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Application of Silver based nanoparticle for seed priming of medicinal and 

herbal plants 

 

Abstract 

Medicinal plants have been essential to the global evolution of human cultures. Many abiotic 

and biotic processes affect the growth and development of plants. Seedling establishment and 

germination are important phases in the plant life cycle and efficient seed germination 

encourages successful establishment and deep root system of plants. Through the production 

of various physiological and metabolic changes, priming has been shown to have a 

noteworthy impact. This review summarises the studies of various medicinal and herbal 

plants by using nano-priming of seeds. 

A literature search was conducted with the help of electronic databases like Google Scholar, 

PubMed, Scopus, Sci Finder, and ONOS. The search was conducted using the keywords 

Medicinal Plants, Seed priming, nanotechnology, silver nanoparticle, germination. 

The studies have shown that the use of silver nanoparticles (AgNPs) as nanopriming agent 

for enhancing seed germination is a step towards sustainable agriculture. This process is 

suitable for small seed plants.  

This study gathered information on the seed germination using silver nanoparticles on various 

medicinal plants. 

 

  

2
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Introduction 

Medicinal and herbal plants represent the most ancient form of medication, used for 

thousands of years in traditional medicine in many countries around the world (Marrelli, 

2021). The empirical knowledge about their beneficial effects was transmitted over the 

centuries within human communities (Khan, 2014). Medicinal plants not only serve as 

complements or substitute for modern medical treatments, which are often inadequately 

available but also enhance the health and security of local people (Agidew, 2022). The 

medicinal importance of some plants is mainly due to the presence of active ingredients such 

as terpenes, flavonoids, coumarins, carotenoids, essential oils, and amino acids (Khalaki et 

al., 2021; Ahmad et al., 2018).  

The cultivation of medicinal and herbal plants is currently confronted with several 

difficulties, such as changeable climatic circumstances that can negatively impact seedling 

development, seed germination, and crop output, such as drought, salt, heavy metal buildup 

in soil, and climate change (Shelar et al., 2023; Yadav et al., 2020; Imran et al., 2021; He et 

al., 2018). The uncertainty of the global climate with erratic rainfall patterns is the major 

cause of the frequent onset of drought stress around the world (Lobell et al., 2011). Over 6% 

of the world’s land is spoiled by salinity which negatively affects crop survival by minimizing 

the growth and yield of staple food up to 70% (FAO, 2016; Schilling, 2016).  

Drought-induced economic losses were estimated to be about 29 billion dollars during 

2005 to 2015, and it is predicted to become more persistent and extensive in the coming 

decades (Schilling, 2016; Trenberth et al., 2014). By 2050, about 50% of arable lands are 

expected to be under drought stress (Marthandan et al., 2020). Drought can occur in all 

growth stages, but the first and foremost effect is on seed germination (Kasim et al., 2013; 

Kaya et al., 2006) where water entrance into the seed decreases due to hydraulic reduction; 

and thereby, all the physiological and metabolic germination processes are affected (Fahad 

et al., 2017). Impaired germination and establishment under drought stress have been studied 

in several crops viz., peas (Bareke, 2018), barnyard millet (Okcu et al., 2005), rice (Wu et 

al., 2019), and sunflower (Islam et al., 2018). 

Efficient seed germination is important for increasing the production of forage and 

medicinal plants in rangeland fields (Humera Razzaq et al., 2017). The main role of the seed 

is to protect the embryo and sense environmental information to couple germination with 

seasons compatible with the completion of the plant life cycle (Azimi et al., 2014). The 

germination process is completed in three stages. In the stage 1, seed germinates upon 

absorption of water in the cells of the seed as they hydrate, and become rigid or turgid. In 
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stage 2, the areas of growth, cell division, and differentiation at the root and shoot meristems 

or tips are where the sugars and amino acids are focused. In stage 3, the seed coat bursts due 

to the swelling in cells. The primary root or radicle emerges downward, and the stem grows 

upward (Carrera-Castaño et al., 2020).  

There is an urgent need to develop a sustainable technology that can contribute to the 

green revolution to address these growing concerns and to restore the damage caused to the 

ecosystem (Mahra et al., 2024). Seed priming is an innovative technique to improve seed 

germination rates, seedling growth, and crop yield, as well as provide resistance to various 

plant stresses like drought, salinity, and heavy metal toxicity in a sustainable way (Shelar et 

al., 2021). Priming is the process of pre-treating seeds before planting those plants using 

traditional methods such as pre-soaking and coating (Maroufi et al., 2011). Priming creates a 

physiological state in the seed that strengthens its growth capacity against biotic or abiotic 

stresses (Nile et al., 2022). However, many factors affect the performance of seed priming 

such as plant species, priming duration, temperature, priming media, and their concentration 

and storage conditions (Conrath, 2011; Rhaman et al., 2020). 

