
A NOVEL FRAMEWORK FOR THE

NETWORK TRAFFIC ANALYSIS USING A

CONTROLLER IN SOFTWARE-DEFINED

NETWORKING

A Thesis Submitted

In Partial Fulfillment of the Requirements for the

Degree of

DOCTOR OF PHILOSOPHY

by

SHANU BHARDWAJ

(2K21/PHDCO/01)

Under the Supervision of

Prof. Shailender Kumar Dr. Ashish Girdhar

Department of CSE, Department of CSA,

Delhi Technological University, Kurukshetra University,

Delhi Kurukshetra

Department of Computer Science and Engineering

DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

November, 2025

ii

ACKNOWLEDGEMENT

I express my profound gratitude to Almighty God for providing me with the strength,

resilience, and guidance to pursue and complete this research journey. I am deeply

indebted to my supervisors, Prof. Shailender Kumar and Dr. Ashish Girdhar, for

their invaluable mentorship, constant encouragement, and insightful suggestions

throughout this journey. Prof. Shailender Kumar’s technical expertise and thoughtful

guidance have been instrumental in overcoming the challenges faced during my

research. Dr. Ashish Girdhar has been a constant source of motivation and support.

His leadership and vision inspired me to strive for excellence. Also, my sincere

thanks to Prof. Manoj Kumar, HOD, (Dept. of CSE) for insightful comments and

valuable suggestions. I extend my heartfelt thanks to the esteemed faculty members

of the Department of CSE for their unwavering support and encouragement. Their

advice and collaborative spirit have enriched my academic experience and

contributed significantly to my personal and professional growth.

I would also like to acknowledge the continuous support and encouragement provided

by Prof. Prateek Sharma, Vice-Chancellor, DTU. His dedication to fostering a

research-oriented environment has been a significant driving force behind my

accomplishments.

Finally, with a heart full of love and longing, I offer my deepest gratitude to my

supreme Supervisor, my parents, Mrs. Nitu Bhardwaj and Mr. Sanjay Bhardwaj,

and to my brother, Mr. Saksham Bhardwaj, for his endless patience and faith in me.

I am thankful to my husband, Mr. Ravi Deswal, for his comforting presence that

often arrived just when I needed him most. A very special thanks to my dearest

daughter, Adrija Deswal Bhardwaj, whose smile has given me the strength to rise

each day. This acknowledgment is a humble testament to the collective efforts and

support of all these individuals, whose contributions have been pivotal to the

successful completion of my doctoral research.

Shanu Bhardwaj

2K21/PHDCO/01

iii

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

CANDIDATE DECLARATION

I, Shanu Bhardwaj (2K21/PHDCO/01) hereby certify that the work which is being

presented in the thesis entitled “A Novel framework for the Network Traffic Analysis

using a controller in Software-Defined Networking” in partial fulfillment of the

requirements for the award of the Degree of Doctor of Philosophy, submitted in the

Department of Computer Science & Engineering, Delhi Technological University is

an authentic record of my own work carried out during the period from August, 2021

to December, 2025 under the supervision of Prof. Shailender Kumar (Supervisor) and

Dr. Ashish Girdhar (Co-Supervisor) of Department of Computer Science and

Applications, Kurukshetra University, Kurukshetra, India.

The matter presented in the thesis has not been submitted by me for the award of any

other degree of this or any other Institute.

Candidate’s Signature

This is to certify that the student has incorporated all the corrections suggested by the

examiners in the thesis and the statement made by the candidate is correct to the best

of our knowledge

Signature of Supervisors(s) Signature of External Examiner

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

SUPERVISOR(s) CERTIFICATE

This is to certify that the work embodied in this thesis entitled “A Novel framework

for the Network Traffic Analysis using a controller in Software-Defined

Networking” done by Shanu Bhardwaj, roll no. 2K21/PHDCO/01 in the Department

of Computer Science & Engineering, Delhi Technological University is an authentic

work carried out by him under our guidance.

This work is based on original research and the matter embodied in this thesis has not

been submitted earlier for the award of any degree or diploma to the best of our

knowledge and belief.

Prof. Shailender Kumar Dr. Ashish Girdhar

Professor Assistant Professor

Department of Computer Department of Computer

Science & Engineering Science & Applications

Delhi Technological University Kurukshetra University

Delhi, India Kurukshetra, India

Date: 31-10-2025

v

ABSTRACT

The rapid growth of modern networks and diverse traffic patterns has highlighted

traffic management as a core challenge in network administration. Traditional

networks, with their rigid architectures and limited programmability, fail to meet the

dynamic requirements of today’s applications. Software-defined networking (SDN)

has emerged as a novel paradigm that decouples the control and data planes, enabling

centralized control and intelligent network programmability. This thesis outlines a

topology-aware intelligent network traffic analysis framework using the Ryu SDN

controller for enhanced network performance and decision-making efficiency.

A topology-aware SDN environment is designed using Mininet as the emulator and

OpenFlow as the communication protocol. The proposed framework leverages the

Ryu controller’s Python-based modular architecture to implement dynamic traffic

analysis and adaptive flow management. Various network topologies are constructed

to simulate diverse operational environments and evaluate the framework’s

adaptability. The described SDN environment enables real-time monitoring of

network parameters and flow optimization, ensuring effective data transfer under

various traffic loads.

Performance evaluation is conducted using key parameters, including latency,

throughput, jitter, packet loss, and controller response time, across different network

conditions. The obtained results indeed present a significant enhancement in network

performance, as they generate up to a 22% gain in throughput and a 25% reduction in

latency, along with decreased packet loss. Importantly, the comparative

benchmarking confirms the performance robustness and scalability of the proposed

SDN model, especially for more dynamic and larger topologies.

As a result, this research contributes to the advancement of SDN-based network

intelligence by combining topology awareness alongside traffic analysis and

performance monitoring. The implications of this work lay the foundation for

deploying efficient, scalable, and adaptable network management solutions

applicable to real-world domains, such as cloud computing, and IoT-driven system.

vi

List of Publications

Journal Publications:

1. Shanu Bhardwaj and Ashish Girdhar "Network traffic analysis in software-defined

networking using Ryu controller." In Wireless Personal Communications 132, no. 3

(2023): 1797-1818. (SCIE Indexed, IF: 1.9)

https://doi.org/10.1007/s11277-023-10680-1

2. Shanu Bhardwaj, Shailender Kumar, and Ashish Girdhar “Performance Analysis of

TEVN with Ryu SDN Controller” in Journal of Information Science and Engineering

42, 309-321 (2026). (SCIE, IF: 1.42)

10.6688/JISE.202603_42(2).0003

Conference Publications:

3. Shanu Bhardwaj, Ashish Girdhar “Software defined Networking: A Traffic

Engineering Approach” in IEEE 8th International Conference on Electrical,

Electronics and Computer Engineering, UPCON, 2021.

10.1109/UPCON52273.2021.9667584

4. Shanu Bhardwaj, Shailender Kumar, and Ashish Girdhar “Current Perspectives and

Virtualization Solutions with SDN for IoT” in International Conference on Smart

Technologies for Smart Nation (SmartTechCon, 2023), Singapore.

10.1109/SmartTechCon57526.2023.10391403

5. Shanu Bhardwaj, Shailender Kumar, and Ashish Girdhar “Performance Evaluation of

SDN Controllers: Analysing the TCP traffic management in POX, Ryu, and ODL” in

International Journal of Advances in Soft Computing and Intelligent Systems

(IJASCIS) 2024, Vol 03, Issue 02, 303-314 ISSN: 3048-4987.

https://doi.org/10.1007/s11277-023-10680-1
https://doi.org/10.1109/UPCON52273.2021.9667584
https://doi.org/10.1109/SmartTechCon57526.2023.10391403

vii

TABLE OF CONTENTS

TOPIC PAGE NO.

Title Page i

Acknowledgement ii

Candidate Declaration iii

Certificate By Supervisor (s) iv

Abstract v

List of Publications vi

Table of Contents vii

List of Tables xii

List of Figures xiii

List of Abbreviations xv

Chapter 1: Introduction 1-11

1.1 Background 2

1.1.1 Traditional Network Limitations 3

1.1.2 Integration with NFV 3

1.2 Research Challenges in SDN for Network Traffic Analysis 4

1.2.1 Ability to Grow Challenges 4

1.2.2 Overhead and Performance Bottlenecks 5

1.3 Research Motivation 5

1.3.1 Gaps in Current SDN-Based Solutions 5

1.4 Problem Definition 6

1.4.1 Emerging Technologies Challenges 6

1.5 Research Objectives 6

1.6 Key Contribution of Research Work 8

1.7 Dissertation Organization 9

1.8 Chapter Summary 11

viii

Chapter 2: Literature Review 12-30

2.1 Overview of SDN Architecture 12

2.2 Traffic Analysis Techniques 14

2.3 Network Topology Design and Its Impact on Traffic Analysis 16

2.3.1 Topology Design: Foundation and Challenges 17

2.3.2 Traffic Analysis and Topology Control in SDN 17

2.3.3 Performance of SDN Topologies in Data Center

and Cloud Environments 17

2.3.4 Optimizing Traffic in 5G and Edge Networks using

SDN Topologies 18

2.3.5 Recent Trends and Advanced Topology Solutions 18

2.3.6 Topology Design for Optimized Traffic Management 18

2.4 SDN Controller-Based Performance Optimized Strategies 20

2.5 Comparative Analysis of Existing SDN-Based Frameworks 21

2.5.1 Early-Stage Frameworks and Flow-level Visibility 21

2.5.2 Scalability and Controller Performance 22

2.5.3 Traffic Management and Intelligent Integration 22

2.5.4 Framework for Emerging Environments 22

2.5.5 Recent Advances in Cross-layer and Self-optimizing

Frameworks 23

2.6 Research Gaps 26

2.7 Discussion and Overall Analysis 27

2.8 Summary of Challenges and Solutions 28

2.9 Chapter Summary 29

Chapter 3: Topology-Aware SDN Environment Preparation and 31-52

Traffic Profiling Strategy for IoT-Based Networks

3.1 Research Design and Methodological Approach 31

3.2 Tools, Simulators, and Technologies Used 34

3.2.1 Tools and Their Roles in the Research 34

3.2.2 Technologies used in the Proposed Framework 36

ix

3.3 SDN Controller Selection 37

3.3.1 Ryu Controller Architecture 38

3.3.2 Three-Plane SDN Architecture using Ryu Controller 39

3.3.3 Comparative Analysis of SDN Controllers for Traffic

Analysis 40

3.4 Network Topology Construction 43

3.4.1 Selection of Simulation Environment 43

3.4.2 Node and Switch Configuration 44

3.4.3 Controller Integration 44

3.4.4 Topology Validation and Testing 45

3.4.5 Role of the Constructed Topology in Proposed

Framework 45

3.5 Traffic Modeling and Flow Management 46

3.6 Performance Parameters and Evaluation Criteria 47

3.7 Experimental Design and Validation Plan 49

3.8 Chapter Summary 52

Chapter 4: Design and Development of a Ryu-based Intelligent Traffic

Framework 53-67

4.1 Overview of the Proposed Framework 54

4.2 Network Model Framework Architecture and Modules 56

4.2.1 Traffic Flow and Analysis Cycle 58

4.2.2 Work Flow of the Proposed Framework 59

4.3 Integration with Ryu Controller 61

4.4 Experimental Implementation and Controller Integration Results 63

4.4.1 Connectivity Validation using Ping Command 64

4.4.2 Throughput Measurement using Iperf 64

4.5 Chapter Summary 67

x

Chapter 5: Performance Evaluation of the Proposed SDN Framework and

Comparative Benchmarking 68-123

5.1 Introduction 68

5.1.1 Need for Performance Evaluation 69

5.1.2 Objective of Evaluation 70

5.1.3 Scope and Significance 70

5.2 Experimental Setup 71

5.2.1 Hardware and Virtualization Environment 72

5.2.2 Software Components 72

5.2.3 Network Topologies 73

5.3 Test Scenarios and Case Studies 73

5.4 Performance Metrics 74

5.4.1 Latency 75

5.4.2 Throughput 75

5.4.3 Jitter 76

5.4.4 Packet Loss 76

5.4.5 Controller Response Time 76

5.5 Result Analysis 77

5.5.1 Throughput Analysis 77

5.5.2 Latency Analysis 78

5.5.3 Packet Loss Analysis 79

5.5.4 Overall Performance Interpretation 81

5.6 Comparison with Existing Frameworks 82

5.6.1 Throughput Analysis 82

5.6.2 Bandwidth Comparison 83

5.6.3 Latency Comparison 84

5.6.4 Packet Loss Comparison 85

5.7 Chapter Summary 86

xi

Chapter 6: Conclusion, Future Scope and Social Impact 87-89

6.1 Conclusion 87

6.2 Future Scope 88

6.3 Social Impact 89

References 90-95

xii

LIST OF TABLES

Table No. Name of the Table

Page No.

Table 2.1 Summary of Recent SDN Architecture Research
and Development

13

Table 2.2 Overview of Traffic Analysis Techniques in Traditional
and SDN-Based Networks

15

Table 2.3 Thematic Categorization of SDN Topology
Designs and Their Impact on Traffic Analysis

18

Table 2.4 Categorized Strategies for SDN Controller-Based
Performance Optimization

20

Table 2.5 Comparative Analysis of SDN-Based Frameworks

23

Table 3.1 Tools and Simulators Utilized in the Proposed Research

35

Table 3.2 Core Technologies and Protocols Applied in the
Framework

36

Table 3.3 Performance Comparison of SDN Controllers with
Respect to Research-Oriented Functional and
Architectural Parameters

41

Table 3.4 Performance Parameters and Evaluation Criteria

49

Table 4.1 Experimental Setup of the Proposed Framework

61

Table 4.2 Comparison between the baseline Ryu controller and the
enhanced Ryu controller

63

Table 5.1 Simulation Environment and Performance
Evaluation Parameters

72

Table 5.2 Test Scenarios and Corresponding Network
Configurations for Performance Evaluation

74

Table 5.3 Performance Metrics, Measurement Techniques,
and Impact on the Proposed Framework

77

xiii

LIST OF FIGURES

Figure no. Name of Figure

Page No.

Figure 1.1 Overview of (a) Traditional and (b) SDN Networking 2

Figure 1.2 Layer-based architecture of SDN

4

Figure 3.1 Ryu Controller Architecture

39

Figure 3.2 Ryu Controller-Based SDN Architecture

40

Figure 3.3 TCP 3-Way Handshake illustrating client-server
connection establishment before data transfer

50

Figure 3.4 Sequence diagram of TCP Connection Establishment in
an SDN Environment using OpenFlow Messages

51

Figure 4.1 Architecture of the proposed Ryu-based intelligent traffic
analysis framework

55

Figure 4.2 Network Model Testbed Architecture of the Proposed
Framework

58

Figure 4.3 Traffic Flow and Analysis Cycle in the Proposed
Framework

59

Figure 4.4 Workflow of the Ryu-Based Intelligent Traffic Analysis

Framework

60

Figure 4.5 Basic Integration Topology of Ryu Controller with

OpenFlow and Data Plane Nodes

62

Figure 4.6 Ping Test Results between Hosts in the Proposed SDN
Topology

64

Figure 4.7 Performance Analysis of Host Communication using iPerf
Tool

65

Figure 4.8 Bidirectional Bandwidth Measurement between Hosts in

Proposed SDN Topology

66

Figure 4.9 Parallel Bandwidth Testing using Multiple iPerf Streams in

SDN Topology

66

xiv

Figure no. Name of Figure

Page No.

Figure 5.1 Throughput Variation across Multiple Host Pairs

78

Figure 5.2 Latency Analysis between Host Pairs using Ryu
Controller

79

Figure 5.3 Packet Loss Analysis at 10 Mbps and 50 Mbps
Bandwidth across Host Pairs

80

Figure 5.4 Observed Packet Loss under Varying Network Traffic
Scenarios

81

Figure 5.5 Comparative Throughput Analysis of Proposed and
Default SDN Topologies under Varying Host
Connections

83

Figure 5.6 Bandwidth Comparison between Default and Proposed
SDN Framework across Host Pairs

84

Figure 5.7 RTT Comparison of Proposed vs Default SDN
Topology across Host Pairs

85

Figure 5.8 Traffic Packet Loss Rate Comparison under Varying

Network Conditions

86

xv

LIST OF ABBREVIATIONS

ACL Access Control List

AI Artificial Intelligence

API Application Programming Interface

CDPI Control Panel to Drive Interface

DDoS Distributed Denial of Service

DPI Deep Packet Inspection

ICMP Internet Control Message Protocol

IDS Intrusion Detection System

IoT Internet of Things

ML Machine Learning

NBI Northbound Interface

NPC Network Processor Cards

NFV Network Functions Virtualization

ODL OpenDaylight controller

ONOS Open Network Operating System

PDR Packet Delivery Ratio

QoS Quality of Service

RTT Round Trip Time

SDN Software-Defined Networking

SNMP Simple Network Management Protocol

TCP Transmission Control Protocol

1

CHAPTER 1

INTRODUCTION

In several sectors, including education, healthcare, banking, e-commerce, and

defense systems, among others, computer networks are now the primary means

through which people engage in communication, share information, or receive

services [1]. There is more going on now than mere information sharing. They can

also assist with new technologies that must be fast, predictable, and safe, while

promoting safe teamwork and real-time communication. But decades into an era of

technological advancement, old networking architectures are still struggling to keep

pace with the complexity new apps and services bring.

For conventional networks, separation between the control plane and the data plane

might not be strict at all. This implies that routers, switches, and even firewalls can

operate independently and maintain/employ forwarding entries locally [2]. This

model has been the standard for a long time, but it has numerous problems. Device-

level management can be a chore when we have many of them, because there is a

need to configure and monitor each one individually. New nodes are added or traffic

policies are modified manually, and therefore, they take considerable time to scale.

Additionally, vendor-specific implementations also lock companies into solutions

that are costly and difficult to change, due to their reliance on hardware. Furthermore,

traditional networks are not adaptable to the real-time shifts that dynamic workloads

necessitate. It is not a very robust technology, which opens doors to numerous

vulnerabilities, detrimental to the current world of cloud computing, the Internet of

Things, 5G services, and apps that require low latency [3]. The difference between

traditional networking and SDN is illustrated in Figure 1.1.

The surge of IoT devices, edge computing, cloud platforms, and fast multimedia

services has only exacerbated the issues with traditional networks. For example, IoT

solutions can support billions of devices exchanging small but frequent data flows,

which pose challenges that no static, rule-based architecture can overcome. Likewise,

applications such as self-driving cars and telemedicine, which 5G enables, have

extremely low latency requirements and require bandwidth to be allocated on the fly,

a capability that older systems cannot achieve very well. And this is what has allowed

even SDN a civilizational reboot in how we build things.

In short, it separates the decision-making mechanism and the packet forwarding

mechanism. Instead of letting every individual device make decisions on its own,

SDN centralizes the network intelligence in a software-based controller. The

hardware passes the data. Numerous advantages accompany this significant change.

2

Providing a global perspective on the network enables administrators to dynamically

redefine resources, automate configurations, and enforce policies uniformly across

the organization. It is also well-suited for fast adaptation as the controller can

instantly respond to changes in traffic flows. With SDN, you gain the scalability,

flexibility, and automation that traditional networks lack. [4]

One of the key features of SDN is its ability to monitor network traffic in real-time.

Having a centralized view of the entire network enables deep traffic insights, allows

for the analysis of flows, and facilitates troubleshooting while enforcing rigorous

security policies. For instance, bandwidth can be dynamically reserved for critical

applications, and packets that appear suspicious can be rerouted or dropped. This is

why SDN in the enterprise data center, financial platform, or defense network

becomes particularly appealing. Due to imperfect obliviousness, traffic analysis

remains a significant concern in SDN [5]. Scalability remains a primary concern, as

the controller can become a bottleneck when large amounts of traffic are present.

Latency in analysis and resolution decreases responsiveness, which is further

complicated by IoMT or custom topology that introduces varied traffic patterns.

Moreover, much of the recent research concentrates on SDN behavior in general and

does not cover traffic performance analysis for custom or complex networks, such as

[6]. These issues suggest the necessity for new frameworks to achieve efficient,

reliable, and scalable traffic analysis under current scenarios. One scalability issue is

that the controller can become a bottleneck when traffic volumes are high in Switches

with Network Processor Cards (NPCs). In this section, we demonstrate how selective

replication alleviates the processing overhead of switches equipped with network

processor cards.

(a) (b)

Figure 1.1: Overview of (a) Traditional and (b) SDN Networking

1.1 Background

3

Network traffic analysis is a critical component of network security and management;

however, in the modern world, understanding network traffic is more important than

ever. Networks are further complicated as an increasing flow of information is

created, the speed at which cloud-based applications are adopted and available on a

network, and the number of mobile devices and IoT endpoints organizations use

continues to grow [7]. Now, traditional methods of traffic monitoring, such as

NetFlow, passive packet sniffers, and event-driven rule bases for firewalls, were not

created in smaller, more stable settings. Although these methods were plausible in

the past, none of them can meet the velocity and variability of traffic in the present

and future times in a functional manner. SDN offers a paradigm change to solve these

challenges.

With SDN, the decoupling of the control plane from the data plane enables

centralized network intelligence and fine-grained programmatic capabilities. In

traditional architectures, every device on the network is independent. With SDN,

administrators have centrally controlled access to the entire network via a logically

centralized controller [8]. Transitioning to a centralized approach enables central

traffic analysis and policy enforcement, with scalability and velocity that are not

attainable under legacy systems.

1.1.1 Traditional Network Limitations

Routers and switches are examples of legacy networking gear that possess both a data

plane and a control plane, as shown in Figure 1.2. The device uses its own rules to

decide how to send packets. This design has many problems:

 Static Configurations: If a DDoS attack hits unexpectedly, we would need to

reconfigure each router ourselves.

 Vendor Lock-in: As an example, a Cisco router could employ management

protocols that are only accessible to Cisco devices, and it would be
challenging to manage Juniper or Huawei devices. This complicates the use

of multiple vendors in the same deployment.

 Complex Management: Modifying ACLs by hand on thousands of switches in

a big business network can take hours, which gives attackers time to take
advantage of the situation.

 Limited Responsiveness: When there is a sudden spike in video traffic during

live streaming events, the network can't handle it dynamically, which causes

congestion and lower QoS.

1.1.2 Integration with NFV

Routers and switches are some examples of legacy networking gear that possess both

a Data Plane and a control Plane [9]. The device uses its own rules to decide how to

send packets. This design has many problems:

 Elastic Scaling: For example, during an online shopping event like 'Black

Friday', when traffic is high, additional virtual firewalls or load balancers can

be added on demand to absorb the extra load.

 On-Demand Deployment: For example, in response to malware traffic at a

4

particular edge node, an IDS can be deployed at that edge node in the next

moments.

 Resource Efficiency: Previously, each appliance would need to be a hardware

appliance that incurred significant capital and operational costs, but now

virtualized functions can run on inexpensive servers instead.

 Scope of Infrastructural and Cost Efficiency: Along with SDN, NFV provides

additional efficiencies, as the virtualized functions that we are running can

run on less expensive servers, and instead of being standalone hardware
appliances in hundreds of locations, you can orchestrate them via SDN/NFV.

Figure 1.2: Layer-based architecture of SDN

1.2 Research Challenges in SDN for Network Traffic Analysis

SDN opens up new ways to analyze traffic, but it also presents several significant

problems that need to be addressed. The challenges can be divided into four

categories: scalability, latency and overhead, security, and traffic heterogeneity.

1.2.1 Ability to Grow Challenges

Scalability is a critical issue in SDN deployments. The central controller must

manage thousands and millions of flow requests simultaneously.

 Centralized Bottleneck: A centralized controller may receive millions of flow

requests per second from a large data center. For instance, Facebook data
centers manage terabits of traffic in one second. To manage such quantities, a

single SDN controller requires access to terabytes of data; it would simply
collapse the SDN controller under scale.

 High Load: Whenever any new cloud app initiates a TCP port, it makes the
central controller create a new rule, which consumes enormous CPU and
memory.

 Performance degradation: There is the possibility that the speed of the central

5

controller responding to the flow request may not be quick enough once

workloads escalate, because packets would not be forwarded promptly. There
would be a delay for the servers. There may also be potentially hazardous

service degradation for time-protected applications such as remote surgery or
online gaming.

 Due to such scalability concerns, one effective method is the use of
hierarchical or distributed controllers, such as ONOS clusters.

 From a performance perspective, clusters share processing and analysis of

traffic flows across distributed, disparate nodes.

1.2.2 Overhead and Performance Bottlenecks

SDN creates additional communication delays between the [network] controller and

the network devices. This could make other potential latencies:

 Frequent Flow Requests: When switches continually request flow decisions
from the controller, this adds the latency from the round-trip, regardless of the

distance.

 Real-Time Inspection Costs: The controller frequently uses high amounts of
CPU for DPI.

 A Single Point of Failure: While traditional networks have routers and

switches operating independently, in SDN, if the controller goes down, traffic
analysis may go down with it.

1.3 Research Motivation

In recent years, network traffic has grown exponentially, making modern network

management and security more challenging than ever. The growth is primarily driven

by the increasing number of IoT devices, the rollout of 5G networks, and the growing

popularity of cloud-based apps and services. Traffic was more predictable in the past,

and it was possible to manage networks with static policies. However, today, due to

the various and dynamic nature of digital infrastructures, these traffic patterns are

large-scale and inhomogeneous. This shift places immense stress on existing

monitoring and management systems, exposing their shortcomings and underscoring

the need to develop new approaches.

1.3.1 Gaps in Current SDN-Based Solutions

SDN-based traffic analysis solutions have their advantages and limitations. If used in
real-world environments, the following weaknesses should be addressed:

 Scalability: A Centralized controller cannot perform their operation

effectively under very high traffic conditions.

 Overhead and Latency of Controllers: The overhead caused by periodic
controller-switch communication is not tolerable for real-time applications

such as high-frequency financial trading, distant robotic surgery, etc.

 Single Point of Failure: The SDN controllers make a good target because they

are centralized. For example, the entire network goes down if a DDoS attack

6

is launched at a controller.

1.4 Problem Definition

The increasing scale and dynamic nature of modern networks have made effective

traffic analysis a critical yet challenging task, as traditional monitoring and rule-based

mechanisms are no longer sufficient to handle varying traffic patterns and complex

network topologies. Although SDN introduces centralized control and

programmability, many existing traffic analysis approaches do not fully exploit

topology awareness and real-time network state, leading to suboptimal flow

monitoring and delayed control decisions. This lack of adaptive traffic analysis

results in inefficient resource utilization and degraded network performance,

particularly in multi-switch SDN environments. Therefore, there is a need for a

topology-aware traffic analysis framework that leverages the SDN controller’s global

view to dynamically monitor network behavior and support informed traffic

management decisions, which forms the core problem addressed in this thesis.

1.4.1 Emerging Technologies Challenges

Emerging technologies, such as IoT, 5G networks, and edge computing, are also

likely to disrupt traffic flow patterns compared to traditional client-server

architectures.

 One aspect of IoT traffic to consider is the billions of energy-efficient devices
constantly sending tiny packets. A smart city is a prime example where

thousands of sensors continuously send data about the environment.
Monitoring solutions designed to handle high-volume, predictable types of

flows struggle to process the expected microflows efficiently.

 The second challenge is due to the requirements of 5G networks that support
applications such as autonomous vehicles, AR, and telemedicine, where

outlets are expected, ultra-low latency, and high reliability. Delays or issues
that result in a greater analysis lead-time to mechanisms that analyze or

ensure priority across microflows can result in disastrous outcomes, such as
an unwanted contact of vehicles in a vehicular network or losing patients in

remote refrained surgery.

 The third challenge is due to Edge Computing, where computation takes place

closer to the source of measurements and provides opportunities for

distributed traffic patterns Traditional centralized analysis models are often
less efficient than decentralized architectures.

1.5 Research Objectives

The primary objective of this research study is to emphasize the end-to-end quality of

service in SDN-based network infrastructure, aiming to enhance resilience. During

the research period, we focused on four specific objectives. The general objectives of

the study are as follows:

A. To investigate the existing network traffic performance analysis in the SDN

7

controller.

 A literature review is conducted to know about the current existing

methodologies/tools used for SDN-based network traffic analysis

 Evaluate the performance of existing SDN controllers in terms of traffic

analysis functions and identify their strengths and weaknesses.

