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ABSTRACT

The rapid growth of modern networks and diverse traffic patterns has highlighted
traffic management as a core challenge in network administration. Traditional
networks, with their rigid architectures and limited programmability, fail to meet the
dynamic requirements of today’s applications. Software-defined networking (SDN)
has emerged as a novel paradigm that decouples the control and data planes, enabling
centralized control and intelligent network programmability. This thesis outlines a
topology-aware intelligent network traffic analysis framework using the Ryu SDN
controller for enhanced network performance and decision-making efficiency.

A topology-aware SDN environment is designed using Mininet as the emulator and
OpenFlow as the communication protocol. The proposed framework leverages the
Ryu controller’s Python-based modular architecture to implement dynamic traffic
analysis and adaptive flow management. Various network topologies are constructed
to simulate diverse operational environments and evaluate the framework’s
adaptability. The described SDN environment enables real-time monitoring of
network parameters and flow optimization, ensuring effective data transfer under
various traffic loads.

Performance evaluation is conducted using key parameters, including latency,
throughput, jitter, packet loss, and controller response time, across different network
conditions. The obtained results indeed present a significant enhancement in network
performance, as they generate up to a 22% gain in throughput and a 25% reduction in
latency, along with decreased packet loss. Importantly, the comparative
benchmarking confirms the performance robustness and scalability of the proposed
SDN model, especially for more dynamic and larger topologies.

As a result, this research contributes to the advancement of SDN-based network
intelligence by combining topology awareness alongside traffic analysis and
performance monitoring. The implications of this work lay the foundation for
deploying efficient, scalable, and adaptable network management solutions

applicable to real-world domains, such as cloud computing, and IoT-driven system.
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CHAPTER 1

INTRODUCTION

In several sectors, including education, healthcare, banking, e-commerce, and
defense systems, among others, computer networks are now the primary means
through which people engage in communication, share information, or receive
services [1]. There is more going on now than mere information sharing. They can
also assist with new technologies that must be fast, predictable, and safe, while
promoting safe teamwork and real-time communication. But decades into an era of
technological advancement, old networking architectures are still struggling to keep
pace with the complexity new apps and services bring.

For conventional networks, separation between the control plane and the data plane
might not be strict at all. This implies that routers, switches, and even firewalls can
operate independently and maintain/employ forwarding entries locally [2]. This
model has been the standard for a long time, but it has numerous problems. Device-
level management can be a chore when we have many of them, because there is a
need to configure and monitor each one individually. New nodes are added or traffic
policies are modified manually, and therefore, they take considerable time to scale.
Additionally, vendor-specific implementations also lock companies into solutions
that are costly and difficult to change, due to their reliance on hardware. Furthermore,
traditional networks are not adaptable to the real-time shifts that dynamic workloads
necessitate. It is not a very robust technology, which opens doors to numerous
vulnerabilities, detrimental to the current world of cloud computing, the Internet of
Things, 5G services, and apps that require low latency [3]. The difference between
traditional networking and SDN is illustrated in Figure 1.1.

The surge of IoT devices, edge computing, cloud platforms, and fast multimedia
services has only exacerbated the issues with traditional networks. For example, IoT
solutions can support billions of devices exchanging small but frequent data flows,
which pose challenges that no static, rule-based architecture can overcome. Likewise,
applications such as self-driving cars and telemedicine, which 5G enables, have
extremely low latency requirements and require bandwidth to be allocated on the fly,
a capability that older systems cannot achieve very well. And this is what has allowed
even SDN a civilizational reboot in how we build things.

In short, it separates the decision-making mechanism and the packet forwarding

mechanism. Instead of letting every individual device make decisions on its own,

SDN centralizes the network intelligence in a software-based controller. The

hardware passes the data. Numerous advantages accompany this significant change.
1



Providing a global perspective on the network enables administrators to dynamically
redefine resources, automate configurations, and enforce policies uniformly across
the organization. It is also well-suited for fast adaptation as the controller can
instantly respond to changes in traffic flows. With SDN, you gain the scalability,
flexibility, and automation that traditional networks lack. [4]

One of the key features of SDN is its ability to monitor network traffic in real-time.
Having a centralized view of the entire network enables deep traffic insights, allows
for the analysis of flows, and facilitates troubleshooting while enforcing rigorous
security policies. For instance, bandwidth can be dynamically reserved for critical
applications, and packets that appear suspicious can be rerouted or dropped. This is
why SDN in the enterprise data center, financial platform, or defense network
becomes particularly appealing. Due to imperfect obliviousness, traffic analysis
remains a significant concern in SDN [5]. Scalability remains a primary concern, as
the controller can become a bottleneck when large amounts of traffic are present.
Latency in analysis and resolution decreases responsiveness, which is further
complicated by IoMT or custom topology that introduces varied traffic patterns.
Moreover, much of the recent research concentrates on SDN behavior in general and
does not cover traffic performance analysis for custom or complex networks, such as
[6]. These issues suggest the necessity for new frameworks to achieve efficient,
reliable, and scalable traffic analysis under current scenarios. One scalability issue is
that the controller can become a bottleneck when traffic volumes are high in Switches
with Network Processor Cards (NPCs). In this section, we demonstrate how selective
replication alleviates the processing overhead of switches equipped with network
processor cards.

@ ]
i =

@ (b)

Figure 1.1: Overview of (a) Traditional and (b) SDN Networking

1.1 Background



Network traffic analysis is a critical component of network security and management;
however, in the modern world, understanding network traffic is more important than
ever. Networks are further complicated as an increasing flow of information is
created, the speed at which cloud-based applications are adopted and available on a
network, and the number of mobile devices and IoT endpoints organizations use
continues to grow [7]. Now, traditional methods of traffic monitoring, such as
NetFlow, passive packet sniffers, and event-driven rule bases for firewalls, were not
created in smaller, more stable settings. Although these methods were plausible in
the past, none of them can meet the velocity and variability of traffic in the present
and future times in a functional manner. SDN offers a paradigm change to solve these
challenges.

With SDN, the decoupling of the control plane from the data plane enables
centralized network intelligence and fine-grained programmatic capabilities. In
traditional architectures, every device on the network is independent. With SDN,
administrators have centrally controlled access to the entire network via a logically
centralized controller [8]. Transitioning to a centralized approach enables central
traffic analysis and policy enforcement, with scalability and velocity that are not
attainable under legacy systems.

1.1.1 Traditional Network Limitations

Routers and switches are examples of legacy networking gear that possess both a data
plane and a control plane, as shown in Figure 1.2. The device uses its own rules to
decide how to send packets. This design has many problems:

e Static Configurations: If a DDoS attack hits unexpectedly, we would need to
reconfigure each router ourselves.

e Vendor Lock-in: As an example, a Cisco router could employ management
protocols that are only accessible to Cisco devices, and it would be
challenging to manage Juniper or Huawei devices. This complicates the use
of multiple vendors in the same deployment.

e (Complex Management: Modifying ACLs by hand on thousands of switches in
a big business network can take hours, which gives attackers time to take
advantage of the situation.

e Limited Responsiveness: When there is a sudden spike in video traffic during
live streaming events, the network can't handle it dynamically, which causes
congestion and lower QoS.

1.1.2 Integration with NFV

Routers and switches are some examples of legacy networking gear that possess both
a Data Plane and a control Plane [9]. The device uses its own rules to decide how to
send packets. This design has many problems:

e Elastic Scaling: For example, during an online shopping event like 'Black
Friday', when traffic is high, additional virtual firewalls or load balancers can
be added on demand to absorb the extra load.

e On-Demand Deployment: For example, in response to malware traffic at a

3



particular edge node, an IDS can be deployed at that edge node in the next
moments.

e Resource Efficiency: Previously, each appliance would need to be a hardware
appliance that incurred significant capital and operational costs, but now
virtualized functions can run on inexpensive servers instead.

e Scope of Infrastructural and Cost Efficiency: Along with SDN, NFV provides
additional efficiencies, as the virtualized functions that we are running can
run on less expensive servers, and instead of being standalone hardware
appliances in hundreds of locations, you can orchestrate them via SDN/NFV.
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Figure 1.2: Layer-based architecture of SDN

1.2 Research Challenges in SDN for Network Traffic Analysis

SDN opens up new ways to analyze traffic, but it also presents several significant
problems that need to be addressed. The challenges can be divided into four
categories: scalability, latency and overhead, security, and traffic heterogeneity.

1.2.1 Ability to Grow Challenges

Scalability is a critical issue in SDN deployments. The central controller must
manage thousands and millions of flow requests simultaneously.

e Centralized Bottleneck: A centralized controller may receive millions of flow
requests per second from a large data center. For instance, Facebook data
centers manage terabits of traffic in one second. To manage such quantities, a
single SDN controller requires access to terabytes of data; it would simply
collapse the SDN controller under scale.

e High Load: Whenever any new cloud app initiates a TCP port, it makes the
central controller create a new rule, which consumes enormous CPU and
memory.

e Performance degradation: There is the possibility that the speed of the central

4



controller responding to the flow request may not be quick enough once
workloads escalate, because packets would not be forwarded promptly. There
would be a delay for the servers. There may also be potentially hazardous
service degradation for time-protected applications such as remote surgery or
online gaming.

e Due to such scalability concerns, one effective method is the use of
hierarchical or distributed controllers, such as ONOS clusters.

e From a performance perspective, clusters share processing and analysis of
traffic flows across distributed, disparate nodes.

1.2.2 Overhead and Performance Bottlenecks

SDN creates additional communication delays between the [network] controller and
the network devices. This could make other potential latencies:

e Frequent Flow Requests: When switches continually request flow decisions
from the controller, this adds the latency from the round-trip, regardless of the
distance.

e Real-Time Inspection Costs: The controller frequently uses high amounts of
CPU for DPL

e A Single Point of Failure: While traditional networks have routers and
switches operating independently, in SDN, if the controller goes down, traffic
analysis may go down with it.

1.3 Research Motivation

In recent years, network traffic has grown exponentially, making modern network
management and security more challenging than ever. The growth is primarily driven
by the increasing number of IoT devices, the rollout of 5G networks, and the growing
popularity of cloud-based apps and services. Traffic was more predictable in the past,
and it was possible to manage networks with static policies. However, today, due to
the various and dynamic nature of digital infrastructures, these traffic patterns are
large-scale and inhomogeneous. This shift places immense stress on existing
monitoring and management systems, exposing their shortcomings and underscoring
the need to develop new approaches.

1.3.1 Gaps in Current SDN-Based Solutions

SDN-based traffic analysis solutions have their advantages and limitations. If used in
real-world environments, the following weaknesses should be addressed:

e Scalability: A Centralized controller cannot perform their operation
effectively under very high traffic conditions.

e Overhead and Latency of Controllers: The overhead caused by periodic
controller-switch communication is not tolerable for real-time applications
such as high-frequency financial trading, distant robotic surgery, etc.

¢ Single Point of Failure: The SDN controllers make a good target because they
are centralized. For example, the entire network goes down if a DDoS attack

5



1s launched at a controller.

1.4 Problem Definition

The increasing scale and dynamic nature of modern networks have made effective
traffic analysis a critical yet challenging task, as traditional monitoring and rule-based
mechanisms are no longer sufficient to handle varying traffic patterns and complex
network topologies. Although SDN introduces centralized control and
programmability, many existing traffic analysis approaches do not fully exploit
topology awareness and real-time network state, leading to suboptimal flow
monitoring and delayed control decisions. This lack of adaptive traffic analysis
results in inefficient resource utilization and degraded network performance,
particularly in multi-switch SDN environments. Therefore, there is a need for a
topology-aware traffic analysis framework that leverages the SDN controller’s global
view to dynamically monitor network behavior and support informed traffic
management decisions, which forms the core problem addressed in this thesis.

1.4.1 Emerging Technologies Challenges

Emerging technologies, such as IoT, 5G networks, and edge computing, are also
likely to disrupt traffic flow patterns compared to traditional client-server
architectures.

e One aspect of IoT traffic to consider is the billions of energy-efficient devices
constantly sending tiny packets. A smart city is a prime example where
thousands of sensors continuously send data about the environment.
Monitoring solutions designed to handle high-volume, predictable types of
flows struggle to process the expected microflows efficiently.

e The second challenge is due to the requirements of 5G networks that support
applications such as autonomous vehicles, AR, and telemedicine, where
outlets are expected, ultra-low latency, and high reliability. Delays or issues
that result in a greater analysis lead-time to mechanisms that analyze or
ensure priority across microflows can result in disastrous outcomes, such as
an unwanted contact of vehicles in a vehicular network or losing patients in
remote refrained surgery.

e The third challenge is due to Edge Computing, where computation takes place
closer to the source of measurements and provides opportunities for
distributed traffic patterns Traditional centralized analysis models are often
less efficient than decentralized architectures.

1.5 Research Objectives

The primary objective of this research study is to emphasize the end-to-end quality of
service in SDN-based network infrastructure, aiming to enhance resilience. During
the research period, we focused on four specific objectives. The general objectives of
the study are as follows:

A. To investigate the existing network traffic performance analysis in the SDN



controller.

A literature review is conducted to know about the current existing
methodologies/tools used for SDN-based network traffic analysis

Evaluate the performance of existing SDN controllers in terms of traffic
analysis functions and identify their strengths and weaknesses.

Examine the scalability, latency, resource consumption, and real-time
processing abilities of current solutions.

Analyze the existing traffic analysis frameworks to identify the gaps and
limitations, especially regarding the modern network requirements like 10T,
5G, and edge computing.

Investigate limitations in deploying these frameworks, including controller
overhead, single points of failure, and security risks.

. To develop the network topology for traffic analysis using an SDN controller.

Create a representative network topology simulation of the real world with
heterogeneous traffic and network link attributes.

Use the SDN controller as a single authority that monitors the network traffic.
Implement components to simulate different traffic patterns (e.g., high traffic
loads, dynamic routing, and heterogeneous flows).

Ensure the topology supports extensibility for adding new features or
modules for traffic analysis.

Integrate mechanisms to collect flow-level data and monitor network
performance metrics such as throughput, delay, and packet loss.

. To propose a framework and analyze the performance of the developed network
topology using the Ryu controller.

Design a novel traffic analysis framework that leverages the programmability
and flexibility of the Ryu controller.

Incorporate intelligent features, such as machine learning algorithms or
anomaly detection techniques, to enhance traffic analysis capabilities.
Optimize the framework for scalability, real-time processing, and low
overhead in large and dynamic network environments.

Deploy the framework within the developed topology to analyze and manage
traffic efficiently.

Test and fine-tune the framework’s performance by simulating real-world
scenarios, including high traffic volumes and security threats.

. To evaluate the performance of the proposed framework based on execution
parameters and perform a comparative analysis with the existing framework.

Define key performance metrics for evaluation, such as throughput, latency,
resource utilization, scalability, and detection accuracy.

Conduct experiments to measure the performance of the proposed framework
under varying network conditions (e.g., load variations, attacks, and dynamic
routing changes).

Compare the results of the proposed framework with those of existing
frameworks, highlighting improvements in performance and efficiency.
Identify any trade-offs or limitations of the proposed framework and discuss
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potential solutions for overcoming them.

e Summarize the findings to demonstrate the effectiveness of the proposed
framework and its contributions to SDN-based traffic analysis research.

1.6 Key Contribution of Research Work

The research presented in this thesis addresses critical challenges in SDN and Traffic
analysis, offering novel solutions through comprehensive design, implementation,
and evaluation. The key contributions of this work are outlined below, each reflecting
a significant advancement toward achieving the research objectives. These
contributions collectively highlight the originality, technical depth, and practical
relevance of the proposed framework.

A. Comprehensive Review of Existing Solutions:
e Analysis of existing approaches and frameworks for network traffic analysis
in an SDN-based environment.
e Identified the limitations of traditional approaches, such as scalability
bottlenecks, high latency, and inadequate handling of dynamic traffic
patterns.

B. Development of a Realistic Network Topology for Traffic Analysis:
e Developed and realized simulation settings that accurately reflect the real-
world scenario, such as different traffic conditions and high-load situations.
e Integrated an SDN controller as the central traffic management and
monitoring element for granularity over traffic analysis.

C. Proposal of a Novel Traffic Analysis Framework:
e Designed a scalable, efficient, and secure framework for network traffic
analysis using the Ryu SDN controller.
e Integrated advanced features such as real-time analytics and an intelligent
traffic management mechanism to address existing limitations.

D. Performance Evaluation Based on Key Metrics:

e Evaluated the suitability of architectural features in multi-dimensional
network situations and in contrast with traditional measures and judgments
composed of latency, throughput, scalability, resource allocation, and
detection rate.

e Empirically verified hypothesis under real conditions through
experimentation results (for example, higher sampled throughput under
potential security risk and high load).

E. Comparative Analysis with Existing Frameworks:
e Developed and realized simulation settings that accurately reflect the real-
world scenario, such as different traffic conditions and high-load situations.
e Integrated an SDN controller as the central traffic management and
monitoring element for granularity over traffic analysis.

F. Advancement of SDN-Based Traffic Analysis Research:
8



e Contributed to the study of the SDN community on some major traffic-
monitoring issues such as controller overhead, decision-making, and security
loops.

e Suggested an adaptive framework that could be further customized and reused
to roll out facilitated changes to expected and new requirements and
situations.

G. Integration of Emerging Technologies:

e Considered the implications of modern technologies such as IoT, 5G, and
Edge computing in the design and implementation of the proposed
framework.

e Ensure that the proposed model can handle time-variant and diverse traffic in
the networks

1.7 Dissertation Organization

The thesis comprises six chapters that concisely and precisely describe the entire
study. Each chapter is summarised below:

Chapter 1: Introduction

In this chapter, research is introduced by presenting some of the main concepts in
Computer Networking and Software-Defined Networking (SDN). It traces the course
of computer networking from its historical roots to the networking models we are
accustomed to nowadays, based on SDN, which offers greater flexibility and
programmability. The chapter also presents how traffic analysis is utilized in network
management and operation, such as performance analysis, anomaly detection, and
security. It discusses the motivation for analyzing traffic using SDN controllers, as a
centralized approach with visibility of global information is an optimal method for
making dynamic decisions. This chapter discusses existing gaps in current traffic
analysis methods within an SDN environment and constructs the main problem that
this research will address. It concludes by stating the research objectives, which are
specific and define the boundaries of the research, and outlining the thesis content.

Chapter 2: Literature Review and Related Work

This section presents a comprehensive survey of the literature on SDN architecture,
traffic analysis, research studies on topology management, and controller
optimization. The chapter begins with a review of the SDN architecture and the
controller's role in initiating flows. For traffic analysis, the various types of traffic
analysis techniques from traditional networking and SDN are reviewed with respect
to their strengths and limitations. The chapter discusses different approaches to
topology design for traffic management and reviews how optimization techniques are
applied to aid a controller. Furthermore, a comparative analysis is conducted on
existing frameworks in SDN to benchmark applications and their outcomes.
Ultimately, the comprehensive review of the related literature reveals apparent
research gaps, providing a basis for proposing new, more effective frameworks.

Chapter 3: Topology-Aware SDN Environment Preparation and Traffic Profiling
9



Strategy

This chapter describes the methodology used in developing the proposed SDN-based
framework. It explains the research design and approach, justifying the choice of Ryu
controller due to its ease of use, open-source nature, and modularity. The technology
stack and simulators are described, followed by an explanation of how the SDN
network topology is constructed to replicate the physical nature of the real world. The
strategy of traffic modeling is elaborated by demonstrating how various traffic types
with different flow patterns are generated. The metrics of latency, jitter, throughput,
and packet loss are defined. The chapter finishes with an explanation of the
experimental design, as well as a validation plan, which is designed to ensure the
reliability and reproducibility of results.

Chapter 4: Design and Deployment of a Ryu-Based Intelligent Traffic Analysis
Framework

In this chapter, we examine the internal structure, some components, and details of
how the proposed framework can be implemented. This describes the framework,
including its high-level design and key modules, such as flow monitoring, data
collection, and flow rule management. We then discuss the implementation of the
Ryu controller and how traffic on it was analyzed in real-time, allowing for real-time
decisions or interventions based on analytical traffic data. We next explain the
rationale behind traffic statistics collection and the application of flow control
policies, followed by technical details on how to implement and configure them. This
chapter is one demonstration of how the intelligent traffic analysis mechanism
operates in a dynamic SDN environment.

Chapter 5: Performance Evaluation of the Proposed SDN Framework and
Comparative Benchmarking

The experimental results in this chapter provide a detailed evaluation of the proposed
framework. The topology and testing environment used for simulation are described,
followed by specific test scenarios based on the defined traffic conditions and use
cases. Several key performance indicators are measured based on latency, jitter,
throughput, and packet loss. Measurements of these metrics are presented and
illustrated using graphs and tables. The results are analyzed to demonstrate that the
proposed framework shows the most promise for the implementation duration.
Additionally, the proposed framework is compared to the current SDN-based
solution, highlighting that optimized performance is an advantage. The chapter
concludes with a summary of key findings and observations from the experiments.

Chapter 6: Conclusion, Future Scope, and Social Impact

The experimental results in this chapter provide a detailed evaluation of the proposed
framework. The topology and testing environment used for simulation are described,
followed by specific test scenarios based on the defined traffic conditions and use
cases. Several key performance indicators are measured based on latency, jitter,
throughput, and packet loss. Measurements of these metrics are presented and
illustrated using graphs and tables. The results are analyzed to demonstrate that the
proposed framework shows the most promise for the implementation duration.
Additionally, the proposed framework is compared to the current SDN-based
10



solution, highlighting that optimized performance is an advantage. The chapter
concludes with a summary of key findings and observations from the experiments.

1.8 Chapter Summary

This chapter presented an overview of the research background, focusing on the
evolution of SDN as a transformative approach to modern network management. It
discussed the motivation behind decoupling the control and data planes, enabling
centralized programmability and dynamic traffic handling. The chapter emphasized
the growing importance of intelligent controllers, such as Ryu, in addressing
traditional networking challenges, including scalability, congestion, and limited
adaptability. Furthermore, it highlighted the relevance of SDN in emerging domains
such as cloud computing and the IoT, where efficient traffic analysis and routing are
critical for performance optimization.

