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Abstract

In this thesis, Principal Component Analysis is a powerful dimensionality reduction technique that
transforms high-dimensional data into a lower-dimensional space while preserving variance. By comput-
ing the covariance matrix and its eigenvectors, PCA finds principal components that best represent the
data. It is used on large scale in image compression, face recognition, and feature extraction, simplifying
complex datasets without losing critical information. SVD is a matrix factorization method that decom-
poses any matrix into three distinct matrices: A = UΣV T . This decomposition reveals hidden patterns
in data and has applications in data compression, noise reduction, and recommendation systems. Unlike
PCA, which relies on eigenvectors of the covariance matrix, SVD works directly on the data matrix,
making it more versatile. PCA and SVD are two fundamental techniques in linear algebra that have
revolutionized data science, machine learning, and image processing. This presentation explores their
mathematical foundations, geometric interpretations, and real-world applications.

Keywords:- Dimensionality reduction, Covariance matrix, Directional vector, Matrix factorization,
Data compression.
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Chapter 1

Historical Background of PCA and
SVD

The story of PCA and SVD is a testament to the evolution of mathematical thought and its practical
implications. Emerging from geometric intuition and abstract algebra, both PCA and SVD have grown
into powerful tools for data analysis, largely due to the joint contributions of statisticians, mathemati-
cians, and computer scientists over the last 150 years.

1.1 PCA

1.1.1 Origins in Geometry and Statistics

PCA was formally found by the British statistician Karl Pearson in his 1901 paper named "On
Lines and Planes of Closest Fit to Systems of Points in Space". He sought a way to decrease the
dimensionality of multivariate data while preserving its most informative aspects. His approach was
geometric—identifying directions (principal axes) along which data varied most.

Three decades later, American statistician Harold Hotelling provided a statistical reinterpretation
of Pearson’s idea. In his 1933 work, Hotelling used the eigenvalue decomposition of the covariance matrix
to derive non-correlated variables, now known as principal components. This helped integrate PCA into
psychometrics, econometrics, and social science research.

1.1.2 PCA in the Era of Digital Computation

With the rise of computers in the mid-20th century, PCA became increasingly popular for practical
applications. Scientists could analyze large datasets with many variables, using PCA to reduce noise
and reveal latent structure. Researchers such as Henry Kaiser contributed refinements like varimax
rotation to enhance interpretability, particularly in factor analysis.

The rise of multivariate statistics in the 1960s and 70s further cemented PCA’s status. By then, it
had become a standard tool in fields like biology, linguistics, economics, and geology.

7
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Figure 1.1: Relationship between PCA and SVD: SVD of centered data matrix yields principal compo-
nents.

1.2 SVD

1.2.1 19th-Century Foundations

SVD’s conceptual roots trace back to the works of Eugenio Beltrami and Camille Jordan in the
1870s. These mathematicians studied quadratic forms and canonical representations, particularly fo-
cusing on orthogonal transformations and invariant theory—topics that underpin modern matrix de-
compositions.

In 1907, the German mathematician Erhard Schmidt introduced what we now recognize as the
Schmidt decomposition (closely related to SVD) in the context of Hilbert spaces. His ideas anticipated
the functional-analytic interpretations of matrix factorizations in infinite dimensions.

1.2.2 20th-Century Computational Breakthroughs

SVD as a practical matrix factorization was only realized with the advent of numerical linear algebra in
the mid-20th century. In the 1950s and 60s, Alston S. Householder developed methods such as the
Householder transformation, which enabled stable numerical computation of matrix decompositions.

The pivotal moment came with the work of Gene H. Golub and William Kahan in 1965. They
devised a numerically stable algorithm for computing the SVD of any rectangular matrix, laying the
foundation for its use in scientific computing. This made SVD applicable not only in solving linear
systems and matrix approximation but also in applications like least squares, data compression, and
signal processing.

1.3 Bridging PCA and SVD

A major insight that shaped modern data analysis was that PCA could be computed using SVD. If
a dataset is represented as a matrix X (with centered columns), then the right singular vectors of X
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Table 1.1: Comparative Historical Milestones of PCA and SVD

Year PCA Milestone SVD Milestone

1901 Karl Pearson introduces PCA as ge-
ometric projection maximizing vari-
ance

—

1933 Hotelling formalizes PCA using co-
variance matrix and eigenvalue de-
composition

—

1958 PCA gains popularity in psychology
and factor analysis

Householder develops transforma-
tion for orthogonalization

1965 — Golub and Kahan design stable nu-
merical SVD algorithm

1980s PCA used in face recognition and
multivariate analysis

SVD adopted in signal processing
and noise reduction

1990s Kernel PCA developed for nonlinear
transformations

SVD used in Latent Semantic Anal-
ysis (LSA) for NLP

2000s PCA becomes a core ML technique
(Hastie et al.)

