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MODELING AND SIMULATION OF INFECTIOUS DISEASE
USING FRACTIONAL CALCULUS

Abhay Srivastava

ABSTRACT

In recent years, the world has faced a sharp rise in infectious diseases, which continue
to be a serious threat to public health. Despite progress in medical science, surveil-
lance systems, and control measures, outbreaks such as influenza, SARS, and most
recently COVID-19 have shown that our societies remain highly vulnerable. These
events have also revealed some of the limitations of the classical models used to study
and predict the spread of infections. In particular, standard models often ignore mem-
ory effects, individual behaviour, and environmental influences. To overcome these
gaps, this thesis applies fractional calculus in the modeling and simulation of infec-
tious diseases. Fractional-order models have the advantage of incorporating memory
and history, which makes them more realistic for studying epidemics where past expo-
sure, immunity, and behavioural changes play an important role.

The work begins with a study of vaccination strategies followed in five countries
that were badly affected during the first half of 2022: the USA, India, Brazil, France,
and the UK. A detailed comparison shows that most countries gave priority first to
frontline workers and health professionals, and then to elderly or immunocompromised
people. The main difference was how countries divided the age groups for priority. By
comparing these strategies with confirmed cases and deaths per population, as well as
with population density and median age, the study highlights how vaccine distribution
policies must be designed carefully to suit the demographics of each country.

Motivated by these findings, different fractional-order models are developed in
this thesis. The first is an SIS model with Beddington-De Angelis incidence, used to
capture the effect of fear-driven behaviour. When people become afraid of infection,
they may self-isolate or reduce contact with others. Such actions can strongly influence
disease spread, and fractional calculus is especially suitable to model this because fear
and behaviour are shaped by past experiences.

A second contribution is an SVIR model that divide vaccinated people into two
groups: partially vaccinated (those who did not complete the prescribed course of
the doses) and fully vaccinated (those who completed the vaccination schedule and

followed health guidelines). This distinction is important, as many people worldwide
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showed hesitancy in taking vaccines, often due to doubts about safety or mistrust of
governments. The model allows us to study how partial vaccination affects recovery
compared with full vaccination, giving a clearer picture of real vaccination outcomes.

The thesis also extends the SE/QR model by including two realistic features: psy-
chological effects during transmission (using Monod-Haldane incidence) and a limited
quarantine capacity (Holling type-III function). These changes reflect how quarantine
in practice cannot be increased indefinitely and is often constrained by resources. An
associated fractional optimal control problem is studied using Pontryagin’s principle,
showing how time-dependent controls can be used to reduce infections at minimum
cost.

Beyond vaccination and quarantine, the thesis considers environmental effects. A
Susceptible-Pollution affected-Infected-Recovered (SPIR) model is proposed to study
how exposure to pollutants weakens immunity and increases vulnerability to infec-
tions. This model even accounts for prenatal exposure in newborns, reflecting the
long-term consequences of pollution. A fractional optimal control problem with two
controls is solved to examine how information campaigns and other interventions can
help reduce infections in polluted environments.

Another area studied is the role of bacteria. Due to rising household waste and
urbanization, bacterial populations in the environment are growing, leading to more
bacterial and vector-borne diseases. To address this, a fractional S/R model with bac-
teria in the environment and in organisms is developed. An optimal control problem
with three controls is analyzed to show how disease transmission can be reduced effi-
ciently.

Across all these models, the unifying theme is the use of fractional-order sys-
tems. By including memory, they allow us to model more realistic epidemic be-
haviours, whether due to human psychology, environmental stress, or bacterial growth.
Numerical simulations are carried out using the Adams-Bashforth-Moulton predictor-
corrector method, which validates the theoretical results and demonstrates how the
models behave under different conditions.

In summary, this thesis presents a set of new fractional-order models that bring
together vaccination strategies, fear and behaviour, quarantine measures, environmen-
tal pollution, and bacterial effects in infectious disease dynamics. The results show
that fractional models are not only mathematically richer but also practically more
meaningful, as they reflect the role of memory and history in epidemic processes. By

combining theory, simulations, and control strategies, the thesis provides insights that
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can support better decision-making in managing infectious diseases and preparing for

future outbreaks.
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Chapter 1

Introduction

“The important thing is not to stop questioning. Curiosity has its own reason for existing."

-Albert Einstein.

1.1 Fractional Calculus

Fractional Calculus, a branch of Calculus dealing with integrals and derivatives of arbi-
trary orders (including complex orders), has been in the priority of the mathematicians
in last few decades [[132;148]]. Its applications can be seen in all the classical fields of
Mathematics and Physics like Epidemiology, Mathematical Biology, Fluid dynamics
etc. Actually, this subject translates the reality of nature in a more better and precise
way. In other words, fractional calculus is what nature understands and talking with
nature in this language is therefore efficient [104]. The conventional integer order
calculus being a part of it, where differintegration is an operator doing differentiation
and integration in general sense [42]. In this introductory chapter, the development of
fractional calculus is discussed, with several definitions of fractional-order operators
presented.

The idea of Fractional Calculus originates from a conversation between
L’Hospital and Leibniz in 1695 where L-Hospital asked Leibniz about the n'" deriva-
tive of a smooth function if n = % i.e. differentiation for a non-integer order, a far
aspect from classical calculus. In reply from Leibniz to L’Hospital, dated on Septem-

ber 30, 1695, Leibniz wrote: ‘This is an apparent paradox from which, one day, useful

1
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consequences will be drawn ...  [94] and here from, the origin of fractional calcu-
lus is accepted. Throughout the 18th and 19th centuries, several prominent scientists,
including Euler, Abel, Laplace, Grunwald-Letnikov, Riemann-Liouville, Weierstrass,
Reisz-Feller Mittag-Leffler, Caputo, Fabrizio, Atangana, Baleanu, and others made
substantial contribution to the advancement of fractional calculus. The very first con-
ference with proceedings on ‘Fractional calculus and its applications’ (Ed. Ross, Lect.
Notes Math. 1975, vol. 38) was held in 1974 at the University of New Haven, USA [1]].
The second conference with proceedings on ‘Fractional Calculus’ (Eds A. C. Mcbride
and G. F. Roach, Res. Notes Math, 1985 vol. 138). The guesswork of Leibniz (1695-
1697) and Euler (1730) start the journey of this field of mathematical analysis. The first
book devoted to fractional calculus was a joint contribution of two specialists Oldham
(in chemistry) and Spanier (in mathematics) [144] in 1974. The main focus of this
monograph is on the evaluation of the fractional integrals and derivatives of the con-
crete functions and to the applications of the diffusion problems. A book by Podlubny
[148]] with main focus on fractional differential equations published in 1999 is among
most recent work in fractional calculus. Other numerous works include the work done
by Hilfer [78]] in 2000 on fractional models of anomalous kinetics of complex pro-
cesses, monograph by Samko [[165] which is popular as ‘Encyclopedia of Fractional
Calculus’. This monograph first published in 1987 in Russian and later was translated
in English in 1993 which substantially deals with fractional differential equations.

In modeling physical and engineering processes fractional differential equations
are very useful. It is worth noting that in many cases the standard mathematical mod-
els incorporating integer order derivatives are not adequate. The beauty of this topic
is in its fractional derivatives and integrals, which are not just a local property but
also take into account history and locally dispersed effects. That is why this subject
better translates nature’s reality! Non-integer order fractional derivatives and integrals
can be utilized to explain processes with memory. If at each time ¢, the output of a
system depends only upon the input at time ¢, such system are called memory-less
systems while to find the current value of the output of the system need to remember
previous values of the input, non memory-less or memory systems. Fractional calculus
has expanded its wings even more in the modern age to embrace the complexities of
the real world. The first stage of the Memory Revolution in economics is associated
with the accomplishments of Granger [70], who received the ‘Nobel Memorial Prize in

Economic Sciences’; in 2003. He presented the importance of long range time depen-
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dence. Because an integer order dynamic system’s future states are dependent on the
current one (memory-less), but a fractional order system’s current state is dependent
on the whole history (long memory). This large memory is often used as a nameplate
for many fractional order systems

Besides FC, while looking another useful aspect to be analyzed in medical sci-
ences, we see various mathematical models have been modeled to investigate the dy-
namics of infectious diseases. In recent years, there is a great increase in trend of
application of mathematics in infectious diseases which resulted in the emergence of
mathematical epidemiology [19; 84; [180; [196]]. It is obvious that fractional calculus
presents the nature of resultant finer than integral order. It is important to mention that
fractional-order system possess the infinite memory which makes the discussion inter-
esting rather than to talk about integer order in new generation researches. Considering
these facts, inclusion of memory is important in epidemiology for infectious diseases
to improvise the proposed model. Therefore, fractional differential equations (FDEs)
in mathematical epidemiology has become a trend of research field in theoretical and
as well as in practical sense.

From the discussion mentioned above, it can be concluded that researchers now
prefer fractional-order system over the traditional differential equations models mainly

because of the following reasons:

* Fractional-order system allow greater degrees of freedom over its integer-order
counterpart due to the additional parameter that represents its order [[156; [177],
and are more suitable for those systems having higher-order dynamics and com-

plex nonlinear phenomena.

* Secondly and more importantly, fractional-order derivatives not only depend on
the local conditions but also on the previous history of the function and, there-
fore, the fractional derivative has become an efficient tool for those systems,
where consideration of memory or hereditary properties of the function is essen-

tial to represent the system [3]].

Before moving further, it is important to recall some basic mathematical tools
from fractional calculus that will be used throughout this work. These preliminaries

form the foundation for defining fractional derivatives and integrals.
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Definition 1.1.1 [/48] Euler’s gamma function
The Euler’s gamma function I'(x) is defined by

[(x) :/ rle7'dt, forx€C, Re(x)>0.
0

Definition 1.1.2 [[/48] Mittag-Leffler function

(i) The one parameter Mittag-Leffler function Ey(z) is defined by

= Z

E = ——— 7, €C, Re(a 0.
a(2) Z()F(oci+1) 5, @€C, Re(a)>

(ii) The two parameter Mittag-Leffler function Eaﬁ (z) is defined by

E =Y —— z a, BeC, R > 0.
a,p(2) ,;)F(aﬂrﬁ) z o, B e()
Definition 1.1.3 /33/] Riemann-Liouville fractional integral and derivative

The Riemann-Liouville fractional integral is given by

S50 = s [ = flad

and the Riemann-Liouville fractional derivative is defined as

a1

REDLf(x) = ' Tn—q)

/(x—u)”_q_lf(u)du, (n—1)<g<n,

a

where q is fractional order and f is a continuous function.

Definition 1.1.4 /33)] Caputo fractional derivative

Caputo fractional derivative was introduced by Michele Caputo in 1967. This deriva-
tive proved its identity due to two facts. One is the Caputo fractional derivative of a
constant function is equal to zero. Second, the initial conditions depend on integer-

order derivative. The Caputo factional derivative is given by:

X

1
cn4 - - _o\n—q—1n .
cDIf(x) F(n—q)/(x u) ff(u)du, >0, (n—1)<g<n.
For n =1 we have
X
1 _
¢pi (x):m/(x—u) 9 (u)du, q>0, 0<q<1.

a

q

where, (x —u)~? is called the singular kernel of the integral.
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Definition 1.1.5 [/5/] Laplace transform of Caputo fractional derivative
Let a piece-wise continuous function D{ f(t) in Caputo sense, then

n—1

LD (1)} =72 (f(1) = ¥ 577 'g®(0), 0<g <1
k=0

where, £ (D} f(t)) stands for the Laplace transform of f(t).

Definition 1.1.6 [/42] Generalized mean value theorem
Suppose that f(t) € Cla,b] and D} f(t) € C(a,b] with 0 < g < 1. Then we have Vt €
[a,b], there exists &(t) € [a,t], such that

1

f(t)=f(a)+ W(D?f(é))(f—a)a-

After recalling these definitions, some important results from fractional calculus,

which will be instrumental in the present study, are subsequently presented.
Lemma 1.1.7 [[/48] Let a¢; > 0, 0x > 0, and w € C. Define
¥(t) = 1% Egy gy (£wr™),

where Eq, o, (z) denotes the two-parameter Mittag-Leffler function with parameters

and oy . Then the Laplace transformation of y is given by

g1~

ZLy(t)] =

N sEFw

Lemma 1.1.8 [/48] Let o is and arbitrary real number. If o < 2, then there is a
constant Cg such that, for all w in the complex plane,

Ce

E < —
| al7a2(w>| — 1+|W|

Lemma 1.1.9 [I47] Let h(t) € R be a differentiable function, then

<p? h(t)—h*—h*lnh}gi)] < (1—;5)) DI(h(t)), i* €RT ¥V g€ (0,1).

Lemma 1.1.10 [[/09] Given a continuous function u(t) on the interval [ty,o) that sat-

isfies

{ WDfu(t) < —Au(r)+p, i

u(to) = uy,

where 0 < g < 1, (A,u) € R*> and A # 0, and to > 0 is the initial time. Then

u(t) < (um - %)Eq[—ut 1)) + %
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Lemma 1.1.11 [//4] For the Caputo fractional order system,
owDiy(t) = f(t,y) with y(to) =yo and 1o >0,

where g € (0,1] and f : [ty,0] x Q — R" is piecewise continuous on [ty,| x Q and
Q e R". If f(t,y) satisfies the Lipschitz condition in'y then there exist a unique solution

on [ty, o] X Q.
Theorem 1.1.12 [/48] Consider a fractional order non-autonomous system
fDix(1)=f(t,x), t>1 (1.2)

with initial condition Xy, where 0 < g <1, f: [tg,) x Q = R", Q € R". If f(t,x)
is a real-valued continuous function defined in the domain [ty,) X Q, satisfying the

locally Lipschitz condition with respect to x, i.e.,
|f(t.x1) — f(t.x2)| < K |x1 —x2],
where K is a positive constant, and
|f(t,x)] <M < oo, V(t,x) € [ty,) X Q,
then the above system has a unique solution in [ty,) X Q.

Lemma 1.1.13 [49] Assume that q € (0,1] and that both the function f(t) and its
fractional derivative D} f(t) belong to the metric space Cla,b). If ,D}f(t) > 0 for
all t € [a,b], then f(t) is monotonically increasing. Conversely, if ,D{ f(t) <0 for all
t € |a,b], then f(t) is monotonically decreasing.

The mathematical tools introduced above are useful in modeling real-world prob-
lems using fractional calculus. One of the most important areas where these tools have
found growing applications is epidemiology, which deals with the study of diseases in
populations. To illustrate how fractional models can be employed in this domain, a

brief overview of epidemiology is first presented.

1.2 Epidemiology: A brief overview

Epidemiology is the study of the distribution and patterns of disease in a defined popu-

lation and finding the causes of disease occurrence. The word epidemiology is derived
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from Greek word pi means ‘upon or among’, demos means ‘people’ and logos means
‘study’. Thus, epidemiology literally means “the study of what is upon the people". It
is a foundation of public health, based on which public decision makers can identify
risk factors for various diseases and employ preventive measures.

The major areas of epidemiology include finding the causes of diseases, how
diseases spread, investigating outbreaks, controlling diseases, forensic studies, envi-
ronmental factors, workplace - related health issues, tracking exposure to harmful sub-
stances, and studying the effects of treatments. To better understand how diseases
work, epidemiologists use knowledge from different fields - like biology to study life
processes, statistics to analyze data and draw conclusions, social sciences to under-
stand both direct and indirect causes, and engineering to measure exposure to risks.
Epidemiology is a term that is now commonly used to describe and explain the causes
of infectious diseases, epidemics, and diseases in general. Thus, the basis of this epi-

demiology is the way in which pattern of disease changes human functions.

1.2.1 Mathematical modeling of infectious diseases

Infectious diseases have always been a major threat to human health. It is well
known that several factors such as, the type of infectious agent, how it spreads, how
vulnerable people are, and what treatments are available - play a role in how these
diseases spread. An abstract representation of real-world problems in the framework
of mathematics is called a mathematical model and the process is called mathemati-
cal modeling. In epidemiology, mathematical modeling is used to investigate the de-
tail mechanisms of disease transmission, to predict disease outbreaks in future, and to
analyse effective control measures. Mathematical modeling has been widely utilised in
past decades to study various diseases, including dengue, HIV/AIDS, malaria, HBV,
SARS, Influenza, COVID-19 etc. Since the beginning of the twentieth century, re-
searchers have developed numerous mathematical models to explain the dynamics of
infectious diseases. Depending on the objective and perspective, the mathematical
models are formulated in different forms including differential equation models, dif-
ferintegral equation models, statistical models, models of difference equation etc., and
various techniques are employed for theoretical as well as numerical analyses. The
parameter values used basically for simulation purposes could be theoretical, or taken

from scientific researches, or extracted from statistical modeling.
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Epidemic models are broadly classified into two main types: stochastic models
and deterministic (or compartmental) models. Stochastic models account for random-
ness in one or more parameters over time, making them particularly useful for estimat-
ing the probability distribution of potential outcomes, especially in small populations
or early outbreak stages. In contrast, deterministic models, which are more commonly
used in this study, assume a fixed relationship between variables and are typically ap-
plied to large populations where random effects are negligible.

Mathematical models of diseases start from the population that can be divided
into a set of distinct compartments dependent upon experience with respect to the
relevant disease, which provide a significant contributions to Mathematics and public

health . The process of mathematical modeling is shown in the Figure as below:

[ Biological B [/ Mathematical

\ question / model /
N

/" Experiments and " Mathematical

‘ |———| Fitting to data | ( :

Ve S e
[ Parameter | | g Expected \‘
\_ estimation / ‘ outcomes

e \\
; Biological ) [ Simulations/Sen- '\~

interpretation/ / \\ sitivity analysis /

Figure 1.1: Mathematical modeling.

The journey of mathematical modeling of infectious diseases started long back
ago. Daniel Bernoulli was the first person who introduced mathematical modeling to
study the smallpox outbreak in 1760 [20]. Then the first contributions to the mod-
ern Mathematical Epidemiology were set up by P.D. En’ko from 1873 to 1894 [54].
Another revolutionary work is due to Sir Ronald Ross on malaria [[154]. He studied
malaria transmission dynamics between mosquitoes and humans and was awarded the

second Nobel Prize in Medicine. The most well-known and commonly used compart-
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mental model in mathematical epidemiology was introduced and studied by Kermack
and McKendrick [92]. They proposed a model by categorizing the population into the
S-I-R classes and assuming that the total population remains constant at all times in
which the infections occur by way of contact between susceptible and infected. Based
on these assumptions, they derived the following first-order coupled nonlinear differ-

ential equation describing the movement of the population in the three compartments

as follows:
ds
— = —fBSI
dt p
dl
— = BSI—vI
o BSI—.
dR /
ar !

where, B denotes the transmission rate and 7 is defined as the removal or recovery rate.
Further, in 1990, Anderson [11] and May proposed a model for infectious dis-
eases by introducing and incorporating the natural mortality rate for a fixed population

into the above defined Kermack and Mckendrick’s model by the following equations:

ds

- _ — BSJ
7 UN —uS—pBs
di
E_ﬁSI—(quS)I
dR

—— —=8I—uR

a oK

with the initial conditions S(0) = Sp, 1(0) = Iy and R(0) = Ry, where ¢ > 0. Through
the analysis of this model, they showed that the disease will be eliminated from the
society if Zy > 1.

After that, as time progress, this subject has also been enriched gradually. Due to
the advancement of scientific computing, mathematical epidemiology has taken a new
shape with more popularity and acceptability (Hethcote [[/6], Murray [138], Keeling
and Rohani [91]]). It has been possible for the researchers of interdisciplinary fields
to formulate a specific model to analyze the dynamical behaviors of various emerging
and re-emerging infectious diseases like malaria, dengue, cholera, HIV-AIDS, zika,
influenza, COVID-19, etc. [7; 164} 135167 [176].

Since infectious disease models aim to predict whether an outbreak will persist
or die out, the study of equilibrium states and stability conditions becomes essen-
tial. Accordingly, some fundamental notions from dynamical systems, to be employed

throughout the subsequent analysis, are first reviewed.
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Definition 1.2.1 Fractional-order Autonomus System

Consider the following fractional-order system

oDIx(t) = f(x),  x(0) =xo (1.3)

with0 < g<1,xeR"and f: E(CR") — R", it is said to be autonomus if f does not
depend on t explicitly. Here SD,q is the Caputo fractional derivative of order q.

Definition 1.2.2 Equilibrium Solution
An equilibrium solution (steady state solution or fixed point or critical point) of the

system (1.3)) is a solution X € E(C R") satisfying
f(x)=0.

Definition 1.2.3 Local Stability

An equilibrium solution X € E(C R") of (1.3)) is said to be locally stable if for each
€ > 0 there exists a & > 0 such that every solution x(t) of (1.3) with initial condition
x(0) =xp and ||xo —%|| < 8 = ||x(t) —X|| < € forallt >0, where ||.|| is the Euclidean

norm. If the equilibrium solution is not locally stable, it is said to be unstable.

Definition 1.2.4 Local Asymptotic Stability
An equilibrium solution x € E(C R") of (L.3) is said to be locally asymptotically
stable if it is locally stable and if there exists a ¢ > 0 such that

v~ <o = tim |lx(r) -5 =0.

Theorem 1.2.5 [131] (Local Asymptotic Stability Theorem) The system (1.3)) is said
to be locally asymptotically stable around the equilibrium point X € E(C R") if all

d
eigenvalues A; of the jacobian matrix J = H_f’ x € R" evaluated at the equilibrium
X
point X satisfy
T

|arg(li)|>q77 i:1,2,"~,l’l, (14)
ie.

T T

arg(A;) > % or arg() < —%’ i=1,2,--,n,

where arg(A;) is the principal value of argument of the eigenvalue A; of the Jacobian
matrix J. If arg(A;) does not satisfy (1.4), then the system is unstable around that

equilibrium point.
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The graphical representation of the above Theorem (I.2.5]) has been shown in Figure
It clearly shows that the stability region of fractional order system (Figure[I.2](a))
is greater than the stability region of the integer order system (Figure (b))

Im
Im A
F 9
Stable Region Stable Region |
qm \:
< 2 pRe 4 » Re
Unstable Unstable
Region Region
v v
(a)0<g< 1. (b)g=1.

Figure 1.2: Stability regions (shaded area) for (a) fractional order system and (b) inte-

ger order systems.

1.2.2 Modes of Transmission

There are several ways to transmit infection from natural reservoir to host. The
modes of transmission can be classified as: Direct transmission and Indirect transmis-
sion [130]. In direct transmission, an infectious disease is transferred by direct contact
of infected person through skin-to-skin contact, sexually transmitted disease (STD),
micro organisms in soil etc.. On other hand, droplet spreads the infection which is
produced by sneezing, coughing and talking. Transmission can also be made by carri-
ers indirectly by airborne transmission and vector transmission. The infectious agent
spreads from one place to another or on person to person by dust or micro organisms
presented in air. Mosquitoes, ticks and flea act as a vectors for carrying infected agent
to uninfected population. Dengue, Zika, malaria are some examples of vector trans-
mitted diseases.

Even though, the integer model could be suitable for modeling numerous disease
processes, but it may not be enough to explain the pandemic dynamics. In recent times,
epidemiological research has been diverted to fractional differential research due to its

ability to offer a convincing analysis of certain nonlinear dynamics. The study of
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fractional order differential equations in the past decades has received a significant
attention of researchers [69; 965 [149; [150; 1515 11645 1715 [198]].

1.3 Incidence and Treatment rates

In the infectious disease model, the incidence rate function has a significant impact on
the behaviour of the disease. The incidence function captures the interactions between
the healthy and infective ones. It gives the number of new cases per unit time coming
from the susceptible population as a result of this interaction. There are many forms
of incidence rate functions that are used in the epidemiological literature. The dynam-
ical behaviour of the system is significantly impacted by the choice of incidence rate
function. A brief review of the literature on incidence rate functions is presented here.

In the classical Kermack - McKendrick model [92], the monotonic and unsat-
urated incidence rate function BSI, B > 0 is proposed. It represents the bilinear (or
mass action) incidence rate. In the bilinear incidence rate, the number of infectives in-
creases linearly, which might be real for a small population of infected individuals, but
impractical for a large number of infectives. Therefore, several studies are devoted to
considering nonlinear incidence rate for disease transmission dynamics [[77; 117} (118].

The incidence rate function in saturated form was first introduced by Capasso
and Serio [32] in 1978. They observed population’s inhibitory behavior in interaction
in presence of disease during the Cholera epidemic in 1973. This bounded interaction
pattern inspired them to propose bounded incidence rate function g(7)S provided 0 <
g(I)<c#0,2(0)=0,g'(0) >0, g(I) < g'(0)I, while accounting for the psychological
effect on people’s behavioral responses [155]. Further, they studied an S/R model for

kSI

particular choice of incidence function Sg(1) = 1377, where k, ¢ > 0.

In 1986, Liu et al.[118] proposed a generalized form of incidence rate function

iNG
1+mil4>

saturated or unsaturated for different values of p,q. Here BI” indicates the force of

infection of the disease and ﬁ expresses the inhibitory effect of susceptible due to

a large number of infective cases. Ruan and Wang [155]] studied the existence and non-

p,q,B,m > 0. This function can be either monotonic or non-monotonic and

existence of limit cycle in a system choosing p = g = 2 and found Bogdanov-Takens
bifurcation. Gomes et al. [67] observed backward bifurcation in model system when
p=¢q = 1. In 2005, Xiao and Ruan [194] focused on the importance of inhibitory

effect in disease spread control and proposed the non-monotonic incidence rate taking
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BSI
> 14+mI??

measures the effect of behavioral change of population.

p=14g=21ie. also known as Monod-Haldane type incidence rate where m

In addition, some other types of nonlinear incidence rate functions are also estab-
lished in modeling. Further, Yuan and Li [199] proposed the density-dependent inci-
dence function as %, B,m, p,q > 0. The works of researchers [30;97;100] for
specific values of p,q, explore the significance of density-dependent incidence func-
tions. When the number of infective case is very high in population, the population
takes protection measures and avoid interactions as much as possible. Therefore the in-

. . Bst

cidence function would become Trastal’
DeAngelis function as Beddington [24] and DeAngelis [43] independently established

B,ai,ax > 0, also known as Beddington-

it in 1975 which is also studied later in epidemiology [1715;187].

Before 2004, it was common to consider linear treatment rates in the models.
In 2004, Wang and Ruan [186]] proposed that disease can be eradicated by using the
maximum treatment facility (constant). In 2006, Wang [185] modified the constant
treatment to account for increasing costs and medical resources. For this purpose a
linear function of infective is used when the number of infective cases is less than the
maximum treatment capacity; whereas, a constant treatment rate is used otherwise.
Analyzing this non-smooth treatment rate it is found that when the threshold quantity
(Rp) is less than unity, the disease would persist at the low level of treatment capacity
due to the occurrence of backward bifurcation and bi-stable endemic equilibria [80;
113].

Zhang and Liu [200] underlined that attending to a patient is delayed when the
number of infective cases exceeds the available treatment capacity. They proposed
a treatment function of the form —~—- where o represents the rate of treatment and

+ul
u represents the saturation parameter which may be related to the delay in providing

al
1

treatment. This function grows as the number of infectives grows and saturates to
the maximum treatment facility when the number of infectives becomes large. Other
forms of saturated functions with the same property can also be found in the literature
[97; 143 201], where treatment functions are dependent on the number of available
medical resources. Studying these saturated treatment functions it is observed that if
the value of treatment saturation constant parameter exceeds a certain level, then back-
ward bifurcation occurs and the disease persists when the basic reproduction number
is less than unity. The saturation parameter also affects the local stability of endemic

equilibrium. Upadhyay et al. [183] studied the effect of saturated treatment functions
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such as Holling type II and III. They discovered that employing Holling type II treat-
ment is the most effective way to prevent disease spread. Dubey et. al. [58]] investi-
gated the impact of saturated treatment function in Holling types III and IV. This thesis
investigates the effects of different incidence and treatment rates within the framework

of disease transmission dynamics.

1.4 Disease prevention and control

To control the spread of disease, there are several pharmaceutical and non-
pharmaceutical control measures such as testing, media awareness, vaccination, So-
cial distancing, quarantine, hygiene maintenance or cleanliness, fear effect etc. Ef-
fective vaccination and antiviral drugs are the two widely used pharmaceutical inter-
ventions that mitigate the disease outbreak. But sometimes the virus mutates, then
vaccines become less effective, and most vaccinated people may not acquire pro-
tection against new strain of the virus. In that case, antiviral drugs are important
in controlling the disease’s spread until an effective vaccine is available. The large-
scale use of antiviral drugs increases the economic and medical burden. In such sit-
uations, non-pharmaceutical interventions can effectively control the disease spread.
There are several non-pharmaceutical interventions, such as social distancing, wash-
ing hands, wearing face masks, etc. Without an effective vaccine or antiviral drugs,

non-pharmaceutical control are only alternative for controlling disease outbreak.

1.4.1 Awareness

Awareness plays a crucial role in educating people about the prevention of in-
fectious diseases and the necessary steps that can be taken to mitigate and control
outbreaks. In the case of newly emerging infectious diseases, authorities cannot rely
solely on existing vaccines and antiviral drugs, as their efficacy is often uncertain [60]].
Therefore, awareness campaigns serve as an essential component of disease control
strategies. Such awareness can be disseminated through newspapers, television, and
social media platforms, which act as important channels for communicating informa-
tion about outbreaks [[115]].

When an infectious disease emerges within a population, the timely dissemina-
tion of accurate information is vital to inform people about preventive measures. Media
alerts and public health messages guide individuals in reducing their risk of infection.

By raising awareness, individuals are encouraged to adopt protective behaviours that
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minimize the rate of disease transmission. Awareness programs are particularly valu-
able for vulnerable populations, as they provide guidance on preventive practices such
as regular hand sanitization, the use of face masks and gloves, vaccination, and quar-
antine measures. The adoption of such practices significantly reduces the impact of
illness and helps to control the spread of infection.

Moreover, awareness levels are strongly influenced by educational attainment.
Higher education not only enhances the understanding of health-related information
but also promotes the adoption of preventive practices. Thus, education plays a critical
role in strengthening awareness and enabling individuals to take proactive measures

against infectious diseases.

1.4.2 Fear effect

People generally get scared and try to make a significant distance from an in-
fected individual to prevent disease. When the infection increases, it increases the fear
level induced by the information about the disease’s fatality, which spreads through
media. Susceptible individuals try to remain isolated due to fear of contracting the
virus, leading to decrease in infection and birth rate. For example, in Hong Knong,
during the SARS outbreak, which started in November 2002, peaked on March 2003,
and was eliminated on June 2003, the birth rate had fallen from 8742 (in 2002) to 8436
(in 2003) and again increased to 8558 in 2004 [27;163]].

1.4.3 Testing and treatment

Testing is a critical public health strategy that enables authorities to detect and
isolate infected individuals from the population, thereby reducing contact with sus-
ceptible individuals and minimizing disease transmission. Several infectious diseases,
including tuberculosis and HIV/AIDS, underscore the importance of early testing as
a life-saving intervention. Although no definitive cure exists for HIV/AIDS, early de-
tection can prolong life expectancy and reduce the overall infection rate within the
population. In the case of tuberculosis, timely diagnosis and treatment allow infected
individuals to recover fully and lead normal lives. Furthermore, highly transmissible
diseases such as influenza and COVID-19 demonstrate the necessity of early testing in
combination with appropriate treatment. Such measures not only mitigate the severity
of illness but also play a vital role in limiting the spread of infection at the community

level.
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1.4.4 Vaccination

It is well known that vaccination is an indispensable tool for the control and
eradication of infectious diseases. Vaccines strengthen the immune system and pro-
tect individuals from life-threatening infections. They lower the risk of contracting
diseases, reduce severity, and support the health system in managing outbreaks. Vac-
cination programs are typically administered to susceptible populations to mitigate
disease transmission. Historical evidence demonstrates the success of vaccination in
preventing diseases such as smallpox, hepatitis B, diphtheria, measles, polio, cholera,
and, more recently, COVID-19. In many cases, a single vaccine dose is insufficient to
provide long-term protection, or vaccine-induced immunity diminishes over time; in
such instances, booster doses are required to sustain immunity.

During the COVID-19 pandemic, vaccination became the most effective and
widely adopted strategy for reducing infection rates, hospitalizations, and deaths
worldwide. To further understand the role and effectiveness of vaccination, a compre-
hensive study has been performed in the review article entitled ''Study on Vaccination
strategy employed by the five countries most affected by Covid-19'. This review
highlights how large-scale immunization programs, booster campaigns, and policy de-
cisions shaped the trajectory of the pandemic in the USA, India, Brazil, France, and

the UK - the five most affected countries during the first half of 2022.

* USA: The United States launched Operation Warp Speed to accelerate vaccine
development and delivery. Pfizer, Moderna, and Johnson & Johnson vaccines
were domestically produced. Vaccination was carried out in phases: Phase la
prioritized health care workers and long-term care residents; Phase 1b included
frontline essential workers and people aged 75+; Phase 1c covered adults aged
65 - 74 and people with high-risk conditions; and Phase 2 opened vaccination to

all adults aged 16+.

* India: India relied on indigenous production (Covishield and Covaxin) to vac-
cinate its large population. The first phase (January 2021) prioritized health
care workers (HCWs) and frontline workers (FLWs). Phase II (March 2021) ex-
tended to people aged 45+ and those with comorbidities. Phase III (May 2021)
expanded coverage to all adults above 18. The Government of India established
public vaccination centers (free) and permitted private centers at regulated costs

to accelerate nationwide coverage.
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* Brazil: Brazil adopted a four-phase strategy defined by its Health Ministry.
Phase 1 prioritized indigenous groups, health professionals, and people aged
75+. Phase 2 included people aged 60 - 74. Phase 3 focused on individuals
with severe health conditions. Phase 4 covered teachers, security forces, and
prison staff before opening to the wider population. Vaccine supply constraints,
however, slowed progress, as Brazil depended on imports (AstraZeneca, Covax
Facility, and J&J).

* France: France planned vaccination in five phases. Phase 1 (December 2020-
January 2021) targeted nursing home residents and staff over 50. Phase 2 ex-
tended to all individuals over 75 and then those aged 65 - 74. Phase 3 (Spring
2021) prioritized adults aged 50 - 64, people with comorbidities, and health pro-
fessionals in high-risk settings. Phase 4 opened vaccination to adults in essential
services and high-exposure occupations. Phase 5 extended to the entire adult
population. France’s dependence on imported vaccines caused delays in reach-

ing later phases.

* UK: The UK followed recommendations from the Joint Committee on Vacci-
nation and Immunisation (JCVI). The first phase prioritized elderly individuals,
care home residents, health care staff, and people with high clinical risk. Age-
based prioritisation was the main criterion, with vaccination rolled out in de-
scending order of age. Phase 2 (from February 2021) continued with age-based
groups until all adults were covered. Occupation-based prioritisation was not
formally adopted, which led to criticism, although JCVI defended age as the
most effective risk-based criterion. Pfizer-BioNTech and AstraZeneca were the

primary vaccines used.

The comparative review makes it clear that while vaccination was universally acknowl-
edged as the most effective preventive tool against COVID-19, the prioritisation strate-
gies varied significantly across countries depending on population structure, vaccine
availability, and health infrastructure. A common pattern was the prioritisation of
frontline workers and elderly populations, yet differences in the categorization of age
groups and occupational risks directly shaped outcomes in terms of transmission con-
trol and mortality reduction.

From a broader perspective, this study also highlights the importance of country-

specific vaccination policies. Nations with younger populations, like India and Brazil,
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faced challenges of vaccinating large cohorts rapidly, while countries with older popu-
lations, like France and the UK, emphasized early protection of the elderly to minimize
fatalities. Moreover, domestic vaccine production capacity played a decisive role: the
USA and India benefited from self-sufficiency, whereas Brazil and France were heavily
dependent on external suppliers, slowing their rollouts.

In the context of this thesis, the findings from the review article highlight that
vaccination not only reduces disease transmission and mortality but also interacts with
demographic and infrastructural factors, thereby serving as a central pillar of disease
prevention and control strategies. Building on these insights, the challenges and prob-
lem areas identified in the review will be further examined through the development
and analysis of mathematical models presented in the subsequent chapters of this the-

Sis.

1.5 Mathematical Preliminaries and Methodology

In this section, some basic definitions and theorems on fractional-order systems are
presented, along with mathematical tools from recent literature, that will be of interest

to the whole thesis.

Definition 1.5.1 Linearization
For the system (1.3), we assume f € C'(E) and ¥ is an equilibrium point. Then the

linarization of (C)Df] = f(x), x & R"at the equilibrium x € E can be expressed as
oDIX (1) =JX (1),

where the Jacobian matrix or variational matrix

on an . of
dx; dxy oxy,
on on  op
J— Jx;  0x 0x,
U Iy

dx; dxy 0x, / —z
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is evaluated at ¥ € E(C R") and

X1

X2

Xn

Theorem 1.5.2 [4] Routh-Hurwitz criteria for fractional order system
Let P(A) = 0 be a characteristic equation of the jacobian matrix J = 3—{:, x € R" of the
fractional order system (1.3)), where

PA)=A"+a A" o a, A +ay, (1.5)

with real coefficients a;, i = 1,2,...,n. The conditions in which all the roots of (L.5)

will satisfy
qr
2 )

are generally known as fractional order Routh-Hurwitz conditions. Following are the

larg(A;)| > i=1,2,...,n, 0<g<l, (1.6)

fractional order Routh-Hurwitz criteria for different n € N for which (1.6)) is satisfied:
e n=1:a; >0.
*n=2

(i) D(P) >0, a; >0, a» > 0.