Priming using nanoparticles (nano-priming) has been proven to be more promising 

than traditional priming approaches for achieving feasible agricultural yields (Rhaman et al., 

2020). Nano-priming uses particles with a size of less than 100 nm (nanoparticles, NPs), and 

"priming" relates to the development of stress tolerance under moderate and recurring stress 

(Nile et al., 2022; Chandrasekaran et al., 2020). The literature search has shown that 

nanomaterials prepared with silver (Rajwade et al., 2020), gold (Prasad et al., 2017), copper 

(Usman et al., 2020), palladium (Kamle et al., 2020), selenium (Liu et al., 2021), zinc oxide 

(Pramanik et al., 2020), magnesium oxide (Jiang et al., 2020), titanium dioxide (Shang et al., 

2019), and iron oxide (Pulizzi, 2019) have been proven to promote seed germination and 

improve crop yields (Figure 1). 

Silver nanoparticles (AgNPs) are the most widely used nanoparticles with a variety 

of uses because of their unique properties (Yan and Chen 2019). The applications of AgNPs 

have received high focus and promotion in the medical and pharmaceutical fields (Khan et 

al., 2023). Among numerous monometallic NPs, biogenic AgNPs are frequently applied 

because of their characteristics such as electrical conductivity, optical polarization, and SER 

scattering (Abasi et al., 2022).The potential uses of Ag-NPs in catalysis (Kamat 2002), 

plasmonics (Maier et al. 2001), optoelectronics (Boncheva et al. 2002), biological sensors 

(Mirkin et al. 1996; Han et al. 2001), antimicrobial activities (Savithramma et al. 2011; Rai 

et al. 2009), DNA sequencing (Cao et al. 2001), climate change and contamination control 
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(Shan et al. 2009), clean water technology (Savage and Diallo 2005), energy generation 

(Z€ach et al. 2006), information storage (Carutherset al. 2007), and biomedical applications 

(Hullmann 2007) have all attracted a lot of interest in the formation of Ag-NPs. By 

showcasing its potential during the past ten years, the production of NPs has given us amazing 

advancements in the field of nanotechnology (Samberg et al. 2010).  

 Therefore, the current study's objectives are to investigate the potential utility of 

varying AgNPs priming concentrations on the morpho-physiological and biochemical 

characteristics of herbal and medicinal plants under salt stress, including growth, biomass, 

oxidative damage, and antioxidant system. 

 

Basics of Seed Priming 

Priming is the process of pre-treating seeds before planting those plants using 

traditional methods such as pre-soaking and coating (Torre-Roche et al., 2020; Waqas et al., 

2019). Seed priming is controlled hydration of seeds to a level that allows pre-germinative 

metabolic activity to continue, but interrupts actual emergence of the radicle (Raj and Raj, 

2019). Although seedlings raised from primed seeds have been reported to exhibit 

modifications in water contents, improved cell cycle regulation, management of oxidative 

stress and reserve food mobilization, the efficacy of seed priming highly depends on the plant 

species and the priming method (Raj and Raj, 2019; Johnson and Puthur, 2021). Several seed 

and agricultural firms have used the priming technology as a revolutionary strategy for 

achieving a consistent crop standby (Sivasubramaniam et al., 2011; Waqas et al., 2019; Raj 

and Raj, 2019). 

Priming initiates cross-tolerance that assists improved germination and seedling 

establishment under harsh environmental conditions (Chen et al., 2012). This has been 

demonstrated in many crop plants, such as zucchini (Cucurbita pepo L.), onion (Allium 

cepa L.), pepper (Capsicum annum L.), tomato (Lycopersicon esculentum L.), zinnia (Zinnia 

elegans Jacq.) etc. (Anand et al., 2019; Szopinska and Polityvka, 2016; Silva et al., 2015; 

Zhao et al., 2018; Valivand et al., 2019). In mung bean plants, a faster seedling establishment 

resulting from priming may contribute to a total increase in yield up to 45% (Rashid et al., 

2004). Increased seed vigour observed in primed seeds of Arabidopsis (Gallardo et al., 2001; 

Rajjou et al., 2006), alfalfa (Medicago sativa L.) (Yacoubi et al., 2013), wheat (Fercha et al., 

2013; Fercha et al., 2014). 

