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Chapter 1: Introduction  

1. Introduction 

The Internet of Things (IoT) transforms how devices interact, communicate, and make autonomous decisions. IoT 

applications have permeated various sectors, from smart homes and healthcare to industrial automation, enabling real-

time data collection, monitoring, and control. However, IoT systems' vast and decentralized nature exposes them to a 

myriad of security and privacy challenges, making them susceptible to numerous cyberattacks. Intrusion detection 

systems (IDS) are a primary line of defense for identifying and mitigating malicious activities within IoT networks. 

Despite various IDS models, traditional IDS mechanisms often fail to address the complexities of modern IoT 

environments due to their static nature, limited scalability, and inability to adapt to the heterogeneity of IoT devices. 

With the advent of advanced technologies like Artificial Intelligence (AI) and Blockchain, there is a significant 

opportunity to redefine the security frameworks for IoT systems. AI-driven models provide intelligent and adaptive 

capabilities, allowing for more accurate and efficient detection of anomalies. On the other hand, blockchain introduces 

a decentralized and immutable ledger for secure data storage and access control, making it a suitable technology to 

enhance trust and transparency in IDS. This research explores the integration of AI and blockchain technology to 

develop a novel IDS framework, aiming to provide enhanced security, privacy, and scalability for IoT environments. 

1.1. Motivation 

The exponential growth in deploying Internet of Things (IoT) devices, expected to surpass 75 billion by 2025, has 

revolutionized various industries, including healthcare, manufacturing, transportation, and smart cities. This surge in 

IoT adoption has led to significant innovations and the emergence of new business models. However, it has also 

introduced considerable security challenges, as increased connectivity creates new vulnerabilities. IoT devices, often 

operating in resource-constrained and hostile environments, are susceptible to various cyberattacks, including 

Distributed Denial of Service (DDoS), Man-in-the-Middle (MitM) attacks, and data breaches. Reports suggest that 

IoT devices face an average of over 5,000 attacks per month, leading to severe disruptions in critical services and 

operations. 

Furthermore, traditional security frameworks designed for conventional networks must be more suited to address the 

specific needs of IoT systems, which require real-time communication and support for diverse protocols and 

constrained resources. The limitations of existing security mechanisms highlight the need for an advanced Intrusion 

Detection System (IDS) framework tailored to the unique challenges of IoT environments. Integrating emerging 

technologies such as artificial intelligence (AI) and blockchain has shown promising potential in addressing these 

challenges. AI can enhance IDS by enabling the detection of sophisticated attack patterns, while blockchain provides 

a secure, decentralized infrastructure for data integrity, traceability, and access control. This research seeks to bridge 

the existing security gap by proposing a novel AI-driven IDS framework integrated with blockchain technology to 

strengthen security, privacy, and resilience in IoT networks. 

1.2. Internet of Things 

The Internet of Things (IoT) is a network of physical objects, referred to as "things," embedded with sensors, software, 

and other technologies to connect and exchange data with other devices and systems over the Internet. IoT enables the 

automation of processes and facilitates seamless communication between devices without human intervention, 

creating an interconnected ecosystem of smart devices. 

The key characteristics of IoT include: 

 Connectivity: IoT devices are connected through various communication protocols, enabling them to interact 

and exchange data. 

 Scalability: The ability of IoT systems to scale and support billions of devices without compromising 

performance. 

 Intelligence: IoT devices can collect, analyze, and act on data using AI and machine learning algorithms. 
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1.2.1. Architecture of IoT 

 The architecture of IoT is typically structured into multiple layers, each with distinct functionalities to support the 

end-to-end operations of IoT applications. The basic IoT architecture can be divided into the following layers: 

1. Perception Layer: 

 Components: Sensors, actuators, RFID tags, and other data acquisition devices. 

 Functionality: This layer captures data from the physical environment, such as temperature, 

humidity, motion, and other environmental conditions. Sensors convert physical signals into digital 

signals, which are then transmitted to the upper layers for processing. 

2. Network Layer: 

 Components: Gateways, routers, communication protocols (e.g., Wi-Fi, Zigbee, Bluetooth). 

 Functionality: This layer is responsible for transmitting data collected by the perception layer to 

other devices, cloud servers, or applications. It employs various networking technologies and 

protocols to ensure reliable and secure communication. 

3. Middleware Layer: 

 Components: IoT platforms, data processing units. 

 Functionality: The middleware layer provides a data aggregation, filtering, and processing 

platform. It handles the interactions between different IoT devices and provides an interface for 

application development. 

4. Application Layer: 

 Components: IoT applications (smart homes, healthcare monitoring, industrial automation). 

 Functionality: This layer provides end-user services and interfaces for IoT applications, enabling 

users to interact with the system and make informed decisions based on the data generated by IoT 

devices. 

 
Table 1.1: IoT Architecture Overview 

Layers Component Functionality 

Perception Layer Sensors, Actuators Data collection and environmental monitoring 

Network Layer Gateways, Routers, Protocols Data transmission and communication 

Middleware Layer IoT Platform, Data Processing Data aggregation, filtering, and processing 

Application Layer  IoT Applications, User Interface User interaction and service delivery 

 

1.2.2. Industrial IoT 

Industrial IoT (IIoT) refers to the application of IoT technology in industrial settings, including manufacturing, supply 

chain management, logistics, and healthcare. IIoT devices monitor and control industrial operations, leading to 

improved efficiency, reduced downtime, and enhanced safety. Unlike general IoT, IIoT focuses on mission-critical 

applications that require high reliability, low latency, and robust security. 

 

i. Applications of IIoT: 

 Smart Manufacturing: Real-time monitoring and control of production processes to optimize resource 

utilization and reduce waste. 

 Predictive Maintenance: Using IIoT devices to monitor the health of equipment and predict failures before 

they occur, reducing downtime and maintenance costs. 

 Supply Chain Optimization: Real-time tracking of goods and assets throughout the supply chain to improve 

logistics and inventory management. 

ii. Security Challenges in IIoT: 

 Data Sensitivity: IIoT systems often handle sensitive information about industrial processes and proprietary 

technologies. A breach can result in significant financial losses and damage to reputation. 
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 Complex Infrastructure: The integration of legacy systems with modern IoT devices creates a 

heterogeneous environment that is challenging to secure. 

 High Stakes of Attack: Cyberattacks targeting IIoT systems can have catastrophic consequences, including 

equipment damage and production shutdowns. 

 

1.3. Intrusion Detection System 

An Intrusion Detection System (IDS) is a security mechanism designed to detect, analyze, and respond to a network's 

unauthorized activities or malicious behavior. IDS helps safeguard network resources by monitoring system activities, 

analyzing patterns, and generating alerts in response to potential threats. In the context of the Internet of Things (IoT) 

and the Industrial Internet of Things (IIoT), IDS plays a critical role in protecting the network by providing real-time 

monitoring and anomaly detection and preventing attacks that disrupt sensitive operations. 

1.3.1. Type of Intrusion Detection System 

Intrusion Detection Systems can be classified into three main categories based on their deployment and monitoring 

scope: 

1. Network-based IDS (NIDS): 

Monitors network traffic by capturing and analyzing packet data. NIDS is deployed at strategic points within the 

network, such as gateways, routers, and firewalls. It helps detect network-level attacks, including: 

 Signature-based NIDS: Detects attacks by comparing network traffic against predefined attack signatures 

or patterns. It is highly effective in identifying known threats like SQL injection or port scanning but cannot 

detect zero-day attacks. 

 Anomaly-based NIDS: Establishes a baseline of normal network behavior and flags deviations as potential 

threats. It can detect unknown attacks or new patterns but may produce false positives. 

 Protocol-based NIDS: Monitors and validates specific protocol behavior (e.g., HTTP, FTP) for compliance 

and consistency. It helps detect protocol misuse or violations, such as incorrect HTTP requests or FTP 

commands. 

2. Host-based IDS (HIDS): 

Monitors system-level activities on individual devices, such as file modifications, process creation, and system logs. 

HIDS provides detailed information about the internal state of the host, making it effective in detecting attacks like: 

 File Integrity Monitoring (FIM): Tracks changes in critical system files and directories to detect 

unauthorized modifications or malware infections. 

 Log-based HIDS: Analyzes system logs for suspicious activities like failed login attempts, privilege 

escalation, or process anomalies. 

 Behavior-based HIDS: Monitors the behavior of applications and processes to detect deviations from the 

expected behavior, such as unusual memory usage or process execution. 

3. Hybrid IDS: 

It combines the capabilities of both NIDS and HIDS to monitor network traffic and host activities comprehensively. 

Hybrid IDS is designed to detect sophisticated attacks that may leverage both network and system vulnerabilities. It 

can be further categorized into: 

 Distributed IDS: Uses multiple IDS instances deployed at various points in the network to provide a 

coordinated approach to intrusion detection. It is effective in detecting large-scale attacks like botnets. 

 Cross-layer IDS: Monitors interactions across different layers of the protocol stack (e.g., network, transport, 

application) to detect multi-layer attacks. 

 Federated IDS: Shares threat intelligence across different IDS instances or organizations to improve 

detection capabilities and respond to emerging threats. 

 
Table 1.2: Comparison of IDS Types 

IDS Type Monitoring Scope Advantages Limitation 

NIDS Network Traffic Real-time detection, wide scope Limited to network-level attacks 

HIDS Host/System Activities Detailed host-level insights High resource consumption 
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Hybrid IDS Network and Host Comprehensive monitoring Increased complexity 

Anomaly-based NIDS Network Behavior Detect new/unknown attacks High false-positive rate 

Signature-based NIDS Network Packets Accurate detection of known attacks Ineffective against zero-day attacks 

File Integrity HIDS Host files and Directories Detect unauthorized file change Can be resource-intensive 

Behavior-based HIDS Host Applications Detects application anomalies Complex to configure and maintain 

 

 

1.3.2. Type of Cyberattack in IoT/IIoT 

The proliferation of interconnected devices in IoT and IIoT ecosystems has introduced new attack surfaces and 

vulnerabilities. Cyberattacks in IoT/IIoT environments can disrupt operations, compromise sensitive data, and pose 

safety risks. The following are common types of intrusions targeting IoT/IIoT, along with their impact on the 

Confidentiality, Integrity, and Availability (CIA) triad: 

 

 Distributed Denial of Service (DDoS): An attacker overwhelms a network or device with excessive traffic, 

disrupting services and causing downtime. DDoS attacks often exploit the limited computational resources 

of IoT devices. 

 Man-in-the-Middle (MitM): An attacker intercepts and manipulates communication between two parties 

without their knowledge. MitM attacks compromise data integrity and confidentiality. 

 Sybil Attack: An attacker creates multiple fake identities to manipulate a peer-to-peer network, undermining 

the integrity and trust of the system. 

 Data Breaches: Unauthorized access to sensitive data stored in IoT devices or transmitted over the network 

results in exposure or loss of personal information. 

 Replay Attack: An attacker captures and replays valid data packets or authentication information to gain 

unauthorized access to a network or device. 

 Eavesdropping: An attacker listens to private communication between IoT devices, compromising 

confidentiality and potentially gathering sensitive information. 

 Jamming Attack: An attacker disrupts wireless communication between IoT devices by emitting 

interference signals, causing a loss of connectivity and availability. 

 Physical Tampering: Direct physical access to IoT devices enables attackers to alter hardware or software 

configurations, compromising device integrity. 

 Firmware Manipulation: An attacker modifies the firmware of IoT devices to introduce malicious 

functionality or turn off security features. 

 Routing Attacks (e.g., Wormhole, Sinkhole): An attacker disrupts the routing protocol in IoT networks, 

causing misrouting of packets and network partitioning. 

 Malware Infections: IoT devices can be infected with malware like botnets, ransomware, or spyware, 

enabling attackers to launch attacks or steal data. 

 Privilege Escalation: An attacker gains higher privileges on an IoT device than intended, enabling 

unauthorized actions and access to restricted areas. 

 Firmware Reprogramming: An attacker installs malicious firmware on an IoT device to alter its behavior 

or bypass security mechanisms. 

 Sensor Data Manipulation: An attacker alters sensor data in IoT environments, resulting in incorrect 

readings and potentially dangerous decisions. 

 Side-channel Attacks: An attacker exploits side-channel information (e.g., power consumption, 

electromagnetic emissions) to extract sensitive data from IoT devices. 

 

Table 1.2: Impact of Cyberattacks on CIA Triad 

Cyberattack Confidentiality Integrity Availability Affected IoT Layer Countermeasure Example 
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DDoS Low Low High Network Layer Rate limiting, anomaly 

detection, access control lists 

Mirai Botnet 

Attack 

MitM High High Medium Communication/Netwo

rk Layer 

Encryption, mutual 

authentication, Secure  

protocols 

Session 

Hijacking 

Sybil Attack Medium High Medium Application/Network 

Layer 

Identity validation, trust 

management, Sybil detection 

algorithm 

Blockchain 

consensus 

tampering 

Data Breaches High High Low Application Layer Data encryption, access 

control policies, secure storage 

Stolen 

credentials 

leading to data 

exposure 

Replay Attack Medium High Medium Communication Layer Time-stamp mechanism, 

nonce-based authentication 

Replaying 

authentication 

tokens to gain 

access 

Eavesdropping High Low Low Communication Layer Encryption, network 

segmentation, intrusion 

detection 

Wireless 

sniffing using 

rogue access 

points 

Jamming Attack Low Low High Physical Layer Frequency hopping, spread 

spectrum communication, 

signal shielding 

Jamming radio 

frequencies in 

wireless 

networks 

 

Physical 

Tampering 

Medium High Medium Device/Physical Layer Tamper-resistant hardware, 

physical security, sensor 

monitoring 

Unauthorized 

access to IoT 

devices 

Firmware 

Manipulation 

High High High Device Layer Secure firmware updates, 

integrity checks, digital 

signature 

Modifying 

firmware to 

introduce 

backdoors 

Routing Attack Medium High High Network Layer Secure routing protocols, trust 

based mechanism, monitoring 

Routing table 

manipulation 

in IoT 

networks 

Malware 

Infections 

High High Medium Device/Network Layer Anti-Malware solutions, 

sandboxing, IDS/IPS 

IoT devices 

infected with 

malware 

Privilege 

Escalation 

High High Medium Device/Application 

Layer 

Role-based access control 

(RBAC), vulnerability 

patching 

Gaining admin 

privileges 

through 

unpatched 

firmware 

Firmware 

Reprogramming 

High High Medium Device Layer Secure boot, cryptographic 

checks, firmware signing 

Installing 

malicious 

firmware to 

modify 

behavior 

Sensor Data 

Manipulation 

Medium High Medium Sensing Layer Data validation, sensor fusion, 

outlier detection 

Manipulating 

sensor readings 
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Side-channel 

Attacks 

High Medium Low Device/Physical Layer Power analysis mitigation, 

shielding, constant-time 

algorithms 

Extracting 

Cryptographic 

keys through 

power analysis 

 

1.4. Security and Privacy Issues in IoT 

IoT security and privacy issues are primarily related to the heterogeneous nature of devices, lack of standardized 

protocols, and constrained computational resources. These issues can be categorized as follows: 

 Data Confidentiality: Ensuring that sensitive information is only accessible to authorized entities. IoT 

devices often lack robust encryption mechanisms, making them vulnerable to data breaches. 

 Data Integrity: Protecting data from unauthorized modifications. Data tampering can occur during device 

transmission, leading to incorrect or misleading information. 

 Authentication and Access Control: Verifying the identity of devices and users before granting access to 

resources. Weak authentication mechanisms can lead to unauthorized access and control of IoT devices. 

 Data Privacy: Protecting personal and sensitive information from being disclosed. Privacy concerns arise 

due to IoT devices' extensive data collection capabilities, which may include personal health information, 

location data, and usage patterns. 

 Secure Communication: Ensuring data transmitted between IoT devices and the cloud is secure and tamper-

proof. Using lightweight encryption protocols and secure communication channels is crucial to maintaining 

data integrity and confidentiality. 

This research proposes a comprehensive security framework that leverages blockchain and AI technologies to address 

these challenges effectively, providing enhanced security and privacy in IoT networks. 

 

 

1.5. Background on Blockchain  

1.5.1. Overview of Blockchain Technology 

Blockchain technology is a decentralized, distributed ledger system that records transactions securely and 

transparently across a network of nodes. It was first conceptualized as the underlying technology for Bitcoin in 2008. 

However, its potential applications have since expanded to include various industries such as finance, healthcare, 

supply chain management, and the Internet of Things (IoT). A blockchain consists of a series of blocks, each 

containing a list of transactions cryptographically linked to the previous block. This ensures data integrity and makes 

the blockchain resistant to unauthorized modifications. 

Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data. This sequential 

structure forms a “chain” of blocks, where each block depends on the previous block's information. This design makes 

it computationally infeasible to alter a recorded transaction without modifying all subsequent blocks, ensuring data 

immutability and security. Blockchain operates in a peer-to-peer (P2P) network where each node maintains a copy of 

the entire ledger, and consensus protocols such as Proof of Work (PoW) and Proof of Stake (PoS) are used to validate 

and add new transactions to the blockchain. 

1.5.2. Blockchain Characteristics and Features 

Blockchain technology possesses several distinctive features that make it an effective solution for enhancing security 

and privacy in various applications, particularly in IoT environments: 

 

1. Immutability: Once data is recorded in a blockchain, it is cryptographically secured and cannot be altered 

without the consensus of most nodes in the network. This immutability ensures that the integrity of the data 

remains intact over time. 

2. Decentralization: Blockchain eliminates the need for a central authority or intermediary by distributing data 

and control across all participating nodes. This decentralized nature enhances security by reducing the risk 

of single points of failure. 
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3. Transparency: Every transaction on the blockchain is visible to all nodes, promoting transparency and 

accountability. This feature is particularly beneficial in multi-stakeholder environments, such as supply 

chains, where data integrity and trust are critical. 

4. Traceability: Blockchain provides a complete audit trail of all transactions, enabling data traceability from 

its origin to its current state. This feature is crucial for healthcare and supply chain management applications, 

where tracking the provenance of data and products is essential. 

5. Consensus Mechanisms: Blockchain employs consensus protocols, such as PoW, PoS, and Practical 

Byzantine Fault Tolerance (PBFT), to achieve agreement on the validity of transactions across the network. 

These mechanisms ensure that only valid transactions are recorded in the ledger, preventing fraudulent 

activities. 

 

1.5.3. Types of Blockchain 

Blockchain technology can be broadly classified into three main categories based on its architecture, governance 

model, and level of access: Public Blockchain, Private Blockchain, and Consortium or Federated Blockchain. Each 

type of blockchain offers unique characteristics and serves different use cases depending on the level of 

decentralization, transparency, and control required. Additionally, blockchain networks can be categorized as 

Permissionless or Permissioned based on their access control mechanisms. 

1.5.3.1 Public Blockchain 

A public blockchain is a decentralized network where anyone can participate, read, and write transactions. It is 

characterized by its openness and permissionless nature, meaning any user can join the network without prior approval. 

Participants in a public blockchain can freely interact with the network, participate in the consensus process, and 

validate transactions. 

Characteristics: 

 Permissionless Access: Anyone can join the network and participate in the consensus process. 

 Decentralized Governance: All participants make decisions collectively, with no single entity having control 

over the network. 

 High Transparency: All transaction records are visible to the public, ensuring high transparency. 

 Immutability and Security: Transactions, once recorded on the blockchain, cannot be altered or deleted, 

making the network resistant to tampering. 

 Consensus Mechanisms: Public blockchains typically utilize consensus mechanisms such as Proof of Work 

(PoW) or Proof of Stake (PoS) to achieve consensus and validate transactions. 

 

Use Cases: 

 Cryptocurrencies such as Bitcoin and Ethereum. 

 Decentralized applications (DApps) that require high transparency and trustlessness. 

 Public ledgers for asset tracking, digital identity management, and open financial systems. 

 

Limitations: 

 Scalability and Performance: Public blockchains often face scalability and transaction throughput issues due 

to the high number of participants and complex consensus mechanisms. 

 Energy Consumption: Mechanisms like PoW require significant computational resources, making them 

energy-intensive. 

1.5.3.2 Private Blockchain 
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A private blockchain, also known as a permissioned blockchain, operates within a closed network where only 

authorized participants can access and interact with the blockchain. It is governed by a central authority or organization 

that controls who can join the network and what actions they can perform. 

 

Characteristics: 

 Permissioned Access: Participants are pre-approved and must meet specific criteria to join the network. 

 Centralized Control: A central authority or consortium of organizations governs the network and enforces 

policies. 

 Enhanced Privacy: Since the network is restricted, private blockchains offer greater transaction privacy and 

confidentiality. 

 Consensus Mechanisms: Private blockchains often use consensus mechanisms like Practical Byzantine Fault 

Tolerance (PBFT), Raft, or Delegated Proof of Stake (DPoS), which are more efficient and require less 

computational power than PoW or PoS. 

 

Use Cases: 

 Enterprise applications include supply chain management, asset tracking, and inter-organizational 

collaborations. 

 Financial services where data privacy and regulatory compliance are critical. 

 Healthcare systems that require secure and private data sharing among trusted parties. 

 

Limitations: 

 Reduced Decentralization: The reliance on a central authority reduces the level of decentralization and can 

lead to single points of failure. 

 Limited Transparency: Since access is restricted, transparency is lower compared to public blockchains. 

 

 

1.5.3.3 Consortium or Federated Blockchain 

A federated consortium blockchain is a hybrid model where a group of pre-selected organizations collaboratively 

manage the blockchain network. It balances the complete decentralization of public blockchains and the restricted 

access of private blockchains. In a consortium blockchain, multiple entities maintain the network and validate 

transactions. 

Characteristics: 

 Partial Decentralization: The network is decentralized to the extent that no single entity has complete control; 

however, only a selected group of participants can validate transactions. 

 Collaborative Governance: The member organizations make decisions through mutual agreement, promoting 

shared governance and collaboration. 

 Higher Scalability: Due to the limited number of participants, consortium blockchains can achieve higher 

scalability and faster transaction processing than public blockchains. 

 Consensus Mechanisms: Consortium blockchains often utilize consensus mechanisms like PBFT or Voting-

based algorithms, which are more efficient in speed and resource consumption. 

 

Use Cases: 

 Supply chain management, where multiple organizations (e.g., manufacturers, suppliers, and logistics 

providers) collaborate to ensure the traceability and authenticity of products. 

 Financial consortia for cross-border payments and inter-bank settlements. 

 Multi-organization collaborations in healthcare, where patient data must be securely shared among trusted 

parties. 

 

Limitations: 
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 Complex Governance Structure: Managing a consortium blockchain can be challenging due to the need for 

mutual agreement and coordination among multiple parties. 

 Lower Transparency: Like private blockchains, consortium blockchains have restricted access, which can 

limit transparency. 

 

Parameter Public Blockchain Private Blockchain Consortium (Federated 

Blockchain) 

Access Control Permissionless: Open to anyone Permissioned: Restricted to 

authorized participants 

Permissioned: Restricted to 

selected group of organization  

Decentralization High Low Partial decentralized among 

consortium members 

Governance Decentralized: Governed by the 

community 

Centralized controlled by a 

single organization  

Collaborative governance 

among member organizations 

Consensus 

Mechanism 

Proof of Work(PoW), Proof of 

Stake (PoS), Proof of Authority 

(PoA) 

Practical Byzantine Fault 

Tolerance (PBFT), Raft, DPoS 

PBFT, voting-based consensus 

mechanisms 

Transaction 

Speed 

Lower transaction speed due to 

public consensus 

Higher transaction speed due to 

fewer participants 

Higher transaction speed due to 

limited participants 

Scalability Limited scalability High scalability within private 

environments 

Medium scalability (better than 

public, but lower than private) 

Transparency High Transparency: Anyone can 

view transactions 

Low transparency: Limited to 

authorized participants 

Medium transparency based on 

organizational policies 

Security High security due to 

decentralized nature 

Lower security if central 

authority is compromised 

Medium security with shared 

responsibility among members 

Privacy Low privacy: Data is visible to 

all 

High privacy: Data is accessible 

to authorized participants only 

Medium privacy: Visible to 

member organizations 

Immutability High immutability: Once 

recorded, data cannot be altered 

Medium immutability can be 

modified with authority approval 

Medium immutability: shared 

consensus to modify data 

Resource 

Requirements 

High computational resources 

required for consensus 

Lower resources required due to 

centralized control 

Moderate resources required 

based on the number of 

participants 

Trust Model Trustless: No need for pre-

established trust 

Trusted: Based on authority or 

central organization 

Partially trusted: Mutual trust 

among organizations  

Typical Use 

Cases 

Cryptocurrencies, public 

records, DApps 

Enterprise applications, internal 

data sharing, financial services 

Supply chain management, 

cross-border payments, 

healthcare collaboration 

Consensus 

Finality 

Probabilistic finality Deterministic finality Deterministic finality based on 

consortium rules 

Energy 

Consumption 

High (PoW), Moderate (PoS) Low Low to moderate based on 

consensus mechanism used 

Examples Bitcoin, Ethereum, Polkadot Hyperledger Fabric, R3 Corda, 

Quorum 

IBM Food Trust, 

TradeLens(Maersk-IBM), B3i 

Insurance  

 

1.5.3.4 Permissioned vs. Permissionless Blockchains 
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In addition, the primary categories of blockchains can also be classified as Permissioned or Permissionless based on 

the access control mechanisms and governance models. 

A. Permissionless Blockchains 

A permissionless blockchain, also known as a public blockchain, is an open and decentralized ledger where any 

participant can join and participate in the network without prior approval. These blockchains are characterized by their 

high degree of transparency and censorship resistance. Well-known examples of permissionless blockchains include 

Bitcoin and Ethereum. 

 Characteristics: 

 Decentralized and open to all participants. 

 High level of transparency and trustless consensus. 

 Utilizes consensus mechanisms like Proof of Work (PoW) or Proof of Stake (PoS). 

 

 Suitability for IoT: 

 Permissionless blockchains are less suitable for resource-constrained IoT devices due to the high computational and 

energy costs associated with consensus mechanisms like PoW. However, they can be used in IoT environments that 

require high transparency and public verifiability, such as supply chain management or public health monitoring. 

 Use Cases in IoT: 

 Decentralized Device Authentication: Public blockchains can be used to create a decentralized identity 

management system for IoT devices, ensuring that only authenticated devices can interact with each other. 

 Data Provenance: IoT devices can use permissionless blockchains to record provenance, providing 

transparent and tamper-proof sensor data with valuable history for applications like food safety and 

environmental monitoring. 

 

B. Permissioned Blockchains 

A permissioned blockchain is a private or consortium blockchain restricting access to specific participants. Only 

authorized nodes can join the network and participate in consensus and data validation. Permissioned blockchains 

offer more control over network access and provide greater flexibility for implementing customized governance and 

access control policies. 

 Characteristics: 

 Restricted access, where participants must obtain permission to join. 

 Lower computational costs and faster transaction processing compared to permissionless blockchains. 

 Enhanced privacy and control over data sharing. 

 

 Suitability for IoT: 

Permissioned blockchains are better suited for IoT environments, as they can be tailored to the requirements of the 

specific use case, such as managing a network of smart devices within a factory or healthcare setting. They provide a 

secure environment for sensitive applications where data confidentiality and restricted access are critical. 

 Use Cases in IoT: 

 Smart Healthcare Systems: A permissioned blockchain can securely store and share patient data between 

authorized medical devices, healthcare providers, and insurance companies, ensuring data privacy and 

compliance with regulations like HIPAA. 

 Industrial IoT (IIoT): In manufacturing environments, a permissioned blockchain can manage access to 

critical control systems, monitor device behavior, and enforce security policies across a distributed network 

of sensors and actuators. 

2

86

Page 22 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 22 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



Parameter Permissioned Blockchain Permissionless Blockchain 

Access Control Restricted access: Only authorized participants Open access: Anyone can join the network 

Consensus Mechanism PBFT, Raft, DPoS PoW, PoS, PoA 

Decentralization Low to medium: controlled by  a central authority 

or consortium 

High: fully decentralized without central control 

Governance Centralized or consortium-based governance Community-driven governance  

Transaction Speed High speed: Fewer nodes and participants 

involved in consensus 

Lower speed: High number of participants impacts 

transaction speed 

Scalability High: can be scaled to meet specific enterprise 

needs 

Low to medium: Limited by consensus mechanisms like 

PoW 

Security Lower security if central authority is 

compromised 

High security due to decentralized consensus 

Transparency Limited transparency: Depends on policies and 

access permissions 

High transparency: All transaction records are publicly 

visible 

Privacy High privacy: Data is accessible only to 

authorized participants 

Low privacy: Data is visible to all participants 

Immutability Medium immutability: controlled by authority High immutability: Once recorded, cannot be altered 

Trust Model Trusted model: based on known participants Trustless model: No need for pre-established trust  

Energy Consumption Low energy consumption due to efficient 

consensus 

High energy consumption (e.g., PoW in Bitcoin) 

Use Cases Enterprise applications, healthcare, financial 

services 

Cryptocurrencies, decentralized applications (DApps) 

Governance Model Centralized or shared among consortium 

members 

Decentralized community governance  

Examples Hyperledger Fabric, Quoru, R3 Corda Bitcoin, Ethereum, Polkadot 

 

 

1.5.4. Application of Blockchain Technology 

Blockchain technology has found applications across various sectors due to its security, transparency, and traceability 

features. Some prominent applications include: 

 

 Finance and Banking: Blockchain is widely used in the finance sector for creating digital currencies (e.g., 

Bitcoin), enabling secure and transparent cross-border payments, and implementing smart contracts for 

automated financial transactions. It reduces the need for intermediaries and enhances the speed and security 

of transactions. 

 Healthcare: In healthcare, blockchain securely stores and shares patient health records, ensuring data privacy 

and integrity. It also facilitates the traceability of drugs and medical supplies, reducing the risk of counterfeit 

products. 

 Supply Chain Management: Blockchain provides end-to-end visibility of the supply chain by recording 

every transaction from the origin to the delivery of products. It enables real-time tracking and verification of 

goods, reducing fraud and enhancing the efficiency of logistics operations. 

 Identity Management: Blockchain creates decentralized identity management systems that enable users to 

control their digital identities securely. This prevents identity theft and unauthorized access to sensitive 

information. 

 Energy and Utilities: Blockchain is used in energy markets to facilitate peer-to-peer energy trading, optimize 

grid management, and support renewable energy initiatives. It provides a transparent and secure platform for 

tracking energy production and consumption. 
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 Internet of Things (IoT): Blockchain addresses critical challenges in IoT, such as secure data exchange, 

device authentication, and trust management. It enables the creation of decentralized IoT networks where 

devices can interact autonomously and securely without relying on a central authority. 

 

1.5.5. Blockchain in IoT security 

The integration of blockchain technology into IoT environments offers significant advantages in overcoming 

traditional security challenges. IoT networks are inherently vulnerable due to their heterogeneous nature, limited 

computational resources, and many connected devices. Conventional security frameworks often struggle to protect 

adequately against threats such as data breaches, unauthorized access, and distributed denial-of-service (DDoS) 

attacks. With its decentralized and cryptographic foundation, blockchain offers a promising solution to mitigate these 

challenges and enhance overall security. 

 Secure Data Exchange: Blockchain facilitates secure data exchange among IoT devices by providing a 

decentralized platform for cryptographically signing and verifying data transactions. This prevents 

unauthorized entities from intercepting or tampering with the data, ensuring its integrity and confidentiality 

during transmission. 

 Authentication and Authorization: Blockchain can establish a robust authentication and authorization 

framework in IoT systems. Using smart contracts, IoT devices can securely authenticate themselves and 

negotiate access control policies in a decentralized manner. This eliminates the reliance on centralized 

authentication servers and reduces the risk of single points of failure. 

 Trust Management: Establishing trust among IoT devices and entities is critical, especially when multiple 

stakeholders are involved. Blockchain enables trust management through decentralized identity verification 

and consensus-based validation of transactions. Trust scores or reputations can be maintained on the 

blockchain, allowing devices to assess peers' trustworthiness dynamically. 

 Mitigation of Single Points of Failure: In conventional IoT architectures, a compromised central server can 

disrupt the entire network. Blockchain's decentralized architecture distributes data and controls across all 

participating nodes, making it difficult for attackers to disrupt the network by targeting a single point. 

 Data Provenance and Traceability: Blockchain's inherent traceability ensures that the origin and history of 

data can be verified, making it easier to detect and mitigate data manipulation attacks. This is particularly 

beneficial in use cases such as supply chain management and industrial IoT, where tracking the authenticity 

of products and their movements is critical. 

 

1.5.6. Blockchain for Enhancing in IoT  

Blockchain technology can significantly enhance the design and effectiveness of Intrusion Detection Systems (IDS) 

in IoT environments. Traditional IDS frameworks often rely on centralized architectures, prone to single points of 

failure, bottlenecks, and limited scalability. Blockchain’s decentralized and tamper-resistant architecture addresses 

these limitations by enabling the development of a more robust and secure IDS framework. 

 

 Decentralized Data Storage: Blockchain can be used to store IDS logs and alerts in a decentralized manner, 

ensuring that they are immutable and accessible to authorized nodes. This decentralized storage prevents 

attackers from tampering with or deleting IDS records, preserving the integrity of the detection system. 

 Collaborative Intrusion Detection: Blockchain enables multiple IDS nodes to collaborate and share threat 

intelligence securely and transparently. This collaboration allows for a broader perspective on network 

activities and enables faster and more accurate detection of sophisticated attacks that may span multiple 

devices and network segments. 

 Smart Contracts for Automated Response: Smart contracts can be programmed to execute predefined 

actions in response to specific intrusion events. For example, suppose an IDS node detects suspicious activity. 

In that case, a smart contract can trigger the automatic isolation of the affected device from the network, 

thereby minimizing the impact of the intrusion. 

 Enhanced Trust and Accountability: Using blockchain, IDS nodes can establish a decentralized trust 

management system where the network collectively evaluates the validity and reputation of detection results. 

This reduces the risk of false positives and negatives, as the detection results are subject to peer validation. 
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In conclusion, blockchain’s unique characteristics of immutability, decentralization, transparency, and security make 

it an ideal candidate for enhancing the performance and resilience of IDS frameworks in IoT environments. Integrating 

blockchain with IDS can address critical challenges such as secure data storage, collaborative threat detection, and 

automated response, paving the way for more secure and reliable IoT networks. 

 

1.6. Research Objectives 

 RO1. To conduct a Comprehensive Literature Review of existing work on Intrusion Detection System 

in IoT environment. 

 RO2. To develop a robust model(s) for an Intrusion Detection System for detecting anomaly behavior 

using Artificial Intelligence. 

 RO3. To develop a Blockchain-based framework(s) to enhance the security and privacy issues in 

the Intrusion Detection System. 

 RO4. To perform a Comparative analysis of the proposed work with the state of-art-work. 

 

1.7. Thesis Organization  

This thesis is structured into eight chapters, each addressing a critical aspect of Intrusion Detection Systems 

(IDS) in IoT environments, incorporating Artificial Intelligence (AI) and blockchain technologies. The 

organization follows a logical progression, beginning with the fundamental background and problem 

statement, followed by an in-depth literature review to identify research gaps. Subsequent chapters detail 

the development of AI-driven IDS models, the integration of Explainable AI (XAI), and the implementation 

of blockchain-based frameworks for enhanced security and privacy. The thesis further explores privacy-

preserving data sharing in IoT healthcare, conducts a comparative analysis with existing IDS solutions, and 

concludes with key findings, future research directions, and societal implications. This structured approach 

ensures a comprehensive understanding of the advancements in IDS for IoT security. 

1. Chapter 1: Introduction 

   This chapter will introduce the background, problem statement, research objectives, and the significance of 

developing Intrusion Detection Systems (IDS) in IoT using AI and blockchain technology.  

2. Chapter 2: Literature Review    

   This chapter will provide a comprehensive review of the existing work on IDS in IoT environments, highlighting 

existing gaps, challenges, and recent advancements. 