 Examine the scalability, latency, resource consumption, and real-time
processing abilities of current solutions.

 Analyze the existing traffic analysis frameworks to identify the gaps and
limitations, especially regarding the modern network requirements like IoT,

5G, and edge computing.

 Investigate limitations in deploying these frameworks, including controller
overhead, single points of failure, and security risks.

B. To develop the network topology for traffic analysis using an SDN controller.

 Create a representative network topology simulation of the real world with

heterogeneous traffic and network link attributes.

 Use the SDN controller as a single authority that monitors the network traffic.

 Implement components to simulate different traffic patterns (e.g., high traffic
loads, dynamic routing, and heterogeneous flows).

 Ensure the topology supports extensibility for adding new features or
modules for traffic analysis.

 Integrate mechanisms to collect flow-level data and monitor network
performance metrics such as throughput, delay, and packet loss.

C. To propose a framework and analyze the performance of the developed network

topology using the Ryu controller.

 Design a novel traffic analysis framework that leverages the programmability
and flexibility of the Ryu controller.

 Incorporate intelligent features, such as machine learning algorithms or

anomaly detection techniques, to enhance traffic analysis capabilities.

 Optimize the framework for scalability, real-time processing, and low
overhead in large and dynamic network environments.

 Deploy the framework within the developed topology to analyze and manage
traffic efficiently.

 Test and fine-tune the framework’s performance by simulating real-world

scenarios, including high traffic volumes and security threats.

D. To evaluate the performance of the proposed framework based on execution

parameters and perform a comparative analysis with the existing framework.

 Define key performance metrics for evaluation, such as throughput, latency,

resource utilization, scalability, and detection accuracy.

 Conduct experiments to measure the performance of the proposed framework
under varying network conditions (e.g., load variations, attacks, and dynamic

routing changes).

 Compare the results of the proposed framework with those of existing
frameworks, highlighting improvements in performance and efficiency.

 Identify any trade-offs or limitations of the proposed framework and discuss

8

potential solutions for overcoming them.

 Summarize the findings to demonstrate the effectiveness of the proposed
framework and its contributions to SDN-based traffic analysis research.

1.6 Key Contribution of Research Work

The research presented in this thesis addresses critical challenges in SDN and Traffic

analysis, offering novel solutions through comprehensive design, implementation,

and evaluation. The key contributions of this work are outlined below, each reflecting

a significant advancement toward achieving the research objectives. These

contributions collectively highlight the originality, technical depth, and practical

relevance of the proposed framework.

A. Comprehensive Review of Existing Solutions:

 Analysis of existing approaches and frameworks for network traffic analysis

in an SDN-based environment.

 Identified the limitations of traditional approaches, such as scalability

bottlenecks, high latency, and inadequate handling of dynamic traffic

patterns.

B. Development of a Realistic Network Topology for Traffic Analysis:

 Developed and realized simulation settings that accurately reflect the real-

world scenario, such as different traffic conditions and high-load situations.

 Integrated an SDN controller as the central traffic management and
monitoring element for granularity over traffic analysis.

C. Proposal of a Novel Traffic Analysis Framework:

 Designed a scalable, efficient, and secure framework for network traffic
analysis using the Ryu SDN controller.

 Integrated advanced features such as real-time analytics and an intelligent

traffic management mechanism to address existing limitations.

D. Performance Evaluation Based on Key Metrics:

 Evaluated the suitability of architectural features in multi-dimensional

network situations and in contrast with traditional measures and judgments
composed of latency, throughput, scalability, resource allocation, and

detection rate.

 Empirically verified hypothesis under real conditions through

experimentation results (for example, higher sampled throughput under

potential security risk and high load).

E. Comparative Analysis with Existing Frameworks:

 Developed and realized simulation settings that accurately reflect the real-

world scenario, such as different traffic conditions and high-load situations.

 Integrated an SDN controller as the central traffic management and
monitoring element for granularity over traffic analysis.

F. Advancement of SDN-Based Traffic Analysis Research:

9

 Contributed to the study of the SDN community on some major traffic-

monitoring issues such as controller overhead, decision-making, and security
loops.

 Suggested an adaptive framework that could be further customized and reused

to roll out facilitated changes to expected and new requirements and
situations.

G. Integration of Emerging Technologies:

 Considered the implications of modern technologies such as IoT, 5G, and

Edge computing in the design and implementation of the proposed
framework.

 Ensure that the proposed model can handle time-variant and diverse traffic in

the networks

1.7 Dissertation Organization

The thesis comprises six chapters that concisely and precisely describe the entire

study. Each chapter is summarised below:

Chapter 1: Introduction

In this chapter, research is introduced by presenting some of the main concepts in

Computer Networking and Software-Defined Networking (SDN). It traces the course

of computer networking from its historical roots to the networking models we are

accustomed to nowadays, based on SDN, which offers greater flexibility and

programmability. The chapter also presents how traffic analysis is utilized in network

management and operation, such as performance analysis, anomaly detection, and

security. It discusses the motivation for analyzing traffic using SDN controllers, as a

centralized approach with visibility of global information is an optimal method for

making dynamic decisions. This chapter discusses existing gaps in current traffic

analysis methods within an SDN environment and constructs the main problem that

this research will address. It concludes by stating the research objectives, which are

specific and define the boundaries of the research, and outlining the thesis content.

Chapter 2: Literature Review and Related Work

This section presents a comprehensive survey of the literature on SDN architecture,

traffic analysis, research studies on topology management, and controller

optimization. The chapter begins with a review of the SDN architecture and the

controller's role in initiating flows. For traffic analysis, the various types of traffic

analysis techniques from traditional networking and SDN are reviewed with respect

to their strengths and limitations. The chapter discusses different approaches to

topology design for traffic management and reviews how optimization techniques are

applied to aid a controller. Furthermore, a comparative analysis is conducted on

existing frameworks in SDN to benchmark applications and their outcomes.

Ultimately, the comprehensive review of the related literature reveals apparent

research gaps, providing a basis for proposing new, more effective frameworks.

Chapter 3: Topology-Aware SDN Environment Preparation and Traffic Profiling

10

Strategy

This chapter describes the methodology used in developing the proposed SDN-based

framework. It explains the research design and approach, justifying the choice of Ryu

controller due to its ease of use, open-source nature, and modularity. The technology

stack and simulators are described, followed by an explanation of how the SDN

network topology is constructed to replicate the physical nature of the real world. The

strategy of traffic modeling is elaborated by demonstrating how various traffic types

with different flow patterns are generated. The metrics of latency, jitter, throughput,

and packet loss are defined. The chapter finishes with an explanation of the

experimental design, as well as a validation plan, which is designed to ensure the

reliability and reproducibility of results.

Chapter 4: Design and Deployment of a Ryu-Based Intelligent Traffic Analysis

Framework

In this chapter, we examine the internal structure, some components, and details of

how the proposed framework can be implemented. This describes the framework,

including its high-level design and key modules, such as flow monitoring, data

collection, and flow rule management. We then discuss the implementation of the

Ryu controller and how traffic on it was analyzed in real-time, allowing for real-time

decisions or interventions based on analytical traffic data. We next explain the

rationale behind traffic statistics collection and the application of flow control

policies, followed by technical details on how to implement and configure them. This

chapter is one demonstration of how the intelligent traffic analysis mechanism

operates in a dynamic SDN environment.

Chapter 5: Performance Evaluation of the Proposed SDN Framework and

Comparative Benchmarking

The experimental results in this chapter provide a detailed evaluation of the proposed

framework. The topology and testing environment used for simulation are described,

followed by specific test scenarios based on the defined traffic conditions and use

cases. Several key performance indicators are measured based on latency, jitter,

throughput, and packet loss. Measurements of these metrics are presented and

illustrated using graphs and tables. The results are analyzed to demonstrate that the

proposed framework shows the most promise for the implementation duration.

Additionally, the proposed framework is compared to the current SDN-based

solution, highlighting that optimized performance is an advantage. The chapter

concludes with a summary of key findings and observations from the experiments.

Chapter 6: Conclusion, Future Scope, and Social Impact

The experimental results in this chapter provide a detailed evaluation of the proposed

framework. The topology and testing environment used for simulation are described,

followed by specific test scenarios based on the defined traffic conditions and use

cases. Several key performance indicators are measured based on latency, jitter,

throughput, and packet loss. Measurements of these metrics are presented and

illustrated using graphs and tables. The results are analyzed to demonstrate that the

proposed framework shows the most promise for the implementation duration.

Additionally, the proposed framework is compared to the current SDN-based

11

solution, highlighting that optimized performance is an advantage. The chapter

concludes with a summary of key findings and observations from the experiments.

1.8 Chapter Summary

This chapter presented an overview of the research background, focusing on the

evolution of SDN as a transformative approach to modern network management. It

discussed the motivation behind decoupling the control and data planes, enabling

centralized programmability and dynamic traffic handling. The chapter emphasized

the growing importance of intelligent controllers, such as Ryu, in addressing

traditional networking challenges, including scalability, congestion, and limited

adaptability. Furthermore, it highlighted the relevance of SDN in emerging domains

such as cloud computing and the IoT, where efficient traffic analysis and routing are

critical for performance optimization.

The chapter also outlined the problem statement, research objectives, and scope of

the study, setting a clear direction for the proposed work. It identified the key

limitations in existing SDN-based routing and traffic management frameworks,

particularly in terms of network lifetime, load balancing, and flow optimization. The

need for a novel intelligent traffic analysis framework was justified to enhance

network efficiency and security. Overall, the introduction established the foundation

and rationale for the research, guiding subsequent chapters toward the design,

implementation, and evaluation of the proposed SDN framework.

12

CHAPTER 2

LITERATURE REVIEW

This chapter studies and analyzes how to integrate recent developments in SDN from

traffic analysis, network topology design, and performance from the controller

perspective. With the trend towards ever larger and more complex networks, SDN

has become a game-changing concept that enables traffic management to be centrally

managed more smartly and dynamically. A comprehensive literature review has been

conducted to gain a deeper understanding of existing work. The review is organized

into six sections, each covering an essential aspect of SDN-based traffic analysis.

These classifications are as follows: (1) generic information on SDN architectures

and controllers; (2) traffic-analysis techniques for both traditional and SDN-based

network environments; (3) network topology design and any influence by this design

on the traffic analysis process; (4) performance optimisation strategies based on the

SDN controller; (5) comparison of different SDN frameworks; and, finally, our

observations enable us to identify trends in existing research. With this structure, we

can map the history of developed solutions in the domain and point out limitations

and open problems of existing frameworks. These observations form the basis for the

motivation and design of the proposed topology-aware, Ryu-based intelligent traffic

analysis approach, which is discussed in later chapters.

2.1 Overview of SDN Architecture

The need for dynamic, scalable, and programmable network management has

significantly altered the SDN landscape in recent years. The early seminal work [10]

gave an overview of the fundamental ideas on SDN architecture and promised to

minimize network complexity and improve network flexibility. This work was a

stepping stone in understanding the potential of SDN to facilitate network innovation

as depicted in table 2.1. Likewise, [11] presented an overview of the SDN and

OpenFlow standards, critically analyzing their problems related to scalability. Their

research highlighted the interoperability problem between SDN nodes and introduced

a more liberal model to solve these problems in large-scale networks, ensuring they

function correctly. As SDN gained popularity, the importance of OpenFlow as a

standardized southbound interface was reiterated in [12]. Their work established

OpenFlow's position within the SDN system and described how it can support flow-

level programmability, centralizing the management of network switches.

13

McKeown's research has guided much subsequent work in SDN, particularly in the

areas of flow control and traffic management.

In 2021, the author [13] examines the cloud and data center applications of SDN

from the perspective of its impact on performance metrics, including latency and

throughput. Their work also demonstrated how SDN’s centralized control could help

optimize resource utilization in such settings. Another example is the hybrid SDN

controller [14], which presents a mixed SDN controller that combines centralized

control and distributed control planes to enhance scalability and responsiveness in

large, mature SDN architectures. The roles of the switches in traffic shaping and their

interaction with controllers were surveyed in [15]. Their contrast of various SDN

controller architectures was revealing about the potential gains that real-time network

management and troubleshooting would offer for each type. More recently, the

combination of SDN with emerging technologies such as AI and 6G networks has

been the subject of investigation [16]. AI-centric SDN controllers would be dynamic

to fluctuations in traffic patterns and enhance network robustness, especially within

6G and beyond networks. [17] Also investigated different SDN controllers, such as

Ryu, ONOS, and OpenDaylight, concentrating on examining their throughput for

real-time networking. The use of SDN in edge and fog computing environments was

studied by [18], who analyzed its role in reducing latency and optimizing traffic flow

in such highly distributed networks. Their results emphasised the importance of SDN

to overcome these challenges primarily in edge and fog computing, which require

low-latency communication for high throughput. Lastly, the author [19] introduced a

cross-layer SDN model that bridges flow-based information with application-level

statistics to achieve finer-grained traffic policy enforcement and decision-making at

runtime. Their method is the next step for SDN evolution, and performance of the

network can be enhanced further by a higher-order policy-aware traffic management.

Overall, the evolution of SDN has broadly focused on improving scale, real-time

control and incorporating future technologies. Starting with the early work done in

OpenFlow and SDN architectures to the more recent additions involving AI, ML,

etc., extending till cross-layer integration developments, it is clear that SDN has

come a long way towards being an extraordinary tool for orchestrating hyper-modern

network infrastructures.

Table 2.1: Summary of Recent SDN Architecture Research and Developments

Year Authors Approach Focus Area Key Findings

2018 Kreutz et

al. [10]

Comprehensive

Survey

SDN Concepts and

Architectures

Highlighted SDN's promise to

reduce network complexity

and enable innovation.

2019 Nunes et

al. [11]

Survey &

Framework Analysis

SDN and OpenFlow

Standards

Identified scalability

challenges and gaps in existing

SDN architectures.

2020 McKeow Protocol OpenFlow in SDN Standardized southbound

14

 n et al.

[12]

Specification Systems interface, enabling

programmability at the flow

level.

2021 Zeng et

al. [13]

Performance

Evaluation

SDN in Cloud and Data

Centers

Evaluated SDN's impact on

performance, focusing on

scalability and latency.

2021 Li et al.

[14]

Architecture Review SDN Controllers and

Network Design

Introduced a hybrid model for

SDN controllers, enabling

cross-domain control.

2022 Jain et al.

[15]

Survey and

Comparison

SDN Switches and

Controllers

Examined the role of SDN

switches in enhancing traffic

management and control.

2023 Al-Mousa

et al. [16]

AI-Driven Approach 6G and Future SDN

Networks

Focused on integrating SDN

with AI for adaptive traffic

control in future networks.

2024 Kalita &

Sarma [17

Controller

Comparison

Real-Time Networking

in SDN

A detailed comparison of

popular SDN controllers (Ryu,

ONOS, OpenDaylight) was

provided.

2024 Xie et al.

[18]

SDN Architecture

Evaluation

SDN for Edge and Fog

Computing

Evaluated SDN’s effectiveness

in edge and fog computing,

addressing latency issues.

2025 Gupta et

al. [19]

Cross-layer

Integration

SDN for Policy-driven

Network Management

Integrated flow-level and

application-layer metrics for

granular traffic analysis.

2.2 Traffic Analysis Techniques

Network traffic analysis is a key enabler for network management to observe,

inspect, and understand data flows in the networks in terms of performance

enhancement, security enforcement, and policy fulfilment. In conventional network

environments, traffic analysis is frequently conducted using tools and protocols such

as NetFlow, SNMP and packet sniffers to obtain a snapshot of traffic metrics like the

bandwidth consumption, the number of flows and application level behavior.

However, these approaches are constrained by the decentralized architecture of

traditional networks and therefore have limited visibility and scalability in real-time

or dynamic environments.

Since the emergence of SDN, flow monitoring has become more intelligent and

centralized. SDN controllers provide a global network perspective, enabling fine-

15

grained, programmable monitoring of network flows. Various methods of traffic

analysis are studied thoroughly by the researchers, including traditional one and SDN

based one, with a trend towards the latter method for its flexibility and synergy with

AI/ML is shown in table 2.2. In 2018, Yu et al. [20] also introduced a hybrid traffic

classification system, where statistical features and machine learning are used to

analyse the encrypted traffic in conventional networks, showing an emerging

complexity of flow behaviours. Jain and Kumar [21] proposed a signature-based

intrusion detection model to enforce security by analyzing the behavior of legacy

system traffic. Such approaches suffered from poor scalability and were not flexible

enough for changing network topologies. The tendency for SDN-facilitated traffic

analysis then started gaining momentum in works such as Wang et al. [22], who used

OpenFlow-enabled flow monitoring for real-time DDoS attack detection based on

control messages. The deep learning-based model combined with the SDN controller

for dynamic traffic classification and anomaly flow detection was also introduced by

Rathore et al. [23] in the same year. In 2021, Zeng et al. [24] presented a controller-

centric architecture for profiling dynamic traffic patterns within data centers to

optimize throughput and detect anomalies. Wang et al. [25] emphasized the

significance of traffic flow scheduling through traffic engineering algorithms in

SDN-based enterprise networks. Newer works continue to improve the precision and

effectiveness of SDN traffic analysis. For example, Elmasry and Ali [26] presented

an ONOS-integrated, rule-based traffic detector with fuzzy logic-based load

balancing and prioritization. Likewise, Adikari and Kumbhar [27] proposed a hybrid

traffic classifier applied to the SDN architecture that used convolutional neural

networks for encrypted and obfuscated traffic detection. In 2024, Anwar et al. [28]

proposed an edge-assisted SDN architecture with reinforcement learning-based traffic

flow control and bandwidth optimization that overcomes scalability issues. Most

recently, Gupta et al. [29] proposed a cross-layer policy-aware traffic analysis model

that constructs the mapping between flow-level data from SDN switches and

application-layer metrics to increase resolution in making decisions.

All these works together demonstrate a transition from passive, isolated traffic

analysis on traditional networks to more active, more intelligent, and involved

controller approaches in an environment where SDN prevails. Existing systems for

identifying anomalies in SDN are often not real-time, elastic, or designed for specific

problems like DDoS detection, and struggle with performance measurement across

topologies; this creates a demand for a generic, customizable, and performance-

oriented framework for traffic analysis in SDN.

Table 2.2: Overview of Traffic Analysis Techniques in Traditional and SDN-Based Networks

Year Authors Approach Focus Area Key Findings

2018 Shukla et al.

[20]

Hybrid (Statistical

+ Deep Learning)

Traffic

Classificatio

n in SDN

Improved accuracy in

identifying flow types using

hybrid models.

2019 Zhao & Chen

[21]

Flow Rule

Inspection

DDoS

Detection in

Detected attacks faster than

legacy IDS by analyzing flow

16

 SDN rules.

2020 Amin et al.

[22]

Real-time

Monitoring

Enterprise

Network

Traffic

Used OpenFlow counters for

live anomaly detection.

2020 Zhang et al.

[23]

Machine Learning Encrypted

Traffic

Classificatio

n

Used metadata for

classification, overcoming

payload encryption challenges.

2021 Das & Roy

[24]

Lightweight

Detection

Framework

IoT-SDN

Environment

s

Reduced overhead while

detecting traffic surges

effectively.

2021 Chaudhary &

Mahajan [25]

Survey and

Categorization

SDN

Intrusion

Detection

Techniques

Classified methods based on

detection strategy and collection

points.

2022 Qadir et al.

[26]

Modular Flow

Log Analysis

Anomaly

Detection

with Ryu

Developed plug-and-play

modules for controller-level

traffic analysis.

2022 Li et al. [27] Reinforcement

Learning

Traffic

Prediction &

Routing in

SDN

Enabled adaptive routing

through learned traffic behavior.

2023 Ahmad et

al.[28]

CNN-LSTM

Deep Learning

Encrypted

Traffic in

SDN

Achieved high accuracy on

encrypted data classification in

real time.

2025 Tanveer &

Rahman [29]

Topology-Aware

Analyzer

Adaptive

Traffic

Monitoring

Tailored monitoring based on

dynamic topologies and

congestion patterns.

2.3 Network Topology Design and Its Impact on Traffic Analysis

Network structure significantly influences the performance and efficiency of any

networking environment and is more relevant in the context of SDN. The design and

configuration of the network topology, therefore, determine the behavior of the

traffic. The effect of network topology on traffic analysis for SDN systems has

received significant research attention due to the requirement of high-throughput

networks and real-time traffic control. In SDN, a programmable programming model

is achieved by network operators who have power over traffic paths to a central

controller, motivating designers to create topologies that support optimal traffic

17

flows, scale well, and provide fault tolerance. In the remainder of this section, we will

highlight some key studies on network topology mapping and its relationship with

traffic analysis. The thematic Categorization of SDN Topology Designs and their

Impact on Traffic Analysis is represented in Table 2.3.

2.3.1 Topology Design: Foundation and Challenges

The seminal work on SDN topology design focused on understanding the impact that

different configurations might have on managing and analyzing network traffic.

Sharma and Kumar [30] investigated topology design in SDN, emphasizing that

network topology significantly affects traffic distribution, latency, and throughput of

the network. Their work demonstrated that the efficient SDN topologies applied here

alleviate the frequent issues caused by centralized control, resulting in a significant

improvement in network performance. Also, Al-Fares and Rehman [31] studied the

impact of network topologies on traffic flow in SDN. They concluded that

minimizing traffic bottlenecks can be achieved by selecting a topology that facilitates

better scalability and resource allocation. They deduced that the creation of dynamic

topologies can alleviate the problems and increase network efficiency. Zhang and Li

[32] also studied the performance evaluation for SDN, pointing out that topology

design is a core factor of traffic inspection. The paper examined how SDN can adapt

traffic paths according to the topology settings, which enables load balancing. They

discovered that SDN topologies designed with particular applications of traffic

analysis in mind could effectively reduce both latency and throughput.

2.3.2 Traffic Analysis and Topology Control in SDN

The traffic analysis methodologies in SDN are an essential field of study, and

topology planning is also associated with how flexibly the traffic can be controlled

across the whole network. The problem is how to propose topologies on which real-

time traffic analysis can be run efficiently. Kaur and Singh suggested the use of

modular SDN topologies for improved traffic handling and network scaling. Their

method demonstrated how to optimize traffic patterns while dynamically designing

the topology to minimize network congestion and enhance traffic analysis efficiency.

Kumar and Pandey [34] discussed the influence of topology on traffic load

distribution in SDN. They claimed that SDN’s “topological agnosticism” leads to an

optimal traffic routing, but such optimality is conditioned upon network topology. A

proper construction of the topology facilitates more efficient load sharing, resulting

in fewer packet drops and negligible latency. Their results demonstrate that the

network's topology must be adapted to its traffic characteristics to maintain good

performance.

2.3.3 Performance of SDN Topologies in Data Center and Cloud

Environments

Network topology provides effective traffic control in massive data centers and cloud

applications. Xiao and Liu [35] examined the impact of topology-aware traffic

analysis in SDN, focusing on cloud computing applications. They studied the

flexibility of SDN in responding to dynamic traffic conditions by analyzing real-time

18

network topologies. This inspired them to investigate the potential of combining

dynamic topology reconfiguration with traffic engineering approaches to improve

data center operations and reduce congestion. Likewise, in [36], Ahmed and Hussain

explored the concept of `resource-efficient' SDN topologies for clouds based on

traffic analysis to route the flows with minimal setup time and also balance loads.

2.3.4 Optimizing Traffic in 5G and Edge Networks using SDN

Topologies

SDN deployments in 5G networks and edge computing infrastructure have reignited

interest in task-based optimization of network topology for low-latency and high-

throughput traffic analytics applications. Wang and Li [37] investigated SDN-based

topologies for efficient traffic patterns in 5G networks, taking into account network

slicing and service chaining. They found that SDN's ability to control the network

centrally facilitates effective traffic management; this is critical as we seek ways to

accommodate 5G and an increasingly IoT-driven edge. This was also corroborated by

Huang and Zhang [38], who studied traffic analysis in 5G SDN topologies, stating

that dynamic topology control enables SDN to meet the growing requirements of

emerging networks.

2.3.5 Recent Trends and Advanced Topology Solutions

Dynamic topology and AI-based methods are becoming popular in recent studies.

Patel and Desai [39] considered the use of hierarchical SDN topologies for efficient

traffic distribution in multi-layered network settings. Their work highlighted that

SDN controllers can automatically adjust topologies to enhance traffic analysis with

AI and machine learning algorithms. Furthermore, Singh and Agarwal [40]

investigated dynamic topology changes in hierarchical SDN-based networks,

advocating for topologies that accommodate real-time traffic analysis, which could

significantly increase network efficiency and improve performance.

2.3.6 Topology Design for Optimized Traffic Management

SDN topology design for smart cities is a compelling topic of investigation. Khan

and Ahmed [41] proposed novel SDN topology designs to optimize traffic routing in

intelligent city networks. The authors concluded that smart cities can achieve

substantial benefits in managing traffic flow, reducing congestion, and enhancing

real-time monitoring through the integration of traffic analytics tools into SDN's

architecture.

Table 2.3: Thematic Categorization of SDN Topology Designs and their Impact on Traffic

Analysis

Thematic

Category

Author(s) &

Year

Network

Environment

Topology Focus Traffic Analysis

Contribution

Baseline

Topology &

Sharma & Kumar

(2020) [30]

General SDN Standard

topologies (tree,

Linked topology to

traffic latency and

19

Performance

Metrics

 mesh) throughput metrics

Zhang & Li

(2020) [31]

General SDN Performance

evaluation

framework

Compared traffic

efficiency across

multiple topologies

Scalability

and

Modularity

Al-Fares &

Rehman (2020)

[32]

Enterprise

SDN

Scalable

topologies

Demonstrated

reduced congestion

and improved flow

control

 Kaur & Singh

(2021). [33]

Large-scale

SDN

Modular topology

structures

Optimized traffic

flow in modular

topologies

Load

Balancing &

Fault

Tolerance

Kumar & Pandey

(2021) [34]

WAN SDN Load-balanced

topologies

Improved routing

with reduced packet

loss

Patel & Desai

(2023) [35]

Hierarchical

SDN

Multi-layered

topology

Better load

distribution and

failover capabilities

Cloud & Data

Center

Optimization

Xiao & Liu

(2022) [36]

Cloud SDN Topology-aware

adaptive design

Achieved high

responsiveness in

cloud-based traffic

 Ahmed &

Hussain (2022).

[37]

Data Center

SDN

Resource-efficient

topology

Enhanced link

utilization and

reduced idle links

Edge and 5G

Networks

Wang & Li

(2022) [38]

5G/Edge SDN Adaptive and

sliced topologies

Minimized delay in

service chaining and

traffic isolation

 Huang & Zhang

(2023). [39]

5G SDN Latency-

optimized

dynamic design

Enabled high-speed

traffic classification

in 5G

Dynamic

Topology

Management

Singh & Agarwal

(2024) [40]

Hierarchical/S

mart SDN

Real-time

adaptive

topologies

Traffic-based

topology shifting

improves real-time

performance.

 Khan & Ahmed

(2025). [41]

Smart City

Infrastructure

Intelligent routing

topologies

Enabled real-time

monitoring and

routing in smart cities

20

2.4 SDN Controller-Based Performance Optimization Strategies

Over the past few years, several studies have attempted to utilize the SDN controller

to optimize various performance metrics, including latency, throughput, energy

efficiency, and fault tolerance, as shown in Table 2.4. For example, Chatterjee and

Das introduced a multi-threaded controller architecture in 2021 that reduces the flow

setup time by distributing processing tasks across controller cores, resulting in lower

latency in high-throughput data centers. In a similar setting, Lee et al. proposed a

lightweight controller-to-controller communication frame in the same year to

minimize inter-controller latencies in a distributed-state architecture. Wang and

Huang developed a controller-assisted scheduling plan in the same year to redirect

traffic away from a hotspot on the fly, thereby boosting bandwidth usage in large-

scale networks. Furthermore, in the same year, Sahu et al. proposed a machine

learning-based controller for intelligent QoS enforcement, which utilized machine

learning models to predict and delete flow bursts in real-time. By 2023, research was

focusing on bright orchestration. Kumar and Singh introduced a multi-layer SDN

control plan consisting of local and global CDNs, which reduces command overhead

and enhances error accommodation. On the other hand, Mehmood et al. utilized deep

reinforcement learning in the SDN controller to autonomously adjust routing policies

based on prior knowledge and current conditions. Zhou et al. provided a framework

for scheduling controllers based on latency for 5G networks to guarantee minimal

jitter in real-time operations. Furthermore, in 2025, Ali and Rahman proposed a

model SDN controller that more effectively distributes traffic among controller nodes

to reduce delay. In 2025, Nguyen and Patel introduced a blockchain-enabled SDN

controller that boosts trust in distributed networks without compromising

transmission levels. Finally, Rana and Iqbal introduced a link-state prediction plan in

2026 that helped controllers predict and route around upcoming link failures. All of

this research highlights the potential for optimization through augmentation of the

controller architecture and intelligent algorithms.

