment offers a more realistic representa-

tion. It captures the idea that medical facilities may be overwhelmed during outbreaks,

leading to a slower response initially and then a more rapid one as resources become

available.

1
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Keeping the above considerations in mind, the Holling type-III treatment rate is

incorporated into the proposed SV IR fractional compartmental model. This approach,

which extends the SV IR model by classifying the vaccinated population into partially

and fully vaccinated groups, is expected to be highly valuable for health agencies in

decision-making. The structure of this chapter is organized as follows. Section 3.2

presents the formulation of the fractional-order mathematical model. In Section 3.3,

the positivity and boundedness of the solutions are established. Section 3.4 investi-

gates the existence of equilibrium points and derives the basic reproduction number

using the next-generation approach. The local and global stability of the equilibria

are analyzed in Section 3.5. Sensitivity nalysis of R0 is performed in Section 3.6.

Numerical simulations, provided in Section 3.7, are used to compare the partially and

fully vaccinated populations with recovered individuals and to validate the analytical

results. Finally, Section 3.8 summarizes the main findings of the study and provides

concluding remarks.

3.2 Formulation of fractional order epidemic model
This section develops a fractional-order compartmental model in the Caputo sense,

incorporating a Holling type III treatment rate. The total population at time t, denoted

by N(t), is subdivided into five compartments: susceptible individuals denoted as S(t),

partially vaccinated individuals as Vp(t), fully vaccinated individuals as Vf (t), infected

individuals as I(t), and recovered individuals as R(t).

The basic assumptions of our model are as follows:

(A1) The growth rate of susceptibles is taken as constant which is K and contact rate

of susceptible with infected population has taken as β .

(A2) It is assumed that there are some population that cannot follow the SOPs of gov-

ernment and not been vaccinated properly, those people will be kept in partially

vaccinated class and rest of the vaccinated people will be in the fully vaccinated

class.

(A3) It is possible that some partially vaccinated individuals may become fully vac-

cinated over time but at the same time, there are also some populations that

could not be administered all the doses of allocated vaccines for their respective

countries due to allergic reactions, pregnancy, logistic issues, personal choices,
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vaccine hesitancy and many more. That is why the model is developed under

the assumption that there is no transfer between partially and fully vaccinated

individuals to study the effects of partial vaccination more closely.

(A4) The vaccinated population will also become infected due to close contact with

infected individual. So the rate of infection of partially and fully vaccinated

populations have been considered different and taken as f1 and f2 respectively.

(A5) The natural and disease induced mortality have been considered. The treatment

of infected populations is taken as the function h(I) = aI2

1+bI2 which is Holling

type-III treatment rate, where a is the treatment rate of the disease and b is the

limitation of medical and pharmaceutical facilities.

(A6) Infected population will also be recovered by the natural recovery rate θ .

(A7) Death rate for each category population is µ.

Considering the aforementioned information, the propagation dynamics of the

system can be represented by the flow chart given in Figure 3.1 and described by the

following set of fractional differential equations:

0Dα
t S(t) = K−βS(t)I(t)−αpS(t)−α f S(t)−µS(t),

0Dα
t Vp(t) = αpS(t)− f1Vp(t)I(t)−µVp(t),

0Dα
t Vf (t) = α f S(t)− f2Vf (t)I(t)−µVf (t),

0Dα
t I(t) = βS(t)I(t)+ f1Vp(t)I(t)+ f2Vf (t)I(t)− (µ +d +θ) I(t)−h(I(t)),

0Dα
t R(t) = h(I(t))+θ I(t)−µR(t),

(3.1)

2

2
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where, h(I) = aI2

1+bI2 , is the Holling type III treatment rate with treatment capacity a
b .

So our model becomes

0Dα
t S(t) = K−βS(t)I(t)− (αp +α f +µ)S(t),

0Dα
t Vp(t) = αpS(t)− f1Vp(t)I(t)−µVp(t),

0Dα
t Vf (t) = α f S(t)− f2Vf (t)I(t)−µVf (t),

0Dα
t I(t) = βS(t)I(t)+ f1Vp(t)I(t)+ f2Vf (t)I(t)− (µ +d +θ) I(t)− aI2

1+bI2 ,

0Dα
t R(t) =

aI2

1+bI2 +θ I(t)−µR(t)

(3.2)

subject to the conditions

S(0) = S0 ≥ 0,Vp(0) =Vp0 ≥ 0,Vf (0) =Vf 0 ≥ 0, I(0) = I0 ≥ 0,R(0) = R0 ≥ 0, (3.3)

Figure 3.1: Propagation diagram of disease.

The fractional order derivative 0Dα
t , where α ∈ (0,1], is employed in the Caputo

sense. All the parameters relevant to the model can be found in Table 3.1.
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Table 3.1: Parameter descriptions of the model SV IR and the their units.

Parameters Description Unit

K Recruitment rate ind. time−1

β The transmission rate of infection in

µ Natural death rate time−1

susceptibles ind−1. time−1

αp Partial vaccination rate time−1

α f Full vaccination rate time−1

f1 Contact rate of partially vaccinated population ind. time−1

f2 Contact rate of fully vaccinated population ind.time−1

d Death rate induced by disease time−1

θ Recovery rate of infected population time−1

a Treatment rate ind−1.time−1

b Treatment limitation ind−1.time−1

3.3 Positivity and boundedness
For epidemiological reasons, all the state variables describe the evolution of population

and hence they should be non-negative because it would not make sense if the solution

of system (3.2) is negative.

Theorem 3.3.1 All solutions of the system described by (3.2) and subject to the initial

condition (3.3) are non-negative and uniformly bounded for all t ≥ 0.

Proof 3.3.2 (Positivity) Let us consider the scenario where S(0) > 0. To begin with,

we aim to establish the claim that S(t) remains non-negative for all t ≥ 0 through

contradiction.

Let us assume that S(t) < 0. Consequently, there exists a specific value τ1 > 0

such that S(t)> 0 holds true for 0≤ t < τ1, S(t) = 0 precisely at t = τ1, and S(t)< 0

for τ1 < t < τ1 + ε1, where ε1 is chosen to be sufficiently small.

From the first equation of the model (3.2), we get Dα
t S(t)|t=τ1

=K > 0. According

to generalized mean value theorem [142], for any 0 < ε1� 1, we get

S(τ1 + ε1) = S(τ1)+
1

Γ(α)
τ1Dα

t S(ξ )(ε1)
α , with τ1 < ξ ≤ τ1 + ε1.

2

2
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Consequently, we can conclude that S(τ1 + ε1)≥ 0, which contradicts the established

fact that S(t)< 0 for τ1 ≤ t ≤ τ1 +ε1. Hence, we can affirm that S(t)≥ 0 for all t ≥ 0.

In a similar manner, we can demonstrate that Vp(t) ≥ 0, Vf (t) ≥ 0, I(t) ≥ 0

and R(t) ≥ 0 holds for t ≥ 0. Consequently, it can be concluded that all solutions

(S(t),Vp(t),Vf (t), I(t),R(t)) of the model described by (3.2) and subject to the condi-

tions outlined in (3.3) are non-negative.

Now, (Boundedness) using the identity S+Vp +Vf + I +R = N i.e. adding all

the equations of the model (3.2), we obtain,

Dα
t N = K−µN−dI,

Dα
t N ≤ K−µN

(3.4)

Now consider the initial value problem

Dα
t N̄ = K−µN̄, N̄(0) = N̄0.

Using comparison principle [120], we obtain the following inequality:

N(t)≤ N̄(t), ∀t ≥ 0.

Applying the Laplace transform to the above initial value problem, we have

SαL [N̄(t)]− sα−1N̄0 =
K
s
−µL [N̄(t)]

=⇒ L [N̄(t)] =
sα−1N̄0

sα +µ
+

Ks−1

sα +µ
.

Now, according to Lemma 3 of [171], we obtain

L [Eα,1(−µtα)] =
sα−1

sα +µ
, L [tαEα,α+1(−µtα)] =

s−1

sα +µ
.

Applying the inverse Laplace transform in above equation, we obtain

N̄(t) = N̄0Eα,1(−µtα)+KtαEα,α+1(−µtα).

Combining this with (3.4) gives

N(t)≤ [N0Eα,1(−µtα)+KtαEα,α+1(−µtα)].

Moreover, by Lemma 3 of [96], we obtain

|N(t)| ≤ N0CE

1+µtα
+

KtαCE

1+µtα
,

3
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where CE is the constant defined in Lemma 4 of [171]. Therefore, as t → ∞, we have

N(t) ≤ M̄ with M̄ ≥ CE
K
µ
. Hence, all the solutions are bounded and will remain in

attracting biological feasible domain Ω of system (3.2), which is given below:

Ω =

{
(S,Vp,Vf , I,R) ∈ R5

+ : 0 < S+Vp +Vf + I +R≤ M̄,M̄ ≥CE
K
µ

}
.

The proof is completed.

It is worth noting that in the model system (3.2), the variable R(t) does not directly

appear in the first four equations. Instead, the first four equations can be seen as pro-

viding input to the equation concerning R. As a result, we can consider the following

subsystem:

0Dα
t S(t) = K−βS(t)I(t)−ηS(t),

0Dα
t Vp(t) = αpS(t)− f1Vp(t)I(t)−µVp(t),

0Dα
t Vf (t) = α f S(t)− f2Vf (t)I(t)−µVf (t),

0Dα
t I(t) = βS(t)I(t)+ f1Vp(t)I(t)+ f2Vf (t)I(t)−ρI(t)− aI2

1+bI2 ,

(3.5)

where ρ = (µ +d +θ) and η = (αp +α f +µ).

3.4 Possible Equilibria and Basic Reproduction

Number
Within this section, our objective is to determine all biologically and feasibly relevant

equilibria that are supported by the system. To obtain these equilibria, we set the

right-hand side of system (3.5) to zero. Thus, we found the model system (3.5) has

a disease free equilibrium (DFE) point also, given by Ē = (S̄,V̄p,V̄f ,0), at which the

whole population is free from the disease, where

S̄ =
K
η
, V̄p =

Kαp

µη
, V̄f =

Kα f

µη
.

Now, the basic reproduction number R0 can be find by using the recipes of next

generation approach given in [47]. Let

Dα
t (x) = F (x)−V (x),

1

1

2
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where, x = (I,Vf ,Vp). The non-negative matrix F , which represents the new infection

terms, and the matrix V , comprising the remaining terms, are provided as follows:

F =


βSI + f1VwI + f2VsI

0

0

 and V =


ρI + aI2

1+bI2

f2VsI +µVs−αsS

f1VwI +µVw−αwS


The corresponding linearized matrices evaluated at DFE Ē are respectively,

F =


βK
η

+
f1Kαw

µη
+

f2Kαs

µη
0 0

0 0 0

0 0 0

 and V =


ρ 0 0

f2Kαs

µη
µ 0

f1Kαw

µη
0 µ

 .

It follows that,

FV−1 =


K(µβ + f1αp + f2α f )

ρµη
0 0

0 0 0

0 0 0

 .

The basic reproduction number R0 is the spectral radius i.e. the largest eigen value of

above matrix FV−1, i.e.

R0 =
K(µβ + f1αp + f2α f )

ρµη
,

which shows the average number of secondary cases generated by a typical in-

fective individual in an otherwise susceptible population. Further, for the endemic

equilibrium point E∗ = (S∗,Vp
∗,Vf

∗, I∗) of the system (3.5), we get the following set

of algebraic equations:

K−βS∗I∗− (αp +α f +µ)S∗ = 0,

αpS∗− f1V ∗p I∗−µV ∗p = 0,

α f S∗− f2V ∗f I∗−µV ∗f = 0,

βS∗I∗+ f1V ∗p I∗+ f2V ∗f I∗−ρI∗− aI∗2

1+bI∗2 = 0.

(3.6)

All the components of E∗ can be obtained by solving equation (3.6) for I∗ , 0, as

follows:

S∗ =
K

β I∗+η
, Vp

∗ =
Kαp

( f1I∗+µ)(β I∗+η)
, and Vf

∗ =
Kα f

( f2I∗+µ)(β I∗+η)
,

2

2
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with I∗ satisfying the equation

A5I∗5 +A4I∗4 +A3I∗3 +A2I∗2 +A1I∗+A0 = 0, (3.7)

with

A5 = f1 f2βρb,

A4 = f1 f2(ηρb+aβ −βKb)+βρbµ( f1 + f2),

A3 = βρbµ2 +(ηρb+aβ −βKb)(µ( f1 + f2))+ f1 f2(ρβ +aη)−bK f1 f2(αw +αs),

A2 = (ρη−Kβ ) f1 f2 +µ( f1 + f2)(ρβ +aη)+µ2aβ +bµ2ρη(1−R0),

A1 = µ2(ρβ +aη)+µ( f1 + f2)(ρη−Kβ )−K f1 f2(αw +αs),

A0 = µ2ρη(1−R0).
(3.8)

Theorem 3.4.1 For R0 > 1, the system (3.5) exhibits either a unique positive endemic

equilibrium or three or five positive endemic equilibria, assuming that all equilibria

are simple roots.

Proof 3.4.2 Let R0 > 1. From equation (3.7) we have fifth degree polynomial I∗ :

A5I∗5 +A4I∗4 +A3I∗3 +A2I∗2 +A1I∗+A0.

Applying the fundamental theorem of algebra, we can deduce that this polynomial can

have at most five real roots.

Here, we examine only the case of unique endemic equilibrium. Since, A5 > 0 and

A0 < 0 for R0 > 1 then with the help of Descartes’ rule of signs [188], equation (3.7)

has a unique positive real root I∗ if any one of the following holds:

(i) A4 < 0, A3 < 0, A2 < 0 and A1 < 0,

(ii) A4 > 0, A3 < 0, A2 < 0 and A1 < 0,

(iii) A4 > 0, A3 > 0, A2 < 0 and A1 < 0,

(iv) A4 > 0, A3 > 0, A2 > 0 and A1 < 0,

(v) A4 > 0, A3 > 0, A2 > 0 and A1 > 0.

(3.9)

Upon establishing the value of I∗, we can subsequently determine the values of S∗, Vp
∗,

and Vf
∗. This implies that there exists a single positive endemic equilibrium if any of

the conditions specified in (3.9) are met.

1

2

9
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3.5 Stability Analysis
In this particular section, our focus shifts towards investigating the stability of the equi-

libria in the system (3.5) by computing the corresponding variational matrix, denoted

as J. The Jacobian matrix associated with the system (3.5) is presented below:

J =


−η−β I 0 0 −βS

αp −µ− f1I 0 − f1Vp

α f 0 −µ− f2I − f2Vf

β I f1I f2I −ρ+βS+ f1Vp+ f2Vf−
2aI

(1+bI2)2

 .

3.5.1 Local stability of DFE and endemic equilibrium

The Jacobian matrix at the DFE point Ē is given by

JĒ =



−(αp+α f +µ) 0 0
−βK

(αp+α f +µ)

αp −µ 0
− f1Kαp

µ(αp+α f +µ)

α f 0 −µ
− f2Kα f

µ(αp+α f +µ)

0 0 0 −ρ(1−R0)


.

The characteristic equation corresponding to the DFE Ē = (S̄,V̄p,V̄f ,0) takes the form:

(−λ −ρ(1−R0))
(
λ +

(
αp +α f +µ

))
(λ +µ)2 = 0.

Hence, the eigenvalues of system (3.5) at DFE Ē are

λ1 =−η , λ2 =−µ, λ3 =−µ, λ4 =−ρ(1−R0).

Here, see that λi for i = 1,2,3 are all with negative sign, and therefore

|arg(λi)|= π > α
π

2
for i = 1,2,3

and |arg(λ4)| = π > α
π

2 if −ρ(1−R0) < 0, i.e. R0 < 1, where α ∈ (0,1]. In an

opposite manner, when R0 > 1, then λ4 > 0 and so |arg(λ4)| = 0 < α
π

2 . Thus, the

DFE Ē will be unstable. Hence, by Lemma 3.4 of [128], we can say that DFE is

locally asymptotically stable when R0 is less that unity and unstable otherwise. Then

we have the following theorem:

Theorem 3.5.1 The disease free equilibrium of the model (3.5) is locally asymptoti-

cally stable if R0 < 1, otherwise unstable.

1

14

23
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3.5.1.a Local stability analysis at R0 = 1 around Ē

This subsection analyzes the behavior of system (3.5) at R0 = 1, for which the lin-

earized matrix at Ē has at least one eigenvalue with real part equal to zero. By per-

forming this analysis, we determine the direction of bifurcation and describe the local

behaviour of Ē around R0 = 1. To do so, we apply center manifold theory as described

in [35]. Although this theory was originally developed for integer-order systems, its

extension to Caputo-type fractional-order systems has been established by Ma and Li

[123], which justifies its use in our fractional-order model. This methodology has been

adopted in several recent studies on bifurcation analysis of fractional-order epidemic

models [16; 126].

Let us redefine (S,Vp,Vf , I) = (x1,x2,x3,x4), then the system (3.5) can be rewrit-

ten as:

Dα
t x1 = K−βx1x4− (αp +α f +µ)x1 ≡ z1,

Dα
t x2 = αpx1− f1x2x4−µx2 ≡ z2,

Dα
t x3 = α f x1− f2x3x4−µx3 ≡ z3,

Dα
t x4 = βx1x4 + f1x2x4 + f2x3x4− (µ +d +θ)x4−

ax4
2

1+bx42 ≡ z4,

(3.10)

Recall that, R0 =
K(µβ + f1αp + f2α f )

µ(µ +d +θ)(αp +α f +µ)
. Select β as a bifurcation parameter for

R0 = 1 which takes the following form:

β = β
∗ =

µ(µ +d +θ)(αp +α f +µ)−K( f1αp + f2α f )

Kµ
.

Further, the Jacobian matrix of the system (3.5) at Ē and at the chosen bifurcation

parameter β = β ∗ it is given by J[Ē,β ∗] as:

J[Ē,β ∗] =



−(αp+α f +µ) 0 0
−β ∗K

(αp+α f +µ)

αp −µ 0
− f1Kαp

µ(αp+α f +µ)

α f 0 −µ
− f2Kα f

µ(αp+α f +µ)

0 0 0 0


.

The matrix J[Ē,β ∗] has a simple zero eigen value and other eigen value with negative

real part.

9

Page 91 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 91 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



56
Stability Analysis and Quantification of Effects of Partial and Full Vaccination Using

Fractional Order SVIR model

Let v = (v1,v2,v3,v4) be the left eigenvector and w = (w1,w2,w3,w4)
T be the right

eigen vector corresponding to the zero eigen value. Then, we have

v1 = 0, v2 = 0, v3 = 0, v4 = 1

and w1 = − Kβ

(αp+α f+µ)2 , w2 = −Kαp[β µ+ f1(αp+α f+µ)]

µ2(αp+α f+µ)2 , w3 =

−Kα f [β µ+ f2(αp+α f+µ)]

µ2(αp+α f+µ)2 , w4 = 1.

The non-zero partial derivatives of z′ks at Ē and β = β ∗ are evaluated as follows:

∂ 2z1

∂x1∂x4
=−β

∗ =
∂ 2z1

∂x4∂x1
,

∂ 2z2

∂x2∂x4
=− f1 =

∂ 2z2

∂x4∂x2
,

∂ 2z3

∂x3∂x4
=− f2 =

∂ 2z3

∂x4∂x3
,

∂ 2z4

∂x42 =−2a,
∂ 2z4

∂x3∂x4
= f2 =

∂ 2z4

∂x4∂x3
,

∂ 2z4

∂x1∂x4
= β

∗ =
∂ 2z4

∂x4∂x1
,

∂ 2z4

∂x2∂x4
= f1 =

∂ 2z4

∂x4∂x2
,

∂ 2z1

∂x4∂β ∗
=− K

(αp +α f +µ)
,

∂ 2z4

∂x4∂β ∗
=

K
(αp +α f +µ)

.

The bifurcation constants a1 and b1 can be computed by using Theorem 4.1 given in

[35] as follows:

a1 =
4

∑
k,i, j=1

vkwiw j

(
∂ 2zk

∂xi∂x j

)
[Ē,β ∗]

= v4w4
2 ∂ 2z4

∂x42 +2v4w3w4
∂ 2z4

∂x3∂x4
+2v4w1w4

∂ 2z4

∂x1∂x4
+2v4w2w4

∂ 2z4

∂x2∂x4

= 2
(

Kβ ∗2

(αp +α f +µ)2 −
(

a+
f1Kαp[β µ + f1(αp +α f +µ)]

µ2(αp +α f +µ)2 +

f2Kα f [β µ + f2(αp +α f +µ)]

µ2(αp +α f +µ)2

))
= 2
(

L1−L2

)
,

where L1 =
Kβ ∗2

(αp+α f+µ)2 , L2 =

(
a+ f1Kαp[β µ+ f1(αp+α f+µ)]

µ2(αp+α f+µ)2 +
f2Kα f [β µ+ f2(αp+α f+µ)]

µ2(αp+α f+µ)2

)
and

b1 =
4

∑
k,i=1

vkwi

(
∂ 2zk

∂xi∂β ∗

)
[Ē,β ∗]

= v4w4
∂ 2z4

∂x4∂β ∗
=

K
(αp +α f +µ)

> 0.

Thus, the following theorem may be stated by using Theorem 4.1 of [35].

Theorem 3.5.2 The following results are obtained for the transcritical bifurcation:

1

12
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1. If L1 < L2 i.e. a1 < 0, then system (3.5) exhibits a transcritical forward bifurca-

tion at Ē and R0 = 1.

2. If L1 > L2 i.e. a1 > 0, then system (3.5) exhibits either a transcritical backward

bifurcation or a saddle-node bifurcation at Ē and R0 = 1.

The transcritical forward bifurcation is illustrated in Figure 3.2.

Unstable DFE
Stable DFE

Stable EE

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

Basic Reproduction Number (R0)

In
fe
c
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d
P
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u
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o
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(I
(t
))

Figure 3.2: Diagram for forward bifurcation in (R0, I) plane for the data set given in

Table 3.2.

Now for the local stability of endemic equilibrium E∗ = (S∗,Vp
∗,Vf

∗, I∗), the

corresponding Jacobian matrix by using the equation (3.6) is given by

JE∗ =



−β I∗+η 0 0 − βK
β I∗+η

αp −µ− f1I∗ 0 −
K f1αp

( f1I∗+µ)(β I∗+η)

α f 0 −µ− f2I∗−
K f2α f

( f2I∗+µ)(β I∗+η)

β I∗ f1I∗ f2I∗
aI∗(bI∗2−1)
(1+bI∗2)2


.

The characteristic equation corresponding to the above Jacobian matrix takes the form:

(−η−β I∗−λ )(C3λ
3 +C2λ

2 +C1λ +C0) = 0. (3.11)

48
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where,

C3 =
(

bI∗2 +1
)2

( f1I∗+µ)( f2I∗+µ)(η +β I∗),

C2 = µ
(

f2
(
I∗(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(3µ +ρ))+ f2

(
bI∗3 + I∗)2(η +β I∗)

−K
(
bI∗2 +1)2

α f +β (−K)I∗
(
bI∗2 +1)2)+µ

(
(η +β I∗)

(
2aI∗

+
(
bI∗2 +1)2(2µ +ρ))−βK

(
bI∗2 +1)2))+ f1

(
f2I∗
(
I∗(η +β I∗)

(
2aI∗

+
(
bI∗2 +1)2(4µ +ρ))−K

(
bI∗2 +1)2(

α f +αp)+β (−K)I∗
(
bI∗2 +1)2)

+µI∗
(
(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(3µ +ρ))−βK

(
bI∗2 +1)2)

+ f 2
2 I∗3

(
bI∗2 +1)2(η +β I∗)−Kµ

(
bI∗2 +1)2

αp)

+ f 2
1
(
bI∗3 +T )2( f2I∗+µ)(η +β I∗),

C1 = f2µ
(

f2I∗2
(
(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(µ +ρ))−βK

(
bI∗2 +1)2)

+µ
(
I∗(η +β I∗)

(
6aI∗+

(
bI∗2 +1)2(2µ +3ρ))−2K

(
bI∗2 +1)2

α f

−3βKI∗
(
bI∗2 +1)2))+ f1

(
f2µI∗

(
4I∗(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(µ +ρ))

−3K
(
bI∗2 +1)2(

α f +αp)−4βKI∗
(
bI∗2 +1)2)+ f 2

2 I∗2
(
I∗(η +β I∗)

(
2aI∗

+
(
bI∗2 +1)2(2µ +ρ))+β (−K)I∗

(
bI∗2 +1)2−K

(
bI∗2 +1)2

αp)

+µ
2(I∗(η +β I∗)

(
6aI∗+

(
bI∗2 +1)2(2µ +3ρ))−3βKI∗

(
bI∗2 +1)2

−2K
(
bI∗2 +1)2

αp))+ f 2
1 I∗2

(
f2
(
I∗(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(2µ +ρ))

+ f2
(
bI∗3 +T )2(η +β I∗)−K

(
bI∗2 +1)2

α f +β (−K)I∗
(
bI∗2 +1)2)

+µ
(
(η +β I∗)

(
2aI∗+

(
bI∗2 +1)2(µ +ρ))−βK

(
bI∗2 +1)2))

+µ
3((η +β I∗)

(
4aI∗+

(
bI∗2 +1)2(µ +2ρ))−2βK

(
bI∗2 +1)2),

C0 = f2µ
2( f2I∗2

(
(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−βK

(
bI∗2 +1)2)

+2µI∗
(
(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−βK

(
bI∗2 +1)2)−Kµ

(
bI∗2 +1)2

α f )

+ f 2
1 I∗2

(
f2µ
(
2I∗(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−K

(
bI∗2 +1)2

α f

−2βKI∗
(
bI∗2 +1)2)+ f 2

2 I∗2
(
(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−βK

(
bI∗2 +1)2)

+µ
2((η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−βK

(
bI∗2 +1)2))

+ f1µ
(
2 f2µI∗

(
2I∗(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)−K

(
bI∗2 +1)2(

α f +αp)

−2βKI∗
(
bI∗2 +1)2)+ f 2

2 I∗2
(
2I∗(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)

−2βKI∗
(
bI∗2 +1)2−K

(
bI∗2 +1)2

αp)+µ
2(2I∗(η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)

−2βKI∗
(
bI∗2 +1)2−K

(
bI∗2 +1)2

αp))+µ
4((η +β I∗)

(
2aI∗+ρ

(
bI∗2 +1)2)

−βK
(
bI∗2 +1)2).
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From equation (3.11), the polynomial C3λ 3+C2λ 2+C1λ +C0 can be written as,

say P(λ ) = λ 3 + k2λ 2 + k1λ + k0, and corresponding to this P(λ ), the discriminant is

D(λ ) = 18k2k1k0 + k2
2k1

2−4k0k2
3−4k1

3−27k0
2.

If P(λ ) = 0 has three roots with negative real parts, then the endemic equilibrium is

stable. Therefore, following Ahmed et al. [4], the following theorem is stated:

Theorem 3.5.3 The endemic equilibrium E∗(S∗,Vp
∗,Vf

∗, I∗) is locally asymptotically

stable when any of the following conditions hold:

• D(P)> 0, k2 > 0, k0 > 0, k2k1 > k0.

• D(P)< 0, k2 ≥ 0, k1 ≥ 0, k0 > 0, α < 2
3 .

• D(P)< 0, k2 > 0, k1 > 0, k2k1 = k0, α ∈ (0,1]. Otherwise, the endemic equilib-

rium E∗(S∗,Vp
∗,Vf

∗, I∗) is unstable when the condition D(P) < 0,k2 < 0,k1 <

0,α > 2
3 holds.

3.5.2 Global stability of disease-free equilibrium (DFE)

This subsection presents the theorem concerning the global stability behavior of

the disease-free equilibrium (DFE) point.

Theorem 3.5.4 The DFE point of the system (3.5) is GAS (Globally asymptotically

Stable) if the basic reproduction number R0 is strictly less than unity i.e. R0 < 1.

Proof 3.5.5 To prove this theorem, consider a positive definite Lyapunov function

L = I.

1

10
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Then for order α we have,

t0Dα
t L = t0Dα

t I(t)

=

[
βSI + f1VpI + f2Vf I− (µ +d +θ) I− aI2

1+bI2

]
≤
[
βSI + f1VpI + f2Vf I− (µ +d +θ) I

]
=
[
βS+ f1Vp + f2Vf − (µ +d +θ)

]
I(t)

=

[
βK

(αp +α f +µ)
+

f1Kαp

µ(αp +α f +µ)
+

f2Kα f

µ(αp +α f +µ)
− (µ +d +θ)

]
I(t)

=

[
1

(µ +d +θ)

{
βK

(αp +α f +µ)
+

f1Kαp

µ(αp +α f +µ)
+

f2Kα f

µ(αp +α f +µ)

}
−1
]

I(t)

= (R0−1) I(t)

≤ 0 if R0 ≤ 1.

So, by Lemma 4.6 of [82], any solution starting in R converges to the largest invariant

set S =
{
(S,Vp,Vf , I) ∈ R : t0Dα

t L = 0
}
. Hence limt→∞ I(t) = 0.

3.5.3 Global stability of endemic equilibrium

This subsection examines the global stability behavior of the endemic equilibrium

E∗ under certain constraints, for which it is assumed that

G(I) =
I

1+bI2 .

Theorem 3.5.6 The endemic equilibrium E∗(S∗,Vp
∗,Vf

∗, I∗) is globally asymptotical-

ly stable when R0 > 1.

Proof 3.5.7 From the system (3.5) following conditions are derived at

E∗(S∗,Vp
∗,Vf

∗, I∗),

K = βS∗I∗+ηS∗; αp =
f1Vp

∗I∗

S∗
+

µVp
∗

S∗
; α f =

f2Vf
∗I∗

S∗
+

µVf
∗

S∗

ρ = βS∗+ f1Vp
∗+ f2Vf

∗−aG(I∗).

Now, to prove the global stability behaviour of E∗, we construct the following positive

definite Lyapunov function:

L (t) =
(

S−S∗−S∗ log
S
S∗

)
+

(
Vp−Vp

∗−Vp
∗ log

Vp

Vp
∗

)
+

(
Vf −Vf

∗−Vf
∗ log

Vf

Vf
∗

)
+

(
I− I∗− I∗ log

I
I∗

)
.

1

8

8

11
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The derivative of L (t) along the solution of system (3.5), with the help of Lemma 3 of

[140], becomes:

0Dα
t L (t)≤

(
1− S∗

S

)
0Dα

t S(t)+
(

1−
Vp
∗

Vp

)
0Dα

t Vp(t)+
(

1−
Vf
∗

Vf

)
0Dα

t Vf (t)

+

(
1− I∗

I

)
0Dα

t I(t)

=

(
1− S∗

S

)
(K−βSI−ηS)+

(
1−

Vp
∗

Vp

)
(αpS− f1VpI−µVp)

+

(
1−

Vf
∗

Vf

)(
α f S− f2Vf I−µVf

)
+

(
1− I∗

I

)(
βS+ f1Vp + f2Vf −ρ−aG(I)

)
=

(
1− S∗

S

)
(βS∗I∗+ηS∗−βSI−ηS)

+

(
1−

Vp
∗

Vp

)(
f1Vp

∗I∗

S∗
S+

µVp
∗

S∗
S− f1VpI−µVp

)
+

(
1−

Vf
∗

Vf

)(
f2Vf

∗I∗

S∗
S+

µVf
∗

S∗
S− f2Vf I−µVf

)
+

(
1− I∗

I

)(
βS∗+ f1Vp

∗+ f2Vf
∗−aG(I∗)+βS+ f1Vp + f2Vf −aG(I)

)
= ηS∗

(
2− S∗

S
− S

S∗

)
+βS∗I∗

(
1− S∗

S
+

I
I∗
− SI

S∗I∗

)
+ f1Vp

∗I∗
(

S
S∗
−

Vp
∗S

VpS∗
+

I
I∗
−

VpI
Vp
∗I∗

)
+µVp

∗
(

S
S∗
−

Vp
∗S

VpS∗
+1−

Vp

Vp
∗

)
+ f2Vf

∗I∗
(

S
S∗
−

Vf
∗S

Vf S∗
+

I
I∗
−

Vf I
Vf
∗I∗

)
+µVf

∗
(

S
S∗
−

Vf
∗S

Vf S∗
+1−

Vf

Vf
∗

)
+βS∗

(
1+

S
S∗
− I∗

I
− SI∗

S∗I∗

)
+ f1Vp

∗
(

1− I∗

I
+

Vp

Vp
∗ −

VpI∗

Vp
∗I

)
+ f2Vf

∗
(

1− I∗

I
+

Vf

Vf
∗ −

Vf I∗

Vf
∗I

)
+aG(I∗)

(
I∗

I
+

G(I)
G(I∗)

+
G(I)I∗

G(I∗)I
−1
)
.

