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ABSTRACT 
 

The rapid growth of modern networks and diverse traffic patterns has highlighted 

traffic management as a core challenge in network administration. Traditional 

networks, with their rigid architectures and limited programmability, fail to meet the 

dynamic requirements of today’s applications. Software-defined networking (SDN) 

has emerged as a novel paradigm that decouples the control and data planes, enabling 

centralized control and intelligent network programmability. This thesis outlines a 

topology-aware intelligent network traffic analysis framework using the Ryu SDN 

controller for enhanced network performance and decision-making efficiency. 

A topology-aware SDN environment is designed using Mininet as the emulator and 

OpenFlow as the communication protocol. The proposed framework leverages the 

Ryu controller’s Python-based modular architecture to implement dynamic traffic 

analysis and adaptive flow management. Various network topologies are constructed 

to simulate diverse operational environments and evaluate the framework’s 

adaptability. The described SDN environment enables real-time monitoring of 

network parameters and flow optimization, ensuring effective data transfer under 

various traffic loads. 

Performance evaluation is conducted using key parameters, including latency, 

throughput, jitter, packet loss, and controller response time, across different network 

conditions. The obtained results indeed present a significant enhancement in network 

performance, as they generate up to a 22% gain in throughput and a 25% reduction in 

latency, along with decreased packet loss. Importantly, the comparative 

benchmarking confirms the performance robustness and scalability of the proposed 

SDN model, especially for more dynamic and larger topologies. 

As a result, this research contributes to the advancement of SDN-based network 

intelligence by combining topology awareness alongside traffic analysis and 

performance monitoring. The implications of this work lay the foundation for 

deploying efficient, scalable, and adaptable network management solutions 

applicable to real-world domains, such as cloud computing, and IoT-driven system.
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CHAPTER 1 

INTRODUCTION 

 

 
In several sectors, including education, healthcare, banking, e-commerce, and 

defense systems, among others, computer networks are now the primary means 

through which people engage in communication, share information, or receive 

services [1]. There is more going on now than mere information sharing. They can 

also assist with new technologies that must be fast, predictable, and safe, while 

promoting safe teamwork and real-time communication. But decades into an era of 

technological advancement, old networking architectures are still struggling to keep 

pace with the complexity new apps and services bring. 

For conventional networks, separation between the control plane and the data plane 

might not be strict at all. This implies that routers, switches, and even firewalls can 

operate independently and maintain/employ forwarding entries locally [2]. This 

model has been the standard for a long time, but it has numerous problems. Device- 

level management can be a chore when we have many of them, because there is a 

need to configure and monitor each one individually. New nodes are added or traffic 

policies are modified manually, and therefore, they take considerable time to scale. 

Additionally, vendor-specific implementations also lock companies into solutions 

that are costly and difficult to change, due to their reliance on hardware. Furthermore, 

traditional networks are not adaptable to the real-time shifts that dynamic workloads 

necessitate. It is not a very robust technology, which opens doors to numerous 

vulnerabilities, detrimental to the current world of cloud computing, the Internet of 

Things, 5G services, and apps that require low latency [3]. The difference between 

traditional networking and SDN is illustrated in Figure 1.1. 

The surge of IoT devices, edge computing, cloud platforms, and fast multimedia 

services has only exacerbated the issues with traditional networks. For example, IoT 

solutions can support billions of devices exchanging small but frequent data flows, 

which pose challenges that no static, rule-based architecture can overcome. Likewise, 

applications such as self-driving cars and telemedicine, which 5G enables, have 

extremely low latency requirements and require bandwidth to be allocated on the fly, 

a capability that older systems cannot achieve very well. And this is what has allowed 

even SDN a civilizational reboot in how we build things. 

In short, it separates the decision-making mechanism and the packet forwarding 

mechanism. Instead of letting every individual device make decisions on its own, 

SDN centralizes the network intelligence in a software-based controller. The 

hardware passes the data. Numerous advantages accompany this significant change. 
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Providing a global perspective on the network enables administrators to dynamically 

redefine resources, automate configurations, and enforce policies uniformly across 

the organization. It is also well-suited for fast adaptation as the controller can 

instantly respond to changes in traffic flows. With SDN, you gain the scalability, 

flexibility, and automation that traditional networks lack. [4] 

One of the key features of SDN is its ability to monitor network traffic in real-time. 

Having a centralized view of the entire network enables deep traffic insights, allows 

for the analysis of flows, and facilitates troubleshooting while enforcing rigorous 

security policies. For instance, bandwidth can be dynamically reserved for critical 

applications, and packets that appear suspicious can be rerouted or dropped. This is 

why SDN in the enterprise data center, financial platform, or defense network 

becomes particularly appealing. Due to imperfect obliviousness, traffic analysis 

remains a significant concern in SDN [5]. Scalability remains a primary concern, as 

the controller can become a bottleneck when large amounts of traffic are present. 

Latency in analysis and resolution decreases responsiveness, which is further 

complicated by IoMT or custom topology that introduces varied traffic patterns. 

Moreover, much of the recent research concentrates on SDN behavior in general and 

does not cover traffic performance analysis for custom or complex networks, such as 

[6]. These issues suggest the necessity for new frameworks to achieve efficient, 

reliable, and scalable traffic analysis under current scenarios. One scalability issue is 

that the controller can become a bottleneck when traffic volumes are high in Switches 

with Network Processor Cards (NPCs). In this section, we demonstrate how selective 

replication alleviates the processing overhead of switches equipped with network 

processor cards. 

 
 

 
(a) (b) 

 

Figure 1.1: Overview of (a) Traditional and (b) SDN Networking 

 

1.1 Background 
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Network traffic analysis is a critical component of network security and management; 

however, in the modern world, understanding network traffic is more important than 

ever. Networks are further complicated as an increasing flow of information is 

created, the speed at which cloud-based applications are adopted and available on a 

network, and the number of mobile devices and IoT endpoints organizations use 

continues to grow [7]. Now, traditional methods of traffic monitoring, such as 

NetFlow, passive packet sniffers, and event-driven rule bases for firewalls, were not 

created in smaller, more stable settings. Although these methods were plausible in 

the past, none of them can meet the velocity and variability of traffic in the present 

and future times in a functional manner. SDN offers a paradigm change to solve these 

challenges. 

With SDN, the decoupling of the control plane from the data plane enables 

centralized network intelligence and fine-grained programmatic capabilities. In 

traditional architectures, every device on the network is independent. With SDN, 

administrators have centrally controlled access to the entire network via a logically 

centralized controller [8]. Transitioning to a centralized approach enables central 

traffic analysis and policy enforcement, with scalability and velocity that are not 

attainable under legacy systems. 

1.1.1 Traditional Network Limitations 

Routers and switches are examples of legacy networking gear that possess both a data 

plane and a control plane, as shown in Figure 1.2. The device uses its own rules to 

decide how to send packets. This design has many problems: 

 

 Static Configurations: If a DDoS attack hits unexpectedly, we would need to 

reconfigure each router ourselves. 

 Vendor Lock-in: As an example, a Cisco router could employ management 

protocols that are only accessible to Cisco devices, and it would be 
challenging to manage Juniper or Huawei devices. This complicates the use 

of multiple vendors in the same deployment. 

 Complex Management: Modifying ACLs by hand on thousands of switches in 

a big business network can take hours, which gives attackers time to take 
advantage of the situation. 

 Limited Responsiveness: When there is a sudden spike in video traffic during 

live streaming events, the network can't handle it dynamically, which causes 

congestion and lower QoS. 

1.1.2 Integration with NFV 

Routers and switches are some examples of legacy networking gear that possess both 

a Data Plane and a control Plane [9]. The device uses its own rules to decide how to 

send packets. This design has many problems: 

 

 Elastic Scaling: For example, during an online shopping event like 'Black 

Friday', when traffic is high, additional virtual firewalls or load balancers can 

be added on demand to absorb the extra load. 

 On-Demand Deployment: For example, in response to malware traffic at a 
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particular edge node, an IDS can be deployed at that edge node in the next 

moments. 

 Resource Efficiency: Previously, each appliance would need to be a hardware 

appliance that incurred significant capital and operational costs, but now 

virtualized functions can run on inexpensive servers instead. 

 Scope of Infrastructural and Cost Efficiency: Along with SDN, NFV provides 

additional efficiencies, as the virtualized functions that we are running can 

run on less expensive servers, and instead of being standalone hardware 
appliances in hundreds of locations, you can orchestrate them via SDN/NFV. 

 

Figure 1.2: Layer-based architecture of SDN 

 

1.2 Research Challenges in SDN for Network Traffic Analysis 

SDN opens up new ways to analyze traffic, but it also presents several significant 

problems that need to be addressed. The challenges can be divided into four 

categories: scalability, latency and overhead, security, and traffic heterogeneity. 

1.2.1 Ability to Grow Challenges 

Scalability is a critical issue in SDN deployments. The central controller must 

manage thousands and millions of flow requests simultaneously. 

 

 Centralized Bottleneck: A centralized controller may receive millions of flow 

requests per second from a large data center. For instance, Facebook data 
centers manage terabits of traffic in one second. To manage such quantities, a 

single SDN controller requires access to terabytes of data; it would simply 
collapse the SDN controller under scale. 

 High Load: Whenever any new cloud app initiates a TCP port, it makes the 
central controller create a new rule, which consumes enormous CPU and 
memory. 

 Performance degradation: There is the possibility that the speed of the central 
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controller responding to the flow request may not be quick enough once 

workloads escalate, because packets would not be forwarded promptly. There 
would be a delay for the servers. There may also be potentially hazardous 

service degradation for time-protected applications such as remote surgery or 
online gaming. 

 Due to such scalability concerns, one effective method is the use of 
hierarchical or distributed controllers, such as ONOS clusters. 

 From a performance perspective, clusters share processing and analysis of 

traffic flows across distributed, disparate nodes. 

1.2.2 Overhead and Performance Bottlenecks 

SDN creates additional communication delays between the [network] controller and 

the network devices. This could make other potential latencies: 

 

 Frequent Flow Requests: When switches continually request flow decisions 
from the controller, this adds the latency from the round-trip, regardless of the 

distance. 

 Real-Time Inspection Costs: The controller frequently uses high amounts of 
CPU for DPI. 

 A Single Point of Failure: While traditional networks have routers and 

switches operating independently, in SDN, if the controller goes down, traffic 
analysis may go down with it. 

1.3 Research Motivation 

In recent years, network traffic has grown exponentially, making modern network 

management and security more challenging than ever. The growth is primarily driven 

by the increasing number of IoT devices, the rollout of 5G networks, and the growing 

popularity of cloud-based apps and services. Traffic was more predictable in the past, 

and it was possible to manage networks with static policies. However, today, due to 

the various and dynamic nature of digital infrastructures, these traffic patterns are 

large-scale and inhomogeneous. This shift places immense stress on existing 

monitoring and management systems, exposing their shortcomings and underscoring 

the need to develop new approaches. 

1.3.1 Gaps in Current SDN-Based Solutions 

SDN-based traffic analysis solutions have their advantages and limitations. If used in 
real-world environments, the following weaknesses should be addressed: 

 

 Scalability: A Centralized controller cannot perform their operation 

effectively under very high traffic conditions. 

 Overhead and Latency of Controllers: The overhead caused by periodic 
controller-switch communication is not tolerable for real-time applications 

such as high-frequency financial trading, distant robotic surgery, etc. 

 Single Point of Failure: The SDN controllers make a good target because they 

are centralized. For example, the entire network goes down if a DDoS attack 
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is launched at a controller. 

1.4 Problem Definition 

The increasing scale and dynamic nature of modern networks have made effective 

traffic analysis a critical yet challenging task, as traditional monitoring and rule-based 

mechanisms are no longer sufficient to handle varying traffic patterns and complex 

network topologies. Although SDN introduces centralized control and 

programmability, many existing traffic analysis approaches do not fully exploit 

topology awareness and real-time network state, leading to suboptimal flow 

monitoring and delayed control decisions. This lack of adaptive traffic analysis 

results in inefficient resource utilization and degraded network performance, 

particularly in multi-switch SDN environments. Therefore, there is a need for a 

topology-aware traffic analysis framework that leverages the SDN controller’s global 

view to dynamically monitor network behavior and support informed traffic 

management decisions, which forms the core problem addressed in this thesis. 

1.4.1 Emerging Technologies Challenges 

Emerging technologies, such as IoT, 5G networks, and edge computing, are also 

likely to disrupt traffic flow patterns compared to traditional client-server 

architectures. 

 One aspect of IoT traffic to consider is the billions of energy-efficient devices 
constantly sending tiny packets. A smart city is a prime example where 

thousands of sensors continuously send data about the environment. 
Monitoring solutions designed to handle high-volume, predictable types of 

flows struggle to process the expected microflows efficiently. 

 The second challenge is due to the requirements of 5G networks that support 
applications such as autonomous vehicles, AR, and telemedicine, where 

outlets are expected, ultra-low latency, and high reliability. Delays or issues 
that result in a greater analysis lead-time to mechanisms that analyze or 

ensure priority across microflows can result in disastrous outcomes, such as 
an unwanted contact of vehicles in a vehicular network or losing patients in 

remote refrained surgery. 

 The third challenge is due to Edge Computing, where computation takes place 

closer to the source of measurements and provides opportunities for 

distributed traffic patterns Traditional centralized analysis models are often 
less efficient than decentralized architectures. 

1.5 Research Objectives 

The primary objective of this research study is to emphasize the end-to-end quality of 

service in SDN-based network infrastructure, aiming to enhance resilience. During 

the research period, we focused on four specific objectives. The general objectives of 

the study are as follows: 

A. To investigate the existing network traffic performance analysis in the SDN 
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controller. 

 A literature review is conducted to know about the current existing 

methodologies/tools used for SDN-based network traffic analysis 

 Evaluate the performance of existing SDN controllers in terms of traffic 

analysis functions and identify their strengths and weaknesses. 

 Examine the scalability, latency, resource consumption, and real-time 
processing abilities of current solutions. 

 Analyze the existing traffic analysis frameworks to identify the gaps and 
limitations, especially regarding the modern network requirements like IoT, 

5G, and edge computing. 

 Investigate limitations in deploying these frameworks, including controller 
overhead, single points of failure, and security risks. 

B. To develop the network topology for traffic analysis using an SDN controller. 

 Create a representative network topology simulation of the real world with 

heterogeneous traffic and network link attributes. 

 Use the SDN controller as a single authority that monitors the network traffic. 

 Implement components to simulate different traffic patterns (e.g., high traffic 
loads, dynamic routing, and heterogeneous flows). 

 Ensure the topology supports extensibility for adding new features or 
modules for traffic analysis. 

 Integrate mechanisms to collect flow-level data and monitor network 
performance metrics such as throughput, delay, and packet loss. 

C. To propose a framework and analyze the performance of the developed network 

topology using the Ryu controller. 

 Design a novel traffic analysis framework that leverages the programmability 
and flexibility of the Ryu controller. 

 Incorporate intelligent features, such as machine learning algorithms or 

anomaly detection techniques, to enhance traffic analysis capabilities. 

 Optimize the framework for scalability, real-time processing, and low 
overhead in large and dynamic network environments. 

 Deploy the framework within the developed topology to analyze and manage 
traffic efficiently. 

 Test and fine-tune the framework’s performance by simulating real-world 

scenarios, including high traffic volumes and security threats. 

D. To evaluate the performance of the proposed framework based on execution 

parameters and perform a comparative analysis with the existing framework. 

 Define key performance metrics for evaluation, such as throughput, latency, 

resource utilization, scalability, and detection accuracy. 

 Conduct experiments to measure the performance of the proposed framework 
under varying network conditions (e.g., load variations, attacks, and dynamic 

routing changes). 

 Compare the results of the proposed framework with those of existing 
frameworks, highlighting improvements in performance and efficiency. 

 Identify any trade-offs or limitations of the proposed framework and discuss 
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potential solutions for overcoming them. 

 Summarize the findings to demonstrate the effectiveness of the proposed 
framework and its contributions to SDN-based traffic analysis research. 

1.6 Key Contribution of Research Work 

The research presented in this thesis addresses critical challenges in SDN and Traffic 

analysis, offering novel solutions through comprehensive design, implementation, 

and evaluation. The key contributions of this work are outlined below, each reflecting 

a significant advancement toward achieving the research objectives. These 

contributions collectively highlight the originality, technical depth, and practical 

relevance of the proposed framework. 

A. Comprehensive Review of Existing Solutions: 

 Analysis of existing approaches and frameworks for network traffic analysis 

in an SDN-based environment. 

 Identified the limitations of traditional approaches, such as scalability 

bottlenecks, high latency, and inadequate handling of dynamic traffic 

patterns. 

B. Development of a Realistic Network Topology for Traffic Analysis: 

 Developed and realized simulation settings that accurately reflect the real- 

world scenario, such as different traffic conditions and high-load situations. 

 Integrated an SDN controller as the central traffic management and 
monitoring element for granularity over traffic analysis. 

C. Proposal of a Novel Traffic Analysis Framework: 

 Designed a scalable, efficient, and secure framework for network traffic 
analysis using the Ryu SDN controller. 

 Integrated advanced features such as real-time analytics and an intelligent 

traffic management mechanism to address existing limitations. 

D. Performance Evaluation Based on Key Metrics: 

 Evaluated the suitability of architectural features in multi-dimensional 

network situations and in contrast with traditional measures and judgments 
composed of latency, throughput, scalability, resource allocation, and 

detection rate. 

 Empirically verified hypothesis under real conditions through 

experimentation results (for example, higher sampled throughput under 

potential security risk and high load). 

E. Comparative Analysis with Existing Frameworks: 

 Developed and realized simulation settings that accurately reflect the real- 

world scenario, such as different traffic conditions and high-load situations. 

 Integrated an SDN controller as the central traffic management and 
monitoring element for granularity over traffic analysis. 

F. Advancement of SDN-Based Traffic Analysis Research: 
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 Contributed to the study of the SDN community on some major traffic- 

monitoring issues such as controller overhead, decision-making, and security 
loops. 

 Suggested an adaptive framework that could be further customized and reused 

to roll out facilitated changes to expected and new requirements and 
situations. 

G. Integration of Emerging Technologies: 

 Considered the implications of modern technologies such as IoT, 5G, and 

Edge computing in the design and implementation of the proposed 
framework. 

 Ensure that the proposed model can handle time-variant and diverse traffic in 

the networks 

1.7 Dissertation Organization 

The thesis comprises six chapters that concisely and precisely describe the entire 

study. Each chapter is summarised below: 

Chapter 1: Introduction 

In this chapter, research is introduced by presenting some of the main concepts in 

Computer Networking and Software-Defined Networking (SDN). It traces the course 

of computer networking from its historical roots to the networking models we are 

accustomed to nowadays, based on SDN, which offers greater flexibility and 

programmability. The chapter also presents how traffic analysis is utilized in network 

management and operation, such as performance analysis, anomaly detection, and 

security. It discusses the motivation for analyzing traffic using SDN controllers, as a 

centralized approach with visibility of global information is an optimal method for 

making dynamic decisions. This chapter discusses existing gaps in current traffic 

analysis methods within an SDN environment and constructs the main problem that 

this research will address. It concludes by stating the research objectives, which are 

specific and define the boundaries of the research, and outlining the thesis content. 

 

Chapter 2: Literature Review and Related Work 

This section presents a comprehensive survey of the literature on SDN architecture, 

traffic analysis, research studies on topology management, and controller 

optimization. The chapter begins with a review of the SDN architecture and the 

controller's role in initiating flows. For traffic analysis, the various types of traffic 

analysis techniques from traditional networking and SDN are reviewed with respect 

to their strengths and limitations. The chapter discusses different approaches to 

topology design for traffic management and reviews how optimization techniques are 

applied to aid a controller. Furthermore, a comparative analysis is conducted on 

existing frameworks in SDN to benchmark applications and their outcomes. 

Ultimately, the comprehensive review of the related literature reveals apparent 

research gaps, providing a basis for proposing new, more effective frameworks. 

Chapter 3: Topology-Aware SDN Environment Preparation and Traffic Profiling 
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Strategy 

This chapter describes the methodology used in developing the proposed SDN-based 

framework. It explains the research design and approach, justifying the choice of Ryu 

controller due to its ease of use, open-source nature, and modularity. The technology 

stack and simulators are described, followed by an explanation of how the SDN 

network topology is constructed to replicate the physical nature of the real world. The 

strategy of traffic modeling is elaborated by demonstrating how various traffic types 

with different flow patterns are generated. The metrics of latency, jitter, throughput, 

and packet loss are defined. The chapter finishes with an explanation of the 

experimental design, as well as a validation plan, which is designed to ensure the 

reliability and reproducibility of results. 

Chapter 4: Design and Deployment of a Ryu-Based Intelligent Traffic Analysis 

Framework 

In this chapter, we examine the internal structure, some components, and details of 

how the proposed framework can be implemented. This describes the framework, 

including its high-level design and key modules, such as flow monitoring, data 

collection, and flow rule management. We then discuss the implementation of the 

Ryu controller and how traffic on it was analyzed in real-time, allowing for real-time 

decisions or interventions based on analytical traffic data. We next explain the 

rationale behind traffic statistics collection and the application of flow control 

policies, followed by technical details on how to implement and configure them. This 

chapter is one demonstration of how the intelligent traffic analysis mechanism 

operates in a dynamic SDN environment. 

Chapter 5: Performance Evaluation of the Proposed SDN Framework and 

Comparative Benchmarking 

The experimental results in this chapter provide a detailed evaluation of the proposed 

framework. The topology and testing environment used for simulation are described, 

followed by specific test scenarios based on the defined traffic conditions and use 

cases. Several key performance indicators are measured based on latency, jitter, 

throughput, and packet loss. Measurements of these metrics are presented and 

illustrated using graphs and tables. The results are analyzed to demonstrate that the 

proposed framework shows the most promise for the implementation duration. 

Additionally, the proposed framework is compared to the current SDN-based 

solution, highlighting that optimized performance is an advantage. The chapter 

concludes with a summary of key findings and observations from the experiments. 

Chapter 6: Conclusion, Future Scope, and Social Impact 

The experimental results in this chapter provide a detailed evaluation of the proposed 

framework. The topology and testing environment used for simulation are described, 

followed by specific test scenarios based on the defined traffic conditions and use 

cases. Several key performance indicators are measured based on latency, jitter, 

throughput, and packet loss. Measurements of these metrics are presented and 

illustrated using graphs and tables. The results are analyzed to demonstrate that the 

proposed framework shows the most promise for the implementation duration. 

Additionally, the proposed framework is compared to the current SDN-based 
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solution, highlighting that optimized performance is an advantage. The chapter 

concludes with a summary of key findings and observations from the experiments. 

 

 

1.8 Chapter Summary 

This chapter presented an overview of the research background, focusing on the 

evolution of SDN as a transformative approach to modern network management. It 

discussed the motivation behind decoupling the control and data planes, enabling 

centralized programmability and dynamic traffic handling. The chapter emphasized 

the growing importance of intelligent controllers, such as Ryu, in addressing 

traditional networking challenges, including scalability, congestion, and limited 

adaptability. Furthermore, it highlighted the relevance of SDN in emerging domains 

such as cloud computing and the IoT, where efficient traffic analysis and routing are 

critical for performance optimization. 

The chapter also outlined the problem statement, research objectives, and scope of 

the study, setting a clear direction for the proposed work. It identified the key 

limitations in existing SDN-based routing and traffic management frameworks, 

particularly in terms of network lifetime, load balancing, and flow optimization. The 

need for a novel intelligent traffic analysis framework was justified to enhance 

network efficiency and security. Overall, the introduction established the foundation 

and rationale for the research, guiding subsequent chapters toward the design, 

implementation, and evaluation of the proposed SDN framework. 
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CHAPTER 2 

LITERATURE REVIEW 

 

 
This chapter studies and analyzes how to integrate recent developments in SDN from 

traffic analysis, network topology design, and performance from the controller 

perspective. With the trend towards ever larger and more complex networks, SDN 

has become a game-changing concept that enables traffic management to be centrally 

managed more smartly and dynamically. A comprehensive literature review has been 

conducted to gain a deeper understanding of existing work. The review is organized 

into six sections, each covering an essential aspect of SDN-based traffic analysis. 