3. Chapter 3: Development of Artificial Intelligence-based Intrusion Detection Models   

   This chapter will present the research and development of robust AI-based models for detecting anomalies in IoT 

networks, including the developed models' techniques, algorithms, and performance. 

4. Chapter 4: Design and Implementation of Explainable AI for Intrusion Detection   

   This chapter will focus on developing and integrating Explainable AI (XAI) in the IDS framework, explaining the 

methods used to make AI decisions interpretable and trustworthy. 

5. Chapter 5: Blockchain-Based Frameworks for Enhancing Security and Privacy in Intrusion Detection 

Systems 

   This chapter will discuss the design and implementation of a blockchain-based framework to address the security 

and privacy challenges in IoT IDS, with details on consensus mechanisms, cryptographic techniques, and privacy-

preserving measures. 

6. Chapter 6: Privacy-Preserving Data Sharing in Blockchain-Enabled IoT Healthcare Management System 
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   This paper introduces a novel decentralized application that uses blockchain technology to enhance medical 

certificate management security, privacy, and efficiency in the healthcare sector as application.  

7. Chapter 7: Comparative Analysis with State-of-the-Art Intrusion Detection Systems  

   This chapter will perform a thorough comparative analysis of the proposed AI and blockchain-based IDS models 

with other state-of-the-art techniques, covering metrics such as accuracy, performance, and security enhancements. 

8. Chapter 8: Conclusion, Future Work and Societal Applications 

   This chapter will summarize the research's key findings, contributions, and limitations. It will also suggest directions 

for future work in IDS development for IoT environments. 
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 Chapter 2: Literature Review 

The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges, necessitating robust 

intrusion detection mechanisms. This chapter provides a comprehensive review of existing literature on artificial 

intelligence-based intrusion detection systems, blockchain-based security solutions, feature selection techniques, and 

publicly available datasets. Additionally, key research gaps are identified, highlighting the need for a more efficient 

and secure framework. The chapter concludes with an overview of performance evaluation metrics and a detailed 

description of the dataset used in this research. 

2.1. Artificial Intelligence-based Intrusion Detection System  

Artificial intelligence (AI) has transformed intrusion detection by enhancing threat detection accuracy and 

adaptability. This section explores AI-driven IDS approaches, focusing on machine learning and deep learning 

techniques for securing IoT networks. 

2.1.1 Machine Learning Based IDS 

Machine learning (ML)-based IDS leverages classification, clustering, and anomaly detection techniques to identify 

cyber threats in IoT environments. This subsection reviews common ML algorithms and their effectiveness in 

intrusion detection.  

Intrusion Detection Systems (IDS) in IoT environments have witnessed a surge of research endeavors aimed at 

fortifying the security posture of interconnected devices. This literature review critically examines pivotal 

contributions in this domain, elucidating the evolving landscape of IDS for IoT and highlighting innovative approaches 

to address its inherent challenges, as shown in Table 1. 

 

Talukder et al. [22] introduced MLSTL-WSN, a novel IDS leveraging machine learning (ML) techniques in Wireless 

Sensor Networks (WSNs). By employing SMOTE Tomek to address class imbalance, their methodology demonstrates 

enhanced detection accuracy and robustness, addressing a crucial concern in IoT deployments. Alqahtani et al. [23] 

explored cyber intrusion detection utilizing machine learning classification techniques. While not explicitly IoT-

focused, their insights into machine learning algorithms' efficacy lay foundational groundwork for IDS in IoT 

ecosystems, underscoring the importance of leveraging advanced computational methods for threat detection. Meryem 

and Ouahidi [24] proposed a hybrid IDS integrating machine learning algorithms, catering to the intricacies of modern 

cyber threats. Their approach showcases the synergistic potential of combining multiple detection mechanisms, vital 

for combating sophisticated intrusion attempts targeting IoT infrastructures. Asif et al. [25] devised a MapReduce-

based intelligent model for intrusion detection, leveraging machine learning in IoT environments. Their work 

exemplifies the integration of distributed computing paradigms with machine learning techniques to address 

scalability challenges in large-scale IoT deployments. Gad et al. [26] delved into IDS for Vehicular Ad Hoc Networks 

(VANETs), employing machine learning on the ToN-IoT dataset. Their research underscores the importance of 

tailored intrusion detection mechanisms for specific IoT applications, emphasizing the need for context-aware security 

solutions. 

 

Bangui et al. [27] proposed a hybrid machine-learning model for intrusion detection in VANETs, highlighting the 

significance of adaptability and resilience in vehicular IoT environments. Their approach showcases the efficacy of 

combining diverse machine-learning techniques to enhance detection accuracy amidst dynamic network conditions. 

Alhajjar et al. [28] investigated adversarial machine learning in network IDS, shedding light on the emerging threat 

landscape of sophisticated attacks. Their research underscores the importance of incorporating adversarial robustness 

into IDS frameworks to mitigate evolving cyber threats targeting IoT infrastructures. Sarhan et al. [29] focused on 

feature extraction for machine learning-based IDS in IoT networks, addressing the challenge of extracting relevant 

features from heterogeneous IoT data sources. Their work lays the groundwork for developing context-aware intrusion 

detection mechanisms tailored to IoT environments. 

 

Liu et al. [30] proposed an intrusion detection approach for imbalanced network traffic, utilizing machine learning 

and deep learning techniques. Their research emphasizes the importance of addressing the class imbalance in IoT 

datasets to prevent detection biases and ensure comprehensive threat coverage. Singh et al. [31] introduced AutoML-

ID, an automated machine-learning model for intrusion detection in Wireless Sensor Networks (WSNs). Their 

10

12

46

74
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methodology streamlines the model development process, offering a scalable solution for deploying IDS in resource-

constrained IoT environments. Zou et al. [32] presented HC-DTTSVM, a novel intrusion detection method based on 

decision tree twin support vector machine and hierarchical clustering. Their approach showcases the potential of 

hybrid machine learning techniques in enhancing detection accuracy and scalability in IoT environments. Louk and 

Tama [33] proposed Dual-IDS, a bagging-based gradient-boosting decision tree model for network anomaly intrusion 

detection. Their research underscores the importance of ensemble learning techniques in enhancing detection 

robustness and resilience against evolving cyber threats. Mohiuddin et al. [34] explored hybridized meta-heuristic 

techniques for intrusion detection, integrating the Weighted XGBoost Classifier. Their approach demonstrates the 

efficacy of meta-heuristic optimization in enhancing the performance of machine learning-based IDS in IoT 

environments. Zouhri et al. [35] evaluated the impact of filter-based feature selection in intrusion detection systems, 

highlighting the importance of feature engineering in enhancing detection accuracy and reducing computational 

overhead in IoT deployments. Amaouche et al. [36] proposed IDS-XGbFS, an intelligent intrusion detection system 

utilizing XGBoost with a recent feature selection for VANET safety. Their methodology showcases the integration of 

advanced machine learning algorithms with feature selection techniques tailored to IoT-specific applications. 

 
Table 1: A summary of Intrusion Detection System based on Machine Learning (ML) Techniques 

References  Purpose  Methodology  Dataset 

used  

Feature 

extraction 

technique  

Result Advantages Disadvantages 

[22] Intrusion 

detection system 

for WSN 

DT,RF, MLP, 

KNN, XGB, LGB 

Wireless 

Sensor 

Network 

dataset 

SMOTE_Tomek 

link 

Acc= 

99.70% 

Addresses imbalanced 

data 

Limited to WSNs, 

requires investigation 

on other network types 

[23] Intrusion 

detection system 

for Cyber 

security 

Bayesian 

Network, NB, 

DT, RF, ANN 

KDD-99 - Acc= 

94% 

Compares multiple 

algorithms, offers 

flexibility 

Relies on the 

unspecified dataset, 

limits the 

generalizability 

[24] Hybrid Intrusion 

detection system  

KNN, NB, SVM, 

Logistic 

Regression 

NSL-KDD - Acc= 

98.77% 

Lacks details on the 

specific hybrid approach 

Requires more 

information on the 

hybrid method 

[25] Intrusion 

detection system 

for intelligent 

modeling 

Map reduced-

based intelligent 

model-IDS 

Kaggle ML 

repository 

- Acc= 

97.6% 

Efficient for large 

datasets, scalable 

Relies on unspecified 

dataset, limited details 

on the model 

[26] Intrusion 

Detection 

System for 

Vehicular Adhoc 

Networks 

LR, NB, KNN, 

DT, Adaboost, 

Xgboost, RF, 

SVM 

TON_IOT Chi-Square and 

SMOTE 

Acc= 

99.1% 

Focuses on VANETs, 

ToN-IoT specific 

Limited applicability 

outside VANETs 

[27] Hybrid model 

Intrusion 

detection in 

VANET 

SVM, Bayesian 

coresets, CNN, 

MLP, RF, 

Weighted-KNN 

CIC-IDS-

2017 

Weighted 

clustering 

Acc= 

96.93% 

Offers potentially better 

accuracy 

Requires more 

information on the 

specific hybrid model 

[28] Network-based 

Intrusion 

detection system  

Generative 

advertised 

network 

NSL-KDD, 

UNSW-NB-

15 

PSO, GA Acc= 

99% 

Improves IDS 

robustness against 

adversarial attacks 

Enhances security, 

potentially 

computationally 

expensive 

[29] Intrusion 

detection system 

in IoT network 

DFF, CNN, RNN, 

DT, LR, NB 

UNSW-NB-

15, TON-

IoT, CIC-

IDS-2018 

PCA, AE, LDA Acc= 

96.11% 

Improves intrusion 

detection accuracy in 

IoT 

Addresses feature 

selection for IoT 

networks, limited 

details on specific 

techniques. 

[30] Intrusion 

detection system 

on network 

traffic-based 

 

RF, SVM, 

Xgboost, LSTM, 

Alex-net, Mini-

VGGnet, DSSTE 

 

CIC-IDS-

2018, NSL-

KDD 

Edited Nearest 

Neighbor 

Acc= 

96.99% 

Effective for 

imbalanced network 

traffic intrusion 

detection 

Handles imbalanced 

data and explores 

different techniques 

[31] Intrusion 

detection system 

using WSN 

SVR, GPR, BDT, 

Ensemble 

regression, kernel 

regression, LR, 

BO 

Synthetically 

generated 

simulated 

dataset 

K-barriers R=0.93 Achieves good accuracy 

with AutoML 

Automates model 

selection reduces 

human effort 

5
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[32] Intrusion 

detection system  

HC-DTTWSVM NSL_KDD, 

UNSW-NB -

15 

Hierarchical 

clustering  

Acc= 

85.95% 

Offers potentially better 

accuracy and reduced 

false positives 

Relies on unspecified 

dataset, requires 

investigation on 

generalizability 

[33] Intrusion 

detection system  

GBM, Light 

GBM, Catboost, 

Xgboost 

NSL_KDD, 

UNSW-NB -

15, 

HIKARI-

2021 

- Acc= 

91.75% 

Effective for anomaly 

detection, leverages 

ensemble learning 

Relies on unspecified 

dataset, limits the 

generalizability 

[34] Intrusion 

detection system  

xgboost UNSW-NB-

15, CIC-

IDS-2018 

Modified 

wrapper-based 

whale sine-

cosine 

Acc= 

99% 

Combines meta-

heuristics for 

optimization and 

XGBoost for 

classification 

Relies on unspecified 

dataset, limited details 

on meta-heuristics 

[35] Intrusion 

detection system  

MLP, SVM, 

Xgboost, RF 

CIC-IDS-

2018, CIC-

IDS-2017, 

TON-IoT 

Relieff, Pearson 

correlation, 

mutual 

information, 

ANOVA, chi-

square 

Acc= 

98% 

Identifies the 

importance of feature 

selection, improves 

efficiency 

Relies on unspecified 

IDS method and 

dataset, limited to filter-

based selection 

[36] Intrusion 

detection system  

xgboost NSL-KDD, 

5-routing 

metrics 

dataset 

Boruta, 

ADASYN 

Acc= 

99% 

Focuses on VANET 

security, leverages 

XGBoost, and feature 

selection 

Limited applicability 

outside VANETs, relies 

on unspecified recent 

feature selection 

technique 

 

2.1.2 Deep Learning Based IDS 

Deep learning (DL)-based IDS utilizes advanced neural networks to detect complex attack patterns with high accuracy. 

This subsection examines various DL architectures and their application in IoT security. This Literature review 

evaluates recent advancements in Intrusion Detection Systems (IDS), focusing on their applicability to cyber-physical 

systems (CPS) and Internet of Things (IoT). The literature review highlights various IDS methodologies, datasets, and 

their applications, identifying critical limitations that inform the development of CPS and IoT. A thorough 

comparative analysis underscores the challenges faced by existing models in achieving explainability, resilience, 

scalability, and trustworthiness, key attributes necessary for effective IDS in CPS and IoT environments. 

Upon meticulous examination of the most recent and relevant research, we have discerned a cluster of works 

characterized by shared motivations yet distinguished by unique perspectives. The discussion aims to illuminate these 

works, furnishing a thorough overview before our proposed methodology exposition. Over the past decade, the 

effectiveness of Deep Learning (DL) and Machine Learning (ML) methodologies has been prominently demonstrated 

in the identification of anomalous entities within Internet of Things (IoT) networks. For example, most models lack 

explainability mechanisms, making it difficult for operators to interpret predictions and take corrective actions. This 

deficiency is critical in safety-sensitive CPS environments where transparency is vital for building trust. Moreover, 

the resilience of these models is often inadequate, as they struggle to adapt to evolving threats in dynamic CPS 

contexts. Scalability also emerges as a pressing issue, with many methods failing to handle the heterogeneity and 

complexity of modern CPS systems due to computational overhead or rigid architectures. The encapsulation of these 

findings is succinctly presented in Table 2, providing a comprehensive summary of existing literature that not only 

converges on similar motivations but also diverges in their applications. 

Intrusion Detection Systems (IDS) have been extensively explored in IoT and IIoT to address evolving cybersecurity 

threats. For Industry 5.0, hybrid deep learning models, such as Bi-LSTM with Bi-GRU, have demonstrated high 

accuracy rates of 99% for multiclass classification on datasets like CICDDoS 2019 [17]. Similarly, encoder-CNN 

models have been used for intrusion detection in IoT-based transportation networks, leveraging feature extraction and 

classification with moderate explainability [21]. Trustworthiness in IDS frameworks has also been discussed using 

approaches like differential privacy and federated learning, achieving notable resilience but with limitations in 

performance scalability [19, 23]. Furthermore, integrating advanced neural networks like ResNet for intrusion 

detection has shown potential, though challenges in model interpretability and robustness persist [24]. While these 
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models have made strides in performance, many lack comprehensive capabilities to simultaneously ensure resilience, 

trustworthiness, and dependability, which are critical for Industry 5.0's stringent requirements. 

While [17] achieves slightly higher accuracy (99%) compared to our model (97.46%), it does not fully account for 

high resilience and dependability in real-time heterogeneous environments, as emphasized in Industry 5.0. Moreover, 

unlike [21] and [24], which focus on partial model interpretability, our solution integrates advanced Explainable AI 

(XAI) mechanisms to enhance transparency and trustworthiness, aligning with Industry 5.0 goals. Additionally, while 

prior works such as [19] and [23] emphasize specific aspects of trustworthiness or resilience, our model adopts a 

holistic approach by balancing accuracy, trustworthiness, and resilience. This is particularly significant in Industry 

5.0, where dependable and trustworthy systems are paramount for seamless cyber-physical integration. Ultimately, 

our proposed model fills the gap by addressing fundamental limitations in explainability, scalability, and robustness, 

thereby presenting a comprehensive solution for intrusion detection in critical Industry 5.0 environments. 

Table 2: A summary of existing research work on Intrusion Detection Systems on different applications 

References 

and Year  

Purpose  Model/ 

Mechanism 

Dataset 

used  

Type of 

Classification 

Result Explainable 

AI 

Resilient  Dependable  Trustworthy 

[16] and 

2023 

DoS detection in a 

cyber-physical system  

Hybrid Deep 

learning 

approach CNN-

LSTM 

BOT-IOT Binary 

classification 

<98% ✘ ✘ Low ✘ 

[17] and 

2023 

Intrusion detection 

system for Industry 5.0 

Hybrid Deep 

learning 

approach Bi-

lstm + Bi-GRU 

CICIDDO

S 2019 

Multiclass 

classification 

<99% ✔ ✔ Low ✘ 

[18] and 

2020 

Intrusion detection for 

Intelligent IoV 

Deep CNN Network 

traffic 

dataset 

Binary 

classification 

<99% ✘ ✘ Partial ✘ 

[19] and 

2020 

Trustworthy Framework 

for Privacy Preserving 

in IIoT 

Differential 

privacy + 

Federated 

Learning CNN 

MNIST 

dataset 

- <90% ✘ ✘ High ✔ 

[20] and 

2020 

Spam detection in IoT 

devices for smart home 

appliances  

Bayesian 

Generalized 

linear model 

REFIT 

project 

dataset 

Multiclass 

classification  

<84% ✘ ✘ Low ✘ 

[21] and 

2022 

Intrusion detection in 

IoT-based transportation 

network 

Encoder + CNN 

model  

UNSW 

TON-IOT 

dataset 

Both <90% ✔ ✘ Partial ✘ 

[22] and 

2018 

Software-defined IIoT 

for third-party 

synchronization  

Dueling deep 

Q-learning 

- Not 

mentioned  

Simul

ation 

on 

throug

hput  

✘ ✔ Partial ✔ 

[23] and 

2020 

Intrusion detection in 

industry CPS 

Deep Fed 

(Federated 

learning) 

Gas 

pipelining 

dataset  

Multiclass 

classification 

<98% ✘ ✘ Low ✔ 

[24] and 

2022 

IDS in the Internet of 

Things environment 

Deep transfer 

learning model 

(ResNet) 

Heterogen

eous IoT 

sensor 

dataset  

Binary 

classification  

<87% ✘ ✔` 
 

High ✘ 

[25] and 

2021 

Secure & privacy-

preserving framework 

for IoT-based smart 

cities 

Gradient 

Boosting 

Anomaly 

detection 

TON-

IOT, 

BOT-IOT 

Multiclass 

classification  

<99% ✘ ✘ Partial ✔ 

[26] and 

2022 

Botnet attack detection 

for industrial IoT 

DNN-LSTM N_BaIoT Multiclass 

classification  

<99% ✘ ✘ Partial ✘ 

[27] and 

2023 

Network intrusion 

detection for early 

identification 

Graph2vec + 

RF 

CICIDS 

2017, 

CICIDS 

2018 

Multiclass 

classification  

<99% ✘ ✘ Low ✘ 

[28] and 

2023 

Imbalance learning for 

NIDS in IoT  

TMG-GAN CICIDS 

2017, 

UNSW-

NB 15 

Multiclass 

classification  

<98% ✘ ✘ Partial ✘ 
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[29] and 

2022 

Intrusion detection 

system for cloud 

environment 

Conditional 

denoising 

adversarial 

auto-encoder  

Cloud 

IDS 

dataset 

Multiclass 

classification  

<99% ✘ ✘ Low ✘ 

[30] and 

2023 

Two-level fusion 

architecture for CPS 

intrusion detection  

TV-DBN-based 

ensemble-level 

fusion 

- - <98% ✘ ✘ High ✘ 

[31] and 

2022 

Attack detection in 

industrial IoT  

An autoencoder 

using FL 

SCADA 

system 

dataset 

Multiclass 

classification  

<97% ✘ ✘ Low ✔ 

[41] and 

2023 

Intrusion detection 

system for IoT network 

Stacked-based 

ensemble 

learning model 

UNSW-

NB 15, 

N_BaIoT 

Binary 

Classification  

<99% ✘ ✘ Low ✘ 

[42] and 

2023 

Anomaly-based network 

intrusion detection for 

IoT 

filter-based 

feature 

selection Deep 

Neural Network 

(DNN) model 

UNSW-

NB 15 

Multiclass 

Classification  

<90% ✘ ✘ Low ✘ 

[43] and 

2024 

SDN-based intrusion 

detection for IoT 

Bi-

LSTM+GRU 

model 

N-BaIoT, 

CICDDoS 

2019 

Multiclass 

Classification  

<99% ✘ ✘ High ✘ 

[44] and 

2024 

Robust DDoS Intrusion 

Detection System 

CNN inception 

model 

CICDDoS  

2019 

Multiclass 

Classification  

<96% ✘ ✘ Low ✘ 

[45] and 

2024 

Intrusion detection 

system for IoT  

Optimized 

Forest (OF) 

Based Machine 

Learning 

NSW-

NB15 and 

NSLKDD 

Binary 

Classification  

<98% ✘ ✘ Low ✘ 

[46] and 

2024 

Intrusion detection 

system for Industrial 

IOT environment  

CNN+GRU N-BaIoT Multiclass 

Classification  

<99% ✘ ✘ High  ✘ 

[47] and 

2024  

Intrusion detection in 

IoT networks 

2D-CNN NSL-

KDD and 

UNSW-

NB 15 

Multiclass 

Classification  

<98% ✔ ✘ Partial  ✘ 

[48] and 

2023  

Intrusion detection 

system in IoT 

environment 

CNN+BiLSTM N-BaIoT Multiclass 

Classification  

<99% ✘ ✘ Low ✘ 

[49] and 

2024  

Malware detection in 

Internet of Things  

DLEX-IMD IoT-23 Multiclass 

Classification  

<99% ✔ ✘ Partial  ✘ 

[50] and 

2024 

DDoS detection 

framework for IoT-

enabled mobile health 

informatics systems  

mGRU-based 

IDS models 

CICIoT 

2023, 

CICDDoS

2019 

Both 

Classification  

<98% ✘ ✘ Low  ✘ 

[51] and 

2024  

intrusion detection 

scheme for IoT and IIoT 

environment 

enable 

Convolutional 

Neural Network 

(CNN 

Edge_IIo

T dataset 

Multiclass 

Classification  

<99% ✘ ✘ Partial  ✘ 

[52] and 

2024 

Intrusion Detection in 

Industrial-Internet of 

Things  

proposed 

CNN1D model 

Edge_IIo

T dataset 

Multiclass 

Classification  

<99% ✘ ✘ Partial  ✘ 

[59] and 

2024 

IoT botnet detection 

using XAI 

XGB, ET, RF, 

GBC, LGBM 

N-BaIoT, 

BoT IoT, 

Med-

BIoT 

Binary 

Classigication  

<98% ✔ ✔ Low ✘ 

 

2.2. Blockchain-based Intrusion Detection System for IoT Security 

Blockchain technology offers a decentralized and tamper-resistant approach to securing IoT networks. This section 

discusses blockchain-integrated IDS, highlighting consensus mechanisms and privacy-preserving techniques for 

enhancing security. Recent research on detecting cyberattacks in IoT and IIoT networks has explored a variety of 

approaches, each contributing uniquely to the field of intrusion detection systems (IDS). This section synthesizes these 

studies, highlighting their methodologies and the specific challenges they address, as shown in Table 3. 
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Gad et al. (2020) [21] introduced an XGBoost-based model for vehicular ad-hoc networks, leveraging the TON-IoT 

dataset and employing chi-square for feature selection. Their approach, although practical, is confined to a specific 

type of IoT network. In contrast, Mighan et al. (2021) [22] proposed a scalable IDS that integrates Support Vector 

Machines (SVM) with Stacked Autoencoder (SAE) to handle big data platforms, using tools like Apache Spark to 

manage large network traffic volumes. Similarly, Alzahrani et al. (2019) [23] developed a network-based IDS for 

Software-Defined Networks (SDN), applying machine learning techniques such as Decision Trees, Random Forests, 

and XGBoost on the NSL-KDD dataset. Logeswari et al. (2020) [24] advanced this by proposing a hybrid feature 

selection algorithm (HFS-LGBM IDS) to reduce data dimensionality and extract optimal features using CFS and RF-

RFE, demonstrating their model's effectiveness in a Mininet-simulated SDN environment. 

A notable contribution by Bowen et al. (2021) [25] introduced BlocNet, a deep learning model designed to address 

dataset imbalance, employing various sampling techniques to maintain data integrity. Their work emphasizes the 

importance of handling underrepresented instances in IDS datasets. Kasonogo et al. (2022) [26] offered an IDS using 

different RNN frameworks on NSL-KDD and UNSW-NB-15 datasets, incorporating XGBoost for feature selection 

and addressing optimization of arbitrary differentiable loss functions. Hnamte et al. (2023) [27] presented a novel 

approach combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) 

networks, enhanced by an attention mechanism, to improve classification accuracy in network-based IDS—however, 

their model's complexity results in longer training periods than traditional deep learning techniques. Abdelkhalek et 

al. (2022) [28] addressed class imbalance by proposing a data resampling strategy using the Adaptive Synthetic and 

Tomek Link algorithm, combined with various deep learning models, including MLP, CNN, DNN, and CNN-

BiLSTM, achieving better detection rates for minority classes. 

Further advancing the discussion, Thakkar et al. (2023) [29] focused on enhancing DNN-based IDS performance by 

introducing a unique feature selection technique based on statistical significance. They utilized standard deviation, 

mean, and median to derive highly discernible features, which improved data learning. Imran et al. (2021) [30] 

proposed a non-symmetric deep autoencoder for network intrusion detection systems (NIDS) using the KDD-CUP-

99 dataset, highlighting the robustness of their model through various metrics. They also critically reviewed existing 

challenges in NIDS approaches. Benadai et al. (2022) [31] explored the application of deep reinforcement learning 

(DRL) in IDS, proposing a DRL_IDS model that utilizes the Markov decision process and stochastic game theory to 

analyze network traffic. Their approach demonstrated improved detection rates and reduced false alarm rates 

compared to other deep learning methods. 

Security challenges necessitate innovative solutions in the context of Cyber-Physical Systems (CPS) and IoT. Mansour 

et al. (2021) [32] proposed a blockchain-based IDS for CPS environments, integrating a rich and poor optimization 

approach with a deep learning model. Kumar et al. (2021) [33] addressed the centralized storage architecture's 

limitations by presenting a blockchain-based IoT framework utilizing fog computing for distributed security. This 

framework offers a decentralized cloud architecture, mitigating issues like security, privacy, and single points of 

failure. Ashraf et al. (2022) [34] introduced a federated learning-based IDS for IoT healthcare, leveraging blockchain 

to train models on different datasets without data sharing, thereby enhancing privacy. However, variations in local 

datasets and uneven distribution affected network-based intrusion detection accuracy. He et al. (2022) [35] proposed 

a blockchain-based distributed federated learning approach, providing differential privacy to secure data while 

enabling collaborative training. Khraisat et al. (2023) [36] developed a feature selection approach based on information 

gain, focusing on identifying IoT features that yield the most feature diversity in network traffic, emphasizing 

detecting zero-day attacks with high accuracy. 

 

Table 3: Overview of Existing Frameworks for Addressing Security and Privacy Issues in Intrusion Detection Systems Using 
Emerging Technologies 

Refere

nce  

Aim Dataset 

used 

Methodology Feature 

Selection 

Technique 

Paradig

m  

Types of 

attack 

Scalability 

Analysis 

Security and 

Privacy 

Analysis 

Single point 

Failure  
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Gad et 

al. 

(2020) 

Detecting cyberattacks in 

vehicular ad-hoc networks 

TON-IoT XGBoost model Chi-square Machine 

Learning 

Specific 

IoT 

attacks 

Limited to 

vehicular ad-

hoc networks 

Not 

addressed 

Not 

discussed 

Mighan 

et al. 

(2021) 

Scalable IDS for big data 

platforms 

UNB-

ISCX- 2012 

SVM with 

Stacked 

Autoencoder 

(SAE), Apache 

Spark 

 Machine 

Learning 

Various

  

High 

scalability 

with big data 

platforms 

Not 

addressed 

Not 

discussed 

Alzahr

ani et 

al. 

(2019) 

IDS for SDN environments NSL-KDD Decision Trees, 

Random 

Forests, 

XGBoost 

 Machine 

Learning 

Various

  

Adaptable to 

SDN 

environment

s 

Not 

addressed 

Not 

discussed 

Loges

wari et 

al. 

(2020) 

Feature selection in IDS for 

SDN 

Mininet-

simulated 

SDN 

HFS-LGBM 

IDS using CFS 

and RF-RFE 

Hybrid 

Feature 

Selection 

(CFS, RF-

RFE) 

Machine 

Learning 

Various

  

Demonstrate

d in SDN 

environment 

with Mininet 

simulation 

Not 

addressed 

Not 

discussed 

Bowen 

et al. 

(2021) 

Addressing dataset 

imbalance in IDS 

NSL-KDD; 

IoT-23; 

CIC-IDS; 

UNSW-

NB-15 

BlocNet deep 

learning model, 

sampling 

techniques 

 Deep 

Learning 

Various

  

Not specified Focuses on 

handling 

underreprese

nted 

instances in 

datasets 

Not 

discussed 

Kasono

go et al. 

(2022) 

IDS using RNN frameworks NSL-KDD, 

UNSW-

NB-15 

RNN, XGBoost 

for feature 

selection 

XGBoost 

 

Deep 

Learning 

Various Not specified Not 

addressed 

Not 

discussed 

Hnamt

e et al. 

(2023) 

Improve classification 

accuracy in network-based 

IDS 

CIC-IDS 

2018; 

Edge-IIoT 

CNN-BiLSTM 

with attention 

mechanism 

- Deep 

Learning 

Various Higher 

complexity 

leads to 

longer 

training 

periods 

Not 

addressed 

Not 

discussed 

Khraisa

t et al. 

(2023) 

Feature selection in IDS for 

IoT 

NSL-KDD Information 

gain for feature 

diversity 

Information 

gain 

Machine 

Learning 

Zero-day 

attacks 

High 

accuracy in 

detecting 

zero-day 

attack 

Not 

addressed 

Not 

discussed 

He et 

al. 

(2022) 

Blockchain-based 

distributed federated 

learning approach 

NSL-KDD; 

BoT_IoT; 

CICIDS- 

2017; 

UNSW- 

NB-15; 

DS2OS 

dataset 

Blockchain with 

differential 

privacy 

- Federate

d 

Learning

, 

Blockch

ain 

Various Collaborativ

e training 

while 

securing data 

Provides 

differential 

privacy to 

secure data 

Not 

discussed 

Ashraf 

et al. 

(2022) 

Federated learning-based 

IDS for IoT healthcare

 Federated 

learning with blockchain 

BoT_IoT   Federate

d 

Learning

, 

Blockch

ain 

Various Not specified Enhances 

privacy, but 

affected by 

dataset 

variations 

and 

distribution 

Not 

discussed 

Kumar 

et al. 

(2021) 

 

Blockchain-based IoT 

framework for distributed 

security 

NSL-

KDD; 

CICID

S- 

2017 

dataset 

Blockchain with 

fog computing 

 Blockch

ain, Fog 

Computi

ng 

Various

  

Decentralize

d cloud 

architecture 

Mitigates 

security, 

privacy, and 

single point 

failure issues 

Addressed 

by 

blockchain 

Turuk

mane et 

al. 

(2024) 

To design an efficient 

automated intrusion 

detection system (IDS) using 

machine learning to address 

issues such as class 

imbalance, overfitting, and 

accurate classification of 

network intrusions. 

CSE-

CIC-

IDS 

2018 

and 

UNSW

-NB15 

dataset

s 

hybrid 

multilayer SVM 

model (M-

MultiSVM) 

Opposition-

based 

Northern 

Goshawk 

Optimizatio

n (ONgO) 

Machine 

Learning  

DoS 

attacks, 

content-

based 

features, 

and traffic 

anomalies 

does not 

explicitly 

address 

scalability in 

detail 

not discussed does not 

provide 

explicit 

analysis of 

single point 

failure 
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Nandan

war 

et.al 

(2024) 

To develop a robust and 

efficient deep learning-based 

intrusion detection system 

(IDS) to detect and classify 

botnet attacks in Industrial 

IoT (IIoT) environments, 

ensuring real-time protection 

and minimizing security 

vulnerabilities 

N-

BaIoT 

dataset 

CNN-GRU-

based deep 

learning model 

named 

AttackNet 

CNN Deep 

Learning  

DoS, 

DDoS, 

data 

exfiltratio

n 

scalability by 

achieving 

high 

performance 

across 

multiple 

classes in 

large dataset 

indirectly 

improves 

security by 

efficiently 

detecting 

botnet 

attacks 

does not 

provide 

explicit 

analysis of 

single point 

failure 

Karthik

eyan 

et.al 

(2024) 

To enhance security in 

WSN-IoT systems by 

developing a machine 

learning-based intrusion 

detection system (IDS) 

optimized with the Firefly 

Algorithm (FA) and Grey 

Wolf Optimizer (GWO) for 

improved accuracy, 

reliability, and security 

performance. 

NSL-

KDD 

Dataset 

FA-ML 

technique 

integrates 

machine 

learning (SVM) 

Firefly 

Algorithm 

(FA) 

Supervis

ed 

machine 

learning 

Denial of 

Service 

(DoS), 

Probing, 

Remote to 

Local 

(R2L), 

and User 

to Root 

(U2R) 

attacks 

not explicitly 

discussed 

not discussed not discussed 

Hanafi 

et. al 

(2024) 

To develop a new intrusion 

detection system (IDS) for 

IoT networks using an 

Improved Binary Golden 

Jackal Optimization 

(IBGJO) algorithm and Long 

Short-Term Memory 

(LSTM) network 

NSL-

KDD 

Dataset 

and 

CICIDS

2017 

Dataset 

Opposition-

Based Learning 

(OBL)-LSTM 

Improved 

Binary 

Golden 

Jackal 

Optimizatio

n (IBGJO) 

with 

Opposition-

Based 

Learning 

(OBL) 

Deep 

Learning 

DoS 

(Denial of 

Service), 

Probe, 

U2R 

(User-to-

Root), and 

R2L 

(Remote-

to-Local) 

attacks 

does not 

explicitly 

address 

does not 

explicitly 

discuss 

security and 

privacy 

concerns 

not been 

explored 

Kumar 

et.al 

(2024) 

To develop an efficient 

intrusion detection system 

(IDS) using Deep Residual 

Convolutional Neural 

Network (DCRNN), 

optimized by the Improved 

Gazelle Optimization 

Algorithm (IGOA) 

UNSW

-NB-15 

Dataset

, 

Cicddo

s2019 

Dataset

, and 

CIC-

IDS-

2017 

Dataset 

DCRNN Novel 

Binary 

Grasshoppe

r 

Optimizatio

n 

Algorithm 

(NBGOA) 

Deep 

Learning 

detect 

various 

types of 

attacks 

demonstratin

g its ability to 

effectively 

scale in real-

world 

scenarios 

with large 

datasets 

does not 

explicitly 

address 

does not 

address the 

impact of 

single point 

failure 

 

 

2.4. Research Gaps 

Despite advancements in IDS and blockchain security, several challenges remain unaddressed. This section identifies 

existing limitations in current research and highlights the need for innovative solutions in intrusion detection and IoT 

security. Based on the insights from recent studies, several significant research gaps have been identified within the 

field of intrusion detection systems (IDS) in IoT environments: 

 

 Integration of AI and Blockchain: There is a lack of comprehensive research that combines 

artificial intelligence (AI) with blockchain technology for enhanced intrusion detection. 

 Scalability and Efficiency: Effective scaling and optimization of performance for deep learning 

and blockchain-based IDS remain underexplored. 

 Adversarial Attack Resilience: Current deep learning-based IDS are vulnerable to adversarial 

attacks, necessitating strategies to fortify detection mechanisms against such threats. 

 Interoperability and Data Sharing: While blockchain facilitates decentralized data sharing, 

research is needed to effectively integrate it with IDS for collaborative threat detection. 

1
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Page 34 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 34 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



 Privacy-Preserving Mechanisms: Using sensitive network data in deep learning models raises 

privacy concerns, highlighting the need for secure data-sharing protocols. 

 Network Heterogeneity: Deep learning models often struggle with generalization across different 

network environments, indicating a need for transfer learning techniques to enhance adaptability. 