SVD powers collaborative filtering
and recommender systems

Present PCA applied in genomics, finance,
image compression

SVD used in deep learning, matrix
completion, tensor decompositions

correspond to the principal directions, and the squares of the singular values correspond to the variances
of the principal components.

This connection allowed PCA to scale with numerical stability, and led to its integration into a
variety of fields where large-scale data processing was critical. Theoretical advances combined with
efficient numerical libraries like LAPACK and LINPACK made PCA–SVD pipelines commonplace in
practice.

1.4 Expansion into Machine Learning(ML) and Data Science

In the 21st century, PCA and SVD became central tools in modern data science, especially for di-
mensionality reduction, noise filtering, and feature extraction. In their seminal book The Elements of
Statistical Learning (2001), Hastie, Tibshirani, and Friedman presented PCA as one of the most
effective unsupervised learning methods. Around the same time, in fields like bioinformatics and natural
language processing, SVD-based techniques like latent semantic analysis (LSA) were applied to extract
structure from large text and gene expression data.

SVD also became the backbone of recommendation systems. The famous Netflix Prize (2006)
highlighted SVD’s relevance in collaborative filtering, demonstrating its power in reducing sparsity and
improving prediction accuracy in user-item rating matrices.
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1.5 Legacy and Continuing Impact

Today, PCA and SVD are deeply embedded in curricula across mathematics, statistics, computer science,
and engineering. From classical uses in psychometrics to modern applications in deep learning, these
tools remain indispensable. They continue to inspire new techniques, such as randomized SVD, kernel
PCA, robust PCA, and non-negative matrix factorization.

Their long-standing history, from Pearson and Jordan to Golub and beyond, reflects a rare con-
vergence of pure theory and practical utility—making PCA and SVD enduring pillars of modern data
science.

PCA and SVD have evolved from foundational concepts in statistics and linear algebra to essential
tools in modern data science. Rooted in early 20th-century mathematical theories by Pearson and
Eckart-Young, their development reflects the growing need to simplify and interpret high-dimensional
data. Over time, they have proven remarkably versatile, influencing fields such as signal processing,
machine learning, and computational biology. Understanding their historical development highlights the
enduring power of linear algebra in extracting structure, reducing complexity, and enabling innovation
across scientific and technological domains.



Chapter 2

Mathematical Foundations

2.1 Overview

PCA and SVD are rooted in core concepts of linear algebra. These include vector spaces, inner products,
orthogonality, and spectral theory. This chapter provides a theoretical framework for understanding
these techniques by examining the essential mathematical structures that support them.

2.2 Vector Spaces and Subspaces

1. A vector space V over a field Fcan be defined as a set of elements, called vectors, which follows
two operations: that are vector addition and scalar multiplication:

• Additive closure and scalar closure,

• Satisfies associativity and commutativity while adding vectors,

• There exists a zero vector and an additive inverse,

• Distributivity of S.M over both scalar and V.A.

The set Rn under element-wise V.A and S.M is a standard example of a real vector space.

2. A Subspace W can be defined as if W is itself a V.S under the inherited operations from V .
Generely, this requires that W contains the zero vector and is closed under both V.A and S.M.

A collection of vectors {v1, . . . , vk} in Rn generates a subspace, denoted span{v1, . . . , vk}.

2.3 Representation of Matrix and Linear maps

Let U(F ) and V (F ) are two V.S over the same field F. A mapping f : U → V is said to be a linear
mapping or transformation of U into V if for all u, v ∈ V and all scalars α ∈ F:

11
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f(u + v) = f(u) + f(v), f(αu) = αf(u).

Every linear mapping or transformation f :Rn →Rm can be represented by an m×n matrix A, such
that f(x) = Ax.

2.4 Inner Product Spaces and Orthogonality

An inner product on a vector space V (R) a function ⟨·, ·⟩ : V × V → R that satisfies:

• Symmetry: ⟨x, y⟩ = ⟨y, x⟩,

• Linearity:for all α, β, γ belongs to V and a,b belongs to F implies :
⟨aα + bβ, γ ⟩ = a ⟨α,γ ⟩+ b⟨β,γ ⟩
NonNegativity :⟨x, x⟩ ≥ 0 if and only if x = 0.

In Rn, the inner product is given by ⟨x, y⟩ = (x1y1) + (x2y2) +(x3y3) +...+ (xnyn)
x and y will be orthogonal if their inner product is 0.

2.5 Eigenstructure of Matrices

If there is a square matrix A ∈ Rn×n, a scalar k ,a non-zero vector v which satisfies the:

Av = kv.