The chapter also outlined the problem statement, research objectives, and scope of
the study, setting a clear direction for the proposed work. It identified the key
limitations in existing SDN-based routing and traffic management frameworks,
particularly in terms of network lifetime, load balancing, and flow optimization. The
need for a novel intelligent traffic analysis framework was justified to enhance
network efficiency and security. Overall, the introduction established the foundation
and rationale for the research, guiding subsequent chapters toward the design,
implementation, and evaluation of the proposed SDN framework.
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CHAPTER 2

LITERATURE REVIEW

This chapter studies and analyzes how to integrate recent developments in SDN from
traffic analysis, network topology design, and performance from the controller
perspective. With the trend towards ever larger and more complex networks, SDN
has become a game-changing concept that enables traffic management to be centrally
managed more smartly and dynamically. A comprehensive literature review has been
conducted to gain a deeper understanding of existing work. The review is organized
into six sections, each covering an essential aspect of SDN-based traffic analysis.
These classifications are as follows: (1) generic information on SDN architectures
and controllers; (2) traffic-analysis techniques for both traditional and SDN-based
network environments; (3) network topology design and any influence by this design
on the traffic analysis process; (4) performance optimisation strategies based on the
SDN controller; (5) comparison of different SDN frameworks; and, finally, our
observations enable us to identify trends in existing research. With this structure, we
can map the history of developed solutions in the domain and point out limitations
and open problems of existing frameworks. These observations form the basis for the
motivation and design of the proposed topology-aware, Ryu-based intelligent traffic
analysis approach, which is discussed in later chapters.

2.10verview of SDN Architecture

The need for dynamic, scalable, and programmable network management has
significantly altered the SDN landscape in recent years. The early seminal work [10]
gave an overview of the fundamental ideas on SDN architecture and promised to
minimize network complexity and improve network flexibility. This work was a
stepping stone in understanding the potential of SDN to facilitate network innovation
as depicted in table 2.1. Likewise, [11] presented an overview of the SDN and
OpenFlow standards, critically analyzing their problems related to scalability. Their
research highlighted the interoperability problem between SDN nodes and introduced
a more liberal model to solve these problems in large-scale networks, ensuring they
function correctly. As SDN gained popularity, the importance of OpenFlow as a
standardized southbound interface was reiterated in [12]. Their work established
OpenFlow's position within the SDN system and described how it can support flow-
level programmability, centralizing the management of network switches.
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McKeown's research has guided much subsequent work in SDN, particularly in the
areas of flow control and traffic management.

In 2021, the author [13] examines the cloud and data center applications of SDN
from the perspective of its impact on performance metrics, including latency and
throughput. Their work also demonstrated how SDN’s centralized control could help
optimize resource utilization in such settings. Another example is the hybrid SDN
controller [14], which presents a mixed SDN controller that combines centralized
control and distributed control planes to enhance scalability and responsiveness in
large, mature SDN architectures. The roles of the switches in traffic shaping and their
interaction with controllers were surveyed in [15]. Their contrast of various SDN
controller architectures was revealing about the potential gains that real-time network
management and troubleshooting would offer for each type. More recently, the
combination of SDN with emerging technologies such as Al and 6G networks has
been the subject of investigation [16]. Al-centric SDN controllers would be dynamic
to fluctuations in traffic patterns and enhance network robustness, especially within
6G and beyond networks. [17] Also investigated different SDN controllers, such as
Ryu, ONOS, and OpenDaylight, concentrating on examining their throughput for
real-time networking. The use of SDN in edge and fog computing environments was
studied by [18], who analyzed its role in reducing latency and optimizing traffic flow
in such highly distributed networks. Their results emphasised the importance of SDN
to overcome these challenges primarily in edge and fog computing, which require
low-latency communication for high throughput. Lastly, the author [19] introduced a
cross-layer SDN model that bridges flow-based information with application-level
statistics to achieve finer-grained traffic policy enforcement and decision-making at
runtime. Their method is the next step for SDN evolution, and performance of the
network can be enhanced further by a higher-order policy-aware traffic management.

Overall, the evolution of SDN has broadly focused on improving scale, real-time
control and incorporating future technologies. Starting with the early work done in
OpenFlow and SDN architectures to the more recent additions involving Al, ML,
etc., extending till cross-layer integration developments, it is clear that SDN has
come a long way towards being an extraordinary tool for orchestrating hyper-modern
network infrastructures.

Table 2.1: Summary of Recent SDN Architecture Research and Developments

Year  Authors Approach Focus Area Key Findings
2018 Kreutzet  Comprehensive SDN Concepts and Highlighted SDN's promise to
al. [10] Survey Architectures reduce network complexity

and enable innovation.

2019  Nuneset Survey & SDN and OpenFlow Identified scalability
al. [11] Framework Analysis  Standards challenges and gaps in existing

SDN architectures.

2020 McKeow  Protocol OpenFlow in SDN Standardized southbound
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netal. Specification Systems interface, enabling
[12] programmability at the flow
level.
2021  Zenget Performance SDN in Cloud and Data Evaluated SDN's impact on
al. [13] Evaluation Centers performance, focusing on
scalability and latency.
2021 Lietal Architecture Review  SDN Controllers and Introduced a hybrid model for
[14] Network Design SDN controllers, enabling
cross-domain control.
2022 Jainetal.  Survey and SDN Switches and Examined the role of SDN
[15] Comparison Controllers switches in enhancing traffic
management and control.
2023  Al-Mousa  Al-Driven Approach  6G and Future SDN Focused on integrating SDN
etal. [16] Networks with Al for adaptive traffic
control in future networks.
2024 Kalita & Controller Real-Time Networking A detailed comparison of
Sarma[17 Comparison in SDN popular SDN controllers (Ryu,
ONOS, OpenDaylight) was
provided.
2024 Xicetal. SDN Architecture SDN for Edge and Fog Evaluated SDN’s effectiveness
[18] Evaluation Computing in edge and fog computing,
addressing latency issues.
2025 Guptaet Cross-layer SDN for Policy-driven Integrated flow-level and
al. [19] Integration Network Management application-layer metrics for

granular traffic analysis.

2.2 Traffic Analysis Techniques

Network traffic analysis is a key enabler for network management to observe,
inspect, and understand data flows in the networks in terms of performance
enhancement, security enforcement, and policy fulfilment. In conventional network
environments, traffic analysis is frequently conducted using tools and protocols such
as NetFlow, SNMP and packet sniffers to obtain a snapshot of traffic metrics like the
bandwidth consumption, the number of flows and application level behavior.
However, these approaches are constrained by the decentralized architecture of
traditional networks and therefore have limited visibility and scalability in real-time
or dynamic environments.

Since the emergence of SDN, flow monitoring has become more intelligent and
centralized. SDN controllers provide a global network perspective, enabling fine-
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grained, programmable monitoring of network flows. Various methods of traffic
analysis are studied thoroughly by the researchers, including traditional one and SDN
based one, with a trend towards the latter method for its flexibility and synergy with
AI/ML is shown in table 2.2. In 2018, Yu et al. [20] also introduced a hybrid traffic
classification system, where statistical features and machine learning are used to
analyse the encrypted traffic in conventional networks, showing an emerging
complexity of flow behaviours. Jain and Kumar [21] proposed a signature-based
intrusion detection model to enforce security by analyzing the behavior of legacy
system traffic. Such approaches suffered from poor scalability and were not flexible
enough for changing network topologies. The tendency for SDN-facilitated traffic
analysis then started gaining momentum in works such as Wang et al. [22], who used
OpenFlow-enabled flow monitoring for real-time DDoS attack detection based on
control messages. The deep learning-based model combined with the SDN controller
for dynamic traffic classification and anomaly flow detection was also introduced by
Rathore et al. [23] in the same year. In 2021, Zeng et al. [24] presented a controller-
centric architecture for profiling dynamic traffic patterns within data centers to
optimize throughput and detect anomalies. Wang et al. [25] emphasized the
significance of traffic flow scheduling through traffic engineering algorithms in
SDN-based enterprise networks. Newer works continue to improve the precision and
effectiveness of SDN traffic analysis. For example, Elmasry and Ali [26] presented
an ONOS-integrated, rule-based traffic detector with fuzzy logic-based load
balancing and prioritization. Likewise, Adikari and Kumbhar [27] proposed a hybrid
traffic classifier applied to the SDN architecture that used convolutional neural
networks for encrypted and obfuscated traffic detection. In 2024, Anwar et al. [28]
proposed an edge-assisted SDN architecture with reinforcement learning-based traffic
flow control and bandwidth optimization that overcomes scalability issues. Most
recently, Gupta et al. [29] proposed a cross-layer policy-aware traffic analysis model
that constructs the mapping between flow-level data from SDN switches and
application-layer metrics to increase resolution in making decisions.

All these works together demonstrate a transition from passive, isolated traffic
analysis on traditional networks to more active, more intelligent, and involved
controller approaches in an environment where SDN prevails. Existing systems for
identifying anomalies in SDN are often not real-time, elastic, or designed for specific
problems like DDoS detection, and struggle with performance measurement across
topologies; this creates a demand for a generic, customizable, and performance-
oriented framework for traffic analysis in SDN.

Table 2.2: Overview of Traffic Analysis Techniques in Traditional and SDN-Based Networks

Year Authors Approach Focus Area Key Findings
2018 Shukla et al. Hybrid (Statistical ~ Traffic Improved accuracy in
[20] + Deep Learning)  Classificatio  identifying flow types using
n in SDN hybrid models.
2019 Zhao & Chen  Flow Rule DDoS Detected attacks faster than
[21] Inspection Detectionin  legacy IDS by analyzing flow
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SDN rules.
2020 Amin et al. Real-time Enterprise Used OpenFlow counters for
[22] Monitoring Network live anomaly detection.
Traffic
2020 Zhang et al. Machine Learning  Encrypted Used metadata for
[23] Traffic classification, overcoming
Classificatio  payload encryption challenges.
n
2021 Das & Roy Lightweight IoT-SDN Reduced overhead while
[24] Detection Environment  detecting traffic surges
Framework s effectively.
2021 Chaudhary & Survey and SDN Classified methods based on
Mahajan [25] Categorization Intrusion detection strategy and collection
Detection points.
Techniques
2022 Qadir et al. Modular Flow Anomaly Developed plug-and-play
[26] Log Analysis Detection modules for controller-level
with Ryu traffic analysis.
2022 Lietal. [27] Reinforcement Traffic Enabled adaptive routing
Learning Prediction &  through learned traffic behavior.
Routing in
SDN
2023 Ahmad et CNN-LSTM Encrypted Achieved high accuracy on
al.[28] Deep Learning Traffic in encrypted data classification in
SDN real time.
2025 Tanveer & Topology-Aware  Adaptive Tailored monitoring based on
Rahman [29] Analyzer Traffic dynamic topologies and
Monitoring congestion patterns.

2.3 Network Topology Design and Its Impact on Traffic Analysis

Network structure significantly influences the performance and efficiency of any
networking environment and is more relevant in the context of SDN. The design and
configuration of the network topology, therefore, determine the behavior of the
traffic. The effect of network topology on traffic analysis for SDN systems has
received significant research attention due to the requirement of high-throughput
networks and real-time traffic control. In SDN, a programmable programming model
is achieved by network operators who have power over traffic paths to a central
controller, motivating designers to create topologies that support optimal traffic
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flows, scale well, and provide fault tolerance. In the remainder of this section, we will
highlight some key studies on network topology mapping and its relationship with
traffic analysis. The thematic Categorization of SDN Topology Designs and their
Impact on Traffic Analysis is represented in Table 2.3.

2.3.1 Topology Design: Foundation and Challenges

The seminal work on SDN topology design focused on understanding the impact that
different configurations might have on managing and analyzing network traffic.
Sharma and Kumar [30] investigated topology design in SDN, emphasizing that
network topology significantly affects traffic distribution, latency, and throughput of
the network. Their work demonstrated that the efficient SDN topologies applied here
alleviate the frequent issues caused by centralized control, resulting in a significant
improvement in network performance. Also, Al-Fares and Rehman [31] studied the
impact of network topologies on traffic flow in SDN. They concluded that
minimizing traffic bottlenecks can be achieved by selecting a topology that facilitates
better scalability and resource allocation. They deduced that the creation of dynamic
topologies can alleviate the problems and increase network efficiency. Zhang and Li
[32] also studied the performance evaluation for SDN, pointing out that topology
design is a core factor of traffic inspection. The paper examined how SDN can adapt
traffic paths according to the topology settings, which enables load balancing. They
discovered that SDN topologies designed with particular applications of traffic
analysis in mind could effectively reduce both latency and throughput.

2.3.2 Traffic Analysis and Topology Control in SDN

The traffic analysis methodologies in SDN are an essential field of study, and
topology planning is also associated with how flexibly the traffic can be controlled
across the whole network. The problem is how to propose topologies on which real-
time traffic analysis can be run efficiently. Kaur and Singh suggested the use of
modular SDN topologies for improved traffic handling and network scaling. Their
method demonstrated how to optimize traffic patterns while dynamically designing
the topology to minimize network congestion and enhance traffic analysis efficiency.
Kumar and Pandey [34] discussed the influence of topology on traffic load
distribution in SDN. They claimed that SDN’s “topological agnosticism” leads to an
optimal traffic routing, but such optimality is conditioned upon network topology. A
proper construction of the topology facilitates more efficient load sharing, resulting
in fewer packet drops and negligible latency. Their results demonstrate that the
network's topology must be adapted to its traffic characteristics to maintain good
performance.

2.3.3 Performance of SDN Topologies in Data Center and Cloud
Environments

Network topology provides effective traffic control in massive data centers and cloud
applications. Xiao and Liu [35] examined the impact of topology-aware traffic
analysis in SDN, focusing on cloud computing applications. They studied the
flexibility of SDN in responding to dynamic traffic conditions by analyzing real-time
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network topologies. This inspired them to investigate the potential of combining
dynamic topology reconfiguration with traffic engineering approaches to improve
data center operations and reduce congestion. Likewise, in [36], Ahmed and Hussain
explored the concept of ‘resource-efficient’ SDN topologies for clouds based on
traffic analysis to route the flows with minimal setup time and also balance loads.

2.3.4 Optimizing Traffic in 5G and Edge Networks using SDN
Topologies

SDN deployments in 5G networks and edge computing infrastructure have reignited
interest in task-based optimization of network topology for low-latency and high-
throughput traffic analytics applications. Wang and Li [37] investigated SDN-based
topologies for efficient traffic patterns in 5G networks, taking into account network
slicing and service chaining. They found that SDN's ability to control the network
centrally facilitates effective traffic management; this is critical as we seek ways to
accommodate 5G and an increasingly loT-driven edge. This was also corroborated by
Huang and Zhang [38], who studied traffic analysis in 5G SDN topologies, stating
that dynamic topology control enables SDN to meet the growing requirements of
emerging networks.

2.3.5 Recent Trends and Advanced Topology Solutions

Dynamic topology and Al-based methods are becoming popular in recent studies.
Patel and Desai [39] considered the use of hierarchical SDN topologies for efficient
traffic distribution in multi-layered network settings. Their work highlighted that
SDN controllers can automatically adjust topologies to enhance traffic analysis with
Al and machine learning algorithms. Furthermore, Singh and Agarwal [40]
investigated dynamic topology changes in hierarchical SDN-based networks,
advocating for topologies that accommodate real-time traffic analysis, which could
significantly increase network efficiency and improve performance.

2.3.6 Topology Design for Optimized Traffic Management

SDN topology design for smart cities is a compelling topic of investigation. Khan
and Ahmed [41] proposed novel SDN topology designs to optimize traffic routing in
intelligent city networks. The authors concluded that smart cities can achieve
substantial benefits in managing traffic flow, reducing congestion, and enhancing
real-time monitoring through the integration of traffic analytics tools into SDN's
architecture.

Table 2.3: Thematic Categorization of SDN Topology Designs and their Impact on Traffic

Analysis
Thematic Author(s) & Network Topology Focus Traffic Analysis
Category Year Environment Contribution
Baseline Sharma & Kumar  General SDN Standard Linked topology to
Topology & (2020) [30] topologies (tree, traffic latency and
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Performance mesh) throughput metrics
Metrics Zhang & Li General SDN  Performance Compared traffic
(2020) [31] evaluation efficiency across
framework multiple topologies
Scalability Al-Fares & Enterprise Scalable Demonstrated
and Rehman (2020) SDN topologies reduced congestion
Modularity [32] and improved flow
control
Kaur & Singh Large-scale Modular topology  Optimized traffic
(2021). [33] SDN structures flow in modular
topologies
Load Kumar & Pandey =~ WAN SDN Load-balanced Improved routing
Balancing & (2021) [34] topologies with reduced packet
Fault loss
Tolerance Patel & Desai Hierarchical Multi-layered Better load
(2023) [35] SDN topology distribution and
failover capabilities
Cloud & Data  Xiao & Liu Cloud SDN Topology-aware Achieved high
Center (2022) [36] adaptive design responsiveness in
Optimization cloud-based traffic
Ahmed & Data Center Resource-efficient ~ Enhanced link
Hussain (2022). SDN topology utilization and
[37] reduced idle links
Edge and 5G  Wang & Li 5G/Edge SDN  Adaptive and Minimized delay in
Networks (2022) [38] sliced topologies service chaining and
traffic isolation
Huang & Zhang 5G SDN Latency- Enabled high-speed
(2023). [39] optimized traffic classification
dynamic design in 5G
Dynamic Singh & Agarwal  Hierarchical/S  Real-time Traffic-based
Topology (2024) [40] mart SDN adaptive topology shifting
Management topologies improves real-time
performance.
Khan & Ahmed Smart City Intelligent routing  Enabled real-time
(2025). [41] Infrastructure topologies monitoring and

routing in smart cities
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2.4 SDN Controller-Based Performance Optimization Strategies

Over the past few years, several studies have attempted to utilize the SDN controller
to optimize various performance metrics, including latency, throughput, energy
efficiency, and fault tolerance, as shown in Table 2.4. For example, Chatterjee and
Das introduced a multi-threaded controller architecture in 2021 that reduces the flow
setup time by distributing processing tasks across controller cores, resulting in lower
latency in high-throughput data centers. In a similar setting, Lee et al. proposed a
lightweight controller-to-controller communication frame in the same year to
minimize inter-controller latencies in a distributed-state architecture. Wang and
Huang developed a controller-assisted scheduling plan in the same year to redirect
traffic away from a hotspot on the fly, thereby boosting bandwidth usage in large-
scale networks. Furthermore, in the same year, Sahu et al. proposed a machine
learning-based controller for intelligent QoS enforcement, which utilized machine
learning models to predict and delete flow bursts in real-time. By 2023, research was
focusing on bright orchestration. Kumar and Singh introduced a multi-layer SDN
control plan consisting of local and global CDNs, which reduces command overhead
and enhances error accommodation. On the other hand, Mehmood et al. utilized deep
reinforcement learning in the SDN controller to autonomously adjust routing policies
based on prior knowledge and current conditions. Zhou et al. provided a framework
for scheduling controllers based on latency for 5G networks to guarantee minimal
jitter in real-time operations. Furthermore, in 2025, Ali and Rahman proposed a
model SDN controller that more effectively distributes traffic among controller nodes
to reduce delay. In 2025, Nguyen and Patel introduced a blockchain-enabled SDN
controller that boosts trust in distributed networks without compromising
transmission levels. Finally, Rana and Igbal introduced a link-state prediction plan in
2026 that helped controllers predict and route around upcoming link failures. All of
this research highlights the potential for optimization through augmentation of the
controller architecture and intelligent algorithms.

Table 2.4: Categorized Strategies for SDN Controller-Based Performance Optimization

Theme Study (Author, Optimization Proposed Strategy Key Outcome
Year) Focus
Latency Chatterjee & Das ~ Flow setup time Multi-threaded SDN Reduced latency in
Optimizati  (2021) [42] controller architecture high-flow networks
on
Zhou et al. Latency-sensitive Real-time task Achieved low jitter
(2024). [43] scheduling prioritization in 5G and delay
SDN networks
Load Lee et al. (2021) Inter-controller Lightweight distributed ~ Minimized inter-
Balancing [44] communication control architecture controller delay
Ali & Rahman Controller Even distribution of Reduced
(2024) [45] clustering control requests bottlenecks and
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improved control

plane efficiency

Congestion  Wang & Huang Congestion Dynamic traffic-aware  Increased
Avoidance  (2022) [46] rerouting controller scheduling bandwidth
utilization and
reduced drops
QoS Sahuetal. (2022)  Real-time traffic Al-based predictive Improved QoS and
Assurance [47] prediction model for SDN responsiveness
controller
Fault Kumar & Singh Fault recovery Hierarchical controller ~ Faster failover and
Tolerance (2023) [48] segmentation recovery
Rana & Igbal Link failure Al-based fault-tolerant ~ Decreased packet
(2025) [49] prediction routing within the loss
controller
Intelligent ~ Mehmood et al. Adaptive routing DRL-based controller Optimized path
Routing (2023) [50] decisions selection under
dynamic load
Security & Nguyen & Patel Secure control Blockchain-integrated Enhanced trust in
Trust (2025) [51] signaling SDN controller multi-domain

control

2.5 Comparative Analysis of Existing SDN-Based Frameworks

Within a short span, SDN has matured into a plethora of frameworks with specific
intent addressing anything from traffic analysis to anomaly detection, performance
improvement, or intelligent routing. Each of these frameworks is collaboratively
integrated with SDN controllers, such as Ryu, ONOS, or OpenDaylight, and provides
its own specialized monitoring, control, or security features. Nonetheless, these
frameworks differ considerably in terms of design, flexibility, scalability,
responsiveness, and the level of traffic insight provided. In this section, we present a
review of the literature and offer comparative metrics to assess its advantages,
shortcomings, and relevance to traffic analysis and performance assessment, as
shown in Table 2.5.

2.5.1 Early-Stage Frameworks and Flow-Level Visibility

Early SDN frameworks primarily focused on demonstrating the feasibility of SDN
and addressing basic network manageability and control issues. Kreutz et al. [52]
provided an initial comprehensive survey of SDN frameworks, classifying design
architectures by functional layers and architectural components. Nunes et al. [53]
studied and juxtaposed the control plane performance of various open-source control
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platforms, but were unable to construct comprehensive frameworks. Kassler et al.
[54] developed an early SDN security framework that used anomaly detection
modules for an ONOS controller, testing the framework for threat detection in a
research lab. During this time, Kim and Feamster [55] investigated modular control
in SDN architecture and made other observations about design trade-offs related to
scalability and programmability.

2.5.2 Scalability and Controller Performance

As SDN matured in larger contexts, scalability emerged as a significant challenge.
Tootoonchian and Ganjali [56] introduced HyperFlow, a distributed control system
designed to streamline the synchronization of multiple controllers, while logically
centralizing control. Arslan et al. [57] presented DynaSDN, an elastic control
framework that dynamically adapts control boundaries to balance network traffic.
Zhang et al. [58] analyzed FlowVisor and other network slicing frameworks,
primarily used for analyzing multi-tenant traffic. In 2021, Raza and Khokhar
proposed FlexiSDN, which improved performance in wide-area environments by
decoupling the data plane from a multi-instance control plane [59]. While Igbal et al.
surveyed real-time traffic frameworks, they observed that most frameworks lacked
built-in traffic intelligence, especially in dynamic topologies [60].