Now, from the property of the arithmetic mean, we have(
2− S∗

S
− S

S∗

)
≤ 0.
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and if(
1− S∗

S
+

I
I∗
− SI

S∗I∗

)
≤ 0,

(
S
S∗
−

Vp
∗S

VpS∗
+

I
I∗
−

VpI
Vp
∗I∗

)
≤ 0,(

S
S∗
−

Vp
∗S

VpS∗
+1−

Vp

Vp
∗

)
≤ 0,

(
S
S∗
−

Vf
∗S

Vf S∗
+

I
I∗
−

Vf I
Vf
∗I∗

)
≤ 0,(

S
S∗
−

Vf
∗S

Vf S∗
+1−

Vf

Vf
∗

)
≤ 0,

(
1+

S
S∗
− I∗

I
− SI∗

S∗I∗

)
≤ 0,(

1− I∗

I
+

Vp

Vp
∗ −

VpI∗

Vp
∗I

)
≤ 0,

(
1− I∗

I
+

Vf

Vf
∗ −

Vf I∗

Vf
∗I

)
≤ 0,(

I∗

I
+

G(I)
G(I∗)

+
G(I)I∗

G(I∗)I
−1
)
≤ 0,



(3.12)

then 0Dα
t L (t) ≤ 0. Hence, when the inequalities in equation(3.12) are sat-

isfied simultaneously then 0Dα
t L (t) ≤ 0. Besides, the largest invariant set in{

(S,Vp,Vf , I)|0Dα
t L (t) = 0

}
is the singleton set {E∗} . Consequently, in accordance

with Lassalle’s invariance principle, it can be concluded that the endemic equilibrium

E∗ of the model (3.5) exhibits global stability when R0 > 1.

3.6 Sensitivity analysis of R0

Here, the results of a sensitivity analysis for the basic reproduction R0 number are p-

resented. The objective of this analysis is to identify parameters that exert the greatest

influence on R0, allowing us to prioritize them in the implementation of effective inter-

vention strategies. Sensitivity indices quantify the relative variation in a given outcome

as a parameter changes. Specifically, we compute the normalized forward sensitivity

index of a variable with respect to a parameter as the ratio of the variable’s relative

change to the corresponding relative change in that parameter.

Definition[164]: The normalized forward sensitivity index of a variable z, which de-

pends on a parameter x, is defined as

W z
x =

∂ z
∂x
× x

z
.

So, for R0, the sensitivity index is WR0
x =

∂R0

∂x
× x

R0
. The expressions of sensitivity

1

1

2

9

16
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index for the parameters of interest are:

WR0
K = 1, WR0

β
=

β µ

β µ + f2α f + f1αp
, WR0

f1
=

f1αp

β µ + f2α f + f1αp
,

WR0
f2

=
f2α f

β µ + f2α f + f1αp
, WR0

αp =
α f +µ

α f +µ +αp
−

β µ + f2α f

β µ + f2α f + f1αp
,

WR0
α f = α f

(
f2

β µ + f2α f + f1αp
− 1

α f +µ +αp

)
, WR0

d =− d
d +θ +µ

,

WR0
θ

=− θ

d +θ +µ
, WR0

µ =−2+
d +θ

d +θ +µ
+

β µ

β µ + f2α f + f1αp
− µ

α f +µ +αp

These sensitivity indices are evaluated with the help of parametric values given in Table

3.2 and depicted by the bar diagram in Figure 3.3.

WR0
K = 1, WR0

β
= 0.162791, WR0

f1
= 0.55814, WR0

f2
= 0.27907,

WR0
αp = 0.038659, WR0

α f =−0.110541, WR0
d =−0.277778,

WR0
θ

=−0.33333, WR0
µ =−1.31701.

K β f1 f2 αp αf d θ μ

-1.0

-0.5

0.0

0.5

1.0

Figure 3.3: Sensitivity indices of R0.

From the above, it is seen that these sensitivity indices with respect to parameters

can either have positive impact or negative impact on R0. Specifically, the parameters

K, f1 and f2 have strongest positive impact while β and αp have less positive impact on

R0. This means that if these parameters increase while keeping the others unchanged,

the basic reproduction number R0 will also increase, leading to a faster spread of the
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disease. Similarly, if they decrease, the spread of the disease will be slowed down.

For example, WR0
f1

= 0.55814 indicates that if the parameter f1 increases (or decreases)

by 10%, then R0 will increase (or decrease) by 5.58%. Similarly, WR0
µ = −1.31701

means that if µ increases (or decreases) by 10%, then R0 will decrease (or increase)

by 13.17%, respectively. This helps us to understand the sensitivity of the parameters

and their impact on R0 in both positive and negative ways.

3.7 Numerical Simulation
This section provides numerical computations, performed in MATLAB 2012b using

the Predictor-Corrector method [50], to validate the analysis of the existence and sta-

bility conditions of the equilibria of model system (3.5). For the numerical simulation

the initial sub-populations are taken as S(0) = 200,Vp(0) = 45,Vf (0) = 35, I(0) =

3,R(0) = 2 and the numerical data-set used for simulation, given in Table 3.2, is ex-

perimental data satisfying the analysis of the system (3.5).

Table 3.2: Numerical values of parameters of the model.

Parameters Description Values

K Recruitment rate 2

β The transmission rate of infection in susceptibles 0.0005

µ Natural death rate 0.007

αp Partial vaccination rate 0.04

α f Full vaccination rate 0.03

f1 Contact rate of partially vaccinated population 0.0003

f2 Contact rate of fully vaccinated population 0.0002

d Death rate induced by disease 0.005

θ Recovery rate of infected population 0.006

a Treatment rate 0.004

b Treatment limitation 0.00001

From the parametric values given in 3.2, the value of the coefficients of equation

(3.7) is A5 = 5.4×10−18, A4 = 1.20547×10−13, A3 = 2.59539×10−11,

A2 = 1.22833× 10−9, A1 = 8.484× 10−9, A0 = −2.33086× 10−7. These coeffi-

cient values satisfy Theorem3.4.1 and one of the possibility of the existence of u-

nique positive equilibrium. Thus the endemic equilibrium is E∗(S∗,Vp
∗,Vf

∗, I∗) =

6

28
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(24.3965,97.7104,81.3985,9.95763) for which the basic reproduction number R0 is

4.43208. The values of coefficients of equation (3.11) are calculated as

C3 = 7.37638×10−6, C2 = 4.32928×10−7, C1 = 7.107×10−9, C0 = 3.4502×10−11

and the eigen values corresponding the equation (3.11) are λ1 =−0.0819788,

λ2 = −0.0349566, λ3 = −0.0145179, λ4 = −0.00921651, and the discriminant of

polynomial term of the equation (3.11) is calculated as D(λ ) = 7.77873×10−12 > 0.

The values of k0,k1,k2 and D(λ ) satisfy the first condition of the Theorem 3.5.3. Using

the initial population conditions, Figures 3.4, 3.5, 3.6, and 3.7 are plotted, which shows

the effect of fractional derivative order α(α = 0.7,0.8,0.9,1) on the Susceptible, Par-

tially Vaccinated, Fully Vaccinated and Infected population, respectively. In the virtue

of Theorem 3.5.3, the endemic equilibrium E∗ is stable for each value of fractional

order α, which is being depicted from the figures.
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Figure 3.4: Effect of fractional order α

on the susceptible population.
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Figure 3.5: Effect of fractional order α on

the partially vaccinated population.
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Figure 3.6: Effect of fractional order α

on the fully vaccinated population.
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Figure 3.7: Effect of fractional order α on

the infected population.
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Figure 3.8: Effect of full vaccination rate on the Infected population.

The figures indicate that the disease is endemic, as all solutions of system 3.5

converge towards the endemic equilibrium E∗. Furthermore, an important observation

to note is that for α = 1, the system reaches a stationary state relatively quickly, where-

as as the value of α decreases, the system takes longer to reach a stationary state. This

behaviour highlights the time evolution of the epidemic.

Figure 3.4 illustrates the behaviour of the number of susceptible individuals over

time for various values of α . As time progresses, the number of susceptible individuals

decreases, ultimately leading to the population reaching the endemic equilibrium E∗.

11

57
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Additionally, it is noteworthy that as the value of α approaches one, the trajectories

converge to the steady state in a considerably shorter duration.

Figures 3.5 and 3.6 show the impact of fractional order α on the partially vacci-

nated and fully vaccinated individuals and it is observed that by increasing the value

of α , strength of both partially and fully vaccinated individuals increases initially and

gradually decreases after some time and the pattern of trajectories is reversed i.e. by

decreasing the value of α, the count of vaccinated individuals increases, which is also

a benefit of memory effect.

Figure 3.7 provides insights into the impact of the fractional order derivative α

on the population of infected individuals. Notably, it is observed that as the value

of α decreases, the time required to reach a steady state increases. Conversely, as

α approaches one, the infected population achieves a steady state in a significantly

shorter time frame. This indicates that when α decreases, there is a presence of a

memory effect, causing the infected population to require more time to diminish or

vanish entirely. In Figure 3.8, we have shown by effect of full vaccination rate α f

on the infected individuals. Here it can be seen that by increasing the value of full

vaccination rate the number of infected individuals getting decrease. So, vaccination

plays an important role in lowering of disease burden.

Figure 3.9: Phase plot of susceptible-infected-recovered population.

1

11

11
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Figure 3.10: Phase plot of susceptible-fully vaccinated-infected population.

Figure 3.11: Phase plot of susceptible-partially vaccinated-infected population.
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Figure 3.12: Phase plot of partially vaccinated-fully vaccinated-infected population.

Figure 3.13: Phase plot of partially vaccinated-fully vaccinated-recovered population.

Figure 3.9, shows the phase portrait of the Susceptible, Infected and Recovered

population in which it can be seen that the trajectories starting form anywhere i.e. with

various initial conditions, within the region of consideration, are converging to a point

which is equilibrium point (S∗, I∗,R∗). Similarly, Figure 3.10 shows the phase plot of
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Susceptible, Fully Vaccinated and Infected population in which trajectories are con-

verging to the respective equilibrium point (S∗,Vf
∗, I∗). In Figure 3.11, the converging

behaviour of trajectories can be seen towards the equilibrium point (S∗,Vp
∗, I∗). The

same thing can be also observed in Figure 3.12 and 3.13 that the trajectories initi-

ating from different initial conditions are going to converge to the equilibrium point

(Vp
∗,Vf

∗, I∗) and (Vp
∗,Vf

∗,R∗), respectively.

Collectively the Figures 3.9, 3.10, 3.11, 3.12 and 3.13 show that the solution

trajectories are independent of the initial conditions which is nothing but the global

stability of the equilibrium point (S∗,Vp
∗,Vf

∗, I∗,R∗).

3.7.1 Quantification of effects partial and full vaccination

Assessing partial vaccination in terms of recovered population with respect to

time is depicted in Figure 3.14, at different values of α and similarly, Figure 3.15

depicts the quantification of fully vaccinated and recovered individuals with time at

different values of α.

It can be seen from these figures that at time 64 days and for α = 0.7 the percent-

age of recovered population in case of partial vaccination is 6.42%, where as for the

same time and fractional order the percentage of recovered population in case of full

vaccination is 8.46%. In a similar way for fractional order 0.8,0.9 and 1.0 at the time

t = 57,42,and 34 the percent count of recovered populations in case of partial vacci-

nation are 8.59%,9.132% and 9.57% and in case of full vaccination the percentage of

recovered population are 11.33%,11.57% and 12.66%. So, from here it can be seen

that the percentage of recovered population is larger in case of full vaccination while

less in case of partial vaccination. This gap of percentage will make significant impact

in case of large population. This indicates that the full vaccination is very beneficial

for public health and health agencies should also focus towards this side so that the

count of partial vaccination could be as less as possible which will helpful in lowering

the disease burden by enlarging the recovered population.
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Figure 3.14: Variation in partially vaccinated and recovered individuals with respect to

time at different values of α.

Figure 3.15: Variation in fully vaccinated and recovered individuals with respect to

time at different values of α.

Page 107 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 107 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



72
Stability Analysis and Quantification of Effects of Partial and Full Vaccination Using

Fractional Order SVIR model

3.8 Discussion and Conclusion
In this chapter, a novel Caputo-fractional order SV IR model with Holling type-III treat-

ment rate has been proposed by categorising the vaccinated population into two further

compartments, namely, Partially vaccinated and Fully vaccinated populations. Firstly,

we established the well-posedness of the fractional model with the help of the General-

ized mean value theorem and Mittag-Leffler functions. Further the stability behaviour

of the equilibrium points are discussed, namely DFE and EE, and also the basic repro-

duction number has been calculated with the help of next generation approach. It has

been investigated that DFE is locally asymptotically stable for R0 ≤ 1. Furthermore,

the existence of unique positive equilibrium has shown under some feasible constraints

and local stability of EE is analyzed. Through our analysis, it is determined that the en-

demic equilibrium (EE) is locally asymptotically stable if the condition R0 > 1 holds,

provided that the conditions outlined in Theorem 3.5.3 are met. Additionally, the glob-

al stability behaviour of the disease-free equilibrium (DFE) and EE using a Lyapunov

function under specific conditions are analyzed. The analysis has led us to conclude

that the DFE is globally asymptotically stable when R0 ≤ 1, while the EE is global-

ly asymptotically stable when R0 > 1 and the conditions specified in equation (3.12)

are satisfied. Further, sensitivity analysis shown in Figure 3.3 to observe the highly

sensitive parameters in positive and negative manner.

In the section of numerical simulation, with the help of some experimental data

given in Table 3.2, we perform some numerical simulations in favor of validation of our

analytical findings. It is worth noting that the inclusion of the fractional-order deriva-

tive introduces a memory effect that influences the dynamics of the system, as evident

from the time-series plot of the model. Interestingly, it was observed that the stability

of the equilibria remains unaffected by variations in the fractional order α. However,

the time required to reach a steady state is significantly influenced by the choice of

α. Increasing the order of the fractional derivative leads to faster convergence, while

lower values of α result in slower convergence. This highlights the utility of fractional

derivatives over integer-order derivatives, as they offer better control over convergence

rate and allow for more flexible modeling of dynamical systems.

It is also observed from the phase plots of the system that the solutions trajecto-

ries are independent of the initial population i.e. the initial population does not affect

the steady state of the system. Further, as the effect of full vaccination rate over in-

3
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fected population depict that by increasing the rate of vaccination the count of infected

population will decrease. Additionally, Figures 3.14 and 3.15 depict the variations

in partially and fully vaccinated with recovered individuals over time (with different

memory effects). Full vaccination resulted in a higher percentage of recovered popu-

lation compared to partial vaccination, indicating its greater effectiveness. This quan-

tification highlights the importance and effects of full vaccination for public health and

reducing disease burden. Thus, focus should be on full vaccination to lower the disease

burden, and it will play a paramount role in controlling the epidemic spread in society.

In conclusion, the findings of this study highlight the significance of including a

more realistic modeling method that involves fractional order dynamics and considers

separate groups of partially and fully vaccinated populations. Policymakers and pro-

fessionals can obtain more accurate projections of disease dynamics by focusing on

the implications of effective full vaccination among susceptible individuals. Also it is

evident that partial vaccination is not capable enough to control the spread of disease

as well as it may be an unnecessary economic burden on the society. This strategy

has the ability to lessen the effect of epidemics while also shortening the duration of

outbreaks. Implementing such a comprehensive strategy can provide significant in-

sights for decision-making as well as aid in the development of effective intervention

measures to reduce disease spread.
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Chapter 4

Optimal Control of a Fractional Order
SEIQR Epidemic Model with
Non-monotonic Incidence and
Quarantine class

During any infectious disease outbreak, effective and timely quarantine of infected in-

dividuals, along with preventive measures by the population, is vital for controlling

the spread of infection in society. Therefore, this chapter attempts to provide a mathe-

matically validated approach for managing the epidemic spread by incorporating the

Monod-Haldane incidence rate, which accounts for psychological effects, and a sat-

urated quarantine rate as Holling functional type III that considers the limitation in

quarantining of infected individuals into the standard Susceptible-Exposed-Infected-

Quarantine-Recovered (SEIQR) model. The rate of change of each subpopulation is

considered as the Caputo form of fractional derivative where the order of derivative

represents the memory effects in epidemic transmission dynamics and can enhance the

accuracy of disease prediction by considering the experience of individuals with previ-

ously encountered. The mathematical study of the model reveals that the solutions are

well-posed, ensuring nonnegativity and boundedness within an attractive region. Fur-

ther, the study identifies two equilibria, namely, disease-free equilibrium (DFE) and

endemic equilibrium (EE); and stability analysis of equilibria is performed for local

as well as global behaviours for the same. The stability behaviours of equilibria main-

75
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ly depend on the basic reproduction number R0 and its alternative threshold T0 which

is computed using the Next-generation matrix method. It is investigated that DFE

is locally and globally asymptotic stable when R0 < 1. Furthermore, the existence

of the endemic equilibrium (EE) is established, and its local and global asymptotic

stability is investigated using the Routh-Hurwitz criterion and the Lyapunov stability

theorem for fractional order systems with R0 > 1 under certain conditions. Addi-

tionally, sensitivity analysis is also performed corresponding to R0. This chapter also

addresses a fractional optimal control problem (FOCP) using Pontryagin’s maximum

principle aiming to minimize the spread of infection with minimal expenditure. This

approach involves introducing a time-dependent control measure, u(t), representing

the behavioural response of susceptible individuals. Finally, numerical simulations

are presented to support the analytical findings using the Adams Bashforth Moulton

scheme in MATLAB, providing a comprehensive understanding of the proposed SEIQR

model.

4.1 Introduction
The dynamics of disease in an epidemic model are shaped by the incidence and treat-

ment rates [146]. The incidence rate, assessing new cases in a population over time, is

pivotal. Kermack and McKendrick’s bilinear form βSI becomes impractical for large

populations due to susceptibles increasing the rate [92]. Researchers proposed alter-

native nonlinear forms, like Beddington-DeAngelis, Crowley-Martin, Holling types II

and III [32; 57; 59; 98; 108; 150; 171]. In 1986, Liu et al. [118], introduced a saturated

incidence rate:

f (S, I) =
β IlS

I +αIh , (4.1)

capturing infectivity and behavioural inhibitions. Nonlinear rates offer realistic disease

transmission aspects, displaying broader dynamic behaviours. This study focuses on

the non-monotone incidence rate for l = 1 and h = 2:

f (S, I) =
β IS

I +αI2 ,

where 1
1+αI2 describes the psychological effect resulting from behavioural changes in

susceptibles when the number of infectives reaches a high level, and β I is a measure

of the disease’s infection intensity [173]. The parameter α serves as a measure of the

4
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psychological influence of the disease on the population when the count of infectives

reaches a substantial level. The functional expression β IS
I+αI2 is non-monotonic, also

referred as the simplified Monod-Haldane (M-H) incidence rate [99]. If the incidence

function is nonmonotone, that is function is increasing when I is small and decreas-

ing when I is large, it can be used to interpret the psychological effect: for a very

large number of infective individuals the infection force may decrease as the number

of infective individuals increases, because, in the presence of a large number of infec-

tives, the population may tend to reduce the number of contacts per unit time. This

is important because the number of effective contacts between infective individuals

and susceptible individuals decreases at high infective levels due to the quarantine of

infective individuals or due to the protection measures by the susceptible individuals.

Implementing quarantine measures for infected persons is a highly successful

method in controlling the spread of an epidemic in the case of an outbreak. Thus, the

significance of the role played by quarantined individuals in controlling the transmis-

sion of disease cannot be ignored. This study introduces a specific quarantine class

into the conventional epidemic model to investigate the impact of quarantine people.

The term “quarantine” here refers to the enforced isolation or restrictions placed on the

movement of infected individuals to prevent further disease dissemination. By quaran-

tining those who have tested positive, one can significantly reduce new infection cases

among susceptibles. For example, in the context of COVID-19, individuals in quaran-

tine are those who have tested positive and are isolating in a dedicated space at home

or in designated facilities like hotels, depending on the severity of the infection and

associated risk factors [150]. This study also considers individuals hospitalized based

on symptom severity during an infectious disease outbreak as part of the quarantined

category. An assumption made in our study is that quarantined individuals remain iso-

lated from others, preventing additional infections and contributing to a reduction in

the incidence rate for new cases.

We have used nonlinear Holing type III quarantine rate for the infected indi-

viduals to transfer them into quarantined class in our model. The Holling Type III

quarantine rate is characterized by a saturation effect, signifying that as the number of

infected individuals increases, healthcare resources may become overwhelmed, lead-

ing to diminishing returns on additional quarantine efforts. A non-linear saturated

quarantine rate captures this saturation effect by modeling how the effectiveness of

1

2

2

2

6
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quarantine measures levels off as the number of quarantined individuals approaches a

certain threshold.

For some infectious diseases, there is a proportion of population who have expe-

rienced exposure to the infectious agent but are not yet able to transmit the infection.

This class is particularly relevant in models that incorporate an “incubation period”,

which is the time between exposure to the pathogen and the onset of infectiousness.

These are referred to as exposed population. For instance, diseases such as chicken-

pox, measles, tuberculosis, rubella, and more, involve an extended duration wherein

individuals who are infected belong to the exposed class before becoming capable of

spreading the infection (see [14; 46; 85; 89]).

In this chapter, building upon the insights gained from the existing literature, our

objective is to delve into the dynamics of a fractional-order SEIQR epidemic mod-

el. We deal with non-monotonic Monod-Haldane (M-H) incidence rate which is most

suitable for widely spread epidemics and also incorporates the psychological effects of

susceptibles. The nonlinear quarantine rate has been considered in the sense of Holling

type III which incorporates the effects of limitations in quarantine. The combination of

these two makes our model more realistic in case of an outbreak of a deadly epidemic.

This study aims to attain a profound understanding that can guide the implementa-

tion of effective measures for the prevention and control of infectious diseases within

populations.

The works [18; 40; 169; 182; 195] underscore the pressing need for comprehen-

sive and effective strategies to manage the transmission of COVID-19. Current models

of virus transmission frequently ignore the vital role that community awareness plays

in determining an individual’s vulnerability to the infection. For example, it is general-

ly acknowledged that people who are aware of the COVID-19 hazards are more likely

to take preventative action and adjust their behaviour accordingly. On the other hand,

those who are unaware could act in a less careful manner, increasing their susceptibility

to infection and aiding in the virus’s spread. These circumstances highlight the require-

ment for a novel strategy that specifically incorporates community awareness into the

modeling framework. The approach seeks to quantify the impact of information or

community awareness on disease by examining the “behavioural response of suscepti-

ble individuals”. As susceptible individuals become informed about the disease, they

are likely to adopt protective measures. This emphasis on behavioural response adds a

nuanced dimension to the modeling process, capturing the dynamic interplay between

5

46
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awareness, individual actions, and disease transmission. By incorporating communi-

ty awareness in this manner, we aim to provide a more comprehensive and realistic

representation of the factors influencing the spread of infectious diseases.

This chapter emphasizes the importance of developing an appropriate model to

evaluate the effectiveness of control strategies during disease outbreaks. An optimal

control analysis is introduced for a transmission model that incorporates the behavioral

responses of susceptible individuals, simulating the reduction of effective contacts be-

tween susceptible and infected individuals. Agrawal [2] explored fractional-order vari-

ational problems of the Riemann-Liouville type in 2002 and developed a framework

for studying fractional optimal control problems (FOCP). Afterwards, Agrawal inves-

tigated FOCP for fractional-order Riemann-Liouville systems in 2004 [3]. Building

on this framework, Ding studied the FOCP of the Caputo HIV model in 2012 and

presented related numerical techniques [55]. While there exists substantial research

on optimal control of various models, studies specifically focused on fractional-order

models are relatively sparse [195]. The Adams-Bashforth-Moulton forward-backward

predict-evaluate-correct-evaluate (PECE) technique and Pontryagin’s maximum prin-

ciple (PMP) are employed to solve the optimal control problem (OCP) and determine

the most cost-effective combination of control interventions. The validity of the results

is further confirmed through numerical simulations.

The remaining portions of this chapter are organized as follows: The basic pre-

sumptions of the model are presented together with a mathematical framework based

on the Caputo fractional-order derivative in Section 4.2. Basic properties, encompass-

ing aspects like positivity and boundedness, the basic reproduction number, existence

of equilibria of the model and absence of backward bifurcation, are addressed in Sec-

tion 4.3. Section 4.4 explores stability analysis, both locally and globally. Sensitivity

analysis of basic reproduction R0 is given in Section 4.5. The corresponding fraction-

al optimal control problem (FOCP) is introduced and analytically solved in Section

4.6. Section 4.7 gives the numerical scheme of the adopted numerical method and

4.8 validates the relevant theoretical results and provides a numerical solution to the

corresponding fractional optimal control problem (FOCP). The chapter concludes in

Section 4.9.

3
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4.2 Formulation of fractional order epidemic model
The epidemic processes, evolution and control, in human societies, cannot be consid-

ered without any memory effect. When a disease spreads within a human population,

the experience or knowledge of individuals about that disease should affect their re-

sponse. If people know about the history of a certain disease in the area where they

live, they use different precautions. Thus, some endogenously controlled suppression

of the spreading is expected. Based on the aforementioned studies, this section pro-

poses a new fractional-order nonlinear epidemic model employing the Caputo form

of the fractional-order derivative. The model assumes a total population size denoted

as N(t) at any time t, divided into five sub-populations or classes: susceptible S(t),

exposed E(t), infected I(t), quarantined Q(t), and recovered R(t). The susceptible

class S(t) comprises individuals at risk of infection, while the exposed class E(t) in-

cludes individuals in close contact with infected people but not yet infectious. The

infected class I(t) consists of individuals capable of transmitting the infection, and the

quarantine class Q(t) comprises those who have tested positive but are not showing

symptoms of the disease yet and are either quarantined, at private suitable places or in

quarantine centers, or hospitalized based on the severity of infection with time. The

recovered class R(t) includes individuals transitioning from I(t) and Q(t) due to either

auto-immune response or medical treatment. For the formulation of the model, we

make the following assumptions:

(A1) All the newly recruited population by births or immigration goes to the suscep-

tible class initially, with a constant recruitment rate Λ.

(A2) When susceptible individuals come in close contact with infectious individuals,

they will be infected at a rate β and move to the exposed class with a transition

rate βSI
(1+αI2)

. This transition rate function is referred to as the Monod-Haldane

type incidence rate, which describes a non-monotonic behaviour of incidence

rate due to psychological effects or behavioural changes of susceptible individ-

uals in case of a high density of infectives in the community.

(A3) The progression rate from exposed to the infected class is taken as ν .

(A4) The transition rate function for quarantine to the infected population is taken as

Holling type III, i.e., γI2

(1+δ I2)
, where γ is the quarantine rate and δ is the lim-

itation in quarantining the people because of the limitation in the quarantine

5

6

7

8
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facilities due to the unavailability of a significant number of quarantine places.

The limiting value for the quarantine rate is γ

δ
for the transition rate function,

i.e., lim
I→∞

γI2

(1+δ I2)
= γ

δ
.

(A5) The disease-induced death rate is considered as d1 and d2 for the infected and

quarantined classes, respectively. Whereas, the natural death rate in all the com-

partments is considered as µ .

(A6) The recovery rate of the infected population due to auto-immune or treatment is

taken as σ , and the recovery rate for quarantined infected individuals is taken as

ω .

(A7) Recovery is assumed to be permanent here, which means recovered people are

no longer susceptible to the disease and will not take part in further spreading of

the disease.

(A8) It is also assumed that there is no time delay (latency period) in the model.

(A9) It is assumed that the population is homogeneously mixed.

In the presented study, the fractional-order epidemic model is presented under these

assumptions. The model is presented by considering the non-monotone incidences

and saturated quarantining rate for infectives along with the Caputo form of derivative

for the rate of change of population in compartments into the standard SEIQR model.

Therefore, it can be considered a novel fractional-order epidemic model for disease

transmission dynamics. The resulting fractional-order epidemic model presented under

these assumptions is:

0Dρ

t S(t) = Λ− βSI
1+αI2 −µS,

0Dρ

t E(t) =
βSI

1+αI2 −νE−µE,

0Dρ

t I(t) = νE− γI2

1+δ I2 −σ I− (µ +d1)I,

0Dρ

t Q(t) =
γI2

1+δ I2 −ωQ− (µ +d2)Q,

0Dρ

t R(t) = σ I +ωQ−µR,

(4.2)

subject to the conditions

S(0) = S0 > 0,E(0) = E0 ≥ 0, I(0) = I0 ≥ 0,Q(0) = Q0 ≥ 0,R(0) = R0 ≥ 0. (4.3)

6
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4.3 Basic Properties and Equilibria

4.3.1 Positivity and Boundedness of solutions

Theorem 4.3.1 For any initial condition satisfying (4.3), the solutions of the system

(4.2) remains non-negative and uniformly bounded ∀ t ≥ 0 in the region of attraction

given by

Ω =

{
(S,E, I,Q,R) ∈ R5

+ : 0 < N ≤ Λ

µ

}
.

Proof 4.3.2 After adding all the model equations, we have

0Dρ

t (S+E + I +Q+R)(t) = Λ−µ(S+E + I +Q+R)(t)−d1I(t)−d2Q(t)

Dρ

t (N(t))≤ Λ−µN(t)
,

where, N = S+E + I +Q+R.

According to Lemma 1.1.10, it can be illustrated that,

N(t)≤
(

N(0)− Λ

µ

)
Eρ(−µtρ)+

Λ

µ
,

where Eα stands for Mittag-Leffler function as defined in Definition 1.1.2.

Therefore,

limsup
t→0

N(t)≤ Λ

µ
.

Finally, S(t),E(t), I(t),Q(t) and R(t) are non-negative and uniformly bounded.

4.3.2 The Basic Reproduction Number and Equilibria

It is worth noting that the variable R(t) is absent from the initial four equations.

Consequently, without sacrificing generality, it can be excluded from model (4.2) for

the purposes of subsequent mathematical analysis. The resulting reduced system is:

0Dρ

t S(t) = Λ− βSI
1+αI2 −µS,

0Dρ

t E(t) =
βSI

1+αI2 −νE−µE,

0Dρ

t I(t) = νE− γI2

1+δ I2 −σ I− (µ +d1)I,

0Dρ

t Q(t) =
γI2

1+δ I2 −ωQ− (µ +d2)Q.

(4.4)

5

10
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It is evident that model (4.4) always admits a disease-free equilibrium E0 =

E0(
Λ

µ
,0,0,0). Now further, the basic reproduction number R0 associated with the sys-

tem 4.4 is determined. R0 represents the average number of infections produced by

a single infected individual in a susceptible population during their entire infectious

period. If R0 is greater than 1, each existing infection is expected to cause more than

one new infection, leading to exponential growth of the disease. Conversely, if R0 is

less than 1, the infection is likely to die out eventually as each existing infection leads

to fewer than one new infection on average. It is computed using the next-generation

matrix method [47]. To this end, the right-hand side of the infected compartments

is expressed as the difference F (X)−V (X), where F (X) represents the rate of ap-

pearance of new infections in the compartments, and V (X) incorporates the remaining

transitional terms, namely births, deaths, disease progression, and recovery. So, as-

sume that

Dρ

t X = F (X)−V (X),

where X = (E, I,Q)T and F (X) be the matrix of new infection term, V (X) be the

matrix of outgoing terms. The Jacobian matrices F and V of F (X) and V (X), respec-

tively, at infection-free equilibrium E0 are given as:

F =


0 βΛ

µ
0

ν 0 0

0 0 0

 ,

V =


ν +µ 0 0

0 σ +µ +d1 0

0 0 ω +µ +d2

 .

The next generation matrix is

FV−1 =


0 βΛ

µ(µ+σ+d1)
0

ν

µ+ν
0 0

0 0 0

 .

Now, the spectral radius, i.e., the largest eigen value of the matrix FV−1 represent the

basic reproduction number and is given by,

R0 =

√
βΛν

µ(µ +ν)(σ +µ +d1)
.

2

3

3

3

4
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In addition, it can be shown that the model 4.4 admits an endemic steady state when

R0 > 1. Let E1 = E1(S∗,E∗, I∗,Q∗) be an endemic equilibrium such that S∗ > 0, E∗ >

0, I∗ > 0, Q∗ > 0 and

Λ− βS∗I∗

1+αI∗2 −µS∗ = 0,

βS∗I∗

1+αI∗2 −νE∗−µE∗ = 0,

νE∗− γI∗2

1+δ I∗2 −σ I∗− (µ +d1)I∗ = 0,

γI∗2

1+δ I∗2 −ωQ∗− (µ +d2)Q∗ = 0.