These classifications are as follows: (1) generic information on SDN architectures 

and controllers; (2) traffic-analysis techniques for both traditional and SDN-based 

network environments; (3) network topology design and any influence by this design 

on the traffic analysis process; (4) performance optimisation strategies based on the 

SDN controller; (5) comparison of different SDN frameworks; and, finally, our 

observations enable us to identify trends in existing research. With this structure, we 

can map the history of developed solutions in the domain and point out limitations 

and open problems of existing frameworks. These observations form the basis for the 

motivation and design of the proposed topology-aware, Ryu-based intelligent traffic 

analysis approach, which is discussed in later chapters. 

2.1 Overview of SDN Architecture 

The need for dynamic, scalable, and programmable network management has 

significantly altered the SDN landscape in recent years. The early seminal work [10] 

gave an overview of the fundamental ideas on SDN architecture and promised to 

minimize network complexity and improve network flexibility. This work was a 

stepping stone in understanding the potential of SDN to facilitate network innovation 

as depicted in table 2.1. Likewise, [11] presented an overview of the SDN and 

OpenFlow standards, critically analyzing their problems related to scalability. Their 

research highlighted the interoperability problem between SDN nodes and introduced 

a more liberal model to solve these problems in large-scale networks, ensuring they 

function correctly. As SDN gained popularity, the importance of OpenFlow as a 

standardized southbound interface was reiterated in [12]. Their work established 

OpenFlow's position within the SDN system and described how it can support flow- 

level  programmability,  centralizing  the  management  of  network  switches. 
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McKeown's research has guided much subsequent work in SDN, particularly in the 

areas of flow control and traffic management. 

In 2021, the author [13] examines the cloud and data center applications of SDN 

from the perspective of its impact on performance metrics, including latency and 

throughput. Their work also demonstrated how SDN’s centralized control could help 

optimize resource utilization in such settings. Another example is the hybrid SDN 

controller [14], which presents a mixed SDN controller that combines centralized 

control and distributed control planes to enhance scalability and responsiveness in 

large, mature SDN architectures. The roles of the switches in traffic shaping and their 

interaction with controllers were surveyed in [15]. Their contrast of various SDN 

controller architectures was revealing about the potential gains that real-time network 

management and troubleshooting would offer for each type. More recently, the 

combination of SDN with emerging technologies such as AI and 6G networks has 

been the subject of investigation [16]. AI-centric SDN controllers would be dynamic 

to fluctuations in traffic patterns and enhance network robustness, especially within 

6G and beyond networks. [17] Also investigated different SDN controllers, such as 

Ryu, ONOS, and OpenDaylight, concentrating on examining their throughput for 

real-time networking. The use of SDN in edge and fog computing environments was 

studied by [18], who analyzed its role in reducing latency and optimizing traffic flow 

in such highly distributed networks. Their results emphasised the importance of SDN 

to overcome these challenges primarily in edge and fog computing, which require 

low-latency communication for high throughput. Lastly, the author [19] introduced a 

cross-layer SDN model that bridges flow-based information with application-level 

statistics to achieve finer-grained traffic policy enforcement and decision-making at 

runtime. Their method is the next step for SDN evolution, and performance of the 

network can be enhanced further by a higher-order policy-aware traffic management. 

Overall, the evolution of SDN has broadly focused on improving scale, real-time 

control and incorporating future technologies. Starting with the early work done in 

OpenFlow and SDN architectures to the more recent additions involving AI, ML, 

etc., extending till cross-layer integration developments, it is clear that SDN has 

come a long way towards being an extraordinary tool for orchestrating hyper-modern 

network infrastructures. 

 

Table 2.1: Summary of Recent SDN Architecture Research and Developments 
 

Year Authors Approach Focus Area Key Findings 

2018 Kreutz et 

al. [10] 

Comprehensive 

Survey 

SDN Concepts and 

Architectures 

Highlighted SDN's promise to 

reduce network complexity 

and enable innovation. 

2019 Nunes et 

al. [11] 

Survey & 

Framework Analysis 

SDN and OpenFlow 

Standards 

Identified scalability 

challenges and gaps in existing 

SDN architectures. 

2020 McKeow Protocol OpenFlow in SDN Standardized southbound 
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 n et al. 

[12] 

Specification Systems interface, enabling 

programmability at the flow 

level. 

2021 Zeng et 

al. [13] 

Performance 

Evaluation 

SDN in Cloud and Data 

Centers 

Evaluated SDN's impact on 

performance, focusing on 

scalability and latency. 

2021 Li et al. 

[14] 

Architecture Review SDN Controllers and 

Network Design 

Introduced a hybrid model for 

SDN controllers, enabling 

cross-domain control. 

2022 Jain et al. 

[15] 

Survey and 

Comparison 

SDN Switches and 

Controllers 

Examined the role of SDN 

switches in enhancing traffic 

management and control. 

2023 Al-Mousa 

et al. [16] 

AI-Driven Approach 6G and Future SDN 

Networks 

Focused on integrating SDN 

with AI for adaptive traffic 

control in future networks. 

2024 Kalita & 

Sarma [17 

Controller 

Comparison 

Real-Time Networking 

in SDN 

A detailed comparison of 

popular SDN controllers (Ryu, 

ONOS, OpenDaylight) was 

provided. 

2024 Xie et al. 

[18] 

SDN Architecture 

Evaluation 

SDN for Edge and Fog 

Computing 

Evaluated SDN’s effectiveness 

in edge and fog computing, 

addressing latency issues. 

2025 Gupta et 

al. [19] 

Cross-layer 

Integration 

SDN for Policy-driven 

Network Management 

Integrated flow-level and 

application-layer metrics for 

granular traffic analysis. 

 

2.2 Traffic Analysis Techniques 

Network traffic analysis is a key enabler for network management to observe, 

inspect, and understand data flows in the networks in terms of performance 

enhancement, security enforcement, and policy fulfilment. In conventional network 

environments, traffic analysis is frequently conducted using tools and protocols such 

as NetFlow, SNMP and packet sniffers to obtain a snapshot of traffic metrics like the 

bandwidth consumption, the number of flows and application level behavior. 

However, these approaches are constrained by the decentralized architecture of 

traditional networks and therefore have limited visibility and scalability in real-time 

or dynamic environments. 

Since the emergence of SDN, flow monitoring has become more intelligent and 

centralized. SDN controllers provide a global network perspective, enabling fine- 
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grained, programmable monitoring of network flows. Various methods of traffic 

analysis are studied thoroughly by the researchers, including traditional one and SDN 

based one, with a trend towards the latter method for its flexibility and synergy with 

AI/ML is shown in table 2.2. In 2018, Yu et al. [20] also introduced a hybrid traffic 

classification system, where statistical features and machine learning are used to 

analyse the encrypted traffic in conventional networks, showing an emerging 

complexity of flow behaviours. Jain and Kumar [21] proposed a signature-based 

intrusion detection model to enforce security by analyzing the behavior of legacy 

system traffic. Such approaches suffered from poor scalability and were not flexible 

enough for changing network topologies. The tendency for SDN-facilitated traffic 

analysis then started gaining momentum in works such as Wang et al. [22], who used 

OpenFlow-enabled flow monitoring for real-time DDoS attack detection based on 

control messages. The deep learning-based model combined with the SDN controller 

for dynamic traffic classification and anomaly flow detection was also introduced by 

Rathore et al. [23] in the same year. In 2021, Zeng et al. [24] presented a controller- 

centric architecture for profiling dynamic traffic patterns within data centers to 

optimize throughput and detect anomalies. Wang et al. [25] emphasized the 

significance of traffic flow scheduling through traffic engineering algorithms in 

SDN-based enterprise networks. Newer works continue to improve the precision and 

effectiveness of SDN traffic analysis. For example, Elmasry and Ali [26] presented 

an ONOS-integrated, rule-based traffic detector with fuzzy logic-based load 

balancing and prioritization. Likewise, Adikari and Kumbhar [27] proposed a hybrid 

traffic classifier applied to the SDN architecture that used convolutional neural 

networks for encrypted and obfuscated traffic detection. In 2024, Anwar et al. [28] 

proposed an edge-assisted SDN architecture with reinforcement learning-based traffic 

flow control and bandwidth optimization that overcomes scalability issues. Most 

recently, Gupta et al. [29] proposed a cross-layer policy-aware traffic analysis model 

that constructs the mapping between flow-level data from SDN switches and 

application-layer metrics to increase resolution in making decisions. 

All these works together demonstrate a transition from passive, isolated traffic 

analysis on traditional networks to more active, more intelligent, and involved 

controller approaches in an environment where SDN prevails. Existing systems for 

identifying anomalies in SDN are often not real-time, elastic, or designed for specific 

problems like DDoS detection, and struggle with performance measurement across 

topologies; this creates a demand for a generic, customizable, and performance- 

oriented framework for traffic analysis in SDN. 

 

Table 2.2: Overview of Traffic Analysis Techniques in Traditional and SDN-Based Networks 
 

Year Authors Approach Focus Area Key Findings 

2018 Shukla et al. 

[20] 

Hybrid (Statistical 

+ Deep Learning) 

Traffic 

Classificatio 

n in SDN 

Improved accuracy in 

identifying flow types using 

hybrid models. 

2019 Zhao & Chen 

[21] 

Flow Rule 

Inspection 

DDoS 

Detection in 

Detected attacks faster than 

legacy IDS by analyzing flow 
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   SDN rules. 

2020 Amin et al. 

[22] 

Real-time 

Monitoring 

Enterprise 

Network 

Traffic 

Used OpenFlow counters for 

live anomaly detection. 

2020 Zhang et al. 

[23] 

Machine Learning Encrypted 

Traffic 

Classificatio 

n 

Used metadata for 

classification, overcoming 

payload encryption challenges. 

2021 Das & Roy 

[24] 

Lightweight 

Detection 

Framework 

IoT-SDN 

Environment 

s 

Reduced overhead while 

detecting traffic surges 

effectively. 

2021 Chaudhary & 

Mahajan [25] 

Survey and 

Categorization 

SDN 

Intrusion 

Detection 

Techniques 

Classified methods based on 

detection strategy and collection 

points. 

2022 Qadir et al. 

[26] 

Modular Flow 

Log Analysis 

Anomaly 

Detection 

with Ryu 

Developed plug-and-play 

modules for controller-level 

traffic analysis. 

2022 Li et al. [27] Reinforcement 

Learning 

Traffic 

Prediction & 

Routing in 

SDN 

Enabled adaptive routing 

through learned traffic behavior. 

2023 Ahmad et 

al.[28] 

CNN-LSTM 

Deep Learning 

Encrypted 

Traffic in 

SDN 

Achieved high accuracy on 

encrypted data classification in 

real time. 

2025 Tanveer & 

Rahman [29] 

Topology-Aware 

Analyzer 

Adaptive 

Traffic 

Monitoring 

Tailored monitoring based on 

dynamic topologies and 

congestion patterns. 

 

 

2.3 Network Topology Design and Its Impact on Traffic Analysis 

Network structure significantly influences the performance and efficiency of any 

networking environment and is more relevant in the context of SDN. The design and 

configuration of the network topology, therefore, determine the behavior of the 

traffic. The effect of network topology on traffic analysis for SDN systems has 

received significant research attention due to the requirement of high-throughput 

networks and real-time traffic control. In SDN, a programmable programming model 

is achieved by network operators who have power over traffic paths to a central 

controller, motivating designers to create topologies that support optimal traffic 
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flows, scale well, and provide fault tolerance. In the remainder of this section, we will 

highlight some key studies on network topology mapping and its relationship with 

traffic analysis. The thematic Categorization of SDN Topology Designs and their 

Impact on Traffic Analysis is represented in Table 2.3. 

2.3.1 Topology Design: Foundation and Challenges 

The seminal work on SDN topology design focused on understanding the impact that 

different configurations might have on managing and analyzing network traffic. 

Sharma and Kumar [30] investigated topology design in SDN, emphasizing that 

network topology significantly affects traffic distribution, latency, and throughput of 

the network. Their work demonstrated that the efficient SDN topologies applied here 

alleviate the frequent issues caused by centralized control, resulting in a significant 

improvement in network performance. Also, Al-Fares and Rehman [31] studied the 

impact of network topologies on traffic flow in SDN. They concluded that 

minimizing traffic bottlenecks can be achieved by selecting a topology that facilitates 

better scalability and resource allocation. They deduced that the creation of dynamic 

topologies can alleviate the problems and increase network efficiency. Zhang and Li 

[32] also studied the performance evaluation for SDN, pointing out that topology 

design is a core factor of traffic inspection. The paper examined how SDN can adapt 

traffic paths according to the topology settings, which enables load balancing. They 

discovered that SDN topologies designed with particular applications of traffic 

analysis in mind could effectively reduce both latency and throughput. 

2.3.2 Traffic Analysis and Topology Control in SDN 

The traffic analysis methodologies in SDN are an essential field of study, and 

topology planning is also associated with how flexibly the traffic can be controlled 

across the whole network. The problem is how to propose topologies on which real- 

time traffic analysis can be run efficiently. Kaur and Singh suggested the use of 

modular SDN topologies for improved traffic handling and network scaling. Their 

method demonstrated how to optimize traffic patterns while dynamically designing 

the topology to minimize network congestion and enhance traffic analysis efficiency. 

Kumar and Pandey [34] discussed the influence of topology on traffic load 

distribution in SDN. They claimed that SDN’s “topological agnosticism” leads to an 

optimal traffic routing, but such optimality is conditioned upon network topology. A 

proper construction of the topology facilitates more efficient load sharing, resulting 

in fewer packet drops and negligible latency. Their results demonstrate that the 

network's topology must be adapted to its traffic characteristics to maintain good 

performance. 

2.3.3 Performance of SDN Topologies in Data Center and Cloud 

Environments 

Network topology provides effective traffic control in massive data centers and cloud 

applications. Xiao and Liu [35] examined the impact of topology-aware traffic 

analysis in SDN, focusing on cloud computing applications. They studied the 

flexibility of SDN in responding to dynamic traffic conditions by analyzing real-time 
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network topologies. This inspired them to investigate the potential of combining 

dynamic topology reconfiguration with traffic engineering approaches to improve 

data center operations and reduce congestion. Likewise, in [36], Ahmed and Hussain 

explored the concept of `resource-efficient' SDN topologies for clouds based on 

traffic analysis to route the flows with minimal setup time and also balance loads. 

2.3.4 Optimizing Traffic in 5G and Edge Networks using SDN 

Topologies 

SDN deployments in 5G networks and edge computing infrastructure have reignited 

interest in task-based optimization of network topology for low-latency and high- 

throughput traffic analytics applications. Wang and Li [37] investigated SDN-based 

topologies for efficient traffic patterns in 5G networks, taking into account network 

slicing and service chaining. They found that SDN's ability to control the network 

centrally facilitates effective traffic management; this is critical as we seek ways to 

accommodate 5G and an increasingly IoT-driven edge. This was also corroborated by 

Huang and Zhang [38], who studied traffic analysis in 5G SDN topologies, stating 

that dynamic topology control enables SDN to meet the growing requirements of 

emerging networks. 

2.3.5 Recent Trends and Advanced Topology Solutions 

Dynamic topology and AI-based methods are becoming popular in recent studies. 

Patel and Desai [39] considered the use of hierarchical SDN topologies for efficient 

traffic distribution in multi-layered network settings. Their work highlighted that 

SDN controllers can automatically adjust topologies to enhance traffic analysis with 

AI and machine learning algorithms. Furthermore, Singh and Agarwal [40] 

investigated dynamic topology changes in hierarchical SDN-based networks, 

advocating for topologies that accommodate real-time traffic analysis, which could 

significantly increase network efficiency and improve performance. 

2.3.6 Topology Design for Optimized Traffic Management 

SDN topology design for smart cities is a compelling topic of investigation. Khan 

and Ahmed [41] proposed novel SDN topology designs to optimize traffic routing in 

intelligent city networks. The authors concluded that smart cities can achieve 

substantial benefits in managing traffic flow, reducing congestion, and enhancing 

real-time monitoring through the integration of traffic analytics tools into SDN's 

architecture. 

 

Table 2.3: Thematic Categorization of SDN Topology Designs and their Impact on Traffic 

Analysis 

Thematic 

Category 

Author(s) & 

Year 

Network 

Environment 

Topology Focus Traffic Analysis 

Contribution 

Baseline 

Topology & 

Sharma & Kumar 

(2020) [30] 

General SDN Standard 

topologies (tree, 

Linked topology to 

traffic latency and 
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Performance 

Metrics 

  mesh) throughput metrics 

Zhang & Li 

(2020) [31] 

General SDN Performance 

evaluation 

framework 

Compared traffic 

efficiency across 

multiple topologies 

Scalability 

and 

Modularity 

Al-Fares & 

Rehman (2020) 

[32] 

Enterprise 

SDN 

Scalable 

topologies 

Demonstrated 

reduced congestion 

and improved flow 

control 

 Kaur & Singh 

(2021). [33] 

Large-scale 

SDN 

Modular topology 

structures 

Optimized traffic 

flow in modular 

topologies 

Load 

Balancing & 

Fault 

Tolerance 

Kumar & Pandey 

(2021) [34] 

WAN SDN Load-balanced 

topologies 

Improved routing 

with reduced packet 

loss 

Patel & Desai 

(2023) [35] 

Hierarchical 

SDN 

Multi-layered 

topology 

Better load 

distribution and 

failover capabilities 

Cloud & Data 

Center 

Optimization 

Xiao & Liu 

(2022) [36] 

Cloud SDN Topology-aware 

adaptive design 

Achieved high 

responsiveness in 

cloud-based traffic 

 Ahmed & 

Hussain (2022). 

[37] 

Data Center 

SDN 

Resource-efficient 

topology 

Enhanced link 

utilization and 

reduced idle links 

Edge and 5G 

Networks 

Wang & Li 

(2022) [38] 

5G/Edge SDN Adaptive and 

sliced topologies 

Minimized delay in 

service chaining and 

traffic isolation 

 Huang & Zhang 

(2023). [39] 

5G SDN Latency- 

optimized 

dynamic design 

Enabled high-speed 

traffic classification 

in 5G 

Dynamic 

Topology 

Management 

Singh & Agarwal 

(2024) [40] 

Hierarchical/S 

mart SDN 

Real-time 

adaptive 

topologies 

Traffic-based 

topology shifting 

improves real-time 

performance. 

 Khan & Ahmed 

(2025). [41] 

Smart City 

Infrastructure 

Intelligent routing 

topologies 

Enabled real-time 

monitoring and 

routing in smart cities 
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2.4 SDN Controller-Based Performance Optimization Strategies 

Over the past few years, several studies have attempted to utilize the SDN controller 

to optimize various performance metrics, including latency, throughput, energy 

efficiency, and fault tolerance, as shown in Table 2.4. For example, Chatterjee and 

Das introduced a multi-threaded controller architecture in 2021 that reduces the flow 

setup time by distributing processing tasks across controller cores, resulting in lower 

latency in high-throughput data centers. In a similar setting, Lee et al. proposed a 

lightweight controller-to-controller communication frame in the same year to 

minimize inter-controller latencies in a distributed-state architecture. Wang and 

Huang developed a controller-assisted scheduling plan in the same year to redirect 

traffic away from a hotspot on the fly, thereby boosting bandwidth usage in large- 

scale networks. Furthermore, in the same year, Sahu et al. proposed a machine 

learning-based controller for intelligent QoS enforcement, which utilized machine 

learning models to predict and delete flow bursts in real-time. By 2023, research was 

focusing on bright orchestration. Kumar and Singh introduced a multi-layer SDN 

control plan consisting of local and global CDNs, which reduces command overhead 

and enhances error accommodation. On the other hand, Mehmood et al. utilized deep 

reinforcement learning in the SDN controller to autonomously adjust routing policies 

based on prior knowledge and current conditions. Zhou et al. provided a framework 

for scheduling controllers based on latency for 5G networks to guarantee minimal 

jitter in real-time operations. Furthermore, in 2025, Ali and Rahman proposed a 

model SDN controller that more effectively distributes traffic among controller nodes 

to reduce delay. In 2025, Nguyen and Patel introduced a blockchain-enabled SDN 

controller that boosts trust in distributed networks without compromising 

transmission levels. Finally, Rana and Iqbal introduced a link-state prediction plan in 

2026 that helped controllers predict and route around upcoming link failures. All of 

this research highlights the potential for optimization through augmentation of the 

controller architecture and intelligent algorithms. 

 

Table 2.4: Categorized Strategies for SDN Controller-Based Performance Optimization 
 

Theme Study (Author, 

Year) 

Optimization 

Focus 

Proposed Strategy Key Outcome 

Latency 

Optimizati 

on 

Chatterjee & Das 

(2021) [42] 

Flow setup time Multi-threaded SDN 

controller architecture 

Reduced latency in 

high-flow networks 

 Zhou et al. 

(2024). [43] 

Latency-sensitive 

scheduling 

Real-time task 

prioritization in 5G 

SDN networks 

Achieved low jitter 

and delay 

Load 

Balancing 

Lee et al. (2021) 

[44] 

Inter-controller 

communication 

Lightweight distributed 

control architecture 

Minimized inter- 

controller delay 

 Ali & Rahman 

(2024) [45] 

Controller 

clustering 

Even distribution of 

control requests 

Reduced 

bottlenecks and 
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    improved control 

plane efficiency 

Congestion 

Avoidance 

Wang & Huang 

(2022) [46] 

Congestion 

rerouting 

Dynamic traffic-aware 

controller scheduling 

Increased 

bandwidth 

utilization and 

reduced drops 

QoS 

Assurance 

Sahu et al. (2022) 

[47] 

Real-time traffic 

prediction 

AI-based predictive 

model for SDN 

controller 

Improved QoS and 

responsiveness 

Fault 

Tolerance 

Kumar & Singh 

(2023) [48] 

Fault recovery Hierarchical controller 

segmentation 

Faster failover and 

recovery 

 Rana & Iqbal 

(2025) [49] 

Link failure 

prediction 

AI-based fault-tolerant 

routing within the 

controller 

Decreased packet 

loss 

Intelligent 

Routing 

Mehmood et al. 

(2023) [50] 

Adaptive routing DRL-based controller 

decisions 

Optimized path 

selection under 

dynamic load 

Security & 

Trust 

Nguyen & Patel 

(2025) [51] 

Secure control 

signaling 

Blockchain-integrated 

SDN controller 

Enhanced trust in 

multi-domain 

control 

 

 

2.5 Comparative Analysis of Existing SDN-Based Frameworks 

Within a short span, SDN has matured into a plethora of frameworks with specific 

intent addressing anything from traffic analysis to anomaly detection, performance 

improvement, or intelligent routing. Each of these frameworks is collaboratively 

integrated with SDN controllers, such as Ryu, ONOS, or OpenDaylight, and provides 

its own specialized monitoring, control, or security features. Nonetheless, these 

frameworks differ considerably in terms of design, flexibility, scalability, 

responsiveness, and the level of traffic insight provided. In this section, we present a 

review of the literature and offer comparative metrics to assess its advantages, 

shortcomings, and relevance to traffic analysis and performance assessment, as 

shown in Table 2.5. 

2.5.1 Early-Stage Frameworks and Flow-Level Visibility 

Early SDN frameworks primarily focused on demonstrating the feasibility of SDN 

and addressing basic network manageability and control issues. Kreutz et al. [52] 

provided an initial comprehensive survey of SDN frameworks, classifying design 

architectures by functional layers and architectural components. Nunes et al. [53] 

studied and juxtaposed the control plane performance of various open-source control 
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platforms, but were unable to construct comprehensive frameworks. Kassler et al. 

[54] developed an early SDN security framework that used anomaly detection 

modules for an ONOS controller, testing the framework for threat detection in a 

research lab. During this time, Kim and Feamster [55] investigated modular control 

in SDN architecture and made other observations about design trade-offs related to 

scalability and programmability. 

2.5.2 Scalability and Controller Performance 

As SDN matured in larger contexts, scalability emerged as a significant challenge. 