Then k be an eigenvalue of A, and v is the associated eigen structure.

Theorem 1 (Spectral Theorem). Let A = AT and A ∈R.Then :

1)All A has real eigenvalues,
2) and also has orthonormal basis of eigenvectors for Rn,

2.6 SVD

Theorem 2 (SVD). Let A be a matrix and A ∈ Rm×n. Then A admits a decomposition:

A = UΣV T ,

where:

• U and V are orthogonal matrices which belongs to Rm×m, Rn×n respectively.

• Σ is diagonal belongs to Rm×nσ1 ≥ · · · ≥ σr > 0 on the diagonal (called singular values).

Singular values we obtained are square roots of the non-zero eigenvalues of ATA and AAT :

σi =
√

λi(ATA).



2.7. PCA 13

2.7 PCA

2.7.1 PCA as Variance Maximization

PCA identifies orthogonal directions by which the data variance is maximum. We have a centered data
matrix X ∈ Rn×p, the method proceeds as follows:

1. Compute the empirical covariance matrix: C = 1
n−1X

TX.

2. Solve for eigenvalues and eigenvectors: Cvi = λivi.

3. Retain the first k eigenvectors corresponding to the highest eigenvalues.

4. Projection of the data: Z = XVk, with Vk = [v1, . . . , vk].

2.7.2 SVD Perspective on PCA

SVD of centered matrix X is:
X = UΣV T .

Here, columns of V serve as the principal directions. The relationship between singular values σi and
eigenvalues λi of the covariance matrix is:

λi =
σ2
i

n− 1
.



Chapter 3

Algorithms

3.1 PCA and SVD for Compression of Image

Compressing image is an important application of dimensionality reduction, and two widely utilized
techniques in this domain are PCA and the SVD. This portion outlines and compares the algorithms
of PCA and SVD when applied to grayscale image compression.

3.1.1 Image Compression by PCA

PCA is a method that reorients the dataset in a new coordinate system, prioritizing directions through
which the data varies the most.

Consider A ∈ Rm×n represent a grayscale image matrix, where each row corresponds to a row of pixel
intensities, and each column denotes pixel intensity across m observations. The PCA-based compression
can be described through the following steps:

Step 1: Normalize Pixel Values

Scale all pixel intensities to the range [0, 1] by dividing the matrix by 255:

A← A

255

Step 2: Center the Data

Compute the mean across rows for each column:

µ =
1

m

m∑
i=1

Ai

Subtract the mean vector from every row:

Acentered = A− µ

14
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Step 3: Construct Covariance Matrix

Covariance matrix, that shows the joint variability of pixels, is given by:

C =
1

m− 1
AT

centeredAcentered ∈ Rn×n

Step 4: Eigen Decomposition

Compute eigenvalues and eigenvectors of the covariance matrix:

CV = V Λ

where V contains the eigenvectors and Λ is a diagonal matrix of eigenvalues.

Step 5: Choose k Principal Components

Select the top k eigenvectors corresponding to the k highest eigenvalues:

Vk ∈ Rn×k

Step 6: Projection and Reconstruction

Project the centered data onto the chosen components:

Z = AcenteredVk

Reconstruct the approximate image from the reduced representation:

APCA = ZV T
k + µ

Clip and rescale APCA to return pixel values to the range [0, 255] if needed.

Goal: PCA seeks to retain the most significant variance using fewer dimensions:

maxVar(Z) = tr(V TCV ), with V TV = I
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Input Grayscale Image A

Normalize: A← A/255

Centering: A− µ

Covariance: C = ATA

Eigen Decomposition

Project & Reconstruct

SVD: A = UΣV T

Truncate to Rank k

Reconstruct: UkΣkV
T
k

Compressed Image

Figure 3.1: Workflow of PCA and SVD
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3.1.2 Compressing image by SVD

SVD decomposes a matrix A into three matrices:

A = UΣV T

Here, U and V are orthogonal matrices, which belongs to Rm×m, Rn×n respectively and Σ ∈ Rm×n

is a diagonal matrix of singular values arranged in decreasing order.

Step 1: Normalize

Convert pixel intensities to a floating-point range:

A← A

255

Step 2: Find the SVD

Factor the matrix of image:

A = UΣV T

Step 3: Truncate the Decomposition

Retain only the first k singular values and the corresponding singular vectors:

Ak = UkΣkV
T
k

with:

• Uk ∈ Rm×k

• Σk ∈ Rk×k

• Vk ∈ Rn×k

Step 4: Reconstruct the Image

Rebuild the compressed image:

ASVD = UkΣkV
T
k

Ensure values lie within the valid image range before displaying or storing.