Table 2.4: Categorized Strategies for SDN Controller-Based Performance Optimization

Theme Study (Author,

Year)

Optimization

Focus

Proposed Strategy Key Outcome

Latency

Optimizati

on

Chatterjee & Das

(2021) [42]

Flow setup time Multi-threaded SDN

controller architecture

Reduced latency in

high-flow networks

 Zhou et al.

(2024). [43]

Latency-sensitive

scheduling

Real-time task

prioritization in 5G

SDN networks

Achieved low jitter

and delay

Load

Balancing

Lee et al. (2021)

[44]

Inter-controller

communication

Lightweight distributed

control architecture

Minimized inter-

controller delay

 Ali & Rahman

(2024) [45]

Controller

clustering

Even distribution of

control requests

Reduced

bottlenecks and

21

 improved control

plane efficiency

Congestion

Avoidance

Wang & Huang

(2022) [46]

Congestion

rerouting

Dynamic traffic-aware

controller scheduling

Increased

bandwidth

utilization and

reduced drops

QoS

Assurance

Sahu et al. (2022)

[47]

Real-time traffic

prediction

AI-based predictive

model for SDN

controller

Improved QoS and

responsiveness

Fault

Tolerance

Kumar & Singh

(2023) [48]

Fault recovery Hierarchical controller

segmentation

Faster failover and

recovery

 Rana & Iqbal

(2025) [49]

Link failure

prediction

AI-based fault-tolerant

routing within the

controller

Decreased packet

loss

Intelligent

Routing

Mehmood et al.

(2023) [50]

Adaptive routing DRL-based controller

decisions

Optimized path

selection under

dynamic load

Security &

Trust

Nguyen & Patel

(2025) [51]

Secure control

signaling

Blockchain-integrated

SDN controller

Enhanced trust in

multi-domain

control

2.5 Comparative Analysis of Existing SDN-Based Frameworks

Within a short span, SDN has matured into a plethora of frameworks with specific

intent addressing anything from traffic analysis to anomaly detection, performance

improvement, or intelligent routing. Each of these frameworks is collaboratively

integrated with SDN controllers, such as Ryu, ONOS, or OpenDaylight, and provides

its own specialized monitoring, control, or security features. Nonetheless, these

frameworks differ considerably in terms of design, flexibility, scalability,

responsiveness, and the level of traffic insight provided. In this section, we present a

review of the literature and offer comparative metrics to assess its advantages,

shortcomings, and relevance to traffic analysis and performance assessment, as

shown in Table 2.5.

2.5.1 Early-Stage Frameworks and Flow-Level Visibility

Early SDN frameworks primarily focused on demonstrating the feasibility of SDN

and addressing basic network manageability and control issues. Kreutz et al. [52]

provided an initial comprehensive survey of SDN frameworks, classifying design

architectures by functional layers and architectural components. Nunes et al. [53]

studied and juxtaposed the control plane performance of various open-source control

22

platforms, but were unable to construct comprehensive frameworks. Kassler et al.

[54] developed an early SDN security framework that used anomaly detection

modules for an ONOS controller, testing the framework for threat detection in a

research lab. During this time, Kim and Feamster [55] investigated modular control

in SDN architecture and made other observations about design trade-offs related to

scalability and programmability.

2.5.2 Scalability and Controller Performance

As SDN matured in larger contexts, scalability emerged as a significant challenge.

Tootoonchian and Ganjali [56] introduced HyperFlow, a distributed control system

designed to streamline the synchronization of multiple controllers, while logically

centralizing control. Arslan et al. [57] presented DynaSDN, an elastic control

framework that dynamically adapts control boundaries to balance network traffic.

Zhang et al. [58] analyzed FlowVisor and other network slicing frameworks,

primarily used for analyzing multi-tenant traffic. In 2021, Raza and Khokhar

proposed FlexiSDN, which improved performance in wide-area environments by

decoupling the data plane from a multi-instance control plane [59]. While Iqbal et al.

surveyed real-time traffic frameworks, they observed that most frameworks lacked

built-in traffic intelligence, especially in dynamic topologies [60].

2.5.3 Traffic Management and Intelligent Integration

As network traffic became increasingly complicated, more intelligent SDN

frameworks were created. Siddiqui et al. [61] proposed SmartSDN, which integrates

deep packet inspection (DPI) for traffic classification through a plug-in module for

ONOS. Mahmood and Hassan [62] proposed AIFlow, which is a traffic prediction-

based framework for congestion avoidance. Nguyen et al. [63] evaluated multiple

frameworks, including OpenDaylight, ONOS, and Ryu, to compare their ability to

accommodate video streaming and VoIP workloads. Thapa and Lee [64] put forward

QoS-SDN, an SDN framework that dynamically allocates bandwidth based on real-

time flow analysis.

2.5.4 Framework for Emerging Environments

As SDN has been adopted in edge, IoT, and 5G networks, several frameworks have

been developed to address new challenges, including latency, mobility, and

distributed intelligence. Rahman et al. [65] proposed Edge Flow, a distributed SDN

framework that incorporates controller placement methods for edge computing. Zhao

and Wang [66] introduced MobSDN, an optimized architecture for mobile and

vehicular networks with adaptive controller synchronization. Alzahrani et al. [67]

benefited from asset-based decision-making over reputation-based decision-making

in a distributed SDN architecture by developing SecuSDN, which utilized blockchain

to enforce secure policy compliance in multi-domain architectures. Qureshi and Tariq

[68] presented Green SDN, an energy-aware framework designed to minimize

controller overhead in both physical and virtual power-constrained networks. Tan et

al. [69] not only presented AICtrl, a modular SDN framework that resembles AIB-

CTRL in comparison to various AI-based SDN frameworks, but also facilitated

federated learning-based decision-making in multi-cloud environments. Bhardwaj

23

and Kapoor [70] introduced Hybrid QoS-SDN, which incorporated statistical and AI-

based mechanisms for QoS optimization in IoT-SDN deployments. Chen et al. [71]

conducted a benchmark study across 12 frameworks and identified the most

significant gap as the differing approaches to support dynamic topologies.

2.5.5 Recent Advances in Cross-layer and Self-optimizing

Frameworks

Current frameworks focus on the convergence of SDN facilities with intelligent

optimization in cross-layer approaches. Gupta et al. [72] introduced CrossSense, a

controller-centric framework that incorporates application-level metrics into flow-

based traffic decisions. Ahmed and Sinha [73] proposed AutoSDN, a self-learning

controller framework that modifies the flow rules based on historical congestion

metrics. Iqra et al. [74] introduced Fail-Safe-SDN, which implements predictive

algorithms to reroute traffic based on the forecasting of link failures. Bai and Yu [75]

proposed Quantum SDN, which investigated the potential of integrating quantum

encryption in SDN-based control planes for ultra-secure networks. Liu and Zhou [76]

surveyed a sample of 25+ frameworks and concluded that, although the intelligence

of traffic has improved, the flexibility of controllers, performance benchmarking, and

scalability across topologies continue to be areas of focus.

The review of the frameworks presented above indicates that we are incrementally

maturing the architecture of the frameworks, most notably in the modularity of

controllers and the integration of AI. However, no out-of-the-box solution provides

robust traffic analysis, ensures optimal performance, and adapts to various network

conditions. The research proposes to reconceptualize the gaps in current frameworks

by developing a scalable, traffic-aware SDN framework with intelligence at the

controller layer that accommodates dynamic topologies.

Table 2.5: Comparative Analysis of SDN-Based Frameworks

Yea

r

Frame

work /

Study

Name

Authors Use Case

Domain

Evaluatio

n Method

Notable

Outcome

Key

Features

Limitations

/ Focus

2018 SDN

Survey

&

Archite

cture

Kreutz et

al.[52]

General

Architecture

Literature

Review

Foundational

SDN

layering and

modular

concepts

Defined

layered

SDN

architect

ure

No focus on

performance

or

scalability

2018 SDN

Contro

ller

Survey

Nunes et al.

[53]

Controller

Design

Survey &

Compariso

n

Clarified

controller

structures

Compara

tive

controlle

r analysis

No real-time

load testing

24

2019 ONOS

Securit

y

Extensi

ons

Kassler et

al. [54]

Security Prototype

&

Simulation

Improved

real-time

threat

detection in

ONOS

Anomaly

detection

in SDN

Security-

focused, not

traffic

optimization

2019 Modul

ar

SDN

Contro

l

Kim &

Feamster

[55]

Scalability Simulation Flexible

modular

controller

deployment

Modular

control

logic

Scalability

untested

2020 Hyper

Flow

Tootoonchi

an &

Ganjali

[56]

Distributed

Control

Emulation DistributYet

logically

centralized

control

Avoids a

single

point of

failure

Overhead

for state

sync

2020 DynaS

DN

Arslan et

al. [57]

Adaptive

Control

Emulated

Network

Load-based

dynamic

control

regions

Dynamic

controlle

r

regioning

Tested only

in simulated

setups

2020 FlowV

isor

Evalua

tion

Zhang et al.

[58]

Network

Slicing

Simulation Enforced

flow space

isolation for

multi-

tenancy

Supports

tenant-

level

isolation

High

resource

consumptio

n in peak

loads

2021 FlexiS

DN

Raza &

Khokhar

[59]

Elastic

Topologies

Simulation Adaptable

control plane

elasticity

Dynamic

topology

responsiv

eness

No real-time

reconfigurat

ion

2021 Real-

Time

Contro

ller

Analys

is

Iqbal et al.

[60]

Performance

Benchmarki

ng

Empirical Comparative

real-time

controller

analysis

Benchma

rked

ONOS,

Ryu, and

Floodlig

ht

No AI

integration

2022 SmartS

DN

Siddiqui et

al. [61]

AI & DPI Simulation Traffic

visibility

through DPI

DPI-

enabled

smart

routing

Introduced

packet delay

2022 AIFlo Mahmood AI for Simulation Traffic load AI- Adaptability

25

 w & Hassan

[62]

Prediction balancing

using AI

assisted

traffic

routing

to diverse

networks

2022 Contro

ller

Compa

rison

Nguyen et

al. [63]

Multimedia

QoS

Experimen

tal Setup

Multimedia

(VoIP,

Video)

controller

performance

Performa

nce-

focused

metrics

Narrow

scope (only

multimedia

flows)

2022 QoS-

SDN

Thapa &

Lee [64]

Quality of

Service

Simulation Adaptive

bandwidth

allocation

Real-

time

resource

manage

ment

Scalability

not tested

2023 EdgeFl

ow

Rahman et

al. [65]

Edge SDN Simulation Reduced

latency

through

edge-level

decisions

Edge

computin

g

integratio

n

Policy

complexity

2023 MobS

DN

Zhao &

Wang [66]

Mobile

Networks

Simulation Controller

sync in

mobile

scenarios

Sync

protocols

for

mobility

Not optimal

for static

networks

2023 SecuS

DN

Alzahrani

et al. [67]

Security Blockchain

Simulation

Immutable

policy

enforcement

using

blockchain

Decentra

lized

security

rules

Latency in

validation

2023 GreenS

DN

Qureshi &

Tariq [68]

Energy

Efficiency

Simulation Power-aware

controller

design

Energy-

saving

control

distributi

on

Performance

trade-offs

2024 AICtrl Tan et al.

[69]

AI with

Federated

Learning

Simulation Distributed

learning in

SDN

Federate

d AI

training

in SDN

High

training

complexity

2024 Hybrid

QoS-

Bhardwaj

& Kapoor

QoS with

ML

Lab-Based

Setup

Intelligent

QoS through

Multi-

layer

Controlled

environment

26

 SDN [70] ML &

statistics

QoS

handling

only

2024 SDN

Bench

markin

g

Chen et al.

[71]

Controller

Performance

Empirical

Benchmar

ks

Evaluated 12

controllers

across

benchmarks

Extensiv

e

controlle

r

performa

nce

insights

No hybrid

cloud

scenarios

2025 CrossS

ense

Gupta et al.

[72]

Cross-Layer

SDN

Simulation Dynamic

traffic tuning

using cross-

layer

feedback

Multi-

layer

coordinat

ion

Latency in a

feedback

loop

2025 AutoS

DN

Ahmed &

Sinha [73]

Autonomous

SDN

Reinforce

ment

Learning

Adaptive

rule

optimization

via RL

Self-

tuning

network

behavior

Slow

learning in

unpredictabl

e traffic

2025 FailSaf

e-SDN

Iqra et al.

[74]

Reliability /

Failure

Predictive

Modeling

Rerouting

before

predicted

failure

Preempti

ve failure

manage

ment

Needs high

accuracy of

models

2025 Quantu

mSDN

Bai & Yu

[75]

Secure

Traffic

Control

Quantum

Simulation

Quantum-

safe traffic

routing

Quantum

encryptio

n in SDN

Expensive

hardware

2025 Meta-

Analys

is

Liu &

Zhou [76]

Comparative

Study

Meta-

Analysis

Identified

gaps across

25

frameworks

Synthesi

zed

trends

from

2018 to

2025

No

experimenta

l validations

2.6 Research Gaps

Despite the significant progress in SDN-based traffic management, several

limitations persist in existing studies and frameworks. This research aims to address

the following key gaps identified in the recent literature:

27

1. Comprehensive Review of Existing Solutions: Lack of Unified Traffic Analysis
Frameworks using Modern Controllers

• While recent works like CrossSense [72] and AutoSDN [73] introduced advanced

traffic tuning and autonomous rule learning, they do not integrate end-to-end traffic analysis

with controller-specific performance feedback.
• Existing frameworks often focus either on the controller’s learning capability or

traffic visibility, not both, creating a disconnect between traffic behavior and

controller adaptability.

2. Limited Evaluation of Controller Performance in Custom or Realistic Topologies

• Studies such as HybridQoS-SDN [70] and SDN Benchmarking [71] emphasize

controller performance but use generic or lab-constrained topologies.

• There is a gap in frameworks that design and evaluate custom network

topologies tailored to dynamic traffic analysis needs, particularly using open-

source controllers like Ryu.

3. Absence of Cross-Comparative, Executive-Driven Evaluation Models

• Although Meta-Analysis by Liu & Zhou [76] reviews over 25 frameworks and

identifies performance patterns, it lacks hands-on experimental validation using

key execution parameters (e.g., throughput, delay, jitter).

• No current study bridges the gap between literature-wide synthesis and

controller-specific, real-time experimental evaluation.

4. Underutilization of Lightweight, Open-Source Controllers for Real-Time Traffic

Optimization

• Most recent frameworks [75] involve heavy computational setups or proprietary

elements that hinder reproducibility and scalability.

• A practical, lightweight framework using the Ryu controller is needed, which

supports rapid prototyping and real-time flow control.

5. Limited Focus on the Interplay between Topology Design and Traffic Pattern

Variability

• Works like FailSafe-SDN [74] and GreenSDN [68] look into fault resilience and

energy efficiency, but they do not explore how traffic-aware topology

adjustments can improve performance, especially under dynamic conditions.

2.7 Discussion and Overall Analysis

The literature has been uniformly arranged under six primary categories to cover

different aspects of SDN and its role in intelligent traffic analysis. These categories

are: (1) SDN architectures and controllers; (2) traditional and SDN traffic analysis

methodologies; (3) optimization by network topology design in the context of traffic

performance; (4) strategies that optimize with respect to the SDN controller

framework-based architecture; (5) benchmarking between existing frameworks; and

(6) research gaps.

It is found that SDN provides a robust, centralized, and programmable network

28

control paradigm, whereby notable controllers such as Ryu, ONOS, and

OpenDaylight offer extensive functionalities for flexible network manipulation.

However, more research is based on static topology analysis instead of real-time

traffic and topology changes.

Nowadays, SDN traffic analysis is shifting away from packet- and flow-level

analysis to more intelligent controller-driven approaches. Moreover, most models are

not well-integrated with topology-awareness, so they are less valuable in cases such

as frequent topology changes and dynamically varying traffic loads.

2.8 Summary of challenges and solutions

The literature review thoroughly reviewed existing state-of-the-art methods and

frameworks related to Software Defined Networking (SDN), controller-based

performance mechanisms, topology designs, and monitoring techniques. The

comparative literature review demonstrated that SDN-related performance

optimization has progressed significantly in each of these areas; however, a

comprehensive framework that integrates intelligent monitoring, dynamic controller

placement, and topology-aware analysis was not found in any of the literature. This

chapter has therefore helped shed light on key areas of research gaps and aided in the

development of the Ryu-based intelligent traffic analysis framework. Below is a

summary of the considerable challenges identified and the potential solutions

proposed:

1. Limited Topology-Aware Traffic Monitoring

a. Problem: Most current SDN packet monitoring tools utilize static or

broadly applicable topologies that fail to adapt to the network context or

to reflect real-time traffic behavior dynamically.

b. Proposed Solution: The thesis proposes a topology-aware packet

profiling mechanism, which aligns packet flow management with the

underlying network structure. Specifically, custom topologies were

designed and tested for their impact on effective traffic monitoring

performance.

2. Lack of Integration between controller logic and traffic behavior

a. Problem: Multiple frameworks do not align the logic of SDN controllers

intelligently with real-time traffic behavior, resulting in inefficient flow

rule installations and slow responses.

b. Proposed Solution: A Ryu-based intelligent traffic analysis framework

has been created that combines traffic data collection, flow rule handling,

and policy enforcement so the controller can provide informed decisions

based on real-time profiling.

3. Insufficient Evaluation Metrics and Realistic Scenarios

a. Problem: Most studies offer a narrow performance evaluation based on a

couple of metrics that do not simulate real-world traffic scenarios.

29

b. Proposed Solution: The thesis will use a broad set of evaluation

parameters compared in various conditions to evaluate the performance of

the framework more holistically.

4. Static Controller Placement and Lack of Adaptive Flow Control

a. Problem: A static deployment of SDN controllers or a single-controller

development restricts adaptability and a quick response to changes in the

network.

b. Proposed Solution: This proposal includes an intelligent approach to

controller-based traffic analysis in which the controller changes flow

entries and adapts to demands concomitant with an understanding of the

traffic impacts of the network topology.

5. Absence of Benchmarking with Modern SDN Frameworks

a. Problem: Various existing studies do not benchmark their outcomes

against strong baseline models, making it laborious to evaluate the validity

of their performance assessments.

b. Proposed Solution: The framework proposed is empirically compared and

contrasted against recently published highly cited SDN-based traffic

monitoring models, demonstrating improvements in efficiency, reductions

in packet loss performance, and enhanced adaptability.

6. Lack of Modular, Scalable Framework Designs

a. Problem: Numerous systems that exist today are monolithic and are unable

to extend or scale over different network environments modularly.

b. Proposed Solution: A modular framework is designed with clearly defined

functions for traffic analysis, flow control, and controller integration for

future enhancements and scalability.

2.9 Chapter Summary

The chapter provides a thorough review of the most recent literature on SDN, with an

emphasis on traffic analysis, network topology design, and controller optimization. It

summarizes the development of SDN architectures, including the concept of control

plane–data plane separation, and describes the key role played by controllers, such as

Ryu, in enabling programmability and centralized administration. The analysis

covers various networking tools and approaches used for analyzing network traffic

(both classic and SDN networks), including their strengths and limitations in terms of

scale, adaptability, and accuracy.

The chapter also examines how network topology impacts the efficiency of traffic

monitoring. It highlights that a significant portion of previous studies fail to

incorporate topology-aware approaches, which account for various changes in the

network. It also investigates SDN controller-based performance optimization

methodologies that trade-off between the integration of flow monitoring logic and

traffic control policies. A comparative analysis of available frameworks also

indicates that, in many cases, this progress is limited, and solutions exhibit

incomplete benchmarking coverage or are not modular enough to facilitate on-the-fly

adaptation.

30

The research activity carried out so far presents relevant limitations, which justify the

emergence of gaps, such as the lack of topology-aware, intelligent frameworks, the

limited use of advanced monitoring techniques, and the evaluation of different

performance metrics. These results define the research gap and demonstrate the

justification for our proposed Ryu-enabled intelligent, topology-aware traffic analysis

framework, which mitigates the limitations encountered so far through its adaptive

design and comparative performance benchmarking.

31

CHAPTER 3

TOPOLOGY-AWARE SDN ENVIRONMENT PREPARATION

AND TRAFFIC PROFILING STRATEGY

In this section, we describe the structured approach to building the test setup for our

proposed SDN-based traffic analysis framework. The design concept begins by

establishing a consistent research method that aligns with the goals outlined in

previous chapters. It subsequently determines the tools, simulation, and control

platforms that require support for the specific functionalities addressed. Of these,

particular weight is given to the choice of the Ryu controller due to its high level of

flexibility and ease of integration, as well as its demonstrated ability to monitor

traffic in real-time and manage flow.

With the technology stack set up, attention moves to building a realistic but flexible

SDN network topology. The topology should be able to embody various traffic

patterns, make flow control policies meaningful, and conduct the performance

evaluation of the framework across different types of networks [77]. As a result,

traffic modeling is an essential part, providing the capability to simulate various

scenarios, including high-load configurations, dynamic flow alterations, and

application-oriented requirements [78-79]. This ensures that the experimental

environment is as realistic as possible in terms of practical deployment scenarios.

At the end of this chapter, performance parameters and testing methods will be

introduced to validate our proposal. Observables like latency, throughput, jitter, and

packet loss are recognized as providing a comprehensive picture of system behavior.

We will also compare our results to the state-of-the-art, ensuring that the performance

is both internally consistent and relevant in a broader research context. This chapter

thus acts as a recipe, taking the form of a stepwise architecture to translate the

research design into a real-life SDN test platform that can be used to facilitate the

experimental and analytical processes of the study.

3.1 Research Design and Methodological Approach

The experimental plan of this study is designed to organize all stages of the work,

including environment setup, execution, and analysis, in a linear manner that can be

easily repeated. Its approach is experimentally grounded and controlled, simulated,

and benchmarked in a topology-aware SDN. Optimizing the network setting. The

32

primary goal is to establish a strict yet flexible network environment, allowing us to

conduct experiments with various traffic behaviors and performance fluctuations

resulting from different controller management approaches [80]. It begins with

describing system requirements and specifying the suitable technologies to fulfill

them. This includes selecting an SDN controller with modular support for custom

monitoring and dynamic flow rule enforcement, as well as APIs required for traffic

reporting and analysis [81]. The Ryu controller is chosen due to its Python

programming language, modular approach, and support for leading-edge simulators,

such as Mininet.

After selecting a controller, the research design proceeds to topology design, creating

alternative network designs that mimic real operational patterns. This encompasses

star, mesh, and hybrid topologies, designed to measure the impact of traffic,

connectedness of nodes, as well as path choice, on system performance [82]. Traffic

generation occurs in parallel via synthetic and application-aware traffic flows that

represent real workloads. The approach also emphasizes the importance of defining

performance metrics at an early stage to obtain coherent and comparable results.

Quantitative results focus on latency, throughput, jitter, and packet loss, whereas

qualitative observations are based on flow analysis and efficiency regarding policy

enforcement [83]. For each scenario, we are testing it in a repeatable manner to

ensure that the observed performance differences are due to the proposed framework

and not to settings outside of our control. This phased, structured approach provides

both the validity and reliability of the findings. The subsequent stages were the

structured methods employed in this study, with an expanded explanation of each

stage.

 Define a structured, repeatable approach for researching and evaluating,

combining simulation, scenario testing, and benchmarking in topology-

aware SDN: To provide the credibility of results, all research follows a

process of activities that goes from design to final assessment. The second of

these methods is repeatable; the same experiment setup can be used as a base

for replication or comparison by other authors. Theoretical coverage and

practicality are also guaranteed by utilizing simulation-based modeling in

combination with scenario testing. A comparative evaluation against state-of-

the-art methods provides insight into the effectiveness of our approach.

 Establish a controlled network but flexible network architecture for

exploring various traffic scenarios and policy implications: It is purposely

in a controlled and flexible setting of the network, which can be fully

controlled. Control enforces the reduction of externalities to maintain

experimental validity, and flexibility enables roll-out of network

manipulations (e.g., topology, link capacity, or controller policy) and

backouts. This two-pronged method allows us to study the effect of different

conditions on network performance without losing consistency.

 Determine the requirements of the system and select technologies that

support monitoring dynamic flow rules. API integration: Before
development, the research project specifies exact requirements for the system,

such as compatibility with standard SDN protocols like OpenFlow. The

33

corresponding simulators, traffic generators, and performance analyzers are

chosen according to these needs. It is also necessary that the selected tools

provide an API that supports custom-developed modules for dynamic traffic

profiling.

 Select Ryu as the SDN controller: It is open source, written in Python, based

on a modular constitution, compatible with Mininet, and well supported by its

community. Its Python implementation eases the burden of developing further

monitoring and control applications, and its compatibility with Mininet

guarantees easy integration into simulation software. The modular design of

Ryu facilitates a fine-grained experimentation with traffic rules, routing

algorithms, and policy enforcement.

 Select Ryu as the SDN controller: It is open source, written in Python, based

on a modular constitution, compatible with Mininet, and well supported by its

community. Its Python implementation eases the burden of developing further

monitoring and control applications, and its compatibility with Mininet

guarantees easy integration into simulation software. The modular design of

Ryu facilitates a fine-grained experimentation with traffic rules, routing

algorithms, and policy enforcement.

 Generate different network topologies that exhibit changes in the traffic

pattern and connectivity: We create various types of network topologies to

assess the flexibility of our solution by using Mininet. Star topology

challenges the network control and low hop count routing of a centralized

network. Mesh topology stimulates densely connected and redundant

networks, combining a full mesh. Hybrid topology trains developmentally

realistic mixed-structure networks. This variety of topologies allows the

method to consider some performance in different operational scenarios

 Realize traffic modeling using both synthetic flows and application traffic

flows to simulate a realistic workload: Traffic generation is an essential

issue in this research. Baseline metrics are tested by creating synthetic traffic

with standard packet generators. At the same time, application-specific flows

imitate real-world networking tasks, such as video streaming, VoIP calls, and

file transfer transactions. This package strikes a balance between theoretical

stress tests and actual performance in practice.

 Predefine performance metrics for consistent evaluation: Performance

testing is based on predefined standard metrics. While latency measures the

time it takes for packets to be sent and received, throughput determines the

rate of data transfer, jitter expresses the variability in delay between packets,

and packet loss evaluates the reliability of the transmission. We pre-define

these measures before testing so that the results can be compared across

various situations and with studies in related works.

 Test all possible scenarios in a controlled way to guarantee the integrity
and reliability of results: At last, each network configuration with a different
traffic pattern is simulated several times under the same circumstances to

34

check if those results hold. By tightly controlling the simulation input, the

study ensures that any performance disparities are attributed directly to a

framework’s capabilities and not to uncontrolled conditions. This ensures that

results are valid and can be replicated.

3.2 Tools, Simulators, and Technologies Used

To develop the proposed topology-aware SDN framework, diverse tools, simulators,

and technologies had to be integrated to provide realistic network topology

construction, traffic analyses, and performance evaluations [84]. We carefully

selected these components based on the SDN paradigm, explicitly targeting the

requirements of real-time traffic visibility, controller decision-making, and flexible

experimentation. The tech stack was modular, scalable, and reproducible, designed to

allow other researchers to replicate or extend the experiments in the future.

We chose the Ryu Controller for SDN control due to its modular architecture based

on Python, generic and abundant control components for the OpenFlow protocol, and

its ability to facilitate rapid prototyping of intelligent traffic analysis modules [85].

Due to its flexibility, Ryu also allowed developers to add custom flow monitoring

logic and traffic control policies to meet the specific needs of their experiments, so it

was the most appropriate controller to implement the intelligent analysis mechanisms

of the proposed framework.

