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Application of Silver based nanoparticle for seed priming of medicinal and

herbal plants

Abstract
Medicinal plants have been essential to the global evolution of human cultures. Many abiotic

and biotic processes affect the growth and development of plants. Seedling establishment and

- e germination are important phases in the plant life cycle and gfficient seed germination

encourages successfil establishment and deep root system of plants: Through the production
of various physiological and metabolic changes, priming has been shown to have a
noteworthy impact. This review summarises the studies of various medicinal and herbal
plants by using nano-priming of seeds.

A literature search was conducted with the help of electronic databases like Google Scholar,
PubMed, Scopus, Sci Finder, and ONOS. The search was conducted using the keywords
Medicinal Plants, Seed priming, nanotechnology, silver nanoparticle, germination.

The studies have shown that the use of silver nanoparticles (AgNPs) as nanopriming agent
for enhancing seed germination is a step towards sustainable agriculture. This process is
suitable for small seed plants.

This study gathered information on the seed germination using silver nanoparticles on various

medicinal plants.
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Introduction

Medicinal and herbal plants represent the most ancient form of medication, used for
thousands of years in traditional medicine in many countries around the world (Marrelli,
2021). The empirical knowledge about their beneficial effects was transmitted over the
centuries within human communities (Khan, 2014). Medicinal plants not only serve as
complements or substitute for modern medical treatments, which are often inadequately
available but also enhance the health and security of local people (Agidew, 2022). The
medicinal importance of some plants is mainly due to the presence of active ingredients such
as terpenes, flavonoids, coumarins, carotenoids, essential oils, and amino acids (Khalaki et
al., 2021; Ahmad et al., 2018).

The cultivation of medicinal and herbal plants is currently confronted with several
difficulties, such as changeable climatic circumstances that can negatively impact seedling
development, seed germination, and crop output, such as drought, salt, heavy metal buildup
in soil, and climate change (Shelar et al., 2023; Yadav et al., 2020; Imran et al., 2021; He et
al., 2018). The uncertainty of the global climate with erratic rainfall patterns is the major
cause of the frequent onset of drought stress around the world (Lobell et al., 2011). Over 6%
of the world’s land is spoiled by salinity which negatively affects crop survival by minimizing
the growth and yield of staple food up to 70% (FAO, 2016; Schilling, 2016).

Drought-induced economic losses were estimated to be about 29 billion dollars during
2005 to 2015, and it is predicted to become more persistent and extensive in the coming
decades (Schilling, 2016; Trenberth et al., 2014). By 2050, about 50% of arable lands are
expected to be under drought stress (Marthandan et al., 2020). Drought can occur in all
growth stages, but the first and foremost effect is on seed germination (Kasim et al., 2013;
Kaya et al., 2006) where water entrance into the seed decreases due to hydraulic reduction;
and thereby, all the physiological and metabolic germination processes are affected (Fahad
etal., 2017). Impaired germination and establishment under drought stress have been studied
in several crops viz., peas (Bareke, 2018), barnyard millet (Okcu et al., 2005), rice (Wu et
al., 2019), and sunflower (Islam et al., 2018).

Efficient seed germination is important for increasing the production of forage and
medicinal plants in rangeland fields (Humera Razzaq et al., 2017). The main role of the seed
is to protect the embryo and sense environmental information to couple germination with
seasons compatible with the completion of the plant life cycle (Azimi et al., 2014). The
germination process is completed in three stages. In the stage 1, seed germinates upon
absorption of water in the cells of the seed as they hydrate, and become rigid or turgid. In
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stage 2, the areas of growth, cell division, and differentiation at the root and shoot meristems
or tips are where the sugars and amino acids are focused. In stage 3, the seed coat bursts due
to the swelling in cells. The primary root or radicle emerges downward, and the stem grows
upward (Carrera-Castafio et al., 2020).