)
tan~! (—M)‘ > X where 0<g<1.

ai

(ii) D(P) <0, a; <0, and

e n—=23:

(i) D(P) >0, a; >0, a3z >0, and aja, —az > 0.
(ii) D(P) <0, a; >0, a, >0, a3 >0, and0 < g < 3.

(iii) D(P) <0, a; >0, a, >0, ajay =a3, and0 < g < 1.
Where D(P) is the discriminant for the polynomial P(1).

Lemma 1.5.3 [|/139] Let P # ¢ be a subset of Banach space which is closed, convex
and bounded. Let the two functions Ty, T, be such that

(i) Tiwy+ Towy € P whenever wi,wy € P,

(ii) T, is compact and continuous, and
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(iii) Ty is contraction.
Then operator equations Tyw + Tow = w, for w € P, has at least one solution.

Lemma 1.5.4 [82/] Generalized LaSalle’s Invariance Principle
Suppose A C R" is a bounded closed set. Every solution of (1.3) starts from A and
remains in A for all time if there exists a Lyapunov function V(x) : A — R" with con-

tinuous first order partial derivatives satisfying the following condition:
¢Dlv <o, Vg € (0,1]. (1.7)

Let Z={x € A| §D{V = 0} be the set and L is the largest invariant subset of Z. Then
every solution x(t) € R" originating in A tends to L as t — oo and eventually becomes

globally stable in A. Particularly, when L = {0}, then x — 0 as t — oo

Definition 1.5.5 [/68] Bifurcation

The qualitative behavior of a dynamical system changes suddenly when parameter
values change. This phenomenon is known as bifurcation. Bifurcation may alter
equilibrium points, stability, or periodic orbits. The parameter values at which
bifurcations occur are called bifurcation points. Here, different types of bifurcations

are discussed.

Saddle-node bifurcation
This basic mechanism is responsible for the creation or destruction of equilibrium
points for any dynamical system. In this bifurcation, two equilibrium points, out of
which one is a saddle point, and another is a stable node, collide at the bifurcating

point and annihilate each other.

Transcritical bifurcation
In this bifurcation, two equilibria of the system collide and interchange their stability.
In this scenario, one equilibrium point becomes stable from unstable, and another
one becomes unstable from stable, as the parameter passes through its critical value.

However, in this case, no equilibrium point is created or vanished.

Hopf bifurcation
In this bifurcation, an equilibrium point losses its stability, and a limit cycle is cre-

ated at the critical value of the bifurcation parameter. In this case, a pair of purely
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imaginary eigenvalues crosses the imaginary axis from left to right half-plane. As a
result, a limit cycle exists in the system. There are mainly two types of Hopf bifurcation
depending on the nature of the limit cycle. When the limit cycle is orbitally stable, it is
called Supercritical Hopf bifurcation, and if the limit cycle is orbitally unstable, then
it is called Subcritical Hopf bifurcation.

Definition 1.5.6 [/30] Basic reproduction number

A major concern regarding any infectious disease is its potential to spread within a
population. The basic reproduction number, often denoted as % is a key concept
in epidemiology which is used to describe this potential of a certain disease would
spread in a population or not. In the context of compartmental models of disease
transmission, it represents the expected number of secondary infections produced by a
typical infected individual in a completely susceptible population. The next generation
matrix, introduced by Diekmann and Heesterbeek in 1990 [48|], technique is commonly
used to calculate the basic reproduction number. It is defined as the largest absolute
value of eigenvalue in the spectrum of next generation matrix.

There are several techniques in the literature to derive the next-generation matrix
from compartmental models. The working rule of the most popular approach [56] is
given below.

Let X e R" and Y € R™ be the n and m dimensional infected and non-infected

population compartments respectively. Consider the following fractional order system
DI(X;)=7;X,Y)-7;(X,Y), j=1,...,n,
and
DY) =4(X,Y), k=1,....m,

where 7 represents the rate of appearance of new infections in compartment j and
¥ denotes the transmission rate of individuals from compartment j because of death
or immunization. This method is based on linearization of the system at disease free

equilibrium (0,Yy) and the functions satisfy the following assumptions:

(Al) IfX; >0, then #;>0and ¥; >0, forall j=1,...,n, suggesting all transmission

rates are non-negative.

(A2) If X; =0, then V;(X,Y) = 0. It means that no transfer of individuals from an

empty compartment.
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(A3) For X; =0, Z;(X,Y) = 0. Suggests that new infections are not possible for

uninfected compartment.

(A4) IfX €Y, then F;(X,Y)=V;(X,Y) =0, forall j=1,...,n. Indicates a popula-

tion is infection free invariant. That means, there is no entry of infected people.

(A5) The infection free system
DY) = #(0,Y),

has unique fixed point or equilibrium point which is asymptotically stable.
If the above assumptions (A1 — AS) are satisfied by F;(X,Y) and V;(X,Y), then

it is possible to construct the n x n matrices F = [F ] and V = [V}| at disease free

equilibrium as follows:

_[97; _[97%

In addition, F is non-negative and V is invertible. Thus, the basic reproduction

number is given by spectral radius of matrix FV 1.

Definition 1.5.7 [58] Sensitivity analysis
Sensitivity analysis is a useful tool for assessing the influence of model parameters on
disease transmission and prevalence. It quantifies the variation of state variables in
response to changes in biological parameters. Since disease spread is closely linked
to the basic reproduction number, %, it is crucial to identify the parameters that
most strongly affect it. By evaluating the variation of %y with respect to different
model parameters, the normalized forward sensitivity index can be computed, thereby
identifying the parameters that play the most significant role in controlling disease
transmission.

The normalized forward sensitivity index of a variable z, which depends on a

parameter x, is defined as

dz x
Wi=—x-.
dx  z
e oz R0 X . iy
So, for Xy, the sensitivity index is W);% = 8_0 X T which shows how sensitive
X 0

X to the parameter x.

Definition 1.5.8 [25] Ulam-Hyers stability
The global stability of the fractional-order model is analyzed within the framework of
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the Ulam-Hyers stability criteria, following the approach in [83;|179|]. To this end, the

following inequality is introduced:
\DIM (1) — f(1,M(1))| <&, 1€][0,1). (1.8)
A function M° satisfies (1.8), if there exists x € Q such that:
*x()<e
« DIM°(t) = f(t,M°(t)) + x(1); t €[0,10).

A fractional order system is Ulam-Hyers stable if 3 a real number ¢ > 0 such that for
given € > 0 and for any solution M°(t) of equation (1.8)), there exists a unique solution
M(t) of corresponding model with

[M(2) =M (1)|| < e¢; 1 € [0,10].
Consider the inequality,
|DIM (1) — f(t,M(1))| < €6(r), forsome 6(t) € C([0,1];RT). (1.9)
A function M satisfies equation (1.9) iff there exists a function v(z) € Q such that
* V()] <eb(r)
« DIM°(t) = f(t,M°(t)) + v(t); t € [0,10].

Definition 1.5.9 [25|] The fractional order model is generalized Ulam-Hyers stable
with respect to function 0 (t) if there exists real number ¢ > 0 such that for given € >0
and for any solution M°(t) of equation (1.9), there exists a unique solution M(t) of

model equation with

M (1) —M°(2)|| < e¢6(1); 1 €[0,10].

1.6 Fractional order optimal control

The applications of Fractional ordered optimal control problem (FOCP) have grown
in recent decades. Agrawal [2]] explored fractional-order variational problems of the
Riemann-Liouville type in 2002 and developed a framework for studying fractional
optimal control problems (FOCP) and suggests a numerical method to solve FOCP

using Lagrange multiplier technique. Building on this framework, Ding studied the
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FOCP of the Caputo HIV model in 2012 and presented related numerical techniques
[S5]. Pontryagin’s principle is one of the most useful approaches to solve optimal con-
trol problem. There are several works where these methods are employed in Fractional
ordered optimal control problems [62;169].

Here a brief review of the mathematical formulation of Caputo fractional optimal
control model.

Let u = [u(t),uz(t),...,un(t)] € Z C R™ be the time-dependent control vari-

ables and U be the set of admissible controls of the dynamical system

‘Dix(t) = f(x(t),u(t)), x(0) =xo,

where °D{ denotes the Caputo fractional derivative of order 0 < g < 1.
The control u € %/ must be chosen for all # € [0,7] to minimize the objective

functional ¢, where Ty is the final time, which is defined by

S =0T + [ F (0 e,

where ®(x(7)) is the terminal cost and .% (x(¢),u(t)) is the running cost.
Step 1. Hamiltonian construction.

Introduce the adjoint (co-state) vector A(¢) and define the Hamiltonian as

H(x(t),u(t), A (1) = AT (1) f(x(2),u(t)) +F (x(1), u(t)),

where A7 stands for transpose of 7.
Step 2. Necessary conditions (Fractional Pontryagin’s Principle).
The following conditions must be satisfied for the optimal state trajectory x*(¢), opti-

mal control u*(¢), and adjoint A*:

LA (x(0),u(t), A (1)) < A(x" (1), (1), A (1))

d0(x)
2. o1,

+72(Tf) =0
ey T

3. DIAT (1) = %~

< with transversality conditions A (77) = 0.

x=x*

4. L

These four conditions are the necessary conditions for optimal control.
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1.7 Chapter-wise Overview of the Thesis

The thesis consists of seven chapters, including a concluding chapter on future scope,

followed by a bibliography. The organization of the thesis is as follows:

Chapter 1 presents an introduction and background literature relevant to the title
of the thesis. It provides a comprehensive overview of a fractional-order mathematical
model for analyzing the dynamics of infectious diseases, along with the fundamental
terminologies and key concepts associated with the study. The preliminary section
of this chapter includes essential definitions, theorems, and lemmas that form the
foundation for the subsequent work. In addition, the chapter offers a concise outline of
the overall structure of the thesis, summarizing the content of the following chapters.
Disease prevention and control measures, with particular emphasis on vaccination, are

also discussed.

The work reported in this chapter has been communicated in a research paper
entitled “Study on Vaccination Strategy Employed by the Five Countries Most
Affected by Covid-19”, which has been submitted for publication.

Chapter 2 focuses on the formulation and analysis of a fractional-order SIS
compartmental model that incorporates the influence of fear on disease dynamics. The
presence of fear induces behavioural changes such as reduced social interactions and
adoption of preventive measures, which significantly affect the transmission process.
To capture these effects, the model employs a Beddington-De Angelis type incidence
rate, which provides a realistic representation of interactions between susceptible
and infected individuals, as it accounts for inhibition measures adopted by both
groups. The chapter establishes fundamental mathematical properties of the system,
derives the basic reproduction number %, and examines the existence and stability
of both disease-free and endemic equilibria. Furthermore, numerical simulations are

presented to validate and illustrate the analytical results.

The work reported in this chapter has been communicated in the paper entitled
“A Study of Fractional Order SIS Model with Fear Effect and Beddington-De
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Angelis Incidence Rate” for publication.

Chapter 3 deals with the formulation and analysis of a fractional-order SVIR
model that incorporates different vaccination strategies. The model distinguishes
between partially and fully vaccinated individuals, thereby providing a more realistic
framework for studying the role of vaccination in disease dynamics. To reflect con-
straints such as limited medical resources and the possibility of disease reemergence,
a Holling type-III saturated treatment function is included. The chapter establishes
well-posedness of the system and examines the stability of both the disease-free and
endemic equilibria. Local stability is analyzed using the linearization method and
the Routh-Hurwitz criterion, while global stability is investigated through suitable
Lyapunov functions. In addition, numerical simulations are performed to validate
the analytical results. The quantification of vaccination effects demonstrates that full
vaccination leads to a higher proportion of recovered individuals compared to partial
vaccination, underscoring the importance of effective full vaccination strategies in

public health planning.

The work reported in this chapter has been published as ‘‘Stability Analysis and
Quantification of Effects of Partial and Full Vaccination Using Fractional Order
SVIR Model”, in Mathematical Medicine and Biology: A Journal of the IMA, (SCIE
Indexed), Impact Factor: 1.5, Oxford University Press (2025).

Chapter 4 presents a fractional-order SE/QR model that incorporates quarantine
measures and behavioural responses during an epidemic outbreak. To capture
psychological effects in disease transmission, the Monod-Haldane incidence rate is
adopted, while a Holling type-III saturated quarantine function is employed to reflect
the limitations of quarantine facilities arising from the unavailability of a sufficient
number of quarantine places. The system is formulated using Caputo fractional
derivatives, allowing the inclusion of memory effects in epidemic dynamics. The
chapter establishes the well-posedness of the model, ensuring nonnegativity and
boundedness of solutions, and identifies two possible equilibria: the disease-free
and endemic states. Stability analysis is carried out for both equilibria, where
local stability is studied using the linearization method and the Routh-Hurwitz

criterion, while global stability is investigated with the help of Lyapunov functions
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for fractional-order systems. The thresholds governing these stability behaviours,
including the basic reproduction number %, and its alternative .7, are derived
using the Next-Generation Matrix method. In addition, a fractional optimal control
problem is formulated using Pontryagin’s maximum principle to minimize disease
spread while balancing control costs, introducing a time-dependent control function
representing behavioural interventions. Numerical simulations using the Adams-

Bashforth-Moulton scheme are provided to illustrate and validate the analytical results.

The work reported in this chapter has been published as “Optimal Control of
a Fractional Order SE/QR Epidemic Model with Non-monotonic Incidence and
Quarantine Class”, in Computers in Biology and Medicine (SCIE Indexed, Impact
Factor: 6.3), Elsevier (2024).

Chapter 5 introduces a fractional-order SP/R model to study the impact of
environmental pollution on disease dynamics. The model developed in this chap-
ter accounts for the role of long-term exposure to polluted environments, which
increases susceptibility to infection, and incorporates prenatal exposure effects
through a Monod-Haldane incidence rate to capture psychological influences during
transmission. The system is formulated using Caputo fractional derivatives, and
its well-posedness is established by proving existence, uniqueness, positivity, and
boundedness of solutions. The chapter investigates the disease-free and endemic
equilibria, with stability analyzed using the basic reproduction number %, derived via
the Next-Generation Matrix method. Local stability is examined using the lineariza-
tion method and the Routh-Hurwitz criterion, while global stability is studied with
Lyapunov functions. The model also reveals the occurrence of a forward transcritical
bifurcation at %y = 1. Furthermore, a fractional optimal control problem is devel-
oped using Pontryagin’s maximum principle, introducing two non-pharmaceutical,
time-dependent control measures. Numerical simulations, carried out using the
Adams-Bashforth-Moulton scheme, support the theoretical findings and show that
the simultaneous implementation of both controls is most effective in flattening the

epidemic curve within a short time frame.

The work reported in this chapter has been communicated in the paper entitled

“Mathematical Modeling and Qualitative Analysis of a Fractional-Order SP/R
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Epidemic Model with Non-monotonic Incidences and Optimal Control” for

publication.

Chapter 6 develops a fractional-order SIR model to investigate the impact of
household waste on the spread of infectious diseases. The model incorporates two
bacterial populations, namely bacteria present in the environment (B,) and bacteria
within organisms (B,), to capture the dual role of pathogens in transmission. The
system is formulated using Caputo fractional derivatives, and its well-posedness is
established by proving existence and uniqueness through the Banach contraction
principle and Schaefer’s fixed point theorem. The basic reproduction number %
is derived, and a sensitivity analysis is carried out to identify the most influential
parameters affecting disease dynamics. Stability is further studied in the sense
of Ulam-Hyers criteria. In addition, an optimal control problem is formulated to
minimize the disease burden and associated costs, introducing three time-dependent
controls that target transmission reduction. The existence and characterization of these
controls are derived using Pontryagin’s maximum principle. Numerical simulations,
performed with the Adams-Bashforth-Moulton method, illustrate the effectiveness of
the proposed strategies and highlight cost-effective approaches to mitigating health

risks associated with household waste.

The work reported in this chapter has been communicated in the paper entitled
“Analysis of a Fractional Order SIR Model for Infectious Diseases Spread by
Household Waste with Optimal Control Strategies” for publication.

Chapter 7 presents a comprehensive summary of the work along with an outline
of the future scope and social impact of the research. The thesis concludes with a

bibliography and a list of the author’s publications.



Chapter 2

A study of Fractional order S/S model
with fear effect and Beddington-De

Angelis incidence rate

Many studies have demonstrated that, during epidemics, fear can significantly influ-
ence human behavior, often leading to a decline in birth rates. This chapter presents a
fractional-order SIS compartmental model that incorporates the effects of fear and em-
ploys a Beddington-De Angelis type incidence rate. This incidence function captures
the impact of preventive measures taken by both susceptible and infected individu-
als, thereby providing a more realistic representation of disease transmission dynam-
ics. Following the model formulation, fundamental properties such as positivity and
boundedness of solutions are established. The basic reproduction number, %, is then
computed, and the existence of an endemic equilibrium for %y > 1 is demonstrated.
Furthermore, the local stability of both the disease-free and endemic equilibria is an-
alyzed using the linearized system. Numerical simulations, conducted via the Adams-
Bashforth-Moulton Predictor-Corrector method, are provided to support the analytical

results.

2.1 Introduction

Infectious diseases continue to pose a significant threat to public health and human

lifestyles. Illnesses such as chickenpox, measles, cholera, tuberculosis, and influenza

29
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have far-reaching societal impacts due to their ability to spread rapidly through di-
rect contact or intermediary carriers. Because of this high transmissibility, outbreaks
can escalate into regional or even global epidemics in a short period. Consequently, re-
searchers from diverse disciplines are increasingly involved in understanding the trans-
mission dynamics of infectious diseases and developing strategies for their control.

Public awareness and behavioural responses to infectious disease outbreaks have
also intensified in recent times. The fear of infection often drives individuals to limit
social interactions, thereby influencing the spread of the disease. Such fear-induced
behaviour can result in self-isolation, reduced fertility rates, and changes in survival
outcomes. Furthermore, studies in pathology suggest that psychological stress, in-
cluding fear, can impair immune function, particularly the body’s capacity to produce
antibodies. Media coverage plays a pivotal role in amplifying this fear, as evidenced
during the SARS outbreak (November 2002 to June 2003), which coincided with a
noticeable drop in Hong Kong’s birth rate- from 8,742 births in 2002 to 8,436 in 2003
(225 27; 163]).

Based on these observations, a fractional-order SIS (Susceptible-Infected-
Susceptible) epidemic model is proposed, in which individuals who recover from the
infection can become susceptible again. The model incorporates fear-driven behav-
ioral changes that affect both susceptible and infected individuals. To more accurately
represent contact dynamics under such behavioral responses, a Beddington-De Angelis
type incidence function is employed, accounting for mutual interference and saturation
effects during disease transmission.

The chapter is organized as follows: Section [2.2] presents the assumptions and
mathematical formulation of the model. Sections and analyze the non-
negativity and boundedness of solutions, derive the basic reproduction number, and
examine the existence of equilibria. Section investigates the local stability of the
equilibrium points using linearization. Numerical simulations validating the theoreti-
cal results are provided in Section Finally, Section [2.”7|concludes the chapter with

a summary and potential directions for future research.

2.2 Formulation of fractional order epidemic model

This section develops a fractional-order SIS (Susceptible-Infected-Susceptible) epi-
demic model based on the Caputo derivative framework, incorporating both treatment

interventions and fear-driven behavioral changes. The total population is divided into
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two distinct and time-dependent compartments: the susceptible class, S(z), consisting
of individuals vulnerable to infection, and the infected class, I(¢), which includes indi-
viduals currently carrying and capable of transmitting the disease. The dynamics of the
epidemic are described using the following system of nonlinear fractional differential

equations:

A BSI

D¥S(t) = — I—usS
BSI 2.1
D¥I(t) = ———— — 11— d)I
subject to the conditions
S(0) = So > 0,1(0) = 1o >0, 2.2)

and the different model parameters are defined in Table 2.1

Table 2.1: Parameters of the model SIS.

Parameter Description

A Birth rate of susceptible population
Disease transmission rate

Level of fear

Preventive measures taken by susceptibles
Preventive measures taken by infectives
Natural death rate

Natural recovery rate

Recovery rate due to treatment

U T € E R D o™

Disease induced death rate

2.3 Non-negativity and Boundedness

To ensure biological relevance, the solutions of system must remain non-negative
and bounded over time. In this context, the feasible region is defined as Qt =
(S,1) € Q: 8,1 €RT, where RT denotes the set of non-negative real numbers. This
ensures that population variables retain meaningful interpretations within a biological

framework.
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Theorem 2.3.1 Every solution of the system (2.1)) remain non-negative and uniformly

bounded starting in Q.

Proof 2.3.2 Let the initial solution of the system be Iy, = (S, I,) € Q. It then follows
from system (2.1) that,

A
a —
D%S[5, —o = 1+51+(w+u)1 >0,
D1, o =0.

Using Lemmall.1.13| we have S(t),1(t) > 0 for any t > to. Therefore, the solution of
the system (2.1)) will remain in Q.
Again, consider the function N(t) = S(t) +1(t), then

DYN = D%S + D%]
< A—uN—dI
i.e. D°N+UN<A as I>0.

So, N(1) < (N(to) - ﬁ) Eol—p(t —10)]+4 = 2 a5t — oo.
Therefore, solutions of the system (2.1)) starting in the region Q" are always lying

in the region {(S,I) ceQ:0<S+I< %}

2.4 Basic Reproduction Number and Equilibria

It is straightforward to observe that the system (2.1]) admits a disease-free equilibrium
(DFE) given by Ey = Ey <ﬁ,0>, where the entire population is susceptible and no in-
fection is present. Our next objective is to determine the basic reproduction number,
denoted by %, which quantifies the expected number of secondary infections gener-
ated by a single infectious individual introduced into a fully susceptible population.
The value of % is a crucial threshold parameter for assessing the potential for disease
spread or elimination. We compute % using the next-generation matrix approach as

outlined in [47]]. To proceed, it is assumed that
DPX = 7 (X)— ¥ (X),

where X = (I)7 and .% (X) be the matrix of new infection term, ¥ (X) be the matrix of
outgoing terms. The Jacobian matrices F and V of .% (X) and 7 (X), respectively, are
given as:

BS(1+pS)
(14 pS+7yI)*

Y
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V=[y+utu+d.

The next generation matrix, at infection-free equilibrium Ej is,

Fv!= A .
(L+pA)(y+u+p+d)
Thus,
Ry = A .
(L+pA)(y+u+p+d)

In addition, it will be shown that the model (2.I)) admits an endemic equilibrium
when Zy > 1. Let E| = E; (S, 1) denote an endemic equilibrium such that S, > 0, I, >
0 and

A BS.I. B
1+61,  1+pS.+vl +(y+u) L — usS, =0,

(2.3)
WA
l—HliS*—H’I* —(y+u)li— (L+d) 1. =0,
It follows that,
5 — (V+u+p+d)(1+7vL)
C B (wtutp+dp
and /. can be obtained by solving the following equation:
A2+ AL +A)=0, (2.4)

where,

Ay =8 (d*p+d(—B—yu+pQutu+v)—uB+(y—p)(u+utv))),
Ay =d*p—d(B+yu+u—2up—py—pu)—u(B+(y+8—p)(L+utvy)),

Ao = (%o —1) (AP + ) (d+ p+u+ ).
(2.5

Thus, it can be observed that, A; and A; can be positive or negative but Ag > 0
for Zp > 1. So, according to Descarte’s rule of sign, the polynomial (2.4) will have
at least one positive root I, for Zy > 1. The present study focuses on the existence
of a unique positive equilibrium point. Consider % > 1, then the combinations of
signs of coefficients A; and A, that allow the existence of a unique positive root for the
polynomial are as follows:

(i) Ap<0and A; <0,
(i) Ap <0OandA; > 0.

Once the value of I is determined, the unique positive endemic equilibrium point
can be obtained as E| = E|(S,,1,).
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2.5 Stability Analysis

This section presents the stability analysis of the equilibrium points of the system.
Local stability determines whether small perturbations around an equilibrium point
will return to the equilibrium (stable) or move away from it (unstable). Let us as-
sume the subsequent coordinate transform S(¢) = S, (¢) +s(¢); I(¢t) = L.(¢) +i(t), where
(S«(2),1.(t)) denotes the equilibrium point of the model. The linearised system at any
steady state is given by

ODIS(I)__<(1+PS*+V1*)2+ )S_((1+51*)2+(1+p5*+y1*)2_(WM))L 2.6)
wrn  ( BLO+7L) BS.(1+pS.) '
o010 = (s e ) (s ps i~ w1

Applying the Laplace transform on both side of equation (2.6)), the reduced system

can be written in the following matrix form:

2501\ [ v
W)<$U@}>_(w®>’

where,
vi(s) = s*715(0), va(s) = s*11(0),
and
BL.(1+7L) SA BS.(1+pS.)
a J—
( ) (1+PS*+3/I*)2 +u (1—{-5]*)2 (1+pS*—|—]/I*)2 (W‘f‘bt)
VIs)=
BL(1+7L) a BS.(1+pS,)
“Oapsitny F \Uepsiaqmp WHutaTd)
(2.7)

In this case, the characteristic polynomial of system (2.1) is det(5/(s)), and the
characteristic matrix is 5/ (s). The distribution of eigenvalues of the characteristic poly-

nomial det(s/(s)) provides a means to analyze the local stability of the system (2.1)).

2.5.1 Local stability of disease-free equilibrium

This subsection establishes the local stability of the disease-free equilibrium

(DFE) point, Ey = Ej (%,O) , for which the characteristic matrix at the DFE is given

o IEA _
sT4u 5A+u pA (y+u)

v(s) = , 2.8)
0 5% <u§gA _ (1,/+u—|—u+d))
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or

s+ u SA+ pA —(y+u)
v(s) = HHPA . (2.9)

0  s*—(y+u+p+d) (% —1)

Since stability is determined by the eigenvalues of the characteristic matrix (2.9)),
we obtain two eigenvalues: @] = — and 0, = (Y +u+ u+d) (9?0 — 1). The disease-
free equilibrium is locally asymptotically stable if all eigenvalues are negative. In
particular, the second eigenvalue m, is negative when % < 1, indicating local stability,

and becomes positive when % > 1, leading to instability. Thus, the following theorem
holds.

Theorem 2.5.1 The disease-free equilibrium E is locally asymptotically stable if and
only if the threshold value X is less than one, otherwise unstable.
2.5.1.a Local stability of endemic equilibrium

This subsection examines the local stability of the endemic equilibrium, E;| =

E|(Sx,I.). The characteristic matrix s/(s) corresponding to equation (2.7) at E; is

given by:
BI*(1+YI*> oA ﬁS*O‘f’PS*)
a j—
. s (14 pS,+7L)? H (1+6L)2 " (1+pS,+71.)? (y+u)
BL.(1+ L) o ( BS.(1+pS.) )
- - - d
(14 pSs+7I.)? S (14 pS. +71.)° (y+u+u+d)

(2.10)

Let s* = A, then the characteristic equation corresponding to characteristic matrix

(2.10) is:

IZBySA 2ByA d( LB(Ly+1) 5 )_
LS+ 12(Ly+pS.+ 12 (Ly+pS.+ 12 “\(Ly+ps,+17 H
BApS:  Pups: LBSA LBA
(Ly+pSc+ 12 (Ly+pSi+1)?  (LS+1)2(Ly+pSc+1)* - (Ly+pS.+1)?
BAS. Bus. ( LB(Ly+1) )
- - A
Ly+pS.+ 12 (Ly+ps.+12 “\yrps, 2 TH

+ A2+ y(A+p)+2Au+u*=0
which can be simplified into the following polynomial form:

A2 —2A1A +Ag =0, (2.11)
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where
A B(S«(pSi+1)—L(Ly+1)) (d+2u+u+y)
b 2(Ly+pS.+1)2 2 ’
e B (I2y(d+u)+ L(d+u) — uS.(pSi+1)) LBSA(Ly+1)
°T (Ly+pS.+1) (1.5 + 1)2(Ly+pS.+1)2
+u(d+pu+u+y).

The eigenvalues are

Ma=A1+ \/A?—Ap.

The different values of A; and A, are depending on the coefficients A| and Ay.
Thus, the possibilities arises for which the eigenvalues will be negative and endemic
equilibrium will be locally stable, according to LemmalI.2.5] are given in the following

theorem:

Theorem 2.5.2 Consider the endemic equilibrium point E; = (S.,1.) of the system.
The local asymptotic stability of E| depends on the characteristic equation coefficients

Ao and Ay, and it is determined by the following conditions:
(i) IfA; <0and A% > Ag, then the equilibrium E\ is locally asymptotically stable.
(ii) If A1 > 0 and A% > Ao, then the equilibrium E| is unstable.
(iii) If Ay > 0 and A% < Ay, then the equilibrium E is locally asymptotically stable.
(iv) If A1 <0 and A% < Ay, then the equilibrium E\ is locally asymptotically stable.

(v) IfA =0and A% < Ay, then the equilibrium E\ is locally asymptotically stable.

2.6 Numerical Simulation and Discussion

In this section, numerical simulations are carried out using MATLAB 2012b to validate
the theoretical results, employing the set of parameter values listed in Table The
simulations utilize the fractional Adams-Bashforth-Moulton method, as described in
[S2], to solve the system of equations. For the initial conditions, the susceptible and
infected populations are taken as S(0) = 73 and 1(0) = 1, respectively. Based on the
parameter values provided in Table the coefficients of the polynomial equation
(2.4) are computed as follows:

Ay =—-2.0172x107%,  A; =—0.000377, Ag=0.00418.



2.6  Numerical Simulation and Discussion 37

Table 2.2: Parameter values for simulation.

Parameter Values
3
0.004
0.006
0.002
0.001
0.04
0.05
0.03
0.05

>

U ¥ € E R T o>

These values satisfy the necessary conditions for the existence of a unique, biologi-
cally feasible endemic equilibrium. Consequently, the system admits a single endemic
equilibrium point given by E* = (§*,I*) = (46.9357,10.4979), for which the basic
reproduction number is calculated as %y = 1.5345.

Figures[2.1|and 2.2 plotted using the initial population values, illustrate the effect
of fractional-order parameter & on the susceptible and infected sub-populations.

Figure highlights how variations in o influence the convergence behavior of
system (2.1). An increase in o leads to faster stabilization of the susceptible popula-
tion toward its steady state. In contrast, decreasing o strengthens the memory effect
inherent in the fractional-order system, thereby slowing down the rate of convergence.
In practical terms, a lower value of « results in a prolonged presence of the disease in

the population.
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Figure 2.1: Time series plot of susceptible population for different values of fractional

order «.
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Figure 2.2: Time series plot of infected population for different values of fractional

order .

Figure[2.2] shows that when ¢ = 1 the infected population quickly reach a steady
state. However, as the value of a decreases, the time it takes for these populations

to reach the steady state increases. This shows how the epidemic evolves over time.
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Furthermore, Figures[2.1]and[2.2indicate that, as the disease progresses, the number of
susceptible individuals decreases while the number of infected individuals increases,
eventually stabilizing at their respective steady states.

Figure [2.3] provides valuable insights into the long-term behaviour of disease
transmission within a population by depicting a phase portrait of susceptible versus
infected individuals. This graphical representation allows us to visualize how the pop-
ulations of susceptible and infected individuals evolve over time and interact with one
another. From the phase portrait, it can be observe that as time progresses, the num-
ber of susceptible individuals increases while the number of infected individuals de-
creases. This inverse relationship suggests that the disease is gradually being brought
under control. The increase in the susceptible population may initially seem strange,
however this reflects the effect of reduced transmission of infection, that is, fewer indi-
viduals are becoming infected, allowing more individuals to remain in the susceptible

class.

12

10

T

Infected (1)

O 1 1 1 1 1
45 50 55 60 65 70 75

Susceptible (S)
Figure 2.3: Phase diagram for susceptible and infected population for fractional order
a=0.8.

The work done in this chapter focuses on the role of fear and the Beddington-
De Anglis incidence rate in shaping the dynamics of infectious disease transmission.
Specifically, it explores how behavioural responses driven by fear and preventive ac-
tions influence the susceptible and infected populations. Figures and 2.6|1llus-
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trate the impact of these key parameters, namely the level of fear § and the rates of
preventive measures (p and ), on the disease dynamics.

From Figure [2.4] it is observed that as the fear level within the population in-
creases, there is a decline in the number of infected individuals. This outcome can
be attributed to fear-induced behavioural changes such as social distancing, improved
hygiene, and reduced contact rates, all of which contribute to lowering disease trans-
mission.

Figures [2.5|and [2.6|further demonstrates that higher values of p and y, which rep-
resent the rates at which susceptible individuals adopt preventive measures, lead to an
increase in the susceptible population. This is because effective preventive behaviours
reduce the likelihood of infection, thereby increasing the susceptible population over
time.

Altogether, these findings highlight the critical role of psychological and be-
havioural factors, particularly fear and preventive actions, in modulating epidemic out-
comes. Incorporating these elements into epidemiological models helps capture more

realistic disease dynamics and can inform more effective public health interventions.

——§=0.006 i
. ——§=0.007
= §=0.008
8 ——§=0.009 |
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Time (t)

Figure 2.4: Effect of fear level 6 on I for fractional order o = 0.8.
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Figure 2.5: Effect of preventive measures p on S for fractional order ot = 0.8.
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Figure 2.6: Effect of preventive measures ¥ on S for fractional order v = 0.8.

2.7 Conclusion

Mathematical modeling is a valuable tool for understanding the dynamics of epidemics

and for planning and evaluating intervention strategies. This chapter presented and
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analyzed a Caputo-type fractional-order Susceptible-Infected-Susceptible (SIS) model
that incorporates the fear effect and preventive measures adopted by both susceptible
and infected individuals. These behavioural effects are modeled through a Beddington-
De Angelis type incidence rate. The well-posedness of the model was first established
by proving the positivity and boundedness of the solutions, ensuring that they remain
positive and uniformly bounded within a biologically relevant region. The analysis
showed that the model admits two equilibria: a disease-free equilibrium point Ey, and
an endemic equilibrium point £, which exists when the basic reproduction number
Zo > 1. The basic reproduction number %, was derived using the next-generation
matrix approach, and the stability of the disease-free equilibrium was characterized in
terms of Z. Specifically, the disease dies out when % < 1 and persists when % > 1.
The local stability behaviour of the endemic equilibrium point was also discussed. Fur-
thermore, numerical simulations were conducted to validate theoretical results and to
study the effects of memory (fractional-order dynamics) using the Adams-Bashforth-
Moulton Predictor-Corrector method in MATLAB. The simulations further illustrated
the influence of fear on the infected population, as well as the impact of preventive
measures p and 7y on the susceptible population. The results indicate that these preven-
tive measures are highly effective in controlling the spread of the disease, and the fear
effect significantly reduces the disease burden in the population. Overall, the proposed
model, incorporating both the fear effect and the Beddington-De Angelis incidence
rate within a fractional-order framework, offers valuable insights for epidemiologists,

policymakers, and public health officials.



Chapter 3

Stability Analysis and Quantification
of Effects of Partial and Full
Vaccination Using Fractional Order
SVIR model

An infectious disease such as COVID-19 poses a global threat to public health due to
its high infection rate and continued mutation into novel variants. Vaccination serves
as a vital tool to interrupt its transmission cycle and mitigate its far-reaching effects.
However, the effectiveness of vaccination depends on a well-planned strategy. This
chapter compares full and partial vaccination strategies using a novel fractional SVIR
mathematical model with a Caputo fractional derivative. The model categorizes vac-
cinated individuals into two groups: partially vaccinated and fully vaccinated. To
account for limited medical resources and the possibility of virus reemergence, the
Holling type Il saturated treatment function is adopted for the treatment rate. The
analysis begins by establishing the well-posedness of the model solutions. Subse-
quently, the stability of the two equilibria exhibited by the system-the disease-free
equilibrium (DFE) and the endemic equilibrium (EE)-is examined. It is shown that the
DFE is locally asymptotically stable when %y < 1, and that the EE is locally asymp-
totically stable according to the Routh-Hurwitz criterion. Moreover, both equilibrium
points are proved to be globally stable under certain conditions, using appropriate

Lyapunov functions. Additionally, sensitivity analysis for X is performed. Numerical
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simulations, conducted in MATLAB, validate the analytical findings. The quantifica-
tion of the effects of partial and full vaccination reveals that full vaccination results
in a higher percentage of recovered individuals. This demonstrates that policymak-
ers and public health professionals should emphasize the importance of effective full

vaccination among susceptible populations.