Proteome analyses of seed priming and germination have proven invaluable in 

identifying changes between primed and unprimed seeds in various plants (Wang et al., 
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2015). It is regulated by the interaction of the surrounding environmental conditions, the 

seeds’ physiological state, and the germ (Khaeim et al., 2022; Vishal and Kumar, 2018). 

Temperature, light, pH, water availability, and soil moisture most affect seed germination 

among abiotic factors (Khaeim et al., 2022; Rizzardi et al., 2009). Figure 2 shows that plants 

produced from primed seeds often exhibit a faster growth than unprimed ones. The beneficial 

impact of priming on plant growth may be due to an improved nutrient use efficiency 

allowing a higher relative growth rate (Debbarma and Das, 2017; Muhammad et al., 2015). 

A higher growth of seedlings issued from primed seeds may also be analyzed in relation to a 

direct impact of pretreatment on cell cycle regulation and cell elongation processes (Debarma 

and Das, 2017; Chen and Arora, 2013). The growth parameters of chickpea were significantly 

affected by seed priming (Debbarma and Das, 2017; Vikas and Mahender, 2012). 

 

Seed germination with Silver Nanoparticles 

Nanotechnology utilizes particles less than 100 nm in size, and it has a promising role 

in transforming agriculture (Fraceto et al., 2016). The two techniques for NP synthesis are 

"Top-down" and "Bottom-up." The most flexible method for producing metal nanoparticles 

top-down is evaporation-condensation (Rafique et al., 2017, Mathur et al., 2017). 

Nanoparticles exhibit high surface-area-to-volume ratios, enhanced reactivity, and controlled 

release capabilities, making them valuable for precision agriculture (Kędziora et al., 2018). 

The excessive use of chemical fertilizers can be reduced by utilizing nanomaterials in 

agriculture (Upadhyaya et al., 2017). The mechanism behind high seed germination in nano-

priming is the greater penetration via seed coat that improves nutrient and water uptake 

efficiency of the seed (Dutta, 2018). Studies reported that seed priming with calcium-

phosphate, SiO2, ZnO, and Ag nanoparticles enhanced germination and seedling 

development (Ghafari and Razmjoo, 2013). 

One of the most promising methods for increasing agricultural output in both 

favourable and unfavourable environmental circumstances is the application of nanoparticles 

(NPs) (Biswas et al., 2023; Zulfiqar and Ashraf, 2021). It has been documented that 

nanopriming controls physio-biochemical reactions in abiotically stressed crops (Figure 3). 

AgNPs (Thiruvengadam et al., 2015; Baskar et al., 2015), AuNPs (Alshehddi and Bokhari, 

2020), CuNPs (Chung et al., 2019; Nguyen et al., 2022), FeNPs (Kornarzyński et al., 2020), 

FeS2NPs (Srivastava et al., 2014), TiO2NPs (Gohari et al., 2020; Faraji and Sepehri, 2019), 

ZnNPs (Montanha et al., 2020), ZnONPs (Faizan et al., 2021; Taran et al., 2017; Abdel Latef 

et al., 2017), and carbon NPs like fullerene (Shafiq et al., 2019) and carbon nanotubes 

5
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(Rahimi et al., 2016) have all been used as seed pretreatment. In maize plants, seed priming 

using gold nanoparticles (AuNPs) frequently improves water absorption (Rajwade et al., 

2020).  

It has been reported that commercially available silver nanoparticles (AgNPs) with 

sizes ranging from 50 to 100 nm can lessen the negative effects of stress caused by 120 and 

150 mM NaCl in Pennisetum glaucum (Parveen and Rao 2014). Additional instances of 

plants that show improved development and a favorable physiological response after being 

exposed to silver nanoparticles include Phaseolus vulgaris, Zea mays, (Salama 2012) 

Phytolacca Americana, Panicum virgatum (Yin et al., 2012). In Boswellia ovalifoliolata 

(Savithramma et al., 2012), treatment with AgNPs has been demonstrated to have a favorable 

effect on seed germination. In Brassica nigra seeds and seedlings, it was similarly discovered 

that an AgNP dose ranging from 0.2 to 1.6 mg/L inhibited lipase activity, soluble and 

reducing sugar content, and seed germination (Amooaghaiea and Tabatabaeia 2015). 