(4.5)

It follows that,

S∗ =
Λ(1+αI∗2)

β I∗+µ(1+αI∗2)
, E∗ =

1
ν

[
γI∗2

1+δ I∗2
+(σ +µ +d1)I∗

]
,

Q∗ =
γI∗2

(1+δ I∗2)(ω +µ +d2)

and I∗ can be obtained by solving the following equation:

A4I∗4 +A3I∗3 +A2I∗2 +A1I∗+A0 = 0, (4.6)

where,
A4 = αδ µ(µ +ν)(σ +µ +d1) ,

A3 = (µ +ν)(αγµ +βδ (σ +µ +d1)) ,

A2 = µ(α +δ )(µ +ν)(σ +µ +d1)+β (ν(γ−δΛ)+ γµ),

A1 = (µ +ν)(γµ +β (σ +µ +d1)) ,

A0 = µ(µ +ν)(σ +µ +d1)(1−T0),

(4.7)

where,

T0 =
βΛν

µ(µ +ν)(σ +µ +d1)
.

The coefficients A4,A3,A1 are always positive. Now, there are two cases for T0 which

are T0 < 1 and T0 > 1.

Case I: When T0 < 1

For T0 < 1, the coefficient A0 > 0. So, we only need to check the sign of the coefficient

A2. Backward bifurcation may arises here depending on the sign of A2. Backward

bifurcation shows the presence of multiple positive equilibrium points, that is, even

3

5
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when the alternative threshold T0 (or the basic reproduction number R0, according

to proposition (4.3.5)) is below unity, disease can still persist in the society, which

makes the control of the disease more challenging. Since its presence or absence can

be justified by the sign of A2 for T0 < 1, so incorporating T0 into A2 gives us,

A2 = µ(α +δ )(µ +ν)(σ +µ +d1)+β (ν(γ−δΛ)+ γµ),

= µ(µ +ν)(σ +µ +d1)

[
(α +δ )+

βγ(γ +µ)−βνδΛ

µ(µ +ν)(σ +µ +d1)

]
,

= µ(µ +ν)(σ +µ +d1)

[
(α +δ )+

βγ

µ(σ +µ +d1)
− βΛνδ

µ(µ +ν)(σ +µ +d1)

]
,

= µ(µ +ν)(σ +µ +d1)

[
(α +δ )+

βγ

µ(σ +µ +d1)
−δT0

]
(4.8)

As T0 < 1,[
(α +δ )+

βγ

µ(σ +µ +d1)
−δT0

]
> α +

βγ

µ(σ +µ +d1)
(A positive quantity),

i.e. [
(α +δ )+

βγ

µ(σ +µ +d1)
−δT0

]
> 0,

This implies that sign of A2 is positive for T0 < 1. Since, all the coefficients of equation

(4.6) are positive i.e. there is no variation of sign therefore, the Descartes’s rule of sign

[188] confirms that there is no positive real root (positive equilibrium point) for T0 < 1.

Thus, there is absence of backward bifurcation.

Theorem 4.3.3 When T0 < 1, the equation (4.6) along with (4.7) indicates the ab-

sence of backward bifurcation in system 4.4.

Case II: When T0 > 1

For T0 > 1, the coefficient A0 will be of negative sign. The following will be the

possibilities on the variation of signs of the coefficients of equation (4.6).

(i) A4 > 0, A3 > 0, A2 > 0, A1 > 0 and A0 < 0,

(ii) A4 > 0, A3 > 0, A2 < 0, A1 > 0 and A0 < 0.
(4.9)

Here, we examine the case of unique endemic equilibrium only. For T0 > 1 and with

the help of Descartes’ rule of signs [188], equation (4.6) has a unique positive real

root I∗ possible in the case of (i). Once I∗ is determined, values for S∗,E∗, and Q∗

can be derived, leading to a unique positive endemic equilibrium E1(S∗,E∗,Q∗, I∗).

Consequently, the following theorem establishes the existence of this equilibrium.

1

2
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Theorem 4.3.4 If T0 > 1, then the system 4.4 has a unique endemic equilibrium

E1(S∗,E∗, I∗,Q∗).

The numerical illustration of Theorems 4.3.3 and 4.3.4 is given in Figure 4.1 below by

taking the parameter values given in Table 4.1.

Figure 4.1: Plot of T0 versus I(t).

Proposition 4.3.5 (Alternative Threshold). Set

T0 =
βΛν

µ(µ +ν)(σ +µ +d1)
.

Then R0 is smaller than (respectively, equal to or greater than) 1 if and only if the

same relation holds for T0.

Proof 4.3.6 By a straightforward computation we see that

R0 ≤ 1 ⇐⇒

√
βΛν

µ(µ +ν)(σ +µ +d1)
≤ 1

⇐⇒ 0 <

√
βΛν

µ(µ +ν)(σ +µ +d1)
≤ 1

⇐⇒ βΛν

µ(µ +ν)(σ +µ +d1)
≤ 1

⇐⇒ T0 ≤ 1

(4.10)

and also R0 > 1 is equivalent to T0 > 1.

2

5
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This section outlined the basic properties, encompassing aspects like positivity and

boundedness, the basic reproduction number R0 and equilibria of the model. The the-

orems given here determine the conditions under which an epidemic can persist or die

out depending on R0 as well as on defined alternative threshold T0. Understanding

these thresholds helps in devising effective control measures. Moreover, the absence

of backward bifurcation is shown, which makes the control of the disease less chal-

lenging.

4.4 Stability Analysis
This section addresses the local and global staility analysis of both the equilibria. The

local stability analysis involves examining the behaviour of a system in the neighbor-

hood of an equilibrium point. It determines whether small perturbations in the equi-

librium point leads the system back towards that point (stable) or diverge away from it

(unstable). Whereas, the global stability analysis examines the behaviour of a system

over its entire state space, not just in the neighborhood of equilibrium points.

4.4.1 Local Stability

At any equilibrium point (S∗,E∗, I∗,Q∗), the linearized system of (4.4) is derived

as follows to establish local asymptotic stability:

0Dρ

t S(t) =−
(

β I∗
1+αI∗2

+µ

)
S− βS∗(1−αI∗2)

(1+αI∗2)2
I,

0Dρ

t E(t) =
(

β I∗
1+αI∗2

)
S− (ν +µ)E +

βS∗(1−αI∗2)
(1+αI∗2)2

I,

0Dρ

t I(t) = νE−
(

2γI∗
(1+δ I∗2)2

+(σ +µ +d1)

)
I,

0Dρ

t Q(t) =
2γI∗

(1+δ I∗2)2
I− (ω +µ +d2)Q.

(4.11)

16
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Taking the Laplace transform on both sides of the system (4.11), we have

sρL {S(t)}− sρ−1S(0) =−
(

β I∗
1+αI∗2

+µ

)
L {S(t)}− βS∗(1−αI∗2)

(1+αI∗2)2
L {I(t)},

sρL {E(t)}− sρ−1E(0) =
(

β I∗
1+αI∗2

)
L {S(t)}− (ν +µ)L {E(t)}+ βS∗(1−αI∗2)

(1+αI∗2)2
L {I(t)},

sρL {I(t)}− sρ−1I(0) = νL {E(t)}−
(

2γI∗
(1+δ I∗2)2

+(σ +µ +d1)

)
L {I(t)},

sρL {Q(t)}− sρ−1Q(0) =
2γI∗

(1+δ I∗2)2
L {I(t)}− (ω +µ +d2)L {Q(t)}.

(4.12)

The system (4.12) can be written in the following matrix form:

5(s)



L {S(t)}

L {E(t)}

L {I(t)}

L {Q(t)}


=



a1(s)

a2(s)

a3(s)

a4(s)


,

where

a1(s) = sρ−1S(0), a2(s) = sρ−1E(0), a3(s) = sρ−1I(0), a4(s) = sρ−1Q(0),

and

5(s)=



sρ +
β I∗

1+αI∗2
+µ 0

βS∗(1−αI∗2)
(1+αI∗2)2

0

− β I∗
1+αI∗2

sρ +ν +µ −βS∗(1−αI∗2)
(1+αI∗2)2

0

0 −ν sρ +
2γI∗

(1+δ I∗2)2
+σ +µ +d1 0

0 0 − 2γI∗
(1+δ I∗2)2

sρ +ω +µ +d2


.

(4.13)

In this case, the characteristic polynomial of the system 4.4 is det(5(s)), and

the characteristic matrix is 5(s). The distribution of eigenvalues of the characteristic

polynomial det(5(s)) may be utilized to examine the local stability of system (4.4).

3

3

5
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Now, to analyze the local stability of disease-free equilibrium E0

(
Λ

µ
,0,0,0

)
, the

characteristic matrix of system 4.4 at E0 is determined as follows:

5 (s) =


sρ +µ 0

βΛ

µ
0

0 sρ +ν +µ −βΛ

µ
0

0 −ν sρ +σ +µ +d1 0

0 0 0 sρ +ω +µ +d2


. (4.14)

So, the characteristic equation is:

det(5(s))=
(sρ +µ)(sρ +d2 +µ +ω) [βΛν +µ (µ +ν + sρ)(d1 +µ + sρ +σ)]

µ
= 0

Let λ = sρ , then the characteristic equation can be written as:

(λ +µ)(λ +d2 +µ +ω) [−βΛν +µ (µ +ν +λ )(d1 +µ +λ +σ)] = 0 (4.15)

Since the stability can be justified by the negative eigen value of characteristic e-

quation, from equation (4.15) we have two negative eigenvalues λ1 = −µ and λ2 =

−(ω +µ +d2) and the rest of the eigen values can be analyzed by the following factor

of equation (4.15):

[−βΛν +µ (µ +ν +λ )(d1 +µ +λ +σ)] = 0,

which can be re-written as the following quadratic equation:[
µλ

2 +µλ (µ(µ +ν)+(σ +µ +d1))+µ(µ +ν)(σ +µ +d1)(1−T0)
]
= 0,

λ
2 +λ (µ(µ +ν)+(σ +µ +d1))+(µ +ν)(σ +µ +d1)(1−T0) = 0.

Now, it can be seen that all the coefficients of the above quadratic equations are pos-

itive. So, Routh-Hurwitz criterion [4] assures that the equation has two roots with

negative real parts. So, finally all the eigen values of characteristic equation (4.15) are

with negative real part and therefore the disease-free equilibrium E0 is locally asymp-

totically stable. Thus, we have the following theorem.

Theorem 4.4.1 The disease-free equilibrium E0 is locally asymptotically stable when

the threshold value T0 (or R0 by Proposition 4.3.5) is less than unity.

2

3
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To analyze the local stability of the endemic equilibrium E1, the characteristic matrix

5(s) corresponding to equation (4.13) at E1 is obtained as follows:

5(s)=



sρ + β I∗

1+αI∗2 +µ 0 βS∗(1−αI∗2)

(1+αI∗2)2 0

− β I∗

1+αI∗2 sρ +ν +µ −βS∗(1−αI∗2)

(1+αI∗2)2 0

0 −ν sρ +
2γI∗

(1+δ I∗2)2
+σ +µ +d1 0

0 0 − 2γI∗

(1+δ I∗2)2
sρ +ω +µ +d2


(4.16)

Let Ω = sρ , then the characteristic equation of the characteristic matrix (4.16) is

det(5(s))=

(
d2 +µ +ω +Ω

)[(
αI∗2 +1

)3(
αI∗2µ +αI∗2Ω+ I∗β +µ +Ω

)
(µ +ν +Ω)

(
I∗4δ

2
µ + I∗4δ

2
σ + I∗4δ

2
Ω+ I∗4δ

2d1 +2I∗2δd1

+2I∗2δ µ +2I∗2δσ +2I∗2δΩ+2I∗γ +d1 +µ +σ +Ω
)

+ν
(
I∗2δ +1

)2(
α

3I∗6β µS+α
3I∗6βSΩ+α

2I∗4β µS+α
2I∗4βSΩ

−αI∗2β µS−αI∗2βSΩ−β µS−βSΩ
)](

αI∗2 +1
)4(I∗2δ +1

)2 = 0.

(4.17)

This can be re-written as,

det(5(s)) =
(
d2 +µ +ω +Ω

)[(
αI∗2 +1

)3(
αI∗2µ +αI∗2Ω+ I∗β +µ +Ω

)
(µ +ν +Ω)

(
I∗4δ

2
µ + I∗4δ

2
σ + I∗4δ

2
Ω+ I∗4δ

2d1 +2I∗2δd1

+2I∗2δ µ +2I∗2δσ +2I∗2δΩ+2I∗γ +d1 +µ +σ +Ω
)

+ν
(
I∗2δ +1

)2(
α

3I∗6β µS+α
3I∗6βSΩ+α

2I∗4β µS

+α
2I∗4βSΩ−αI∗2β µS−αI∗2βSΩ−β µS−βSΩ

)]
= 0. (4.18)

From here, one of the eigen values is Ω1 =−(ω +µ +d2) and rest of the eigen values

are analyzed by the equation,(
αI∗2 +1

)3(
αI∗2µ +αI∗2Ω+ I∗β +µ +Ω

)
(µ +ν +Ω)(

I∗4δ
2
µ + I∗4δ

2
σ + I∗4δ

2
Ω+ I∗4δ

2d1 +2I∗2δd1 +2I∗2δ µ +2I∗2δσ +2I∗2δΩ

+2I∗γ +d1 +µ +σ +Ω
)
+ν
(
I∗2δ +1

)2(
α

3I∗6β µS+α
3I∗6βSΩ

+α
2I∗4β µS+α

2I∗4βSΩ−αI∗2β µS−αI∗2βSΩ−β µS−βSΩ
)
= 0, (4.19)

which reduces into the following polynomial:

A3Ω
3 +A2Ω

2 +A1Ω+A0 = 0, (4.20)

1

5
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where,

A3 =
(
αI∗2 +1

)4(I∗2δ +1
)2
,

A2 =
(
αI∗2 +1

)3(I∗(2(αI∗2γ + γ
)
+ I∗

(
α
(
I∗2δ +1

)2
+δ
(
I∗2δ +2

))
(3µ +ν +σ)

+β
(
I∗2δ +1

)2)
+d1

(
αI∗2 +1

)(
I∗2δ +1

)2
+3µ +ν +σ

)
,

A1 =
(
αI∗2 +1

)2(
α

2I∗8δ
2(3µ

2 +2µ(ν +σ)+νσ
)
+αI∗7βδ

2(2µ +ν +σ)

+αI∗6δ
(
2σ(α +δ )(2µ +ν)+6αµ

2 +4αµν +6δ µ
2 +4δ µν +βδνS∗

)
+ I∗5

(
(2µ +ν)

(
2α

2
γ +2αβδ +βδ

2)+βδσ(2α +δ )
)

+ I∗4
(
α

2(3µ
2 +2µ(ν +σ)+νσ

)
+2α

(
2δ
(
3µ

2 +2µ(ν +σ)+νσ
)

+β (γ +δνS∗)
)
+δ

2(3µ
2 +2µ(ν +σ)+ν(σ −βS∗)

))
+ I∗3(α(β +4γ)(2µ +ν)

+αβσ +2βδ (2µ +ν +σ))+d1
(
αI∗2 +1

)(
I∗2δ +1

)2
(I∗(αI∗(2µ +ν)+β )

+2µ +ν)+ I∗2
(
2(α +δ )

(
3µ

2 +2µ(ν +σ)+νσ
)
+2βγ +βνS∗(α−2δ )

)
+ I∗(β +2γ)(2µ +ν)+ I∗βσ +3µ

2 +2µ(ν +σ)+ν(σ −βS∗)
)
,

A0 =
(
αI∗2 +1

)2(
α

2I∗8δ
2
µ(µ +ν)(µ +σ)+αI∗7βδ

2(µ +ν)(µ +σ)

+αI∗6δ µ(2α(µ +ν)(µ +σ)+δ (2(µ +ν)(µ +σ)+βνS∗))

+ I∗5(µ +ν)
(
2α

2
γµ +2αβδ (µ +σ)+βδ

2(µ +σ)
)
+ I∗4

(
α

2
µ(µ +ν)(µ +σ)

+2α(2δ µ(µ +ν)(µ +σ)+β (γ(µ +ν)+δ µνS∗))+δ
2
µ((µ +ν)(µ +σ)

−βνS∗)
)
+ I∗3(µ +ν)(α(β (µ +σ)+4γµ)+2βδ (µ +σ))

+d1
(
αI∗2 +1

)(
I∗2δ +1

)2
(µ +ν)(I∗(αI∗µ +β )+µ)+ I∗2(2µ(α +δ )

(µ +ν)(µ +σ)+β (2γ(µ +ν)+µνS∗(α−2δ )))+ I∗(µ +ν)(β (µ +σ)

+2γµ)+µ((µ +ν)(µ +σ)−βνS∗)
)
.

Considering K0 =
A0

A3
, K1 =

A1

A3
, and K2 =

A2
A3
, equation (4.20) becomes,

P(Ω) = Ω
3 +K2Ω

2 +K1Ω+K0. (4.21)

The Routh-Hurwitz criteria for fractional order systems [4] demonstrates that the roots

of the aforementioned polynomial, which meet |argΩi|> ρπ

2 , i= 1,2,3, indicates local
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stability. So, corresponding to the above polynomial P(Ω), the discriminant D(Ω) is,

D(Ω) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 K2 K1 K0 0

0 1 K2 K1 K0

3 2K2 K1 0 0

0 3 K2 K1 0

0 0 3 2K2 K1

∣∣∣∣∣∣∣∣∣∣∣∣∣
= 18K2K1K0 +(K2K1)

2−4K0K2
3−4K1

3−27K0
2.

For P(Ω) = 0 having three roots with negative real parts, we have the following theo-

rem which ensures the local stability of E1(S∗,E∗, I∗,Q∗) using [4]:

Theorem 4.4.2 The endemic equilibrium E1(S∗,E∗, I∗,Q∗) is locally asymptotically

stable when any of the following conditions hold:

(i) K2 > 0, K0 > 0, K2K1 > K0 if D(Ω)> 0,

(ii) If D(Ω)< 0, K2 ≥ 0, K1 ≥ 0, K0 > 0, ρ < 2
3 ,

(iii) If D(Ω)< 0, K2 > 0, K1 > 0, K2K1 = K0, ρ ∈ (0,1].

Otherwise, the endemic equilibrium E1(S∗,E∗, I∗,Q∗) is unstable when the con-

dition D(Ω)< 0, K2 < 0, K1 < 0, ρ > 2
3 holds because in this case all the roots

satisfy the condition |arg(Ωi)|< ρπ

2 .

4.4.2 Global Stability

This subsection analyzes the global stability of disease-free equilibrium E0 and

endemic equilibrium E1 with the help of Lyapunov stability method for fractional order

system. The global stability of the disease-free equilibrium E0 is first discussed. To

this end, the following positive definite Lyapunov function is constructed:

L(t) =
ν

(µ +ν)
E(t)+ I(t).

2

3

5
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Differentiating both sides with respect to t along with E0 for order ρ , we get,

0Dρ

t L(t) =
ν

(µ +ν)
0Dρ

t E(t)+ 0Dρ

t I(t)

=
ν

(µ +ν)

[
βSI

1+αI2 − (ν +µ)E
]
+

[
νE− γI2

1+δ I2 − (σ +µ +d1)I
]

=
ν

(µ +ν)

βSI
1+αI2 −

γI2

1+δ I2 − (σ +µ +d1)I

≤ ν

(µ +ν)
βSI− (σ +µ +d1)I−

γI2

1+δ I2

≤
[

ν

(µ +ν)
βS− (σ +µ +d1)

]
I− γI2

1+δ I2

≤ (σ +µ +d1)

[
βΛν

µ(µ +ν)(σ +µ +d1)
−1
]

I− γI2

1+δ I2

≤ (σ +µ +d1)(T0−1) I− γI2

1+δ I2

≤ 0 if T0 ≤ 1.

It is clear that 0Dρ

t L(t) is negative when T0 < 1 (or R0 < 1, by proposition (4.3.5))

and equal to 0 at E0. Hence, by the Lyapunov stability theorem [116; 44], E0 is glob-

ally asymptotically stable when T0 < 1 (or R0 < 1) and thus we have the following

theorem:

Theorem 4.4.3 The disease free equilibrium E0 is globally asymptotically stable when

the threshold vale T0 (or R0 by Proposition (4.3.5)) is less than unity.

Now, moving towards the global stability of endemic equilibrium. To prove this, we

constructed the following positive definite Lyapunov function,

L(t) =
(

S−S∗−S∗ log
S
S∗

)
+

(
E−E∗−E∗ log

E
E∗

)
+

(
I− I∗− I∗ log

I
I∗

)
+

(
Q−Q∗−Q∗ log

Q
Q∗

)
.

4
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The differentiation of both sides with respect to t along with the endemic equilibrium

E1 for order ρ with the help of Lemma 1.1.9 is:

0Dρ

t L(t)≤
(

1− S∗

S

)
0Dρ

t S(t)+
(

1− E∗

E

)
0Dρ

t E(t)+
(

1− I∗

I

)
0Dρ

t I(t)

+

(
1− Q∗

Q

)
0Dρ

t Q(t)

≤
(

1− S∗

S

)(
Λ− βSI

1+αI2 −µS
)
+

(
1− E∗

E

)(
βSI

1+αI2 − (ν +µ)E
)

+

(
1− I∗

I

)(
νE− γI2

1+δ I2 − (σ +µ +d1)I
)

+

(
1− Q∗

Q

)(
γI2

1+δ I2 − (ω +µ +d2)Q
)
.

Let G(I) = I
1+αI2 , F(I) = I2

1+δ I2 , then from the steady state equation (4.5), we also

have:

Λ = βS∗G(I∗)+µS∗, (ν +µ) =
βS∗G(I∗)

E∗
,

ν =
γF(I∗)

E∗
+(σ +µ +d1)

I∗

E∗
, (ω +µ +d2) =

γF(I∗)
Q∗

.

Thus,

0Dρ

t L(t)≤
(

1− S∗

S

)
(βS∗G(I∗)+µS∗−βSG(I)−µS)

+

(
1− E∗

E

)(
βSG(I)−βS∗G(I∗)

E
E∗

)
+

(
1− I∗

I

)(
γF(I∗)

E
E∗

+(σ +µ +d1)I∗
E
E∗
− γF(I)− (σ +µ +d1)I

)
+

(
1− Q∗

Q

)(
γF(I)− γF(I∗)

Q
Q∗

)

5
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= µS∗
(

2− S∗

S
− S

S∗

)
+βS∗G(I∗)

(
1− S∗

S
+

G(I)
G(I∗)

− S
S∗

G(I)
G(I∗)

)
+βS∗G(I∗)

(
1− E

E∗
− E∗

E
S
S∗

G(I)
G(I∗)

+
S
S∗

G(I)
G(I∗)

)
+ γF(I∗)

E
E∗

(
1− I∗

I
− E∗

E
F(I)
F(I∗)

+
I∗

I
E∗

E
F(I)
F(I∗)

)
+(σ +µ +d1)I∗

(
1+

E
E∗
− E

E∗
I∗

I
− I

I∗

)
+ γF(I∗)

(
1+

F(I)
F(I∗)

− Q∗

Q
F(I)
F(I∗)

− Q
Q∗

)
≤ µS∗

(
2− S∗

S
− S

S∗

)
+βS∗G(I∗)

(
2− S∗

S
− E

E∗
+

G(I)
G(I∗)

(
1− E∗

E
S
S∗

))
+ γF(I∗)

E
E∗

(
1− I∗

I
− E∗

E
F(I)
F(I∗)

+
I∗

I
E∗

E
F(I)
F(I∗)

)
+(σ +µ +d1)I∗

(
1+

E
E∗
− E

E∗
I∗

I
− I

I∗

)
+ γF(I∗)

(
1+

F(I)
F(I∗)

− Q∗

Q
F(I)
F(I∗)

− Q
Q∗

)
.

Clearly, by the property of arithmetic mean, we have(
2− S∗

S
− S

S∗

)
≤ 0,

and if (
2− S∗

S
− E

E∗
+

G(I)
G(I∗)

(
1− E∗

E
S
S∗

))
≤ 0,(

1− I∗

I
− E∗

E
F(I)
F(I∗)

+
I∗

I
E∗

E
F(I)
F(I∗)

)
≤ 0,(

1+
E
E∗
− E

E∗
I∗

I
− I

I∗

)
≤ 0,(

1+
F(I)
F(I∗)

− Q∗

Q
F(I)
F(I∗)

− Q
Q∗

)
≤ 0,


(4.22)

then, 0Dρ

t L(t) ≤ 0. Hence, the Lyapunov stability theorem [116; 44], ensures that the

endemic equilibrium E1(S∗,E∗, I∗,Q∗) is globally asymptotically stable when T0 >

1 (or R0 > 1 by Proposition (4.3.5)). Thus, we have the following theorem:

Theorem 4.4.4 The endemic equilibrium E1(S∗,E∗, I∗,Q∗) is globally asymptotically

stable when T0 > 1 (or R0 > 1 by Proposition (4.3.5)) for all α ∈ [0,1).

1

2

2

3

3
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In summary, this section explored the stability analysis which helps in understanding

the long-term behaviour of the epidemic. By studying the stability of different equilib-

ria (e.g., disease-free equilibrium or endemic equilibrium), one can assess whether the

disease will persist at a certain level in the population or eventually die out. As stated

in the theorems, the threshold value T0 indicates that T0 < 1 signifies the asymptotic

stability of the disease-free equilibrium (Theorems 4.4.1 and 4.4.3). On the other hand,

for the disease to persist in the society, the threshold value T0 must be greater than 1.

In other words, we can say that the endemic equilibrium will be asymptotically stable

when T0 > 1 (theorems 4.4.2 and 4.4.4). This information is crucial for public health

planning and resource allocation.

4.5 Sensitivity Analysis
Sensitivity analysis is used to determine the model factors that affect the fundamental

rate of reproduction of various infectious diseases financially. Using this method, epi-

demiologists may predict crucial elements required for the dynamics of disease trans-

mission. We must ascertain the values of the sensitivity indices in order to comprehend

the model parameters that must be maintained or watched over in order to prevent or

control the impacts of illness. To stop the spread of infection, we need to determine the

model parameters that are sensitive to comprehend the dynamics of disease transmis-

sion. We need to estimate the change in the basic reproduction number with respect to

various model parameters to get the normalized forward sensitivity index of the basic

reproduction number.

Definition 4.5.1 [158] The normalized forward sensitivity index of a variable z, which

depends on a parameter x, is defined as

W z
x =

∂ z
∂x
× x

z
.

So, for R0, the sensitivity index is WR0
x =

∂R0

∂x
× x

R0
, which shows how sensitive R0

to the parameter x. The sensitivity index for the parameters of interest are:

WR0
β

=
1
2
, WR0

µ =−d1(2µ +ν)+3µ2 +2µ(ν +σ)+νσ

2(µ +ν)(d1 +µ +σ)
, WR0

Λ
=

1
2
,

WR0
σ =− σ

2(d1 +µ +σ)
, WR0

ν =
µ

2(µ +ν)
, WR0

d1
=− d1

2(d1 +µ +σ)
.

5

9
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These sensitivity indices are evaluated with the help of parametric values given in Table

4.1, as follows and also given by the bar diagram in Figure 4.2.

WR0
β

= 0.5, WR0
µ =−0.7727, WR0

Λ
= 0.5, WR0

σ =−0.0455,

WR0
ν = 0.0909, WR0

d1
=−0.2727.

Figure 4.2: Sensitivity indices of R0.

Figure 4.2 indicates that the most sensitive parameters for R0 are β , µ and Λ.

Parameters ν and d1 also have some sensitivity to R0 while the parameter σ is least

sensitive. Thus, for example, if the transmission rate β varies i.e. increased or (de-

creased) by 10%, then the value of R0 will increase or (decrease) by 5%. Likewise,

a 10% increase or (decrease) in value of µ would correspond to a 7.72% decrease or

(increase) in the value of R0. By doing so, the sensitivity of parameters is observed in

both positive and negative aspects.

4.6 Optimal Control Problem
In this section, we establish an optimal control problem aligned with the model system

(4.2), incorporating the influence of information (non-pharmaceutical intervention) as

a control policy. The optimal control problem, formulated using fractional differential

equations, can provide a more accurate representation of the system dynamics com-

pared to integer order models [93]. Our objective is to explore the effects of these

33
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control interventions on disease progression and to optimize the associated implemen-

tation costs. Initially, we outline the control policy and subsequently assess the corre-

sponding cost implications.

Enhancing the response of susceptible population via information: During

the spread of an epidemic, the rate at which the susceptible people become infected

can be reduced by changing their behaviours by getting aware of the risk of disease

transmission within their community, informed by public health campaigns, media

coverage, and personal experiences. It is assumed that susceptible individuals, after

awareness, adopt the preventive measures; such as wearing masks, social-distancing,

regular sanitation, etc.; but disparities in resources and attitudes can impact imple-

mentation. This behavioural response is represented by the control variable u(t). In

our model system (4.2), u represents the response intensity via information, where

0≤ u≤ 1. Here, 0 means no response, and 1 means a full response from informed in-

dividuals. So, this response intensity is directly related with an individual’s behavioural

response. Now, we treat this response intensity u(t) as a control variable. There will

be a cost involved, which is a nonlinear function of u(t), to boost individuals’ response

to information, prompting them to change their behaviour.

Our primary goal is to determine the optimal response intensity using available

data while executing them at the lowest possible cost through the spread of informa-

tion. The admissible set, as discussed above, for the control variable u(t) is given

by,

U = {u(t)| u is Lebesgue measurable, 0≤ u(t)≤ 1, t ∈ [0,T ]}.

Here, T is the final time of implemented control policy and u(t) is measurable and

bounded function.

The motivation for implementing control variable u(t) is to minimize the propor-

tion of infected and quarantined populations, and the cost of its implementation, given

by,

J [u] =
∫ T

0

(
w1E +w2I +w3Q+

1
2

z1u2
)

dt, (4.23)

5

8
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subject to model system

DρS(t) = Λ− (1−u(t))
βSI

1+αI2 −µS,

DρE(t) = (1−u(t))
βSI

1+αI2 −νE−µE,

Dρ I(t) = νE− γI2

1+δ I2 −σ I− (µ +d1)I,

DρQ(t) =
γI2

1+δ I2 −ωQ− (µ +d2)Q,

DρR(t) = σ I +ωQ−µR,

(4.24)

with S(0)≥ 0, E(0)≥ 0, I(0)≥ 0, Q(0)≥ 0 and R(0)≥ 0.

Here, the function J represents the overall cost, and the expression

L(E, I,Q,u(t)) = w1E +w2I+w3Q+ 1
2z1u2 shows the current cost at any given time t.

The parameters w1,w2,w3 are positive constants that balance the units of the different

parts of the expression [62; 90]. The control effort is represented by the quadratic term

u2. For convenience, we use u(t) = u.

In the following, the Pontryagin’s maximum principle [105] is used to solve op-

timal control problems. According to the literature [124; 66], an optimal solution for

(4.24) exists if the following conditions are met:

(i) The state variables and control set are not empty.

(ii) The set U is both convex and closed.

(iii) The system’s right side in equation (4.24) is constrained by a linear function

involving both the control and state variables.

(iv) The integrand of the objective function

L(E, I,Q,u) = w1E +w2I +w3Q+
1
2

z1u2

is convex on the set U.

(v) There exist constants k1, k2 > 0 and ε > 1 such that the integrand L(E, I,Q,u)

satisfies

L(E, I,Q,u) = k1
(
|u|2
)ε

2 − k2.

2

4

4

14

41
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Similar to Theorem (4.3.1), we have

DρN = Λ−µN−d1I−d2Q

DρN ≤ Λ−µN

Now from the prior bounds of the populations as N ≤ Λ

µ
, for bounded control in U,

it can be concluded that the solutions of the system (4.24) are also bounded. It is

evident that the functions on the right-hand side of the system (4.24) meet the Lipschitz

condition concerning the state variables.

Thus, we can satisfy condition (i) by applying the Picard-Lindelof Theorem [38].

Since the solution to the system (4.24) is bounded, and the control set is convex, condi-

tions (ii) are also met. According to the literature [122], it is straightforward to confirm

that conditions (iii) and (iv) are equally valid. Moreover,

L(E, I,Q,u)≥ k1
(
|u|2
)ε

2 − k2,

where k1 =
1
2 min{k1,k2}, k2 = 1, ε = 2. Thus, condition (v) is verified. Considering

the above discussion, we reach the following conclusion.

Theorem 4.6.1 There exists an optimal control solution ū such that

J (ū) = min[J (u)]

subject to the fractional system (4.24).

To obtain the optimal control solution, the Lagrangian function is defined as:

L = w1E +w2I +w3Q+
1
2

z1u2,

and Hamiltonian function

H(S,E, I,Q,R,u,λi) = L+λ1DρS+λ2DρE +λ3Dρ I +λ4DρQ+λ5DρR

= w1E +w2I +w3Q+
1
2

z1u2

+λ1

(
Λ− (1−u)

βSI
1+αI2 −µS

)
+λ2

(
(1−u)

βSI
1+αI2 − (ν +µ)E

)
+λ3

(
νE− γI2

1+δ I2 − (σ +µ +d1)I
)

+λ4

(
γI2

1+δ I2 − (ω +µ +d2)Q
)

+λ5 (σ I +ωQ−µR) .