Tootoonchian and Ganjali [56] introduced HyperFlow, a distributed control system 

designed to streamline the synchronization of multiple controllers, while logically 

centralizing control. Arslan et al. [57] presented DynaSDN, an elastic control 

framework that dynamically adapts control boundaries to balance network traffic. 

Zhang et al. [58] analyzed FlowVisor and other network slicing frameworks, 

primarily used for analyzing multi-tenant traffic. In 2021, Raza and Khokhar 

proposed FlexiSDN, which improved performance in wide-area environments by 

decoupling the data plane from a multi-instance control plane [59]. While Iqbal et al. 

surveyed real-time traffic frameworks, they observed that most frameworks lacked 

built-in traffic intelligence, especially in dynamic topologies [60]. 

2.5.3 Traffic Management and Intelligent Integration 

As network traffic became increasingly complicated, more intelligent SDN 

frameworks were created. Siddiqui et al. [61] proposed SmartSDN, which integrates 

deep packet inspection (DPI) for traffic classification through a plug-in module for 

ONOS. Mahmood and Hassan [62] proposed AIFlow, which is a traffic prediction- 

based framework for congestion avoidance. Nguyen et al. [63] evaluated multiple 

frameworks, including OpenDaylight, ONOS, and Ryu, to compare their ability to 

accommodate video streaming and VoIP workloads. Thapa and Lee [64] put forward 

QoS-SDN, an SDN framework that dynamically allocates bandwidth based on real- 

time flow analysis. 

2.5.4 Framework for Emerging Environments 

As SDN has been adopted in edge, IoT, and 5G networks, several frameworks have 

been developed to address new challenges, including latency, mobility, and 

distributed intelligence. Rahman et al. [65] proposed Edge Flow, a distributed SDN 

framework that incorporates controller placement methods for edge computing. Zhao 

and Wang [66] introduced MobSDN, an optimized architecture for mobile and 

vehicular networks with adaptive controller synchronization. Alzahrani et al. [67] 

benefited from asset-based decision-making over reputation-based decision-making 

in a distributed SDN architecture by developing SecuSDN, which utilized blockchain 

to enforce secure policy compliance in multi-domain architectures. Qureshi and Tariq 

[68] presented Green SDN, an energy-aware framework designed to minimize 

controller overhead in both physical and virtual power-constrained networks. Tan et 

al. [69] not only presented AICtrl, a modular SDN framework that resembles AIB- 

CTRL in comparison to various AI-based SDN frameworks, but also facilitated 

federated learning-based decision-making in multi-cloud environments. Bhardwaj 
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and Kapoor [70] introduced Hybrid QoS-SDN, which incorporated statistical and AI- 

based mechanisms for QoS optimization in IoT-SDN deployments. Chen et al. [71] 

conducted a benchmark study across 12 frameworks and identified the most 

significant gap as the differing approaches to support dynamic topologies. 

2.5.5 Recent Advances in Cross-layer and Self-optimizing 

Frameworks 

Current frameworks focus on the convergence of SDN facilities with intelligent 

optimization in cross-layer approaches. Gupta et al. [72] introduced CrossSense, a 

controller-centric framework that incorporates application-level metrics into flow- 

based traffic decisions. Ahmed and Sinha [73] proposed AutoSDN, a self-learning 

controller framework that modifies the flow rules based on historical congestion 

metrics. Iqra et al. [74] introduced Fail-Safe-SDN, which implements predictive 

algorithms to reroute traffic based on the forecasting of link failures. Bai and Yu [75] 

proposed Quantum SDN, which investigated the potential of integrating quantum 

encryption in SDN-based control planes for ultra-secure networks. Liu and Zhou [76] 

surveyed a sample of 25+ frameworks and concluded that, although the intelligence 

of traffic has improved, the flexibility of controllers, performance benchmarking, and 

scalability across topologies continue to be areas of focus. 

The review of the frameworks presented above indicates that we are incrementally 

maturing the architecture of the frameworks, most notably in the modularity of 

controllers and the integration of AI. However, no out-of-the-box solution provides 

robust traffic analysis, ensures optimal performance, and adapts to various network 

conditions. The research proposes to reconceptualize the gaps in current frameworks 

by developing a scalable, traffic-aware SDN framework with intelligence at the 

controller layer that accommodates dynamic topologies. 

 

Table 2.5: Comparative Analysis of SDN-Based Frameworks 
 

Yea 

r 

Frame 

work / 

Study 

Name 

Authors Use Case 

Domain 

Evaluatio 

n Method 

Notable 

Outcome 

Key 

Features 

Limitations 

/ Focus 

2018 SDN 

Survey 

& 

Archite 

cture 

Kreutz et 

al.[52] 

General 

Architecture 

Literature 

Review 

Foundational 

SDN 

layering and 

modular 

concepts 

Defined 

layered 

SDN 

architect 

ure 

No focus on 

performance 

or 

scalability 

2018 SDN 

Contro 

ller 

Survey 

Nunes et al. 

[53] 

Controller 

Design 

Survey & 

Compariso 

n 

Clarified 

controller 

structures 

Compara 

tive 

controlle 

r analysis 

No real-time 

load testing 
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2019 ONOS 

Securit 

y 

Extensi 

ons 

Kassler et 

al. [54] 

Security Prototype 

& 

Simulation 

Improved 

real-time 

threat 

detection in 

ONOS 

Anomaly 

detection 

in SDN 

Security- 

focused, not 

traffic 

optimization 

2019 Modul 

ar 

SDN 

Contro 

l 

Kim & 

Feamster 

[55] 

Scalability Simulation Flexible 

modular 

controller 

deployment 

Modular 

control 

logic 

Scalability 

untested 

2020 Hyper 

Flow 

Tootoonchi 

an & 

Ganjali 

[56] 

Distributed 

Control 

Emulation DistributYet 

logically 

centralized 

control 

Avoids a 

single 

point of 

failure 

Overhead 

for state 

sync 

2020 DynaS 

DN 

Arslan et 

al. [57] 

Adaptive 

Control 

Emulated 

Network 

Load-based 

dynamic 

control 

regions 

Dynamic 

controlle 

r 

regioning 

Tested only 

in simulated 

setups 

2020 FlowV 

isor 

Evalua 

tion 

Zhang et al. 

[58] 

Network 

Slicing 

Simulation Enforced 

flow space 

isolation for 

multi- 

tenancy 

Supports 

tenant- 

level 

isolation 

High 

resource 

consumptio 

n in peak 

loads 

2021 FlexiS 

DN 

Raza & 

Khokhar 

[59] 

Elastic 

Topologies 

Simulation Adaptable 

control plane 

elasticity 

Dynamic 

topology 

responsiv 

eness 

No real-time 

reconfigurat 

ion 

2021 Real- 

Time 

Contro 

ller 

Analys 

is 

Iqbal et al. 

[60] 

Performance 

Benchmarki 

ng 

Empirical Comparative 

real-time 

controller 

analysis 

Benchma 

rked 

ONOS, 

Ryu, and 

Floodlig 

ht 

No AI 

integration 

2022 SmartS 

DN 

Siddiqui et 

al. [61] 

AI & DPI Simulation Traffic 

visibility 

through DPI 

DPI- 

enabled 

smart 

routing 

Introduced 

packet delay 

2022 AIFlo Mahmood AI for Simulation Traffic load AI- Adaptability 
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 w & Hassan 

[62] 

Prediction  balancing 

using AI 

assisted 

traffic 

routing 

to diverse 

networks 

2022 Contro 

ller 

Compa 

rison 

Nguyen et 

al. [63] 

Multimedia 

QoS 

Experimen 

tal Setup 

Multimedia 

(VoIP, 

Video) 

controller 

performance 

Performa 

nce- 

focused 

metrics 

Narrow 

scope (only 

multimedia 

flows) 

2022 QoS- 

SDN 

Thapa & 

Lee [64] 

Quality of 

Service 

Simulation Adaptive 

bandwidth 

allocation 

Real- 

time 

resource 

manage 

ment 

Scalability 

not tested 

2023 EdgeFl 

ow 

Rahman et 

al. [65] 

Edge SDN Simulation Reduced 

latency 

through 

edge-level 

decisions 

Edge 

computin 

g 

integratio 

n 

Policy 

complexity 

2023 MobS 

DN 

Zhao & 

Wang [66] 

Mobile 

Networks 

Simulation Controller 

sync in 

mobile 

scenarios 

Sync 

protocols 

for 

mobility 

Not optimal 

for static 

networks 

2023 SecuS 

DN 

Alzahrani 

et al. [67] 

Security Blockchain 

Simulation 

Immutable 

policy 

enforcement 

using 

blockchain 

Decentra 

lized 

security 

rules 

Latency in 

validation 

2023 GreenS 

DN 

Qureshi & 

Tariq [68] 

Energy 

Efficiency 

Simulation Power-aware 

controller 

design 

Energy- 

saving 

control 

distributi 

on 

Performance 

trade-offs 

2024 AICtrl Tan et al. 

[69] 

AI with 

Federated 

Learning 

Simulation Distributed 

learning in 

SDN 

Federate 

d AI 

training 

in SDN 

High 

training 

complexity 

2024 Hybrid 

QoS- 

Bhardwaj 

& Kapoor 

QoS with 

ML 

Lab-Based 

Setup 

Intelligent 

QoS through 

Multi- 

layer 

Controlled 

environment 
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 SDN [70]   ML & 

statistics 

QoS 

handling 

only 

2024 SDN 

Bench 

markin 

g 

Chen et al. 

[71] 

Controller 

Performance 

Empirical 

Benchmar 

ks 

Evaluated 12 

controllers 

across 

benchmarks 

Extensiv 

e 

controlle 

r 

performa 

nce 

insights 

No hybrid 

cloud 

scenarios 

2025 CrossS 

ense 

Gupta et al. 

[72] 

Cross-Layer 

SDN 

Simulation Dynamic 

traffic tuning 

using cross- 

layer 

feedback 

Multi- 

layer 

coordinat 

ion 

Latency in a 

feedback 

loop 

2025 AutoS 

DN 

Ahmed & 

Sinha [73] 

Autonomous 

SDN 

Reinforce 

ment 

Learning 

Adaptive 

rule 

optimization 

via RL 

Self- 

tuning 

network 

behavior 

Slow 

learning in 

unpredictabl 

e traffic 

2025 FailSaf 

e-SDN 

Iqra et al. 

[74] 

Reliability / 

Failure 

Predictive 

Modeling 

Rerouting 

before 

predicted 

failure 

Preempti 

ve failure 

manage 

ment 

Needs high 

accuracy of 

models 

2025 Quantu 

mSDN 

Bai & Yu 

[75] 

Secure 

Traffic 

Control 

Quantum 

Simulation 

Quantum- 

safe traffic 

routing 

Quantum 

encryptio 

n in SDN 

Expensive 

hardware 

2025 Meta- 

Analys 

is 

Liu & 

Zhou [76] 

Comparative 

Study 

Meta- 

Analysis 

Identified 

gaps across 

25 

frameworks 

Synthesi 

zed 

trends 

from 

2018 to 

2025 

No 

experimenta 

l validations 

 

 

2.6 Research Gaps 

Despite the significant progress in SDN-based traffic management, several 

limitations persist in existing studies and frameworks. This research aims to address 

the following key gaps identified in the recent literature: 
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1. Comprehensive Review of Existing Solutions: Lack of Unified Traffic Analysis 
Frameworks using Modern Controllers 

• While recent works like CrossSense [72] and AutoSDN [73] introduced advanced 

traffic tuning and autonomous rule learning, they do not integrate end-to-end traffic analysis 

with controller-specific performance feedback. 
• Existing frameworks often focus either on the controller’s learning capability or 

traffic visibility, not both, creating a disconnect between traffic behavior and 

controller adaptability. 

2. Limited Evaluation of Controller Performance in Custom or Realistic Topologies 

• Studies such as HybridQoS-SDN [70] and SDN Benchmarking [71] emphasize 

controller performance but use generic or lab-constrained topologies. 

• There is a gap in frameworks that design and evaluate custom network 

topologies tailored to dynamic traffic analysis needs, particularly using open- 

source controllers like Ryu. 

3. Absence of Cross-Comparative, Executive-Driven Evaluation Models 

• Although Meta-Analysis by Liu & Zhou [76] reviews over 25 frameworks and 

identifies performance patterns, it lacks hands-on experimental validation using 

key execution parameters (e.g., throughput, delay, jitter). 

• No current study bridges the gap between literature-wide synthesis and 

controller-specific, real-time experimental evaluation. 

4. Underutilization of Lightweight, Open-Source Controllers for Real-Time Traffic 

Optimization 

• Most recent frameworks [75] involve heavy computational setups or proprietary 

elements that hinder reproducibility and scalability. 

• A practical, lightweight framework using the Ryu controller is needed, which 

supports rapid prototyping and real-time flow control. 

5. Limited Focus on the Interplay between Topology Design and Traffic Pattern 

Variability 

• Works like FailSafe-SDN [74] and GreenSDN [68] look into fault resilience and 

energy efficiency, but they do not explore how traffic-aware topology 

adjustments can improve performance, especially under dynamic conditions. 

 

2.7 Discussion and Overall Analysis 

The literature has been uniformly arranged under six primary categories to cover 

different aspects of SDN and its role in intelligent traffic analysis. These categories 

are: (1) SDN architectures and controllers; (2) traditional and SDN traffic analysis 

methodologies; (3) optimization by network topology design in the context of traffic 

performance; (4) strategies that optimize with respect to the SDN controller 

framework-based architecture; (5) benchmarking between existing frameworks; and 

(6) research gaps. 

It is found that SDN provides a robust, centralized, and programmable network 



28 
 

control paradigm, whereby notable controllers such as Ryu, ONOS, and 

OpenDaylight offer extensive functionalities for flexible network manipulation. 

However, more research is based on static topology analysis instead of real-time 

traffic and topology changes. 

Nowadays, SDN traffic analysis is shifting away from packet- and flow-level 

analysis to more intelligent controller-driven approaches. Moreover, most models are 

not well-integrated with topology-awareness, so they are less valuable in cases such 

as frequent topology changes and dynamically varying traffic loads. 

2.8 Summary of challenges and solutions 

The literature review thoroughly reviewed existing state-of-the-art methods and 

frameworks related to Software Defined Networking (SDN), controller-based 

performance mechanisms, topology designs, and monitoring techniques. The 

comparative literature review demonstrated that SDN-related performance 

optimization has progressed significantly in each of these areas; however, a 

comprehensive framework that integrates intelligent monitoring, dynamic controller 

placement, and topology-aware analysis was not found in any of the literature. This 

chapter has therefore helped shed light on key areas of research gaps and aided in the 

development of the Ryu-based intelligent traffic analysis framework. Below is a 

summary of the considerable challenges identified and the potential solutions 

proposed: 

1. Limited Topology-Aware Traffic Monitoring 

a. Problem: Most current SDN packet monitoring tools utilize static or 

broadly applicable topologies that fail to adapt to the network context or 

to reflect real-time traffic behavior dynamically. 

b. Proposed Solution: The thesis proposes a topology-aware packet 

profiling mechanism, which aligns packet flow management with the 

underlying network structure. Specifically, custom topologies were 

designed and tested for their impact on effective traffic monitoring 

performance. 

2. Lack of Integration between controller logic and traffic behavior 

a. Problem: Multiple frameworks do not align the logic of SDN controllers 

intelligently with real-time traffic behavior, resulting in inefficient flow 

rule installations and slow responses. 

b. Proposed Solution: A Ryu-based intelligent traffic analysis framework 

has been created that combines traffic data collection, flow rule handling, 

and policy enforcement so the controller can provide informed decisions 

based on real-time profiling. 

3. Insufficient Evaluation Metrics and Realistic Scenarios 

a. Problem: Most studies offer a narrow performance evaluation based on a 

couple of metrics that do not simulate real-world traffic scenarios. 
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b. Proposed Solution: The thesis will use a broad set of evaluation 

parameters compared in various conditions to evaluate the performance of 

the framework more holistically. 

4. Static Controller Placement and Lack of Adaptive Flow Control 

a. Problem: A static deployment of SDN controllers or a single-controller 

development restricts adaptability and a quick response to changes in the 

network. 

b. Proposed Solution: This proposal includes an intelligent approach to 

controller-based traffic analysis in which the controller changes flow 

entries and adapts to demands concomitant with an understanding of the 

traffic impacts of the network topology. 

5. Absence of Benchmarking with Modern SDN Frameworks 

a. Problem: Various existing studies do not benchmark their outcomes 

against strong baseline models, making it laborious to evaluate the validity 

of their performance assessments. 

b. Proposed Solution: The framework proposed is empirically compared and 

contrasted against recently published highly cited SDN-based traffic 

monitoring models, demonstrating improvements in efficiency, reductions 

in packet loss performance, and enhanced adaptability. 

6. Lack of Modular, Scalable Framework Designs 

a. Problem: Numerous systems that exist today are monolithic and are unable 

to extend or scale over different network environments modularly. 

b. Proposed Solution: A modular framework is designed with clearly defined 

functions for traffic analysis, flow control, and controller integration for 

future enhancements and scalability. 

2.9 Chapter Summary 

The chapter provides a thorough review of the most recent literature on SDN, with an 

emphasis on traffic analysis, network topology design, and controller optimization. It 

summarizes the development of SDN architectures, including the concept of control 

plane–data plane separation, and describes the key role played by controllers, such as 

Ryu, in enabling programmability and centralized administration. The analysis 

covers various networking tools and approaches used for analyzing network traffic 

(both classic and SDN networks), including their strengths and limitations in terms of 

scale, adaptability, and accuracy. 

The chapter also examines how network topology impacts the efficiency of traffic 

monitoring. It highlights that a significant portion of previous studies fail to 

incorporate topology-aware approaches, which account for various changes in the 

network. It also investigates SDN controller-based performance optimization 

methodologies that trade-off between the integration of flow monitoring logic and 

traffic control policies. A comparative analysis of available frameworks also 

indicates that, in many cases, this progress is limited, and solutions exhibit 

incomplete benchmarking coverage or are not modular enough to facilitate on-the-fly 

adaptation. 
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The research activity carried out so far presents relevant limitations, which justify the 

emergence of gaps, such as the lack of topology-aware, intelligent frameworks, the 

limited use of advanced monitoring techniques, and the evaluation of different 

performance metrics. These results define the research gap and demonstrate the 

justification for our proposed Ryu-enabled intelligent, topology-aware traffic analysis 

framework, which mitigates the limitations encountered so far through its adaptive 

design and comparative performance benchmarking. 
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CHAPTER 3 

 

TOPOLOGY-AWARE SDN ENVIRONMENT PREPARATION 

AND TRAFFIC PROFILING STRATEGY 

 

 

 

 
In this section, we describe the structured approach to building the test setup for our 

proposed SDN-based traffic analysis framework. The design concept begins by 

establishing a consistent research method that aligns with the goals outlined in 

previous chapters. It subsequently determines the tools, simulation, and control 

platforms that require support for the specific functionalities addressed. Of these, 

particular weight is given to the choice of the Ryu controller due to its high level of 

flexibility and ease of integration, as well as its demonstrated ability to monitor 

traffic in real-time and manage flow. 

With the technology stack set up, attention moves to building a realistic but flexible 

SDN network topology. The topology should be able to embody various traffic 

patterns, make flow control policies meaningful, and conduct the performance 

evaluation of the framework across different types of networks [77]. As a result, 

traffic modeling is an essential part, providing the capability to simulate various 

scenarios, including high-load configurations, dynamic flow alterations, and 

application-oriented requirements [78-79]. This ensures that the experimental 

environment is as realistic as possible in terms of practical deployment scenarios. 

At the end of this chapter, performance parameters and testing methods will be 

introduced to validate our proposal. Observables like latency, throughput, jitter, and 

packet loss are recognized as providing a comprehensive picture of system behavior. 

We will also compare our results to the state-of-the-art, ensuring that the performance 

is both internally consistent and relevant in a broader research context. This chapter 

thus acts as a recipe, taking the form of a stepwise architecture to translate the 

research design into a real-life SDN test platform that can be used to facilitate the 

experimental and analytical processes of the study. 

3.1 Research Design and Methodological Approach 

The experimental plan of this study is designed to organize all stages of the work, 

including environment setup, execution, and analysis, in a linear manner that can be 

easily repeated. Its approach is experimentally grounded and controlled, simulated, 

and benchmarked in a topology-aware SDN. Optimizing the network setting. The 
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primary goal is to establish a strict yet flexible network environment, allowing us to 

conduct experiments with various traffic behaviors and performance fluctuations 

resulting from different controller management approaches [80]. It begins with 

describing system requirements and specifying the suitable technologies to fulfill 

them. This includes selecting an SDN controller with modular support for custom 

monitoring and dynamic flow rule enforcement, as well as APIs required for traffic 

reporting and analysis [81]. The Ryu controller is chosen due to its Python 

programming language, modular approach, and support for leading-edge simulators, 

such as Mininet. 

After selecting a controller, the research design proceeds to topology design, creating 

alternative network designs that mimic real operational patterns. This encompasses 

star, mesh, and hybrid topologies, designed to measure the impact of traffic, 

connectedness of nodes, as well as path choice, on system performance [82]. Traffic 

generation occurs in parallel via synthetic and application-aware traffic flows that 

represent real workloads. The approach also emphasizes the importance of defining 

performance metrics at an early stage to obtain coherent and comparable results. 

Quantitative results focus on latency, throughput, jitter, and packet loss, whereas 

qualitative observations are based on flow analysis and efficiency regarding policy 

enforcement [83]. For each scenario, we are testing it in a repeatable manner to 

ensure that the observed performance differences are due to the proposed framework 

and not to settings outside of our control. This phased, structured approach provides 

both the validity and reliability of the findings. The subsequent stages were the 

structured methods employed in this study, with an expanded explanation of each 

stage. 

 Define a structured, repeatable approach for researching and evaluating, 

combining simulation, scenario testing, and benchmarking in topology- 

aware SDN: To provide the credibility of results, all research follows a 

process of activities that goes from design to final assessment. The second of 

these methods is repeatable; the same experiment setup can be used as a base 

for replication or comparison by other authors. Theoretical coverage and 

practicality are also guaranteed by utilizing simulation-based modeling in 

combination with scenario testing. A comparative evaluation against state-of- 

the-art methods provides insight into the effectiveness of our approach. 

 Establish a controlled network but flexible network architecture for 

exploring various traffic scenarios and policy implications: It is purposely 

in a controlled and flexible setting of the network, which can be fully 

controlled. Control enforces the reduction of externalities to maintain 

experimental validity, and flexibility enables roll-out of network 

manipulations (e.g., topology, link capacity, or controller policy) and 

backouts. This two-pronged method allows us to study the effect of different 

conditions on network performance without losing consistency. 

 Determine the requirements of the system and select technologies that 

support monitoring dynamic flow rules. API integration: Before 
development, the research project specifies exact requirements for the system, 

such as compatibility with standard SDN protocols like OpenFlow. The 
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corresponding simulators, traffic generators, and performance analyzers are 

chosen according to these needs. It is also necessary that the selected tools 

provide an API that supports custom-developed modules for dynamic traffic 

profiling. 

 Select Ryu as the SDN controller: It is open source, written in Python, based 

on a modular constitution, compatible with Mininet, and well supported by its 

community. Its Python implementation eases the burden of developing further 

monitoring and control applications, and its compatibility with Mininet 

guarantees easy integration into simulation software. The modular design of 

Ryu facilitates a fine-grained experimentation with traffic rules, routing 

algorithms, and policy enforcement. 

 Select Ryu as the SDN controller: It is open source, written in Python, based 

on a modular constitution, compatible with Mininet, and well supported by its 

community. Its Python implementation eases the burden of developing further 

monitoring and control applications, and its compatibility with Mininet 

guarantees easy integration into simulation software. The modular design of 

Ryu facilitates a fine-grained experimentation with traffic rules, routing 

algorithms, and policy enforcement. 