Additionally, it has been discovered that 10 mg/L AgNPs hinder Hordeum vulgare seed 

germination and shorten the shoot length of barley (Hordeum vulgare) and flax (Linum 

usitatissimum) (Temsah and Joner 2012). 

 To increase plant tolerance to salinity, AgNPs enhanced plant height, proline 

contents, ion homoeostasis, antioxidant enzyme activities, and phenolic and flavonoid 

contents (Biswas et al., 2023; Khan et al., 2020). While higher and lower concentrations of 

AgNPs may have a negative impact on plant growth, exposure to particular concentrations 

may improve plant growth when compared to non-exposed plants (Kaveh et al., 2013; 

Geisler-Lee et al., 2013; Qian et al., 2013). The optimum concentration of AgNPs to induce 

a growth response in Brassica juncea seedlings was found to be 50 ppm, out of the utilized 

concentrations of 0, 25, 50, 100, 200, and 400 ppm (Almutairi and Alharbi, 2015). The root 

length, fresh weight, shoot length, and vigour index of seedlings had positive impact at this 

concentration. The treated seedlings' vigour index increased by 133% and their root length 

increased by 326% as a result of this dosage (Sharma et al., 2012). Seedling biomass was 

shown to increase when Arabidopsis thaliana plants were treated with 1 or 2.5 mg/L of 

AgNPs, while seedling biomass decreased when larger doses were applied (Kaveh et al., 

2013).  

In order to investigate drought stress on lentil germination five levels of silver 

nanoparticles (0, 10, 20, 30 and 40 µg mL-1) on Lentil (Lens culinaris Medic) were taken 

AgNP enhanced the radical length and the highest length (4.45 cm) observed in severe stress 

by applying 10 µg mL -1 of the nanoparticle. When plants were treated with 20 µg/mL of 

1
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silver nanoparticles (AgNPs), the radicle (embryonic root) had the highest dry weight, which 

was 0.07 grams (Hojjat and Ganjali 2016).  

Studies also showed that the addition of 10 or 50 mg∙dm−3 of AgNPs changes the 

composition of essential oils produced by lavender plant (Jadczak et al., 2020). For instance, 

broad bean (Vicia faba L.) seeds exposed to citrate-coated silver nanoparticles (ca. 40 nm) 

at 10 ppm for 6 h showed higher growth, physiological, and biological traits than non-nano 

treatments (Alhammad et al., 2023). With alfalfa (Medicago sativa L.), the results were also 

encouraging when exposed to AgNPs (approximately 50 nm) for 3 h (Song et al., 2022). 

AgNPs exhibited strong antimicrobial activity against a variety of diseases. For example, 

they significantly limit the growth of fungi that cause rice blast disease and the colony 

formation of Magnaporthe grisea (Vishwanathan and Negi 2021). (Matras 2022) reported 

that AgNPs had antifungal efficacy against Alternaria alternata and Botrytis cinerea. 

According to the study, the highest inhibition of fungal hyphal development was caused by 

the 15 mg/L concentration of AgNPs. However, it was demonstrated that AgNPs had no 

discernible effects on the castor bean plant, Ricinus communis L., in terms of seed 

germination, root length, or shoot length (Yasur and Rani 2013). Cucumis sativus and 

Lactuca sativa seed germination was observed to be unaffected by 100 mg/L AgNPs (Ingle 

et al.,2020). M. incognita invasive larvae viability was 100% reduced and the egg hatch 

process was 100% inhibited after incubation with a very low quantity of silver compounds 

(0.05 ppm) (Furmanczyk et al., 2025). 

Satureja hortensis L., is a medicinal plant endemic to Iran, which is well-known in 

the folk medicine for its therapeutic uses as herbal tea and as an analgesic and antiseptic 

substance due to the presence of secondary metabolites including terpenoids, phenolics, 

flavonoids, steroids, and tannins (Hosainzadegan and Delfan, 2009). During recent years, 

antibacterial, antioxidant, antifungal, antidiabetic, antinociceptive, antihyperlipidemic, 

antibiofilm, anti-inflammatory, antispasmodic and antidiarrhea effects and as well as 

triglyceride-lowering potential have been reported for S. hortensis (Hosainzadegan and 

Delfan, 2009). Priming of S. hortensis L. (summer savory) seeds before planting had a 

positive physiological and biochemical impact. This likely resulted in improved seed 

germination, enhanced stress tolerance, and better overall plant growth by activating 

beneficial metabolic processes before the seeds were sown in the seedbed. In S. hortensis, 

the highest seed germination percentage was observed when 80 ppm of AgNPs were applied, 

particularly under conditions of low salinity. Conversely, the lowest germination percentage 
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was recorded under high salinity conditions 120 MmL-1 when AgNPs were not applied 

(Nejatzadeh, 2021).  