Network simulation and emulation were primarily conducted using Mininet, an

industry-standard network emulator that creates realistic small network topologies for

performance and stress testing with minimal hardware requirements [86]. Features

such as the collaboration between Mininet and Ryu controller provide an

environment for studying the performance of a network under the influence of

various traffic loads, topologies, and flow configurations.

Apart from simulation tools, multiple supporting technologies were included for data

collection, traffic generation, and performance benchmarking purposes. Throughput,

jitter, and latency were measured using Iperf under various conditions, while Ping

was employed for basic connectivity verification and latency testing. Wireshark, a

packet analysis tool, was used to capture and analyze detailed traffic flows, providing

greater depth of packet-level detail. We had to write Python scripts to automate the

execution of experiments, extract performance metrics, and save all data in structured

formats, allowing for further analysis.

3.2.1 Tools and Their Roles in the Research

The proposed framework was implemented and validated using a combination of

software tools and network simulators. All the tools were carefully chosen to meet

the requirements of building a topology for traffic monitoring, performance

measurement, and flow analysis. In our case, the central SDN controller was Ryu,

which enables programmability and modular design to perform the necessary logic

for analyzing traffic [87]. Emulation of real-world network topologies was based on

Mininet, which provided a lightweight yet high-fidelity environment for

experimentation.

35

We used other complementary tools to generate traffic patterns and check

connectivity, such as Iperf and Ping. Wireshark also has a high capacity for deep

packet-level analysis and flow inspection. Additionally, Python scripting was

essential for automating experiments, ensuring reproducibility, and managing a large

amount of performance data. These tools and their contribution to the research

framework are summarised in the following table. Table 3.1 illustrates the

contribution of each tool to establishing a robust experimental environment. Using a

well-integrated stack of simulators and analysis tools, the framework strikes a

balance between realism, scalability, and efficiency, enabling the accurate evaluation

of SDN-based traffic analysis strategies.

Table 3.1: Tools and Simulators Utilized in the Proposed Research

Component

Version /

Specificat

ion

Category
Purpose /

Usage

Role in

Research

Objective 2

Mininet

v2.3.0

Network

Emulator

Creation of

custom

virtual

topologies

Emulated

scalable SDN

network for

traffic

analysis

Ryu

Controller

v4.34

(Python-

based)

SDN

Controller

Flow

control and

traffic

monitoring

via

OpenFlow

Deployed to

manage

traffic flows

dynamically

Open

vSwitch

(OVS)

v3.1.1

Virtual

Switch

Emulation

of

OpenFlow

switches in

Mininet

Acted as the

data plane

component in

the network

topology

iPerf

v3.13

Traffic

Generator

Performanc

e testing for

UDP/TCP

bandwidth

Simulated

various traffic

loads

Wireshark

v4.2.1

Packet

Analyzer

Monitoring

and

analyzing

packet-level

data

Verified

packet flow

and latency

during

simulations

36

Python

v3.10

Scripting

Language

Script

automation,

traffic

monitoring,

and

controller

interaction

Automating

controller

logic and

topology

setup

Ubuntu OS

22.04 LTS

Operating

System

Hosting the

entire SDN

environment

Stable

platform for

Mininet, Ryu,

and other

tools

3.2.2 Technologies used in the Proposed Framework

Apart from the tools and simulators, the research absolutely depended on the

fundamental technology and protocols that can support the entire functionality of the

framework. As for standard communication between the SDN controller and the

actual switches lying underneath, the OpenFlow protocol played a crucial role as the

primary standard for installing flow rules and monitoring traffic [88]. This

experiment was developed on Linux-based environments, predominantly the

recommended environments due to their stability, open-source support, and enhanced

networking features.

Additionally, SDN topology design in Mininet was utilized to create custom Mininet

topologies that represent specific real-world scenarios, allowing for the evaluation of

the proposed solution's performance under various conditions. We also establish a

systematic traffic profiling methodology to monitor flow characteristics, record

essential parameters such as latency, throughput, jitter, and packet loss, and provide a

foundation for performing adaptive traffic profiling. The table below provides a

summary of these technologies and their interaction with the framework.

Table 3.2 highlights the backbone technologies that enabled the framework to

function. The research provided a comprehensive and future-proof SDN-based

experimentation setup by integrating various components, including OpenFlow and

Linux environments, customized topology design, and high-end traffic profiling

methods.

Table 3.2: Core Technologies and Protocols Applied in the Framework

Technology Application in Framework Benefit to Research

37

OpenFlow

Protocol

Communication between the

Ryu controller and network

switches

Standardized control-

plane/data-plane

separation

Linux OS
Base platform for running

Mininet and Ryu

Open-source, stable

networking stack

SDN Topology

Design

Custom topology creation in

Mininet

Allows testing in different

real-world-like scenarios

Traffic

Profiling

Flow-based traffic

monitoring and analysis

Enables accurate

performance evaluation

and load balancing

3.3 SDN Controller Selection

The SDN controller acts as the SDN ecosystem’s brain, where control-plane

intelligence resides and is responsible for visibility of flow rules on the data-plane

switches. In traffic analysis and monitoring frameworks, the choice of an appropriate

controller is crucial because the framework's features, flexibility, and overall

performance are deeply dependent on the functionalities of the selected controller.

Over the last decade, numerous controllers have been proposed, including ONOS,

OpenDaylight, Floodlight, and Ryu, each with varying architectural designs,

deployment models, and use cases. For this research, we have chosen Ryu as the

selected controller because it is lightweight in nature, has a modular structure,

supports programmability using Python, and offers easy integration capabilities with

traffic analysis frameworks.

Comparison of evaluations proves very favorable for ONOS with respect to carrier-

grade environments, which require extensive customization, high availability, and

scalability. Simultaneously, ODL is designed for massive enterprise Greenfield

setups requiring multiple northbound and southbound integrations. Both are feature-

rich, but their heavyweight architectures render them ineffective for research-oriented

traffic monitoring and experimentation that can benefit from flexibility and fine-

grained programmability. By contrast, Ryu is highly suitable for research due to its

academic and experimental nature, as it is simple to install, well-documented, and

supports direct Python scripting for path control, topology control, and packet

manipulation. For these attributes, Ryu is the most suitable option for creating the

topology-aware intelligent traffic analysis framework proposed in this paper.

Another important reason we chose Ryu is its clean, modular, and extensible

architecture. Ryu offers basic protocol support (OpenFlow 1.0–1.5) and is extensible

to add further monitoring and traffic profiling features through its modular structure,

which can be used to add bespoke applications. This research aimed to design

adaptive mechanisms to monitor traffic. In addition to these features, Ryu seamlessly

integrates with network emulators such as Mininet, enabling us to validate the

designed experimental topologies in realistic environments before scaling them for

38

larger deployments. By selecting Ryu, this research ensures a balance between

lightweight operation, programmability, and research flexibility, which are not as

easily achieved with ONOS or ODL. Therefore, Ryu is not just a convenient choice

but a strategic one that aligns with the methodological requirements of this study. The

following are the key points supporting the Ryu controller selection:

 Lightweight and Modular Architecture: Ryu is designed to be lightweight and
modular, which means it can easily be added to or removed from. Ryu is

relatively simple and can be easily integrated with a custom research
framework, such as traffic analysis/profiling, unlike rooted controllers [89].

 Easy to Program: Ryu and all of its components have been written entirely in
Python, so we can easily program any flow rules and packet-handling

applications [90]. This enables rapid prototyping and deployment of novel

traffic monitoring algorithms with minimal configuration overhead for running
experiments.

 Research Tool Compatibility: Ryu easily integrates with Mininet, Wireshark,
and performance analyzers, which makes it a perfect fit for research and
experimental environments. It is interoperable with standard network emulation

tools, simplifying and accelerating reproductive testing of topology-aware

designs [91].

3.3.1 Ryu Controller Architecture and Its Relevance to the

Proposed Framework

The Ryu controller in SDN has three major layers in its architecture: application

layer, control layer, and physical layer [93]. At the application layer, northbound

APIs facilitate interaction between the controller and operators, OpenStack, and user

applications. These parts define top-level network needs like policy implementation,

traffic analysis, and resource distribution. The traffic analysis module will also live at

this layer to make requests for real-time network statistics from the controller and

analyze the traffic.

This architecture is centered on the control layer, which is controlled by the Ryu

controller. This comes with integrated firewalls and custom Ryu applications to

actively implement networking policy. It includes libraries for packet parsing, flow

management, and topology discovery, and comes with support for multiple

southbound protocols, OpenFlow being the most notable. This layer will serve as the

foundation for the novel traffic analysis framework proposed in the research, as well

as for the designed applications implemented to facilitate intelligent traffic

monitoring, anomaly detection, and optimized routing, thereby ensuring improved

overall network performance and security.

The infrastructure layer at the physical device level, as defined in Figure 3.1,

comprises data forwarding devices, OpenFlow switches, and other network devices

that form the network. The devices do not individually route data; instead, they apply

flow rules that the controller dynamically installs using southbound APIs. This layer

serves as the experimental testbed for the research framework, assessing the

39

performance of the proposed solution. Once the robust Ryu controller is deployed on

such devices, we can systematically illustrate and demonstrate how the framework is

practical in terms of traffic load management, network lifetime, and security.

Figure 3.1: Ryu Controller Architecture

3.3.2 Three-Plane SDN Architecture using Ryu Controller

In the three-plane architecture, SDN is deployed using the Ryu controller, as shown

in the figure. The Ryu Controller also utilizes deep packet inspection, as the

application, and describes how Ryu helps the network become intelligent. Ryu is the

Brain of the network, controlling communication between the application plane and

the data plane, and providing flexibility, programmability, and topology-aware traffic

analysis.

The Application Plane, where numerous SDN applications, such as bandwidth

monitoring, topology viewing, and flow analysis applications, utilize NBIs to

communicate with the network. Every application communicates with NBI drivers

and agents, allowing higher-level policies or monitoring tasks to be passed through to

the control plane. This architecture enables modularization, research functions can be

developed independently while still sharing the underlying SDN infrastructure.

The Control Plane is the brain of the SDN environment; the Ryu controller represents

the control Plane. In this setup, the index of packet flow rules is handled by the Ryu

controller, Network state data is collected, and Communication between applications

and the data plane is ongoing. The Ryu controller uses NBIs to communicate

upwards with applications and CDPI to communicate downwards with switches. The

modular nature of the Python-based architecture enables the integration of traffic

40

monitoring functions, making it highly suitable for experimental research

environments, such as the one created in this thesis.

In the Data Plane, OpenFlow supports packet forwarding according to rules deployed

by the Ryu controller. Every host node (h1, h2, h3, h4) connects to switch ports (s1-

eth1, s1-eth2, s1-eth3, s1-eth4) and has its own individual forwarding engine, making

intelligent decisions in packet forwarding. The processing function of integrating

these flows ensures that adaptive traffic can be managed even in adverse situations.

This architecture supports policy and control separation through forwarding, allowing

for the separation of policy and control among devices. Consequently, Ryu offers

real-time traffic visibility at a granular level and precise control through its

architecture.

The architecture depicted in Figure 3.2 is evidence of why Ryu was chosen in the

context of this research. It is also modular, with the ability to have traffic monitoring

modules at the application plane, and is integrated transparently with OpenFlow,

allowing flows to be managed at the data plane. Ryu provides the right balance

between lightweight programmability and heavyweight flow control, facilitating the

topology-aware adaptive traffic monitoring framework proposed in this thesis.

Figure 3.2: Ryu Controller-Based SDN Architecture

3.3.3 Comparative Analysis of SDN Controllers for Traffic

Monitoring

41

The following Table 3.3 presents a detailed comparative analysis of widely used

SDN controllers. Each parameter has been elaborated to highlight its role in traffic

analysis, topology awareness, and custom framework implementation, which are

central to the objectives of this research. Compared to the rest of the SDN controllers,

the comparative analysis proves Ryu is the best-suited controller for research-based

SDN experiments, particularly on topology-aware intelligent traffic monitoring.

Since python APIs are highly programmable and feature built-in real-time traffic

monitoring and dynamic topology flexibility, they are most efficient for

implementing our suggested framework. Both ONOS and ODL are excellent

production-quality controllers, but they are also very complex and add overhead for

academic-level experimentation. For this work, lightweight controllers like

Floodlight and Beacon do not provide the monitoring visibility and control flexibility

needed. On the other hand legacy controllers such as POX and NOX are outdated

now for modern day SDN research.

Therefore, this proposed framework uses Ryu as the controller due to its research-

oriented functionality and integration and adaptable features. This establishes a

strong basis for the verification of the new methods proposed in traffic analysis, load

balancing and security improvements analysed.

Table 3.3: Performance Comparison of SDN Controllers with Respect to Research-Oriented

Functional and Architectural Parameters

Controller Progra

mmabi

lity

(API/L

anguag

e)

Real-

Time

Traffic

Monitori

ng

Scalability

in

Emulated

Environm

ents

Topology

Awarenes

s &

Adaptabili

ty

Simula

tion &

Integra

tion

Tools

Suppor
t

Suitability

for

Custom

Traffic

Framewor

ks

Overall

Suitabili

ty for

Propose

d Work

Ryu High –

Python

APIs

allow

rapid

prototypi

ng, easy

scripting,

and

strong

commun

ity

support.

Native

support

via

OFStats,

enabling

accurate,

real-time

traffic

collectio

n and

flow-

level

statistics.

High

(Mininet)

–

scalable

for small

and

medium-

scale

testbeds,

ideal for

iterative

research

validatio

n.

Dynamic

topology

reaction

adapts to

frequent

changes in

links/nodes

and is

critical for

IoT and

SDN-

based

monitoring

.

Excelle

nt –

integrat

es

seamles

sly

with

Mininet

,
Wiresh

ark,

and

Scapy

for

packet

capture

, traffic

injectio

n, and

debugg

ing.

Excellent –

complete

flow logic

control,

enabling

implement

ation of

customized

traffic

analysis

and

security

policies.

Best

suited –

perfectly

aligns

with this

research

objective

of

intelligen

t

topology

-aware

traffic

monitori

ng in

SDN.

ONOS Moderat Plugin- High, Good static Good – Good, but Suitable

42

 e – Java based productio adaptation, support requires for large-

APIs are monitori n-scale; weaker for s P4 advanced scale

plugin- ng excellent rapid and setup – testbeds

based support is for dynamic Mininet increases but not

but not as carrier- changes. with developme optimal

require lightweig grade extensi nt time for for

more ht as deployme ons, but custom lightweig

configur Ryu. nts but adds framework ht

ation heavy for setup s. research-
effort. academic comple focused

 research. xity. deploym
 ents.

OpenDayli Complex Limited Very Limited Good – Fair – Complex

ght (ODL) – Java, native high in adaptabilit ODL- suited for for
 OSGi- monitori hybrid y in LAB, production, academic
 based, ng, and cloud dynamic L2Swit less research,
 steep depends environm topologies; ch, but efficient misalign
 learning on ents. better for require for ed with
 curve. external stable s academic the
 plugins. environme advanc prototypes. lightweig
 nts. ed ht needs
 integrat of this
 ion. work.

Floodlight Lightwei Limited Moderate Weak with Basic Limited – Prototyp
 ght – monitori (lab- dynamic Mininet lacks deep e use
 Java is ng, only scale), topologies, support flow-level only,
 less basic cannot less , lacks control. unsuitabl
 flexible flow scale to resilient to advanc e for
 than statistics. larger frequent ed advanced
 Python. IoT-like changes. integrat traffic
 environm ion analysis
 ents. tools. research.

POX Legacy Minimal Low – Poor Educati Minimal Obsolete
 Python- monitori deprecate adaptabilit onal capability. for
 based, ng, d, not y, cannot only – research,
 no active outdated scalable. handle Mininet not
 support. support dynamic demos. considere
 for topologies. d.
 statistics.

NOX C++ – Very Low – No Almost Not Legacy
 Obsolete limited, unsuppor adaptabilit no applicable. only,
 , hard to lacks ted, no y, static toolcha unsuitabl
 extend. real-time scalabilit only. in e for
 monitori y. support proposed
 ng. . research.

Beacon Java – Basic Moderate Static Limited Fair – Mid-
 Threade monitori scalabilit topology is integrat requires level
 d, mid- ng y, weak in ion manual experime
 level support is functiona dynamic with tuning. ntation is
 program insufficie l only in environme externa not
 mability. nt for in- mid-scale nts. l tools, sufficient
 depth emulatio minima for the
 traffic ns. l proposed
 profiling. commu framewo
 nity rk.
 support

 .

43

3.4 Network Topology Construction

In recent years, network traffic has grown exponentially, which makes the modern

network management and security more difficult than ever. The growth is largely due

to the increasing number of IoT devices, 5G networks going live and cloud-based

apps and services becoming more popular. Traffic was more predictable in the past,

and it was possible to manage networks with static policies. But today, due to the

various and dynamic nature of digital infrastructures these are large scale tra c

patterns inhomogeneous. This shift puts immense stress on existing monitoring and

management systems, exposing their ills and underscoring how critical it is to invent

new ways of doing things.

An appropriate network topology is essentially required to prove the proposed Ryu

based intelligent traffic monitoring model. In an SDN, the topology describes the

high-level pattern of connections between switches and hosts as well as links that

determines how efficiently traffic can be discovered, analyzed and controlled.

Besides, for this study, the topology has been intentionally constructed to make a

compromise among scalability, adaptability and reality so that the performance under

various traffic rates and different network scenarios can be evaluated.

We have implemented the described network topology in Mininet, a popular emulator

and has an option to work closely with Ryu controller. The topology has a three-level

architecture, including core, aggregation and access layers, similar to current data

center and IoT applications. More significantly, mass in balance leads to superfluous

links, bottleneck paths and heterogeneity in flow; which mimics the way packets fl

owing through real systems under regular to adverse conditions (e.g., link failures,

congestions) where impact of distributed sources are taken into account.

For this research, the topology has been designed with three primary considerations:

 Scalability – the topology should support the addition of more nodes and

switches to accommodate extended experiments.

 Modularity – the architecture must allow independent testing of applications

such as bandwidth monitoring, load balancing, and topology discovery.

 Realism – the constructed topology should resemble practical SDN

deployments while still manageable in a simulation/emulation environment.

Accordingly, a star-like topology with one central OpenFlow switch connected to

multiple host nodes has been adopted. This structure simplifies traffic flow analysis

while enabling comprehensive monitoring of forwarding rules and controller

responses.

3.4.1 Selection of Simulation Environment

Topology creation was modeled with Mininet, an open-source network simulator

commonly utilized in SDN research. Mininet creates a realistic virtual network,

running real kernel, switch and application code, on VM, in seconds. In this study

44

Mininet is chosen because it has the following advantages:

 It features OpenFlow 1.3 that meets the needs of complex flow routing.

 It is designed to be part of a control application using the Ryu controller, and

provides an easy way for stateful data plane extension in openflow networks.

 It includes built-in utilities to ensure reliability and availability such as ping and

iperf.

 It provides the flexibility to define custom topologies using python scripts which is

essential in testing smart traffic analysis frameworks.

3.4.2 Node and Switch Configuration

The experimental environment consists of a single OpenFlow switch (s1) which is

compliant with the OpenFlow version 1.3 standard. The host nodes (h1–h4) are

linked to the switch connected through virtual Ethernet links (s1-eth1 and s2-eth

respectively). All hosts have one Ethernet interface (h1-eth0 to h4-eth0).

The reason behind choosing 4 hosts is to generate controlled traffic flows between

source-destination pairs. This provides a means for performance-related statistics like

latency, throughput and flow establishment time to be observed under diverse

degrees of traffic.

Each host node plays the roles of:

 h1 and h2 are traffic source nodes, which produce flows.

 h3 and h4 act as receivers, they measure channel throughput and monitor

packet reception simultaneously.

 Each node contains a switch whose role is buffered packet and frame engines

to deal with packets and interaction between the host and the switch.

It is the OpenFlow switch, which operates as a mediation forwarding mechanism in

charge of receiving flow rules from the Ryu controller. It relays packets according to

the rules installed and keeps flow tables for flow control.

3.4.3 Controller Integration

The Ryu controller (version 4.34) has been deployed at the control plane. Ryu is a

Python-based open-source SDN controller that supports rapid prototyping of network

applications. It communicates with the data plane through the CDPI using the

OpenFlow 1.3 protocol.

The controller is configured to run on localhost (127.0.0.1) with the default port

6633, ensuring seamless connectivity with the Mininet emulation. It maintains a

global topology view, installs flow-mod rules in the switch, and handles packet-in

events triggered when a packet does not match existing flow entries.

45

The choice of Ryu is motivated by the following factors:

 Flexibility – Ryu supports dynamic addition of Python modules, making it

suitable for implementing custom traffic analysis algorithms.

 Simplicity – its modular architecture allows easy integration with Northbound

Interfaces (NBIs).

 Performance – Ryu has been shown to achieve lower latency in flow setup
compared to other controllers in small-to-medium topologies.

3.4.4 Topology Validation and Testing

Several validation tests were carried out to check that the topology built works as

expected:

 Connectivity Testing: Through “pingall” command in Mininet, end-to-end

connectivity between every hosts has been established.

 Bandwidth Evaluation – A tool iperf was used to as the means to measure
bandwidth between endpoints for different traffic types.

 Latency Measurement–Round-trip times were taken to verify if the controller
is reactive in flow installations.

 Failure Scenarios – We simulated link failures to verify the robustness of the

topology and dynamic flow reconfiguration by the controller.

The results of these tests revealed that the topology offers a robust environment for

traffic analysis in general.

3.4.5 Role of the Constructed Topology in Proposed Framework

The experimental environment consists of a single OpenFlow switch (s1) which is

compliant with the OpenFlow version 1.3 standard. The host nodes (h1–h4) are

linked to the switch connected through virtual Ethernet links (s1-eth1 and s2-eth

respectively). All hosts have one Ethernet interface (h1-eth0 to h4-eth0).

The reason behind choosing 4 hosts is to generate controlled traffic flows between

source-destination pairs. This provides a means for performance-related statistics like

latency, throughput and flow establishment time to be observed under diverse

degrees of traffic.

The constructed topology is not merely an experimental setup but the foundation for

the proposed intelligent traffic analysis framework. It provides a controlled

environment where traffic monitoring, load balancing, and security evaluation can be

carried out systematically. Specifically, the topology enables:

 Flow-level monitoring for identifying congestion points.

 Comparative performance evaluation of traditional algorithms versus the proposed

intelligent approach.

 Security testing by simulating attack traffic and observing controller responses.

 Scalability analysis by extending the number of hosts and switches in future

experiments.

Thus, the network topology construction presented in this section forms a critical

component of the research methodology, linking the conceptual framework with

46

practical implementation.

3.5 Traffic Modeling and Flow Management

Traffic modeling and flow control are the core of the proposed SDN-based traffic

analysis framework. SDN architecture decouples the plane of control from the data

forwarding plane in a network, while making it possible to model traffic and make

intelligent decisions on flow management directly at the controller level is an

important enabler for performance assessment and optimization. We model and study

realistic traffic using traffic modeling to capture a wide range of communication

patterns that we see in today’s networks such as the constant streams, bursty

transmissions, high-throughput transfers and latency-sensitive flows. This is to verify

that the proposed system can be easily verified under operational environments

similar to IoT sensor communication, real-time video group/team meeting, bulk

cloud storage data transfers and periodic web accesses.

The experimental traffic is generated in a controlled emulation environment using

Mininet together with iperf and custom Python scripts, which provide fine-grained

control over traffic characteristics such as bandwidth, packet size and flow duration.

The framework effectively captures the dynamic feature of real network behavior by

modeling carefully designed flows of various types, including the constant bit rate

flows for multimedia services, bursty flows for web/IoT-like transmissions, and high

throughput flows with latency guaranty for bulk transfers and low latency flows

which is suitable for interactive applications. These flows are added to the emulated

topology and also tracked in real-time, enabling the controller Ryu to interact with

the network at runtime.

Ryu communicates with the underlying switches, which are OpenFlow-based to

handle flow management. When a switch receives a new flow with no corresponding

rule, it sends the controller a packet-in event. The controller armed with the designed

traffic analysis application processes this request and takes actions based on situation

of priority. These decisions are installed in the switch flow tables by flow-mod

commands that allow the network to adapt to changes on the traffic pattern. This

dynamic mechanism permits packets to be forwarded efficiently and allows the

system to achieve policies supporting higher throughput, lower jitter, and minimal

loss.

The novelty in our work comes from the incorporation of intelligent traffic analysis

mechanism to the Ryu controller. Different from static flow installation, but similar

to the proposed method that is capturing all ongoing flows statistics by means of

OpenFlow messages, including packet count, bandwidth usage, delay and jitter, as

well as packet loss. Those statistics are reactive monitored to catch any kind of

anomalies such as spike in traffic, congestion link or malintent flows. The controller

uses this information to dynamically divert traffic to alternate paths, prioritizes

latency-sensitive applications, or segregates suspect traffic for more in-depth

analysis. It increases flexibility of the network and boost its powers to offer a

consistent quality of service, even in environments varying dynamically and with

limited resources.

47

A variety of monitoring and evaluation tools are embedded for verifying the

efficiency of traffic modeling and flow control within this framework. Performance

indicators are measured by applying iperf and Ryu APIs while throw the packet

inspection is done using Wireshark and Scapy. Furthermore, controlled experiments

such as link losses and recoveries events are performed to verify the time taken for

controller reconfiguration and flow rerouting. The findings show that intelligent

management of flows provides a highly stable network, with lower average latency

and better resource utilization than its traditional counterpart.

The traffic modeling and flow management approach in this study, on which

intelligent and adaptive SDN-based traffic analysis rests, is summarized.

Experimental deployment of the framework, based on visualization and control

interfaces in OpenDaylight controller and consisting of realistic traffic modeling, run-

time flow decisions with Ryu as a controller application, detailed flow-level statistics

collection is used to point that it meets topology-aware traffic monitoring and

resource utilization objectives. In such a way, tightly analyzed traffic generation

based on the estimated network state and adaptive real-time decision-making to

install appropriate flow entries demonstrate the value of our research in constructing

an intelligent SDN environment for modern heterogeneous networks.

3.6 Performance Parameters and Evaluation Criteria

The performance analysis of the proposed SDN-based ITAF has been realized with

respect to a selected set of performance metrics, which are motivated by the most

important objectives pursued in this research work such as efficiency,

responsiveness, credibility and scalability. This is unlike existing works that

frequently evaluate using generic metrics, i.e. the criteria being used in this

dissertation are directly driven by gaps and shortcomings found in state of the art for

similar studies. The performance metrics measured are throughput, end-to-end delay,

the PDR, flow establishment time and controller overhead. All of these are described

in turn, demonstrating their reliance on this research and enriching the findings

within a wider literature base.

The first parameter is throughput that refers to how effective the framework is, by the

amount of data it can transmit from a source to a destination during some time range.

As part of this work, throughput has been measured with Iperf and OpenFlow

counters for obtaining a precise estimate of the data transfer capacity. The higher the

throughput, the strong is the network infrastructure in terms of data processing over

it. The main drawback of the former work is that it does not have enough throughput

especially when the traffic load increases or in dynamic topologies, which may cause

congestion and long haul path deterioration. On the other hand, our Ryu-based traffic

analysis framework shows stable performance in terms of throughput and it can have

achieved high throughput even under stressed condition thanks to the topology-aware

routing and intelligent flow control. This results demonstrate the proposed approach

that achieves and even surpass all other works in terms of efficiency.

The second metric, end-to-end-delay is defined as the amount of time that a packet

takes to move from source node to destination on an average. Delay was measured by

48

our work, using ping-based testing and accurate timestamp monitoring. For these

services, optimizing end-to-end latency is critical; live IoT-sensing, cloud-based

distance learning platforms, and low-latency communication services are realtime.

Previous studies demonstrated that centralized SDN controllers usually introduce

large latencies because they cannot avoid processing overheads, especially in the case

of complex or high-throughput networks. On the other hand, the average delay values

are significantly lower in our proposal since the controller optimally controls flows

and precycles routes according to a traffic analysis that could increase

responsiveness. This comparative advantage also supports the appropriateness of the

developed system for delay-sensitive situations where conventional schemes fail.

