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ABSTRACT 

 
Medicinal plants have been essential to the global evolution of human cultures. Many 

abiotic and biotic processes affect the growth and development of plants. Seedling 

establishment and germination are important phases in the plant life cycle and efficient 

seed germination encourages successful establishment and deep root system of plants. 

Through the production of various physiological and metabolic changes, priming has 

been shown to have a noteworthy impact. This review summarises the studies of 

various medicinal and herbal plants by using nano-priming of seeds. A literature search 

was conducted with the help of electronic databases like Google Scholar, PubMed, 

Scopus, Sci Finder, and ONOS. The search was conducted using the keywords 

Medicinal Plants, Seed priming, nanotechnology, silver nanoparticle, germination. The 

studies have shown that the use of silver nanoparticles (AgNPs) as nanopriming agent 

for enhancing seed germination is a step towards sustainable agriculture. This process 

is suitable for small seed plants. This study gathered information on the seed 

germination using silver nanoparticles on various medicinal plants. 
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Medicinal and herbal plants represent the most ancient form of medication, 

used for thousands of years in traditional medicine in many countries around the world 

(Marrelli, 2021). The empirical knowledge about their beneficial effects was 

transmitted over the centuries within human communities (Khan, 2014). Medicinal 

plants not only serve as complements or substitute for modern medical treatments, 

which are often inadequately available but also enhance the health and security of local 

people (Agidew, 2022). The medicinal importance of some plants is mainly due to the 

presence of active ingredients such as terpenes, flavonoids, coumarins, carotenoids, 

essential oils, and amino acids (Khalaki et al., 2021; Ahmad et al., 2018).  

The cultivation of medicinal and herbal plants is currently confronted with 

several difficulties, such as changeable climatic circumstances that can negatively 

impact seedling development, seed germination, and crop output, such as drought, salt, 

heavy metal buildup in soil, and climate change (Shelar et al., 2023; Yadav et al., 2020; 

Imran et al., 2021; He et al., 2018). The uncertainty of the global climate with erratic 

rainfall patterns is the major cause of the frequent onset of drought stress around the 

world (Lobell et al., 2011). Over 6% of the world’s land is spoiled by salinity which 

negatively affects crop survival by minimizing the growth and yield of staple food up 

to 70% (FAO, 2016; Schilling, 2016).  

Drought-induced economic losses were estimated to be about 29 billion dollars 

during 2005 to 2015, and it is predicted to become more persistent and extensive in 

the coming decades (Schilling, 2016; Trenberth et al., 2014). By 2050, about 50% of 

arable lands are expected to be under drought stress (Marthandan et al., 2020). Drought 

can occur in all growth stages, but the first and foremost effect is on seed germination 

(Kasim et al., 2013; Kaya et al., 2006) where water entrance into the seed decreases 

due to hydraulic reduction; and thereby, all the physiological and metabolic 

germination processes are affected (Fahad et al., 2017). Impaired germination and 

establishment under drought stress have been studied in several crops viz., peas 

(Bareke, 2018), barnyard millet (Okcu et al., 2005), rice (Wu et al., 2019), and 

sunflower (Islam et al., 2018). 
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Efficient seed germination is important for increasing the production of forage 

and medicinal plants in rangeland fields (Humera Razzaq et al., 2017). The main role 

of the seed is to protect the embryo and sense environmental information to couple 

germination with seasons compatible with the completion of the plant life cycle (Azimi 

et al., 2014). The germination process is completed in three stages. In the stage 1, seed 

germinates upon absorption of water in the cells of the seed as they hydrate, and 

become rigid or turgid. In stage 2, the areas of growth, cell division, and differentiation 

at the root and shoot meristems or tips are where the sugars and amino acids are 

focused. In stage 3, the seed coat bursts due to the swelling in cells. The primary root 

or radicle emerges downward, and the stem grows upward (Carrera-Castaño et al., 

2020).  

There is an urgent need to develop a sustainable technology that can contribute 

to the green revolution to address these growing concerns and to restore the damage 

caused to the ecosystem (Mahra et al., 2024). Seed priming is an innovative technique 

to improve seed germination rates, seedling growth, and crop yield, as well as provide 

resistance to various plant stresses like drought, salinity, and heavy metal toxicity in a 

sustainable way (Shelar et al., 2021). Priming is the process of pre-treating seeds 

before planting those plants using traditional methods such as pre-soaking and coating 

(Maroufi et al., 2011). Priming creates a physiological state in the seed that strengthens 

its growth capacity against biotic or abiotic stresses (Nile et al., 2022). However, many 

factors affect the performance of seed priming such as plant species, priming duration, 

temperature, priming media, and their concentration and storage conditions (Conrath, 

2011; Rhaman et al., 2020). 