Goal: SVD attains the best rank-k approximation in terms of Frobenius norm:

min ∥A−Ak∥2F =

min(m,n)∑
i=k+1

σ2
i
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3.1.3 Comparative Approaches and Optimization

Using SVD for PCA

PCA can be performed efficiently by computing the SVD of the centered matrix:

Acentered = UΣV T

Principal components are the columns of V , and the eigenvalues of the covariance matrix are:

λi =
σ2
i

m− 1

Randomized SVD

For large datasets, traditional SVD is computationally expensive. Randomized SVD accelerates the
process by projection of data onto a lower-dimensional subspace using random matrices:

1. Draw a random Gaussian matrix Ω ∈ Rn×(k+p)

2. Find the sample matrix Y = AΩ

3. Use QR decomposition to obtain an orthonormal basis Q from Y

4. Form a smaller matrix B = QTA

5. Find the SVD: B = ÛΣV T

6. Approximate left singular vectors: Uk = QÛ

This method lowers the computational cost to approximately O(mn log k).

Incremental SVD

When data arrives sequentially (e.g., in streaming settings), incremental SVD allows updating the
decomposition without reprocessing the entire dataset:

At+1 =

[
At

xT
t+1

]
≈ Ut+1Σt+1V

T
t+1

This technique is mainly valuable in conditions where memory or processing time is limited.

In summary, PCA and SVD serve as foundational tools in image compression. While PCA is ideal for
analyzing variance and projecting onto informative axes, SVD offers optimal low-rank reconstructions.
For large-scale problems, optimized versions such as randomized or incremental methods enable scalable
implementations.
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Aspect PCA SVD

Core Idea Projects data onto
orthogonal components that
capture maximum variance

Factorizes matrix into
singular vectors and singular
values

Computation Requires covariance matrix
and eigen decomposition

Direct matrix factorization

Optimality Maximizes retained variance Minimizes Frobenius norm
error

Efficiency Faster for smaller datasets More efficient with
optimized libraries for large
data

Scalability Requires full matrix; not
ideal for streaming

Supports incremental and
randomized variants

Use Case Good for exploratory data
analysis and interpretation

Preferred for optimal
low-rank approximations

Table 3.1: Comparison of PCA and SVD for Image Compression



Chapter 4

Applications for PCA and SVD

The rapid increase of applications of PCA and SVD in diverse Engineering fields has been driven by the
surge in data-intensive problems. From image and signal processing in electrical engineering to struc-
tural health monitoring in civil engineering and fault detection in mechanical systems, these techniques
offer robust solutions for optimizing performance, reducing computational load, and improving model
accuracy.

4.1 Applications of PCA

1. Material Sciences:Material science studies the properties and behaviors of materials like metals,
ceramics, and polymers. In this field, PCA , a linear algebra technique, helps analyze complex
datasets from experiments (e.g., stress-strain data or microstructure images). PCA reduces dimen-
sionality by converting correlated variables into uncorrelated principal components, highlighting
key patterns and variations in material properties. This simplifies understanding of factors affect-
ing strength, durability, or conductivity. By applying eigenvalues and eigenvectors from covariance
matrices, PCA reveals dominant features in materials, aiding in design, quality control, and pre-
dicting performance efficiently.

Figure 4.1: Interative PCA if Simulated Materials Science Data

20
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Figure 4.2: Measured Features of Food Samples Used for PCA Analysis

2. Food Science and Technology: PCA uses linear algebra to analyze complex data from food
composition, quality, and sensory evaluations. By transforming correlated variables into principal
components using eigenvalues and eigenvectors of the data’s covariance matrix, PCA reduces
dimensionality and reveals key factors affecting taste, texture, or shelf life. This helps identify
patterns, classify food types, and monitor quality control efficiently. PCA aids in optimizing
formulations, detecting adulteration, and improving processing methods by focusing on the most
important variations in food data, making it a powerful tool for research and industry applications.

Table 4.1: Hypothetical Food Science Data: Samples and Measured Features

Sample Sugar Content Acidity Texture Score Moisture (%)
1 10.5 7.8 5.2 12.3
2 11.2 8.1 5.0 11.8
3 9.8 7.5 5.4 12.5
4 10.1 7.9 5.3 12.0
5 11.0 8.2 5.1 11.7