The third metric, PDR, measures the reliability as the ratio between received and

transmitted packets. In this thesis, PDR is quantified using switch-level counters and

controller statistics to avoid errors. A higher PDR guarantees that the network can

achieve reliable communication under lossy or high-load scenarios. It has been

shown that the previous SDN-based solutions, including some of those evaluated in

IoT scenarios, were suffering with variable PDRs caused by network churn and

packet dropping. In comparison, the proposed method maintains high PDR

performance all through due to the “knowledge-driven traffic management system”

which is the intelligent system inside of Ryu controller for better path selecting based

on congestion/avoidance. This is evidence that the framework provides enhanced

reliability compared to current systems.

The fourth parameter i.e., flow setup time, measures the speed of response from SDN

controller to new traffic requirements by inserting forwarding rules in the data plane.

Forwarding setup latency has been studied in this paper using OpenFlow Packet-In

and Flow-Mod messages, which give accurate information about the responsiveness

time of the controller. It was shown in current literature that high flow setup times are

a typical bottleneck in SDN systems such as controller Floodlight or ONOS when

heavily utilized. By contrast, the Ryu-based framework introduced in this paper has

lower flow setup latency, primarily attributable to topology-aware traffic analysis that

facilitates faster decision and rule installation. This reduction in setup time provides

flexibility, such as allowing dynamic or large networks to operate without problem.

Besides, controller overhead has been employed as a parameter to show the

scalability of the proposed framework. This measurement looks at CPU and memory

usage of the SDN controller as well as how many events it is able to handle

effectively. Some previous studies have confirmed the limited performance of

controllers owing to the traffic load or network size, leading to dropped packets or

slower response. In this work, controller overhead was observed from system

resource stats and in-depth log analysis; the results indicate that the design maintains

good resource consumption even when subjected to heavier traffic loads. Reducing a

controller workload and ensuring traffic analysis is performed accurately, are a key

advantage of the framework in comparison to existing methods.

These five parameters are throughput, end-to-end delay, packet delivery ratio, flow

setup time and controller overhead which make up a complete set of evaluating

indices for the research. The throughput certifies efficiency, the delay reveals

49

responsivenes s, PDR assures reliability, the setup time witnesses adaptability, and

the overhead indicates scalability. Compared with other previous related works, we

obtain consistent observations in terms of showing the effectiveness of the Ryu-based

intelligent traffic analysis framework developed in this work; and show its usage as a

promising candidate for practical application under SDN environments where

traditional solutions do not enable to having an effective trade-off between

performance and scalability.

Table 3.4: Performance Parameters and Evaluation Criteria

Parameter Description Evaluation Method / Tools Relevance to

Proposed Framework

Throughput Measures the efficiency of data

transfer across the network.

Iperf and OpenFlow

statistics.

Demonstrates effective

bandwidth utilization
and efficient routing.

End-to-End

Delay

Average time taken for packet

delivery from source to

destination.

Ping-based measurement,

timestamp logging.
Validates

responsiveness for

latency-sensitive IoT
and cloud applications.

Packet

Delivery

Ratio

Ratio of received packets to

transmitted packets.

Controller and switch logs. Confirms the reliability

and stability of
communication.

Flow Setup

Time

Time required by the controller
to install forwarding rules in
switches.

OpenFlow Packet-In/Flow-
Mod event analysis.

Ensures adaptability
and agility in dynamic
traffic scenarios.

Controller

Overhead

Resource consumption of the

controller regarding CPU,

memory, and event load.

System statistics and

controller logs.

Validates the

scalability and

efficiency of the
proposed framework.

3.7 Experimental Design and Validation Plan

The research presented in this thesis addresses critical challenges in SDN and Traffic

analysis, offering novel solutions through comprehensive design, implementation,

and evaluation. The key contributions of this work are outlined below, each reflecting

a significant advancement toward achieving the research objectives. These

contributions collectively highlight the proposed framework's originality, technical

depth, and practical relevance.

The proposed Ryu based intelligent traffic analysis framework in an SDN

environment is strategically tested to verify the efficacy, performance, and scalability

of this research work. Our design concentrates on two main pieces: the

communication foundations in traditional TCP/IP networks, and transplanting these

to SDN, where the Ryu controller becomes a pivotal entity responsible for traffic

control and flow enhancement. 2.1 Communication Principles First, we need to take a

closer look at how connections are managed in traditional TCP/IP-based networks as

it is there that connection speeds directly influence performance when serving

various computing and storage demands across potentially thousands of hosts. This

proposed scheme not only is theoretically strategically grounded, but also

50

systematically gets practically verified by simulation and comparative performance

analysis.

As a first step, one must take the classic TCP three-way handshake model to be on

reliable lines of communication. This filtering process, illustrated in Figure 3.3,

shows how a link is made between the client and server before data communication

begins. In this series, the client performs an Active open by sending a sync (SYN=1,

SEQ=x) to server. The server, in its Passive Open state, answers with a SYN/ACK

packet (with the SYN and ACK bits set to Logical One). Finally the client ACK=1,

SEQ=y Packet=x+1 closing the handshake. This is the transition to move from the

Open-Request to Open-Success state ensuring that communication between both

sides can work reliably providing secure data transfer.

Figure 3.3: TCP 3-Way Handshake illustrating client–server connection establishment

before data transfer.

This handshake mechanism is very useful for SDN experiment design because it

causes the intervention of controller. With no pre-added forwarding rules at a switch,

the switch cannot forward the first SYN packet to destination. Instead, it encapsulates

the packet in a PKT_IN message and forwards it to the Ryu controller. The controller

then makes an intelligent decision by parsing the header fields, imposing policy

constraints, and calculating the best forwarding path. The response travels through

passback to the switch as a Flow-Mod command and the original packet is sent on its

way.

This is diagrammed in Figure 3.4, where the interaction of source (S), switch (m) and

controller (C) with destination is shown. The figure illustrates that, after

participation, the controller is able to establish suitable forwarding rules and then

monitor ongoing communication for its efficiency and stability. After the completion

of establishment of a connection (SYN, SYN-ACK, ACK), flow control is by passed

and subsequent data streams adhere to the programmed rules without interference

from the controller so as to minimize overhead and improve throughput.

51

Figure 3.4: Sequence Diagram of TCP Connection Establishment in an SDN

Environment using OpenFlow Messages

They show how bridging of traditional networking principles with SDN intelligence

is a specific research area.

The validation plan is based on this design and composed of several steps:

 Topology Construction: The experiments are going to be conducted on

Mininet to simulate custom topology. The control plane entity will be

implemented as the Ryu's controller and the data planed component will be

developed in the form of OVS instances. This is to maintain generality in

modelling conditions of actual network.

 Traffic Generation and Flow Triggering: Various traffic (TCP, UDP, ICMP)

is made using traffic tools as iperf and ping. TCP flows will clearly show the

three-way handshake, and UDP flows can be used to assess live flow

performance. First packets of these flows will cause the PKT_IN →

FLOW_MOD → PKT_OUT loop in the Ryu controller to verify that the flow

entry is set up as expected.

 Performance Metrics Analysis: The performance of our framework will be

evaluated using latency, throughput, packet loss, flow establishment time and

controller response time. These metrics have been previously utilised in the

earlier stages of the research work, and are closely related to the focus of

52

SDN-based traffic management analysis. The results will be discussed and

compared at different traffic loads and network sizes to demonstrate the

versatility of the scheme.

 Stress Validation: The experiments include scenarios where instant traffic

bursts or spoofed packet injections happen for the robustness of the design.

The controller performance during such scenarios will be quantified in terms

of stability, prevention against packet drops and effectiveness of

reconfiguring the rules. This guarantees that the performance of the proposed

design is cost-effective and can withstand unfavorable environments.

 Comparative Analysis: The Ryu controller-based scheme will be evaluated

against alternative controllers and traditional static routing techniques. This

counterpart will justify the novelty of the contribution by demonstrating better

performance, flow setup facility and adaptability.

Based on the above, the design of experimental procedures and validation campaign

combines theoretical communication frameworks (TCP handshake), controller-based

SDN sessions establishment (packet exchange mechanism) as well as real (topology

construction, traffic generation, performance measurement, stress testing) and

comparative validation steps. Through the proper combination of these components,

the proposed architecture is extensively validated for correctness, reliability and

scalability that demonstrate its outperformance in intelligent SDN Slicing traffic

management.

3.8 Chapter Summary

This chapter established a topology-aware SDN environment to support intelligent

traffic profiling and performance evaluation. A comparative analysis of SDN

controllers highlighted that while some platforms are suitable for large-scale

deployments, they introduce additional complexity for experimental research. In

contrast, the Ryu controller offers an effective balance of programmability, real-time

traffic monitoring, and scalability in emulated environments, making it well-suited

for the proposed framework. This selection enables fine-grained control over network

behavior while maintaining a lightweight and researcher-friendly implementation.

The network topology was designed to be flexible and adaptive, enabling support for

heterogeneous nodes, varying traffic loads, and dynamic topology changes. Unlike

static configurations used in many existing studies, the proposed setup emphasizes

dynamic link adaptation and fault responsiveness, improving the reliability of results

in real-world-like scenarios. Additionally, realistic traffic modeling and flow control

were incorporated to capture diverse traffic behaviors, allowing deeper insights into

controller decision-making and system adaptability under changing network

conditions.

Finally, the experimental design and validation strategy ensured reproducibility and

methodological rigor through controlled test scenarios and repeated evaluations.

While acknowledging the inherent limitations of emulated environments, this chapter

demonstrated that their flexibility and controllability provide a practical and effective

53

foundation for academic evaluation and subsequent performance analysis of the

proposed SDN framework.

54

CHAPTER 4

DESIGN AND DEVELOPMENT OF A RYU-BASED

INTELLIGENT TRAFFIC FRAMEWORK

This chapter builds upon the topology-aware environment and traffic profiling

strategy introduced in Chapter 3. It focuses on designing and implementing the

proposed Ryu-based intelligent traffic analysis framework. The previous chapter laid

the technical foundations, including decisions regarding the controllers to use,

developing network topologies, modeling traffic, and establishing the metrics to be

used for performance evaluation. This final chapter builds on this preparation and

implements a comprehensive framework for decision-making and real-time

monitoring. The framework is designed to enhance the programmatic capabilities of

the Ryu controller by combining it with modules that offer intelligent traffic analysis.

With the modules, it is possible to take control of the traffic, troubleshoot issues, and

optimize performance in real-time. The need to integrate traffic intelligence

capabilities with topology awareness is also demonstrated by the fact that the

framework ensures situation-driven responses while also enabling the network to

detect changes. Later in the document, we further describe the deployment process

and indicate how the functional prototype will be developed based on the concept

that the framework must abstract. This chapter aims to serve as a link between design

and implementation, establishing a foundation for comparing and evaluating

performance that will be conducted in the later chapters.

4.1 Overview of the Proposed Framework

The proposed Ryu-based intelligent traffic analysis framework aims to eliminate the

fundamental limitations of conventional SDNs by incorporating intelligence,

adaptability, and modularity into the control plane. The framework is based on the

Ryu Controller Core, which serves as the primary decision-maker responsible for

managing communication between applications in the upper layers of the network

and devices in the lower data plane. It includes specialized modules and integrates

real-time monitoring, anomaly detection, and QoS policy implementation to achieve

real-time adaptability and optimized traffic management.

The framework is divided into three distinct planes, as shown in Figure 4.1. At the

application plane, three major application types are integrated based on Northbound

55

Interfaces. The first is a set of traffic monitoring applications, which constantly

monitor flow-level statistics and bandwidth utilization. The second type includes

real-time anomaly detection applications, which identify irregular or malicious traffic

patterns. The third primary application type comprises analytics or QoS policy

applications, which apply a higher-level strategy to enhance performance and service

quality. All of these applications serve to communicate with the Ryu Controller Core

using NBIs to ensure that monitoring and policy ideals are consistently translated to

actualized control instructions.

Figure 4.1: Architecture of the proposed Ryu-based intelligent traffic analysis framework

Several specialized modules extend the Ryu controller to add the necessary

intelligence for traffic analysis and adaptive flow management at the control plane

level. The topology awareness module is responsible for discovering the network’s

overall structure, including switches, end-hosts, and physical links, and maintaining

an updated view of their dynamic states. Similarly, the topology profiling module is

allocated to collect OpenFlow statistics and performance parameters in real-time

from the end-to-end devices, helping the controller gain intelligence into traffic load,

bandwidth utilization, and usage. The adaptive flow management module, operating

on top of knowledge, analyzes run-time network conditions and dynamically installs

Flow-Mod instructions to re-balance the load, de-congest routes, optimize efficiency,

and eliminate hold states. Similarly, the adaptive flow management is designed with

a TEVN embedding module, which enables efficient virtual-to-physical resource

mapping to allocate network resources effectively in a heterogeneous IoT-SDN

environment.

Enabling the data plane involves OpenFlow-enabled switches, which are the primary

forwarding entities that follow the rules and update the flow tables accordingly, as

56

directed by the controller. These switches connect to end hosts, IoT devices, and

physical links to ensure the smooth forwarding of packets. The provided feedback,

statistics, and link utilization data enable the control plane modules to make rational,

data-driven, and adaptive decisions, which are then forwarded back to the data plane

for execution. Overall, this chapter significantly addresses the shortcomings of

traditional SDN by proposing a new, intelligent, adaptive, and real-time monitoring

Ryu-based framework that unifies the entire system.

 The framework avoids unnecessary data collection load due to the intelligent

integration of efficient traffic monitoring mechanisms inside the Ryu,
providing sufficient real-time statistics for intelligent on-flow decisions.

 The added topology awareness, profiling, and adaptive flow control

mechanism achieve better programmability and allow fine-grained traffic

analysis even under highly dynamic conditions.

 The TEVN embedding is an uncommon and quite novel method of virtual-to-

physical mapping that ensures that the network’s resources are efficiently
utilized in arbitrary IoT levels where the demand plan is unattainable.

 The security module is a native extension of the controller, implementing a

set of preventive rules to minimize performance impact.

 The overall architecture was extended and implemented in the real test bed

environment using emulated SDN networks. A successful interaction with

existing solutions, such as Mininet equipped with OpenFlow switches and

IoT-ready end hosts, provides complete assurance that the architecture can be

practically implemented in real-time conditions and via module add-ons.

Thus, the proposed framework not only introduces a topology-aware, traffic-

adaptive, and security-enforced approach but also ensures that the Ryu controller

evolves into an intelligent platform suitable for both academic experimentation and

practical deployment in next-generation SDN environments.

4.2 Network Model Framework Architecture and Modules

The proposed Ryu-based intelligent traffic analysis framework is a modular and

extensible architecture that implements traffic monitoring, topology awareness,

adaptive flow management, and security enforcement. The objective of the proposed

architecture is to provide SDN environments with dynamic and topology-aware

traffic profiling capability, especially for IoT-like scenarios that demand scalability,

adaptability, and real-time response. The architecture is structured across three

logical planes, Application, Control, and Data planes, each of which is concerned

with different yet specific classes of functionalities that facilitate traffic analytic

capabilities. The applications serviced at the Application Plane include traffic

monitoring, SDN anomaly detection, QoS policy enforcement. These applications

interact with the controller through northbound interfaces that facilitate fiduciaries to

specify high-level requirements without being confined to the underpinning

infrastructure. For illustration, statements such as "monitor bandwidth utilization"

and "assign extra capacity” are recorded as policies and processed by the controller,

allowing fiduciaries to avoid defining low-level flow-mod instructions. Thus, the

process involves the rapid integration of new monitoring and security functionalities

into a physical network, without requiring any modifications to the network itself, to

57

ensure flexibility, modularity, and fast deployment. The Control Plane encompasses

the core facets of the system intelligence, which are implemented as five Ryu

modules.

Finally, the Data Plane hosts the flow management module, which is responsible for

programming the network devices with the appropriate monitoring and security

instructions.

 Topology Awareness, which facilitates ongoing network links and nodes

discovery and mapping.

 Topology Profiling, which gathers OFStats, device-level performance data
that creates an updated utilization view.

 Adaptive Flow Management, which automatically deploys Flow-Mod

instruction to optimize routing, load balancing, and congestion control.

 TEVN Embedding, which supports efficient virtual-to-physical mapping in a

range of IoT environments.

These modules, when combined, enable Ryu to become an intelligent, adaptive, and

secure controller capable of making real-time traffic decisions. A Python–based

modular API allows fast prototyping and easy modification, offering both research

flexibility and practical applicability.

Data Plane includes OpenFlow-enabled switches and application-specific end hosts.

Ingress and egress traffic flows through the switches, each of which implements the

forwarding rules dynamically delivered by the controller. The end hosts generate and

receive data traffic, each consisting of a packet generator, a packet forwarder, and an

activity classifier. Control and Data Planes interact via the Control–Data Plane

Interface, which is a set of OpenFlow rules and statistical measurements being

transmitted in both directions. The Data Plane ensures that the traffic rules defined at

the Application Plane, which is operated by the Control Plane, are correctly

implemented in real-time.

Figure 4.2 is a graphical representation of a testbed-based network model

architecture. The figure illustrates the implementation of the framework's provisions,

utilizing Mininet as the emulation environment. The figure also represents the Ryu

controller acting as the orchestrator of flow control, while the iperf and ping tools are

employed to generate traffic. This figure illustrates the practical application of the

framework and demonstrates the integration of various modules within a real-world

emulation environment.

58

Figure 4.2: Network Model Testbed Architecture of the Proposed Framework

4.2.1 Traffic Flow and Analysis Cycle

While the testbed architecture provides the structural view of the proposed

framework, the operational intelligence is captured in the traffic flow and analysis

cycle. Figure 4.3 illustrates this process, showing how packets traverse between end-

hosts, switches, and the Ryu controller in a dynamic closed-loop cycle.

The cycle begins when the end-hosts generate the traffic to be forwarded across the

OpenFlow switches. These examine their flow tables, and if there is a rule for

matching an application, the packet is processed appropriately. However, if the rule is

not found, the packet is redirected through the switch to the controller as a Packet-In

message. The latter evaluates the packet using its Extended modules and updates its

topology and profiling records with the information obtained. After that, the

controller decides on the new rule for this type of flow modification. This rule is

installed using the Flow-Mod instruction on the switches, allowing the next packet of

that flow to be processed directly in the appropriate manner at the data plane.

This closed-loop interaction enables several advantages:

 The results of the monitoring cycles carried out by the switches are directly
integrated into the operation of the controller. Through that mechanism, a

feedback system is established that is continuously being improved.

 The flow management is adaptive and can redistribute traffic load and avoid

congestion in real-time without human input.

59

 The security function of the controller also works in a closed-loop cycle. During

the described process, the controller detects traffic patterns deemed suspicious,

and the results, together with the recognized threat patterns, are used in the next

cycle to mitigate the risks.

Thus, this closed-loop traffic flow and analysis cycle support the framework’s

operational perspective by demonstrating how adaptability, security, and scalability

are ensured in IoT-driven SDN environments.

Figure 4.3: Traffic Flow and Analysis Cycle in the Proposed Framework

4.2.2 Work Flow of the Proposed Framework

The workflow of the proposed intelligent traffic analysis framework based on Ryu

represents an organized chain of steps starting from extracting higher-level functional

architectural requirements and ending in verifying its functionality in an emulated

SDN environment. Figure 4.4 illustrates this workflow as a structured sequence of

phases that can provide a strong theoretical and design foundation for ensuring that

the framework's design not only works in theory but can also be implemented in

practice.

60

Figure 4.4: Workflow of the Ryu-Based Intelligent Traffic Analysis Framework

The initial stage is requirement analysis, where research goals – including topology

awareness, adaptive monitoring of traffic, eavesdropping, and packet injection

detection and mitigation, as well as security enhancement in SDN – and the

inspiration for tackling research gaps are stated. This part of the process ensures that

the idea behind the created framework is relevant, adequately referenced, and actual.

The identified gap in the literature and the current market situation necessitate

addressing this issue by developing a software solution.

After this, the next stage of design is the establishment of topology, which assembles

the topology that represents real-world heterogeneity. The Mininet emulator is used

to create scalable topologies with complex topologies (comprising several OpenFlow

switches, various host nodes, and changing links). By establishing controlled but

flexible environments for traffic analysis, this stage lays the groundwork for further

experimentation.

The next phase, controller selection and extension, is fundamental to the workflow.

The reason is that the choice was made in favor of the Ryu controller due to its

Python-based modularity and official support for experimental prototyping. In this

respect, a further development of the presented workflow relies on extending the Ryu

controller with five custom modules: Topology Awareness, Topology Profiling,

Adaptive Flow Management, TEVN Embedding, and Security. Therefore, this

custom extension is based on the idea that each provides unique intelligence to the

control plane. Thus, the controller is extended in such a manner that it, being a

significant element of the control plane, does not manage flows but functions to

monitor, adapt dynamically, and protect against attacks.

After configuring the topology and controller, the next layer of traffic generation is

done. Multiple host flows are created, bridging both TCP and UDP traffic via

synthetic workloads utilizing tools such as iperf, ping, and bespoke Python scripts. In

this phase, the framework can be validated for its scalability and robustness by

61

testing it under conditions such as congestion, burst, or attack-like anomalies.

This is followed by the monitoring and profiling stage, where the traffic generated is

captured and analyzed. The extended Ryu modules gather real-time flow-level

statistics (OFStats), packet counters, and latency values from OpenFlow switches.

The controller processes these results to produce data-driven, adaptive flow

modification rules, enabling the closed-loop optimization of traffic flows. During this

stage, security policies are also applied whenever an abnormal traffic pattern is

observed.

The last stage is validation and evaluation, which assures that the framework is

validated against key performance metrics. To maintain consistency with research

methodology, these metrics are directly aligned with those defined earlier in Section

3.6 (Performance Parameters and Evaluation Criteria). To strengthen this

methodological progression, Table 4.1 summarizes the experimental environment

setup used to implement and validate the workflow. This table consolidates the tools,

configurations, and parameters that define the testbed used in this research.

Table 4.1: Experimental Setup of the Proposed Framework

Parameter Configuration/Tool Used

Controller Ryu Controller (v4.34), extended with custom modules (Topology

Awareness, Profiling, Adaptive Flow, TEVN, Security)

Emulation Tool Mininet 2.3.0 – custom topologies with 4 to 16 switches and 8 to 32 host

nodes

Switch Protocol OpenFlow 1.3-enabled virtual switches.

Traffic Generation

Tools

iperf (TCP/UDP throughput), ping (latency), Python-based custom traffic
scripts

Monitoring Metrics Throughput, Packet Delivery Ratio, End-to-End Delay, Flow Installation
Time, Security Detection Rate

Analysis Tools Wireshark (packet capture), Scapy (packet injection), Python scripts (data

parsing, log analysis)

Operating

Environment

Ubuntu 20.04 LTS, Intel Core i7, 16 GB RAM, VirtualBox virtualized

environment

4.3 Integration with Ryu Controller

The successful realization of the proposed intelligent traffic analysis framework

depends on its seamless integration with the Ryu controller, which serves as the

control plane in the designed SDN environment. Ryu was chosen for this research

because of its lightweight Python-based architecture, modularity, and support for

OpenFlow protocols, making it highly adaptable for experimental and research-

driven deployments. Rather than treating Ryu as a generic controller, this work

extends its functionalities by embedding specialized modules that directly address the

research objectives of topology awareness, adaptive flow management, traffic

profiling, and anomaly detection.

62

The integration process is best illustrated in Figure 4.5, which depicts the layered

interaction between the controller, the OpenFlow switch, and the connected host

nodes. At the control plane, the Ryu controller operates as the network’s central

intelligence, processing incoming events from the data plane and dynamically

installing flow rules through Flow-Mod messages. The intermediate layer is

represented by an OpenFlow 1.3 switch, which acts as the forwarding element and

enforces flow rules provided by the controller. Finally, the data plane consists of

multiple end hosts (h1–h4), which generate and receive traffic. This baseline

representation highlights how control and forwarding responsibilities are clearly

separated, with Ryu coordinating the translation of high-level monitoring and

management policies into low-level forwarding instructions.

The framework developed in this research integrates directly into this architecture by

embedding customized modules into Ryu’s control logic. For example, the Topology

Awareness module monitors switches and link states, ensuring that the network graph

remains up-to-date in real-time. Simultaneously, the Profiling module collects

OFStats from switches to capture detailed traffic characteristics, enabling more

granular monitoring of load distribution. The Adaptive Flow Management module

takes these inputs and dynamically installs or modifies rules on the switch to

optimize performance and mitigate congestion. For more complex IoT-oriented

scenarios, the TEVN Embedding module maps virtual flows to physical resources,

ensuring that heterogeneous traffic is handled efficiently. Finally, the Security

module enforces mitigation strategies against suspicious traffic patterns, thereby

strengthening the resilience of the SDN environment.

Figure 4.5: Basic Integration Topology of Ryu Controller with OpenFlow and Data Plane

Nodes

This integration ensures three critical benefits: first, the lightweight programmability

of Ryu enables rapid prototyping and iterative testing of different module designs;

63

second, the modular separation of tasks allows traffic monitoring, and flow

optimization to coexist without disrupting the controller’s core operations; and third,

the combined framework enhances topology-aware decision making by unifying

control logic, monitoring, and adaptive management into a cohesive structure.

To emphasize the transformation achieved through this integration, Table 4.2

presents a comparison between the baseline Ryu controller and the enhanced Ryu

controller used in this research.

Table 4.2: Comparison between the baseline Ryu controller and the enhanced Ryu

controller

Feature /

Functionality

Ryu Controller Enhanced Ryu Controller

(Proposed Framework)

Topology
Management

Fundamental discovery of
switches and links

Advanced topology awareness
with real-time link monitoring

Traffic
Profiling

Limited to flow statistics Continuous OFStats collection
with detailed load profiling

Flow

Management

Static or rule-based Flow-Mod

installation

Adaptive flow modifications
based on congestion and traffic

load

Resource

Allocation

No explicit virtual-to-physical

mapping

TEVN Embedding ensures

efficient allocation in IoT
scenarios

Security No dedicated security support Integrated security module for
anomaly detection and

mitigation

Experimental
Flexibility

General-purpose, minimal
customization

Modular, research-focused
design for traffic analysis

This comparison highlights the distinction between a general-purpose controller and

a research-driven, modular controller tailored for intelligent traffic analysis. The

lightweight programmability of Ryu makes it an ideal foundation for building

applications. At the same time, the integration of specialized modules allows the

framework to meet the objectives of adaptive monitoring, topology-aware

management, and security enforcement. The combined design thus transforms Ryu

into a competent experimental platform, bridging the gap between theoretical

research models and practical SDN-based traffic analysis systems.

4.4 Experimental Implementation and Controller Integration Results

The experimental implementation of the proposed Ryu-based SDN framework has

been conducted to ensure its functional integration, connectivity, and data flow

management. This subsection provides a detailed overview of the experimental

verification undertaken and the associated results, achieved using the Mininet 2.3.0

network emulator and the Ryu Controller as the central network management entity.

The conducted implementation can be viewed as a link between the conceptual

framework presented in previous sections and the practical assessment performed in

Chapter 5.

64

The primary objective of this experimental implementation is to ensure the necessary

efficiency of the controller–switch–host communication, as per the provided design

and selected traffic. The Mininet offers a convenient, virtually realistic platform for

emulating the proposed topology and defining the settings for hosts, switches, and

links involved. The Python-based Ryu controller is used to provide the necessary

dynamic flow management and real-time network statistics required for intelligent

traffic research. As a result, the proper execution of Ping and Iperf commands

ensures that the controller and emulated network are functioning as designed and can

successfully handle defined types of traffic.

4.4.1 Connectivity Validation using Ping Command

To verify the basic connectivity and latency performance across the network

topology, the ping command was used to establish a connection between the host

nodes, H1 and H2. The test measured the RTT of the ICMP packets sent between the

two hosts across the OF-enabled switches managed by the Ryu controller.

As indicated by the screenshot in Figure 4.6, all five packets sent from H1 were

received by H2, indicating 0% packet loss and active communication between the

hosts. The recorded RTT values varied from 0.057ms to 33.3ms, with an average

latency of 6.745ms. The minimal delay indicates that the controller efficiently

processes ICMP requests and dynamically installs flow entries in response to host

queries.

Such low-latency communication is essential for real-time traffic analysis and

decision-making applications, where continuous monitoring and fast responses are

crucial. The successful Ping operation thus confirms that the proposed framework

ensures seamless host-to-host connectivity and reliable controller coordination.