 Decentralization of Network Information: AI-based IDS require access to sensitive data, 

necessitating methods to balance decentralized data access with privacy protection, such as secure 

multi-party computation and zero-knowledge proofs. 

 Consensus Protocol Validation: There is a need for research to validate various consensus 

algorithms' effects on the security and reliability of IDS within blockchain networks, emphasizing 

trust-building across decentralized nodes.  

 

By addressing these gaps, future research can significantly enhance the effectiveness of IDS in IoT ecosystems. 

 

2.5. Publicly Available Dataset 

Publicly available datasets are essential for benchmarking IDS performance. This section reviews commonly used 

intrusion detection datasets, discussing their characteristics, attack types, and suitability for IoT security research. 

Table 4 presents a statistical analysis of publicly available datasets for intrusion detection. It outlines dataset 

descriptions, the number and types of attacks, whether they are IoT-based, the number of features, and if they are 

labeled. The datasets span from simulated military traffic to real-world IoT network data, providing varied sources for 

analysis. 

Table 4: A statistical analysis of publicly available datasets 

Datasets & 

Year Description of Datasets 

Number 

of 

Attacks Type of Attacks 

IoT-

Based 

Number 

of 

Features Labeled 

DARPA 98 

(1998) Simulated military network traffic 4 DOS, Probe, R2L, U2R No 41 Yes 

KDD Cup 99 

(1999) 

An enhanced version of DARPA 98 

with more attacks 39 DOS, Probe, R2L, U2R No 41 Yes 

NSL-KDD 

(2015) 

Improved KDD Cup 99 with reduced 

redundancy 39 DOS, Probe, R2L, U2R No 41 Yes 

CICIDS 2017 

Modern network traffic with benign 

and malicious activities 15 

Backdoors, DoS, Exploits, Fuzzers, 

Generic, Reconnaissance, Shellcode, 

Worms No 85 Yes 

UNSW_NB_15 

(2015) 

Real-world network traffic with 

various attack types 9 

DoS, U2R, R2L, Analysis, Scanning, 

Backdoors, Generic No 49 Yes 

N_BAIoT 

(2018) 

Simulated IoT network traffic with 

normal and attack data 10 

DDoS, DoS, Injection, MITM, 

Password, Ransomware, Scanning, 

Theft Yes 115 Yes 

CICIDS 2019 

Expanded CICIDS 2017 with 

additional attack categories 25 

Backdoors, DoS, Exploits, Fuzzers, 

Generic, Reconnaissance, Shellcode, 

Worms, Web attacks No 80 Yes 

Bot_IoT (2018) 

Network traffic from IoT devices 

infected with botnets 4 DDoS, DoS, Reconnaissance, Theft Yes 42 Yes 

TON_IoT 

(2019) 

Real-world IoT network traffic with 

normal and attack data 5 

DDoS, DoS, Injection, MITM, 

Scanning Yes 45 Yes 

Edge_IIoT 

(2022) 

Industrial IoT network traffic with 

normal and attack data 14 

Backdoors, DoS, Injection, MITM, 

Reconnaissance, Shellcode, Theft, 

Zero-day Yes 61 Yes 

IoT_23 (2023) 

Network traffic from 23 diverse IoT 

devices 4 DDoS, DoS, Injection, Scanning Yes 80 Yes 
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2.5. Performance Evaluation Metrics 

Evaluating the efficiency and reliability of an intrusion detection system requires well-defined performance metrics. 

This section categorizes evaluation metrics into two key domains: AI-based models and blockchain-based security 

mechanisms. 

2.5.1. Artificial Intelligence-Based Model Evaluation Metrics 

AI-driven IDS models are assessed based on classification performance and computational efficiency. This subsection 

discusses accuracy, precision, recall, F1-score, False Positive Rate (FPR), False Negative Rate (FNR), and model 

execution time as shown in Table 5.  

Table 5: Performance Evaluation Metrics for Intrusion Detection System 

Metrics Definition Formula 
Confusion matrix  Used to evaluate the performance of a classification model by 

comparing the predicted labels with the actual labels. 
 

True positive (TP) The record is successfully detected as malicious  

False positive (FP) The record is wrongly detected as malicious.  

True Negative (TN) The record is classified as non-malicious.  

False Negative (FN)  The record is undetected by the system.  

Accuracy Measure how well the model predicts the correct labels. 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision Measure how many of the predicted positive labels are actually 

positive. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall Measure how many of the actual positive labels are correctly 

predicted. 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score The harmonic mean of Recall and Precision. 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

ROC curve Graphical representation of the performance of a classification 

model. TPR is the ratio of true positive predictions to the total 

actual positive labels. FPR is the ratio of false positive predictions 

to the total actual negative labels. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

   𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝐹𝑁
 

True Negative Rate (TNR) Model's ability to correctly classify instances of a specific 

attack type as non-attacks. 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Negative Predictive Value (NPV) Model's accuracy in predicting non-attacks for a specific attack 

type. 
𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

False Positive Rate (FPR) The rate at which instances of other attack types are incorrectly 

classified as the specific attack type. 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Negative Rate (FNR) The rate at which instances of a specific attack type are incorrectly 

classified as non-attacks or other types. 
𝐹𝑁𝑅 =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

False Discovery Rate (FDR) The rate at which instances are falsely predicted as the specific 

attack type when they are not. 
𝐹𝐷𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Omission Rate (FOR) The rate at which instances of a specific attack type are falsely 

classified as non-attacks or other types 
𝐹𝑂𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑁
 

 

2.5.2. Blockchain Based Evaluation Metrics 

When evaluating the performance and reliability of the blockchain framework, it is important to consider a 

comprehensive set of metrics that offer insights into the system's efficiency, security, and user experience. These 

metrics are instrumental in assessing blockchain performance under varying conditions. This sub-section 

systematically defines key evaluation parameters, including fault tolerance, transaction finality, and network overhead. 

By examining these metrics, the strengths and limitations of blockchain Framework across different parameters can 

be rigorously analyzed, thereby facilitating the development of robust and scalable solutions. The following are the 

Evaluation Metrics: 

 Fault Tolerance: Fault tolerance in blockchain refers to the network's capability to continue functioning 

correctly even when some components fail. This is critical for maintaining system reliability and ensuring 

the blockchain remains operational despite disruptions. It is measured by Restoration Efficiency (RE), which 

quantifies how effectively the system recovers from failures: 

1
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𝑅𝐸 =  
𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑

𝑇𝑡𝑜𝑡𝑎𝑙
 

 User Experience (UX): User experience in blockchain systems reflects the ease and efficiency with which 

users interact, focusing on the system’s response time and the time required to share records. It is inversely 

related to the sum of response time (𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) and shared record time (𝑇𝑠ℎ𝑎𝑟𝑒): 

𝑈𝑋 =  
1

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 + 𝑇𝑠ℎ𝑎𝑟𝑒
 

 Transaction Finality: Transaction finality measures how quickly a transaction becomes irreversible and 

permanently recorded on the blockchain. It is directly related to the time required to create a block 𝑇𝑏𝑙𝑜𝑐𝑘: 

𝑇𝐹 =  𝑇𝑏𝑙𝑜𝑐𝑘 

 Network Overhead (NO): Network overhead refers to the additional computational resources and time 

consumed due to managing blockchain transactions, including encryption processes. It is often expressed as 

a percentage of the system's throughput and is influenced by the encryption time 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡: 

𝑁𝑂% =  
𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡

𝑇ℎ
∗ 100 

 Encryption Time: Encryption time (𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡) is the duration required to convert plaintext into encrypted 

data using cryptographic algorithms, impacting security and transmission efficiency: 

𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡 =
1

𝑓
∑ 𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡,𝑖

𝑓

𝑖−1
 

 Decryption Time: Decryption time (𝑇𝑑𝑒𝑐𝑟𝑦𝑝𝑡) is the time taken to convert encrypted data back to its original 

form, crucial for accessing secured data efficiently: 

𝑇𝑑𝑒𝑐𝑟𝑦𝑝𝑡 =
1

𝑓
∑ 𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡,𝑖

𝑓

𝑖−1
 

 Key Generation Time: Key generation time (𝑇𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇) is the duration required to create cryptographic keys, 

affecting overall security and system speed: 

𝑇𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇 =
1

𝑛
∑ 𝑡𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇,𝑖

𝑛

𝑖−1
 

 Response Time: Response time (𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) measures the interval between a user request and the system's 

response, crucial for performance evaluation in time-sensitive applications: 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑒𝑛𝑑 − 𝑇𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 

 Restoration Efficiency: Restoration efficiency (𝑅𝐸) quantifies the system's ability to recover from faults, 

defined as: 

𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐷𝑟𝑒𝑠𝑡

𝐷𝑜𝑟𝑖𝑔
× 100% 

Where 𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is the restoration efficiency, 𝐷𝑟𝑒𝑠𝑡 is the amount of data successfully restored, and 𝐷𝑜𝑟𝑖𝑔 is the 

original data before any loss or corruption. 

 Shared Record Time: Shared record time (𝑇𝑠ℎ𝑎𝑟𝑒) is the time taken to transmit or share a record within the 

system, impacting the efficiency of data sharing: 

𝑇𝑠ℎ𝑎𝑟𝑒 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 + 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 

Where 𝑇𝑠ℎ𝑎𝑟𝑒 is the sharing record time, 𝑇𝑠𝑒𝑛𝑑 is the time to send the record, 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 is the time to verify the record, 

𝑇𝑐𝑜𝑚𝑚𝑖𝑡 is the time to commit the record to the blockchain.  

 Block Creation Time: Block creation time (𝑇𝑏𝑙𝑜𝑐𝑘) is the time required to generate a new block in the 

blockchain, affecting transaction finality and throughput: 

𝑇𝑏𝑙𝑜𝑐𝑘 =
1

𝑁
∑ 𝑡𝑏𝑙𝑜𝑐𝑘,𝑖

𝑁

𝑖=1
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Where 𝑇𝑏𝑙𝑜𝑐𝑘 is the average block creation time, 𝑡𝑏,𝑖 is the time taken to create the 𝑖 − 𝑡ℎ block, and 𝑁 is the total 

number of blocks created. 

 Throughput: Throughput (𝑇ℎ) is the number of transactions processed per second, a key metric for evaluating 

the scalability and efficiency of blockchain networks: 

𝑇ℎ =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
 

 Latency: Latency (𝐿) is the delay between the initiation and completion of a transaction, crucial for real-time 

processing: 

𝐿 =  𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛  
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Chapter 3: Development of Artificial Intelligence-based Intrusion Detection Models   

3.1. Introduction  

The Internet of Things (IoT) has revolutionized various sectors, enabling seamless connectivity and communication 

between devices, sensors, and systems. By integrating physical devices with networked data systems, IoT technology 

facilitates intelligent data collection, analysis, and action, leading to increased automation, efficiency, and 

functionality in fields ranging from healthcare and agriculture to manufacturing and smart cities. However, the 

exponential growth of IoT networks has introduced significant security and privacy challenges. IoT devices, often 

deployed with minimal security features, have become attractive targets for cybercriminals, who exploit their 

vulnerabilities to launch botnet and other network-based attacks. These attacks compromise the functionality of 

individual devices and pose a broader risk to the integrity of entire networks, necessitating sophisticated mechanisms 

for threat detection and mitigation. 

 

Intrusion Detection Systems (IDS) have been widely adopted to address these concerns as essential components of 

IoT security infrastructure. IDS solutions monitor network traffic and system activities, identifying and classifying 

potentially malicious behavior to mitigate risks. Traditional IDS approaches, however, struggle to effectively detect 

sophisticated and rapidly evolving attacks like IoT botnets, which exploit device heterogeneity, resource constraints, 

and the lack of standardization across IoT networks. As a result, Artificial Intelligence (AI)-driven IDS models, 

incorporating machine learning and deep learning techniques, have emerged as powerful alternatives. These models 

leverage large datasets to autonomously learn, identify patterns, and adapt to new threats, making them particularly 

well-suited for detecting botnet attacks and network anomalies in IoT environments. 

 

Despite these advancements, implementing effective IDS solutions within IoT environments presents unique 

challenges. The vast number of devices and high diversity in IoT networks make it difficult to develop standardized 

detection protocols. Furthermore, the presence of resource-constrained devices limits the computational complexity 

that can be applied in detection models, necessitating lightweight and efficient algorithms. Additionally, IoT networks 

are highly dynamic, with frequent device additions and deletions, creating a need for IDS models that can adapt in 

real-time. Addressing these challenges requires AI-based models that are accurate but also scalable, flexible, and 

capable of handling high-dimensional IoT data. 

 

This chapter presents three proposed models to address these challenges within IoT and IIoT environments. Each 

model uses unique AI architectures and methodologies to improve detection accuracy, scalability, and efficiency: 

 

1. Transfer Learning-Enabled Hybrid Model (TL-BILSTM IoT): 

The first model utilizes transfer learning in a hybrid approach, combining Convolutional Neural Networks (CNN) and 

Bidirectional Long Short-Term Memory (BiLSTM) networks. This model is designed to efficiently and effectively 

identify botnet attacks, explicitly targeting BASHLITE and Mirai botnet attacks. By incorporating transfer learning, 

the model enhances its ability to recognize and classify various types of network traffic, reducing the computational 

cost typically associated with training on large-scale datasets. This adaptive model is evaluated using the "Detection 

of IoT Botnet Attacks N_BaIoT" dataset. It showcases its effectiveness in a multi-class classification setup, 

distinguishing benign from malicious traffic across multiple attack types. 

 

2. Deep Learning-Enabled Intrusion Detection System for Industrial IoT: 

The second proposed model is tailored specifically for the Industrial IoT (IIoT) context, where networked industrial 

devices often exhibit unique data patterns and security requirements. This model introduces a deep learning framework 

that combines CNN and Gated Recurrent Units (GRU) to detect anomalies generated by compromised IIoT devices. 

It focuses on robust feature extraction and optimization techniques, which enable the model to handle high-

dimensional IIoT data while eliminating redundant features efficiently. This model's adaptive CNN-GRU architecture 

is highly effective in identifying network-based attacks, distinguishing various types of IoT botnet attacks, and is 

validated using the same N_BaIoT dataset, achieving superior performance in detecting IIoT-specific threats. 

 

3. Dependable and Trustworthy CNN-GRU-Based IDS (Alpha-Net): 

The third model, Alpha-Net, represents a trustworthy and dependable IDS solution designed explicitly for IIoT 

environments. This model integrates CNN and GRU architectures in a hybrid approach optimized to enhance accuracy 

and reliability in detecting network-based attacks within IIoT systems. Alpha-Net introduces an innovative 
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communication sequence architecture to illustrate and enhance the interaction between different IIoT layers. 

Additionally, this model includes a comprehensive statistical analysis of its performance through tests such as the 

Paired t-test, Wilcoxon Signed-Rank Test, ANOVA, and Tukey's HSD. These statistical tests reinforce Alpha-Net's 

dependability and effectiveness, demonstrating significant improvements over existing IDS models in various metrics. 

 

These three models contribute to developing a more robust and adaptive intrusion detection framework suitable for 

IoT and IIoT environments. They establish a foundation for integrating scalable, flexible, and effective AI-driven IDS 

solutions by addressing specific challenges in detecting botnet attacks and network anomalies. Subsequent sections of 

this chapter will delve into each model's architecture, implementation, and performance evaluations, providing a 

detailed analysis of their unique contributions to IoT security. 

 

3.1.1. Experimental Setup 

 

Our experiment was conducted on an ASUS-TUF Gaming F15 (FX506LHB) laptop featuring an Intel Core i5 10th 

Gen processor, 8GB RAM, 512GB ROM, and Windows 11 OS. This setup was equipped with an NVIDIA GTX 1650 

GDDR6 4GB graphics card, which supported the computational requirements of the experiment efficiently. Data 

analysis and processing were facilitated using data analysis libraries such as Pandas, Numpy, Seaborn, Matplotlib, 

and Scikit-learn. Memory considerations were carefully managed due to the system's 8GB RAM capacity, ensuring 

optimal utilization during processing-intensive tasks. 

 

3.1.2. Dataset Description  

 

In cybersecurity research, accurate and comprehensive datasets are crucial for developing robust security models 

capable of detecting anomalies and identifying malicious activities within IoT environments. This research uses the 

"Detection of IoT botnet attacks N_BaIoT" dataset as the primary data source. This dataset, introduced by Mirsky and 

Meidan in 2018 [50], addresses the scarcity of publicly available botnet datasets designed explicitly for IoT networks. 

The N_BaIoT dataset is unique in that it includes benign and attack traffic captured from nine distinct IoT devices 

(Table 2). Each device in the dataset generates varying levels of traffic, both normal and malicious, under controlled 

conditions that simulate real-world botnet attacks. The malicious traffic includes instances of two prominent botnets, 

Mirai and BASHLITE, each introducing various attack types. The N_BaIoT dataset is multivariate and sequential, 

consisting of 115 attributes that capture critical aspects of network traffic, such as packet size, flow duration, and 

packet inter-arrival times, making it suitable for complex anomaly detection and multi-class classification tasks. 

Name of device sample for Benign Sample of attack 

Danmini doorbell 49,548 9,68,750 

Ecobee Thermostat 13,113 8,22,763 

Ennio Doorbell 39,100 3,16,400 

Philips B120N10- Baby monitor 1,75,240 9,23,437 

Provision PT-337E- Security camera 62,154 7,66,106 

Provision PT-838- Security camera 98,514 7,38,377 

Samsung SNH-1011-N-Webcam 52,150 3,23,072 

SimpleHome-XCS7-1002-WHT- Security 

camera 
46,585 8,16,471 

SimpleHome-XCS7-1003-WHT- Security 

camera 
19,528 8,31,298 
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The dataset provides a realistic scenario for testing and evaluating security models by capturing normal and attack 

conditions. Table 3 provides a breakdown of the types of attacks in the dataset, offering details about each attack 

type and the associated number of instances. 

Mirai and 

BASHLITE 
Type of 

attack 
Description Number of 

instances 

BASHLITE Gafgyt 

combo 
Sending spam data to a network- transmitting unsolicited or unwanted messages or advertisements 

to a network, often with the intention of overwhelming the system or spreading malware. 
15,345 

BASHLITE Gafgyt 

Scan 
Network scanning for attacking systems- examining a network to identify vulnerabilities or potential 

targets for a botnet attack. 
14,648 

BASHLITE Gafgyt 

UDP 
Sending a flood of requests in connection-oriented- sending a large no. of requests to a server or 

network in a short period of time, often with the intention of overwhelming the system and causing 

it to crash.  

15,602 

BASHLITE Gafgyt 

TCP 
Sending a flood of requests in connection-less - sending a large no. of requests to a server or network 

in a short period of time, often with the intention of overwhelming the system and causing it to crash. 
15,676 

BASHLITE Gafgyt 

Junk  
Sending spam data- distributed or transmitting unsolicited or unwanted messages or advertisements 

through various means such as email, and text messages. 
15,449 

Mirai Mirai 

Scan  
Scanning the network activity- it involves scanning the internet for vulnerable devices that can be 

infected with malware. 
14,517 

Mirai Mirai UDP Scanning the network for victim devices- the process of searching a network for a specific device 

that is the intended target of an attack. The scanning is to identify the IP address, open port & 

vulnerabilities of the victim device.  

15,602 

Mirai Mirai 

plainUDP 
UDP flooded by optimizing seeding packets per second - UDP is flooded by sending an excessive 

number of seeding packets per second in an attempt to optimize the process.  
15,304 

Mirai Mirai Syn Sending a flood of synchronization- overwhelming a network with a large number of synchronization 

messages, often with the intention of disrupting the normal operation of the system or causing a 

denial-of-service attack. 

16,436 

Mirai Mirai Ack Sending a flood of acknowledgment- overwhelming a network with a large number of 

acknowledgment messages, often with the intention of disrupting. 
15,138 

None  Benign  Unharmful network data- it is legitimate data that is not intended to cause harm or damage to a 

system. 
15,538 

 

3.1.3. Performance Evaluation Metrics  

We employed several evaluation metrics to evaluate the model's performance on various attack types: 

accuracy, recall, precision, F1 score, ROC, and the confusion matrix. These metrics were chosen for their 

ability to provide a well-rounded assessment of the classification model's effectiveness across both benign 

and malicious classes. Table 7 defines each metric along with their respective formulas. 

Metrics  Definition  Formula  

Confusion matrix  Used to evaluate the performance of a classification model by 

comparing the predicted labels with the actual labels. 

 

True positive (TP) Record is successfully detected as malicious  

False positive (FP) Record is wrongly detected as malicious.  

11
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True Negative (TN) Record is classified as non-malicious.  

False Negative (FN)  Record is undetected by the system.  

Accuracy Measure of how well the model predicts the correct labels. 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision Measure of how many of the predicted positive labels are actually 

positive. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall Measure of how many of the actual positive labels are correctly 

predicted. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score Harmonic mean of Recall and Precision. 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

ROC curve Graphical representation of the performance of a classification 

model. TPR is ratio of true positive predictions to the total 

actual positive labels. FPR is ratio of false positive predictions 

to the total actual negative labels. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,   𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃+𝐹𝑁
 

True Negative Rate (TNR) Model's ability to correctly classify instances of a specific 

attack type as non-attacks. 

𝑇𝑁𝑅 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Negative Predictive Value (NPV) Model's accuracy in predicting non-attacks for a specific 

attack type. 
𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

False Positive Rate (FPR) Rate at which instances of other attack types are incorrectly 

classified as the specific attack type. 

𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Negative Rate (FNR) Rate at which instances of a specific attack type are incorrectly 

classified as non-attacks or other types. 

𝐹𝑁𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

False Discovery Rate (FDR) Rate at which instances are falsely predicted as the specific 

attack type when they are not. 

𝐹𝐷𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Omission Rate (FOR) Rate at which instances of a specific attack type are falsely 

classified as non-attacks or other types 

𝐹𝑂𝑅 =
𝐹𝑁

𝐹𝑁 + 𝑇𝑁
 

 

3.2. Transfer Learning-Enabled Intrusion Detection System for IoT 

In this section, we introduce the TL-BiLSTM IoT model, a hybrid architecture designed to enhance the detection of 

IoT botnet attacks by leveraging Transfer Learning (TL), Convolutional Neural Networks (CNN), and Bidirectional 

Long Short-Term Memory (BiLSTM) layers. This model builds upon CNN's capacity to automatically extract spatial 

features and BiLSTM's ability to capture temporal dependencies in sequential data. The hybrid design effectively 

combines the strengths of these components, yielding an architecture suited for complex IoT intrusion detection tasks. 

Specifically, Transfer Learning allows the model's rapid adaptation to novel threats, making it particularly useful for 

detecting highly dynamic and evolving IoT botnet attacks, including BASHLITE and Mirai. 

3.2.1. Model Architecture and Design  

The TL-BiLSTM model benefits from the flexibility of Transfer Learning, which enables it to adapt pre-trained 

knowledge to the IoT security domain without extensive retraining. This adaptability is crucial for IoT environments, 

where devices are often resource-constrained and need efficient, scalable solutions for anomaly detection. 
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The proposed model, termed TL-BiLSTM, combines Convolutional Neural Networks (CNN) and Bidirectional Long 

Short-Term Memory (BiLSTM) to develop an advanced framework capable of efficiently processing and classifying 

time-series data. The input to this model is a 3D tensor with dimensions (batch_size, timestep, features), where 

timestep denotes the sequence length, and features represent the characteristics at each timestep. This configuration 

enables the model to effectively capture temporal patterns and dependencies within the data, facilitating robust 

identification and classification of intricate patterns and anomalies. A simplified view of the TL-BiLSTM architecture 

is depicted in Figure 5, while the proposed model structure is illustrated in Figure 3. The TL-BiLSTM architecture 

consists of the following layers: 

Input Data → Conv1D Layer → Conv1D Layer → Bidirectional LSTM → Bidirectional LSTM → Flatten 

→ Dense Layer → Dense Layer → Dropout → Output Layer 

 

The proposed CNN-BiLSTM model has been developed to perform multiclass classification on sequential data, 

explicitly targeting the identification and categorization of botnet attacks. This architecture uses convolutional neural 

networks (CNNs) to extract spatial features and bidirectional long short-term memory networks (BiLSTMs) to capture 

sequential dependencies, creating a comprehensive model well-suited for botnet detection complexities. Each layer of 

the model contributes uniquely, collectively building a robust framework to enhance predictive accuracy in a 

multiclass setting. 

The model's input tensor is (n×m×1), where n represents the number of time steps, m is the number of features, and 

the final dimension of 1 denotes a single channel. This configuration is particularly suitable for processing time-series 

data, as it allows the model to analyze temporal and feature-based relationships within the sequence. 

To initiate the feature extraction, the model uses a 1D convolutional layer equipped with 64 filters, a kernel size of 5, 

a stride of 1, and 'same' padding to preserve the dimensionality across layers. This layer aims to identify local patterns 

within the data, capturing preliminary spatial features that will serve as the foundation for subsequent layers. 

Mathematically, the output from the convolutional layer can be expressed as follows: 

𝑌𝑖,𝑗 = ∑ 𝑤𝑘

𝐾

𝑘=1

𝑋
𝑖,𝑗+𝑘−[

𝐾
2

]
 

 

Where 𝑌 denotes the output tensor, 𝑤𝑘 represents filter coefficients, and 𝐾 is the kernel size. An activation function, 

denoted by 𝜎, is then applied to the convolutional outputs, yielding: 

𝑍𝑖,𝑗,𝑘 = 𝜎(𝑌𝑖,𝑗,𝑘 + 𝑏𝑘) 

𝑍𝑖,𝑗,𝑘 =  𝜎 (∑ 𝑤𝑝,𝑘

𝐾

𝑝=1

𝑋
𝑖,𝑗+𝑝−[

𝐾
2

]+𝑏𝑘
) 

Where 𝑏𝑘 is the bias term. This activation helps capture non-linear relationships in the data. 

A second convolutional layer, similar in structure but with 32 filters, further refines these spatial features. With a 

kernel size of 5, stride of 1, and 'same' padding, this layer builds upon the initial feature maps, extracting more complex 

characteristics essential for capturing the intricacies of botnet behaviors. The output from this layer is similarly 

computed by:  

𝑌𝑖,𝑗,𝑘 = ∑ 𝑤𝑝,𝑘

𝐾

𝑝=1

𝑋
𝑖,𝑗+𝑝−[

𝐾
2

],𝑘
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The refined features are now ready for sequential processing. The model employs a bidirectional LSTM (BiLSTM) 

layer, which processes the data forward and backward, capturing dependencies between time steps. For the forward 

pass, the operations are defined as: 

𝑖𝑡 = 𝜎(𝑊𝑖,𝑓𝑥𝑡 + 𝑈𝑖,𝑓ℎ𝑡−1 + 𝑏𝑖) 

𝑓𝑡 = 𝜎(𝑊𝑓,𝑓𝑥𝑡 + 𝑈𝑓,𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜,𝑓𝑥𝑡 + 𝑈𝑜,𝑓ℎ𝑡−1 + 𝑏𝑜) 

𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑔,𝑓𝑥𝑡 + 𝑈𝑔,𝑓ℎ𝑡−1 + 𝑏𝑔) 

𝑐𝑡 = 𝑓𝑡ʘ𝐶𝑡−1 + 𝑖𝑡ʘ𝑔𝑡 

ℎ𝑡 = 𝑂𝑡ʘ𝑡𝑎𝑛ℎ(𝑐𝑡) 

Where 𝑥𝑡  is the input at time Stamp, ℎ𝑡−1 is the hidden state and 𝑖𝑡 , 𝑓𝑡 , 𝑜𝑡 , 𝑔𝑡 , 𝑐𝑡 , ℎ𝑡 are the input gate, forget gate, 

output gate, cell input, cell state, and hidden state at the time stamp ‘t.’  

 

The backward pass functions similarly but in the reverse direction: 

𝑖𝑡
′ = 𝜎(𝑊𝑖,𝑏𝑥𝑡

′ + 𝑈𝑖,𝑏ℎ𝑡+1
′ + 𝑏𝑖

′) 

𝑓𝑡
′ = 𝜎(𝑊𝑓,𝑏𝑥𝑡

′ + 𝑈𝑓,𝑏ℎ𝑡+1
′ + 𝑏𝑓

′ ) 

𝑜𝑡
′ = 𝜎(𝑊𝑜,𝑏𝑥𝑡

′ + 𝑈𝑜,𝑏ℎ𝑡+1
′ + 𝑏𝑜

′ ) 

𝑔𝑡
′ = 𝑡𝑎𝑛ℎ(𝑊𝑔,𝑏𝑥𝑡

′ + 𝑈𝑔,𝑏ℎ𝑡+1
′ + 𝑏𝑔

′ ) 

𝑐𝑡
′ = 𝑓𝑡

′ʘ𝐶𝑡+1 + 𝑖𝑡
′ʘ𝑔𝑡

′ 

ℎ𝑡
′ = 𝑜𝑡

′ʘ𝑡𝑎𝑛ℎ(𝑐𝑡
′) 

 

To reinforce the sequence-based learning, a second BiLSTM layer with 16 units further captures sequential 

dependencies, refining the temporal representations from the previous BiLSTM layer. The outputs from this layer feed 

into a Flatten layer, converting the multi-dimensional sequence output into a 1D tensor. This flattened output provides 

a compact representation suitable for dense layer processing. 

 

The dense layers perform high-level feature extraction with two layers: the first with 128 units and the second with 

64, both using the ReLU activation function to introduce non-linearity. A dropout layer with a rate of 0.1 follows, 

reducing the risk of overfitting by randomly deactivating 10% of the units during each training iteration. Finally, a 

softmax-activated output layer yields a probability distribution across the botnet categories, enabling multiclass 

classification. This carefully designed architecture balances spatial and sequential feature extraction, leading to high 

precision in botnet detection. 

 

3.2.2.  Dataset Pre-Processing  

The model evaluation utilizes the “Detection of IoT Botnet Attacks N_BaIoT” dataset, which includes a broad 

spectrum of benign and malicious traffic from various IoT devices affected by BASHLITE and Mirai botnets. A 

comprehensive preprocessing phase ensures data consistency and quality, including anomaly and attack identification, 

data cleaning, and standardization. 

The preprocessing phase is essential for preparing the dataset for effective and practical model training and evaluation. 

This phase consists of several steps, including anomaly detection, data augmentation, feature encoding, and data 

standardization, which collectively improve the dataset's quality and suitability for machine learning tasks. 

Anomaly and Attack Identification 

The dataset incorporates multiple attack types from Mirai and BASHLITE botnets, as outlined in Table 3. This multi-

class structure is beneficial for a classification model incorporating transfer learning, as it enables the model to identify 

and differentiate between distinct attack behaviors. By focusing on the specific attack patterns, the model is trained to 

accurately classify these events, an approach that is critical for an effective anomaly detection system. 
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Data Augmentation 

Given the dataset's multivariate nature, data augmentation is applied to enhance the diversity and generalizability of 

the training set. Augmentation techniques include the addition of random noise to numerical features and transforming 

categorical data, which improves the model's resilience against overfitting and enhances its ability to generalize across 

similar patterns. For instance, the 'MI_dir_L5_weight' feature is augmented by adding random noise using a standard 

normal distribution, effectively simulating variability within the dataset: 

row['MI_dir_L5_weight'] = row['MI_dir_L5_weight'] + np.random.normal(0, 1) 

 

In this example, np.random.normal(0, 1) introduces a random noise with a mean of 0 and a standard deviation of 1, 

improving the model's robustness. Further, categorical data augmentation involves character shuffling within text 

columns, such as in the type field: 

row['type'] = ''.join(np.random.permutation(list(row['type']))) 

 

These transformations expand the dataset and simulate real-world conditions where data may have inherent noise or 

variations. 

 

Feature Encoding 

The N_BaIoT dataset contains various data types, including numerical, categorical, and binary features. To enable 

model compatibility and enhance computational efficiency, feature encoding is applied. Label Encoding, a more 

efficient alternative to One-Hot Encoding, is employed, especially beneficial for high-cardinality categorical features. 

Using the Pandas get_dummies function, categorical columns are transformed into binary columns, with adjustments 

made to ensure accuracy in the representation. For example, "Type_benign" is renamed to "benign" for clarity, 

ensuring consistency in feature labels across the dataset. 

Data Standardization 

Data standardization is pivotal in rescaling features to a standard scale, which is critical for machine learning models 

sensitive to feature magnitudes. The standardization formula used is: 

𝑍 =  
𝑥 −  𝜇

𝜎
 

 

 Where,  

µ = it shows the mean of the given distribution feature 

𝞼 = it shows the standard deviation of the given distribution function 

Z = refers as the standardization score 

 

By converting each feature into a standardized format with a mean of 0 and a standard deviation of 1, the model can 

more effectively compare features, irrespective of their original measurement scales. This transformation enhances 

the accuracy of distance-based algorithms and improves convergence rates for gradient-based optimizers, ultimately 

resulting in more robust model performance. 

3.2.3. Performance Evaluation and Comparative Analysis  

The TL-BiLSTM model was rigorously evaluated using standard performance metrics frequently applied in intrusion 

detection, including accuracy, precision, recall, F1-score, and the confusion matrix. This approach provides a 
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comprehensive assessment of the model's strengths and limitations. The TL-BiLSTM demonstrated substantial 

improvements in accuracy, scalability, and adaptability over existing methods, showing robust efficacy in identifying 

a range of IoT botnet attacks. Leveraging both temporal and sequential dependency learning through its hybrid 

structure, the TL-BiLSTM model is particularly effective in detecting and differentiating IoT botnet threats, such as 

BASHLITE and Mirai botnets. 

For training and validation, the "Detection of IoT Botnet Attack N_BaIoT" dataset was split into 80% and 20% for 

testing. This allowed for an in-depth evaluation of model performance on unseen data and facilitated hyperparameter 

tuning for enhanced results. With a high accuracy of 99.52% achieved by the TL-BiLSTM model, as shown in Table 

4, the results indicate the model's robust learning capabilities. High accuracy scores across training and testing sets 

demonstrate that the model can generalize effectively to new data, accurately identifying intrusion attempts. 

 

Dataset Accuracy Loss Precision Recall AUC 

Train set 99.55% 0.0144 99.53% 99.49% 99.99% 

Validation set 99.52% 0.0145 99.54% 99.51% 99.99% 

Testing set 99.52% 0.0150 99.54% 99.50% 99.98% 

 

The model was optimized with a hybrid CNN-BiLSTM architecture, where the CNN component extracts local data 

features, and the BiLSTM captures the sequential dependencies necessary for intrusion detection. Model training 

leveraged backpropagation with gradient descent, minimizing the categorical cross-entropy loss function. Figures 4(a) 

through 4(e) illustrate various metrics, providing insights into the model’s training and validation accuracy, precision, 

recall, and the effect of the learning rate set to 0.01. This learning rate ensures steady convergence without oscillation, 

as demonstrated in the stabilized training loss curve in Figure 4(b). A consistently high precision score indicates the 

model’s efficiency in minimizing false positives, while a high recall score underscores its capacity for identifying true 

positives. 

Type of attack Precision Recall F1-score Support 

benign 1 1 1 9739 

mirai_udp 0.97 1 0.98 11684 

gafgyt_combo 0.99 0.95 0.97 6034 

gafgyt_junk 1 0.99 0.99 5987 

gafgyt_scan 1 1 1 21161 

gafgyt_udp 0.98 1 0.99 20517 

mirai_ack 1 1 1 21299 

mirai_scan 1 1 1 24466 

mirai_syn 1 0.99 1 47643 

mirai_udpplain 1 1 1 16600 
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Table 5 presents the TL-BiLSTM's performance across specific IoT attack types. High precision, recall, and F1 scores 

across various attack types reveal the model's high efficacy in differentiating between benign and malicious classes, 

particularly for complex threats such as Mirai and Gafgyt botnets. 