2.5.3 Traffic Management and Intelligent Integration

As network traffic became increasingly complicated, more intelligent SDN
frameworks were created. Siddiqui et al. [61] proposed SmartSDN, which integrates
deep packet inspection (DPI) for traffic classification through a plug-in module for
ONOS. Mahmood and Hassan [62] proposed AlFlow, which is a traffic prediction-
based framework for congestion avoidance. Nguyen et al. [63] evaluated multiple
frameworks, including OpenDaylight, ONOS, and Ryu, to compare their ability to
accommodate video streaming and VolIP workloads. Thapa and Lee [64] put forward
QoS-SDN, an SDN framework that dynamically allocates bandwidth based on real-
time flow analysis.

2.5.4 Framework for Emerging Environments

As SDN has been adopted in edge, [oT, and 5G networks, several frameworks have
been developed to address new challenges, including latency, mobility, and
distributed intelligence. Rahman et al. [65] proposed Edge Flow, a distributed SDN
framework that incorporates controller placement methods for edge computing. Zhao
and Wang [66] introduced MobSDN, an optimized architecture for mobile and
vehicular networks with adaptive controller synchronization. Alzahrani et al. [67]
benefited from asset-based decision-making over reputation-based decision-making
in a distributed SDN architecture by developing SecuSDN, which utilized blockchain
to enforce secure policy compliance in multi-domain architectures. Qureshi and Tariq
[68] presented Green SDN, an energy-aware framework designed to minimize
controller overhead in both physical and virtual power-constrained networks. Tan et
al. [69] not only presented AICtrl, a modular SDN framework that resembles AIB-
CTRL in comparison to various Al-based SDN frameworks, but also facilitated

federated learning-based decision-making in multi-cloud environments. Bhardwaj
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and Kapoor [70] introduced Hybrid QoS-SDN, which incorporated statistical and Al-
based mechanisms for QoS optimization in IoT-SDN deployments. Chen et al. [71]
conducted a benchmark study across 12 frameworks and identified the most
significant gap as the differing approaches to support dynamic topologies.

2.5.5 Recent Advances in Cross-layer and Self-optimizing
Frameworks

Current frameworks focus on the convergence of SDN facilities with intelligent
optimization in cross-layer approaches. Gupta et al. [72] introduced CrossSense, a
controller-centric framework that incorporates application-level metrics into flow-
based traffic decisions. Ahmed and Sinha [73] proposed AutoSDN, a self-learning
controller framework that modifies the flow rules based on historical congestion
metrics. Iqra et al. [74] introduced Fail-Safe-SDN, which implements predictive
algorithms to reroute traffic based on the forecasting of link failures. Bai and Yu [75]
proposed Quantum SDN, which investigated the potential of integrating quantum
encryption in SDN-based control planes for ultra-secure networks. Liu and Zhou [76]
surveyed a sample of 25+ frameworks and concluded that, although the intelligence
of traffic has improved, the flexibility of controllers, performance benchmarking, and
scalability across topologies continue to be areas of focus.

The review of the frameworks presented above indicates that we are incrementally
maturing the architecture of the frameworks, most notably in the modularity of
controllers and the integration of AI. However, no out-of-the-box solution provides
robust traffic analysis, ensures optimal performance, and adapts to various network
conditions. The research proposes to reconceptualize the gaps in current frameworks
by developing a scalable, traffic-aware SDN framework with intelligence at the
controller layer that accommodates dynamic topologies.

Table 2.5: Comparative Analysis of SDN-Based Frameworks

Yea  Frame Authors Use Case Evaluatio Notable Key Limitations
r work / Domain n Method Outcome Features / Focus

Study
Name

2018 SDN Kreutz et General Literature Foundational Defined  No focus on
Survey  al.[52] Architecture ~ Review SDN layered performance
& layeringand ~ SDN or
Archite modular architect  scalability
cture concepts ure

2018 SDN Nunesetal. Controller Survey & Clarified Compara  No real-time
Contro  [53] Design Compariso  controller tive load testing
ller n structures controlle
Survey r analysis
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2019 ONOS Kassleret Security Prototype Improved Anomaly  Security-
Securit  al. [54] & real-time detection  focused, not
y Simulation  threat in SDN traffic
Extensi detection in optimization
ons ONOS
2019 Modul Kim& Scalability Simulation  Flexible Modular  Scalability
ar Feamster modular control untested
SDN [55] controller logic
Contro deployment
1
2020 Hyper Tootoonchi Distributed Emulation  DistributYet  Avoidsa  Overhead
Flow an & Control logically single for state
Ganjali centralized point of  sync
[56] control failure
2020 DynaS Arslanet Adaptive Emulated Load-based =~ Dynamic Tested only
DN al. [57] Control Network dynamic controlle  in simulated
control r setups
regions regioning
2020 FlowV  Zhangetal. Network Simulation  Enforced Supports  High
isor [58] Slicing flow space tenant- resource
Evalua isolation for  level consumptio
tion multi- isolation  n in peak
tenancy loads
2021 FlexiS Raza & Elastic Simulation ~ Adaptable Dynamic  No real-time
DN Khokhar Topologies control plane  topology  reconfigurat
[59] elasticity responsiv  ion
eness
2021 Real- Igbaletal.  Performance  Empirical Comparative  Benchma No Al
Time [60] Benchmarki real-time rked integration
Contro ng controller ONOS,
ller analysis Ryu, and
Analys Floodlig
is ht
2022 SmartS Siddiquiet Al & DPI Simulation  Traffic DPI- Introduced
DN al. [61] visibility enabled packet delay
through DPI  smart
routing
2022 AlFlo  Mahmood Al for Simulation  Trafficload  Al- Adaptability
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w & Hassan Prediction balancing assisted to diverse
[62] using Al traffic networks
routing
2022 Contro Nguyen et Multimedia Experimen  Multimedia Performa  Narrow
ller al. [63] QoS tal Setup (VolP, nce- scope (only
Compa Video) focused multimedia
rison controller metrics flows)
performance
2022 QoS- Thapa & Quality of Simulation ~ Adaptive Real- Scalability
SDN Lee [64] Service bandwidth time not tested
allocation resource
manage
ment
2023 EdgeFl Rahmanet Edge SDN Simulation = Reduced Edge Policy
ow al. [65] latency computin  complexity
through g
edge-level integratio
decisions n
2023 MobS  Zhao & Mobile Simulation  Controller Sync Not optimal
DN Wang [66]  Networks sync in protocols  for static
mobile for networks
scenarios mobility
2023 SecuS  Alzahrani Security Blockchain  Immutable Decentra  Latency in
DN et al. [67] Simulation  policy lized validation
enforcement  security
using rules
blockchain
2023 GreenS Qureshi&  Energy Simulation ~Power-aware  Energy- Performance
DN Tariq [68] Efficiency controller saving trade-offs
design control
distributi
on
2024 AICtrl Tanetal. Al with Simulation  Distributed Federate  High
[69] Federated learning in d Al training
Learning SDN training complexity
in SDN
2024 Hybrid Bhardwaj QoS with Lab-Based Intelligent Multi- Controlled
QoS- & Kapoor ML Setup QoS through layer environment
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SDN [70] ML & QoS only
statistics handling
2024 SDN Chenetal.  Controller Empirical Evaluated 12 Extensiv  No hybrid
Bench  [71] Performance  Benchmar  controllers e cloud
markin ks across controlle  scenarios
g benchmarks r
performa
nce
insights
2025 CrossS Guptaetal. Cross-Layer  Simulation Dynamic Multi- Latencyina
ense [72] SDN traffic tuning  layer feedback
using cross-  coordinat  loop
layer ion
feedback
2025 AutoS  Ahmed & Autonomous  Reinforce Adaptive Self- Slow
DN Sinha [73] SDN ment rule tuning learning in
Learning optimization  network  unpredictabl
via RL behavior e traffic
2025 FailSaf Iqraetal. Reliability/  Predictive =~ Rerouting Preempti  Needs high
e-SDN  [74] Failure Modeling before ve failure  accuracy of
predicted manage models
failure ment
2025 Quantu Bai& Yu Secure Quantum Quantum- Quantum  Expensive
mSDN  [75] Traffic Simulation  safe traffic encryptio  hardware
Control routing n in SDN
2025 Meta- Liu& Comparative  Meta- Identified Synthesi  No
Analys  Zhou[76] Study Analysis gaps across zed experimenta
is 25 trends 1 validations
frameworks  from
2018 to
2025
2.6 Research Gaps

Despite the significant progress in SDN-based traffic management,

several

limitations persist in existing studies and frameworks. This research aims to address
the following key gaps identified in the recent literature:
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1. Comprehensive Review of Existing Solutions: Lack of Unified Traffic Analysis
Frameworks using Modern Controllers

* While recent works like CrossSense [72] and AutoSDN [73] introduced advanced
traffic tuning and autonomous rule learning, they do not integrate end-to-end traffic analysis
with controller-specific performance feedback.

» Existing frameworks often focus either on the controller’s learning capability or
traffic visibility, not both, creating a disconnect between traffic behavior and
controller adaptability.

2. Limited Evaluation of Controller Performance in Custom or Realistic Topologies
* Studies such as HybridQoS-SDN [70] and SDN Benchmarking [71] emphasize
controller performance but use generic or lab-constrained topologies.
* There is a gap in frameworks that design and evaluate custom network
topologies tailored to dynamic traffic analysis needs, particularly using open-
source controllers like Ryu.

3. Absence of Cross-Comparative, Executive-Driven Evaluation Models
+ Although Meta-Analysis by Liu & Zhou [76] reviews over 25 frameworks and
identifies performance patterns, it lacks hands-on experimental validation using
key execution parameters (e.g., throughput, delay, jitter).
* No current study bridges the gap between literature-wide synthesis and
controller-specific, real-time experimental evaluation.

4. Underutilization of Lightweight, Open-Source Controllers for Real-Time Traffic
Optimization
* Most recent frameworks [75] involve heavy computational setups or proprietary
elements that hinder reproducibility and scalability.
* A practical, lightweight framework using the Ryu controller is needed, which
supports rapid prototyping and real-time flow control.

5. Limited Focus on the Interplay between Topology Design and Traffic Pattern
Variability
* Works like FailSafe-SDN [74] and GreenSDN [68] look into fault resilience and
energy efficiency, but they do not explore how traffic-aware topology
adjustments can improve performance, especially under dynamic conditions.

2.7 Discussion and Overall Analysis

The literature has been uniformly arranged under six primary categories to cover
different aspects of SDN and its role in intelligent traffic analysis. These categories
are: (1) SDN architectures and controllers; (2) traditional and SDN traffic analysis
methodologies; (3) optimization by network topology design in the context of traffic
performance; (4) strategies that optimize with respect to the SDN controller
framework-based architecture; (5) benchmarking between existing frameworks; and
(6) research gaps.

It is found that SDN provides a robust, centralized, and programmable network
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control paradigm, whereby notable controllers such as Ryu, ONOS, and
OpenDaylight offer extensive functionalities for flexible network manipulation.
However, more research is based on static topology analysis instead of real-time
traffic and topology changes.

Nowadays, SDN traffic analysis is shifting away from packet- and flow-level
analysis to more intelligent controller-driven approaches. Moreover, most models are
not well-integrated with topology-awareness, so they are less valuable in cases such
as frequent topology changes and dynamically varying traffic loads.

2.8 Summary of challenges and solutions

The literature review thoroughly reviewed existing state-of-the-art methods and
frameworks related to Software Defined Networking (SDN), controller-based
performance mechanisms, topology designs, and monitoring techniques. The
comparative literature review demonstrated that SDN-related performance
optimization has progressed significantly in each of these areas; however, a
comprehensive framework that integrates intelligent monitoring, dynamic controller
placement, and topology-aware analysis was not found in any of the literature. This
chapter has therefore helped shed light on key areas of research gaps and aided in the
development of the Ryu-based intelligent traffic analysis framework. Below is a
summary of the considerable challenges identified and the potential solutions
proposed:

1. Limited Topology-Aware Traffic Monitoring

a. Problem: Most current SDN packet monitoring tools utilize static or
broadly applicable topologies that fail to adapt to the network context or
to reflect real-time traffic behavior dynamically.

b. Proposed Solution: The thesis proposes a topology-aware packet
profiling mechanism, which aligns packet flow management with the
underlying network structure. Specifically, custom topologies were
designed and tested for their impact on effective traffic monitoring
performance.

2. Lack of Integration between controller logic and traffic behavior

a. Problem: Multiple frameworks do not align the logic of SDN controllers
intelligently with real-time traffic behavior, resulting in inefficient flow
rule installations and slow responses.

b. Proposed Solution: A Ryu-based intelligent traffic analysis framework
has been created that combines traffic data collection, flow rule handling,
and policy enforcement so the controller can provide informed decisions
based on real-time profiling.

3. Insufficient Evaluation Metrics and Realistic Scenarios

a. Problem: Most studies offer a narrow performance evaluation based on a
couple of metrics that do not simulate real-world traffic scenarios.
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b. Proposed Solution: The thesis will use a broad set of evaluation
parameters compared in various conditions to evaluate the performance of
the framework more holistically.

4. Static Controller Placement and Lack of Adaptive Flow Control

a. Problem: A static deployment of SDN controllers or a single-controller
development restricts adaptability and a quick response to changes in the
network.

b. Proposed Solution: This proposal includes an intelligent approach to
controller-based traffic analysis in which the controller changes flow
entries and adapts to demands concomitant with an understanding of the
traffic impacts of the network topology.

5. Absence of Benchmarking with Modern SDN Frameworks

a. Problem: Various existing studies do not benchmark their outcomes
against strong baseline models, making it laborious to evaluate the validity
of their performance assessments.

b. Proposed Solution: The framework proposed is empirically compared and
contrasted against recently published highly cited SDN-based traffic
monitoring models, demonstrating improvements in efficiency, reductions
in packet loss performance, and enhanced adaptability.

6. Lack of Modular, Scalable Framework Designs
a. Problem: Numerous systems that exist today are monolithic and are unable
to extend or scale over different network environments modularly.
b. Proposed Solution: A modular framework is designed with clearly defined
functions for traffic analysis, flow control, and controller integration for
future enhancements and scalability.

2.9 Chapter Summary

The chapter provides a thorough review of the most recent literature on SDN, with an
emphasis on traffic analysis, network topology design, and controller optimization. It
summarizes the development of SDN architectures, including the concept of control
plane—data plane separation, and describes the key role played by controllers, such as
Ryu, in enabling programmability and centralized administration. The analysis
covers various networking tools and approaches used for analyzing network traffic
(both classic and SDN networks), including their strengths and limitations in terms of
scale, adaptability, and accuracy.

The chapter also examines how network topology impacts the efficiency of traffic
monitoring. It highlights that a significant portion of previous studies fail to
incorporate topology-aware approaches, which account for various changes in the
network. It also investigates SDN controller-based performance optimization
methodologies that trade-off between the integration of flow monitoring logic and
traffic control policies. A comparative analysis of available frameworks also
indicates that, in many cases, this progress is limited, and solutions exhibit
incomplete benchmarking coverage or are not modular enough to facilitate on-the-fly
adaptation.
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The research activity carried out so far presents relevant limitations, which justify the
emergence of gaps, such as the lack of topology-aware, intelligent frameworks, the
limited use of advanced monitoring techniques, and the evaluation of different
performance metrics. These results define the research gap and demonstrate the
justification for our proposed Ryu-enabled intelligent, topology-aware traffic analysis
framework, which mitigates the limitations encountered so far through its adaptive
design and comparative performance benchmarking.
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CHAPTER 3

TOPOLOGY-AWARE SDN ENVIRONMENT PREPARATION
AND TRAFFIC PROFILING STRATEGY

In this section, we describe the structured approach to building the test setup for our
proposed SDN-based traffic analysis framework. The design concept begins by
establishing a consistent research method that aligns with the goals outlined in
previous chapters. It subsequently determines the tools, simulation, and control
platforms that require support for the specific functionalities addressed. Of these,
particular weight is given to the choice of the Ryu controller due to its high level of
flexibility and ease of integration, as well as its demonstrated ability to monitor
traffic in real-time and manage flow.

With the technology stack set up, attention moves to building a realistic but flexible
SDN network topology. The topology should be able to embody various traffic
patterns, make flow control policies meaningful, and conduct the performance
evaluation of the framework across different types of networks [77]. As a result,
traffic modeling is an essential part, providing the capability to simulate various
scenarios, including high-load configurations, dynamic flow alterations, and
application-oriented requirements [78-79]. This ensures that the experimental
environment is as realistic as possible in terms of practical deployment scenarios.

At the end of this chapter, performance parameters and testing methods will be
introduced to validate our proposal. Observables like latency, throughput, jitter, and
packet loss are recognized as providing a comprehensive picture of system behavior.
We will also compare our results to the state-of-the-art, ensuring that the performance
is both internally consistent and relevant in a broader research context. This chapter
thus acts as a recipe, taking the form of a stepwise architecture to translate the
research design into a real-life SDN test platform that can be used to facilitate the
experimental and analytical processes of the study.

3.1Research Design and Methodological Approach

The experimental plan of this study is designed to organize all stages of the work,

including environment setup, execution, and analysis, in a linear manner that can be

easily repeated. Its approach is experimentally grounded and controlled, simulated,

and benchmarked in a topology-aware SDN. Optimizing the network setting. The
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primary goal is to establish a strict yet flexible network environment, allowing us to
conduct experiments with various traffic behaviors and performance fluctuations
resulting from different controller management approaches [80]. It begins with
describing system requirements and specifying the suitable technologies to fulfill
them. This includes selecting an SDN controller with modular support for custom
monitoring and dynamic flow rule enforcement, as well as APIs required for traffic
reporting and analysis [81]. The Ryu controller is chosen due to its Python
programming language, modular approach, and support for leading-edge simulators,
such as Mininet.

After selecting a controller, the research design proceeds to topology design, creating
alternative network designs that mimic real operational patterns. This encompasses
star, mesh, and hybrid topologies, designed to measure the impact of traffic,
connectedness of nodes, as well as path choice, on system performance [82]. Traffic
generation occurs in parallel via synthetic and application-aware traffic flows that
represent real workloads. The approach also emphasizes the importance of defining
performance metrics at an early stage to obtain coherent and comparable results.
Quantitative results focus on latency, throughput, jitter, and packet loss, whereas
qualitative observations are based on flow analysis and efficiency regarding policy
enforcement [83]. For each scenario, we are testing it in a repeatable manner to
ensure that the observed performance differences are due to the proposed framework
and not to settings outside of our control. This phased, structured approach provides
both the validity and reliability of the findings. The subsequent stages were the
structured methods employed in this study, with an expanded explanation of each
stage.

e Define a structured, repeatable approach for researching and evaluating,
combining simulation, scenario testing, and benchmarking in topology-
aware SDN: To provide the credibility of results, all research follows a
process of activities that goes from design to final assessment. The second of
these methods is repeatable; the same experiment setup can be used as a base
for replication or comparison by other authors. Theoretical coverage and
practicality are also guaranteed by utilizing simulation-based modeling in
combination with scenario testing. A comparative evaluation against state-of-
the-art methods provides insight into the effectiveness of our approach.

e Establish a controlled network but flexible network architecture for
exploring various traffic scenarios and policy implications: It is purposely
in a controlled and flexible setting of the network, which can be fully
controlled. Control enforces the reduction of externalities to maintain
experimental validity, and flexibility enables roll-out of network
manipulations (e.g., topology, link capacity, or controller policy) and
backouts. This two-pronged method allows us to study the effect of different
conditions on network performance without losing consistency.

e Determine the requirements of the system and select technologies that
support monitoring dynamic flow rules. API integration: Before
development, the research project specifies exact requirements for the system,
such as compatibility with standard SDN protocols like OpenFlow. The
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corresponding simulators, traffic generators, and performance analyzers are
chosen according to these needs. It is also necessary that the selected tools
provide an API that supports custom-developed modules for dynamic traffic
profiling.

Select Ryu as the SDN controller: It is open source, written in Python, based
on a modular constitution, compatible with Mininet, and well supported by its
community. Its Python implementation eases the burden of developing further
monitoring and control applications, and its compatibility with Mininet
guarantees easy integration into simulation software. The modular design of
Ryu facilitates a fine-grained experimentation with traffic rules, routing
algorithms, and policy enforcement.

Select Ryu as the SDN controller: It is open source, written in Python, based
on a modular constitution, compatible with Mininet, and well supported by its
community. Its Python implementation eases the burden of developing further
monitoring and control applications, and its compatibility with Mininet
guarantees easy integration into simulation software. The modular design of
Ryu facilitates a fine-grained experimentation with traffic rules, routing
algorithms, and policy enforcement.

Generate different network topologies that exhibit changes in the traffic
pattern and connectivity: We create various types of network topologies to
assess the flexibility of our solution by using Mininet. Star topology
challenges the network control and low hop count routing of a centralized
network. Mesh topology stimulates densely connected and redundant
networks, combining a full mesh. Hybrid topology trains developmentally
realistic mixed-structure networks. This variety of topologies allows the
method to consider some performance in different operational scenarios

Realize traffic modeling using both synthetic flows and application traffic
flows to simulate a realistic workload: Traffic generation is an essential
issue in this research. Baseline metrics are tested by creating synthetic traffic
with standard packet generators. At the same time, application-specific flows
imitate real-world networking tasks, such as video streaming, VolP calls, and
file transfer transactions. This package strikes a balance between theoretical
stress tests and actual performance in practice.

Predefine performance metrics for consistent evaluation: Performance
testing is based on predefined standard metrics. While latency measures the
time it takes for packets to be sent and received, throughput determines the
rate of data transfer, jitter expresses the variability in delay between packets,
and packet loss evaluates the reliability of the transmission. We pre-define
these measures before testing so that the results can be compared across
various situations and with studies in related works.

Test all possible scenarios in a controlled way to guarantee the integrity
and reliability of results: At last, each network configuration with a different
traffic pattern is simulated several times under the same circumstances to
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check if those results hold. By tightly controlling the simulation input, the
study ensures that any performance disparities are attributed directly to a
framework’s capabilities and not to uncontrolled conditions. This ensures that
results are valid and can be replicated.

3.2Tools, Simulators, and Technologies Used

To develop the proposed topology-aware SDN framework, diverse tools, simulators,
and technologies had to be integrated to provide realistic network topology
construction, traffic analyses, and performance evaluations [84]. We carefully
selected these components based on the SDN paradigm, explicitly targeting the
requirements of real-time traffic visibility, controller decision-making, and flexible
experimentation. The tech stack was modular, scalable, and reproducible, designed to
allow other researchers to replicate or extend the experiments in the future.