3.1 Introduction

In late December 2019, a novel respiratory illness emerged in Wuhan, located in
China’s Hubei Province. This infectious disease, later termed coronavirus disease
2019 (COVID-19), is caused by the newly identified severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2) [9;178]. Initially, the World Health Organization
(WHO) designated the outbreak as a Public Health Emergency of International Con-
cern. However, as infections rapidly increased both between and within countries, the
WHO subsequently characterized COVID-19 as a global pandemic on 11 March 2020
[191]. The pandemic posed new problems to the worldwide community, particularly
in the context of attempts to ensure equitable vaccine distribution, lessen the load on
healthcare systems and mitigate the virus’s economic impact. In response, most coun-
tries adopted rigorous containment strategies to promote physical distancing, which
included closing schools and workplaces and limiting travel and public gatherings to
different extents [[107]].

The spread of COVID-19 and the resurgence of the pandemic in 2022 have sig-
nificantly affected people’s mental health, despite the government’s implementation
of various effective measures to control its spread. It is important to note that public
opinion regarding vaccines has undergone a significant shift in light of the pandemic’s
impact. Vaccination is widely regarded as one of the most effective public health mea-
sures and a key strategy for controlling the spread of infectious diseases [12]. How-
ever, sustained progress depends on widespread public acceptance to preserve herd im-
munity, curb outbreaks of vaccine-preventable infections, and facilitate the uptake of
newly developed vaccines [31]. The recent resurgence of vaccine-preventable diseases
has even prompted the World Health Organization (WHO) to list vaccine hesitancy as
one of the top ten global health threats in 2019 [[190]. There is a considerable number of
individuals worldwide who are hesitant to receive vaccinations [174]. This hesitancy

may be attributed to doubts concerning the credibility of vaccine development and
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the government’s approval process. Existing research articles, however, have mostly
examined vaccine hesitancy for vaccines with long-term safety records. Such data are
not yet available for novel COVID-19 vaccines, which likely exaggerates existing fears
about vaccine safety resulting in partial vaccination in the population [121].

Several mathematical models have been proposed to evaluate the role of vaccina-
tion, its effectiveness, and the influence of vaccination campaigns on the progression
of COVID-19 [10; 45;197]]. In addition, many studies have employed compartmental
models to examine the impact and significance of vaccination strategies against various
infectious diseases [29;|112]. More recently, mathematical modeling approaches have
been utilized to explore the long-term effects of vaccination on COVID-19 incidence
and control, as can be found in the literature and references therein [106}; [172]. To the
best of our knowledge, very few studies have been performed to consider the classes
of vaccinated people bases on their vaccine doses [136} [145] but not much attention
has been paid to investigate the impact of vaccination in a way such that the vacci-
nated population is categorised into two parts by considering the fact that some people
take all the doses of vaccine allowed by the health agencies of respective country and
some population could not take all the doses. This chapter incorporates this scenario
by defining two cohorts: the partially vaccinated population and the fully vaccinated
population. Here, the population that cannot follow the SOPs of the government for
vaccination due to vaccine hesitancy, careless human behaviour, lack of awareness or
any other reason will be kept in the Partially Vaccinated class and the others who follow
SOPs and get all the vaccine doses will be kept in the Fully Vaccinated class.

As noted by several researchers, saturation effects in medical treatment can pro-
duce complex and often nonlinear disease dynamics [39; [81; [129]. Wang and Ruan
[186] investigated an SIR model where the treatment rate 7'(/) is zero at [ = 0 and
becomes a constant r once I > 0. In a related study, Dubey et al. [39] considered a
Holling type III treatment rate, which increases rapidly with the number of infectives
in the beginning and then gradually approaches a saturation level as the infectious
population grows. In the context of several infectious diseases, where limited medi-
cal resources can affect the treatment rate and where treatment effectiveness may vary
with disease prevalence, Holling Type III treatment offers a more realistic representa-
tion. It captures the idea that medical facilities may be overwhelmed during outbreaks,
leading to a slower response initially and then a more rapid one as resources become

available.
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Keeping the above considerations in mind, the Holling type-III treatment rate is
incorporated into the proposed SVIR fractional compartmental model. This approach,
which extends the SVIR model by classifying the vaccinated population into partially
and fully vaccinated groups, is expected to be highly valuable for health agencies in
decision-making. The structure of this chapter is organized as follows. Section
presents the formulation of the fractional-order mathematical model. In Section
the positivity and boundedness of the solutions are established. Section [3.4] investi-
gates the existence of equilibrium points and derives the basic reproduction number
using the next-generation approach. The local and global stability of the equilibria
are analyzed in Section Sensitivity nalysis of % is performed in Section
Numerical simulations, provided in Section are used to compare the partially and
fully vaccinated populations with recovered individuals and to validate the analytical
results. Finally, Section [3.8 summarizes the main findings of the study and provides

concluding remarks.

3.2 Formulation of fractional order epidemic model

This section develops a fractional-order compartmental model in the Caputo sense,
incorporating a Holling type III treatment rate. The total population at time ¢, denoted
by N(t), is subdivided into five compartments: susceptible individuals denoted as S(z),
partially vaccinated individuals as V,(¢), fully vaccinated individuals as V/(t), infected
individuals as (¢), and recovered individuals as R(t).

The basic assumptions of our model are as follows:

(A1) The growth rate of susceptibles is taken as constant which is K and contact rate

of susceptible with infected population has taken as f3.

(A2) Itis assumed that there are some population that cannot follow the SOPs of gov-
ernment and not been vaccinated properly, those people will be kept in partially
vaccinated class and rest of the vaccinated people will be in the fully vaccinated

class.

(A3) It is possible that some partially vaccinated individuals may become fully vac-
cinated over time but at the same time, there are also some populations that
could not be administered all the doses of allocated vaccines for their respective

countries due to allergic reactions, pregnancy, logistic issues, personal choices,
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(A4)

(AS5)

(A6)

(AT)

vaccine hesitancy and many more. That is why the model is developed under
the assumption that there is no transfer between partially and fully vaccinated

individuals to study the effects of partial vaccination more closely.

The vaccinated population will also become infected due to close contact with
infected individual. So the rate of infection of partially and fully vaccinated

populations have been considered different and taken as f| and f> respectively.

The natural and disease induced mortality have been considered. The treatment

al?
1+bi>

type-III treatment rate, where a is the treatment rate of the disease and b is the

of infected populations is taken as the function h(l) = which is Holling

limitation of medical and pharmaceutical facilities.
Infected population will also be recovered by the natural recovery rate 6.
Death rate for each category population is u.

Considering the aforementioned information, the propagation dynamics of the

system can be represented by the flow chart given in Figure and described by the

following set of fractional differential equations:

0

D{S(t) = K—BS(t)I(t) — 0, S(t) — apS(t) — uS(z),

0DEV, (1) = 0uS(1) — FiVp()I(1) — pVp (1),

0DEV (1) = agS(t) — faV(1)I(1) — pVs(2),

oD 1(t) = BS()I(1) + fiVp()I(t) + LoV(0)(t) — (1 +d + 6)1(t) — h(I(1)),

0D/'R(r) = h(I(1)) + 61() — uR(1),

3.1
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2 . . :
where, h(I) = 1111712’ is the Holling type III treatment rate with treatment capacity 7.

So our model becomes

0DES(1) = K~ BS()I(1) — (o + oty + 1)S(1).
0DV, (1) = 0uS(1) — FiV,(DI(1) — V1),

oD Vi(t) = oyS(t) — foVp()I(t) — uVy (1),
a 2
oDFI(t) = BS@)I(t) + fiVp()I(t) + L2V () (t) — (u+d +0)1(7) —lep,

al?

A +0I(t) — uR(z)

oD{R(t) =
(3.2)

subject to the conditions

S(0) = So = 0,V,(0) = Vpy > 0,V4(0) = Vs > 0,1(0) = fo > 0,R(0) = Ry > 0, (3.3)
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Figure 3.1: Propagation diagram of disease.

The fractional order derivative oD, where a € (0, 1], is employed in the Caputo

sense. All the parameters relevant to the model can be found in Table
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Table 3.1: Parameter descriptions of the model SVIR and the their units.

Parameters Description Unit

K Recruitment rate ind. time™!

B The transmission rate of infection in

u Natural death rate time ™!
susceptibles ind~!. time™!

o Partial vaccination rate time ™!

oy Full vaccination rate time ™!

fi Contact rate of partially vaccinated population ind. time ™!

2 Contact rate of fully vaccinated population ind.time ™!
Death rate induced by disease time ™!

0 Recovery rate of infected population time ™!
Treatment rate ind~!.time ™!
Treatment limitation ind~!.time ™!

3.3 Positivity and boundedness

For epidemiological reasons, all the state variables describe the evolution of population
and hence they should be non-negative because it would not make sense if the solution
of system (3.2) is negative.

Theorem 3.3.1 All solutions of the system described by (3.2)) and subject to the initial
condition (3.3)) are non-negative and uniformly bounded for all t > 0.

Proof 3.3.2 (Positivity) Let us consider the scenario where S(0) > 0. To begin with,
we aim to establish the claim that S(t) remains non-negative for all t > 0 through
contradiction.

Let us assume that S(t) < 0. Consequently, there exists a specific value 7, > 0
such that S(t) > 0 holds true for 0 <t < 11, S(t) = 0 precisely at t = 11, and S(t) < 0
for T) <t < T| + €, where €1 is chosen to be sufficiently small.

From the first equation of the model (3.2), we get DX S(t)

to generalized mean value theorem [I42], for any 0 < €1 < 1, we get

=K > 0. According

|Z:‘L'1

1
S(‘L’l -|-£1) = S(Tl)-i-mlegS(é)(El)a, with 71 < 5 <1 +E.
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Consequently, we can conclude that S(t) + &) > 0, which contradicts the established
fact that S(t) < 0 for 1) <t < 71 + €. Hence, we can affirm that S(t) > 0 for all t > 0.

In a similar manner, we can demonstrate that V,(t) > 0, V¢(t) >0, I(t) >0
and R(t) > 0 holds for t > 0. Consequently, it can be concluded that all solutions
(S(2),Vy(1),Vy(t),1(t),R(t)) of the model described by (3.2) and subject to the condi-
tions outlined in are non-negative.

Now, (Boundedness) using the identity S+V, +V;+I+R =N i.e. adding all
the equations of the model (3.2)), we obtain,

DAN = K — uN —dlI,

(3.4)
DAN < K — uN

Now consider the initial value problem
DYN = K — uN, N(0) = No.
Using comparison principle [120], we obtain the following inequality:
N(t) < N(t), Vit > 0.
Applying the Laplace transform to the above initial value problem, we have
SN 5" No =5 — w2 [N(0)
s“INy  Ks!

sO+p o s%Hpu’
Now, according to Lemma 3 of [I71], we obtain

— Z[N(1)] =

Sa—l o o S—l
= ZLt7E —ut™)| = .
. [t"Eq,o+1(—ut")] Y

ZL[Eq1(—pur®)]
Applying the inverse Laplace transform in above equation, we obtain
N(t) = NoE,1 (—ut®) + Kt Eq g1 (—pt®).
Combining this with gives
N(t) < [NoEq,1 (—ut®) +Kt*Eq g1 (—pt%)].

Moreover, by Lemma 3 of [96)], we obtain

|N(l‘)| < NoCEg Kl‘aCE
T 14 ur® 1+ ur®’
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where Cg is the constant defined in Lemma 4 of [I71]. Therefore, ast — oo, we have
N(t) < M with M > CE% Hence, all the solutions are bounded and will remain in
attracting biological feasible domain Q of system (3.2), which is given below:

o K
Q= {(S,vp,vf,I,R) ER:0<S+V,+Vs+I+R<MM> CEE}.

The proof is completed.

It is worth noting that in the model system (3.2)), the variable R(¢) does not directly
appear in the first four equations. Instead, the first four equations can be seen as pro-
viding input to the equation concerning R. As a result, we can consider the following

subsystem:
oDS(1) = K= BS(0)I(1) —nS(1),

0Df V(1) = apS(t) = fiVp(t)I(t) — uVy (1),
(3.5)
oD V(1) = arS(t) — f2Vp(O)I(t) — uVe (1),
a 2
oDFI(t) = BS()I(t) + [iVp()I(t) + LV ()I(t) — pI(t) — lep,

where p = (L +d+0) and n = (o, + ar+ u).

3.4 Possible Equilibria and Basic Reproduction

Number

Within this section, our objective is to determine all biologically and feasibly relevant
equilibria that are supported by the system. To obtain these equilibria, we set the
right-hand side of system to zero. Thus, we found the model system (3.5) has
a disease free equilibrium (DFE) point also, given by E = (§,V),,V(,0), at which the
whole population is free from the disease, where
s=K g Ko oy Ko
n un un
Now, the basic reproduction number % can be find by using the recipes of next

generation approach given in [47]]. Let

D (x) = F (x) = ¥ (x),



Stability Analysis and Quantification of Effects of Partial and Full Vaccination Using
52 Fractional Order SVIR model

where, x = (I,Vy,V),). The non-negative matrix .7, which represents the new infection

terms, and the matrix 7', comprising the remaining terms, are provided as follows:

BSI+ fiVil + foVil pl+ 4,
F = 0 and V' = | ALV +uVs— oS
0 fiVul +uv,, — a,,S

The corresponding linearized matrices evaluated at DFE E are respectively,

K Ka, Ko
BK | fiKaw  fo 0 I;; 0 0
N T T | Re
F= 0 oo | ad V=1 "up
0 fiK o, i
un
It follows that,
K(up+ fio, + fror) 00
Fy-1_ pun
- 0 00
0 0 0

The basic reproduction number %) is the spectral radius i.e. the largest eigen value of

above matrix FV !, i.e.

dy = KB+ 110+ f20)
pun ’

which shows the average number of secondary cases generated by a typical in-

fective individual in an otherwise susceptible population. Further, for the endemic
equilibrium point E* = (S*,V,,*,V;*,I*) of the system (3.5)), we get the following set

of algebraic equations:
K—-BS'TI*—(ap+op+u)S* =0,

0pS* — VAT —puVy =0,
(3.6)
OCfS>|< —sz;I* — qu =0,

%2
BS I+ VT + Vi —pl* — 111171*2 =0

All the components of E* can be obtained by solving equation (3.6) for I* # 0, as

follows:

K Ko
* * — P and Vy" =

_ v Koy
CBr+n’ P (A +u)(BIr+n)’

(fal* +p)(BI*+m)’
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with I* satisfying the equation
AsI*> 4 A + A3T* + Al + AT+ Ay =0, (3.7)
with

As = fif2ppb,

Ay = fifa(npb+aP — BKb) + Bpbu(fi+ f2),

A3z = Bpbu®+ (npb+aP — BKb) (U(fi + f2)) + fif2(pB +an) — bK fi f>(ot, + o),
Az = (pn —KB) fifo+(fi + f2)(pB +an) + naP +bu*pn (1 - Zo),

Ay = PP (pB +an) +u(fi+ £)(pn — KB) — K fi (0w + o),

Ao = wpn(1—%).
(3.8)

Theorem 3.4.1 For %y > 1, the system (3.5)) exhibits either a unique positive endemic
equilibrium or three or five positive endemic equilibria, assuming that all equilibria

are simple roots.
Proof 3.4.2 Let Zy > 1. From equation (3.7) we have fifth degree polynomial I* :
AT + AT + AT + A2 + AT + A,

Applying the fundamental theorem of algebra, we can deduce that this polynomial can

have at most five real roots.

Here, we examine only the case of unique endemic equilibrium. Since, As > 0 and
Ag < 0 for Zy > 1 then with the help of Descartes’ rule of signs [188]], equation (3.7))

has a unique positive real root /* if any one of the following holds:

(i) A4<0,A3<0,Ay<0andA; <0,
(iil) A4>0,A3<0,Ay<0andA; <0,
(iii) A4>0,A3>0, Ay <0andA; <0, (3.9)
) As4>0,A3>0, A, >0andA; <O,
) A4>0,A3>0,A,>0andA; > 0.

(iv
(v
Upon establishing the value of I*, we can subsequently determine the values of $*, V,,*,

and V,*. This implies that there exists a single positive endemic equilibrium if any of
the conditions specified in (3.9) are met.
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3.5 Stability Analysis

In this particular section, our focus shifts towards investigating the stability of the equi-
libria in the system (3.5) by computing the corresponding variational matrix, denoted
as J. The Jacobian matrix associated with the system (3.5) is presented below:

“n—BI 0 0 _Bs

@ —u—fil O —AY,

/= of 0 —u—nfl —f2Vy
2al

3.5.1 Local stability of DFE and endemic equilibrium

The Jacobian matrix at the DFE point £ is given by

_[3[(

— (0 +0r+ 0 O —_—
—flKOCp

a, —u 0 =

Js = p(op+ar+p)
—fzKOCf

oy 0 —u — T

‘ p(oy,+ar+u)

0 00 —p(1-%)

The characteristic equation corresponding to the DFE E = (S, V,,,V;,0) takes the form:
(—A —p(1—%0)) (A + (ap +0tp+ 1)) (A+p)*=0.
Hence, the eigenvalues of system (3.3)) at DFE E are
M=-1n, L=—-u, L=—-u, 4=-p(1—%).
Here, see that A; for i = 1,2,3 are all with negative sign, and therefore
larg(A)| =7 > ch for i=1,2,3

and |arg(A4)| = 7w > af if —p(1 — %) <0, ie. %o <1, where a € (0,1]. In an
opposite manner, when %, > 1, then 44 > 0 and so |arg(A4)| = 0 < aF. Thus, the
DFE E will be unstable. Hence, by Lemma 3.4 of [128]], we can say that DFE is
locally asymptotically stable when %) is less that unity and unstable otherwise. Then

we have the following theorem:

Theorem 3.5.1 The disease free equilibrium of the model (3.3)) is locally asymptoti-
cally stable if Zy < 1, otherwise unstable.
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3.5.1.a Local stability analysis at Z;, = 1 around E

This subsection analyzes the behavior of system at Zy = 1, for which the lin-
earized matrix at £ has at least one eigenvalue with real part equal to zero. By per-
forming this analysis, we determine the direction of bifurcation and describe the local
behaviour of E around % = 1. To do so, we apply center manifold theory as described
in [35)]. Although this theory was originally developed for integer-order systems, its
extension to Caputo-type fractional-order systems has been established by Ma and Li
[123]], which justifies its use in our fractional-order model. This methodology has been
adopted in several recent studies on bifurcation analysis of fractional-order epidemic
models [165126].

Let us redefine (S, V), Vy,I) = (x1,x2,X3,x4), then the system (3.5) can be rewrit-

ten as:

Df‘xl = K—ﬁx1x4— (ocp+af+u)x1 =71,

(04 —
Dixy = apx) — fixoxs — hxp = 22,

(3.10)
Dfx3 = oxy — foXaxg — Ux3 = 23,
D%xy = Bxixs + fixoxs + f (u+d+06) wi
X4 = PX1X. X2 X, X3X4 — X4 ————F= =
;X4 1X4 1X2X4 2X3X4 — (U 4 1+ b2 24,
K o o
Recall that, Zy = (B + /10 + 20y) . Select B3 as a bifurcation parameter for
u(u+d+0)(a,+op+u)

Zy = 1 which takes the following form:

pr = Mlu+d+0)(ap+oy+1) — K10+ /20y)

B = Kui

Further, the Jacobian matrix of the system (3.3) at £ and at the chosen bifurcation

parameter § = * it is given by Jz g+ as:

— (0, + 0+ 0 0 _
(o +ay1) (0tp+ 0ty + 1)
—f1KOCp
AT S — L
Jig g1 = u(op+oy+p)
/ (o +oy+p)
0 0 O 0

The matrix Ji£ v has a simple zero eigen value and other eigen value with negative

real part.
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Let v = (v1,v2,v3,v4) be the left eigenvector and w = (w1, wp, w3, w4)T be the right
eigen vector corresponding to the zero eigen value. Then, we have

V]ZO, V2:0, V3:0, V4:1

_  ____Kkp _ _KoyButfi(optop+i)] _
and wioo= (otp+op+p)?’ W2 o= uA(optap+u)> 0 w3 =
_KyButhlaptop+)]

W2 (optoprp)> 0 4 ’

The non-zero partial derivatives of z;s at E and = * are evaluated as follows:

71 L. 9%z P’z . 9 %z ., 9z
8x18x4 T - 8x48x1’ 8x28x4 AR aX4aX2’ aX3aX4 A aX4aX3,
0224 B 0224 . 0%z, 0224 P 0274 0%z4 L 0224
W - aX3aX4 BEEE 8)(48)637 &x18x4 N N aX4aX17 8xz8x4 BELE aX4aX2’
9%z K 9%z K

0x4dB* (o toap+u) 0xsdf*  (ap+ar+p)

The bifurcation constants a; and by can be computed by using Theorem 4.1 given in
[35] as follows:

B O
a) = ViWiW j &Xiaxj [Eﬁ*}

ki, j=1
9%z 9%z 9’z 9%z
20724 4 4 4
= —— 42 2 2
V4W4 9x2 + 2vaw3wy %393 + 2vawiwy %194 + 2vawowy E
_ ( KB+ —<a JiKop[Bu+ fi(ap+oy+p)]
(ap+otp+p)? H2 (o +op + )

LKap[Bu+ f(oy,+ oy +u)] ))
/.LZ(OCP + Otf—FIJ)z

KpB*? _ fiKapButfioptar+u)] | HKarButfr(op+or+p)]
- Iy = (a+ u(op+orp+u)? T u(ap+op+u)? )

- - >0
Y xsaB*  (ap+ oy + i)

Thus, the following theorem may be stated by using Theorem 4.1 of [35].

Theorem 3.5.2 The following results are obtained for the transcritical bifurcation:
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1. If Ly < Ly ie. a; <O, then system (3.5)) exhibits a transcritical forward bifurca-
tion at E and %y = 1.

2. If Ly > Ly i.e. ay > 0, then system (3.5)) exhibits either a transcritical backward

bifurcation or a saddle-node bifurcation at E and %y = 1.

The transcritical forward bifurcation is illustrated in Figure3.2]

Stable EE

Infected Population (I(t))
w
T

Stable DFE Unstable DFE ]

0;llllll---lllllIIIIllllllllllllllllllll.j
| L L L L | L L L | L L L L | L L L | L L 17

0.0 0.5 1.0 1.5 2.0 25

Basic Reproduction Number (Rg)

Figure 3.2: Diagram for forward bifurcation in (%y,I) plane for the data set given in

Table @

Now for the local stability of endemic equilibrium E* = (S*,V,*,V,*,I*), the

corresponding Jacobian matrix by using the equation (3.6)) is given by

K

—Br+n 0 0 _ﬁllirn

T * _ Kf](Xp
I I e Y ey 7wy

Jgx = K

(073 0 —u—le* — fZaf
(le*+bu)2(ﬁll*+n)

I*(bI'*~ —

BI* I HI” a(l(_i_bl*z)z)

The characteristic equation corresponding to the above Jacobian matrix takes the form:

(=1 = BI* = L) (C3A° + CA* +C1A +Cp) = 0. (3.11)
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where,

Cy= (b1 41) (AL + ) (AT + 1) (0 + BI)
= u(fH(I"(n+BIr*) (2ar* + (bI'* +1)* (B +p)) + f2(bI*> +1)*(n + BI*)
— K (bI** + 120t + B(—K)I* (bI** + 1)) + p((n + BI*) (2al*
+ (b1 +1)22u+p)) = BK (bI + 1)%)) + fi (fol* (I" (n + BI*) (2al”
+ (BI? +1)2(4p +p)) — K (b1 +1)* (o + o) + B(—K)I* (I 4-1)?)
+ul* (+Bro) (2al* + (bI** +1)*3u +p)) — BK (bI** +1)?)
+ 207 (b1 1) (n + BIY) — K (b1 + 1))
+fE(BIP T2 (I + 1) (n + BIY),

= fu (L2 (n+Bro) (2al + (b1 +1)*(u+p)) — BK (bI** +1)?)
(1 (n 4 B (6al* + (b1 +1)2 (21 +3p)) — 2K (bI** + 1)y
—3BKI* (I +1)%)) + fi (ot (41" (n + BI*) (2al* + (bI"> +1)* (1 +p))
— 3K (bI** + 1) (0p + 0tp) — 4BKI (I +1)2) + 202 (I* (0 + BI*) (2al*
+ (I +1)22u+p)) + B(—K)I* (bI** +1)2 — K (bI'* +1)2at)
+ 2 (I (n +BI) (6al* + (bI** +1)* (2 +3p)) — 3BKI* (bI*> +1)?
—2K (bI** +1)%a)) + f202 (o (I (n + BI) (2al* + (bI** +1)*(2u +p))
+ (b1 +T) (4 BI*) — K (bI** + 1) 0y + B(—K)I* (b1 4-1)?)
+u( (n+BI*) (2al* + (bI"* +1)*(u +p)) — BK (b1 +1)%))

w3 ((n+Br) (4ar* + (bI** + 1) (1 +2p)) — 2BK (bI** +1)?),

(

Co = ol (I**(n + BI*) (2al* + p (bI** + 1)) — BK (bI** +1)?)

F2ur((n+Bre) (2al* +p (bI'* +-1)%) — BK (bI** +1)%) — Ku (bI** +1)%ay)
+ I (o (20 (n + BIY) (2al" + p (bI** +1)?) — K (bI** + 1) 0

—2BKI* (bI** +1)2) + f21°* (0 + BI*) (2al* + p (bI** +1)%) — BK (bI** + 1)?)
+u?((n+Br) (2al* + p (bI** +1)%) — BK (bI** +1)?))

+ i 2purt (20 (n +Br) (2ar* + p (bI** +1)?) — K (bI'* + 1) (ay + o)
—2BKI* (bI** +1)2) + f21°2 (21* (n + BI*) (2al* + p (b1 4 1)?)

—2BKI* (bI"* + 1) — K (bI"> +1)% ) + > (21" (n + BI*) (2al* +p (bI** +1)?)
—2BKI* (I + 1) — K (bI"* + 1)%a,)) + u* ( + BI) (2al* + p (bI** +1)?)
—BK(bI** +1)?).
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From equation (3.11)), the polynomial C3A3 +C>A2 4 C; A +Cy can be written as,
say P(A) = A3 4+kyA? 4+ ki A + ko, and corresponding to this P(1), the discriminant is

D(A) = 18kokiko + ko2ki > — dkoky® — 4k1 — 27ko?.

If P(A) = 0 has three roots with negative real parts, then the endemic equilibrium is

stable. Therefore, following Ahmed et al. [4], the following theorem is stated:

Theorem 3.5.3 The endemic equilibrium E*(S*,V,*,V¢*,I*) is locally asymptotically
stable when any of the following conditions hold:

* D(P) >0, kp >0, ko >0, kak; > ko.
* D(P) <0,k >0,k >0, k>0, a0 <3.

* D(P) <0, kp >0, k; >0, kaky = ko, o € (0,1]. Otherwise, the endemic equilib-
rium E*(S*,V,*,V;*,I*) is unstable when the condition D(P) < 0,k < 0,k; <
0,0 > 2 holds.

3.5.2 Global stability of disease-free equilibrium (DFE)

This subsection presents the theorem concerning the global stability behavior of

the disease-free equilibrium (DFE) point.

Theorem 3.5.4 The DFE point of the system (3.3)) is GAS (Globally asymptotically
Stable) if the basic reproduction number % is strictly less than unity i.e. Zy < 1.

Proof 3.5.5 To prove this theorem, consider a positive definite Lyapunov function

Z=1.
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Then for order o we have,

loncg:toD;xl(t)
= |BSI+ AV I+ HoVil — (L +d+ )1 al’
- Pl b T I+ b1

< [BSI+ fiVpl + foVil — (u+d+6)1]

/35+f1v + oV — (u+d+0)] (1)
{ fiKa, fKay
ap+af+u uop+oap+u)  u(op,+oy+u)
BK fiKay, FKoy }_ }
[H+d+9 { (o +ay+ 1) (ot )  (ay+ oyt p) iR
= Ro—1)1(2)

<0 if Rp< I

—(u+d+ 6)} 1(t)

So, by Lemma 4.6 of [82|], any solution starting in R converges to the largest invariant

set S ={(S,V,,Vp,I) ER: ,\DFL =0} . Hence lim;_,o.1(t) = 0.

3.5.3 Global stability of endemic equilibrium

This subsection examines the global stability behavior of the endemic equilibrium

E* under certain constraints, for which it is assumed that

1
l)= ——.
G(7) 1 +bI?

Theorem 3.5.6 The endemic equilibrium E*(S*,V,*,V*,I*) is globally asymptoti-
cally stable when %y > 1.

Proof 3.5.7 From the system (3.5) following conditions are derived at
E*(S*,Vp*,Vf*,I*),

_ flvp*l* N ‘LLVP* _ fZVf*I* ‘uvf*

p=BS"+ fiV," + LV* —aG(I).

K=BST"+nS"; «a,

Now, to prove the global stability behaviour of E*, we construct the following positive

definite Lyapunov function:

\) V
Z(t)= <S—S*_S*log§)+<Vp—Vp*_ ~ Vp*)
p

% I
+ (V=i =V log =L ) + (1-1" —IFlog— ) .
Vi 1
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The derivative of £ (t) along the solution of system (3.5), with the help of Lemma 3 of

[140], becomes:

*

v.* \%
) oDV, (1) + (1 - ) oDEV(1)

(t)+<1—vi

p

|4
~
S
S
R
o)

oD¥ZL (1) < (1 —

S
+(1—17)0Dta1(f)
— (1 %) (K —BSI—nS)+ ( ‘; )(apS fiVpl —uVy)
V*
+(1— ‘ff)(ocfS—fzvfI—qu ( ) (BS+ fiVp+ faVi—p —aG(I))
_ (1 %) (BS'T" +1S" — BSI—7S)
Vp* f]Vp*I* NVP*
+(1— vp)( oS+ S—flvpl—uvp)
. (1 - vf“) (fzvf*l*er“Vf*S—szfI—qu)
¥ s s
+(1 ’7 (BS*+ fAiVy" + foV/* —aG(I*) 4+ BS+ fiV, + oV —aG(I))

:;
(/3

st S S 1 SI
2 2 ) 4B (1 -

( S S*>+ﬁ ( sTr S*I*)
S VS T VI S VS v,

v, It — P v, =L 1- -2
i (S* VS*+ v*l*)+“ r (S* Vs vp*)
S VAS T v S VS %
fi 1 o (S VS oV

S* VfS* Vf

—’rszf*I*(——
S I Sr rv, vr
+/35*(1+———— )+f1v,,*(1——+ E__F

S Vs VT
s 1 ST IV, VI

(= (8555

IV VeI

Now, from the property of the arithmetic mean, we have
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N ST S VS I Vol )
1— =+ —— <0, — -4 L)<y,
S VSt VI

S V&S T vyl
B = )
S ViSt I VAT

(ﬁ_Vf*S_I_l_Vf)SQ (H_i_f_s_]*)go, (3.12)

I 1 nr
o e ) <°
then ¢D¥Z(t) < 0. Hence, when the inequalities in equation(3.12) are sat-
isfied simultaneously then (D¥.Z(t) < 0. Besides, the largest invariant set in
{(S,Vp,Vf,I)
with Lassalle’s invariance principle, it can be concluded that the endemic equilibrium
E* of the model (3.5)) exhibits global stability when %y > 1.

oDF.ZL(t) =0} is the singleton set {E*}. Consequently, in accordance

3.6 Sensitivity analysis of %

Here, the results of a sensitivity analysis for the basic reproduction % number are pre-
sented. The objective of this analysis is to identify parameters that exert the greatest
influence on %), allowing us to prioritize them in the implementation of effective inter-
vention strategies. Sensitivity indices quantify the relative variation in a given outcome
as a parameter changes. Specifically, we compute the normalized forward sensitivity
index of a variable with respect to a parameter as the ratio of the variable’s relative
change to the corresponding relative change in that parameter.

Definition[164]]: The normalized forward sensitivity index of a variable z, which de-

pends on a parameter x, is defined as

dz  x
Wi=—x~-.
Yodx oz
e : 0Ry = x : -
So, for %, the sensitivity index is Wx‘% = 8_0 X B The expressions of sensitivity
X 0
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index for the parameters of interest are:

% % Bu % J10y
W =1, W) = , Wb = ,
K B ﬁ,Ll-i-szCf-i-flOCp h ﬁu-i—fzocf-l—flap
o _ S0y Wik — oar+u Bu+ oy
R Bu+ o+ fia,” T oyt u+a,  Bu+froy+ fioy’
% P 1 % d
W = - LW ©
% f(ﬁ,u—f—fzaerflOtp Otf+u+06p> d d+0+u
4 0 d+0
L NS B I
d+06+u d+0+u  Bu+hos+fio, or+p+o,

These sensitivity indices are evaluated with the help of parametric values given in Table
and depicted by the bar diagram in Figure 3.3

w2 =1, w7 =0.162791, W7 =0.55814, WZ° =0.27907,
K B f )

Wel® = 0.038659, W = —0.110541, W, = —0.277778,
W, = —0.33333, W,* = ~1.31701.

1.0} ]

0.5 ]

0.0~ [ ] e §

05 §

1.0 §
Kk 8 i f & a d 8  u

Figure 3.3: Sensitivity indices of Z.

From the above, it is seen that these sensitivity indices with respect to parameters
can either have positive impact or negative impact on %,. Specifically, the parameters
K, f1and f> have strongest positive impact while 8 and «, have less positive impact on
Zo. This means that if these parameters increase while keeping the others unchanged,

the basic reproduction number % will also increase, leading to a faster spread of the
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disease. Similarly, if they decrease, the spread of the disease will be slowed down.

For example, WJ‘? 9 = (0.55814 indicates that if the parameter f; increases (or decreases)
by 10%, then %, will increase (or decrease) by 5.58%. Similarly, WP}% = —1.31701
means that if u increases (or decreases) by 10%, then % will decrease (or increase)
by 13.17%, respectively. This helps us to understand the sensitivity of the parameters

and their impact on %, in both positive and negative ways.

3.7 Numerical Simulation

This section provides numerical computations, performed in MATLAB 2012b using
the Predictor-Corrector method [50], to validate the analysis of the existence and sta-
bility conditions of the equilibria of model system (3.5]). For the numerical simulation
the initial sub-populations are taken as S(0) = 200,V,(0) = 45,V(0) = 35,1(0) =
3,R(0) = 2 and the numerical data-set used for simulation, given in Table is ex-
perimental data satisfying the analysis of the system (3.5)).

Table 3.2: Numerical values of parameters of the model.

Parameters Description Values
K Recruitment rate 2
B The transmission rate of infection in susceptibles  0.0005
u Natural death rate 0.007
o Partial vaccination rate 0.04
o Full vaccination rate 0.03
bil Contact rate of partially vaccinated population 0.0003
P Contact rate of fully vaccinated population 0.0002
Death rate induced by disease 0.005
0 Recovery rate of infected population 0.006
Treatment rate 0.004
Treatment limitation 0.00001

From the parametric values given in[3.2] the value of the coefficients of equation
isAs =5.4x10718 A4 =1.20547 x 10713, A3 =2.59539 x 10—,
Ar =1.22833 x 1072, A} = 8.484 x 107°, Ag = —2.33086 x 10~7. These coeffi-
cient values satisfy Theorem3.4.1| and one of the possibility of the existence of

unique positive equilibrium. Thus the endemic equilibrium is E*(S*,V,*,V/*,I*) =
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(24.3965,97.7104,81.3985,9.95763) for which the basic reproduction number % is
4.43208. The values of coefficients of equation (3.11)) are calculated as

C3=7.37638 x 107%, €, =4.32928 x 1077, C; =7.107 x 1072, Cp =3.4502 x 10~
and the eigen values corresponding the equation are A} = —0.0819788,

A2 = —0.0349566, A3 = —0.0145179, A4 = —0.00921651, and the discriminant of
polynomial term of the equation is calculated as D(A) = 7.77873 x 10~ > 0.
The values of ko, k1, k> and D(A) satisfy the first condition of the Theorem 3.5.3] Using
the initial population conditions, Figures and[3.7]are plotted, which shows
the effect of fractional derivative order a(a = 0.7,0.8,0.9,1) on the Susceptible, Par-
tially Vaccinated, Fully Vaccinated and Infected population, respectively. In the virtue
of Theorem the endemic equilibrium E* is stable for each value of fractional

order o, which is being depicted from the figures.
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Figure 3.8: Effect of full vaccination rate on the Infected population.

The figures indicate that the disease is endemic, as all solutions of system
converge towards the endemic equilibrium E*. Furthermore, an important observa-
tion to note is that for o = 1, the system reaches a stationary state relatively quickly,
whereas as the value of o decreases, the system takes longer to reach a stationary state.
This behaviour highlights the time evolution of the epidemic.

Figure [3.4]illustrates the behaviour of the number of susceptible individuals over
time for various values of ¢. As time progresses, the number of susceptible individuals

decreases, ultimately leading to the population reaching the endemic equilibrium E*.
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Additionally, it is noteworthy that as the value of o approaches one, the trajectories
converge to the steady state in a considerably shorter duration.

Figures [3.5)and [3.6| show the impact of fractional order ¢ on the partially vacci-
nated and fully vaccinated individuals and it is observed that by increasing the value
of «, strength of both partially and fully vaccinated individuals increases initially and
gradually decreases after some time and the pattern of trajectories is reversed i.e. by
decreasing the value of o, the count of vaccinated individuals increases, which is also
a benefit of memory effect.