3. Fault Diagnosis:Fault diagnosis using PCA applies linear algebra to detect anomalies in com-
plex systems by analyzing multivariate data. PCA reduces dimensionality by converting correlated
variables into uncorrelated principal components using eigenvalues and eigenvectors of the covari-
ance matrix. In fault diagnosis, normal system behavior is captured by the principal components
with the greatest variance. Any deviations, or faults, appear as residuals in the lower-variance
components. By monitoring these residuals, PCA helps identify abnormal patterns or sensor fail-
ures. This approach is widely used in industries for condition monitoring, enhancing reliability,
and enabling early detection of system faults through mathematical rigor.
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Table 4.2: Description of Simulated Sensor Data for Fault Diagnosis

Parameter Description
Number of Samples 120 (100 normal, 20 faulty)
Number of Sensors 4

Fault Location Sensor 2 (Index 1)
Fault Type Mean shift (+5 units)

Detection Metric Squared Prediction Error (SPE)
PCA Components Used Top 2 principal components

Threshold 95th percentile of normal SPE

Figure 4.3: Caption

4. Drug Discovery and Biomedical Data:In drug discovery and biomedical data analysis, PCA
(Principal Component Analysis) applies linear algebra to simplify high-dimensional datasets
such as gene expression, protein interactions, or compound activity. Using eigenvalues and eigen-
vectors of the data’s covariance matrix, PCA transforms correlated biological features into un-
correlated principal components. This reduces noise and highlights patterns that reveal potential
drug targets or biological responses. By identifying dominant variations, PCA helps in clustering
diseases, classifying compounds, and visualizing complex biomedical relationships. Its foundation
in linear algebra enables efficient data compression and interpretation, making it a powerful tool
in bioinformatics and pharmaceutical research.

Table 4.3: Simulated Biomedical Dataset Used for PCA

Parameter Description
Samples 100 simulated patient or compound profiles
Features 20 (e.g., gene expression levels or molecular descriptors)

Informative Features 10 strongly related to class distinction
Redundant Features 5 (linear combinations of informative ones)

Target Classes 3 (e.g., drug response groups or disease types)
Analysis Method PCA using eigen decomposition

Purpose Visualize patterns and reduce dimensionality
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Figure 4.4: Fault Detection using PCA (Linear Algebra Based

5. Quantify Technique in Sports:In sports, PCA is used to quantify athletic performance and
technique by analyzing high-dimensional data such as motion capture, biomechanics, or training
metrics. Using linear algebra, PCA converts correlated variables into uncorrelated principal com-
ponents through eigenvalue decomposition of the covariance matrix. This highlights dominant
movement patterns and removes noise or redundancy. Coaches and analysts use PCA to compare
athletes, detect inefficiencies, and improve technique by focusing on the most significant variations.
It simplifies complex datasets into interpretable components, making performance assessment and
injury prevention more efficient through the mathematical principles of dimensionality reduction
and vector space analysis.

Table 4.4: Description of Simulated Sports Performance Dataset for PCA Analysis

Parameter Description
Number of Samples 60 motion samples (20 samples per athlete)
Number of Athletes 3 (simulating varying levels of technique)

Motion Features 6 features (e.g., joint angles, speed, acceleration, force)
Athlete 1 High-performing athlete (data centered at +0.5)
Athlete 2 Moderate-performing athlete (data centered at 0.0)
Athlete 3 Lower-performing athlete (data centered at –0.5)

Noise Level Gaussian noise with standard deviation of 0.1 to simulate vari-
ability

Purpose Evaluate and visualize differences in sports technique using PCA
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Figure 4.5: PCA for Quantifying Sports Technique

4.2 APPLICATIONS OF SVD

1. Solving Linear Least-Square Problems:SVD is crucial for solving linear least-squares prob-
lems, especially when systems are overdetermined or matrices are ill-conditioned. By decomposing
a matrix into singular values and orthogonal vectors, SVD provides a stable and robust method to
find approximate solutions when direct inversion fails or is inaccurate. This decomposition helps
to isolate the effect of small singular values that can cause numerical instability. SVD’s ability to
handle rank-deficient matrices makes it indispensable in data fitting, image reconstruction, and
scientific computations where precise solutions are necessary despite noisy or incomplete data.

Given an overdetermined system Ax = b, where

A =

2 1

1 3

0 4

 , b =

 7

10

8

 ,

the objective is to find x that minimizes the residual ∥b−Ax∥.

Using SVD, A is decomposed as
A = UΣV T ,

where U and V are orthogonal matrices, and Σ is a diagonal matrix with singular values. The
least squares solution is then computed as

x = V Σ−1UTb.
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Figure 4.6: Solving Linear Least-Square Problem using SVD

Figure 4.7: Digital Signal Processing: Noise Reduction using SVD

2. Digital Signal Processing: SVD can be used to reduce noise and enhance signal quality. A
noisy signal is converted into a Hankel matrix, which organizes overlapping segments of the signal.
The Hankel matrix H is decomposed via SVD into orthogonal matrices U , V T , and a diagonal
matrix of singular values Σ:

H = UΣV T

The singular values represent the energy contained in each orthogonal component of the signal. By
retaining only the top k singular values and setting the rest to zero, we filter out noise components
associated with smaller singular values. Reconstructing the Hankel matrix from the truncated
decomposition yields a denoised signal upon averaging the anti-diagonals of the matrix.