2

5

42
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Here, λi = (λ1,λ2,λ3,λ4,λ5) is referred to as the adjoint variable. Using Pontryagin’s

Maximum Principle, the minimized Hamiltonian that reduces the cost is obtained. Pon-

tryagin’s Maximum Principle contributes significantly in connecting the cost with the

state equations by introducing adjoint variables.

Theorem 4.6.2 In the control system (4.23)-(4.24), let ū be the optimal control vari-

able and S̄, Ē, Ī, Q̄, and R̄ the corresponding optimal state variables. Then, there

exists λi = (λ1,λ2,λ3,λ4,λ5) ∈ R5 as an adjoint variable that satisfies the following

canonical equations:

Dρ
λ1(t) =

(
(1− ū)

β Ī
1+α Ī2 +µ

)
λ1−

(
(1− ū)

β Ī
1+α Ī2

)
λ2,

Dρ
λ2(t) =−w1 +(ν +µ)λ2− (νĒ)λ3,

Dρ
λ3(t) =−w2 +

(
(1− ū)

β S̄(1−α Ī2)

(1+α Ī2)2

)
λ1−

(
(1− ū)

β S̄(1−α Ī2)

(1+α Ī2)2

)
λ2

+

(
2γ Ī

(1+δ Ī2)2 +(σ +µ +d1)

)
λ3−

(
2γ Ī

(1+δ Ī2)2

)
λ4− (σ)λ5, (4.25)

Dρ
λ4(t) =−w3 +(ω +µ +d2)λ4− (ω)λ5,

Dρ

t λ5(t) = (µ)λ5,

with transversality conditions

λi(T ) = 0. (4.26)

Further, the optimal control ū is given by

ū = min
{

max
{

0,
1
z1

β S̄Ī
1+α Ī2 (λ2−λ1)

}
,1
}
. (4.27)

Proof 4.6.3 The adjoint variable equations and the transversality condition may be

derived as follows by applying Pontryagin’s maximal principle:

9

24
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Dρ
λ1(t) =−

∂H
∂S

=

(
(1− ū)

β Ī
1+α Ī2 +µ

)
λ1−

(
(1− ū)

β Ī
1+α Ī2

)
λ2,

Dρ
λ2(t) =−

∂H
∂E

=−w1 +(ν +µ)λ2− (νĒ)λ3,

Dρ
λ3(t) =−

∂H
∂ I

=−w2 +

(
(1− ū)

β S̄(1−α Ī2)

(1+α Ī2)2

)
λ1

−
(
(1− ū)

β S̄(1−α Ī2)

(1+α Ī2)2

)
λ2 +

(
2γ Ī

(1+δ Ī2)2 +(σ +µ +d1)

)
λ3

−
(

2γ Ī
(1+δ Ī2)2

)
λ4− (σ)λ5,

Dρ
λ4(t) =−

∂H
∂Q

=−w3 +(ω +µ +d2)λ4− (ω)λ5,

Dρ

t λ5(t) =−
∂H
∂R

= (µ)λ5,

with λi(T ) = 0, for any i = 1,2, . . . ,5. The characteristic equation of optimal control

ū, can be obtain by solving the equation:

∂H
∂u

= 0, at u = ū.

Thus we get,

ū =
1
z1

β S̄Ī
1+α Ī2 (λ2−λ1).

Thus, we have the control set U as:

ū =



0 if
1
z1

β S̄Ī
1+α Ī2 (λ2−λ1)< 0

1
z1

β S̄Ī
1+α Ī2 (λ2−λ1) if 0≤ 1

z1

β S̄Ī
1+α Ī2 (λ2−λ1)≤ 1

1 if
1
z1

β S̄Ī
1+α Ī2 (λ2−λ1)> 1,

which can be equivalently written as:

ū = min
{

max
{

0,
1
z1

β S̄Ī
1+α Ī2 (λ1−λ2)

}
,1
}
. (4.28)

Hence, the theorem proved.

5
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This section focused on the optimal control problem to reduce the spread of disease in

an optimal manner. Theorem 4.6.1 established the existence of an optimal intervention

strategy, minimizing disease spread or maximizing public health outcomes. Pontrya-

gin’s Maximum Principle characterized this strategy, defining when and how interven-

tions should occur. Theorem 4.6.2 confirmed the existence of adjoint variables meeting

canonical equations and a transversality condition, ensuring the strategy’s long-term

sustainability. This condition prevents short-term disease control gains from causing

long-term harm, aiding in effective decision-making for disease management.

4.7 Numerical Scheme
The Adams-Bashforth-Moulton predictor corrector method is the most employed nu-

merical method for the fractional order system of differential equations with initial

values [50]. The implementation of this method is given below. Consider the follow-

ing non-autonomous SEIQR system for the same.

DρS(t) = f1
(
t,S,E, I,Q,R

)
,

DρE(t) = f2
(
t,S,E, I,Q,R

)
,

Dρ I(t) = f3
(
t,S,E, I,Q,R

)
,

DρQ(t) = f4
(
t,S,E, I,Q,R

)
,

DρR(t) = f5
(
t,S,E, I,Q,R

)
,

(4.29)

with S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0 and R(0) = R0, where 0 < ρ ≤ 1.

Let t j = jh, j = 0,1,2, . . . ,N with some integer N and h = T/N, in the interval [0,T ].

By utilizing the method given in [50], system (4.29) can be written as follows.

2
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Predictor values for (4.29) are

SP
n+1 = S0 +

1
Γ(ρ)

n

∑
j=0

b j,n+1 f1
(
t j,S j,E j, I j,Q j,R j

)
,

EP
n+1 = E0 +

1
Γ(ρ)

n

∑
j=0

b j,n+1 f2
(
t j,S j,E j, I j,Q j,R j

)
,

IP
n+1 = I0 +

1
Γ(ρ)

n

∑
j=0

b j,n+1 f3
(
t j,S j,E j, I j,Q j,R j

)
,

QP
n+1 = Q0 +

1
Γ(ρ)

n

∑
j=0

b j,n+1 f4
(
t j,S j,E j, I j,Q j,R j

)
,

RP
n+1 = R0 +

1
Γ(ρ)

n

∑
j=0

b j,n+1 f5
(
t j,S j,E j, I j,Q j,R j

)
,

where, b j,n+1 =
hρ

ρ

(
(n− j+1)ρ − (n− j)ρ

)
.

Corrector values are obtained by using predictor values as follows:

Sn+1 = S0 +
hρ

Γ(ρ +2)
f1
(
tn+1,SP

n+1,E
P
n+1, I

P
n+1,Q

P
n+1,R

P
n+1
)

+
hρ

Γ(ρ +2)

n

∑
j=0

a j,n+1 f1
(
t j,S j,E j, I j,Q j,R j

)
,

En+1 = E0 +
hρ

Γ(ρ +2)
f2
(
tn+1,SP

n+1,E
P
n+1, I

P
n+1,Q

P
n+1,R

P
n+1
)

+
hρ

Γ(ρ +2)

n

∑
j=0

a j,n+1 f2
(
t j,S j,E j, I j,Q j,R j

)
,

In+1 = I0 +
hρ

Γ(ρ +2)
f3
(
tn+1,SP

n+1,E
P
n+1, I

P
n+1,Q

P
n+1,R

P
n+1
)

+
hρ

Γ(ρ +2)

n

∑
j=0

a j,n+1 f3
(
t j,S j,E j, I j,Q j,R j

)
,

Qn+1 = Q0 +
hρ

Γ(ρ +2)
f4
(
tn+1,SP

n+1,E
P
n+1, I

P
n+1,Q

P
n+1,R

P
n+1
)

+
hρ

Γ(ρ +2)

n

∑
j=0

a j,n+1 f4
(
t j,S j,E j, I j,Q j,R j

)
,

Rn+1 = R0 +
hρ

Γ(ρ +2)
f5
(
tn+1,SP

n+1,E
P
n+1, I

P
n+1,Q

P
n+1,R

P
n+1
)

+
hρ

Γ(ρ +2)

n

∑
j=0

a j,n+1 f5
(
t j,S j,E j, I j,Q j,R j

)
,

5
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where,

a j,n+1 =


nρ+1− (n−ρ)(n+1)ρ , j = 0

(n− j+2)ρ+1 +(n− j)ρ+1−2(n− j+1)ρ+1, 1≤ j ≤ n.

According to the mathematical analysis of this method in [51], the order of accuracy is

ψ =min(2,1+ρ). This is because it can be demonstrated that ψ must be the minimum

among the order of the corrector (which is 2 in our scenario) and the sum of the order of

the predictor method (which is 1 in this case) and the order of the differential operator

(denoted as ρ). It is noteworthy that the Adams-Bashforth-Moulton scheme’s conver-

gence order ψ increases with an increase in ρ , which denotes the order of differential

equation, as described the algorithm behaviour in [53]. Regarding the algorithm’s

stability properties, it is observed that it follows that the fractional Adams-Bashforth-

Moulton scheme’s stability properties are at least as good as those of its counterpart

for first-order equations, i.e., the traditional second-order Adams-Bashforth-Moulton

method [53].

4.8 Numerical Simulations and Discussion
In this section, MATLAB 2012b is used to execute numerical simulation with the set

of numerical experimental data as given in Table 4.1, to verify the accuracy of the the-

oretical derivation using the fractional Adams-Bashforth-Moulton technique by using

scheme given in Section 4.7. When numerical analysis is performed with the help of

real data, it might lead to fluctuations in pricing, expenditures, and technology, making

it challenging to identify causes and effects. On the other hand, numerical analysis

with a set of numerical experimental data makes it easier to distinguish the effects of

interactions between different classes, which is crucial for the observation of long ter-

m behaviour of the system [125]. Therefore, a qualitative analysis is presented, which

provides a conceptual understanding, as researchers examine the underlying mecha-

nisms and assumptions of the model to develop a deeper understanding of the complex

dynamics of disease transmission and control, identifying areas where further empir-

ical validation or adjustment is possible. For the numerical computations, the initial

sub-populations are taken as S(0) = 310,E(0) = 25, I(0) = 5,Q(0) = 5, and R(0) = 5

and set of numerically experimental data has been given in Table 4.1.

19

27
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4.8.1 Numerical Analysis without Control Strategy

In this subsection, to confirm the feasibility of our analysis regarding the exis-

tence and stability conditions of equilibria corresponding to model system (4.2), some

numerical computations are performed.

Table 4.1: Parameters of the model SEIQR.

Parameters Description Values

Λ Recruitment rate 7

β Transmission rate 0.009

α Psychological saturation constant 0.02

µ Natural mortality rate 0.02

ν Rate of progression from exposed to the infected

group

0.09

γ Quarantine rate 0.07

δ Quarantine saturation constant 0.008

σ Auto recovery rate 0.005

ω Recovery rate due to treatment 0.007

d1 Death rate due to disease in I class 0.03

d2 Death rate due to disease in Q class 0.03

For the data given in Table 4.1, the value of the coefficients of equation

(4.6) is A4 = 1.936× 10−8,A3 = 3.5156× 10−6,A2 = 2.7328× 10−5,A1 = 2.0845×
10−4,A0 = −5.549× 10−3. These coefficient values satisfy Theorem 4.3.4 and the

possibility of the existence of unique positive equilibrium provided the condition

γ > δΛ which is (0.07 > 0.056). Thus the endemic equilibrium is E∗(S∗,E∗, I∗,Q∗) =

(135.966,34.5256,8.18312,53.5491) for which the basic reproduction number R0 is

6.8454 and simultaneously the alternative threshold T0 is 46.85954.

The values of coefficients of equation (4.20) are calculated as A3 = 70.6216, A2 =

49.5942,A1 = 7.0492,A0 = 0.225921. One of the eigen values corresponding the equa-

tion (4.18) are Ω1 =−0.057, and the rest of the eigen values are the root of the equation

(4.21) i.e. of the equation Ω3 + 0.702252Ω2 + 0.0998165Ω+ 0.00319903 which are

Ω2 = −0.523139, Ω3 = −0.133208, Ω4 = −0.0459063. The discriminant of poly-

nomial term of the equation (4.21) is calculated as D(λ ) = 0.000263922. The val-

ues of the coefficients of equation (4.21) are K0 = 0.00319903,K1 = 0.0998165,K2 =

5

6
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0.702252 and these also satisfy the condition K2K1 > K0, so together with the discrim-

inant D(λ ), these are satisfying the first condition of the Theorem 4.4.2. Using the

initial population conditions, Figures 4.3a, 4.3b, 4.4a, 4.4b, are plotted, depicting the

impact of the fractional order ρ on the sub-populations.

As depicted in Figure 4.3a, the variation in the fractional order value ρ influences

the convergence rate of the system (4.4). Specifically, when the value of ρ increases,

the susceptible population reaches its steady state more rapidly. On the other hand,

if the value of ρ decreases, the memory of the system (4.4) is strengthened, leading

to a slower convergence speed. In simpler terms, reducing ρ makes it take longer to

eliminate the disease.

(a) Profiles of susceptible population with dif-

ferent fractional order.

(b) Profiles of exposed population with differ-

ent fractional order.

Figure 4.3: Effect of fractional order ρ on susceptible and exposed populations.
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(a) Profiles of infected population with different

fractional order.

(b) Profiles of quarantined population with dif-

ferent fractional order.

Figure 4.4: Effect of fractional order ρ on infected and quarantined populations.

In Figures 4.3b, 4.4a, 4.4b, it can be seen that when ρ = 1, the populations

E, I, and Q quickly reach a steady state. However, as the value of ρ decreases, the

time it takes for these populations to reach the steady state increases. This shows

how the epidemic evolves over time. According to Theorem 4.4.4, the endemic equi-

librium (135.966,34.5256,8.18312,53.5491) is stable for all fractional order values

(ρ = 0.7,0.8,0.9,1), as demonstrated in Figures 4.3a, 4.3b, 4.4a, 4.4b.

Biologically, it can be said that a higher value of ρ implies that individuals are less

influenced by past experiences, leading to a quicker convergence to the steady state. On

the other hand, when the value of ρ is relatively low, the memory effect is stronger, and

the susceptible population takes more time to reach a steady state. A lower value of ρ

implies that society retains more memory of past experiences during the emergence of

an infectious disease. Moreover, with a weaker memory effect, individuals might take

longer to recognize and respond to the disease’s presence that is the peak of infected

individuals is high in case of higher values of ρ .

3

5
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(a) Profiles of infected population with different

initial conditions I(0) for ρ = 0.7.

(b) Phase portrait of infected and recovered

population at ρ = 0.7.

Figure 4.5: Effect of different initial conditions I(0) on infected population and the

phase diagram of infected vs recovered population at fixed ρ = 0.7.

(a) Phase portrait of infected and

quarantined population at ρ = 0.7.

(b) Phase portrait of quarantined and

recovered population at ρ = 0.7.

Figure 4.6: Phase diagram at fixed ρ = 0.7.
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(a) Impact of psychological effects (α) on

susceptible individuals at ρ = 0.9.

(b) Impact of psychological effects (α) on

exposed individuals at ρ = 0.9.

Figure 4.7: Phase diagram at fixed ρ = 0.7.

Important insights into the dynamics of disease transmission within a population

may be gained from Figures 4.5a, 4.5b, 4.6a, and 4.6b. Figure 4.5a illustrates the

stability of the model under different initial conditions. The stability of the model

is confirmed when the infected population reaches a steady-state, regardless of the

starting number of infected people. For instance, steady-state behaviour is consistent

in simulations with varied beginning infected people (I(0) = 5,7,9,11). The recovered

population is initially at a low level as the number of infected persons grows, as seen in

Figure 4.5b. However, with time, recovery increases along with the number of infected

individuals and reaches to its steady state. Figure 4.6a shows how timely quarantine

affects the number of infected individuals. The graph indicates that when quarantine

measures are initiated, the number of infected individuals initially increases. However,

because of the timely quarantine, the infection reaches its highest point and then goes

down significantly. This emphasizes the importance of timely quarantine in controlling

the peak of infection during an epidemic. In Figure 4.6b, we can see how putting

people in quarantine on time affects the number of individuals who have recovered.

Clearly, when quarantine happens on time, the number of people recovering increases

and eventually levels off at a steady state.

Figures 4.7a and 4.7b are presented to study how psychological factors affect

both susceptible and exposed populations. When the rate of psychological effects α

increases, the number of susceptible individuals increases, and the peak of exposed

individuals starts to decrease, as illustrated in Figures 4.7a and 4.7b. Therefore, using

3

3

5

6

6

6
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psychological effects can be an effective way to lower the peak of infection in society

during an outbreak.

4.8.2 Numerical Analysis with Control Strategy

This subsection explains the outcomes of the Fractional Optimal Control Problem

(FOCP) and discusses the implications of the study. To analyze the results, Pontrya-

gin’s maximum principle along with its optimality conditions is applied, using the

forward-backward predict-evaluate-correct-evaluate (PECE) method. The simulation-

s and discussion of results are conducted through this approach, which involves the

Adams Bashforth Moulton FBSM method [153].

The values of the state variables S,E, I,Q, and R are obtained by first solving

system (4.24) using the PECE process with initial conditions for the state variables,

in the forward direction (time), and an estimate for the control across the time interval

[0,T ]. Using the PECE approach, the resulting state solution is then applied to solve the

adjoint system (4.25) in the backward direction (time) with transversality conditions.

Next, the control set U is updated by a convex combination of the previous and present

values of the control characterizations, after the control variables are calculated using

the characterizations provided in (4.28). Until the control values, adjoint variables,

and state variables converge, this procedure is repeated. The same set of parameters

and initial values is used as previously established in order to numerically simulate our

FOCP.

The proper weights for the goal cost functional (4.23) were established to ensure

effective optimization. In particular, z1 = 240 and w1 = w2 = w3 = 1 is considered.

These weights were chosen to account for the varying degrees of significance and work

associated with each control. To get the required results for our optimization problem,

the controls were applied for T = 200 (in days). Through the proper selection of

parameters and initialization of the system with suitable conditions, we get trustworthy

and accurate findings.

For a more insightful examination and interpretation of optimal control analysis,

an implementation of control policy u(t), i.e., response via information is considered.

The corresponding population profiles are plotted in Figures 4.8a, 4.8b,4.9a, 4.9b and

the path of the applied control response via information u(t) for ρ = 0.9 is depicted in

Figure 4.10.

6
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(a) Impact of applying u on susceptible

population S.

(b) Impact of applying u on exposed

population E.

Figure 4.8: Profiles of susceptible and exposed population with applied optimal control

of response via information u for ρ = 0.9.

(a) Impact of applying u on infected

population I.

(b) Impact of applying u on quarantined popu-

lation Q.

Figure 4.9: Profiles of infected and quarantined population with applied optimal con-

trol of response via information u for ρ = 0.9.

5
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Figure 4.10: Optimal control path of response via information u for ρ = 0.9.

Figure 4.11: Optimal control path of response via information u with different values

of contact rate β for ρ = 0.9.

The profile of optimal control u, as shown in Figure 4.10, indicates that if it is

implemented as a control intervention strategy, it would require high implementation

efforts initially, then constant efforts for a longer period of time. Gradually, lower

implementations can be applied and finally, it can be removed from employment at

the end. Furthermore, Figures 4.8a, 4.8b, 4.9a, 4.9b demonstrates the impact of im-
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plementing u on the S,E, I and Q population. It is noteworthy that if individuals in

susceptible will go through the implemented control u, the count of susceptibles in-

crease and infected decrease in comparison of without any control. So, conclusively,

information-based behavioural response effectively lowers the number of infected peo-

ple, and in this instance, the epidemic peaks considerably lower than it would have if

no controls were in place. Furthermore, the profile of control u(t) for various values

of contact rate of susceptible population β is shown in Figure 4.11 to further explore

how optimal control relies upon various factors in the model. It shows that for a higher

value of contact rate of susceptible population β , to achieve the optimal scenario, in-

formation spreading process must be implemented with the maximum rate of 140 days

(approx). On the other hand, the best result may be achieved with a smaller value of β

by using a shorter information-spreading method in terms of days.

4.9 Conclusion
This chapter endeavors to propose and conduct a mathematical analysis of a fractional-

order SEIQR epidemic model. The primary goal is to gain insights into the dynamics

of disease transmission during an outbreak by incorporating the impact of quarantined

individuals and delving into the psychological effects on susceptible individuals. The

model extends the conventional susceptible-exposed-infected-recovered (SEIR) com-

partmental epidemic model by introducing a distinct class of quarantined individuals.

The incidence rate of infection is modeled using the Monod-Haldane type, which cap-

tures the nonmonotonic effects associated with the psychological state of susceptibles

during an epidemic.

Moreover, the quarantine rate is characterized by the Holling type-III, providing a

nuanced understanding of the dynamics of isolating individuals. The choice of the Ca-

puto derivative for the population rate of each subpopulation is crucial, as it accounts

for fractional-order dynamics and incorporates memory effects. This is particularly

relevant in the context of emerging diseases, where initial responses draw upon knowl-

edge accumulated from past outbreaks. The Caputo derivative, being fractional-order,

acknowledges the inherent memory effects associated with the societal response to

novel diseases. Essentially, it recognizes that the control measures implemented at the

onset of an outbreak are influenced by the collective memory and experiences gained

from previous instances, a dimension not adequately captured by traditional integer-

order derivative-based epidemic models.

5

6

Page 150 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 150 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



4.9 Conclusion 115

The analysis of the proposed model demonstrates its well-posed nature, ensur-

ing that the solutions are non-negative and confined within a compact region. The

model reveals two equilibria: a disease-free state and an endemic state. Employing

the next-generation matrix method, the basic reproduction number R0 was computed,

and an alternative threshold, denoted as T0, was also determined. The outcomes, de-

tailed in Theorems 4.4.4 and 4.4.3, assert that EE achieves global asymptotic stability

when R0 > 1, while DFE attains global asymptotic stability when R0 < 1. Further-

more, sensitivity analysis of R0 shows that parameters β , µ and Λ are highly sensitive

parameters.

The numerical results presented in this study complement the analytical findings,

with Figures 4.3a, 4.3b, 4.4a, and 4.4b providing visual insights into the influence

of the fractional order ρ on the susceptible, exposed, infected, and quarantine sub-

populations, respectively. These graphical representations highlight a notable trend: as

the fractional order ρ approaches one, each sub-population exhibits a quicker conver-

gence to its steady state. The observation emerges that varying values of ρ do not im-

pact the stability nature of the equilibrium points but solely influence the time required

for each sub-population to reach its equilibrium state. These graphical depictions align

with the findings of Theorem 4.4.2, affirming the local asymptotic stability of the en-

demic equilibrium (EE) when R0 exceeds one. Additionally, the simulations reveal an

intriguing aspect: the initial population of infectives does not exert any influence on the

steady-state of the infected population, as illustrated in Figure 4.5a. Furthermore, the

numerical simulations underscore the effectiveness of timely quarantining of infected

individuals. This proactive measure not only significantly reduces new infection cases

but also contributes to an increase in the recovered population. The simulations thus

underscore the importance of strategic interventions, particularly in the form of timely

quarantine, in shaping the dynamics of disease spread and recovery. Analyzing the

graphs highlights that diligently monitoring psychological effects and implementing

timely measures to boost the rate of psychological effects can significantly decrease

new infections within society.

Furthermore, the model was modified into a corresponding optimal control prob-

lem through the implementation of an optimal control policy, where the response of

the susceptible population via information emerges as a powerful strategy in epidemic

modeling. Existence of such optimal control functions is also established. Analytical

characterization of optimal control paths has been performed with the help of Pontrya-

6
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gin’s Maximum Principle. Examining the population profiles in Figures 4.8a, 4.8b,

4.9a, 4.9b provides a comprehensive understanding of the impact of the implemented

control response on susceptible (S), exposed (E), infected (I), and quarantined (Q) indi-

viduals. Notably, the implementation of the control strategy demonstrates a significant

reduction in the count of infected individuals, accompanied by an increase in suscep-

tibles, highlighting the effectiveness of the control policy in curbing the spread of the

epidemic. The count of infective individuals and the duration of the disease preva-

lence is minimized by the optimal response via information. The control measures are

found economical for an early phase of the epidemic. It was found that the effect of

information on behavioral change plays an important role in reducing both the disease

burden and the economic load. Thus, the comprehensive use of control interventions is

found more effective and highly economical during epidemic outbreaks. Furthermore,

this chapter incorporates a saturation effect in the quarantine process, meaning that the

quarantine rate saturates as the number of infected individuals increases, with the help

of the non-monotonic simplified Monod-Haldane incidence rate. This mirrors the real-

world scenario where the transmission of infectious diseases tends to slow down as a

larger proportion of the population becomes infected. This is essential for modeling

scenarios where resources for transmission are limited.

In conclusion, this study introduces a fractional-order SEIQR epidemic model,

aiming to analyze disease transmission dynamics incorporating quarantined individ-

uals and the psychological effects on susceptibles. It extends the conventional SIR

model, introducing an exposed and quarantined class and utilizing a non-monotonic

Monod-Haldane incidence rate to capture psychological effects and nonlinear Holling

type III quarantine rate. The well-posed nature of our model is demonstrated, reveal-

ing equilibria and thresholds in the stability analysis. Numerical simulations show the

impact of fractional order on population dynamics and highlight the effectiveness of

timely quarantining and psychological interventions. An optimal control framework

is proposed, emphasizing the role of information in shaping susceptible population

responses. The unique contributions of our study lie in memory effects, timely quar-

antines, and psychological interventions for accurate disease prediction and epidemic

management.

The proposed SEIQR model is flexible and can be adapted to include other com-

partments or factors as needed. For example, it can be extended to include compart-

ments for vaccination, different stages of disease severity, or demographic characteris-

5
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tics of the population. If one can deal with the complexities then time delay can also

be incorporated to take the model one more step closer towards realism.
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Chapter 5

Mathematical Modeling and
Qualitative Analysis of a
Fractional-Order SPIR Epidemic
Model with Non-monotonic Incidences
and Optimal Control

Environmental pollution is a major global health concern and is linked to increased

mortality. Long-term exposure to polluted environments weakens the immune system,

making individuals more susceptible to infections. Therefore, this chapter proposes a

novel fractional SPIR (Susceptible, Pollution-affected or Stressed, Infected, Recovered)

compartmental model based on the Caputo fractional derivative. The model incorpo-

rates the effects of prenatal exposure on newborns with Monod-Haldane incidence

rate to capture psychological impacts during disease transmission. It also considers

how environmental stress increases the likelihood of infection (transition from P to I).

The existence, uniqueness, positivity, and boundedness of the system’s solutions are

established to ensure its well-posedness. Qualitative analysis reveals two equilibri-

a: disease-free and endemic, whose stability is assessed using the basic reproduction

number R0, derived via the next-generation matrix method. The disease-free equilib-

rium is locally and globally asymptotically stable when R0 < 1, while the endemic

equilibrium becomes locally and globally asymptotically stable for R0 > 1, under cer-

119
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tain conditions, as confirmed by the Routh-Hurwitz criterion and Lyapunov functions.

A forward transcritical bifurcation at R0 = 1 is also observed. Moreover, a frac-

tional optimal control problem is formulated using Pontryagin’s maximum principle,

involving two time-dependent non-pharmaceutical controls, v1(t) and v2(t). Finally,

numerical simulations are performed using the Adams-Bashforth-Moulton Predictor-

Corrector method in MATLAB to validate the analytical results. Findings indicate that

simultaneous implementation of both controls is more effective in flattening epidemic

curves in short time, offering valuable insights.

5.1 Introduction
The world has seen a noticeable increase in infectious diseases which continues to

pose a serious threat to public health, in past years, despite various advancements in

technology, medical science, surveillance, and control strategies [86; 137; 192]. The

burden of infectious diseases remains one of the major challenges in today’s time.

Recent decades have witnessed recurrent outbreaks and pandemics, including those

caused by respiratory pathogens such as influenza viruses, SARS, and more recently,

COVID-19 [134; 175].

The occurrence of infectious diseases often leads to substantial losses, both in hu-

man lives and economic resources. For instance, the 2002-03 SARS outbreak infected

over 8,000 individuals across 30 countries, resulting in 774 deaths and economically,

regions like Hong Kong and Singapore experienced GDP contractions of 4.75% and

1%, respectively [37]. The COVID-19 pandemic, which began in late 2019, had re-

sulted in over 20 million deaths worldwide. The global economy contracted by 3.2%

in 2020, with an estimated 8.5 trillion dollars output loss over two years [23; 181].

Researchers have made several attempts to develop mathematical models to deal with

such alarming situations.

Numerous mathematical models have been developed and studied to analyze the

effects of infectious disease so as to control and curb them. Controlling the outbreak

of infectious diseases has long relied on measures such as vaccination, awareness pro-

grams, medical treatments etc. [87; 88; 95; 162]. Despite ongoing efforts, infectious

diseases remain a serious burden on modern society [163]. Numerous studies have

been conducted to extensively examine how infectious diseases transmit within pop-

ulations, by dividing the total considered population into different compartments, in

33
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order to devise effective strategies to contain and mitigate them (see [28; 71; 105; 119]

and references within).

As a result, compartmental modeling frameworks have become fundamental tool-

s in epidemiological research, enabling researchers to capture the dynamics of disease

spread and evaluate the effectiveness of various control strategies. These models often

categorize a population into compartments such as Susceptible (S), Infected (I), and

Recovered (R) (SIR model), or with the addition of other compartments, such as Ex-

posed (E) compartment (SEIR model), Vaccinated (V ) compartment (SV IR model),

Quarantined (Q) compartment (SQIR model) or a combination of these, to capture the

flow of individuals through different disease states [8; 72; 92; 110; 111; 141; 184].

However, these conventional models often overlook the critical role of environ-

mental factors in shaping disease susceptibility and transmission. Notably, the esca-

lating levels of environmental pollution worldwide have emerged as a significant con-

cern for human health. Exposure to various pollutants can compromise the respiratory

system, weaken the immune response, and induce physiological stress in individuals

[65; 68]. This environmentally induced stress can render a larger proportion of the pop-

ulation more vulnerable to infectious agents, potentially altering the course and sever-

ity of epidemics. In 2003, Lafferty and Holt [102] modeled how environmental stress

affects the population dynamics of infectious diseases by influencing host susceptibil-

ity, parasite mortality, and host population parameters, thus proposing that stress can

both increase and decrease disease impact depending on specific interactions between

infected and uninfected hosts. Kumari and Sharma [101], in 2018, analyzed how pol-

lution increases susceptibility to infectious diseases, particularly among newborns, by

compromising immunity. Very recently, Anthony and Bhatia [13] introduced a nov-

el fuzzy epidemic model that incorporated the effects of environmental pollution and

viral-load uncertainty using fuzzy parameters showing that both these factors signif-

icantly increased the basic reproduction number, thereby highlighting the importance

of integrating pollution control with public health measures.

Our model introduces the compartment of pollution-affected or stressed popula-

tion, to explicitly represent the population segment that is physically stressed and ren-

dered more susceptible to infection due to environmental pollution. This compartment

also considers the long-term effects of prenatal exposure to pollution on the health of

newborns and infants. Recent studies indicate that maternal exposure to environmental

pollutants during pregnancy can lead to various complications, such as preterm birth,
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low birth weight, and developmental delays [41; 166]. Furthermore, studies such as

those by Picciotto et al. [75] and Sun et al. [170] have shown that prenatal exposure to

both persistent and non-persistent organic pollutants can negatively affect the develop-

ment of the immune system in infants. These findings suggest that prenatal pollution

exposure not only impacts newborns but also has the potential to affect infants’ overall

health and susceptibility to diseases. Thus, in the context of our model, the individu-

als in the pollution-affected compartment are those who, while not yet infected, have

a heightened risk of acquiring the infection and potentially experiencing more severe

disease progression due to the detrimental effects of pollution on their health status.

This allows us to explicitly quantify the impact of environmental pollution on the dy-

namics of infectious respiratory diseases.

Now, in an epidemic model, the progression of a disease is largely influenced by

its incidence rate [146]. Incidence rate is a measure used to describe how frequent-

ly new cases of a disease or condition occur in a specific population over a certain

period of time. Given the complexities involved in how diseases are transmitted, nu-

merous nonlinear incidence models have been introduced to more effectively reflect

the dynamics between susceptible and infected populations. This chapter considers a

non-monotonic incidence rate of the form βSI
1+γI2 , which captures realistic aspects of

disease transmission and reflects a wider range of dynamic behaviours [26; 36; 157].

The term 1
1+γI2 captures how susceptible individuals adjust their behavior due to fear

or caution when many people are infected. The β I component represents how strong-

ly the disease spreads, factoring in how behavioral changes can reduce contact. This

non-linear pattern of transmission is called the Monod-Haldane (M-H) incidence rate

[99]. The M-H incidence rate is considered more realistic than bilinear, saturated, or

fractional incidence rates as the infection rate initially increases with the increasing

number of infected individuals but eventually decreases when infections become very

high, thus depicting its ability to capture saturation, behaviour-driven epidemics and

realistic peak modeling.