Figure provides insights into the impact of the fractional order derivative o
on the population of infected individuals. Notably, it is observed that as the value
of o decreases, the time required to reach a steady state increases. Conversely, as
o approaches one, the infected population achieves a steady state in a significantly
shorter time frame. This indicates that when o decreases, there is a presence of a
memory effect, causing the infected population to require more time to diminish or
vanish entirely. In Figure [3.8, we have shown by effect of full vaccination rate oy
on the infected individuals. Here it can be seen that by increasing the value of full
vaccination rate the number of infected individuals getting decrease. So, vaccination

plays an important role in lowering of disease burden.
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Figure 3.9: Phase plot of susceptible-infected-recovered population.
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Figure 3.13: Phase plot of partially vaccinated-fully vaccinated-recovered population.

Figure [3.9] shows the phase portrait of the Susceptible, Infected and Recovered
population in which it can be seen that the trajectories starting form anywhere i.e. with
various initial conditions, within the region of consideration, are converging to a point

which is equilibrium point (S*,7*,R*). Similarly, Figure shows the phase plot of
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Susceptible, Fully Vaccinated and Infected population in which trajectories are con-
verging to the respective equilibrium point (S*,V,*,I*). In Figure the converging
behaviour of trajectories can be seen towards the equilibrium point (S*,V,*,I*). The
same thing can be also observed in Figure and that the trajectories initi-
ating from different initial conditions are going to converge to the equilibrium point
(Vp*, V¢, I*) and (V,,*,V;*,R*), respectively.

Collectively the Figures 3.10L [3.11] 3.12] and [3.13] show that the solution

trajectories are independent of the initial conditions which is nothing but the global

stability of the equilibrium point (S*,V,,*,V/*,I*,R*).

3.7.1 Quantification of effects partial and full vaccination

Assessing partial vaccination in terms of recovered population with respect to
time is depicted in Figure at different values of o and similarly, Figure [3.195|
depicts the quantification of fully vaccinated and recovered individuals with time at
different values of c.

It can be seen from these figures that at time 64 days and for o = 0.7 the percent-
age of recovered population in case of partial vaccination is 6.42%, where as for the
same time and fractional order the percentage of recovered population in case of full
vaccination is 8.46%. In a similar way for fractional order 0.8,0.9 and 1.0 at the time
t = 57,42, and 34 the percent count of recovered populations in case of partial vacci-
nation are 8.59%,9.132% and 9.57% and in case of full vaccination the percentage of
recovered population are 11.33%,11.57% and 12.66%. So, from here it can be seen
that the percentage of recovered population is larger in case of full vaccination while
less in case of partial vaccination. This gap of percentage will make significant impact
in case of large population. This indicates that the full vaccination is very beneficial
for public health and health agencies should also focus towards this side so that the
count of partial vaccination could be as less as possible which will helpful in lowering

the disease burden by enlarging the recovered population.



3.7  Numerical Simulation 71

70
60 -
50 -

40

a=0.7
// a=0.8

,//1(5?_ 16.6,10.02) 0=09
/ a=1
- > (42,121,12.12)

(64,109,7)

30 4

20

=
i
ra
/e —

500

200

Ve 0 0 Time(t)

Figure 3.14: Variation in partially vaccinated and recovered individuals with respect to

time at different values of .

80
00+ a=0.7
«=0.8
o 40 | (3498 0242.41) z:?g
20 (42,93.82,10.86)
0 (57,90,10.02)
-

(64,84.2.7.125)

600
400
200

£ 0 Time(t)

Figure 3.15: Variation in fully vaccinated and recovered individuals with respect to

time at different values of .



Stability Analysis and Quantification of Effects of Partial and Full Vaccination Using
72 Fractional Order SVIR model

3.8 Discussion and Conclusion

In this chapter, a novel Caputo-fractional order SV IR model with Holling type-III treat-
ment rate has been proposed by categorising the vaccinated population into two further
compartments, namely, Partially vaccinated and Fully vaccinated populations. Firstly,
we established the well-posedness of the fractional model with the help of the General-
ized mean value theorem and Mittag-Leffler functions. Further the stability behaviour
of the equilibrium points are discussed, namely DFE and EE, and also the basic re-
production number has been calculated with the help of next generation approach.
It has been investigated that DFE is locally asymptotically stable for %y < 1. Further-
more, the existence of unique positive equilibrium has shown under some feasible con-
straints and local stability of EE is analyzed. Through our analysis, it is determined that
the endemic equilibrium (EE) is locally asymptotically stable if the condition %y > 1
holds, provided that the conditions outlined in Theorem [3.5.3| are met. Additionally,
the global stability behaviour of the disease-free equilibrium (DFE) and EE using a
Lyapunov function under specific conditions are analyzed. The analysis has led us to
conclude that the DFE is globally asymptotically stable when %, < 1, while the EE is
globally asymptotically stable when %, > 1 and the conditions specified in equation
are satisfied. Further, sensitivity analysis shown in Figure to observe the
highly sensitive parameters in positive and negative manner.

In the section of numerical simulation, with the help of some experimental data
given in Table[3.2] we perform some numerical simulations in favor of validation of our
analytical findings. It is worth noting that the inclusion of the fractional-order deriva-
tive introduces a memory effect that influences the dynamics of the system, as evident
from the time-series plot of the model. Interestingly, it was observed that the stability
of the equilibria remains unaffected by variations in the fractional order oc. However,
the time required to reach a steady state is significantly influenced by the choice of
o.. Increasing the order of the fractional derivative leads to faster convergence, while
lower values of o result in slower convergence. This highlights the utility of fractional
derivatives over integer-order derivatives, as they offer better control over convergence
rate and allow for more flexible modeling of dynamical systems.

It is also observed from the phase plots of the system that the solutions trajecto-
ries are independent of the initial population i.e. the initial population does not affect

the steady state of the system. Further, as the effect of full vaccination rate over in-
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fected population depict that by increasing the rate of vaccination the count of infected
population will decrease. Additionally, Figures [3.14] and depict the variations
in partially and fully vaccinated with recovered individuals over time (with different
memory effects). Full vaccination resulted in a higher percentage of recovered popu-
lation compared to partial vaccination, indicating its greater effectiveness. This quan-
tification highlights the importance and effects of full vaccination for public health and
reducing disease burden. Thus, focus should be on full vaccination to lower the disease
burden, and it will play a paramount role in controlling the epidemic spread in society.

In conclusion, the findings of this study highlight the significance of including a
more realistic modeling method that involves fractional order dynamics and considers
separate groups of partially and fully vaccinated populations. Policymakers and pro-
fessionals can obtain more accurate projections of disease dynamics by focusing on
the implications of effective full vaccination among susceptible individuals. Also it is
evident that partial vaccination is not capable enough to control the spread of disease
as well as it may be an unnecessary economic burden on the society. This strategy
has the ability to lessen the effect of epidemics while also shortening the duration of
outbreaks. Implementing such a comprehensive strategy can provide significant in-
sights for decision-making as well as aid in the development of effective intervention

measures to reduce disease spread.






Chapter 4

Optimal Control of a Fractional Order
SEIQOR Epidemic Model with
Non-monotonic Incidence and

Quarantine class

During any infectious disease outbreak, effective and timely quarantine of infected in-
dividuals, along with preventive measures by the population, is vital for controlling
the spread of infection in society. Therefore, this chapter attempts to provide a mathe-
matically validated approach for managing the epidemic spread by incorporating the
Monod-Haldane incidence rate, which accounts for psychological effects, and a sat-
urated quarantine rate as Holling functional type Il that considers the limitation in
quarantining of infected individuals into the standard Susceptible-Exposed-Infected-
Quarantine-Recovered (SEIQR) model. The rate of change of each subpopulation is
considered as the Caputo form of fractional derivative where the order of derivative
represents the memory effects in epidemic transmission dynamics and can enhance the
accuracy of disease prediction by considering the experience of individuals with previ-
ously encountered. The mathematical study of the model reveals that the solutions are
well-posed, ensuring nonnegativity and boundedness within an attractive region. Fur-
ther, the study identifies two equilibria, namely, disease-free equilibrium (DFE) and
endemic equilibrium (EE); and stability analysis of equilibria is performed for local

as well as global behaviours for the same. The stability behaviours of equilibria mainly
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depend on the basic reproduction number %y and its alternative threshold %y which
is computed using the Next-generation matrix method. It is investigated that DFE
is locally and globally asymptotic stable when %y < 1. Furthermore, the existence
of the endemic equilibrium (EE) is established, and its local and global asymptotic
stability is investigated using the Routh-Hurwitz criterion and the Lyapunov stability
theorem for fractional order systems with %y > 1 under certain conditions. Addi-
tionally, sensitivity analysis is also performed corresponding to Z%. This chapter also
addresses a fractional optimal control problem (FOCP) using Pontryagin’s maximum
principle aiming to minimize the spread of infection with minimal expenditure. This
approach involves introducing a time-dependent control measure, u(t), representing
the behavioural response of susceptible individuals. Finally, numerical simulations
are presented to support the analytical findings using the Adams Bashforth Moulton
scheme in MATLAB, providing a comprehensive understanding of the proposed SEIQR

model.

4.1 Introduction

The dynamics of disease in an epidemic model are shaped by the incidence and treat-
ment rates [[146]. The incidence rate, assessing new cases in a population over time, is
pivotal. Kermack and McKendrick’s bilinear form BSI becomes impractical for large
populations due to susceptibles increasing the rate [92]]. Researchers proposed alter-
native nonlinear forms, like Beddington-DeAngelis, Crowley-Martin, Holling types II
and III [132;157;159;198; [108; [150;171]]. In 1986, Liu et al. [[118]], introduced a saturated
incidence rate: Bils

f(S,I):m, 4.1
capturing infectivity and behavioural inhibitions. Nonlinear rates offer realistic disease
transmission aspects, displaying broader dynamic behaviours. This study focuses on

the non-monotone incidence rate for / = 1 and & = 2:

BIS
S I)=——>
where Tixﬂ describes the psychological effect resulting from behavioural changes in

susceptibles when the number of infectives reaches a high level, and BI is a measure

of the disease’s infection intensity [[173]. The parameter o serves as a measure of the
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psychological influence of the disease on the population when the count of infectives

reaches a substantial level. The functional expression ; f([xsﬂ is non-monotonic, also
referred as the simplified Monod-Haldane (M-H) incidence rate [99]. If the incidence
function is nonmonotone, that is function is increasing when I is small and decreas-
ing when I is large, it can be used to interpret the psychological effect: for a very
large number of infective individuals the infection force may decrease as the number
of infective individuals increases, because, in the presence of a large number of infec-
tives, the population may tend to reduce the number of contacts per unit time. This
1s important because the number of effective contacts between infective individuals
and susceptible individuals decreases at high infective levels due to the quarantine of
infective individuals or due to the protection measures by the susceptible individuals.

Implementing quarantine measures for infected persons is a highly successful
method in controlling the spread of an epidemic in the case of an outbreak. Thus, the
significance of the role played by quarantined individuals in controlling the transmis-
sion of disease cannot be ignored. This study introduces a specific quarantine class
into the conventional epidemic model to investigate the impact of quarantine people.
The term “quarantine” here refers to the enforced isolation or restrictions placed on the
movement of infected individuals to prevent further disease dissemination. By quaran-
tining those who have tested positive, one can significantly reduce new infection cases
among susceptibles. For example, in the context of COVID-19, individuals in quaran-
tine are those who have tested positive and are isolating in a dedicated space at home
or in designated facilities like hotels, depending on the severity of the infection and
associated risk factors [150]. This study also considers individuals hospitalized based
on symptom severity during an infectious disease outbreak as part of the quarantined
category. An assumption made in our study is that quarantined individuals remain iso-
lated from others, preventing additional infections and contributing to a reduction in
the incidence rate for new cases.

We have used nonlinear Holing type III quarantine rate for the infected indi-
viduals to transfer them into quarantined class in our model. The Holling Type III
quarantine rate is characterized by a saturation effect, signifying that as the number of
infected individuals increases, healthcare resources may become overwhelmed, lead-
ing to diminishing returns on additional quarantine efforts. A non-linear saturated

quarantine rate captures this saturation effect by modeling how the effectiveness of
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quarantine measures levels off as the number of quarantined individuals approaches a
certain threshold.

For some infectious diseases, there is a proportion of population who have expe-
rienced exposure to the infectious agent but are not yet able to transmit the infection.
This class is particularly relevant in models that incorporate an “incubation period”,
which is the time between exposure to the pathogen and the onset of infectiousness.
These are referred to as exposed population. For instance, diseases such as chicken-
pox, measles, tuberculosis, rubella, and more, involve an extended duration wherein
individuals who are infected belong to the exposed class before becoming capable of
spreading the infection (see [14; 465 85;189]).

In this chapter, building upon the insights gained from the existing literature, our
objective is to delve into the dynamics of a fractional-order SEIQR epidemic model.
We deal with non-monotonic Monod-Haldane (M-H) incidence rate which is most
suitable for widely spread epidemics and also incorporates the psychological effects of
susceptibles. The nonlinear quarantine rate has been considered in the sense of Holling
type III which incorporates the effects of limitations in quarantine. The combination of
these two makes our model more realistic in case of an outbreak of a deadly epidemic.
This study aims to attain a profound understanding that can guide the implementa-
tion of effective measures for the prevention and control of infectious diseases within
populations.

The works [[18;40; 1695 182} [195] underscore the pressing need for comprehen-
sive and effective strategies to manage the transmission of COVID-19. Current models
of virus transmission frequently ignore the vital role that community awareness plays
in determining an individual’s vulnerability to the infection. For example, it is gener-
ally acknowledged that people who are aware of the COVID-19 hazards are more likely
to take preventative action and adjust their behaviour accordingly. On the other hand,
those who are unaware could act in a less careful manner, increasing their susceptibility
to infection and aiding in the virus’s spread. These circumstances highlight the require-
ment for a novel strategy that specifically incorporates community awareness into the
modeling framework. The approach seeks to quantify the impact of information or
community awareness on disease by examining the “behavioural response of suscepti-
ble individuals”. As susceptible individuals become informed about the disease, they
are likely to adopt protective measures. This emphasis on behavioural response adds a

nuanced dimension to the modeling process, capturing the dynamic interplay between
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awareness, individual actions, and disease transmission. By incorporating community
awareness in this manner, we aim to provide a more comprehensive and realistic rep-
resentation of the factors influencing the spread of infectious diseases.

This chapter emphasizes the importance of developing an appropriate model to
evaluate the effectiveness of control strategies during disease outbreaks. An optimal
control analysis is introduced for a transmission model that incorporates the behavioral
responses of susceptible individuals, simulating the reduction of effective contacts be-
tween susceptible and infected individuals. Agrawal [2] explored fractional-order vari-
ational problems of the Riemann-Liouville type in 2002 and developed a framework
for studying fractional optimal control problems (FOCP). Afterwards, Agrawal inves-
tigated FOCP for fractional-order Riemann-Liouville systems in 2004 [3]]. Building
on this framework, Ding studied the FOCP of the Caputo HIV model in 2012 and
presented related numerical techniques [55]. While there exists substantial research
on optimal control of various models, studies specifically focused on fractional-order
models are relatively sparse [195]. The Adams-Bashforth-Moulton forward-backward
predict-evaluate-correct-evaluate (PECE) technique and Pontryagin’s maximum prin-
ciple (PMP) are employed to solve the optimal control problem (OCP) and determine
the most cost-effective combination of control interventions. The validity of the results
is further confirmed through numerical simulations.

The remaining portions of this chapter are organized as follows: The basic pre-
sumptions of the model are presented together with a mathematical framework based
on the Caputo fractional-order derivative in Section 4.2 Basic properties, encompass-
ing aspects like positivity and boundedness, the basic reproduction number, existence
of equilibria of the model and absence of backward bifurcation, are addressed in Sec-
tion Section 4.4 explores stability analysis, both locally and globally. Sensitivity
analysis of basic reproduction % is given in Section The corresponding frac-
tional optimal control problem (FOCP) is introduced and analytically solved in Sec-
tion Section4.7| gives the numerical scheme of the adopted numerical method and
4.8 validates the relevant theoretical results and provides a numerical solution to the
corresponding fractional optimal control problem (FOCP). The chapter concludes in
Section
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4.2 Formulation of fractional order epidemic model

The epidemic processes, evolution and control, in human societies, cannot be consid-
ered without any memory effect. When a disease spreads within a human population,
the experience or knowledge of individuals about that disease should affect their re-
sponse. If people know about the history of a certain disease in the area where they
live, they use different precautions. Thus, some endogenously controlled suppression
of the spreading is expected. Based on the aforementioned studies, this section pro-
poses a new fractional-order nonlinear epidemic model employing the Caputo form
of the fractional-order derivative. The model assumes a total population size denoted
as N(¢) at any time ¢, divided into five sub-populations or classes: susceptible S(¢),
exposed E(t), infected I(¢), quarantined Q(¢), and recovered R(¢). The susceptible
class S(¢) comprises individuals at risk of infection, while the exposed class E(¢) in-
cludes individuals in close contact with infected people but not yet infectious. The
infected class /(¢) consists of individuals capable of transmitting the infection, and the
quarantine class Q(¢) comprises those who have tested positive but are not showing
symptoms of the disease yet and are either quarantined, at private suitable places or in
quarantine centers, or hospitalized based on the severity of infection with time. The
recovered class R(¢) includes individuals transitioning from I(¢) and Q(z) due to either
auto-immune response or medical treatment. For the formulation of the model, we

make the following assumptions:

(A1) All the newly recruited population by births or immigration goes to the suscep-

tible class initially, with a constant recruitment rate A.

(A2) When susceptible individuals come in close contact with infectious individuals,

they will be infected at a rate B and move to the exposed class with a transition

B
(1+al?)

type incidence rate, which describes a non-monotonic behaviour of incidence

rate . This transition rate function is referred to as the Monod-Haldane

rate due to psychological effects or behavioural changes of susceptible individ-

uals in case of a high density of infectives in the community.
(A3) The progression rate from exposed to the infected class is taken as V.

(A4) The transition rate function for quarantine to the infected population is taken as
2
Holling type III, i.e.,(ll—l&z), where ¥ is the quarantine rate and 0 is the lim-

itation in quarantining the people because of the limitation in the quarantine
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facilities due to the unavailability of a significant number of quarantine places.
The limiting value for the quarantine rate is %’ for the transition rate function,
v _y

1.€., }Lrl(’)lom =5

(AS5) The disease-induced death rate is considered as d; and d, for the infected and
quarantined classes, respectively. Whereas, the natural death rate in all the com-

partments is considered as L.

(A6) The recovery rate of the infected population due to auto-immune or treatment is
taken as o, and the recovery rate for quarantined infected individuals is taken as

.

(A7) Recovery is assumed to be permanent here, which means recovered people are
no longer susceptible to the disease and will not take part in further spreading of

the disease.
(A8) Itis also assumed that there is no time delay (latency period) in the model.

(A9) It is assumed that the population is homogeneously mixed.

In the presented study, the fractional-order epidemic model is presented under these
assumptions. The model is presented by considering the non-monotone incidences
and saturated quarantining rate for infectives along with the Caputo form of derivative
for the rate of change of population in compartments into the standard SE/QR model.
Therefore, it can be considered a novel fractional-order epidemic model for disease
transmission dynamics. The resulting fractional-order epidemic model presented under

these assumptions is:

BSI

DPS(t) = A — -
0 N o

ODIE(z‘)_H_Od2 VE — UE,

oDPI(t) = VE — B (W+d))I (4.2)
t 1—|—6I2 )

DrO(1) = i — 00— (u+d2)Q

0 t - 1+612 au 2 9

oDPR(t) = 61+ wQ — UR,

subject to the conditions

S(0) =So > 0,E(0) = Ep > 0,1(0) =1 > 0,0(0) = Qg > 0,R(0) =Rp > 0. (4.3)
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4.3 Basic Properties and Equilibria

4.3.1 Positivity and Boundedness of solutions

Theorem 4.3.1 For any initial condition satisfying (4.3), the solutions of the system
(4.2) remains non-negative and uniformly bounded ¥ t > 0 in the region of attraction
given by

Q= {(S,E,I,Q,R) ERI:0<N< %}

Proof 4.3.2 After adding all the model equations, we have

oD} (S+E+I1+Q+R)(t) = A= u(S+E+I1+Q+R) (1) —dil(t) — 0(1)
DP(N(1)) < A— uN (1)

)

where, N=S+E+1+Q+R.
According to Lemmal|l.1.10, it can be illustrated that,

N(t) < (N<o> - %)m—wp) -2,

where Eq stands for Mittag-Leffler function as defined in Definition[1.1.2]
Therefore,

) A
limsupN(r) < —.
t—0 H

Finally, S(t),E(t),1(t),Q(t) and R(t) are non-negative and uniformly bounded.

4.3.2 The Basic Reproduction Number and Equilibria

It is worth noting that the variable R(¢) is absent from the initial four equations.
Consequently, without sacrificing generality, it can be excluded from model (4.2)) for

the purposes of subsequent mathematical analysis. The resulting reduced system is:

Py =p_ P
ppn = P E_
4.4)
DRI = vE - - oI (utd)
oLy = 1+ 612 W Tap)i,
p y’
0DPO() = L — 00— (i +dr)Q.

:1+6l2
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It is evident that model (4.4) always admits a disease-free equilibrium Ey =
Eo(%,O, 0,0). Now further, the basic reproduction number % associated with the sys-
tem is determined. % represents the average number of infections produced by
a single infected individual in a susceptible population during their entire infectious
period. If % is greater than 1, each existing infection is expected to cause more than
one new infection, leading to exponential growth of the disease. Conversely, if % is
less than 1, the infection is likely to die out eventually as each existing infection leads
to fewer than one new infection on average. It is computed using the next-generation
matrix method [47]. To this end, the right-hand side of the infected compartments
is expressed as the difference . (X) — 7 (X), where .# (X) represents the rate of ap-
pearance of new infections in the compartments, and #'(X ) incorporates the remaining
transitional terms, namely births, deaths, disease progression, and recovery. So, as-
sume that
DX =.F(X) -7 (X),

where X = (E,I,Q)" and .7 (X) be the matrix of new infection term, ¥ (X) be the
matrix of outgoing terms. The Jacobian matrices F and V of .% (X) and 7 (X), respec-

tively, at infection-free equilibrium Ej are given as:

V+u 0 0
V= 0 o+ u+d 0
0 0 O+ U+dp

The next generation matrix is

0o LA __

| p(u+o+d)
FV— = # 0 0
0 0 0

Now, the spectral radius, i.e., the largest eigen value of the matrix FV ~! represent the

basic reproduction number and is given by,

B BAv
W= \/u(u+V)(G+u+d1)'
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In addition, it can be shown that the model 4.4 admits an endemic steady state when
Ho > 1.Let E) = E|(S*,E*, I*, Q) be an endemic equilibrium such that $* > 0, E* >
0, 7" >0, 0" >0and

( ﬁS*I*  _
A= ivam ~HS =0,
. 4.5)
VE" - T — ol — (u+di)I* =0,
,)/1*2 « d . 0
| ez — @0 — (L +d2)Q" =0.
It follows that,
A(1+ al*?) 1[ yr?
"t = , EY=— +(o+u+d)I"|,
BI* + (14 ol*?) VI[1+81+? (o+utd)
i 1*2
Q - *ZY
(14+6I?)(@+u+d>)
and I* can be obtained by solving the following equation:
Al + AT + AT + AT +Ap =0, (4.6)
where,
Ay = adp(pn+v)(o+u+d),
Az = (u+V)(ayu+Bé(c+u+di)),
Ay = pu(o+8)(u+Vv)(o+u+d)+B(vV(y—06A)+yu), 4.7)
A= (u+v)(yu+B(o+u+d)),
Ag = p(u+v)(o+u+d)(1 - %),
where,

BAv
pw(u+v)(o+u+d)
The coefficients A4,A3,A; are always positive. Now, there are two cases for .7, which

Ty =

are 7)< land 9 > 1.

Case I: When .9 < 1

For 7 < 1, the coefficient Ao > 0. So, we only need to check the sign of the coefficient
Aj. Backward bifurcation may arises here depending on the sign of A,. Backward

bifurcation shows the presence of multiple positive equilibrium points, that is, even
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when the alternative threshold .7, (or the basic reproduction number %, according
to proposition (4.3.5))) is below unity, disease can still persist in the society, which
makes the control of the disease more challenging. Since its presence or absence can

be justified by the sign of A, for %) < 1, so incorporating .7 into A, gives us,

Ay =p(a+8)(n+v)(o+pu+d)+B(v(r—6A)+yu),

By(y+p)—BvoA ]
u(p+v)(o+u+d)]’
By BAVES }

=pu(u+v)(o+u+d) _(0‘+5)+“<6+u+d1) S u(p+v)(o+u+d)

=u(u+v)(oc+u+d)|(a+6)+

| By }
= +v)(o+u+d)|(a+0)+ ——"——-0%
p(p+v)(o+u 0} ) CESTE ) 0
4.8)
As <1,
By _ By iy :
(a+5)+—.u(0+li+d1) 0% >a+—u(6—|—,u—|—d1) (A positive quantity),
ie. 5
Y
o+0)+————0%| >0,
@) et

This implies that sign of A, is positive for .7 < 1. Since, all the coefficients of equation
are positive 1.e. there is no variation of sign therefore, the Descartes’s rule of sign
[188] confirms that there is no positive real root (positive equilibrium point) for .7 < 1.

Thus, there is absence of backward bifurcation.

Theorem 4.3.3 When 7 < 1, the equation (4.6) along with (4.7) indicates the ab-
sence of backward bifurcation in system

Case II: When .9 > 1
For 9 > 1, the coefficient Ay will be of negative sign. The following will be the
possibilities on the variation of signs of the coefficients of equation (4.6).

(i) A4 >0,A3>0,A,>0,A; >0and Ay <O,

(ii) A4 >0,A3>0,A,<0,A; >0and Ag <O.

4.9)

Here, we examine the case of unique endemic equilibrium only. For .7, > 1 and with
the help of Descartes’ rule of signs [188], equation (4.6) has a unique positive real
root I* possible in the case of (i). Once I* is determined, values for S*,E*, and Q*
can be derived, leading to a unique positive endemic equilibrium E;(S*,E*,Q*,I*).

Consequently, the following theorem establishes the existence of this equilibrium.
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Theorem 4.3.4 If 9y > 1, then the system has a unique endemic equilibrium
E\(S*,E*,I*,0%)

The numerical illustration of Theorems 4.3.3|and [4.3.4]is given in Figure |4.1|below by
taking the parameter values given in Table 4.1]

Iit

"
AL o

=1

Figure 4.1: Plot of % versus I(¢).

Proposition 4.3.5 (Alternative Threshold). Set

BAvV
p(u+v)(o+u+d)

%:

Then %y is smaller than (respectively, equal to or greater than) 1 if and only if the

same relation holds for 7.

Proof 4.3.6 By a straightforward computation we see that

BAv
B <1 <1
o=l ¢um+VXG+u+m)_
BAv
=0 \/u(u+V)(6+u+d1) = (410
BAv <1
up+v)(o+pu+d)

— <1

and also Xy > 1 is equivalent to Ty > 1.



4.4 Stability Analysis 87

This section outlined the basic properties, encompassing aspects like positivity and
boundedness, the basic reproduction number % and equilibria of the model. The the-
orems given here determine the conditions under which an epidemic can persist or die
out depending on %, as well as on defined alternative threshold .%,. Understanding
these thresholds helps in devising effective control measures. Moreover, the absence
of backward bifurcation is shown, which makes the control of the disease less chal-

lenging.

4.4 Stability Analysis

This section addresses the local and global staility analysis of both the equilibria. The
local stability analysis involves examining the behaviour of a system in the neighbor-
hood of an equilibrium point. It determines whether small perturbations in the equi-
librium point leads the system back towards that point (stable) or diverge away from it
(unstable). Whereas, the global stability analysis examines the behaviour of a system

over its entire state space, not just in the neighborhood of equilibrium points.

4.4.1 Local Stability

At any equilibrium point (Sx, Ex, L, Q4), the linearized system of (4.4)) is derived

as follows to establish local asymptotic stability:

( BL. ) BS.(1—al?)

DPS(t) = — | ———— S Sl

oD 5(1) <1+ocl*2+“ S (1+aL?)? "’

BL. ) BS.(1—al?)
DPE(t) = —" )s— E+22 )
oDrE) <1+ocl*2 Ve (1+aL2)? (4.11)
291, '
0 2vI,
oD; Q(I)ZWI—((DJrHerz)Q-
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Taking the Laplace transform on both sides of the system (4.11]), we have

BS.(1—al?)
 (1+aL?)?

spz{s<f>}—sp—1s<o>:—( BL +u>${5(t)} LU0},

1+ al?

sP,Z{E(t)}_sP*IE(()) = (1f(I;I*z).,%{S(t)}—(v+u)${E(t)}+ (+al?)?
P L)) — P~ (0) = vL{E(D)} — ((1+2+2)2 +(o+p +d1))${1(;)},
P L(00) ~100) = [ F s LU0} - (04 1+ ) Z100),

(4.12)

The system (4.12) can be written in the following matrix form:

Z{S(t)} ai(s)
ZL{E({t)} ax(s)
V() = ,
ZL{(t)} az(s)
Z2{0(t)} a4(s)

where

ai(s) = sP718(0), az(s) = sPLE(0), as(s) = s 1(0), as(s) = s ~10(0),

and
) BL. o 0 BS.(1—alL?) 0
1+al? (1+051*2)22
I S.(1—al
__PL_ - sPHv+u _ps.(1-ak) O;*) 0
V()= I+al. 2(11+061* )?
Vi
0 —v Py ——=+o+u+d 0
(o2 pora
0 0 —M}/TI*ZV Sp+(1)+,u+d2
(4.13)

In this case, the characteristic polynomial of the system (4.4 is det(s/(s)), and
the characteristic matrix is 3/(s). The distribution of eigenvalues of the characteristic

polynomial det(5/(s)) may be utilized to examine the local stability of system (4.4).

BS. (1 — al?)

Z{1(1)},
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Now, to analyze the local stability of disease-free equilibrium E (ﬁ,O, 0, 0) , the

characteristic matrix of system 4.4]at E is determined as follows:

A
sP 4+ u 0 ﬁ— 0
BA
P -
vie=| O STV " 0 O (414)
-V sP+o+u+d 0
0 0 0 sP+o+u+dy

So, the characteristic equation is:

(sP+u)(sP+do+u+ @) [BAV+u(U+V+sP)(di+u+sP+0)]
u

=0

det(v7(s)) =

Let A = sP, then the characteristic equation can be written as:
A+u)A+do+pu+o)[-BAV+u(u+v+A)(di+pn+iA+0)]=0 (4.15)

Since the stability can be justified by the negative eigen value of characteristic equa-
tion, from equation (4.15) we have two negative eigenvalues A} = —u and A; =

—(@+ 1 +d>) and the rest of the eigen values can be analyzed by the following factor

of equation (4.15)):
[—BAV+u(u+V+A)(di+u+A+0)]=0,
which can be re-written as the following quadratic equation:
(A% + pA (U + V) + (0 +p+d1)) + 1+ V) (o +p+di)(1 - F)] =0,

WA +V)+(o+u+d))+(R+V)(o+u+d)(1-TF)=0.

Now, it can be seen that all the coefficients of the above quadratic equations are pos-
itive. So, Routh-Hurwitz criterion [4] assures that the equation has two roots with
negative real parts. So, finally all the eigen values of characteristic equation are
with negative real part and therefore the disease-free equilibrium Ej is locally asymp-

totically stable. Thus, we have the following theorem.

Theorem 4.4.1 The disease-free equilibrium Ey is locally asymptotically stable when
the threshold value 9 (or %o by Proposition is less than unity.
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To analyze the local stability of the endemic equilibrium £, the characteristic matrix

v/ (s) corresponding to equation (4.13)) at E is obtained as follows:

BI* BS*(1—al*?)

Sp + 1+OCI*2 +H 0 (1+(X[*2)2 , 0
__pr p _Bs'(-ar?)
1+od*? SEHVAH (14-al*?)? 0
_ 2yI*
V() 0 v P AL sy +1;1*2)2 +o+u+d 0
2yI*
0 0 —(1_'_,’}0:—1*2)2 sP ‘|—CO—|—,u+d2
(4.16)

Let Q = s”, then the characteristic equation of the characteristic matrix (4.16)) is
(dr+p+0+Q)[(al?+1) (al?u+ al’’Q+I'f + 1+ Q)
(u-|-v+Q)(I*462/,L+I*4526—|—I*4529—|—I*452d1 121284,
L2 A 2086+ 2P SQ A2 Y+ dy U+ 0+ Q)

F V(126 +1) (@Pr°Bus + o’ r®BSQ + oI Bus + o1 SQ
— ol Bus —al**BSQ — Bus — BSQ)]

der(v(s)) = (ar2+1)" (126 +1)° =0

(4.17)
This can be re-written as,
det(7(s)) =(da+ p+ 0+ Q) [(al* + 1) (al’u + aI?Q+ "B+ u + Q)
(U V+Q) (I8 + 1" 8% 0 + 1" 8*Q 4 1" 8%, +2I"*8d;
LS 4280 + 2P QA2 Y+ dy + i+ 6+ Q)
+ V(126 +1) (@Pr°Bus+ o’ r®psQ+ a’r*pus
+ o2 BSQ— ol Bus — al*BSQ — Bus—BSQ)] =0.  (4.18)
From here, one of the eigen values is Q; = —(@ + i +d») and rest of the eigen values
are analyzed by the equation,
(ar? +1) (' u+al’Q+I'B+u+Q) (u+v+Q)
(I*8%u + 186 + 1" 8°Q+ 1" 8dy + 21" 8dy + 21" 8 + 20" 86 + 21" 8Q
F2 Y +di + U+ 0+ Q) + v (125 +1) (P OBuS + a’I°psQ
+ @I BuS + oI BSQ — al**Bus — al*BSQ — BuS — BSQ) =0,  (4.19)
which reduces into the following polynomial:

A3QP + A Q2+ A1Q+Ag =0, (4.20)
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where,

Az = (ar?*+ 1)} (1?6 4+1)7,
Ay = (ol + 1) (' (2(al*y+7) + I (a(I?6 +1)° + 8 (I'*6 +2)) Bu+Vv + o)
+B(I25+1)%) +di (ar?+1) (I8 +1) 2 +3u +v +0),

Ay = (ol + 1) (21382 3u® +2u(v + 6) + vo) + al B> (2u + v + o)
+ a8 (20 (0 + 8) (21 + V) + 60’ + 4oy + 65> + 45V + BSVS*)
+17(u+v) 20y +2aB8 + BS%) + BSc(2a + )
+I* (o (3 +2u (v +0) +vo) +2a(28 (3u* +2u (v +0) +vo)
+B(y+8vS*)) +82(3u’ +2u(v+ o) +v(o —BSH))) +I7 (B +4y)(2u + V)
+aBo+2B82u+v+0))+di (al*+1) (I8 +1) (I (al* (2u+Vv) +B)
F2U 4 V) + T2 (2(a+ 8) BUP 21 (V + 0) + Vo) + 2By + BvS*(a —28))
+IF(B+27)2u+ V) +I*Bo +3u* +2u(v+0) +v(o — BSY)),

Ao = (ar?+1) (2382 u(u+v)(u+0) + al" B8 (1 + v) (1 + o)
+ar sua(u+v)(u+0)+82(u+v)(1u+0)+Bvs))
HIP (4 v) 207y +20B8 (1 + 6) + BS*(u+0)) + I (0P p(u+ V) (1 + o)
+2a(28u (L + V) (1 +0) +B(Y(p+V) +8uvS")) + 8 u((n+v)(n +0)
—BvS)) + 17 (4 v)(a(B(u +0) +4yu) +2B8(u + o))
+d, (al*2+1)(l*25+1)2(u+v)(1*(al*u+ﬁ)+u)+I*2(2u(a+8)
(H+V)(u+0)+BY(1+V)+uvS (a—26))) +I"(u+Vv)(B(1+o0)
+2yp) +pu((p+v)(p+0) - Bvs?)).

A Aq
Considering Ky = A—O, K| = " , and K = %2, equation (#.20) becomes,
3 3
P(Q) = Q3+ K, Q2 + K1 Q+ K. (4.21)

The Routh-Hurwitz criteria for fractional order systems [4] demonstrates that the roots

of the aforementioned polynomial, which meet |argQ;| > %ﬂ, i=1,2,3, indicates local
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stability. So, corresponding to the above polynomial P(Q), the discriminant D(Q) is,

K, Ki K O
1 kK K K
2k, Ki 0 0
3 K, Ki 0
0 0 3 2K K

S
o
I
S W O =

= 18K>K 1Ky + <K2K1 )2 — 4K()K23 — 4K13 — 27K()2.

For P(Q) = 0 having three roots with negative real parts, we have the following theo-

rem which ensures the local stability of E;(S*,E*,I*, Q%) using [4]:

Theorem 4.4.2 The endemic equilibrium E\(S*,E*,I*,Q") is locally asymptotically
stable when any of the following conditions hold:

(i) K» >0, Ky >0, K2K; > Ko if D(Q) > 0,
(i) If D(Q) <0, K2 >0, K; >0, Ko >0, p < 3,

(iii) IfD(Q) <0, K» > 0, K; > 0, K2K; = Ko, p € (0,1].
Otherwise, the endemic equilibrium E|(S*,E*,I*, Q%) is unstable when the con-
dition D(Q) <0, K, <0, K; <0, p > % holds because in this case all the roots
satisfy the condition |arg(Q;)| < &F.