Priming using nanoparticles (nano-priming) has been proven to be more 

promising than traditional priming approaches for achieving feasible agricultural 

yields (Rhaman et al., 2020). Nano-priming uses particles with a size of less than 100 

nm (nanoparticles, NPs), and "priming" relates to the development of stress tolerance 

under moderate and recurring stress (Nile et al., 2022; Chandrasekaran et al., 2020). 

The literature search has shown that nanomaterials prepared with silver (Rajwade et 

al., 2020), gold (Prasad et al., 2017), copper (Usman et al., 2020), palladium (Kamle 

et al., 2020), selenium (Liu et al., 2021), zinc oxide (Pramanik et al., 2020), magnesium 
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oxide (Jiang et al., 2020), titanium dioxide (Shang et al., 2019), and iron oxide (Pulizzi, 

2019) have been proven to promote seed germination and improve crop yields (Figure 

1). 

Silver nanoparticles (AgNPs) are the most widely used nanoparticles with a 

variety of uses because of their unique properties (Yan and Chen 2019). The 

applications of AgNPs have received high focus and promotion in the medical and 

pharmaceutical fields (Khan et al., 2023). Among numerous monometallic NPs, 

biogenic AgNPs are frequently applied because of their characteristics such as 

electrical conductivity, optical polarization, and SER scattering (Abasi et al., 

2022).The potential uses of Ag-NPs in catalysis (Kamat 2002), plasmonics (Maier et 

al. 2001), optoelectronics (Boncheva et al. 2002), biological sensors (Mirkin et al. 

1996; Han et al. 2001), antimicrobial activities (Savithramma et al. 2011; Rai et al. 

2009), DNA sequencing (Cao et al. 2001), climate change and contamination control 

(Shan et al. 2009), clean water technology (Savage and Diallo 2005), energy 

generation (Z€ach et al. 2006), information storage (Carutherset al. 2007), and 

biomedical applications (Hullmann 2007) have all attracted a lot of interest in the 

formation of Ag-NPs. By showcasing its potential during the past ten years, the 

production of NPs has given us amazing advancements in the field of nanotechnology 

(Samberg et al. 2010).  

 Therefore, the current study's objectives are to investigate the potential utility 

of varying AgNPs priming concentrations on the morpho-physiological and 

biochemical characteristics of herbal and medicinal plants under salt stress, including 

growth, biomass, oxidative damage, and antioxidant system. 

 

Basics of Seed Priming 

Priming is the process of pre-treating seeds before planting those plants using 

traditional methods such as pre-soaking and coating (Torre-Roche et al., 2020; Waqas 

et al., 2019). Seed priming is controlled hydration of seeds to a level that allows pre-

germinative metabolic activity to continue, but interrupts actual emergence of the 

radicle (Raj and Raj, 2019). Although seedlings raised from primed seeds have been 
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reported to exhibit modifications in water contents, improved cell cycle regulation, 

management of oxidative stress and reserve food mobilization, the efficacy of seed 

priming highly depends on the plant species and the priming method (Raj and Raj, 

2019; Johnson and Puthur, 2021). Several seed and agricultural firms have used the 

priming technology as a revolutionary strategy for achieving a consistent crop standby 

(Sivasubramaniam et al., 2011; Waqas et al., 2019; Raj and Raj, 2019). 

Priming initiates cross-tolerance that assists improved germination and 

seedling establishment under harsh environmental conditions (Chen et al., 2012). This 

has been demonstrated in many crop plants, such as zucchini (Cucurbita pepo L.), 

onion (Allium cepa L.), pepper (Capsicum annum L.), tomato (Lycopersicon 

esculentum L.), zinnia (Zinnia elegans Jacq.) etc. (Anand et al., 2019; Szopinska and 

Polityvka, 2016; Silva et al., 2015; Zhao et al., 2018; Valivand et al., 2019). In mung 

bean plants, a faster seedling establishment resulting from priming may contribute to 

a total increase in yield up to 45% (Rashid et al., 2004). Increased seed vigour observed 

in primed seeds of Arabidopsis (Gallardo et al., 2001; Rajjou et al., 2006), alfalfa 

(Medicago sativa L.) (Yacoubi et al., 2013), wheat (Fercha et al., 2013; Fercha et al., 

2014). 