Figure 4.6: Ping Test Results between Hosts in the Proposed SDN Topology

4.4.2 Throughput Measurement using Iperf

To assess the data transmission efficiency of the proposed system, the Iperf tool was used

to measure throughput between selected host pairs. The Iperf utility enables the

65

generation of controlled TCP and UDP traffic, allowing for the evaluation of bandwidth,

data transfer rate, and link utilization within the SDN topology.

 Single TCP Stream Test

In the initial scenario, a single TCP connection was established between H1 (the

client) and H4 (the server) using the iperf command with the -c option and the IP

address of H4. As presented in Figure 4.7, the total data transferred during a 10-

second interval was 4.78 GB, with an average throughput of 4.11 GB/s. This high

bandwidth utilization indicates efficient controller-mediated path setup and stable

link quality within the network. The result demonstrates that the Ryu controller

effectively manages flow installations to support high-speed communication across

switches.

Figure 4.7: Performance Analysis of Host Communication using the iPerf Tool

 Bidirectional Data Transfer Test

To simulate both upstream and downstream data flows simultaneously, a

bidirectional test is conducted using the command iperf -c h4 -d. According to

the analysis presented in Figure 4.8, the throughput was 3.50 Gbps in one direction

and 1.25 Gbps in the other. Such results can be explained by the fact that the

controller dynamically manages concurrent data transmission in both downstream

and upstream directions, considering varying priorities and sending flows in the

direction with the highest demand.

66

Figure 4.8: Bidirectional Bandwidth Measurement between Hosts in Proposed SDN

Topology

 Parallel Stream Test for Scalability

To examine the scalability and concurrency handling capability of the framework, a

multi-threaded Iperf test was performed using the command iperf -c h4 -P 5, which

initiates five parallel TCP streams between H1 and H4. As depicted in Figure 4.9,

each stream individually achieved an average throughput of approximately 1.2 Gbps,

resulting in a combined throughput of 6.07 Gbps across all flows.

This result highlights the robustness of the proposed system in efficiently managing

multiple concurrent connections. The Ryu controller, aided by the designed topology-

aware logic, successfully distributes traffic loads across various links while

minimizing congestion and packet delay. The high aggregate throughput achieved

during this test validates the framework's scalability and adaptive flow management

capabilities.

Figure 4.9: Parallel Bandwidth Testing using Multiple iPerf Streams in SDN Topology

67

4.5 Chapter Summary

This chapter detailed the implementation and integration of the proposed intelligent

SDN-based traffic analysis framework using the Ryu controller within a Mininet

emulation environment. The network configuration, topology setup, and interaction

among hosts, switches, and the controller were described to demonstrate real-time

flow control and centralized network management through dynamic OpenFlow rule

handling. The implementation confirms the practical feasibility of the proposed

framework in dynamic SDN environments.

The chapter also presented experimental validation using Ping and Iperf tools to

evaluate connectivity, latency, and throughput under different traffic conditions. The

results showed stable network behavior with low latency, high throughput, and

reliable multi-flow handling. These findings establish the reliability of the proposed

framework and provide the basis for the detailed performance evaluation and

comparative analysis presented in the next chapter.

68

CHAPTER 5

PERFORMANCE EVALUATION OF THE PROPOSED SDN

FRAMEWORK AND COMPARATIVE BENCHMARKING

After demonstrating the effectiveness of the Ryu-based intelligent traffic analysis

framework proposed in Chapter 4, this chapter conducts an experimental evaluation

to demonstrate its performance under various realistic network settings. The

transition from construction to dimensioning is a crucial step in validating the model.

This stage ensures that the theoretical model not only performs well in theory but

also exhibits improved performance in real-time network scenarios and scalability

within a dynamic SDN framework. In this chapter, the experimental testbed and

network topology are established to simulate diversified traffic conditions and

controller communication. The robustness of the framework is examined under

various scenarios to verify its adaptive capability for traffic control, achieving low

delay and high throughput. Performance analysis is conducted using performance

parameters, including packet delivery ratio, jitter, throughput, and delay, to observe

the system's behavior under various loads. We also compare our model with the

existing SDN frameworks to demonstrate its superiority in terms of network

reactivity, load distribution, and decision efficiency. Arguing that the results from

these tests validate the security and intelligence of the framework to be used for

massive SDN deployments nowadays.

5.1 Introduction

The significant growth in connected devices and digital applications that we are

currently witnessing has transformed today's networks into dynamic and

heterogeneous ecosystems. Traditional routing systems, which are often configured

statically and use vendor-specific protocols, are not well-suited to address the rapidly

increasing load of traffic and service types. SDN is proposed as a solution for this by

separating the control plane from the data plane, allowing centralized, programmable

network control.

Still, although SDN is a simple and elegant concept with much intellectual appeal, its

practical implementation will expose the performance bottleneck of the controller.

Delays resulting from centralized decision-making, inefficient use of bandwidth due

to packet packing, and failure to manage traffic flows also reduce scalability. In the

69

presence of large-latency networks, where there is a momentous delay in conducting

the feedback response, what matters most is both the speed and intelligence with

which this controller responds to differing scenarios.

To address these issues, this paper proposes an enhanced SDN control framework

based on the Ryu controller, incorporating TEVN embedding and intelligent

anomaly-detection capabilities. The proposed framework wants to enrich the stream-

based Ryu controller, allowing for making it more intelligent, as well as more

innovative and more proactive by 1) adding novelty that will introduce a really highly

adaptive control structure with learning features being able: i) to make pre-emptive

flow adjustments, ii) maximize resource usage, iii) carry out advanced security

control operations.

5.1.1 Need for Performance Evaluation

Performance evaluation is a key element to study in any research developed around

network design, optimization, or control frameworks, and SDN is not the exception.

The separation of the control plane and the data plane by SDN exacerbates

inefficiency, which also impacts the entire network due to interactions between the

controller and devices within it. Thus, it is necessary to verify the effectiveness and

efficiency of the proposed topology-aware Ryu-based intelligent traffic analysis

framework across various network environments. Performance evaluation is required

because theoretical and simulated behaviors differ in real-time network

environments. Several factors, such as link congestion, flow-table administration, and

slow processing delays between the controller and switches, can disrupt network

operation. Therefore, an overall evaluation is necessary to bridge the gap between

conceptual design and field applications by quantifying the effectiveness of the

proposed framework in practice. Performance measurement plays several interesting

roles in this research. The focus of the paper is two-fold: first, it verifies whether our

proposed framework successfully fulfills its objectives (i.e., reducing latency,

minimizing packet loss, and improving throughput and load balancing in SDN) to

benefit from and promote path reclassification. Secondly, this provides a benchmark

for comparing our system with existing models that achieve control via SDN on a

nationwide or regional scale. Finally, it guarantees that its developed framework will

be scalable, robust, and reliable when deployed in large-scale or dynamically

changing networks, such as IoT-based networks or e-learning infrastructures.

Moreover, a precise insight into the contribution of each parameter to the overall

system behavior is obtained by evaluating performance with respect to different

metrics (e.g., latency, throughput, jitter, and controller response time). This “multi-

dimensional” critique highlights both the strengths and potential weaknesses of this

approach, and as such, provides a balanced view to build upon in further

sensorimotor enhancement. Finally, performance evaluation is not a testing exercise

to verify only the result but rather aimed at measuring, analyzing, and validating the

operational capability of the timed SDN scheme. The extensive testing we performed

in a controlled simulation environment, using Mininet and the Ryu controller,

guarantees the practical feasibility and theoretical correctness of the proposed

architecture. The findings of this assessment provide the basis for quantitative

benchmarking and underpin the subsequent examination reported in later sections of

this chapter.

70

5.1.2 Objectives of Evaluation

The primary objective is to evaluate the proposed SDN framework in terms of its

effectiveness, scalability, and reliability in traffic steering, incorporating intelligent

decision-making for network policies. Because a Ryu-based topology-aware

architecture is proposed for efficient traffic analysis and flow control, performance

evaluation is crucial to demonstrate the practical applicability and technical

advantages of this SDN design compared to conventional SDNs.

The evaluation aims to provide some quantitative evidence in support of the

theoretical contributions of this work. The designed system is to be evaluated against

specific design goals and relevant performance requirements, which may be

determined through systematic testing of the proposed framework under varied traffic

scenarios and topologies.

The key objectives of this performance evaluation are outlined as follows:

 To verify that Ryu-based SDN solution is efficient: Evaluate the controller's
performance in handling traffic from the network, enforcing flow rules, and
preserving a steady control line towards the data plane on the Mininet
simulated environment.

 To evaluate the changes of specific network parameters: Measure
improvements in terms of latency, throughput, PDR, jitter, and packet loss

with respect to traditional SDN controller-based solutions such as ONOS and

ODL.

 To measure the effect of the topology-aware mechanism: Explore how to
incorporate a topology-aware scheme in the proposed system for path

selection, load balancing, and fault-tolerant dynamic network.

 To measure the performance of a controller under different loading

conditions: Evaluate how the Ryu controller scales out and reacts with a

growing amount of hosts, flows, and traffic burstiness.

 To compare the proposed framework against the current benchmark models:

Carry out a performance comparison to demonstrate the superiority and

stability of the proposed method with respect to resource efficiency and flow
management.

 For real-world applicability: Check whether the performance described by the

framework meets the criteria of real-time systems, e.g., IoT-based
environments, cloud-assisted distance learning systems, and multimedia

network communication.

5.1.3 Scope and Significance

The performance assessment of the proposed topology-aware SDN model is a

crucial step in confirming its effectiveness, scalability, and adaptability in dynamic

network environments. This paper evaluates the measurements in terms of

performance indicators, including latency, throughput, jitter, and packet loss, for

various network loads and topologies. It also involves benchmarking the proposed

Ryu-based architecture with other existing SDN controllers, indicating its

enhancements in flow management and responsiveness. To investigate different

71

traffic profiles and link characteristics, ranging from modeled to real-world,

including performance, stability, uniformity, and realization of the designed system.

This comprehensive evaluation is essential to demonstrate the practicality and

advantages of our system over competitive solutions instantaneously. It bridges the

gap between theoretical design and its real-world validation by converting the

abstract model into a tangible performance measurement. The test results obtained

from our evaluation test demonstrate that the Ryu controller's wise decision-making

functionalities and topology awareness enable the achievement of good network

behavior, congestion mitigation, and efficient data transmission. The performance

evaluation ultimately confirms not only the technical soundness of our

computationally efficient solutions but also enables the advancement of our

approach to contemporary network situations, such as messaging in IoT designs,

innovative frameworks, or cloud implementations.

5.2 Experimental Setup

An experimental environment was set up in Mininet, utilizing the Ryu controller to

simulate the network and Wireshark to monitor it, to perform an accurate and

reproducible performance analysis. We created test scenarios that allowed us to

closely mimic a realistic SDN environment, where we could identify bugs not only in

flow but also in network traffic, topology, and controller decisions. This setup

focused on validating the effectiveness and flexibility of the topology-aware SDN by

testing the performance against various traffic loads and network configurations.

Table 5.1 depicts the simulation environment and the performance evaluation

parameters used in the setup environment.

We have developed a model topology that simulates the functionality and

performance of a multi–switch SDN network environment, where OpenFlow

switches are connected to host nodes in different segments of a multi–segment

network. The response included topology-aware intelligence at the controller layer,

enabling routing to occur in the most efficient manner possible, and regulating data

flow based on link load or other congestion indicators. It allows a comprehensive

analysis of how the Ryu controller performs under various conditions and how our

approach facilitates more informed control decisions in traffic. It was a hybrid

hierarchical network architecture consisting of core switches that connected to the

aggregation and access layers to increase scalability and reduce data transmission

delay. This traffic generation created flows between different pairs of hosts, as would

occur in client-server and peer-to-peer style communication [44]. Dynamic link

fluctuation and traffic bursts were incorporated to test the adaptively and fault-

tolerance of the framework. These cases were used to highlight the benefits of the

new topology-aware mechanism on the optimal path selection and improved overall

QoS metrics.

This setup provided a controlled and flexible environment for analyzing how the

proposed framework behaves in real-time conditions. By enabling dynamic control

decisions through the Ryu controller, the network could adapt efficiently to changing

traffic loads, confirming the framework’s effectiveness in optimizing data flow and

maintaining consistent performance across multiple network conditions.

72

Table 5.1: Simulation Environment and Performance Evaluation Parameters

Component Description

Controller Used Ryu SDN Controller (v4.34)

Emulator Mininet 2.3.0

Protocol OpenFlow 1.3

Host Operating System Ubuntu 22.04 LTS

Hardware Configuration Intel i7 (12th Gen), 16 GB RAM

Traffic Tools Iperf, Ping, Wireshark

Performance Metrics Latency, Throughput, Jitter, Packet Loss

Network Design Multi-switch, topology-aware hybrid structure

Testing Approach Repeated runs with varying traffic and topology
parameters

5.2.1 Hardware and Virtualization Environment

The complete test environment was implemented on a dedicated high-performance

workstation to provide sufficient CPU and memory capacity for multiple concurrent

network simulations. The configuration is as follows:

● Processor: Intel® Core™ i7 (8th Generation, 4.2 GHz, eight cores)

● RAM: 16 GB DDR4

● Storage: 512 GB SSD

● Operating System: Ubuntu 20.04 LTS (64-bit)

● Virtualization Platform: Oracle VirtualBox

5.2.2 Software Components

Many tools and frameworks in the software environment helped with SDN testing:

 Mininet 2.3.0: Used to mimic the structure of virtual networks. With Mininet,
you can create hosts, switches, and links in a flexible manner by adjusting the

bandwidth, delay, and loss settings.

 Open vSwitch (OVS) 2.15: Used as the forwarding plane component and

supports OpenFlow 1.3 for talking to the controller.

 Ryu Controller (v4.34): The basic SDN controller that the improved
Ryu+TEVN framework is built on.

 Wireshark 3.4: Used to capture packets and look at how OpenFlow

communication works.

 iperf3: Used to measure throughput and bandwidth for both TCP and UDP
traffic.

 hping3: Used to analyze RTT and latency and to create strange traffic for

security testing.

 Python Automation Scripts: These scripts are meant to control the running of
experiments, gather logs, and make plots from recorded metrics.

5.2.3 Network Topologies

73

We create a scalable SDN realistic topological network to evaluate the proposed

framework, which can serve dynamic data flows and a wide range of network loads.

The topology is created in Mininet, a highly flexible simulator for emulating various

networks under controlled conditions. It consists of multiple hosts, OpenFlow-

enabled switches, and a centralized Ryu controller that controls the entire network.

The setup ensures that every data packet passes through the controller, enabling

granular inspection of flow installations, where route selections are made, and traffic

management decisions are executed.

The topology is topology-aware, meaning that the controller dynamically learns and

updates the network’s structural information to make optimized forwarding

decisions. This adaptive awareness enables the identification of congestion points,

link failures, and path delays in real-time. The topology integrates both core and edge

network layers, ensuring a balanced load distribution and a realistic representation of

enterprise or IoT network architectures. The Ryu controller manages these layers

through OpenFlow protocols, where flow rules are generated based on traffic

characteristics and network feedback.

The experiments utilize various topological structures, including trees, meshes, and

lines, to assess the efficiency and flexibility of the method. Every configuration is

subjected to multiple traffic loads and flow requests to evaluate metrics such as

latency, throughput, and packet loss. This diversity is intended to facilitate the

evaluation of a wide range of operational settings, from small-scale to large-scale IoT

deployments and data center networks. Here, the chosen topology not only verifies

the correctness of the proposed model but also illustrates its flexibility in different

networking environments and performance requirements.

5.3 Test Scenarios and Case Studies

For a comprehensive set of the proposed topology-aware Ryu-based SDN

framework, performance was verified through numerous test case scenarios and real-

world use cases, which imitate different network environments, as depicted in Table

5.2. Each scenario was designed to evaluate specific aspects of the framework, such

as its adaptability to dynamic traffic changes, its ability to balance network loads, and

its effectiveness in maintaining QoS parameters. These test cases capture real-world

operating scenarios in SDN-based environments, such as data centers, IoT networks,

and distance learning clouds.

Experiments were conducted in a staged Mininet environment with various network

topologies, including classical linear and tree topologies, as well as more complex

meshes. Under various traffic conditions, including CBR, VBR, and burst traffic,

each topology was also evaluated to observe the controller's behavior in maintaining

flow entries and installing optimal routing decisions. The Ryu controller was the

centralized control plane entity that dynamically calculated forwarding rules based on

link state, bandwidth utilization, and traffic density.

To facilitate a fair comparison, we considered both static (traditional) and dynamic

(proposed topology-aware) setups. As the static setting for routing, we used the

typical shortest path for routing decision-making. In contrast, for dynamic behavior,

74

real-time topology awareness was employed to make adaptive decisions on the

selection of routing paths. This distinction highlights the advantages of incorporating

adaptive intelligence into the Ryu controller for efficient traffic handling and

minimizing network congestion. The test cases are divided into seven categories.

Different test cases were classified into the following three types for a comprehensive

review:

• Scenario 1 – Baseline Performance Evaluation: This scenario evaluated the basic

functionality of the SDN environment using a linear topology consisting of two

switches and four hosts. It also established baseline metrics for latency,

throughput, and packet delivery under a constant traffic load. The outcomes of this

scenario served as the baseline for subsequent comparisons.

• Scenario 2 – Dynamic Traffic Handling and Load Balancing: A more complex tree

topology was used, including replacing the DO with a different topological

structure, including six switches and multiple host nodes, to witness how it

handled variable traffic loads. Iperf was used to create traffic with changing data

rates, simulating congestion and different link utilization states. Our topology-

aware mechanism dynamically adjusts routing paths to distribute loads across

available links, preventing bottlenecks and ensuring a continuous data flow.

• Scenario 3 – Comparative Case Study with Existing Frameworks: This scenario

compared the performance of the proposed framework to traditional SDNs with

existing controllers (i.e., ONOS, OpenDaylight). The efficiency improvements

were quantified using metrics like latency, jitter, throughput, and packet loss. In

conclusion, the case study demonstrated that the proposed framework exhibited

better adaptation to changes and reliability in response to changes compared to

existing systems, thereby verifying the effectiveness of the design for real-time

traffic analysis.

Table 5.2: Test Scenarios and Corresponding Network Configurations for Performance

Evaluation
Scenario Objective Network Topology Traffic Type Performance Focus

Scenario

1

Establish baseline
performance

Linear topology (2
switches, four
hosts)

Constant Bit
Rate (CBR)

Latency and throughput
benchmarking

Scenario

2

Analyze dynamic

load handling

Tree topology (6
switches, eight

hosts)

Variable Bit

Rate (VBR)

Load balancing and

congestion control

Scenario

3

Compare with other
frameworks

Hybrid mesh
topology

Mixed traffic Overall performance and
adaptability

5.4 Performance Metrics

The assessment of the proposed Ryu-based topology-aware traffic analysis

framework requires a comprehensive evaluation metric system to accurately measure

its performance in terms of efficiency and dependability, as defined in Table 5.3. The

measurements can be used as a numerical benchmark to evaluate the performance of

75

the controller, understanding how it controls traffic, manages QoS, and distributes

data flow on active/inactive SDNs.

This subsection presents the essential parameters — latency, throughput, jitter, packet

loss, and controller response time — to be used in evaluating the proposed system.

All of these metrics are crucial for verifying that the framework can effectively

support real-time traffic scenarios without compromising network stability and

scalability.

The measurements were derived from tests conducted in a programmable test case

implementation within the Mininet simulation environment, utilizing Ryu as the

controller and OpenFlow switches to manage the dynamic flow of packets. Iperf,

Ping, and Wireshark were used for traffic generation and analysis to achieve a

credible empirical assessment. These measures collectively embody the central aims

of our proposed framework, which is to achieve reduced delay, increased throughput,

reduced packet loss, and improved controller responsiveness through intelligent

topology-aware decision-making.

5.4.1 Latency

Latency is a value that indicates the time it takes for a packet to be delayed while

traveling from source to destination. It is one of the most critical factors of a

network’s responsiveness. Within the scope of the proposed model, latency measures

the effectiveness of the Ryu controller in determining the optimal paths for routing

based on real-time topology information.

We measured the latency based on RTT when sending out ICMP echo packets, and

the mean latency is calculated as half of RTT. The topology-aware logic of the Ryu

controller intelligently chooses alternate, non-congested shortest paths, significantly

mitigating end-to-end latency compared to static/legacy SDNs. This provides a

smoother data rate, making it suitable for time-sensitive applications, such as online

learning and innovative IoT environments.

5.4.2 Throughput

Throughput is the aggregate rate of successful data delivery over a network (bits per

second). This demonstrates the efficiency with which the proposed scheme can

utilize bandwidth resources while maintaining stability in the presence of fluctuating

traffic patterns.

The framework’s throughput was tested using Iperf to assess its flexibility as TCP

and UDP streams. Ryu controller’s topology-awareness enables it to make routing

decisions on the fly according to the network load and link utilization, resulting in

better bandwidth utilization and a higher ability to carry traffic.

The results showed that this proposed method consistently outperformed traditional

schemes in terms of throughput, demonstrating its capability to handle heavy traffic

while maintaining better QoS performance.

76

5.4.3 Jitter

Jitter refers to the fluctuations in packet delay during transmission and is a crucial

value for real-time applications such as video conferencing, VoIP, and e-learning

portals. Large jitter values can result in interruptions to continuous data streams and

negatively impact the user's experience.

In our design, jitter was reduced through intelligent load balancing and on-the-fly

monitoring of link status by the Ryu controller. The dispersion of the successive

packet delays was calculated as follows:

By periodically refreshing the flow tables and avoiding heavily congested paths, the

scheme sustains constant packet delivery delay variation even under traffic spikes.

Such stability also indicates the appropriateness of the mechanism for low-latency

and media-rich data forwarding in an SDN network.

5.4.4 Packet Loss

Packet loss refers to the percentage of data packets that are dropped or lost during

transmission. This demonstrates the network's resilience and strength in handling

congestion, link failures, or switch overload.

The controller in the proposed topology-aware setup significantly reduces packet loss

through its responsive rerouting mechanism, which continually senses the state of

links and redistributes traffic onto alternate paths as necessary to address sustained

degradation. This helps the network remain robust in the event of excessive traffic or

node failures. The Ryu controller's ability to continuously monitor and modify the

flow from the switches helps reduce retransmissions and maintain the path for

packets, ultimately increasing throughput.

5.4.5 Controller Response Time

Controller response time indicates the speed at which the SDN controller processes a

new packet-in event (i.e., a request to install a flow rule) and makes a decision; i.e.,

when this event takes place that results in the arrival of packet(s), it calculates

forwarding action and respective flow into its store, then puts into effect the

corresponding flow rule. It represents the processing capability and flexibility of the

control plane.

Ryu Controller responded more quickly in the proposed model because it was written

in Python and is easier to execute than POX, with its pre-compile benefits, and

supports an asynchronous event handling mechanism. With topology-awareness, the

controller can effectively keep refreshed link-state information to minimize

computation time and control message overhead.

This enhanced responsiveness means a better and more cooperative controller for

network switches' communication, particularly during topology change events or

flow setup requests.

77

Table 5.3: Performance Metrics, Measurement Techniques, and Impact on the Proposed

Framework
Metric Description Measurement Method /

Formula

Relevance to Proposed

Framework

Latency Time for the data to

travel from the

source to the

destination

RTT / 2 (Ping Tool) Reduced latency due to

topology-aware dynamic

routing

Throughput Rate of successful data

transfer (bps)

Total Data Received/
Transmission Time

Improved throughput

under adaptive flow
control

Jitter Variation in packet

delay

Average deviation of delay

times

Consistent packet timing

through intelligent load
balancing

Packet Loss Packets lost during

transmission (%)

((Packets Sent–Packets
Received)/Sent) × 100

Reduced loss via adaptive
rerouting and congestion

management

Controller

Response

Time

Time taken by the

controller to respond

to the flow
request

Tflow rule install -Tpacket-in Faster decision-making

with topology-driven

optimization

5.5 Result Analysis

Experimental verification of the proposed topology-aware SDN skeleton has been

performed to analyze its performance, flexibility, and robustness under various

network scenarios. The remainder of this section presents the detailed results derived

from several simulation scenarios based on the Mininet–Ryu environment. The

performance of the controller is evaluated based on three primary performance

metrics — throughput, latency, and packet loss, which collectively determine how

well a particular controller manages data flows to maintain QoS.

We have maintained a record of the results for several host pairs that transmit

through OpenFlow switches managed by the Ryu controller. The purpose of the

experiments is to verify the basic functions, including dynamic topology

maintenance, intelligent traffic balancing, and link-fault weatherproofing. The

resultant performance curves are analyzed in terms of stability, adaptability, and

correlation between the traffic load and controller responsiveness.

5.5.1 Throughput Analysis

Throughput, which represents the data transmission capacity of the network, serves

as an essential indicator of how efficiently the SDN controller manages the available

bandwidth. Fig. 5.1 illustrates the variation in throughput across multiple host pairs

during the experiment.

At the start of the communication (first second), throughput rises sharply from 0

Gbps to nearly 25–30 Gbps as the controller establishes flow rules between the hosts.

This initial spike corresponds to the OpenFlow handshake and flow table setup

78

Th
ro

u
gh

p
u

t
(G

b
p

s)

process. Once the flow entries are installed, the throughput stabilizes, maintaining

high and consistent transmission rates across the network duration.

The similarity of the throughput rates obtained for all pairs of hosts (h1–h2, h1–h3,

h1–h4, and so forth) suggests that the controller dynamically reacts and effectively

load-balances and controls the respective flows. The slight variations observed after

5–6 s indicate that the controller adapts to the network by quickly responding to

temporary topology updates or link recalculations, while preserving efficiency, as its

overall efficacy remains unaffected.

These findings align with proposed research that demonstrates topology-aware design

enhances link utilization while minimizing congestion by dynamically determining

traffic flows based on Ryu. That generally extracts packets, packet-forwarding of

packets, and even more solid operation-time devices throughout numerous created

beatings in the bits of a packet type. For learners, a high-level abstraction of traffic

detection by intelligent analysis for achieving throughput stability, which, in turn,

feeds into one of the critical research areas

30 30

25 25

20 20

15 15

10 10

5 5

0

0 1 2 3 4 5 6 7 8 9 10

Time in seconds

 h1 to h2 h1 to h3 h1 to h4

0

0 1 2 3 4 5 6 7 8 9 10

Time in seconds

 h2 to h3 h2 to h4 h3 to h4

Figure 5.1: Throughput Variation across Multiple Host Pairs

5.5.2 Latency Analysis

Latency is the end-to-end delay that the user experiences when sending a packet,

which reflects the responsiveness and real-time of the SDN environment. Latency

among several pairs of hosts controlled by the Ryu controller is shown in Fig. 5.2.

This indicates that a 1 millisecond average latency remains low in most connections,

promoting faster flow rule installation and excellent responsiveness. Latency values

are minimal (<0.05–0.9 ms), meaning that the processing overhead is as little as

Th
ro

u
gh

p
u

t
(G

b
p

s)

79

7.889 8.149

8 7.336

6

4

2 1.002 1 0.999 0.888 1.05

0.918
0.054 0.057 0.057

0
0.036

Min Avg Max Min Avg Max Min Avg Max

0.011 0.047

Min Avg Max Min Avg Max Min Avg Max

h1 to h2 h1 to h3 h1 to h4 h2 to h3 h2 to h4 h3 to h4

possible for data-plane communication with the controller. However, we occasionally

observe spikes (between 7 ms and 9.6 ms).

The spikes coincide with events where the topology is reconfigured or new flow

entries are added at the controller, resulting in a temporary increase in

communication between the controller and switch. Most importantly, these latency

peaks immediately settle down, suggesting that the controller is quite resilient and

quickly re-establishes an efficient path for data. Such a characteristic low latency,

within the limits of this study, also indicates that the intelligent Ryu-based framework

proposed achieves the aggregate minimum delay, making it suitable for use in IoT,

multimedia streaming, and time-sensitive systems. The controller, built from the

ground up in Python with extensive modularity, is capable of making instant

decisions in response to topological changes while maintaining service continuity,

even in highly demand-oriented networks.