We chose the Ryu Controller for SDN control due to its modular architecture based
on Python, generic and abundant control components for the OpenFlow protocol, and
its ability to facilitate rapid prototyping of intelligent traffic analysis modules [85].
Due to its flexibility, Ryu also allowed developers to add custom flow monitoring
logic and traffic control policies to meet the specific needs of their experiments, so it
was the most appropriate controller to implement the intelligent analysis mechanisms
of the proposed framework.

Network simulation and emulation were primarily conducted using Mininet, an
industry-standard network emulator that creates realistic small network topologies for
performance and stress testing with minimal hardware requirements [86]. Features
such as the collaboration between Mininet and Ryu controller provide an
environment for studying the performance of a network under the influence of
various traffic loads, topologies, and flow configurations.

Apart from simulation tools, multiple supporting technologies were included for data
collection, traffic generation, and performance benchmarking purposes. Throughput,
jitter, and latency were measured using Iperf under various conditions, while Ping
was employed for basic connectivity verification and latency testing. Wireshark, a
packet analysis tool, was used to capture and analyze detailed traffic flows, providing
greater depth of packet-level detail. We had to write Python scripts to automate the
execution of experiments, extract performance metrics, and save all data in structured
formats, allowing for further analysis.

3.2.1 Tools and Their Roles in the Research

The proposed framework was implemented and validated using a combination of
software tools and network simulators. All the tools were carefully chosen to meet
the requirements of building a topology for traffic monitoring, performance
measurement, and flow analysis. In our case, the central SDN controller was Ryu,
which enables programmability and modular design to perform the necessary logic
for analyzing traffic [87]. Emulation of real-world network topologies was based on
Mininet, which provided a lightweight yet high-fidelity environment for
experimentation.

34



We used other complementary tools to generate traffic patterns and check
connectivity, such as Iperf and Ping. Wireshark also has a high capacity for deep
packet-level analysis and flow inspection. Additionally, Python scripting was
essential for automating experiments, ensuring reproducibility, and managing a large
amount of performance data. These tools and their contribution to the research
framework are summarised in the following table. Table 3.1 illustrates the
contribution of each tool to establishing a robust experimental environment. Using a
well-integrated stack of simulators and analysis tools, the framework strikes a
balance between realism, scalability, and efficiency, enabling the accurate evaluation
of SDN-based traffic analysis strategies.

Table 3.1: Tools and Simulators Utilized in the Proposed Research

Version / Role in
i Purpose/
Component Specificat Category U Research
sage
ion & Objective 2
) Emulated
Creation of
scalable SDN
Network custom
Mininet v2.3.0 ] network for
Emulator virtual
] traffic
topologies .
analysis
Flow
control and Deployed to
v4.34
Ryu SDN traffic manage
(Python- L
Controller based) Controller monitoring traffic flows
ase
via dynamically
OpenFlow
Emulation Acted as the
(0] of data plane
peit Virtual P .
vSwitch v3.1.1 i OpenFlow component in
Switch . .
(OVYS) switches in the network
Mininet topology
Performanc .
] Simulated
Traffic e testing for .
iPerf v3.13 various traffic
Generator UDP/TCP
. loads
bandwidth
Monitoring Verified
and packet flow
Packet .
Wireshark v4.2.1 analyzing and latency
Analyzer .
packet-level during
data simulations
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Script
automation, Automating
o traffic controller
Scripting L )
Python v3.10 monitoring, logic and
Language
and topology
controller setup
interaction
Stable
) Hosting the platform for
Operating . o
Ubuntu OS 22.04 LTS entire  SDN Mininet, Ryu,
System .
environment and other
tools

3.2.2 Technologies used in the Proposed Framework

Apart from the tools and simulators, the research absolutely depended on the
fundamental technology and protocols that can support the entire functionality of the
framework. As for standard communication between the SDN controller and the
actual switches lying underneath, the OpenFlow protocol played a crucial role as the
primary standard for installing flow rules and monitoring traffic [88]. This
experiment was developed on Linux-based environments, predominantly the
recommended environments due to their stability, open-source support, and enhanced
networking features.

Additionally, SDN topology design in Mininet was utilized to create custom Mininet
topologies that represent specific real-world scenarios, allowing for the evaluation of
the proposed solution's performance under various conditions. We also establish a
systematic traffic profiling methodology to monitor flow characteristics, record
essential parameters such as latency, throughput, jitter, and packet loss, and provide a
foundation for performing adaptive traffic profiling. The table below provides a
summary of these technologies and their interaction with the framework.

Table 3.2 highlights the backbone technologies that enabled the framework to
function. The research provided a comprehensive and future-proof SDN-based
experimentation setup by integrating various components, including OpenFlow and
Linux environments, customized topology design, and high-end traffic profiling
methods.

Table 3.2: Core Technologies and Protocols Applied in the Framework

Technology Application in Framework Benefit to Research
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Communication between the Standardized control-
OpenFlow
Ryu controller and network plane/data-plane
Protocol ) .
switches separation
Base platform for running Open-source, stable
Linux OS - .
Mininet and Ryu networking stack
SDN Topology Custom topology creation in Allows testing in different
Design Mininet real-world-like scenarios
Enables accurate
Traffic Flow-based traffic )
o . performance evaluation
Profiling monitoring and analysis .
and load balancing

3.3SDN Controller Selection

The SDN controller acts as the SDN ecosystem’s brain, where control-plane
intelligence resides and is responsible for visibility of flow rules on the data-plane
switches. In traffic analysis and monitoring frameworks, the choice of an appropriate
controller is crucial because the framework's features, flexibility, and overall
performance are deeply dependent on the functionalities of the selected controller.
Over the last decade, numerous controllers have been proposed, including ONOS,
OpenDaylight, Floodlight, and Ryu, each with varying architectural designs,
deployment models, and use cases. For this research, we have chosen Ryu as the
selected controller because it is lightweight in nature, has a modular structure,
supports programmability using Python, and offers easy integration capabilities with
traffic analysis frameworks.

Comparison of evaluations proves very favorable for ONOS with respect to carrier-
grade environments, which require extensive customization, high availability, and
scalability. Simultaneously, ODL 1is designed for massive enterprise Greenfield
setups requiring multiple northbound and southbound integrations. Both are feature-
rich, but their heavyweight architectures render them ineffective for research-oriented
traffic monitoring and experimentation that can benefit from flexibility and fine-
grained programmability. By contrast, Ryu is highly suitable for research due to its
academic and experimental nature, as it is simple to install, well-documented, and
supports direct Python scripting for path control, topology control, and packet
manipulation. For these attributes, Ryu is the most suitable option for creating the
topology-aware intelligent traffic analysis framework proposed in this paper.

Another important reason we chose Ryu is its clean, modular, and extensible
architecture. Ryu offers basic protocol support (OpenFlow 1.0—1.5) and is extensible
to add further monitoring and traffic profiling features through its modular structure,
which can be used to add bespoke applications. This research aimed to design
adaptive mechanisms to monitor traffic. In addition to these features, Ryu seamlessly
integrates with network emulators such as Mininet, enabling us to validate the
designed experimental topologies in realistic environments before scaling them for
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larger deployments. By selecting Ryu, this research ensures a balance between
lightweight operation, programmability, and research flexibility, which are not as
easily achieved with ONOS or ODL. Therefore, Ryu is not just a convenient choice
but a strategic one that aligns with the methodological requirements of this study. The
following are the key points supporting the Ryu controller selection:

e Lightweight and Modular Architecture: Ryu is designed to be lightweight and
modular, which means it can easily be added to or removed from. Ryu is
relatively simple and can be easily integrated with a custom research
framework, such as traffic analysis/profiling, unlike rooted controllers [89].

e FEasy to Program: Ryu and all of its components have been written entirely in
Python, so we can easily program any flow rules and packet-handling
applications [90]. This enables rapid prototyping and deployment of novel
traffic monitoring algorithms with minimal configuration overhead for running
experiments.

e Research Tool Compatibility: Ryu easily integrates with Mininet, Wireshark,
and performance analyzers, which makes it a perfect fit for research and
experimental environments. It is interoperable with standard network emulation
tools, simplifying and accelerating reproductive testing of topology-aware
designs [91].

3.3.1 Ryu Controller Architecture and Its Relevance to the
Proposed Framework

The Ryu controller in SDN has three major layers in its architecture: application
layer, control layer, and physical layer [93]. At the application layer, northbound
APIs facilitate interaction between the controller and operators, OpenStack, and user
applications. These parts define top-level network needs like policy implementation,
traffic analysis, and resource distribution. The traffic analysis module will also live at
this layer to make requests for real-time network statistics from the controller and
analyze the traffic.

This architecture is centered on the control layer, which is controlled by the Ryu
controller. This comes with integrated firewalls and custom Ryu applications to
actively implement networking policy. It includes libraries for packet parsing, flow
management, and topology discovery, and comes with support for multiple
southbound protocols, OpenFlow being the most notable. This layer will serve as the
foundation for the novel traffic analysis framework proposed in the research, as well
as for the designed applications implemented to facilitate intelligent traffic
monitoring, anomaly detection, and optimized routing, thereby ensuring improved
overall network performance and security.

The infrastructure layer at the physical device level, as defined in Figure 3.1,
comprises data forwarding devices, OpenFlow switches, and other network devices
that form the network. The devices do not individually route data; instead, they apply
flow rules that the controller dynamically installs using southbound APIs. This layer
serves as the experimental testbed for the research framework, assessing the

38



performance of the proposed solution. Once the robust Ryu controller is deployed on
such devices, we can systematically illustrate and demonstrate how the framework is
practical in terms of traffic load management, network lifetime, and security.
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Figure 3.1: Ryu Controller Architecture

3.3.2 Three-Plane SDN Architecture using Ryu Controller

In the three-plane architecture, SDN is deployed using the Ryu controller, as shown
in the figure. The Ryu Controller also utilizes deep packet inspection, as the
application, and describes how Ryu helps the network become intelligent. Ryu is the
Brain of the network, controlling communication between the application plane and
the data plane, and providing flexibility, programmability, and topology-aware traffic
analysis.

The Application Plane, where numerous SDN applications, such as bandwidth
monitoring, topology viewing, and flow analysis applications, utilize NBIs to
communicate with the network. Every application communicates with NBI drivers
and agents, allowing higher-level policies or monitoring tasks to be passed through to
the control plane. This architecture enables modularization, research functions can be
developed independently while still sharing the underlying SDN infrastructure.

The Control Plane is the brain of the SDN environment; the Ryu controller represents
the control Plane. In this setup, the index of packet flow rules is handled by the Ryu
controller, Network state data is collected, and Communication between applications
and the data plane is ongoing. The Ryu controller uses NBIs to communicate
upwards with applications and CDPI to communicate downwards with switches. The
modular nature of the Python-based architecture enables the integration of traffic
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monitoring functions, making it highly suitable for experimental research
environments, such as the one created in this thesis.

In the Data Plane, OpenFlow supports packet forwarding according to rules deployed
by the Ryu controller. Every host node (hl, h2, h3, h4) connects to switch ports (s1-
ethl, sl-eth2, sl-eth3, sl-eth4) and has its own individual forwarding engine, making
intelligent decisions in packet forwarding. The processing function of integrating
these flows ensures that adaptive traffic can be managed even in adverse situations.
This architecture supports policy and control separation through forwarding, allowing
for the separation of policy and control among devices. Consequently, Ryu offers
real-time traffic visibility at a granular level and precise control through its
architecture.

The architecture depicted in Figure 3.2 is evidence of why Ryu was chosen in the
context of this research. It is also modular, with the ability to have traffic monitoring
modules at the application plane, and is integrated transparently with OpenFlow,
allowing flows to be managed at the data plane. Ryu provides the right balance
between lightweight programmability and heavyweight flow control, facilitating the
topology-aware adaptive traffic monitoring framework proposed in this thesis.
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Figure 3.2: Ryu Controller-Based SDN Architecture

3.3.3 Comparative Analysis of SDN Controllers for Traffic
Monitoring
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The following Table 3.3 presents a detailed comparative analysis of widely used
SDN controllers. Each parameter has been elaborated to highlight its role in traffic
analysis, topology awareness, and custom framework implementation, which are
central to the objectives of this research. Compared to the rest of the SDN controllers,
the comparative analysis proves Ryu is the best-suited controller for research-based
SDN experiments, particularly on topology-aware intelligent traffic monitoring.
Since python APIs are highly programmable and feature built-in real-time traffic
monitoring and dynamic topology flexibility, they are most efficient for
implementing our suggested framework. Both ONOS and ODL are excellent
production-quality controllers, but they are also very complex and add overhead for
academic-level experimentation. For this work, lightweight controllers like
Floodlight and Beacon do not provide the monitoring visibility and control flexibility
needed. On the other hand legacy controllers such as POX and NOX are outdated
now for modern day SDN research.

Therefore, this proposed framework uses Ryu as the controller due to its research-
oriented functionality and integration and adaptable features. This establishes a
strong basis for the verification of the new methods proposed in traffic analysis, load
balancing and security improvements analysed.

Table 3.3: Performance Comparison of SDN Controllers with Respect to Research-Oriented

Functional and Architectural Parameters
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3.4 Network Topology Construction

In recent years, network traffic has grown exponentially, which makes the modern
network management and security more difficult than ever. The growth is largely due
to the increasing number of 10T devices, 5G networks going live and cloud-based
apps and services becoming more popular. Traffic was more predictable in the past,
and it was possible to manage networks with static policies. But today, due to the
various and dynamic nature of digital infrastructures these are large scale tra c
patterns inhomogeneous. This shift puts immense stress on existing monitoring and
management systems, exposing their ills and underscoring how critical it is to invent
new ways of doing things.

An appropriate network topology is essentially required to prove the proposed Ryu
based intelligent traffic monitoring model. In an SDN, the topology describes the
high-level pattern of connections between switches and hosts as well as links that
determines how efficiently traffic can be discovered, analyzed and controlled.
Besides, for this study, the topology has been intentionally constructed to make a
compromise among scalability, adaptability and reality so that the performance under
various traffic rates and different network scenarios can be evaluated.

We have implemented the described network topology in Mininet, a popular emulator
and has an option to work closely with Ryu controller. The topology has a three-level
architecture, including core, aggregation and access layers, similar to current data
center and IoT applications. More significantly, mass in balance leads to superfluous
links, bottleneck paths and heterogeneity in flow; which mimics the way packets fl
owing through real systems under regular to adverse conditions (e.g., link failures,
congestions) where impact of distributed sources are taken into account.

For this research, the topology has been designed with three primary considerations:
e Scalability — the topology should support the addition of more nodes and

switches to accommodate extended experiments.

e Modularity — the architecture must allow independent testing of applications
such as bandwidth monitoring, load balancing, and topology discovery.

e Realism — the constructed topology should resemble practical SDN
deployments while still manageable in a simulation/emulation environment.

Accordingly, a star-like topology with one central OpenFlow switch connected to
multiple host nodes has been adopted. This structure simplifies traffic flow analysis
while enabling comprehensive monitoring of forwarding rules and controller
responses.

3.4.1 Selection of Simulation Environment

Topology creation was modeled with Mininet, an open-source network simulator

commonly utilized in SDN research. Mininet creates a realistic virtual network,

running real kernel, switch and application code, on VM, in seconds. In this study
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Mininet is chosen because it has the following advantages:

e [t features OpenFlow 1.3 that meets the needs of complex flow routing.

e [tis designed to be part of a control application using the Ryu controller, and
provides an easy way for stateful data plane extension in openflow networks.

e [t includes built-in utilities to ensure reliability and availability such as ping and
iperf.

e It provides the flexibility to define custom topologies using python scripts which is
essential in testing smart traffic analysis frameworks.

3.4.2 Node and Switch Configuration

The experimental environment consists of a single OpenFlow switch (s1) which is
compliant with the OpenFlow version 1.3 standard. The host nodes (h1-h4) are
linked to the switch connected through virtual Ethernet links (sl-ethl and s2-eth
respectively). All hosts have one Ethernet interface (h1-ethO to h4-eth0).

The reason behind choosing 4 hosts is to generate controlled traffic flows between
source-destination pairs. This provides a means for performance-related statistics like
latency, throughput and flow establishment time to be observed under diverse
degrees of traffic.

Each host node plays the roles of:
e hl and h2 are traffic source nodes, which produce flows.

e h3 and h4 act as receivers, they measure channel throughput and monitor
packet reception simultaneously.

e Each node contains a switch whose role is buffered packet and frame engines
to deal with packets and interaction between the host and the switch.

It is the OpenFlow switch, which operates as a mediation forwarding mechanism in
charge of receiving flow rules from the Ryu controller. It relays packets according to
the rules installed and keeps flow tables for flow control.

3.4.3 Controller Integration

The Ryu controller (version 4.34) has been deployed at the control plane. Ryu is a
Python-based open-source SDN controller that supports rapid prototyping of network
applications. It communicates with the data plane through the CDPI using the
OpenFlow 1.3 protocol.

The controller is configured to run on localhost (127.0.0.1) with the default port
6633, ensuring seamless connectivity with the Mininet emulation. It maintains a
global topology view, installs flow-mod rules in the switch, and handles packet-in
events triggered when a packet does not match existing flow entries.
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The choice of Ryu is motivated by the following factors:
e Flexibility — Ryu supports dynamic addition of Python modules, making it
suitable for implementing custom traffic analysis algorithms.
e Simplicity — its modular architecture allows easy integration with Northbound
Interfaces (NBIs).
e Performance — Ryu has been shown to achieve lower latency in flow setup
compared to other controllers in small-to-medium topologies.

3.4.4 Topology Validation and Testing

Several validation tests were carried out to check that the topology built works as
expected:
e Connectivity Testing: Through “pingall” command in Mininet, end-to-end
connectivity between every hosts has been established.
¢ Bandwidth Evaluation — A tool iperf was used to as the means to measure
bandwidth between endpoints for different traffic types.
e Latency Measurement—Round-trip times were taken to verify if the controller
is reactive in flow installations.
e Failure Scenarios — We simulated link failures to verify the robustness of the
topology and dynamic flow reconfiguration by the controller.
The results of these tests revealed that the topology offers a robust environment for
traffic analysis in general.

3.4.5 Role of the Constructed Topology in Proposed Framework

The experimental environment consists of a single OpenFlow switch (s1) which is
compliant with the OpenFlow version 1.3 standard. The host nodes (h1-h4) are
linked to the switch connected through virtual Ethernet links (sl-ethl and s2-eth
respectively). All hosts have one Ethernet interface (h1-ethO to h4-eth0).

The reason behind choosing 4 hosts is to generate controlled traffic flows between
source-destination pairs. This provides a means for performance-related statistics like
latency, throughput and flow establishment time to be observed under diverse
degrees of traffic.

The constructed topology is not merely an experimental setup but the foundation for
the proposed intelligent traffic analysis framework. It provides a controlled
environment where traffic monitoring, load balancing, and security evaluation can be
carried out systematically. Specifically, the topology enables:
e Flow-level monitoring for identifying congestion points.
e (Comparative performance evaluation of traditional algorithms versus the proposed
intelligent approach.
e Security testing by simulating attack traffic and observing controller responses.
e Scalability analysis by extending the number of hosts and switches in future
experiments.

Thus, the network topology construction presented in this section forms a critical
component of the research methodology, linking the conceptual framework with
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practical implementation.

3.5 Traffic Modeling and Flow Management

Traffic modeling and flow control are the core of the proposed SDN-based traffic
analysis framework. SDN architecture decouples the plane of control from the data
forwarding plane in a network, while making it possible to model traffic and make
intelligent decisions on flow management directly at the controller level is an
important enabler for performance assessment and optimization. We model and study
realistic traffic using traffic modeling to capture a wide range of communication
patterns that we see in today’s networks such as the constant streams, bursty
transmissions, high-throughput transfers and latency-sensitive flows. This is to verify
that the proposed system can be easily verified under operational environments
similar to IoT sensor communication, real-time video group/team meeting, bulk
cloud storage data transfers and periodic web accesses.

The experimental traffic is generated in a controlled emulation environment using
Mininet together with iperf and custom Python scripts, which provide fine-grained
control over traffic characteristics such as bandwidth, packet size and flow duration.
The framework effectively captures the dynamic feature of real network behavior by
modeling carefully designed flows of various types, including the constant bit rate
flows for multimedia services, bursty flows for web/IoT-like transmissions, and high
throughput flows with latency guaranty for bulk transfers and low latency flows
which is suitable for interactive applications. These flows are added to the emulated
topology and also tracked in real-time, enabling the controller Ryu to interact with
the network at runtime.

Ryu communicates with the underlying switches, which are OpenFlow-based to
handle flow management. When a switch receives a new flow with no corresponding
rule, it sends the controller a packet-in event. The controller armed with the designed
traffic analysis application processes this request and takes actions based on situation
of priority. These decisions are installed in the switch flow tables by flow-mod
commands that allow the network to adapt to changes on the traffic pattern. This
dynamic mechanism permits packets to be forwarded efficiently and allows the
system to achieve policies supporting higher throughput, lower jitter, and minimal
loss.

The novelty in our work comes from the incorporation of intelligent traffic analysis
mechanism to the Ryu controller. Different from static flow installation, but similar
to the proposed method that is capturing all ongoing flows statistics by means of
OpenFlow messages, including packet count, bandwidth usage, delay and jitter, as
well as packet loss. Those statistics are reactive monitored to catch any kind of
anomalies such as spike in traffic, congestion link or malintent flows. The controller
uses this information to dynamically divert traffic to alternate paths, prioritizes
latency-sensitive applications, or segregates suspect traffic for more in-depth
analysis. It increases flexibility of the network and boost its powers to offer a
consistent quality of service, even in environments varying dynamically and with
limited resources.
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A variety of monitoring and evaluation tools are embedded for verifying the
efficiency of traffic modeling and flow control within this framework. Performance
indicators are measured by applying iperf and Ryu APIs while throw the packet
inspection is done using Wireshark and Scapy. Furthermore, controlled experiments
such as link losses and recoveries events are performed to verify the time taken for
controller reconfiguration and flow rerouting. The findings show that intelligent
management of flows provides a highly stable network, with lower average latency
and better resource utilization than its traditional counterpart.

The traffic modeling and flow management approach in this study, on which
intelligent and adaptive SDN-based traffic analysis rests, is summarized.
Experimental deployment of the framework, based on visualization and control
interfaces in OpenDaylight controller and consisting of realistic traffic modeling, run-
time flow decisions with Ryu as a controller application, detailed flow-level statistics
collection is used to point that it meets topology-aware traffic monitoring and
resource utilization objectives. In such a way, tightly analyzed traffic generation
based on the estimated network state and adaptive real-time decision-making to
install appropriate flow entries demonstrate the value of our research in constructing
an intelligent SDN environment for modern heterogeneous networks.