Proteome analyses of seed priming and germination have proven invaluable in 

identifying changes between primed and unprimed seeds in various plants (Wang et 

al., 2015). It is regulated by the interaction of the surrounding environmental 

conditions, the seeds’ physiological state, and the germ (Khaeim et al., 2022; Vishal 

and Kumar, 2018). Temperature, light, pH, water availability, and soil moisture most 

affect seed germination among abiotic factors (Khaeim et al., 2022; Rizzardi et al., 

2009). Figure 2 shows that plants produced from primed seeds often exhibit a faster 

growth than unprimed ones. The beneficial impact of priming on plant growth may be 

due to an improved nutrient use efficiency allowing a higher relative growth rate 

(Debbarma and Das, 2017; Muhammad et al., 2015). A higher growth of seedlings 

issued from primed seeds may also be analyzed in relation to a direct impact of 

pretreatment on cell cycle regulation and cell elongation processes (Debarma and Das, 

2017; Chen and Arora, 2013). The growth parameters of chickpea were significantly 

affected by seed priming (Debbarma and Das, 2017; Vikas and Mahender, 2012). 
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Nanotechnology utilizes particles less than 100 nm in size, and it has a 

promising role in transforming agriculture (Fraceto et al., 2016). The two techniques 

for NP synthesis are "Top-down" and "Bottom-up." The most flexible method for 

producing metal nanoparticles top-down is evaporation-condensation (Rafique et al., 

2017, Mathur et al., 2017). Nanoparticles exhibit high surface-area-to-volume ratios, 

enhanced reactivity, and controlled release capabilities, making them valuable for 

precision agriculture (Kędziora et al., 2018). 

The excessive use of chemical fertilizers can be reduced by utilizing 

nanomaterials in agriculture (Upadhyaya et al., 2017). The mechanism behind high 

seed germination in nano-priming is the greater penetration via seed coat that improves 

nutrient and water uptake efficiency of the seed (Dutta, 2018). Studies reported that 

seed priming with calcium-phosphate, SiO2, ZnO, and Ag nanoparticles enhanced 

germination and seedling development (Ghafari and Razmjoo, 2013). 

One of the most promising methods for increasing agricultural output in both 

favourable and unfavourable environmental circumstances is the application of 

nanoparticles (NPs) (Biswas et al., 2023; Zulfiqar and Ashraf, 2021). It has been 

documented that nanopriming controls physio-biochemical reactions in abiotically 

stressed crops (Figure 3). AgNPs (Thiruvengadam et al., 2015; Baskar et al., 2015), 

AuNPs (Alshehddi and Bokhari, 2020), CuNPs (Chung et al., 2019; Nguyen et al., 

2022), FeNPs (Kornarzyński et al., 2020), FeS2NPs (Srivastava et al., 2014), TiO2NPs 

(Gohari et al., 2020; Faraji and Sepehri, 2019), ZnNPs (Montanha et al., 2020), 

ZnONPs (Faizan et al., 2021; Taran et al., 2017; Abdel Latef et al., 2017), and carbon 

NPs like fullerene (Shafiq et al., 2019) and carbon nanotubes (Rahimi et al., 2016) 

have all been used as seed pretreatment. In maize plants, seed priming using gold 

nanoparticles (AuNPs) frequently improves water absorption (Rajwade et al., 2020).  

It has been reported that commercially available silver nanoparticles (AgNPs) 

with sizes ranging from 50 to 100 nm can lessen the negative effects of stress caused 

by 120 and 150 mM NaCl in Pennisetum glaucum (Parveen and Rao 2014). Additional 

instances of plants that show improved development and a favorable physiological 

response after being exposed to silver nanoparticles include Phaseolus vulgaris, Zea 

mays, (Salama 2012) Phytolacca Americana, Panicum virgatum (Yin et al., 2012). In 
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Boswellia ovalifoliolata (Savithramma et al., 2012), treatment with AgNPs has been 

demonstrated to have a favorable effect on seed germination. In Brassica nigra seeds 

and seedlings, it was similarly discovered that an AgNP dose ranging from 0.2 to 1.6 

mg/L inhibited lipase activity, soluble and reducing sugar content, and seed 

germination (Amooaghaiea and Tabatabaeia 2015). Additionally, it has been 

discovered that 10 mg/L AgNPs hinder Hordeum vulgare seed germination and shorten 

the shoot length of barley (Hordeum vulgare) and flax (Linum usitatissimum) (Temsah 

and Joner 2012). 