3. Generalize Eigenvalue Problems:SVD generalizes eigenvalue problems by decomposing any
rectangular matrix into singular values and vectors, extending beyond square matrices where
eigenvalues are defined. This decomposition provides a more numerically stable and versatile
framework for analyzing data structure. It is extensively used in Principal Component Analysis
(PCA), dimensionality reduction, and system stability analysis by identifying dominant modes of
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Figure 4.8: Projection onto First 2 Principal Components(via SVD)

variation or system behavior. Unlike traditional eigenvalue methods, SVD handles rank-deficient
or non-square matrices gracefully, making it essential in applied mathematics, control theory, and
machine learning for understanding and simplifying complex datasets.

Table 4.5: Sample Data Matrix (5 Observations, 3 Features)

Sample Feature 1 Feature 2 Feature 3
1 2.5 2.4 1.0
2 0.5 0.7 1.1
3 2.2 2.9 0.9
4 1.9 2.2 1.2
5 3.1 3.0 1.3

4. Data Science:In this, SVD is a cornerstone method for dimensionality reduction, feature ex-
traction, and noise filtering in large datasets. It converts high-dimensional data into a lower-
dimensional space while preserving key information, which improves the performance and speed
of machine learning algorithms. SVD is fundamental in collaborative filtering for recommendation
systems, such as those used by streaming platforms, by identifying latent user-item relationships.
It is also used in Latent Semantic Analysis (LSA) for natural language processing to uncover hidden
semantic structures in text data, facilitating efficient search, classification, and topic modeling.

Table 4.6: Document-Term Matrix for SVD-based Feature Extraction

Document book novel apple fruit banana
Doc1 1 1 0 0 0
Doc2 3 3 0 0 0
Doc3 0 0 4 4 1
Doc4 0 0 5 5 2
Doc5 0 1 0 0 0



4.2. APPLICATIONS OF SVD 27

Figure 4.9: Document Clustering using SVD (LSA)

5. Fault Diagnosis:SVD plays a vital role in fault diagnosis by analyzing sensor data from complex
industrial systems. By decomposing data matrices into singular values, SVD helps isolate patterns
that signify abnormalities or faults, even in the presence of noise and measurement errors. This
capability allows early detection of failures, reducing downtime and maintenance costs. It supports
predictive maintenance by highlighting key fault-related features, enabling timely interventions
in manufacturing, aerospace, and energy sectors. SVD enhances system reliability and safety by
providing a mathematically rigorous method to monitor and diagnose faults from high-dimensional
sensor data effectively.

Table 4.7: Sample Sensor Data for Fault Diagnosis

Time Sensor 1 Sensor 2 Sensor 3 Sensor 4 Sensor 5
1 0.49 -0.14 0.65 1.52 -0.23
2 -0.23 0.72 -0.21 0.87 0.38
... ... ... ... ... ...
51 -0.43 0.87 6.89 -0.23 0.48
52 0.26 -0.12 7.12 0.21 -0.87
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Figure 4.10: Singular Values from SVD of Sensor Data

Figure 4.11: Sensor Data (Normal + Fault Injected)



Chapter 5

Future Directions

PCA and SVD are key linear algebra tools for simplifying data by finding linear patterns. However,
many real-world datasets have complex nonlinear structures that these methods cannot capture
well. Future directions focus on nonlinear extensions like Kernel PCA and autoencoders, which use
kernels or neural networks to uncover hidden patterns beyond linear assumptions. Additionally,
improving scalability with randomized algorithms and distributed computing helps handle large
datasets efficiently. Combining linear algebra with modern machine learning and optimization
techniques promises more powerful, flexible dimensionality reduction tools suited for complex,
high-dimensional data in fields like bioinformatics, image processing, and AI.

5.1 Non-Linear Methods for PCA and SVD: Future Direc-

tions in Linear Algebra

Traditional PCA and SVD are fundamentally linear techniques. They project data onto linear
subspaces using eigenvectors or singular vectors of the covariance or data matrix. However, real-
world data often resides on non-linear manifolds embedded in high-dimensional spaces. To capture
these complexities, non-linear extensions of PCA and SVD have been developed, paving the way
for future advances in linear algebra and its applications.