3.6 Performance Parameters and Evaluation Criteria

The performance analysis of the proposed SDN-based ITAF has been realized with
respect to a selected set of performance metrics, which are motivated by the most
important objectives pursued in this research work such as efficiency,
responsiveness, credibility and scalability. This is unlike existing works that
frequently evaluate using generic metrics, i.e. the criteria being used in this
dissertation are directly driven by gaps and shortcomings found in state of the art for
similar studies. The performance metrics measured are throughput, end-to-end delay,
the PDR, flow establishment time and controller overhead. All of these are described
in turn, demonstrating their reliance on this research and enriching the findings
within a wider literature base.

The first parameter is throughput that refers to how effective the framework is, by the
amount of data it can transmit from a source to a destination during some time range.
As part of this work, throughput has been measured with Iperf and OpenFlow
counters for obtaining a precise estimate of the data transfer capacity. The higher the
throughput, the strong is the network infrastructure in terms of data processing over
it. The main drawback of the former work is that it does not have enough throughput
especially when the traffic load increases or in dynamic topologies, which may cause
congestion and long haul path deterioration. On the other hand, our Ryu-based traffic
analysis framework shows stable performance in terms of throughput and it can have
achieved high throughput even under stressed condition thanks to the topology-aware
routing and intelligent flow control. This results demonstrate the proposed approach
that achieves and even surpass all other works in terms of efficiency.

The second metric, end-to-end-delay is defined as the amount of time that a packet
takes to move from source node to destination on an average. Delay was measured by
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our work, using ping-based testing and accurate timestamp monitoring. For these
services, optimizing end-to-end latency is critical; live lIoT-sensing, cloud-based
distance learning platforms, and low-latency communication services are realtime.
Previous studies demonstrated that centralized SDN controllers usually introduce
large latencies because they cannot avoid processing overheads, especially in the case
of complex or high-throughput networks. On the other hand, the average delay values
are significantly lower in our proposal since the controller optimally controls flows
and precycles routes according to a traffic analysis that could increase
responsiveness. This comparative advantage also supports the appropriateness of the
developed system for delay-sensitive situations where conventional schemes fail.

The third metric, PDR, measures the reliability as the ratio between received and
transmitted packets. In this thesis, PDR is quantified using switch-level counters and
controller statistics to avoid errors. A higher PDR guarantees that the network can
achieve reliable communication under lossy or high-load scenarios. It has been
shown that the previous SDN-based solutions, including some of those evaluated in
IoT scenarios, were suffering with variable PDRs caused by network churn and
packet dropping. In comparison, the proposed method maintains high PDR
performance all through due to the “knowledge-driven traffic management system”
which is the intelligent system inside of Ryu controller for better path selecting based
on congestion/avoidance. This is evidence that the framework provides enhanced
reliability compared to current systems.

The fourth parameter i.e., flow setup time, measures the speed of response from SDN
controller to new traffic requirements by inserting forwarding rules in the data plane.
Forwarding setup latency has been studied in this paper using OpenFlow Packet-In
and Flow-Mod messages, which give accurate information about the responsiveness
time of the controller. It was shown in current literature that high flow setup times are
a typical bottleneck in SDN systems such as controller Floodlight or ONOS when
heavily utilized. By contrast, the Ryu-based framework introduced in this paper has
lower flow setup latency, primarily attributable to topology-aware traffic analysis that
facilitates faster decision and rule installation. This reduction in setup time provides
flexibility, such as allowing dynamic or large networks to operate without problem.

Besides, controller overhead has been employed as a parameter to show the
scalability of the proposed framework. This measurement looks at CPU and memory
usage of the SDN controller as well as how many events it is able to handle
effectively. Some previous studies have confirmed the limited performance of
controllers owing to the traffic load or network size, leading to dropped packets or
slower response. In this work, controller overhead was observed from system
resource stats and in-depth log analysis; the results indicate that the design maintains
good resource consumption even when subjected to heavier traffic loads. Reducing a
controller workload and ensuring traffic analysis is performed accurately, are a key
advantage of the framework in comparison to existing methods.

These five parameters are throughput, end-to-end delay, packet delivery ratio, flow
setup time and controller overhead which make up a complete set of evaluating
indices for the research. The throughput certifies efficiency, the delay reveals
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responsivenes s, PDR assures reliability, the setup time witnesses adaptability, and
the overhead indicates scalability. Compared with other previous related works, we
obtain consistent observations in terms of showing the effectiveness of the Ryu-based
intelligent traffic analysis framework developed in this work; and show its usage as a
promising candidate for practical application under SDN environments where
traditional solutions do not enable to having an effective trade-off between
performance and scalability.

Table 3.4: Performance Parameters and Evaluation Criteria

Parameter  Description Evaluation Method / Tools  Relevance to
Proposed Framework
Throughput Measures the efficiency of data Iperfand OpenFlow Demonstrates effective
transfer across the network. statistics. bandwidth utilization
and efficient routing.
End-to-End  Average time taken for packet Ping-based measurement, Validates
Delay delivery from source to timestamp logging. responsiveness for
destination. latency-sensitive [oT
and cloud applications.
Packet Ratio of received packets to Controller and switch logs. Confirms the reliability
Delivery transmitted packets. and stability of
Ratio communication.
Flow Setup  Time required by the controller OpenFlow Packet-In/Flow- Ensures adaptability
Time to install forwarding rules in Mod event analysis. and agility in dynamic
switches. traffic scenarios.
Controller Resource consumption of the System statistics and Validates the
Overhead controller regarding CPU, controller logs. scalability and
memory, and event load. efficiency of the

proposed framework.

3.7 Experimental Design and Validation Plan

The research presented in this thesis addresses critical challenges in SDN and Traffic
analysis, offering novel solutions through comprehensive design, implementation,
and evaluation. The key contributions of this work are outlined below, each reflecting
a significant advancement toward achieving the research objectives. These
contributions collectively highlight the proposed framework's originality, technical
depth, and practical relevance.

The proposed Ryu based intelligent traffic analysis framework in an SDN
environment is strategically tested to verify the efficacy, performance, and scalability
of this research work. Our design concentrates on two main pieces: the
communication foundations in traditional TCP/IP networks, and transplanting these
to SDN, where the Ryu controller becomes a pivotal entity responsible for traffic
control and flow enhancement. 2.1 Communication Principles First, we need to take a
closer look at how connections are managed in traditional TCP/IP-based networks as
it is there that connection speeds directly influence performance when serving
various computing and storage demands across potentially thousands of hosts. This
proposed scheme not only is theoretically strategically grounded, but also
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systematically gets practically verified by simulation and comparative performance
analysis.

As a first step, one must take the classic TCP three-way handshake model to be on
reliable lines of communication. This filtering process, illustrated in Figure 3.3,
shows how a link is made between the client and server before data communication
begins. In this series, the client performs an Active open by sending a sync (SYN=1,
SEQ=x) to server. The server, in its Passive Open state, answers with a SYN/ACK
packet (with the SYN and ACK bits set to Logical One). Finally the client ACK=1,
SEQ=y Packet=x+1 closing the handshake. This is the transition to move from the
Open-Request to Open-Success state ensuring that communication between both
sides can work reliably providing secure data transfer.

Client TCP TCP  Server

Active-Open |- SYN=q Passive-Open
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SEQS =X
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Figure 3.3: TCP 3-Way Handshake illustrating client—server connection establishment
before data transfer.

This handshake mechanism is very useful for SDN experiment design because it
causes the intervention of controller. With no pre-added forwarding rules at a switch,
the switch cannot forward the first SYN packet to destination. Instead, it encapsulates
the packet in a PKT IN message and forwards it to the Ryu controller. The controller
then makes an intelligent decision by parsing the header fields, imposing policy
constraints, and calculating the best forwarding path. The response travels through
passback to the switch as a Flow-Mod command and the original packet is sent on its
way.

This is diagrammed in Figure 3.4, where the interaction of source (S), switch (m) and
controller (C) with destination is shown. The figure illustrates that, after
participation, the controller is able to establish suitable forwarding rules and then
monitor ongoing communication for its efficiency and stability. After the completion
of establishment of a connection (SYN, SYN-ACK, ACK), flow control is by passed
and subsequent data streams adhere to the programmed rules without interference
from the controller so as to minimize overhead and improve throughput.
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SOURCE SWITCH CONTROLLER DESTINATION

Figure 3.4: Sequence Diagram of TCP Connection Establishment in an SDN

Environment using OpenFlow Messages

They show how bridging of traditional networking principles with SDN intelligence
is a specific research area.

The validation plan is based on this design and composed of several steps:

Topology Construction: The experiments are going to be conducted on
Mininet to simulate custom topology. The control plane entity will be
implemented as the Ryu's controller and the data planed component will be
developed in the form of OVS instances. This is to maintain generality in
modelling conditions of actual network.

Traffic Generation and Flow Triggering: Various traffic (TCP, UDP, ICMP)
is made using traffic tools as iperf and ping. TCP flows will clearly show the
three-way handshake, and UDP flows can be used to assess live flow
performance. First packets of these flows will cause the PKT IN —
FLOW_MOD — PKT OUT loop in the Ryu controller to verify that the flow
entry is set up as expected.

Performance Metrics Analysis: The performance of our framework will be
evaluated using latency, throughput, packet loss, flow establishment time and
controller response time. These metrics have been previously utilised in the
earlier stages of the research work, and are closely related to the focus of
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SDN-based traffic management analysis. The results will be discussed and
compared at different traffic loads and network sizes to demonstrate the
versatility of the scheme.

e Stress Validation: The experiments include scenarios where instant traffic
bursts or spoofed packet injections happen for the robustness of the design.
The controller performance during such scenarios will be quantified in terms
of stability, prevention against packet drops and effectiveness of
reconfiguring the rules. This guarantees that the performance of the proposed
design is cost-effective and can withstand unfavorable environments.

e Comparative Analysis: The Ryu controller-based scheme will be evaluated
against alternative controllers and traditional static routing techniques. This
counterpart will justify the novelty of the contribution by demonstrating better
performance, flow setup facility and adaptability.

Based on the above, the design of experimental procedures and validation campaign
combines theoretical communication frameworks (TCP handshake), controller-based
SDN sessions establishment (packet exchange mechanism) as well as real (topology
construction, traffic generation, performance measurement, stress testing) and
comparative validation steps. Through the proper combination of these components,
the proposed architecture is extensively validated for correctness, reliability and
scalability that demonstrate its outperformance in intelligent SDN Slicing traffic
management.

3.8 Chapter Summary

This chapter established a topology-aware SDN environment to support intelligent
traffic profiling and performance evaluation. A comparative analysis of SDN
controllers highlighted that while some platforms are suitable for large-scale
deployments, they introduce additional complexity for experimental research. In
contrast, the Ryu controller offers an effective balance of programmability, real-time
traffic monitoring, and scalability in emulated environments, making it well-suited
for the proposed framework. This selection enables fine-grained control over network
behavior while maintaining a lightweight and researcher-friendly implementation.

The network topology was designed to be flexible and adaptive, enabling support for
heterogeneous nodes, varying traffic loads, and dynamic topology changes. Unlike
static configurations used in many existing studies, the proposed setup emphasizes
dynamic link adaptation and fault responsiveness, improving the reliability of results
in real-world-like scenarios. Additionally, realistic traffic modeling and flow control
were incorporated to capture diverse traffic behaviors, allowing deeper insights into
controller decision-making and system adaptability under changing network
conditions.

Finally, the experimental design and validation strategy ensured reproducibility and
methodological rigor through controlled test scenarios and repeated evaluations.
While acknowledging the inherent limitations of emulated environments, this chapter
demonstrated that their flexibility and controllability provide a practical and effective
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foundation for academic evaluation and subsequent performance analysis of the
proposed SDN framework.
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CHAPTER 4

DESIGN AND DEVELOPMENT OF A RYU-BASED
INTELLIGENT TRAFFIC FRAMEWORK

This chapter builds upon the topology-aware environment and traffic profiling
strategy introduced in Chapter 3. It focuses on designing and implementing the
proposed Ryu-based intelligent traffic analysis framework. The previous chapter laid
the technical foundations, including decisions regarding the controllers to use,
developing network topologies, modeling traffic, and establishing the metrics to be
used for performance evaluation. This final chapter builds on this preparation and
implements a comprehensive framework for decision-making and real-time
monitoring. The framework is designed to enhance the programmatic capabilities of
the Ryu controller by combining it with modules that offer intelligent traffic analysis.
With the modules, it is possible to take control of the traffic, troubleshoot issues, and
optimize performance in real-time. The need to integrate traffic intelligence
capabilities with topology awareness is also demonstrated by the fact that the
framework ensures situation-driven responses while also enabling the network to
detect changes. Later in the document, we further describe the deployment process
and indicate how the functional prototype will be developed based on the concept
that the framework must abstract. This chapter aims to serve as a link between design
and implementation, establishing a foundation for comparing and evaluating
performance that will be conducted in the later chapters.

4.1 Overview of the Proposed Framework

The proposed Ryu-based intelligent traffic analysis framework aims to eliminate the
fundamental limitations of conventional SDNs by incorporating intelligence,
adaptability, and modularity into the control plane. The framework is based on the
Ryu Controller Core, which serves as the primary decision-maker responsible for
managing communication between applications in the upper layers of the network
and devices in the lower data plane. It includes specialized modules and integrates
real-time monitoring, anomaly detection, and QoS policy implementation to achieve
real-time adaptability and optimized traffic management.

The framework is divided into three distinct planes, as shown in Figure 4.1. At the
application plane, three major application types are integrated based on Northbound
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Interfaces. The first is a set of traffic monitoring applications, which constantly
monitor flow-level statistics and bandwidth utilization. The second type includes
real-time anomaly detection applications, which identify irregular or malicious traffic
patterns. The third primary application type comprises analytics or QoS policy
applications, which apply a higher-level strategy to enhance performance and service
quality. All of these applications serve to communicate with the Ryu Controller Core
using NBIs to ensure that monitoring and policy ideals are consistently translated to
actualized control instructions.

Traffic Monitoring App Anomaly Detection App Analytics & QoS Policy App
|
Ty NBIj| NBI_o—
NBI - \ 4 -

' Ryu Controller Core '
(Control Plane)

Adaptive Flow TEVN Embedding Security Module

Topology Awareness Topology Profiling Management
Virtual to Phyzical
Mapping

OFStats/ Flow-Mod
Monitoring Instructions

OpenFlow Switches

Topology Mitigation Rules
Diicvéfw (Forwarding Rules, Flow Tables) 5 T
Packet Fom'a.rdjng¢ ¢ Link Utilization
i B B
End Hosts/ IoT Devices o :
(Client Server Nodes) | | T rveical Links ‘

-

Figure 4.1: Architecture of the proposed Ryu-based intelligent traffic analysis framework

Several specialized modules extend the Ryu controller to add the necessary
intelligence for traffic analysis and adaptive flow management at the control plane
level. The topology awareness module is responsible for discovering the network’s
overall structure, including switches, end-hosts, and physical links, and maintaining
an updated view of their dynamic states. Similarly, the topology profiling module is
allocated to collect OpenFlow statistics and performance parameters in real-time
from the end-to-end devices, helping the controller gain intelligence into traffic load,
bandwidth utilization, and usage. The adaptive flow management module, operating
on top of knowledge, analyzes run-time network conditions and dynamically installs
Flow-Mod instructions to re-balance the load, de-congest routes, optimize efficiency,
and eliminate hold states. Similarly, the adaptive flow management is designed with
a TEVN embedding module, which enables efficient virtual-to-physical resource
mapping to allocate network resources effectively in a heterogeneous I[oT-SDN
environment.

Enabling the data plane involves OpenFlow-enabled switches, which are the primary
forwarding entities that follow the rules and update the flow tables accordingly, as
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directed by the controller. These switches connect to end hosts, IoT devices, and
physical links to ensure the smooth forwarding of packets. The provided feedback,
statistics, and link utilization data enable the control plane modules to make rational,
data-driven, and adaptive decisions, which are then forwarded back to the data plane
for execution. Overall, this chapter significantly addresses the shortcomings of
traditional SDN by proposing a new, intelligent, adaptive, and real-time monitoring
Ryu-based framework that unifies the entire system.

e The framework avoids unnecessary data collection load due to the intelligent
integration of efficient traffic monitoring mechanisms inside the Ryu,
providing sufficient real-time statistics for intelligent on-flow decisions.

e The added topology awareness, profiling, and adaptive flow control
mechanism achieve better programmability and allow fine-grained traffic
analysis even under highly dynamic conditions.

e The TEVN embedding is an uncommon and quite novel method of virtual-to-
physical mapping that ensures that the network’s resources are efficiently
utilized in arbitrary IoT levels where the demand plan is unattainable.

e The security module is a native extension of the controller, implementing a
set of preventive rules to minimize performance impact.

e The overall architecture was extended and implemented in the real test bed
environment using emulated SDN networks. A successful interaction with
existing solutions, such as Mininet equipped with OpenFlow switches and
IoT-ready end hosts, provides complete assurance that the architecture can be
practically implemented in real-time conditions and via module add-ons.

Thus, the proposed framework not only introduces a topology-aware, traffic-
adaptive, and security-enforced approach but also ensures that the Ryu controller
evolves into an intelligent platform suitable for both academic experimentation and
practical deployment in next-generation SDN environments.

4.2 Network Model Framework Architecture and Modules

The proposed Ryu-based intelligent traffic analysis framework is a modular and
extensible architecture that implements traffic monitoring, topology awareness,
adaptive flow management, and security enforcement. The objective of the proposed
architecture is to provide SDN environments with dynamic and topology-aware
traffic profiling capability, especially for IoT-like scenarios that demand scalability,
adaptability, and real-time response. The architecture is structured across three
logical planes, Application, Control, and Data planes, each of which is concerned
with different yet specific classes of functionalities that facilitate traffic analytic
capabilities. The applications serviced at the Application Plane include traffic
monitoring, SDN anomaly detection, QoS policy enforcement. These applications
interact with the controller through northbound interfaces that facilitate fiduciaries to
specify high-level requirements without being confined to the underpinning
infrastructure. For illustration, statements such as "monitor bandwidth utilization"
and "assign extra capacity” are recorded as policies and processed by the controller,
allowing fiduciaries to avoid defining low-level flow-mod instructions. Thus, the
process involves the rapid integration of new monitoring and security functionalities
into a physical network, without requiring any modifications to the network itself, to
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ensure flexibility, modularity, and fast deployment. The Control Plane encompasses
the core facets of the system intelligence, which are implemented as five Ryu
modules.

Finally, the Data Plane hosts the flow management module, which is responsible for
programming the network devices with the appropriate monitoring and security
instructions.
e Topology Awareness, which facilitates ongoing network links and nodes
discovery and mapping.
e Topology Profiling, which gathers OFStats, device-level performance data
that creates an updated utilization view.
e Adaptive Flow Management, which automatically deploys Flow-Mod
instruction to optimize routing, load balancing, and congestion control.
e TEVN Embedding, which supports efficient virtual-to-physical mapping in a
range of [oT environments.

These modules, when combined, enable Ryu to become an intelligent, adaptive, and
secure controller capable of making real-time traffic decisions. A Python—based
modular API allows fast prototyping and easy modification, offering both research
flexibility and practical applicability.

Data Plane includes OpenFlow-enabled switches and application-specific end hosts.
Ingress and egress traffic flows through the switches, each of which implements the
forwarding rules dynamically delivered by the controller. The end hosts generate and
receive data traffic, each consisting of a packet generator, a packet forwarder, and an
activity classifier. Control and Data Planes interact via the Control-Data Plane
Interface, which is a set of OpenFlow rules and statistical measurements being
transmitted in both directions. The Data Plane ensures that the traffic rules defined at
the Application Plane, which is operated by the Control Plane, are correctly
implemented in real-time.

Figure 4.2 1is a graphical representation of a testbed-based network model
architecture. The figure illustrates the implementation of the framework's provisions,
utilizing Mininet as the emulation environment. The figure also represents the Ryu
controller acting as the orchestrator of flow control, while the iperf and ping tools are
employed to generate traffic. This figure illustrates the practical application of the
framework and demonstrates the integration of various modules within a real-world
emulation environment.
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Figure 4.2: Network Model Testbed Architecture of the Proposed Framework

4.2.1 Traffic Flow and Analysis Cycle

While the testbed architecture provides the structural view of the proposed
framework, the operational intelligence is captured in the traffic flow and analysis
cycle. Figure 4.3 illustrates this process, showing how packets traverse between end-
hosts, switches, and the Ryu controller in a dynamic closed-loop cycle.

The cycle begins when the end-hosts generate the traffic to be forwarded across the
OpenFlow switches. These examine their flow tables, and if there is a rule for
matching an application, the packet is processed appropriately. However, if the rule is
not found, the packet is redirected through the switch to the controller as a Packet-In
message. The latter evaluates the packet using its Extended modules and updates its
topology and profiling records with the information obtained. After that, the
controller decides on the new rule for this type of flow modification. This rule is
installed using the Flow-Mod instruction on the switches, allowing the next packet of
that flow to be processed directly in the appropriate manner at the data plane.

This closed-loop interaction enables several advantages:

e The results of the monitoring cycles carried out by the switches are directly
integrated into the operation of the controller. Through that mechanism, a
feedback system is established that is continuously being improved.

e The flow management is adaptive and can redistribute traffic load and avoid

congestion in real-time without human input.
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The security function of the controller also works in a closed-loop cycle. During

the described process, the controller detects traffic patterns deemed suspicious,
and the results, together with the recognized threat patterns, are used in the next
cycle to mitigate the risks.

Thus, this closed-loop traffic flow and analysis cycle support the framework’s
operational perspective by demonstrating how adaptability, security, and scalability
are ensured in loT-driven SDN environments.