There is an urgent need to develop a sustainable technology that can contribute to the
green revolution to address these growing concerns and to restore the damage caused to the
ecosystem (Mahra et al., 2024). Seed priming is an innovative technique to improve seed
germination rates, seedling growth, and crop yield, as well as provide resistance to various
plant stresses like drought, salinity, and heavy metal toxicity in a sustainable way (Shelar et
al., 2021). Priming is the process of pre-treating seeds before planting those plants using
traditional methods such as pre-soaking and coating (Maroufi et al., 2011). Priming creates a
physiological state in the seed that strengthens its growth capacity against biotic or abiotic
stresses (Nile et al., 2022). However, many factors affect the performance of seed priming
such as plant species, priming duration, temperature, priming media, and their concentration
and storage conditions (Conrath, 2011; Rhaman et al., 2020).

Priming using nanoparticles (nano-priming) has been proven to be more promising
than traditional priming approaches for achieving feasible agricultural yields (Rhaman et al.,
2020). Nano-priming uses particles with a size of less than 100 nm (nanoparticles, NPs), and
"priming" relates to the development of stress tolerance under moderate and recurring stress
(Nile et al., 2022; Chandrasekaran et al., 2020). The literature search has shown that
nanomaterials prepared with silver (Rajwade et al., 2020), gold (Prasad et al., 2017), copper
(Usman et al., 2020), palladium (Kamle et al., 2020), selenium (Liu et al., 2021), zinc oxide
(Pramanik et al., 2020), magnesium oxide (Jiang et al., 2020), titanium dioxide (Shang et al.,
2019), and iron oxide (Pulizzi, 2019) have been proven to promote seed germination and
improve crop yields (Figure 1).

Silver nanoparticles (AgNPs) are the most widely used nanoparticles with a variety
of uses because of their unique properties (Yan and Chen 2019). The applications of AgNPs
have received high focus and promotion in the medical and pharmaceutical fields (Khan et
al., 2023). Among numerous monometallic NPs, biogenic AgNPs are frequently applied
because of their characteristics such as electrical conductivity, optical polarization, and SER
scattering (Abasi et al., 2022).The potential uses of Ag-NPs in catalysis (Kamat 2002),
plasmonics (Maier et al. 2001), optoelectronics (Boncheva et al. 2002), biological sensors
(Mirkin et al. 1996; Han et al. 2001), antimicrobial activities (Savithramma et al. 2011; Rai
et al. 2009), DNA sequencing (Cao et al. 2001), climate change and contamination control
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(Shan et al. 2009), clean water technology (Savage and Diallo 2005), energy generation
(Z€ach et al. 2006), information storage (Carutherset al. 2007), and biomedical applications
(Hullmann 2007) have all attracted a lot of interest in the formation of Ag-NPs. By
showcasing its potential during the past ten years, the production of NPs has given us amazing
advancements in the field of nanotechnology (Samberg et al. 2010).

Therefore, the current study's objectives are to investigate the potential utility of
varying AgNPs priming concentrations on the morpho-physiological and biochemical
characteristics of herbal and medicinal plants under salt stress, including growth, biomass,

oxidative damage, and antioxidant system.

Basics of Seed Priming

Priming is the process of pre-treating seeds before planting those plants using
traditional methods such as pre-soaking and coating (Torre-Roche et al., 2020; Wagqas et al.,
2019). Seed priming is controlled hydration of seeds to a level that allows pre-germinative
metabolic activity to continue, but interrupts actual emergence of the radicle (Raj and Raj,
2019). Although seedlings raised from primed seeds have been reported to exhibit
modifications in water contents, improved cell cycle regulation, management of oxidative
stress and reserve food mobilization, the efficacy of seed priming highly depends on the plant
species and the priming method (Raj and Raj, 2019; Johnson and Puthur, 2021). Several seed
and agricultural firms have used the priming technology as a revolutionary strategy for
achieving a consistent crop standby (Sivasubramaniam et al., 2011; Wagqas et al., 2019; Raj
and Raj, 2019).

Priming initiates cross-tolerance that assists improved germination and seedling
establishment under harsh environmental conditions (Chen et al., 2012). This has been
demonstrated in many crop plants, such as zucchini (Cucurbita pepo L.), onion (Allium
cepa L.), pepper (Capsicum annum L.), tomato (Lycopersicon esculentum L.), zinnia (Zinnia
elegans Jacq.) etc. (Anand et al., 2019; Szopinska and Polityvka, 2016; Silva et al., 2015;
Zhao et al., 2018; Valivand et al., 2019). In mung bean plants, a faster seedling establishment
resulting from priming may contribute to a total increase in yield up to 45% (Rashid et al.,
2004). Increased seed vigour observed in primed seeds of Arabidopsis (Gallardo et al., 2001;
Rajjou et al., 2006), alfalfa (Medicago sativa L.) (Yacoubi et al., 2013), wheat (Fercha et al.,
2013; Fercha et al., 2014).