4.4.2 Global Stability

This subsection analyzes the global stability of disease-free equilibrium E( and
endemic equilibrium E; with the help of Lyapunov stability method for fractional order
system. The global stability of the disease-free equilibrium Ej is first discussed. To

this end, the following positive definite Lyapunov function is constructed:
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Differentiating both sides with respect to ¢ along with E for order p, we get,

oDPL(1) = oDPE(1)+oDPI(1)

v
(L+v)
% SI 1>

- (L+v) [lfalz —(V—|—/.L)E} * [VE_ﬁ_((H—qudl)l

v st yr
_(u+v)1+a12 1+ 812

[

§(6+,u+d1)l

—(o+u+d)l

I

1+ 612
I
14612
PAV _1] o
p(u+v)(o+u+d) 1+ 812
P
1+0617

)ﬁSI (G+H+d1)

o+u+m41—

<(c+u+d)(FH—1)I—-
<0 if H<1.
It is clear that oDYL(r) is negative when .7 < 1 (or %, < 1, by proposition (@.3.3))
and equal to 0 at Ey. Hence, by the Lyapunov stability theorem [[116;44], E is glob-

ally asymptotically stable when %) < 1 (or %y < 1) and thus we have the following

theorem:

Theorem 4.4.3 The disease free equilibrium Ey is globally asymptotically stable when
the threshold vale T (or %o by Proposition (4.3.5))) is less than unity.

Now, moving towards the global stability of endemic equilibrium. To prove this, we

constructed the following positive definite Lyapunov function,
S E
L(t) = (S—S* —S*log§) + (E—E* —E*logﬁ)

—f—(l—l*—l*logli*) (Q 0" QlogQQ*).
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The differentiation of both sides with respect to ¢ along with the endemic equilibrium
E for order p with the help of Lemma is:

oDPL(r) < (1 — %) oDP (1) + (1 — E—) oDPE(r) + (1 — i) oDPI(1)

E I
+ (1 — %) DPO(1r)

(15 () (-5) (2o eo)

Let G(I) = —L, F(I) = I’ then from the steady state equation (4.3), we also

T+al?’ 1+612°
have:
S*G(I*
A=BSGU) +us', (vip) =P A
_YF(I) I _YF(IY)
V=0 +(G+,Ll+d1)E*, (w+u+dr) = o
Thus,

*

WDPL(1) < (1 - %) (BS*G(I*) + uS" — BSG(I) — uS)

+ (1 - EE) (BSG(I) —BS*G(I*)£>

+ (1 - %) (},F(l*)ng (0'+/.t+d1)1*§ —yF(I)— (G+u+d1)l>

(8) o)
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—us*(z—%*—%)ws* (1 )(1_%*+GG<S?> ;(?((1)))

. E E*S GUI) S G
+BS G(1)<1_§_f§G(I*)+§G(I*))
E(,_I" EF() I'E°F()

(_T_FF(M 77@)

o (14 L 1)
NN
T (1 TFr) QFw) @)

st S
<pus (2-=-=
(25 s*)

E I* E*F() I"E* F(I)
_(1_7_EF(1*) IEFI)>

E* E*I I*

[ FD) Q@ FD) Q
T (1 Fr)QFT) @) '

Clearly, by the property of arithmetic mean, we have

st S
2-2 2 ) <0
25 s*)—’

s* E G
2 — 4 ——=
S E* G(I) E S*
<0

( * * * ok
(I_I__E_F(I) I'E )
(

E Er- 1
+(G+H—|—d1)] (1+— ————— >

and if

| /\

I EFI) TE F(I*) )

F(I*) QF() @
then, oDf L(¢) < 0. Hence, the Lyapunov stability theorem [116;44]], ensures that the

(1+ F(I) Q" F(I) Q) <0,

/

endemic equilibrium E;(S*,E*,I*,Q*) is globally asymptotically stable when % >
1 (or Zo > 1 by Proposition (4.3.5))). Thus, we have the following theorem:

Theorem 4.4.4 The endemic equilibrium E|(S*,E*,I*,Q") is globally asymptotically
stable when J > 1 (or %y > 1 by Proposition 4.3.5))) for all o € [0,1).
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In summary, this section explored the stability analysis which helps in understanding
the long-term behaviour of the epidemic. By studying the stability of different equilib-
ria (e.g., disease-free equilibrium or endemic equilibrium), one can assess whether the
disease will persist at a certain level in the population or eventually die out. As stated
in the theorems, the threshold value .7 indicates that .7 < 1 signifies the asymptotic
stability of the disease-free equilibrium (Theorems and[4.4.3). On the other hand,
for the disease to persist in the society, the threshold value .7 must be greater than 1.

In other words, we can say that the endemic equilibrium will be asymptotically stable

when %) > 1 (theorems |4.4.2| and |4.4.4). This information is crucial for public health

planning and resource allocation.

4.5 Sensitivity Analysis

Sensitivity analysis is used to determine the model factors that affect the fundamental
rate of reproduction of various infectious diseases financially. Using this method, epi-
demiologists may predict crucial elements required for the dynamics of disease trans-
mission. We must ascertain the values of the sensitivity indices in order to comprehend
the model parameters that must be maintained or watched over in order to prevent or
control the impacts of illness. To stop the spread of infection, we need to determine the
model parameters that are sensitive to comprehend the dynamics of disease transmis-
sion. We need to estimate the change in the basic reproduction number with respect to
various model parameters to get the normalized forward sensitivity index of the basic

reproduction number.

Definition 4.5.1 [/58] The normalized forward sensitivity index of a variable z, which
depends on a parameter x, is defined as

BLINE.
Cox 7

0%,
770 i, which shows how sensitive %
ox %A

to the parameter x. The sensitivity index for the parameters of interest are:

Wy

So, for %, the sensitivity index is Wx‘% =

d U a  dQu4v)+3ut+2u(v+o)+ve g |
W ) Wu —_ 9 WA —
B2 2(u+v)(di+u+o) 2
R o} R u R dy
wh—-— >  owh-_ oy
° 2(di+u+o) Y 2utv) 4 2(di +p+o)
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These sensitivity indices are evaluated with the help of parametric values given in Table

4.1 as follows and also given by the bar diagram in Figure 4.2]

Wy =05, W/ = 07727, W =0.5, W = 00455,

Wy =0.0909, W, =—0.2727.

0.6

0.4 .
02} .
0 [

_DZ I I |

Figure 4.2: Sensitivity indices of Z.

Figure indicates that the most sensitive parameters for %, are , u and A.
Parameters v and d; also have some sensitivity to %, while the parameter o is least
sensitive. Thus, for example, if the transmission rate 3 varies i.e. increased or (de-
creased) by 10%, then the value of % will increase or (decrease) by 5%. Likewise,
a 10% increase or (decrease) in value of u would correspond to a 7.72% decrease or
(increase) in the value of Z. By doing so, the sensitivity of parameters is observed in

both positive and negative aspects.

4.6 Optimal Control Problem

In this section, we establish an optimal control problem aligned with the model system
(4.2), incorporating the influence of information (non-pharmaceutical intervention) as
a control policy. The optimal control problem, formulated using fractional differential
equations, can provide a more accurate representation of the system dynamics com-

pared to integer order models [93]. Our objective is to explore the effects of these
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control interventions on disease progression and to optimize the associated implemen-
tation costs. Initially, we outline the control policy and subsequently assess the corre-
sponding cost implications.

Enhancing the response of susceptible population via information: During
the spread of an epidemic, the rate at which the susceptible people become infected
can be reduced by changing their behaviours by getting aware of the risk of disease
transmission within their community, informed by public health campaigns, media
coverage, and personal experiences. It is assumed that susceptible individuals, after
awareness, adopt the preventive measures; such as wearing masks, social-distancing,
regular sanitation, etc.; but disparities in resources and attitudes can impact imple-
mentation. This behavioural response is represented by the control variable u(z). In
our model system (4.2), u represents the response intensity via information, where
0 <u < 1. Here, 0 means no response, and 1 means a full response from informed in-
dividuals. So, this response intensity is directly related with an individual’s behavioural
response. Now, we treat this response intensity u(¢) as a control variable. There will
be a cost involved, which is a nonlinear function of u(t), to boost individuals’ response
to information, prompting them to change their behaviour.

Our primary goal is to determine the optimal response intensity using available
data while executing them at the lowest possible cost through the spread of informa-
tion. The admissible set, as discussed above, for the control variable u(r) is given
by,

U = {u(t)| u is Lebesgue measurable, 0 < u(r) <1, t € [0,T]}.

Here, T is the final time of implemented control policy and u(¢) is measurable and
bounded function.

The motivation for implementing control variable u(t) is to minimize the propor-
tion of infected and quarantined populations, and the cost of its implementation, given
by,

T 1 5
Fu) = /0 WiE +wol +w30 + e dt, (4.23)
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subject to model system

BSI

P _ _ _ _
DPS(t)=A—(1 u(t))l—i-oclz us,

BSI
DPE(t) = (1 —u(r)) ol VE — UE,
N (4.24)
DPI(t) = VE T ar ol — (u+d)l,
DPQ(I)ZLZ—wQ—(qud)Q

DPR(t) = ol + ®Q — UR,

with §(0) >0, E(0) >0, 1(0) >0, Q(0) > 0 and R(0) > 0.

Here, the function / represents the overall cost, and the expression
L(E,1,Q,u(t)) =wE+wy[+w30+ %zluz shows the current cost at any given time ¢.
The parameters wy,wy, w3 are positive constants that balance the units of the different
parts of the expression [62;90]. The control effort is represented by the quadratic term
u?. For convenience, we use u(t) = u.

In the following, the Pontryagin’s maximum principle [[105] is used to solve op-
timal control problems. According to the literature [124; 66], an optimal solution for

(4.24)) exists if the following conditions are met:
(1) The state variables and control set are not empty.
(i1) The set U is both convex and closed.

(ii1)) The system’s right side in equation (4.24)) is constrained by a linear function

involving both the control and state variables.

(iv) The integrand of the objective function
1
L<E717 Qa Lt) =wE +W21+W3Q+ EZ]MZ
is convex on the set U.

(v) There exist constants k;, k; > 0 and € > 1 such that the integrand L(E,I,Q,u)

satisfies
%

L(E,1,Q,u) =k (ju*)* — k.
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Similar to Theorem (4.3.1)), we have

DPN =A—uN —diI —d,Q
DPN < A—uN

Now from the prior bounds of the populations as N < %7 for bounded control in U,
it can be concluded that the solutions of the system are also bounded. It is
evident that the functions on the right-hand side of the system (4.24)) meet the Lipschitz
condition concerning the state variables.

Thus, we can satisfy condition (i) by applying the Picard-Lindelof Theorem [38]].
Since the solution to the system (4.24)) is bounded, and the control set is convex, condi-
tions (ii) are also met. According to the literature [[122], it is straightforward to confirm

that conditions (iii) and (iv) are equally valid. Moreover,
) €
L(E,I,Q,Lt) 2 kl (‘l/t’ ) : _k27

where k; = %min{kl,kz}, k, = 1, € = 2. Thus, condition (v) is verified. Considering

the above discussion, we reach the following conclusion.
Theorem 4.6.1 There exists an optimal control solution it such that
(@) = min[_# ()
subject to the fractional system (4.24).
To obtain the optimal control solution, the Lagrangian function is defined as:
L=wE+w)l+w30+ %Zlu2>
and Hamiltonian function

H(S,E,I,Q,R,u,A;) = L+ A DPS+ AyDPE + A3DPI+ A4DP Q + AsDPR

1
=W1E—|—W21+W3Q+§Z1u2

BsI

+7Ll(A—(1—u)1+a12—uS
BSI
+7Lz((1 e~ (VHE
+ A3 | VE — )/12 —(o+pu+d)l
’ Itop \CTHTA

a (- (orutd)o

+As (ol +0Q — UR).



4.6 Optimal Control Problem 101

Here, A; = (A1, 42,43, A4, A5) is referred to as the adjoint variable. Using Pontryagin’s
Maximum Principle, the minimized Hamiltonian that reduces the cost is obtained. Pon-
tryagin’s Maximum Principle contributes significantly in connecting the cost with the

state equations by introducing adjoint variables.

Theorem 4.6.2 In the control system (4.23))-(4.24), let @i be the optimal control vari-
able and S, E, I, Q, and R the corresponding optimal state variables. Then, there
exists A; = (A1, A2,A3,A4,45) € R> as an adjoint variable that satisfies the following

canonical equations:

o) = (- P - (-0 B )

DP2a(t) = —wi+ (v +u)A — (VE) 43,

+ (m + (G-f—ll +d1))7t3 — (m) Ay — (G))L5, (4.25)

Dpl4<l‘) = —w3+ (a)+/,L —|—d2)7t4 - ((D))L5,

DP As(1) = (1)As,
with transversality conditions
A(T)=0. (4.26)

Further, the optimal control it is given by

L‘t:min{max{Ol pSt (/12—11)},1}. 4.27)

"7 1+ al2

Proof 4.6.3 The adjoint variable equations and the transversality condition may be

derived as follows by applying Pontryagin’s maximal principle:
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oH . BI L BI
p = —-—— == — —_— —_— —
JH _
Dplz(l‘) = _ﬁ = —wi+ (V—l—‘LL))Lz - (VE)A3,
oH _ BS(1—al?
Dng(t) - —W = —W2+ ((1 —M)%)ll
_BS(1 —al?) 29I
_ ((1—u)—<1+a1—2>2 bt ( iy g o) )
2yl
(s o
JoH
Dpl4(t) = —E = —w3+ ((l)‘i‘,u"—dz))m — ((D)A,S,

oH
DP2s(t) = 3R = (1) As,

with 2;(T) =0, for any i = 1,2,...,5. The characteristic equation of optimal control

it, can be obtain by solving the equation:

oH
520, at u=u.
Thus we get,
1 B3I
= ———— (A —A1).
! 2] 1—{—061_2( 2 Y
Thus, we have the control set U as:
( | BST
0 if — A—A 0
¢ 71 1—|—OCI_2( 2 1) <
)1 st 1 B3I
H=< — AH—A if 0< — MH—2A) <1
le+a1_2(2 1) lf _zll+ocl_2(2 1)_
1 B3I
1 ———— (A=A > 1
\ : 71 1+OCI_2( 2 1) ’
which can be equivalently written as:
1 BSI
ﬁ:min{max{o,zlfw(h—lg)},l}. (428)

Hence, the theorem proved.
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This section focused on the optimal control problem to reduce the spread of disease in
an optimal manner. Theorem4.6.1|established the existence of an optimal intervention
strategy, minimizing disease spread or maximizing public health outcomes. Pontrya-
gin’s Maximum Principle characterized this strategy, defining when and how interven-
tions should occur. Theorem[4.6.2|confirmed the existence of adjoint variables meeting
canonical equations and a transversality condition, ensuring the strategy’s long-term
sustainability. This condition prevents short-term disease control gains from causing

long-term harm, aiding in effective decision-making for disease management.

4.7 Numerical Scheme

The Adams-Bashforth-Moulton predictor corrector method is the most employed nu-
merical method for the fractional order system of differential equations with initial
values [50]. The implementation of this method is given below. Consider the follow-

ing non-autonomous SEIQR system for the same.
DPS(t) = fi(t,S,E,1,Q,R),
DPE(t) = f>(t,S,E,I,Q,R),
DPI(t) = f3(t,S,E,1,Q,R), (4.29)
DPQ(t) = fu(t,S,E,I,Q,R),

DpR<t) :fS(t7S7E7]>Q,R)7

with S(O) =S, E(O) = Ey, I(O) =1, Q(O) = Qo and R(O) = Rp, where 0 < p <'1.
Lett; = jh, j=0,1,2,...,N with some integer N and # = T /N, in the interval [0, T].
By utilizing the method given in [50], system (4.29) can be written as follows.
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Predictor values for (4.29) are

Spi1 = SO+F(p Zb]"+1f1(tJ7SJ7EJ7]J7QJ’ j)s
Ef, 1= B0+ 5055 ijnﬂfz(r,,S,,Ej,lj,Qj, i)
IV =l+ ﬁ Z, bjn1f3(1,81,Ej, 1, Q). R;),
o = Q0+F(p ;b]n+1f4(tjaS]7Ejanana i)
Rn+1 R0+F(1P ijanS(tj,Sj,Ej, 7QJ>RJ)>

J=

where, bj 11 = %((n—j+ 1P —(n—j)P).

Corrector values are obtained by using predictor values as follows:

hP
Sn+1 250+mf1 (tn+1aS5+17E1113+17 +17Qn+1’Rn+1)
WY i 6.5).E, 11,0, R)
=V ajnt+1]1 1, '7E'a1'7 'aR. 5
F(p+2) ) J:n FARatV Rianl bl ) JoriY)
hP P P P AP P
En—H = EO+mfZ(tn—HaSn+17En+17In+17Qn+1,Rn+1)
WY i 2655, E. 11,0, R)
=V~ Ajni1J2 1, '7E'a1'7 'aR. 5
F(p+2) ) J:n FARatV Rinl b ) Jor Y]
hP P P
) A :Io+mf3(fn+l75n+1,En+17 +17Qn+l7Rn+l)
hP
+mZa]n+1f3(tjaS]7Eja1j7Qja )

hP
Ont+1 =00+ mf4(tn+laS5+l7E5+l> it Onet RY )

W
= aj +1f4 t'7S'7E'aI'7Q'aR' )
F(p+2)];0 Jn (] =AY E] ])

hP P P P AP pP
RI’H—] = RO + m,}% (tn+17Sn+17En+17In+l7Qn+17Rn+l)

n
p_|_2 Zajn+1f5 t]’S]7E]’I]7Qj7 )
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where,

WP = (= p)(n+1)°, j=0
Ajn+1 =

(n=j+2P (=P =2 —j+ 1P 1< j<n.
According to the mathematical analysis of this method in [S1], the order of accuracy is
y =min(2,1+p). This is because it can be demonstrated that y must be the minimum
among the order of the corrector (which is 2 in our scenario) and the sum of the order of
the predictor method (which is 1 in this case) and the order of the differential operator
(denoted as p). It is noteworthy that the Adams-Bashforth-Moulton scheme’s conver-
gence order Y increases with an increase in p, which denotes the order of differential
equation, as described the algorithm behaviour in [53]. Regarding the algorithm’s
stability properties, it is observed that it follows that the fractional Adams-Bashforth-
Moulton scheme’s stability properties are at least as good as those of its counterpart
for first-order equations, i.e., the traditional second-order Adams-Bashforth-Moulton
method [53]].

4.8 Numerical Simulations and Discussion

In this section, MATLAB 2012b is used to execute numerical simulation with the set
of numerical experimental data as given in Table to verify the accuracy of the the-
oretical derivation using the fractional Adams-Bashforth-Moulton technique by using
scheme given in Section When numerical analysis is performed with the help of
real data, it might lead to fluctuations in pricing, expenditures, and technology, mak-
ing it challenging to identify causes and effects. On the other hand, numerical analysis
with a set of numerical experimental data makes it easier to distinguish the effects of in-
teractions between different classes, which is crucial for the observation of long term
behaviour of the system [125]. Therefore, a qualitative analysis is presented, which
provides a conceptual understanding, as researchers examine the underlying mecha-
nisms and assumptions of the model to develop a deeper understanding of the complex
dynamics of disease transmission and control, identifying areas where further empir-
ical validation or adjustment is possible. For the numerical computations, the initial
sub-populations are taken as S(0) = 310,E(0) = 25,1(0) =5,0(0) =5, and R(0) =5

and set of numerically experimental data has been given in Table 4.1]
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4.8.1 Numerical Analysis without Control Strategy

In this subsection, to confirm the feasibility of our analysis regarding the exis-
tence and stability conditions of equilibria corresponding to model system (4.2)), some

numerical computations are performed.

Table 4.1: Parameters of the model SEIQR.

Parameters Description Values
A Recruitment rate 7
B Transmission rate 0.009
o Psychological saturation constant 0.02
u Natural mortality rate 0.02
% Rate of progression from exposed to the infected 0.09
group
Y Quarantine rate 0.07
0 Quarantine saturation constant 0.008
o Auto recovery rate 0.005
(0] Recovery rate due to treatment 0.007
d; Death rate due to disease in / class 0.03
d> Death rate due to disease in Q class 0.03

For the data given in Table the value of the coefficients of equation
@.6) is Ay = 1.936 x 1078, A3 = 3.5156 x 1070, 45 = 2.7328 x 107>, 4; = 2.0845 x
1074, Ag = —5.549 x 1073. These coefficient values satisfy Theorem and the
possibility of the existence of unique positive equilibrium provided the condition
Y > 8A which is (0.07 > 0.056). Thus the endemic equilibrium is E*(S*,E*,I*,Q*) =
(135.966,34.5256,8.18312,53.5491) for which the basic reproduction number %) is
6.8454 and simultaneously the alternative threshold .7 is 46.85954.

The values of coefficients of equation (4.20) are calculated as A3 =70.6216, A, =
49.5942,A1 =7.0492,A¢9 = 0.225921. One of the eigen values corresponding the equa-
tion (4.18)) are Q1 = —0.057, and the rest of the eigen values are the root of the equation
i.e. of the equation Q3 +0.702252Q2 +0.0998165Q + 0.00319903 which are
Q, = —0.523139, Q3 = —0.133208, Q4 = —0.0459063. The discriminant of poly-
nomial term of the equation is calculated as D(A) = 0.000263922. The val-
ues of the coefficients of equation are Ky = 0.00319903, K| = 0.0998165,K;, =



4.8 Numerical Simulations and Discussion 107

0.702252 and these also satisfy the condition K> K| > Ky, so together with the discrim-
inant D(A), these are satisfying the first condition of the Theorem Using the

initial population conditions, Figures [4.3al [4.3b| 4.4, 4.4b| are plotted, depicting the
impact of the fractional order p on the sub-populations.

As depicted in Figure .34, the variation in the fractional order value p influences
the convergence rate of the system (4.4). Specifically, when the value of p increases,
the susceptible population reaches its steady state more rapidly. On the other hand,
if the value of p decreases, the memory of the system is strengthened, leading

to a slower convergence speed. In simpler terms, reducing p makes it take longer to

eliminate the disease.

60

p=0.7
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(a) Profiles of susceptible population with dif- (b) Profiles of exposed population with differ-

ferent fractional order. ent fractional order.

Figure 4.3: Effect of fractional order p on susceptible and exposed populations.
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Figure 4.4: Effect of fractional order p on infected and quarantined populations.

In Figures [4.3b] [4.4a, 4.4D] it can be seen that when p = 1, the populations

E.I, and Q quickly reach a steady state. However, as the value of p decreases, the

time it takes for these populations to reach the steady state increases. This shows
how the epidemic evolves over time. According to Theorem 4.4.4] the endemic equi-
librium (135.966,34.5256,8.18312,53.5491) is stable for all fractional order values
(p =0.7,0.8,0.9,1), as demonstrated in Figures |4.3a} 4.3b), |4.4al |4.4bl

Biologically, it can be said that a higher value of p implies that individuals are less

influenced by past experiences, leading to a quicker convergence to the steady state. On
the other hand, when the value of p is relatively low, the memory effect is stronger, and
the susceptible population takes more time to reach a steady state. A lower value of p
implies that society retains more memory of past experiences during the emergence of
an infectious disease. Moreover, with a weaker memory effect, individuals might take
longer to recognize and respond to the disease’s presence that is the peak of infected

individuals is high in case of higher values of p.



4.8 Numerical Simulations and Discussion 109

8]
o

-y
o
T

ey
[=2]
T

g 14f
12t

S10r

Infected Individuals (1)
[==]
Recovered Individuals (R)

0 200 400 600 800 10C 5 6 7 8 9 10 1
Time (t) Infected Individuals (1)

(a) Profiles of infected population with different (b) Phase portrait of infected and recovered

initial conditions 7(0) for p = 0.7. population at p = 0.7.

Figure 4.5: Effect of different initial conditions /(0) on infected population and the
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Figure 4.7: Phase diagram at fixed p =0.7.

Important insights into the dynamics of disease transmission within a population

may be gained from Figures [4.5a] [4.5b, 4.6a, and 4.6b. Figure illustrates the
stability of the model under different initial conditions. The stability of the model

is confirmed when the infected population reaches a steady-state, regardless of the
starting number of infected people. For instance, steady-state behaviour is consistent
in simulations with varied beginning infected people (1(0) =5,7,9,11). The recovered
population is initially at a low level as the number of infected persons grows, as seen in
Figure However, with time, recovery increases along with the number of infected
individuals and reaches to its steady state. Figure 4.6a shows how timely quarantine
affects the number of infected individuals. The graph indicates that when quarantine
measures are initiated, the number of infected individuals initially increases. However,
because of the timely quarantine, the infection reaches its highest point and then goes
down significantly. This emphasizes the importance of timely quarantine in controlling
the peak of infection during an epidemic. In Figure 4.6b, we can see how putting
people in quarantine on time affects the number of individuals who have recovered.
Clearly, when quarantine happens on time, the number of people recovering increases
and eventually levels off at a steady state.

Figures and are presented to study how psychological factors affect
both susceptible and exposed populations. When the rate of psychological effects o
increases, the number of susceptible individuals increases, and the peak of exposed

individuals starts to decrease, as illustrated in Figures and Therefore, using
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psychological effects can be an effective way to lower the peak of infection in society

during an outbreak.

4.8.2 Numerical Analysis with Control Strategy

This subsection explains the outcomes of the Fractional Optimal Control Prob-
lem (FOCP) and discusses the implications of the study. To analyze the results, Pon-
tryagin’s maximum principle along with its optimality conditions is applied, using
the forward-backward predict-evaluate-correct-evaluate (PECE) method. The simula-
tions and discussion of results are conducted through this approach, which involves the
Adams Bashforth Moulton FBSM method [[153]].

The values of the state variables S,E,I,Q, and R are obtained by first solving
system (4.24) using the PECE process with initial conditions for the state variables,
in the forward direction (time), and an estimate for the control across the time interval
[0, T]. Using the PECE approach, the resulting state solution is then applied to solve the
adjoint system (4.25)) in the backward direction (time) with transversality conditions.
Next, the control set U is updated by a convex combination of the previous and present
values of the control characterizations, after the control variables are calculated using
the characterizations provided in (4.28). Until the control values, adjoint variables,
and state variables converge, this procedure is repeated. The same set of parameters
and initial values is used as previously established in order to numerically simulate our
FOCP.

The proper weights for the goal cost functional were established to ensure
effective optimization. In particular, z; = 240 and w; = wp, = w3 = 1 is considered.
These weights were chosen to account for the varying degrees of significance and work
associated with each control. To get the required results for our optimization problem,
the controls were applied for 7 = 200 (in days). Through the proper selection of
parameters and initialization of the system with suitable conditions, we get trustworthy
and accurate findings.

For a more insightful examination and interpretation of optimal control analysis,
an implementation of control policy u(t), i.e., response via information is considered.

The corresponding population profiles are plotted in Figures 4.8a], [4.8bl4.9a [4.9b] and

the path of the applied control response via information u(¢) for p = 0.9 is depicted in

Figure
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The profile of optimal control u, as shown in Figure 4.10} indicates that if it is
implemented as a control intervention strategy, it would require high implementation
efforts initially, then constant efforts for a longer period of time. Gradually, lower
implementations can be applied and finally, it can be removed from employment at
the end. Furthermore, Figures [4.8a), [4.8b] [4.9al [4.9b] demonstrates the impact of im-
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plementing u on the S,E,I and Q population. It is noteworthy that if individuals in
susceptible will go through the implemented control u, the count of susceptibles in-
crease and infected decrease in comparison of without any control. So, conclusively,
information-based behavioural response effectively lowers the number of infected peo-
ple, and in this instance, the epidemic peaks considerably lower than it would have if
no controls were in place. Furthermore, the profile of control u(t) for various values
of contact rate of susceptible population 8 is shown in Figure to further explore
how optimal control relies upon various factors in the model. It shows that for a higher
value of contact rate of susceptible population f3, to achieve the optimal scenario, in-
formation spreading process must be implemented with the maximum rate of 140 days
(approx). On the other hand, the best result may be achieved with a smaller value of 8

by using a shorter information-spreading method in terms of days.

4.9 Conclusion

This chapter endeavors to propose and conduct a mathematical analysis of a fractional-
order SEIQR epidemic model. The primary goal is to gain insights into the dynamics
of disease transmission during an outbreak by incorporating the impact of quarantined
individuals and delving into the psychological effects on susceptible individuals. The
model extends the conventional susceptible-exposed-infected-recovered (SEIR) com-
partmental epidemic model by introducing a distinct class of quarantined individuals.
The incidence rate of infection is modeled using the Monod-Haldane type, which cap-
tures the nonmonotonic effects associated with the psychological state of susceptibles
during an epidemic.

Moreover, the quarantine rate is characterized by the Holling type-III, providing a
nuanced understanding of the dynamics of isolating individuals. The choice of the Ca-
puto derivative for the population rate of each subpopulation is crucial, as it accounts
for fractional-order dynamics and incorporates memory effects. This is particularly
relevant in the context of emerging diseases, where initial responses draw upon knowl-
edge accumulated from past outbreaks. The Caputo derivative, being fractional-order,
acknowledges the inherent memory effects associated with the societal response to
novel diseases. Essentially, it recognizes that the control measures implemented at the
onset of an outbreak are influenced by the collective memory and experiences gained
from previous instances, a dimension not adequately captured by traditional integer-

order derivative-based epidemic models.
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The analysis of the proposed model demonstrates its well-posed nature, ensur-
ing that the solutions are non-negative and confined within a compact region. The
model reveals two equilibria: a disease-free state and an endemic state. Employing
the next-generation matrix method, the basic reproduction number %, was computed,
and an alternative threshold, denoted as .7, was also determined. The outcomes, de-

tailed in Theorems 4.4.4] and [4.4.3] assert that EE achieves global asymptotic stability

when %, > 1, while DFE attains global asymptotic stability when %, < 1. Further-
more, sensitivity analysis of %, shows that parameters 3, i and A are highly sensitive
parameters.

The numerical results presented in this study complement the analytical findings,
with Figures [4.3a, 4.3b| 4.4a, and 4.4b| providing visual insights into the influence

of the fractional order p on the susceptible, exposed, infected, and quarantine sub-

populations, respectively. These graphical representations highlight a notable trend: as
the fractional order p approaches one, each sub-population exhibits a quicker conver-
gence to its steady state. The observation emerges that varying values of p do not im-
pact the stability nature of the equilibrium points but solely influence the time required
for each sub-population to reach its equilibrium state. These graphical depictions align
with the findings of Theorem [4.4.2] affirming the local asymptotic stability of the en-
demic equilibrium (EE) when %, exceeds one. Additionally, the simulations reveal an
intriguing aspect: the initial population of infectives does not exert any influence on the
steady-state of the infected population, as illustrated in Figure Furthermore, the
numerical simulations underscore the effectiveness of timely quarantining of infected
individuals. This proactive measure not only significantly reduces new infection cases
but also contributes to an increase in the recovered population. The simulations thus
underscore the importance of strategic interventions, particularly in the form of timely
quarantine, in shaping the dynamics of disease spread and recovery. Analyzing the
graphs highlights that diligently monitoring psychological effects and implementing
timely measures to boost the rate of psychological effects can significantly decrease
new infections within society.

Furthermore, the model was modified into a corresponding optimal control prob-
lem through the implementation of an optimal control policy, where the response of
the susceptible population via information emerges as a powerful strategy in epidemic
modeling. Existence of such optimal control functions is also established. Analytical

characterization of optimal control paths has been performed with the help of Pontrya-
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gin’s Maximum Principle. Examining the population profiles in Figures 4.8b]
4.9a] [4.9b| provides a comprehensive understanding of the impact of the implemented
control response on susceptible (S), exposed (E), infected (I), and quarantined (Q) indi-
viduals. Notably, the implementation of the control strategy demonstrates a significant
reduction in the count of infected individuals, accompanied by an increase in suscep-
tibles, highlighting the effectiveness of the control policy in curbing the spread of the
epidemic. The count of infective individuals and the duration of the disease preva-
lence is minimized by the optimal response via information. The control measures are
found economical for an early phase of the epidemic. It was found that the effect of
information on behavioral change plays an important role in reducing both the disease
burden and the economic load. Thus, the comprehensive use of control interventions is
found more effective and highly economical during epidemic outbreaks. Furthermore,
this chapter incorporates a saturation effect in the quarantine process, meaning that the
quarantine rate saturates as the number of infected individuals increases, with the help
of the non-monotonic simplified Monod-Haldane incidence rate. This mirrors the real-
world scenario where the transmission of infectious diseases tends to slow down as a
larger proportion of the population becomes infected. This is essential for modeling
scenarios where resources for transmission are limited.

In conclusion, this study introduces a fractional-order SEIQR epidemic model,
aiming to analyze disease transmission dynamics incorporating quarantined individ-
uals and the psychological effects on susceptibles. It extends the conventional SIR
model, introducing an exposed and quarantined class and utilizing a non-monotonic
Monod-Haldane incidence rate to capture psychological effects and nonlinear Holling
type III quarantine rate. The well-posed nature of our model is demonstrated, reveal-
ing equilibria and thresholds in the stability analysis. Numerical simulations show the
impact of fractional order on population dynamics and highlight the effectiveness of
timely quarantining and psychological interventions. An optimal control framework
is proposed, emphasizing the role of information in shaping susceptible population
responses. The unique contributions of our study lie in memory effects, timely quar-
antines, and psychological interventions for accurate disease prediction and epidemic
management.

The proposed SEIQR model is flexible and can be adapted to include other com-
partments or factors as needed. For example, it can be extended to include compart-

ments for vaccination, different stages of disease severity, or demographic characteris-



4.9 Conclusion 117

tics of the population. If one can deal with the complexities then time delay can also

be incorporated to take the model one more step closer towards realism.






Chapter 5

Mathematical Modeling and
Qualitative Analysis of a
Fractional-Order SP/R Epidemic
Model with Non-monotonic Incidences

and Optimal Control

Environmental pollution is a major global health concern and is linked to increased
mortality. Long-term exposure to polluted environments weakens the immune system,
making individuals more susceptible to infections. Therefore, this chapter proposes a
novel fractional SPIR (Susceptible, Pollution-affected or Stressed, Infected, Recovered)
compartmental model based on the Caputo fractional derivative. The model incorpo-
rates the effects of prenatal exposure on newborns with Monod-Haldane incidence
rate to capture psychological impacts during disease transmission. It also consid-
ers how environmental stress increases the likelihood of infection (transition from P
to 1). The existence, uniqueness, positivity, and boundedness of the system’s solutions
are established to ensure its well-posedness. Qualitative analysis reveals two equilib-
ria: disease-free and endemic, whose stability is assessed using the basic reproduction
number X, derived via the next-generation matrix method. The disease-free equilib-
rium is locally and globally asymptotically stable when %y < 1, while the endemic
equilibrium becomes locally and globally asymptotically stable for Zy > 1, under cer-
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tain conditions, as confirmed by the Routh-Hurwitz criterion and Lyapunov functions.
A forward transcritical bifurcation at %o = 1 is also observed. Moreover, a frac-
tional optimal control problem is formulated using Pontryagin’s maximum principle,
involving two time-dependent non-pharmaceutical controls, vi(t) and v,(t). Finally,
numerical simulations are performed using the Adams-Bashforth-Moulton Predictor-
Corrector method in MATLAB to validate the analytical results. Findings indicate that
simultaneous implementation of both controls is more effective in flattening epidemic

curves in short time, offering valuable insights.

5.1 Introduction

The world has seen a noticeable increase in infectious diseases which continues to
pose a serious threat to public health, in past years, despite various advancements in
technology, medical science, surveillance, and control strategies [865 [137; 192]]. The
burden of infectious diseases remains one of the major challenges in today’s time.
Recent decades have witnessed recurrent outbreaks and pandemics, including those
caused by respiratory pathogens such as influenza viruses, SARS, and more recently,
COVID-19 [134;[175]].

The occurrence of infectious diseases often leads to substantial losses, both in hu-
man lives and economic resources. For instance, the 2002-03 SARS outbreak infected
over 8,000 individuals across 30 countries, resulting in 774 deaths and economically,
regions like Hong Kong and Singapore experienced GDP contractions of 4.75% and
1%, respectively [37]. The COVID-19 pandemic, which began in late 2019, had re-
sulted in over 20 million deaths worldwide. The global economy contracted by 3.2%
in 2020, with an estimated 8.5 trillion dollars output loss over two years [23; [181]].
Researchers have made several attempts to develop mathematical models to deal with
such alarming situations.

Numerous mathematical models have been developed and studied to analyze the
effects of infectious disease so as to control and curb them. Controlling the outbreak
of infectious diseases has long relied on measures such as vaccination, awareness pro-
grams, medical treatments etc. [87; 885195} 162]. Despite ongoing efforts, infectious
diseases remain a serious burden on modern society [163]. Numerous studies have
been conducted to extensively examine how infectious diseases transmit within pop-

ulations, by dividing the total considered population into different compartments, in
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order to devise effective strategies to contain and mitigate them (see [28};[71};[105;119]
and references within).