[ Define Network ]
Topology

[ Implement OpenFlow ]
Protocol

[ Generate Traffic ]
Patterns

Develop Experiment
Scenarios

Set Up Controller-Device
Communication

Integrate Monitoring
Tools

Analyze the Algorithm
Reqmrements

..,,’ [ ;

‘ Lsmrzﬂlreshz:k

based on the conceptual

[ Develop the algumhm logic
framewnrk

[ Implement the Ryu Application

[ Integrate the Algonthm with
| Traffic Monitoring

)
)
)

_

[ Define Evaluation Metrics ]

[ Configure the SDN ]
Environment

[ Generate Network Traffic

]__\

Identify inefficiencies in
traditional VIN embedding
algunthms

Uzing Ryu SDN | |
controller
Develop a cuncepma.l |
framework for traffic-expertness

Define Traffic ]
Expertness Criteria

Choose Mininet
Emulator as the Testbed

[ Design the Traffic ]
Framework

[ Model the Framework ]

_in virtual network embedding. |
Mininet Using Mininet J L,
emulater v
(Designing the experimental sefup
with network topology and traffic
patterns for conducting
experiments

Yiopeniin

tool
Selection of analysis tool and
integrating them into the
experimental setup to collect real-
time network performance data

y

Using OpenFlow
expertness algorithm using

. protocol
L Python and Ryu API's

Implementation of the traffic- |

Using Iperf3, ping
tool
Evaluate the performance of the
traffic-expertness algorithm in
SDN environment

-
) A
"' Collect real-time network

performance data during the
experiment execution phase

.| Integrate with Mininet |

[ Identify Performance
Metrics to Measure

[ Choose Suitable ]
Analysis Tools

| [ Install and Configure ]
Tools

[ Integrate Tools into the ]
Experimental Setup

‘ Collect and Store Real-]

Time Data

[Prepare for Visualization ]
and Analysis

G

Figure 4.3: Traffic Flow and Analysis Cycle in the Proposed Framework

4.2.2 Work Flow of the Proposed Framework

The workflow of the proposed intelligent traffic analysis framework based on Ryu
represents an organized chain of steps starting from extracting higher-level functional
architectural requirements and ending in verifying its functionality in an emulated
SDN environment. Figure 4.4 illustrates this workflow as a structured sequence of
phases that can provide a strong theoretical and design foundation for ensuring that
the framework's design not only works in theory but can also be implemented in

practice.
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Figure 4.4: Workflow of the Ryu-Based Intelligent Traffic Analysis Framework

The initial stage is requirement analysis, where research goals — including topology
awareness, adaptive monitoring of traffic, eavesdropping, and packet injection
detection and mitigation, as well as security enhancement in SDN — and the
inspiration for tackling research gaps are stated. This part of the process ensures that
the idea behind the created framework is relevant, adequately referenced, and actual.
The identified gap in the literature and the current market situation necessitate
addressing this issue by developing a software solution.

After this, the next stage of design is the establishment of topology, which assembles
the topology that represents real-world heterogeneity. The Mininet emulator is used
to create scalable topologies with complex topologies (comprising several OpenFlow
switches, various host nodes, and changing links). By establishing controlled but
flexible environments for traffic analysis, this stage lays the groundwork for further
experimentation.

The next phase, controller selection and extension, is fundamental to the workflow.
The reason is that the choice was made in favor of the Ryu controller due to its
Python-based modularity and official support for experimental prototyping. In this
respect, a further development of the presented workflow relies on extending the Ryu
controller with five custom modules: Topology Awareness, Topology Profiling,
Adaptive Flow Management, TEVN Embedding, and Security. Therefore, this
custom extension is based on the idea that each provides unique intelligence to the
control plane. Thus, the controller is extended in such a manner that it, being a
significant element of the control plane, does not manage flows but functions to
monitor, adapt dynamically, and protect against attacks.

After configuring the topology and controller, the next layer of traffic generation is
done. Multiple host flows are created, bridging both TCP and UDP traffic via
synthetic workloads utilizing tools such as iperf, ping, and bespoke Python scripts. In
this phase, the framework can be validated for its scalability and robustness by
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testing it under conditions such as congestion, burst, or attack-like anomalies.

This is followed by the monitoring and profiling stage, where the traffic generated is
captured and analyzed. The extended Ryu modules gather real-time flow-level
statistics (OFStats), packet counters, and latency values from OpenFlow switches.
The controller processes these results to produce data-driven, adaptive flow
modification rules, enabling the closed-loop optimization of traffic flows. During this
stage, security policies are also applied whenever an abnormal traffic pattern is
observed.

The last stage is validation and evaluation, which assures that the framework is
validated against key performance metrics. To maintain consistency with research
methodology, these metrics are directly aligned with those defined earlier in Section
3.6 (Performance Parameters and Evaluation Criteria). To strengthen this
methodological progression, Table 4.1 summarizes the experimental environment
setup used to implement and validate the workflow. This table consolidates the tools,
configurations, and parameters that define the testbed used in this research.

Table 4.1: Experimental Setup of the Proposed Framework

Parameter Configuration/Tool Used

Controller Ryu Controller (v4.34), extended with custom modules (Topology
Awareness, Profiling, Adaptive Flow, TEVN, Security)

Emulation Tool Mininet 2.3.0 — custom topologies with 4 to 16 switches and 8 to 32 host
nodes
Switch Protocol OpenFlow 1.3-enabled virtual switches.

Traffic Generation iperf (TCP/UDP throughput), ping (latency), Python-based custom traffic
Tools scripts

Monitoring Metrics Throughput, Packet Delivery Ratio, End-to-End Delay, Flow Installation
Time, Security Detection Rate

Analysis Tools Wireshark (packet capture), Scapy (packet injection), Python scripts (data
parsing, log analysis)

Operating Ubuntu 20.04 LTS, Intel Core i7, 16 GB RAM, VirtualBox virtualized

Environment environment

4.3 Integration with Ryu Controller

The successful realization of the proposed intelligent traffic analysis framework
depends on its seamless integration with the Ryu controller, which serves as the
control plane in the designed SDN environment. Ryu was chosen for this research
because of its lightweight Python-based architecture, modularity, and support for
OpenFlow protocols, making it highly adaptable for experimental and research-
driven deployments. Rather than treating Ryu as a generic controller, this work
extends its functionalities by embedding specialized modules that directly address the
research objectives of topology awareness, adaptive flow management, traffic
profiling, and anomaly detection.
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The integration process is best illustrated in Figure 4.5, which depicts the layered
interaction between the controller, the OpenFlow switch, and the connected host
nodes. At the control plane, the Ryu controller operates as the network’s central
intelligence, processing incoming events from the data plane and dynamically
installing flow rules through Flow-Mod messages. The intermediate layer is
represented by an OpenFlow 1.3 switch, which acts as the forwarding element and
enforces flow rules provided by the controller. Finally, the data plane consists of
multiple end hosts (h1-h4), which generate and receive traffic. This baseline
representation highlights how control and forwarding responsibilities are clearly
separated, with Ryu coordinating the translation of high-level monitoring and
management policies into low-level forwarding instructions.

The framework developed in this research integrates directly into this architecture by
embedding customized modules into Ryu’s control logic. For example, the Topology
Awareness module monitors switches and link states, ensuring that the network graph
remains up-to-date in real-time. Simultaneously, the Profiling module collects
OFStats from switches to capture detailed traffic characteristics, enabling more
granular monitoring of load distribution. The Adaptive Flow Management module
takes these inputs and dynamically installs or modifies rules on the switch to
optimize performance and mitigate congestion. For more complex loT-oriented
scenarios, the TEVN Embedding module maps virtual flows to physical resources,
ensuring that heterogeneous traffic is handled efficiently. Finally, the Security
module enforces mitigation strategies against suspicious traffic patterns, thereby
strengthening the resilience of the SDN environment.

PLANE (RYU 434)

OpenFlow Switch 51
(Switch 1.3)

Figure 4.5: Basic Integration Topology of Ryu Controller with OpenFlow and Data Plane
Nodes

This integration ensures three critical benefits: first, the lightweight programmability
of Ryu enables rapid prototyping and iterative testing of different module designs;
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second, the modular separation of tasks allows traffic monitoring, and flow
optimization to coexist without disrupting the controller’s core operations; and third,
the combined framework enhances topology-aware decision making by unifying
control logic, monitoring, and adaptive management into a cohesive structure.

To emphasize the transformation achieved through this integration, Table 4.2
presents a comparison between the baseline Ryu controller and the enhanced Ryu
controller used in this research.

Table 4.2: Comparison between the baseline Ryu controller and the enhanced Ryu

controller
Feature / Ryu Controller Enhanced Ryu Controller
Functionality (Proposed Framework)
Topology Fundamental discovery of Advanced topology awareness
Management  switches and links with real-time link monitoring
Traffic Limited to flow statistics Continuous OFStats collection
Profiling with detailed load profiling
Flow Static or rule-based Flow-Mod Adaptive flow modifications
Management  installation based on congestion and traffic
load
Resource No explicit virtual-to-physical TEVN Embedding ensures
Allocation mapping efficient allocation in IoT
scenarios
Security No dedicated security support Integrated security module for
anomaly detection and
mitigation
Experimental ~ General-purpose, minimal Modular, research-focused
Flexibility customization design for traffic analysis

This comparison highlights the distinction between a general-purpose controller and
a research-driven, modular controller tailored for intelligent traffic analysis. The
lightweight programmability of Ryu makes it an ideal foundation for building
applications. At the same time, the integration of specialized modules allows the
framework to meet the objectives of adaptive monitoring, topology-aware
management, and security enforcement. The combined design thus transforms Ryu
into a competent experimental platform, bridging the gap between theoretical
research models and practical SDN-based traffic analysis systems.

4.4 Experimental Implementation and Controller Integration Results

The experimental implementation of the proposed Ryu-based SDN framework has
been conducted to ensure its functional integration, connectivity, and data flow
management. This subsection provides a detailed overview of the experimental
verification undertaken and the associated results, achieved using the Mininet 2.3.0
network emulator and the Ryu Controller as the central network management entity.
The conducted implementation can be viewed as a link between the conceptual
framework presented in previous sections and the practical assessment performed in
Chapter 5.
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The primary objective of this experimental implementation is to ensure the necessary
efficiency of the controller—switch—host communication, as per the provided design
and selected traffic. The Mininet offers a convenient, virtually realistic platform for
emulating the proposed topology and defining the settings for hosts, switches, and
links involved. The Python-based Ryu controller is used to provide the necessary
dynamic flow management and real-time network statistics required for intelligent
traffic research. As a result, the proper execution of Ping and Iperf commands
ensures that the controller and emulated network are functioning as designed and can
successfully handle defined types of traffic.

4.4.1 Connectivity Validation using Ping Command

To verify the basic connectivity and latency performance across the network
topology, the ping command was used to establish a connection between the host
nodes, H1 and H2. The test measured the RTT of the ICMP packets sent between the
two hosts across the OF-enabled switches managed by the Ryu controller.

As indicated by the screenshot in Figure 4.6, all five packets sent from H1 were
received by H2, indicating 0% packet loss and active communication between the
hosts. The recorded RTT values varied from 0.057ms to 33.3ms, with an average
latency of 6.745ms. The minimal delay indicates that the controller efficiently
processes ICMP requests and dynamically installs flow entries in response to host
queries.

Such low-latency communication is essential for real-time traffic analysis and
decision-making applications, where continuous monitoring and fast responses are
crucial. The successful Ping operation thus confirms that the proposed framework
ensures seamless host-to-host connectivity and reliable controller coordination.

mininet> hl ping -c 5 h2

PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.

64 bytes from 10.0.0.2: icmp seq=1 ttl=64 time=33.3 ms
64 bytes from 10.0.0.2: icmp seq=2 ttl=64 time=0.214 ms
64 bytes from 10.0.0.2: icmp seq=3 ttl=64 time=0.070 ms
64 bytes from 10.0.0.2: icmp seq=4 ttl=64 time=0.057 ms

64 bytes from 10.0.0.2: icmp seq=5 ttl=64 time=0.059 ms

- 10.0.0.2 ping statistics ---
5 packets transmitted, 5 received, 0% packet loss, time 4069ms
rtt min/avg/max/mdev = 0.057/6.745/33.326/13.290 ms

Figure 4.6: Ping Test Results between Hosts in the Proposed SDN Topology

4.4.2 Throughput Measurement using Iperf
To assess the data transmission efficiency of the proposed system, the Iperf tool was used

to measure throughput between selected host pairs. The Iperf utility enables the
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generation of controlled TCP and UDP traffic, allowing for the evaluation of bandwidth,
data transfer rate, and link utilization within the SDN topology.

e Single TCP Stream Test

In the initial scenario, a single TCP connection was established between H1 (the
client) and H4 (the server) using the iperf command with the -c option and the IP
address of H4. As presented in Figure 4.7, the total data transferred during a 10-
second interval was 4.78 GB, with an average throughput of 4.11 GB/s. This high
bandwidth utilization indicates efficient controller-mediated path setup and stable
link quality within the network. The result demonstrates that the Ryu controller
effectively manages flow installations to support high-speed communication across
switches.

--- 10.0.8.2 ping statistics ---

5 packets transmitted, 5 received, 0% packet loss, time 48078ms
rtt minfavg/max/mdev = 0.058/4.769/23.453/9.342 ms
mininet>= Llinks

hi-eth@®<->s1-ethl (0K OK)

h2-eth@<->s1-eth2z (0K 0K)

h3-eth®<-=s1-eth3 (0K 0OK)

h4-eth@<-=s1-ethd4 (OK OK)

mininet>= ports

s1 Llo:® s1-eth1:1 si1-eth2:2 si1-eth3:3 si-eth4:4
mininet> h4 iperf -s &

mininet>= hl iperf

Client connecting to 10.0.0.4, TCP port 5001
TCP window size: 85.3 KByte (default)

3] Local 10.0.0.1 port 42134 connected with 190.0.0.4 port 5001
[ ID] Interwval Transfer Bandwidth
L 3] 9.8-19.0 sec 4.78 GBytes 4.11 Gbits/sec
mininet=

Figure 4.7: Performance Analysis of Host Communication using the iPerf Tool
e Bidirectional Data Transfer Test

To simulate both upstream and downstream data flows simultaneously, a
bidirectional test is conducted using the command iperf -c h4 -d. According to
the analysis presented in Figure 4.8, the throughput was 3.50 Gbps in one direction
and 1.25 Gbps in the other. Such results can be explained by the fact that the
controller dynamically manages concurrent data transmission in both downstream
and upstream directions, considering varying priorities and sending flows in the
direction with the highest demand.
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mininet> hl iperf -c h4 -d

Server listening on TCP port 5001
TCP window size: 85.3 KByte (default)

Client connecting to 10.0.8.4, TCP port 5001

TCP window size: 298 KByte (default)

[ 3] local 10.0.0.1 port 53500 connected with 10.8.0.4 port 5001
[ 5] local 16.8.8.1 port 5001 connected with 10.8.0.4 port 33086
[ ID] Interval Transfer Bandwidth

[ 3] ©.8-10.0 sec 4.07 GBytes 3.50 Gbits/sec

[ 5] ©.8-18.0 sec 1.46 GBytes 1.25 Gbits/sec

Figure 4.8: Bidirectional Bandwidth Measurement between Hosts in Proposed SDN
Topology

e Parallel Stream Test for Scalability

To examine the scalability and concurrency handling capability of the framework, a
multi-threaded Iperf test was performed using the command iperf -c h4 -P 5, which
initiates five parallel TCP streams between H1 and H4. As depicted in Figure 4.9,
each stream individually achieved an average throughput of approximately 1.2 Gbps,
resulting in a combined throughput of 6.07 Gbps across all flows.

This result highlights the robustness of the proposed system in efficiently managing
multiple concurrent connections. The Ryu controller, aided by the designed topology-
aware logic, successfully distributes traffic loads across various links while
minimizing congestion and packet delay. The high aggregate throughput achieved
during this test validates the framework's scalability and adaptive flow management
capabilities.

mininet> h1l iperf -c h4 -P 5

Client connecting to 10.0.8.4, TCP port 5601
TCP window size: 85.3 KByte (default)

connected
.0.0.1 port 53506 connected
local 10.0.0.1 port 53508 connected with
local 10.0.0.1 port 53512 connected with
local .0.0.1 port 53510 connected with
Interval Transfer Bandwidth
0.0-10.€ .39 GBytes 1.19 Gbits/sec
.0-10.0 se .43 GBytes 1.22 Gbits/sec
9.0-10.0 se .43 GBytes 1.23 Gbits/sec
.B-18. .43 GBytes 1.22 Gbits/sec
.8-18.E .41 GBytes 1.21 Gbits/sec
.0-10.0 se .09 GBytes 6.07 Gbits/sec
Figure 4.9: Parallel Bandwidth Testing using Multiple iPerf Streams in SDN Topology
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4.5 Chapter Summary

This chapter detailed the implementation and integration of the proposed intelligent
SDN-based traffic analysis framework using the Ryu controller within a Mininet
emulation environment. The network configuration, topology setup, and interaction
among hosts, switches, and the controller were described to demonstrate real-time
flow control and centralized network management through dynamic OpenFlow rule
handling. The implementation confirms the practical feasibility of the proposed
framework in dynamic SDN environments.

The chapter also presented experimental validation using Ping and Iperf tools to
evaluate connectivity, latency, and throughput under different traffic conditions. The
results showed stable network behavior with low latency, high throughput, and
reliable multi-flow handling. These findings establish the reliability of the proposed
framework and provide the basis for the detailed performance evaluation and
comparative analysis presented in the next chapter.
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CHAPTER S

PERFORMANCE EVALUATION OF THE PROPOSED SDN
FRAMEWORK AND COMPARATIVE BENCHMARKING

After demonstrating the effectiveness of the Ryu-based intelligent traffic analysis
framework proposed in Chapter 4, this chapter conducts an experimental evaluation
to demonstrate its performance under various realistic network settings. The
transition from construction to dimensioning is a crucial step in validating the model.
This stage ensures that the theoretical model not only performs well in theory but
also exhibits improved performance in real-time network scenarios and scalability
within a dynamic SDN framework. In this chapter, the experimental testbed and
network topology are established to simulate diversified traffic conditions and
controller communication. The robustness of the framework is examined under
various scenarios to verify its adaptive capability for traffic control, achieving low
delay and high throughput. Performance analysis is conducted using performance
parameters, including packet delivery ratio, jitter, throughput, and delay, to observe
the system's behavior under various loads. We also compare our model with the
existing SDN frameworks to demonstrate its superiority in terms of network
reactivity, load distribution, and decision efficiency. Arguing that the results from
these tests validate the security and intelligence of the framework to be used for
massive SDN deployments nowadays.

5.1Introduction

The significant growth in connected devices and digital applications that we are
currently witnessing has transformed today's networks into dynamic and
heterogeneous ecosystems. Traditional routing systems, which are often configured
statically and use vendor-specific protocols, are not well-suited to address the rapidly
increasing load of traffic and service types. SDN is proposed as a solution for this by
separating the control plane from the data plane, allowing centralized, programmable
network control.

Still, although SDN is a simple and elegant concept with much intellectual appeal, its
practical implementation will expose the performance bottleneck of the controller.
Delays resulting from centralized decision-making, inefficient use of bandwidth due
to packet packing, and failure to manage traffic flows also reduce scalability. In the
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presence of large-latency networks, where there is a momentous delay in conducting
the feedback response, what matters most is both the speed and intelligence with
which this controller responds to differing scenarios.

To address these issues, this paper proposes an enhanced SDN control framework
based on the Ryu controller, incorporating TEVN embedding and intelligent
anomaly-detection capabilities. The proposed framework wants to enrich the stream-
based Ryu controller, allowing for making it more intelligent, as well as more
innovative and more proactive by 1) adding novelty that will introduce a really highly
adaptive control structure with learning features being able: i) to make pre-emptive
flow adjustments, ii) maximize resource usage, iii) carry out advanced security
control operations.

5.1.1 Need for Performance Evaluation

Performance evaluation is a key element to study in any research developed around
network design, optimization, or control frameworks, and SDN is not the exception.
The separation of the control plane and the data plane by SDN exacerbates
inefficiency, which also impacts the entire network due to interactions between the
controller and devices within it. Thus, it is necessary to verify the effectiveness and
efficiency of the proposed topology-aware Ryu-based intelligent traffic analysis
framework across various network environments. Performance evaluation is required
because theoretical and simulated behaviors differ in real-time network
environments. Several factors, such as link congestion, flow-table administration, and
slow processing delays between the controller and switches, can disrupt network
operation. Therefore, an overall evaluation is necessary to bridge the gap between
conceptual design and field applications by quantifying the effectiveness of the
proposed framework in practice. Performance measurement plays several interesting
roles in this research. The focus of the paper is two-fold: first, it verifies whether our
proposed framework successfully fulfills its objectives (i.e., reducing latency,
minimizing packet loss, and improving throughput and load balancing in SDN) to
benefit from and promote path reclassification. Secondly, this provides a benchmark
for comparing our system with existing models that achieve control via SDN on a
nationwide or regional scale. Finally, it guarantees that its developed framework will
be scalable, robust, and reliable when deployed in large-scale or dynamically
changing networks, such as loT-based networks or e-learning infrastructures.

Moreover, a precise insight into the contribution of each parameter to the overall
system behavior is obtained by evaluating performance with respect to different
metrics (e.g., latency, throughput, jitter, and controller response time). This “multi-
dimensional” critique highlights both the strengths and potential weaknesses of this
approach, and as such, provides a balanced view to build upon in further
sensorimotor enhancement. Finally, performance evaluation is not a testing exercise
to verify only the result but rather aimed at measuring, analyzing, and validating the
operational capability of the timed SDN scheme. The extensive testing we performed
in a controlled simulation environment, using Mininet and the Ryu controller,
guarantees the practical feasibility and theoretical correctness of the proposed
architecture. The findings of this assessment provide the basis for quantitative
benchmarking and underpin the subsequent examination reported in later sections of
this chapter.
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5.1.2 Objectives of Evaluation

The primary objective is to evaluate the proposed SDN framework in terms of its
effectiveness, scalability, and reliability in traffic steering, incorporating intelligent
decision-making for network policies. Because a Ryu-based topology-aware
architecture is proposed for efficient traffic analysis and flow control, performance
evaluation is crucial to demonstrate the practical applicability and technical
advantages of this SDN design compared to conventional SDN.

The evaluation aims to provide some quantitative evidence in support of the
theoretical contributions of this work. The designed system is to be evaluated against
specific design goals and relevant performance requirements, which may be
determined through systematic testing of the proposed framework under varied traffic
scenarios and topologies.

The key objectives of this performance evaluation are outlined as follows:

e To verify that Ryu-based SDN solution is efficient: Evaluate the controller's
performance in handling traffic from the network, enforcing flow rules, and
preserving a steady control line towards the data plane on the Mininet
simulated environment.

e To evaluate the changes of specific network parameters: Measure
improvements in terms of latency, throughput, PDR, jitter, and packet loss
with respect to traditional SDN controller-based solutions such as ONOS and
ODL.

e To measure the effect of the topology-aware mechanism: Explore how to
incorporate a topology-aware scheme in the proposed system for path
selection, load balancing, and fault-tolerant dynamic network.

e To measure the performance of a controller under different loading
conditions: Evaluate how the Ryu controller scales out and reacts with a
growing amount of hosts, flows, and traffic burstiness.

e To compare the proposed framework against the current benchmark models:
Carry out a performance comparison to demonstrate the superiority and
stability of the proposed method with respect to resource efficiency and flow
management.

e For real-world applicability: Check whether the performance described by the
framework meets the criteria of real-time systems, e.g., loT-based
environments, cloud-assisted distance learning systems, and multimedia
network communication.