 To increase plant tolerance to salinity, AgNPs enhanced plant height, proline 

contents, ion homoeostasis, antioxidant enzyme activities, and phenolic and flavonoid 

contents (Biswas et al., 2023; Khan et al., 2020). While higher and lower 

concentrations of AgNPs may have a negative impact on plant growth, exposure to 

particular concentrations may improve plant growth when compared to non-exposed 

plants (Kaveh et al., 2013; Geisler-Lee et al., 2013; Qian et al., 2013). The optimum 

concentration of AgNPs to induce a growth response in Brassica juncea seedlings was 

found to be 50 ppm, out of the utilized concentrations of 0, 25, 50, 100, 200, and 400 

ppm (Almutairi and Alharbi, 2015). The root length, fresh weight, shoot length, and 

vigour index of seedlings had positive impact at this concentration. The treated 

seedlings' vigour index increased by 133% and their root length increased by 326% as 

a result of this dosage (Sharma et al., 2012). Seedling biomass was shown to increase 

when Arabidopsis thaliana plants were treated with 1 or 2.5 mg/L of AgNPs, while 

seedling biomass decreased when larger doses were applied (Kaveh et al., 2013).  

In order to investigate drought stress on lentil germination five levels of silver 

nanoparticles (0, 10, 20, 30 and 40 µg mL-1) on Lentil (Lens culinaris Medic) were 

taken AgNP enhanced the radical length and the highest length (4.45 cm) observed in 

severe stress by applying 10 µg mL -1 of the nanoparticle. When plants were treated 

with 20 µg/mL of silver nanoparticles (AgNPs), the radicle (embryonic root) had the 

highest dry weight, which was 0.07 grams (Hojjat and Ganjali 2016).  

Studies also showed that the addition of 10 or 50 mg∙dm−3 of AgNPs changes 

the composition of essential oils produced by lavender plant (Jadczak et al., 2020). For 

instance, broad bean (Vicia faba L.) seeds exposed to citrate-coated silver 
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nanoparticles (ca. 40 nm) at 10 ppm for 6 h showed higher growth, physiological, and 

biological traits than non-nano treatments (Alhammad et al., 2023). With alfalfa 

(Medicago sativa L.), the results were also encouraging when exposed to AgNPs 

(approximately 50 nm) for 3 h (Song et al., 2022). AgNPs exhibited strong 

antimicrobial activity against a variety of diseases. For example, they significantly 

limit the growth of fungi that cause rice blast disease and the colony formation of 

Magnaporthe grisea (Vishwanathan and Negi 2021). (Matras 2022) reported that 

AgNPs had antifungal efficacy against Alternaria alternata and Botrytis cinerea. 

According to the study, the highest inhibition of fungal hyphal development was 

caused by the 15 mg/L concentration of AgNPs. However, it was demonstrated that 

AgNPs had no discernible effects on the castor bean plant, Ricinus communis L., in 

terms of seed germination, root length, or shoot length (Yasur and Rani 2013). Cucumis 

sativus and Lactuca sativa seed germination was observed to be unaffected by 100 

mg/L AgNPs (Ingle et al.,2020). M. incognita invasive larvae viability was 100% 

reduced and the egg hatch process was 100% inhibited after incubation with a very 

low quantity of silver compounds (0.05 ppm) (Furmanczyk et al., 2025). 

Satureja hortensis L., is a medicinal plant endemic to Iran, which is well-

known in the folk medicine for its therapeutic uses as herbal tea and as an analgesic 

and antiseptic substance due to the presence of secondary metabolites including 

terpenoids, phenolics, flavonoids, steroids, and tannins (Hosainzadegan and Delfan, 

2009). During recent years, antibacterial, antioxidant, antifungal, antidiabetic, 

antinociceptive, antihyperlipidemic, antibiofilm, anti-inflammatory, antispasmodic 

and antidiarrhea effects and as well as triglyceride-lowering potential have been 

reported for S. hortensis (Hosainzadegan and Delfan, 2009). Priming of S. hortensis 

L. (summer savory) seeds before planting had a positive physiological and biochemical 

impact. This likely resulted in improved seed germination, enhanced stress tolerance, 

and better overall plant growth by activating beneficial metabolic processes before the 

seeds were sown in the seedbed. In S. hortensis, the highest seed germination 

percentage was observed when 80 ppm of AgNPs were applied, particularly under 

conditions of low salinity. Conversely, the lowest germination percentage was 
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recorded under high salinity conditions 120 MmL-1 when AgNPs were not applied 

(Nejatzadeh, 2021).  