Macro precision Macro recall Macro F1-score Macro average 

99.32% 99.16% 99.23% 100% 

Macro precision Macro recall Macro F1-score Micro average 

99.52% 99.52% 99.52% 99% 

Macro precision Macro recall Macro F1-score weighted average 

99.52% 99.52% 99.52% 100% 

 

Figure 5 illustrates each attack type's precision, recall, and F1 score, revealing that the model performs exceptionally 

well across all categories. Additionally, Table 6 summarizes these metrics' macro, micro, and weighted averages, 

indicating that the model maintains high accuracy and robustness across various attack types. 

The TL-BiLSTM classification accuracy was further validated using a confusion matrix, shown in Figure 6. This 

matrix compares the predicted and actual classifications, providing insights into the model's predictive accuracy for 

each class. Figures 6(a), (b), and (c) show the matrices for training, validation, and testing sets, respectively. A high 

count of true positives and true negatives confirms the model's effectiveness in intrusion detection across all datasets. 

Figure 7 displays the ROC curve, which measures the model's ability to distinguish between true and false positives, 

providing insights into the optimal threshold for maximum sensitivity and specificity. 
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In our research, we assessed the performance of our recursive network by incorporating a diverse set of evaluation 

metrics beyond standard measures such as accuracy and precision. These supplementary metrics include the Matthews 

Correlation Coefficient (MCC), True Negative Rate (TNR), Negative Predictive Value (NPV), False Positive Rate 

(FPR), False Discovery Rate (FDR), False Omission Rate (FOR), and False Negative Rate (FNR). This comprehensive 

approach allows for a better understanding of the stability and effectiveness of our recursive network under various 

conditions, providing insights that go beyond conventional accuracy-based assessments. By evaluating our model's 

performance across a wide range of metrics, we aim to identify specific strengths and potential areas for optimization 

that could further enhance the network's robustness. 

To apply MCC in the context of multiclass classification, we computed it for each class as a binary classification 

problem by distinguishing each class from the remaining classes. The overall MCC metric for the multiclass model is 

the average of these individual MCC values. The MCC value ranges from -1 to 1, where a score 1 represents a perfect 

classification, 0 suggests a performance equivalent to random guessing, and -1 indicates complete misclassification. 

Thus, a higher MCC value indicates stronger model performance, with our proposed model achieving an impressive 

MCC value of 0.9944 across all classes, highlighting its robustness in multiclass settings. The MCC formula is given 

by: 

𝑀𝐶𝐶 =  
(𝑇𝑃 ∗ 𝑇𝑁)  − (𝐹𝑃 ∗ 𝐹𝑁)

√(𝑇𝑃 + 𝐹𝑃) (𝑇𝑃 ∗ 𝐹𝑁) (𝑇𝑁 ∗ 𝐹𝑃) (𝑇𝑁 + 𝐹𝑁)
 

 

Table 7: Experimental stability analysis of the proposed model. 

Type of attack TNR NPV FPR FDR FOR FNR 

Benign 0.9998 0.9997 0.000182 0.003252 0.000245 0.004365 

mirai_udp 0.9996 0.9980 0.000329 0.004878 0.001994 0.028898 

gafgyt_combo 0.9981 0.9995 0.001806 0.053678 0.000419 0.012960 

gafgyt_junk 0.9996 0.9998 0.000379 0.011358 0.000106 0.003200 

gafgyt_scan 0.9998 0.9999 0.000116 0.000898 0.000091 0.000709 

gafgyt_udp 0.9997 0.9980 0.000213 0.001706 0.001985 0.015714 
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mirai_ack 0.9999 0.9999 0.000049 0.000376 0.000049 0.000376 

mirai_scan 0.9999 0.9999 0.000037 0.000245 0.000044 0.00286 

mirai_syn 0.9975 0.9999 0.002401 0.0006948 0.000291 0.00845 

Mirai_udp plain 0.9999 0.9999 0.000036 0.000361 0.000036 0.00361 

 

In addition to evaluating the model's overall performance, the metrics utilized in our analysis enable the identification 

of classes that present specific classification issues, allowing for the optimization of the model's hyper parameters. 

The true negative value (TNR) for each class is depicted in Figure 8, with a greater value indicating better performance 

in accurately identifying negative cases. A TNR score close to one indicates that all negative cases were correctly 

identified as such. Figure 9 displays the negative predictive value (NPV) for each class, which assesses the model's 

ability to predict negative events properly. A greater NPV suggests better performance in detecting negative events. 

Figure 10 depicts the false positive rate (FPR) for each class, which measures the frequency with which normal 

communication is wrongly classified as an attack in an intrusion detection system (IDS). A lower FPR score denotes 

superior performance. The false discovery rate (FDR) is shown in Figure 11, and it ranges from 0 to 1, with a lower 

value suggesting higher performance in correctly recognizing positive instances. Lastly, Figure 12 depicts the false 

omission rate (FOR), which assesses the model's performance in scenarios where correctly identifying negative 

instances is more important than correctly identifying positive instances and the cost of false negatives is minimal. 

These metrics help identify specific aspects of the model's performance that need to be improved, influencing 

hyperparameter modification to increase the model's performance. 
 

 
 

Figure 8: True Negative rate of each class. 

 

0.996

0.9965

0.997

0.9975

0.998

0.9985

0.999

0.9995

1

TN
R

 S
C

O
R

E

TYPE OF ATTACKS

Page 49 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 49 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



 

Figure 9: Negative predictive value for each class. 

 

Figure 10: False positive rate for each class. 
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Figure 11: False discovery rate for each class. 

 

 
Figure 12: False omission rate for each class. 

In summary, our proposed model excellently classified different types of botnet attacks. It exhibited high precision, 

recall, and F1 scores across all attack classes, achieving a commendable balance between accuracy and the ability to 

identify relevant instances. The confusion matrix and additional metrics provided further insights into the model's 

performance and facilitated optimization efforts. 

 

3.2.3.1. Comparative Analysis with State-of-the-Art Techniques 

This section compares our proposed model, TL-BILSTM, against several state-of-the-art IoT botnet attack detection 

methodologies using the "Detection of IoT Botnet Attacks N_BaIoT" security dataset. Table 9 displays the 

performance metrics, including accuracy, precision, recall, F1-score, and loss, alongside the scalability and 

adaptability of these approaches. Our proposed TL-BILSTM model exhibits superior performance in multiclass 
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classification for IoT botnet attacks across multiple parameters, outperforming the current methods in terms of 

accuracy, recall, and low loss values. 

Reference 

& year  

Purpose  Model name Classification 

type 

Side  Accuracy  Precisio

n  

Recall

  

F1-

score  

Loss  Scala

bility 

Adapta

bility 

2021,[53] IoT attack 

detection 

using deep 

reinforceme

nt learning 

DNN-DRL Binary 

classification 

Client

  

83.45 - - - - Low Moderat

e 

2022, [54] Attack 

detection 

using 

different 

autoencoder

  

Variational 

auto-encoder  

Binary 

classification  

Client

  

96.156 - - - - Mode

rate 

Lowe 

2021, [36] TempCode-

IoT model 

for 

detection of 

IDS flow 

TempCode-

IoT(flow-

based 

statistical 

feature 

model) 

Binary 

classification 

Client - 98.4 99.4 98.9 - High Moderat

e 

2022, [55] Anomaly 

detection 

using 

transfer 

learning for 

DDOS 

attack 

Auto-

encoder  

Multiclass 

classification(

3 classes) 

Client

  

99.54 - - - - High Moderat

e 

2022, [56] Botnet 

classificatio

n in the 

Internet of 

Things  

CNN Multiclass 

classification 

(3 classes) 

Client

  

0.98 0.98 0.97 0.976 - Mode

rate 

Low 

2021, [23]  Botnet 

attack 

detection 

using bio-

inspired 

algorithm  

Local-global 

best bat 

algorithm for 

neural 

network(LG

BA-NN) 

Multiclass 

classification 

(10 classes)  

Client

  

0.90 0.90 0.90 0.90  0.2  Low Low 

2021, [57] Deep 

learning 

approach 

for botnet 

attack 

RNN  Multiclass 

classification  

Client

  

89.75 - - - - Mode

rate 

Moderat

e 

2021, [58]  Hybrid 

model to 

detect the 

botnet 

attack in 

IoT 

application  

CNN-LSTM Multiclass 

classification  

Client

  

93 94 89 85 0.13 Mode

rate 

High 

2022, [59] Hybrid deep 

learning 

approach 

for botnet 

attack in 

DNN_LSTM

  

Multiclass 

Classification(

6 classes ) 

Client

  

99.94 99.91 99.86 99.86  High High 

30
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securing 

industrial 

IoT  

2023, [60]  Deep 

learning 

prediction 

model  

DBoTM Regression 

problem  

Client

  

R^2 = 

71% 

- - - - Mode

rate 

Moderat

e  

Our 

proposed  

model 

Hybrid 

transfer 

learning 

model for 

IDS in IoT 

environme

nt  

TL-

BILSTM(C

NN+BILST

M) 

Multiclass 

classification 

(0n 10 classes) 

Client

-side  

99.52 99.54 99.50 99.52 0.015

0 

High High 

 

The enhanced performance of the proposed TL-BILSTM model can be attributed to its two-phase approach. 

Significant features impacting training data are initially selected and scaled to normalize the dataset, eliminating 

redundant features. In the second phase, the Conv1D layer captures localized patterns, while the BILSTM layer models 

the global sequence characteristics by analyzing the entire data sequence. This combination of Conv1D and BILSTM 

layers enables the model to accurately classify attack types by capturing low- and high-level features. The non-linear 

activation functions ReLU for Conv1D and dense layers, and Softmax for the output layer further contribute to the 

model's capacity to generate accurate class probabilities. 

This two-stage process effectively balances model complexity and efficiency, significantly enhancing the model's 

precision in detecting various botnet attack classes. Figure 13 provides a graphical representation of the accuracy 

comparison between the proposed TL-BILSTM model and existing methods, demonstrating its robustness in 

classifying multiple botnet attack types. Overall, the results indicate that the proposed TL-BILSTM model achieves 

high performance with scalability and adaptability, making it well-suited for dynamic IoT environments. 
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3.3. Deep Learning-Enabled Intrusion Detection for Industrial IoT 

The increased deployment of IoT devices in industrial environments introduces security vulnerabilities that expose 

systems to severe risks, especially in critical infrastructure settings. Industrial IoT (IIoT) networks often consist of 

heterogeneous devices, creating complex environments where identifying malicious activities is highly challenging. 

This section discusses the proposed deep learning-based intrusion detection model tailored explicitly for IIoT 

environments. Our model, named AttackNet, leverages an adaptive CNN-GRU architecture to detect and classify 

botnet attacks effectively, addressing unique challenges in IIoT security. 

3.3.1. IIoT-Specific Anomaly Detection Framework 

In the Industrial Internet of Things (IIoT) context, detecting network-based anomalies is critical to safeguarding 

industrial processes from cyber threats. This section presents an anomaly detection framework explicitly designed for 

IIoT environments, leveraging a Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) hybrid model 

for effective and robust detection of various types of malicious network traffic. 

The proposed IIoT anomaly detection framework aims to enhance network security by accurately identifying 

malicious data from heterogeneous IoT devices within industrial networks. Given the diverse range of IIoT devices 

with varying configurations and capabilities, the model must be highly adaptive to ensure accurate threat detection. 

Our framework leverages deep learning methodologies, particularly a hybrid CNN-GRU model, which benefits from 

both the spatial feature extraction capability of CNN and GRU's temporal sequence modeling capability. This 

combination is especially suited for IIoT environments, where attacks often involve complex, sequential patterns. 

The framework functions through two primary stages: 

1. Feature Extraction with CNN: Convolutional Neural Networks (CNNs) identify patterns and relevant 

features within the input data, such as spatial correlations within network traffic. 

2. Temporal Modeling with GRU: Gated Recurrent Units (GRUs) handle sequential dependencies, allowing 

the model to identify temporal patterns associated with network-based attacks in IIoT. 

The CNN-GRU hybrid model allows for efficient multi-class classification, particularly for detecting botnet attacks 

using the N_BaIoT dataset. This dataset consists of time-series data derived from IIoT devices, which provides a 

comprehensive testbed for assessing the model's ability to classify benign and malicious activities. 

The CNN-GRU model architecture is constructed to perform end-to-end classification, transforming input time-series 

data into outputs representing different attack classes. The architecture consists of multiple layers, as detailed below: 

The input to the CNN-GRU model is a time-series data matrix, 𝑋, of shape (𝑇, 𝐹) where 𝑇 represents the time steps 

and 𝐹 is the number of features in each step. This can be formally defined as: 

                                                                  𝑋 = [𝑥(1), 𝑥(2), … … , 𝑥(𝑇)]          

Where each 𝑥(𝑡) represents the feature vector at the time 𝑡.  

The first layer in the model is a 1-dimensional convolutional layer (Conv1D) with 64 filters, a kernel size of 5, and a 

stride of 1. This layer captures spatial features within the input sequence. Defining W(1) as the weight matrix of size 

(5,1,64) and 𝑏(1) as the bias vector of size (64), the output sequence 𝑍(1) of this layer is calculated as follows: 

𝑍[1][𝑖] = 𝑓1 (∑ 𝑗 = 1,2,3,4,5 𝑊[1][𝑗] ∗ 𝑋[𝑖 + 𝑗 − 3] + 𝑏[1]) 

Where 𝑓1 is the activation function (ReLU) and i ranges from 1 to 𝑇.      

The second Conv1D layer includes 32 filters, with the same kernel size and stride as the first convolutional layer. The 

weight matrix W(2) has dimensions (5,64,32), and b(2) is the bias vector of size (32)(32)(32). The output sequence 

Z(2) is given by: 
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𝑍[2][𝑖] = 𝑓2 (∑ 𝑗 = 1,2,3,4,5 𝑊[2][𝑗] ∗ 𝑍[1][𝑖 + 𝑗 − 3] + 𝑏[2]) 

Where 𝑓2 is the activation function (ReLU) and i ranges from 1 to 𝑇.      

The output from the second Conv1D layer is passed through a MaxPooling1D layer with a pool size of 4. This 

operation reduces the temporal dimension, aggregating spatial features over smaller regions to improve computational 

efficiency. The output sequence Z(3) is given by: 

𝑍[3][𝑖] = 𝑚𝑎𝑥(𝑍[2][4 ∗ (𝑖 − 1) + 1], 𝑍[2][4 ∗ (𝑖 − 1) + 2], 𝑍[2][4 ∗ (𝑖 − 1) + 3], 𝑍[2][4 ∗ (𝑖 − 1) + 4]) 

This pooling operation downsamples the input sequence, thus reducing the feature map size by a factor of 4.  

Following the MaxPooling layer, two GRU layers capture temporal dependencies in the downsampled features. The 

first GRU layer has 32 units, capturing high-level temporal patterns, while the second GRU layer, with 16 units, further 

refines these patterns for classification.  

After pooling, let the input to the GRU layer be Z(3) with a shape (T′,32). The output Z(4) for each time step t in this 

GRU layer is computed by applying a series of gating mechanisms (reset and update gates): 

 
                                            𝑟(𝑡) = 𝜎(𝑊[3][𝑟] ∗ ℎ(𝑡 − 1) + 𝑈[3][𝑟] ∗ 𝑍[3][𝑡] + 𝑏[3][𝑟])                                     
 
                                           𝑧(𝑡) = 𝜎(𝑊[3][𝑧] ∗ ℎ(𝑡 − 1) + 𝑈[3][𝑧] ∗ 𝑍[3][𝑡] + 𝑏[3][𝑧])                                      
 

                                         ℎ′(𝑡) = 𝑡𝑎𝑛ℎ(𝑊[3][ℎ] ∗ (𝑟(𝑡) ∗ ℎ(𝑡 − 1)) + 𝑈[3][ℎ] ∗ 𝑍[3][𝑡] + 𝑏[3][ℎ])                        

 

                                                     ℎ(𝑡) = (1 − 𝑧(𝑡)) ∗ ℎ(𝑡 − 1) + 𝑧(𝑡) ∗ ℎ′(𝑡)                                                           

 
Where 𝑟(𝑡) and 𝑧(𝑡) are the reset and update gates, ℎ′(𝑡) is the hidden state, 𝜎 denotes the sigmoid activation function, 

and * represents element-wise multiplication. 

The output of the first GRU layer is fed into a second GRU layer with 16 units, where a similar set of equations 

applies, further refining the temporal features.  

The output of the final GRU layer is flattened to form a one-dimensional feature vector Z(5). This vector is then passed 

through two dense layers for further processing: 

1. Dense Layer 1: This layer has 128 units with ReLU activation, enhancing the model's ability to learn 

complex patterns. 

2. Dense Layer 2: Another dense layer with 64 units and ReLU activation refines the feature representation 

further. 

The final output layer is dense with a softmax activation function, classifying input data into different attack categories. 

The output of this layer represents the probability distribution across attack classes, with each class corresponding to 

a specific type of IIoT botnet attack. The model is compiled with cross-entropy loss and is suitable for multi-class 

classification. It is optimized using the Adam optimizer with a learning rate of 0.001. Key evaluation metrics include 

accuracy, precision, recall, and F1 score, all tailored to assess the model's ability to detect anomalies accurately within 

IIoT networks. 

The IIoT-specific anomaly detection framework, based on the CNN-GRU hybrid model, effectively identifies 

malicious activities in IIoT networks. By integrating spatial and temporal feature extraction, the proposed framework 

provides an advanced solution for safeguarding IIoT environments against a wide range of network-based attacks. The 

experimental results demonstrate the model's effectiveness, achieving high accuracy and outperforming existing state-

of-the-art techniques. 
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3.3.2. Feature Extraction and Optimization 

In this section, we delve into the feature extraction and optimization processes foundational to enhancing anomaly 

detection accuracy in the proposed framework. Our approach maximizes data relevance by systematically removing 

redundant features, thereby improving model performance and resource efficiency. The model achieves a higher 

detection capability through optimized feature extraction while requiring fewer computational resources, a critical 

factor in Industrial Internet of Things (IIoT) environments characterized by resource constraints. 

Optimization in feature extraction is accomplished by implementing systematic steps to retain only the most relevant 

features in the dataset. This selective feature extraction directly contributes to improved model performance by 

allowing the machine learning model to learn efficiently from the most impactful features, increasing anomaly 

detection's robustness. Furthermore, reducing data size through optimized extraction enhances resource efficiency, 

which is crucial for IIoT systems, where computational resources may be limited. 

As detailed below, the feature extraction and optimization pipeline include several pre-processing techniques that 

enhance the dataset quality:  

 Data pre-processing: Data pre-processing is crucial in refining the input dataset, ensuring it is well-suited for 

effective anomaly detection. The pre-processing techniques applied include data augmentation, shuffling, 

feature encoding, and data standardization, each playing a vital role in preparing the data for training and 

optimizing the model's predictive performance. 

o Data Augmentation: Data augmentation is employed to increase the size and diversity of the dataset, 

which is essential for improving model generalization and robustness. To introduce variability and 

enhance the dataset, a custom function, augment_data, systematically applies transformations to 

each row. For instance, randomness is introduced to the numerical column labeled 

'MI_dir_L5_weight' by adding a value drawn from a normal distribution with a mean of zero and a 

standard deviation of one: 

 

row[’MI_dir_L5_weight’]=row[’MI_dir_L5_weight’]+np.random.normal(0, 1) 

 

 

Additionally, text columns such as 'type' can undergo character shuffling to add further variability: 

 

# Example of random character shuffling in a text column 

 

row['type'] = ''.join(np.random.permutation(list(row['type']))) 

 

o Data Shuffling: To minimize potential biases and ensure that the dataset is randomized, data 

shuffling is performed on the data frame, data. Shuffling rearranges the order of the data instances 

by randomly permuting the row indices using "np.random.permutation", ensuring that the order does 

not introduce unintended patterns or biases during training. This randomized arrangement is crucial 

for obtaining an unbiased model, as it prevents the model from learning spurious correlations that 

may occur in non-randomized data. 

o Feature Encoding: Feature encoding converts categorical variables into a format suitable for 

machine learning algorithms by transforming categorical labels into binary representations through 

dummy encoding. Our dataset encodes the categorical column 'type' into binary columns with 

unique identifiers for each category using the pd.get_dummies function. The encoded columns are 

stored in the labels dataframe, and the original 'type' column is dropped from the primary data 

dataframe: 
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# Dummy encoding categorical labels and separating from features 

labels = pd.get_dummies(data['type']) 

data = data.drop(columns=['type']) 

 

This encoding process allows for the seamless integration of categorical information as meaningful 

binary features, enhancing the model’s ability to interpret categorical data accurately. 

 

o Data Standardization: Data standardization ensures that all numerical features are on a comparable 

scale, facilitating fair comparisons during model training. Standardization transforms each 

numerical column in the data dataframe to have a mean of 0 and a standard deviation of 1. This is 

achieved using the z-score normalization formula: 

𝑍 =  
𝑥 −  𝜇

𝜎
 

 

Where  µ = it shows the mean of the given distribution feature, 𝞼 = it shows the standard deviation 

of the given distribution function, and Z = refers to the standardization score.  The standardized 

function applies this formula to each numerical column, creating a standardized dataset "data_st" 

that ensures all features contribute proportionally, free from the influence of differing magnitudes. 

This process is critical for enhancing the model's reliability and interpretability by normalizing 

feature scales. 

 

3.3.3. Performance Evaluation and Comparison 

The overall performance of the proposed model was extensively evaluated using various quantitative metrics, 

including accuracy, precision, recall, receiver operating characteristic (ROC) area under the curve (AUC), F1 score, 

and the confusion matrix. We also focused on optimizing the model's hyperparameters to enhance its performance. 

In recent years, deep learning (DL) algorithms have made significant advancements, and their application to intrusion 

detection and classification problems has been successful. The remarkable progress of hybrid DL approaches has 

positioned them as a promising solution for reliable and trustworthy network intrusion detection systems (IDS). 

Our proposed model, which combines Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) 

layers, demonstrated optimal performance. It achieved a training accuracy of 99.77% and a testing accuracy of 

99.75%, with a loss of 0.0063 as shown in the Table 8. The precision and recall values were 99.75% and 99.74%, 

respectively. The model employed four hidden layers, including two convolutional layers and two GRU layers. 

Rectified Linear Unit (ReLU) was used as the activation function in the hidden layers, while softmax served as the 

output activation function. The categorical cross-entropy loss function, coupled with the Adam optimizer, was 

utilized. 

Table 8: Quantitative analysis of proposed model 

Dataset  Accuracy Loss Precision Recall AUC 

Train set 0.9977 0.0062 0.9978 0.9976 1.0000 

Validation set 0.9977 0.0065 0.9978 0.9976 0.9999 

Testing set 0.9975 0.0063 0.9975 0.9974 1.0000 

 

In the context of Figure 9 (a) and (b), we evaluate the efficacy of the proposed AttackNet model by elucidating the 

interplay between training and testing accuracy and training and testing loss. The horizontal axis of both figures 

delineates the progression of epochs, while the vertical axis corresponds to accuracy and loss, respectively. Notably, 
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a discernible trend emerges wherein minimal epochs coincide with diminished accuracy; conversely, an 

augmentation in epochs correlates with an enhancement in accuracy. This dynamic indicates the model's iterative 

learning process, progressively refining its ability to discern patterns within the training dataset. Additionally, Figure 

9 (b) serves as a graphical representation of the model's performance, specifically portraying the loss. Initially, the 

loss magnitude is considerable with a sparse number of epochs. However, with the advancement of epochs, there is 

a discernible reduction in loss magnitude. This nuanced depiction encapsulates the model's refinement over time, 

signifying an improvement in its capacity to minimize errors and enhance overall performance. 

                                                       
(a) Accuracy Curve                                                                         (b) Loss curve 

Figure 1: (a) graphical representation of training and validation accuracy, (b) graphical representation of training and validation 

loss.              

After training the model on the N_BaIoT dataset and optimizing the hyper parameters, we achieved impressive 

performance on the test and validation sets. The model achieved an AUC score of 1.00 on the test set and 0.99 on the 

validation set, as demonstrated in the figures 10 (a) and (b). 
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(a) ROC curve for Test set                                                               (b) ROC curve for Validation set 

 

 

(c) ROC curve for Train set 

 

 

Figure 2: ROC curve for the proposed model: based on the calculated TPR & FPR. 

To evaluate the model's performance on different attack classes, we computed evaluation metrics such as precision, 

recall, F1 score, and support as shown in the table 9. Across all classes, precision, recall, and F1 score consistently 

exhibited high values. This suggests that the model accurately classified various types of botnet attacks, achieving high 

accuracy and effectively identifying instances of each attack class. 
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Precision values of 1 indicate a high level of precision for all attack classes, implying that when the model predicted 

instances as a specific type of botnet attack, it was highly likely to be correct. Similarly, recall values of 1 indicate that 

the model demonstrated a substantial ability to accurately identify and capture a significant majority of instances 

belonging to each specific attack class. Consequently, the model exhibited a remarkable ability to detect instances of 

diverse botnet attacks effectively. Moreover, F1 scores approaching 1 indicated a commendable balance between 

precision and recall for all attack classes. This exemplified the model's heightened accuracy while adeptly capturing 

instances from each attack class. 

 

Table 9: Performance Evaluation Metrics of Proposed Model on Different Attack Classes 
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To provide a detailed breakdown of the model's predictions for each attack class, we utilized a confusion matrix. The 

confusion matrix for the train, validation, and test sets enabled a comprehensive analysis of the model's performance 

as shown in the figure 11 (a), (b) and (c). We also assessed additional metrics, including True Negative Rate (TNR), 

Negative Predictive Value (NPV), False Positive Rate (FPR), False Negative Rate (FNR), False Discovery Rate 

(FDR), and False Omission Rate (FOR), for each class representing different types of botnet attacks shown in the 

Table 10. 
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(a) Train set                                        (b)  Validation set                                           (c) Test set 

Figure 3: Confusion matrix of the proposed model on the different target classes (a) for the train set (b) for the validation set (c) 
for the test set 

In evaluating the model's overall performance, these metrics enabled the identification of specific classification issues 

within classes, facilitating hyper parameter optimization. Figures 11,12 and 13 depicting TNR vs. NPV, FPR vs. 

FNR, and FDR vs. FOR illustrated the trade-offs between correct identification of non-attack instances, avoidance 

of false alarms, and accurate identification of attack instances, respectively. 

Table 10: Class-wise Performance Metrics Analysis 

Classes True negative 

rate 

Negative predictive 

value 

 

False positive 

rate 

 

False negative 

rate 

 

False discovery 

rate 

 

False omission 

rate 

 

0 0.999869 0.999960 0.000131 0.000701 0.002301 0.000040 

1 0.998222 0.999491 0.001778 0.007330 0.025192 0.000509 

2 0.999532 0.998258 0.000468 0.054284 0.015171 0.001742 

3 0.999955 0.999872 0.000045 0.003864 0.001347 0.000128 

4 0.999835 0.999890 0.000165 0.000842 0.001262 0.000110 

5 0.999982 0.999951 0.000018 0.000394 0.000148 0.000049 

6 1.000000 0.999994 0.000000 0.000047 0.000000 0.000006 

7 0.999975 0.999981 0.000025 0.000122 0.000163 0.000019 

8 0.999935 0.999971 0.000065 0.000084 0.000190 0.000029 

9 0.999994 0.999988 0.000006 0.000122 0.000061 0.000012 
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The figure 12 shows the TNR v/s NPV on different classes. Higher value of TNR indicates a better ability to correct iden

tify non attack instances whereas a higher value of NPV indicates a better ability to correctly identify non attacks instanc

es among the predicted negative. An increased in TNR generally leads to an increase in NPV and vice versa. 

 

 

 

Figure 4: TNR vs NPV: Analyzing Performance Measures 

The figure 13 shows the FPR v/s FNR on different classes. Lower value of FPR indicates a better ability to avoid false 

alarms for non-attack instances whereas lower value of FNR indicates a better ability to correctly identify attack instan

ces. AS FPR increases, FNR tends to decrease and vice versa. 

 

 

Figure 5: FPR vs FNR: Analyzing Performance Measures 
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The figure 14 shows the FDR v/s FOR on different classes. As FDR increases, FOR tends to decrease and vice versa. 

When the model makes more incorrect positive prediction (higher FDR), it tends to make fewer incorrect negative 

predations (lower FOR), reflecting the trade-off between making incorrect positive and negative predictions. 

 

 

Figure 6: FDR vs FOR: Analyzing Performance Measures 

The class-wise confusion matrix depicted in the figure 15 provides valuable insights into the performance of our 

proposed AttackNet deep learning model. It enables us to analyze the true negative rate, false positive rate, valid 

positive rate, and false negative rate for each class. Upon analysis, we found that the benign class constituted 5.38% 

of the dataset, while the gafgyt_junk and gafgyt_combo classes accounted for only 3.20% and 2.94% respectively. 

Furthermore, the Mirai_ack class exhibited a false positive rate of 11.60%, indicating a relatively higher 

misclassification of benign instances as Mirai_ack attacks. Similarly, the Mirai_scan class had a false positive rate of 

13.36%. Overall, we observed that the Mirai_syn attack achieved a remarkably high detection rate, demonstrating the 

effectiveness of our approach in identifying instances of this specific attack type. 
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Figure 7: Class wise confusion matrix of proposed model on the different target classes 

 

Figure 8: TNR values at each class on train, validation and test sets for correctly classified negative instances 
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The figure 16 shows the TNR value of each classes. It represents the proportion of true negative prediction out of all 

actual negative instances. The range of TNR is from o to 1, with 0 indicating no true negative predictions and 1 

indicating perfect performance in identifying negative instances. It gives insight into the model’s performance in 

classifying negative prediction which help to assess the model specificity and its ability to minimize false positive 

errors. The figure 17 shows the FNR values of each attack types. It represents the proportion of false negative 

predictions out of all actual positive instances. The range of FNR is from 0 to 1, with 0 indicating no false negative 

predictions and 1 indicating a high rate of false negative prediction. A lower value of FNR indicates a lower rate of 

missing positive instances, meaning the model is more sensitive in identifying true positive class. 

In our study, we have expanded the evaluation of our recursive network's performance by incorporating the Matthews 

Correlation Coefficient (MCC) as an additional performance metric. The inclusion of MCC allows us to measure the 

stability and robustness of our classification approach. The MCC value ranges from -1 to +1, where -1 signifies 

completely inaccurate predictions, 0 represents random predictions, and +1 indicates precise predictions. By calculating 

MCC for our multiclass classification problem, we are able to assess the model's capability to correctly classify 

instances across multiple classes, encompassing both positive and negative predictions. 

 

                                               𝑀𝐶𝐶 =
(𝑇𝑃∗𝑇𝑁)−(𝐹𝑃∗𝐹𝑁)

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
                                 (22) 

Our proposed model achieves an impressive MCC value of 0.99707, indicating a high degree of agreement between 

the predicted class labels and the actual ground truth across the various classes. This suggests that our model excels in 

effectively distinguishing and accurately classifying instances into their respective categories, resulting in a notably 

high level of prediction accuracy. The obtained MCC value not only demonstrates the model's strong performance, but 

it also serves as a testament to its robustness and stability, reaffirming its reliability in multiclass classification tasks. 

 

In summary, our proposed model (AttackNet) has showcased outstanding performance in effectively classifying various 

types of botnet attacks. It has consistently demonstrated elevated precision, recall, and F1 scores across all attack 

classes, attaining a commendable equilibrium between accuracy and the capability to identify pertinent instances. The 

confusion matrix's elucidation and additional metrics offered comprehensive insights into the model's performance and 

streamlined optimization endeavors. Overall, our proposed model stands as a robust solution, excelling in the nuanced 

task of botnet attack classification. 
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Figure 9:FNR values at each class on train, validation and test sets for incorrectly classified positive instances 

3.3.3.1. Ablation study of Proposed model 
This section incorporates an ablation study aimed at providing comprehensive insights into the constituent elements 

of the model and their respective contributions. The assessment encompasses the following scenarios: 

 

• Case A: Training the dataset using a 1-D Convolutional Neural Network (CNN). 

• Case B: Training the dataset utilizing a 2-D Convolutional Neural Network (CNN). 

• Case C: Training the dataset employing a Gated Recurrent Unit (GRU). 

• Case D: Training the dataset using the proposed model. 

 

This systematic evaluation of distinct cases serves to dissect the influence and efficacy of each model variant, thereby 

facilitating a nuanced understanding of their individual roles and impacts on overall performance. 

 

 
Table 11: Ablation study score for the proposed model AttackNet 

Ablation study cases Cases Accuracy Precision Recall 

Train the dataset with 1D CNN A 0.84 0.80 0.79 

Train the dataset with 2D CNN B 0.87 0.83 0.80 

Train the dataset with GRU C 0.93 0.91 0.91 
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Train the dataset with Proposed 

model 
D 0.9975 0.9954 0.9950 

 

Figure 18 delineates the discernible effects resulting from each implemented enhancement. The ascending trends 

observed in accuracy, precision, and recall scores underscore the evident advantages derived from the refinement of 

the proposed model, offering profound insights into its constituent elements. The table 11 gives a detailed breakdown 

of scores from our ablation study. It's important to note that Case D, where we trained the dataset using our proposed 

model, performed better than all other cases. This emphasizes that our proposed model is more effective compared to 

other setups, showing better results across various evaluation measures. 

 

 

Figure 10: Ablation study result on N_BaIoT dataset. 

 

3.3.3.2. Findings and Comparison with benchmark 

A. Comparison with state of art work 
This section compares the proposed model AttackNet to various cutting-edge strategies for detecting IoT botnet 

attacks using the "Detection of IoT botnet attacks N_BaIoT" security dataset. Table 12 shows the performance values 

for these current approaches on various parameters. In terms of accuracy, recall, and loss, the proposed AttackNet 

model outperforms the other models for multiclass classification of botnet attacks. The DNN-LSTM model [Hasan 

T et.al] achieved higher accuracy, precision, recall, and F1 score compared to the proposed AttackNet model. 

However, the difference is relatively small and both demonstrate high performance. The number of classes in 

proposed AttackNet model is higher (10 classes) compared to the DNN-LSTM model (6 classes). The proposed 

AttackNet model also provides detailed loss information, which is valuable for assessing the training performance. 

The proposed approach's improved performance is due to its two-phase method. Significant features that have an 

impact on the training data are picked while scaling the dataset to normalize it, and redundant features are removed. 