5.1.3 Scope and Significance

The performance assessment of the proposed topology-aware SDN model is a
crucial step in confirming its effectiveness, scalability, and adaptability in dynamic
network environments. This paper evaluates the measurements in terms of
performance indicators, including latency, throughput, jitter, and packet loss, for
various network loads and topologies. It also involves benchmarking the proposed
Ryu-based architecture with other existing SDN controllers, indicating its
enhancements in flow management and responsiveness. To investigate different
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traffic profiles and link characteristics, ranging from modeled to real-world,
including performance, stability, uniformity, and realization of the designed system.

This comprehensive evaluation is essential to demonstrate the practicality and
advantages of our system over competitive solutions instantaneously. It bridges the
gap between theoretical design and its real-world validation by converting the
abstract model into a tangible performance measurement. The test results obtained
from our evaluation test demonstrate that the Ryu controller's wise decision-making
functionalities and topology awareness enable the achievement of good network
behavior, congestion mitigation, and efficient data transmission. The performance
evaluation ultimately confirms not only the technical soundness of our
computationally efficient solutions but also enables the advancement of our
approach to contemporary network situations, such as messaging in IoT designs,
innovative frameworks, or cloud implementations.

5.2 Experimental Setup

An experimental environment was set up in Mininet, utilizing the Ryu controller to
simulate the network and Wireshark to monitor it, to perform an accurate and
reproducible performance analysis. We created test scenarios that allowed us to
closely mimic a realistic SDN environment, where we could identify bugs not only in
flow but also in network traffic, topology, and controller decisions. This setup
focused on validating the effectiveness and flexibility of the topology-aware SDN by
testing the performance against various traffic loads and network configurations.
Table 5.1 depicts the simulation environment and the performance evaluation
parameters used in the setup environment.

We have developed a model topology that simulates the functionality and
performance of a multi-switch SDN network environment, where OpenFlow
switches are connected to host nodes in different segments of a multi-segment
network. The response included topology-aware intelligence at the controller layer,
enabling routing to occur in the most efficient manner possible, and regulating data
flow based on link load or other congestion indicators. It allows a comprehensive
analysis of how the Ryu controller performs under various conditions and how our
approach facilitates more informed control decisions in traffic. It was a hybrid
hierarchical network architecture consisting of core switches that connected to the
aggregation and access layers to increase scalability and reduce data transmission
delay. This traffic generation created flows between different pairs of hosts, as would
occur in client-server and peer-to-peer style communication [44]. Dynamic link
fluctuation and traffic bursts were incorporated to test the adaptively and fault-
tolerance of the framework. These cases were used to highlight the benefits of the
new topology-aware mechanism on the optimal path selection and improved overall
QoS metrics.

This setup provided a controlled and flexible environment for analyzing how the
proposed framework behaves in real-time conditions. By enabling dynamic control
decisions through the Ryu controller, the network could adapt efficiently to changing
traffic loads, confirming the framework’s effectiveness in optimizing data flow and
maintaining consistent performance across multiple network conditions.
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Table 5.1: Simulation Environment and Performance Evaluation Parameters

Component Description
Controller Used Ryu SDN Controller (v4.34)
Emulator Mininet 2.3.0
Protocol OpenFlow 1.3
Host Operating System Ubuntu 22.04 LTS
Hardware Configuration Intel i7 (12th Gen), 16 GB RAM
Traffic Tools Iperf, Ping, Wireshark
Performance Metrics Latency, Throughput, Jitter, Packet Loss
Network Design Multi-switch, topology-aware hybrid structure
Testing Approach Repeated runs with varying traffic and topology

parameters

5.2.1

Hardware and Virtualization Environment

The complete test environment was implemented on a dedicated high-performance
workstation to provide sufficient CPU and memory capacity for multiple concurrent
network simulations. The configuration is as follows:

5.2.2

Processor: Intel® Core™ 17 (8th Generation, 4.2 GHz, eight cores)
RAM: 16 GB DDR4

Storage: 512 GB SSD

Operating System: Ubuntu 20.04 LTS (64-bit)

Virtualization Platform: Oracle VirtualBox

Software Components

Many tools and frameworks in the software environment helped with SDN testing:

5.2.3

Mininet 2.3.0: Used to mimic the structure of virtual networks. With Mininet,
you can create hosts, switches, and links in a flexible manner by adjusting the
bandwidth, delay, and loss settings.

Open vSwitch (OVS) 2.15: Used as the forwarding plane component and
supports OpenFlow 1.3 for talking to the controller.

Ryu Controller (v4.34): The basic SDN controller that the improved
Ryu+TEVN framework is built on.

Wireshark 3.4: Used to capture packets and look at how OpenFlow
communication works.

iperf3: Used to measure throughput and bandwidth for both TCP and UDP
traffic.

hping3: Used to analyze RTT and latency and to create strange traffic for
security testing.

Python Automation Scripts: These scripts are meant to control the running of
experiments, gather logs, and make plots from recorded metrics.

Network Topologies
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We create a scalable SDN realistic topological network to evaluate the proposed
framework, which can serve dynamic data flows and a wide range of network loads.
The topology is created in Mininet, a highly flexible simulator for emulating various
networks under controlled conditions. It consists of multiple hosts, OpenFlow-
enabled switches, and a centralized Ryu controller that controls the entire network.
The setup ensures that every data packet passes through the controller, enabling
granular inspection of flow installations, where route selections are made, and traffic
management decisions are executed.

The topology is topology-aware, meaning that the controller dynamically learns and
updates the network’s structural information to make optimized forwarding
decisions. This adaptive awareness enables the identification of congestion points,
link failures, and path delays in real-time. The topology integrates both core and edge
network layers, ensuring a balanced load distribution and a realistic representation of
enterprise or IoT network architectures. The Ryu controller manages these layers
through OpenFlow protocols, where flow rules are generated based on traffic
characteristics and network feedback.

The experiments utilize various topological structures, including trees, meshes, and
lines, to assess the efficiency and flexibility of the method. Every configuration is
subjected to multiple traffic loads and flow requests to evaluate metrics such as
latency, throughput, and packet loss. This diversity is intended to facilitate the
evaluation of a wide range of operational settings, from small-scale to large-scale IoT
deployments and data center networks. Here, the chosen topology not only verifies
the correctness of the proposed model but also illustrates its flexibility in different
networking environments and performance requirements.

5.3 Test Scenarios and Case Studies

For a comprehensive set of the proposed topology-aware Ryu-based SDN
framework, performance was verified through numerous test case scenarios and real-
world use cases, which imitate different network environments, as depicted in Table
5.2. Each scenario was designed to evaluate specific aspects of the framework, such
as its adaptability to dynamic traffic changes, its ability to balance network loads, and
its effectiveness in maintaining QoS parameters. These test cases capture real-world
operating scenarios in SDN-based environments, such as data centers, [oT networks,
and distance learning clouds.

Experiments were conducted in a staged Mininet environment with various network
topologies, including classical linear and tree topologies, as well as more complex
meshes. Under various traffic conditions, including CBR, VBR, and burst traffic,
each topology was also evaluated to observe the controller's behavior in maintaining
flow entries and installing optimal routing decisions. The Ryu controller was the
centralized control plane entity that dynamically calculated forwarding rules based on
link state, bandwidth utilization, and traffic density.

To facilitate a fair comparison, we considered both static (traditional) and dynamic

(proposed topology-aware) setups. As the static setting for routing, we used the

typical shortest path for routing decision-making. In contrast, for dynamic behavior,
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real-time topology awareness was employed to make adaptive decisions on the
selection of routing paths. This distinction highlights the advantages of incorporating
adaptive intelligence into the Ryu controller for efficient traffic handling and
minimizing network congestion. The test cases are divided into seven categories.
Different test cases were classified into the following three types for a comprehensive
review:

* Scenario 1 — Baseline Performance Evaluation: This scenario evaluated the basic
functionality of the SDN environment using a linear topology consisting of two
switches and four hosts. It also established baseline metrics for latency,
throughput, and packet delivery under a constant traffic load. The outcomes of this
scenario served as the baseline for subsequent comparisons.

* Scenario 2 — Dynamic Traffic Handling and Load Balancing: A more complex tree
topology was used, including replacing the DO with a different topological
structure, including six switches and multiple host nodes, to witness how it
handled variable traffic loads. Iperf was used to create traffic with changing data
rates, simulating congestion and different link utilization states. Our topology-
aware mechanism dynamically adjusts routing paths to distribute loads across
available links, preventing bottlenecks and ensuring a continuous data flow.

* Scenario 3 — Comparative Case Study with Existing Frameworks: This scenario
compared the performance of the proposed framework to traditional SDNs with
existing controllers (i.e., ONOS, OpenDaylight). The efficiency improvements
were quantified using metrics like latency, jitter, throughput, and packet loss. In
conclusion, the case study demonstrated that the proposed framework exhibited
better adaptation to changes and reliability in response to changes compared to
existing systems, thereby verifying the effectiveness of the design for real-time
traffic analysis.

Table 5.2: Test Scenarios and Corresponding Network Configurations for Performance

Evaluation

Scenario Objective Network Topology  Traffic Type Performance Focus
Scenario  Establish baseline Linear topology (2 Constant Bit Latency and throughput
1 performance switches, four Rate (CBR) benchmarking

hosts)
Scenario  Analyze dynamic Tree topology (6 Variable Bit Load balancing and
2 load handling switches, eight Rate (VBR) congestion control

hosts)
Scenario  Compare with other ~ Hybrid mesh Mixed traffic Overall performance and
3 frameworks topology adaptability

5.4 Performance Metrics

The assessment of the proposed Ryu-based topology-aware traffic analysis

framework requires a comprehensive evaluation metric system to accurately measure

its performance in terms of efficiency and dependability, as defined in Table 5.3. The

measurements can be used as a numerical benchmark to evaluate the performance of
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the controller, understanding how it controls traffic, manages QoS, and distributes
data flow on active/inactive SDNs.

This subsection presents the essential parameters — latency, throughput, jitter, packet
loss, and controller response time — to be used in evaluating the proposed system.
All of these metrics are crucial for verifying that the framework can effectively
support real-time traffic scenarios without compromising network stability and
scalability.

The measurements were derived from tests conducted in a programmable test case
implementation within the Mininet simulation environment, utilizing Ryu as the
controller and OpenFlow switches to manage the dynamic flow of packets. Iperf,
Ping, and Wireshark were used for traffic generation and analysis to achieve a
credible empirical assessment. These measures collectively embody the central aims
of our proposed framework, which is to achieve reduced delay, increased throughput,
reduced packet loss, and improved controller responsiveness through intelligent
topology-aware decision-making.

5.4.1 Latency

Latency is a value that indicates the time it takes for a packet to be delayed while
traveling from source to destination. It is one of the most critical factors of a
network’s responsiveness. Within the scope of the proposed model, latency measures
the effectiveness of the Ryu controller in determining the optimal paths for routing
based on real-time topology information.

We measured the latency based on RTT when sending out ICMP echo packets, and
the mean latency is calculated as half of RTT. The topology-aware logic of the Ryu
controller intelligently chooses alternate, non-congested shortest paths, significantly
mitigating end-to-end latency compared to static/legacy SDNs. This provides a
smoother data rate, making it suitable for time-sensitive applications, such as online
learning and innovative loT environments.

5.4.2 Throughput

Throughput is the aggregate rate of successful data delivery over a network (bits per
second). This demonstrates the efficiency with which the proposed scheme can
utilize bandwidth resources while maintaining stability in the presence of fluctuating
traffic patterns.

The framework’s throughput was tested using Iperf to assess its flexibility as TCP
and UDP streams. Ryu controller’s topology-awareness enables it to make routing
decisions on the fly according to the network load and link utilization, resulting in
better bandwidth utilization and a higher ability to carry traffic.

The results showed that this proposed method consistently outperformed traditional

schemes in terms of throughput, demonstrating its capability to handle heavy traffic
while maintaining better QoS performance.
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5.4.3 Jitter

Jitter refers to the fluctuations in packet delay during transmission and is a crucial
value for real-time applications such as video conferencing, VolP, and e-learning
portals. Large jitter values can result in interruptions to continuous data streams and
negatively impact the user's experience.

In our design, jitter was reduced through intelligent load balancing and on-the-fly
monitoring of link status by the Ryu controller. The dispersion of the successive
packet delays was calculated as follows:

By periodically refreshing the flow tables and avoiding heavily congested paths, the
scheme sustains constant packet delivery delay variation even under traffic spikes.
Such stability also indicates the appropriateness of the mechanism for low-latency
and media-rich data forwarding in an SDN network.

5.4.4 Packet Loss

Packet loss refers to the percentage of data packets that are dropped or lost during
transmission. This demonstrates the network's resilience and strength in handling
congestion, link failures, or switch overload.

The controller in the proposed topology-aware setup significantly reduces packet loss
through its responsive rerouting mechanism, which continually senses the state of
links and redistributes traffic onto alternate paths as necessary to address sustained
degradation. This helps the network remain robust in the event of excessive traffic or
node failures. The Ryu controller's ability to continuously monitor and modify the
flow from the switches helps reduce retransmissions and maintain the path for
packets, ultimately increasing throughput.

5.4.5 Controller Response Time

Controller response time indicates the speed at which the SDN controller processes a
new packet-in event (i.e., a request to install a flow rule) and makes a decision; 1.e.,
when this event takes place that results in the arrival of packet(s), it calculates
forwarding action and respective flow into its store, then puts into effect the
corresponding flow rule. It represents the processing capability and flexibility of the
control plane.

Ryu Controller responded more quickly in the proposed model because it was written
in Python and is easier to execute than POX, with its pre-compile benefits, and
supports an asynchronous event handling mechanism. With topology-awareness, the
controller can effectively keep refreshed link-state information to minimize
computation time and control message overhead.

This enhanced responsiveness means a better and more cooperative controller for
network switches' communication, particularly during topology change events or
flow setup requests.
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Table 5.3: Performance Metrics, Measurement Techniques, and Impact on the Proposed

Framework
Metric Description Measurement Method / Relevance to Proposed
Formula Framework
Latency Time for the data to RTT /2 (Ping Tool) Reduced latency due to
travel from the topology-aware dynamic
source to the routing
destination
Throughput Rate of successful data Total Data Received/ Improved throughput
transfer (bps) Transmission Time under adaptive flow
control
Jitter Variation in packet Average deviation of delay Consistent packet timing
delay times through intelligent load
balancing
Packet Loss  Packets lost during ((Packets Sent—Packets Reduced loss via adaptive
transmission (%) Received)/Sent) x 100 rerouting and congestion
management
Controller  Time taken by the Tflow rule install - Tpacket-in Faster decision-making
Response controller to respond with topology-driven
Time to the flow optimization
request
5.5 Result Analysis

Experimental verification of the proposed topology-aware SDN skeleton has been
performed to analyze its performance, flexibility, and robustness under various
network scenarios. The remainder of this section presents the detailed results derived
from several simulation scenarios based on the Mininet-Ryu environment. The
performance of the controller is evaluated based on three primary performance
metrics — throughput, latency, and packet loss, which collectively determine how

well a particular controller manages data flows to maintain QoS.

We have maintained a record of the results for several host pairs that transmit
through OpenFlow switches managed by the Ryu controller. The purpose of the
is to verify the basic functions,
maintenance, intelligent traffic balancing, and link-fault weatherproofing. The
resultant performance curves are analyzed in terms of stability, adaptability, and

experiments

including dynamic topology

correlation between the traffic load and controller responsiveness.

5.5.1 Throughput Analysis

Throughput, which represents the data transmission capacity of the network, serves
as an essential indicator of how efficiently the SDN controller manages the available
bandwidth. Fig. 5.1 illustrates the variation in throughput across multiple host pairs

during the experiment.

At the start of the communication (first second), throughput rises sharply from 0
Gbps to nearly 25-30 Gbps as the controller establishes flow rules between the hosts.

This initial spike corresponds to the OpenFlow handshake and flow table setup
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process. Once the flow entries are installed, the throughput stabilizes, maintaining
high and consistent transmission rates across the network duration.

The similarity of the throughput rates obtained for all pairs of hosts (h1-h2, h1-h3,
h1-h4, and so forth) suggests that the controller dynamically reacts and effectively
load-balances and controls the respective flows. The slight variations observed after
5-6 s indicate that the controller adapts to the network by quickly responding to
temporary topology updates or link recalculations, while preserving efficiency, as its
overall efficacy remains unaffected.

These findings align with proposed research that demonstrates topology-aware design
enhances link utilization while minimizing congestion by dynamically determining
traffic flows based on Ryu. That generally extracts packets, packet-forwarding of
packets, and even more solid operation-time devices throughout numerous created
beatings in the bits of a packet type. For learners, a high-level abstraction of traffic
detection by intelligent analysis for achieving throughput stability, which, in turn,
feeds into one of the critical research areas
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Figure 5.1: Throughput Variation across Multiple Host Pairs

5.5.2 Latency Analysis

Latency is the end-to-end delay that the user experiences when sending a packet,
which reflects the responsiveness and real-time of the SDN environment. Latency
among several pairs of hosts controlled by the Ryu controller is shown in Fig. 5.2.
This indicates that a 1 millisecond average latency remains low in most connections,
promoting faster flow rule installation and excellent responsiveness. Latency values
are minimal (<0.05-0.9 ms), meaning that the processing overhead is as little as
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Time (in milliseconds)

possible for data-plane communication with the controller. However, we occasionally
observe spikes (between 7 ms and 9.6 ms).

The spikes coincide with events where the topology is reconfigured or new flow
entries are added at the controller, resulting in a temporary increase in
communication between the controller and switch. Most importantly, these latency
peaks immediately settle down, suggesting that the controller is quite resilient and
quickly re-establishes an efficient path for data. Such a characteristic low latency,
within the limits of this study, also indicates that the intelligent Ryu-based framework
proposed achieves the aggregate minimum delay, making it suitable for use in IoT,
multimedia streaming, and time-sensitive systems. The controller, built from the
ground up in Python with extensive modularity, is capable of making instant
decisions in response to topological changes while maintaining service continuity,
even in highly demand-oriented networks.
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Figure 5.2: Latency Analysis between Host Pairs using Ryu Controller

5.5.3 Packet Loss Analysis

Packet loss is a metric that provides insight into network reliability and the
controller's capacity to deliver a consistent flow rate under duress—packet Loss
under bandwidth and traffic in Figures 5.3 and 5.4. The system is solid and robust, as
evidenced by the packet loss of not exceeding 0.5% at both 10 Mbps and 50 Mbps
bandwidths. This consistent performance illustrates that the adaptive load balancing
and congestion detection capabilities embedded in the proposed framework enable
the realization of a stable connection among multiple hosts. Fault tolerance has also
been evaluated by simulating various other test scenarios, as mentioned in Figure 24,
including link failures, bursty traffic, and concurrent flow bursts. Under these
changing conditions, the percentage of dropped packets slightly increased (3.4%), but
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remained within normal limits, even under high load. This demonstrates the self-
adaptive behavior of the Ryu controller, which, in the event of a link failure (Link
Down) or a node failure (Node Down), reconfigures the forwarding paths of packets
to recover from the failure with minimal disruption to the network.

Instead of merely succumbing to failures, the framework maintains path choice,
thereby reducing retransmission costs; this behavior highlights the potency of
topology-awareness in the proposed system. Consequently, the SDN network
becomes more dependable, robust, and resource-efficient, as required for high-
availability SDN environments.
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Figure 5.3: Packet Loss Analysis at 10 Mbps and 50 Mbps Bandwidths across Host
Pairs
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Figure 5.4: Observed Packet Loss under Varying Network Traffic Scenarios
5.5.4 Overall Performance Interpretation

Throughput, latency, and packet loss are extensively analyzed based on experimental
results, which show that the proposed topology-aware SDN framework significantly
enhances performance compared to static or reactive architectures. The Ryu
controller is entirely programmable in Python, seamlessly integrated with Mininet
and Wireshark for real-time traffic optimization, and capable of achieving high
throughput, low latency, and negligible packet loss under dynamic traffic conditions.

From the results of all the experiments conducted in the previous chapters, it is
demonstrated that the proposed system successfully fulfills the research requirements
of network adaptability, controller-to-switch communication, and network stability
when exposed to various traffic loads. Ryu is an ideal solution for softer research
environments, as it achieves a perfect balance in transparency, performance tuning,
and simplicity — in contrast to other controllers designed for production-scale
environments (like ONOS or OpenDaylight), which are too complex for academic-
level prototyping.

Therefore, the analysis confirms that the Ryu-based approach meets the necessity of
scalability and efficiency for implementing adaptive traffic analysis and control in
SDN environments. Not only does it provide optimized solutions for various existing
problems, such as latency variation and dropped packets, but it also offers greater
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predictability of flow and responsiveness to topology, traits that position it well for
use in future innovative networking applications.

5.6 Comparison with Existing Frameworks

In this section, a comparative performance analysis is performed to evaluate the
application's performance in our proposed SDN-based intelligent traffic analysis
framework against the default SDN topology using the Ryu controller. Abstract-This
evaluation tries to quantify how well the proposed framework enhances the core
performance indicators, such as the throughput, bandwidth, RTT, and packet loss
rate, when subjected to different conditions of the network and various host
connections. The results are obtained through extensive simulation and emulation
experiments in the Mininet environment, where the respective default and proposed
topologies are compared under identical traffic and bandwidth conditions to ensure a
fair comparison.

5.6.1 Throughput Analysis

In Figure 5.5, we present a comparative throughput analysis of the proposed and
default SDN topologies for various numbers of host connections. We analyze the
minimum and maximum throughputs recorded between pairs of hosts, including hl-
h2, hl1-h3, h2-h3, h2-h4, and h4-hl, and so on. These results definitively
demonstrate that the proposed topology consistently achieves higher throughput,
ranging from 21.4 to 27.4 Gbps, compared to the default topology, which has a lower
throughput range of 20.8 to 26.8 Gbps.

This enhancement is primarily achieved through the utilization of smart links and the
adaptive flow assignment approach incorporated into the proposed SDN architecture.
The controller provides effective load balancing of traffic among available paths and
offers facilities to prevent overutilization of network bandwidth, thereby avoiding
bottlenecks and choking. As a result, the proposed model has a less volatile
throughput curve, lowering the fluctuations in classical SDN environments. This
demonstrates that the proposed scheme achieves a throughput gain of up to 5-8%,
making it more efficient for concurrent flows [37].
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Figure 5.5: Comparative Throughput Analysis of Proposed and Default SDN
Topologies under Varying Host Connections

5.6.2 Bandwidth Comparison

In Figure 5.6, we compare the bandwidth between the proposed and default SDN
frameworks for various host pairs. As a result, the proposed framework achieves
higher bandwidth utilization than the measured bandwidth utilization of 26.7 Gbps
for h1-h2, 25.2 Gbps for h1-h3, and 25.0 Gbps for h1-h4 in the default setup, which
is 25.1 Gbps, 24.5 Gbps, and 24.4 Gbps, respectively.
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Figure 5.6: Bandwidth Comparison between Default and Proposed SDN Framework
across Host Pairs

This result demonstrates that the proposed SDN model can facilitate high data rate
transfers and dynamically adapt to changes in available link capacity. The flow
scheduling method is deployed in conjunction with the Ryu controller, which has an
efficient traffic monitoring module. With this functionality, the network will
capitalize on available resources. This improved bandwidth utilization indicates
better overall throughput consistency and suggests a more intelligent controller that
effectively mitigates network congestion. Based on the results, the proposed system
improves bandwidth efficiency by approximately 4-6% compared to the current
system, resulting in a smoother data transmission environment and eliminating
performance bottlenecks.