The structure of the chapter is as follows: In Section 5.2, the mathematical model

is formulated along with underlying assumptions. Section 5.3 addresses the fundamen-

tal properties of the model, such as existence, uniqueness, positivity, and boundedness

of solutions. Section 5.4 focuses on the derivation of the basic reproduction number

and analysis of the equilibrium points. Stability of the equilibria, both local and glob-

al, is discussed in Section 5.5. The potential occurrence of bifurcation at the critical

1
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threshold R0 = 1 is investigated in Section 5.6. In Section 5.7, an analytical formula-

tion and solution of the corresponding fractional optimal control problem (FOCP) are

presented. Numerical simulations supporting the theoretical results are presented in

Section 5.8, followed by conclusions in Section 5.9.

5.2 Model development
In this section, inspired by relevant literature, a novel fractional-order nonlinear com-

partmental model is introduced using the Caputo derivative. The total human popu-

lation at any time t is denoted by N(t) and is subdivided into four mutually exclusive

compartments:

• S(t): Susceptible individuals not affected by environmental pollution,

• P(t): Individuals experiencing stress or physiological impact due to pollution,

• I(t): Infectious individuals capable of transmitting the disease,

• R(t): Individuals recovered either by treatment or autoimmune.

The development of the model relies on the following assumptions:

(A1) A fraction p of the recruitment rate Λ enters the susceptible class S, while the

remaining portion (1− p) enters the pollution-affected class P, accounting for

prenatal exposure to pollution.

(A2) The movement of individuals from the S and P compartments into the infected

class I is governed by non-monotone Monod-Haldane-type transmission term.

This formulation captures non-linear effects in transmission, particularly those

arising from psychological responses to increasing infection levels. The infec-

tion rate is given by β , and γ quantifies the psychological impact of the disease

on the population.

(A3) Due to increased vulnerability, pollution-affected individuals in the class P ex-

hibit a greater susceptibility to infection. This increased risk is modeled through

an enhanced transmission rate given by β (1+δβ ′), where β ′ quantifies the im-

pact of pollution on the baseline transmission rate β and δ scales the influence

of environmental pollution on the transmission rate.

7
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(A4) Individuals in the susceptible class may become pollution-affected over time,

transitioning to the P compartment at a rate λ .

(A5) All compartments are subject to natural mortality at a constant rate µ , while

infected individuals also experience disease-induced mortality at a rate d.

(A6) Infected individuals recover at a rate φ , either due to immune system response

or effective treatment.

(A7) Recovered individuals are assumed to gain lasting immunity and do not revert

to the susceptible class. The model also assumes homogeneous mixing, where

every individual has an equal chance of coming into contact with others.

Based on these assumptions, the proposed fractional-order epidemic model is

formulated as follows:

dαS(t)
dt

= pΛ− βSI
1+ γI2 −λS−µS,

dαP(t)
dt

= (1− p)Λ+λS− β (1+δβ ′)PI
1+ γI2 −µP,

dα I(t)
dt

=
βSI

1+ γI2 +
β (1+δβ ′)PI

1+ γI2 −dI−φ I−µI,

dαR(t)
dt

= φ I−µR,

(5.1)

with initial conditions S(0) = S0 ≥ 0, P(0) = P0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥
0 and t ∈ [0, t0], t0 ∈ R+. The schematic diagram of the disease progression dynamics

of model (5.1) is shown in Figure 5.1.
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Figure 5.1: Schematic diagram of disease progression dynamics.

5.3 Basic Properties
In this section, the existence and uniqueness of the solution are first shown, followed

by the determination of the region of attraction in which the solution remains positive

and bounded.

5.3.1 Existence and uniqueness

To verify the existence and uniqueness of solutions for system (5.1), Lemma

1.1.11 has been utilized. For this purpose, consider the domain [t0,Q]×Ω, where

Ω = {(S,P, I,R) ∈ R4 : max{|S|, |P|, |I|, |R|} ≤M}, and both Q > 0 and M > 0 are real

constants.

Theorem 5.3.1 A unique solution Γ(t) = (S(t),P(t), I(t),R(t))∈Ω to the system (5.1)

exists for every initial value Γt0 = (St0,Pt0, It0,Rt0) ∈Ω, for all t > t0.

25
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Proof 5.3.2 Consider any two points Γ = (S,P, I,R) and Γ1 = (S1,P1, I1,R1) and map-

ping H : Ω→ R4 in Ω by H(Γ) = (H1(Γ),H2(Γ),H3(Γ),H4(Γ)), where

H1(Γ) = pΛ− βSI
1+ γI2 − (µ +λ )S,

H2(Γ) = (1− p)Λ+λS− β (1+δβ ′)PI
1+ γI2 −µP,

H3(Γ) =
βSI

1+ γI2 +
β (1+δβ ′)PI

1+ γI2 − (µ +d +φ)I,

H4(Γ) = φ I−µR

For any Γ,Γ1 ∈Ω, we have

‖H(Γ)−H(Γ1)‖= |H1(Γ)−H1(Γ1)|+ |H2(Γ)−H2(Γ1)|+ |H3(Γ)−H3(Γ1)|+ |H4(Γ)−H4(Γ1)|

=

∣∣∣∣pΛ− βSI
1+ γI2 − (µ +λ )S− pΛ+

βS1I1

1+ γI1
2 +(µ +λ )S1

∣∣∣∣
+

∣∣∣∣(1− p)Λ+λS− β (1+δβ ′)PI
1+ γI2 −µP− (1− p)Λ−λS1 +

β (1+δβ ′)P1I1

1+ γI1
2 −µP1

∣∣∣∣
+

∣∣∣∣ βSI
1+ γI2 +

β (1+δβ ′)PI
1+ γI2 − (µ +d +φ)I− βS1I1

1+ γI1
2 −

β (1+δβ ′)P1I1

1+ γI1
2 +(µ +d +φ)I1

∣∣∣∣
+ |φ I−µR−φ I1 +µR1|

≤ 2β

∣∣∣∣ SI
1+ γI2 −

S1I1

1+ γI1
2

∣∣∣∣+2β (1+δβ
′)

∣∣∣∣ PI
1+ γI2 −

P1I1

1+ γI1
2

∣∣∣∣+(µ +2λ ) |S−S1|

+µ |P−P1|+(µ +d +2φ) |I− I1|+µ |R−R1|

≤ 2β

∣∣∣∣SI + γSII1
2−S1I1− γS1I1I2

(1+ γI2)(1+ γI1
2)

∣∣∣∣+2β (1+δβ
′)

∣∣∣∣PI + γPII1
2−P1I1− γP1I1I2

(1+ γI2)(1+ γI1
2)

∣∣∣∣
+(µ +2λ ) |S−S1|+µ |P−P1|+(µ +d +2φ) |I− I1|+µ |R−R1|

≤ 2βM(1+ γM2)|S−S1|+2βM(1+ γM2)|I− I1|+2β (1+δβ
′)M(1+ γM2)|P−P1|

+2β (1+δβ
′)M(1+ γM2)|I− I1|+(µ +2γ)|S−S1|+µ|P−P1|+(µ +d +2φ)|I− I1|

+µ|R−R1|

≤ K1|S−S1|+K2|P−P1|+K3|I− I1|+K4|R−R1|

≤ K |Γ−Γ1| ,

where K = max{K1,K2,K3,K4} and

K1 = 2βM(1+ γM2)+(µ +2λ ), K2 = 2βM(1+ γM2)(1+δβ
′)+µ,

K3 = 2βM(1+ γM2)(2+δβ
′)+(µ +d +2φ), K4 = µ.

So, H(Γ) satisfies the Lipschitz condition with respect to Γ ∈ Ω. According to Lemma

1.1.11, our system (5.1) has a unique solution Γ ∈Ω. This proves the theorem.

41
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5.4 Equilibria and the basic reproduction number 127

5.3.2 Non-negativity and boundedness

To ensure biological validity, the system (5.1) must possess solutions that remain

non-negative and bounded. Let us define

Ω
+ = {(S,P, I,R) ∈Ω : S,P, I,R ∈ [0,∞)}.

Theorem 5.3.3 For any initial condition within Ω+, the corresponding solution to

system (5.1) stays non-negative and uniformly bounded over time.

Proof 5.3.4 The system’s initial solution Γt0 = (St0 ,Pt0, It0 ,Rt0) ∈ Ω+ is considered,

and from system (5.1), it follows that:

DαS|St0=0 = pΛ > 0,

DαP|Pt0=0 = (1− p)Λ+λS > 0,

Dα I|It0=0 = 0,

DαR|Rt0=0 = φ I ≥ 0.

By Lemma 1.1.13, S(t),P(t), I(t),R(t)≥ 0 for all t ≥ t0. This implies that the solution

to system (5.1) will always lie within the set Ω+.

Since N(t) = S(t)+P(t)+ I(t)+R(t) is the function representing the total popu-

lation, then

DαN = DαS+DαP+Dα I +DαR

≤ Λ−µN−dI

i.e. DαN +µN ≤ Λ as I > 0.

We get N(t)≤
(

N(t0)− Λ

µ

)
Eα [−µ(t− t0)α ]+ Λ

µ
→ Λ

µ
as t→ ∞.

Consequently, for any solution of the system (5.1) that begins in Ω+, the trajec-

tory remains within the region defined by{
(S,P, I,R) ∈Ω : 0≤ S+P+ I +R≤ Λ

µ

}
.

5.4 Equilibria and the basic reproduction number
It is observed that the variable R(t) is not present in the first four equations. Therefore,

it can be excluded from the system (5.1) for further mathematical analysis. Conse-

1

1
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quently, the resulting system is:

dαS(t)
dt

= pΛ− βSI
1+ γI2 −λS−µS,

dαP(t)
dt

= (1− p)Λ+λS− β (1+δβ ′)PI
1+ γI2 −µP,

dα I(t)
dt

=
βSI

1+ γI2 +
β (1+δβ ′)PI

1+ γI2 −dI−φ I−µI

(5.2)

The above system (5.2) always possesses a disease free equilibrium point E0 =

E0(S0,P0, I0) = E0

(
pΛ

(µ+λ ) ,
(1−p)Λ
(µ+λ ) +

λΛ

µ(µ+λ ) ,0
)
. Now, the basic reproduction number

using next generation approach [47] is calculated as:

R0 =
βΛ [pµ +(λ +µ(1− p))(1+δβ ′)]

µ(µ +λ )(µ +d +φ)
.

Further, we will show there exists an endemic equilibrium point E1 =

E1(S∗,P∗, I∗), where

S∗=
Λp
(
γI2
∗ +1

)
(µ +λ )(γI2

∗ +1)+β I∗
, P∗=

Λ
(
γI2
∗ +1

)(
µ(1− p)

(
γI2
∗ +1

)
+(1− p)β I∗+λ

(
γI2
∗ +1

))
((µ +λ )(γI2

∗ +1)+β I∗)(µ (γI2
∗ +1)+β (1+δβ ′)I∗)

and I∗ is the root of following polynomial

A4I∗4 +A3I∗3 +A2I∗2 +A1I∗+A0 = 0, (5.3)

where,

A4 =−γ
2
µ(λ +µ)(d +µ +φ),

A3 =−βγ(d +µ +φ)
((

1+δβ
′)(λ +µ)+µ

)
,

A2 = β
(
1+δβ

′)(γλΛ−β (d +µ +φ)+ γΛµ(1− p))+ γµ(βΛp−2(λ +µ)(d +µ +φ)),

A1 = β
(
1+δβ

′)(βΛ− (λ +µ)(d +µ +φ))−β µ(d +µ +φ),

A0 = µ(µ +λ )(µ +d +φ)(R0−1).

From above, it can be observed that, A4, A3 < 0 and also A0 > 0 for R0 > 1. So,

according to Descarte’s rule of sign, the polynomial (5.3) will have at least one positive

root I∗ exist for R0 > 1. The current study focuses on the existence of a unique positive

equilibrium point. Consider R0 > 1, then the combinations of signs of coefficients A1

and A2 in which unique positive root for polynomial (5.3) exists are as follows:

(i) A2 > 0 and A1 > 0,

2

7
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(ii) A2 < 0 and A1 > 0,

(iii) A2 < 0 and A1 < 0.

Once the value of I∗ is determined, the unique positive endemic equilibrium point

E1 = E1(S∗,P∗, I∗) is obtained. As a consequence, the following theorem establishes

that this equilibrium exists.

Theorem 5.4.1 If R0 > 1, then the system (5.2) has a unique endemic equilibrium

E1 = E1(S∗,P∗, I∗).

5.5 Stability Analysis
Here, the local and global stability of the equilibria is examined. Local stabili-
ty assesses whether small disturbances near an equilibrium return to it (stable) or
move away (unstable). In contrast, global stability examines the system’s behav-
ior across the entire state space. Let us assume the subsequent coordinate transform
S(t) = S∗(t)+ s(t); P(t) = P∗(t)+ p(t); I(t) = I∗(t)+ i(t), where (S∗(t),P∗(t), I∗(t))
denotes the equilibrium point of the model. The linearised system at any steady state
is given by

0Dα
t S(t) =−

(
β I∗

1+ γI∗2 +(µ +λ )

)
S− βS∗(1− γI∗2)

(1+ γI∗2)2
I,

0Dα
t P(t) = (λ )S−

(
β (1+δβ ′)I∗

1+ γI∗2 +µ

)
P− β (1+δβ ′)P∗(1− γI∗2)

(1+ γI∗2)2
I,

0Dα
t I(t) =

(
β I∗

1+ γI∗2

)
S+
(

β (1+δβ ′)I∗
1+ γI∗2

)
P+

(
βS∗(1− γI∗2)

(1+ γI∗2)2
+

β (1+δβ ′)P∗(1− γI∗2)

(1+ γI∗2)2
− (µ +d +φ)

)
I.

(5.4)

2

3

25
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5.5.1 Local stability

Applying the Laplace transform on both side of equation (5.4), we get

sαL {S(t)}− sα−1S(0) =−
(

β I∗
1+ γI∗2

+(µ +λ )

)
L {S(t)}− βS∗(1− γI∗2)

(1+ γI∗2)2
L {I(t)},

sαL {P(t)}− sα−1P(0) = (λ )L {S(t)}−
(

β (1+δβ ′)I∗
1+ γI∗2

+µ

)
L {P(t)}

− β (1+δβ ′)P∗(1− γI∗2)
(1+ γI∗2)2

L {I(t)},

sαL {I(t)}− sα−1I(0) =
(

β I∗
1+ γI∗2

)
L {S(t)}+

(
β (1+δβ ′)I∗

1+ γI∗2

)
L {P(t)}

+

(
βS∗(1− γI∗2)
(1+ γI∗2)2

+
β (1+δβ ′)P∗(1− γI∗2)

(1+ γI∗2)2
− (µ +d +φ)

)
L {I(t)}.

(5.5)

Above system(5.5), can be written in the following matrix form:

5(s)


L {S(t)}
L {P(t)}
L {I(t)}

=


ν1(s)

ν2(s)

ν3(s)

 ,

where,

ν1(s) = sα−1S(0), ν2(s) = sα−1P(0), ν3(s) = sα−1I(0),

and

5(s)=



sα +
β I∗

1+ γI∗2
+(µ +λ ) 0

βS∗(1− γI∗2)
(1+ γI∗2)2

−λ sα + β (1+δβ ′)I∗
1+γI∗2 +µ

β (1+δβ ′)P∗(1− γI∗2)
(1+ γI∗2)2

− β I∗
1+γI∗2 −β (1+δβ ′)I∗

1+ γI∗2
sα − βS∗(1−γI∗2)

(1+γI∗2)
2

−β (1+δβ ′)P∗(1−γI∗2)

(1+γI∗2)
2 +(µ +d +φ)


.

(5.6)

For the given system, the characteristic polynomial is det(5(s)), and 5(s) represents

the associated characteristic matrix. The local stability of system (5.2) can be analyzed

by examining the eigenvalue distribution of the characteristic polynomial det(5(s)).

5.5.1.a Local stability of disease-free equilibrium

This subsection is devoted to analyze the local stability of the disease-free equilibrium

point E0 = E0

(
pΛ

(µ+λ ) ,
(1−p)Λ
(µ+λ ) +

λΛ

µ(µ+λ ) ,0
)
, for which the characteristic matrix at DFE

1

3

8

21
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is as follows:

5(s)=



sα +µ +λ 0
β pΛ

µ +λ

−λ sα +µ β (1+δβ
′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
0 0

sα − β pΛ

µ +λ
−β (1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
+(µ +d +φ)


.

(5.7)

So, the characteristic equation is,

det(5(s))= (sα +µ)(sα +µ +λ )

(
sα +µ +d +φ − βΛp

λ +µ
−β

(
1+δβ

′)( λΛ

µ(λ +µ)
+

Λ(1− p)
λ +µ

))
= 0.

Let sα = ω , then the characteristic equation can be expressed as:

(ω +µ)(ω +µ +λ )

(
ω +

µ(µ +λ )(µ +d +φ)−β µ pΛ−β (1+δβ ′)µ(1− p)Λ−β (1+δβ ′)λΛ

µ(µ +λ )

)
= 0.

(5.8)

Since stability is determined by the negative eigenvalues of the characteristic equation,

two negative eigenvalues are obtained from equation (5.8): ω1 =−µ and ω2 =−(µ +

λ ). The remaining eigenvalues can be analyzed using the following factor of equation

(5.8):(
ω +

µ(µ +λ )(µ +d +φ)−β µ pΛ−β (1+δβ ′)µ(1− p)Λ−β (1+δβ ′)λΛ

µ(µ +λ )

)
= 0,

which is simplified as,

ω +
µ(µ +λ )(µ +d +φ)−βΛ [pµ +(λ +µ(1− p))(1+δβ ′)]

µ(µ +λ )
= 0,

ω +(µ +d +φ)(1−R0) = 0.

Therefore, the third eigen value is ω3 =−(µ+d+φ)(1−R0). The sign of ω3 depends

on R0. When R0 is less than one, ω3 has negative sign and consequently, all the

eigenvalues have negative sign.

Therefore, the disease-free equilibrium E0 of system (5.2) exhibits local asymp-

totic stability when R0 < 1, and instability when R0 > 1. This leads to the following

theorem.

Theorem 5.5.1 The equilibrium point E0 corresponding to the disease-free state is

locally asymptotically stable if and only if the threshold value R0 is less than one,

otherwise unstable.

The local stability behavior of E0 at R0 = 1 and the possibility of bifurcation are

explored in Section 5.6.

7

12

26

31
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5.5.1.b Local stability of endemic equilibrium

This subsection discusses the local stability of the endemic equilibrium E1 =

E1(S∗,P∗, I∗), for which the characteristic matrix 5(s) from equation (5.6) at E1, is

given by:

5(s)=



sα +
β I∗

1+ γI∗2
+(µ +λ ) 0

βS∗(1− γI∗2)
(1+ γI∗2)2

−λ sα + β (1+δβ ′)I∗
1+γI∗2 +µ

β (1+δβ ′)P∗(1− γI∗2)
(1+ γI∗2)2

− β I∗
1+γI∗2 −β (1+δβ ′)I∗

1+ γI∗2
sα − βS∗(1−γI∗2)

(1+γI∗2)
2

−β (1+δβ ′)P∗(1−γI∗2)

(1+γI∗2)
2 +(µ +d +φ)


.

(5.9)

Let sα = ψ, then the characteristic equation corresponding to characteristic matrix

(5.9) is:

det(5(s))=

(
I∗2γ(λ +µ +ψ)+ I∗β +λ +µ +ψ

)(
I∗4γ

2(µ +ψ)(d +µ +ψ +φ)

+ I∗3βγ(d +µ +ψ +φ)+ I∗2γ(µ +ψ)(2d +2µ +βP∗+βS∗+2ψ +2φ)

+ I∗β (d +µ +ψ +φ)+(µ +ψ)(d +µ−βP∗−βS∗+ψ +φ)
)

+ββ
′
δ
(
I∗5γ

2(λ +µ +ψ)(d +µ +ψ +φ)+ I∗4γ(β (µ +ψ +φ)

+βd + γP∗(µ +ψ)(λ +µ +ψ))+ I∗3γ
(
2d(λ +µ +ψ)+2λ µ

+2λψ +2λφ +2µ
2 +4µψ +2µφ +βP∗(µ +ψ)+β µS∗+βS∗ψ

+2ψ
2 +2ψφ

)
+ I∗2β (d +µ +ψ +φ)+ I∗

(
d(λ +µ +ψ)+λ µ

+λψ +λφ +µ
2 +2µψ +µφ −βP∗(µ +ψ)−β µS∗−βS∗ψ +ψ

2 +ψφ
)

−P∗(µ +ψ)(λ +µ +ψ)
) (

I∗2γ +1
)3 = 0

1
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This can be rewritten as,

det(5(s))=

(
I∗2γ(λ +µ +ψ)+ I∗β +λ +µ +ψ

)(
I∗4γ

2(µ +ψ)(d +µ +ψ +φ)

+ I∗3βγ(d +µ +ψ +φ)+ I∗2γ(µ +ψ)(2d +2µ +βP∗+βS∗+2ψ +2φ)

+ I∗β (d +µ +ψ +φ)+(µ +ψ)(d +µ−βP∗−βS∗+ψ +φ)
)

+ββ
′
δ
(
I∗5γ

2(λ +µ +ψ)(d +µ +ψ +φ)+ I∗4γ(β (µ +ψ +φ)

+βd + γP∗(µ +ψ)(λ +µ +ψ))+ I∗3γ
(
2d(λ +µ +ψ)+2λ µ

+2λψ +2λφ +2µ
2 +4µψ +2µφ +βP∗(µ +ψ)+β µS∗+βS∗ψ

+2ψ
2 +2ψφ

)
+ I∗2β (d +µ +ψ +φ)+ I∗

(
d(λ +µ +ψ)+λ µ

+λψ +λφ +µ
2 +2µψ +µφ −βP∗(µ +ψ)−β µS∗−βS∗ψ +ψ

2 +ψφ
)

−P∗(µ +ψ)(λ +µ +ψ)
)



= 0

which can be simplified into the following polynomial form:

A3ψ
3 +A2ψ

2 +A1ψ +A0 = 0, (5.10)

where,

A3 =
(
1+ γI∗2

)3
,

A2 =
(
I∗2γ +1

)(
I∗4γ

2
µ + I∗4γ

2(d +µ +φ)+ I∗3βγ +
(
I∗2γ +1

)2
(λ +µ)

+2I∗2γµ +2I∗2γ(d +µ +φ)+ I∗2βγS∗+β
(
1+δβ

′)(I∗3γ + I∗2γP∗+ I∗−P∗
)

+ I∗β +d +2µ−βS∗+φ
)
,

A1 =
(
I∗2γ +1

)((
I∗2γ +1

)
(d +µ +φ)

(
I∗2γµ + I∗β +µ

)
+(λ +µ)

(
µ
(
I∗2γ +1

)2

+
(
I∗2γ +1

)2
(d +µ +φ)+βS∗

(
I∗2γ−1

))
+β µ

(
I∗3γ + I∗2γS∗+ I∗−S∗

))
+β

(
1+δβ

′)(I∗4βγ + I∗4γ
2
µP∗+ I∗3βγP∗+ I∗3βγS∗+ I∗2β

+ I∗
(
I∗2γ +1

)2
(d +µ +φ)+

(
I∗2γ +1

)
(λ +µ)

(
I∗3γ + I∗2γP∗+ I∗−P∗

)
− I∗βP∗− I∗βS∗−µP∗

)
,

A0 = µ
(
I∗2γ +1

)(
I∗β
(
I∗2γ +1

)
(d +µ +φ)+(λ +µ)

((
I∗2γ +1

)2
(d +µ +φ)

+βS∗
(
I∗2γ−1

)))
+β

(
1+δβ

′)((λ +µ)
(
I∗
(
I∗2γ +1

)2
(d +µ +φ)

+
(
I∗2γ−1

)(
I∗2γµP∗+ I∗βS∗+µP∗

))
+ I∗β

((
I∗3γ + I∗

)
(d +µ +φ)

−
(
I∗2γ−1

)
(λS∗−µP∗)

))
Considering B0 =

A0

A3
, B1 =

A1

A3
, and B2 =

A2

A3
, equation (5.10) transforms into

P(ψ) = ψ
3 +B2ψ

2 +B1ψ +B0. (5.11)

Page 169 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 169 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



134
Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR

Epidemic Model with Non-monotonic Incidences and Optimal Control

According to the Routh-Hurwitz criteria for fractional-order systems [4], the root-

s of this polynomial satisfying |argψi| > απ

2 , i = 1,2,3 indicate local stability. For

the polynomial P(ψ), the discriminant D(ψ) is given by

D(ψ) = 18B2B1B0 +(B2B1)
2−4B0B2

3−4B1
3−27B0

2.

If all three roots of P(ψ) = 0 have negative real parts, then the equilibrium point

E1(S∗,P∗, I∗) is locally stable, as stated in the following theorem [4]:

Theorem 5.5.2 The endemic equilibrium E1 = E1(S∗,P∗, I∗) is locally asymptotically

stable if any of the following conditions hold:

(i) B2 > 0, B0 > 0, B2B1 > B0 when D(ψ)> 0,

(ii) If D(ψ)< 0, B2 ≥ 0, B1 ≥ 0, B0 > 0, α < 2
3 ,

(iii) If D(ψ)< 0, B2 > 0, B1 > 0, B2B1 = B0, α ∈ (0,1].

Otherwise, the endemic equilibrium E1 =E1(S∗,P∗, I∗) is unstable if the condition

D(ψ) < 0, B2 < 0, B1 < 0, α > 2
3 holds, as in this case, all roots satisfy |arg(ψi)| <

απ

2 .

5.5.2 Global stability

This subsection investigates the global stability of the disease-free equilibrium

E0 and the endemic equilibrium E1 using the Lyapunov stability method for fractional-

order systems.

5.5.2.a Global stability of disease-free equilibrium

The suitable positive definite Lyapunov function, to discuss the global stability of dis-

ease free equilibrium E0, is constructed as:

L (t) = I(t),

3

10

18

48
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then for order α, differentiating both side along-with E0 we have,

Dα
t L = Dα

t I(t)

=

[
βSI

1+ γI2 +
β (1+δβ ′)PI

1+ γI2 − (µ +d +φ)I
]

≤
[
βS+β (1+δβ

′)P− (µ +d +φ)
]

I(t)

≤
[

β pΛ

µ +λ
+β (1+δβ

′)

(
(1− p)Λ

µ +λ
+

λΛ

µ(µ +λ )

)
− (µ +d +φ)

]
I(t)

≤
[

βΛ [pµ +(µ(1− p)+λ )(1+δβ ′)]

µ(µ +λ )
− (µ +d +φ)

]
I(t)

≤ (µ +d +φ)(R0−1)I(t)

≤ 0 if R0 < 1.

It is evident that Dα
t L (t) is negative when R0 < 1 and equals zero at E0. Thus, by the

Lyapunov stability theorem [44], E0 is globally asymptotically stable when R0 < 1,

leading to the following theorem:

Theorem 5.5.3 The DFE point E0 of the system (5.2) is GAS (Globally asymptotically

Stable) if the basic reproduction number R0 is strictly less than unity i.e. R0 < 1.

5.5.2.b Global stability of endemic equilibrium

To discuss the global stability of endemic equilibrium point E1, we have constructed

the following positive definite Lyapunov function:

L (t) =
(

S−S∗−S∗ log
S
S∗

)
+

(
P−P∗−P∗ log

P
P∗

)
+

(
I− I∗− I∗ log

I
I∗

)
,

the fractional derivative of both side of order α along-with the endemic equilibrium

point E1 and with help of Lemma 1.1.9 is:

Dα
t L (t)≤

(
1− S∗

S

)
Dα

t S(t)+
(

1− P∗
P

)
Dα

t P(t)+
(

1− I∗
I

)
Dα

t I(t)

≤
(

1− S∗
S

)(
pΛ− βSI

1+ γI2 − (µ +λ )S
)

+

(
1− P∗

P

)(
(1− p)Λ+λS− β (1+δβ ′)PI

1+ γI2 −µP
)

+

(
1− I∗

I

)(
βSI

1+ γI2 +
β (1+δβ ′)PI

1+ γI2 − (µ +d +φ)I
)
.

Let f (I) = I
1+γI2 , then from the steady state equation, we also have,

pΛ = βS∗ f (I∗)+(µ +λ )S∗, (1− p)Λ =−λS∗+β (1+δβ
′)P∗ f (I∗)+µP∗,

14

14

45
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(µ +d +φ) =
βS∗ f (I∗)

I∗
+

β (1+δβ ′)P∗ f (I∗)
I∗

.

Thus,

Dα
t L (t)≤

(
1− S∗

S

)
(βS∗ f (I∗)+(µ +λ )S∗−βS f (I)− (µ +λ )S)

+

(
1− P∗

P

)(
−λS∗+β (1+δβ

′)P∗ f (I∗)+µP∗+λS−β (1+δβ
′)P f (I)−µP

)
+

(
1− I∗

I

)(
βS f (I)+β (1+δβ

′)P f (I)− βS∗ f (I∗)I
I∗

− β (1+δβ ′)P∗ f (I∗)I
I∗

)
≤ (µ +λ )S∗

(
2− S∗

S
− S

S∗

)
+µP∗

(
2− P∗

P
− P

P∗

)
+βS∗ f (I∗)

(
1− S∗

S
− S

S∗

f (I)
f (I∗)

+
f (I)
f (I∗)

)
+βS f (I)

(
1− I∗

I
− S∗

S
I
I∗

f (I∗)
f (I)

+
S∗
S

f (I∗)
f (I)

)
+β (1+δβ

′)P∗ f (I∗)
(

1− P∗
P
− P

P∗

f (I)
f (I∗)

+
f (I)
f (I∗)

)
+β (1+δβ

′)P f (I)
(

1− I∗
I
− P∗

P
I
I∗

f (I∗)
f (I)

+
P∗
P

f (I∗)
f (I)

)
+λS

(
1− P∗

P
− S∗

S
+

S∗
S

P∗
P

)
.

Since, a+b
2 ≥

√
ab for any a and b. This relation suggests that,(

2− S∗
S
− S

S∗

)
≤ 0, and

(
2− P∗

P
− P

P∗

)
≤ 0

and if (
1− S∗

S
− S

S∗

f (I)
f (I∗)

+
f (I)
f (I∗)

)
≤ 0,(

1− I∗
I
− S∗

S
I
I∗

f (I∗)
f (I)

+
S∗
S

f (I∗)
f (I)

)
≤ 0,(

1− P∗
P
− P

P∗

f (I)
f (I∗)

+
f (I)
f (I∗)

)
≤ 0,(

1− I∗
I
− P∗

P
I
I∗

f (I∗)
f (I)

+
P∗
P

f (I∗)
f (I)

)
≤ 0,(

1− P∗
P
− S∗

S
+

S∗
S

P∗
P

)
≤ 0,



(5.12)

then, Dα
t L (t) ≤ 0. Therefore, by the Lyapunov stability theorem [44], the endemic

equilibrium E1(S∗,P∗, I∗) is globally asymptotically stable when R0 > 1. Thus, we

have the following theorem.

2

20

20

20

20
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Theorem 5.5.4 The endemic equilibrium E1(S∗,P∗, I∗) is globally asymptotically sta-

ble, for all α ∈ (0,1], when R0 > 1.

5.6 Bifurcation analysis at R0 = 1 around E0

This section analyzes system (5.2) in the context of a non-hyperbolic equilibrium,

where the linearized matrix has at least one eigenvalue with a real part equal to ze-

ro. This analysis is crucial as it provides valuable insights into the stability of the

coexistence equilibrium near the critical point E0 and the threshold R0 = 1. This in-

vestigation determines the bifurcation direction and describes the local behavior of E0

at R0 = 1. To evaluate the local stability of E0 near this threshold, bifurcation theory

is applied as described in [35], which is based on the center manifold theory [34]. This

approach is used to study system (5.2) with the assumption that (S,P, I) = (x1,x2,x3),

as follows:

dαS(t)
dt

= pΛ− βx1x3

1+ γx32 − (λ +µ)x1 = f1,

dαP(t)
dt

= (1− p)Λ+λx1−
β (1+δβ ′)x2x3

1+ γx32 −µx2 = f2,

dα I(t)
dt

=
βx1x3

1+ γx32 +
β (1+δβ ′)x2x3

1+ γx32 − (µ +d +φ)x3 = f3

(5.13)

Recall that R0 =
βΛ [pµ +(λ +µ(1− p))(1+δβ ′)]

µ(µ +λ )(µ +d +φ)
and select β as a bifurcation

parameter for R0 = 1 which takes the following form:

β = β
∗ =

µ(µ +λ )(µ +d +φ)

Λ [pµ +(λ +µ(1− p))(1+δβ ′)]
.