5.1.1 Kernel PCA

Kernel PCA extends linear PCA by using a kernel function for mapping data into a high-
dimensional feature space, where linear PCA is then applied. This thing captures non-linear
relationships in the original data. It is particularly useful in fields such as image recognition and
bioinformatics.

Future Direction: The development of adaptive and learning-theoretic kernels to better model
specific data geometries.

29
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Table 5.1: Sample of Swiss Roll Dataset (first 10 points)

X Y Z
6.752 11.161 1.166
5.858 12.237 4.889
5.574 9.737 4.182
7.459 7.487 2.657
6.865 10.214 5.671
6.045 11.852 0.944
5.433 11.143 1.555
6.927 10.478 0.616
6.127 9.345 3.242
6.243 12.938 1.032

Figure 5.1: Kernal PCA

5.1.2 Autoencoders and Deep PCA

Autoencoders are neural networks that learn non-linear transformations by minimizing reconstruc-
tion error. Deep PCA variants extract latent features from high-dimensional data and are robust
to noise and outliers. Variational autoencoders further add a probabilistic interpretation to the
embedding.

Future Direction: Integration with geometric deep learning and differentiable algebra for learn-
ing non-linear latent structures.

Table 5.2: Sample of S-Curve Dataset (first 10 points)

X Y Z
-1.452 0.269 1.707
-0.346 0.138 0.364
-1.001 0.285 1.325
-0.054 -0.146 0.440
0.327 0.123 -0.059
-0.138 0.254 0.249
0.144 0.443 -0.142
-0.712 0.225 1.101
1.365 0.082 -1.313
-0.219 0.228 0.577
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Figure 5.2: Autoencoders and Deep PCA

5.2 Scalability Innovations

As data size and dimensionality grow, classical linear algebra methods like PCA and SVD face
heavy computational costs. Future scalability innovations include **randomized algorithms**
that approximate decompositions faster by using random projections, reducing complexity signifi-
cantly. **Incremental and online methods** update factorizations on streaming data without full
recomputation. **Distributed and parallel computing** enables processing massive datasets by
splitting computations across multiple machines. Additionally, exploiting **low-rank and sparse
matrix structures** helps reduce memory and compute demands. These advances make linear
algebra techniques efficient and practical for big data, maintaining their importance in modern
data science and machine learning.

5.2.1 Simulated Distributed PCA

Simulated distributed PCA splits large datasets across multiple nodes, computes local PCA on
each, and then aggregates results. This mimics parallel processing and reduces memory and
computation load. It’s a scalable approach that enables linear algebra techniques like PCA to
handle massive data in distributed systems or real-time analytics.

Table 5.3: Small Sample of Synthetic Gaussian Data

X1 X2 X3 X4 X5
0.497 -0.138 0.648 1.523 -0.234
0.542 -0.461 -0.465 0.242 -1.913
-1.412 1.465 -0.225 0.067 0.112
-0.291 -0.234 1.460 -0.845 -0.589
0.010 -0.539 -0.228 -0.483 0.546
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Figure 5.3: Simulated Distributed PCA

5.2.2 Randomized Algorithms

Randomized algorithms, such as randomized SVD or PCA, use random projections to approximate
matrix decompositions efficiently. These methods significantly reduce computational complexity
while maintaining acceptable accuracy. Ideal for large-scale or streaming data, they represent a
future-forward solution to scaling linear algebra operations in data science and machine learning.

Table 5.4: Sample of Swiss Roll Dataset (first 10 points)

X Y Z
-6.048 6.125 -4.509
-6.055 6.542 -4.539
-5.586 6.400 -4.889
-6.511 6.123 -4.028
-5.683 7.519 -4.896
-6.131 5.678 -4.479
-6.087 6.978 -4.625
-5.893 5.720 -4.792
-6.184 5.847 -4.381
-6.124 5.399 -4.480
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Figure 5.4: Visualization of Randomized Algorithms

5.3 Deep learning

Deep learning advances the future of linear algebra by leveraging large-scale matrix operations,
eigen decompositions, and tensor algebra to train neural networks efficiently. Techniques like
autoencoders and deep PCA offer nonlinear dimensionality reduction, surpassing traditional lin-
ear methods. As models grow, innovations in GPU-accelerated linear algebra and distributed
computation will be critical to scale and optimize deep learning architectures across real-world,
high-dimensional datasets.

5.3.1 SVD Layers in Neural Networks

An SVD layer in neural networks decomposes weight matrices into singular vectors and values,
enabling compression, regularization, and improved interpretability. It reduces model complexity
by approximating dense layers with low-rank structures, cutting storage and computation costs. In
future directions, SVD layers will support scalable and energy-efficient deep learning by integrating
linear algebraic structure directly into neural architectures.