Proteome analyses of seed priming and germination have proven invaluable in
identifying changes between primed and unprimed seeds in various plants (Wang et al.,

4
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2015). It is regulated by the interaction of the surrounding environmental conditions, the
seeds’ physiological state, and the germ (Khaeim et al., 2022; Vishal and Kumar, 2018).

Temperature, light, pH, water availability, and soil moisture most affect seed germination

- e among abiotic factors (Khaeim et al., 2022; Rizzardi et al., 2009). Figure 2 shows that plants

produced from primed seeds often exhibit a faster growth than unprimed ones. The beneficial
impact of priming on plant growth may be due to an improved nutrient use efficiency
allowing a higher relative growth rate (Debbarma and Das, 2017; Muhammad et al., 2015).
A higher growth of seedlings issued from primed seeds may also be analyzed in relation to a
direct impact of pretreatment on cell cycle regulation and cell elongation processes (Debarma
and Das, 2017; Chen and Arora, 2013). The growth parameters of chickpea were significantly
affected by seed priming (Debbarma and Das, 2017; Vikas and Mahender, 2012).

Seed germination with Silver Nanoparticles

Nanotechnology utilizes-particles less than 100 nm in size, and it has a promising role
in transforming agriculture (Fraceto et al., 2016). The two techniques for NP synthesis are
"Top-down" and "Bottom-up." The most flexible method for producing metal nanoparticles
top-down 1is evaporation-condensation (Rafique et al., 2017, Mathur et al.,, 2017).
Nanoparticles exhibit high surface-area-to-volume ratios, enhanced reactivity, and controlled
release capabilities, making them valuable for precision agriculture (Kedziora et al., 2018).

The excessive use of chemical fertilizers can be reduced by utilizing nanomaterials in
agriculture (Upadhyaya et al., 2017). The mechanism behind high seed germination in nano-
priming is the greater penetration via seed coat that improves nutrient and water uptake
efficiency of the seed (Dutta, 2018). Studies reported that seed priming with calcium-
phosphate, SiO», ZnO, and Ag nanoparticles enhanced germination and seedling
development (Ghafari and Razmjoo, 2013).

One of the most promising methods for increasing agricultural output in both
favourable and unfavourable environmental circumstances is the application of nanoparticles
(NPs) (Biswas et al., 2023; Zulfiqar and Ashraf, 2021). It has been documented that
nanopriming controls physio-biochemical reactions in abiotically stressed crops (Figure 3).
AgNPs (Thiruvengadam et al., 2015; Baskar et al., 2015), AuNPs (Alshehddi and Bokhari,
2020), CuNPs (Chung et al., 2019; Nguyen et al., 2022), FeNPs (Kornarzynski et al., 2020),
FeSoNPs (Srivastava et al., 2014), TiO2NPs (Gohari et al., 2020; Faraji and Sepehri, 2019),
ZnNPs (Montanha et al., 2020), ZnONPs (Faizan et al., 2021; Taran et al., 2017; Abdel Latef
et al., 2017), and carbon NPs like fullerene (Shafiq et al., 2019) and carbon nanotubes

5
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(Rahimi et al., 2016) have all been used as seed pretreatment. In maize plants, seed priming
using gold nanoparticles (AuNPs) frequently improves water absorption (Rajwade et al.,
2020).