Further, the jacobian matrix of the system (5.2) at E0

J[E0] =


µ +λ 0

β pΛ

µ +λ

−λ µ β (1+δβ
′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
0 0 (µ +d +φ)(1−R0)

 ,

and at the chosen bifurcation parameter β = β ∗ it is given by J[E0,β ∗] as:

J[E0,β ∗] =


µ +λ 0

β ∗pΛ

µ +λ

−λ µ β
∗(1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
0 0 0

 . (5.14)

2

9

12

18

Page 173 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 173 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



138
Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR

Epidemic Model with Non-monotonic Incidences and Optimal Control

The eigenvalues of matrix (5.14) are obtained as ω1 = −(µ +λ ), ω2 = −µ, ω3 = 0.

It is clear that two eigen values are with negative real part an the remaining one is

0, and hence for R0 = 1 the disease free equilibrium E0 becomes a non-hyperbolic

equilibrium.

Now, consider w = (w1,w2,w3) as the right eigen vector corresponding to third

eigen value 0. Then, it can be computed as follow:
µ +λ 0

β ∗pΛ

µ +λ

−λ µ β
∗(1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
0 0 0




w1

w2

w3

=


0

0

0

 ,

which is,

(µ +λ )w1 +

(
β ∗pΛ

µ +λ

)
w3 = 0,

−λw1 +µw2 +

[
β
∗(1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)]
w3 = 0.

Since, w3 is free variable, so considering w3 = 1 and solving above equations, we get

{w1,w2,w3}=
{
− β ∗Λp
(µ +λ )2 ,−

β ∗Λ(1+δβ ′)(µ +λ ) [λ +µ(1− p)]+µ pλβ ∗Λ

µ2(µ +λ )2 ,1
}

In a similar way, consider u = (u1,u2,u3) as the left eigen vector corresponding to 0

eigen value and computed as:

(
u1 u2 u3

)


µ +λ 0
β ∗pΛ

µ +λ

−λ µ β
∗(1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)
0 0 0

=


0

0

0

 ,

which is

(µ +λ )u1−λu2 = 0,

µu2 = 0,(
β ∗pΛ

µ +λ

)
u1 +

[
β
∗(1+δβ

′)

(
(1− p)Λ
(µ +λ )

+
λΛ

µ(µ +λ )

)]
u2 = 0.

In this case also u3 is treated as a free variable and is assumed to equal 1. By solving

the above equations, we get

{u1,u2,u3}= {0,0,1} .

9
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Now, by using Theorem 4.1 given in [35] the coefficients A and B can be com-

puted as

A =
3

∑
k,i, j=1

ukwiw j

(
∂ 2 fk

∂xi∂x j

)
[E0,β ∗]

and B =
3

∑
k,i=1

ukwi

(
∂ 2 fk

∂xi∂β ∗

)
[E0,β ∗]

The non-zero partial derivatives of f ′ks at E0 and β = β ∗ are evaluated as follows:

∂ 2 f1

∂x1∂x3
=−β

∗ =
∂ 2 f1

∂x3∂x1
,

∂ 2 f2

∂x2∂x3
=−β

∗(1+δβ
′) =

∂ 2 f2

∂x3∂x2
,

∂ 2 f3

∂x1∂x3
= β

∗ =
∂ 2 f3

∂x3∂x1
,

∂ 2 f3

∂x2∂x3
= β

∗(1+δβ
′) =

∂ 2 f3

∂x3∂x2
,

∂ 2 f1

∂x3∂β ∗
=− pΛ

µ +λ
,

∂ 2 f2

∂x3∂β ∗
=−Λ(1+δβ ′)(λ +µ(1− p))

µ(µ +λ )
,

∂ 2 f3

∂x3∂β ∗
=

Λ [µ p+(1+δβ ′)(λ +µ(1− p))]
µ(µ +λ )

.

The expression A and B are simplified as

A = 2w1w3

[
u1

∂ 2 f1

∂x1∂x3
+u3

∂ 2 f3

∂x1∂x3

]
+2w3w2

[
u2

∂ 2 f2

∂x3∂x2
+u3

∂ 2 f3

∂x3∂x2

]
=− 2Λβ ∗2

µ2(µ +λ )

[
µδβ

′(1− p)+λδβ
′+(µ +λ )

]
< 0,

and

B = u3w3
∂ 2 f3

∂x3∂β ∗

=
Λ [µ p+(1+δβ ′)(λ +µ(1− p))]

µ(µ +λ )
> 0.

As, all the parameters in the coefficient of bifurcation A and B are positive and

the sign of A is ‘-’ve and B is ‘+’ve, which results in the forward transcritical bifur-

cation at disease free equilibrium E0, based on Theorem 4.1 of [35]. To support this

numerically, a graphical illustration is presented in Figure 5.2, based on the parame-

ter values provided in Table 5.1. The figure further demonstrates that the disease-free

equilibrium remains stable when R0 < 1. However, as R0 exceeds unity, the system

admits a stable and unique endemic equilibrium.

1

7
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Figure 5.2: Transcritical forward bifurcation.

5.7 Optimal Control Formulations
In this section, the mathematical model (5.1) is extended to a fractional optimal con-

trol framework by introducing two time-dependent control variables, v1(t) and v2(t),

which represent the influence of information-based (non-pharmaceutical) intervention-

s. These interventions include strategies such as public health campaigns, awareness

initiatives, social distancing mandates, and behavioral modifications guided by real-

time information on disease prevalence. These control strategies play a crucial role in

mitigating the spread of infectious diseases, especially when pharmaceutical measures

(such as vaccines or antivirals) are either limited or unavailable.

In this formulation of the optimal control problem, fractional differential equa-

tions are employed, providing a more accurate description of system dynamics than

traditional integer-order models [164]. The primary objective is to analyze the effect

of these control strategies on the progression of disease and optimize the related im-

plementation costs.

It is assumed that the transmission rate among both the susceptible and pollution

affected populations is reduced by the factors (1− v1(t)) and (1− v2(t)), respectively,

due to the control measures taken. Here, vi(t); i = 1,2; represents the intensity of

response to information, where 0 ≤ vi(t) ≤ 1. A value of 0 indicates no response,

while a value of 1 signifies a full behavioral response from informed individuals.

The application of such controls incurs a cost, modeled as a nonlinear function of

vi(t); i = 1,2; to encourage individuals to alter their behavior in response to informa-
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tion. The set of admissible control functions vi(t) is given by:

V = {vi(t); i = 1,2; | vi is Lebesgue measurable for t ∈ [0,T ], 0≤ vi(t)≤ 1},

where T refers to the final time of control application and each vi(t) is a bounded and

measurable.

The introduction of control variables vi(t) is aimed at minimizing both the pro-

portion of the infected population and the corresponding implementation costs of im-

plementing the control measures, which is given by:

J [v] =
∫ T

0

(
g1I +

1
2

z1v1
2 +

1
2

z2v2
2
)

dt, (5.15)

subject to model system

dαS(t)
dt

= pΛ− (1− v1(t))
βSI

1+ γI2 −λS−µS,

dαP(t)
dt

= (1− p)Λ+λS− (1− v2(t))
β (1+δβ ′)PI

1+ γI2 −µP,

dα I(t)
dt

= (1− v1(t))
βSI

1+ γI2 +(1− v2(t))
β (1+δβ ′)PI

1+ γI2 −dI−φ I−µI,

dαR(t)
dt

= φ I−µR,

(5.16)

with S(0)≥ 0, P(0)≥ 0, I(0)≥ 0 and R(0)≥ 0. Here, the function J represents the

overall cost, while the expression L(I,v1(t),v2(t)) = g1I+ 1
2z1v1

2+ 1
2z2v2

2 denotes the

instantaneous cost at any given time t. The parameter g1 is positive weight constants

used to balance the units within the cost expression. The control effort is represented

by the quadratic term vi
2. For convenience, we use vi(t) = vi.

Pontryagin’s Maximum Principle [105] is applied to demonstrate the existence

and characterization of optimal control functions that minimize the cost functional

over a finite time. Following the methodologies presented in the literature [17; 74], the

necessary and sufficient conditions for optimality are stated and proved.

Theorem 5.7.1 There exists a control pair (v̄1, v̄2) ∈V that satisfies the system (5.16)

if the following conditions hold:

1. For (v̄1, v̄2) ∈V, the solution set of the system (5.16) is non-empty.

2. The state system (5.16) can be expressed as a linear function of the control vari-

ables, with coefficients that depend on time and state variables. Moreover, the

admissible control set V is closed and convex.
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3. The integrand L = g1I + 1
2z1v1

2 ++1
2z2v2

2 is convex in v and L ≥ φ(v1,v2),

where φ is continuous function such that φ(v1,v2)
|(v1,v2)| → ∞ as |(v1,v2)| → ∞.

Proof 5.7.2 The solutions of system (5.16) are positively invariant and remain bound-

ed within the region Ω. Furthermore, the right-hand side of each equation in the model

satisfies the Lipschitz condition with respect to the state variables, as demonstrated in

the theorems presented in Section 5.3. Consequently, the first condition is satisfied by

invoking the Picard-Lindelof theorem [103].

The admissible control set V is, by definition, closed and convex. Moreover, the

system (5.16) is linear in control variables, thus satisfying the second condition. Addi-

tionally, the integrand L = g1I+ 1
2z1v1

2++1
2z2v2

2 is convex due to its quadratic form,

which follows directly from the definition of convexity [122]. Let Z = min(z1,z2) > 0

and define φ(v1,v2) = Z(v1
2 + v2

2). Then L ≥ φ(v1,v2), and clearly, φ is continuous

and satisfies φ(v1,v2)
|(v1,v2)| → ∞ as |(v1,v2)| → ∞. Therefore, the last condition is also satis-

fied. This completes the proof.

To obtain the optimal control solution, we need to define Lagrangian function

L = g1I +
1
2

z1v1
2 ++

1
2

z2v2
2,

and Hamiltonian function

H(S,P, I,R,v1,v2,λi) = L+λ1
dαS(t)

dt
+λ2

dαP(t)
dt

+λ3
dα I(t)

dt
+λ4

dαR(t)
dt

= g1I +
1
2

z1v1
2 +

1
2

z2v2
2

+λ1

(
pΛ− (1− v1(t))

βSI
1+ γI2 − (λ +µ)S

)
+λ2

(
(1− p)Λ+λS− (1− v2(t))

β (1+δβ ′)PI
1+ γI2 −µP

)
+λ3

(
(1− v1(t))

βSI
1+ γI2 +(1− v2(t))

β (1+δβ ′)PI
1+ γI2 − (µ +d +φ)I

)
+λ4 (φ I−µR) .

Here, λi = (λ1,λ2,λ3,λ4) is referred to as the adjoint variable that satisfies the

following canonical equations:
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Dα
λ1(t) =−

∂H
∂S

=

(
(1− v̄1)

β Ī
1+ γ Ī2 +(µ +λ )

)
λ1− (λ )λ2−

(
(1− v̄1)

β Ī
1+ γ Ī2

)
λ3,

Dα
λ2(t) =−

∂H
∂P

=

(
(1− v̄2)

β (1+δβ ′)Ī
1+ γ Ī2 +µ

)
λ2−

(
(1− v̄2)

β (1+δβ ′)Ī
1+ γ Ī2

)
λ3,

Dα
λ3(t) =−

∂H
∂ I

=−g1 +

(
(1− v̄1)

β S̄(1− γ Ī2)

(1+ γ Ī2)2

)
λ1

+

(
(1− v̄2)

β (1+δβ ′)P̄(1− γ Ī2)

(1+ γ Ī2)2

)
λ2

−
(
(1− v̄1)

β S̄(1− γ Ī2)

(1+ γ Ī2)2 +(1− v̄2)
β (1+δβ ′)P̄(1− γ Ī2)

(1+ γ Ī2)2

− (µ +d +φ)

)
λ3− (φ)λ4,

Dα
λ4(t) =−

∂H
∂R

= (µ)λ4, (5.17)

with transversality conditions

λ1(T ) = 0,λ2(T ) = 0,λ3(T ) = 0,λ4(T ) = 0. (5.18)

Theorem 5.7.3 In the control system (5.15)-(5.16), let v̄i be the optimal control vari-

ables and S̄, P̄, Ī, and R̄ the corresponding optimal state variables. Then, there ex-

ists λ1,λ2,λ3 and λ4 satisfying the adjoint system (5.17) and transversality conditions

(5.18), then the doublet of optimal controls can be characterized as follows:

v̄1 = min
{

max
{

0,
(λ3−λ1)β S̄Ī
z1(1+ γ Ī2)

}
,1
}
,

v̄2 = min
{

max
{

0,
(λ3−λ2)β (1+δβ ′)P̄Ī

z2(1+ γ Ī2)

}
,1
}
. (5.19)

Proof 5.7.4 As per the approach followed in [105], the optimal doublet (v̄1, v̄2), giv-

en in (5.19) is obtained by using the Potryagin’s maximum principle and optimality

conditions,
∂H
∂v1

= 0 and
∂H
∂v2

= 0.
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5.8 Simulation and Discussion
In this section, computations are performed to support the analytical findings us-

ing MATLAB 2012b and the Adams-Bashforth-Moulton predictor-corrector approach

[52]. Using real-world data can be tricky because things like prices and technology

changes can affect the results [125; 164]. But using example data makes it easier to

see how different groups in the model interact over time. Therefore, a qualitative anal-

ysis is conducted to better understand how the disease spreads and to identify aspects

of the model that may require improvement.

Table 5.1: Parameters of the model SPIR and their numerical values for simulation.

Parameters Description Values

Λ Growth rate 7

p Fraction of growth rate into S class 0.6

β Transmission rate from S to I 0.003

γ Psychological saturation constant 0.02

λ Rate at which susceptible becomes stressed 0.004

µ Natural death rate 0.055

β ′ Pollution related influence on transmission rate β 0.2

d Disease induced death rate 0.07

φ Recovery rate of infected population 0.09

δ Scaling parameter 0.3

The initial sub-populations for the simulation purpose have been taken as S(0) =

75, P(0) = 40, I(0) = 5, R(0) = 5 and utilized the numerical experimental data given

in the Table 5.1. First, simulations of the model are performed without control and

then with optimal control in the following subsections.

5.8.1 Simulation without control strategy

In this subsection, we will first validate the theoretical results regarding existence

and stability of the equilibria and thereafter perform some computations to observe the

effect of memory α .

For, the parameter values given in the Table 5.1, the coefficients of the equa-

tion (5.3) comes out to be as A4 = −2.7907× 10−7,A3 = −1.5163× 10−6,A2 =
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−4.5229×10−6,A1 =−9.0333×10−6,A0 = 5.7408×10−4. These coefficient values

satisfy Theorem 5.4.1 and the possibility of the existence of unique positive equilibri-

um. Thus, the endemic equilibrium is E1(S∗,P∗, I∗) = (60.7791,46.3121,5.1627) for

which the basic reproduction number R0 is 1.8229.

The values of coefficients of equation (5.10) are calculated as A3 = 3.60318, A2 =

1.02449, A1 = 0.0914362, A0 = 0.00261647. The eigen values corresponding the

equation (5.10) are the root of the equation (5.11) i.e. of the equation ψ3 +

0.284328 ψ2 + 0.0253766 ψ + 0.000726155 which are ψ1 = −0.140491, ψ2 =

−0.0738135, ψ3 = −0.0700235. The discriminant of polynomial term of the equa-

tion (5.11) is calculated as D(ψ) = 3.17136× 10−10. The values of the coefficients

of equation (5.11) are B0 = 0.000726155,B1 = 0.0253766,B2 = 0.284328 and these

also satisfy the condition B2B1 > B0, so together with the discriminant D(λ ), these are

satisfying the first condition of the Theorem 5.5.2, and hence endemic equilibrium is

locally asymptotically stable.

To demonstrate how memory affects the dynamics of SPIR model (5.1), Fig-

ures 5.3, 5.4, 5.5 and 5.6 are plotted with the help of initial conditions of populations

which depict the impact of various fractional order (α = 0.8,0.85,0.9,1.0) on the

sub-populations. By varying the fractional-order values, different scenarios can be

observed.
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Figure 5.3: Time series plot of

susceptible population with

different fractional order.
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Figure 5.4: Time series plot of

pollution affected population with differ-

ent fractional order.
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Figure 5.5: Time series plot of

infected population with

different fractional order.

0 50 100 150 200
Time (t)

5

5.5

6

6.5

7

7.5

8

8.5

R
ec

ov
er

ed
 P

op
ul

at
io

n 
(R

)

 = 0.8
 = 0.85
 = 0.9
 = 1.0

Figure 5.6: Time series plot of

recovered population with different frac-

tional order.

The fractional-order parameter α significantly influences the system’s conver-

gence behavior, as shown in Figures 5.3, 5.4, 5.5, and 5.6. When α = 1, the system

behaves like a classical integer-order model, where the susceptible, pollution affect-

ed, infected, and recovered populations all reach their steady states relatively quickly.

However, as α decreases, the system exhibits stronger memory effects, leading to s-

lower convergence across all compartments.

This memory effect becomes especially evident in the susceptible population

(Figure 5.3), where lower α values result in a longer time to reach equilibrium. Bio-

logically, this can be interpreted as the population retaining more influence from past

disease exposure, which slows the overall system response. In contrast, higher values

of α reflect weaker memory, where individuals are less influenced by historical disease

data, allowing the system to stabilize faster.

Interestingly, this faster stabilization at higher α may come at a cost. A weaker

memory effect can delay recognition and response to infection, often leading to a high-

er peak in the infected population. On the other hand, stronger memory associated with

lower α could indicate increased public awareness or behavioral changes based on pri-

or outbreaks, thus spreading the disease over a longer period but possibly reducing the

peak.

Despite these variations in convergence speed, Theorem 5.5.4 confirms that the

endemic equilibrium point (60.7791,46.3121,5.1627) remains stable for all consid-

ered values of α (0.8,0.85,0.9,1), as demonstrated in the figures. This highlights that
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while the path to equilibrium changes with α , the final outcome of the system remains

robust.

When the fractional order is relatively high (for instance, α = 1) and the trans-

mission rate is low (e.g., β = 0.001), the basic reproduction number is R0 = 0.60762,

which is less than one. Under these conditions, the number of infected individuals

decreases rapidly and eventually reaches zero, meaning the disease dies out and the

system quickly stabilizes at the disease-free equilibrium. However, when the fraction-

al order is lower (such as α ≤ 0.90), the system still trends toward a disease-free state,

but the decline in infections happens more gradually. In this slower phase, the infec-

tion persists for a longer time, displaying dynamics that resemble an endemic phase

before fading out. The findings indicate that fractional-order models play a key role in

capturing how previous disease interactions affect current transmission dynamics. The

same can be seen from Figure 5.7.
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Figure 5.7: Time series plot of infected population with for R0 = 0.60762 < 1 with different

fractional order.
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Figure 5.8: Variation of psychological

effect γ and their effect on suscep-

tible population for fixed α = 0.9.
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Figure 5.9: Variation of psychological

effect γ and their effect on pollution affected

population for fixed α = 0.9.

Figures 5.8, 5.9, and 5.10 illustrate the influence of psychological factors on d-

ifferent population compartments. As the psychological impact rate, denoted by γ ,

increases, there is a noticeable rise in the number of susceptible individuals and those

affected by pollution. Concurrently, a significant reduction is observed in the peak

number of infected individuals. This trend suggests that enhancing psychological

awareness can effectively suppress the infection peak during an epidemic, thereby con-

tributing to better disease control.
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Figure 5.10: Variation of psychological

effect γ and their effect on infected

population for fixed α = 0.9.
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Figure 5.11: Effect of pollution related

transmission β ′ on pollution affected popu-

lation for fixed α = 0.9.
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Figure 5.11 explores the effect of the pollution-related transmission rate, repre-

sented by β ′, on the pollution-affected population. An increase in β ′ leads to a decline

in the number of individuals in the pollution-affected class, as more of them transition

into the infected category. This dynamic highlights the critical role of managing envi-

ronmental transmission pathways in reducing infection spread. Therefore, regulating

transmission rates can be a practical strategy to mitigate the intensity of outbreaks.

5.8.2 Numerical Analysis with Control Strategy

In this subsection, the outcomes of the Fractional Optimal Control Problem

(FOCP) are presented, and various strategies aimed at minimizing the disease burden

are discussed. Two time-dependent control variables, v1(t) and v2(t), are incorporated

into the model. To solve the FOCP and ensure effective optimization, the weight con-

stants in the cost function (5.15) are selected as g1 = 50,z1 = 80 and z2 = 10. Different

permutations of these controls are applied to study the following strategies:

• Strategy A (v1(t) , 0,v2(t) = 0)
We begin by analyzing the implementation of a single control policy, v1(t),

which is applied to reduce the transmission between the susceptible and infect-

ed populations. Figure 5.12 shows the graph of the control variable v1(t) in the

absence of another control. For the first 22 days, no control effort is required.

After this period, the requirement of control effort gradually increases, reaching

its full implementation between days 90 and 173. Following this peak phase,

the control intensity gradually decreases and eventually returns to zero. Figures

5.13, 5.14, 5.15, and 5.16 illustrate the dynamics of the population under this

control strategy in comparison to the case when no control is applied. From the

figures, we observe that there is no impact of the implemented control during

the initial days, however after this initial phase, the effect of the control v1(t)

becomes evident. The number of susceptible and pollution-affected individual-

s increases, while the number of infected individuals decreases. This indicates

that the control strategy is effective in reducing the transmission of the disease by

preventing susceptible and pollution-affected individuals from becoming infect-

ed. Additionally, we observe a decline in the number of recovered individuals.

This is because we have applied a non-pharmaceutical control, thus fewer people

become infected due to the control, which means fewer eventually recover.
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Figure 5.12: Optimal control path of single control v1(t) when v2(t) = 0.
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Figure 5.13: Effect of applying only

v1(t) on susceptible individuals

compared to the case when no con-

trol is applied (v1(t) = 0 = v2(t)).
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Figure 5.14: Effect of applying only v1(t)

on pollution-affected individuals compared

to the case when no control is applied

(v1(t) = 0 = v2(t)).

Page 186 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 186 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



5.8 Simulation and Discussion 151

0 50 100 150 200
Time (t)

0

1

2

3

4

5

6

In
fe

ct
ed

 P
op

ul
at

io
n 

(I
) v

1
(t) = 0 and v

2
(t) = 0

v
1
(t)  0 and v

2
(t) = 0

Figure 5.15: Effect of applying only v1(t)

on infected individuals compared to the case

when no control is applied (v1(t) = 0 = v2(t)).
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Figure 5.16: Effect of applying only v1(t)

on recovered individuals compared to the case

when no control is applied (v1(t) = 0 = v2(t)).

• Strategy B (v1(t) = 0,v2(t) , 0)
Next, the effect of a single control policy, v2(t), which regulates the interaction

between pollution-affected and infected individuals, is examined. Figure 5.17

shows the graph of control variable v2(t) when applied independently, in the ab-

sence of v1(t). As seen in the figure, this control requires full implementation

for nearly the entire duration of the simulation, approximately 198 days, before

it can be gradually withdrawn near the end. Figures 5.18, 5.19, 5.20, and 5.21

depict the population dynamics under this strategy, compared to the case when

no control is applied. The results indicate an increase in both susceptible and

pollution-affected individuals, while the number of infected and recovered indi-

viduals decreases. Unlike Strategy A, Strategy B begins influencing the system

immediately, as it is applied at its maximum level from the start. This immedi-

ate intervention leads to an earlier and more consistent impact, suggesting that

v2(t) may be more effective than v1(t) when implemented alone. A detailed

comparison can be seen in the subsequent section.

Page 187 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 187 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



152
Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR

Epidemic Model with Non-monotonic Incidences and Optimal Control

0 50 100 150 200
Time (t)

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

 v
ar

ia
bl

e 
(v

2(t
))

Figure 5.17: Optimal control path of single control v2(t) when v1(t) = 0.
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Figure 5.18: Effect of applying only

v2(t) on susceptible individuals

compared to the case when no con-

trol is applied (v1(t) = 0 = v2(t)).
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Figure 5.19: Effect of applying only v2(t)

on pollution-affected individuals compared

to the case when no control is applied

(v1(t) = 0 = v2(t)).
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Figure 5.20: Effect of applying only

v2(t) on infected individuals

compared to the case when no con-

trol is applied (v1(t) = 0 = v2(t)).
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Figure 5.21: Effect of applying only v2(t)

on recovered individuals compared

to the case when no control is applied

(v1(t) = 0 = v2(t)).

• Strategy C (v1(t) , 0,v2(t) , 0)
This strategy explores the combined effect of simultaneously applying both con-

trol measures, v1(t) and v2(t), within the model. Figures 5.22 and 5.23 illus-

trate the profiles of each control when implemented together. Initially, v1(t) is

applied at full strength but gradually decreases to zero as the simulation pro-

gresses. In contrast, v2(t) remains at its maximum level for nearly the entire

duration, approximately 195 days, before being phased out toward the end. The

resulting population dynamics are shown in Figures 5.24, 5.25, 5.26, and 5.27.

Compared to the scenario without any control, the number of susceptible and

pollution-affected individuals increases, while the number of infected and re-

covered populations decreases significantly. This dual-control strategy leads to

more substantial changes than those observed in Strategies A and B, where only

one control was applied at a time. Thus, the simultaneous application of both

v1(t) and v2(t) proves more effective in mitigating disease spread, highlighting

the advantage of a combined intervention approach.
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Figure 5.22: Optimal control path of

v1(t) when both controls are applied.
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Figure 5.23: Optimal control path of

v2(t) when both controls are applied.
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Figure 5.24: Effect of applying both v1(t)

and v2(t) simultaneously on susceptible

individuals compared to the case when

no control is applied (v1(t) = 0 = v2(t)).
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Figure 5.25: Effect of applying both v1(t)

and v2(t) simultaneously on pollution

affected individuals compared to the

case when no control is applied

(v1(t) = 0 = v2(t)).
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Figure 5.26: Effect of applying both v1(t)

and v2(t) simultaneously on infected

individuals compared to the case when

no control is applied (v1(t) = 0 = v2(t)).
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Figure 5.27: Effect of applying both v1(t)

and v2(t) simultaneously on recovered

individuals compared to the case when

no control is applied (v1(t) = 0 = v2(t)).

5.8.3 Comparative study

In this subsection, we present a comparative analysis of all three control strategies

discussed earlier, along with the scenario where no control is applied. Strategy A

involves the use of only v1(t), Strategy B uses only v2(t), and Strategy C applies both

v1(t) and v2(t) simultaneously.

Figure 5.28 illustrates the progression of the susceptible population under each

scenario. The results indicate that Strategy C, which implements both controls to-

gether, is the most effective in maintaining a higher number of susceptible individuals

throughout the progression. Strategy A performs nearly as well in terms of preserving

susceptibility but shows minimal impact during the initial phase of the epidemic. In

contrast, Strategy B initially works better than Strategy A for the first 69 days but is

eventually overtaken by Strategy A as time progresses.

However, when it comes to the pollution-affected population (Figure 5.29), S-

trategy B proves more effective than Strategy A. It significantly limits the progression

of pollution-affected individuals into the infected class, performing almost as well as

Strategy C. Although Strategy C remains the best overall, Strategy B shows a clear

advantage over Strategy A in this aspect.

Figure 5.30 compares the number of infected individuals across all strategies. All

three control strategies lead to a reduction in infections compared to the uncontrolled
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case, with Strategy C once again being the most effective. Strategy B initially outper-

forms Strategy A in reducing infections, for approximately 100 days, but in the latter

half of the simulation, Strategy A becomes more effective.

Figure 5.31 shows the recovery trends in all the four cases. Strategy C results in

the lowest number of recovered individuals, not due to inefficacy, but because fewer

people become infected in the first place, leading to a smaller group requiring recovery.

Strategy A maintains higher recovery counts than Strategy B for the first 150 days,

while Strategy B slightly surpasses it in the final 50 days.
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Figure 5.28: Profiles of susceptible population (S) with different control strategies.
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Figure 5.29: Profiles of pollution-affected (P) with different control strategies.
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Figure 5.30: Profiles of infected population (I) with different control strategies.
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Figure 5.31: Profiles of recovered population (R) with different control strategies.

5.9 Conclusion
The goal of this study is to develop and analyze the stability properties of a new

fractional-order SPIR epidemiological model that explores the influence of environ-

mental pollution on the transmission of infectious diseases. The model employs the

Caputo fractional derivative to describe the rate of change in each sub-population, with

the fractional order reflecting memory effects inherent in disease spread. By account-

ing for individuals’ past exposure, this framework improves the predictive capability

of the model.

Our formulation highlights how prenatal exposure to environmental pollution

shapes initial population compartments, with a fraction p of newborns entering the

susceptible class S and the remaining (1− p) entering the pollution-affected class P.

The disease transmission between classes is governed by Monod-Haldane-type inci-

dence rates: βSI
1+γI2 for S and I, and β (1+δβ ′)PI

1+γI2 for P and I. These expressions capture

non-monotonic transmission effects driven by psychological and environmental influ-

ences. The parameter δ scales the influence of environmental pollution on transmis-

sion and β ′ quantifies its effect on the base transmission rate β , reinforcing the role of

environmental exposure in shaping epidemic dynamics.
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The analysis confirms that the model is mathematically well-posed, with solution-

s that are unique, positive, and bounded within the feasible region Ω. Two equilibrium

states emerge: a disease-free equilibrium and an endemic equilibrium. Using Laplace

transform techniques for linearization, the stability of these equilibria is examined in

detail. The basic reproduction number R0, derived through the next generation ma-

trix method, serves as a critical threshold parameter. When R0 < 1, the disease-free

equilibrium is shown to be locally asymptotically stable, indicating that under such

conditions, the infection cannot persist in the population.

The bifurcation analysis around the non-hyperbolic equilibrium point E0 at the

threshold R0 = 1 reveals that the model does not support backward bifurcation. In-

stead, a transcritical forward bifurcation is observed, as shown in Figure 5.2, indicat-

ing a smooth transition from disease-free to endemic states as R0 crosses unity. When

R0 > 1, the existence of an endemic equilibrium is confirmed. Its local stability is

ensured for all α ∈ (0,1] under the conditions specified in Theorem 5.5.2, while global

stability is established using a Lyapunov function, as detailed in Theorem 5.5.4. These

results collectively highlight the model’s well-structured and predictable dynamical

behavior near the epidemic threshold.

Additionally, we reformulate the model into an optimal control problem, de-

scribed in Section 5.7, by introducing two time-dependent control efforts v1(t) and

v2(t), aimed at reducing transmission from the S and P compartments to the I class.

The existence and analytical characterization of the optimal control strategy are de-

rived using Pontryagin’s Maximum Principle.

Numerical simulations were also performed to support the analytical results, us-

ing the experimental parameter values listed in Table 5.1.

Further, the effect of psychological factors on sub-populations is analyzed,

demonstrating their potential in reducing both the disease burden and the infec-

tion peak. Additionally, the impact of pollution-related transmission rate β ′ on the

pollution-affected class P is examined, showing that even partial control of transmis-

sion can effectively mitigate the spread of infection.

In addition to the simulations, the model is evaluated with the implementation of

control strategies. Three strategies are discussed, each demonstrating varying levels of

effectiveness in mitigating disease transmission. Strategy C, combining both v1(t) and

v2(t), proves to be the most effective in controlling the disease spread. While Strategy

A and Strategy B individually show partial success, their combined implementation
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yields a more substantial and sustained reduction in the number of infected individuals.

This demonstrates that a dual-control approach not only enhances effectiveness but

also compensates for the limitations of applying each control independently.

This study emphasizes on the critical role of public awareness in controlling the

spread of infectious diseases, especially in environments where pollution influences

disease transmission dynamics. One of the most effective ways to reduce the emer-

gence of new cases is by educating the public, particularly those who are susceptible

or pollution-affected, about the risks of coming into close contact with infected in-

dividuals. Raising public awareness involves more than just sharing information. It

requires strategic communication campaigns, community engagement, and behavioral

change initiatives that inform people about how the disease spreads, who is most at

risk, and what practical actions can help prevent transmission. For instance, individ-

uals need to understand why minimizing unnecessary contact, maintaining hygiene,

wearing protective gear (such as masks), and avoiding polluted or crowded areas can

significantly lower their risk of infection. Policy makers and health workers should im-

plement targeted interventions that encourage behavioural changes among susceptible

and pollution-affected populations, provide resources and support that enable people

to avoid risky interactions (e.g., facilitating remote work, subsidizing protective equip-

ment, improving access to clean environments), enforce guidelines that limit contact

between vulnerable individuals and confirmed or suspected cases.
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Chapter 6

Analysis of a fractional order SIR

model for infectious diseases spread by
household waste with optimal control
strategies

With the increasing urban population, the accumulation of household waste (HHW)

and its disposal has become an arduous issue. Household wastes spread several kind-

s of deadly diseases and have aroused attention from all sectors of society. In this

chapter, a Caputo-type fractional-order SIR model is developed by incorporating two

types of bacteria populations, namely bacteria in the environment (Be) and bacteria in

organism (Bo). The analysis establishes the well-posedness of the model and demon-

strates the existence and uniqueness of the solution. The basic reproduction number

R0 is derived, and its sensitivity analysis is performed. Furthermore, the stability

of the system is investigated in the sense of the Ulam-Hyers stability criteria. Given

the high burden of vector-borne diseases, an optimal control problem (OCP) is al-

so formulated to reduce the disease burden at an optimal cost, incorporating three

controls, u1(t), u2(t) and u3(t), which are primarily aimed at reducing transmission

rates. Seven different types of optimal control strategies have been performed and

compared, along with the study of their respective cost functions. This study offer-

s a realistic, cost-effective approach to guide decision-makers in controlling diseases

spread by household waste.