Table 5.5: Input Data for SVD Layer Compression (5 samples × 5 features)

F1 F2 F3 F4 F5
0.139 0.732 0.978 0.365 0.588
0.747 0.615 0.241 0.890 0.349
0.842 0.639 0.390 0.415 0.926
0.313 0.738 0.242 0.495 0.725
0.257 0.586 0.471 0.322 0.100
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Figure 5.5: Compressed Weight by using SVD Layers

Figure 5.6: Training Loss for Neural SVD

5.3.2 Neural SVD

Neural SVD refers to training deep models that learn optimal low-rank matrix factorizations,
extending SVD with nonlinear transformations. It captures latent structure in high-dimensional
data more effectively than traditional SVD. As deep learning evolves, neural SVD offers a future-
ready framework for embedding linear algebra into neural design, enabling compact models, real-
time inference, and deeper insight into learned representations.

Table 5.6: Input Data for Neural SVD Layer (5 samples × 5 features)

F1 F2 F3 F4 F5
0.421 -0.273 -1.542 0.143 -0.957
1.392 0.650 -0.478 -0.121 0.205
-0.604 -0.788 0.372 1.501 -0.019
0.899 -0.307 0.010 0.822 -0.541
-0.272 -0.687 -0.097 0.309 0.151

5.4 Emerging Applications

Emerging applications of linear algebra in future directions include quantum computing, deep
learning optimization, and large-scale data analytics. Techniques like tensor decompositions and
randomized matrix algorithms enable efficient handling of massive datasets. Innovations in linear
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Figure 5.7: Quantum State Probability Distribution

algebra accelerate machine learning model training and enhance precision in simulations. These
advancements foster breakthroughs in AI, signal processing, and scientific computing, driving
scalable, interpretable, and robust solutions across diverse fields.

Emerging applications include:

5.4.1 Quantum Machine Learning

PCA/SVD principles inform quantum algorithms for dimensionality reduction:

|A⟩ =
∑
i,j

Aij |i⟩|j⟩ →
r∑

k=1

σk|uk⟩|vk⟩ (5.1)

achieving exponential speedup for certain problem classes.

Table 5.7: Quantum State Vector Amplitudes (2-Qubit System)

Basis State Amplitude (Complex)
|00⟩ 0.5 + 0.5i
|01⟩ 0.5− 0.5i
|10⟩ 0.5 + 0.0i
|11⟩ 0.5− 0.5i
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Figure 5.8: Autonomous System State Trajectory

5.4.2 Autonomous Systems

Real-time PCA/SVD powers feature extraction in autonomous vehicles and robots:

Φt = Update(Φt−1, xt) (5.2)

where Φt represents the current feature space and xt is new sensory input. Adaptive dimensionality
reduction enables efficient operation under varying environmental conditions.

Table 5.8: Control Inputs (Velocity) over 5 Time Steps

Time Step Velocity X Velocity Y
1 1.0 0.5
2 1.0 0.7
3 0.5 1.0
4 0.0 1.0
5 -0.5 0.5



Chapter 6

Conclusion

This dissertation presents a comprehensive study of PCA and SVD, focusing on their mathemat-
ical foundations, algorithmic implementations, and wide-ranging applications. Beginning with
their historical roots—PCA from Karl Pearson’s early 20th-century work and SVD from 19th-
century algebra—the thesis illustrates how these tools evolved into vital techniques in modern
data analysis.

Mathematically, both PCA and SVD are grounded in linear algebra concepts such as vector spaces,
eigenvalues, and orthogonality. PCA converts correlated variables into uncorrelated principal
components, effectively reducing dimensionality while preserving variance. SVD, on the other
hand, factors matrices into orthogonal components, revealing latent structures and enabling robust
approximations of data.

Algorithmic comparisons, particularly in the context of image compression, highlight how PCA
maximizes data variance through eigen decomposition, while SVD offers optimal low-rank matrix
approximations. Advanced methods like randomized and incremental SVD enhance scalability for
large datasets.

The dissertation further explores diverse real-world applications. PCA finds use in material sci-
ence, food technology, fault diagnosis, biomedical data, and sports analysis. SVD powers solutions
in digital signal processing, least-squares problems, recommendation systems, and natural lan-
guage processing. Together, they underpin many key methods in machine learning and artificial
intelligence.

Looking forward, the thesis discusses future directions such as Kernel PCA, deep autoencoders,
distributed computing, and the integration of linear algebra with deep learning architectures.
Applications in quantum computing and autonomous systems further highlight their growing
impact.

In summary, PCA and SVD remain indispensable in extracting insight from complex data, and
their relevance continues to expand with technological advancements.
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