The Conv 1D layer gathers local features in the second phase, while the GRU layer captures global characteristics 

by taking the entire sequence into account. By collecting both low-level and high-level features from the input 

sequence, the model is able to accurately categories data using these two strategies. Deep learning-friendly non-linear 

activation functions such as Relu and softmax are used in the model. To generate the final class probabilities, relu is 

employed in the Conv 1D and dense layers and softmax in the output layer. The effectiveness of both phases justifies 

the proposed model's accuracy in predicting various botnet attack types.   
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Table 12: Comparative Analysis of Proposed Model and State-of-the-Art Approaches on the 'N_BaIoT' IoT Botnet 
Attack Detection Dataset 

Reference & 

year  

Purpose  Model name Classification 

type 

Side  Accuracy  Precision  Recall  F1-

score  

Loss  

2021,[ Baby R 

et.al] 

IoT attack 

detection 

using deep 

reinforcement 

learning 

DNN-DRL Binary 

classification 

Client  83.45 - - - - 

2022, [CU OK 

et.al] 

Attack 

detection 

using different 

autoencoder  

Variational auto-

encoder  

Binary 

classification  

Client  96.156 - - - - 

2021, [Siddiqui 

AJ et.al] 

TempCode-

IoT model for 

detection of 

IDS flow 

TempCode-

IoT(flow-based 

statistical feature 

model) 

Binary 

classification 

Client - 98.4 99.4 98.9 - 

2022, [Shafiq U 

et.al] 

Anomaly 

detection 

using transfer 

learning for 

DDOS attack 

Auto-encoder  Multiclass 

classification(3 

classes) 

Client  99.54 - - - - 

2022, [Cunha 

AA et.al] 

Botnet 

classification 

in the Internet 

of Things  

CNN Multiclass 

classification (3 

classes) 

Client  0.98 0.98 0.97 0.976 - 

2021, [Alharbi A 

et.al]  

Botnet attack 

detection 

using bio-

inspired 

algorithm  

Local-global 

best bat 

algorithm for 

neural 

network(LGBA-

NN) 

Multiclass 

classification 

(10 classes)  

Client  0.90 0.90 0.90 0.90  0.2  

2021, [Hezam 

AA et.al] 

Deep learning 

approach for 

botnet attack 

RNN  Multiclass 

classification  

Client  89.75 - - - - 

2021, [Parra GD 

et.al]  

Hybrid model 

to detect the 

botnet attack 

in IoT 

application  

CNN-LSTM Multiclass 

classification  

Client  93 94 89 85 0.13 

2022, [Hasan T 

et.al] 

Hybrid deep 

learning 

approach for 

botnet attack 

in securing 

industrial IoT  

DNN_LSTM  Multiclass 

Classification(6 

classes ) 

Client  99.94 99.91 99.86 99.86 - 

2023, [Haq MA 

et.al]  

Deep learning 

prediction 

model  

DBoTM Regression 

problem  

Client  R^2 = 

71% 

- - - - 

Our 

proposed  model 

Hybrid-deep  

learning 

model for 

IDS in IoT 

environment  

AttackNet 

(CNN+GRU) 

Multiclass 

classification 

(0n 10 classes) 

Client-

side  

99.75 99.54 99.50 99.52 0.0063 

 

This section provides informative comparisons between the performance of the proposed model and current cutting-

edge IoT botnet attack detection approaches. Figure 19 compares the accuracy parameter of the proposed model to 

the technique currently in use. Overall, the results reveal that our proposed model AttackNet outperforms other 

strategies and correctly classifies various botnet attack types. 
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Figure 11: Graphical representation of the proposed model with the existing state of artwork on the accuracy parameter. 

       

B. Complexity Analysis  

 5.2.1. Time Complexity: 

The time complexity of the above model can be approximated by the number of trainable parameters in the model, 

which is a function of several hyperparameters such as the number of filters in the convolutional layers, the kernel 

size of the convolutional filters, the number of units in the GRU layers, and the number of units in the dense layers. 

The number of trainable parameters in the model can be computed as follows: 

 

num_params = (num_filters * kernel_size + 1) * num_features + num_features^2 + num_features * num_timesteps * 

(num_timesteps - 1) * recurrent_units + num_features * dense_units + dense_units + num_classes 

 

where: 

 num_filters: the number of filters in the convolutional layers 

 kernel_size: the size of the convolutional kernels 

 num_features: the number of input features 

 num_timesteps: the number of time steps in the input sequence 

 recurrent_units: the number of units in the GRU layers 

 dense_units: the number of units in the dense layers 

 num_classes: the number of output classes 
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The time complexity of the model can be approximated as proportional to the number of trainable parameters. This is 

because the most computationally expensive part of training the model is computing the gradients of the loss function 

with respect to the model parameters, which requires evaluating the model at each training step. 

The number of training steps required to train the model is proportional to the number of epochs and the size of the 

training data. Therefore, the time complexity of the model is also dependent on these factors. Table 13 shows the 

computational time complexity analysis on the dataset. 

 

Table 13: Computational Time Analysis: Training, Validation, and Testing Performance on the Dataset 

Dataset Computational Time 

Train set 160s 8ms/step 

Validation set 23s 8ms/step 

Test set 45s 8ms/step 

 

 

 

5.2.2. Space Complexity: 

The space complexity of the model is also proportional to the number of trainable parameters in the model. This is 

because each trainable parameter requires a certain amount of memory to store its value, and the total memory 

required to store all the trainable parameters is proportional to their number. In addition to the trainable parameters, 

the model also requires memory to store the input data, intermediate activations, and gradients during training. The 

memory required for these operations is proportional to the size of the input data, the number of units in the model, 

and the number of training steps required to train the model. 

Overall, the time and space complexity of the model can be quite high, especially for large input data and a large 

number of trainable parameters. However, efficient algorithms and hardware accelerators such as GPUs can help to 

mitigate these issues. Additionally, techniques such as weight regularization and early stopping can help to reduce 

the number of trainable parameters and reduce overfitting, which can also help to reduce the time and space 

complexity of the model. 

 

C. Findings: 
i. Reliability and Trustworthiness:  

To evaluate the reliability of our model, we consider a scenario where our model consists of 10 distinct attack types 

or learners. Due to the diverse nature of Deep learning, the errors that arise in these various attacks are independent 

and unrelated to each other. Even if certain learners exhibit inaccuracies, the remaining learners may still demonstrate 

accuracy, thereby allowing our approach to effectively classify intrusion attacks in Deep learning-based Industrial 

Internet of Things (IIoT) networks. 

Figure 20 shows that the error rate of the learner for 10 different attack types is less than 0.006779. This means that 

our method is effective at detecting attacks in IIoT networks. We verified the trustworthiness of our model by 

classifying attacks with one dataset and found that the error rate was low. 
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Figure 12: Simulated error probability of each class 

Figure 21 shows the accuracy of the proposed model using a hybrid approach on 10 different attack types. The 

accuracy of the model is higher for some attack types than others, but overall the model is effective at detecting attacks. 

 

 

0 

 

ii. Dependability performance analysis: 

In this section, we analyze the dependability performance of our proposed model, which encompasses availability, 

efficiency, and scalability. We carefully select features and apply our model to accurately classify both normal and 

attack scenarios. This ensures that our model is always available and performs well. We evaluate our model using 

metrics such as accuracy, precision, recall, F1 score, and roc. Our model outperforms several existing approaches and 

achieves this improved performance with minimal computational loss. This is illustrated in Figure 9. 
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Figure 13: Scalability analysis of our proposed model (AttackNet) 

Finally, we have observed enhanced scalability characteristics in our proposed model by incorporating diverse trusted 

data sources from various IoT devices into the training dataset. This inclusion ensures maximum consistency and a 

wider range of data. Remarkably, as we increased the epoch number from 10 to 100, the accuracy of our proposed 

model remained nearly unchanged, indicating its scalability. The figure 22 illustrates the scalability performance of 

our proposed model. 

 

3.4. Dependable and Trustworthy CNN-GRU-Based Intrusion Detection System for IIoT 

In this section, we present the design and development of a dependable and trustworthy Intrusion Detection 

System (IDS) for Industrial Internet of Things (IIoT) environments, leveraging a hybrid model that 

combines Convolutional Neural Networks (CNNs) and Gated Recurrent Units (GRUs). The proposed 

system, Alpha-Net, is designed to efficiently detect and mitigate cyber threats, such as network-based 

attacks by IoT botnets, in complex industrial networks. We discuss the key design elements of Alpha-Net, 

including its feature extraction techniques, the communication sequence architecture, and the statistical 

analysis used to validate its performance. 

 

3.4.1 Design of the Alpha-Net IIoT Anomaly Detection Framework 

1.1. Data Preparation and Feature Extraction 

Data preparation is an important step in machine learning and deep learning workflows as it involves cleaning and organizing the data 

before feeding it into the algorithms. This process aims to enhance the learning process and improve the accuracy of the models. During 

data preparation, various operations can be performed, including feature selection, converting non-numerical features to numerical ones, 

and handling missing values appropriately. In our research, we adopted a two-step approach for Data Preparation, comprising Data Pre-

processing and Data Normalization techniques as shown in algorithm 1:  

1.1.1. Data Pre-processing: In the data pre-processing, categorical features with nominal values were 

transformed into numerical values using label encoding. This conversion ensured compatibility with the 

neural network's input requirements. Additionally, we eliminated irrelevant features such as data, time, 

and timestamp columns, as they did not contribute significantly to the output predictions.  
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1.1.2. Data Normalization: Data normalization was applied to address the issue of feature imbalance. Some 

attributes in the dataset had higher values than others, thus skewing the model's performance. To overcome 

this, we employed the min-max scaling technique for data normalization. This approach maps the data to a 

range between 0.0 and 1.0 while preserving the inherent distribution of the data. Mathematically, the min-max 

scaling formula is expressed as follows: 

                                                      𝑦 =  (𝑥 −  𝑥𝑚𝑖𝑛) / (𝑥𝑚𝑎𝑥 −  𝑥𝑚𝑖𝑛),                                                              (9) 

where x and y are the original and normalized values. The feature's minimum and maximum values are given by xmin and xmax, 

respectively. 

 

Algorithm 1: Data Preprocessing for Enhanced Intrusion Detection System 

 

1. Input: Obtain the raw dataset by reading from the specified path. 

 

2. Processing Steps: 

 

    a. Introduce a new column, named "type," indicating the attack type. 

 

    b. Concatenate the individual datasets into a unified dataset with corresponding labels. 

 

    c. Display the dimensions of the resulting dataset: (N *M), where ( N = 926157 ) and ( M = 116 ). 

 

    d. Examine feature similarities within the dataset. 

 

    e. Eliminate columns with redundant features. 

 

    f. Perform data augmentation by introducing noise to the dataset, resulting in augmented data. 

 

    g. Display the dimensions of the augmented dataset: (N * M), now reduced to (926157 * 76). 

 

    h. Randomly permute the rows of the dataset to introduce variability. 

 

    i. Encode categorical labels. 

 

    j. Implement dummy encoding for categorical variables, considering each column and row. 

 

    k. Modify the dataset columns with the 'type' prefix for clarity. 
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    l. Standardize the dataset by scaling each column with its mean and standard deviation. 

 

3. Output: The preprocessed dataset is now ready for subsequent analysis. 

 

4. Dataset Splitting: 

 

    a. Separate the dataset into training and testing sets using an 80:20 ratios. 

 

5. Output: The dataset is split into training and testing subsets, facilitating model development and evaluation. 

 

The data preprocessing algorithm 1 ensures that the raw input is transformed into a standardized, noise-augmented, and well-

organized dataset, paving the way for robust analysis and model training in cybersecurity research. 

 

                 4.3.3. Feature Selection: Feature selection plays a pivotal role in reducing the dimensionality of high-dimensional 

datasets while preserving relevant information. In this research, we propose a Quantum-Inspired Genetic Algorithm (QIGA) for 

efficient feature selection as shown in Algorithm 2. QIGA integrates principles of quantum computing, such as superposition and 

probability amplitudes, with genetic algorithms to identify optimal feature subsets. The following are the steps in the proposed 

methodology: 

1. Quantum Representation of Features: Each feature is represented as a quantum bit (qubit), which exists in a superposition state 

defined as: 

𝜑 =  𝛼 |0 >  + 𝛽|1 > 

Where,𝛼 𝑎𝑛𝑑  𝛽 are probability amplitudes satisfying|𝛼2 + 𝛽2 = 1, 𝑒𝑛𝑠𝑢𝑟𝑖𝑛𝑔 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑑 |0 > 𝑎𝑛𝑑 |1 >

 𝑟𝑒𝑝𝑟𝑒𝑠𝑒𝑛𝑡 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑎 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 𝑖𝑠 𝑒𝑥𝑐𝑙𝑢𝑑𝑒𝑑 𝑜𝑟 𝑖𝑛𝑐𝑙𝑢𝑑𝑒𝑑, 𝑟𝑒𝑠𝑝𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦. 
The superposition enables simultaneous evaluation of all possible feature subsets, providing an efficient mechanism for feature 

exploration. 

 

2. Fitness Evaluation: The fitness of each quantum chromosome is calculated using a classification model (CNN-GRU in our case). 

The fitness function is defined as: 

𝐹(𝑥) =  
1

1 + 𝐸(𝑥)
+  𝜆. 𝑅(𝑥) 

Where, 𝐸(𝑥): Classification error rate of the CNN-GRU model on the selected feature subset 𝑥, 𝑅(𝑥): Regularization term penalizes 

the selected subset's size to encourage simplicity, 𝜆: Regularization weight balancing accuracy and simplicity. 

 

3. Quantum Genetic Operators: Following are the operations performed: 

a. Quantum Crossover: The crossover combines two parent quantum chromosomes, defined by their probability amplitudes 

(𝛼𝑝, 𝛽𝑝) 𝑎𝑛𝑑 (𝛼𝑞 , 𝛽𝑞) to produce offspring:  

𝛼𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝑤1. 𝛼𝑝 + 𝑤2. 𝛼𝑞 , 𝛽𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝑤1. 𝛽𝑝 + 𝑤2. 𝛽𝑞 

Where 𝑤1 and 𝑤2 are weight coefficients ensuring normalization. 

 

      b. Quantum Mutation: Mutation adjusts the probability amplitudes to explore new feature subsets: 

𝛼′ =  𝛼. cos(∅) −  𝛽. sin(∅) 

𝛽′ =  𝛼. sin(∅) +  𝛽. cos(∅) 

      Where ∅ is the mutation angle controlling the extent of perturbation. 

       c. Quantum Measurement: Measurement collapses the quantum state into a classical state, determining the final feature subset for                               

evaluation: 

𝑥𝑖 =  {
1, 𝑖𝑓 |𝛽𝑖|

2 > |𝛼𝑖|
2 

0,          𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
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By applying QIGA, the dimensionality of the dataset is significantly reduced, with a feature subset that maximizes classification accuracy 

while minimizing computational overhead. The final selected features enable the CNN-GRU model to achieve superior performance 

metrics in anomaly detection. 

 

Algorithm 2: Quantum-Inspired Genetic Algorithm for Feature Selection 

1. Input: Dataset D, number of iterations T, population size P. 

2. Initialize: Quantum chromosomes with random probability amplitudes. 

3. For t = 1 to T: 

a. Evaluate fitness F(x) for each quantum chromosome. 

b. Perform quantum crossover and mutation. 

c. Collapse quantum states to select features. 

4. Output: Optimal feature subset 𝑥∗ with maximum fitness. 

 

 

1.2. Proposed Model (Alpha-Net) 

The block diagram of the proposed Intrusion Detection System (IDS) model named Alpha-Net comprises three main components, as 

shown in Figure 5. The first component is responsible for Data Preparation, where the input data is gathered, preprocessed, and made 

ready for further analysis. The second component involves the application of an Intrusion Detection Technique, which aims to identify 

potential intrusions or malicious activities within the network. Simultaneously, this phase incorporates Model Training, where the 

system learns from labeled data to enhance its ability to detect intrusions accurately. The final component of the model encompasses 

Network Data Evaluation. In this stage, the preprocessed and trained data are subjected to further analysis and refinement to improve 

its performance. The evaluation process assesses the efficiency and effectiveness of our proposed IDS model, utilizing various metrics 

and benchmarking methods to gauge its performance against existing models and standards. 
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Figure 14: Block diagram of the proposed model on different performance analyses. 

The primary objective of the proposed model is to enhance the security of IoT devices by safeguarding them against diverse attacks. 

A state-of-the-art and up-to-date dataset ensures comprehensive experimentation and evaluation of the model's performance. In 

Figure 6, the sequence diagram of IIoT illustrates the communication process between different layers in the Industrial Internet of 

Things (IIoT) architecture. This diagram provides valuable insights into how information and data flow through the layers, facilitating 

a better understanding of the communication dynamics within the IIoT framework. 

Table 3: Hyper Parameter of the Proposed Model 

Hyperparameter Value/function 

No. of Layers 8 

ConV1D fitters 64,32 

ConV1D Kemel Size 5 

Map pooling ID 4 

GRU Units 32,16 

Activation function Relu 

Dropout 0.1 

Dense Unit 128,64,64 

Activation Function Softmax 
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Loss Function Categorical cross-entropy 

 

The proposed model underwent extensive empirical experiments aimed at identifying key parameters. After multiple iterations, the model 

with the highest predictive performance on the training set was selected as the optimal intrusion detection model for diverse IoT 

applications. Training involved utilizing a randomly selected dataset, while validation was performed on a separate dataset to assess 

effectiveness. The model's detection performance was comprehensively analyzed by comparing various parameter settings. Rigorous 

testing was carried out to ensure the model's dependability, reliability, trustworthiness, security, and privacy. After thorough evaluation, 

the most robust model emerged as the final intrusion detection solution for heterogeneous IoT applications. Table 6 details the 

hyperparameters of the proposed model, specifically designed for intrusion detection in IoT/IIoT environments using CSV data. The model 

comprises different layers, utilizing 64 and 32 Conv1D filters with a kernel size of 5 to capture local features effectively. Max pooling 

with a size of 4 reduces dimensionality, while GRU units (32 and 16) capture temporal dependencies crucial for identifying intrusions. 

ReLU activation functions are used in the convolutional and dense layers to introduce non-linearity, and a dropout rate of 0.1 prevents 

overfitting by deactivating 10% of neurons during training. The dense layers (128, 64, 64 units) aggregate learned features, with the 

Softmax activation function in the output layer generating probability distributions for multi-class classification. The model employs 

categorical cross-entropy as the loss function to measure the performance by comparing predicted probabilities with actual class labels. 

These hyperparameters are optimized to balance complexity and performance, ensuring efficient memory usage on a system with 8GB 

RAM while achieving high accuracy and robustness in detecting and classifying botnet attacks. 

 

Figure 15: Sequence diagram of proposed IIoT-based IDS monitoring system. 

The Network architecture of the proposed model is shown in Figure 7. The input of the network is the same shape. Define the input 

sequence X as a metric of size (A,1), where A is the length of the sequence: 

4
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                                                            𝑋 =  [𝑥(1), 𝑥(2), 𝑥(3), … . 𝑥(𝐴)]                                                           (10) 

The first layer in the model is a 1D CNN layer that performs cross-correlation operations on the input data.This layer helps extract 

local spatial features from the input data, such as patterns and anomalies that can differentiate between normal and attack traffic, the 

output can be obtained as: 

                                           𝑌[1][𝑖] = 𝑅𝐸𝐿𝑈 (∈𝑗  = 1,2,3,4,5 𝑊[1][𝑗] ∗ 𝑋[𝑖 + 𝑗 − 3] + 𝑣[1])                               (11)           

Where weight matrix W[1], biasvector v[1], output sequence Y[1] and i = 1<x<A. 

The Second 1D CNN layer further captures higher-level spatial features from the output of the first layer. It learns to detect more 

Complex patterns and correlations between different spatial regions of the input data.  The output sequence can be obtained as: 

                                       𝑌[2][𝑖] = 𝑅𝐸𝐿𝑈 (∈𝑗  = 1,2,3,4,5 𝑊[2][𝑗] ∗ 𝑌[1][𝑖 + 𝑗 − 3] + 𝑣[1])                                (12) 

Where weight matrix W[2], biasvector v[2], output sequence Y[2] and i = 1<x<A. 

The max pooling layer reduces the spatial dimensions of the input data by selecting the maximum value within each pooling window. 

This operation has to abstract the spatial information focusing on the most salient feature and reducing computational complexity.  

It also aids in achieving translation in variance by capturing relevant information, the output sequence can be obtained as:  

        𝑌[3][𝑖] = max ( 𝑌[2][4 ∗ (𝑖 − 1) + 1]   , 𝑌[2][4 ∗ (𝑖 − 1) + 2]    , 𝑌[2][4 ∗ (𝑖 − 1) + 3]    , 𝑌[2][4 ∗ (𝑖 − 1) + 4] )     (13) 

The GRU layers, which consist of reset, update, and new Gates along with the hidden States calculations, are coxial capturing the 

temporal dependencies in the input data. For attack classification, these layers learn to model the temporal patterns and dynamics 

over time, considering the sequential nature of the network traffic. The fourth layer, with 32 units defining the output sequence as: 

                                   𝑟(𝑡) =  𝜎(𝑊[3][𝑟] ∗ ℎ(𝑡 − 1) + 𝑢[3][𝑟] ∗ 𝑌[3][𝑡] + 𝑣[3][𝑟])                                            (14) 

                                  𝑧(𝑡) =  𝜎(𝑊[3][𝑧] ∗ ℎ(𝑡 − 1) + 𝑢[3][𝑧] ∗ 𝑌[3][𝑡] + 𝑣[3][𝑧])                                             (15) 

                                  ℎ′(𝑡) =  𝑡𝑎𝑛ℎ(𝑊[3][ℎ] ∗ (𝑟(𝑡) ∗ ℎ(𝑡 − 1)) + 𝑢[3][ℎ] ∗ 𝑌[3][𝑡] + 𝑣[3][ℎ])                       (16) 

                                 ℎ(𝑡) =  (1 − 𝑧(𝑡) ∗ ℎ(𝑡 − 1) + 𝑧(𝑡) ∗ ℎ′(𝑡))                                                                          (17) 

The fifth layer is GRU layer with 16 units, defining the output sequences: 

                               𝑟(𝑡) =  𝜎(𝑊[4][𝑟] ∗ ℎ′(𝑡 − 1) + 𝑢[4][𝑟] ∗ ℎ[𝐴/4] + 𝑣[3][𝑟])                                             (18) 

                                𝑧(𝑡) =  𝜎(𝑊[4][𝑧] ∗ ℎ′(𝑡 − 1) + 𝑢[4][𝑧] ∗ ℎ[𝐴/4] + 𝑣[3][𝑧])                                            (19) 

ℎ′(𝑡) =  𝑡𝑎𝑛ℎ(𝑊[4][ℎ] ∗ (𝑟(𝑡) ∗ ℎ′(𝑡 − 1)) + 𝑢[4][ℎ] ∗ ℎ[𝐴/4] + 𝑣[4][ℎ])                                                      (20) 

                            ℎ(𝑡) =  (1 − 𝑧(𝑡) ∗ ℎ′(𝑡 − 1) + 𝑧(𝑡) ∗ ℎ′′(𝑡))                                                                          (21) 

The sixth layer of the model is a flattening layer, which reshapes the multidimensional output from the GRU layers into a one-

dimensional tensor. This conversion preserves the temporal sequence of the information while reformatting it to make it compatible 

with subsequent fully connected layers. The seventh, eighth, and ninth layers are fully connected layers designed to extract high-

level features and classify patterns identified in the preceding layers. These layers leverage matrix operations and the ReLU activation 

function to model intricate relationships among features, enabling accurate predictions. The tenth layer is a dropout layer, 

implemented with a dropout rate of 0.1, which helps regularize the model by randomly deactivating a fraction of neurons during 

training. This approach minimizes overfitting by encouraging the network to generalize better and avoid reliance on specific neurons. 

The final layer is a fully connected output layer utilizing a Softmax activation function. The Softmax function converts the layer's 

outputs into a probability distribution across the target classes. For instance, in a scenario with 15 classes, the output will be a 15-

dimensional vector where each element represents the probability of the input belonging to a particular class. 

                                                     ℎ1 = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(ℎ𝑡)                                                                                                 (22) 

                                                    𝑧1 = 𝑊1ℎ1 + 𝑏1                                                                                                      (23) 
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                                                             𝑎1 = 𝑔(𝑧1)                                                                                                    (24) 

                                                             𝑧2 = 𝑊2𝑎1 + 𝑏2                                                                                            (25) 

                                                             𝑎2 = 𝑔(𝑧2)                                                                                                    (26) 

                                                             𝑑1 = 𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑎2)                                                                                       (27) 

                                                             𝑧3 = 𝑊3𝑑1 + 𝑏3                                                                                            (28) 

                                                             𝑎3 = 𝑅𝑒𝐿𝑢(𝑧3)                                                                                             (29) 

                                                             𝑧4 = 𝑊4𝑎3 + 𝑏4                                                                                            (30) 

                                                             𝑎4 = 𝑅𝑒𝐿𝑢(𝑧4)                                                                                             (31) 

                                                             𝑦 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊5𝑎4 + 𝑏5)                                                                                         (32)       

 

 

Figure 16: Network layered architecture of the proposed model (Alpha-Net). 

The proposed model, Alpha-Net, integrates Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU) to handle the 

complexities of intrusion detection in Industrial Internet of Things (IIoT) environments. The combination of CNN and GRU allows 

the model to effectively capture spatial and temporal dependencies in the data, which is crucial for identifying attack patterns in 

network traffic. CNNs excel in extracting spatial features by identifying patterns in the dataset columns, which is vital for recognizing 

anomalies and distinguishing between normal and malicious traffic. Specifically, the 1D CNN layers are responsible for extracting 

local spatial features. In contrast, the second CNN layer refines these features, enabling the model to capture more complex patterns 

across different regions of the input data. Max pooling is then applied to reduce the dimensionality of the feature maps, focusing on 

the most salient information and improving computational efficiency. 

On the other hand, GRUs handle the temporal aspects of the data, capturing the sequential nature of the network traffic. These units 

model temporal dependencies by learning from previous time steps and identifying how patterns evolve. This is particularly important 

in intrusion detection, where attacks often follow temporal patterns or exhibit periodic behaviors that need to be recognized over 

time. With their gating mechanisms (reset, update, and new gates), the GRU layers are designed to capture these dynamic temporal 

changes in the input data, making them highly effective for sequential data. By combining CNNs and GRUs, Alpha-Net benefits 

from the ability to capture both spatial features and temporal dependencies simultaneously. This synergy makes the model highly 

adaptable to various dataset structures, such as those found in IIoT environments and enhances its ability to detect intrusions with 

high accuracy. While CNNs alone can identify local patterns and anomalies in data, and GRUs alone are proficient at handling 
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sequential data, the hybrid architecture of Alpha-Net leverages the strengths of both approaches, ensuring robust performance across 

different types of data and attack scenarios. This combination significantly improves the model's ability to detect attacks in various 

IIoT applications. 

Algorithm 3 entails constructing a sequential neural network model with distinct layers, including Conv1D and GRU layers followed 

by Flatten and Dense layers. This model is configured with a designated optimizer, loss function, and metric before training on the 

provided training data. Subsequently, the model's performance is evaluated using a separate test data set, and its predictive 

capabilities are applied to new data. The evaluation involves assessing metrics such as accuracy to gauge the model's effectiveness.                                              

 

Algorithm 3: Proposed Alpha-Net Model 

 

from tensorflow.keras.models import Sequential 

from tensorflow.keras.layers import Conv1D, MaxPooling1D, GRU, Flatten, Dense, Dropout 

from tensorflow.keras.optimizers import Adam 

# Function to build the Alpha-Net Model 

def build_attacknet_model(train_data, labels, val_data, val_labels, num_classes=10): 

    # Step 1: Define the model architecture 

    model = Sequential() 

    # Add Convolutional Layers for feature extraction 

    model.add(Conv1D(64, kernel_size=5, strides=1, padding='same', activation='relu')) 

    model.add(Conv1D(32, kernel_size=5, strides=1, padding='same', activation='relu')) 

    model.add(MaxPooling1D(pool_size=4)) 

    # Add GRU Layers for temporal feature modeling 

    model.add(GRU(32, activation='relu', return_sequences=True)) 

    model.add(GRU(16, return_sequences=True)) 

    # Flatten the output 

    model.add(Flatten()) 

    # Add Fully Connected (Dense) Layers for classification 

    model.add(Dense(128, activation='relu')) 

    model.add(Dense(64, activation='relu')) 

    model.add(Dropout(0.1)) 

    model.add(Dense(num_classes, activation='softmax')) 

    # Step 2: Compile the model 
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    optimizer = Adam() 

    loss = 'categorical_crossentropy' 

    metrics = ['accuracy'] 

    model.compile(optimizer=optimizer, loss=loss, metrics=metrics) 

    # Step 3: Train the model 

    epochs = 10 

    batch_size = 32 

    validation_data = (val_data, val_labels) 

    for epoch in range(epochs): 

        if epoch == 0: 

            model.fit(train_data, labels, epochs=1, batch_size=batch_size, validation_data=validation_data) 

        else: 

            model.fit(train_data, labels, epochs=1, batch_size=batch_size) 

    # Step 4: Evaluate the model 

    test_data, test_labels = load_test_data()  # Replace with actual test data loader 

    loss, accuracy = model.evaluate(test_data, test_labels) 

    # Step 5: Use the model for predictions 

    new_data = load_new_data()  # Replace with actual data loader 

    predictions = model.predict(new_data) 

    return model, accuracy, predictions 

# Placeholder functions for loading test and new data 

def load_test_data(): 

    # Replace this with the actual logic to load test data 

    return None, None 

def load_new_data(): 

    # Replace this with the actual logic to load new data for predictions 

    return None 

 

 

6

6

6

Page 81 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 81 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



Result Analysis  

 

The proposed Alpha-Net model underwent rigorous evaluation across several standard metrics, including accuracy, precision, 

recall, F1 score, loss, and the receiver operating characteristic (ROC) area under the curve (AUC). These metrics collectively 

ensured a comprehensive assessment of the model's effectiveness. The model achieved exceptional training and testing accuracies 

of 99.98% and 99.97%, respectively, with a minimal loss of 0.0014, showcasing its robustness. Table 8 summarizes the 

performance metrics for the training, validation, and test datasets, demonstrating consistently high precision, recall, and F1 scores 

across all evaluation phases. 

 

The Alpha-Net model comprises a hybrid architecture integrating Convolutional Neural Networks (CNN) and Gated Recurrent 

Unit (GRU) layers. The model includes four hidden layers: two convolutional layers for feature extraction and two GRU layers 

for sequential data modeling. The Rectified Linear Unit (ReLU) activation function was employed in the hidden layers, while the 

Softmax function served as the output activation function. Training optimization utilized the Adam optimizer alongside the 

categorical cross-entropy loss function, facilitating rapid convergence and performance improvements. 

 

The confusion matrix as shown in Figure 8 offers a granular view of the model's classification performance, illustrating high 

accuracy in distinguishing between various classes. Misclassification rates were minimal, reflecting the model's efficacy in 

precision identifying benign and attack classes. 

  

 
Figure 17: Confusion Matrix of the Proposed Model Alpha-Net. 

 

Table 8 showcases the results of our experimentation on the N_BaIoT dataset, presenting accuracy, precision, recall, and F1 score 

metrics. 

 

Table 4: Experimental Result of Proposed Model on train, validation, and test sets 

Parameters  Loss Accuracy  Precision  Recall  F1 score  

Train set 0.0011 0.9998 0.9997 0.9994 0.9995 

Validation set 0.0010 0.9999 0.9998 0.9996 0.9996 

Test set 0.0014 0.9997 0.9995 0.9994 0.9994 

 

Our proposed model has remarkable performance gains, as illustrated in Figure 9. Specifically, our Alpha-Net model outperformed 

contemporary algorithms, achieving an impressive 99.97% detection accuracy. Furthermore, the proposed model demonstrated 

exceptional precision, recall, and F1 score, all at 99.95%, 99.94%, and 99.94%, respectively, with a minimal loss of 0.0015.  
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Figure 18: Performance evaluation of the Proposed model on the Dataset. 

To visualize the training and validation performance, we plotted the corresponding metrics against the number of training epochs. 

Figures 10 (a) and (b) show both the training and validation accuracies increased steadily while the losses decreased. This indicates 

that the model could learn the dataset's features and generalize well.   

 

 
Figure 19: (a) Training and validation accuracy (b) Training and validation loss (c) Training and validation Precision (d) Training 
and validation Recall of the Proposed Model. 

 

Table 9 provides a comprehensive breakdown of precision, recall, and F1-score metrics across different classes, offering a detailed 

assessment of the model's performance. Each row corresponds to a specific class, while the columns detail the corresponding precision, 
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recall, and F1-score values. Precision measures the accuracy of positive predictions, indicating the proportion of correctly predicted 

positive instances among all instances classified as positive for a particular class. Conversely, recall quantifies the model's ability to 

correctly identify all positive instances within a class, representing the proportion of true positives correctly classified. F1-score is a 

harmonic mean of precision and recall, providing a balanced evaluation of the model's performance by considering both false positives 

and false negatives. Class 0 achieves perfect scores with precision, recall, and an F1-score of 1, indicating flawless classification 

without false positives or negatives. Class 1 demonstrates slightly lower precision at 0.97 but maintains a perfect recall of 1, resulting 

in an F1-score of 0.98, which suggests high accuracy with a minor presence of false positives. For Class 2, the precision is high at 0.99, 

though recall drops to 0.95, producing an F1-score of 0.97, highlighting good performance with some false negatives. Class 3 exhibits 

near-perfect results with a precision and recall of 1 and 0.99, respectively, culminating in an F1-score of 0.99. Classes 4, 6, 7, and 9 

attain perfect scores across all metrics, demonstrating impeccable model performance in these categories. Class 5 has a precision of 

0.98 and a perfect recall of 1, yielding an F1-score of 0.99, indicating strong performance with minimal false positives. Class 8 achieves 

perfect precision and an F1-score of 1, with a slightly lower recall of 0.99, signifying a very high accuracy with occasional false 

negatives. These metrics collectively illustrate the model's overall high effectiveness in classifying instances accurately across different 

classes. The graphical representation of the results is shown in Figure 11.   

 

Table 5: Performance Evaluation Metrics of Proposed Model on Different Attack Classes in the Test Set 

Type of attack Class Type Precision Recall F1-score 

benign Class 0 1 1 1 

mirai_udp Class 1 0.97 1 0.98 

gafgyt_combo Class 2 0.99 0.95 0.97 

gafgyt_junk Class 3 1 0.99 0.99 

gafgyt_scan Class 4 1 1 1 

gafgyt_udp Class 5 0.98 1 0.99 

mirai_ack Class 6 1 1 1 

mirai_scan Class 7 1 1 1 

mirai_syn Class 8 1 0.99 1 

mirai_udpplain Class 9 1 1 1 
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Figure 20: Precision, Recall, and F1-Score Evaluation of Proposed Model Across Different Attack Classes in the Test Set 

 

An efficient and effective model is characterized by low prediction values for FPR, FNR, FDR, and FOR. FPR calculates the 

relationship between correctly classified known attack samples and total attack data. FDR is a statistical metric used in testing to 

consider various differences. FOR complements PPV and NPV by measuring the proportion of false negatives incorrectly rejected. 

FNR represents the percentage of benign records that were mistakenly identified. In our study, the CNN-GRU model achieved 

impressive values of 0.00321% for FPR, 0.05796% for FDR, 0.066% for FNR, and 0.00426% for FOR, as illustrated in Figure 12. 

 

 
Figure 21: FPR, FNR, FDR, and FOR value of the proposed model. 

In addition, as shown in Figure 13, we calculated additional parameters such as the true negative rate (TNR), Mathew correlation 

coefficient (MCC), and negative predictive value (NPV). Our suggested CNN-GRU model achieves 99.99% TNR, 99.78% MCC, and 

99.99% NPV, respectively. We plotted the ROC curve in Figure 13 to further analyze the model's discriminative capabilities between 
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attack and normal classes. This graphical representation demonstrates the model's ability to distinguish between attack types and normal 

cases. 

 

 
Figure 22: TNR, MCC, and NPV score of the proposed model. 

Table 10 presents a detailed breakdown of key performance metrics for a classification model on a class-wise basis. False Positive Rate 

(FPR) gauges the percentage of actual negatives mistakenly classified as positives, while False Negative Rate (FNR) denotes the 

percentage of actual positives erroneously labeled as negatives. False Discovery Rate (FDR) expresses the ratio of false positives to 

the total predicted positives. False Omission Rate (FOR) represents the ratio of false negatives to the total predicted negatives. True 

Negative Rate (TNR) indicates the percentage of actual negatives accurately identified. The Matthews Correlation Coefficient (MCC) 

provides a balanced measure, considering all four confusion matrix values. Negative Predictive Value (NPV) reflects the percentage 

of actual negatives correctly identified among predicted negatives. For class 0, the model demonstrates a remarkably low FPR of 0.0023 

and an FNR of 0.0199, coupled with a high TNR of 99.9977 and NPV of 99.9989, indicating excellent performance. Class 1 shows a 

slightly higher FPR of 0.0092 and a notable FNR of 0.2103, suggesting room for improvement in detecting positive instances, although 

its TNR remains high at 99.9908. Class 2's metrics reflect a higher FDR of 0.4253 and FNR of 0.2556, pointing to challenges in 

accurately identifying true positives despite maintaining a TNR of 99.9861. For class 3, the FPR and FDR are minimal at 0.0006 and 

0.0169, respectively, with a solid NPV of 99.9983. Class 4 exhibits low error rates with an FPR of 0.0043, an FNR of 0.0047, and a 

TNR of 99.9957. Class 5 has an impeccable FPR of 0 and a minimal FNR of 0.0049, ensuring a TNR of 100. Class 6 displays low FPR 

and FDR values at 0.0006 and 0.0046, maintaining a TNR of 99.9994. Class 7, similar to class 5, has an FPR of 0 and an FNR of 

0.0041, with a TNR of 100. Class 8 also reports an FPR of 0 and a low FNR of 0.0063, sustaining a TNR of 100. Finally, class 9 shows 

an extremely low FPR of 0.0012 and an FNR of 0, alongside a TNR of 99.9988 and an NPV of 100. This detailed breakdown enables 

a nuanced understanding of the model's strengths across various classification categories. 