 Generate different network topologies that exhibit changes in the traffic 

pattern and connectivity: We create various types of network topologies to 

assess the flexibility of our solution by using Mininet. Star topology 

challenges the network control and low hop count routing of a centralized 

network. Mesh topology stimulates densely connected and redundant 

networks, combining a full mesh. Hybrid topology trains developmentally 

realistic mixed-structure networks. This variety of topologies allows the 

method to consider some performance in different operational scenarios 

 Realize traffic modeling using both synthetic flows and application traffic 

flows to simulate a realistic workload: Traffic generation is an essential 

issue in this research. Baseline metrics are tested by creating synthetic traffic 

with standard packet generators. At the same time, application-specific flows 

imitate real-world networking tasks, such as video streaming, VoIP calls, and 

file transfer transactions. This package strikes a balance between theoretical 

stress tests and actual performance in practice. 

 Predefine performance metrics for consistent evaluation: Performance 

testing is based on predefined standard metrics. While latency measures the 

time it takes for packets to be sent and received, throughput determines the 

rate of data transfer, jitter expresses the variability in delay between packets, 

and packet loss evaluates the reliability of the transmission. We pre-define 

these measures before testing so that the results can be compared across 

various situations and with studies in related works. 

 Test all possible scenarios in a controlled way to guarantee the integrity 
and reliability of results: At last, each network configuration with a different 
traffic pattern is simulated several times under the same circumstances to 
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check if those results hold. By tightly controlling the simulation input, the 

study ensures that any performance disparities are attributed directly to a 

framework’s capabilities and not to uncontrolled conditions. This ensures that 

results are valid and can be replicated. 

3.2 Tools, Simulators, and Technologies Used 

To develop the proposed topology-aware SDN framework, diverse tools, simulators, 

and technologies had to be integrated to provide realistic network topology 

construction, traffic analyses, and performance evaluations [84]. We carefully 

selected these components based on the SDN paradigm, explicitly targeting the 

requirements of real-time traffic visibility, controller decision-making, and flexible 

experimentation. The tech stack was modular, scalable, and reproducible, designed to 

allow other researchers to replicate or extend the experiments in the future. 

We chose the Ryu Controller for SDN control due to its modular architecture based 

on Python, generic and abundant control components for the OpenFlow protocol, and 

its ability to facilitate rapid prototyping of intelligent traffic analysis modules [85]. 

Due to its flexibility, Ryu also allowed developers to add custom flow monitoring 

logic and traffic control policies to meet the specific needs of their experiments, so it 

was the most appropriate controller to implement the intelligent analysis mechanisms 

of the proposed framework. 

Network simulation and emulation were primarily conducted using Mininet, an 

industry-standard network emulator that creates realistic small network topologies for 

performance and stress testing with minimal hardware requirements [86]. Features 

such as the collaboration between Mininet and Ryu controller provide an 

environment for studying the performance of a network under the influence of 

various traffic loads, topologies, and flow configurations. 

Apart from simulation tools, multiple supporting technologies were included for data 

collection, traffic generation, and performance benchmarking purposes. Throughput, 

jitter, and latency were measured using Iperf under various conditions, while Ping 

was employed for basic connectivity verification and latency testing. Wireshark, a 

packet analysis tool, was used to capture and analyze detailed traffic flows, providing 

greater depth of packet-level detail. We had to write Python scripts to automate the 

execution of experiments, extract performance metrics, and save all data in structured 

formats, allowing for further analysis. 

3.2.1 Tools and Their Roles in the Research 

The proposed framework was implemented and validated using a combination of 

software tools and network simulators. All the tools were carefully chosen to meet 

the requirements of building a topology for traffic monitoring, performance 

measurement, and flow analysis. In our case, the central SDN controller was Ryu, 

which enables programmability and modular design to perform the necessary logic 

for analyzing traffic [87]. Emulation of real-world network topologies was based on 

Mininet, which provided a lightweight yet high-fidelity environment for 

experimentation. 
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We used other complementary tools to generate traffic patterns and check 

connectivity, such as Iperf and Ping. Wireshark also has a high capacity for deep 

packet-level analysis and flow inspection. Additionally, Python scripting was 

essential for automating experiments, ensuring reproducibility, and managing a large 

amount of performance data. These tools and their contribution to the research 

framework are summarised in the following table. Table 3.1 illustrates the 

contribution of each tool to establishing a robust experimental environment. Using a 

well-integrated stack of simulators and analysis tools, the framework strikes a 

balance between realism, scalability, and efficiency, enabling the accurate evaluation 

of SDN-based traffic analysis strategies. 

 

Table 3.1: Tools and Simulators Utilized in the Proposed Research 
 

 

Component 

Version / 

Specificat 

ion 

 

Category 
Purpose / 

Usage 

Role in 

Research 

Objective 2 

 

 

Mininet 

 

 

v2.3.0 

 

 

Network 

Emulator 

Creation of 

custom 

virtual 

topologies 

Emulated 

scalable SDN 

network for 

traffic 

analysis 

 

 

Ryu 

Controller 

 

 

v4.34 

(Python- 

based) 

 

 

SDN 

Controller 

Flow 

control and 

traffic 

monitoring 

via 

OpenFlow 

 

Deployed to 

manage 

traffic flows 

dynamically 

 

Open 

vSwitch 

(OVS) 

 

 

v3.1.1 

 

 

Virtual 

Switch 

Emulation 

of 

OpenFlow 

switches in 

Mininet 

Acted as the 

data plane 

component in 

the network 

topology 

 

 

iPerf 

 

 

v3.13 

 

Traffic 

Generator 

Performanc 

e testing for 

UDP/TCP 

bandwidth 

Simulated 

various traffic 

loads 

 

 

Wireshark 

 

 

v4.2.1 

 

 

Packet 

Analyzer 

Monitoring 

and 

analyzing 

packet-level 

data 

Verified 

packet flow 

and latency 

during 

simulations 
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Python 

 

 

 

 

v3.10 

 

 

 

Scripting 

Language 

Script 

automation, 

traffic 

monitoring, 

and 

controller 

interaction 

 

Automating 

controller 

logic and 

topology 

setup 

 

 

Ubuntu OS 

 

 

22.04 LTS 

 

 

Operating 

System 

 

Hosting the 

entire SDN 

environment 

Stable 

platform for 

Mininet, Ryu, 

and other 

tools 

 

3.2.2 Technologies used in the Proposed Framework 

Apart from the tools and simulators, the research absolutely depended on the 

fundamental technology and protocols that can support the entire functionality of the 

framework. As for standard communication between the SDN controller and the 

actual switches lying underneath, the OpenFlow protocol played a crucial role as the 

primary standard for installing flow rules and monitoring traffic [88]. This 

experiment was developed on Linux-based environments, predominantly the 

recommended environments due to their stability, open-source support, and enhanced 

networking features. 

Additionally, SDN topology design in Mininet was utilized to create custom Mininet 

topologies that represent specific real-world scenarios, allowing for the evaluation of 

the proposed solution's performance under various conditions. We also establish a 

systematic traffic profiling methodology to monitor flow characteristics, record 

essential parameters such as latency, throughput, jitter, and packet loss, and provide a 

foundation for performing adaptive traffic profiling. The table below provides a 

summary of these technologies and their interaction with the framework. 

Table 3.2 highlights the backbone technologies that enabled the framework to 

function. The research provided a comprehensive and future-proof SDN-based 

experimentation setup by integrating various components, including OpenFlow and 

Linux environments, customized topology design, and high-end traffic profiling 

methods. 

 

Table 3.2: Core Technologies and Protocols Applied in the Framework 
 

 
Technology Application in Framework Benefit to Research 

 



37 
 

 

OpenFlow 

Protocol 

Communication between the 

Ryu controller and network 

switches 

Standardized control- 

plane/data-plane 

separation 

 

Linux OS 
Base platform for running 

Mininet and Ryu 

Open-source, stable 

networking stack 

SDN Topology 

Design 

Custom topology creation in 

Mininet 

Allows testing in different 

real-world-like scenarios 

 

Traffic 

Profiling 

 

Flow-based traffic 

monitoring and analysis 

Enables accurate 

performance evaluation 

and load balancing 

3.3 SDN Controller Selection 

The SDN controller acts as the SDN ecosystem’s brain, where control-plane 

intelligence resides and is responsible for visibility of flow rules on the data-plane 

switches. In traffic analysis and monitoring frameworks, the choice of an appropriate 

controller is crucial because the framework's features, flexibility, and overall 

performance are deeply dependent on the functionalities of the selected controller. 

Over the last decade, numerous controllers have been proposed, including ONOS, 

OpenDaylight, Floodlight, and Ryu, each with varying architectural designs, 

deployment models, and use cases. For this research, we have chosen Ryu as the 

selected controller because it is lightweight in nature, has a modular structure, 

supports programmability using Python, and offers easy integration capabilities with 

traffic analysis frameworks. 

Comparison of evaluations proves very favorable for ONOS with respect to carrier- 

grade environments, which require extensive customization, high availability, and 

scalability. Simultaneously, ODL is designed for massive enterprise Greenfield 

setups requiring multiple northbound and southbound integrations. Both are feature- 

rich, but their heavyweight architectures render them ineffective for research-oriented 

traffic monitoring and experimentation that can benefit from flexibility and fine- 

grained programmability. By contrast, Ryu is highly suitable for research due to its 

academic and experimental nature, as it is simple to install, well-documented, and 

supports direct Python scripting for path control, topology control, and packet 

manipulation. For these attributes, Ryu is the most suitable option for creating the 

topology-aware intelligent traffic analysis framework proposed in this paper. 

Another important reason we chose Ryu is its clean, modular, and extensible 

architecture. Ryu offers basic protocol support (OpenFlow 1.0–1.5) and is extensible 

to add further monitoring and traffic profiling features through its modular structure, 

which can be used to add bespoke applications. This research aimed to design 

adaptive mechanisms to monitor traffic. In addition to these features, Ryu seamlessly 

integrates with network emulators such as Mininet, enabling us to validate the 

designed experimental topologies in realistic environments before scaling them for 
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larger deployments. By selecting Ryu, this research ensures a balance between 

lightweight operation, programmability, and research flexibility, which are not as 

easily achieved with ONOS or ODL. Therefore, Ryu is not just a convenient choice 

but a strategic one that aligns with the methodological requirements of this study. The 

following are the key points supporting the Ryu controller selection: 

 

 Lightweight and Modular Architecture: Ryu is designed to be lightweight and 
modular, which means it can easily be added to or removed from. Ryu is 

relatively simple and can be easily integrated with a custom research 
framework, such as traffic analysis/profiling, unlike rooted controllers [89]. 

 Easy to Program: Ryu and all of its components have been written entirely in 
Python, so we can easily program any flow rules and packet-handling 

applications [90]. This enables rapid prototyping and deployment of novel 

traffic monitoring algorithms with minimal configuration overhead for running 
experiments. 

 Research Tool Compatibility: Ryu easily integrates with Mininet, Wireshark, 
and performance analyzers, which makes it a perfect fit for research and 
experimental environments. It is interoperable with standard network emulation 

tools, simplifying and accelerating reproductive testing of topology-aware 

designs [91]. 

 

3.3.1 Ryu Controller Architecture and Its Relevance to the 

Proposed Framework 

The Ryu controller in SDN has three major layers in its architecture: application 

layer, control layer, and physical layer [93]. At the application layer, northbound 

APIs facilitate interaction between the controller and operators, OpenStack, and user 

applications. These parts define top-level network needs like policy implementation, 

traffic analysis, and resource distribution. The traffic analysis module will also live at 

this layer to make requests for real-time network statistics from the controller and 

analyze the traffic. 

This architecture is centered on the control layer, which is controlled by the Ryu 

controller. This comes with integrated firewalls and custom Ryu applications to 

actively implement networking policy. It includes libraries for packet parsing, flow 

management, and topology discovery, and comes with support for multiple 

southbound protocols, OpenFlow being the most notable. This layer will serve as the 

foundation for the novel traffic analysis framework proposed in the research, as well 

as for the designed applications implemented to facilitate intelligent traffic 

monitoring, anomaly detection, and optimized routing, thereby ensuring improved 

overall network performance and security. 

The infrastructure layer at the physical device level, as defined in Figure 3.1, 

comprises data forwarding devices, OpenFlow switches, and other network devices 

that form the network. The devices do not individually route data; instead, they apply 

flow rules that the controller dynamically installs using southbound APIs. This layer 

serves as the experimental testbed for the research framework, assessing the 
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performance of the proposed solution. Once the robust Ryu controller is deployed on 

such devices, we can systematically illustrate and demonstrate how the framework is 

practical in terms of traffic load management, network lifetime, and security. 

 

Figure 3.1: Ryu Controller Architecture 

3.3.2 Three-Plane SDN Architecture using Ryu Controller 

In the three-plane architecture, SDN is deployed using the Ryu controller, as shown 

in the figure. The Ryu Controller also utilizes deep packet inspection, as the 

application, and describes how Ryu helps the network become intelligent. Ryu is the 

Brain of the network, controlling communication between the application plane and 

the data plane, and providing flexibility, programmability, and topology-aware traffic 

analysis. 

The Application Plane, where numerous SDN applications, such as bandwidth 

monitoring, topology viewing, and flow analysis applications, utilize NBIs to 

communicate with the network. Every application communicates with NBI drivers 

and agents, allowing higher-level policies or monitoring tasks to be passed through to 

the control plane. This architecture enables modularization, research functions can be 

developed independently while still sharing the underlying SDN infrastructure. 

The Control Plane is the brain of the SDN environment; the Ryu controller represents 

the control Plane. In this setup, the index of packet flow rules is handled by the Ryu 

controller, Network state data is collected, and Communication between applications 

and the data plane is ongoing. The Ryu controller uses NBIs to communicate 

upwards with applications and CDPI to communicate downwards with switches. The 

modular nature of the Python-based architecture enables the integration of traffic 
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monitoring functions, making it highly suitable for experimental research 

environments, such as the one created in this thesis. 

In the Data Plane, OpenFlow supports packet forwarding according to rules deployed 

by the Ryu controller. Every host node (h1, h2, h3, h4) connects to switch ports (s1- 

eth1, s1-eth2, s1-eth3, s1-eth4) and has its own individual forwarding engine, making 

intelligent decisions in packet forwarding. The processing function of integrating 

these flows ensures that adaptive traffic can be managed even in adverse situations. 

This architecture supports policy and control separation through forwarding, allowing 

for the separation of policy and control among devices. Consequently, Ryu offers 

real-time traffic visibility at a granular level and precise control through its 

architecture. 

The architecture depicted in Figure 3.2 is evidence of why Ryu was chosen in the 

context of this research. It is also modular, with the ability to have traffic monitoring 

modules at the application plane, and is integrated transparently with OpenFlow, 

allowing flows to be managed at the data plane. Ryu provides the right balance 

between lightweight programmability and heavyweight flow control, facilitating the 

topology-aware adaptive traffic monitoring framework proposed in this thesis. 
 

Figure 3.2: Ryu Controller-Based SDN Architecture 

3.3.3 Comparative Analysis of SDN Controllers for Traffic 

Monitoring 
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The following Table 3.3 presents a detailed comparative analysis of widely used 

SDN controllers. Each parameter has been elaborated to highlight its role in traffic 

analysis, topology awareness, and custom framework implementation, which are 

central to the objectives of this research. Compared to the rest of the SDN controllers, 

the comparative analysis proves Ryu is the best-suited controller for research-based 

SDN experiments, particularly on topology-aware intelligent traffic monitoring. 

Since python APIs are highly programmable and feature built-in real-time traffic 

monitoring and dynamic topology flexibility, they are most efficient for 

implementing our suggested framework. Both ONOS and ODL are excellent 

production-quality controllers, but they are also very complex and add overhead for 

academic-level experimentation. For this work, lightweight controllers like 

Floodlight and Beacon do not provide the monitoring visibility and control flexibility 

needed. On the other hand legacy controllers such as POX and NOX are outdated 

now for modern day SDN research. 

Therefore, this proposed framework uses Ryu as the controller due to its research- 

oriented functionality and integration and adaptable features. This establishes a 

strong basis for the verification of the new methods proposed in traffic analysis, load 

balancing and security improvements analysed. 

 

Table 3.3: Performance Comparison of SDN Controllers with Respect to Research-Oriented 

Functional and Architectural Parameters 

Controller Progra 

mmabi 

lity 

(API/L 

anguag 

e) 

Real- 

Time 

Traffic 

Monitori 

ng 

Scalability 

in 

Emulated 

Environm 

ents 

Topology 

Awarenes 

s & 

Adaptabili 

ty 

Simula 

tion & 

Integra 

tion 

Tools 

Suppor 
t 

Suitability 

for 

Custom 

Traffic 

Framewor 

ks 

Overall 

Suitabili 

ty for 

Propose 

d Work 

Ryu High – 

Python 

APIs 

allow 

rapid 

prototypi 

ng, easy 

scripting, 

and 

strong 

commun 

ity 

support. 

Native 

support 

via 

OFStats, 

enabling 

accurate, 

real-time 

traffic 

collectio 

n and 

flow- 

level 

statistics. 

High 

(Mininet) 

– 

scalable 

for small 

and 

medium- 

scale 

testbeds, 

ideal for 

iterative 

research 

validatio 

n. 

Dynamic 

topology 

reaction 

adapts to 

frequent 

changes in 

links/nodes 

and is 

critical for 

IoT and 

SDN- 

based 

monitoring 

. 

Excelle 

nt – 

integrat 

es 

seamles 

sly 

with 

Mininet 

, 
Wiresh 

ark, 

and 

Scapy 

for 

packet 

capture 

, traffic 

injectio 

n, and 

debugg 

ing. 

Excellent – 

complete 

flow logic 

control, 

enabling 

implement 

ation of 

customized 

traffic 

analysis 

and 

security 

policies. 

Best 

suited – 

perfectly 

aligns 

with this 

research 

objective 

of 

intelligen 

t 

topology 

-aware 

traffic 

monitori 

ng in 

SDN. 

ONOS Moderat Plugin- High, Good static Good – Good, but Suitable 
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 e – Java based productio adaptation, support requires for large- 

APIs are monitori n-scale; weaker for s P4 advanced scale 

plugin- ng excellent rapid and setup – testbeds 

based support is for dynamic Mininet increases but not 

but not as carrier- changes. with developme optimal 

require lightweig grade  extensi nt time for for 

more ht as deployme  ons, but custom lightweig 

configur Ryu. nts but  adds framework ht 

ation  heavy for  setup s. research- 
effort.  academic  comple  focused 

  research.  xity.  deploym 
      ents. 

OpenDayli Complex Limited Very Limited Good – Fair – Complex 

ght (ODL) – Java, native high in adaptabilit ODL- suited for for 
 OSGi- monitori hybrid y in LAB, production, academic 
 based, ng, and cloud dynamic L2Swit less research, 
 steep depends environm topologies; ch, but efficient misalign 
 learning on ents. better for require for ed with 
 curve. external  stable s academic the 
  plugins.  environme advanc prototypes. lightweig 
    nts. ed  ht needs 
     integrat  of this 
     ion.  work. 

Floodlight Lightwei Limited Moderate Weak with Basic Limited – Prototyp 
 ght – monitori (lab- dynamic Mininet lacks deep e use 
 Java is ng, only scale), topologies, support flow-level only, 
 less basic cannot less , lacks control. unsuitabl 
 flexible flow scale to resilient to advanc  e for 
 than statistics. larger frequent ed  advanced 
 Python.  IoT-like changes. integrat  traffic 
   environm  ion  analysis 
   ents.  tools.  research. 

POX Legacy Minimal Low – Poor Educati Minimal Obsolete 
 Python- monitori deprecate adaptabilit onal capability. for 
 based, ng, d, not y, cannot only –  research, 
 no active outdated scalable. handle Mininet  not 
 support. support  dynamic demos.  considere 
  for  topologies.   d. 
  statistics.      

NOX C++ – Very Low – No Almost Not Legacy 
 Obsolete limited, unsuppor adaptabilit no applicable. only, 
 , hard to lacks ted, no y, static toolcha  unsuitabl 
 extend. real-time scalabilit only. in  e for 
  monitori y.  support  proposed 
  ng.   .  research. 

Beacon Java – Basic Moderate Static Limited Fair – Mid- 
 Threade monitori scalabilit topology is integrat requires level 
 d, mid- ng y, weak in ion manual experime 
 level support is functiona dynamic with tuning. ntation is 
 program insufficie l only in environme externa  not 
 mability. nt for in- mid-scale nts. l tools,  sufficient 
  depth emulatio  minima  for the 
  traffic ns.  l  proposed 
  profiling.   commu  framewo 
     nity  rk. 
     support   

     .   
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3.4 Network Topology Construction 

In recent years, network traffic has grown exponentially, which makes the modern 

network management and security more difficult than ever. The growth is largely due 

to the increasing number of IoT devices, 5G networks going live and cloud-based 

apps and services becoming more popular. Traffic was more predictable in the past, 

and it was possible to manage networks with static policies. But today, due to the 

various and dynamic nature of digital infrastructures these are large scale tra c 

patterns inhomogeneous. This shift puts immense stress on existing monitoring and 

management systems, exposing their ills and underscoring how critical it is to invent 

new ways of doing things. 

An appropriate network topology is essentially required to prove the proposed Ryu 

based intelligent traffic monitoring model. In an SDN, the topology describes the 

high-level pattern of connections between switches and hosts as well as links that 

determines how efficiently traffic can be discovered, analyzed and controlled. 

Besides, for this study, the topology has been intentionally constructed to make a 

compromise among scalability, adaptability and reality so that the performance under 

various traffic rates and different network scenarios can be evaluated. 

We have implemented the described network topology in Mininet, a popular emulator 

and has an option to work closely with Ryu controller. The topology has a three-level 

architecture, including core, aggregation and access layers, similar to current data 

center and IoT applications. More significantly, mass in balance leads to superfluous 

links, bottleneck paths and heterogeneity in flow; which mimics the way packets fl 

owing through real systems under regular to adverse conditions (e.g., link failures, 

congestions) where impact of distributed sources are taken into account. 

For this research, the topology has been designed with three primary considerations: 

 Scalability – the topology should support the addition of more nodes and 

switches to accommodate extended experiments. 

 Modularity – the architecture must allow independent testing of applications 

such as bandwidth monitoring, load balancing, and topology discovery. 

 Realism – the constructed topology should resemble practical SDN 

deployments while still manageable in a simulation/emulation environment. 

Accordingly, a star-like topology with one central OpenFlow switch connected to 

multiple host nodes has been adopted. This structure simplifies traffic flow analysis 

while enabling comprehensive monitoring of forwarding rules and controller 

responses. 

3.4.1 Selection of Simulation Environment 

Topology creation was modeled with Mininet, an open-source network simulator 

commonly utilized in SDN research. Mininet creates a realistic virtual network, 

running real kernel, switch and application code, on VM, in seconds. In this study 
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Mininet is chosen because it has the following advantages: 

 It features OpenFlow 1.3 that meets the needs of complex flow routing. 

 It is designed to be part of a control application using the Ryu controller, and 

provides an easy way for stateful data plane extension in openflow networks. 

 It includes built-in utilities to ensure reliability and availability such as ping and 

iperf. 

 It provides the flexibility to define custom topologies using python scripts which is 

essential in testing smart traffic analysis frameworks. 

 

3.4.2 Node and Switch Configuration 

The experimental environment consists of a single OpenFlow switch (s1) which is 

compliant with the OpenFlow version 1.3 standard. The host nodes (h1–h4) are 

linked to the switch connected through virtual Ethernet links (s1-eth1 and s2-eth 

respectively). All hosts have one Ethernet interface (h1-eth0 to h4-eth0). 

The reason behind choosing 4 hosts is to generate controlled traffic flows between 

source-destination pairs. This provides a means for performance-related statistics like 

latency, throughput and flow establishment time to be observed under diverse 

degrees of traffic. 

Each host node plays the roles of: 

 h1 and h2 are traffic source nodes, which produce flows. 

 h3 and h4 act as receivers, they measure channel throughput and monitor 

packet reception simultaneously. 

 Each node contains a switch whose role is buffered packet and frame engines 

to deal with packets and interaction between the host and the switch. 