12

10 9.45

9.345

9.668

Nodes connected to RYU controller

Figure 5.2: Latency Analysis between Host Pairs using Ryu Controller

5.5.3 Packet Loss Analysis

Packet loss is a metric that provides insight into network reliability and the

controller's capacity to deliver a consistent flow rate under duress—packet Loss

under bandwidth and traffic in Figures 5.3 and 5.4. The system is solid and robust, as

evidenced by the packet loss of not exceeding 0.5% at both 10 Mbps and 50 Mbps

bandwidths. This consistent performance illustrates that the adaptive load balancing

and congestion detection capabilities embedded in the proposed framework enable

the realization of a stable connection among multiple hosts. Fault tolerance has also

been evaluated by simulating various other test scenarios, as mentioned in Figure 24,

including link failures, bursty traffic, and concurrent flow bursts. Under these

changing conditions, the percentage of dropped packets slightly increased (3.4%), but

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

80

remained within normal limits, even under high load. This demonstrates the self-

adaptive behavior of the Ryu controller, which, in the event of a link failure (Link

Down) or a node failure (Node Down), reconfigures the forwarding paths of packets

to recover from the failure with minimal disruption to the network.

Instead of merely succumbing to failures, the framework maintains path choice,

thereby reducing retransmission costs; this behavior highlights the potency of

topology-awareness in the proposed system. Consequently, the SDN network

becomes more dependable, robust, and resource-efficient, as required for high-

availability SDN environments.

 Packet Loss at bandwidth of 10 Mbps

h3 to h4

h2 to h4

h2 to h3

h1 to h4

h1 to h3

h1 to h2

0 0.1 0.2 0.3 0.4 0.5

Packet Loss Percentage

Figure 5.3: Packet Loss Analysis at 10 Mbps and 50 Mbps Bandwidths across Host

Pairs

C
o

n
n

ec
ti

n
g

N
o

d
es

 Pa

cket Loss at band

width of 50 Mbps

81

4.00%

3.50% 61.90% 3.40%

3.00%

2.50%

2.00%

40.00%

2.10%

-17.65%

2.80%

-7.14%

2.60%

11.54%

2.90%

1.50%
1.50%

1.00%

0.50%

0.00%

Test Scenarios

Figure 5.4: Observed Packet Loss under Varying Network Traffic Scenarios

5.5.4 Overall Performance Interpretation

Throughput, latency, and packet loss are extensively analyzed based on experimental

results, which show that the proposed topology-aware SDN framework significantly

enhances performance compared to static or reactive architectures. The Ryu

controller is entirely programmable in Python, seamlessly integrated with Mininet

and Wireshark for real-time traffic optimization, and capable of achieving high

throughput, low latency, and negligible packet loss under dynamic traffic conditions.

From the results of all the experiments conducted in the previous chapters, it is

demonstrated that the proposed system successfully fulfills the research requirements

of network adaptability, controller-to-switch communication, and network stability

when exposed to various traffic loads. Ryu is an ideal solution for softer research

environments, as it achieves a perfect balance in transparency, performance tuning,

and simplicity — in contrast to other controllers designed for production-scale

environments (like ONOS or OpenDaylight), which are too complex for academic-

level prototyping.

Therefore, the analysis confirms that the Ryu-based approach meets the necessity of

scalability and efficiency for implementing adaptive traffic analysis and control in

SDN environments. Not only does it provide optimized solutions for various existing

problems, such as latency variation and dropped packets, but it also offers greater

O
b

se
rv

ed
 P

ac
ke

t
Lo

ss
 (%

)

82

predictability of flow and responsiveness to topology, traits that position it well for

use in future innovative networking applications.

5.6 Comparison with Existing Frameworks

In this section, a comparative performance analysis is performed to evaluate the

application's performance in our proposed SDN-based intelligent traffic analysis

framework against the default SDN topology using the Ryu controller. Abstract-This

evaluation tries to quantify how well the proposed framework enhances the core

performance indicators, such as the throughput, bandwidth, RTT, and packet loss

rate, when subjected to different conditions of the network and various host

connections. The results are obtained through extensive simulation and emulation

experiments in the Mininet environment, where the respective default and proposed

topologies are compared under identical traffic and bandwidth conditions to ensure a

fair comparison.

5.6.1 Throughput Analysis

In Figure 5.5, we present a comparative throughput analysis of the proposed and

default SDN topologies for various numbers of host connections. We analyze the

minimum and maximum throughputs recorded between pairs of hosts, including h1-

h2, h1–h3, h2–h3, h2-h4, and h4–h1, and so on. These results definitively

demonstrate that the proposed topology consistently achieves higher throughput,

ranging from 21.4 to 27.4 Gbps, compared to the default topology, which has a lower

throughput range of 20.8 to 26.8 Gbps.

This enhancement is primarily achieved through the utilization of smart links and the

adaptive flow assignment approach incorporated into the proposed SDN architecture.

The controller provides effective load balancing of traffic among available paths and

offers facilities to prevent overutilization of network bandwidth, thereby avoiding

bottlenecks and choking. As a result, the proposed model has a less volatile

throughput curve, lowering the fluctuations in classical SDN environments. This

demonstrates that the proposed scheme achieves a throughput gain of up to 5–8%,

making it more efficient for concurrent flows [37].

83

 Minimum throughput of proposed SDN topology Maximum throughput of proposed SDN topology

 Minimum throughput of default SDN topology Maximum throughput of default SDN topology

H 1 T O H 2 H 1 T O H 3 H 2 T O H 3 H 2 T O H 4 H 3 T O H 4 H 1 T O H 4

NODES CONNECTED TO RYU CONTROLLER

Figure 5.5: Comparative Throughput Analysis of Proposed and Default SDN

Topologies under Varying Host Connections

5.6.2 Bandwidth Comparison

In Figure 5.6, we compare the bandwidth between the proposed and default SDN

frameworks for various host pairs. As a result, the proposed framework achieves

higher bandwidth utilization than the measured bandwidth utilization of 26.7 Gbps

for h1–h2, 25.2 Gbps for h1–h3, and 25.0 Gbps for h1–h4 in the default setup, which

is 25.1 Gbps, 24.5 Gbps, and 24.4 Gbps, respectively.

TH
R

O
U

G
H

P
U

T
(G

B
P

S)

22
.6

28
.5

21
.2

27
.4

20
.9

28
.5

20
.8

27
.5

22
.1

29
.9

20
.9

28
.6

20
.9

27
.4

0 0

21
.6

28
.5

0 0

20
.9

27
.4

0 0

84

25.1 26.7

24.5 25.2

25 24.4

h2 to h4

h3 to h4

22.7

23.8

24.8

 Default Bandwidth (Gbps) Bandwidth of Proposed Framework (Gbps)

h1 to h2

h1 to h3

h1 to h4

h2 to h3

Figure 5.6: Bandwidth Comparison between Default and Proposed SDN Framework

across Host Pairs

This result demonstrates that the proposed SDN model can facilitate high data rate

transfers and dynamically adapt to changes in available link capacity. The flow

scheduling method is deployed in conjunction with the Ryu controller, which has an

efficient traffic monitoring module. With this functionality, the network will

capitalize on available resources. This improved bandwidth utilization indicates

better overall throughput consistency and suggests a more intelligent controller that

effectively mitigates network congestion. Based on the results, the proposed system

improves bandwidth efficiency by approximately 4–6% compared to the current

system, resulting in a smoother data transmission environment and eliminating

performance bottlenecks.

5.6.3 Latency Comparison

RTT Comparison between Proposed and Default SDN Topology Between Multiple

Host Pairs shown in Fig. 5.7. In contrast, the RTT for the proposed topology is

considerably lower, which confirms the proposed topology reaches the destination

faster with lower delay. The proposed setup achieved latency values ranging from a

minimum of 0.9 ms to an average of 8.1 ms. In contrast, the default topology

achieved minimum, average, and maximum latency values ranging from 1.0 ms to

10.2 ms.

This reduction in latency is a direct result of the optimized routing and reduced

controller overhead introduced by the proposed framework. The system also utilizes

mechanisms and optimizations for packet forwarding and prioritization, minimizing

85

queuing delays and enhancing control-plane responsiveness, as well as packet

delivery performance. Reduced RTTs indicate a better area for performance in delay-

sensitive applications, such as video streaming and real-time analytics. Accordingly,

the latency in the SDN environment with our proposed framework is up to 15%

lower than traditional approaches, which further confirms the power of SDN in

performing time-critical operations.

12

10

8

6

4

2

0

Nodes connected to RYU controller

 RTTs of default SDN topology RTTs of proposed SDN topology

Figure 5.7: RTT Comparison of Proposed vs. Default SDN Topology across Host

Pairs

5.6.4 Packet Loss Rate Comparison

As shown in Fig. 5.8, Packet Loss Rate Comparison between the proposed and

existing SDN frameworks on various network conditions. This evaluation comprises

several traffic scenarios, including low traffic (2 Mbps, 100 packets/sec), high traffic

(≥ 12 Mbps, 600+ packets/sec), bursty traffic (2–10 Mbps oscillation), and link

failure scenarios. Packet loss can be as low as 1.5% to 3.4% in the proposed

framework, whereas the existing SDN framework incurs a higher loss of 2.3% to

5.2% across scenarios.

This reduction in latency and lower packet loss is made possible by the proposed

framework's capability for intelligent traffic monitoring and adaptive retransmission

control, which enables it to detect congested links and redistribute flows to maintain

stability quickly. The topology-aware and controller feedback mechanisms in the

proposed model will allow it to sustain similar packet drop rates at lower levels, even

under bursty or failure-prone conditions. Thus, the framework reduces packet loss by

∼approximately 30–35% and demonstrates its robustness and reliability across

different traffic intensities.

Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max Min Avg Max

h1 to h2 h1 to h3 h2 to h3 h2 to h4 h3 to h4 h1 to h4 h1 to h4

Ti
m

e
 (

in
 m

ill
is

e
co

n
d

s)

86

Figure 5.8: Traffic Packet Loss Rate Comparison under Varying Network Conditions

5.7 Chapter Summary

The results from this chapter corroborate the fact that the multiple scenario-relevant

features lead to a significant, performant, and stable network by the proposed

framework. As presented in the throughput and bandwidth analyses, there is a steady

increase of approximately 5–8% in data transfer efficiency due to the capabilities of

dynamic flow scheduling and smart load balancing designed into the Ryu controller.

Latency measurements indicated a significant reduction of approximately 15%,

demonstrating the framework's ability to optimize real-time packet forwarding and

infrastructure overhead on the controller. Here, the packet loss rate was decreased by

∼approximately 30–35% even in high-traffic and link-failure scenarios, indicating
the system's efficiency in maintaining reliable data delivery.

In general, results confirm that the SDN topology-aware design can achieve

significantly better performance compared to traditional SDN architectures. The

framework's dynamism in response to changing network factors, along with its

enhanced resource and decision-making capabilities, makes it suitable for large-scale,

time-critical network settings, including IoT systems, cloud-based e-learning

systems, and intelligent infrastructure networks. As such, this chapter demonstrates

that the proposed approach is practical, scalable, and reliable, which provides a

strong basis for both real-world deployment and future research extensions.

87

CHAPTER 6

CONCLUSION, FUTURE SCOPE, AND SOCIAL IMPACT

6.1 Conclusion

This study focused on the SDN environment and developed a Ryu-based intelligent

traffic analysis framework. This thesis implements a topology-aware dynamic traffic

management framework that leverages centralized SDN control to improve

scalability, fault tolerance, and traffic handling efficiency. It was made successful by

overcoming the limitations of the traditional distributed networking model through

the addition of traffic monitoring, load balancing, and anomaly detection capabilities

under the Ryu controller, providing centralized management.

Through experiments and simulations in Mininet, the proposed architecture

demonstrated that centrally controlling with a Ryu controller can significantly

improve traffic handling and decision-making within the control plane. Such a

system leveraged OpenFlow-enabled switches to achieve real-time flow visibility for

intelligent packet forwarding and congestion control. The performance of such a

solution is further complementarily assessed in terms of throughput, latency, packet

loss, and controller response time.

The presented architecture makes a significant contribution to the SDN field,

particularly in areas such as network intelligence, adaptability, and traffic

optimization. Planned demonstrations will show that the Ryu based design not only

reduces flow control complexity but also supports the flexibility of incorporating

further modules for security, energy conservation, and QoS management.

Furthermore, the modular design enables the system to be easily expanded to

accommodate new technologies, such as IoT, cloud-based learning systems, and 5G

networks. The main research findings are:

 A new Ryu-based intelligent traffic analysis framework that combines the
control plane and the data for more informed decisions.

 A multi-level network architecture implemented in Mininet for realistic and

scalable simulation of varying traffic scenarios.

 Implemented dynamic flow management algorithms to address congestion

and maximize load distribution in network paths.

 The evaluation also showed that throughput increases, packet loss decreases,

88

latency drops, and controller response times are better than before.

 Proved the capability of SDN-based architecture to improve the security,
scalability, and fault tolerance of current network systems.

6.2 Future Scope

Despite promising results from the proposed framework, several opportunities for

improvement and future work remain. The growing diversity of global networks and

the surge in data-driven services call for a continuous evolution of SDN-based

control frameworks. The future scopes are as follows, indicating possible lines for

improvement, innovation, and real-life implementation of our proposed framework.

The main research findings are:

 Integration of Machine Learning: One of the exciting future directions is to

accommodate ML and AI algorithms into the Ryu controller framework.
These methods can be used to provide predictive management of traffic,

enabling the system to predict both congestion and link failures before they

occur. For example, the SDN controller can scale system-wide or per-flow
routing decisions using reinforcement learning techniques or deep learning

applications, leveraging real-time traffic data and historical knowledge of user
activity patterns. This adaptive intelligence would yield a significantly more

stable network, lower latency, and better decision-making than currently
possible with the static rule-based approach.

 Scalability to Multi-controller and Distributed SDN Environments: The current

work is built on the single-controller (e.g., Ryu controller) scheme. Finally,
the proposed model can be easily extended to a multi-controller or

hierarchical SDN architecture, which helps toward a more scalable
environment with fault tolerance and resistance. Big data centers, (ISP)

networks, and smart cities can be cooperatively controlled by multiple
controllers controlling the different parts of the network. The system would

be much more robust against controller failures and better able to handle
geographically distributed networks if it applied protocols for inter-controller

communication and load distribution algorithms.

 Support for IoT and Edge Computing Environments: Another central area is
to extend the framework so that it can work on IoT-based and edge computing

architectures, where millions of energy-constrained devices are producing
small packets of data all around. The traffic analysis system proposed in this

work can also be used for prioritizing delay-sensitive IoT flows and

optimizing resource allocation at the edge. For example, integrating the Ryu
controller into a multimodal IoT communication framework with lightweight

protocols and edge analytics modules enables achieving real-time response
times with reduced data transmission overhead. This would unlock access to

the framework for applications in smart homes, connected cars, and industrial
automation.

 Real-World Testbed Deployment: To perform the transition from simulation

to real deployment, the framework can be tested and deployed in real-world
SDN testbeds or the cloud. Validations of the system in real-time with GENI,

Mininet-WiFi, or CloudLab would be carried out under varying loads and
topologies. It would also validate the proposed system if it can be cross-

89

platform tested, such as against other controllers, i.e., ONOS, ODL,

Floodlight, etc., and these test results demonstrate the interoperability of the
proposed solution as well.

6.3 Social Impact

The Ryu-based intelligent traffic analysis framework developed in this thesis has

significant social relevance in the context of today’s highly interconnected digital

environments, where efficient, reliable, and adaptive network performance is

essential for large-scale communication systems. The research ultimately leads to an

enhanced capability of the networks to support billions of diverse traffic loads

seamlessly, facilitating seamless and reliable digital communication between users,

institutions, and public organizations. In a world where dependence on real-time data

transfer is crucial for education, healthcare, finance, and governance, enhancements

in network performance ultimately equate to the availability and reliability of on-

demand digital services for all end-users.

One of the key social gains from this research is its contribution to the design of

digital education and remote learning platforms. The proposed framework enables

better management of data traffic, enhancing data transmission capabilities for

bandwidth-intensive applications such as virtual classrooms, video conferencing, and

e-learning portals, through lower latency and reduced packet loss. This ensures that

learners in rural areas or bandwidth-constrained regions of the world have steady and

uninterrupted sessions, thereby contributing to the broader effort of achieving

equitable access to quality education worldwide.

The framework can be utilized to facilitate telemedicine, real-time health monitoring,

and digital record sharing within the healthcare industry. It is essential for hospitals

and emergency response units that rely on the rapid transmission of diagnostic

images or patient data over high-speed and low-latency communication networks.

Next, a conceptual structure of an SDN-based system is employed first to enhance the

ability to control the route of traffic forwarding and then provide an appropriate

mechanism to guarantee that essential data in medical applications arrives promptly

without being disturbed or tampered with. That ultimately makes healthcare delivery

safer and more efficient for patients.

Additionally, the security advantages of the proposed system have significant social

value. The framework can prevent the loss of millions of dollars or personal

information due to a cyber-attack by detecting anomalies and regulating network

traffic using programmable control, thus ensuring that your money is safe and that

you can still access essential online services or even portals at the compulsory level,

e.g., government-level portals. Reinforcing data security at the network layer

safeguards citizen privacy and fosters confidence in digital transformation efforts.

90

REFERENCES

[1] Zangaraki, S., Mirabi, M., Erfani, S. H., & Sahafi, A. (2025). SecShield: An IoT

access control framework with edge caching using a software-defined network. Peer-

to-Peer Networking and Applications, 18(1), 1-17.

[2] Kaur, A., Krishna, C. R., & Patil, N. V. (2025). A comprehensive review on

Software-Defined Networking (SDN) and DDoS attacks: Ecosystem, taxonomy,

traffic engineering, challenges and research directions. Computer Science Review, 55,

100692.

[3] Alotaibi, J. (2025). A hybrid software-defined networking approach for enhancing

IoT cybersecurity with deep learning and blockchain in smart cities. Peer-to-Peer

Networking and Applications, 18(3), 123.

[4] Kumar, P., Jolfaei, A., & Islam, A. N. (2025). An enhanced Deep-Learning

empowered Threat-Hunting Framework for software-defined Internet of

Things. Computers & Security, 148, 104109.

[5] Gadallah, W. G., Ibrahim, H. M., & Omar, N. M. (2024). A deep learning technique

to detect distributed denial of service attacks in software-defined

networks. Computers & Security, 137, 103588.

[6] Assis, M. V., Carvalho, L. F., Lloret, J., & Proença Jr, M. L. (2021). A GRU deep

learning system against attacks in software defined networks. Journal of Network and

Computer Applications, 177, 102942.

[7] Priyadarsini, M., & Bera, P. (2021). Software defined networking architecture, traffic

management, security, and placement: A survey. Computer Networks, 192, 108047.

[8] Setitra, M. A., Fan, M., Benkhaddra, I., & Bensalem, Z. E. A. (2024). DoS/DDoS

attacks in Software Defined Networks: Current situation, challenges and future

directions. Computer Communications.

[9] Said, R. B., Sabir, Z., & Askerzade, I. (2023). CNN-BiLSTM: a hybrid deep learning

approach for network intrusion detection system in software-defined networking with

hybrid feature selection. IEEE Access, 11, 138732-138747.

[10] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S.,

& Uhlig, S. (2018). Software-defined networking: A comprehensive survey.

Proceedings of the IEEE, 106(7), 1216-1231.
https://doi.org/10.1109/JPROC.2018.2819420

[11] Nunes, B. A. A., Mendonça, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2019).

A survey of software-defined networking: Past, present, and future of programmable

networks. IEEE Communications Surveys & Tutorials, 21(1), 30-46.
https://doi.org/10.1109/COMST.2018.2858585

https://doi.org/10.1109/JPROC.2018.2819420
https://doi.org/10.1109/COMST.2018.2858585

91

[12] McKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford,

J., Shenker, S., & Turner, J. (2020). OpenFlow: Enabling innovation in campus

networks. ACM SIGCOMM Computer Communication Review, 40(2), 69-74.
https://doi.org/10.1145/1355734.1355748

[13] Zeng, Y., Wu, J., & Tang, M. (2021). A performance evaluation of software-defined

networking (SDN) in cloud and data center environments. IEEE Transactions on

Network and Service Management, 18(1), 150-163.
https://doi.org/10.1109/TNSM.2020.2973401

[14] Li, L., Xie, L., & Zhang, T. (2021). Hybrid controller architecture for software-

defined networks. IEEE Access, 9, 12135-12148.
https://doi.org/10.1109/ACCESS.2021.3063248

[15] Jain, R., & Kumar, A. (2022). SDN switches and controllers: Survey and

comparative study. IEEE Communications Surveys & Tutorials, 24(1), 221-235.
https://doi.org/10.1109/COMST.2022.3146503

[16] Al-Mousa, A., Qadri, N., & Al-Mashaqbeh, I. (2023). Artificial intelligence-driven

software-defined networking for 6G: A survey. IEEE Access, 11, 11586-11600.

https://doi.org/10.1109/ACCESS.2023.3247461

[17] Kalita, S., & Sarma, N. (2024). Comparative study of software-defined networking

controllers for real-time networking. International Journal of Computer Applications,

177(1), 40-45. https://doi.org/10.5120/ijca20242410148

[18] Xie, L., Wang, Z., & Sun, L. (2024). Evaluating software-defined networking

architectures for edge and fog computing. IEEE Transactions on Cloud Computing,

12(2), 347-358. https://doi.org/10.1109/TCC.2024.3115242

[19] Gupta, N., Yadav, A., & Banerjee, T. (2025). Cross-layer integration for policy-

driven network management in software-defined networks. IEEE Transactions on

Network and Service Management, 22(1), 1-14.

https://doi.org/10.1109/TNSM.2025.3271945

[20] Yu, R., Zhang, Y., Pan, M., & Yang, D. (2018). Traffic classification in traditional

networks using hybrid statistical and ML approaches. Computer Communications,

125, 82–91. https://doi.org/10.1016/j.comcom.2018.05.009

[21] Jain, R., & Kumar, A. (2019). Intrusion detection using traffic pattern mining in

legacy systems. International Journal of Network Security, 21(2), 285–294.

[22] Wang, C., Li, X., & Qian, Y. (2020). OpenFlow-based traffic anomaly detection in

SDN networks. IEEE Transactions on Network and Service Management, 17(3),

1245–1256. https://doi.org/10.1109/TNSM.2020.2994625

[23] Rathore, H., & Park, J. H. (2020). Deep learning integrated SDN for real-time traffic

classification and attack detection. Sensors, 20(14), 3922.
https://doi.org/10.3390/s20143922

[24] Zeng, Y., Wu, J., & Tang, M. (2021). A controller-assisted framework for traffic

profiling in SDN data centers. Journal of Network and Computer Applications, 180,

102999. https://doi.org/10.1016/j.jnca.2021.102999

https://doi.org/10.1145/1355734.1355748
https://doi.org/10.1109/TNSM.2020.2973401
https://doi.org/10.1109/ACCESS.2021.3063248
https://doi.org/10.1109/COMST.2022.3146503
https://doi.org/10.1109/TNSM.2020.2994625
https://doi.org/10.3390/s20143922
https://doi.org/10.1016/j.jnca.2021.102999

92

[25] Wang, S., Liu, D., & Chen, H. (2021). Traffic scheduling in SDN-based enterprise

networks using TE algorithms. Computer Networks, 187, 107766.
https://doi.org/10.1016/j.comnet.2021.107766

[26] Elmasry, A., & Ali, N. (2022). Intelligent traffic detection in SDN using fuzzy logic

and ONOS controller. IEEE Access, 10, 38875–38885.
https://doi.org/10.1109/ACCESS.2022.3161234

[27] Adikari, K., & Kumbhar, S. (2023). Encrypted traffic classification using hybrid

CNN in SDN. Future Generation Computer Systems, 141, 351–362.
https://doi.org/10.1016/j.future.2023.03.004

[28] Anwar, F., Hassan, M., & Lee, K. (2024). Edge-intelligent SDN architecture for

adaptive traffic flow control. Journal of Systems Architecture, 141, 102730.
https://doi.org/10.1016/j.sysarc.2024.102730

[29] Gupta, N., Yadav, A., & Banerjee, T. (2025). Cross-layer traffic analysis in SDN

using policy-aware flow aggregation. IEEE Transactions on Network and Service

Management, 22(1), 45–58. https://doi.org/10.1109/TNSM.2025.3145789

[30] Sharma, S., & Kumar, P. (2020). Topology design and traffic analysis in SDN-based

networks. Journal of Network and Computer Applications, 165, 102720.

https://doi.org/10.1016/j.jnca.2020.102720

[31] Al-Fares, M., & Rehman, A. (2020). Impact of network topology on traffic flow in

SDN-based architectures. Proceedings of the IEEE International Conference on

Communications (ICC), 1-6. https://doi.org/10.1109/ICC40277.2020.9149007

[32] Zhang, T., & Li, Y. (2020). Performance evaluation of SDN topology designs for

efficient traffic analysis. IEEE Access, 8, 50209-50219.

https://doi.org/10.1109/ACCESS.2020.2973521

[33] Kaur, M., & Singh, G. (2021). Designing SDN topologies for traffic optimization and

scalability in large networks. Journal of Computing and Communications, 9(4), 29-

39. https://doi.org/10.18576/jcc/090402

[34] Kumar, N., & Pandey, P. (2021). Impact of topology on traffic load distribution in

SDN networks. International Journal of Network Management, 31(6), e2222.

https://doi.org/10.1002/nem.2222

[35] Xiao, J., & Liu, F. (2022). Topology-aware traffic analysis for SDN: A case study in

data centers. IEEE Transactions on Network and Service Management, 19(1), 42-55.

https://doi.org/10.1109/TNSM.2022.3172845

[36] Ahmed, F., & Hussain, F. (2022). Traffic analysis and topology design for resource-

efficient SDN-based networking. Computers, 11(8), 96.

https://doi.org/10.3390/computers11080096

[37] Wang, Y., & Li, X. (2022). Optimizing traffic patterns using topology control in

SDN for cloud environments. Journal of Cloud Computing: Advances, Systems and

Applications, 11(1), 22-34. https://doi.org/10.1186/s13677-022-00272-7

https://doi.org/10.1016/j.comnet.2021.107766
https://doi.org/10.1109/ACCESS.2022.3161234
https://doi.org/10.1016/j.future.2023.03.004
https://doi.org/10.1016/j.sysarc.2024.102730
https://doi.org/10.1186/s13677-022-00272-7

93

[38] Patel, D., & Desai, H. (2023). Topology and traffic load balancing in SDN: A

performance comparison study. Computer Networks, 214, 108872.

https://doi.org/10.1016/j.comnet.2023.108872

[39] Huang, L., & Zhang, Q. (2023). Traffic analysis and optimization techniques for

SDN topology in 5G networks. IEEE Access, 11, 29345-29358.

https://doi.org/10.1109/ACCESS.2023.3262221

[40] Singh, M., & Agarwal, A. (2024). Dynamic traffic analysis in SDN-based

hierarchical topologies. IEEE Transactions on Network and Service Management,

21(3), 2423-2435. https://doi.org/10.1109/TNSM.2024.3275473

[41] Khan, Z., & Ahmed, M. (2025). Enhancing SDN topology design for optimized

traffic routing in smart cities. Journal of Network and Computer Applications, 183,

103306. https://doi.org/10.1016/j.jnca.2025.103306

[42] Chatterjee, R., & Das, A. (2021). Multi-threaded controller design for improving

flow setup latency in SDN. Journal of Network Engineering, 18(2), 101–112.

[43] Lee, J., Kim, S., & Park, H. (2021). Inter-controller communication for distributed

SDN environments. IEEE Transactions on Network and Service Management, 18(4),

498–510.

[44] Wang, X., & Huang, Y. (2022). Traffic-aware controller scheduling for dynamic load

balancing in SDN. Computer Networks, 207, 108834.

[45] Sahu, A., Roy, D., & Mukherjee, B. (2022). AI-enabled controller for real-time QoS

in SDN. IEEE Access, 10, 44756–44770.

[46] Kumar, N., & Singh, R. (2023). Hierarchical SDN control plane for improved fault

recovery. International Journal of Communication Networks and Distributed

Systems, 31(3), 214–229.

[47] Mehmood, A., Asghar, M., & Khan, A. (2023). Deep reinforcement learning-based

adaptive routing in SDN. Future Generation Computer Systems, 135, 211–223.

[48] Zhou, T., Liu, F., & Chen, Z. (2024). Latency-sensitive scheduling for SDN

controllers in 5G. IEEE Systems Journal, 18(1), 76–85.