It has been reported that commercially available silver nanoparticles (AgNPs) with
sizes ranging from 50 to 100 nm can lessen the negative effects of stress caused by 120 and
150 mM NacCl in Pennisetum glaucum (Parveen and Rao 2014). Additional instances of
plants that show improved development and a favorable physiological response after being
exposed to silver nanoparticles include Phaseolus vulgaris, Zea mays, (Salama 2012)
Phytolacca Americana, Panicum virgatum (Yin et al., 2012). In Boswellia ovalifoliolata
(Savithramma et al., 2012), treatment with AgNPs has been demonstrated to have a favorable
effect on seed germination. In Brassica nigra seeds and seedlings, it was similarly discovered
that an AgNP dose ranging from 0.2 to 1.6 mg/L inhibited lipase activity, soluble and
reducing sugar content, and seed germination (Amooaghaica and Tabatabaeia 2015).
Additionally, it has been discovered that 10 mg/L AgNPs hinder Hordeum vulgare seed
germination and shorten the shoot length of barley (Hordeum vulgare) and flax (Linum
usitatissimum) (Temsah and Joner 2012).

To increase plant tolerance to salinity, AgNPs enhanced plant height, proline
contents, ion homoeostasis, antioxidant enzyme activities, and phenolic and flavonoid
contents (Biswas et al., 2023; Khan et al., 2020). While higher and lower concentrations of
AgNPs may have a negative impact on plant growth, exposure to particular concentrations
may improve plant growth when compared to non-exposed plants (Kaveh et al., 2013;
Geisler-Lee et al., 2013; Qian et al., 2013). The optimum concentration of AgNPs to induce
a growth response in Brassica juncea seedlings was found to be 50 ppm, out of the utilized
concentrations of 0, 25, 50, 100, 200, and 400 ppm (Almutairi and Alharbi, 2015). The root
length, fresh weight, shoot length, and vigour index of seedlings had positive impact at this
concentration. The treated seedlings' vigour index increased by 133% and their root length
increased by 326% as a result of this dosage (Sharma et al., 2012). Seedling biomass was
shown to increase when Arabidopsis thaliana plants were treated with 1 or 2.5 mg/L of
AgNPs, while seedling biomass decreased when larger doses were applied (Kaveh et al.,
2013).

In order to investigate drought stress on lentil germination five levels of silver
nanoparticles (0, 10, 20, 30 and 40 ug mL™") on Lentil (Lens culinaris Medic) were taken
AgNP enhanced the radical length and the highest length (4.45 ¢m) observed in severe stress
by applying 10 pg mL ' of the nanoparticle. When plants were treated with 20 pg/mL of

6
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silver nanoparticles (AgNPs), the radicle (embryonic root) had the highest dry weight, which
was 0.07 grams (Hojjat and Ganjali 2016).

Studies also showed that the addition of 10 or 50 mg-dm > of AgNPs changes the
composition of essential oils produced by lavender plant (Jadczak et al., 2020). For instance,
broad bean (Vicia faba L.) seeds exposed to citrate-coated silver nanoparticles (ca. 40 nm)
at 10 ppm for 6 h showed higher growth, physiological, and biological traits than non-nano
treatments (Alhammad et al., 2023). With alfalfa (Medicago sativa L.), the results were also
encouraging when exposed to AgNPs (approximately 50 nm) for 3 h (Song et al., 2022).
AgNPs exhibited strong antimicrobial activity against a variety of diseases. For example,
they significantly limit the growth of fungi that cause rice blast disease and the colony
formation of Magnaporthe grisea (Vishwanathan and Negi 2021). (Matras 2022) reported
that AgNPs had antifungal efficacy against Alternaria alternata and Botrytis cinerea.
According to the study, the highest inhibition of fungal hyphal development was caused by
the 15 mg/L concentration of AgNPs. However, it was demonstrated that AgNPs had no
discernible effects on the castor bean plant, Ricinus communis L., in terms of seed
germination, root length, or shoot length (Yasur and Rani 2013). Cucumis sativus and
Lactuca sativa seed germination was observed to be unaffected by 100 mg/L. AgNPs (Ingle
et al.,2020). M. incognita invasive larvae viability was 100% reduced and the egg hatch
process was 100% inhibited after incubation with a very low quantity of silver compounds
(0.05 ppm) (Furmanczyk et al., 2025).