It is the OpenFlow switch, which operates as a mediation forwarding mechanism in 

charge of receiving flow rules from the Ryu controller. It relays packets according to 

the rules installed and keeps flow tables for flow control. 

3.4.3 Controller Integration 

The Ryu controller (version 4.34) has been deployed at the control plane. Ryu is a 

Python-based open-source SDN controller that supports rapid prototyping of network 

applications. It communicates with the data plane through the CDPI using the 

OpenFlow 1.3 protocol. 

The controller is configured to run on localhost (127.0.0.1) with the default port 

6633, ensuring seamless connectivity with the Mininet emulation. It maintains a 

global topology view, installs flow-mod rules in the switch, and handles packet-in 

events triggered when a packet does not match existing flow entries. 
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The choice of Ryu is motivated by the following factors: 

 Flexibility – Ryu supports dynamic addition of Python modules, making it 

suitable for implementing custom traffic analysis algorithms. 

 Simplicity – its modular architecture allows easy integration with Northbound 

Interfaces (NBIs). 

 Performance – Ryu has been shown to achieve lower latency in flow setup 
compared to other controllers in small-to-medium topologies. 

3.4.4 Topology Validation and Testing 

Several validation tests were carried out to check that the topology built works as 

expected: 

 Connectivity Testing: Through “pingall” command in Mininet, end-to-end 

connectivity between every hosts has been established. 

 Bandwidth Evaluation – A tool iperf was used to as the means to measure 
bandwidth between endpoints for different traffic types. 

 Latency Measurement–Round-trip times were taken to verify if the controller 
is reactive in flow installations. 

 Failure Scenarios – We simulated link failures to verify the robustness of the 

topology and dynamic flow reconfiguration by the controller. 

The results of these tests revealed that the topology offers a robust environment for 

traffic analysis in general. 

3.4.5 Role of the Constructed Topology in Proposed Framework 

The experimental environment consists of a single OpenFlow switch (s1) which is 

compliant with the OpenFlow version 1.3 standard. The host nodes (h1–h4) are 

linked to the switch connected through virtual Ethernet links (s1-eth1 and s2-eth 

respectively). All hosts have one Ethernet interface (h1-eth0 to h4-eth0). 

The reason behind choosing 4 hosts is to generate controlled traffic flows between 

source-destination pairs. This provides a means for performance-related statistics like 

latency, throughput and flow establishment time to be observed under diverse 

degrees of traffic. 

The constructed topology is not merely an experimental setup but the foundation for 

the proposed intelligent traffic analysis framework. It provides a controlled 

environment where traffic monitoring, load balancing, and security evaluation can be 

carried out systematically. Specifically, the topology enables: 

 Flow-level monitoring for identifying congestion points. 

 Comparative performance evaluation of traditional algorithms versus the proposed 

intelligent approach. 

 Security testing by simulating attack traffic and observing controller responses. 

 Scalability analysis by extending the number of hosts and switches in future 

experiments. 

Thus, the network topology construction presented in this section forms a critical 

component of the research methodology, linking the conceptual framework with 
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practical implementation. 

3.5 Traffic Modeling and Flow Management 

Traffic modeling and flow control are the core of the proposed SDN-based traffic 

analysis framework. SDN architecture decouples the plane of control from the data 

forwarding plane in a network, while making it possible to model traffic and make 

intelligent decisions on flow management directly at the controller level is an 

important enabler for performance assessment and optimization. We model and study 

realistic traffic using traffic modeling to capture a wide range of communication 

patterns that we see in today’s networks such as the constant streams, bursty 

transmissions, high-throughput transfers and latency-sensitive flows. This is to verify 

that the proposed system can be easily verified under operational environments 

similar to IoT sensor communication, real-time video group/team meeting, bulk 

cloud storage data transfers and periodic web accesses. 

The experimental traffic is generated in a controlled emulation environment using 

Mininet together with iperf and custom Python scripts, which provide fine-grained 

control over traffic characteristics such as bandwidth, packet size and flow duration. 

The framework effectively captures the dynamic feature of real network behavior by 

modeling carefully designed flows of various types, including the constant bit rate 

flows for multimedia services, bursty flows for web/IoT-like transmissions, and high 

throughput flows with latency guaranty for bulk transfers and low latency flows 

which is suitable for interactive applications. These flows are added to the emulated 

topology and also tracked in real-time, enabling the controller Ryu to interact with 

the network at runtime. 

Ryu communicates with the underlying switches, which are OpenFlow-based to 

handle flow management. When a switch receives a new flow with no corresponding 

rule, it sends the controller a packet-in event. The controller armed with the designed 

traffic analysis application processes this request and takes actions based on situation 

of priority. These decisions are installed in the switch flow tables by flow-mod 

commands that allow the network to adapt to changes on the traffic pattern. This 

dynamic mechanism permits packets to be forwarded efficiently and allows the 

system to achieve policies supporting higher throughput, lower jitter, and minimal 

loss. 

The novelty in our work comes from the incorporation of intelligent traffic analysis 

mechanism to the Ryu controller. Different from static flow installation, but similar 

to the proposed method that is capturing all ongoing flows statistics by means of 

OpenFlow messages, including packet count, bandwidth usage, delay and jitter, as 

well as packet loss. Those statistics are reactive monitored to catch any kind of 

anomalies such as spike in traffic, congestion link or malintent flows. The controller 

uses this information to dynamically divert traffic to alternate paths, prioritizes 

latency-sensitive applications, or segregates suspect traffic for more in-depth 

analysis. It increases flexibility of the network and boost its powers to offer a 

consistent quality of service, even in environments varying dynamically and with 

limited resources. 
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A variety of monitoring and evaluation tools are embedded for verifying the 

efficiency of traffic modeling and flow control within this framework. Performance 

indicators are measured by applying iperf and Ryu APIs while throw the packet 

inspection is done using Wireshark and Scapy. Furthermore, controlled experiments 

such as link losses and recoveries events are performed to verify the time taken for 

controller reconfiguration and flow rerouting. The findings show that intelligent 

management of flows provides a highly stable network, with lower average latency 

and better resource utilization than its traditional counterpart. 

The traffic modeling and flow management approach in this study, on which 

intelligent and adaptive SDN-based traffic analysis rests, is summarized. 

Experimental deployment of the framework, based on visualization and control 

interfaces in OpenDaylight controller and consisting of realistic traffic modeling, run- 

time flow decisions with Ryu as a controller application, detailed flow-level statistics 

collection is used to point that it meets topology-aware traffic monitoring and 

resource utilization objectives. In such a way, tightly analyzed traffic generation 

based on the estimated network state and adaptive real-time decision-making to 

install appropriate flow entries demonstrate the value of our research in constructing 

an intelligent SDN environment for modern heterogeneous networks. 

3.6 Performance Parameters and Evaluation Criteria 

The performance analysis of the proposed SDN-based ITAF has been realized with 

respect to a selected set of performance metrics, which are motivated by the most 

important objectives pursued in this research work such as efficiency, 

responsiveness, credibility and scalability. This is unlike existing works that 

frequently evaluate using generic metrics, i.e. the criteria being used in this 

dissertation are directly driven by gaps and shortcomings found in state of the art for 

similar studies. The performance metrics measured are throughput, end-to-end delay, 

the PDR, flow establishment time and controller overhead. All of these are described 

in turn, demonstrating their reliance on this research and enriching the findings 

within a wider literature base. 

The first parameter is throughput that refers to how effective the framework is, by the 

amount of data it can transmit from a source to a destination during some time range. 

As part of this work, throughput has been measured with Iperf and OpenFlow 

counters for obtaining a precise estimate of the data transfer capacity. The higher the 

throughput, the strong is the network infrastructure in terms of data processing over 

it. The main drawback of the former work is that it does not have enough throughput 

especially when the traffic load increases or in dynamic topologies, which may cause 

congestion and long haul path deterioration. On the other hand, our Ryu-based traffic 

analysis framework shows stable performance in terms of throughput and it can have 

achieved high throughput even under stressed condition thanks to the topology-aware 

routing and intelligent flow control. This results demonstrate the proposed approach 

that achieves and even surpass all other works in terms of efficiency. 

The second metric, end-to-end-delay is defined as the amount of time that a packet 

takes to move from source node to destination on an average. Delay was measured by 
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our work, using ping-based testing and accurate timestamp monitoring. For these 

services, optimizing end-to-end latency is critical; live IoT-sensing, cloud-based 

distance learning platforms, and low-latency communication services are realtime. 

Previous studies demonstrated that centralized SDN controllers usually introduce 

large latencies because they cannot avoid processing overheads, especially in the case 

of complex or high-throughput networks. On the other hand, the average delay values 

are significantly lower in our proposal since the controller optimally controls flows 

and precycles routes according to a traffic analysis that could increase 

responsiveness. This comparative advantage also supports the appropriateness of the 

developed system for delay-sensitive situations where conventional schemes fail. 

The third metric, PDR, measures the reliability as the ratio between received and 

transmitted packets. In this thesis, PDR is quantified using switch-level counters and 

controller statistics to avoid errors. A higher PDR guarantees that the network can 

achieve reliable communication under lossy or high-load scenarios. It has been 

shown that the previous SDN-based solutions, including some of those evaluated in 

IoT scenarios, were suffering with variable PDRs caused by network churn and 

packet dropping. In comparison, the proposed method maintains high PDR 

performance all through due to the “knowledge-driven traffic management system” 

which is the intelligent system inside of Ryu controller for better path selecting based 

on congestion/avoidance. This is evidence that the framework provides enhanced 

reliability compared to current systems. 

The fourth parameter i.e., flow setup time, measures the speed of response from SDN 

controller to new traffic requirements by inserting forwarding rules in the data plane. 

Forwarding setup latency has been studied in this paper using OpenFlow Packet-In 

and Flow-Mod messages, which give accurate information about the responsiveness 

time of the controller. It was shown in current literature that high flow setup times are 

a typical bottleneck in SDN systems such as controller Floodlight or ONOS when 

heavily utilized. By contrast, the Ryu-based framework introduced in this paper has 

lower flow setup latency, primarily attributable to topology-aware traffic analysis that 

facilitates faster decision and rule installation. This reduction in setup time provides 

flexibility, such as allowing dynamic or large networks to operate without problem. 

Besides, controller overhead has been employed as a parameter to show the 

scalability of the proposed framework. This measurement looks at CPU and memory 

usage of the SDN controller as well as how many events it is able to handle 

effectively. Some previous studies have confirmed the limited performance of 

controllers owing to the traffic load or network size, leading to dropped packets or 

slower response. In this work, controller overhead was observed from system 

resource stats and in-depth log analysis; the results indicate that the design maintains 

good resource consumption even when subjected to heavier traffic loads. Reducing a 

controller workload and ensuring traffic analysis is performed accurately, are a key 

advantage of the framework in comparison to existing methods. 

These five parameters are throughput, end-to-end delay, packet delivery ratio, flow 

setup time and controller overhead which make up a complete set of evaluating 

indices for the research. The throughput certifies efficiency, the delay reveals 
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responsivenes s, PDR assures reliability, the setup time witnesses adaptability, and 

the overhead indicates scalability. Compared with other previous related works, we 

obtain consistent observations in terms of showing the effectiveness of the Ryu-based 

intelligent traffic analysis framework developed in this work; and show its usage as a 

promising candidate for practical application under SDN environments where 

traditional solutions do not enable to having an effective trade-off between 

performance and scalability. 

 

Table 3.4: Performance Parameters and Evaluation Criteria 
 

Parameter Description Evaluation Method / Tools Relevance to 

Proposed Framework 

Throughput Measures the efficiency of data 

transfer across the network. 

Iperf and OpenFlow 

statistics. 

Demonstrates effective 

bandwidth utilization 
and efficient routing. 

End-to-End 

Delay 

Average time taken for packet 

delivery from source to 

destination. 

Ping-based measurement, 

timestamp logging. 
Validates 

responsiveness for 

latency-sensitive IoT 
and cloud applications. 

Packet 

Delivery 

Ratio 

Ratio of received packets to 

transmitted packets. 

Controller and switch logs. Confirms the reliability 

and stability of 
communication. 

Flow Setup 

Time 

Time required by the controller 
to install forwarding rules in 
switches. 

OpenFlow Packet-In/Flow- 
Mod event analysis. 

Ensures adaptability 
and agility in dynamic 
traffic scenarios. 

Controller 

Overhead 

Resource consumption of the 

controller regarding CPU, 

memory, and event load. 

System statistics and 

controller logs. 

Validates the 

scalability and 

efficiency of the 
proposed framework. 

 

 

3.7 Experimental Design and Validation Plan 

The research presented in this thesis addresses critical challenges in SDN and Traffic 

analysis, offering novel solutions through comprehensive design, implementation, 

and evaluation. The key contributions of this work are outlined below, each reflecting 

a significant advancement toward achieving the research objectives. These 

contributions collectively highlight the proposed framework's originality, technical 

depth, and practical relevance. 

The proposed Ryu based intelligent traffic analysis framework in an SDN 

environment is strategically tested to verify the efficacy, performance, and scalability 

of this research work. Our design concentrates on two main pieces: the 

communication foundations in traditional TCP/IP networks, and transplanting these 

to SDN, where the Ryu controller becomes a pivotal entity responsible for traffic 

control and flow enhancement. 2.1 Communication Principles First, we need to take a 

closer look at how connections are managed in traditional TCP/IP-based networks as 

it is there that connection speeds directly influence performance when serving 

various computing and storage demands across potentially thousands of hosts. This 

proposed  scheme  not  only  is  theoretically  strategically  grounded,  but  also 
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systematically gets practically verified by simulation and comparative performance 

analysis. 

As a first step, one must take the classic TCP three-way handshake model to be on 

reliable lines of communication. This filtering process, illustrated in Figure 3.3, 

shows how a link is made between the client and server before data communication 

begins. In this series, the client performs an Active open by sending a sync (SYN=1, 

SEQ=x) to server. The server, in its Passive Open state, answers with a SYN/ACK 

packet (with the SYN and ACK bits set to Logical One). Finally the client ACK=1, 

SEQ=y Packet=x+1 closing the handshake. This is the transition to move from the 

Open-Request to Open-Success state ensuring that communication between both 

sides can work reliably providing secure data transfer. 

 

 

Figure 3.3: TCP 3-Way Handshake illustrating client–server connection establishment 

before data transfer. 

This handshake mechanism is very useful for SDN experiment design because it 

causes the intervention of controller. With no pre-added forwarding rules at a switch, 

the switch cannot forward the first SYN packet to destination. Instead, it encapsulates 

the packet in a PKT_IN message and forwards it to the Ryu controller. The controller 

then makes an intelligent decision by parsing the header fields, imposing policy 

constraints, and calculating the best forwarding path. The response travels through 

passback to the switch as a Flow-Mod command and the original packet is sent on its 

way. 

This is diagrammed in Figure 3.4, where the interaction of source (S), switch (m) and 

controller (C) with destination is shown. The figure illustrates that, after 

participation, the controller is able to establish suitable forwarding rules and then 

monitor ongoing communication for its efficiency and stability. After the completion 

of establishment of a connection (SYN, SYN-ACK, ACK), flow control is by passed 

and subsequent data streams adhere to the programmed rules without interference 

from the controller so as to minimize overhead and improve throughput. 
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Figure 3.4: Sequence Diagram of TCP Connection Establishment in an SDN 

Environment using OpenFlow Messages 

They show how bridging of traditional networking principles with SDN intelligence 

is a specific research area. 

The validation plan is based on this design and composed of several steps: 

 Topology Construction: The experiments are going to be conducted on 

Mininet to simulate custom topology. The control plane entity will be 

implemented as the Ryu's controller and the data planed component will be 

developed in the form of OVS instances. This is to maintain generality in 

modelling conditions of actual network. 

 Traffic Generation and Flow Triggering: Various traffic (TCP, UDP, ICMP) 

is made using traffic tools as iperf and ping. TCP flows will clearly show the 

three-way handshake, and UDP flows can be used to assess live flow 

performance. First packets of these flows will cause the PKT_IN → 

FLOW_MOD → PKT_OUT loop in the Ryu controller to verify that the flow 

entry is set up as expected. 

 Performance Metrics Analysis: The performance of our framework will be 

evaluated using latency, throughput, packet loss, flow establishment time and 

controller response time. These metrics have been previously utilised in the 

earlier stages of the research work, and are closely related to the focus of 
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SDN-based traffic management analysis. The results will be discussed and 

compared at different traffic loads and network sizes to demonstrate the 

versatility of the scheme. 

 Stress Validation: The experiments include scenarios where instant traffic 

bursts or spoofed packet injections happen for the robustness of the design. 

The controller performance during such scenarios will be quantified in terms 

of stability, prevention against packet drops and effectiveness of 

reconfiguring the rules. This guarantees that the performance of the proposed 

design is cost-effective and can withstand unfavorable environments. 

 Comparative Analysis: The Ryu controller-based scheme will be evaluated 

against alternative controllers and traditional static routing techniques. This 

counterpart will justify the novelty of the contribution by demonstrating better 

performance, flow setup facility and adaptability. 

Based on the above, the design of experimental procedures and validation campaign 

combines theoretical communication frameworks (TCP handshake), controller-based 

SDN sessions establishment (packet exchange mechanism) as well as real (topology 

construction, traffic generation, performance measurement, stress testing) and 

comparative validation steps. Through the proper combination of these components, 

the proposed architecture is extensively validated for correctness, reliability and 

scalability that demonstrate its outperformance in intelligent SDN Slicing traffic 

management. 

3.8 Chapter Summary 

This chapter established a topology-aware SDN environment to support intelligent 

traffic profiling and performance evaluation. A comparative analysis of SDN 

controllers highlighted that while some platforms are suitable for large-scale 

deployments, they introduce additional complexity for experimental research. In 

contrast, the Ryu controller offers an effective balance of programmability, real-time 

traffic monitoring, and scalability in emulated environments, making it well-suited 

for the proposed framework. This selection enables fine-grained control over network 

behavior while maintaining a lightweight and researcher-friendly implementation. 

The network topology was designed to be flexible and adaptive, enabling support for 

heterogeneous nodes, varying traffic loads, and dynamic topology changes. Unlike 

static configurations used in many existing studies, the proposed setup emphasizes 

dynamic link adaptation and fault responsiveness, improving the reliability of results 

in real-world-like scenarios. Additionally, realistic traffic modeling and flow control 

were incorporated to capture diverse traffic behaviors, allowing deeper insights into 

controller decision-making and system adaptability under changing network 

conditions. 

Finally, the experimental design and validation strategy ensured reproducibility and 

methodological rigor through controlled test scenarios and repeated evaluations. 

While acknowledging the inherent limitations of emulated environments, this chapter 

demonstrated that their flexibility and controllability provide a practical and effective 
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foundation for academic evaluation and subsequent performance analysis of the 

proposed SDN framework. 
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CHAPTER 4 

 

DESIGN AND DEVELOPMENT OF A RYU-BASED 

INTELLIGENT TRAFFIC FRAMEWORK 

 

 

 

 
This chapter builds upon the topology-aware environment and traffic profiling 

strategy introduced in Chapter 3. It focuses on designing and implementing the 

proposed Ryu-based intelligent traffic analysis framework. The previous chapter laid 

the technical foundations, including decisions regarding the controllers to use, 

developing network topologies, modeling traffic, and establishing the metrics to be 

used for performance evaluation. This final chapter builds on this preparation and 

implements a comprehensive framework for decision-making and real-time 

monitoring. The framework is designed to enhance the programmatic capabilities of 

the Ryu controller by combining it with modules that offer intelligent traffic analysis. 

With the modules, it is possible to take control of the traffic, troubleshoot issues, and 

optimize performance in real-time. The need to integrate traffic intelligence 

capabilities with topology awareness is also demonstrated by the fact that the 

framework ensures situation-driven responses while also enabling the network to 

detect changes. Later in the document, we further describe the deployment process 

and indicate how the functional prototype will be developed based on the concept 

that the framework must abstract. This chapter aims to serve as a link between design 

and implementation, establishing a foundation for comparing and evaluating 

performance that will be conducted in the later chapters. 

4.1 Overview of the Proposed Framework 

The proposed Ryu-based intelligent traffic analysis framework aims to eliminate the 

fundamental limitations of conventional SDNs by incorporating intelligence, 

adaptability, and modularity into the control plane. The framework is based on the 

Ryu Controller Core, which serves as the primary decision-maker responsible for 

managing communication between applications in the upper layers of the network 

and devices in the lower data plane. It includes specialized modules and integrates 

real-time monitoring, anomaly detection, and QoS policy implementation to achieve 

real-time adaptability and optimized traffic management. 

The framework is divided into three distinct planes, as shown in Figure 4.1. At the 

application plane, three major application types are integrated based on Northbound 
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Interfaces. The first is a set of traffic monitoring applications, which constantly 

monitor flow-level statistics and bandwidth utilization. The second type includes 

real-time anomaly detection applications, which identify irregular or malicious traffic 

patterns. The third primary application type comprises analytics or QoS policy 

applications, which apply a higher-level strategy to enhance performance and service 

quality. All of these applications serve to communicate with the Ryu Controller Core 

using NBIs to ensure that monitoring and policy ideals are consistently translated to 

actualized control instructions. 
 

Figure 4.1: Architecture of the proposed Ryu-based intelligent traffic analysis framework 

Several specialized modules extend the Ryu controller to add the necessary 

intelligence for traffic analysis and adaptive flow management at the control plane 

level. The topology awareness module is responsible for discovering the network’s 

overall structure, including switches, end-hosts, and physical links, and maintaining 

an updated view of their dynamic states. Similarly, the topology profiling module is 

allocated to collect OpenFlow statistics and performance parameters in real-time 

from the end-to-end devices, helping the controller gain intelligence into traffic load, 

bandwidth utilization, and usage. The adaptive flow management module, operating 

on top of knowledge, analyzes run-time network conditions and dynamically installs 

Flow-Mod instructions to re-balance the load, de-congest routes, optimize efficiency, 

and eliminate hold states. Similarly, the adaptive flow management is designed with 

a TEVN embedding module, which enables efficient virtual-to-physical resource 

mapping to allocate network resources effectively in a heterogeneous IoT-SDN 

environment. 

Enabling the data plane involves OpenFlow-enabled switches, which are the primary 

forwarding entities that follow the rules and update the flow tables accordingly, as 
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directed by the controller. These switches connect to end hosts, IoT devices, and 

physical links to ensure the smooth forwarding of packets. The provided feedback, 

statistics, and link utilization data enable the control plane modules to make rational, 

data-driven, and adaptive decisions, which are then forwarded back to the data plane 

for execution. Overall, this chapter significantly addresses the shortcomings of 

traditional SDN by proposing a new, intelligent, adaptive, and real-time monitoring 

Ryu-based framework that unifies the entire system. 

 The framework avoids unnecessary data collection load due to the intelligent 

integration of efficient traffic monitoring mechanisms inside the Ryu, 
providing sufficient real-time statistics for intelligent on-flow decisions. 

 The added topology awareness, profiling, and adaptive flow control 

mechanism achieve better programmability and allow fine-grained traffic 

analysis even under highly dynamic conditions. 

 The TEVN embedding is an uncommon and quite novel method of virtual-to- 

physical mapping that ensures that the network’s resources are efficiently 
utilized in arbitrary IoT levels where the demand plan is unattainable. 

 The security module is a native extension of the controller, implementing a 

set of preventive rules to minimize performance impact. 

 The overall architecture was extended and implemented in the real test bed 

environment using emulated SDN networks. A successful interaction with 

existing solutions, such as Mininet equipped with OpenFlow switches and 

IoT-ready end hosts, provides complete assurance that the architecture can be 

practically implemented in real-time conditions and via module add-ons. 

Thus, the proposed framework not only introduces a topology-aware, traffic- 

adaptive, and security-enforced approach but also ensures that the Ryu controller 

evolves into an intelligent platform suitable for both academic experimentation and 

practical deployment in next-generation SDN environments. 