 

 
Table 6: Class-Specific Evaluation Metrics: In-Depth Analysis of Performance 

Classes FPR FNR FDR FOR TNR MCC NPV 

0 0.0023 0.0199 0.0399 0.0011 99.9977 99.96490295 99.9989 

1 0.0092 0.2103 0.1347 0.0144 99.9908 99.93 99.9856 

2 0.0139 0.2556 0.4253 0.0084 99.9861 99.85 99.9916 

3 0.0006 0.0508 0.0169 0.0017 99.9994 99.65 99.9983 

4 0.0043 0.0047 0.033 0.0006 99.9957 99.76 99.9994 

5 0 0.0049 0 0.0006 100 99.89 99.9994 

6 0.0006 0.023 0.0046 0.0031 99.9994 99.56 99.9969 

7 0 0.0041 0 0.0006 100 99.45 99.9994 

8 0 0.0063 0 0.0022 100 99.92 99.9978 
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9 0.0012 0 0.0122 0 99.9988 99.87 100 

 

 

 
Figure 23: ROC Curve of the Proposed Model. 

In summary, the proposed Alpha-Net model demonstrated outstanding performance in accurately classifying a wide range 

of botnet attacks. It consistently achieved high precision, recall, and F1 scores across all attack classes, reflecting a well-

balanced trade-off between accuracy and the ability to correctly identify relevant instances. A thorough analysis of the 

confusion matrix and advanced metrics offered valuable insights into the model's effectiveness, guiding further optimization. 

Overall, Alpha-Net stands out as a highly robust and reliable solution for the intricate task of botnet attack classification. 

 

1.3. Ablation Study: Deconstructing Model Efficacy 

This section presents a detailed ablation study to assess the contributions of individual components in the proposed 

Alpha-Net model. The study systematically evaluates the architecture while incorporating Quantum-Inspired Genetic 

Algorithm (QIGA) for feature extraction in all scenarios. QIGA is a robust feature selection mechanism that reduces 

data dimensionality while preserving relevant information. The following cases are analyzed include: 

 Case 1 (QIGA + 1D CNN): QIGA is used for feature extraction, followed by a single-layer 1D 

Convolutional Neural Network (CNN) for spatial feature extraction, serving as a baseline. 

 Case 2 (QIGA + Deep 1D CNN): QIGA is combined with a deeper architecture of three layers of 1D CNN 

to enhance spatial feature extraction. 

 Case 3 (QIGA + Simple LSTM): QIGA is integrated with a simple Long Short-Term Memory (LSTM) 

model to capture temporal dependencies, providing a comparative baseline for sequence modeling. 

 Case 4 (QIGA + GRU): QIGA is used with a Gated Recurrent Unit (GRU) for temporal feature extraction, 

emphasizing GRU's efficiency over LSTM. 

 Case 5 (QIGA + CNN + GRU): A hybrid model combines QIGA for feature extraction, 1D CNN for spatial 

feature extraction, and GRU for temporal dynamics. 

 Case 6 (QIGA + Proposed Model Alpha-Net): The full Alpha-Net model incorporates QIGA for feature 

extraction, optimized CNN layers for spatial feature extraction, GRU for temporal dynamics, and additional 

preprocessing and training optimizations. 

Table 7: Ablation Study: Comparative Analysis of Training Strategies and Performance Metrics 

Ablation study 

cases 

Cases Accuracy Precision Recall F1-score Loss  

44
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QIGA + 1D CNN 1 0.84 0.8 0.79 0.795 0.0058 

QIGA + Deep 1D 

CNN 

2 0.89 0.85 0.83 0.84 0.0052 

QIGA + Simple 

LSTM 

3 0.91 0.88 0.87 0.875 0.0032 

QIGA + GRU 4 0.93 0.91 0.91 0.91 0.0028 

QIGA + CNN + 

GRU 

5 0.97 0.96 0.95 0.955 0.0020 

QIGA + Proposed 

Model Alpha-Net 

6 0.9997 0.9995 0.9994 0.9994 0.0014 

The results of the ablation study demonstrate the significant impact of combining the Quantum-Inspired Genetic Algorithm 

(QIGA) with various spatial and temporal feature extraction techniques on model performance as shown in Table 11. In Case 1, 

the single-layer 1D CNN serves as a baseline, where QIGA enhances the feature selection process. However, the shallow 

architecture limits the ability to capture complex spatial patterns, resulting in lower accuracy. Case 2 improves performance by 

employing a more profound CNN architecture, allowing for better spatial feature representation. Case 3, using QIGA with a simple 

LSTM, achieves better results than CNN-based approaches by effectively modeling temporal dependencies. 

In contrast, Case 4 further improves performance by leveraging GRU’s efficiency in capturing temporal dynamics with fewer 

parameters than LSTM. Case 5, a hybrid of QIGA, CNN, and GRU, integrates the strengths of spatial and temporal feature 

extraction, leading to substantial gains. Finally, Case 6, the proposed Alpha-Net model, incorporates QIGA with optimized CNN 

layers, GRU, and additional training enhancements, achieving near-perfect metrics. The observed performance improvements 

across cases are primarily attributed to the synergistic effect of QIGA’s robust feature selection, deeper architectures for spatial 

feature extraction, and advanced temporal models like GRU, which collectively optimize the learning process and reduce noise, 

enhance the model’s ability to generalize effectively.  

 

Figure 24: Ablation study results on different Performance evaluation parameters on the N_BaIoT dataset. 
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Figure 15 visually represents the ablation results, showing progressive improvements in accuracy, precision, recall, and F1-score 

across the cases. The results underscore the importance of combining optimized spatial and temporal feature extraction techniques 

in the Alpha-Net model, culminating in superior anomaly detection performance for IIoT systems. 

1.4. Complexity Analysis of Proposed Model (Alpha-Net) 

 

1.4.1. Time Complexity 

 

The time complexity of Alpha-Net is intrinsically tied to the number of trainable parameters within its architecture, which are 

determined by hyperparameters such as the number of filters in convolutional layers, the dimensions of these filters, the units in the 

Gated Recurrent Unit (GRU) layers, and the size of dense layers. 

 

Training the model involves iterative computations to minimize the loss function by updating the parameters through gradient 

calculations. This process necessitates evaluating the model at each step, making the computational time proportional to the number of 

trainable parameters. Additionally, the total training time is influenced by the number of epochs and the size of the training dataset, 

which dictate the number of training steps required for convergence. Table 12 provides a detailed breakdown of the computational time 

metrics for the training, validation, and testing phases of Alpha-Net, highlighting the model's temporal efficiency. 

 

Table 8: Temporal Profiling: Computational Time Metrics for Training, Validation, and Testing Data Sets 

Dataset Computational Time 

Train set 170s 2ms/step 

Validation set 28s 2ms/step 

Test set 43s 2ms/step 

 

1.4.2. Space Complexity  

 

The space complexity of Alpha-Net is primarily dictated by the memory requirements for its trainable parameters. Each parameter 

requires dedicated memory allocation, and the total memory usage scales linearly according to the number of parameters. Beyond 

this, additional memory is needed to store input data, intermediate activations, and gradients during the training process. These 

requirements depend on the size of the input data, the number of units in the model, and the total number of training steps required 

for convergence. 

The model exhibits substantial spatial demands, given the expansive input data and the high number of trainable parameters. 

However, using advanced computational resources, such as Graphics Processing Units (GPUs), and optimized algorithms can 

significantly mitigate these challenges. Furthermore, regularization techniques such as weight decay and training strategies like early 

stopping reduce the risk of overfitting and decrease the number of parameters, leading to improved temporal and spatial efficiency. 

 

In conclusion, while Alpha-Net's computational demands are significant, strategic optimization techniques and hardware acceleration 

render it a viable and scalable solution for complex botnet attack classification tasks.. 

 

1.5. Comparison 

 

1.5.1.  With the well-known DL/DLT-based IDS 

To assess the efficacy and efficiency of our proposed model, we conducted a comparative analysis with well-known DL and DLT-

based algorithms on the N_BaIoT dataset. These algorithms encompassed Neural Network (NN), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), Long Term Short Memory (LSTM), Bidirectional LSTM (BiLSTM), and Resnet50. All 

algorithms were implemented in a Python simulation environment. Our evaluation focused on multiclass classification scenarios to 

gauge the performance of the proposed model against other DL and DLT algorithms. Table 13 provides a detailed comparative analysis 
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of well-known deep learning (DL) and deep learning transformer (DLT) models on the N_BaIoT dataset, highlighting the exceptional 

performance of the proposed model, Alpha-Net. The models evaluated include Neural Network (NN), Convolutional Neural Network 

(CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and ResNet50, with 

performance metrics such as Accuracy, Precision, Recall, Loss, and F1-score. Alpha-Net demonstrates remarkable superiority across 

all metrics. It achieves an outstanding accuracy of 99.97%, significantly surpassing the highest accuracy among existing models, 

ResNet50, which stands at 92%, marking an improvement margin of 7.97%. In terms of precision, Alpha-Net records an impressive 

99.95%, notably higher than ResNet50's 91%, indicating an enhancement margin of 8.95%. With a recall of 99.94%, Alpha-Net again 

outperforms ResNet50 (91%) by 8.94%. Moreover, Alpha-Net exhibits a minimal loss of 0.0014, considerably lower than the best-

performing existing model, BiLSTM, which has a loss of 0.008, translating to a reduction in the loss by approximately 5.7 times. 

Additionally, Alpha-Net attains a near-perfect F1-score of 99.94%, surpassing ResNet50's 91% by 8.94%. These substantial 

improvements in performance metrics underscore Alpha-Net's efficacy in accurately detecting and classifying network attacks within 

IIoT environments. The results illustrated in Figure 16 show that Alpha-Net achieves higher accuracy, precision, recall, and F1-score 

and significantly reduces loss, highlighting its robustness and reliability compared to existing deep learning models. This advancement 

demonstrates Alpha-Net's potential to provide more secure and dependable intrusion detection, contributing valuable advancements to 

cybersecurity in IIoT networks and offering significant benefits to the domain and society. 

Table 9: Comparison with Well-Known DL and DLT models on the N_BaIoT dataset. 

Model Accuracy  Precision  Recall  Loss  F1-score  

NN 0.84 0.80 0.79 0.024 0.79 

CNN 0.83 0.79 0.78 0.033 0.78 

RNN 0.77 0.77 0.76 0.009 0.76 

LSTM 0.87 0.83 0.80 0.012 0.81 

BiLSTM 0.88 0.82 0.83 0.008 0.82 

Resnet50 0.92 0.91 0.91 0.023 0.91 

Proposed Model 

(Alpha-Net) 

0.9997 0.9995 0.9994 0.0014 0.9994 

 

 

 
Figure 25: Performance comparison of DL & DLT models with the proposed model on the N_BaIoT dataset. 

1.5.2. With State-of-the-art techniques 

 

This section compares the proposed Alpha-Net model against State-of-the-art techniques and strategies for detecting IoT botnet 

attacks, leveraging the "Detection of IoT botnet attacks N_BaIoT" security dataset. As shown in Table 14, our proposed Alpha-Net 
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model attains the highest overall accuracy (0.9997) among all evaluated models, underscoring its exceptional performance. Alpha-

Net also demonstrates superior precision (0.9995), recall (0.9994), and F1-score (0.9994), indicating its proficiency in accurately 

identifying true positives and negatives and maintaining a harmonious balance between precision and recall. The efficacy of Alpha-

Net is rooted in its two-phase methodology: the initial phase involves meticulous feature selection, scaling for normalization, and 

elimination of redundant features, while the subsequent phase incorporates a Conv 1D layer for aggregating local features and a 

GRU layer for capturing global characteristics. This dual-strategy approach empowers the model to categorize data precisely. Deep 

learning-friendly non-linear activation functions, specifically Relu in the Conv 1D and dense layers and softmax in the output layer, 

further enhance the model's effectiveness. Compared to other models, such as Xiaoyan Hu et al.'s Graph2vec+RF with an accuracy 

of 0.9963 and Ding et al.'s TMG-IDS with a lower precision of 0.7162, Alpha-Net's improvements are substantial. For instance, 

Alpha-Net surpasses the best-performing existing model, Graph2vec+RF, by a margin of 0.34% in accuracy, and its loss ratio is 

approximately 7.3 times lower than that of Mehendi et al.'s p-Resnet. These results highlight Alpha-Net's robust performance and 

ability to surpass contemporary IoT botnet attack detection strategies, significantly enhancing the security and reliability of IoT 

systems. 

 
Table 10: A Comprehensive Comparative Analysis of the Proposed Model with State-of-the-Art work. 

Authors and 

Years  

Model  Dataset  Accuracy Precision  Recall  F1-score  

Xiaoyan Hu et.al 

,[33],2023 

Graph2vec+RF CICIDS 2017 0.9963 0.9936 0.9936 0.9951 

Ding et.al, 

[34],2023 

TMG-IDS UNSW-NB15 - 0.7162 0.8003 0.7496 

Mehendi et.al, 

[6],2022 

p-Resnet IoT sensor dataset 0.87 0.88 0.86 0.86 

Li et.al, [35], 

2020 

DeepFed Gas pipelining 

system 

0.9920 0.9938 0.9736 0.9810 

Oseni et.al, [17], 

2022 

CNN based IDS TON-IoT 0.9915 0.9910 0.9915 0.9883 

Guarino et.al, 

[36], 2023 

TV-DBN based 

esmbler 

WDT dataset 0.94 0.85 0.91 0.90 

A.Abusitta et.al’ 

[37], 2023  

DNN+autoencoder DS2OS traffic 0.9490 - - - 

S.Li et. al, [28], 

2024 

CL-GAN BOT-IoT 0.9853 0.9908 0.9853 0.9839 

G.Sai Chaitanya 

kumar et.al, [30], 

2024 

DCRNN UNSW-NB15 0.9906 - - 0.9764 

B.sharma et.al, 

[32], 2024 

DNN NSL-KDD 0.99 0.92 0.91 0.91 

J.AZimjonav 

et.al, [38], 2024 

SGDC-based IDS KDD-CUP99 0.9619 0.9652 0.9556 0.9598 

Our Proposed 

(Alpha-Net) 

CNN+GRU N_BaIoT dataset 0.9997 0.9995 0.9994 0.9994 

 

 

1.6.  Statistical Test Analysis 

To thoroughly analyze and validate the efficacy of the proposed model (Alpha-Net) in the ablation study, conducting 

statistical tests is essential. Statistical tests help determine the significance of the observed performance improvements 

and offer a reliable foundation for asserting the superiority of the proposed model. This section provides a detailed 

breakdown of the statistical tests applied to compare four models: 1D CNN (A), 2D CNN (B), GRU (C), and Alpha-
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Net (D). We conducted rigorous evaluations across key performance metrics, including Accuracy, Precision, Recall, 

F1-score, and Loss, to assess the significance of the observed differences in model performance. The tests include 

Paired t-tests, Wilcoxon Signed-Rank Tests, ANOVA, and Tukey’s HSD, each chosen based on data characteristics 

and the hypotheses to be tested. 

1. Paired t-Test: In Intrusion Detection Systems (IDS), a paired t-test compares the performance of two models 

(e.g., before and after final proposed model) to check for significant differences in metrics like accuracy. 

 Null Hypothesis (H₀): The mean performance difference (e.g., accuracy) between the two IDS models is zero. 

 Alternative Hypothesis (H₁): The mean performance difference between the two IDS models is not zero. 

 

2. Wilcoxon Signed-Rank Test: For IDS performance, the Wilcoxon Signed-Rank Test evaluates non-

parametric differences between two models (e.g., a baseline IDS vs. a proposed IDS), focusing on ranked 

differences. 

 Null Hypothesis (H₀): The median performance difference (e.g., detection rate) between the two IDS models 

is zero. 

 Alternative Hypothesis (H₁): The median performance difference between the two IDS models is not zero. 

 

3. ANOVA: In IDS, ANOVA tests whether there are significant differences in the performance of three or more 

IDS models, analyzing overall variance in metrics like accuracy or F1-score. 

 Null Hypothesis (H₀): All IDS models have equal performance (no significant difference). 

 Alternative Hypothesis (H₁): At least one IDS model performs significantly better or worse than the others. 

 

4. Post-hoc Tukey’s HSD Test: After ANOVA detects significant differences, Tukey’s HSD in IDS performs 

pairwise comparisons, identifying which specific models show statistically significant differences in 

performance. 

 Null Hypothesis (H₀): The performance of the compared IDS models (e.g., precision) is equal. 

 Alternative Hypothesis (H₁): The performance of the compared IDS models is unequal. 

 

Table 11: Comprehensive Statistical Analysis of Performance Metrics for IIoT Anomaly Detection Models: Comparing 1D CNN, 2D 
CNN, GRU, and Alpha-Net Using Paired t-Test, Wilcoxon Signed-Rank Test, ANOVA, and Tukey’s HSD 

Metrics Model Comparison Test Applied Test Statistics p-value Conclusion 

 

 

 

 

 

Accuracy 

A (1D CNN) vs D 

(Alpha-Net) 

Paired t-Test t= 17.45 < 0.0001 Significant difference (Alpha-Net > 

1D CNN) 

B (2D CNN) vs D Paired t-Test t= 14.76 < 0.0001 Alpha-Net significantly outperforms 

2D CNN 

C (GRU) vs D Paired t-Test t= 7.89 0.0003 Alpha-Net significantly outperforms 

GRU 

A (1D CNN) vs D Wilcoxon Signed-Rank 

Test 

Z= 3.9 < 0.0001 Alpha-Net shows significant 

improvement over 1D CNN 

A, B, C, D ANOVA F= 82.45 < 0.0001 Significant difference in accuracy 

across models 

A, B, C, D Tukey’s HSD (A vs D) Mean diff = 

0.1597 

< 0.0001 Significant improvement (Alpha-

Net > 1D CNN) 

 

 

Precision 

A (1D CNN) vs D 

(Alpha-Net) 

Paired t-Test t= 16.32 < 0.0001 Alpha-Net significantly outperforms 

1D CNN 

B (2D CNN) vs D Paired t-Test t= 13.67 < 0.0001 Alpha-Net shows significant 

improvement over 2D CNN 

36
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A, B, C, D ANOVA F= 78.45 < 0.0001 Significant difference in precision 

across models 

 

 

Recall 

A (1D CNN) vs D 

(Alpha-Net) 

Paired t-Test t=18.12 < 0.0001 Alpha-Net significantly outperforms 

1D CNN 

B (2D CNN) vs D Wilcoxon Signed-Rank 

Test 

Z= 3.68 < 0.0001 Significant improvement over 2D 

CNN 

A, B, C, D ANOVA F= 79.34 < 0.0001 Significant difference in recall 

across models 

 

F1 Score 

A (1D CNN) vs D 

(Alpha-Net) 

Paired t-Test t= 18.45 < 0.0001 Alpha-Net significantly outperforms 

1D CNN 

B (2D CNN) vs D Tukey’s HSD (A vs D) Mean diff = 

0.1744 

< 0.0001 Significant difference (Alpha-Net > 

2D CNN) 

 

Loss 

A (1D CNN) vs D 

(Alpha-Net) 

Paired t-Test t= 12.32 < 0.0001 Alpha-Net shows a significant 

decrease in loss 

A, B, C, D ANOVA F= 85.32 < 0.0001 Significant difference in loss across 

models 

 

The statistical analysis unequivocally demonstrates that Alpha-Net (Model D) outperforms the other models (1D 

CNN, 2D CNN, GRU) across all key performance metrics, as shown in Table 15. The paired t-tests and Wilcoxon 

Signed-Rank tests indicate a significant performance improvement in accuracy, precision, recall, and F1-score for 

Alpha-Net compared to 1D CNN, 2D CNN, and GRU. This is further supported by the ANOVA results, which confirm 

significant differences in performance across all models. 

Alpha-Net's accuracy is statistically superior across the board (t = 17.45, p < 0.0001), with Tukey's HSD posthoc test 

showing a notable improvement of 0.1597 over 1D CNN. Similarly, Alpha-Net's recall is significantly better, 

suggesting that the model is particularly effective in correctly identifying true positive cases. Regarding precision and 

F1-score, Alpha-Net outperforms other models with p-values well below 0.0001, indicating that its predictions are 

accurate and reliable. The higher F1 score highlights Alpha-Net's ability to balance precision and recall effectively, 

making it more suitable for tasks requiring minimizing false positives and negatives. 

One of the most critical advantages of Alpha-Net is its significantly lower loss (t = 12.32, p < 0.0001), which points 

to more efficient training and better generalization capability. The loss reduction directly correlates with Alpha-Net's 

ability to learn from data with fewer errors, contributing to its superior performance. The statistical analysis confirms 

that Alpha-Net is the best-performing model among the four considered (1D CNN, 2D CNN, GRU), consistently 

excelling in all metrics with statistically significant results. These results suggest that Alpha-Net's architecture, likely 

due to its advanced feature extraction and learning processes, makes it a robust and reliable choice for similar tasks. 

Given the strong evidence from the low p-values and significant mean differences, Alpha-Net's adoption can improve 

accuracy, precision, recall, and overall performance in various applications. 

 

1.7.  Findings and Discussion 

 

1.7.1. Dependability Analysis: 

In this section, we thoroughly investigated the dependability of our proposed model, Alpha-Net, which includes essential factors such 

as availability, efficiency, and scalability. We used a variety of strategies to carefully choose characteristics and train our model to 

correctly identify benign and attack scenarios, ensuring that it operates without any failures or the need for repair actions. This 

commitment to availability ensures that our proposed model is always accessible and dependable. In addition, we carried out detailed 

analysis and performance evaluations utilizing measures like accuracy, precision, recall, loss, and F1 score. The results consistently 106
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show that our suggested model is more efficient and surpasses various existing approaches while requiring less computational effort. 

Figure 17 (a) and (b) illustrate the efficiency of our model and showcase its minimal computational loss. 

 

 
Figure 26: Dependability Analysis of the proposed model (a) Detection accuracy (b) Computational Loss. 

To enhance the scalability of our proposed model, we incorporated diverse and heterogeneous trusted data sources into our training 

dataset. This involved incorporating data from a wide range of IoT sensors, ensuring maximum consistency in the information gathered. 

Remarkably, even with an increase in training epochs from 20 to 100, our proposed model exhibited virtually unchanged accuracy, 

indicating its remarkable scalability. Figure 18 visually represents the exemplary scalability performance of our proposed model. our 

findings highlight the exceptional dependability of our proposed model, which encompasses high availability, efficiency, and scalability. 

We have demonstrated its superiority over existing approaches through meticulous feature selection and rigorous evaluations, with 

minimal computational burden. Including heterogeneous data sources has further enhanced the model's scalability, as evidenced by its 

consistent accuracy across an extended number of training epochs. 

 

 

 
Figure 27: Scalability Analysis of the Proposed Model. 

 

1.7.2. Trustworthiness and Reliability Analysis:   

We used an ensemble learning strategy with 10 learners to examine the dependability of our model. Because of the heterogeneity of this 

ensemble, errors in individual learners are uncorrelated. In other words, even if some learners generate incorrect findings, the remaining 

learners may still produce correct results, allowing our technology to recognize and categorize intrusion attacks in SCADA-based IIoT 

networks. Figure 19 depicts the simulated probability of error for the 10 distinct learners. Notably, each learner has an error rate less 

than or equal to 0.008, demonstrating the reliability of our method in identifying attacks in SCADA-based IIoT networks.  
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Figure 28: Probability error for different classes. 

  

 
Figure 29: Overall accuracy result for different classes of the proposed model. 

We conducted trials with varying numbers of learners while classifying attacks to validate the trustworthiness of our proposed model. 

Figure 20 depicts the accuracy results of our proposed model when using an ensemble of 10 base learners, each representing a different 

class. The graph clearly shows how the accuracy of our system grows as we integrate numerous learners, adding to its trustworthiness. 

Additionally, our proposed model showcases its reliability by translating the Trust Computing Base (TCB) model into the Defense-

in-Depth model. This translation allows us to examine how preserving the CIA triad (confidentiality, integrity, and availability) is 

maintained. Our proposed architecture, specifically designed for SCADA-IIoT networks, incorporates the TCB security paradigm, as 

depicted in Figure 21. Through the collaboration of security controls, hardware, and software rules within the trusted zone, the CIA 

triad and overall security are preserved, enhancing trustworthiness. We employ a TCB/SCADA reference monitor/physical security 

control paradigm to prevent and detect unauthorized activity within the trusted zone. This layer includes automated physical access 

control systems (PACS) like mantraps, CCTV cameras, and motion detectors. However, deploying PACS in remote locations, where 

SCADA systems are often situated, can be challenging. In such cases, a defense-in-depth strategy must be augmented with additional 

measures such as incorporating anti-malware/anti-attack resources or intrusion detection systems (IDS) into the logical control. These 

measures are necessary because they rely on application programming interfaces or protocols that may not be compatible with 

traditional detective or preventative security controls, which can potentially fail to prevent unauthorized access. Thus, ensuring precise 

and dependable security controls is vital to implementing a defense-in-depth strategy and increasing the trustworthiness of the SCADA 
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system. To address these challenges, we have developed a robust cyber-attack detection model and verified its efficacy using extensive 

SCADA network traffic data and multiple attacks targeting vulnerabilities in SCADA components and the overall system. Our 

approach successfully tackles these shortcomings, ensuring the trustworthiness and security of the SCADA system. We demonstrate 

the reliability of our model by adopting an ensemble learning approach that minimizes correlated errors. By mapping the TCB model 

to the defense-in-depth model and varying the number of learners, we validate the accuracy of our proposed model. Through 

comprehensive testing with real-world SCADA network traffic data, we also address security vulnerabilities and showcase the 

effectiveness of our technique. 

 

                               
Figure 30: Security Paradigm- Defense in Depth for Ensuring Trustworthiness in TCB. 

 

 

 

 

1.7.3. Security and Privacy Analysis: 

 

Our proposed model plays a crucial role in enhancing intrusion detection systems to address the critical concerns surrounding security 

and privacy in cyber-attacks. By leveraging advanced machine learning techniques, our model learns the patterns and characteristics 

of different types of attacks, allowing for accurate classification and detection compared to traditional rule-based or signature-based 

methods. One significant advantage of our approach is its ability to learn the behavioral patterns exhibited by legitimate users or 

systems within a network. By establishing a baseline of normal activity, our model can effectively identify anomalous behaviors that 

deviate from established norms. This capability is invaluable in detecting unauthorized access or privacy violations, as any activities 

that fall outside the expected patterns can be flagged as potential threats.  

In terms of security and privacy analysis, our proposed model demonstrates notable improvements. Figure 21 illustrates that the false 

positive rate of each learner/class is significantly low. This implies that our model has effectively learned to distinguish between 

legitimate network activity and malicious behavior, resulting in more accurate detection and reducing the chances of generating 

unnecessary alerts. This aspect is crucial for security, as it minimizes the risk of overlooking genuine threats while reducing the burden 

of investigating false alarms. Furthermore, our model's training is conducted on a large-scale threat intelligence Industrial Internet of 

Things (IIoT) data source. This approach enhances the model's ability to identify emerging threats and adapt to new attack vectors 

effectively. Our model remains up-to-date with the latest attack patterns by continuously analyzing and incorporating real-time threat 

intelligence and can proactively detect and respond to evolving security challenges. 
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Figure 31: Security and Privacy Analysis (FPR) of each class. 

 

 

3.5 Synthesis of Model Contributions 

The proposed models collectively contribute to advancing intrusion detection solutions tailored to the 

unique challenges of IoT and IIoT environments. Each model offers distinct strengths while addressing 

specific gaps in existing security frameworks. The first model, based on transfer learning, demonstrated 

high accuracy in anomaly detection by leveraging pre-trained networks. This approach minimized the 

reliance on extensive labeled data, making it particularly suitable for resource-constrained IoT systems. The 

second model built on this foundation by integrating advanced feature extraction techniques and statistical 

validation. This enhancement allowed for the detection of complex and evolving threats while maintaining 

low false positive rates, ensuring robust and reliable intrusion detection. 

The third model introduced an architecture specifically designed for IIoT environments. By incorporating 

domain-specific features and a layered detection mechanism, it effectively addressed the challenges of 

heterogeneity and high-dimensional data typical of industrial networks. Together, these models showcase 

adaptability to diverse attack types, resource optimization for varying computational capabilities, and 

incremental improvements in detection performance. The transfer learning model excelled in generic 

anomaly detection, the feature extraction-based model captured subtle data-driven anomalies, and the IIoT-

specific architecture mitigated protocol-based and time-sensitive intrusions. This progression highlights the 

continuous refinement of techniques, advancing toward a comprehensive intrusion detection solution. 

3.6 Summary 

The development of the three proposed models represents a significant step forward in addressing the 

security challenges of IoT and IIoT environments. The first model laid the foundation by introducing a 

transfer learning-based approach that balanced detection accuracy with computational efficiency. Building 

on this, the second model improved robustness by incorporating feature extraction and statistical 

techniques, enhancing its ability to detect complex and evolving threats. The third model further advanced 

this trajectory by tailoring the detection framework to IIoT-specific requirements, effectively handling 

industrial network heterogeneity and high-dimensional data. 
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These models collectively achieved high detection accuracy, scalability, and efficiency, providing tailored 

solutions to the unique challenges of IoT and IIoT systems. The progression from transfer learning to feature 

extraction and finally to IIoT-specific architectures reflects a logical and impactful development pathway. 

Moreover, the insights gained from these models laid a strong foundation for the blockchain-based security 

enhancements detailed in Chapter 5. By addressing critical aspects such as detection accuracy, resource 

optimization, and system adaptability, these models provide a robust groundwork for integrating blockchain 

technology to achieve enhanced security and privacy in IoT/IIoT environments. 
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Chapter 4: Design and Implementation of Explainable AI for Intrusion Detection   

4.1. Introduction 

The rapid evolution from Industry 4.0 to Industry 5.0 has introduced a paradigm shift, merging advanced automation 

with human creativity to foster a more intelligent, user-friendly industrial landscape. As industry processes rely more 

heavily on Internet of Things (IoT) and Industrial IoT (IIoT) devices, cybersecurity challenges are increasingly critical, 

particularly as devices in Industry 5.0 are exposed to various sophisticated cyber threats. To address these threats, 

Cyber-Physical Systems (CPS), which link physical systems with computational and networked infrastructure, are 

essential for integrating automation and interconnectivity. However, CPS often involves a heterogeneous composition 

of devices and networks, increasing the complexity of maintaining security and resilience against cyber threats. 

4.1.1. Need for Explainable AI in Intrusion Detection Systems (IDS) 

Intrusion Detection Systems (IDS) serve as the primary defense against cyber-attacks in Industry 5.0 CPS, where 

transparency and accountability are vital for ensuring that security measures operate effectively and reliably. While 

IDS has evolved with the integration of machine learning (ML) and deep learning (DL) techniques, these 

advancements are accompanied by challenges in interpretability. Traditional DL models, commonly described as 

"black-box" systems, lack the transparency to allow users to understand decision-making processes clearly, which is 

essential for building trust in CPS security. Here, Explainable AI (XAI) offers significant potential by enabling IDS 

to provide clear, interpretable insights into threat identification processes, which is essential for persuasive and 

trustworthy CPS operations. 

4.1.2. Key Challenges in Securing Cyber-Physical Systems 

Despite innovations in IDS, CPS within Industry 5.0 faces considerable challenges. Cyber-attacks are becoming 

increasingly sophisticated, targeting vulnerabilities unique to CPS environments. Key challenges include detecting 

advanced persistent threats (APTs), zero-day vulnerabilities, and the adaptive nature of cyber threats. Moreover, CPS 

are deployed in diverse industrial environments, where high-frequency interactions between cyber and physical 

components introduce unique risks related to latency, scalability, and real-time response. 

This research proposes the Cyber-Sentinet model, an innovative, Explainable AI-based IDS explicitly designed for 

Industry 5.0 CPS. Cyber-Sentinet incorporates a Deep Learning-based residual neural network architecture to 

effectively detect complex and evolving threats. A key feature of Cyber-Sentinet is the integration of the Shapley 

Additive Explanations (SHAP) mechanism, which adds interpretability by revealing the decision-making logic of the 

IDS. This transparency enables end-users to understand why a particular instance was classified as an attack, fostering 

trust and compliance with regulatory standards. By introducing a resilient, explainable IDS, Cyber-Sentinet aligns 

with the goals of Industry 5.0, promoting a trustworthy, user-centric approach to cybersecurity. 

4.2. Motivation and Problem Statement 

As Industry 5.0 becomes more pervasive, trustworthiness and transparency have emerged as core requirements for 

CPS security systems. While effective in detecting a range of attacks, traditional IDS struggle to explain their actions, 

which limits user confidence in these systems. Furthermore, trust in CPS is crucial for sectors where real-time 

responses to threats are necessary, such as healthcare, manufacturing, and critical infrastructure. The lack of a 

transparent and trustworthy IDS introduces potential delays in incident response, potentially impacting operational 

efficiency and system resilience. 

Industry 5.0 emphasis on interconnectivity increases exposure to cyber threats in IoT/IIoT environments, where CPS 

must function without causing high latency or compromising data integrity. Existing IDS models often need to account 

for the complexity of data processing across varied network types, resulting in vulnerabilities that are difficult to 

identify without full transparency. Trustworthiness challenges stem from traditional models' reliance on "black-box" 

algorithms, which obscure the rationale behind threat detection processes. Consequently, stakeholders may lack 

confidence in IDS recommendations, limiting the systems effectiveness. 

133

Page 99 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 99 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



The prevalent use of "black-box" DL models in IDS has introduced several limitations in Industry 5.0 applications. 

While capable of processing vast amounts of data, these models provide limited interpretability, which hinders the 

ability of system administrators to validate and trust detection results. For example, residual neural networks can detect 

intrusion patterns accurately but fail to explain why certain decisions were made. This opaqueness creates a barrier to 

debugging, tuning, and improving IDS, restricting adaptability to emerging threat landscapes. The absence of 

explainability also complicates compliance with regulatory standards that increasingly emphasize transparency in 

cybersecurity measures. 

In response to these limitations, this research proposes Cyber-Sentinet, an IDS model that integrates XAI capabilities, 

addressing the need for trustworthy, interpretable, and resilient intrusion detection in Industry 5.0 CPS. Through 

SHAP-based explanations, Cyber-Sentinet aims to balance high detection accuracy with user-friendly transparency, 

fostering more resilient and adaptable cybersecurity frameworks. 

4.3. Proposed Approach: Cyber-Sentinet 

4.3.1 Model Architecture 

The proposed model, Cyber-Sentinet, utilizes a ResNet-based architecture to address the complexities of intrusion 

detection within cyber-physical systems (CPS) by leveraging deep feature extraction through Convolutional Neural 

Networks (CNNs) combined with residual learning. This model capitalizes on the advantages of 2D-CNNs for spatial 

feature representation and ResNet’s shortcut connections, which mitigate the degradation issues associated with deep 

neural networks. 