5.6.3 Latency Comparison

RTT Comparison between Proposed and Default SDN Topology Between Multiple
Host Pairs shown in Fig. 5.7. In contrast, the RTT for the proposed topology is
considerably lower, which confirms the proposed topology reaches the destination
faster with lower delay. The proposed setup achieved latency values ranging from a
minimum of 0.9 ms to an average of 8.1 ms. In contrast, the default topology
achieved minimum, average, and maximum latency values ranging from 1.0 ms to
10.2 ms.

This reduction in latency is a direct result of the optimized routing and reduced
controller overhead introduced by the proposed framework. The system also utilizes
mechanisms and optimizations for packet forwarding and prioritization, minimizing
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queuing delays and enhancing control-plane responsiveness, as well as packet
delivery performance. Reduced RTTs indicate a better area for performance in delay-
sensitive applications, such as video streaming and real-time analytics. Accordingly,
the latency in the SDN environment with our proposed framework is up to 15%
lower than traditional approaches, which further confirms the power of SDN in
performing time-critical operations.
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Figure 5.7: RTT Comparison of Proposed vs. Default SDN Topology across Host
Pairs

5.6.4 Packet Loss Rate Comparison

As shown in Fig. 5.8, Packet Loss Rate Comparison between the proposed and
existing SDN frameworks on various network conditions. This evaluation comprises
several traffic scenarios, including low traffic (2 Mbps, 100 packets/sec), high traffic
(= 12 Mbps, 600+ packets/sec), bursty traffic (2-10 Mbps oscillation), and link
failure scenarios. Packet loss can be as low as 1.5% to 3.4% in the proposed
framework, whereas the existing SDN framework incurs a higher loss of 2.3% to
5.2% across scenarios.

This reduction in latency and lower packet loss is made possible by the proposed
framework's capability for intelligent traffic monitoring and adaptive retransmission
control, which enables it to detect congested links and redistribute flows to maintain
stability quickly. The topology-aware and controller feedback mechanisms in the
proposed model will allow it to sustain similar packet drop rates at lower levels, even
under bursty or failure-prone conditions. Thus, the framework reduces packet loss by
~approximately 30-35% and demonstrates its robustness and reliability across
different traffic intensities.
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Figure 5.8: Traffic Packet Loss Rate Comparison under Varying Network Conditions
5.7 Chapter Summary

The results from this chapter corroborate the fact that the multiple scenario-relevant
features lead to a significant, performant, and stable network by the proposed
framework. As presented in the throughput and bandwidth analyses, there is a steady
increase of approximately 5-8% in data transfer efficiency due to the capabilities of
dynamic flow scheduling and smart load balancing designed into the Ryu controller.
Latency measurements indicated a significant reduction of approximately 15%,
demonstrating the framework's ability to optimize real-time packet forwarding and
infrastructure overhead on the controller. Here, the packet loss rate was decreased by
~approximately 30-35% even in high-traffic and link-failure scenarios, indicating
the system's efficiency in maintaining reliable data delivery.

In general, results confirm that the SDN topology-aware design can achieve
significantly better performance compared to traditional SDN architectures. The
framework's dynamism in response to changing network factors, along with its
enhanced resource and decision-making capabilities, makes it suitable for large-scale,
time-critical network settings, including IoT systems, cloud-based e-learning
systems, and intelligent infrastructure networks. As such, this chapter demonstrates
that the proposed approach is practical, scalable, and reliable, which provides a
strong basis for both real-world deployment and future research extensions.
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CHAPTER 6

CONCLUSION, FUTURE SCOPE, AND SOCIAL IMPACT

6.1 Conclusion

This study focused on the SDN environment and developed a Ryu-based intelligent
traffic analysis framework. This thesis implements a topology-aware dynamic traffic
management framework that leverages centralized SDN control to improve
scalability, fault tolerance, and traffic handling efficiency. It was made successful by
overcoming the limitations of the traditional distributed networking model through
the addition of traffic monitoring, load balancing, and anomaly detection capabilities
under the Ryu controller, providing centralized management.

Through experiments and simulations in Mininet, the proposed architecture
demonstrated that centrally controlling with a Ryu controller can significantly
improve traffic handling and decision-making within the control plane. Such a
system leveraged OpenFlow-enabled switches to achieve real-time flow visibility for
intelligent packet forwarding and congestion control. The performance of such a
solution is further complementarily assessed in terms of throughput, latency, packet
loss, and controller response time.

The presented architecture makes a significant contribution to the SDN field,
particularly in areas such as network intelligence, adaptability, and traffic
optimization. Planned demonstrations will show that the Ryu based design not only
reduces flow control complexity but also supports the flexibility of incorporating
further modules for security, energy conservation, and QoS management.
Furthermore, the modular design enables the system to be easily expanded to
accommodate new technologies, such as IoT, cloud-based learning systems, and 5G
networks. The main research findings are:
e A new Ryu-based intelligent traffic analysis framework that combines the
control plane and the data for more informed decisions.
e A multi-level network architecture implemented in Mininet for realistic and
scalable simulation of varying traffic scenarios.
e Implemented dynamic flow management algorithms to address congestion
and maximize load distribution in network paths.
e The evaluation also showed that throughput increases, packet loss decreases,

&7



latency drops, and controller response times are better than before.
Proved the capability of SDN-based architecture to improve the security,
scalability, and fault tolerance of current network systems.

6.2 Future Scope

Despite promising results from the proposed framework, several opportunities for
improvement and future work remain. The growing diversity of global networks and
the surge in data-driven services call for a continuous evolution of SDN-based
control frameworks. The future scopes are as follows, indicating possible lines for
improvement, innovation, and real-life implementation of our proposed framework.
The main research findings are:

Integration of Machine Learning: One of the exciting future directions is to
accommodate ML and AI algorithms into the Ryu controller framework.
These methods can be used to provide predictive management of traffic,
enabling the system to predict both congestion and link failures before they
occur. For example, the SDN controller can scale system-wide or per-flow
routing decisions using reinforcement learning techniques or deep learning
applications, leveraging real-time traffic data and historical knowledge of user
activity patterns. This adaptive intelligence would yield a significantly more
stable network, lower latency, and better decision-making than currently
possible with the static rule-based approach.

Scalability to Multi-controller and Distributed SDN Environments: The current
work is built on the single-controller (e.g., Ryu controller) scheme. Finally,
the proposed model can be easily extended to a multi-controller or
hierarchical SDN architecture, which helps toward a more scalable
environment with fault tolerance and resistance. Big data centers, (ISP)
networks, and smart cities can be cooperatively controlled by multiple
controllers controlling the different parts of the network. The system would
be much more robust against controller failures and better able to handle
geographically distributed networks if it applied protocols for inter-controller
communication and load distribution algorithms.

Support for IoT and Edge Computing Environments: Another central area is
to extend the framework so that it can work on IoT-based and edge computing
architectures, where millions of energy-constrained devices are producing
small packets of data all around. The traffic analysis system proposed in this
work can also be used for prioritizing delay-sensitive IoT flows and
optimizing resource allocation at the edge. For example, integrating the Ryu
controller into a multimodal IoT communication framework with lightweight
protocols and edge analytics modules enables achieving real-time response
times with reduced data transmission overhead. This would unlock access to
the framework for applications in smart homes, connected cars, and industrial
automation.

Real-World Testbed Deployment: To perform the transition from simulation
to real deployment, the framework can be tested and deployed in real-world
SDN testbeds or the cloud. Validations of the system in real-time with GENI,
Mininet-WiFi, or CloudLab would be carried out under varying loads and
topologies. It would also validate the proposed system if it can be cross-
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platform tested, such as against other controllers, i.e., ONOS, ODL,
Floodlight, etc., and these test results demonstrate the interoperability of the
proposed solution as well.

6.3 Social Impact

The Ryu-based intelligent traffic analysis framework developed in this thesis has
significant social relevance in the context of today’s highly interconnected digital
environments, where efficient, reliable, and adaptive network performance is
essential for large-scale communication systems. The research ultimately leads to an
enhanced capability of the networks to support billions of diverse traffic loads
seamlessly, facilitating seamless and reliable digital communication between users,
institutions, and public organizations. In a world where dependence on real-time data
transfer is crucial for education, healthcare, finance, and governance, enhancements
in network performance ultimately equate to the availability and reliability of on-
demand digital services for all end-users.

One of the key social gains from this research is its contribution to the design of
digital education and remote learning platforms. The proposed framework enables
better management of data traffic, enhancing data transmission capabilities for
bandwidth-intensive applications such as virtual classrooms, video conferencing, and
e-learning portals, through lower latency and reduced packet loss. This ensures that
learners in rural areas or bandwidth-constrained regions of the world have steady and
uninterrupted sessions, thereby contributing to the broader effort of achieving
equitable access to quality education worldwide.

The framework can be utilized to facilitate telemedicine, real-time health monitoring,
and digital record sharing within the healthcare industry. It is essential for hospitals
and emergency response units that rely on the rapid transmission of diagnostic
images or patient data over high-speed and low-latency communication networks.
Next, a conceptual structure of an SDN-based system is employed first to enhance the
ability to control the route of traffic forwarding and then provide an appropriate
mechanism to guarantee that essential data in medical applications arrives promptly
without being disturbed or tampered with. That ultimately makes healthcare delivery
safer and more efficient for patients.

Additionally, the security advantages of the proposed system have significant social
value. The framework can prevent the loss of millions of dollars or personal
information due to a cyber-attack by detecting anomalies and regulating network
traffic using programmable control, thus ensuring that your money is safe and that
you can still access essential online services or even portals at the compulsory level,
e.g., government-level portals. Reinforcing data security at the network layer
safeguards citizen privacy and fosters confidence in digital transformation efforts.
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Abstract

Software-Defined Networking (SDN) has emerged as a promising paradigm to enhance
network control and management by decoupling the planes. With SDN, the centralized
controller plays a critical role in managing network resources and traffic flows. Throughout
the most recent couple of years, networks turned out to be more imaginative for develop-
ing different applications with the help of SDN. Network traffic analysis is a vital task in
understanding network behaviour, identifying anomalies, and optimizing network perfor-
mance. To deal with the load of changes in the networking industry, there is an extraor-
dinary requirement for a productive SDN controller to work on the usage of network
resources for a better presentation of the network. Therefore, the proposed approach lever-
ages the RYU controller, an open-source SDN controller framework, to collect and analyse
network traffic data. By utilizing RYU’s capabilities, we can dynamically monitor and cap-
ture network traffic statistics, such as bandwidth, throughput, packet counts, and Round trip
time (RTT). These statistics provide valuable insights into network performance, and traffic
patterns. By leveraging real-time traffic analysis, we can dynamically adjust routing paths,
and allocate network resources efficiently. Hence, the proposed work assesses the develop-
ment of SDN architecture through a network topology and then, implementation of RYU
controller has been done to evaluate various network performance parameters. To evaluate
the effectiveness of our approach, we conduct experiments using a simulated SDN environ-
ment. We compare the performance parameters of our traffic analysis techniques with tra-
ditional methods and showcase the advantages of utilizing SDN and the Ryu controller for
network traffic analysis. The results demonstrate that our approach provides accurate and
timely insights into network traffic behaviour, facilitating efficient network management. In
conclusion, this study highlights the significance of network traffic analysis in SDN envi-
ronments and demonstrates the effectiveness of the Ryu controller for extracting valuable
insights from network traffic data.

Keywords Software-defined networking - Wireless networks - Network topology - Traffic
network - Traffic engineering - SDN controller - Internet of Things
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In today’s dynamic networking landscape, integrating Software-Defined Networking
(SDN) with Traffic-Expert Virtual Networks (TEVN) presents a promising avenue for op-
timizing network performance. This research investigates the implementation of TEVN
Embedding within SDN frameworks, utilizing the Ryu controller to address inefficiencies
in traditional virtual network embedding algorithms. Methodologically, the study proposes
a framework for TEVN and evaluates its performance against benchmark methods using
various parameters such as throughput, bandwidth, packet loss, and Round-Trip Time
(RTT). The evaluation is conducted through extensive experimentation in simulated SDN
environments, with results analyzed and compared comprehensively. The findings reveal
that TEVN significantly improves network efficiency, achieving higher throughput, lower
latency, and reduced packet loss compared to default embedding algorithms. These results
underscore the potential of TEVN to revolutionize network management practices, offer-
ing a promising solution for addressing the evolving challenges of modern network infra-
structures. This research contributes to advancing SDN technologies and gives insights
into enhancing network efficiency in dynamic environments.

Keywords: software-defined networking, Ryu controller, virtual networks, performance
parameters

1. INTRODUCTION

SDN is a transformative paradigm-shift technology; it has emerged as an innovation
of traditional network topologies and management methods with the fast evolution of net-
work technologies [1]. The current paradigm shifts dynamically to control and program
network behavior through centralized software. The one that continues to sprawl and di-
versify around various TEVNs introduces SDN integration [2]. The statically architected
traditional network continuously needs help keeping up with such performance fluctuation
and probably changes in traffic models [3]. Increased dynamism demands an infrastruc-
tural change that only the SDN brings. By centralizing control, the SDN offers real-time
visibility of traffic and coordination responsiveness [4].

In this paper, the possibility of integrating unique virtual network traffic expertise is
viewed as an essential aspect of advancing network infrastructure's overall performance
and efficiency. The integration of SDN enables a new pattern of adaptability and intelli-
gence in network management as virtual networks gain the capacity of immediate dispersal
in response to the current traffic situation [5-8]. Consequently, our primary aim is to ex-
pand the QoS and network efficiency by optimizing resource distributions. The findings
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Abstract— During the past years, IoT has acquired a lot of
consideration since it incorporates intelligent gadgets which
empower many applications that work in our day-to-day
existence. Due to this the rising number of clients and the
interest in more different and specific applications have
prompted a tremendous expansion in the network traffic.
Managing different traffic requests from various applications
is a difficult task for the current traditional networking
architecture. Therefore, the paper provides a thorough
analysis of the SDN and various other technologies-based
network virtualization methods as well as current perspectives
for the IoT. The representation provides the working of
various up-going technologies such as Machine Learning, Edge
Computing, and Virtualization with SDN to betray the
performance of the SDN applications in today’s world.

Keywords—software-defined networking, network traffic,
internet of things, edge computing, machine learning

I. INTRODUCTION

The way we engage with our environment has changed
dramatically as a result of a rapidly developing technology,
the Internet of Things (IoT) [1]. Huge amounts of data have
been produced as a result of the proliferation of IoT devices,
necessitating a highly scalable and adaptable network design
to support them. The static and homogeneous environments
of traditional network architectures are not well adapted to
the dynamic and heterogeneous character of IoT networks

[2].

In this situation, network virtualization methods based on
Software-Defined Networking (SDN) [3] and Network
Function Virtualization (NFV) [4] may offer a strong remedy
for the virtualization of IoT networks. It disintegrates the
data plane of the network from the control plane [5]. SDN
helps to regulate traffic in a network by virtualizing the
control part of the network. It establishes a software program
as the brain of the network that takes away the task of
controlling and deciding the path to be used for forwarding
data packets to form the forwarding end to the receiving end
[6]. SDN helps to provide centralized control of the network
architecture which helps in seamless troubleshooting as
shown in Fig. 1 [7].

The main concept behind SDN is to separate the control
plane and the physical layer and provide a more centralized
controller for the entire network so that all
computations/decision-taking occurs at this controller which
eventually decreases latency as the controller has the
complete knowledge of the network topology [8]. On the
other hand, NV takes a SDN approach to traditional
networking devices by separating the software and hardware
capabilities by replacing the dedicated network with virtual
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machines. A combination of these two technologies in the
field of IoT is very effective as it decreases the capital
expenditure and operating expenditure cost by sharing the
network infrastructure [9]. SDN helps to create a unique and
adaptable network design that can be altered as per the
decisions made by network administrators.
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Fig. 1. Layer-based architecture of software-defined networking.

This document provides a thorough analysis of the
various SDN and other technologies based network
virtualization methods for the Internet of Things. The
representation provides the working of various up-going
technologies such as Machine Learning, Edge Computing,
and Virtualization with SDN to betray the performance of
the SDN applications in today’s world.

The remainder of the paper is organized in following way
shown in Fig. 2: Section 1 provides the introduction to SDN
and its applications. Section 2 provides the literature review.
Section 3 describes the background as well as the current
perspectives and virtualisation solutions with SDN and
section 4 provides a conclusion.

II. LITERATURE REVIEW

The following representation provided the literature
review in terms of prior art with several aspects of SDN. The
aim of reviewing the literature is to gather the work done in
the past.
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Abstract—Software-Defined Networking (SDN) is the new
networking approach that overcomes the obstacles that are
faced by the conventional networking paradigm. The core idea
of SDN is to separate the control plane from the data plane. This
idea improves the network in many ways such as efficient
utilization of resources, management of the network, innovation
with new evolution, reduced cost, and many others. To manage
all these changes, there is a great need for an efficient traffic
engineering tool to improve the utilization of resources for the
better performance of the network. Traffic engineering is also
responsible for the analysis and monitoring of real-time data
traffic. This paper mainly focuses on the structure of traffic
engineering in SDN. In addition, the scope of various
parameters of traffic engineering in the SDN environment and
setup experimentations are also demonstrated. Hence, this work
can leverage traffic engineering in the environment of SDN to
enhance the network for better use in the future.

Keywords—SDN, traffic engineering, traffic network, traffic
analysis, network parameters.

I. INTRODUCTION

With the growth and development of many new
applications of the Internet of Things [1], cloud computing,
and many more in the network, the conventional architecture
is not sufficient to meet the needs of the current environment
[2]. Therefore, a new paradigm is designed by some
researchers to prevail over the conventional architecture,
named as Software-Defined Networking [3]. The problem in
the conventional network is that both the planes of SDN are
integrated into the same appliance [4]. As an outcome, the
conventional architecture cannot provide the global
perspective of the network and even, each device requires
manual configuration. Hence, the new approach increases
flexibility builds the network to configure easily and more
programmable by distinctive the control/network plane from
the data/physical plane with a global perspective of the
centralized network [5].

Traffic Engineering is the study in which the measurement
and analysis of data traffic take place to upgrade the
performance of the network in an efficient manner [7]-[8]. It
is the mechanism to enhance the performance of the network
by providing dynamic behaviors of predicting the data traffic,
analyzing, design the data routing schema, and transmitting
the data [9]. To generate these dynamics behaviors, network
observing plays a sprightly role. In conventional architecture,
the technologies used for traffic engineering include Internet-
Protocols and Multi-Protocols Switching based on Traffic
Engineering.

Even though the SDN [10] furnishes hold up with traffic
engineering but still there is not any research that shows the
structure of SDN with traffic engineering which is of
substantial significance for the future of SDN [11]. Hence, this
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paper provides the structure of new emerging technology SDN
with traffic engineering. Also, provides the reach of traffic
engineering in SDN to enhance the architecture of the network
for better use.

The remainder of the paper is organized in such a manner:
Section II provides the literature work done in the SDN with
traffic engineering followed by past to future scenarios of
traffic engineering. Section III describes the structure of SDN
in traffic engineering with different parameters and measures.
Section IV discusses the reach of traffic engineering in the
SDN. Section V provides a conclusion.

II. PAST WORK

As shown in fig.1, the evolution of traffic engineering
from the past to the future of SDN. In the early, Asynchronous
Transfer Mode (ATM) [12] switching was used as a traffic
engineering appliance. ATM traffic engineering can transmit
different services that work simultaneously on the network. In
this transfer mode, connection-oriented communication is
taking place, which means the connection can be established
even before forwarding the data to the destination.

After some development and re-growth of new
terminologies, there was an evolution of the IP routing [13]
scheme to pass on the data packets from source host to
destination host [14]. As with the growth of emerging
automation such as the IoT [15], Cloud computing [16],
Sensor network [17], and many more the data traffic is
increasing day by day. So to overcome that limitation multi-
protocol routing was used.

[ Future
SDN scheme A
TN
Multi-protocol Routing |
N Y
IP Routing |
: Past
ATM Switching

Fig.1. Past to Future Traffic Engineering in SDN
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ABSTRACT

Software-defined networking (SDN) is a revolutionary networking paradigm that separates the data and
the control plane. The controller is one of SDN's leading entities that controls the information flow in the
network. Therefore, the research deals with a thorough performance differentiation of three prominent
SDN controllers: POX, Ryu, and OpenDaylight (ODL). The study aims to evaluate these controllers'
effectiveness in controlling the network traffic by focusing on performance parameters such as
Transmission Control Protocol (TCP) mean, packet loss, and jitter. The experimental setup employed
Mininet, a network emulator, to create a consistent virtual network environment for all controllers. Each
controller was tested in isolated virtual machines, ensuring controlled and unbiased results.

The experimental results reveal distinct performance differences among the controllers. In the research
experimentations, the highest TCP mean throughput and superior performance among all controllers are
achieved by ODL consistently, and minimum loss of the data packets and jitter is observed across all-time
instances for high-demand, large-scale networks. This study shows that choosing the right SDN controller
is crucial as it depends on particular network requirements to guide network administrators and
researchers when choosing the SDN controller best for their network.

KEYWORDS

Software-defined networking, SDN controllers, Traffic analysis, TCP traffic management

1. INTRODUCTION

SDN is an amazing network methodology that separates the control and physical planes. In this
view, it merges control and dynamic setup. Tight coupling of control and data planes in
individual devices leads to traditional networks' frequent rigidity and complexity [1]. These
restrictions are overcome by decoupling these network planes, allowing incorporated network
knowledge, administering delegations, and increasing adaptability. This centralized architecture
will give us a global view of the network, as shown in Fig. 1. Thus, it facilitates deploying new
services and applications with reduced time, enhances performance, and maximizes resource
utilization [2].

Ryu, POX, and ODL are the most extensively utilized regulators out of the many SDN
regulators accessible. Each controller presents novel aspects and capabilities handling various
use cases and needs. It is essential to understand the distinctions and how they can be used to
select the most appropriate controller for a particular system management need [3]. Among
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