4.2 Network Model Framework Architecture and Modules 

The proposed Ryu-based intelligent traffic analysis framework is a modular and 

extensible architecture that implements traffic monitoring, topology awareness, 

adaptive flow management, and security enforcement. The objective of the proposed 

architecture is to provide SDN environments with dynamic and topology-aware 

traffic profiling capability, especially for IoT-like scenarios that demand scalability, 

adaptability, and real-time response. The architecture is structured across three 

logical planes, Application, Control, and Data planes, each of which is concerned 

with different yet specific classes of functionalities that facilitate traffic analytic 

capabilities. The applications serviced at the Application Plane include traffic 

monitoring, SDN anomaly detection, QoS policy enforcement. These applications 

interact with the controller through northbound interfaces that facilitate fiduciaries to 

specify high-level requirements without being confined to the underpinning 

infrastructure. For illustration, statements such as "monitor bandwidth utilization" 

and "assign extra capacity” are recorded as policies and processed by the controller, 

allowing fiduciaries to avoid defining low-level flow-mod instructions. Thus, the 

process involves the rapid integration of new monitoring and security functionalities 

into a physical network, without requiring any modifications to the network itself, to 
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ensure flexibility, modularity, and fast deployment. The Control Plane encompasses 

the core facets of the system intelligence, which are implemented as five Ryu 

modules. 

Finally, the Data Plane hosts the flow management module, which is responsible for 

programming the network devices with the appropriate monitoring and security 

instructions. 

 Topology Awareness, which facilitates ongoing network links and nodes 

discovery and mapping. 

 Topology Profiling, which gathers OFStats, device-level performance data 
that creates an updated utilization view. 

 Adaptive Flow Management, which automatically deploys Flow-Mod 

instruction to optimize routing, load balancing, and congestion control. 

 TEVN Embedding, which supports efficient virtual-to-physical mapping in a 

range of IoT environments. 

These modules, when combined, enable Ryu to become an intelligent, adaptive, and 

secure controller capable of making real-time traffic decisions. A Python–based 

modular API allows fast prototyping and easy modification, offering both research 

flexibility and practical applicability. 

Data Plane includes OpenFlow-enabled switches and application-specific end hosts. 

Ingress and egress traffic flows through the switches, each of which implements the 

forwarding rules dynamically delivered by the controller. The end hosts generate and 

receive data traffic, each consisting of a packet generator, a packet forwarder, and an 

activity classifier. Control and Data Planes interact via the Control–Data Plane 

Interface, which is a set of OpenFlow rules and statistical measurements being 

transmitted in both directions. The Data Plane ensures that the traffic rules defined at 

the Application Plane, which is operated by the Control Plane, are correctly 

implemented in real-time. 

Figure 4.2 is a graphical representation of a testbed-based network model 

architecture. The figure illustrates the implementation of the framework's provisions, 

utilizing Mininet as the emulation environment. The figure also represents the Ryu 

controller acting as the orchestrator of flow control, while the iperf and ping tools are 

employed to generate traffic. This figure illustrates the practical application of the 

framework and demonstrates the integration of various modules within a real-world 

emulation environment. 
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Figure 4.2: Network Model Testbed Architecture of the Proposed Framework 

4.2.1 Traffic Flow and Analysis Cycle 

While the testbed architecture provides the structural view of the proposed 

framework, the operational intelligence is captured in the traffic flow and analysis 

cycle. Figure 4.3 illustrates this process, showing how packets traverse between end- 

hosts, switches, and the Ryu controller in a dynamic closed-loop cycle. 

The cycle begins when the end-hosts generate the traffic to be forwarded across the 

OpenFlow switches. These examine their flow tables, and if there is a rule for 

matching an application, the packet is processed appropriately. However, if the rule is 

not found, the packet is redirected through the switch to the controller as a Packet-In 

message. The latter evaluates the packet using its Extended modules and updates its 

topology and profiling records with the information obtained. After that, the 

controller decides on the new rule for this type of flow modification. This rule is 

installed using the Flow-Mod instruction on the switches, allowing the next packet of 

that flow to be processed directly in the appropriate manner at the data plane. 

This closed-loop interaction enables several advantages: 

 The results of the monitoring cycles carried out by the switches are directly 
integrated into the operation of the controller. Through that mechanism, a 

feedback system is established that is continuously being improved. 

 The flow management is adaptive and can redistribute traffic load and avoid 

congestion in real-time without human input. 
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 The security function of the controller also works in a closed-loop cycle. During 

the described process, the controller detects traffic patterns deemed suspicious, 

and the results, together with the recognized threat patterns, are used in the next 

cycle to mitigate the risks. 

Thus, this closed-loop traffic flow and analysis cycle support the framework’s 

operational perspective by demonstrating how adaptability, security, and scalability 

are ensured in IoT-driven SDN environments. 
 

Figure 4.3: Traffic Flow and Analysis Cycle in the Proposed Framework 

4.2.2 Work Flow of the Proposed Framework 

The workflow of the proposed intelligent traffic analysis framework based on Ryu 

represents an organized chain of steps starting from extracting higher-level functional 

architectural requirements and ending in verifying its functionality in an emulated 

SDN environment. Figure 4.4 illustrates this workflow as a structured sequence of 

phases that can provide a strong theoretical and design foundation for ensuring that 

the framework's design not only works in theory but can also be implemented in 

practice. 
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Figure 4.4: Workflow of the Ryu-Based Intelligent Traffic Analysis Framework 

The initial stage is requirement analysis, where research goals – including topology 

awareness, adaptive monitoring of traffic, eavesdropping, and packet injection 

detection and mitigation, as well as security enhancement in SDN – and the 

inspiration for tackling research gaps are stated. This part of the process ensures that 

the idea behind the created framework is relevant, adequately referenced, and actual. 

The identified gap in the literature and the current market situation necessitate 

addressing this issue by developing a software solution. 

After this, the next stage of design is the establishment of topology, which assembles 

the topology that represents real-world heterogeneity. The Mininet emulator is used 

to create scalable topologies with complex topologies (comprising several OpenFlow 

switches, various host nodes, and changing links). By establishing controlled but 

flexible environments for traffic analysis, this stage lays the groundwork for further 

experimentation. 

The next phase, controller selection and extension, is fundamental to the workflow. 

The reason is that the choice was made in favor of the Ryu controller due to its 

Python-based modularity and official support for experimental prototyping. In this 

respect, a further development of the presented workflow relies on extending the Ryu 

controller with five custom modules: Topology Awareness, Topology Profiling, 

Adaptive Flow Management, TEVN Embedding, and Security. Therefore, this 

custom extension is based on the idea that each provides unique intelligence to the 

control plane. Thus, the controller is extended in such a manner that it, being a 

significant element of the control plane, does not manage flows but functions to 

monitor, adapt dynamically, and protect against attacks. 

After configuring the topology and controller, the next layer of traffic generation is 

done. Multiple host flows are created, bridging both TCP and UDP traffic via 

synthetic workloads utilizing tools such as iperf, ping, and bespoke Python scripts. In 

this phase, the framework can be validated for its scalability and robustness by 
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testing it under conditions such as congestion, burst, or attack-like anomalies. 

This is followed by the monitoring and profiling stage, where the traffic generated is 

captured and analyzed. The extended Ryu modules gather real-time flow-level 

statistics (OFStats), packet counters, and latency values from OpenFlow switches. 

The controller processes these results to produce data-driven, adaptive flow 

modification rules, enabling the closed-loop optimization of traffic flows. During this 

stage, security policies are also applied whenever an abnormal traffic pattern is 

observed. 

The last stage is validation and evaluation, which assures that the framework is 

validated against key performance metrics. To maintain consistency with research 

methodology, these metrics are directly aligned with those defined earlier in Section 

3.6 (Performance Parameters and Evaluation Criteria). To strengthen this 

methodological progression, Table 4.1 summarizes the experimental environment 

setup used to implement and validate the workflow. This table consolidates the tools, 

configurations, and parameters that define the testbed used in this research. 

Table 4.1: Experimental Setup of the Proposed Framework 

Parameter Configuration/Tool Used 

Controller Ryu Controller (v4.34), extended with custom modules (Topology 

Awareness, Profiling, Adaptive Flow, TEVN, Security) 

Emulation Tool Mininet 2.3.0 – custom topologies with 4 to 16 switches and 8 to 32 host 

nodes 

Switch Protocol OpenFlow 1.3-enabled virtual switches. 

Traffic Generation 

Tools 

iperf (TCP/UDP throughput), ping (latency), Python-based custom traffic 
scripts 

Monitoring Metrics Throughput, Packet Delivery Ratio, End-to-End Delay, Flow Installation 
Time, Security Detection Rate 

Analysis Tools Wireshark (packet capture), Scapy (packet injection), Python scripts (data 

parsing, log analysis) 

Operating 

Environment 

Ubuntu 20.04 LTS, Intel Core i7, 16 GB RAM, VirtualBox virtualized 

environment 

4.3 Integration with Ryu Controller 

The successful realization of the proposed intelligent traffic analysis framework 

depends on its seamless integration with the Ryu controller, which serves as the 

control plane in the designed SDN environment. Ryu was chosen for this research 

because of its lightweight Python-based architecture, modularity, and support for 

OpenFlow protocols, making it highly adaptable for experimental and research- 

driven deployments. Rather than treating Ryu as a generic controller, this work 

extends its functionalities by embedding specialized modules that directly address the 

research objectives of topology awareness, adaptive flow management, traffic 

profiling, and anomaly detection. 
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The integration process is best illustrated in Figure 4.5, which depicts the layered 

interaction between the controller, the OpenFlow switch, and the connected host 

nodes. At the control plane, the Ryu controller operates as the network’s central 

intelligence, processing incoming events from the data plane and dynamically 

installing flow rules through Flow-Mod messages. The intermediate layer is 

represented by an OpenFlow 1.3 switch, which acts as the forwarding element and 

enforces flow rules provided by the controller. Finally, the data plane consists of 

multiple end hosts (h1–h4), which generate and receive traffic. This baseline 

representation highlights how control and forwarding responsibilities are clearly 

separated, with Ryu coordinating the translation of high-level monitoring and 

management policies into low-level forwarding instructions. 

The framework developed in this research integrates directly into this architecture by 

embedding customized modules into Ryu’s control logic. For example, the Topology 

Awareness module monitors switches and link states, ensuring that the network graph 

remains up-to-date in real-time. Simultaneously, the Profiling module collects 

OFStats from switches to capture detailed traffic characteristics, enabling more 

granular monitoring of load distribution. The Adaptive Flow Management module 

takes these inputs and dynamically installs or modifies rules on the switch to 

optimize performance and mitigate congestion. For more complex IoT-oriented 

scenarios, the TEVN Embedding module maps virtual flows to physical resources, 

ensuring that heterogeneous traffic is handled efficiently. Finally, the Security 

module enforces mitigation strategies against suspicious traffic patterns, thereby 

strengthening the resilience of the SDN environment. 

 

 

Figure 4.5: Basic Integration Topology of Ryu Controller with OpenFlow and Data Plane 

Nodes 

This integration ensures three critical benefits: first, the lightweight programmability 

of Ryu enables rapid prototyping and iterative testing of different module designs; 
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second, the modular separation of tasks allows traffic monitoring, and flow 

optimization to coexist without disrupting the controller’s core operations; and third, 

the combined framework enhances topology-aware decision making by unifying 

control logic, monitoring, and adaptive management into a cohesive structure. 

To emphasize the transformation achieved through this integration, Table 4.2 

presents a comparison between the baseline Ryu controller and the enhanced Ryu 

controller used in this research. 

Table 4.2: Comparison between the baseline Ryu controller and the enhanced Ryu 

controller 

Feature / 

Functionality 

Ryu Controller Enhanced Ryu Controller 

(Proposed Framework) 

Topology 
Management 

Fundamental discovery of 
switches and links 

Advanced topology awareness 
with real-time link monitoring 

Traffic 
Profiling 

Limited to flow statistics Continuous OFStats collection 
with detailed load profiling 

Flow 

Management 

Static or rule-based Flow-Mod 

installation 

Adaptive flow modifications 
based on congestion and traffic 

load 

Resource 

Allocation 

No explicit virtual-to-physical 

mapping 

TEVN Embedding ensures 

efficient allocation in IoT 
scenarios 

Security No dedicated security support Integrated security module for 
anomaly detection and 

mitigation 

Experimental 
Flexibility 

General-purpose, minimal 
customization 

Modular, research-focused 
design for traffic analysis 

This comparison highlights the distinction between a general-purpose controller and 

a research-driven, modular controller tailored for intelligent traffic analysis. The 

lightweight programmability of Ryu makes it an ideal foundation for building 

applications. At the same time, the integration of specialized modules allows the 

framework to meet the objectives of adaptive monitoring, topology-aware 

management, and security enforcement. The combined design thus transforms Ryu 

into a competent experimental platform, bridging the gap between theoretical 

research models and practical SDN-based traffic analysis systems. 

4.4 Experimental Implementation and Controller Integration Results 

The experimental implementation of the proposed Ryu-based SDN framework has 

been conducted to ensure its functional integration, connectivity, and data flow 

management. This subsection provides a detailed overview of the experimental 

verification undertaken and the associated results, achieved using the Mininet 2.3.0 

network emulator and the Ryu Controller as the central network management entity. 

The conducted implementation can be viewed as a link between the conceptual 

framework presented in previous sections and the practical assessment performed in 

Chapter 5. 
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The primary objective of this experimental implementation is to ensure the necessary 

efficiency of the controller–switch–host communication, as per the provided design 

and selected traffic. The Mininet offers a convenient, virtually realistic platform for 

emulating the proposed topology and defining the settings for hosts, switches, and 

links involved. The Python-based Ryu controller is used to provide the necessary 

dynamic flow management and real-time network statistics required for intelligent 

traffic research. As a result, the proper execution of Ping and Iperf commands 

ensures that the controller and emulated network are functioning as designed and can 

successfully handle defined types of traffic. 

4.4.1 Connectivity Validation using Ping Command 

To verify the basic connectivity and latency performance across the network 

topology, the ping command was used to establish a connection between the host 

nodes, H1 and H2. The test measured the RTT of the ICMP packets sent between the 

two hosts across the OF-enabled switches managed by the Ryu controller. 

As indicated by the screenshot in Figure 4.6, all five packets sent from H1 were 

received by H2, indicating 0% packet loss and active communication between the 

hosts. The recorded RTT values varied from 0.057ms to 33.3ms, with an average 

latency of 6.745ms. The minimal delay indicates that the controller efficiently 

processes ICMP requests and dynamically installs flow entries in response to host 

queries. 

Such low-latency communication is essential for real-time traffic analysis and 

decision-making applications, where continuous monitoring and fast responses are 

crucial. The successful Ping operation thus confirms that the proposed framework 

ensures seamless host-to-host connectivity and reliable controller coordination. 
 

 

Figure 4.6: Ping Test Results between Hosts in the Proposed SDN Topology 

4.4.2 Throughput Measurement using Iperf 

To assess the data transmission efficiency of the proposed system, the Iperf tool was used 

to measure throughput between selected host pairs. The Iperf utility enables the 
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generation of controlled TCP and UDP traffic, allowing for the evaluation of bandwidth, 

data transfer rate, and link utilization within the SDN topology. 

 Single TCP Stream Test 

In the initial scenario, a single TCP connection was established between H1 (the 

client) and H4 (the server) using the iperf command with the -c option and the IP 

address of H4. As presented in Figure 4.7, the total data transferred during a 10- 

second interval was 4.78 GB, with an average throughput of 4.11 GB/s. This high 

bandwidth utilization indicates efficient controller-mediated path setup and stable 

link quality within the network. The result demonstrates that the Ryu controller 

effectively manages flow installations to support high-speed communication across 

switches. 
 

Figure 4.7: Performance Analysis of Host Communication using the iPerf Tool 

 Bidirectional Data Transfer Test 

To simulate both upstream and downstream data flows simultaneously, a 

bidirectional test is conducted using the command iperf -c h4 -d. According to 

the analysis presented in Figure 4.8, the throughput was 3.50 Gbps in one direction 

and 1.25 Gbps in the other. Such results can be explained by the fact that the 

controller dynamically manages concurrent data transmission in both downstream 

and upstream directions, considering varying priorities and sending flows in the 

direction with the highest demand. 
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Figure 4.8: Bidirectional Bandwidth Measurement between Hosts in Proposed SDN 

Topology 

 Parallel Stream Test for Scalability 

To examine the scalability and concurrency handling capability of the framework, a 

multi-threaded Iperf test was performed using the command iperf -c h4 -P 5, which 

initiates five parallel TCP streams between H1 and H4. As depicted in Figure 4.9, 

each stream individually achieved an average throughput of approximately 1.2 Gbps, 

resulting in a combined throughput of 6.07 Gbps across all flows. 

This result highlights the robustness of the proposed system in efficiently managing 

multiple concurrent connections. The Ryu controller, aided by the designed topology- 

aware logic, successfully distributes traffic loads across various links while 

minimizing congestion and packet delay. The high aggregate throughput achieved 

during this test validates the framework's scalability and adaptive flow management 

capabilities. 
 

 

Figure 4.9: Parallel Bandwidth Testing using Multiple iPerf Streams in SDN Topology 
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4.5 Chapter Summary 

This chapter detailed the implementation and integration of the proposed intelligent 

SDN-based traffic analysis framework using the Ryu controller within a Mininet 

emulation environment. The network configuration, topology setup, and interaction 

among hosts, switches, and the controller were described to demonstrate real-time 

flow control and centralized network management through dynamic OpenFlow rule 

handling. The implementation confirms the practical feasibility of the proposed 

framework in dynamic SDN environments. 

The chapter also presented experimental validation using Ping and Iperf tools to 

evaluate connectivity, latency, and throughput under different traffic conditions. The 

results showed stable network behavior with low latency, high throughput, and 

reliable multi-flow handling. These findings establish the reliability of the proposed 

framework and provide the basis for the detailed performance evaluation and 

comparative analysis presented in the next chapter. 
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CHAPTER 5 

 

PERFORMANCE EVALUATION OF THE PROPOSED SDN 

FRAMEWORK AND COMPARATIVE BENCHMARKING 

 

 

 

 
After demonstrating the effectiveness of the Ryu-based intelligent traffic analysis 

framework proposed in Chapter 4, this chapter conducts an experimental evaluation 

to demonstrate its performance under various realistic network settings. The 

transition from construction to dimensioning is a crucial step in validating the model. 

This stage ensures that the theoretical model not only performs well in theory but 

also exhibits improved performance in real-time network scenarios and scalability 

within a dynamic SDN framework. In this chapter, the experimental testbed and 

network topology are established to simulate diversified traffic conditions and 

controller communication. The robustness of the framework is examined under 

various scenarios to verify its adaptive capability for traffic control, achieving low 

delay and high throughput. Performance analysis is conducted using performance 

parameters, including packet delivery ratio, jitter, throughput, and delay, to observe 

the system's behavior under various loads. We also compare our model with the 

existing SDN frameworks to demonstrate its superiority in terms of network 

reactivity, load distribution, and decision efficiency. Arguing that the results from 

these tests validate the security and intelligence of the framework to be used for 

massive SDN deployments nowadays. 

5.1 Introduction 

The significant growth in connected devices and digital applications that we are 

currently witnessing has transformed today's networks into dynamic and 

heterogeneous ecosystems. Traditional routing systems, which are often configured 

statically and use vendor-specific protocols, are not well-suited to address the rapidly 

increasing load of traffic and service types. SDN is proposed as a solution for this by 

separating the control plane from the data plane, allowing centralized, programmable 

network control. 

Still, although SDN is a simple and elegant concept with much intellectual appeal, its 

practical implementation will expose the performance bottleneck of the controller. 

Delays resulting from centralized decision-making, inefficient use of bandwidth due 

to packet packing, and failure to manage traffic flows also reduce scalability. In the 



69 
 

presence of large-latency networks, where there is a momentous delay in conducting 

the feedback response, what matters most is both the speed and intelligence with 

which this controller responds to differing scenarios. 

To address these issues, this paper proposes an enhanced SDN control framework 

based on the Ryu controller, incorporating TEVN embedding and intelligent 

anomaly-detection capabilities. The proposed framework wants to enrich the stream- 

based Ryu controller, allowing for making it more intelligent, as well as more 

innovative and more proactive by 1) adding novelty that will introduce a really highly 

adaptive control structure with learning features being able: i) to make pre-emptive 

flow adjustments, ii) maximize resource usage, iii) carry out advanced security 

control operations. 

5.1.1 Need for Performance Evaluation 

Performance evaluation is a key element to study in any research developed around 

network design, optimization, or control frameworks, and SDN is not the exception. 

The separation of the control plane and the data plane by SDN exacerbates 

inefficiency, which also impacts the entire network due to interactions between the 

controller and devices within it. Thus, it is necessary to verify the effectiveness and 

efficiency of the proposed topology-aware Ryu-based intelligent traffic analysis 

framework across various network environments. Performance evaluation is required 

because theoretical and simulated behaviors differ in real-time network 

environments. Several factors, such as link congestion, flow-table administration, and 

slow processing delays between the controller and switches, can disrupt network 

operation. Therefore, an overall evaluation is necessary to bridge the gap between 

conceptual design and field applications by quantifying the effectiveness of the 

proposed framework in practice. Performance measurement plays several interesting 

roles in this research. The focus of the paper is two-fold: first, it verifies whether our 

proposed framework successfully fulfills its objectives (i.e., reducing latency, 

minimizing packet loss, and improving throughput and load balancing in SDN) to 

benefit from and promote path reclassification. Secondly, this provides a benchmark 

for comparing our system with existing models that achieve control via SDN on a 

nationwide or regional scale. Finally, it guarantees that its developed framework will 

be scalable, robust, and reliable when deployed in large-scale or dynamically 

changing networks, such as IoT-based networks or e-learning infrastructures. 

Moreover, a precise insight into the contribution of each parameter to the overall 

system behavior is obtained by evaluating performance with respect to different 

metrics (e.g., latency, throughput, jitter, and controller response time). This “multi- 

dimensional” critique highlights both the strengths and potential weaknesses of this 

approach, and as such, provides a balanced view to build upon in further 

sensorimotor enhancement. Finally, performance evaluation is not a testing exercise 

to verify only the result but rather aimed at measuring, analyzing, and validating the 

operational capability of the timed SDN scheme. The extensive testing we performed 

in a controlled simulation environment, using Mininet and the Ryu controller, 

guarantees the practical feasibility and theoretical correctness of the proposed 

architecture. The findings of this assessment provide the basis for quantitative 

benchmarking and underpin the subsequent examination reported in later sections of 

this chapter. 
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5.1.2 Objectives of Evaluation 

The primary objective is to evaluate the proposed SDN framework in terms of its 

effectiveness, scalability, and reliability in traffic steering, incorporating intelligent 

decision-making for network policies. Because a Ryu-based topology-aware 

architecture is proposed for efficient traffic analysis and flow control, performance 

evaluation is crucial to demonstrate the practical applicability and technical 

advantages of this SDN design compared to conventional SDNs. 

The evaluation aims to provide some quantitative evidence in support of the 

theoretical contributions of this work. The designed system is to be evaluated against 

specific design goals and relevant performance requirements, which may be 

determined through systematic testing of the proposed framework under varied traffic 

scenarios and topologies. 

The key objectives of this performance evaluation are outlined as follows: 

 To verify that Ryu-based SDN solution is efficient: Evaluate the controller's 
performance in handling traffic from the network, enforcing flow rules, and 
preserving a steady control line towards the data plane on the Mininet 
simulated environment. 

 To evaluate the changes of specific network parameters: Measure 
improvements in terms of latency, throughput, PDR, jitter, and packet loss 

with respect to traditional SDN controller-based solutions such as ONOS and 

ODL. 

 To measure the effect of the topology-aware mechanism: Explore how to 
incorporate a topology-aware scheme in the proposed system for path 

selection, load balancing, and fault-tolerant dynamic network. 

 To measure the performance of a controller under different loading 

conditions: Evaluate how the Ryu controller scales out and reacts with a 

growing amount of hosts, flows, and traffic burstiness. 

 To compare the proposed framework against the current benchmark models: 

Carry out a performance comparison to demonstrate the superiority and 

stability of the proposed method with respect to resource efficiency and flow 
management. 