According to some studies, a high concentration of AgNPs had detrimental effects on 

photosynthesis, lowered the amount of chlorophyll overall, and dramatically raised the 

parameters of oxidative stress (Song et al., 2022; Abasi et al., 2022). The aquatic plant Lemna 

gibba has been shown to exhibit growth inhibition, as evidenced by a notable decline in frond 

numbers that is dependent on AgNPs concentration (Oukarroum et al., 2013). According to 

(Stampoulis et al., 2009), the biomass and transpiration rates of Cucurbita pepo (zucchini) 

were reduced by 41% and 57%, respectively, when exposed to 100 nm AgNPs at 100 and 

500 mg/L. AgNPs dramatically reduced plant biomass, plant tissue nitrate-nitrogen content, 

chlorophyll a/b, and chlorophyll fluorescence (Fv/Fm) in an aquatic macrophyte (Spirodela 

polyrhiza, larger duckweed), according to a study by Jiang et al. (2012). Plant toxicity was 

solely examined in pure cultures in any of these investigations. 

AgNPs seed priming has become a viable method for improving crop development 

and physiological responses to abiotic stressors, such as salinity. In order to help seeds 

overcome environmental obstacles and improve germination rates and seedling 

establishment, AgNPs enhance water uptake, enzyme activity, and oxidative stress tolerance. 

Optimizing the concentration and application techniques is essential to avoiding possible 

toxicity, though. However, concerns regarding nanoparticle toxicity, environmental 

persistence, and regulatory challenges necessitate further research to optimize their safe and 

sustainable application in modern agriculture. 

A simple way to improve seed germination and seedling establishment and 

consequently field performance of medicinal plants is seed priming (Dalil, 2014). Most of 

the medicinal plants have some problems in seed germination and stand establishment in the 

field (Zare et al., 2011). Since germination and seedling establishment are critical stages in 

the plant life cycle (Cheng and Bradford, 1999), offering the solutions for improvement of 

seed germination and seedling establishment will help to better performance in cultivation of 

medicinal plants. One of the simple techniques which can improve seedling vigor and 

establishment and consequently field performance of plants is seed priming or physiological 

advancement of the seed (Mc Donald, 2000). In comparison to the control seedlings, AgNPs 

increased the amount of chlorophyll and enhanced the cellular electron exchange and 

photosynthetic quantum efficiencies in medicinal plant (Sharma et al., 2012).  

According to several reports, flavonoids are in charge of the environmentally friendly 

synthesis of AgNPs (Mustapha et al. 2022). AgNPs produced synthetically have been utilized 
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a food packaging, wastewater treatment, and biological uses as an antibacterial agent 

(Vanlalveni et al. 2021). This method is successful in small seed plants such as many 

medicinal plants that have great economic value with quick and uniform emergence 

requirements (Ellis and Roberts, 1981). Majority of studies focus on agricultural plants and 

some focus on flowering/medicinal plants have been compiled in Table 1 (Psophocarpus 

tetragonolobus (L.), Vigna mungo (L.) Hepper, Satureja hortensis L., Sanguisorba minor, 

Lavandula angustifolia, Allium cepa L, Phaseolus vulgaris L., Echinops macrochaetus, 

Medicago sativa L., Linum usitatissimum L., Ocimum basilicum L., Helianthus annuus L., 

Solanum lycopersicum, Vicia faba, Capsicum annuum L.). 

 

Table 1: Various plants studied under silver nanoparticles seed priming: 

 

Plant studied Seed 

condition 

Concentration 

of NPs 

Aspect 

studied 

Impact of NPs References 

Psophocarpus 

tetragonolobus 

(L.) 