According to some studies, a high concentration of AgNPs had detrimental 

effects on photosynthesis, lowered the amount of chlorophyll overall, and dramatically 

raised the parameters of oxidative stress (Song et al., 2022; Abasi et al., 2022). The 

aquatic plant Lemna gibba has been shown to exhibit growth inhibition, as evidenced 

by a notable decline in frond numbers that is dependent on AgNPs concentration 

(Oukarroum et al., 2013). According to (Stampoulis et al., 2009), the biomass and 

transpiration rates of Cucurbita pepo (zucchini) were reduced by 41% and 57%, 

respectively, when exposed to 100 nm AgNPs at 100 and 500 mg/L. AgNPs 

dramatically reduced plant biomass, plant tissue nitrate-nitrogen content, chlorophyll 

a/b, and chlorophyll fluorescence (Fv/Fm) in an aquatic macrophyte (Spirodela 

polyrhiza, larger duckweed), according to a study by Jiang et al. (2012). Plant toxicity 

was solely examined in pure cultures in any of these investigations. 

AgNPs seed priming has become a viable method for improving crop 

development and physiological responses to abiotic stressors, such as salinity. In order 

to help seeds overcome environmental obstacles and improve germination rates and 

seedling establishment, AgNPs enhance water uptake, enzyme activity, and oxidative 

stress tolerance. Optimizing the concentration and application techniques is essential 

to avoiding possible toxicity, though. However, concerns regarding nanoparticle 

toxicity, environmental persistence, and regulatory challenges necessitate further 

research to optimize their safe and sustainable application in modern agriculture. 

A simple way to improve seed germination and seedling establishment and 

consequently field performance of medicinal plants is seed priming (Dalil, 2014). Most 

of the medicinal plants have some problems in seed germination and stand 

establishment in the field (Zare et al., 2011). Since germination and seedling 

establishment are critical stages in the plant life cycle (Cheng and Bradford, 1999), 

offering the solutions for improvement of seed germination and seedling establishment 

will help to better performance in cultivation of medicinal plants. One of the simple 

techniques which can improve seedling vigor and establishment and consequently 

field performance of plants is seed priming or physiological advancement of the seed 
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(Mc Donald, 2000). In comparison to the control seedlings, AgNPs increased the 

amount of chlorophyll and enhanced the cellular electron exchange and photosynthetic 

quantum efficiencies in medicinal plant (Sharma et al., 2012).  

According to several reports, flavonoids are in charge of the environmentally 

friendly synthesis of AgNPs (Mustapha et al. 2022). AgNPs produced synthetically 

have been utilized a food packaging, wastewater treatment, and biological uses as an 

antibacterial agent (Vanlalveni et al. 2021). This method is successful in small seed 

plants such as many medicinal plants that have great economic value with quick and 

uniform emergence requirements (Ellis and Roberts, 1981). Majority of studies focus 

on agricultural plants and some focus on flowering/medicinal plants have been 

compiled in Table 1 (Psophocarpus tetragonolobus (L.), Vigna mungo (L.) Hepper, 

Satureja hortensis L., Sanguisorba minor, Lavandula angustifolia, Allium cepa L, 

Phaseolus vulgaris L., Echinops macrochaetus, Medicago sativa L., Linum 

usitatissimum L., Ocimum basilicum L., Helianthus annuus L., Solanum lycopersicum, 

Vicia faba, Capsicum annuum L.). 

 

Table 1: Various plants studied under silver nanoparticles seed priming: 

 

Plant studied Seed 

condition 

Concentrati

on of NPs 

Aspect 

studied 

Impact of 

NPs 

Referenc

es 

Psophocarpu

s 

tetragonolob

us (L.) 