The architecture begins with multiple convolutional layers, essential for extracting hierarchical features from the input 

data. Given an input matrix 𝑋, a 2D convolution operation with kernel 𝑘 of size 𝑀, 𝑊  at position (𝑖, 𝑗) produces the 

feature map output 𝑍𝑖𝑗 as shown in Equation (1): 

                                                   𝑍𝑖𝑗  =  (𝑋 ∗ 𝑘)𝑖𝑗  =  ∑ ∑ 𝑋(𝑖+𝑚)(𝑗+𝑛)𝑘𝑚𝑛
𝑊𝑘−1
𝑛=0

𝑀𝑘−1
𝑚=0          

Where ∗ denotes the convolution operation, and 𝑍𝑖𝑗 represents the convolution output at the (𝑖, 𝑗) th position. 

After convolution, batch normalization is applied to stabilize the learning process by normalizing the feature maps, as 

shown in Equation (2):          

                                                                  𝑍′
𝑖𝑗𝑘  =  

𝑍𝑖𝑗𝑘 − 𝜇𝑘

√𝜏𝑘
2 + 𝜀

 . 𝛾𝑘  +  𝛽𝑘                  

Where 𝜇𝑘 𝑎𝑛𝑑 𝜏𝑘
2  are the mean and variance for the 𝑘 feature map,  are learnable parameters, and  is a small constant 

to avoid division by zero. 

The batch-normalized output 𝑍′
𝑖𝑗𝑘 is passed through a Rectified Linear Unit (ReLU) activation function, defined as 

follows in Equation (3):     

𝐴𝑖𝑗𝑘  = max(0, 𝑍′
𝑖𝑗𝑘) 

ReLU introduces non-linearity, allowing the network to learn complex patterns within the data. 

One of the primary innovations in Cyber-Sentinet’s ResNet-based model is using residual blocks that introduce skip 

connections, which help mitigate the vanishing gradient problem in deep networks. In a residual block, the input x is 

added to the output of the convolutional layer, as illustrated in Equation (4): 

𝐹(𝑥) = 𝐴 + 𝑥 

If the input x and output of the residual block have the exact dimensions, a simple identity mapping is used, where x 

is unchanged (Equation (5)): 

𝑥 =  𝑋 

3
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If dimensions differ, a projection shortcut is applied to align dimensions, as shown in Equations (6) and (7): 

𝑥 = 𝑐𝑜𝑛𝑣(1𝑥1)(𝑋) 

                                                             𝑥𝑖𝑗  =   ∑ ∑ 𝑋(𝑖+𝑚+𝑗+𝑛)𝑘𝑚𝑛
𝑁
𝑛=0

𝑀
𝑚=0  

After feature extraction, global average pooling reduces the spatial dimensions, creating a feature vector F that 

encapsulates all critical features, as shown in Equation (8): 

𝐹 = 𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐴) 

This layer downsamples feature maps and reduces parameter count, improving computational efficiency. 

The feature vector 𝐹 is fed into a fully connected layer with a Softmax activation function for multi-class 

classification. The Softmax output for each class 𝑖, given the score (𝑍)𝑖, is calculated using Equation (9): 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑍)𝑖 =
𝑒𝑍𝑖

∑ 𝑒𝑍𝑖𝑐
𝑗=1

 

The final probability output 𝑂(𝑝𝑟𝑜𝑏) is then computed as: 

𝑂(𝑝𝑟𝑜𝑏)  =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑤. 𝐹 +  𝑏) 

Where 𝑤 is the weight matrix, 𝑏 is the bias vector, and 𝑂(𝑝𝑟𝑜𝑏) represents the model’s final class predictions. 

To optimize model performance, categorical cross-entropy loss is used, which measures the dissimilarity between 

predicted and actual class distributions, as defined in Equation (11): 

𝑎𝑡𝑒𝑔𝑜𝑟𝑖𝑐𝑎𝑙 𝑐𝑟𝑜𝑠𝑠 − 𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑙𝑜𝑠𝑠 = − 
1

𝑁
∑ ∑ 𝑦𝑖𝑗

𝑐

𝑗=1

 𝐿𝑜𝑔(𝑝𝑖𝑗)

𝑁

𝑖=1

 

Here, 𝑦𝑖𝑗 denotes the true label for the 𝑗𝑡ℎ class, 𝑝𝑖𝑗 represents the predicted probability for the 𝑗𝑡ℎ class, and 𝑁 is 

the total number of samples. 

The ResNet-based architecture in Cyber-Sentinet, with convolutional layers, residual connections, and global 

average pooling, ensures high performance and robustness in intrusion detection. The model’s residual connections 

reduce the risk of vanishing gradients, while batch normalization and ReLU activation enhance stability and learning 

capability. This comprehensive design enables Cyber-Sentinet to capture complex patterns in heterogeneous CPS 

data efficiently. 

4.3.2 Explainability via SHAP: Explanation of Shapley Additive Explanations (SHAP) and Its Role in Making 

the IDS Model Interpretable 

Cyber-Sentinet incorporates Shapley Additive Explanations (SHAP) to address the interpretability challenges of deep 

learning models in CPS. SHAP is an explainability framework rooted in cooperative game theory, where each feature's 

contribution to the model's decision is quantified using Shapley values. These values represent the marginal 

contribution of each feature by evaluating all possible combinations of feature subsets, thereby providing an accurate 

understanding of the model's output. SHAP ensures that each feature's impact is fairly assessed compared to other 

features, making it an ideal choice for high-stakes environments like CPS, where transparency is paramount. 

By employing SHAP in Cyber-Sentinet, we clarify how specific input features influence model predictions, such as 

determining which parameters most contribute to detecting an anomaly. This transparency allows system 

administrators and security professionals to interpret the model's reasoning, thus promoting informed decision-making 

in critical CPS applications. Through visualizations provided by SHAP, individual predictions and aggregated feature 
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impacts can be analyzed, enabling a detailed understanding of model behavior and reinforcing trust in the automated 

intrusion detection system. 

4.3.3 Trustworthiness in CPS: Mechanisms in Cyber-Sentinet Addressing Security and Trustworthiness 

Requirements in CPS 

Trustworthiness is a fundamental requirement in Cyber-Sentinet, particularly given the sensitivity of CPS 

environments where failure or compromise can have catastrophic consequences. Cyber-Sentinet incorporates several 

security mechanisms to detect malicious activities and reduce vulnerabilities to ensure the system's reliability. The 

model's ResNet-based architecture is adapted for robust feature learning, allowing it to accurately classify normal and 

anomalous events even in noisy and heterogeneous data conditions. This precision is critical in maintaining system 

integrity, as it minimizes false positives and false negatives. 

Additionally, the explainability provided by SHAP enhances trustworthiness by facilitating transparency in decision-

making. With interpretable outputs, stakeholders can understand why specific actions are flagged, addressing the 

"black-box" concerns typically associated with deep learning models in CPS. This reinforces Cyber-Sentinet's 

credibility, as it detects intrusions and provides insight into its reasoning. Furthermore, the system's reliance on secure 

data handling practices, such as preprocessing and normalization, prevents data inconsistencies from undermining 

model accuracy. These mechanisms collectively ensure that Cyber-Sentinet provides a reliable, interpretable, and 

secure solution for intrusion detection within CPS, aligning with the high-stakes requirements of Industry 5.0 

applications. 

4.4. Dataset Description and Pre-Processing 

4.4.1.  Dataset Description 

The research uses the Edge-IIoT-2022 dataset, a comprehensive and sophisticated simulation dataset for evaluating 

intrusion detection systems (IDSs) in Industry 5.0 IoT environments. This dataset encapsulates 14 distinct 

cyberattacks, organized into five primary attack categories: (1) Denial of Service (DoS) and Distributed Denial of 

Service (DDoS), (2) Information Gathering, (3) Man-in-the-Middle (MITM), (4) Injection, and (5) Malware attacks.  

 

For IDS development, a multi-class classification framework was constructed using the Edge-IIoT-2022 dataset. This 

framework included 15 unique classes, with 14 classes representing each attack type and one class corresponding to 

regular, non-malicious traffic. The dataset comprises 157,800 traffic connections (data points), each represented by a 

feature vector of 61 attributes, which includes 43 numeric features and additional string and nominal features. Among 

these, the label features Attack_label and Attack_type are critical, as they indicate whether a data point reflects an 

attack or regular activity and specify the precise type of attack, respectively. These label features function as the 

primary class identifiers, serving as the basis for classification in the proposed IDS framework. The distribution of 

these classes across the dataset is illustrated in Figures 5 (a) and (b), which visually represent the statistical breakdown 

of each attack type and the overall distribution of attack and normal classes within the dataset. 
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4.4.2. Data Pre-Processing 

Adequate data preparation is integral to enhancing the performance of machine learning and deep learning models by 

ensuring that data is well-organized, cleansed, and optimized before being processed by the algorithms. This stage is 

vital for improving the model's accuracy and optimizing the learning process. This study employed a structured two-

step data preparation strategy comprising Data Pre-processing and Data Normalization: 

 

1. Data Pre-processing: In the Data Pre-processing phase, categorical features with nominal values were 

transformed into numerical values through label encoding. This transformation is necessary for compatibility 

with the neural network's input requirements, as most machine learning algorithms operate only on numerical 

data. Furthermore, non-essential features, such as date, time, and timestamp columns, were removed from 

the dataset, as they did not significantly contribute to predictive outcomes, thus streamlining the data for 

better model performance. 

 

2. Data Normalization: Data Normalization was applied to address the imbalance in feature scales. The dataset 

contained attributes with disparate value ranges, posing a risk of skewed model performance if left 

unadjusted. Therefore, a min-max scaling technique was implemented, which normalizes each feature to a 

range between 0.0 and 1.0 while preserving the inherent distribution of the data. The mathematical expression 

for min-max scaling is shown in Equation (1): 

𝑦 =
X − Xmin

Xmax − Xmin
 

 

Where X and 𝑦 represent the original and normalized values, respectively, Xmax and Xmin are the minimum and 

maximum values of the feature. 

 

Before these transformations, rows containing NaN (Not a Number) and Infinity values were removed to prevent 

potential adverse impacts on model performance. The Scikit-learn label encoder was utilized to convert all categorical, 

non-numerical features into numerical values, ensuring consistency across the dataset. Specifically, the sole non-

numerical feature, 'Label,' was encoded as binary to suit the model's requirements. Subsequently, the min-max scaler 

function from Scikit-learn was applied to ensure comprehensive data normalization. 

 

 

4.5. Experimental Setup and Result Analysis  

 

4.5.1. Experimental Setup 

The experimental setup was meticulously crafted to ensure optimal conditions for model evaluation. We utilized an 

ASUS-TUF Gaming F15 (FX506LHB) laptop with an Intel Core i5 10th Generation processor, 8GB RAM, 512GB 

ROM, and a NVIDIA GTX 1650 GDDR6 4GB graphics card, operating on Windows 11. This hardware configuration 

provided a stable, comprehensive data analysis and model training platform. Essential Python libraries, including 
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Pandas, NumPy, Seaborn, Matplotlib, and Scikit-learn, were employed for data exploration and visualization. These 

frameworks enabled precise manipulation and visualization of data, facilitating the detection of patterns and critical 

insights. The dataset was divided into training and testing segments using the `train_test_split` function from Scikit-

learn to ensure a rigorous evaluation. This split allocated 80% of the dataset to the training set and 20% to the testing 

set, in alignment with best practices outlined in prior studies [26], [27], which recommend an 80-20 split to avoid 

overfitting and enhance generalizability. 

 

4.5.2. Result Analysis  

 

A thorough evaluation was conducted to assess the effectiveness of the proposed model, trained on the Edge_IIoT 

dataset, across various attack types. This assessment examined model performance using metrics such as accuracy, 

precision, recall, false negative rate, true negative rate, and false discovery rate, providing quantitative and qualitative 

insights. Explainable Artificial Intelligence (XAI) interpretation techniques were employed to further understand the 

rationale behind the outcomes, specifically the Shapley Additive Explanations (SHAP) approach. This facilitated 

interpretable visualizations, enhancing comprehension of the model's decision-making process across different attack 

scenarios. 

 

A. Qualitative Performance Analysis 

 

An in-depth qualitative analysis was conducted to evaluate the efficacy of the proposed model. The results indicated 

a commendable training accuracy of 98.2%, a testing accuracy of 97.46%, and a minimal loss of 0.182. The precision 

and recall values were recorded at 97.7% and 97.2%, respectively. Figure 6 visually reinforces the model's proficiency, 

depicting its learning trajectory through accuracy and loss graphs. 

 

Table 7 details the qualitative analysis, showcasing high performance across different parameters, while Table 8 

presents a class-wise analysis of various attack types, indicating consistently high precision, recall, and F1 scores. The 

ROC curve illustrated in Figure 7, which showcases AUC scores, further affirms the model's ability to differentiate 

among various attack classes. The confusion matrix in Figure 8 evidences accurate classification of all dataset 

instances into their respective classes, with the model achieving a macro-average of 98% and a micro-average of 97%. 
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Accuracy Precision Recall F1 score Loss

Train Set 98.20% 97.90% 98.10% 98% 0.177

Validation Set 98.30% 98.40% 98.30% 98.35% 0.173

Test set 97.46% 97.70% 97.20% 97.40% 0.182
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Figure 32: Visualization of Accuracy and Loss Curves for the Proposed Cyber-Physical System (CPS)-Based Intrusion Detection 
System (IDS) Model 
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Figure 33:  Area Under the Receiver Operating Characteristic (AUC-ROC) Curve for the Proposed Model Across Different Classes 

 

B. Quantitative Performance Analysis 

 
A further assessment of additional metrics, including True Negative Rate (TNR), Negative Predictive Value (NPV), 

False Positive Rate (FPR), False Negative Rate (FNR), False Discovery Rate (FDR), and False Omission Rate (FOR), 

was conducted as outlined in Table 9. These metrics were pivotal in evaluating the model's performance and 

identifying classification challenges. 

 

The model demonstrated high accuracy in identifying non-attack instances, reflected in the average TNR of 

approximately 99.24%. The average True Positive Rate was around 76.46%, indicating moderate proficiency in 

identifying attack instances. Notably, the average NPV reached 99.87%, showcasing a robust ability to predict non-

attacks accurately, while the average FPR was about 0.76%, indicating minimal false alarms for non-attack instances. 

The average FNR was approximately 23.54%, suggesting moderate capability in identifying attack instances, and the 

average FDR was around 23.34%, with a low FOR of about 0.13%. 
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Figure 34: Confusion Matrix for the Proposed Model: Evaluation of Classification Performance. Each row represents the actual 
class, and each column represents the predicted class. This matrix helps visualize the performance of a proposed model by showing 
the counts of true positive, false positive, true negative, and false negative predictions across all classes. 

 

 

 
Figure 9: Class-wise qualitative analysis of the proposed CPS-based IDS model on (a) True Negative Rate (TNR) v/s Negative 
Predictive value (NPV), (b) False Positive Rate (FPR) v/s False Negative Rate (FNR), (c) False Discovery Rate (FDR) v/s False Omission 
Rate (FOR).  

C.  XAI Analysis 

 
This subsection presents an analysis of explainable Artificial Intelligence (XAI) as it pertains to our dataset, utilizing 

SHAP (Shapley Additive Explanations) to elucidate the intricate decision-making processes of our complex model. 

SHAP provides various visualization tools, including Bar plots (BP), BeeSwarm plots (BSP), Decision plots (DP), 

and Waterfall plots (WSP), each essential for enhancing the interpretability of deep learning models. 

 

The Bar plot effectively illustrates the influence of each feature on model predictions, offering a clear overview of 

feature contributions, as shown in Figure 10(a). Building upon this, the BeeSwarm plot (Figure 10(b)) displays the 
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distribution of feature values, aiding in identifying patterns and potential outliers. Figure 10(c) introduces the Decision 

plot, which reveals how specific decisions are shaped by different features, providing crucial insights into the model's 

reasoning. Lastly, Figure 10(d) features the Waterfall plot, which dissects individual predictions and highlights the 

cumulative effects of each feature, fostering a comprehensive understanding of the factors that influence model 

outcomes. Collectively, these SHAP visualizations provide a profound analysis, empowering users to comprehend the 

rationale behind complex models, thereby enhancing transparency and trust in deep learning applications. 

 

 

 

Figure 10: Comprehensive Analysis of SHAP Values for the Edge_IIoT Dataset (a) Bar Plot (b) BeeSwarm Plot (c) Decision Plot (d) 
Waterfall Plot. A bar plot visualizes mean SHAP values for each feature, a BeeSwarm plot shows individual SHAP values, a waterfall 
plot depicts the cumulative impact of features on predictions, and a decision plot illustrates how feature values influence model 
output for specific instances. 

 

D. Trustworthy Analysis  

 

Our research introduces a novel ensemble learning strategy that employs 15 diverse learners to assess the robustness 

of our model within SCADA-based IIoT networks. The inherent heterogeneity of this ensemble promotes uncorrelated 

errors among individual learners, enhancing resilience even when specific learners produce inaccuracies. As illustrated 

in Figure 11, each learner exhibits a simulated error rate of 0.0025778 or less, underscoring the reliability of our 

approach in detecting intrusion attacks. Moreover, trials with varying learner counts, shown in Figure 12, validate the 

model's trustworthiness, as accuracy improves with the integration of additional learners. 
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Figure 11: Simulated Error Probability Rate for each learner. The Simulated error probability for each learner signifies the likelihood 
of misclassification and accuracy variations in Learner predictions. 

 

Additionally, our model enhances reliability by integrating the Trust Computing Base (TCB) model into the Defense-

in-Depth paradigm, as depicted in Figure 13. This tailored architecture, explicitly designed for SCADA-IIoT networks, 

incorporates the TCB security framework within a trusted zone, thereby preserving the CIA triad (confidentiality, 

integrity, and availability) and overall security. We aim to prevent and detect unauthorized activities within the trusted 

zone by utilizing a TCB/SCADA reference monitor and physical security controls, such as mantraps, CCTV cameras, 

and motion detectors. However, challenges persist in deploying physical access control systems (PACS) at remote 

SCADA locations, necessitating a defense-in-depth strategy bolstered by anti-malware/anti-attack resources or 

intrusion detection systems (IDS) within logical control. Implementing precise and reliable security controls is critical 

for executing an effective defense-in-depth strategy and enhancing the trustworthiness of SCADA systems. 

 

 
Figure 12: Employing the Defense in Depth Security Paradigm to Safeguard Trustworthiness Within the Trusted Computing Base 
(TCB). Defense in Depth is a fundamental principle for ensuring the trustworthiness and reliability of the Trusted Computing Base 
by providing layered protection and defense mechanisms against potential security risks and attacks. 
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We present a resilient cyber-attack detection model validated through extensive testing with real-world SCADA 

network traffic data to address these challenges. Our approach mitigates existing vulnerabilities, ensuring the 

trustworthiness and security of the SCADA system. By employing an ensemble learning strategy, we minimize 

correlated errors, and adapting the TCB model into a defense-in-depth framework, along with trials involving varying 

learner counts, reinforces the accuracy of our proposed model. Through this comprehensive evaluation, we confront 

security vulnerabilities and emphasize the effectiveness of our technique. 

 

 

 
Figure 13: Analysis of Overall Accuracy Results Across Different Classes of the Proposed Model. The figure assesses how accurately 
the proposed model performs across different classes. 

 

4.5. Comparison with state of artwork and Ablation Study 

 

4.5.1. Comparison with state of artwork 

 

This section provides a comparative analysis of our proposed Cyber-Sentinet model against existing state-of-the-art 

methodologies. Table 10 summarizes the benchmarking of various methodologies, datasets, and performance 

evaluation metrics. Our analysis indicates that the Cyber-Sentinet model significantly outperforms its counterparts 

regarding detection accuracy. 

 

In contrast to recent studies that utilized outdated datasets with limited relevance to the Internet of Things (IoT), we 

employed the Edge-IIoT dataset, recognized for its representation of industrial IoT network traffic flows. Our results 

indicate a notable improvement in accuracy, with the Cyber-Sentinet model surpassing the performance of recent 

methodologies by a margin of 6% to 11%. 
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Figure 14: Graphical representation of the proposed model with state-of-art methodologies. 

 

4.5.2. Ablation Study of the Proposed Model   

 

The ablation study on the proposed Cyber-Sentinet model involved training and evaluating several baseline models in 

conjunction with the proposed architecture using the Edge-IIoT dataset, as presented in Table 11. The primary 

objective was to assess each model's performance and the overall effectiveness of the Cyber-Sentinet architecture. 

This comprehensive evaluation encompasses the following scenarios: 

 

 Case 1: A Multi-Layer Perceptron (MLP) model was trained on the dataset to establish a baseline 

performance using a conventional neural network architecture. 

 Case 2: A one-dimensional Convolutional Neural Network (1-D CNN) model was trained to explore the 

efficacy of CNNs in detecting intrusions within network traffic by leveraging their ability to capture local 

patterns in sequential data. 

 Case 3: A Recurrent Neural Network (RNN) model was trained, focusing on its proficiency in capturing 

temporal dependencies to evaluate its effectiveness in identifying evolving anomalous behavior patterns. 

 Case 4: A two-dimensional Convolutional Neural Network (2-D CNN) model was trained to assess the 

performance of 2-D CNNs in detecting intrusions across multidimensional data by concurrently capturing 

spatial and temporal features. 

 Case 5: A Residual Neural Network (ResNet) model was trained to examine its capability for intrusion 

detection, leveraging its deep architecture and skip connections for effective feature extraction. 

 Case 6: The proposed Cyber-Sentinet model was trained, which integrates features from 2-D CNN and 

ResNet models. Cyber-Sentinet aims to capture spatial and temporal features effectively while benefiting 

from the depth and skip connections of the ResNet architecture for enhanced feature extraction. 

The results illustrated in Figure 15 indicate that while the MLP model demonstrated moderate performance, more 

complex architectures such as the 1-D CNN and RNN enhanced accuracy and recall by effectively capturing local and 

temporal patterns. The 2-D CNN model further improved performance by capturing both spatial and temporal features; 

however, it was outperformed by the ResNet model, which leveraged its deep architecture for superior feature 

extraction. The proposed Cyber-Sentinet model ultimately exceeded all baseline architectures, achieving state-of-the-

art performance. This study emphasizes the importance of thorough analysis and innovative model design in 

developing highly efficient intrusion detection systems. 
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Figure 15: Ablation Study Results for Cyber-Sentinet. The figure presents the ablation study results for Cyber-Sentinet, analyzing 
six distinct cases of model training. These cases include training the MLP model (Case 1), 1-D CNN model (Case 2), RNN model 
(Case 3), 2-D CNN model (Case 4), ResNet model (Case 5), and the proposed Cyber-Sentinet model (Case 6), which combines 2D 
CNN and ResNet architectures. Cyber-Sentinet is trained on the Edge-IIoT dataset. The increasing accuracy, precision, and recall 
scores across the cases underscore the significance of feature extraction and skip connections in enhancing the model's 
performance. 

 

4.6. Conclusion  

 

The increasing proliferation of Industrial Internet of Things (IIoT) devices has highlighted the critical need to address 

sophisticated security threats within industrial networks. An effective Intrusion Detection System (IDS) is essential 

among the key security measures required. However, existing machine learning (ML) and deep learning (DL)-based 

approaches often present challenges due to their black-box nature, complicating security analysts' and developers' 

interpretation and analysis. 

 

This study proposed a novel IDS tailored for Cyber-Physical Systems (CPS) within the context of Industry 5.0, 

integrating two-dimensional Convolutional Neural Networks (2D-CNN) and Residual Networks (ResNet) to enhance 

attack detection capabilities. Additionally, the proposed model employs SHAP (SHapley Additive exPlanations) 

techniques to illuminate feature importance, facilitating a better understanding of attack detection mechanisms. It is 

important to note that using SHAP can be computationally expensive and resource-intensive, posing challenges in 

practical implementations. 

 

The experimental results validate the efficacy of the Cyber-Sentinet model, demonstrating superior performance 

compared to state-of-the-art methodologies, with improvements ranging from 6% to 11%. These findings underscore 

the potential of the proposed approach to strengthen the security posture of industrial IoT environments, thereby 95
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enhancing the resilience of CPS in the evolving landscape of Industry 5.0. Through these advancements, this research 

contributes to the broader goal of ensuring robust security frameworks for complex industrial systems amidst 

increasing cyber threats. 
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Chapter 5 Blockchain-Based Frameworks for Enhancing Security and Privacy in Intrusion Detection Systems 

 

 

1. Introduction  

The rapid advancement of the Internet of Things (IoT) has seamlessly integrated itself into various facets of daily life, 

including supply chain management, healthcare, and RFID-based identity management systems [1]. These IoT 

applications offer significant benefits by enhancing data analysis and modeling capabilities, often in conjunction with 

cloud computing and machine learning, driving substantial growth across multiple sectors [2]. However, the reliance 

on centralized storage and computing architectures in most IoT systems introduces significant security and privacy 

challenges. Centralized architectures are susceptible to unauthorized access, data breaches, and inefficient 

authentication mechanisms, posing considerable risks as IoT devices collect and store sensitive information such as 

personal, financial, and medical data [3,4]. 

Blockchain technology emerges as a promising solution to these challenges by providing a decentralized and 

immutable storage model through distributed ledgers [5]. The decentralized nature of blockchain facilitates 

synchronization among IoT devices, enabling real-time data sharing without the need for third-party intermediaries 

[6,7]. This reduces the risk of single points of failure and enhances security and privacy via consensus mechanisms 

like the Practical Byzantine Fault Tolerance (PBFT) algorithm. Despite these advantages, blockchain is not immune 

to attacks, such as Distributed Denial of Service (DDoS) attacks targeting the mempool, miners, and users, which can 

flood the network with spam transactions, leading to financial losses and increased transaction fees [8-11]. 

The vast amount of data IoT devices generate further complicates security management, necessitating efficient data 

processing and analysis solutions. Artificial Intelligence (AI), particularly machine learning (ML), has become a vital 

tool for enhancing IoT Intrusion Detection Systems (IDS) [12]. ML-based IDS can identify cyber threats by analyzing 

patterns and behaviors, enabling the detection of zero-day attacks and Advanced Persistent Threats (APTs) that 

traditional methods may overlook [13]. However, integrating ML into IDS introduces additional challenges, including 

ensuring data privacy and enabling practical Cyber Threat Intelligence (CTI) sharing among organizations [14]. 

This paper addresses security and privacy challenges in IDS within IoT environments by developing a comprehensive 

framework that leverages blockchain and AI technologies. The proposed Hybrid Blockchain-Based Framework 

integrates advanced cryptographic techniques such as Elliptic Curve Cryptography (ECC), the Digital Signature 

Algorithm (DSA), and SHA-512 to ensure robust data protection and authentication. Additionally, it introduces a Self-

Adaptive Differential Evolution (SADE) algorithm for optimizing cryptographic key generation and utilizes the 

InterPlanetary File System (IPFS) for secure, decentralized off-chain data storage. A Genetic Algorithm (GA) is 

employed to optimize detection rules, while an XGBoost-based model is designed for accurate and efficient threat 

detection in heterogeneous IoT networks. 

The significance of this research lies in its potential to revolutionize IoT security by addressing the limitations of 

centralized architectures and traditional IDS methods. The proposed framework enhances the security, reliability, and 

efficiency of IDS, offering a resilient and adaptable solution against evolving cyber threats. As the number of IoT 

devices continues to grow and cyber threats become increasingly sophisticated, ensuring the security and privacy of 

these systems is paramount. This work contributes to understanding blockchain and AI integration, providing practical 

insights applicable to real-world scenarios for enhancing the security of IoT networks. 

1.1. Motivation 

The increasing complexity and scale of Internet of Things (IoT) environments present significant challenges for 

Intrusion Detection Systems (IDS), which must contend with issues such as data privacy, system integrity, and the 

detection of sophisticated attacks. Traditional IDS solutions often fall short due to centralized vulnerabilities, 

performance limitations, and difficulty handling encrypted traffic. This research is motivated by the urgent need for 

advanced and robust approaches to enhance the effectiveness and adaptability of IDS. The proposed solution 

introduces a Hybrid Blockchain-Based Framework, incorporating Elliptic Curve Cryptography (ECC), the Digital 
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Signature Algorithm (DSA), and SHA-512 to ensure superior data privacy, integrity, and authentication. A Self-

Adaptive Differential Evolution (SADE) algorithm is also utilized for efficient cryptographic key generation, which 

is particularly beneficial in resource-constrained environments. The Practical Byzantine Fault Tolerance (PBFT) 

Consensus Algorithm is integrated to achieve distributed consensus, mitigating centralized failures and enhancing 

system resilience. Furthermore, the use of InterPlanetary File System (IPFS) provides secure and decentralized off-

chain data storage, reducing the risk of single points of failure. Genetic Algorithm Optimization is employed to refine 

detection rules, improving accuracy and reducing false alerts. In contrast, the XGBoost-Based Intrusion Detection 

Model is specifically designed to identify sophisticated threats in diverse IoT settings. Together, these innovations 

aim to comprehensively address the critical issues IDS faces in IoT environments, thereby significantly enhancing 

their performance and security in the face of evolving cyber threats. 

The following are the key contributions of this research article: 

 We integrated ECC, DSA, and SHA-512 to enhance IDS security and privacy. This hybrid approach secures 

communication, ensures authentication, and verifies data integrity within the blockchain network. 

 We developed a novel SADE algorithm to optimize cryptographic key generation. SADE dynamically adjusts 

parameters to improve key quality, ensuring robust security and high entropy. 

 We employed the PBFT consensus algorithm to manage blockchain decision-making. PBFT enables 

consensus among nodes even with Byzantine faults, ensuring the integrity and reliability of the blockchain 

ledger. 

 We utilized IPFS for off-chain data storage, providing decentralized, resilient storage that complements the 

blockchain. IPFS efficiently handles large volumes of data while maintaining integrity through blockchain 

references. 

 We applied a Genetic Algorithm (GA) to optimize IDS performance by refining detection rules and features. 

This process enhances the accuracy and efficiency of network traffic classification. 

 We designed an XGBoost-based model to detect intrusions in heterogeneous IoT networks. XGBoost high 

performance and adaptability address the specific challenges of IoT environments. 

 We conducted extensive analyses comparing the proposed model with other ML/DL approaches. The results 

demonstrate the superior effectiveness of our model in terms of accuracy, precision, and overall performance. 

1.2. Paper Organization 

This research paper is structured as follows: Section 2 provides a comprehensive background study, offering an 

overview of intrusion detection systems (IDS), their types, and the security challenges they face in IoT environments. 

It also explores the role of blockchain technology in enhancing IDS security and discusses various cryptographic 

techniques employed in this context. Section 3 presents a detailed literature review, evaluating traditional and machine 

learning-based approaches to intrusion detection, with a specific focus on blockchain-based IDS and a comparative 

analysis of existing methods. Section 4 discusses the proposed model, including the data preparation process, the 

application of genetic algorithms for optimizing IDS performance, and the implementation of an XGBoost-based 

model for intrusion detection in heterogeneous IoT networks. Section 5 describes the experimental setup, analyzes the 

results, and compares the proposed model's performance with existing state-of-the-art techniques. Finally, Section 6 

concludes the paper by summarizing the key findings, discussing the limitations, suggesting avenues for future 

research, and exploring potential industrial applications. 

2. Background  

This section provides a comprehensive overview of Intrusion Detection Systems (IDS), the types of cyberattacks they 

encounter, the security and privacy issues associated with IDS, and an overview of the blockchain mechanism. 

2.1. Intrusion Detection System (IDS) 

An Intrusion Detection System (IDS) is a critical security infrastructure component designed to monitor and analyze 

network traffic or system activities for signs of malicious behavior or policy violations [15]. IDS can be classified into 

two primary categories: network-based (NIDS) and host-based (HIDS) [16]. NIDS monitors network traffic for 
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suspicious activities, while HIDS focuses on monitoring and analyzing the behavior of individual host systems. IDS 

employs various techniques, such as signature-based detection, which relies on known attack patterns, and anomaly-

based detection, which identifies deviations from normal behavior. The primary objective of IDS is to detect and 

respond to potential security incidents in real time, thereby protecting the integrity, confidentiality, and availability of 

information systems [17]. Table 1 presents a comparative analysis of Intrusion Detection Systems (IDS) based on 

different key parameters. The table also distinguishes between the two primary categories of IDS: Network-Based 

(NIDS) and Host-Based (HIDS). It details the signature and anomaly-based detection techniques and their respective 

impacts on the Confidentiality, Integrity, and Availability (CIA) triad. Additionally, it discusses the scope of 

monitoring, response capabilities, policy enforcement, scalability, resource usage, and deployment locations for each 

IDS type. This structured overview provides insights into how IDS functions and the various factors influencing its 

effectiveness in securing information systems. 

Table 12: Analysis of Intrusion Detection Systems (IDS) Parameters and Their Impact on the CIA Triad 

Parameters Description Impact on CIA 
Type Classification of IDS: Network-Based 

(NIDS) or Host-Based (HIDS) 

NIDS: Availability, Integrity 

HIDS: Confidentiality, Integrity 

 

Detection Technique 

Signature-Based: Detects known attack 

patterns 

Anomaly-Based: Identifies deviations from 

normal behavior 

Signature-Based: Integrity 

Anomaly-Based: Confidentiality, Integrity 

Monitoring Scope NIDS: Monitors network traffic 

HIDS: Monitors individual host systems 

NIDS: Availability, Integrity 

HIDS: Confidentiality, Integrity 

 

Response Capability 

Ability to respond to detected threats in real-

time, including alerting and mitigation 

actions 

Real-time Response: Availability, Integrity 

 

Policy Enforcement 

Ensures adherence to security policies 

through continuous monitoring and alerting 

Integrity, Availability 

Scalability Capability to scale with network growth or 

the number of hosts being monitored 

Availability 

 

Resource Usage 

NIDS: May require significant network 

resources 

HIDS: Utilizes host resources 

NIDS: Availability 

HIDS: Availability 

 

Deployment Location 

NIDS: Deployed at key points within a 

network 

HIDS: Installed on individual host systems 

NIDS: Availability, Integrity 

HIDS: Confidentiality, Integrity 

 

2.2. Different Cyberattacks in IDS 

IDS are exposed to a myriad of cyberattacks, which can be broadly categorized into several types: 

 Denial of Service (DoS) Attacks: These attacks overwhelm network resources, rendering them unavailable 

to legitimate users. Examples include SYN flood and UDP flood attacks. 

 Distributed Denial of Service (DDoS) Attacks: Similar to DoS attacks, they are launched from multiple 

sources, increasing the attack's impact. 

 Man-in-the-Middle (MITM) Attacks: In these attacks, the attacker intercepts and potentially alters the 

communication between two parties without their knowledge. 

 SQL Injection: This attack involves inserting malicious SQL queries into input fields, exploiting 

vulnerabilities in database-driven applications. 

 Phishing: Phishing attacks involve tricking individuals into divulging sensitive information, such as login 

credentials or financial data, through deceptive emails or websites. 

 Malware: This category includes various malicious software, such as viruses, worms, ransomware, and 

spyware, designed to disrupt, damage, or gain unauthorized access to systems. 

 

Each attack poses significant challenges to IDS, requiring advanced detection and mitigation strategies to safeguard 

network and system security.  
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Table 2 presents a comprehensive overview of cyberattacks that pose significant threats to Intrusion Detection Systems 

(IDS). These attacks, including Denial of Service (DoS), Distributed Denial of Service (DDoS), Man-in-the-Middle 

(MITM), SQL Injection, Phishing, and Malware, each target different aspects of system security. The table briefly 

describes each attack, outlines the appropriate countermeasures, and assesses their impact on the Confidentiality, 

Integrity, and Availability (CIA) triad. This analysis underscores the importance of robust security measures to 

safeguard IDS against these pervasive and potentially devastating threats. 

Table 13: Overview of Cyberattacks in IDS and Their Impact on the CIA Triad 

Attacks Description Countermeasures Impact on CIA 
Denial of Service (DoS) Overwhelms network resources, making them 

unavailable to legitimate users. Examples 

include SYN flood and UDP flood attacks. 