Satureja hortensis L., is a medicinal plant endemic to Iran, which is well-known in
the folk medicine for its therapeutic uses as herbal tea and as an analgesic and antiseptic
substance due to the presence of secondary metabolites including terpenoids, phenolics,
flavonoids, steroids, and tannins (Hosainzadegan and Delfan, 2009). During recent years,
antibacterial, antioxidant, antifungal, antidiabetic, antinociceptive, antihyperlipidemic,
antibiofilm, anti-inflammatory, antispasmodic and antidiarrhea effects and as well as
triglyceride-lowering potential have been reported for S. hortensis (Hosainzadegan and
Delfan, 2009). Priming of S. hortensis L. (summer savory) seeds before planting had a
positive physiological and biochemical impact. This likely resulted in improved seed
germination, enhanced stress tolerance, and better overall plant growth by activating
beneficial metabolic processes before the seeds were sown in the seedbed. In S. hortensis,
the highest seed germination percentage was observed when 80 ppm of AgNPs were applied,

particularly under conditions of low salinity. Conversely, the lowest germination percentage
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was recorded under high salinity conditions 120 MmL™ when AgNPs were not applied
(Nejatzadeh, 2021).

According to some studies, a high concentration of AgNPs had detrimental effects on
photosynthesis, lowered the amount of chlorophyll overall, and dramatically raised the
parameters of oxidative stress (Song et al., 2022; Abasi et al., 2022). The aquatic plant Lemna
gibba has been shown to exhibit growth inhibition, as evidenced by a notable decline in frond
numbers that is dependent on AgNPs concentration (Oukarroum et al., 2013). According to
(Stampoulis et al., 2009), the biomass and transpiration rates of Cucurbita pepo (zucchini)
were reduced by 41% and 57%, respectively, when exposed to 100 nm AgNPs at 100 and
500 mg/L. AgNPs dramatically reduced plant biomass, plant tissue nitrate-nitrogen content,
chlorophyll a/b, and chlorophyll fluorescence (Fv/Fm) in an aquatic macrophyte (Spirodela
polyrhiza, larger duckweed), according to a study by Jiang et al. (2012). Plant toxicity was
solely examined in pure cultures in any of these investigations.

AgNPs seed priming has become a viable method for improving crop development
and physiological responses to abiotic stressors, such as salinity. In order to help seeds
overcome environmental obstacles and improve germination rates and seedling
establishment, AgNPs enhance water uptake, enzyme activity, and oxidative stress tolerance.
Optimizing the concentration and application techniques is essential to avoiding possible
toxicity, though. However, concerns regarding nanoparticle toxicity, environmental
persistence, and regulatory challenges necessitate further research to optimize their safe and
sustainable application in modern agriculture.

A simple way to improve seed germination and seedling establishment and
consequently field performance of medicinal plants is seed priming (Dalil, 2014). Most of
the medicinal plants have some problems in seed germination and stand establishment in the
field (Zare et al., 2011). Since germination and seedling establishment are critical stages in
the plant life cycle (Cheng and Bradford, 1999), offering the solutions for improvement of
seed germination and seedling establishment will help to better performance in cultivation of
medicinal plants. One of the simple techniques which can improve seedling vigor and
establishment and consequently field performance of plants is seed priming or physiological
advancement of the seed (Mc Donald, 2000). In comparison to the control seedlings, AgNPs
increased the amount of chlorophyll and enhanced the cellular electron exchange and
photosynthetic quantum efficiencies in medicinal plant (Sharma et al., 2012).

According to several reports, flavonoids are in charge of the environmentally friendly
synthesis of AgNPs (Mustapha et al. 2022). AgNPs produced synthetically have been utilized

8
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a food packaging, wastewater treatment, and biological uses as an antibacterial agent
(Vanlalveni et al. 2021). This method is successful in small seed plants such as many
medicinal plants that have great economic value with quick and uniform emergence
requirements (Ellis and Roberts, 1981). Majority of studies focus on agricultural plants and
some focus on flowering/medicinal plants have been compiled in Table 1 (Psophocarpus
tetragonolobus (L.), Vigna mungo (L.) Hepper, Satureja hortensis L., Sanguisorba minor,
Lavandula angustifolia, Allium cepa L, Phaseolus vulgaris L., Echinops macrochaetus,
Medicago sativa L., Linum usitatissimum L., Ocimum basilicum L., Helianthus annuus L.,

Solanum lycopersicum, Vicia faba, Capsicum annuum L.).