As aresult, compartmental modeling frameworks have become fundamental tools
in epidemiological research, enabling researchers to capture the dynamics of disease
spread and evaluate the effectiveness of various control strategies. These models often
categorize a population into compartments such as Susceptible (S), Infected (7), and
Recovered (R) (SIR model), or with the addition of other compartments, such as Ex-
posed (E) compartment (SEIR model), Vaccinated (V) compartment (SVIR model),
Quarantined (Q) compartment (SQ/R model) or a combination of these, to capture the
flow of individuals through different disease states [8; [72; 925 [110; 1115 1415 [184]].

However, these conventional models often overlook the critical role of environ-
mental factors in shaping disease susceptibility and transmission. Notably, the esca-
lating levels of environmental pollution worldwide have emerged as a significant con-
cern for human health. Exposure to various pollutants can compromise the respiratory
system, weaken the immune response, and induce physiological stress in individuals
[65; 168]. This environmentally induced stress can render a larger proportion of the
population more vulnerable to infectious agents, potentially altering the course and
severity of epidemics. In 2003, Lafferty and Holt [102] modeled how environmen-
tal stress affects the population dynamics of infectious diseases by influencing host
susceptibility, parasite mortality, and host population parameters, thus proposing that
stress can both increase and decrease disease impact depending on specific interac-
tions between infected and uninfected hosts. Kumari and Sharma [101]], in 2018, ana-
lyzed how pollution increases susceptibility to infectious diseases, particularly among
newborns, by compromising immunity. Very recently, Anthony and Bhatia [13]] in-
troduced a novel fuzzy epidemic model that incorporated the effects of environmental
pollution and viral-load uncertainty using fuzzy parameters showing that both these
factors significantly increased the basic reproduction number, thereby highlighting the
importance of integrating pollution control with public health measures.

Our model introduces the compartment of pollution-affected or stressed popula-
tion, to explicitly represent the population segment that is physically stressed and ren-
dered more susceptible to infection due to environmental pollution. This compartment
also considers the long-term effects of prenatal exposure to pollution on the health of
newborns and infants. Recent studies indicate that maternal exposure to environmental

pollutants during pregnancy can lead to various complications, such as preterm birth,
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low birth weight, and developmental delays [41; [166]]. Furthermore, studies such as
those by Picciotto et al. [75] and Sun et al. [170] have shown that prenatal exposure to
both persistent and non-persistent organic pollutants can negatively affect the develop-
ment of the immune system in infants. These findings suggest that prenatal pollution
exposure not only impacts newborns but also has the potential to affect infants’ overall
health and susceptibility to diseases. Thus, in the context of our model, the individu-
als in the pollution-affected compartment are those who, while not yet infected, have
a heightened risk of acquiring the infection and potentially experiencing more severe
disease progression due to the detrimental effects of pollution on their health status.
This allows us to explicitly quantify the impact of environmental pollution on the dy-
namics of infectious respiratory diseases.

Now, in an epidemic model, the progression of a disease is largely influenced by
its incidence rate [146]. Incidence rate is a measure used to describe how frequently
new cases of a disease or condition occur in a specific population over a certain pe-
riod of time. Given the complexities involved in how diseases are transmitted, nu-
merous nonlinear incidence models have been introduced to more effectively reflect

the dynamics between susceptible and infected populations. This chapter considers a

Bt
14+y1%°

disease transmission and reflects a wider range of dynamic behaviours [26; |36} [157].

The term ﬁ captures how susceptible individuals adjust their behavior due to fear

or caution when many people are infected. The 1 component represents how strongly

non-monotonic incidence rate of the form

which captures realistic aspects of

the disease spreads, factoring in how behavioral changes can reduce contact. This
non-linear pattern of transmission is called the Monod-Haldane (M-H) incidence rate
[99]. The M-H incidence rate is considered more realistic than bilinear, saturated, or
fractional incidence rates as the infection rate initially increases with the increasing
number of infected individuals but eventually decreases when infections become very
high, thus depicting its ability to capture saturation, behaviour-driven epidemics and
realistic peak modeling.

The structure of the chapter is as follows: In Section[5.2] the mathematical model
is formulated along with underlying assumptions. Section addresses the funda-
mental properties of the model, such as existence, uniqueness, positivity, and bound-
edness of solutions. Section [5.4] focuses on the derivation of the basic reproduction
number and analysis of the equilibrium points. Stability of the equilibria, both local

and global, is discussed in Section [5.5] The potential occurrence of bifurcation at the



5.2 Model development 123

critical threshold %y = 1 is investigated in Section In Section an analyti-
cal formulation and solution of the corresponding fractional optimal control problem
(FOCP) are presented. Numerical simulations supporting the theoretical results are

presented in Section [5.8] followed by conclusions in Section|5.9]

5.2 Model development

In this section, inspired by relevant literature, a novel fractional-order nonlinear com-
partmental model is introduced using the Caputo derivative. The total human popu-
lation at any time ¢ is denoted by N(¢) and is subdivided into four mutually exclusive

compartments:

* S(¢): Susceptible individuals not affected by environmental pollution,
* P(¢): Individuals experiencing stress or physiological impact due to pollution,
* [(1): Infectious individuals capable of transmitting the disease,

* R(t): Individuals recovered either by treatment or autoimmune.
The development of the model relies on the following assumptions:

(A1) A fraction p of the recruitment rate A enters the susceptible class S, while the
remaining portion (1 — p) enters the pollution-affected class P, accounting for

prenatal exposure to pollution.

(A2) The movement of individuals from the S and P compartments into the infected
class I is governed by non-monotone Monod-Haldane-type transmission term.
This formulation captures non-linear effects in transmission, particularly those
arising from psychological responses to increasing infection levels. The infec-
tion rate is given by 8, and y quantifies the psychological impact of the disease

on the population.

(A3) Due to increased vulnerability, pollution-affected individuals in the class P ex-
hibit a greater susceptibility to infection. This increased risk is modeled through
an enhanced transmission rate given by (14 6f’), where B’ quantifies the im-
pact of pollution on the baseline transmission rate 3 and 6 scales the influence

of environmental pollution on the transmission rate.
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(A4) Individuals in the susceptible class may become pollution-affected over time,

transitioning to the P compartment at a rate A.

(AS5) All compartments are subject to natural mortality at a constant rate y, while

infected individuals also experience disease-induced mortality at a rate d.

(A6) Infected individuals recover at a rate @, either due to immune system response

or effective treatment.

(A7) Recovered individuals are assumed to gain lasting immunity and do not revert
to the susceptible class. The model also assumes homogeneous mixing, where

every individual has an equal chance of coming into contact with others.

Based on these assumptions, the proposed fractional-order epidemic model is

formulated as follows:

dajt(t) — pA— % —AS—usS,

daj;(t) _ (1—p)A—|—7LS—B(11—:_—i§2,)PI—uP, .
) / .
: c;t(t) 7 ﬁs«;ﬂ [3(111552)191 —dl= oI =,

RO 1y

with initial conditions S(0) = Sy > 0, P(0) =Py >0, I(0) =1y >0, R(0) =Ry >
0 and t € [0,79], to € RT. The schematic diagram of the disease progression dynamics

of model (5.1)) is shown in Figure
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Figure 5.1: Schematic diagram of disease progression dynamics.

5.3 Basic Properties

In this section, the existence and uniqueness of the solution are first shown, followed
by the determination of the region of attraction in which the solution remains positive
and bounded.

5.3.1 Existence and uniqueness

To verify the existence and uniqueness of solutions for system (5.1), Lemma
1.1.11]has been utilized. For this purpose, consider the domain [tg, Q] x Q, where
Q= {(S,P,I,R) € R* : max{|S|,|P|, |I|,|R|} <M}, and both Q >0 and M > 0 are real

constants.

Theorem 5.3.1 A unique solutionT'(t) = (S(¢),P(t),1(t),R(t)) € Q to the system (5.1))
exists for every initial value Ty, = (S, By, L1y, Riy) € Q, for all t > to.



Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR
126 Epidemic Model with Non-monotonic Incidences and Optimal Control

Proof 5.3.2 Consider any two pointsT" = (S,P,I,R) and "1 = (S1,P;,11,R1) and map-
ping H: Q —R*in Q by H(I') = (H{(T),Hy(T"), H3(T"), Hy(T')), where

H(T) = pA— s s,
B(1+6p")PI
Hz(r):(l—P)AJF}LS—%—MR
S 1+6p
H3(T) = lﬁ;p Al 11£2>Pl—(u+d+¢)1,

Hy(I') = 91 — uR
For any I')I'] € Q, we have

[H () —H(I)|| = [H(T) = Hi(T1) | + [H2(T) — Hy(Ty) [ + [H3(T) — H3(I'y) | + [Ha(T) — Ha(I'y)|
BSI BSih

= ’pA— Rve —(U+A)S—pA+ R +(L+2)8
+’(l—p)A+7LS—ﬁ(ll—:_ayl;)PI—,uP—(1—p)A—lS1+B(11++8£1)2P111 - Pl’

+ 1?;,2 B(lliaﬁé)muwdw)l 1?;1/22 ﬁ(11++5£1)2P111 +(u+d+o)
+ 101 — uR— @11 + LR, |

S| — o |4 2B(1+ 88 | — s | (e 2) 5S4

+u|P—P|+(n+d+29)[I-Li|+ 1 |R—R

SI+ySIL? — 811, — yS11I, 1% PI+ yPII)> — P I, — yPL 1L I?
(1+y)(1+70?) (1+y2)(1+v17)

+(WA20)S=Si[+p[P=Pi[+(u+d+20) I - L[+ p[R—R|

<2BM(1+yM?*)|S — S| +2BM(1 4+ yM?)|I — | +2B(1 + 8B )M (1 +yM?)|P — Py|

+2B(1+ 8B )M(1+yM*)| I = L[+ (L +27)|S = Si| + 1P = P | + (0 +d +29) |1 — I

+UIR— R

<2p

‘+2[3(1+5,B’)

SK]|S*Sl‘+K2|P7P||+K3‘17]1|+K4|R7R1|
§K|F_rl|v

where K = max{K,,K>,K3,K4} and

Ky =2BM(1 +yM?) + (u+2A), Ky =2BM(1+yM*)(1+8B') +u,
Ky =2BM(1+yM*)(2+8B") +(u+d+2¢), Ky=p.

So, H(T') satisfies the Lipschitz condition with respect to T € Q. According to Lemma
1.1.11} our system (3.1)) has a unique solution I € Q. This proves the theorem.
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5.3.2 Non-negativity and boundedness

To ensure biological validity, the system (5.1)) must possess solutions that remain

non-negative and bounded. Let us define
Q" ={(S,PI,LR) € Q:S,PI,Rc[0,0)}.

Theorem 5.3.3 For any initial condition within Q, the corresponding solution to

system (3.1)) stays non-negative and uniformly bounded over time.

Proof 5.3.4 The system’s initial solution I'y, = (S;, Py, 11y, Ryy) € Q7T is considered,
and from system (5.1), it follows that:
DaS‘SIOZO — pA > O,
DPlp o= (1-p)A+2AS>0,
Dallltozo - 0,
DRIy o= 01>0.
By Lemma|l.1.13, S(t),P(t),1(t),R(t) > O for all t > ty. This implies that the solution
to system (5.1)) will always lie within the set Q.
Since N(t) = S(t) + P(t) + I(t) + R(t) is the function representing the total popu-
lation, then
DN =D*S+D*P+D*I +D*R
< A—uN—dI
i.e. D°N+UN<A as I>0.
We get N(1) < (N(to) - g) Eol—pt(t—10)+ 2 — 2 ast — co.

Consequently, for any solution of the system (5.1) that begins in Q, the trajec-

tory remains within the region defined by

A
{(S,P,I,R) €EQ:0<S+P+I+R< ﬁ}'

5.4 Equilibria and the basic reproduction number

It is observed that the variable R(¢) is not present in the first four equations. Therefore,

it can be excluded from the system (5.1]) for further mathematical analysis. Conse-
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quently, the resulting system is:

st BSI
a O PAT 1+y12_)LS_”S’

d°P(r) B(1+8B")PI

a“10)  BSI  B(1+8B)PI
dr lerI2+ 14 yI? —dl= ol —ul

The above system (5.2) always possesses a disease free equilibrium point Ey =
Eo(So, P, Io) = Ep ((upﬁl)’ ((lujf%\ +3 (ﬁfl ot 0) . Now, the basic reproduction number

using next generation approach [47] is calculated as:
. BAIpR+(+ (1= p) (1+5B")]
0= .
pp+2A)(u+d+o)

Further, we will show there exists an endemic equilibrium point E; =

o Ap(ritl) A4 (1 —p) (V24 1) + (1= p)BLAA (Y2 +1))

(M+A)(Y2+1)+BL " (W+A)(y2+1)+BL) (u(y2+1)+B(1+6B')L.)

and /, is the root of following polynomial
Aslt +A3L3 + A L2+ AL +A) =0, (5.3)
where,

Ay=—-7uA+p)(d+u+9),

Ay =—By(d+p+9) ((1+8B) (A +u)+u),

Ay =B (1+8B") (YAA=B(d+u+¢)+yAu(l —p)) +yu(BAp —2(A + p)(d + 1 +9)),
Ar=B(1+8B") (BA—(A+p)(d+p+¢))—Bu(d+p+9),

Ao =p(n+A)(nu+d+¢)(%—1).

From above, it can be observed that, A4, A3 < 0 and also Ay > 0 for %y > 1. So,
according to Descarte’s rule of sign, the polynomial (5.3 will have at least one positive
root I, exist for Zy > 1. The current study focuses on the existence of a unique positive
equilibrium point. Consider % > 1, then the combinations of signs of coefficients A

and A, in which unique positive root for polynomial (5.3)) exists are as follows:

(i) Ap >0and A; > 0,
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(i1)) Ap <0Oand A; >0,

(ili) A, <OandA; < 0.

Once the value of I, is determined, the unique positive endemic equilibrium point
E| = E{(S., Py, 1) is obtained. As a consequence, the following theorem establishes

that this equilibrium exists.

Theorem 5.4.1 If %y > 1, then the system (5.2) has a unique endemic equilibrium
El - El (S*7P*7I*)

5.5 Stability Analysis

Here, the local and global stability of the equilibria is examined. Local stabil-
ity assesses whether small disturbances near an equilibrium return to it (stable) or
move away (unstable). In contrast, global stability examines the system’s behav-
ior across the entire state space. Let us assume the subsequent coordinate transform
S(t) = Si(t)+s(t); P(t) = Pu(t)+p(2); I(t) = L(t) +i(t), where (Si(t),Pi(t),L(1))
denotes the equilibrium point of the model. The linearised system at any steady state
is given by

o0fis) = (12 4 ue ) )s— BT,
oD{P(t) = (A)S — (ﬁ(i%;ﬂ* +u)p B +(51[3+/)5;*(21)2 YI*Z)I,
- (B (P (Ot
5.5.1 Local stability
Applying the Laplace transform on both side of equation (5:4), we get
s 250} =5510) =~ (2L ) sy - BT 2,
s () -5 'p0) = W2 (50} - (PLER ) 20
BUASBIY yyy
s (10} -5 10 = (5 )2 s+ (B ) 2 v
(ﬁ (S{‘ (j ;,;I)*;) - +(51B _1/_)2*(21)2_ M) (wrar ¢>) 2{1(1)}.

(5.5
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Above system(5.5]), can be written in the following matrix form:

Z{8)} vi(s)
V)| L{P@)} | =] vals) |,
ZL{I(t)} vi(s)
where,
vi(s) = s*718(0), va(s) =s*1P(0), va(s) = s*11(0),
and
BI. BS.(1—yL?)
o A 0 -— £ 7
g +1+y1*2+(“+ ) (1171272
B « | BO+3BL B(1+68B')P.(1—yL?)
Vi) = * T T (14 1.2
o BS.(1-yL?)
__BL _BO+8p)L T )
1+y1,7 1+y1.2 _BORSBIROAD) 4y gt g)

(14+y1,2)*
(5.6)

For the given system, the characteristic polynomial is det(5/(s)), and 5/(s) represents
the associated characteristic matrix. The local stability of system (5.2)) can be analyzed

by examining the eigenvalue distribution of the characteristic polynomial det(</(s)).

5.5.1.a Local stability of disease-free equilibrium

This subsection is devoted to analyze the local stability of the disease-free equilibrium

point Ey = Ej <(upﬁ/1) ’ ((lujf ;)f)\ T (ﬁﬁ 7 ,()) , for which the characteristic matrix at DFE

is as follows:

St u+A 0 —fi/;
, 1—pA AA
V(s)= - o [3(1%[3)(((“3) +u(u+7t))
0 0 u+A (L+21)  p(p+A)
+(u+d+9)
5.7
So, the characteristic equation is,

o o o ﬁAp / AA A(l_p) _
det(7(s)) = (s* +p) s+ +24) <s +u+d+¢wﬁ(1+5[§)<“m+“)+ p )>_




5.5  Stability Analysis 131

Let s* = w, then the characteristic equation can be expressed as:

pp+2A)(u+d+¢)—BupA—B(1+B")u(1—p)A—B(1 +5ﬁ’)M> —0
p(p+2a) '

(0+u)(0+pu+2) <w+
(5.9)
Since stability is determined by the negative eigenvalues of the characteristic equation,

two negative eigenvalues are obtained from equation (5.8)): @ = —p and 0, = —(u +

A). The remaining eigenvalues can be analyzed using the following factor of equation

(5.8):

<w+ pp+A)(p+d+9¢)—BupA—B(1+6B")u(l —p)A—ﬁ(HSﬁ’)M) _o
p(pu+A) ’

which is simplified as,

(M+A)(u+d+9)—BAlpu+(A+u(l—p))(1+8B")]
pne+21)
o+ u+d+¢)(1—-%)=0.

a)-l-u

:0’

Therefore, the third eigen value is w3 = —(U+d + @) (1 —Z). The sign of w3 depends
on Zy. When %, is less than one, w3 has negative sign and consequently, all the
eigenvalues have negative sign.

Therefore, the disease-free equilibrium Ej of system (5.2)) exhibits local asymp-
totic stability when % < 1, and instability when %y > 1. This leads to the following

theorem.

Theorem 5.5.1 The equilibrium point Ey corresponding to the disease-free state is
locally asymptotically stable if and only if the threshold value % is less than one,

otherwise unstable.

The local stability behavior of Ey at %y = 1 and the possibility of bifurcation are
explored in Section 5.6,

5.5.1.b Local stability of endemic equilibrium

This subsection discusses the local stability of the endemic equilibrium E; =
E|(Ss,Ps,1.), for which the characteristic matrix v/(s) from equation (5.6) at Ej, is
given by:
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BL.

0 BS.(1—yL?)
1 +y1,>

(1+yL2)?

B B(1+8B')L, B(1+8B")P.(1— 7L
A S+ S TH (1+yL2)?
o BS.(1-7yL?)
_BL_ _BO+8pL Nk

14712 1+ 71,2 _ BO+8p)P.(1—yL2)
(5.9

s‘x+

+ (142

Let s = y, then the characteristic equation corresponding to characteristic matrix

(5.9) is:

det(v7(s)) =

(LY A+u+ )+ LB+ A+ u+v) (LAY (u+y)([d+u+v+9)
+LBY(d+ i+ v+ 9) + L7V + W) (2d + 20+ BP. + BS. + 2y +20)
FLB(A+u+y+0)+(u+y)(d+p—BP—BSi+w+9))

+BB (LY (A +u+w)(d+u+w+9)+LYy(B(u+y+9)
+Bd+YP(+ W) A+ p+ )+ Ly (2d(A +p+y) +2Au

+2AY 4240 + 207 + AUy + 20 + BP.(U + W) + BuS. + BS.w

+29° +290) + LPB(d+ p+ v+ ) + L (d(A + 1+ )+ Au
FAY+ A0 + U+ 20y + ud — BP.(+ y) — BuS. — BS. W+ v + o)
—P.(u+y)(A+u+y))

(L2y+1)°

This can be rewritten as,

(LYA+u+ )+ LB+ A+ u+y) (LA (u+y)(d+p+v+9)
+12BY(d+ 4+ W+ 9) + L2Y(1 + w)(2d + 20 + BP. + BS. + 2y +20)
FILBA+p+y+9)+(u+y)(d+p—BP—BSc+y+9))
+BB'S(LY (A +u+y)(d+u+vy+0)+Ly(B(u+v+9)

det(7(s)) = +Bd+yP(u+W)(A+u+y) + L y(2d(A +p + y) +2Au

F2AW + 240 + 20 + AUy + 200 + PP (1 + W) + BuS. + BS.y
+297 +2y0) + L2B(d+pu+ W+ 9) + L(d(A+u+ )+ Au
FAY+AY+ 1 +2uy+ g — BP.(u+ W) — BuS. — BS. ¥+ v + o)
—P(u+y)(A+p+y))

=0
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which can be simplified into the following polynomial form:
AP AW A Y A =0, (5.10)
where,

Az = (1+71.2)°,

Ay = (L2y+ 1) (LAPu+ LAP(d + 4+ 0) + LBy + (127 +1)° (A + )
+2L2yu A+ 2L Y(d + 1+ ) + L2 BySe + B (14 8B') (L3 y+ L>YP. + I, — P.)
+LB+d+2u—BS.+9¢),

Ay = (L2y+ 1) ((B2y+ 1) (d+ p+0) (B2yu + LB+ ) + (A +u) (n(12y+1)°
+ (L2 + 1) (d+ e+ 0) + BS. (L2y—1)) + Bu (L3 Y+ L2yS. + 1, - 5.))
+B (148" (LABy+ LAY uP. + L3 ByP. + L ByS. + LB
L2+ 1) 2 (d+ 1+ 0) + (L2y+ 1) (A + 1) (1Y + L2yP. + 1. — P.)
—L.BP. — LBS, — pP.),

Ao = pn(L2y+ 1) (LB(L2y+ 1) (d+p+9) + A+ ) (L2y+ 1) (d+p+9)
+BS(L2y—1))) +B(1+8B") (A + ) (L (12y+ 1) (d+u+9)

+ (L2y—1) (L2YuP, + LBS. +uP.)) + LB (L y+ L) (d + u+ ¢)
— (LY —1)(AS. — uP)))

A A A
Considering By = —O, B = —1, and B = —2, equation (5.10) transforms into
A3 A3 Az
P(y) = v* +Boy? + By + By. (5.11)

According to the Routh-Hurwitz criteria for fractional-order systems [4], the
roots of this polynomial satisfying |argy;| > %%, i = 1,2,3 indicate local stability.

For the polynomial P(y), the discriminant D(y) is given by
D(y) = 18B2B1 By + (B2B1)* — 4BoBy> — 4B — 27By>.

If all three roots of P(y) = 0 have negative real parts, then the equilibrium point

E|(Sx, Ps, 1) is locally stable, as stated in the following theorem [4]]:

Theorem 5.5.2 The endemic equilibrium E| = E| (S, Py, 1) is locally asymptotically
stable if any of the following conditions hold:
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(i) By >0, By >0, ByB; > By when D(y) > 0,
(i) If D(y) <0, B, >0, B, >0, By >0, a <3,
(iii) If D(y) <0, B, >0, By >0, B,B; = By, a € (0,1].

Otherwise, the endemic equilibrium E| = E(Sx, P, I..) is unstable if the condition

D(y) <0,B,<0,B; <0, a> % holds, as in this case, all roots satisfy |arg(y;)| <
an

i
5.5.2 Global stability

This subsection investigates the global stability of the disease-free equilibrium
Ey and the endemic equilibrium E; using the Lyapunov stability method for fractional-

order systems.

5.5.2.a Global stability of disease-free equilibrium

The suitable positive definite Lyapunov function, to discuss the global stability of dis-

ease free equilibrium Ej, is constructed as:
ZL(t) =1(1),
then for order o, differentiating both side along-with Ey we have,

D*& = D%I(1)
[ BSI | BO+8B)PI
B _1+3/I2+ 1+ yI? (h+d+9)l

< [BS+B(1+8B")P—(u+d+9)]I(t)

BpA ~((1=p)A AA
< _m+ﬁ(1+5ﬁ)< ) u(u+l)>_<u+d+¢)1l(t)
BApp+(u(1—p)+A)(1+6B")]
< L (u+d+¢)]l(t)
<(u+d+¢)(%—It)
<0 if Zy< 1.

It is evident that DX (¢) is negative when % < 1 and equals zero at E. Thus, by the
Lyapunov stability theorem [44], Ej is globally asymptotically stable when % < 1,

leading to the following theorem:

Theorem 5.5.3 The DFE point E of the system (5.2)) is GAS (Globally asymptotically
Stable) if the basic reproduction number X is strictly less than unity i.e. %y < 1.
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5.5.2.b Global stability of endemic equilibrium

To discuss the global stability of endemic equilibrium point E1, we have constructed

the following positive definite Lyapunov function:

S P 1
Z(t)= <S—S*—S*logs—) + (P—P*—P*logﬁ> + <I—I*—I*logl—),

the fractional derivative of both side of order & along-with the endemic equilibrium

point E; and with help of Lemma[[.1.9]is:
P,
DEZL(1) < (1—%) DS(1) + <1_F> DEP(t) + (1 —7) D2I(t)

+(L—%)(a—pm+15—ﬁggg%ﬂz_ué>
+ (1 —17) (1?;12 +ﬁ(1116£;)m—(u+d+¢)l>.
Let f(I) = i + 17,72 then from the steady state equation, we also have,
PA=BSf(L)+ (L+A)S., (1=p)A=—AS.+B(1+8B")P.f(L)+uP.,

(h+d+9)= BS*IJ:( )+l3(1+5l13*)P*f( L)

-
=
[
w2

b

DEL (1) ) (BS. L)+ (1t +A)S. — BSF(I) — (1 + A)S)

VAN
7 N
[E—

|Co

+
I"Uca

+
’“ 7~ N7 N
(S
~I-u

> AS. +B(1+8B)Pf(L) + P+ AS— B(1+8B)PF(I) — uP)

(-
(B B0+ oppsta) - EA U BUEOBIRI)

N—

IN

RS (1 SRR
S

L Sed fU) | S f(R)
+l35f(1>( I SI f(I) s f(I))

+B(1+8B")P.f (L ( BN AR

+B(1+B")Pf(I)

P* S*
AS{1———
#as(1-7
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Since, # > +/ab for any a and b. This relation suggests that,

2—%—2 <0, and Z—E—E <0
N P P

and if

(

(=TS s =0
R AR AL 12
(=TS ) =0
ERTU P

then, D*.#(t) < 0. Therefore, by the Lyapunov stability theorem [44], the endemic
equilibrium E1 (S, Py, 1) is globally asymptotically stable when %, > 1. Thus, we

have the following theorem.

Theorem 5.5.4 The endemic equilibrium E\ (S, Py, 1) is globally asymptotically sta-
ble, for all o € (0, 1], when %y > 1.

5.6 Bifurcation analysis at %, = 1 around E|

This section analyzes system in the context of a non-hyperbolic equilibrium,
where the linearized matrix has at least one eigenvalue with a real part equal to zero.
This analysis is crucial as it provides valuable insights into the stability of the coexis-
tence equilibrium near the critical point Ey and the threshold % = 1. This investigation
determines the bifurcation direction and describes the local behavior of Ey at Z = 1.
To evaluate the local stability of Ey near this threshold, bifurcation theory is applied as
described in [35]], which is based on the center manifold theory [34]. This approach is
used to study system (5.2)) with the assumption that (S, P, 1) = (x,x2,x3), as follows:

s Bxix; _
0 = pA— vy (A+u)x = fi,
d“P(t) B(1+ 8B )xpx3 _
dr —(1—p)A+AX1— 1+YX32 _:uxz_f27 (513)

d*I(t) _ Bxixs  B(1+6B")xoxs
dt 1+ ¥x32 1 + yx32

(U+d+9)xs = f3
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Recall that Zp — BApu+ (A +u(1—p))(1+8B")

and select B as a bifurcation

Hu+A)(u+d+9)
parameter for %y = 1 which takes the following form:
BB — pu+A)(n+d+9)

~ Alpu+(A+u(d—p) (1488
Further, the jacobian matrix of the system (5.2)) at Ey

u+iA 0 5%%
= s (G ) |
0 0 (e +d+9) (1~ o)

and at the chosen bifurcation parameter 3 = B* it is given by JiE, p+] 8S:

u+A 0 gf%
Teopr=| _ ) n( (L=p)A AA ) : (5.14)
ol om0l (T e

0 0 0

The eigenvalues of matrix (5.14) are obtained as 0} = — (L + A1), @y = —u, w3 =0.
It is clear that two eigen values are with negative real part an the remaining one is
0, and hence for Zy = 1 the disease free equilibrium Ey becomes a non-hyperbolic
equilibrium.

Now, consider w = (wy,w,ws) as the right eigen vector corresponding to third

eigen value 0. Then, it can be computed as follow:

B*pA
u+A 0 T, Wi 0
1—p)A AA _
"y * 1-'—6 / (( + ) %) = 0 ,
u Pl of) (H+A)  p(u+2) " 0
0 0 0 3
which is,

“pA
(L+A)wi + <ﬁfl)W3 —0,

D e o

Since, w3 is free variable, so considering w3 = 1 and solving above equations, we get

(wiw W}_{_ Bap  BrA(L+8B)(n+A)[A +u(l—p)l+HpABA 1}
PRI (w+ )y H2 (i +2)2 ’
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In a similar way, consider u = (uj,up,us) as the left eigen vector corresponding to 0
eigen value and computed as:

B*pA

n+A

(ul N u3> K B*(l+6B/)(((L_+p/{/)\+u(3ik)) B

0 0 0

u+A 0

which is
(,U—F)u)l/tl —Aup = 0,
Huz =0,

(ﬁf’;) i+ [[5’*(1 +5B’)<((1u—+pif)\+ u(ﬁx))] =0,

In this case also u3 is treated as a free variable and is assumed to equal 1. By solving

the above equations, we get

{uy,uz,u3} ={0,0,1}.

Now, by using Theorem 4.1 given in [35] the coefficients A and B can be com-

puted as
3 asz 3 asz
A= UEWiW (—) and B= UpWi (—*)
k7i72j:_1 I\ 9x;0x; (Eo,"] ,wz_:l dx;0f (Eo,B*]
The non-zero partial derivatives of f]s at Ep and B = B* are evaluated as follows:
Ph L 9N
8x18x3 - - 8X38X1’
82f2 * / azfz
8x28x3 N _ﬁ (1 +6ﬁ ) N 8)638)627
I’f _ Bt — 9’ f3
8x1 aX3 aX3aX1 ’
82f3 * / 82f3
8x28x3 N ﬁ (1 * Sﬁ ) - 8X38)Q’
fi  pA

ox30B* p+A
’fr _ A1+ )A+pu(l-p))
dx3dB* n(p+24) ’
°fs _ Alup+(1+8B)(A+u(1—p))
dx39B* m(p+2a) '
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The expression A and B are simplified as

2%, 3213 9% f 9 f3
A=2wiws |1y o + uj3 8x18x3] + 2w3wy {uz %307 + uj3 Ox30x2
_ _Lﬁ*z (uép' (1—p)+A8B +(n+A1)] <0
pA(u+2) |
and
%f
B=uswsy 0B
_ Alup+ (148 A +u-p)]
pp+A)

As, all the parameters in the coefficient of bifurcation A and B are positive and
the sign of A is ‘-’ve and B is ‘+’ve, which results in the forward transcritical bifur-
cation at disease free equilibrium E(, based on Theorem 4.1 of [35]. To support this
numerically, a graphical illustration is presented in Figure [5.2] based on the parame-
ter values provided in Table [5.1] The figure further demonstrates that the disease-free
equilibrium remains stable when %y < 1. However, as % exceeds unity, the system

admits a stable and unique endemic equilibrium.

T T
6 ]
5 7 Stable EE ]
T af ]
S I
R
33 :
o L
o I
o 2F ]
b= Stable DFE
Tt Unstable DFE
OfFsssssssbhsssssssssmensnnnnnnnnns T -------- o
L1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0.0 0.5 1.0 15 2.0

Basic Reproduction Number (Rg)

Figure 5.2: Transcritical forward bifurcation.

5.7 Optimal Control Formulations

In this section, the mathematical model (5.1) is extended to a fractional optimal con-

trol framework by introducing two time-dependent control variables, vi(¢) and v,(t),
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which represent the influence of information-based (non-pharmaceutical) interven-
tions. These interventions include strategies such as public health campaigns, aware-
ness initiatives, social distancing mandates, and behavioral modifications guided by
real-time information on disease prevalence. These control strategies play a crucial
role in mitigating the spread of infectious diseases, especially when pharmaceutical
measures (such as vaccines or antivirals) are either limited or unavailable.

In this formulation of the optimal control problem, fractional differential equa-
tions are employed, providing a more accurate description of system dynamics than
traditional integer-order models [[164]]. The primary objective is to analyze the effect
of these control strategies on the progression of disease and optimize the related im-
plementation costs.

It is assumed that the transmission rate among both the susceptible and pollution
affected populations is reduced by the factors (1 —v;()) and (1 —v,(¢)), respectively,
due to the control measures taken. Here, v;(¢); i = 1,2; represents the intensity of
response to information, where 0 < v;(¢) < 1. A value of 0 indicates no response,
while a value of 1 signifies a full behavioral response from informed individuals.

The application of such controls incurs a cost, modeled as a nonlinear function of
vi(t); i = 1,2; to encourage individuals to alter their behavior in response to informa-

tion. The set of admissible control functions v;(¢) is given by:
V ={vi(t); i =1,2;] v; is Lebesgue measurable forr € [0,T], 0 < v;(r) < 1},

where T refers to the final time of control application and each v;(¢) is a bounded and
measurable.

The introduction of control variables v;(¢) is aimed at minimizing both the pro-
portion of the infected population and the corresponding implementation costs of im-

plementing the control measures, which is given by:

r 1 1
A :/0 (811+ 521V12+§Z2V22> dt, (5.15)
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subject to model system

LU0 - -n) {225 - 25— us

PO _ (I—P)A—I—?LS—(l—vz(t))ﬁ(ll—:—b;g;)”_“p, »
% =( —Vl(f))%ﬂl —Vz(t))lmﬂ—if;)m—dl—W—m, |
da:;(t) =0l — UR,

with §(0) >0, P(0) >0, I1(0) > 0 and R(0) > 0. Here, the function _¢ represents the
overall cost, while the expression L(1,v(t),v(t)) = g1l + %zlvlz + %ZQVZZ denotes the
instantaneous cost at any given time ¢. The parameter g; is positive weight constants
used to balance the units within the cost expression. The control effort is represented
by the quadratic term v;>. For convenience, we use v;(t) = v;.

Pontryagin’s Maximum Principle [105] is applied to demonstrate the existence
and characterization of optimal control functions that minimize the cost functional
over a finite time. Following the methodologies presented in the literature [[17};[74], the

necessary and sufficient conditions for optimality are stated and proved.

Theorem 5.7.1 There exists a control pair (vi,v,) € V that satisfies the system (5.106)
if the following conditions hold:

1. For (vi,v2) €V, the solution set of the system (5.16) is non-empty.

2. The state system can be expressed as a linear function of the control vari-
ables, with coefficients that depend on time and state variables. Moreover, the

admissible control set 'V is closed and convex.

3. The integrand L = g{I + %zlvlz + +%z2vz2 is convex in v and L > ¢(vi,v),
(V17V2)

where ¢ is continuous function such that {5155 — oo as |(vi,v2)| = oo.
Proof 5.7.2 The solutions of system (5.16) are positively invariant and remain
bounded within the region Q. Furthermore, the right-hand side of each equation in the
model satisfies the Lipschitz condition with respect to the state variables, as demon-
strated in the theorems presented in Section Consequently, the first condition is
satisfied by invoking the Picard-Lindelof theorem [103)].



Mathematical Modeling and Qualitative Analysis of a Fractional-Order SPIR
142 Epidemic Model with Non-monotonic Incidences and Optimal Control

The admissible control set V is, by definition, closed and convex. Moreover, the
system (5.16) is linear in control variables, thus satisfying the second condition. Addi-

2 is convex due to its quadratic form,

tionally, the integrand L = g1 + %zlvlz + +%z2vz
which follows directly from the definition of convexity [122|]. Let Z = min(zy,z2) >0

and define ¢ (v,v2) = Z(vi> +v,2). Then L > ¢(v1,v2), and clearly, ¢ is continuous

and satisfies ﬁ(vvl‘vvzz)? — oo as |(vy,v2)| — oo. Therefore, the last condition is also satis-

fied. This completes the proof.
To obtain the optimal control solution, we need to define Lagrangian function
1 2 1 2
L=gI+ §Z1V] ++§ZZV2 )

and Hamiltonian function

doS(t) . d°P(r) . d®I(f) . d*R(t)
H(S,PI,R A)=L+A A A A
( y 54,1, V],V2, l) + A dt + A2 dt + 3 dt + A4 dt
1 2 1 2
=g+ zzvi"+ z22m

2 2
o (pA—u—v](r))ﬂ—(z +u)5)

+ <(1 DA AS— (1 —va(r)) BUFOBIPT up)

1+ yI?
i (1m0 24 12020 PEEEP - v o)

+ A4 (9 — UR) .