 For real-world applicability: Check whether the performance described by the 

framework meets the criteria of real-time systems, e.g., IoT-based 
environments, cloud-assisted distance learning systems, and multimedia 

network communication. 

 

5.1.3 Scope and Significance 

The performance assessment of the proposed topology-aware SDN model is a 

crucial step in confirming its effectiveness, scalability, and adaptability in dynamic 

network environments. This paper evaluates the measurements in terms of 

performance indicators, including latency, throughput, jitter, and packet loss, for 

various network loads and topologies. It also involves benchmarking the proposed 

Ryu-based architecture with other existing SDN controllers, indicating its 

enhancements in flow management and responsiveness. To investigate different 
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traffic profiles and link characteristics, ranging from modeled to real-world, 

including performance, stability, uniformity, and realization of the designed system. 

This comprehensive evaluation is essential to demonstrate the practicality and 

advantages of our system over competitive solutions instantaneously. It bridges the 

gap between theoretical design and its real-world validation by converting the 

abstract model into a tangible performance measurement. The test results obtained 

from our evaluation test demonstrate that the Ryu controller's wise decision-making 

functionalities and topology awareness enable the achievement of good network 

behavior, congestion mitigation, and efficient data transmission. The performance 

evaluation ultimately confirms not only the technical soundness of our 

computationally efficient solutions but also enables the advancement of our 

approach to contemporary network situations, such as messaging in IoT designs, 

innovative frameworks, or cloud implementations. 

5.2 Experimental Setup 

An experimental environment was set up in Mininet, utilizing the Ryu controller to 

simulate the network and Wireshark to monitor it, to perform an accurate and 

reproducible performance analysis. We created test scenarios that allowed us to 

closely mimic a realistic SDN environment, where we could identify bugs not only in 

flow but also in network traffic, topology, and controller decisions. This setup 

focused on validating the effectiveness and flexibility of the topology-aware SDN by 

testing the performance against various traffic loads and network configurations. 

Table 5.1 depicts the simulation environment and the performance evaluation 

parameters used in the setup environment. 

We have developed a model topology that simulates the functionality and 

performance of a multi–switch SDN network environment, where OpenFlow 

switches are connected to host nodes in different segments of a multi–segment 

network. The response included topology-aware intelligence at the controller layer, 

enabling routing to occur in the most efficient manner possible, and regulating data 

flow based on link load or other congestion indicators. It allows a comprehensive 

analysis of how the Ryu controller performs under various conditions and how our 

approach facilitates more informed control decisions in traffic. It was a hybrid 

hierarchical network architecture consisting of core switches that connected to the 

aggregation and access layers to increase scalability and reduce data transmission 

delay. This traffic generation created flows between different pairs of hosts, as would 

occur in client-server and peer-to-peer style communication [44]. Dynamic link 

fluctuation and traffic bursts were incorporated to test the adaptively and fault- 

tolerance of the framework. These cases were used to highlight the benefits of the 

new topology-aware mechanism on the optimal path selection and improved overall 

QoS metrics. 

This setup provided a controlled and flexible environment for analyzing how the 

proposed framework behaves in real-time conditions. By enabling dynamic control 

decisions through the Ryu controller, the network could adapt efficiently to changing 

traffic loads, confirming the framework’s effectiveness in optimizing data flow and 

maintaining consistent performance across multiple network conditions. 
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Table 5.1: Simulation Environment and Performance Evaluation Parameters 
 

Component Description 

Controller Used Ryu SDN Controller (v4.34) 

Emulator Mininet 2.3.0 

Protocol OpenFlow 1.3 

Host Operating System Ubuntu 22.04 LTS 

Hardware Configuration Intel i7 (12th Gen), 16 GB RAM 

Traffic Tools Iperf, Ping, Wireshark 

Performance Metrics Latency, Throughput, Jitter, Packet Loss 

Network Design Multi-switch, topology-aware hybrid structure 

Testing Approach Repeated runs with varying traffic and topology 
parameters 

 

 

5.2.1 Hardware and Virtualization Environment 

The complete test environment was implemented on a dedicated high-performance 

workstation to provide sufficient CPU and memory capacity for multiple concurrent 

network simulations. The configuration is as follows: 

● Processor: Intel® Core™ i7 (8th Generation, 4.2 GHz, eight cores) 

● RAM: 16 GB DDR4 

● Storage: 512 GB SSD 

● Operating System: Ubuntu 20.04 LTS (64-bit) 

● Virtualization Platform: Oracle VirtualBox 

 

5.2.2 Software Components 

Many tools and frameworks in the software environment helped with SDN testing: 

 Mininet 2.3.0: Used to mimic the structure of virtual networks. With Mininet, 
you can create hosts, switches, and links in a flexible manner by adjusting the 

bandwidth, delay, and loss settings. 

 Open vSwitch (OVS) 2.15: Used as the forwarding plane component and 

supports OpenFlow 1.3 for talking to the controller. 

 Ryu Controller (v4.34): The basic SDN controller that the improved 
Ryu+TEVN framework is built on. 

 Wireshark 3.4: Used to capture packets and look at how OpenFlow 

communication works. 

 iperf3: Used to measure throughput and bandwidth for both TCP and UDP 
traffic. 

 hping3: Used to analyze RTT and latency and to create strange traffic for 

security testing. 

 Python Automation Scripts: These scripts are meant to control the running of 
experiments, gather logs, and make plots from recorded metrics. 

5.2.3 Network Topologies 
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We create a scalable SDN realistic topological network to evaluate the proposed 

framework, which can serve dynamic data flows and a wide range of network loads. 

The topology is created in Mininet, a highly flexible simulator for emulating various 

networks under controlled conditions. It consists of multiple hosts, OpenFlow- 

enabled switches, and a centralized Ryu controller that controls the entire network. 

The setup ensures that every data packet passes through the controller, enabling 

granular inspection of flow installations, where route selections are made, and traffic 

management decisions are executed. 

The topology is topology-aware, meaning that the controller dynamically learns and 

updates the network’s structural information to make optimized forwarding 

decisions. This adaptive awareness enables the identification of congestion points, 

link failures, and path delays in real-time. The topology integrates both core and edge 

network layers, ensuring a balanced load distribution and a realistic representation of 

enterprise or IoT network architectures. The Ryu controller manages these layers 

through OpenFlow protocols, where flow rules are generated based on traffic 

characteristics and network feedback. 

The experiments utilize various topological structures, including trees, meshes, and 

lines, to assess the efficiency and flexibility of the method. Every configuration is 

subjected to multiple traffic loads and flow requests to evaluate metrics such as 

latency, throughput, and packet loss. This diversity is intended to facilitate the 

evaluation of a wide range of operational settings, from small-scale to large-scale IoT 

deployments and data center networks. Here, the chosen topology not only verifies 

the correctness of the proposed model but also illustrates its flexibility in different 

networking environments and performance requirements. 

5.3 Test Scenarios and Case Studies 

For a comprehensive set of the proposed topology-aware Ryu-based SDN 

framework, performance was verified through numerous test case scenarios and real- 

world use cases, which imitate different network environments, as depicted in Table 

5.2. Each scenario was designed to evaluate specific aspects of the framework, such 

as its adaptability to dynamic traffic changes, its ability to balance network loads, and 

its effectiveness in maintaining QoS parameters. These test cases capture real-world 

operating scenarios in SDN-based environments, such as data centers, IoT networks, 

and distance learning clouds. 

Experiments were conducted in a staged Mininet environment with various network 

topologies, including classical linear and tree topologies, as well as more complex 

meshes. Under various traffic conditions, including CBR, VBR, and burst traffic, 

each topology was also evaluated to observe the controller's behavior in maintaining 

flow entries and installing optimal routing decisions. The Ryu controller was the 

centralized control plane entity that dynamically calculated forwarding rules based on 

link state, bandwidth utilization, and traffic density. 

To facilitate a fair comparison, we considered both static (traditional) and dynamic 

(proposed topology-aware) setups. As the static setting for routing, we used the 

typical shortest path for routing decision-making. In contrast, for dynamic behavior, 



74 
 

real-time topology awareness was employed to make adaptive decisions on the 

selection of routing paths. This distinction highlights the advantages of incorporating 

adaptive intelligence into the Ryu controller for efficient traffic handling and 

minimizing network congestion. The test cases are divided into seven categories. 

Different test cases were classified into the following three types for a comprehensive 

review: 

• Scenario 1 – Baseline Performance Evaluation: This scenario evaluated the basic 

functionality of the SDN environment using a linear topology consisting of two 

switches and four hosts. It also established baseline metrics for latency, 

throughput, and packet delivery under a constant traffic load. The outcomes of this 

scenario served as the baseline for subsequent comparisons. 

• Scenario 2 – Dynamic Traffic Handling and Load Balancing: A more complex tree 

topology was used, including replacing the DO with a different topological 

structure, including six switches and multiple host nodes, to witness how it 

handled variable traffic loads. Iperf was used to create traffic with changing data 

rates, simulating congestion and different link utilization states. Our topology- 

aware mechanism dynamically adjusts routing paths to distribute loads across 

available links, preventing bottlenecks and ensuring a continuous data flow. 

• Scenario 3 – Comparative Case Study with Existing Frameworks: This scenario 

compared the performance of the proposed framework to traditional SDNs with 

existing controllers (i.e., ONOS, OpenDaylight). The efficiency improvements 

were quantified using metrics like latency, jitter, throughput, and packet loss. In 

conclusion, the case study demonstrated that the proposed framework exhibited 

better adaptation to changes and reliability in response to changes compared to 

existing systems, thereby verifying the effectiveness of the design for real-time 

traffic analysis. 

Table 5.2: Test Scenarios and Corresponding Network Configurations for Performance 

Evaluation 
Scenario Objective Network Topology Traffic Type Performance Focus 

Scenario 

1 

Establish baseline 
performance 

Linear topology (2 
switches, four 
hosts) 

Constant Bit 
Rate (CBR) 

Latency and throughput 
benchmarking 

Scenario 

2 

Analyze dynamic 

load handling 

Tree topology (6 
switches, eight 

hosts) 

Variable Bit 

Rate (VBR) 

Load balancing and 

congestion control 

Scenario 

3 

Compare with other 
frameworks 

Hybrid mesh 
topology 

Mixed traffic Overall performance and 
adaptability 

 

 

5.4 Performance Metrics 

The assessment of the proposed Ryu-based topology-aware traffic analysis 

framework requires a comprehensive evaluation metric system to accurately measure 

its performance in terms of efficiency and dependability, as defined in Table 5.3. The 

measurements can be used as a numerical benchmark to evaluate the performance of 
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the controller, understanding how it controls traffic, manages QoS, and distributes 

data flow on active/inactive SDNs. 

This subsection presents the essential parameters — latency, throughput, jitter, packet 

loss, and controller response time — to be used in evaluating the proposed system. 

All of these metrics are crucial for verifying that the framework can effectively 

support real-time traffic scenarios without compromising network stability and 

scalability. 

The measurements were derived from tests conducted in a programmable test case 

implementation within the Mininet simulation environment, utilizing Ryu as the 

controller and OpenFlow switches to manage the dynamic flow of packets. Iperf, 

Ping, and Wireshark were used for traffic generation and analysis to achieve a 

credible empirical assessment. These measures collectively embody the central aims 

of our proposed framework, which is to achieve reduced delay, increased throughput, 

reduced packet loss, and improved controller responsiveness through intelligent 

topology-aware decision-making. 

5.4.1 Latency 

Latency is a value that indicates the time it takes for a packet to be delayed while 

traveling from source to destination. It is one of the most critical factors of a 

network’s responsiveness. Within the scope of the proposed model, latency measures 

the effectiveness of the Ryu controller in determining the optimal paths for routing 

based on real-time topology information. 

We measured the latency based on RTT when sending out ICMP echo packets, and 

the mean latency is calculated as half of RTT. The topology-aware logic of the Ryu 

controller intelligently chooses alternate, non-congested shortest paths, significantly 

mitigating end-to-end latency compared to static/legacy SDNs. This provides a 

smoother data rate, making it suitable for time-sensitive applications, such as online 

learning and innovative IoT environments. 

5.4.2 Throughput 

Throughput is the aggregate rate of successful data delivery over a network (bits per 

second). This demonstrates the efficiency with which the proposed scheme can 

utilize bandwidth resources while maintaining stability in the presence of fluctuating 

traffic patterns. 

The framework’s throughput was tested using Iperf to assess its flexibility as TCP 

and UDP streams. Ryu controller’s topology-awareness enables it to make routing 

decisions on the fly according to the network load and link utilization, resulting in 

better bandwidth utilization and a higher ability to carry traffic. 

The results showed that this proposed method consistently outperformed traditional 

schemes in terms of throughput, demonstrating its capability to handle heavy traffic 

while maintaining better QoS performance. 
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5.4.3 Jitter 

Jitter refers to the fluctuations in packet delay during transmission and is a crucial 

value for real-time applications such as video conferencing, VoIP, and e-learning 

portals. Large jitter values can result in interruptions to continuous data streams and 

negatively impact the user's experience. 

In our design, jitter was reduced through intelligent load balancing and on-the-fly 

monitoring of link status by the Ryu controller. The dispersion of the successive 

packet delays was calculated as follows: 

By periodically refreshing the flow tables and avoiding heavily congested paths, the 

scheme sustains constant packet delivery delay variation even under traffic spikes. 

Such stability also indicates the appropriateness of the mechanism for low-latency 

and media-rich data forwarding in an SDN network. 

5.4.4 Packet Loss 

Packet loss refers to the percentage of data packets that are dropped or lost during 

transmission. This demonstrates the network's resilience and strength in handling 

congestion, link failures, or switch overload. 

The controller in the proposed topology-aware setup significantly reduces packet loss 

through its responsive rerouting mechanism, which continually senses the state of 

links and redistributes traffic onto alternate paths as necessary to address sustained 

degradation. This helps the network remain robust in the event of excessive traffic or 

node failures. The Ryu controller's ability to continuously monitor and modify the 

flow from the switches helps reduce retransmissions and maintain the path for 

packets, ultimately increasing throughput. 

5.4.5 Controller Response Time 

Controller response time indicates the speed at which the SDN controller processes a 

new packet-in event (i.e., a request to install a flow rule) and makes a decision; i.e., 

when this event takes place that results in the arrival of packet(s), it calculates 

forwarding action and respective flow into its store, then puts into effect the 

corresponding flow rule. It represents the processing capability and flexibility of the 

control plane. 

Ryu Controller responded more quickly in the proposed model because it was written 

in Python and is easier to execute than POX, with its pre-compile benefits, and 

supports an asynchronous event handling mechanism. With topology-awareness, the 

controller can effectively keep refreshed link-state information to minimize 

computation time and control message overhead. 

This enhanced responsiveness means a better and more cooperative controller for 

network switches' communication, particularly during topology change events or 

flow setup requests. 
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Table 5.3: Performance Metrics, Measurement Techniques, and Impact on the Proposed 

Framework 
Metric Description Measurement Method / 

Formula 

Relevance to Proposed 

Framework 

Latency Time for the data to 

travel from the 

source to the 

destination 

RTT / 2 (Ping Tool) Reduced latency due to 

topology-aware dynamic 

routing 

Throughput Rate of successful data 

transfer (bps) 

Total Data Received/ 
Transmission Time 

Improved throughput 

under adaptive flow 
control 

Jitter Variation in packet 

delay 

Average deviation of delay 

times 

Consistent packet timing 

through intelligent load 
balancing 

Packet Loss Packets lost during 

transmission (%) 

((Packets Sent–Packets 
Received)/Sent) × 100 

Reduced loss via adaptive 
rerouting and congestion 

management 

Controller 

Response 

Time 

Time taken by the 

controller to respond 

to the flow 
request 

Tflow rule install -Tpacket-in Faster decision-making 

with topology-driven 

optimization 

 

5.5 Result Analysis 

Experimental verification of the proposed topology-aware SDN skeleton has been 

performed to analyze its performance, flexibility, and robustness under various 

network scenarios. The remainder of this section presents the detailed results derived 

from several simulation scenarios based on the Mininet–Ryu environment. The 

performance of the controller is evaluated based on three primary performance 

metrics — throughput, latency, and packet loss, which collectively determine how 

well a particular controller manages data flows to maintain QoS. 

We have maintained a record of the results for several host pairs that transmit 

through OpenFlow switches managed by the Ryu controller. The purpose of the 

experiments is to verify the basic functions, including dynamic topology 

maintenance, intelligent traffic balancing, and link-fault weatherproofing. The 

resultant performance curves are analyzed in terms of stability, adaptability, and 

correlation between the traffic load and controller responsiveness. 

5.5.1 Throughput Analysis 

Throughput, which represents the data transmission capacity of the network, serves 

as an essential indicator of how efficiently the SDN controller manages the available 

bandwidth. Fig. 5.1 illustrates the variation in throughput across multiple host pairs 

during the experiment. 

At the start of the communication (first second), throughput rises sharply from 0 

Gbps to nearly 25–30 Gbps as the controller establishes flow rules between the hosts. 

This initial spike corresponds to the OpenFlow handshake and flow table setup 
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process. Once the flow entries are installed, the throughput stabilizes, maintaining 

high and consistent transmission rates across the network duration. 

The similarity of the throughput rates obtained for all pairs of hosts (h1–h2, h1–h3, 

h1–h4, and so forth) suggests that the controller dynamically reacts and effectively 

load-balances and controls the respective flows. The slight variations observed after 

5–6 s indicate that the controller adapts to the network by quickly responding to 

temporary topology updates or link recalculations, while preserving efficiency, as its 

overall efficacy remains unaffected. 

These findings align with proposed research that demonstrates topology-aware design 

enhances link utilization while minimizing congestion by dynamically determining 

traffic flows based on Ryu. That generally extracts packets, packet-forwarding of 

packets, and even more solid operation-time devices throughout numerous created 

beatings in the bits of a packet type. For learners, a high-level abstraction of traffic 

detection by intelligent analysis for achieving throughput stability, which, in turn, 

feeds into one of the critical research areas 
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Figure 5.1: Throughput Variation across Multiple Host Pairs 

 

5.5.2 Latency Analysis 

Latency is the end-to-end delay that the user experiences when sending a packet, 

which reflects the responsiveness and real-time of the SDN environment. Latency 

among several pairs of hosts controlled by the Ryu controller is shown in Fig. 5.2. 

This indicates that a 1 millisecond average latency remains low in most connections, 

promoting faster flow rule installation and excellent responsiveness. Latency values 

are minimal (<0.05–0.9 ms), meaning that the processing overhead is as little as 
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possible for data-plane communication with the controller. However, we occasionally 

observe spikes (between 7 ms and 9.6 ms). 

The spikes coincide with events where the topology is reconfigured or new flow 

entries are added at the controller, resulting in a temporary increase in 

communication between the controller and switch. Most importantly, these latency 

peaks immediately settle down, suggesting that the controller is quite resilient and 

quickly re-establishes an efficient path for data. Such a characteristic low latency, 

within the limits of this study, also indicates that the intelligent Ryu-based framework 

proposed achieves the aggregate minimum delay, making it suitable for use in IoT, 

multimedia streaming, and time-sensitive systems. The controller, built from the 

ground up in Python with extensive modularity, is capable of making instant 

decisions in response to topological changes while maintaining service continuity, 

even in highly demand-oriented networks. 
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Figure 5.2: Latency Analysis between Host Pairs using Ryu Controller 

 

5.5.3 Packet Loss Analysis 

Packet loss is a metric that provides insight into network reliability and the 

controller's capacity to deliver a consistent flow rate under duress—packet Loss 

under bandwidth and traffic in Figures 5.3 and 5.4. The system is solid and robust, as 

evidenced by the packet loss of not exceeding 0.5% at both 10 Mbps and 50 Mbps 

bandwidths. This consistent performance illustrates that the adaptive load balancing 

and congestion detection capabilities embedded in the proposed framework enable 

the realization of a stable connection among multiple hosts. Fault tolerance has also 

been evaluated by simulating various other test scenarios, as mentioned in Figure 24, 

including link failures, bursty traffic, and concurrent flow bursts. Under these 

changing conditions, the percentage of dropped packets slightly increased (3.4%), but 
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remained within normal limits, even under high load. This demonstrates the self- 

adaptive behavior of the Ryu controller, which, in the event of a link failure (Link 

Down) or a node failure (Node Down), reconfigures the forwarding paths of packets 

to recover from the failure with minimal disruption to the network. 

Instead of merely succumbing to failures, the framework maintains path choice, 

thereby reducing retransmission costs; this behavior highlights the potency of 

topology-awareness in the proposed system. Consequently, the SDN network 

becomes more dependable, robust, and resource-efficient, as required for high- 

availability SDN environments. 
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Figure 5.3: Packet Loss Analysis at 10 Mbps and 50 Mbps Bandwidths across Host 
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Figure 5.4: Observed Packet Loss under Varying Network Traffic Scenarios 

5.5.4 Overall Performance Interpretation 

Throughput, latency, and packet loss are extensively analyzed based on experimental 

results, which show that the proposed topology-aware SDN framework significantly 

enhances performance compared to static or reactive architectures. The Ryu 

controller is entirely programmable in Python, seamlessly integrated with Mininet 

and Wireshark for real-time traffic optimization, and capable of achieving high 

throughput, low latency, and negligible packet loss under dynamic traffic conditions. 

From the results of all the experiments conducted in the previous chapters, it is 

demonstrated that the proposed system successfully fulfills the research requirements 

of network adaptability, controller-to-switch communication, and network stability 

when exposed to various traffic loads. Ryu is an ideal solution for softer research 

environments, as it achieves a perfect balance in transparency, performance tuning, 

and simplicity — in contrast to other controllers designed for production-scale 

environments (like ONOS or OpenDaylight), which are too complex for academic- 

level prototyping. 

Therefore, the analysis confirms that the Ryu-based approach meets the necessity of 

scalability and efficiency for implementing adaptive traffic analysis and control in 

SDN environments. Not only does it provide optimized solutions for various existing 

problems, such as latency variation and dropped packets, but it also offers greater 
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predictability of flow and responsiveness to topology, traits that position it well for 

use in future innovative networking applications. 

5.6 Comparison with Existing Frameworks 

In this section, a comparative performance analysis is performed to evaluate the 

application's performance in our proposed SDN-based intelligent traffic analysis 

framework against the default SDN topology using the Ryu controller. Abstract-This 

evaluation tries to quantify how well the proposed framework enhances the core 

performance indicators, such as the throughput, bandwidth, RTT, and packet loss 

rate, when subjected to different conditions of the network and various host 

connections. The results are obtained through extensive simulation and emulation 

experiments in the Mininet environment, where the respective default and proposed 

topologies are compared under identical traffic and bandwidth conditions to ensure a 

fair comparison. 

5.6.1 Throughput Analysis 

In Figure 5.5, we present a comparative throughput analysis of the proposed and 

default SDN topologies for various numbers of host connections. We analyze the 

minimum and maximum throughputs recorded between pairs of hosts, including h1- 

h2, h1–h3, h2–h3, h2-h4, and h4–h1, and so on. These results definitively 

demonstrate that the proposed topology consistently achieves higher throughput, 

ranging from 21.4 to 27.4 Gbps, compared to the default topology, which has a lower 

throughput range of 20.8 to 26.8 Gbps. 

This enhancement is primarily achieved through the utilization of smart links and the 

adaptive flow assignment approach incorporated into the proposed SDN architecture. 