(Legume) 

Seedling 

growth 

stress 

50 mg Seed 

germination 

Increased 

upto 

88.33% 

(Kumar 

et al., 

2020) 

Vigna mungo 

(L.) Hepper 

Poor 

seed 

vigour, 

1.5 mM Germinatio

n 

percentage 

Increased 

upto 21% 

(Krishnas

-amy et 

al., 2024) 
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Low 

germinat

ion rates 

Root length 

 

Shoot 

length 

 

Vigour 

index 

Increased 

upto 19% 

Increased 

upto 23% 

Increased 

upto 35% 

Satureja 

hortensis L. 

salinity 

stress 

80 ppm Seed 

germination 

Salinity 

stress 

Improved 

salinity 

tolerance 

with 

increased 

seed 

germination 

(Nejatzad

eh, 2021) 

Sanguisorba 

minor 

Drought 

stress 

30 mg/l Biomass 

production 

Increased 

by 25% 

(Farmahi

ni 

Farahani 

et al., 

2022) 

Lavandula 

angustifolia 

Lack of 

enhanced 

metaboli

c and 

defensiv

e 

activities 

2 mg∙dm−3 activity of 

antioxidant 

enzymes 

and total 

polyphenoli

c capacity 

Increased 

activity of 

APX and 

SOD 

(Jadczak 

et al., 

2020) 
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Allium cepa 

L. 

 25 ppm Seed 

germination 

and vigour 

index 

Stimulated 

early 

germination 

and 

significant 

increase in 

Vigour 

Index 

(Patidar 

et al., 

2024) 

Phaseolus 

vulgaris L. 

 25 mg/L 

50 mg/L 

Root length 

Flavonoids 

Protein 

Chlorophyll 

content  

Shoot 

length 

 

Maximum 

shoot and 

root length 

elongation 

was 

observed at 

25 mg/L of 

AgNPs 

concentratio

n. 

Secondary 

metabolites 

increased 

(Ahmed 

and 

Murtaza, 

2024) 

Echinops 

macrochaetu

s 

Salinity 

stress 

40 µmol/L Biomass 

Shoot 

length 

Chlorophyll 

content 

Faster 

germination 

with 

increase in 

biomass, 

shoot length 

and 

chlorophyll 

(Khan et 

al., 2024) 
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content was 

observed at 

40 µmol/L 

AgNPs 

Medicago 

sativa L. 

 25 mg/l Seed 

germination 

Root and 

shoot length 

Significant 

increase in 

water 

absorption 

rate. Thus, 

increasing 

seed 

germination 

along with 

increased 

root and 

shoot 

length. 

(Song et 

al., 2022) 

Linum 

usitatissimu

m L 

Salinity 

stress 

AgNPs 

combined 

with C. 

testosteroni 

Overall 

growth and 

yield in 

saline 

condition. 

increases 

production 

of 

photosynthe

tic 

pigments, 

proteins, 

sugars, and 

proline 

(Khalofa

h et al., 

2021) 

Ocimum 

basilicum L. 

 

 200 mg/L  germinatio

n 

percentage 

Germination 

increased 

upto 85% 

(Sencan 

et al., 

2024) 
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and root 

length 

and root 

length 

increased by 

19.4 mm.  

Helianthus 

annuus L. 

 

 25 mg L−1  Overall 

growth and 

plant 

characteristi

cs 

Improved 

morphologi

cal 

characteristi

c, seed 

quality, and 

oil content, 

secondary 

metabolites  

(Haq et 

al., 2024) 

Solanum 

lycopersicum 

 

 25–

50 µg/mL 

seed 

germination

, seedling 

growth 

 increase in 

the seed 

germination 

percentage  

(Sonawan

e et al., 

2021) 

Vicia faba 

 

Aged 

seeds 

100 ppm vigor and 

mitotic 

index 

 

Increased 

mitotic cell 

cycle 

and seedling 

growth  

(Younis 

et al., 

2019) 

Capsicum 

annuum L. 

 30-50 ppm root length, 

shoot 

length, 

seedling 

length, and 

germination 

primed 

seedlings 

increased 

root and 

shoot 

length, 

seedling 

(Mawale 

and 

Giridhar, 

2024) 
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vigour 

index 

length, and 

germination 

vigour 

index 
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Medicinal and herbal plants have been essential to the global evolution of 

human cultures. Their proper growth helps in development of socio-economic aspects 

of any society. Seedling establishment and germination are important phases in their 

life cycle. The efficient seed germination encourages successful establishment and 

deep root system. Seed priming is the process of treating seeds with chemical or 

biological priming agents to display better growth and to amplify abiotic stress 

resistance. The use of nanopriming has been proven to be more promising than 

traditional priming approaches for achieving feasible agricultural yields. This article 

discussed the use of silver nanoparticles (AgNPs) as nanopriming agent to enhance the 

seed germination of many medicinal and herbal plants. The future lies in the utility of 

silver nanoparticle in seed priming with proper applications, appropriate ‘stop’ time, 

and better prior standardization. The seed priming adoption at field level is the need 

for future studies. 
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