Here, A; = (A1,A2,43,A4) is referred to as the adjoint variable that satisfies the

following canonical equations:
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ay (o OH _ ., BI . BI
Do) =5 = (- B e ) - e (-0 2 ) s
Do) = -5 = (1= PEEE ) 2o (0w POE00 ) 2
ay oy OH _ _\BS(1—yP)
D 13(2‘)——W——g1+((1—\/1)m)11
1+8B)P(1 —yI?
+((1—V_z)ﬁ( +(1B+)yr§)z r )>?L2
_\BS(1—vP) _\B(1+8B")P(1—yP)
(e 0 P
() )l (O
. oH
D M(f):—a—R:(N)M, (5.17)
with transversality conditions
AM(T) =0,M5(T) = 0,A3(T) = 0,A4(T) = 0. (5.18)

Theorem 5.7.3 In the control system (5.15)-(5.16)), let v; be the optimal control vari-
ables and S, P, I, and R the corresponding optimal state variables. Then, there ex-
ists A1, Ay, A3 and A4 satisfying the adjoint system (5.17) and transversality conditions
(5.18)), then the doublet of optimal controls can be characterized as follows:

v‘lzmin{max{O,w},l},

21(1+77)
o (A3 —A2)B(1+6B")PI
V) = mm{max{o, (1177 } ,1}- (5.19)

Proof 5.7.4 As per the approach followed in [105]], the optimal doublet (vi,v3), given
in (5.19)) is obtained by using the Potryagin’s maximum principle and optimality con-
JoH

JoH
ditions, 8_\/1 =0and 8_\/2 =0.

5.8 Simulation and Discussion

In this section, computations are performed to support the analytical findings us-

ing MATLAB 2012b and the Adams-Bashforth-Moulton predictor-corrector approach
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[52]. Using real-world data can be tricky because things like prices and technology
changes can affect the results [125; [164]. But using example data makes it easier to
see how different groups in the model interact over time. Therefore, a qualitative anal-
ysis is conducted to better understand how the disease spreads and to identify aspects

of the model that may require improvement.

Table 5.1: Parameters of the model SPIR and their numerical values for simulation.

Parameters Description Values
A Growth rate 7

p Fraction of growth rate into S class 0.6

B Transmission rate from S to / 0.003
Y Psychological saturation constant 0.02
A Rate at which susceptible becomes stressed 0.004
u Natural death rate 0.055
B’ Pollution related influence on transmission rate 3 0.2

d Disease induced death rate 0.07
[o] Recovery rate of infected population 0.09
0 Scaling parameter 0.3

The initial sub-populations for the simulation purpose have been taken as S(0) =
75, P(0) =40, I(0) =5, R(0) =5 and utilized the numerical experimental data given
in the Table 5.1} First, simulations of the model are performed without control and

then with optimal control in the following subsections.

5.8.1 Simulation without control strategy

In this subsection, we will first validate the theoretical results regarding existence
and stability of the equilibria and thereafter perform some computations to observe the
effect of memory o.

For, the parameter values given in the Table [5.1] the coefficients of the equa-
tion (5.3) comes out to be as Ay = —2.7907 x 1077,A3 = —1.5163 x 107°%,4, =
—4.5229 x 10*6,A1 = —9.0333 x 107%, Ay = 5.7408 x 10~*. These coefficient values
satisfy Theorem [5.4.1] and the possibility of the existence of unique positive equilib-
rium. Thus, the endemic equilibrium is E1 (S, Py, L) = (60.7791,46.3121,5.1627) for
which the basic reproduction number % is 1.8229.
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The values of coefficients of equation (5.10)) are calculated as A3 =3.60318, Ay =
1.02449, A; = 0.0914362, Ag = 0.00261647. The eigen values corresponding the
equation (5.10) are the root of the equation (5.11) i.e. of the equation 3 +
0.284328 w? + 0.0253766 y + 0.000726155 which are y; = —0.140491, y, =
—0.0738135, w3 = —0.0700235. The discriminant of polynomial term of the equa-
tion is calculated as D(y) = 3.17136 x 107!0. The values of the coefficients
of equation are By = 0.000726155,B; = 0.0253766,B, = 0.284328 and these
also satisfy the condition BB > By, so together with the discriminant D(A ), these are
satisfying the first condition of the Theorem and hence endemic equilibrium is
locally asymptotically stable.

To demonstrate how memory affects the dynamics of SPIR model (5.1)), Fig-
ures and [5.6 are plotted with the help of initial conditions of populations
which depict the impact of various fractional order (o = 0.8,0.85,0.9,1.0) on the

sub-populations. By varying the fractional-order values, different scenarios can be

observed.
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Figure 5.3: Time series plot of Figure 5.4: Time series plot of
susceptible population with pollution affected population with differ-

different fractional order. ent fractional order.
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The fractional-order parameter ¢ significantly influences the system’s conver-
gence behavior, as shown in Figures[5.3][5.4, 5.5 and 5.6l When o = 1, the system be-
haves like a classical integer-order model, where the susceptible, pollution affected, in-
fected, and recovered populations all reach their steady states relatively quickly. How-
ever, as o decreases, the system exhibits stronger memory effects, leading to slower
convergence across all compartments.

This memory effect becomes especially evident in the susceptible population
(Figure [5.3), where lower ¢ values result in a longer time to reach equilibrium. Bio-
logically, this can be interpreted as the population retaining more influence from past
disease exposure, which slows the overall system response. In contrast, higher values
of a reflect weaker memory, where individuals are less influenced by historical disease
data, allowing the system to stabilize faster.

Interestingly, this faster stabilization at higher & may come at a cost. A weaker
memory effect can delay recognition and response to infection, often leading to a
higher peak in the infected population. On the other hand, stronger memory asso-
ciated with lower a could indicate increased public awareness or behavioral changes
based on prior outbreaks, thus spreading the disease over a longer period but possibly
reducing the peak.

Despite these variations in convergence speed, Theorem [5.5.4] confirms that the
endemic equilibrium point (60.7791,46.3121,5.1627) remains stable for all consid-
ered values of a (0.8,0.85,0.9,1), as demonstrated in the figures. This highlights that
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while the path to equilibrium changes with o, the final outcome of the system remains
robust.

When the fractional order is relatively high (for instance, @ = 1) and the trans-
mission rate is low (e.g., f = 0.001), the basic reproduction number is %, = 0.60762,
which is less than one. Under these conditions, the number of infected individuals
decreases rapidly and eventually reaches zero, meaning the disease dies out and the
system quickly stabilizes at the disease-free equilibrium. However, when the frac-
tional order is lower (such as o < 0.90), the system still trends toward a disease-free
state, but the decline in infections happens more gradually. In this slower phase, the in-
fection persists for a longer time, displaying dynamics that resemble an endemic phase
before fading out. The findings indicate that fractional-order models play a key role in
capturing how previous disease interactions affect current transmission dynamics. The

same can be seen from Figure

Infected Population (1)

0 50 100 150 200
Time (t)

Figure 5.7: Time series plot of infected population with for %y = 0.60762 < 1 with different

fractional order.
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tible population for fixed & = 0.9. population for fixed o¢ = 0.9.

Figures and illustrate the influence of psychological factors on
different population compartments. As the psychological impact rate, denoted by

7. increases, there is a noticeable rise in the number of susceptible individuals and
those affected by pollution. Concurrently, a significant reduction is observed in the
peak number of infected individuals. This trend suggests that enhancing psychologi-
cal awareness can effectively suppress the infection peak during an epidemic, thereby

contributing to better disease control.
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Figure [5.11] explores the effect of the pollution-related transmission rate, repre-
sented by ', on the pollution-affected population. An increase in 3’ leads to a decline
in the number of individuals in the pollution-affected class, as more of them transition
into the infected category. This dynamic highlights the critical role of managing envi-
ronmental transmission pathways in reducing infection spread. Therefore, regulating

transmission rates can be a practical strategy to mitigate the intensity of outbreaks.

5.8.2 Numerical Analysis with Control Strategy

In this subsection, the outcomes of the Fractional Optimal Control Problem
(FOCP) are presented, and various strategies aimed at minimizing the disease burden
are discussed. Two time-dependent control variables, v;(¢) and v,(t), are incorporated
into the model. To solve the FOCP and ensure effective optimization, the weight con-
stants in the cost function are selected as g = 50,z; = 80 and z; = 10. Different

permutations of these controls are applied to study the following strategies:

* Strategy A (vi(r) # 0,v2(r) = 0)
We begin by analyzing the implementation of a single control policy, vi(t),
which is applied to reduce the transmission between the susceptible and infected
populations. Figure shows the graph of the control variable v(¢) in the
absence of another control. For the first 22 days, no control effort is required.
After this period, the requirement of control effort gradually increases, reaching
its full implementation between days 90 and 173. Following this peak phase,
the control intensity gradually decreases and eventually returns to zero. Figures
5.13] [5.14] [5.15] and [5.16|illustrate the dynamics of the population under this

control strategy in comparison to the case when no control is applied. From the

figures, we observe that there is no impact of the implemented control during
the initial days, however after this initial phase, the effect of the control vy (¢)
becomes evident. The number of susceptible and pollution-affected individuals
increases, while the number of infected individuals decreases. This indicates that
the control strategy is effective in reducing the transmission of the disease by pre-
venting susceptible and pollution-affected individuals from becoming infected.
Additionally, we observe a decline in the number of recovered individuals. This
is because we have applied a non-pharmaceutical control, thus fewer people be-

come infected due to the control, which means fewer eventually recover.
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Figure 5.12: Optimal control path of single control v (¢) when v, () = 0.
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Figure 5.13: Effect of applying only
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Figure 5.15: Effect of applying only v (7) Figure 5.16: Effect of applying only v (7)
on infected individuals compared to the case on recovered individuals compared to the case

when no control is applied (v;(f) = 0 = v(¢)). when no control is applied (vi(¢) = 0 = v,(7)).

o Strategy B (v (t) = 0,v(¢) #0)
Next, the effect of a single control policy, v (), which regulates the interaction
between pollution-affected and infected individuals, is examined. Figure
shows the graph of control variable v,(¢) when applied independently, in the ab-
sence of vi(¢). As seen in the figure, this control requires full implementation
for nearly the entire duration of the simulation, approximately 198 days, before
it can be gradually withdrawn near the end. Figures [5.18] [5.19] [5.20} and [5.21]

depict the population dynamics under this strategy, compared to the case when

no control is applied. The results indicate an increase in both susceptible and
pollution-affected individuals, while the number of infected and recovered indi-
viduals decreases. Unlike Strategy A, Strategy B begins influencing the system
immediately, as it is applied at its maximum level from the start. This immedi-
ate intervention leads to an earlier and more consistent impact, suggesting that
v2(¢t) may be more effective than v;(z) when implemented alone. A detailed

comparison can be seen in the subsequent section.
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Figure 5.17: Optimal control path of single control v,(¢) when v () = 0.
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Figure 5.18: Effect of applying only
v2(t) on susceptible individuals
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* Strategy C (v(¢) # 0,v2(z) #0)
This strategy explores the combined effect of simultaneously applying both con-
trol measures, v;(¢) and v,(¢), within the model. Figures and illus-
trate the profiles of each control when implemented together. Initially, v;(7) is
applied at full strength but gradually decreases to zero as the simulation pro-
gresses. In contrast, vo(7) remains at its maximum level for nearly the entire
duration, approximately 195 days, before being phased out toward the end. The

resulting population dynamics are shown in Figures [5.24] [5.25] [5.26] and [5.27]
Compared to the scenario without any control, the number of susceptible and

pollution-affected individuals increases, while the number of infected and re-
covered populations decreases significantly. This dual-control strategy leads to
more substantial changes than those observed in Strategies A and B, where only
one control was applied at a time. Thus, the simultaneous application of both
vi(¢) and v, (¢) proves more effective in mitigating disease spread, highlighting

the advantage of a combined intervention approach.
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v1(7) when both controls are applied.
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Figure 5.23: Optimal control path of

v2(#) when both controls are applied.
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5.8.3 Comparative study

In this subsection, we present a comparative analysis of all three control strategies
discussed earlier, along with the scenario where no control is applied. Strategy A
involves the use of only v (z), Strategy B uses only v,(¢), and Strategy C applies both
vi(t) and v,(¢) simultaneously.

Figure [5.28] illustrates the progression of the susceptible population under each
scenario. The results indicate that Strategy C, which implements both controls to-
gether, is the most effective in maintaining a higher number of susceptible individuals
throughout the progression. Strategy A performs nearly as well in terms of preserving
susceptibility but shows minimal impact during the initial phase of the epidemic. In
contrast, Strategy B initially works better than Strategy A for the first 69 days but is
eventually overtaken by Strategy A as time progresses.

However, when it comes to the pollution-affected population (Figure[5.29)), Strat-
egy B proves more effective than Strategy A. It significantly limits the progression
of pollution-affected individuals into the infected class, performing almost as well as
Strategy C. Although Strategy C remains the best overall, Strategy B shows a clear
advantage over Strategy A in this aspect.

Figure[5.30]compares the number of infected individuals across all strategies. All

three control strategies lead to a reduction in infections compared to the uncontrolled
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case, with Strategy C once again being the most effective. Strategy B initially outper-
forms Strategy A in reducing infections, for approximately 100 days, but in the latter
half of the simulation, Strategy A becomes more effective.

Figure shows the recovery trends in all the four cases. Strategy C results in
the lowest number of recovered individuals, not due to inefficacy, but because fewer
people become infected in the first place, leading to a smaller group requiring recovery.
Strategy A maintains higher recovery counts than Strategy B for the first 150 days,
while Strategy B slightly surpasses it in the final 50 days.
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Figure 5.28: Profiles of susceptible population (S) with different control strategies.
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Figure 5.31: Profiles of recovered population (R) with different control strategies.

5.9 Conclusion

The goal of this study is to develop and analyze the stability properties of a new
fractional-order SPIR epidemiological model that explores the influence of environ-
mental pollution on the transmission of infectious diseases. The model employs the
Caputo fractional derivative to describe the rate of change in each sub-population, with
the fractional order reflecting memory effects inherent in disease spread. By account-
ing for individuals’ past exposure, this framework improves the predictive capability
of the model.

Our formulation highlights how prenatal exposure to environmental pollution
shapes initial population compartments, with a fraction p of newborns entering the
susceptible class S and the remaining (1 — p) entering the pollution-affected class P.

The disease transmission between classes is governed by Monod-Haldane-type inci-

dence rates: ; f‘;llz for S and /, and % for P and /. These expressions capture
non-monotonic transmission effects driven by psychological and environmental influ-
ences. The parameter 6 scales the influence of environmental pollution on transmis-
sion and B’ quantifies its effect on the base transmission rate 3, reinforcing the role of

environmental exposure in shaping epidemic dynamics.
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The analysis confirms that the model is mathematically well-posed, with solu-
tions that are unique, positive, and bounded within the feasible region Q. Two equi-
librium states emerge: a disease-free equilibrium and an endemic equilibrium. Using
Laplace transform techniques for linearization, the stability of these equilibria is exam-
ined in detail. The basic reproduction number %, derived through the next generation
matrix method, serves as a critical threshold parameter. When % < 1, the disease-
free equilibrium is shown to be locally asymptotically stable, indicating that under
such conditions, the infection cannot persist in the population.

The bifurcation analysis around the non-hyperbolic equilibrium point Ej at the
threshold %y = 1 reveals that the model does not support backward bifurcation. In-
stead, a transcritical forward bifurcation is observed, as shown in Figure indicat-
ing a smooth transition from disease-free to endemic states as % crosses unity. When
Hy > 1, the existence of an endemic equilibrium is confirmed. Its local stability is
ensured for all & € (0, 1] under the conditions specified in Theorem 5.5.2] while global
stability is established using a Lyapunov function, as detailed in Theorem[5.5.4] These
results collectively highlight the model’s well-structured and predictable dynamical
behavior near the epidemic threshold.

Additionally, we reformulate the model into an optimal control problem, de-
scribed in Section by introducing two time-dependent control efforts v;(7) and
v,(t), aimed at reducing transmission from the S and P compartments to the / class.
The existence and analytical characterization of the optimal control strategy are de-
rived using Pontryagin’s Maximum Principle.

Numerical simulations were also performed to support the analytical results, us-
ing the experimental parameter values listed in Table

Further, the effect of psychological factors on sub-populations is analyzed,
demonstrating their potential in reducing both the disease burden and the infec-
tion peak. Additionally, the impact of pollution-related transmission rate 8’ on the
pollution-affected class P is examined, showing that even partial control of transmis-
sion can effectively mitigate the spread of infection.

In addition to the simulations, the model is evaluated with the implementation of
control strategies. Three strategies are discussed, each demonstrating varying levels of
effectiveness in mitigating disease transmission. Strategy C, combining both v (¢) and
v2(t), proves to be the most effective in controlling the disease spread. While Strategy

A and Strategy B individually show partial success, their combined implementation
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yields a more substantial and sustained reduction in the number of infected individuals.
This demonstrates that a dual-control approach not only enhances effectiveness but
also compensates for the limitations of applying each control independently.

This study emphasizes on the critical role of public awareness in controlling the
spread of infectious diseases, especially in environments where pollution influences
disease transmission dynamics. One of the most effective ways to reduce the emer-
gence of new cases is by educating the public, particularly those who are susceptible
or pollution-affected, about the risks of coming into close contact with infected in-
dividuals. Raising public awareness involves more than just sharing information. It
requires strategic communication campaigns, community engagement, and behavioral
change initiatives that inform people about how the disease spreads, who is most at
risk, and what practical actions can help prevent transmission. For instance, individ-
uals need to understand why minimizing unnecessary contact, maintaining hygiene,
wearing protective gear (such as masks), and avoiding polluted or crowded areas can
significantly lower their risk of infection. Policy makers and health workers should im-
plement targeted interventions that encourage behavioural changes among susceptible
and pollution-affected populations, provide resources and support that enable people
to avoid risky interactions (e.g., facilitating remote work, subsidizing protective equip-
ment, improving access to clean environments), enforce guidelines that limit contact

between vulnerable individuals and confirmed or suspected cases.



Chapter 6

Analysis of a fractional order S/R
model for infectious diseases spread by
household waste with optimal control

strategies

With the increasing urban population, the accumulation of household waste (HHW)
and its disposal has become an arduous issue. Household wastes spread several
kinds of deadly diseases and have aroused attention from all sectors of society. In
this chapter, a Caputo-type fractional-order SIR model is developed by incorporating
two types of bacteria populations, namely bacteria in the environment (B,) and bac-
teria in organism (B,). The analysis establishes the well-posedness of the model and
demonstrates the existence and uniqueness of the solution. The basic reproduction
number X is derived, and its sensitivity analysis is performed. Furthermore, the sta-
bility of the system is investigated in the sense of the Ulam-Hyers stability criteria.
Given the high burden of vector-borne diseases, an optimal control problem (OCP) is
also formulated to reduce the disease burden at an optimal cost, incorporating three
controls, uy(t), uy(t) and uz(t), which are primarily aimed at reducing transmission
rates. Seven different types of optimal control strategies have been performed and
compared, along with the study of their respective cost functions. This study offers
a realistic, cost-effective approach to guide decision-makers in controlling diseases

spread by household waste.

161
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6.1 Introduction

Households are an indispensable part of human life. Not only do they provide a space
for individual growth, but they also contribute to the economy by providing labour
and by consuming goods and services. However, in recent years, the onset of urban-
ization has increased the living standards of people in both developed and developing
countries. Urbanization, along with rapid growth in population, has led to a signifi-
cant increase in the generation of the daily household wastes, such as plastic materials,
cans, bottles, clothes, food packaging, paper, food scraps, disposables, glass, compost
etc. Management of these household wastes (HHW) is a major concern [6]. To manage
such issues, several steps have been taken by the government of various countries, but
due to improper work, lack of knowledge, careless behaviour of the people and lack of
landfills, all the HHWs cannot be collected and therefore it is impossible to dispose all
these wastes into dump sites [6} [152]. Furthermore, the problem does not stop here.
The waste that is disposed in these dumpsites accumulates and forms a ‘trash moun-
tain’, which serves as a breeding ground for various types of germs and hazardous
bacteria.

Moreover, due to the destruction of dumpsites for infrastructure development and
a sudden rise in HHW, the growth of bacteria has increased day by day [61]. These
bacteria spread into the environment and via carriers such as flies, mosquitoes, fleas,
rodents etc. [189], enters human households through sources like food and water.
The intake of such contaminated food and water infects the human population, which
results in both fatal and non-fatal vector-borne diseases such as cholera, chikungunya,
dengue, plague (transmitted from rats to humans), dysentery, Legionnaires’ disease,
and many more [189;[127]]. This creates an alarming situation globally.

Numerous studies and literature have been provided by researchers addressing the
household waste problem which includes various surveys and applicable suggestions
that highlight how different sources of hazardous wastes contribute to the contamina-
tion of air, water, soil and overall environment (see [21} [133]], and references therein).
Despite these efforts, the management of HHW along with the diseases spread by the
generated hazardous bacteria is still a very big concern. This can be interpreted from
the fact sheet of World Health Organization, which states that vector-borne illnesses

account for the death of more than 700,000 people each year which accounts for more
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than 17% of all infectious diseases [193]. These illnesses can be caused by viruses,
bacteria, or parasites. Thus, it is very crucial to study the dynamics of disease trans-
mission caused by hazardous bacteria generated from household waste. To address
such situations in a realistic manner, the bacterial population is divided into two cate-
gories: the bacteria generated from household waste that spread into the environment,
referred to as bacteria in environment and the bacteria that further spreads from the
environment to organisms through carriers, referred to as bacteria in organisms.

Over the past few decades, researchers have utilized mathematical modeling as
an essential tool to explore real-life situations by dividing the population of interest
into different compartments [[159;(160; [161].

Since the prevalence of vector-borne diseases is very high, especially in low and
middle-income countries where vector populations are in large amounts and healthcare
systems are not sufficient, it is crucial to formulate an epidemic model which not just
focuses on lowering the disease burden but also on minimizing the cost incurred. Thus,
we have considered an optimal control strategy based on Pontryagin’s Maximum Prin-
ciple [[74]. Incorporating an optimal control problem into epidemic models is essential
for effectively managing infectious disease burden [17; [164]. By an optimal control
strategy, our model becomes a tool not only for understanding the dynamics of the
epidemic but also serves as an aid to achieve economic benefits by designing effective
strategies to ease the disease burden.

Conclusively, the proposed SIR model with two groups of bacteria population
i.e., environmental and organism bacteria along with an optimal control problem can
be considered as a novel work, which can prove to be beneficial for the health sector
and for policy makers as well.

The framework of this chapter is as follows: In Section the required assump-
tions and mathematical formulation of our proposed model is discussed. Further, in
the next section positivity and boundedness of the model is performed. Section
deals with the existence and uniqueness results using Banach contraction principle and
Schaefer’s fixed point theorem. In Section the basic reproduction number % is
calculated, and the highly sensitive parameters are identified through sensitivity anal-
ysis. Ulam-Hyers stability is performed for the model in the very next section. An
optimal control problem (OCP) is also formulated in Section which is helpful in
lowering disease burden with optimal cost, with inclusion of three controls u; (), ua(?)

and u3(r) that are basically focused in reducing the transmission rates. The existence
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and characterization of controls are performed by using Pontryagin’s maximum princi-
ple. Moreover, in Section @ the numerical scheme of the Adams-Bashforth-Moulton
Predictor-Corrector method is presented, and numerical simulations are performed to
illustrate the findings in Section[6.9] Finally, the conclusion of the chapter is summa-

rized in the last section.

6.2 Model development

In this section, a mathematical model is developed to study the effect of bacteria gen-
erated by HHWs on the population. When hazardous bacteria generated by HHWs
spread in the environment, then the susceptible individuals come in contact with the
environmental bacteria and the carrier bacteria in organisms. To express the propaga-
tion dynamics, the human population N(¢) is divided into three compartments: Sus-
ceptible S(¢), Infected I(z), and Recovered R(¢) at any time ¢ and the class of bacteria
in the environment and the carrier bacteria in organisms are denoted by B, and B,

respectively. The basic assumptions for the model development are as follows:

(A1) The constant growth rate of susceptible population is considered as A and the

natural death rate for all human compartments S(¢),1(z) and R(¢) is taken as .

(A2) Growth rate of environmental bacteria through the HHWs is taken as A; and
washout rate is taken as h. Also, the washout rate is assumed to be greater than
the growth rate of bacteria, i.e., h > A for the present study, because h < Aj is

biologically meaningless.

(A3) Growth of bacteria in organisms is considered as directly proportional to the en-
vironmental bacteria with rate b because these organism bacteria are like carriers
from environment to residential areas and also rate of depletion, which includes

washout rate as well, of these bacteria is taken as g.

(A4) When susceptible individuals will come in contact with the bacteria in organ-
isms and bacteria in environment then they will acquire bacterial infection at
rates 3, and 3., respectively. Later on, susceptible may come in close contact
with infected individuals and acquire the infection by rate B with some level
of protection p, where 0 < p < 1. When p = 0, there is no protection against

infection whereas when p = 1, there is full protection against infection.
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(A5) The rate of recovery for infected individuals is considered to be &, and the in-

fected can contribute to bacterial production in the environment at a rate of ©.

Thus, under these assumptions, the formulated fractional order compartmental model

is given by:
da;t(t) =A—B(1—p)SO)I(t) — BoS(t)Bo(t) — BeS(t)Be(t) — uS(2),
dozt(t) = B(1=p)SO)I(t) + BoS(1)Bo(t) + BeS(£)Be(t) — 81(t) — (u +d)I(¢),
daft(t ) 51()— uR(r).
da}j:(t) = (A; —h)B,(1)+ ol (1),
L) —b) - 680,

(6.1)
with initial conditions S(0) = Sy >0, 1(0) =1p > 0, R(0) =Rp >0, B, = (Be)y >
0, B, = (B,), > 0andr € [0,19], 1o € R*. The pictorial representation of this disease
propagation dynamics and the interaction between human and bacteria population is
given in the flow diagram[6.1]
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Figure 6.1: Flow diagram of the model (6.1)).

Let us rewrite the system for the sake of convenience. Let
M(t) = [S(0),2(1), R(1), Be(t), B (1)]"

and £ (1, M(t)) = [w1(1), ya(0), w3 (1), ya (), ws ()],

where
Yi(1) = A=B(1=p)S)I(1) — BoS(t)Bo(t) — BeS(t)Be(t) — uS(2),
V(1) = B(1 = p)S()I(t) + BoS(1)Bo(t) + BeS(1)B. (1) — 81(t) — (1 +d)I (),
ya() = 81(1) — uR(),
va(t) = (A1 —h)B. (1) + ol(2),
Y5 (1) = bBe(1) — 8B,(1)

So, system (6.1)) can be written as follows:

DM(t) = f(t.M(t)); M(0) =My >0, t€[0,z0]; 0<a<1. (6.2)
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Equation (6.2) is equivalent to the fractional integral equation of the form

M) = Mo+ [ (=87 ME)aE

Let @ = C([0,1)] : R), which denotes the complete normed linear space of all continu-

ous functions from [0, 7] to R endowed with the norm ||M|o = sup {|M(z)|}, where
1€[0,10]

IM(0)] = [S(@O)[ + 1)+ [R(1)[ + |Be(t) | + [Bo(1)] -

6.3 Positivity and Boundedness

Theorem 6.3.1 For M(0) > 0, the solution M(t) of system (6.1) is positive and
bounded fort € [0,1], to € R™.

Proof 6.3.2 First of all, we establish non-negativity of solutions. It follows from the
first equation of system (6.1)), that

D*S(t) = (—B(1—p)I — PoBo — BeBe — 1) S.
The solution of the above equation is
S(t) 2 SoEa[— (B(1—p) + BoBo + BeBe + 1) 1%].

Since So > 0, it implies that S(t) > 0, Vt > 0.

So, following similar procedure, we have

Since Iy > 0, Ryg > 0, (B,)o > 0 and (By)o > 0, we get I(t) >0, R(t) > 0, B.(t) >0
and B,(t) > 0. Hence, the desired result.

Now, for the boundedness, the sum of the total human population size is given by

N(t)=S(t)+1(t)+R(t).

Clearly, D*N(1) = A—u(S+1+R)—dl
=A—uN-—-dIl
SA_.UNa
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which implies, N(r) < %—F <N(0) — %) Eq(—ur%).

‘ <A,
So, tlggsupN(t) <4

Now, D%B, (1) = (A — h) B.(r) + 61(t)

< cﬁ—m—Al)Be(m

cA cA
hich implies that, B < B,(0)— ————E (—(h—At%) ).
which implies tha e(t>_,u(h—A1)+< ¢(0) wh—A7) a (—( 1) ))
So, lim sup B, (1) < — S~
0, lim sup e()—M‘
boA
D%B = bB, — 9B < — — 9B
NOW7 0<t) b e(t) g O(t)_u(h_Al) g 0

boA bo A
which implies that, B, < ——2~ 4+ (B (0)— —2%2 ) E_(—a%).
P °S Lh—A)s ("” u(h—Al)g> a(~8r")
boA
So, lim supB, (1) < — 22
o, Jim sup B, (1) < pg(h—Ay)

This indicates that both the total human population and each individual
population class remain constrained within finite bounds.  Thus, let x(¢t) =
(S(2),1(t),R(t),B,(t),B,(t)) represent the solution of the system. Then, for biologi-
cal relevance, the region of attraction of the system is defined by the closed set:

oA
n(h—Ay)’

;withh>A1}.

U = {x(t) ERS :0<N(t) =S(t) +1(1) +R(t) < %, B(1) <

boA

P Ay

6.4 Existence and Uniqueness

Lemma 6.4.1 The function f(t,M(t)), defined above, satisfies
| (e, M) — f(,M)|| <€}y HM—MHQfor some €j;>0and M = (S,1,R,B,,B,) .

Proof 6.4.2 By the definition of function f(t,M(t)),

5
|FEM@O) = FED]| < sup Y[ ¥ M)~ T M@ (63)

t€[0,00] i=1
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We observe that the first component,

(Wi(,M(1)) =1 (6,M(1))| < p|S—S|+B(1—p)|SI—SI|+B,|SB, — $B,
+ B |SB. — SB.|. (6.4)

Consider the term,
|ST— SI| = |ST— ST+ ST — 81| < wi (0) [T — 1| +wa(r) |S— 5], (6.5)
where wi(t) = |S(¢)| and wa(t) = |I1(¢)].
Similarly, }SBO - §1§0| =wi () ‘Bo —1§0| +ws(r) ‘S — §| , (6.6)
where wi(t) = |B,(t)|, and

|SB, — 8B| = wi(t) |Be — Be| +wa(t) [S— 8

; (6.7)

where wa(t) = |Bo(t)].
So, equation (6.4) implies

1 (1,M(0) — W1 (1ML (1)) | < 1 |S— ]+ (1= p)wi (1) 1]
+B(1—p)war) S — 3|+ Bows (1) S~ $|
+ Bowr (1) [Bo — B + Bowr (1) B~ B
+ Bews (1) |S—~§‘
< {p+B(1—p)wa(r) + Bows (1) + Bews (1)} | — S|
+B(1—p)wi(t) [I— 1|+ Bowi(¢) [B, — By |
+ Bew1 () |Be — Be| .

Which implies that,

[ (1, M) =P, (t,M ()| <] () {|S—8|+ |I—1|+|B.—Be| +|Bo—Bo|},

where

€ (1) = p+ max {ﬁ(l —p)wa(t) + Bows(t) + Bewa(t) + B (1 — p)wi (1)

t€[0,19]

+B0W1 (t) +Bewl(t)}

= U+ max {ﬁ(l = P)(wi(t) +wa(1)) + Bo(wi (1) + w3 (1))

t€[0,1o]

+ﬁe(W1(t) —|—W4(I))}.
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In a similar manner,

W (t, M(1)) — W2 (t,M(1))| <€5 (1) {|S—8|+|I—I| + |Be — Be| + |Bo — B |} ,
(P3(r,M(1)) —W3(t,M(1))| <€3 (t) {|{I-1|+ |R—R]|},

[Wa(t,M(1)) —Wa(t,M(1))| <€i (t) {|I—1|+|B.—B|},

“P5(t,M(t)) —‘Iﬁ(t,M(t))‘ <ed (1) {‘Be—ée| + |B0—]§,)‘},

where

€5 (1) = (4 +d+5)+ max {B(l P wr () Fwat)) + Bl (1) + wa (1))

1€[0,10]

+Bo(W1(t)+W3(t))},

€5 (t)=8+u,
EI <t> = (Al_h)+67
e (1)=b+g.

So, from equation (6.3), we have

[ F(6;M(1)) = f(1,M(1))|| < max {&] (1)+ &) ()+ €5 ()+ €5 ()+e5 (1)}
t€[0,t0]

x{}S—S“-I—

SEIJ(/[ ||M—MH, for SE[J‘F’IZGT—'—GJ‘FE;—FEI—keg_

11|+ |R—R|+|Be—Be| + |Bo— Bo|}

Hence, the result.

Theorem 6.4.3 There exist a unique solution for the proposed model on [0,1o], if

%y,
r(()1—+g) < 1 holds.

Proof 6.4.4 Let us define the set X, = {M € Q : |M|| < m} and the operator ¢ :Q —
Q as follows:

t

S M) = Mo+ = [ (1—8)% F(E,M(E))aE.
0
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We need to show that 7 Xy C X, i.e. || _ZXp|| < m. Using Lemma we get the
following inequality:

1 o
100, = sup 3 Mo+ O/ (= &) F(E. M(&))dE

t

< Mol + o [ (=) 17(EME)) ~ £(&,0)]

0
t

+$ 0/ (1= &) £(&,0) a€

EM mty® Mpytp®

< [Mol + Il+a) Il+a)

Let us suppose the contrary, i.e. || _# Xp|| > m,
a
(1 +a)
|M0| 0 GM Z‘OaMo
m T(l+a) ml(l+a)

which implies that, |My| + (€ m+Mp) >m

> 1

On takmg limit m — oo on both sides, we get > 1, which is a contradiction to

(1+oc)

For M, M € Q, consider

I sup {.7M@) = SM0}

1[0,z

< % O/ (1= &) £, M) - F(E.M(E))]|

This confirms that _# is a contraction mapping. So, by Banach contraction principle,

J has a unique fixed point on [0,ty], which is a solution of the model.

Theorem 6.4.5 If | f (t,M(t))| < g(¢) for all g(t) € C([0,10]), then the proposed model
(6.2) has at least one solution provided

€ [|M(10) —M(10)|| < 1.
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Proof 6.4.6 Consider & > |My| + ira) 1+oc gl and  the set Be =
{McC([0,10]) : IM|| <&} From [79)], consider the operators 71, > on Bg
defined by
f
1 _
(AM)(0) = oo [ (6=p)" F (. M(0) dp,
[a)/

and
(2M) (1) = M(t0).

Thus, for any M,M € Bg, we get

o300+ (22) (0] < Mol + g [ (=)' 17 (0.1 (P dp
0
< Mol + 1 e
<€ <o

Hence, /1M + /QM € Bg. Now, we will prove the contraction of the operator .
Given any t € [0,ty] and M,M € Bg, we have

A

|CAM) (1) + (728) ()] < [|M(10) = M(z0) [

Moreover, the continuity of the operator /1 is implied by the continuity of f. For

any t € [0,1] 1+a |g|| <eo. Thus, we can say that f is

uniformly bounded.
Now, to show _#\ is compact, define f* = sup(t,M) € [0,t0] x Bg | f (t,M(t))|.
Thus,

(M) (1) — (M) ()] = (o)

—)0, asty — .



6.5 Basic Reproduction number and its Sensitivity Analysis 173

This proves that J, is equicontinuous and consequently, relatively compact on Bg.
Hence, by Arzeld Ascoli theorem, 7, is compact on Be. Using Schaefer’s fixed point
theorem, the model has a fixed point which is a solution of (6.2).

6.5 Basic Reproduction number and its Sensitivity
Analysis

To determine the basic reproduction number, the disease-free equilibrium (DFE) point
is first found. For model (6.1)), the DFE is:

(5.1,R.B..B,) = (%,o,o,o,o,) .