(Legume) 

Seedling 

growth 

stress 

50 mg Seed 

germination 

Increased upto 

88.33% 

(Kumar et 

al., 2020) 

Vigna mungo 

(L.) Hepper 

Poor seed 

vigour, 

Low 

germinatio

n rates 

1.5 mM Germination 

percentage 

Root length 

 

Shoot length 

 

Vigour index 

Increased upto 

21% 

Increased upto 

19% 

Increased upto 

23% 

Increased upto 

35% 

(Krishnas-

amy et al., 

2024) 

Satureja 

hortensis L. 

salinity 

stress 

80 ppm Seed 

germination 

Salinity stress 

Improved 

salinity 

tolerance with 

increased seed 

germination 

(Nejatzade

h, 2021) 
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Sanguisorba 

minor 

Drought 

stress 

30 mg/l Biomass 

production 

Increased by 

25% 

(Farmahini 

Farahani et 

al., 2022) 

Lavandula 

angustifolia 

Lack of 

enhanced 

metabolic 

and 

defensive 

activities 

2 mg∙dm−3 activity of 

antioxidant 

enzymes and 

total 

polyphenolic 

capacity 

Increased 

activity of 

APX and 

SOD 

(Jadczak et 

al., 2020) 

Allium cepa L.  25 ppm Seed 

germination 

and vigour 

index 

Stimulated 

early 

germination 

and significant 

increase in 

Vigour Index 

(Patidar et 

al., 2024) 

Phaseolus 

vulgaris L. 

 25 mg/L 

50 mg/L 

Root length 

Flavonoids 

Protein 

Chlorophyll 

content  

Shoot length 

 

Maximum 

shoot and root 

length 

elongation 

was observed 

at 25 mg/L of 

AgNPs 

concentration. 

Secondary 

metabolites 

increased 

(Ahmed 

and 

Murtaza, 

2024) 

Echinops 

macrochaetus 

Salinity 

stress 

40 µmol/L Biomass 

Shoot length 

Chlorophyll 

content 

Faster 

germination 

with increase 

in biomass, 

shoot length 

and 

chlorophyll 

(Khan et 

al., 2024) 

2
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content was 

observed at 

40 µmol/L 

AgNPs 

Medicago 

sativa L. 

 25 mg/l Seed 

germination 

Root and 

shoot length 

Significant 

increase in 

water 

absorption 

rate. Thus, 

increasing 

seed 

germination 

along with 

increased root 

and shoot 

length. 

(Song et 

al., 2022) 

Linum 

usitatissimum L 

Salinity 

stress 

AgNPs 

combined 

with C. 

testosteroni 

Overall 

growth and 

yield in saline 

condition. 

increases 

production of 

photosynthetic 

pigments, 

proteins, 

sugars, and 

proline 

(Khalofah 

et al., 

2021) 

Ocimum 

basilicum L. 

 

 200 mg/L  germination 

percentage 

and root 

length 

Germination 

increased upto 

85% and root 

length 

increased by 

19.4 mm.  

(Sencan et 

al., 2024) 

Helianthus 

annuus L. 

 

 25 mg L−1  Overall 

growth and 

plant 

characteristics 

Improved 

morphological 

characteristic, 

seed quality, 

(Haq et al., 

2024) 
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and oil 

content, 

secondary 

metabolites  

Solanum 

lycopersicum 

 

 25–50 µg/mL seed 

germination, 

seedling 

growth 

 increase in 

the seed 

germination 

percentage  

(Sonawane 

et al., 2021) 

Vicia faba 

 

Aged seeds 100 ppm vigor and 

mitotic index 

 

Increased 

mitotic cell 

cycle 

and seedling 

growth  

(Younis et 

al., 2019) 

Capsicum 

annuum L. 

 30-50 ppm root length, 

shoot length, 

seedling 

length, and 

germination 

vigour index 

primed 

seedlings 

increased root 

and shoot 

length, 

seedling 

length, and 

germination 

vigour index 

(Mawale 

and 

Giridhar, 

2024) 

 

Conclusions  

Medicinal and herbal plants have been essential to the global evolution of human 

cultures. Their proper growth helps in development of socio-economic aspects of any society. 

Seedling establishment and germination are important phases in their life cycle. The efficient 

seed germination encourages successful establishment and deep root system. Seed priming 

is the process of treating seeds with chemical or biological priming agents to display better 

growth and to amplify abiotic stress resistance. The use of nanopriming has been proven to 

be more promising than traditional priming approaches for achieving feasible agricultural 

yields. This article discussed the use of silver nanoparticles (AgNPs) as nanopriming agent 

to enhance the seed germination of many medicinal and herbal plants. The future lies in the 

2

3 3

4

6

7
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utility of silver nanoparticle in seed priming with proper applications, appropriate ‘stop’ time, 

and better prior standardization. The seed priming adoption at field level is the need for future 

studies. 
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