The controller provides effective load balancing of traffic among available paths and 

offers facilities to prevent overutilization of network bandwidth, thereby avoiding 

bottlenecks and choking. As a result, the proposed model has a less volatile 

throughput curve, lowering the fluctuations in classical SDN environments. This 

demonstrates that the proposed scheme achieves a throughput gain of up to 5–8%, 

making it more efficient for concurrent flows [37]. 
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Figure 5.5: Comparative Throughput Analysis of Proposed and Default SDN 

Topologies under Varying Host Connections 

5.6.2 Bandwidth Comparison 

In Figure 5.6, we compare the bandwidth between the proposed and default SDN 

frameworks for various host pairs. As a result, the proposed framework achieves 

higher bandwidth utilization than the measured bandwidth utilization of 26.7 Gbps 

for h1–h2, 25.2 Gbps for h1–h3, and 25.0 Gbps for h1–h4 in the default setup, which 

is 25.1 Gbps, 24.5 Gbps, and 24.4 Gbps, respectively. 
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Figure 5.6: Bandwidth Comparison between Default and Proposed SDN Framework 

across Host Pairs 

This result demonstrates that the proposed SDN model can facilitate high data rate 

transfers and dynamically adapt to changes in available link capacity. The flow 

scheduling method is deployed in conjunction with the Ryu controller, which has an 

efficient traffic monitoring module. With this functionality, the network will 

capitalize on available resources. This improved bandwidth utilization indicates 

better overall throughput consistency and suggests a more intelligent controller that 

effectively mitigates network congestion. Based on the results, the proposed system 

improves bandwidth efficiency by approximately 4–6% compared to the current 

system, resulting in a smoother data transmission environment and eliminating 

performance bottlenecks. 

5.6.3 Latency Comparison 

RTT Comparison between Proposed and Default SDN Topology Between Multiple 

Host Pairs shown in Fig. 5.7. In contrast, the RTT for the proposed topology is 

considerably lower, which confirms the proposed topology reaches the destination 

faster with lower delay. The proposed setup achieved latency values ranging from a 

minimum of 0.9 ms to an average of 8.1 ms. In contrast, the default topology 

achieved minimum, average, and maximum latency values ranging from 1.0 ms to 

10.2 ms. 

This reduction in latency is a direct result of the optimized routing and reduced 

controller overhead introduced by the proposed framework. The system also utilizes 

mechanisms and optimizations for packet forwarding and prioritization, minimizing 
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queuing delays and enhancing control-plane responsiveness, as well as packet 

delivery performance. Reduced RTTs indicate a better area for performance in delay- 

sensitive applications, such as video streaming and real-time analytics. Accordingly, 

the latency in the SDN environment with our proposed framework is up to 15% 

lower than traditional approaches, which further confirms the power of SDN in 

performing time-critical operations. 
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Figure 5.7: RTT Comparison of Proposed vs. Default SDN Topology across Host 

Pairs 

5.6.4 Packet Loss Rate Comparison 

As shown in Fig. 5.8, Packet Loss Rate Comparison between the proposed and 

existing SDN frameworks on various network conditions. This evaluation comprises 

several traffic scenarios, including low traffic (2 Mbps, 100 packets/sec), high traffic 

(≥ 12 Mbps, 600+ packets/sec), bursty traffic (2–10 Mbps oscillation), and link 

failure scenarios. Packet loss can be as low as 1.5% to 3.4% in the proposed 

framework, whereas the existing SDN framework incurs a higher loss of 2.3% to 

5.2% across scenarios. 

This reduction in latency and lower packet loss is made possible by the proposed 

framework's capability for intelligent traffic monitoring and adaptive retransmission 

control, which enables it to detect congested links and redistribute flows to maintain 

stability quickly. The topology-aware and controller feedback mechanisms in the 

proposed model will allow it to sustain similar packet drop rates at lower levels, even 

under bursty or failure-prone conditions. Thus, the framework reduces packet loss by 

∼approximately 30–35% and demonstrates its robustness and reliability across 

different traffic intensities. 
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Figure 5.8: Traffic Packet Loss Rate Comparison under Varying Network Conditions 

5.7 Chapter Summary 

The results from this chapter corroborate the fact that the multiple scenario-relevant 

features lead to a significant, performant, and stable network by the proposed 

framework. As presented in the throughput and bandwidth analyses, there is a steady 

increase of approximately 5–8% in data transfer efficiency due to the capabilities of 

dynamic flow scheduling and smart load balancing designed into the Ryu controller. 

Latency measurements indicated a significant reduction of approximately 15%, 

demonstrating the framework's ability to optimize real-time packet forwarding and 

infrastructure overhead on the controller. Here, the packet loss rate was decreased by 

∼approximately 30–35% even in high-traffic and link-failure scenarios, indicating 
the system's efficiency in maintaining reliable data delivery. 

In general, results confirm that the SDN topology-aware design can achieve 

significantly better performance compared to traditional SDN architectures. The 

framework's dynamism in response to changing network factors, along with its 

enhanced resource and decision-making capabilities, makes it suitable for large-scale, 

time-critical network settings, including IoT systems, cloud-based e-learning 

systems, and intelligent infrastructure networks. As such, this chapter demonstrates 

that the proposed approach is practical, scalable, and reliable, which provides a 

strong basis for both real-world deployment and future research extensions. 
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CHAPTER 6 

 

CONCLUSION, FUTURE SCOPE, AND SOCIAL IMPACT 

 

 

 

 
6.1 Conclusion 

This study focused on the SDN environment and developed a Ryu-based intelligent 

traffic analysis framework. This thesis implements a topology-aware dynamic traffic 

management framework that leverages centralized SDN control to improve 

scalability, fault tolerance, and traffic handling efficiency. It was made successful by 

overcoming the limitations of the traditional distributed networking model through 

the addition of traffic monitoring, load balancing, and anomaly detection capabilities 

under the Ryu controller, providing centralized management. 

Through experiments and simulations in Mininet, the proposed architecture 

demonstrated that centrally controlling with a Ryu controller can significantly 

improve traffic handling and decision-making within the control plane. Such a 

system leveraged OpenFlow-enabled switches to achieve real-time flow visibility for 

intelligent packet forwarding and congestion control. The performance of such a 

solution is further complementarily assessed in terms of throughput, latency, packet 

loss, and controller response time. 

The presented architecture makes a significant contribution to the SDN field, 

particularly in areas such as network intelligence, adaptability, and traffic 

optimization. Planned demonstrations will show that the Ryu based design not only 

reduces flow control complexity but also supports the flexibility of incorporating 

further modules for security, energy conservation, and QoS management. 

Furthermore, the modular design enables the system to be easily expanded to 

accommodate new technologies, such as IoT, cloud-based learning systems, and 5G 

networks. The main research findings are: 

 A new Ryu-based intelligent traffic analysis framework that combines the 
control plane and the data for more informed decisions. 

 A multi-level network architecture implemented in Mininet for realistic and 

scalable simulation of varying traffic scenarios. 

 Implemented dynamic flow management algorithms to address congestion 

and maximize load distribution in network paths. 

 The evaluation also showed that throughput increases, packet loss decreases, 
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latency drops, and controller response times are better than before. 

 Proved the capability of SDN-based architecture to improve the security, 
scalability, and fault tolerance of current network systems. 

6.2 Future Scope 

Despite promising results from the proposed framework, several opportunities for 

improvement and future work remain. The growing diversity of global networks and 

the surge in data-driven services call for a continuous evolution of SDN-based 

control frameworks. The future scopes are as follows, indicating possible lines for 

improvement, innovation, and real-life implementation of our proposed framework. 

The main research findings are: 

 Integration of Machine Learning: One of the exciting future directions is to 

accommodate ML and AI algorithms into the Ryu controller framework. 
These methods can be used to provide predictive management of traffic, 

enabling the system to predict both congestion and link failures before they 

occur. For example, the SDN controller can scale system-wide or per-flow 
routing decisions using reinforcement learning techniques or deep learning 

applications, leveraging real-time traffic data and historical knowledge of user 
activity patterns. This adaptive intelligence would yield a significantly more 

stable network, lower latency, and better decision-making than currently 
possible with the static rule-based approach. 

 Scalability to Multi-controller and Distributed SDN Environments: The current 

work is built on the single-controller (e.g., Ryu controller) scheme. Finally, 
the proposed model can be easily extended to a multi-controller or 

hierarchical SDN architecture, which helps toward a more scalable 
environment with fault tolerance and resistance. Big data centers, (ISP) 

networks, and smart cities can be cooperatively controlled by multiple 
controllers controlling the different parts of the network. The system would 

be much more robust against controller failures and better able to handle 
geographically distributed networks if it applied protocols for inter-controller 

communication and load distribution algorithms. 

 Support for IoT and Edge Computing Environments: Another central area is 
to extend the framework so that it can work on IoT-based and edge computing 

architectures, where millions of energy-constrained devices are producing 
small packets of data all around. The traffic analysis system proposed in this 

work can also be used for prioritizing delay-sensitive IoT flows and 

optimizing resource allocation at the edge. For example, integrating the Ryu 
controller into a multimodal IoT communication framework with lightweight 

protocols and edge analytics modules enables achieving real-time response 
times with reduced data transmission overhead. This would unlock access to 

the framework for applications in smart homes, connected cars, and industrial 
automation. 

 Real-World Testbed Deployment: To perform the transition from simulation 

to real deployment, the framework can be tested and deployed in real-world 
SDN testbeds or the cloud. Validations of the system in real-time with GENI, 

Mininet-WiFi, or CloudLab would be carried out under varying loads and 
topologies. It would also validate the proposed system if it can be cross- 
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platform tested, such as against other controllers, i.e., ONOS, ODL, 

Floodlight, etc., and these test results demonstrate the interoperability of the 
proposed solution as well. 

6.3 Social Impact 

The Ryu-based intelligent traffic analysis framework developed in this thesis has 

significant social relevance in the context of today’s highly interconnected digital 

environments, where efficient, reliable, and adaptive network performance is 

essential for large-scale communication systems. The research ultimately leads to an 

enhanced capability of the networks to support billions of diverse traffic loads 

seamlessly, facilitating seamless and reliable digital communication between users, 

institutions, and public organizations. In a world where dependence on real-time data 

transfer is crucial for education, healthcare, finance, and governance, enhancements 

in network performance ultimately equate to the availability and reliability of on-

demand digital services for all end-users. 

One of the key social gains from this research is its contribution to the design of 

digital education and remote learning platforms. The proposed framework enables 

better management of data traffic, enhancing data transmission capabilities for 

bandwidth-intensive applications such as virtual classrooms, video conferencing, and 

e-learning portals, through lower latency and reduced packet loss. This ensures that 

learners in rural areas or bandwidth-constrained regions of the world have steady and 

uninterrupted sessions, thereby contributing to the broader effort of achieving 

equitable access to quality education worldwide. 

The framework can be utilized to facilitate telemedicine, real-time health monitoring, 

and digital record sharing within the healthcare industry. It is essential for hospitals 

and emergency response units that rely on the rapid transmission of diagnostic 

images or patient data over high-speed and low-latency communication networks. 

Next, a conceptual structure of an SDN-based system is employed first to enhance the 

ability to control the route of traffic forwarding and then provide an appropriate 

mechanism to guarantee that essential data in medical applications arrives promptly 

without being disturbed or tampered with. That ultimately makes healthcare delivery 

safer and more efficient for patients. 

Additionally, the security advantages of the proposed system have significant social 

value. The framework can prevent the loss of millions of dollars or personal 

information due to a cyber-attack by detecting anomalies and regulating network 

traffic using programmable control, thus ensuring that your money is safe and that 

you can still access essential online services or even portals at the compulsory level, 

e.g., government-level portals. Reinforcing data security at the network layer 

safeguards citizen privacy and fosters confidence in digital transformation efforts. 
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Abstract
Software-Defined Networking (SDN) has emerged as a promising paradigm to enhance 
network control and management by decoupling the planes. With SDN, the centralized 
controller plays a critical role in managing network resources and traffic flows. Throughout 
the most recent couple of years, networks turned out to be more imaginative for develop-
ing different applications with the help of SDN. Network traffic analysis is a vital task in 
understanding network behaviour, identifying anomalies, and optimizing network perfor-
mance. To deal with the load of changes in the networking industry, there is an extraor-
dinary requirement for a productive SDN controller to work on the usage of network 
resources for a better presentation of the network. Therefore, the proposed approach lever-
ages the RYU controller, an open-source SDN controller framework, to collect and analyse 
network traffic data. By utilizing RYU’s capabilities, we can dynamically monitor and cap-
ture network traffic statistics, such as bandwidth, throughput, packet counts, and Round trip 
time (RTT). These statistics provide valuable insights into network performance, and traffic 
patterns. By leveraging real-time traffic analysis, we can dynamically adjust routing paths, 
and allocate network resources efficiently. Hence, the proposed work assesses the develop-
ment of SDN architecture through a network topology and then, implementation of RYU 
controller has been done to evaluate various network performance parameters. To evaluate 
the effectiveness of our approach, we conduct experiments using a simulated SDN environ-
ment. We compare the performance parameters of our traffic analysis techniques with tra-
ditional methods and showcase the advantages of utilizing SDN and the Ryu controller for 
network traffic analysis. The results demonstrate that our approach provides accurate and 
timely insights into network traffic behaviour, facilitating efficient network management. In 
conclusion, this study highlights the significance of network traffic analysis in SDN envi-
ronments and demonstrates the effectiveness of the Ryu controller for extracting valuable 
insights from network traffic data.

Keywords  Software-defined networking · Wireless networks · Network topology · Traffic 
network · Traffic engineering · SDN controller · Internet of Things
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In today’s dynamic networking landscape, integrating Software-Defined Networking 

(SDN) with Traffic-Expert Virtual Networks (TEVN) presents a promising avenue for op-

timizing network performance. This research investigates the implementation of TEVN 

Embedding within SDN frameworks, utilizing the Ryu controller to address inefficiencies 

in traditional virtual network embedding algorithms. Methodologically, the study proposes 

a framework for TEVN and evaluates its performance against benchmark methods using 

various parameters such as throughput, bandwidth, packet loss, and Round-Trip Time 

(RTT). The evaluation is conducted through extensive experimentation in simulated SDN 

environments, with results analyzed and compared comprehensively. The findings reveal 

that TEVN significantly improves network efficiency, achieving higher throughput, lower 

latency, and reduced packet loss compared to default embedding algorithms. These results 

underscore the potential of TEVN to revolutionize network management practices, offer-

ing a promising solution for addressing the evolving challenges of modern network infra-

structures. This research contributes to advancing SDN technologies and gives insights 

into enhancing network efficiency in dynamic environments. 

    

Keywords: software-defined networking, Ryu controller, virtual networks, performance 

parameters 

 

 

1. INTRODUCTION 
 

SDN is a transformative paradigm-shift technology; it has emerged as an innovation 

of traditional network topologies and management methods with the fast evolution of net-

work technologies [1]. The current paradigm shifts dynamically to control and program 

network behavior through centralized software. The one that continues to sprawl and di-

versify around various TEVNs introduces SDN integration [2]. The statically architected 

traditional network continuously needs help keeping up with such performance fluctuation 

and probably changes in traffic models [3]. Increased dynamism demands an infrastruc-

tural change that only the SDN brings. By centralizing control, the SDN offers real-time 

visibility of traffic and coordination responsiveness [4].  

In this paper, the possibility of integrating unique virtual network traffic expertise is 

viewed as an essential aspect of advancing network infrastructure's overall performance 

and efficiency. The integration of SDN enables a new pattern of adaptability and intelli-

gence in network management as virtual networks gain the capacity of immediate dispersal 

in response to the current traffic situation [5-8]. Consequently, our primary aim is to ex-

pand the QoS and network efficiency by optimizing resource distributions. The findings 
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Abstract— During the past years, IoT has acquired a lot of 
consideration since it incorporates intelligent gadgets which 
empower many applications that work in our day-to-day 
existence. Due to this the rising number of clients and the 
interest in more different and specific applications have 
prompted a tremendous expansion in the network traffic. 
Managing different traffic requests from various applications 
is a difficult task for the current traditional networking 
architecture. Therefore, the paper provides a thorough 
analysis of the SDN and various other technologies-based 
network virtualization methods as well as current perspectives 
for the IoT. The representation provides the working of 
various up-going technologies such as Machine Learning, Edge 
Computing, and Virtualization with SDN to betray the 
performance of the SDN applications in today’s world. 

Keywords—software-defined networking, network traffic, 
internet of things, edge computing, machine learning 

I. INTRODUCTION 

The way we engage with our environment has changed 

dramatically as a result of a rapidly developing technology, 

the Internet of Things (IoT) [1]. Huge amounts of data have 

been produced as a result of the proliferation of IoT devices, 

necessitating a highly scalable and adaptable network design 

to support them. The static and homogeneous environments 

of traditional network architectures are not well adapted to 

the dynamic and heterogeneous character of IoT networks 

[2]. 

In this situation, network virtualization methods based on 

Software-Defined Networking (SDN) [3] and Network 

Function Virtualization (NFV) [4] may offer a strong remedy 

for the virtualization of IoT networks. It disintegrates the 

data plane of the network from the control plane [5]. SDN 

helps to regulate traffic in a network by virtualizing the 

control part of the network. It establishes a software program 

as the brain of the network that takes away the task of 

controlling and deciding the path to be used for forwarding 

data packets to form the forwarding end to the receiving end 

[6]. SDN helps to provide centralized control of the network 

architecture which helps in seamless troubleshooting as 

shown in Fig. 1 [7].  

The main concept behind SDN is to separate the control 

plane and the physical layer and provide a more centralized 

controller for the entire network so that all 

computations/decision-taking occurs at this controller which 

eventually decreases latency as the controller has the 

complete knowledge of the network topology [8]. On the 

other hand, NV takes a SDN approach to traditional 

networking devices by separating the software and hardware 

capabilities by replacing the dedicated network with virtual 

machines. A combination of these two technologies in the 

field of IoT is very effective as it decreases the capital 

expenditure and operating expenditure cost by sharing the 

network infrastructure [9]. SDN helps to create a unique and 

adaptable network design that can be altered as per the 

decisions made by network administrators. 

 

Fig. 1. Layer-based architecture of software-defined networking. 

This document provides a thorough analysis of the 

various SDN and other technologies based network 

virtualization methods for the Internet of Things. The 

representation provides the working of various up-going 

technologies such as Machine Learning, Edge Computing, 

and Virtualization with SDN to betray the performance of 

the SDN applications in today’s world. 

The remainder of the paper is organized in following way 

shown in Fig. 2: Section 1 provides the introduction to SDN 

and its applications. Section 2 provides the literature review. 

Section 3 describes the background as well as the current 

perspectives and virtualisation solutions with SDN and 

section 4 provides a conclusion. 

II. LITERATURE REVIEW 

The following representation provided the literature 

review in terms of prior art with several aspects of SDN. The 

aim of reviewing the literature is to gather the work done in 

the past. 
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Software-Defined Networking: A Traffic 

Engineering Approach 

Abstract—Software-Defined Networking (SDN) is the new 

networking approach that overcomes the obstacles that are 

faced by the conventional networking paradigm. The core idea 

of SDN is to separate the control plane from the data plane. This 

idea improves the network in many ways such as efficient 

utilization of resources, management of the network, innovation 

with new evolution, reduced cost, and many others. To manage 

all these changes, there is a great need for an efficient traffic 

engineering tool to improve the utilization of resources for the 

better performance of the network. Traffic engineering is also 

responsible for the analysis and monitoring of real-time data 

traffic. This paper mainly focuses on the structure of traffic 

engineering in SDN. In addition, the scope of various 

parameters of traffic engineering in the SDN environment and 

setup experimentations are also demonstrated. Hence, this work 

can leverage traffic engineering in the environment of SDN to 

enhance the network for better use in the future.  

Keywords—SDN, traffic engineering, traffic network, traffic 

analysis, network parameters. 

I. INTRODUCTION 

With the growth and development of many new 
applications of the Internet of Things [1], cloud computing, 
and many more in the network, the conventional architecture 
is not sufficient to meet the needs of the current environment 
[2]. Therefore, a new paradigm is designed by some 
researchers to prevail over the conventional architecture, 
named as Software-Defined Networking [3]. The problem in 
the conventional network is that both the planes of SDN are 
integrated into the same appliance [4]. As an outcome, the 
conventional architecture cannot provide the global 
perspective of the network and even, each device requires 
manual configuration. Hence, the new approach increases 
flexibility builds the network to configure easily and more 
programmable by distinctive the control/network plane from 
the data/physical plane with a global perspective of the 
centralized network [5].  

Traffic Engineering is the study in which the measurement 
and analysis of data traffic take place to upgrade the 
performance of the network in an efficient manner [7]-[8]. It 
is the mechanism to enhance the performance of the network 
by providing dynamic behaviors of predicting the data traffic, 
analyzing, design the data routing schema, and transmitting 
the data [9]. To generate these dynamics behaviors, network 
observing plays a sprightly role. In conventional architecture, 
the technologies used for traffic engineering include Internet-
Protocols and Multi-Protocols Switching based on Traffic 
Engineering.  

Even though the SDN [10] furnishes hold up with traffic 
engineering but still there is not any research that shows the 
structure of SDN with traffic engineering which is of 
substantial significance for the future of SDN [11]. Hence, this 

paper provides the structure of new emerging technology SDN 
with traffic engineering. Also, provides the reach of traffic 
engineering in SDN to enhance the architecture of the network 
for better use.  

The remainder of the paper is organized in such a manner: 
Section II provides the literature work done in the SDN with 
traffic engineering followed by past to future scenarios of 
traffic engineering. Section III describes the structure of SDN 
in traffic engineering with different parameters and measures. 
Section IV discusses the reach of traffic engineering in the 
SDN. Section V provides a conclusion.  

II. PAST WORK 

As shown in fig.1, the evolution of traffic engineering 

from the past to the future of SDN. In the early, Asynchronous 

Transfer Mode (ATM) [12] switching was used as a traffic 

engineering appliance. ATM traffic engineering can transmit 

different services that work simultaneously on the network. In 

this transfer mode, connection-oriented communication is 

taking place, which means the connection can be established 

even before forwarding the data to the destination.  

After some development and re-growth of new 

terminologies, there was an evolution of the IP routing [13] 

scheme to pass on the data packets from source host to 

destination host [14]. As with the growth of emerging 

automation such as the IoT [15], Cloud computing [16], 

Sensor network [17], and many more the data traffic is 

increasing day by day. So to overcome that limitation multi-
protocol routing was used. 

  

 
Fig.1. Past to Future Traffic Engineering in SDN  
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PERFORMANCE EVALUATION OF SDN 

CONTROLLERS: ANALYSING THE TCP TRAFFIC 

MANAGEMENT IN POX, RYU, AND ODL 
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ABSTRACT 

Software-defined networking (SDN) is a revolutionary networking paradigm that separates the data and 

the control plane. The controller is one of SDN's leading entities that controls the information flow in the 

network. Therefore, the research deals with a thorough performance differentiation of three prominent 

SDN controllers: POX, Ryu, and OpenDaylight (ODL). The study aims to evaluate these controllers' 

effectiveness in controlling the network traffic by focusing on performance parameters such as 

Transmission Control Protocol (TCP) mean, packet loss, and jitter. The experimental setup employed 

Mininet, a network emulator, to create a consistent virtual network environment for all controllers. Each 

controller was tested in isolated virtual machines, ensuring controlled and unbiased results. 

The experimental results reveal distinct performance differences among the controllers. In the research 

experimentations, the highest TCP mean throughput and superior performance among all controllers are 

achieved by ODL consistently, and minimum loss of the data packets and jitter is observed across all-time 

instances for high-demand, large-scale networks. This study shows that choosing the right SDN controller 

is crucial as it depends on particular network requirements to guide network administrators and 

researchers when choosing the SDN controller best for their network. 

KEYWORDS 

Software-defined networking, SDN controllers, Traffic analysis, TCP traffic management   

1. INTRODUCTION 

SDN is an amazing network methodology that separates the control and physical planes. In this 

view, it merges control and dynamic setup. Tight coupling of control and data planes in 

individual devices leads to traditional networks' frequent rigidity and complexity [1]. These 

restrictions are overcome by decoupling these network planes, allowing incorporated network 

knowledge, administering delegations, and increasing adaptability. This centralized architecture 

will give us a global view of the network, as shown in Fig. 1. Thus, it facilitates deploying new 

services and applications with reduced time, enhances performance, and maximizes resource 

utilization [2].  

Ryu, POX, and ODL are the most extensively utilized regulators out of the many SDN 

regulators accessible. Each controller presents novel aspects and capabilities handling various 

use cases and needs. It is essential to understand the distinctions and how they can be used to 

select the most appropriate controller for a particular system management need [3]. Among 
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