The basic reproduction number % is determined using the next-generation approach.
For that, let
D}(z) = 7 () =7 (2),

where z = (I,R, B.). The non-negative matrix .%, which represents the new infection

terms, and the matrix 7/, comprising the remaining terms, are provided as follows:

B(1—p)SI+ BoSB, + BSB. (8+u+d)l
F = 81 and 7 = UR
ol _(Al _h)Be

The corresponding linearized matrices evaluated at DFE (S,1,R,B,,B,) are respec-

tively,
BUeh ¢ Bt (§+pu—+d) 0 0
F= o 0 0 and V = 0 u 0
c 0 0 0 0 —(A1—h)

Since, the largest eigen value, i.e., the spectral radius of the matrix FV ~!, repre-

sents the basic reproduction number %, therefore,

ﬁA(lfp) 0 Aﬁe

1 u(5+5u+d) u(h—Ay)
(e}
(6+pu+d) 0 0

and hence,

BA(1—p) (h=A1)+ /B*A*(1—p)?(h—A1)2 +4ucPe(d+ S +p)
2u(h—Ar)(d+6+n1)

Ko =
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6.5.1 Sensitivity Analysis

Sensitivity analysis is used to understand how different model parameters affect
the spread of a disease. Specifically, it helps calculate the sensitivity indices of the
basic reproductive number, %Z. These indices show how important each parameter is
in influencing disease spread and guide where intervention efforts should focus. Since
errors often occur in data collection and in the assumed values of model parameters,
sensitivity analysis is also used to assess how reliable a model’s predictions are when
these parameter values change. There are different ways to perform sensitivity anal-
ysis, and the results provide sensitivity rankings that can differ slightly depending on
the method used. Here, we employed the normalized forward sensitivity index, which
is the ratio of the relative change in % to the relative change in the parameter being
studied [[73]].

Definition 6.5.1 [/58] For a variable y dependent on parameter x,the normalized for-

ward sensitivity index is defined as

)
ny:—zx

X
ox y



6.5 Basic Reproduction number and its Sensitivity Analysis 175

So, for %, the sensitivity index is Wx'% = % X %, which expresses the sensitivity
of Z to the parameter x. The sensitivity indices for 'Phe relevant parameters are:
Ao _ BA(L—p)(h—Ay)
P VIBA=p) (h—A1)E+4ucB(d+ 8 + 1)
W BA(L—p) (h—A)
VIBA(I=p) (h—AD] +410p.(d+ 5+ 1)
W = —BAp (h—Ai)
VIBA(—p) (h— A +410B.(d +5 + )
i Bra(1—p) o
VIBA(I=p) (h—A)2+4pcB(d+5+p) (h—A1)
Wfo _ A BAAI(1—p)
h=A1 \JIBA(L—p) (h—A1)P +4R0Po(d+ 0+ )
A(1—p)(h—A,
wo _ ~(d+ o2 (1 N \/[ﬁA(l—pl)3<h(—A1p)])2(+4uc)Be(d+5+ﬂ)>
H 2(d+86+p)
Wc«:fo _ 200Be(d+ 0+ 1)

VIBAQ = p) (h— AP +4p0pe(d+ 8 + )
FbA(1—p) (h—A1)
2poPe(d+8+u)

VIBAQ = p) (h— A +4p0pe(d+ 8 + )

|

W/ =
e
\/[BA(l—p)(h—Al)]2+4ucﬁe(d+5+u) \/[ﬁA(l*P)(h*Al)}2+4NGBe(d+5+u)
+bA(1—p) (h—Ay)
W;f() _ 2ducp,
\/[ﬁ/\(l—p)(h—Al)]2+4“o-[3e(d+5+u) \/[ﬁl\(l—p)(h—Al)}2+4u6Be(d+5+u)
+bA(1—p) (h—Ay)
d
Cd+d+p
Wi = 26ucp.

VBN )0 AP o+ ) | VBN (—A) +anopia- )
AL p) (h— A1)

__ 98
d+6+u
To evaluate these sensitivity indices, the parameter values provided in Section [0.9]are
used, and the corresponding bar diagram is plotted in Figure |6.2|as follows:
W[}% — 0.944829, W =0.944829, W, = —0.684187, W,/ = —0.128732,
W =0.0735611, W, = —1.31163, W™ =0.0275854, W, =0.0275854,

e

W = —0.407057, W = —0.226143.

|
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Figure 6.2: Sensitivity indices of %.

From the above explanation, we see that these parameters can either increase or
decrease Z. Specifically, the parameters 3, A have the strongest positive impact and
Ay, o and f3, have a less positive impact on Zy. This means that if these parameters
increase while keeping the others unchanged, the basic reproduction number % will
also increase, leading to a faster spread of the disease. Similarly, if they decrease, the
spread of the disease will slow down.

For example, W[‘? 0 = 0.944829 indicates that if the parameter f3 increases (or
decreases) by 10%, then % will increase (or decrease) by 9.45%. Similarly, Wf)% 0 =
—0.684187 means that if p increases (or decreases) by 10%, then %, will decrease
(or increase) by 6.84%, respectively. This helps us understand the sensitivity of the

parameters and their impact on % in both positive and negative ways.

6.6 Ulam-Hyers Stability

In this section, the global stability of the fractional-order model is analyzed within the
framework of the Ulam-Hyers stability criteria, following the approach in [[179; [83].

To begin, the following inequality is introduced:
DM (1) — f(t,M(1))| <€, t€]0,1). (6.8)

A function M? satisfies (6.8), if there exists y € Q such that:
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c x| <e
o DM°(t) = f(t,M°(t))+ x(t); t €[0,10].

Definition 6.6.1 [25|]] The model (6.1) is Ulam-Hyers stable if 3 a real number ¢ > 0
such that for given € > 0 and for any solution M°(t) of equation (6.8), there exists a
unique solution M(t) of model equation(6.1)) with

[M(2) =M (1)|| < e¢; 1 €[0,10].
Consider the inequality,
IDEM(t) — f(t,M(t))| < €6(t), forsome 6(t) € C([0,t0];RT). (6.9)

A function M satisfies equation iff there exists a function v(¢) € Q such that

* DEMO(1) = f(t,M°(1)) +v(2); 1 €[0,10].

Definition 6.6.2 [25|]] The fractional order model is generalized Ulam-Hyers sta-
ble with respect to function 0(t) if there exists real number ¢ > O such that for given
€ > 0 and for any solution M°(t) of equation (6.9), there exists a unique solution M(t)
of model equation (6.1)) with

[M(2) —M°(2)[| < e@b(z); 1 € 0,10].

Theorem 6.6.3 Suppose Lemma holds and X¢ > 0 be such that
Jo0(s)ds < XgO(t), t € [0,t0]. Then the proposed model is Ulam-Hyers
generalized stable with respect to function 0(t) if

E}T/I fo®

Smlo
Tla+1)

ey to® <T(a+1), orequivalently

Proof 6.6.4 Let M be a unique solution of the model system by Theorem
Since, M? satisfies inequality (6.9)), thus we have

MO(t) M0+— / ) F(E,MO(E)) + v (E)}E,
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which implies that,

()Mo~ = [ @ 0/ FEN(E)dE| = | 0/ (1-&)" V(&)
< |og [ -0 eo(E)aE
0
< £Xp0/( )r(é?in (6.10)

Fore >0andt € [0,10),

1M(1) = M°(1) [l = i M (1) —M°(1)]

t

~ sup |MO(t)— MO_L/a—g)“lf(é,N(é))dé

1€[0,10] Lo

= M)~ Mo— = [ (1= 8)* FEN(E)a
0

oo =& IFEN )~ FENE))]
0

1% e to®
< eXgO(t
=57 ()F(a+1)+1“(oc+1)H

M—M°||g.

This implies that

£Xg0(1)1p®
(Do +1)— €57 10%)”

[M (1) —M°(t)]|q <
and hence,

1M(1) —M°(2) || < €¢6(2),

Xoto*

+ L0
W and eyl < F(OH— 1)

where ¢ =

This proves that the model system is Ulam-Hyers generalized stable. In a similar
way, it is easy to check that model system (6.1)) is Ulam-Hyers stable also.

6.7 Optimal Control Formulations

Optimal control theory primarily deals with constraints and systematic approaches to

enhance the performance metrics of control systems. In this section, we introduce
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a well-structured control strategy designed to minimize the effects of diseases while
keeping intervention costs as low as possible. During the spread of an epidemic, reduc-
ing the infection rate among susceptible individuals is crucial. This can be achieved
by influencing their behaviors to decrease direct contact with both infected individ-
uals and disease-carrying vectors, thereby lowering transmission risks. The control
variable uj (¢) represents personal protection measures through the use of face masks,
social distancing, isolation and awareness of disease transmission from an infected per-
son. Control u,(¢) represents the level of awareness about cleanliness practices in our
surroundings, such as households, workplaces and public spaces. This includes under-
standing the importance of regularly cleaning surfaces, disposing of waste properly,
washing hands frequently, and taking other preventative measures to reduce contami-
nation. The control variable u3(t) reflects the understanding of hygiene practices, such
as actions like using sanitizers, washing vegetables properly before consumption and
ensuring proper sanitation, especially in food preparation areas or healthcare settings.

By adding these three control measures, the system (6.1) is modified as follows:

DS(t) = A= B(1—ur(1))S()(t) = Bo(1 —ua(t))S(£)Bo () — Be(1 — u3(1))S(1)Be(t)
— uS(),
DI(t) = B(1 —ur(1))S(0)(t) + Bo(1 — uz(t))S(£)Bo (¢) + Be (1 — u3(t))S(1)Be(t)
— 81(1) — (1 +d)I(o),
DYR(t) = 61(t) — UR(t),
D%B,(t) = (A1 —h)B.(t) + 0l(t),
D®B,(t) = bB,(t) — gB,(t), (6.11)

with §(0) >0, 1(0) >0, R(0) >0, B.(0) >0, B,(0) > 0.

We begin by exploring the formulation of objective functional, which helps quan-
tify the trade-offs between disease burden and intervention efforts. The overall objec-
tive functional consists of two main components: the cumulative cost related to the
disease, denoted as Jj,, and the cost associated with implementing control measures,
represented by J..

The total intervention cost can be expressed as a nonlinear function of the control

variables, given by:

T

1
/( z1u1 )+ zzu%()JrEzw%(t)) dt,
0
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where 7,7, and z3 are positive constants representing the cost of implementing differ-
ent intervention strategies.
The cost incurred due to the disease ,Jp, is determined by the specific disease

model under consideration and the accessible information. It is given by:

T
Jp = /Abl(t)dt,
0

where A, is a positive scaling factor that accounts for the overall economic impact of
the disease. This includes direct costs, such as medical treatment and indirect costs,
such as productivity loss and mortality.

The optimal control strategy is influenced by the relative magnitudes of the co-
efficients Ay, 71,22 and z3, which determine the balance between disease-related losses

and intervention expenses.

6.7.1 Combined objective functional

The objective functional aims to minimize both the disease burden and the asso-

ciated intervention costs. This is mathematically expressed as:

. 1 1 1
112161[1}/ [Abl(t) + Ezlu%(t) + Ezzu%(t) + Ezw%(r) dt,

where A,I(t) represents the cost attributed to disease prevalence, while the remain-
ing terms account for the costs associated with implementing control strategies. The

control variables u;(t), uy(t) and u3(z) belong to the set U, which is defined as:
U = {(uy,uz,u3)|u;(t) is Lebesgue measurable on [0,1],0 < u;(r) < 1,i=1,2,3}.

Here, u;(¢) = 0 indicates no implementation of the i’ control, while u;(t) = 1
corresponds to the full application of the available intervention. Since these control
functions represent proportions or effort levels, it is not meaningful to consider values

below 0 or above 1.
6.7.2 Existence of optimal control
The following conditions ensure the existence of the optimal control functions:

1. Non-emptiness of the solution set: The system (6.11) has at least one solution

when the control variables are chosen from the set U.
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2. Properties of the Control Set: The set U is closed and convex. Additionally,
the right-hand side of the system (6.11)) is bounded by a linear function in terms

of the control and state variables.

3. Convexity of the Integrand: The function L = A,I(t) + %zlu% (1) + %zgu% (1) +
%2314%(1‘) is convex over the set U. Additionally, the function satisfies the con-
dition L(Z,uy,uy,u3) > x(uy,uy,us), where k is continuous. Furthermore, as
|(u1,ua,u3)| — oo, the ratio |(u1,us, u3)| = k(u1,us,u3) — oo, where |.| represents

the norm.

6.7.3 Characterization of optimal control function

To determine the necessary conditions for optimal control, Pontryagin’s Maxi-
mum Principle [105] is utilised. This principle is crucial in linking the cost functional
with the system’s state equations by introducing adjoint variables. These adjoint vari-
ables help in deriving conditions that must be satisfied for the control function to be
optimal.

To facilitate this process, define the Hamiltonian function as follows:

H=Apl+ %Zlu% + %Zzu% + %Z3u%
2 [A = B(1 = 11)ST — Bo(1 — ) SBy — Bo(1 — 3)SB, — ]
+ 2 [B(1—u)SI+ Bo(1 —u2)SB, + Be(1 —u3)SB, — 81 — (u +d)1]
+A3[0] — UR]+ A4 [(A; —h)B.+ ol] + A5 [bB,—gB,].

Here, A; = (A1,42,43,A4,A5) are referred to as the adjoint variable, which satisfy the

following canonical equations:

d“%  OH d*%  9H d%s  9H d°A  OH d%As  JH

dt 39S’ dt 9l dt  OR’ dt 0B, dt oB,

Therefore, the adjoint system is:

DAy = [ B(1 = )T = Bo(1 — u2)By — At Bo(1 — 13)Bo — A 4
Ao B(1 = un) T+ 2By (1 — 2)Bo+ Ao Be(1 — u3)B.]

D% = —[Ap — 2 B(1—u1)S+ Ao (1 —101)S — Aot +d+ &) + 436 + A40]

D% = At

D% = — [ Be(1 — u3)S+ AoBo(1 — u3)S + Aa(Ay — h) + Asb]

D%%s = —[~MiBo(1 — u2)S + A2 Bo(1 — u2)S — Asg],
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with the transversality condition
A1 (T) = 05 )VZ<T) = 07 )L3(T) = 07 A‘4(T) = Oa A‘5<T> =0.

We can then characterize the optimal control on the interior of the control set using the

optimality condition g—Z = 0 at u; = u;, which gives,

o” = min {mar {0, 2= 2B 4,

<1
ur" = min {max {0, (2 = 11)BoSBo } , 1} )
22
u3™ = min {max {0, (%2 = A1)BeSBe } , 1} ) (6.12)
<3

6.8 Numerical Scheme Adams-Bashforth-Moulton
Predictor-Corrector Method

In this section, numerical scheme is presented for the model (6.1)) in the Caputo sense,
utilizing the Adams-Bashforth-Moulton predictor-corrector method. This approach is
widely used for solving fractional-order differential equations with initial conditions
[S0]. The implementation of this method is outlined below, considering the following

non-autonomous household waste system:
D*S(t) = fi(t,S,1,R,B.,B,),
D*I(t) = f>(¢,S,1,R,B.,B,),
D*R(t) = f3(t,S,1,R,B.,B,), (6.13)
D%B,(t) = f(,5,1,R,B,,B,),

D®B,(t) = f5(t,S,1,R,B,,B,),

with S(0) = Sp, 1(0) = Iy, R(0) = Ry, B.(0) = (B.)o and B,(0) = (B,)o, where 0 <
o <l1.Lett;=jh, j=0,1,2,...,N with some integer N and & = T /N, in the interval
[0,T]. By utilizing the method given in [50], system (6.13)) can be written as follows:
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Predictor values for (6.13)) are

1 n
Spe1 =So+ g ¥ bins1f1(4:8),1j:R;, (Be)  (Bo) ),
(OC) j=0

l n
15+] =h+—— Zbj,n+1f2(tjvsj7ljaRja(Be)j,(Bo)j),
F(‘X) j=0
1 n
Ry = Ro—l——r(a Zbj,nﬂfg(z,,sj,lj,zej,(Be)j,(Bo)j),

|
Bl =By+—— ) Z bini1 fa(t1,S 1R, (Be) 1, (Bo);),

1

I'(c) Zb1"+1f5(tjasjaljaR]><B> 7(Ba)j)a

J=

P
Boyi1 =Boo+ = —

where, bj 11 = %((n—j—l— 1)*— (n—j)o‘).
Corrector values are obtained by using predictor values as follows:

(04

ha n

o
P P P P P
In+1 =1+ mfZ (tn-l-lJSn+len+laRn+17Ben+laBUn+l>

ha n

Tlat2) j;)aj’"“fz(tj’Sf’If’Rf’Beijoj)a

o
P
F(OC—{— )f3(t”+1’Sn+171n+17Rn+17Ben+1>Bon+1>

ho n
+F((X—|—2) Zal "+1f3(t]7S]?I]7R]7BejaBOJ>

Rn—H = RO +

o

_ P
F(OC—{— )f4(t”+1’Sn+171n+17Rn+17Ben+1;Bon+1>

hOZ n
Tat2) Zbaj’"“f“(tj’Sf’If’Rf’Beijoj)a
J:

Beny1 = Beo +

o

P P pP P P
Bopt1 = Boo + mfs (tnsr1:Sny 1510y 1Ry 13 Beny 1:Bony 1)

ha n
Tat2) ;)aj’"“fS (1,811, Rj,Be j,Bo ),
J:
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where

" —(n—a)(n+1)% j=0
Ajnt+1 =
(n—j+2)* +(m—)* —2(n—j+ )" 1< j<n

6.9 Simulation and Discussion

In this section, the dynamics of the household waste fractional model are explained
using MATLAB 2012b and the Adams-Bashforth-Moulton predictor corrector ap-
proach. Since the numerical experimental data is easier and essential for observ-
ing the long-term behaviour, because when we use real data, it might be challeng-
ing to identify the cause and effects due to fluctuations in pricing, expenditures etc.
[125; 164]]. Therefore, a qualitative analysis is performed to provide a deeper under-
standing of the model. For the computational analysis, the initial population is chosen
as S(0) =50, 1(0) =30, R(0) =5, B.(0) =20, B,(0) =25, and the following set of
experimental data is considered as an example:
A=5, p=0.0033, p =042, B, =0.0024, B, =0.0021, u =0.03, § =0.02,
d=0.036, A1 =04, h=0.7, 6 =0.04, b=0.26, g =0.18.

To demonstrate how memory affects the dynamics of the HHW model (6.1)), Fig-
ures [6.3] 6.4} [6.5] [6.6] and [6.7| are plotted, illustrating the impact of various fractional-
order values (o = 0.7,0.8,0.9,1.0) on the sub-populations. Increasing the fractional-

order values reveals different scenarios for the considered model.
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Figure 6.3: Time series plot of susceptible population with different fractional order.
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Figure 6.7: Time series plot of organism bacteria population with different fractional

order.

As, it can be observed from Figure [6.3] convergence rate of the system (6.1))
is influenced by variation of the memory effect a. In particular, by decreasing the
memory i.e. increasing the fractional order «, the susceptible population reaches its

steady state quickly. At the same time, the decreasing fractional order o leads to a
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slower convergence, which means if the system has larger memory i.e. lesser value of
o, then it will take more time for convergence. Simply said, decreasing o will require
more time to eradicate the disease.

Similarly, it can be observed in Figures [6.4} [6.5] [6.6] and that when o = 1,
the populations I, R, B,, and B, respectively, acquire steady state quickly. However, as
the value of o decreases, it takes more time to reach the steady state. This shows the

evolution of epidemic over time.
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Figure 6.12: Profiles of environmental bacteria (B, ) with different control strategies.

Further, incorporating an optimal control strategy in our model will greatly affect
the progress of the epidemic. To best match real-life, we have incorporated three con-

trols, namely u (¢), ux(¢) and us(t), representing the level of protection as mentioned

in Section Figures [6.8] (6.9} [6.10] [6.11] and [6.12] show the time series plot, for

200 days, of the various sub-population for different values of these controls. Differ-
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ent permutations of these controls can be applied in our model out of which several
strategies have been considered depending upon whether u;(¢);i = 1,2,3, is constant
or time-dependent, where u;(¢) is taken as time-dependent and expressions have

been used for simulation purposes. The detailed study of the strategies is given below:

* Strategy 1 (u; (1) =0.42,u,(¢) = 0,u3(tr) = 0)
Constant personal protection #; only: First we study the dynamics of the epi-
demic when a constant rate of personal protection, u () = 0.42, is applied in the
absence of awareness regarding cleanliness and hygiene. Figure [6.8| shows that
by using this strategy, there is a sudden decrease in the susceptible population for
approximately 15 days and then a slight increase till a certain level. The infected
population reaches its peak in the first 15 days and then slightly decreases (Fig-
ure [6.9). As constant personal protection, such as wearing masks and isolation
from the infected individuals, is followed throughout the course of the epidemic,
the recovered population increases till it reaches a steady state (Figure[6.10). The

population of both bacteria in environment and organism initially decreases, but
eventually reaches a stable count (Figures and|[6.12).

o Strategy 2 (u; (1) # 0,ux(t) = 0,u3(t) = 0)
Time-dependent personal protection u;(r) only: As we apply a time-
dependent control u; () in the absence of uy () and u3(z), the susceptible pop-
ulation decreases slightly for the first 2-3 days then increases eventually as the
epidemic progresses. The recovered population also increases throughout the
course of disease. The bacteria population reduces till it reaches a stable count.
After employing this strategy, the infected population peaks within the first 2-3
days, which is still a much lower peak as compared to the one observed in Strat-
egy 1. Moreover, the number of infected individuals eventually drops below
initial number of infected individuals. In contrast, while the infection count in
Strategy 1 decreases after 15 days, it still remains higher than the initial number
of infected individuals. Conclusively, we can say that a time-dependent control

yields better results than a constant control.

o Strategy 3 (u;(t) = 0.42,us(t) # 0,u3(t) = 0)
Constant personal protection #; combined with time-dependent spread of
awareness on cleanliness u;(¢): In this strategy, a constant personal protection

control, u; (t) = 0.42, along with a time-dependent control u,(¢), which focuses
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on the spread of awareness regarding cleanliness, have been used to reduce the
objective functional J(u), while the control u3(¢) based on hygiene conditions
has been set to zero. The susceptible population reduces slightly and the in-
fected population increases. While this combination of controls is applied, the
recovered population increases and the amount of bacteria in environment and

organism reduces.

Strategy 4 (u1(¢) = 0.42,u>(t) = 0,u3(t) # 0)

Constant personal protection #; combined with time-dependent hygiene
practices u3(¢): Similar to Strategy 3, in this strategy, we study the effects of
a constant personal protection control, u;(¢) = 0.42, in the absence of u,(¢) but
in the presence of a time-dependent control u3(¢), aiming at reducing the rate of
contact between susceptible and bacteria in our surroundings by following some
basic hygiene practices, such as proper sanitation in kitchens. The number of
susceptible individuals decreases, while the number of infected individuals in-
creases over time, eventually reaching a steady state. Meanwhile, the number of
recovered individuals also increases. The application of this strategy leads to a
reduction in the count of both bacteria in environment and bacteria in organisms.
While this reduction is noticeable, the bacterial count observed under this strat-
egy is still higher than the count observed when Strategy 3 is implemented. This
suggests that although Strategy 4 is effective in decreasing bacteria around us,

Strategy 3 still results in more reduction overall.

Strategy 5 (u;(r) = 0.42,u(t) = 0.25,u3(t) = 0.31)

Constant personal protection, cleanliness and hygiene practices: This strat-
egy employs all the three controls, that is, u;, up and u3, simultaneously at a
constant rate of 0.42, 0.25 and 0.31, respectively. This results in an increase
in the recovered population and a decrease in the bacteria count. Moreover, it is
interesting to note that, even though all the three controls are applied in this strat-
egy, still it gives far worse results than Strategy 2, where only a time-dependent
control u; () is applied. The susceptible individuals are significantly lower and
infected individuals are higher in this case as compared to those observed under

Strategy 2.

Strategy 6 (u1(1) = 0.42,u; () # 0,u3(t) # 0)

Constant personal protection u; with time-dependent controls u;(¢) and
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us(t), regarding cleanliness and hygiene practices: Taking a constant control
u; = 0.42 and time-dependent controls u,(¢) and u3(t), increases the number of
recovered individuals and decreases the bacteria count over a span of 200 days.
Compared to Strategy 2, the number of infected individuals is lesser for approxi-
mately 20 days in this case. After this period, the number of infected individuals
gradually increases till it reaches a steady state. Additionally, this number is way

lesser than the case when constant u, up and u3 are applied (Strategy 5).

o Strategy 7 (u;(t) # 0,ux(t) # 0,u3(r) # 0)
Time-dependent personal protection, cleanliness and hygiene practices: Ap-
plying all three time-dependent controls u(¢), up(¢) and u3(t), simultaneously,
increases the susceptible population and reduces the infected population signifi-
cantly. In fact, the number of susceptible individuals are the most and the num-
ber of infected individuals are the least in this case as compared to all the above
strategies. The recovered population decreases in this case, but this is because
the population of both bacteria in environment and bacteria in organisms reduces
drastically, thereby effectively lessening the spread of the disease. Thus we can
say that employing three time-dependent controls reduces the disease burden

notably.

Table [6.1] provides a comparative analysis of various control strategies in terms
of their implementation cost (unit), the maximum number of individuals infected at
any time during the disease propagation period (Imax), and the number of infected
individuals at the end of 200 days (/,,,4), for the fractional order o = 0.7. The results
clearly show that strategies employing time-dependent controls lead to lower values
of both the cost functional and the number of infected individuals, compared to those
using constant controls. Among all the strategies analyzed, Strategy 7 proves to be
the most effective approach by achieving the lowest implementation cost, the smallest
peak infection level, and the minimum number of infections at the end of the 200-day
period. This highlights the effectiveness of optimal, time-dependent control measures

in mitigating disease spread while minimizing the expenditure cost.
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Table 6.1: Values of cost function (unit), maximum number of infected individuals per

day (Imax), and the number of infected individuals in the end (/,,4), for & = 0.7.

Cost (unit) Lnax Lona

Strategy 1 9340.8 | 47.2841 | 46.8648
Strategy 2 5462.1 33.8916 | 23.9285
Strategy 3 8637.5 | 44.5642 | 44.5642
Strategy 4 4537.9 45.3937 | 45.3937
Strategy 5 9038.1 45.6716 | 45.6716
Strategy 6 7942.4 | 42.1036 | 42.1036
Strategy 7 1872.5 30.0000 | 4.7623

6.10 Conclusion

This chapter studies the impact of household waste on human health, highlighting
how uncollected waste fosters harmful bacteria that spread diseases and pose serious
environmental and public health risks. This scenario is modeled in this chapter for
which a Caputo type fractional order SIR model is developed with the inclusion of two
types of bacteria class: Bacteria in environment (B,) and Bacteria in organism (B,).

Further, in the analysis of this model we have first found the region of attractor,
in which the solution remains bounded. The existence and uniqueness of the solution
of the model has been discussed using fixed point theorems and Banach contrac-
tion principle. The basic reproduction number % is calculated with the help of next
generation approach and its sensitivity analysis is performed using the normalized for-
ward sensitivity index. The sensitivity analysis displays that the the growth rate (A),
the virus transmission rate from susceptible to infected (f3), level of protection (p)
and death rate (i) are highly sensitive parameters. These factors can be controlled
significantly by some appropriate steps. Additionally, the stability analysis in light of
Ulam-Hyers and generalized Ulam-Hyers criteria is discussed.

Moreover, we have formulated an optimal control problem (OCP) corre-
sponding to our vector borne disease model (6.1). In this OCP, we have considered
three time-dependent controls u(¢),us(¢) and u3z(¢). All the controls are focused on
reducing the transmission rate as discussed in Section Existence results and char-
acterization of optimal controls are performed with the help of Pontryagin’s maximum

principle.
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Furthermore, in numerical analysis, we have plotted the time series plot, for 200
days, of each sub-population with different fractional order o in Figures [6.3][6.4] [6.5]
6.6] and These graphical representations reveal a significant pattern: as the frac-
tional order o approaches one, the time required for each sub-population to settle into
its steady state decreases, indicating a faster convergence. However, despite this varia-
tion in convergence speed, the fundamental stability characteristics of the equilibrium
points remain unchanged. This means that varying o does not affect the stability na-
ture; rather, it only influences how quickly the system reaches its equilibrium. This
highlights the role of fractional-order derivatives in capturing memory effect while
maintaining the overall stability properties of the system.

The numerical simulation of the optimal control problem is also performed. To
study the varying impacts of different control measures on the dynamics of the epi-
demic, we have taken into account different strategies, as illustrated in Figures|6.8 [6.9]

16.10} [6.11] and [6.12], evaluated the costs corresponding to each strategy along with the

maximum number of infected individuals per day and the number of infected individ-
uals in the end in Table[6.1] Among all the strategies, Strategy 7, which employs time-
dependent controls for personal protection, cleanliness, and hygiene practices, proves
to be the most effective in reducing the infected population and bacterial counts, lead-
ing to a significant reduction in the disease burden as well as its implementation cost.
In contrast, Strategy 5, despite incorporating all three controls, yields relatively poor
results when compared to Strategy 2, which relies on time-dependent personal protec-
tion alone. This suggests that a time-dependent approach, particularly when focused
on personal protection and hygiene, is more efficient than constant controls. Strategies
that combine time-dependent controls, especially with attention to cleanliness and hy-
giene (as seen in Strategies 6 and 7), provide good outcomes in controlling the spread
of the disease and minimizing the cost of implementation of these strategies.

Thus, this study presents a flexible vector-borne SIR model that can be adapted to
real-world situations by incorporating additional parameters or compartments. Given
the persistent challenge of managing household waste and production of hazardous
bacteria, the results of this chapter provide valuable insights into cost-effective and
impactful disease control strategies. Policy makers should focus on spreading aware-
ness about self protection, cleanliness and hygiene from time-to-time so as to minimize

the disease burden. This study serves as a crucial step towards minimizing both eco-
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nomic burden and public health risk, ultimately helping to create a stronger and more

adaptable healthcare system.






Chapter 7

Conclusion, Future scope and Social

Impact

7.1 Conclusion

The aim of this chapter is to present a concluding remarks to our thesis and illustrate
some of the prospects that define our current and future endeavours in scientific re-
search.

This thesis has focused on the development and analysis of several fractional-
order epidemic models that integrate real-world complexities such as vaccination
strategies, behavioural responses, psychological effects, environmental factors, and
optimal control measures. By combining mathematical theory with numerical simu-
lations and policy-oriented insights, this work has aimed to contribute both to the ad-
vancement of fractional calculus in epidemiology and to the design of effective public
health strategies.

The thesis began with a discussion of vaccination strategies adopted by five
highly affected countries during the COVID-19 pandemic: the USA, India, Brazil,
France, and the UK. This comparative study revealed how population structure, median
age, immunity, and healthcare capacity shaped vaccination priorities. For example,
countries with older populations such as France and the UK focused heavily on elderly
groups, while India, with a much younger population, initially targeted frontline work-
ers and adults over 45. The analysis showed that median age played an important role

in determining infection spread and mortality, and that vaccination strategies had to be

197
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adapted according to demographic realities. This introductory study provided useful
context and motivation for the mathematical models developed in later chapters.

The next contribution was the development of a fractional-order SIS model with
fear effect and preventive measures. By incorporating behavioral responses such as
fear and protection, the model showed how psychological and social factors can signifi-
cantly influence epidemic outcomes. Numerical simulations confirmed that increasing
the level of fear or the adoption of preventive measures reduces infection levels and
slows disease spread. This result highlights the importance of considering human be-
havior in disease modeling, as public fear and awareness campaigns can play a central
role in controlling epidemics.

Building on this, the thesis proposed a fractional-order SVIR model that distin-
guished between partially vaccinated and fully vaccinated individuals. This extension
was motivated by real-world vaccination programs where not everyone receives full
protection. The analysis demonstrated that while partial vaccination reduces infection,
it is not sufficient to control the epidemic. In contrast, full vaccination significantly
lowers disease prevalence and increases recovery, proving more cost-effective and im-
pactful. This chapter underlined the need for health authorities to promote full vaccina-
tion coverage rather than relying on incomplete vaccination, which may not adequately
reduce the epidemic burden.

The third mathematical model was a fractional-order SEI/QR system, which incor-
porated both quarantined individuals and psychological effects on susceptibles. This
framework allowed the study of how quarantine policies and information-driven behav-
ior shape epidemic dynamics. The findings showed that timely quarantine of infected
individuals, combined with behavioral changes through information campaigns, ef-
fectively reduces the number of infections. Moreover, the incorporation of memory
effects through fractional calculus demonstrated how past experiences and responses
influence present outcomes. An optimal control problem was also formulated, show-
ing that information-based interventions are both effective and economical in the early
phase of an outbreak.

The thesis then turned to environmental factors by proposing a fractional-order
SPIR model with pollution effects. This model captured how environmental pollu-
tion can contribute to disease transmission, with some newborns entering a pollution-
affected compartment. The analysis confirmed that pollution intensifies epidemic

spread and that controlling transmission in pollution-affected groups is crucial. Op-
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timal control simulations suggested that dual interventions - targeting both susceptible
and pollution-affected groups - yield the most effective results. The study emphasized
the importance of considering environmental health in epidemic preparedness, as pol-
lution can exacerbate disease risks.

Finally, a fractional-order SIR model with bacterial classes was developed to
study the impact of uncollected household waste. Two bacterial compartments, envi-
ronmental and organism-based, were introduced to capture the role of harmful bacteria
in disease spread. The results showed that poor waste management can fuel epidemics,
but appropriate controls such as cleanliness, hygiene, and personal protection can sig-
nificantly reduce infection and bacterial counts. Importantly, time-dependent strategies
focusing on awareness and hygiene were shown to be more effective than constant in-
terventions. This chapter demonstrated the close link between public health, waste
management, and epidemic control.

Overall, the thesis makes several contributions. First, it shows that fractional
calculus is a versatile and effective framework for modeling infectious diseases, as it
captures memory effects that integer-order models overlook. Second, it highlights the
role of non-biological factors - such as fear, behavior, vaccination strategy, pollution,
and waste management - in shaping epidemic outcomes. Third, it demonstrates the im-
portance of full vaccination, timely quarantine, and environmental controls as effective
strategies to reduce disease burden.

The findings have practical implications for policymakers, healthcare profession-
als, and environmental authorities. Epidemic control cannot rely solely on medical in-
terventions but must also consider behavioral responses, demographic structures, and
environmental conditions. Mathematical models, especially those enriched with frac-
tional dynamics, can serve as valuable tools to guide such decisions.

In conclusion, this thesis provides both theoretical and applied insights into the
modeling of infectious diseases. By combining fractional calculus with realistic so-
cial, psychological, and environmental factors, it advances our understanding of epi-
demic dynamics and offers strategies for better management of future outbreaks. The
work also opens pathways for further research, such as extending models to include
age-structure, time delays, or network effects, and applying them to specific diseases
beyond COVID-19. Such efforts can help build more resilient public health systems

and prepare society for future epidemic challenges.
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7.2

Future Directions and Research Plans

The work presented in this thesis provides a comprehensive study of fractional-order

epidemic models incorporating vaccination strategies, fear effects, quarantine mea-

sures, environmental pollution, and waste-borne bacterial infections. While the cur-

rent work has generated meaningful theoretical and numerical results, it also serves as

a foundation for future research. Possible extensions of this work include the following

directions:

@

(i)

(iii)

(iv)

v)

The construction of more generalized epidemic models that include additional
compartments such as age groups, asymptomatic carriers, hospitalized individ-
uals, and spatial heterogeneity. Such extensions aim to capture more realistic
disease dynamics and to enable applications to region-specific case studies, par-

ticularly in densely populated countries like India.

The incorporation of stochastic effects into fractional-order epidemic models.
This approach allows the study of randomness in disease spread, especially dur-
ing the initial phase of outbreaks or in small populations. In addition, the in-
clusion of time delays (e.g., incubation periods, vaccination lags, and behavioral

response delays) is planned, as these are biologically and socially relevant.

The application of statistical and computational approaches for the estimation
of real data, which can subsequently be integrated into fractional-order mod-
els. This step is crucial for validating theoretical results and demonstrating their

applicability in public health decision-making.

The coupling of epidemic models with environmental indicators such as air pol-
lution levels, waste management efficiency, and climate variables (temperature,
humidity, rainfall), thereby extending the study of pollution and waste-borne in-

fections.

Collaboration with epidemiologists, environmental scientists, and public health
experts to apply these models in real-world policy contexts. The long-term ob-
jective is to develop decision-support systems based on fractional epidemic mod-
els, which may guide governments and health organizations in designing effec-

tive interventions during future epidemics.
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7.3 Social Impact

The findings of this thesis hold significant social relevance as they provide practical
insights for controlling and managing infectious diseases. By incorporating fractional
calculus into epidemic modeling, the research enhances the accuracy of predictions
and supports informed decision-making for public health authorities. The analysis of
vaccination strategies, quarantine measures, environmental influences, and waste man-
agement demonstrates that disease control is not only a medical challenge but also a
social responsibility requiring community participation. The emphasis on full vaccina-
tion, awareness campaigns, and hygienic practices highlights strategies that can reduce
infection risks and promote healthier societies. Ultimately, this work bridges mathe-
matical theory with public health practice, offering tools that can guide policymakers,
influence health education, and strengthen social resilience against future epidemics
and pandemics.

This thesis aligns with SDG 3 (Good Health and Well-Being) by providing math-
ematical models to predict and control infectious diseases. It contributes to SDG 9
(Industry, Innovation and Infrastructure) through innovative applications of fractional
calculus in epidemiology. By analyzing disease spread in urban contexts, it supports
SDG 11 (Sustainable Cities and Communities), offering insights for safer and more re-
silient cities. Finally, by incorporating environmental and pollution-related factors, it
connects with SDG 13 (Climate Action), emphasizing the link between environmental

health and epidemic risks.
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