161
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6.1 Introduction
Households are an indispensable part of human life. Not only do they provide a space

for individual growth, but they also contribute to the economy by providing labour

and by consuming goods and services. However, in recent years, the onset of urban-

ization has increased the living standards of people in both developed and developing

countries. Urbanization, along with rapid growth in population, has led to a significant

increase in the generation of the daily household wastes, such as plastic materials, can-

s, bottles, clothes, food packaging, paper, food scraps, disposables, glass, compost etc.

Management of these household wastes (HHW) is a major concern [6]. To manage

such issues, several steps have been taken by the government of various countries, but

due to improper work, lack of knowledge, careless behaviour of the people and lack of

landfills, all the HHWs cannot be collected and therefore it is impossible to dispose all

these wastes into dump sites [6; 152]. Furthermore, the problem does not stop here.

The waste that is disposed in these dumpsites accumulates and forms a ‘trash moun-

tain’, which serves as a breeding ground for various types of germs and hazardous

bacteria.

Moreover, due to the destruction of dumpsites for infrastructure development and

a sudden rise in HHW, the growth of bacteria has increased day by day [61]. These

bacteria spread into the environment and via carriers such as flies, mosquitoes, fleas,

rodents etc. [189], enters human households through sources like food and water.

The intake of such contaminated food and water infects the human population, which

results in both fatal and non-fatal vector-borne diseases such as cholera, chikungunya,

dengue, plague (transmitted from rats to humans), dysentery, Legionnaires’ disease,

and many more [189; 127]. This creates an alarming situation globally.

Numerous studies and literature have been provided by researchers addressing the

household waste problem which includes various surveys and applicable suggestions

that highlight how different sources of hazardous wastes contribute to the contamina-

tion of air, water, soil and overall environment (see [21; 133], and references therein).

Despite these efforts, the management of HHW along with the diseases spread by the

generated hazardous bacteria is still a very big concern. This can be interpreted from

the fact sheet of World Health Organization, which states that vector-borne illnesses

account for the death of more than 700,000 people each year which accounts for more
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than 17% of all infectious diseases [193]. These illnesses can be caused by viruses,

bacteria, or parasites. Thus, it is very crucial to study the dynamics of disease trans-

mission caused by hazardous bacteria generated from household waste. To address

such situations in a realistic manner, the bacterial population is divided into two cate-

gories: the bacteria generated from household waste that spread into the environment,

referred to as bacteria in environment and the bacteria that further spreads from the

environment to organisms through carriers, referred to as bacteria in organisms.

Over the past few decades, researchers have utilized mathematical modeling as

an essential tool to explore real-life situations by dividing the population of interest

into different compartments [159; 160; 161].

Since the prevalence of vector-borne diseases is very high, especially in low and

middle-income countries where vector populations are in large amounts and healthcare

systems are not sufficient, it is crucial to formulate an epidemic model which not just

focuses on lowering the disease burden but also on minimizing the cost incurred. Thus,

we have considered an optimal control strategy based on Pontryagin’s Maximum Prin-

ciple [74]. Incorporating an optimal control problem into epidemic models is essential

for effectively managing infectious disease burden [17; 164]. By an optimal control

strategy, our model becomes a tool not only for understanding the dynamics of the

epidemic but also serves as an aid to achieve economic benefits by designing effective

strategies to ease the disease burden.

Conclusively, the proposed SIR model with two groups of bacteria population

i.e., environmental and organism bacteria along with an optimal control problem can

be considered as a novel work, which can prove to be beneficial for the health sector

and for policy makers as well.

The framework of this chapter is as follows: In Section 6.2, the required assump-

tions and mathematical formulation of our proposed model is discussed. Further, in

the next section positivity and boundedness of the model is performed. Section 6.4

deals with the existence and uniqueness results using Banach contraction principle and

Schaefer’s fixed point theorem. In Section 6.5, the basic reproduction number R0 is

calculated, and the highly sensitive parameters are identified through sensitivity anal-

ysis. Ulam-Hyers stability is performed for the model in the very next section. An

optimal control problem (OCP) is also formulated in Section 6.7 which is helpful in

lowering disease burden with optimal cost, with inclusion of three controls u1(t), u2(t)

and u3(t) that are basically focused in reducing the transmission rates. The existence

18
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and characterization of controls are performed by using Pontryagin’s maximum princi-

ple. Moreover, in Section 6.8, the numerical scheme of the Adams-Bashforth-Moulton

Predictor-Corrector method is presented, and numerical simulations are performed to

illustrate the findings in Section 6.9. Finally, the conclusion of the chapter is summa-

rized in the last section.

6.2 Model development
In this section, a mathematical model is developed to study the effect of bacteria gen-

erated by HHWs on the population. When hazardous bacteria generated by HHWs

spread in the environment, then the susceptible individuals come in contact with the

environmental bacteria and the carrier bacteria in organisms. To express the propaga-

tion dynamics, the human population N(t) is divided into three compartments: Sus-

ceptible S(t), Infected I(t), and Recovered R(t) at any time t and the class of bacteria

in the environment and the carrier bacteria in organisms are denoted by Be and Bo

respectively. The basic assumptions for the model development are as follows:

(A1) The constant growth rate of susceptible population is considered as Λ and the

natural death rate for all human compartments S(t), I(t) and R(t) is taken as µ.

(A2) Growth rate of environmental bacteria through the HHWs is taken as A1 and

washout rate is taken as h. Also, the washout rate is assumed to be greater than

the growth rate of bacteria, i.e., h > A1 for the present study, because h < A1 is

biologically meaningless.

(A3) Growth of bacteria in organisms is considered as directly proportional to the en-

vironmental bacteria with rate b because these organism bacteria are like carriers

from environment to residential areas and also rate of depletion, which includes

washout rate as well, of these bacteria is taken as g.

(A4) When susceptible individuals will come in contact with the bacteria in organism-

s and bacteria in environment then they will acquire bacterial infection at rates

βo and βe, respectively. Later on, susceptible may come in close contact with

infected individuals and acquire the infection by rate β with some level of pro-

tection ρ, where 0≤ ρ ≤ 1. When ρ = 0, there is no protection against infection

whereas when ρ = 1, there is full protection against infection.

1

16
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(A5) The rate of recovery for infected individuals is considered to be δ , and the in-

fected can contribute to bacterial production in the environment at a rate of σ .

Thus, under these assumptions, the formulated fractional order compartmental model

is given by:

dαS(t)
dt

= Λ−β (1−ρ)S(t)I(t)−βoS(t)Bo(t)−βeS(t)Be(t)−µS(t),

dα I(t)
dt

= β (1−ρ)S(t)I(t)+βoS(t)Bo(t)+βeS(t)Be(t)−δ I(t)− (µ +d)I(t),

dαR(t)
dt

= δ I(t)−µR(t),

dαBe(t)
dt

= (A1−h)Be(t)+σ I(t),

dαBo(t)
dt

= bBe(t)−gBo(t),

(6.1)

with initial conditions S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, Be = (Be)0 ≥
0, Bo = (Bo)0 ≥ 0 and t ∈ [0, t0], t0 ∈ R+. The pictorial representation of this disease

propagation dynamics and the interaction between human and bacteria population is

given in the flow diagram 6.1.

2
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Figure 6.1: Flow diagram of the model (6.1).

Let us rewrite the system (6.1) for the sake of convenience. Let

M(t) = [S(t), I(t),R(t),Be(t),Bo(t)]
T

and f (t,M(t)) = [ψ1(t),ψ2(t),ψ3(t),ψ4(t),ψ5(t)]
T ,

where

ψ1(t) = Λ−β (1−ρ)S(t)I(t)−βoS(t)Bo(t)−βeS(t)Be(t)−µS(t),

ψ2(t) = β (1−ρ)S(t)I(t)+βoS(t)Bo(t)+βeS(t)Be(t)−δ I(t)− (µ +d)I(t),

ψ3(t) = δ I(t)−µR(t),

ψ4(t) = (A1−h)Be(t)+σ I(t),

ψ5(t) = bBe(t)−gBo(t).

So, system (6.1) can be written as follows:

DαM(t) = f (t,M(t)); M(0) = M0 ≥ 0, t ∈ [0, t0]; 0 < α ≤ 1. (6.2)

1
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Equation (6.2) is equivalent to the fractional integral equation of the form

M(t) = M0 +
1

Γα

∫ t

0
(t−ξ )α−1 f (ξ ,M(ξ ))dξ .

Let Ω =C ([0, t0] : R) , which denotes the complete normed linear space of all continu-

ous functions from [0, t0] to R endowed with the norm ‖M‖
Ω
= sup

t∈[0,t0]
{|M(t)|} , where

|M(t)|= |S(t)|+ |I(t)|+ |R(t)|+ |Be(t)|+ |B0(t)| .

6.3 Positivity and Boundedness
Theorem 6.3.1 For M(0)> 0, the solution M(t) of system (6.1) is positive and bound-

ed for t ∈ [0, t0], t0 ∈ R+.

Proof 6.3.2 First of all, we establish non-negativity of solutions. It follows from the

first equation of system (6.1), that

DαS(t)≥ (−β (1−ρ)I−β0Bo−βeBe−µ)S.

The solution of the above equation is

S(t)≥ SoEα [−(β (1−ρ)+β0Bo +βeBe +µ) tα ] .

Since S0 > 0, it implies that S(t)> 0, ∀t > 0.

So, following similar procedure, we have

I(t)≥ I0Eα [−(µ +d +δ )tα ],

R(t)≥ R0Eα [−µtα ],

Be(t)≥ (Be)0Eα [(A1−h)tα ]; h > A1,

Bo(t)≥ (Bo)0Eα [−gtα ].

Since I0 > 0, R0 > 0, (Be)0 > 0 and (Bo)0 > 0, we get I(t) > 0, R(t) > 0, Be(t) > 0

and Bo(t)> 0. Hence, the desired result.

Now, for the boundedness, the sum of the total human population size is given by

N(t) = S(t)+ I(t)+R(t).

Clearly, DαN(t) = Λ−µ(S+ I +R)−dI

= Λ−µN−dI

≤ Λ−µN,

23
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which implies, N(t)≤ Λ

µ
+

(
N(0)− Λ

µ

)
Eα(−µtα).

So, lim
t→∞

supN(t)≤ Λ

µ
.

Now, DαBe(t) = (A1−h)Be(t)+σ I(t)

≤ σ
Λ

µ
− (h−A1)Be(t),

which implies that, Be(t)≤
σΛ

µ(h−A1)
+

(
Be(0)−

σΛ

µ(h−A1)
Eα (−(h−A1)tα)

)
.

So, lim
t→∞

supBe(t)≤
σΛ

µ(h−A1)
.

Now, DαBo(t) = bBe(t)−gBo(t)≤
bσΛ

µ(h−A1)
−gBo,

which implies that, Bo ≤
bσΛ

µ(h−A1)g
+

(
Bo(0)−

bσΛ

µ(h−A1)g

)
Eα(−gtα).

So, lim
t→∞

supBo(t)≤
bσΛ

µg(h−A1)
.

This indicates that both the total human population and each individu-

al population class remain constrained within finite bounds. Thus, let x(t) =

(S(t), I(t),R(t),Be(t),Bo(t)) represent the solution of the system. Then, for biologi-

cal relevance, the region of attraction of the system (6.1) is defined by the closed set:

U =

{
x(t) ∈ R6

+ : 0≤ N(t) = S(t)+ I(t)+R(t)≤ Λ

µ
, Be(t)≤

σΛ

µ(h−A1)
,

Bo(t)≤
bσΛ

µg(h−A1)
; with h > A1

}
.

6.4 Existence and Uniqueness
Lemma 6.4.1 The function f (t,M(t)), defined above, satisfies∥∥ f (t,M(t))− f (t,M̂)

∥∥≤∈+M ∥∥M− M̂
∥∥

Ω
for some ∈+M> 0 and M̂ =

(
Ŝ, Î, R̂, B̂e, B̂o

)
.

Proof 6.4.2 By the definition of function f (t,M(t)),

∥∥ f (t,M(t))− f (t,M̂)
∥∥≤ sup

t∈[0,t0]

5

∑
i=1

∣∣Ψi(t,M(t))−Ψi(t,M̂(t))
∣∣. (6.3)

2
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We observe that the first component,∣∣Ψ1(t,M(t))−Ψ1(t,M̂(t))
∣∣≤ µ

∣∣S− Ŝ
∣∣+β (1−ρ)

∣∣SI− ŜÎ
∣∣+βo

∣∣SBo− ŜB̂o
∣∣

+βe
∣∣SBe− ŜB̂e

∣∣ . (6.4)

Consider the term,∣∣SI− ŜÎ
∣∣= ∣∣SI−SÎ +SÎ− ŜÎ

∣∣≤ w1(t)
∣∣I− Î

∣∣+w2(t)
∣∣S− Ŝ

∣∣ , (6.5)

where w1(t) = |S(t)| and w2(t) = |I(t)| .

Similarly,
∣∣SBo− ŜB̂o

∣∣= w1(t)
∣∣Bo− B̂o

∣∣+w3(t)
∣∣S− Ŝ

∣∣ , (6.6)

where w3(t) = |Bo(t)|, and∣∣SBe− ŜB̂e
∣∣= w1(t)

∣∣Be− B̂e
∣∣+w4(t)

∣∣S− Ŝ
∣∣ , (6.7)

where w4(t) = |Be(t)| .
So, equation (6.4) implies∣∣Ψ1(t,M(t))−Ψ1(t,M̂(t))

∣∣≤ µ
∣∣S− Ŝ

∣∣+β (1−ρ)w1(t)
∣∣I− Î

∣∣
+β (1−ρ)w2(t)

∣∣S− Ŝ
∣∣+βow3(t)

∣∣S− Ŝ
∣∣

+βow1(t)
∣∣Bo− B̂o

∣∣+βew1(t)
∣∣Be− B̂e

∣∣
+βew4(t)

∣∣S− Ŝ
∣∣

≤ {µ +β (1−ρ)w2(t)+βow3(t)+βew4(t)}
∣∣S− Ŝ

∣∣
+β (1−ρ)w1(t)

∣∣I− Î
∣∣+βow1(t)

∣∣Bo− B̂o
∣∣

+βew1(t)
∣∣Be− B̂e

∣∣ .
Which implies that,∣∣Ψ1(t,M(t))−Ψ1(t,M̂(t))

∣∣≤∈+1 (t)
{∣∣S− Ŝ

∣∣+ ∣∣I− Î
∣∣+ ∣∣Be− B̂e

∣∣+ ∣∣Bo− B̂o
∣∣} ,

where

∈+1 (t) = µ + max
t∈[0,t0]

{
β (1−ρ)w2(t)+βow3(t)+βew4(t)+β (1−ρ)w1(t)

+βow1(t)+βew1(t)
}

= µ + max
t∈[0,t0]

{
β (1−ρ)(w1(t)+w2(t))+βo(w1(t)+w3(t))

+βe(w1(t)+w4(t))
}
.
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In a similar manner,∣∣Ψ2(t,M(t))−Ψ2(t,M̂(t))
∣∣≤∈+2 (t)

{∣∣S− Ŝ
∣∣+ ∣∣I− Î

∣∣+ ∣∣Be− B̂e
∣∣+ ∣∣Bo− B̂o

∣∣} ,∣∣Ψ3(t,M(t))−Ψ3(t,M̂(t))
∣∣≤∈+3 (t)

{∣∣I− Î
∣∣+ ∣∣R− R̂

∣∣} ,∣∣Ψ4(t,M(t))−Ψ4(t,M̂(t))
∣∣≤∈+4 (t)

{∣∣I− Î
∣∣+ ∣∣Be− B̂e

∣∣} ,∣∣Ψ5(t,M(t))−Ψ5(t,M̂(t))
∣∣≤∈+5 (t)

{∣∣Be− B̂e
∣∣+ ∣∣Bo− B̂o

∣∣} ,
where

∈+2 (t) = (µ +d +δ )+ max
t∈[0,t0]

{
β (1−ρ)(w1(t)+w2(t))+βe(w1(t)+w4(t))

+βo(w1(t)+w3(t))
}
,

∈+3 (t) = δ +µ,

∈+4 (t) = (A1−h)+σ ,

∈+5 (t) = b+g.

So, from equation (6.3), we have∥∥ f (t,M(t))− f (t,M̂(t))
∥∥

Ω
≤ max

t∈[0,t0]

{
∈+1 (t)+ ∈+2 (t)+ ∈+3 (t)+ ∈+4 (t)+ ∈+5 (t)

}
×
{∣∣S− Ŝ

∣∣+ ∣∣I− Î
∣∣+ ∣∣R− R̂

∣∣+ ∣∣Be− B̂e
∣∣+ ∣∣Bo− B̂o

∣∣}
≤∈+M

∥∥M− M̂
∥∥ ; for ≤∈+M=∈+1 + ∈+2 + ∈+3 + ∈+4 + ∈+5 .

Hence, the result.

Theorem 6.4.3 There exist a unique solution for the proposed model (6.1) on [0, t0], if
t0α∈+M

Γ(1+α) < 1 holds.

Proof 6.4.4 Let us define the set Xm = {M ∈Ω : ‖M‖ ≤ m} and the operator J : Ω→
Ω as follows:

J (M(t)) = M0 +
1

Γα

t∫
0

(t−ξ )α−1 f (ξ ,M(ξ ))dξ .

20
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We need to show that J Xm ⊂ Xm, i.e. ‖J Xm‖ ≤ m. Using Lemma 6.4.1, we get the

following inequality:

‖J (M)‖Xm
= sup

t∈[0,t0]


∣∣∣∣∣∣M0 +

1
Γα

t∫
0

(t−ξ )α−1 f (ξ ,M(ξ ))dξ

∣∣∣∣∣∣


≤ |M0|+
1

Γα

t∫
0

(t−ξ )α−1 ‖ f (ξ ,M(ξ ))− f (ξ ,0)‖dξ

+
1

Γα

t∫
0

(t−ξ )α−1 ‖ f (ξ ,0)‖dξ

≤ |M0|+
∈+M mt0α

Γ(1+α)
+

M0t0α

Γ(1+α)
.

Let us suppose the contrary, i.e. ‖J Xm‖> m,

which implies that, |M0|+
t0α

Γ(1+α)
(∈+M m+M0)> m

|M0|
m

+
t0α ∈+M

Γ(1+α)
+

t0αM0

mΓ(1+α)
> 1.

On taking limit m→ ∞ on both sides, we get t0α∈+M
Γ(1+α) > 1, which is a contradiction to

our supposition. So, ‖J Xm‖ ≤ m. This proves that J is indeed a self-map.

For M,M̂ ∈Ω, consider∥∥J M−J M̂
∥∥= sup

t∈[0,t0]

{∣∣J M(t)−J M̂(t)
∣∣}

≤ 1
Γα

t0∫
0

(t−ξ )α−1∥∥ f (ξ ,M(ξ ))− f (ξ ,M̂(ξ ))
∥∥dξ

≤
∈+M t0α

Γ(1+α)

∥∥M− M̂
∥∥

Ω

< 1.
∥∥M− M̂

∥∥
Ω
.

This confirms that J is a contraction mapping. So, by Banach contraction principle,

J has a unique fixed point on [0, t0], which is a solution of the model.

Theorem 6.4.5 If | f (t,M(t))| 6 g(t) for all g(t) ∈C ([0, t0]), then the proposed model

(6.2) has at least one solution provided

∈+M
∥∥M(t0)− M̂(t0)

∥∥< 1.
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Proof 6.4.6 Consider ξ > ‖M0‖ +
tα
0

Γ(1+α)
‖g‖ and the set Bξ =

{M ∈C ([0, t0]) : ‖M‖ 6 ξ}. From [79], consider the operators J1, J2 on Bξ

defined by

(J1M)(t) =
1

Γ(α)

t∫
0

(t−ρ)α−1 f (t,M(t))dρ,

and

(J2M)(t) = M(t0).

Thus, for any M,M̂ ∈ Bξ , we get

∥∥(J1M)(t)+
(
J2M̂

)
(t)
∥∥ 6 ‖M0‖+

1
Γ(α)

t∫
0

(t−ρ)α−1 ‖ f (ρ,M(ρ))‖dρ

6 ‖M0‖+
tα
0

Γ(1+α)
‖g‖

6 ξ < ∞.

Hence, J1M +J2M̂ ∈ Bξ . Now, we will prove the contraction of the operator J2.

Given any t ∈ [0, t0] and M,M̂ ∈ Bξ , we have∥∥(J1M)(t)+
(
J2M̂

)
(t)
∥∥ 6 ∥∥M(t0)− M̂(t0)

∥∥ .
Moreover, the continuity of the operator J1 is implied by the continuity of f . For

any t ∈ [0, t0] and M ∈ Bξ , ‖J1M‖ 6 tα
0

Γ(1+α)
‖g‖ 6 ∞. Thus, we can say that J1 is

uniformly bounded.

Now, to show J1 is compact, define f ∗ = sup(t,M) ∈ [0, t0]×Bξ | f (t,M(t))|.
Thus,

‖(J1M)(t1)− (J1M)(t2)‖=
1

Γ(α)

∣∣∣∣ t1∫
0

[
(t2−ρ)α−1− (t1−ρ)α−1

]
f (ρ,M(ρ))dρ

+

t2∫
t1

(t2−ρ)α−1 f (ρ,M(ρ))dρ

∣∣∣∣
6

f ∗

Γ(α)

[
2(t2− t1)

α +(t2− t1)
α
]

→ 0, as t2→ t1.

Page 208 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391

Page 208 of 260 - Integrity Submission Submission ID trn:oid:::27535:126809391



6.5 Basic Reproduction number and its Sensitivity Analysis 173

This proves that J1 is equicontinuous and consequently, relatively compact on Bξ .

Hence, by Arzelá Ascoli theorem, J1 is compact on Bξ . Using Schaefer’s fixed point

theorem, the model has a fixed point which is a solution of (6.2).

6.5 Basic Reproduction number and its Sensitivity

Analysis
To determine the basic reproduction number, the disease-free equilibrium (DFE) point

is first found. For model (6.1), the DFE is:(
S̄, Ī, R̄, B̄e, B̄o

)
=

(
Λ

µ
,0,0,0,0,

)
.

The basic reproduction number R0 is determined using the next-generation approach.

For that, let

Dα
t (z) = F (z)−V (z),

where z = (I,R,Be). The non-negative matrix F , which represents the new infection

terms, and the matrix V , comprising the remaining terms, are provided as follows:

F =


β (1−ρ)SI +β0SBo +βeSBe

δ I

σ I

 and V =


(δ +µ +d)I

µR

−(A1−h)Be


The corresponding linearized matrices evaluated at DFE

(
S̄, Ī, R̄, B̄e, B̄o

)
are respec-

tively,

F =


β (1−ρ)Λ

µ
0 βeΛ

µ

δ 0 0

σ 0 0

 and V =


(δ +µ +d) 0 0

0 µ 0

0 0 −(A1−h)

 .

Since, the largest eigen value, i.e., the spectral radius of the matrix FV−1, repre-

sents the basic reproduction number R0, therefore,

FV−1 =


βΛ(1−ρ)

µ(δ+µ+d) 0 Λβe
µ(h−A1)

δ

(δ+µ+d) 0 0
σ

(δ+µ+d) 0 0

 ,

and hence,

R0 =
βΛ(1−ρ)(h−A1)+

√
β 2Λ2(1−ρ)2 (h−A1)2 +4µσβe(d +δ +µ)

2µ (h−A1)(d +δ +µ)
.

15

19
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6.5.1 Sensitivity Analysis

Sensitivity analysis is used to understand how different model parameters affect

the spread of a disease. Specifically, it helps calculate the sensitivity indices of the

basic reproductive number, R0. These indices show how important each parameter is

in influencing disease spread and guide where intervention efforts should focus. Since

errors often occur in data collection and in the assumed values of model parameters,

sensitivity analysis is also used to assess how reliable a model’s predictions are when

these parameter values change. There are different ways to perform sensitivity anal-

ysis, and the results provide sensitivity rankings that can differ slightly depending on

the method used. Here, we employed the normalized forward sensitivity index, which

is the ratio of the relative change in R0 to the relative change in the parameter being

studied [73].

Definition 6.5.1 [158] For a variable y dependent on parameter x,the normalized for-

ward sensitivity index is defined as

W y
x =

∂y
∂x
× x

y
.

18
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So, for R0, the sensitivity index is WR0
x =

∂R0

∂x
× x

R0
, which expresses the sensitivity

of R0 to the parameter x. The sensitivity indices for the relevant parameters are:

WR0
β

=
βΛ(1−ρ)(h−A1)√

[βΛ(1−ρ)(h−A1)]2 +4µσβe(d +δ +µ)

WR0
Λ

=
βΛ(1−ρ)(h−A1)√

[βΛ(1−ρ)(h−A1)]2 +4µσβe(d +δ +µ)

WR0
ρ =

−βΛρ (h−A1)√
[βΛ(1−ρ)(h−A1)]2 +4µσβe(d +δ +µ)

WR0
h =

βhΛ(1−ρ)√
[βΛ(1−ρ)(h−A1)]2 +4µσβe(d +δ +µ)

− h
(h−A1)

WR0
A1

=
A1

h−A1
− βΛA1(1−ρ)√

[βΛ(1−ρ)(h−A1)]2 +4µσβe(d +δ +µ)

WR0
µ =

−(d +δ +2µ)

(
1+ βΛ(1−ρ)(h−A1)√

[βΛ(1−ρ)(h−A1)]2+4µσβe(d+δ+µ)

)
2(d +δ +µ)

WR0
σ =

2µσβe(d +δ +µ)√
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

 √
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

+bΛ(1−ρ)(h−A1)


WR0

βe
=

2µσβe(d +δ +µ)√
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

 √
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

+bΛ(1−ρ)(h−A1)


WR0

d =
2dµσβe√

[βΛ(1−ρ)(h−A1)]
2 +4µσβe(d +δ +µ)

 √
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

+bΛ(1−ρ)(h−A1)


− d

d +δ +µ

WR0
δ

=
2δ µσβe√

[βΛ(1−ρ)(h−A1)]
2 +4µσβe(d +δ +µ)

 √
[βΛ(1−ρ)(h−A1)]

2 +4µσβe(d +δ +µ)

+bΛ(1−ρ)(h−A1)


− δ

d +δ +µ

To evaluate these sensitivity indices, the parameter values provided in Section 6.9 are

used, and the corresponding bar diagram is plotted in Figure 6.2 as follows:

WR0
β

= 0.944829, WR0
Λ

= 0.944829, WR0
ρ =−0.684187, WR0

h =−0.128732,

WR0
A1

= 0.0735611, WR0
µ =−1.31163, WR0

σ = 0.0275854, WR0
βe

= 0.0275854,

WR0
d =−0.407057, WR0

δ
=−0.226143.
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β Λ ρ h A1 μ σ βe d δ

-1.0

-0.5

0.0

0.5

1.0

Figure 6.2: Sensitivity indices of R0.

From the above explanation, we see that these parameters can either increase or

decrease R0. Specifically, the parameters β , Λ have the strongest positive impact and

A1, σ and βe have a less positive impact on R0. This means that if these parameters

increase while keeping the others unchanged, the basic reproduction number R0 will

also increase, leading to a faster spread of the disease. Similarly, if they decrease, the

spread of the disease will slow down.

For example, WR0
β

= 0.944829 indicates that if the parameter β increases (or

decreases) by 10%, then R0 will increase (or decrease) by 9.45%. Similarly, WR0
ρ =

−0.684187 means that if ρ increases (or decreases) by 10%, then R0 will decrease

(or increase) by 6.84%, respectively. This helps us understand the sensitivity of the

parameters and their impact on R0 in both positive and negative ways.

6.6 Ulam-Hyers Stability
In this section, the global stability of the fractional-order model is analyzed within the

framework of the Ulam-Hyers stability criteria, following the approach in [179; 83].

To begin, the following inequality is introduced:

|Dα
t M(t)− f (t,M(t))| ≤ ε, t ∈ [0, t0]. (6.8)

A function Mo satisfies (6.8), if there exists χ ∈Ω such that:
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• |χ(t)| ≤ ε

• Dα
t Mo(t) = f (t,Mo(t))+χ(t); t ∈ [0, t0].

Definition 6.6.1 [25] The model (6.1) is Ulam-Hyers stable if ∃ a real number φ > 0

such that for given ε > 0 and for any solution Mo(t) of equation (6.8), there exists a

unique solution M(t) of model equation(6.1) with

‖M(t)−Mo(t)‖ ≤ εφ ; t ∈ [0, t0].

Consider the inequality,

|Dα
t M(t)− f (t,M(t))| ≤ εθ(t), for some θ(t) ∈C([0, t0];R+). (6.9)

A function Mo satisfies equation (6.9) iff there exists a function ν(t) ∈Ω such that

• |ν(t)| ≤ εθ(t)

• Dα
t Mo(t) = f (t,Mo(t))+ν(t); t ∈ [0, t0].

Definition 6.6.2 [25] The fractional order model (6.1) is generalized Ulam-Hyers sta-

ble with respect to function θ(t) if there exists real number φ > 0 such that for given

ε > 0 and for any solution Mo(t) of equation (6.9), there exists a unique solution M(t)

of model equation (6.1) with

‖M(t)−Mo(t)‖ ≤ εφθ(t); t ∈ [0, t0].

Theorem 6.6.3 Suppose Lemma 6.4.1 holds and Xθ > 0 be such that∫ t
0 θ(s)ds≤ Xθ θ(t), t ∈ [0, t0]. Then the proposed model (6.1) is Ulam-Hyers

generalized stable with respect to function θ(t) if

∈+M t0α < Γ(α +1), or equivalently
∈+M t0α

Γ(α +1)
< 1.

Proof 6.6.4 Let M be a unique solution of the model system (6.1) by Theorem 6.4.3.

Since, Mo satisfies inequality (6.9), thus we have

Mo(t) = M0 +
1

Γα

∫ t

0
(t−ξ )α−1{ f (ξ ,Mo(ξ ))+ν(ξ )}dξ ,

10

33
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which implies that,∣∣∣∣∣∣Mo(t)−M0−
1

Γα

t∫
0

(t−ξ )α−1 f (ξ ,No(ξ ))dξ

∣∣∣∣∣∣=
∣∣∣∣∣∣ 1
Γα

t∫
0

(t−ξ )α−1
ν(ξ )dξ

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1
Γα

t∫
0

(t−ξ )α−1
εθ(ξ )dξ

∣∣∣∣∣∣
≤ εXθ θ(t)

t0α

Γ(α +1)
. (6.10)

For ε > 0 and t ∈ [0, t0],

‖M(t)−Mo(t)‖
Ω
= sup

t∈[0,t0]
|M(t)−Mo(t)|

= sup
t∈[0,t0]

∣∣∣∣∣∣Mo(t)−M0−
1

Γα

t∫
0

(t−ξ )α−1 f (ξ ,N(ξ ))dξ

∣∣∣∣∣∣
=

∣∣∣∣∣∣Mo(t)−M0−
1

Γα

t∫
0

(t−ξ )α−1 f (ξ ,No(ξ ))dξ

∣∣∣∣∣∣
+

1
Γα

t∫
0

(t−ξ )α−1 ‖ f (ξ ,No(ξ ))− f (ξ ,N(ξ ))‖dξ

≤ εXθ θ(t)
t0α

Γ(α +1)
+
∈+M t0α

Γ(α +1)
‖M−Mo‖

Ω
.

This implies that

‖M(t)−Mo(t)‖
Ω
≤ εXθ θ(t)t0α

(Γ(α +1)− ∈+M t0α)
,

and hence,

‖M(t)−Mo(t)‖
Ω
≤ εφθ(t),

where φ = Xθ t0α

(Γ(α+1)−∈+Mt0α )
and ∈+M t0α < Γ(α +1).

This proves that the model system (6.1) is Ulam-Hyers generalized stable. In a similar

way, it is easy to check that model system (6.1) is Ulam-Hyers stable also.