[49] Ali, M., & Rahman, A. (2024). Enhanced load balancing in clustered SDN

controllers. Journal of Network and Computer Applications, 215, 103542.

[50] Nguyen, L. H., & Patel, S. (2025). Blockchain-based secure control mechanism for

multi-domain SDNs. Computer Communications, 200, 88–98.

[51] Rana, M., & Iqbal, T. (2025). Predictive fault-tolerant SDN controller using AI. ACM

Transactions on Internet Technology, 25(2), 1–20.

[52] Kreutz, D., Ramos, F. M. V., Verissimo, P. E., Rothenberg, C. E., Azodolmolky, S.,

& Uhlig, S. (2018). Software-defined networking: A comprehensive survey.

Proceedings of the IEEE, 103(1), 14–76.

https://doi.org/10.1109/JPROC.2014.2371999

https://doi.org/10.1109/JPROC.2014.2371999

94

[53] Nunes, B. A. A., Mendonca, M., Nguyen, X. N., Obraczka, K., & Turletti, T. (2018).

A survey of software-defined networking: Past, present, and future of programmable

networks. IEEE Communications Surveys & Tutorials, 16(3), 1617–1634.

https://doi.org/10.1109/SURV.2014.012214.00180

[54] Kassler, A., Souza, A. M., & Lopes, C. A. (2019). ONOS security extensions: A

framework for anomaly detection. Journal of Network and Systems Management,

27(2), 312–328. https://doi.org/10.1007/s10922-018-9465-6

[55] Kim, H., & Feamster, N. (2019). Improving network management with software

defined networking. ACM SIGCOMM Computer Communication Review, 43(4), 87–

92. https://doi.org/10.1145/2534169.2486011

[56] Tootoonchian, A., & Ganjali, Y. (2020). HyperFlow: A distributed control plane for

OpenFlow. IEEE Network, 34(1), 40–46.

https://doi.org/10.1109/MNET.2020.1700174

[57] Arslan, M., Ahmad, I., Hussain, M., & Baig, I. (2020). DynaSDN: A dynamic SDN

control framework for improved scalability. Computer Networks, 178, 107323.

https://doi.org/10.1016/j.comnet.2020.107323

[58] Zhang, C., Wang, Y., & Liu, Z. (2020). Evaluating slicing support in SDN controllers

using FlowVisor. Future Generation Computer Systems, 112, 755–764.

https://doi.org/10.1016/j.future.2020.06.029

[59] Raza, S., & Khokhar, R. H. (2021). FlexiSDN: A control-plane elasticity framework

for software-defined WANs. Journal of Communication Networks, 23(1), 21–30.

https://doi.org/10.1109/JCN.2021.000004

[60] Iqbal, M., Javed, M. Y., & Khan, A. (2021). Real-time performance analysis of

software-defined networking controllers. IEEE Access, 9, 13456–13466.

https://doi.org/10.1109/ACCESS.2021.3052233

[61] Siddiqui, S., Raza, S., & Qamar, F. (2022). SmartSDN: Integrating deep packet

inspection into ONOS for enhanced traffic control. Sensors, 22(3), 1155.

https://doi.org/10.3390/s22031155

[62] Mahmood, A., & Hassan, M. (2022). AIFlow: An intelligent SDN framework for

congestion prediction and avoidance. International Journal of Network Management,

32(2), e2153. https://doi.org/10.1002/nem.2153

[63] Nguyen, H., Tran, D., & Pham, C. (2022). A comparative performance analysis of

software-defined networking controllers. Computer Networks, 203, 108620.

https://doi.org/10.1016/j.comnet.2021.108620

[64] Thapa, R., & Lee, Y. (2022). QoS-SDN: A real-time SDN framework for bandwidth-

aware flow control. IEEE Transactions on Services Computing, 15(6), 1103–1112.

https://doi.org/10.1109/TSC.2022.3156801

[65] Rahman, A., Alam, M., & Kabir, M. A. (2023). EdgeFlow: An SDN framework for

edge computing. IEEE Internet of Things Journal, 10(3), 1960–1970.

https://doi.org/10.1109/JIOT.2023.3245612

https://doi.org/10.1109/JIOT.2023.3245612

95

[66] Zhao, F., & Wang, X. (2023). MobSDN: Adaptive SDN for mobile edge networks.

IEEE Vehicular Technology Magazine, 18(2), 66–73.

https://doi.org/10.1109/MVT.2023.3247608

[67] Alzahrani, N., Khan, M. A., & Alotaibi, F. (2023). SecuSDN: A blockchain-based

policy enforcement framework for SDN. IEEE Access, 11, 44350–44360.

https://doi.org/10.1109/ACCESS.2023.3267875

[68] Qureshi, H., & Tariq, M. (2023). GreenSDN: An energy-efficient controller design

for sustainable SDN networks. Sustainable Computing: Informatics and Systems, 37,

100781. https://doi.org/10.1016/j.suscom.2023.100781

[69] Tan, C., Wong, E., & Lin, J. (2024). AICtrl: A federated learning-enabled SDN

controller for smart cloud networks. Future Internet, 16(1), 7.

https://doi.org/10.3390/fi16010007

[70] Bhardwaj, A., & Kapoor, R. (2024). HybridQoS-SDN: AI-enhanced quality of

service optimization for IoT-SDN. IEEE Sensors Journal, 24(2), 1347–1356.

https://doi.org/10.1109/JSEN.2024.3321674

[71] Chen, J., Liu, H., & Zhou, M. (2024). Benchmarking performance of open-source

SDN frameworks under mixed traffic loads. Computer Standards & Interfaces, 89,

103773. https://doi.org/10.1016/j.csi.2024.103773

[72] Gupta, R., Singh, P., & Rao, M. (2025). CrossSense: A cross-layer optimization

framework for SDN traffic analysis. IEEE Transactions on Network and Service

Management, 18(1), 112–124. https://doi.org/10.1109/TNSM.2025.3145001

[73] Ahmed, Z., & Sinha, P. (2025). AutoSDN: An autonomous learning-based traffic

control framework in SDN. ACM Transactions on Autonomous Networks, 11(2), 1–

22. https://doi.org/10.1145/3602098

[74] Iqra, F., Rauf, B., & Rehman, U. (2025). FailSafe-SDN: Predictive failure handling

in SDN using proactive rerouting. IEEE Transactions on Reliability, 74(1), 95–104.

https://doi.org/10.1109/TR.2025.3214987

[75] Bai, Y., & Yu, T. (2025). QuantumSDN: Integrating quantum encryption into SDN

controller architectures. Computer Networks, 238, 110292.

https://doi.org/10.1016/j.comnet.2025.110292

[76] Liu, Y., & Zhou, W. (2025). A meta-analysis of SDN controller frameworks: Trends,

gaps, and future research. IEEE Communications Surveys & Tutorials, 27(2), 85–

115. https://doi.org/10.1109/COMST.2025.3285198

[77] Wang, Z., Ding, H., Li, B., Bao, L., Yang, Z., & Liu, Q. (2022). Energy efficient

cluster based routing protocol for WSN using firefly algorithm and ant colony

optimization. Wireless Personal Communications, 125(3), 2167–2200. 23.

[78] Wang, Z., Ding, H., Li, B., Bao, L., & Yang, Z. (2020). An energy efficient routing

protocol based on improved artificial bee colony algorithm for wireless sensor

networks. IEEE Access, 8, 133577–133596. 24.

https://doi.org/10.1109/COMST.2025.3285198

96

[79] Chica, J. C. C., Imbachi, J. C., & Vega, J. F. B. (2020). Security in SDN: A

comprehensive survey. Journal of Network and Computer Applications, 159(4), 102–

118.

[80] Bhatia, J., Dave, R., Bhayani, H., Tanwar, S., & Nayyar, A. (2020). Sdn-based real-

time urban traffic analysis in vanet environment. Computer Communications, 149,

162–175. 35.

[81] Priya, A. V., & Radhika, N. (2019). Performance comparison of SDN OpenFlow

controllers. International Journal of Computer Aided Engineering and Technology,

11(4–5), 467–479.

[82] Leon, J., Aydeger, A., Mercan, S., & Akkaya, K. (2023). SDN-enabled vehicular

networks: Theory and practice within platooning applications. Vehicular

Communications, 39, 100545. 48.

[83] Singh, P. K., Sharma, S., Nandi, S. K., & Nandi, S. (2019). Multipath TCP for V2I

communication in SDN controlled small cell deployment of smart city. Vehicular

communications, 15, 1–15.

[84] Rezaee, M. R., Hamid, N. A. W. A., Hussin, M., & Zukarnain, Z. A. (2024). Fog

Offloading and Task Management in IoT-Fog-Cloud Environment: Review of Al

gorithms, Networks and SDN Application. IEEE Access.

[85] Ayodele, B., & Buttigieg, V. (2024). SDN as a defense mechanism: a comprehensive

survey. International Journal of Information Security, 23(1), 141-185.

[86] Qaffas, A. A., Kamal, S., Sayeed, F., Dutta, P., Joshi, S., & Alhassan, I. (2023).

Adaptive population-based multi-objective optimization in SDN controllers for cost

optimization. Physical Communication, 58, 102006.

[87] Wang, K., Fu, Y., Duan, X., Liu, T., & Xu, J. (2024). An abnormal traffic detection

system in SDN is based on deep learning hybrid models. Computer Communica

tions, 216, 183-194.

[88] Li, J., Qi, X., Li, J., Su, Z., Su, Y., & Liu, L. (2024). Fault Diagnosis in the Network

Function Virtualization: A Survey, Taxonomy and Future Directions. IEEE Internet

of Things Journal.

[89] Ramya, G., & Manoharan, R. (2023). Traffic-aware dynamic controller placement in

SDN using NFV. The Journal of Supercomputing, 79(2), 2082-2107.

[90] Núñez-Gómez, C., Carrión, C., Caminero, B., & Delicado, F. M. (2023). S HIDRA:

A blockchain and SDN domain-based architecture to orchestrate fog computing

environments. Computer Networks, 221, 109512.

[91] Song, S., Park, H., Choi, B. Y., Choi, T., & Zhu, H. (2017). Control path manage

ment framework for enhancing software-defined network (SDN) reliability. IEEE

Transactions on Network and Service Management, 14(2), 302-316.

[92] Tang, D., Zheng, Z., Yin, C., Xiong, B., Qin, Z., & Yang, Q. (2024). FTODefender:

An efficient flow table overflow attacks defending system in SDN. Expert Systems

with Applications, 237, 121460.

Vol.:(0123456789)

Wireless Personal Communications (2023) 132:1797–1818
https://doi.org/10.1007/s11277-023-10680-1

1 3

Network Traffic Analysis in Software‑Defined Networking
Using RYU Controller

Shanu Bhardwaj1 · Ashish Girdhar1

Accepted: 12 July 2023 / Published online: 30 July 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
Software-Defined Networking (SDN) has emerged as a promising paradigm to enhance
network control and management by decoupling the planes. With SDN, the centralized
controller plays a critical role in managing network resources and traffic flows. Throughout
the most recent couple of years, networks turned out to be more imaginative for develop-
ing different applications with the help of SDN. Network traffic analysis is a vital task in
understanding network behaviour, identifying anomalies, and optimizing network perfor-
mance. To deal with the load of changes in the networking industry, there is an extraor-
dinary requirement for a productive SDN controller to work on the usage of network
resources for a better presentation of the network. Therefore, the proposed approach lever-
ages the RYU controller, an open-source SDN controller framework, to collect and analyse
network traffic data. By utilizing RYU’s capabilities, we can dynamically monitor and cap-
ture network traffic statistics, such as bandwidth, throughput, packet counts, and Round trip
time (RTT). These statistics provide valuable insights into network performance, and traffic
patterns. By leveraging real-time traffic analysis, we can dynamically adjust routing paths,
and allocate network resources efficiently. Hence, the proposed work assesses the develop-
ment of SDN architecture through a network topology and then, implementation of RYU
controller has been done to evaluate various network performance parameters. To evaluate
the effectiveness of our approach, we conduct experiments using a simulated SDN environ-
ment. We compare the performance parameters of our traffic analysis techniques with tra-
ditional methods and showcase the advantages of utilizing SDN and the Ryu controller for
network traffic analysis. The results demonstrate that our approach provides accurate and
timely insights into network traffic behaviour, facilitating efficient network management. In
conclusion, this study highlights the significance of network traffic analysis in SDN envi-
ronments and demonstrates the effectiveness of the Ryu controller for extracting valuable
insights from network traffic data.

Keywords  Software-defined networking · Wireless networks · Network topology · Traffic
network · Traffic engineering · SDN controller · Internet of Things

 *	 Shanu Bhardwaj
	 shanubhardwaj1@gmail.com

1	 Department of Computer Science and Engineering, Delhi Technological University, Delhi, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11277-023-10680-1&domain=pdf

JOURNAL OF INFORMATION SCIENCE AND ENGINEERING 42, XXX-XXX (2026)

DOI: 10.6688/JISE.202601_42(1).0003

1

Performance Analysis of TEVN with Ryu SDN Controller

SHANU BHARDWAJ1,+, SHAILENDER KUMAR1 AND ASHISH GIRDHAR2

1Department of Computer Science and Engineering

Delhi Technological University

Delhi, 110042 India

E-mail: shanubhardwaj1@gmail.com+

2Department of Computer Science and Applications

Kurukshetra University

Thanesar, Haryana, 136119 India

In today’s dynamic networking landscape, integrating Software-Defined Networking

(SDN) with Traffic-Expert Virtual Networks (TEVN) presents a promising avenue for op-

timizing network performance. This research investigates the implementation of TEVN

Embedding within SDN frameworks, utilizing the Ryu controller to address inefficiencies

in traditional virtual network embedding algorithms. Methodologically, the study proposes

a framework for TEVN and evaluates its performance against benchmark methods using

various parameters such as throughput, bandwidth, packet loss, and Round-Trip Time

(RTT). The evaluation is conducted through extensive experimentation in simulated SDN

environments, with results analyzed and compared comprehensively. The findings reveal

that TEVN significantly improves network efficiency, achieving higher throughput, lower

latency, and reduced packet loss compared to default embedding algorithms. These results

underscore the potential of TEVN to revolutionize network management practices, offer-

ing a promising solution for addressing the evolving challenges of modern network infra-

structures. This research contributes to advancing SDN technologies and gives insights

into enhancing network efficiency in dynamic environments.

Keywords: software-defined networking, Ryu controller, virtual networks, performance

parameters

1. INTRODUCTION

SDN is a transformative paradigm-shift technology; it has emerged as an innovation

of traditional network topologies and management methods with the fast evolution of net-

work technologies [1]. The current paradigm shifts dynamically to control and program

network behavior through centralized software. The one that continues to sprawl and di-

versify around various TEVNs introduces SDN integration [2]. The statically architected

traditional network continuously needs help keeping up with such performance fluctuation

and probably changes in traffic models [3]. Increased dynamism demands an infrastruc-

tural change that only the SDN brings. By centralizing control, the SDN offers real-time

visibility of traffic and coordination responsiveness [4].

In this paper, the possibility of integrating unique virtual network traffic expertise is

viewed as an essential aspect of advancing network infrastructure's overall performance

and efficiency. The integration of SDN enables a new pattern of adaptability and intelli-

gence in network management as virtual networks gain the capacity of immediate dispersal

in response to the current traffic situation [5-8]. Consequently, our primary aim is to ex-

pand the QoS and network efficiency by optimizing resource distributions. The findings

Received September 10, 2024; revised November 4, 2024; accepted January 13, 2025.

Communicated by Changqiao Xu.

Current Perspectives and Virtualisation solutions

with SDN for IoT

Shanu Bhardwaj

Department of Computer Science and

Engineering

Delhi Technological University
Delhi, India

shanubhardwaj1@gmail.com

Shailender Kumar

Department of Computer Science and

Engineering

Delhi Technological University
Delhi, India

shailenderkumar@dce.ac.in

Ashish Girdhar

Department of Computer Science and
Applications

Kurukshetra University
Kurukshetra, India

ashishgirdhar@dtu.ac.in

Abstract— During the past years, IoT has acquired a lot of
consideration since it incorporates intelligent gadgets which
empower many applications that work in our day-to-day
existence. Due to this the rising number of clients and the
interest in more different and specific applications have
prompted a tremendous expansion in the network traffic.
Managing different traffic requests from various applications
is a difficult task for the current traditional networking
architecture. Therefore, the paper provides a thorough
analysis of the SDN and various other technologies-based
network virtualization methods as well as current perspectives
for the IoT. The representation provides the working of
various up-going technologies such as Machine Learning, Edge
Computing, and Virtualization with SDN to betray the
performance of the SDN applications in today’s world.

Keywords—software-defined networking, network traffic,
internet of things, edge computing, machine learning

I. INTRODUCTION

The way we engage with our environment has changed

dramatically as a result of a rapidly developing technology,

the Internet of Things (IoT) [1]. Huge amounts of data have

been produced as a result of the proliferation of IoT devices,

necessitating a highly scalable and adaptable network design

to support them. The static and homogeneous environments

of traditional network architectures are not well adapted to

the dynamic and heterogeneous character of IoT networks

[2].

In this situation, network virtualization methods based on

Software-Defined Networking (SDN) [3] and Network

Function Virtualization (NFV) [4] may offer a strong remedy

for the virtualization of IoT networks. It disintegrates the

data plane of the network from the control plane [5]. SDN

helps to regulate traffic in a network by virtualizing the

control part of the network. It establishes a software program

as the brain of the network that takes away the task of

controlling and deciding the path to be used for forwarding

data packets to form the forwarding end to the receiving end

[6]. SDN helps to provide centralized control of the network

architecture which helps in seamless troubleshooting as

shown in Fig. 1 [7].

The main concept behind SDN is to separate the control

plane and the physical layer and provide a more centralized

controller for the entire network so that all

computations/decision-taking occurs at this controller which

eventually decreases latency as the controller has the

complete knowledge of the network topology [8]. On the

other hand, NV takes a SDN approach to traditional

networking devices by separating the software and hardware

capabilities by replacing the dedicated network with virtual

machines. A combination of these two technologies in the

field of IoT is very effective as it decreases the capital

expenditure and operating expenditure cost by sharing the

network infrastructure [9]. SDN helps to create a unique and

adaptable network design that can be altered as per the

decisions made by network administrators.

Fig. 1. Layer-based architecture of software-defined networking.

This document provides a thorough analysis of the

various SDN and other technologies based network

virtualization methods for the Internet of Things. The

representation provides the working of various up-going

technologies such as Machine Learning, Edge Computing,

and Virtualization with SDN to betray the performance of

the SDN applications in today’s world.

The remainder of the paper is organized in following way

shown in Fig. 2: Section 1 provides the introduction to SDN

and its applications. Section 2 provides the literature review.

Section 3 describes the background as well as the current

perspectives and virtualisation solutions with SDN and

section 4 provides a conclusion.

II. LITERATURE REVIEW

The following representation provided the literature

review in terms of prior art with several aspects of SDN. The

aim of reviewing the literature is to gather the work done in

the past.

77979-8-3503-0541-8/23/$31.00 ©2023 IEEE

20
23

 S
ec

on
d

In
te

rn
at

io
na

l C
on

fe
re

nc
e

O
n

Sm
ar

t T
ec

hn
ol

og
ie

s F
or

 S
m

ar
t N

at
io

n
(S

m
ar

tT
ec

hC
on

) |
 9

79
-8

-3
50

3-
05

41
-8

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
D

O
I:

10
.1

10
9/

Sm
ar

tT
ec

hC
on

57
52

6.
20

23
.1

03
91

40
3

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on April 30,2024 at 07:33:10 UTC from IEEE Xplore. Restrictions apply.

978-1-6654-0962-9/21/$31.00 ©2021 IEEE

Software-Defined Networking: A Traffic

Engineering Approach

Abstract—Software-Defined Networking (SDN) is the new

networking approach that overcomes the obstacles that are

faced by the conventional networking paradigm. The core idea

of SDN is to separate the control plane from the data plane. This

idea improves the network in many ways such as efficient

utilization of resources, management of the network, innovation

with new evolution, reduced cost, and many others. To manage

all these changes, there is a great need for an efficient traffic

engineering tool to improve the utilization of resources for the

better performance of the network. Traffic engineering is also

responsible for the analysis and monitoring of real-time data

traffic. This paper mainly focuses on the structure of traffic

engineering in SDN. In addition, the scope of various

parameters of traffic engineering in the SDN environment and

setup experimentations are also demonstrated. Hence, this work

can leverage traffic engineering in the environment of SDN to

enhance the network for better use in the future.

Keywords—SDN, traffic engineering, traffic network, traffic

analysis, network parameters.

I. INTRODUCTION

With the growth and development of many new
applications of the Internet of Things [1], cloud computing,
and many more in the network, the conventional architecture
is not sufficient to meet the needs of the current environment
[2]. Therefore, a new paradigm is designed by some
researchers to prevail over the conventional architecture,
named as Software-Defined Networking [3]. The problem in
the conventional network is that both the planes of SDN are
integrated into the same appliance [4]. As an outcome, the
conventional architecture cannot provide the global
perspective of the network and even, each device requires
manual configuration. Hence, the new approach increases
flexibility builds the network to configure easily and more
programmable by distinctive the control/network plane from
the data/physical plane with a global perspective of the
centralized network [5].

Traffic Engineering is the study in which the measurement
and analysis of data traffic take place to upgrade the
performance of the network in an efficient manner [7]-[8]. It
is the mechanism to enhance the performance of the network
by providing dynamic behaviors of predicting the data traffic,
analyzing, design the data routing schema, and transmitting
the data [9]. To generate these dynamics behaviors, network
observing plays a sprightly role. In conventional architecture,
the technologies used for traffic engineering include Internet-
Protocols and Multi-Protocols Switching based on Traffic
Engineering.

Even though the SDN [10] furnishes hold up with traffic
engineering but still there is not any research that shows the
structure of SDN with traffic engineering which is of
substantial significance for the future of SDN [11]. Hence, this

paper provides the structure of new emerging technology SDN
with traffic engineering. Also, provides the reach of traffic
engineering in SDN to enhance the architecture of the network
for better use.

The remainder of the paper is organized in such a manner:
Section II provides the literature work done in the SDN with
traffic engineering followed by past to future scenarios of
traffic engineering. Section III describes the structure of SDN
in traffic engineering with different parameters and measures.
Section IV discusses the reach of traffic engineering in the
SDN. Section V provides a conclusion.

II. PAST WORK

As shown in fig.1, the evolution of traffic engineering

from the past to the future of SDN. In the early, Asynchronous

Transfer Mode (ATM) [12] switching was used as a traffic

engineering appliance. ATM traffic engineering can transmit

different services that work simultaneously on the network. In

this transfer mode, connection-oriented communication is

taking place, which means the connection can be established

even before forwarding the data to the destination.

After some development and re-growth of new

terminologies, there was an evolution of the IP routing [13]

scheme to pass on the data packets from source host to

destination host [14]. As with the growth of emerging

automation such as the IoT [15], Cloud computing [16],

Sensor network [17], and many more the data traffic is

increasing day by day. So to overcome that limitation multi-
protocol routing was used.

Fig.1. Past to Future Traffic Engineering in SDN

Shanu Bhardwaj

Department of Computer Science and Engineering

Delhi Technological University

 Delhi, India

shanubhardwaj1@gmail.com

Ashish Girdhar

Department of Computer Science and Engineering

Delhi Technological University

 Delhi, India

ashishgirdhar@dtu.ac.in

20
21

 IE
EE

 8
th

 U
tta

r P
ra

de
sh

 S
ec

tio
n

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 E

le
ct

ric
al

, E
le

ct
ro

ni
cs

 a
nd

 C
om

pu
te

r E
ng

in
ee

rin
g

(U
PC

O
N

) |
 9

78
-1

-6
65

4-
09

62
-9

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

U
PC

O
N

52
27

3.
20

21
.9

66
75

84

Authorized licensed use limited to: DELHI TECHNICAL UNIV. Downloaded on April 12,2023 at 10:15:25 UTC from IEEE Xplore. Restrictions apply.

Science Transactions © 2024 International Journal of Advances in

Soft Computing and Intelligent Systems (IJASCIS)

2024, Vol 03, Issue 02, 303-314 Original Paper

ISSN: 3048-4987

303

PERFORMANCE EVALUATION OF SDN

CONTROLLERS: ANALYSING THE TCP TRAFFIC

MANAGEMENT IN POX, RYU, AND ODL

Shanu Bhardwaja,*, Shailender Kumarb

Ashish Girdharc

a,bDepartment of Computer Science and Engineering, Delhi Technological University,

Delhi, India, shanubhardwaj1@gmail.com
cDepartment of Computer Science and Applications, Kurukshetra University,

Kurukshetra, India,

ABSTRACT

Software-defined networking (SDN) is a revolutionary networking paradigm that separates the data and

the control plane. The controller is one of SDN's leading entities that controls the information flow in the

network. Therefore, the research deals with a thorough performance differentiation of three prominent

SDN controllers: POX, Ryu, and OpenDaylight (ODL). The study aims to evaluate these controllers'

effectiveness in controlling the network traffic by focusing on performance parameters such as

Transmission Control Protocol (TCP) mean, packet loss, and jitter. The experimental setup employed

Mininet, a network emulator, to create a consistent virtual network environment for all controllers. Each

controller was tested in isolated virtual machines, ensuring controlled and unbiased results.

The experimental results reveal distinct performance differences among the controllers. In the research

experimentations, the highest TCP mean throughput and superior performance among all controllers are

achieved by ODL consistently, and minimum loss of the data packets and jitter is observed across all-time

instances for high-demand, large-scale networks. This study shows that choosing the right SDN controller

is crucial as it depends on particular network requirements to guide network administrators and

researchers when choosing the SDN controller best for their network.

KEYWORDS

Software-defined networking, SDN controllers, Traffic analysis, TCP traffic management

1. INTRODUCTION

SDN is an amazing network methodology that separates the control and physical planes. In this

view, it merges control and dynamic setup. Tight coupling of control and data planes in

individual devices leads to traditional networks' frequent rigidity and complexity [1]. These

restrictions are overcome by decoupling these network planes, allowing incorporated network

knowledge, administering delegations, and increasing adaptability. This centralized architecture

will give us a global view of the network, as shown in Fig. 1. Thus, it facilitates deploying new

services and applications with reduced time, enhances performance, and maximizes resource

utilization [2].

Ryu, POX, and ODL are the most extensively utilized regulators out of the many SDN

regulators accessible. Each controller presents novel aspects and capabilities handling various

use cases and needs. It is essential to understand the distinctions and how they can be used to

select the most appropriate controller for a particular system management need [3]. Among

DELHI TECHNOLOGICAL UNIVERSITY

 (Formerly Delhi College of Engineering)
 Shahbad Daulatpur, Main Bawana Road,

Delhi-42

PLAGIARISM VERIFICATION

Title of the thesis: _A NOVEL FRAMEWORK FOR THE NETWORK TRAFFIC ANALYSIS

 USING A CONTROLLER IN SOFTWARE-DEFINED NETWORKING ________________________

Total Pages: 96 Name of the Scholar: SHANU BHARDWAJ

Supervisors(s):

1. PROF. SHAILENDER KUMAR

2. DR. ASHISH GIRDHAR

Department: COMPUTER SCIENCE AND ENGINEERING

 This is to report that the above thesis was scanned for similarity detection. Process and
outcome is given below:

Software Used : TURNITIN Similarity Index: 9% Word Count: 30,563

Date: ________________

Candidate’s Signature Signature of Supervisor

Brief-Profile

Name: Shanu Bhardwaj

Enrollment Number: 2K21/PHDCO/01

Department: Computer Science and Engineering

Email: Shanubhardwaj1@gmail.com

Google Scholar: https://scholar.google.com/citations?
user=qcdv128AAAAJ&hl=en&oi=ao

Professional Summary

I, Shanu Bhardwaj, have completed B.Tech and M.E. in Computer Science and

Engineering, with a strong academic foundation and practical expertise in computer

networks and Software-Defined Networking (SDN). I possess a solid understanding

of network architectures, routing protocols, traffic analysis, and controller-based

network management. My research interests primarily focus on SDN controller

design, intelligent traffic analysis, network performance optimization, topology-

aware networking, and secure and scalable network frameworks. Through my

doctoral research, I aim to contribute effective and adaptive solutions for next-

generation programmable network environments.

	Network Traffic Analysis in Software-Defined Networking Using RYU Controller
	Abstract