Table 1: Various plants studied under silver nanoparticles seed priming:

7 turnitin

Plant studied Seed Concentration | Aspect Impact of NPs| References
condition | of NPs studied
Psophocarpus | Seedling 50 mg Seed Increased upto| (Kumar et
tetragonolobus | growth germination | 88.33% al., 2020)
(L.) stress
(Legume)
Vigna mungo | Poorseed | 1.5 mM Germination | Increased upto| (Krishnas-
(L.) Hepper vigour, percentage 21% amy et al.,
Low Root length Increased upto| 2024)
germinatio 19%
n rates Shoot length | Increased upto
23%
Vigour index | Increased upto
35%
Satureja salinity 80 ppm Seed Improved (Nejatzade
hortensis L. stress germination | salinity h, 2021)
Salinity stress| tolerance with
increased seed
germination
9
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Sanguisorba Drought 30 mg/l Biomass Increased by | (Farmahini
minor stress production 25% Farahani et
al., 2022)
Lavandula Lack of 2 mg-dm activity of Increased (Jadczak et
angustifolia enhanced antioxidant activity of al., 2020)
metabolic enzymes and | APX and
and total SOD
defensive polyphenolic
activities capacity
Allium cepa L. 25 ppm Seed Stimulated (Patidar et
germination | early al., 2024)
and vigour germination
index and significant
increase in
Vigour Index
Phaseolus 25 mg/L Root length | Maximum (Ahmed
vulgaris L. 50 mg/L Flavonoids shoot'and root | and
Protein length Murtaza,
Chlorophyll | elongation 2024)
content was observed
Shoot length | at25 mg/L of
AgNPs
concentration.
Secondary
metabolites
increased
Echinops Salinity 40 umol/L Biomass Faster (Khan et
macrochaetus | stress Shoot length | germination | al., 2024)
Chlorophyll | with increase
content in biomass,
shoot length
and
chlorophyll

10
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content was

observed at
40 pumol/L
AgNPs
Medicago 25 mg/l Seed Significant (Song et
sativa L. germination | increase in al., 2022)
Root and water
shoot length | absorption
rate. Thus,
increasing
seed
germination
along with
increased root
and shoot
length.
Linum Salinity AgNPs Overall increases (Khalofah
usitatissimum L| stress combined growth and production of | etal.,
with C. yield in saline| photosynthetic| 2021)
testosteroni condition. pigments,
proteins,
sugars, and
proline
Ocimum 200 mg/L germination | Germination | (Sencan et
basilicum L. percentage increased upto| al., 2024)
and root 85% and root
length length
increased by
19.4 mm.
Helianthus 25mgL! Overall Improved (Haq et al.,
annuus L. growth and morphological| 2024)
plant characteristic,
characteristics| seed quality,

7 turnitin
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and oil
content,
secondary
metabolites
‘a Solanum 25-50 pg/mL | seed increase in  |(Sonawane
lycopersicum germination, | the'seed et al., 2021)
seedling germination
growth percentage
Vicia faba Aged seeds| 100 ppm vigor and Increased (Younis et
mitotic index | mitotic cell al., 2019)
cycle
and seedling
growth
.e ‘ e Capsicum 30-50 ppm root length, primed (Mawale
annuum L. shoot length, | seedlings and
seedling increased root | Giridhar,
length, and and shoot 2024)
germination | length,
vigour index | seedling
length, and
germination
vigour index
Conclusions

Medicinal and herbal plants have been essential to the global evolution of human

cultures. Their proper growth helps in development of socio-economic aspects of any society.

.e Seedling establishment and germination are important phases in their life cycle. The efficient
seed germination encourages successful establishment and deep oot system: Seed priming
is the'process of treating seeds with chemical or biological priming agents to display better

growth and to amplify abiotic stress resistance. The use of nanopriming has been proven to

be more promising than traditional priming approaches for achieving feasible agricultural
yields: This article discussed theuse of silver nanoparticles (AgNPS) as nanopriming agent

to enhance the seed germination 0f many medicinal and herbal plants. The future lies in the
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utility of silver nanoparticle in seed priming with proper applications, appropriate ‘stop’ time,
and better prior standardization. The seed priming adoption at field level is the need for future

studies.
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