6.7 Optimal Control Formulations
Optimal control theory primarily deals with constraints and systematic approaches to

enhance the performance metrics of control systems. In this section, we introduce

10

10

10
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a well-structured control strategy designed to minimize the effects of diseases while

keeping intervention costs as low as possible. During the spread of an epidemic, reduc-

ing the infection rate among susceptible individuals is crucial. This can be achieved

by influencing their behaviors to decrease direct contact with both infected individ-

uals and disease-carrying vectors, thereby lowering transmission risks. The control

variable u1(t) represents personal protection measures through the use of face masks,

social distancing, isolation and awareness of disease transmission from an infected per-

son. Control u2(t) represents the level of awareness about cleanliness practices in our

surroundings, such as households, workplaces and public spaces. This includes under-

standing the importance of regularly cleaning surfaces, disposing of waste properly,

washing hands frequently, and taking other preventative measures to reduce contami-

nation. The control variable u3(t) reflects the understanding of hygiene practices, such

as actions like using sanitizers, washing vegetables properly before consumption and

ensuring proper sanitation, especially in food preparation areas or healthcare settings.

By adding these three control measures, the system (6.1) is modified as follows:

DαS(t) = Λ−β (1−u1(t))S(t)I(t)−βo(1−u2(t))S(t)Bo(t)−βe(1−u3(t))S(t)Be(t)

−µS(t),

Dα I(t) = β (1−u1(t))S(t)I(t)+βo(1−u2(t))S(t)Bo(t)+βe(1−u3(t))S(t)Be(t)

−δ I(t)− (µ +d)I(t),

DαR(t) = δ I(t)−µR(t),

DαBe(t) = (A1−h)Be(t)+σ I(t),

DαBo(t) = bBe(t)−gBo(t), (6.11)

with S(0)≥ 0, I(0)≥ 0, R(0)≥ 0, Be(0)≥ 0, Bo(0)≥ 0.

We begin by exploring the formulation of objective functional, which helps quan-

tify the trade-offs between disease burden and intervention efforts. The overall objec-

tive functional consists of two main components: the cumulative cost related to the

disease, denoted as Jb, and the cost associated with implementing control measures,

represented by Jc.

The total intervention cost can be expressed as a nonlinear function of the control

variables, given by:

Jc =

T∫
0

(
1
2

z1u2
1(t)+

1
2

z2u2
2(t)+

1
2

z3u2
3(t)
)

dt,

10

28

56
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where z1,z2 and z3 are positive constants representing the cost of implementing differ-

ent intervention strategies.

The cost incurred due to the disease ,Jb, is determined by the specific disease

model under consideration and the accessible information. It is given by:

Jb =

T∫
0

AbI(t)dt,

where Ab is a positive scaling factor that accounts for the overall economic impact of

the disease. This includes direct costs, such as medical treatment and indirect costs,

such as productivity loss and mortality.

The optimal control strategy is influenced by the relative magnitudes of the co-

efficients Ab,z1,z2 and z3, which determine the balance between disease-related losses

and intervention expenses.

6.7.1 Combined objective functional

The objective functional aims to minimize both the disease burden and the asso-

ciated intervention costs. This is mathematically expressed as:

min
ui∈U

T∫
0

[
AbI(t)+

1
2

z1u2
1(t)+

1
2

z2u2
2(t)+

1
2

z3u2
3(t)
]

dt,

where AbI(t) represents the cost attributed to disease prevalence, while the remain-

ing terms account for the costs associated with implementing control strategies. The

control variables u1(t), u2(t) and u3(t) belong to the set U, which is defined as:

U = {(u1,u2,u3)|ui(t) is Lebesgue measurable on [0,1],0≤ ui(t)≤ 1, i = 1,2,3} .

Here, ui(t) = 0 indicates no implementation of the ith control, while ui(t) = 1

corresponds to the full application of the available intervention. Since these control

functions represent proportions or effort levels, it is not meaningful to consider values

below 0 or above 1.

6.7.2 Existence of optimal control

The following conditions ensure the existence of the optimal control functions:

1. Non-emptiness of the solution set: The system (6.11) has at least one solution

when the control variables are chosen from the set U.

2
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2. Properties of the Control Set: The set U is closed and convex. Additionally,

the right-hand side of the system (6.11) is bounded by a linear function in terms

of the control and state variables.

3. Convexity of the Integrand: The function L = AbI(t)+ 1
2z1u2

1(t)+
1
2z2u2

2(t)+
1
2z3u2

3(t) is convex over the set U. Additionally, the function satisfies the con-

dition L(I,u1,u2,u3) ≥ κ(u1,u2,u3), where κ is continuous. Furthermore, as

|(u1,u2,u3)|→∞, the ratio |(u1,u2,u3)|−1κ(u1,u2,u3)→∞, where |.| represents

the norm.

6.7.3 Characterization of optimal control function

To determine the necessary conditions for optimal control, Pontryagin’s Maxi-

mum Principle [105] is utilised. This principle is crucial in linking the cost functional

with the system’s state equations by introducing adjoint variables. These adjoint vari-

ables help in deriving conditions that must be satisfied for the control function to be

optimal.

To facilitate this process, define the Hamiltonian function as follows:

H = AbI +
1
2

z1u2
1 +

1
2

z2u2
2 +

1
2

z3u2
3

+λ1 [Λ−β (1−u1)SI−βo(1−u2)SBo−βe(1−u3)SBe−µS]

+λ2 [β (1−u1)SI +βo(1−u2)SBo +βe(1−u3)SBe−δ I− (µ +d)I]

+λ3 [δ I−µR]+λ4 [(A1−h)Be +σ I]+λ5 [bBe−gBo] .

Here, λi = (λ1,λ2,λ3,λ4,λ5) are referred to as the adjoint variable, which satisfy the

following canonical equations:

dαλ1

dt
=−∂H

∂S
,

dαλ2

dt
=−∂H

∂ I
,

dαλ3

dt
=−∂H

∂R
,

dαλ4

dt
=− ∂H

∂Be
,

dαλ5

dt
=− ∂H

∂Bo
.

Therefore, the adjoint system is:

Dαλ1 =−[−λ1β (1−u1)I−λ1βo(1−u2)Bo−λ1βe(1−u3)Be−λ1µ

+λ2β (1−u1)I +λ2βo(1−u2)Bo +λ2βe(1−u3)Be]

Dαλ2 =−[Ab−λ1β (1−u1)S+λ2β (1−u1)S−λ2(µ +d +δ )+λ3δ +λ4σ ]

Dαλ3 = λ3µ

Dαλ4 =−[−λ1βe(1−u3)S+λ2βe(1−u3)S+λ4(A1−h)+λ5b]

Dαλ5 =−[−λ1βo(1−u2)S+λ2βo(1−u2)S−λ5g],

4

15
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with the transversality condition

λ1(T ) = 0, λ2(T ) = 0, λ3(T ) = 0, λ4(T ) = 0, λ5(T ) = 0.

We can then characterize the optimal control on the interior of the control set using the

optimality condition ∂H
∂ui

= 0 at ui = u∗i , which gives,

u1
∗ = min

{
max

{
0,
(λ2−λ1)βSI

z1

}
,1
}
,

u2
∗ = min

{
max

{
0,
(λ2−λ1)βoSBo

z2

}
,1
}
,

u3
∗ = min

{
max

{
0,
(λ2−λ1)βeSBe

z3

}
,1
}
. (6.12)

6.8 Numerical Scheme Adams-Bashforth-Moulton

Predictor-Corrector Method
In this section, numerical scheme is presented for the model (6.1) in the Caputo sense,

utilizing the Adams-Bashforth-Moulton predictor-corrector method. This approach is

widely used for solving fractional-order differential equations with initial conditions

[50]. The implementation of this method is outlined below, considering the following

non-autonomous household waste system:

DαS(t) = f1
(
t,S, I,R,Be,Bo

)
,

Dα I(t) = f2
(
t,S, I,R,Be,Bo

)
,

DαR(t) = f3
(
t,S, I,R,Be,Bo

)
,

DαBe(t) = f4
(
t,S, I,R,Be,Bo

)
,

DαBo(t) = f5
(
t,S, I,R,Be,Bo

)
,

(6.13)

with S(0) = S0, I(0) = I0, R(0) = R0, Be(0) = (Be)0 and Bo(0) = (Bo)0, where 0 <

α ≤ 1. Let t j = jh, j = 0,1,2, . . . ,N with some integer N and h = T/N, in the interval

[0,T ]. By utilizing the method given in [50], system (6.13) can be written as follows:

8

18
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6.8 Numerical Scheme Adams-Bashforth-Moulton Predictor-Corrector Method 183

Predictor values for (6.13) are

SP
n+1 = S0 +

1
Γ(α)

n

∑
j=0

b j,n+1 f1
(
t j,S j, I j,R j,(Be) j,(Bo) j

)
,

IP
n+1 = I0 +

1
Γ(α)

n

∑
j=0

b j,n+1 f2
(
t j,S j, I j,R j,(Be) j,(Bo) j

)
,

RP
n+1 = R0 +

1
Γ(α)

n

∑
j=0

b j,n+1 f3
(
t j,S j, I j,R j,(Be) j,(Bo) j

)
,

Be
P
n+1 = Be0 +

1
Γ(α)

n

∑
j=0

b j,n+1 f4
(
t j,S j, I j,R j,(Be) j,(Bo) j

)
,

Bo
P
n+1 = Bo0 +

1
Γ(α)

n

∑
j=0

b j,n+1 f5
(
t j,S j, I j,R j,(Be) j,(Bo) j

)
,

where, b j,n+1 =
hα

α

(
(n− j+1)α − (n− j)α

)
.

Corrector values are obtained by using predictor values as follows:

Sn+1 = S0 +
hα

Γ(α +2)
f1
(
tn+1,SP

n+1, I
P
n+1,R

P
n+1,Be

P
n+1,Bo

P
n+1
)

+
hα

Γ(α +2)

n

∑
j=0

a j,n+1 f1
(
t j,S j, I j,R j,Be j,Bo j

)
,

In+1 = I0 +
hα

Γ(α +2)
f2
(
tn+1,SP

n+1, I
P
n+1,R

P
n+1,Be

P
n+1,Bo

P
n+1
)

+
hα

Γ(α +2)

n

∑
j=0

a j,n+1 f2
(
t j,S j, I j,R j,Be j,Bo j

)
,

Rn+1 = R0 +
hα

Γ(α +2)
f3
(
tn+1,SP

n+1, I
P
n+1,R

P
n+1,Be

P
n+1,Bo

P
n+1
)

+
hα

Γ(α +2)

n

∑
j=0

a j,n+1 f3
(
t j,S j, I j,R j,Be j,Bo j

)
,

Ben+1 = Be0 +
hα

Γ(α +2)
f4
(
tn+1,SP

n+1, I
P
n+1,R

P
n+1,Be

P
n+1,Bo

P
n+1
)

+
hα

Γ(α +2)

n

∑
j=0

a j,n+1 f4
(
t j,S j, I j,R j,Be j,Bo j

)
,

Bon+1 = Bo0 +
hα

Γ(α +2)
f5
(
tn+1,SP

n+1, I
P
n+1,R

P
n+1,Be

P
n+1,Bo

P
n+1
)

+
hα

Γ(α +2)

n

∑
j=0

a j,n+1 f5
(
t j,S j, I j,R j,Be j,Bo j

)
,

27
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where

a j,n+1 =


nα+1− (n−α)(n+1)α , j = 0

(n− j+2)α+1 +(n− j)α+1−2(n− j+1)α+1, 1≤ j ≤ n.

6.9 Simulation and Discussion
In this section, the dynamics of the household waste fractional model are explained

using MATLAB 2012b and the Adams-Bashforth-Moulton predictor corrector ap-

proach. Since the numerical experimental data is easier and essential for observ-

ing the long-term behaviour, because when we use real data, it might be challeng-

ing to identify the cause and effects due to fluctuations in pricing, expenditures etc.

[125; 164]. Therefore, a qualitative analysis is performed to provide a deeper under-

standing of the model. For the computational analysis, the initial population is chosen

as S(0) = 50, I(0) = 30, R(0) = 5, Be(0) = 20, Bo(0) = 25, and the following set of

experimental data is considered as an example:

Λ = 5, β = 0.0033, ρ = 0.42, βe = 0.0024, βo = 0.0021, µ = 0.03, δ = 0.02,

d = 0.036, A1 = 0.4, h = 0.7, σ = 0.04, b = 0.26, g = 0.18.

To demonstrate how memory affects the dynamics of the HHW model (6.1), Fig-

ures 6.3, 6.4, 6.5, 6.6, and 6.7 are plotted, illustrating the impact of various fractional-

order values (α = 0.7,0.8,0.9,1.0) on the sub-populations. Increasing the fractional-

order values reveals different scenarios for the considered model.
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Figure 6.3: Time series plot of susceptible population with different fractional order.
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Figure 6.4: Time series plot of infected population with different fractional order.
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Figure 6.5: Time series plot of recovered population with different fractional order.
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Figure 6.6: Time series plot of environmental bacteria population with different frac-

tional order.

0 50 100 150 200
Time (t)

8

10

12

14

16

18

20

22

24

26

B
ac

te
ria

 in
 o

rg
an

is
m

 (B
o)

 = 0.7
 = 0.8
 = 0.9
 = 1.0

Figure 6.7: Time series plot of organism bacteria population with different fractional

order.

As, it can be observed from Figure 6.3, convergence rate of the system (6.1)

is influenced by variation of the memory effect α . In particular, by decreasing the

memory i.e. increasing the fractional order α , the susceptible population reaches its

steady state quickly. At the same time, the decreasing fractional order α leads to a
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slower convergence, which means if the system has larger memory i.e. lesser value of

α , then it will take more time for convergence. Simply said, decreasing α will require

more time to eradicate the disease.

Similarly, it can be observed in Figures 6.4, 6.5, 6.6 and 6.7 that when α = 1,

the populations I,R,Be, and Bo, respectively, acquire steady state quickly. However, as

the value of α decreases, it takes more time to reach the steady state. This shows the

evolution of epidemic over time.
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Figure 6.8: Profiles of susceptible population (S) with different control strategies.
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Figure 6.9: Profiles of infected population (I) with different control strategies.
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Figure 6.10: Profiles of recovered population (R) with different control strategies.
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Figure 6.11: Profiles of organism bacteria (Bo) with different control strategies.
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Figure 6.12: Profiles of environmental bacteria (Be) with different control strategies.

Further, incorporating an optimal control strategy in our model will greatly affect

the progress of the epidemic. To best match real-life, we have incorporated three con-

trols, namely u1(t), u2(t) and u3(t), representing the level of protection as mentioned

in Section 6.7. Figures 6.8, 6.9, 6.10, 6.11 and 6.12 show the time series plot, for

200 days, of the various sub-population for different values of these controls. Differ-
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ent permutations of these controls can be applied in our model out of which several

strategies have been considered depending upon whether ui(t); i = 1,2,3, is constant

or time-dependent, where ui(t) is taken as time-dependent and expressions (6.12) have

been used for simulation purposes. The detailed study of the strategies is given below:

• Strategy 1 (u1(t) = 0.42,u2(t) = 0,u3(t) = 0)
Constant personal protection u1 only: First we study the dynamics of the epi-

demic when a constant rate of personal protection, u1(t) = 0.42, is applied in the

absence of awareness regarding cleanliness and hygiene. Figure 6.8 shows that

by using this strategy, there is a sudden decrease in the susceptible population for

approximately 15 days and then a slight increase till a certain level. The infected

population reaches its peak in the first 15 days and then slightly decreases (Fig-

ure 6.9). As constant personal protection, such as wearing masks and isolation

from the infected individuals, is followed throughout the course of the epidem-

ic, the recovered population increases till it reaches a steady state (Figure 6.10).

The population of both bacteria in environment and organism initially decreases,

but eventually reaches a stable count (Figures 6.11 and 6.12).

• Strategy 2 (u1(t) , 0,u2(t) = 0,u3(t) = 0)
Time-dependent personal protection u1(t) only: As we apply a time-

dependent control u1(t) in the absence of u2(t) and u3(t), the susceptible pop-

ulation decreases slightly for the first 2-3 days then increases eventually as the

epidemic progresses. The recovered population also increases throughout the

course of disease. The bacteria population reduces till it reaches a stable count.

After employing this strategy, the infected population peaks within the first 2-3

days, which is still a much lower peak as compared to the one observed in S-

trategy 1. Moreover, the number of infected individuals eventually drops below

initial number of infected individuals. In contrast, while the infection count in

Strategy 1 decreases after 15 days, it still remains higher than the initial number

of infected individuals. Conclusively, we can say that a time-dependent control

yields better results than a constant control.

• Strategy 3 (u1(t) = 0.42,u2(t) , 0,u3(t) = 0)
Constant personal protection u1 combined with time-dependent spread of
awareness on cleanliness u2(t): In this strategy, a constant personal protection

control, u1(t) = 0.42, along with a time-dependent control u2(t), which focus-
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es on the spread of awareness regarding cleanliness, have been used to reduce

the objective functional J(u), while the control u3(t) based on hygiene condi-

tions has been set to zero. The susceptible population reduces slightly and the

infected population increases. While this combination of controls is applied, the

recovered population increases and the amount of bacteria in environment and

organism reduces.

• Strategy 4 (u1(t) = 0.42,u2(t) = 0,u3(t) , 0)
Constant personal protection u1 combined with time-dependent hygiene
practices u3(t): Similar to Strategy 3, in this strategy, we study the effects of

a constant personal protection control, u1(t) = 0.42, in the absence of u2(t) but

in the presence of a time-dependent control u3(t), aiming at reducing the rate of

contact between susceptible and bacteria in our surroundings by following some

basic hygiene practices, such as proper sanitation in kitchens. The number of

susceptible individuals decreases, while the number of infected individuals in-

creases over time, eventually reaching a steady state. Meanwhile, the number of

recovered individuals also increases. The application of this strategy leads to a

reduction in the count of both bacteria in environment and bacteria in organisms.

While this reduction is noticeable, the bacterial count observed under this strat-

egy is still higher than the count observed when Strategy 3 is implemented. This

suggests that although Strategy 4 is effective in decreasing bacteria around us,

Strategy 3 still results in more reduction overall.

• Strategy 5 (u1(t) = 0.42,u2(t) = 0.25,u3(t) = 0.31)
Constant personal protection, cleanliness and hygiene practices: This strat-

egy employs all the three controls, that is, u1, u2 and u3, simultaneously at a

constant rate of 0.42, 0.25 and 0.31, respectively. This results in an increase

in the recovered population and a decrease in the bacteria count. Moreover, it is

interesting to note that, even though all the three controls are applied in this strat-

egy, still it gives far worse results than Strategy 2, where only a time-dependent

control u1(t) is applied. The susceptible individuals are significantly lower and

infected individuals are higher in this case as compared to those observed under

Strategy 2.

• Strategy 6 (u1(t) = 0.42,u2(t) , 0,u3(t) , 0)
Constant personal protection u1 with time-dependent controls u2(t) and

29
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u3(t), regarding cleanliness and hygiene practices: Taking a constant control

u1 = 0.42 and time-dependent controls u2(t) and u3(t), increases the number of

recovered individuals and decreases the bacteria count over a span of 200 days.

Compared to Strategy 2, the number of infected individuals is lesser for approxi-

mately 20 days in this case. After this period, the number of infected individuals

gradually increases till it reaches a steady state. Additionally, this number is way

lesser than the case when constant u1, u2 and u3 are applied (Strategy 5).

• Strategy 7 (u1(t) , 0,u2(t) , 0,u3(t) , 0)
Time-dependent personal protection, cleanliness and hygiene practices: Ap-

plying all three time-dependent controls u1(t), u2(t) and u3(t), simultaneously,

increases the susceptible population and reduces the infected population signifi-

cantly. In fact, the number of susceptible individuals are the most and the number

of infected individuals are the least in this case as compared to all the above s-

trategies. The recovered population decreases in this case, but this is because the

population of both bacteria in environment and bacteria in organisms reduces

drastically, thereby effectively lessening the spread of the disease. Thus we can

say that employing three time-dependent controls reduces the disease burden

notably.

Table 6.1 provides a comparative analysis of various control strategies in terms

of their implementation cost (unit), the maximum number of individuals infected at

any time during the disease propagation period (Imax), and the number of infected

individuals at the end of 200 days (Iend), for the fractional order α = 0.7. The results

clearly show that strategies employing time-dependent controls lead to lower values

of both the cost functional and the number of infected individuals, compared to those

using constant controls. Among all the strategies analyzed, Strategy 7 proves to be

the most effective approach by achieving the lowest implementation cost, the smallest

peak infection level, and the minimum number of infections at the end of the 200-day

period. This highlights the effectiveness of optimal, time-dependent control measures

in mitigating disease spread while minimizing the expenditure cost.
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Table 6.1: Values of cost function (unit), maximum number of infected individuals per

day (Imax), and the number of infected individuals in the end (Iend), for α = 0.7.

Cost (unit) Imax Iend

Strategy 1 9340.8 47.2841 46.8648

Strategy 2 5462.1 33.8916 23.9285

Strategy 3 8637.5 44.5642 44.5642

Strategy 4 4537.9 45.3937 45.3937

Strategy 5 9038.1 45.6716 45.6716

Strategy 6 7942.4 42.1036 42.1036

Strategy 7 1872.5 30.0000 4.7623

6.10 Conclusion
This chapter studies the impact of household waste on human health, highlighting

how uncollected waste fosters harmful bacteria that spread diseases and pose serious

environmental and public health risks. This scenario is modeled in this chapter for

which a Caputo type fractional order SIR model is developed with the inclusion of two

types of bacteria class: Bacteria in environment (Be) and Bacteria in organism (Bo).

Further, in the analysis of this model we have first found the region of attractor,

in which the solution remains bounded. The existence and uniqueness of the solution

of the model (6.1) has been discussed using fixed point theorems and Banach contrac-

tion principle. The basic reproduction number R0 is calculated with the help of next

generation approach and its sensitivity analysis is performed using the normalized for-

ward sensitivity index. The sensitivity analysis displays that the the growth rate (Λ),

the virus transmission rate from susceptible to infected (β ), level of protection (ρ)

and death rate (µ) are highly sensitive parameters. These factors can be controlled

significantly by some appropriate steps. Additionally, the stability analysis in light of

Ulam-Hyers and generalized Ulam-Hyers criteria is discussed.

Moreover, we have formulated an optimal control problem (OCP) (6.11) corre-

sponding to our vector borne disease model (6.1). In this OCP, we have considered

three time-dependent controls u1(t),u2(t) and u3(t). All the controls are focused on

reducing the transmission rate as discussed in Section 6.7. Existence results and char-

acterization of optimal controls are performed with the help of Pontryagin’s maximum

principle.

2

4

4
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Furthermore, in numerical analysis, we have plotted the time series plot, for 200

days, of each sub-population with different fractional order α in Figures 6.3, 6.4, 6.5,

6.6 and 6.7. These graphical representations reveal a significant pattern: as the frac-

tional order α approaches one, the time required for each sub-population to settle into

its steady state decreases, indicating a faster convergence. However, despite this varia-

tion in convergence speed, the fundamental stability characteristics of the equilibrium

points remain unchanged. This means that varying α does not affect the stability na-

ture; rather, it only influences how quickly the system reaches its equilibrium. This

highlights the role of fractional-order derivatives in capturing memory effect while

maintaining the overall stability properties of the system.

The numerical simulation of the optimal control problem is also performed. To

study the varying impacts of different control measures on the dynamics of the epi-

demic, we have taken into account different strategies, as illustrated in Figures 6.8,

6.9, 6.10, 6.11 and 6.12, evaluated the costs corresponding to each strategy along with

the maximum number of infected individuals per day and the number of infected indi-

viduals in the end in Table 6.1. Among all the strategies, Strategy 7, which employs

time-dependent controls for personal protection, cleanliness, and hygiene practices,

proves to be the most effective in reducing the infected population and bacterial counts,

leading to a significant reduction in the disease burden as well as its implementation

cost. In contrast, Strategy 5, despite incorporating all three controls, yields relatively

poor results when compared to Strategy 2, which relies on time-dependent person-

al protection alone. This suggests that a time-dependent approach, particularly when

focused on personal protection and hygiene, is more efficient than constant controls.

Strategies that combine time-dependent controls, especially with attention to cleanli-

ness and hygiene (as seen in Strategies 6 and 7), provide good outcomes in controlling

the spread of the disease and minimizing the cost of implementation of these strategies.

Thus, this study presents a flexible vector-borne SIR model that can be adapted

to real-world situations by incorporating additional parameters or compartments. Giv-

en the persistent challenge of managing household waste and production of hazardous

bacteria, the results of this chapter provide valuable insights into cost-effective and

impactful disease control strategies. Policy makers should focus on spreading aware-

ness about self protection, cleanliness and hygiene from time-to-time so as to minimize

the disease burden. This study serves as a crucial step towards minimizing both eco-

8
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nomic burden and public health risk, ultimately helping to create a stronger and more

adaptable healthcare system.
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Chapter 7

Conclusion, Future scope and Social
Impact

7.1 Conclusion
The aim of this chapter is to present a concluding remarks to our thesis and illustrate

some of the prospects that define our current and future endeavours in scientific re-

search.

This thesis has focused on the development and analysis of several fractional-

order epidemic models that integrate real-world complexities such as vaccination s-

trategies, behavioural responses, psychological effects, environmental factors, and op-

timal control measures. By combining mathematical theory with numerical simula-

tions and policy-oriented insights, this work has aimed to contribute both to the ad-

vancement of fractional calculus in epidemiology and to the design of effective public

health strategies.

The thesis began with a discussion of vaccination strategies adopted by five high-

ly affected countries during the COVID-19 pandemic: the USA, India, Brazil, France,

and the UK. This comparative study revealed how population structure, median age,

immunity, and healthcare capacity shaped vaccination priorities. For example, coun-

tries with older populations such as France and the UK focused heavily on elderly

groups, while India, with a much younger population, initially targeted frontline work-

ers and adults over 45. The analysis showed that median age played an important role

in determining infection spread and mortality, and that vaccination strategies had to be

197
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adapted according to demographic realities. This introductory study provided useful

context and motivation for the mathematical models developed in later chapters.

The next contribution was the development of a fractional-order SIS model with

fear effect and preventive measures. By incorporating behavioral responses such as

fear and protection, the model showed how psychological and social factors can signifi-

cantly influence epidemic outcomes. Numerical simulations confirmed that increasing

the level of fear or the adoption of preventive measures reduces infection levels and

slows disease spread. This result highlights the importance of considering human be-

havior in disease modeling, as public fear and awareness campaigns can play a central

role in controlling epidemics.

Building on this, the thesis proposed a fractional-order SV IR model that distin-

guished between partially vaccinated and fully vaccinated individuals. This extension

was motivated by real-world vaccination programs where not everyone receives full

protection. The analysis demonstrated that while partial vaccination reduces infection,

it is not sufficient to control the epidemic. In contrast, full vaccination significantly

lowers disease prevalence and increases recovery, proving more cost-effective and im-

pactful. This chapter underlined the need for health authorities to promote full vaccina-

tion coverage rather than relying on incomplete vaccination, which may not adequately

reduce the epidemic burden.

The third mathematical model was a fractional-order SEIQR system, which incor-

porated both quarantined individuals and psychological effects on susceptibles. This

framework allowed the study of how quarantine policies and information-driven behav-

ior shape epidemic dynamics. The findings showed that timely quarantine of infected

individuals, combined with behavioral changes through information campaigns, ef-

fectively reduces the number of infections. Moreover, the incorporation of memory

effects through fractional calculus demonstrated how past experiences and responses

influence present outcomes. An optimal control problem was also formulated, show-

ing that information-based interventions are both effective and economical in the early

phase of an outbreak.

The thesis then turned to environmental factors by proposing a fractional-order

SPIR model with pollution effects. This model captured how environmental pollu-

tion can contribute to disease transmission, with some newborns entering a pollution-

affected compartment. The analysis confirmed that pollution intensifies epidemic

spread and that controlling transmission in pollution-affected groups is crucial. Op-
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timal control simulations suggested that dual interventions - targeting both susceptible

and pollution-affected groups - yield the most effective results. The study emphasized

the importance of considering environmental health in epidemic preparedness, as pol-

lution can exacerbate disease risks.

Finally, a fractional-order SIR model with bacterial classes was developed to s-

tudy the impact of uncollected household waste. Two bacterial compartments, envi-

ronmental and organism-based, were introduced to capture the role of harmful bacteria

in disease spread. The results showed that poor waste management can fuel epidemics,

but appropriate controls such as cleanliness, hygiene, and personal protection can sig-

nificantly reduce infection and bacterial counts. Importantly, time-dependent strategies

focusing on awareness and hygiene were shown to be more effective than constant in-

terventions. This chapter demonstrated the close link between public health, waste

management, and epidemic control.

Overall, the thesis makes several contributions. First, it shows that fractional

calculus is a versatile and effective framework for modeling infectious diseases, as it

captures memory effects that integer-order models overlook. Second, it highlights the

role of non-biological factors - such as fear, behavior, vaccination strategy, pollution,

and waste management - in shaping epidemic outcomes. Third, it demonstrates the im-

portance of full vaccination, timely quarantine, and environmental controls as effective

strategies to reduce disease burden.

The findings have practical implications for policymakers, healthcare profession-

als, and environmental authorities. Epidemic control cannot rely solely on medical in-

terventions but must also consider behavioral responses, demographic structures, and

environmental conditions. Mathematical models, especially those enriched with frac-

tional dynamics, can serve as valuable tools to guide such decisions.

In conclusion, this thesis provides both theoretical and applied insights into the

modeling of infectious diseases. By combining fractional calculus with realistic so-

cial, psychological, and environmental factors, it advances our understanding of epi-

demic dynamics and offers strategies for better management of future outbreaks. The

work also opens pathways for further research, such as extending models to include

age-structure, time delays, or network effects, and applying them to specific diseases

beyond COVID-19. Such efforts can help build more resilient public health systems

and prepare society for future epidemic challenges.
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7.2 Future Directions and Research Plans
The work presented in this thesis provides a comprehensive study of fractional-order

epidemic models incorporating vaccination strategies, fear effects, quarantine mea-

sures, environmental pollution, and waste-borne bacterial infections. While the cur-

rent work has generated meaningful theoretical and numerical results, it also serves as

a foundation for future research. Possible extensions of this work include the following

directions:

(i) The construction of more generalized epidemic models that include additional

compartments such as age groups, asymptomatic carriers, hospitalized individ-

uals, and spatial heterogeneity. Such extensions aim to capture more realistic

disease dynamics and to enable applications to region-specific case studies, par-

ticularly in densely populated countries like India.

(ii) The incorporation of stochastic effects into fractional-order epidemic models.

This approach allows the study of randomness in disease spread, especially dur-

ing the initial phase of outbreaks or in small populations. In addition, the in-

clusion of time delays (e.g., incubation periods, vaccination lags, and behavioral

response delays) is planned, as these are biologically and socially relevant.

(iii) The application of statistical and computational approaches for the estimation

of real data, which can subsequently be integrated into fractional-order model-

s. This step is crucial for validating theoretical results and demonstrating their

applicability in public health decision-making.

(iv) The coupling of epidemic models with environmental indicators such as air pol-

lution levels, waste management efficiency, and climate variables (temperature,

humidity, rainfall), thereby extending the study of pollution and waste-borne in-

fections.

(v) Collaboration with epidemiologists, environmental scientists, and public health

experts to apply these models in real-world policy contexts. The long-term ob-

jective is to develop decision-support systems based on fractional epidemic mod-

els, which may guide governments and health organizations in designing effec-

tive interventions during future epidemics.
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7.3 Social Impact
The findings of this thesis hold significant social relevance as they provide practical

insights for controlling and managing infectious diseases. By incorporating fractional

calculus into epidemic modeling, the research enhances the accuracy of predictions

and supports informed decision-making for public health authorities. The analysis of

vaccination strategies, quarantine measures, environmental influences, and waste man-

agement demonstrates that disease control is not only a medical challenge but also a

social responsibility requiring community participation. The emphasis on full vaccina-

tion, awareness campaigns, and hygienic practices highlights strategies that can reduce

infection risks and promote healthier societies. Ultimately, this work bridges mathe-

matical theory with public health practice, offering tools that can guide policymakers,

influence health education, and strengthen social resilience against future epidemics

and pandemics.

This thesis aligns with SDG 3 (Good Health and Well-Being) by providing math-

ematical models to predict and control infectious diseases. It contributes to SDG 9

(Industry, Innovation and Infrastructure) through innovative applications of fractional

calculus in epidemiology. By analyzing disease spread in urban contexts, it supports

SDG 11 (Sustainable Cities and Communities), offering insights for safer and more re-

silient cities. Finally, by incorporating environmental and pollution-related factors, it

connects with SDG 13 (Climate Action), emphasizing the link between environmental

health and epidemic risks.
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