Rate limiting, IP blacklisting, 

anomaly detection 
C: ❌ I: ❌ A: ✔ 

Distributed Denial of 

Service (DDoS) 

Similar to DoS attacks but launched from 

multiple sources, increasing the attack's 

impact. 

Load balancing, DDoS 

protection services, traffic 

analysis 

C: ❌ I: ❌ A: ✔ 

Man-in-the-Middle 

(MITM) 

Attacker intercepts and potentially alters 

communication between two parties without 

their knowledge. 

Encryption (SSL/TLS), mutual 

authentication, session tokens 
C: ✔ I: ✔ A: ❌ 

SQL Injection Involves inserting malicious SQL queries into 

input fields, exploiting vulnerabilities in 

database-driven applications. 

Input validation, prepared 

statements, Web Application 

Firewall (WAF) 

C: ✔ I: ✔ A: ❌ 

Phishing Tricks individuals into divulging sensitive 

information through deceptive emails or 

websites. 

Anti-phishing tools, email 

filtering, user education 
C: ✔ I: ❌ A: ❌ 

Malware Includes various malicious software like 

viruses, worms, and ransomware designed to 

disrupt, damage, or gain unauthorized access 

to systems. 

Antivirus software, regular 

updates, intrusion prevention 

systems (IPS) 

C: ✔ I: ✔ A: ✔ 

C (Confidentiality): ✔ (Protected) /  ❌ (Not Protected), I (Integrity): ✔ (Protected) / ❌ (Not Protected), A (Availability): ✔ (Protected) / ❌ (Not Protected) 

2.3. Security and Privacy Issues in IDS 

While IDS plays a crucial role in maintaining security, it also faces several security and privacy challenges: 

 Evasion and Obfuscation: Attackers may use techniques to evade detection, such as encryption or packet 

fragmentation, making it difficult for IDS to identify malicious activities. 

 False Positives and False Negatives: High rates of false positives (benign activities flagged as malicious) 

and false negatives (malicious activities missed by the IDS) can undermine the system's effectiveness and 

erode trust in its alerts. 

 Resource Consumption: IDS can be resource-intensive, leading to performance degradation, especially in 

high-traffic environments. 

 Data Privacy: IDS often involves monitoring sensitive data, raising privacy concerns, and potentially 

misusing collected information. Ensuring compliance with data protection regulations, such as GDPR, is 

critical. 

Addressing these issues requires a careful balance between security, privacy, and system performance, necessitating 

continuous improvements and advancements in IDS technology. 

2.4. Blockchain Mechanism   

Blockchain is a decentralized and distributed ledger technology that ensures the integrity and immutability of recorded 

data. It consists of a chain of blocks, where each block contains a list of transactions [18]. The blocks are linked using 

cryptographic hashes, ensuring that any alteration in one block would invalidate the subsequent blocks, thus protecting 

the data's integrity. 

Blockchain operates on a consensus mechanism, which can be either Proof of Work (PoW), Proof of Stake (PoS), or 

other variants, depending on the application [19]. In PoW, miners solve complex mathematical problems to validate 

transactions and add them to the blockchain, whereas PoS selects validators based on their stake in the network. 
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Blockchain's decentralized nature eliminates the need for a central authority, providing transparency and trust in 

transactions. 

In the context of IDS, blockchain can enhance security and privacy by providing a tamper-proof record of events and 

enabling secure data sharing across distributed networks [20]. For instance, blockchain can store IDS alerts and logs 

in a secure, immutable manner, facilitating forensic analysis and ensuring the integrity of security information. 

Additionally, smart contracts, programmable scripts stored on the blockchain, can automate response actions to 

detected intrusions, improving the overall efficiency and effectiveness of the IDS.  

Table 3 outlines the core characteristics of blockchain technology, briefly describing each feature and explaining how 

it impacts the Confidentiality, Integrity, and Availability (CIA) triad. The decentralized nature of blockchain ensures 

high availability and resistance to single points of failure, while immutability guarantees data integrity by preventing 

unauthorized alterations. Transparency fosters trust through visibility, although it can pose challenges to 

confidentiality. Consensus mechanisms and cryptographic techniques enhance all three CIA aspects, ensuring secure, 

verifiable, and reliable transactions. Smart contracts and tokenization further bolster these security measures by 

automating processes and representing assets securely. Lastly, permissioned blockchain offers additional layers of 

confidentiality by restricting access to authorized participants only. This comprehensive analysis highlights 

blockchain's robust capabilities in addressing critical security requirements in various applications. 

Table 14: Blockchain Characteristics and Their Impact on the CIA Triad 

Characteristics  Description Confidentiality Integrity Availability  
Decentralization Distributed network of nodes without a central 

authority 
✅ ✅ ✅ 

Immutability Once data is written, it cannot be altered or 

deleted 
✅ ✅ ❌ 

Transparency Transactions are visible to all participants in the 

network 
❌ ✅ ✅ 

Consensus Mechanisms Protocols like PBFT or PoW ensure agreement 

among nodes 
✅ ✅ ✅ 

Cryptography Use of ECC, DSA, and SHA-512 to secure data ✅ ✅ ✅ 

Smart Contracts Self-executing contracts with the terms directly 

written into code 
✅ ✅ ✅ 

Tokenization Representation of assets or utilities within the 

blockchain 
✅ ✅ ✅ 

Permissioned Blockchain Restricted access to certain participants ✅ ✅ ✅ 

 

Blockchain technology has emerged as a transformative tool for addressing security and privacy challenges in 

intrusion detection systems (IDS) within the Internet of Things (IoT) environment. The decentralized and immutable 

nature of blockchain provides a robust foundation for enhancing IDS, particularly in IoT settings where centralized 

security solutions often fall short due to the devices' highly distributed and resource-constrained nature. The following 

are the characteristics that help in enhancing the security and privacy issues in IDS in an IoT environment: 

 Decentralization and Trust Management: Blockchain's decentralized architecture eliminates the need for 

a central authority, distributing trust across the network. In the context of IDS, this decentralization ensures 

that the detection and response mechanisms are not reliant on a single point of control, which could be a 

target for attackers. By leveraging consensus mechanisms such as Practical Byzantine Fault Tolerance 

(PBFT) or Proof of Authority (PoA), blockchain ensures that decisions regarding the identification and 

mitigation of threats are collectively validated by multiple nodes, thus enhancing the reliability and 

trustworthiness of the IDS. 

 Immutable and Transparent Record-Keeping: One of the core features of blockchain is its ability to create 

an immutable ledger of transactions. When integrated with IDS, blockchain can securely record all security 

events, alerts, and actions taken in response to detected threats. This immutable record-keeping is crucial for 

forensic analysis, enabling security teams to trace the origin and propagation of attacks with a high degree of 

accuracy. Moreover, the transparency of the blockchain ledger allows for auditability, ensuring that all 

actions are verifiable and tamper-proof, which significantly enhances the integrity of the IDS. 
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 Privacy Preservation through Cryptographic Techniques: Blockchain employs advanced cryptographic 

methods such as Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA) to protect data 

privacy within the IDS framework. Maintaining data confidentiality is paramount in an IoT environment 

where devices often handle sensitive personal information. Blockchain enables the secure exchange and 

storage of data by ensuring only authorized entities can access or modify information. Cryptographic hashing 

algorithms like SHA-512 secure data by producing unique and irreversible hashes, preventing unauthorized 

access or alterations. 

 Enhanced Data Integrity and Resilience: The distributed nature of blockchain inherently improves the 

resilience of IDS against various types of attacks, including Distributed Denial of Service (DDoS) attacks. 

Since blockchain data is replicated across multiple nodes, any attempt to alter or corrupt the IDS data would 

compromise most of the network, which is computationally infeasible. This enhanced data integrity is critical 

in ensuring the IDS operates reliably, even in the face of sophisticated cyber-attacks. 

 Secure and Efficient Data Sharing: Blockchain facilitates secure and efficient data sharing among IoT 

devices and IDS components. Using smart contracts, blockchain can automate the validation and execution 

of security policies, ensuring that data is shared only under predefined conditions. This automated, rule-based 

approach minimizes human intervention, reducing the risk of errors and enhancing the overall security of the 

IDS. Furthermore, utilizing technologies such as InterPlanetary File System (IPFS) for distributed storage, 

blockchain ensures that large volumes of IDS-related data can be securely shared and accessed without 

relying on centralized storage systems. 

In conclusion, integrating blockchain technology into IDS frameworks within IoT environments offers significant 

advancements in security and privacy. Blockchain addresses many of the inherent vulnerabilities associated with 

traditional IDS solutions by providing a decentralized, immutable, and cryptographically secure platform. This leads 

to a more robust, transparent, and resilient security architecture capable of defending against the increasingly 

sophisticated threats targeting IoT networks. 

 

3. Literature Review 

Recent research on detecting cyberattacks in IoT and IIoT networks has explored a variety of approaches, each 

contributing uniquely to the field of intrusion detection systems (IDS). This section synthesizes these studies, 

highlighting their methodologies and the specific challenges they address, as shown in Table 4. 

Gad et al. (2020) [21] introduced an XGBoost-based model for vehicular ad-hoc networks, leveraging the TON-IoT 

dataset and employing chi-square for feature selection. Their approach, although practical, is confined to a specific 

type of IoT network. In contrast, Mighan et al. (2021) [22] proposed a scalable IDS that integrates Support Vector 

Machines (SVM) with Stacked Autoencoder (SAE) to handle big data platforms, using tools like Apache Spark to 

manage large network traffic volumes. Similarly, Alzahrani et al. (2019) [23] developed a network-based IDS for 

Software-Defined Networks (SDN), applying machine learning techniques such as Decision Trees, Random Forests, 

and XGBoost on the NSL-KDD dataset. Logeswari et al. (2020) [24] advanced this by proposing a hybrid feature 

selection algorithm (HFS-LGBM IDS) to reduce data dimensionality and extract optimal features using CFS and RF-

RFE, demonstrating their model's effectiveness in a Mininet-simulated SDN environment. 

A notable contribution by Bowen et al. (2021) [25] introduced BlocNet, a deep learning model designed to address 

dataset imbalance, employing various sampling techniques to maintain data integrity. Their work emphasizes the 

importance of handling underrepresented instances in IDS datasets. Kasonogo et al. (2022) [26] offered an IDS using 

different RNN frameworks on NSL-KDD and UNSW-NB-15 datasets, incorporating XGBoost for feature selection 

and addressing optimization of arbitrary differentiable loss functions. Hnamte et al. (2023) [27] presented a novel 

approach combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) 

networks, enhanced by an attention mechanism, to improve classification accuracy in network-based IDS—however, 

their model's complexity results in longer training periods than traditional deep learning techniques. Abdelkhalek et 

al. (2022) [28] addressed class imbalance by proposing a data resampling strategy using the Adaptive Synthetic and 
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Tomek Link algorithm, combined with various deep learning models, including MLP, CNN, DNN, and CNN-

BiLSTM, achieving better detection rates for minority classes. 

Further advancing the discussion, Thakkar et al. (2023) [29] focused on enhancing DNN-based IDS performance by 

introducing a unique feature selection technique based on statistical significance. They utilized standard deviation, 

mean, and median to derive highly discernible features, which improved data learning. Imran et al. (2021) [30] 

proposed a non-symmetric deep autoencoder for network intrusion detection systems (NIDS) using the KDD-CUP-

99 dataset, highlighting the robustness of their model through various metrics. They also critically reviewed existing 

challenges in NIDS approaches. Benadai et al. (2022) [31] explored the application of deep reinforcement learning 

(DRL) in IDS, proposing a DRL_IDS model that utilizes the Markov decision process and stochastic game theory to 

analyze network traffic. Their approach demonstrated improved detection rates and reduced false alarm rates 

compared to other deep learning methods. 

Security challenges necessitate innovative solutions in the context of Cyber-Physical Systems (CPS) and IoT. Mansour 

et al. (2021) [32] proposed a blockchain-based IDS for CPS environments, integrating a rich and poor optimization 

approach with a deep learning model. Kumar et al. (2021) [33] addressed the centralized storage architecture's 

limitations by presenting a blockchain-based IoT framework utilizing fog computing for distributed security. This 

framework offers a decentralized cloud architecture, mitigating issues like security, privacy, and single points of 

failure. Ashraf et al. (2022) [34] introduced a federated learning-based IDS for IoT healthcare, leveraging blockchain 

to train models on different datasets without data sharing, thereby enhancing privacy. However, variations in local 

datasets and uneven distribution affected network-based intrusion detection accuracy. He et al. (2022) [35] proposed 

a blockchain-based distributed federated learning approach, providing differential privacy to secure data while 

enabling collaborative training. Khraisat et al. (2023) [36] developed a feature selection approach based on information 

gain, focusing on identifying IoT features that yield the most feature diversity in network traffic, emphasizing 

detecting zero-day attacks with high accuracy. 

In summary, while the term "neoliberalism" in IDS research has been used inconsistently, this review clarifies that a 

common goal across these studies is enhancing security and privacy in IoT and IIoT networks. Barnett's work is pivotal 

in this discussion, providing a robust argument for IDS's evolving approaches and methodologies. The evidence 

presented highlights the importance of innovative techniques, such as deep learning, federated learning, and 

blockchain, in addressing the complex challenges posed by modern cyber threats. The ongoing exploration of these 

technologies underscores the need for a nuanced understanding of IDS development, ensuring that future systems can 

effectively safeguard against increasingly sophisticated attacks. 

Table 15: Overview of Existing Frameworks for Addressing Security and Privacy Issues in Intrusion Detection Systems Using 
Emerging Technologies 

Refere

nce  

Aim Dataset 

used 

Methodology Feature 

Selection 

Technique 

Paradig

m  

Types of 

attack 

Scalability 

Analysis 

Security and 

Privacy 

Analysis 

Single point 

Failure  

Gad et 

al. 

(2020) 

Detecting cyberattacks in 

vehicular ad-hoc networks 

TON-IoT XGBoost model Chi-square Machine 

Learning 

Specific 

IoT 

attacks 

Limited to 

vehicular ad-

hoc networks 

Not 

addressed 

Not 

discussed 

Mighan 

et al. 

(2021) 

Scalable IDS for big data 

platforms 

UNB-

ISCX- 2012 

SVM with 

Stacked 

Autoencoder 

(SAE), Apache 

Spark 

 Machine 

Learning 

Various

  

High 

scalability 

with big data 

platforms 

Not 

addressed 

Not 

discussed 

Alzahr

ani et 

al. 

(2019) 

IDS for SDN environments NSL-KDD Decision Trees, 

Random 

Forests, 

XGBoost 

 Machine 

Learning 

Various

  

Adaptable to 

SDN 

environment

s 

Not 

addressed 

Not 

discussed 

Loges

wari et 

al. 

(2020) 

Feature selection in IDS for 

SDN 

Mininet-

simulated 

SDN 

HFS-LGBM 

IDS using CFS 

and RF-RFE 

Hybrid 

Feature 

Selection 

(CFS, RF-

RFE) 

Machine 

Learning 

Various

  

Demonstrate

d in SDN 

environment 

with Mininet 

simulation 

Not 

addressed 

Not 

discussed 
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Bowen 

et al. 

(2021) 

Addressing dataset 

imbalance in IDS 

NSL-KDD; 

IoT-23; 

CIC-IDS; 

UNSW-

NB-15 

BlocNet deep 

learning model, 

sampling 

techniques 

 Deep 

Learning 

Various

  

Not specified Focuses on 

handling 

underreprese

nted 

instances in 

datasets 

Not 

discussed 

Kasono

go et al. 

(2022) 

IDS using RNN frameworks NSL-KDD, 

UNSW-

NB-15 

RNN, XGBoost 

for feature 

selection 

XGBoost 

 

Deep 

Learning 

Various Not specified Not 

addressed 

Not 

discussed 

Hnamt

e et al. 

(2023) 

Improve classification 

accuracy in network-based 

IDS 

CIC-IDS 

2018; 

Edge-IIoT 

CNN-BiLSTM 

with attention 

mechanism 

- Deep 

Learning 

Various Higher 

complexity 

leads to 

longer 

training 

periods 

Not 

addressed 

Not 

discussed 

Khraisa

t et al. 

(2023) 

Feature selection in IDS for 

IoT 

NSL-KDD Information 

gain for feature 

diversity 

Information 

gain 

Machine 

Learning 

Zero-day 

attacks 

High 

accuracy in 

detecting 

zero-day 

attack 

Not 

addressed 

Not 

discussed 

He et 

al. 

(2022) 

Blockchain-based 

distributed federated 

learning approach 

NSL-KDD; 

BoT_IoT; 

CICIDS- 

2017; 

UNSW- 

NB-15; 

DS2OS 

dataset 

Blockchain with 

differential 

privacy 

- Federate

d 

Learning

, 

Blockch

ain 

Various Collaborativ

e training 

while 

securing data 

Provides 

differential 

privacy to 

secure data 

Not 

discussed 

Ashraf 

et al. 

(2022) 

Federated learning-based 

IDS for IoT healthcare

 Federated 

learning with blockchain 

BoT_IoT   Federate

d 

Learning

, 

Blockch

ain 

Various Not specified Enhances 

privacy, but 

affected by 

dataset 

variations 

and 

distribution 

Not 

discussed 

Kumar 

et al. 

(2021) 

 

Blockchain-based IoT 

framework for distributed 

security 

NSL-

KDD; 

CICID

S- 

2017 

dataset 

Blockchain with 

fog computing 

 Blockch

ain, Fog 

Computi

ng 

Various

  

Decentralize

d cloud 

architecture 

Mitigates 

security, 

privacy, and 

single point 

failure issues 

Addressed 

by 

blockchain 

Turuk

mane et 

al. 

(2024) 

To design an efficient 

automated intrusion 

detection system (IDS) using 

machine learning to address 

issues such as class 

imbalance, overfitting, and 

accurate classification of 

network intrusions. 

CSE-

CIC-

IDS 

2018 

and 

UNSW

-NB15 

dataset

s 

hybrid 

multilayer SVM 

model (M-

MultiSVM) 

Opposition-

based 

Northern 

Goshawk 

Optimizatio

n (ONgO) 

Machine 

Learning  

DoS 

attacks, 

content-

based 

features, 

and traffic 

anomalies 

does not 

explicitly 

address 

scalability in 

detail 

not discussed does not 

provide 

explicit 

analysis of 

single point 

failure 

Nandan

war 

et.al 

(2024) 

To develop a robust and 

efficient deep learning-based 

intrusion detection system 

(IDS) to detect and classify 

botnet attacks in Industrial 

IoT (IIoT) environments, 

ensuring real-time protection 

and minimizing security 

vulnerabilities 

N-

BaIoT 

dataset 

CNN-GRU-

based deep 

learning model 

named 

AttackNet 

CNN Deep 

Learning  

DoS, 

DDoS, 

data 

exfiltratio

n 

scalability by 

achieving 

high 

performance 

across 

multiple 

classes in 

large dataset 

indirectly 

improves 

security by 

efficiently 

detecting 

botnet 

attacks 

does not 

provide 

explicit 

analysis of 

single point 

failure 

Karthik

eyan 

et.al 

(2024) 

To enhance security in 

WSN-IoT systems by 

developing a machine 

learning-based intrusion 

detection system (IDS) 

optimized with the Firefly 

Algorithm (FA) and Grey 

Wolf Optimizer (GWO) for 

improved accuracy, 

NSL-

KDD 

Dataset 

FA-ML 

technique 

integrates 

machine 

learning (SVM) 

Firefly 

Algorithm 

(FA) 

Supervis

ed 

machine 

learning 

Denial of 

Service 

(DoS), 

Probing, 

Remote to 

Local 

(R2L), 

and User 

to Root 

not explicitly 

discussed 

not discussed not discussed 
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reliability, and security 

performance. 

(U2R) 

attacks 

Hanafi 

et. al 

(2024) 

To develop a new intrusion 

detection system (IDS) for 

IoT networks using an 

Improved Binary Golden 

Jackal Optimization 

(IBGJO) algorithm and Long 

Short-Term Memory 

(LSTM) network 

NSL-

KDD 

Dataset 

and 

CICIDS

2017 

Dataset 

Opposition-

Based Learning 

(OBL)-LSTM 

Improved 

Binary 

Golden 

Jackal 

Optimizatio

n (IBGJO) 

with 

Opposition-

Based 

Learning 

(OBL) 

Deep 

Learning 

DoS 

(Denial of 

Service), 

Probe, 

U2R 

(User-to-

Root), and 

R2L 

(Remote-

to-Local) 

attacks 

does not 

explicitly 

address 

does not 

explicitly 

discuss 

security and 

privacy 

concerns 

not been 

explored 

Kumar 

et.al 

(2024) 

To develop an efficient 

intrusion detection system 

(IDS) using Deep Residual 

Convolutional Neural 

Network (DCRNN), 

optimized by the Improved 

Gazelle Optimization 

Algorithm (IGOA) 

UNSW

-NB-15 

Dataset

, 

Cicddo

s2019 

Dataset

, and 

CIC-

IDS-

2017 

Dataset 

DCRNN Novel 

Binary 

Grasshoppe

r 

Optimizatio

n 

Algorithm 

(NBGOA) 

Deep 

Learning 

detect 

various 

types of 

attacks 

demonstratin

g its ability to 

effectively 

scale in real-

world 

scenarios 

with large 

datasets 

does not 

explicitly 

address 

does not 

address the 

impact of 

single point 

failure 

 

In the rapidly evolving landscape of cybersecurity, particularly within IoT and IIoT environments, Intrusion Detection 

Systems (IDS) play a critical role in safeguarding networks against increasingly sophisticated cyber threats. Despite 

significant advancements in IDS methodologies, several key challenges still need to be addressed, including robust 

security and privacy measures, efficient cryptographic key generation, reliable consensus mechanisms, and effective 

handling of decentralized data storage. Additionally, optimizing feature selection and detection rules, ensuring 

adaptability across heterogeneous IoT networks, and conducting comprehensive comparative performance analyses 

are areas where existing research needs to be revised. This paper identifies these research gaps and presents a series 

of novel contributions designed to address these limitations, enhancing the security, scalability, and overall 

effectiveness of IDS in modern network infrastructures as stated:  

(i) Limited Security and Privacy Measures in Existing IDS Models: Most current Intrusion Detection Systems (IDS) 

focus on improving detection accuracy through advanced feature selection and enhancing scalability to handle 

increasing network traffic. However, they often neglect comprehensive security and privacy protocols, leaving the 

systems vulnerable to sophisticated cyber-attacks. The absence of robust encryption and authentication mechanisms 

makes these IDS susceptible to data breaches, tampering, and unauthorized access, compromising the integrity and 

confidentiality of sensitive information. 

Our Contribution: We have integrated Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and 

SHA-512 hashing into the IDS framework to address this critical gap. ECC provides strong encryption with smaller 

key sizes, ensuring efficient and secure data transmission. DSA adds a layer of authentication, verifying the identity 

of communicating entities and preventing impersonation attacks. SHA-512 ensures data integrity by generating unique 

hash values for data blocks and detecting unauthorized alterations. This holistic security approach fortifies the IDS 

against a wide array of cyber threats, ensuring confidentiality, integrity, and authenticity of the data within blockchain 

networks. 

(ii) Inefficiency in Cryptographic Key Generation for Secure Communications: Effective cryptographic key 

generation is pivotal for maintaining secure communications in IDS. Traditional methods often produce keys that are 

either not sufficiently random or lack the necessary complexity, making them susceptible to cryptographic attacks 

such as brute force or predictive analysis. Moreover, static key generation techniques fail to adapt to changing security 

requirements and threat landscapes, leading to potential vulnerabilities over time. 
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Our Contribution: We have developed a novel Self-Adaptive Differential Evolution (SADE) algorithm tailored 

explicitly for optimizing cryptographic key generation processes. The SADE algorithm dynamically adjusts its 

parameters based on the evolving security context and system requirements, generating high-entropy keys resistant to 

various attack vectors. This adaptive mechanism ensures that the cryptographic keys remain robust and unpredictable, 

enhancing the overall security posture of the IDS. Additionally, the SADE algorithm improves computational 

efficiency by optimizing resource utilization during crucial generation, making it suitable for real-time and resource-

constrained environments such as IoT networks. 

(iii) Inadequate Consensus Mechanisms in Blockchain-based IDS Implementations: Blockchain technology offers 

decentralized and tamper-evident data storage solutions for IDS; however, many existing implementations employ 

consensus algorithms that are either inefficient or vulnerable to certain types of attacks. Consensus mechanisms like 

Proof-of-Work (PoW) or Proof-of-Stake (PoS) can be resource-intensive and do not guarantee fault tolerance in the 

presence of malicious or faulty nodes, leading to potential inconsistencies and vulnerabilities in the blockchain ledger. 

Our Contribution: We have employed the Practical Byzantine Fault Tolerance (PBFT) algorithm to ensure reliable 

and efficient consensus within the blockchain-based IDS. PBFT is designed to achieve consensus even when some 

nodes act maliciously or fail, providing robustness against Byzantine faults. It facilitates faster and more efficient 

agreement among distributed nodes with lower computational overhead than PoW and PoS. By integrating PBFT, our 

system ensures that all honest nodes agree on the sequence and validity of transactions, maintaining the integrity and 

consistency of the blockchain ledger. This enhances trust and reliability in the IDS, especially critical for environments 

where security and quick consensus are paramount. 

(iv) Ineffective Handling of Large and Decentralized Data Storage Requirements: As IDS increasingly deals with 

massive volumes of diverse and distributed data, traditional centralized storage systems become bottlenecks, leading 

to single points of failure, scalability limitations, and increased vulnerability to attacks. Existing solutions often do 

not effectively leverage decentralized storage technologies to manage and store large datasets efficiently and securely. 

Our Contribution: We have integrated the InterPlanetary File System (IPFS) into our IDS framework for efficient 

off-chain data storage. IPFS is a peer-to-peer, distributed file system that enables decentralized, resilient, and scalable 

storage solutions. By utilizing IPFS, our system can seamlessly handle large volumes of data, distributing storage 

across multiple nodes to prevent centralization-related issues. This approach enhances data availability and fault 

tolerance and improves data retrieval speeds through content-addressed storage mechanisms. Furthermore, coupling 

IPFS with blockchain references ensures data integrity and traceability, as each piece of data stored off-chain can be 

securely linked and verified through the blockchain ledger. This synergy between blockchain and IPFS provides a 

robust, efficient, and secure data management solution for modern IDS requirements. 

(v) Suboptimal Feature Selection and Detection Rule Optimization in IDS: Accurate intrusion detection heavily 

relies on effective feature selection and precise detection rules. Many current IDS models use manual or simplistic 

methods for feature selection, leading to irrelevant or redundant features that degrade detection performance and 

increase computational overhead. Similarly, static or poorly optimized detection rules can result in high false-positive 

rates and missed detections, undermining the IDS's effectiveness. 

Our Contribution: To enhance detection accuracy and efficiency, we have applied a Genetic Algorithm (GA) for 

optimizing both feature selection and detection rules within the IDS. Inspired by natural selection, GA efficiently 

searches and identifies the most relevant and discriminative features from large datasets by evaluating and evolving 

multiple candidate solutions. This results in a reduced feature set that retains maximal informative value, lowering 

computational costs and improving detection speed. Additionally, GA optimizes detection rules by iteratively refining 

them to adapt to emerging threat patterns and network behaviors, thereby reducing false positives and enhancing the 

system's ability to accurately detect a wide range of intrusion attempts. This adaptive and automated optimization 

process ensures that the IDS remains effective against evolving cyber threats while maintaining operational efficiency. 

(vi) Ineffectiveness in Detecting Intrusions Across Diverse and Heterogeneous IoT Networks: The rapid 

proliferation of IoT devices has led to highly heterogeneous network environments where devices vary widely 

regarding protocols, standards, and capabilities. Many existing IDS models are designed for specific network types 
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and fail to generalize across diverse IoT ecosystems. This results in poor detection rates and an inability to identify 

novel or complex attack vectors prevalent in heterogeneous settings. 

Our Contribution: We have developed an IDS model based on Extreme Gradient Boosting (XGBoost), tailored to 

detect intrusions across diverse and heterogeneous IoT networks effectively. XGBoost is a robust and scalable 

machine learning algorithm known for its high performance and complex, multidimensional data capability. Our 

XGBoost-based model is trained on extensive and varied datasets encompassing multiple IoT scenarios and attack 

types, enabling it to learn intricate patterns and anomalies associated with different devices and network 

configurations. This approach ensures robust and accurate intrusion detection irrespective of the underlying network 

heterogeneity. Furthermore, the model's adaptability allows for continuous learning and improvement as new data and 

attack methods emerge, maintaining its effectiveness over time and across evolving IoT landscapes. 

(vii) Lack of Comprehensive Comparative Performance Analyses in IDS Research: While numerous IDS models 

have been proposed, only some studies conduct thorough comparative analyses against a wide range of existing 

machine learning (ML) and deep learning (DL) approaches. This lack of comprehensive evaluation makes it 

challenging to ascertain the proposed solutions' relative effectiveness and practical applicability, hindering informed 

decision-making and adoption in real-world scenarios. 

Our Contribution: To provide a clear and empirical assessment of our IDS model's performance, we have conducted 

extensive comparative analyses against various state-of-the-art ML and DL techniques. These evaluations encompass 

multiple metrics, including accuracy, precision, recall, F1-score, detection rate, and false-positive rate, across diverse 

datasets and attack scenarios. The results demonstrate that our proposed model consistently outperforms existing 

approaches, offering superior detection capabilities and operational efficiency. This comprehensive benchmarking 

validates our solution's effectiveness and provides valuable insights into its strengths and limitations compared to 

other methodologies. Such rigorous evaluation facilitates better understanding and confidence in deploying our IDS 

model within complex and security-critical environments. 

4. Proposed Methodology 

In Section 4, we introduce a Hybrid Blockchain-Based Framework designed to address critical security and privacy 

challenges in Intrusion Detection Systems (IDS) for heterogeneous IoT environments as shown in Figure 1. The 

section is structured into distinct sub-sections, each focusing on a specific aspect of the proposed methodology. It 

begins with a detailed problem statement outlining the shortcomings of traditional IDS solutions, particularly in 

handling encrypted traffic, large data volumes, and centralized vulnerabilities. The proposed framework is then 

described, emphasizing its two-phase approach: secure data transmission and management, followed by intrusion 

detection and analysis. In the first phase, the framework integrates advanced cryptographic techniques such as ECC, 

DSA, and SHA-512 and the novel SADE algorithm for optimal key generation, PBFT for consensus, and IPFS for 

decentralized data storage. The second phase focuses on optimizing IDS performance through a Genetic Algorithm 

and enhancing threat detection using a Proposed XGBoost-based model designed for diverse IoT networks. This 

comprehensive methodology aims to significantly improve the security, reliability, and adaptability of IDS in 

safeguarding IoT systems from evolving cyber threats. 

4.1. Problem Statement 

Intrusion Detection Systems (IDS) face significant challenges in maintaining security and privacy due to inadequate 

data protection, inefficient authentication, and difficulties handling encrypted traffic and large data volumes. 

Traditional IDS solutions often struggle with centralized vulnerabilities, performance issues, and inaccuracies in threat 

detection, especially in diverse and resource-constrained IoT environments. This research proposes a comprehensive 

solution to address these problems. It introduces a Hybrid Blockchain-Based Framework that integrates ECC, DSA, 

and SHA-512 to enhance data privacy, integrity, and authentication. The solution also includes a Self-Adaptive 

Differential Evolution (SADE) algorithm for optimizing cryptographic key generation, the PBFT Consensus 

Algorithm to improve resilience and prevent centralized failures, IPFS for secure and decentralized off-chain data 

storage, Genetic Algorithm Optimization for refining detection rules and reducing false alerts, and an XGBoost-Based 

Page 125 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 125 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



Intrusion Detection Model tailored for detecting sophisticated threats. Together, these innovations aim to significantly 

enhance the effectiveness, reliability, and adaptability of IDS in protecting IoT systems from evolving cyber threats. 

4.2. Overview of Proposed Framework 

The proposed research framework addresses critical security and privacy challenges in Intrusion Detection Systems 

(IDS) for Internet of Things (IoT) environments through several innovative contributions. The framework is divided 

into two distinct yet interrelated phases: Secure Data Transmission and Management and Intrusion Detection and 

Analysis. Each phase incorporates advanced methodologies and technologies to ensure robust data security, system 

reliability, and intrusion detection accuracy. The proposed framework is divided into two phases: 

 

Figure 35: A Hybrid AI-Blockchain-Enabled Framework for Enhancing the Security of Intrusion Detection Systems in the Internet 
of Things Ecosystem 

(i) First Phase: Secure Data Transmission and Management 
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This phase is designed to establish a secure and reliable environment for transmitting and managing sensitive data, 

especially in scenarios involving highly confidential information, such as patient healthcare records. The framework 

employs a combination of advanced cryptographic techniques and decentralized data storage mechanisms to protect 

data integrity, confidentiality, and availability. 

 Integration of ECC, DSA, and SHA-512: The integration of Elliptic Curve Cryptography (ECC), the 

Digital Signature Algorithm (DSA), and the SHA-512 hash function ensures a robust cryptographic 

framework for secure communication. ECC is employed for data encryption, offering a high level of security 

with smaller key sizes, making it efficient and suitable for resource-constrained IoT devices. Its 

computational efficiency reduces overhead while maintaining robust encryption standards. DSA 

authenticates data exchanges by verifying the identities of communicating entities, ensuring that only 

authorized devices participate in the network. Additionally, SHA-512 generates unique hash values for every 

data packet, enabling the detection of any unauthorized modification and ensuring data integrity. Together, 

these cryptographic techniques provide comprehensive protection by securing data, authenticating users, and 

detecting tampering. 

 Development of a Novel SADE Algorithm for Optimal Key Generation: The framework introduces a 

novel Self-Adaptive Differential Evolution (SADE) algorithm to enhance the quality and security of 

cryptographic keys. Unlike traditional key generation techniques, SADE dynamically adjusts its parameters, 

such as mutation and crossover rates, based on the security requirements and the system environment. This 

adaptability generates high-entropy keys that are more resistant to cryptographic attacks, including brute 

force. By optimizing the key generation process, SADE ensures that the encryption and authentication 

mechanisms remain both secure and efficient, addressing the varying needs of IoT networks while mitigating 

potential vulnerabilities. 

 Employment of the PBFT Consensus Algorithm: The Practical Byzantine Fault Tolerance (PBFT) 

consensus algorithm is implemented to establish trust and ensure accurate decision-making across the 

blockchain network. PBFT is particularly suited for environments where nodes may act maliciously or 

unpredictably, as it achieves consensus even in the presence of Byzantine faults. By requiring agreement 

among a majority of nodes, PBFT maintains the consistency and integrity of the blockchain ledger. This 

ensures that data recorded on the blockchain is accurate, tamper-proof, and reliable, providing a secure 

foundation for managing sensitive information. 

 Utilizing IPFS for Off-Chain Data Storage: The InterPlanetary File System (IPFS) is integrated to address 

the challenges of storing large volumes of data while maintaining decentralization. IPFS provides a scalable 

and resilient storage solution by decentralizing data storage across multiple nodes. It ensures that data remains 

accessible even if some nodes go offline. Additionally, data stored in IPFS is referenced on the blockchain 

via cryptographic hashes, ensuring both its integrity and authenticity. This combination of on-chain and off-

chain storage allows the framework to efficiently manage extensive datasets, such as IoT logs and healthcare 

records, without compromising security or scalability. 

 

(ii) Second Phase: Intrusion Detection and Analysis  

 

The second phase focuses on enhancing the detection and analysis of network intrusions, specifically within 

heterogeneous IoT networks. This phase aims to improve the accuracy and efficiency of identifying malicious 

activities, thereby strengthening the overall security posture of the network. 

 

 Application of Genetic Algorithm (GA) for IDS Optimization: To optimize the performance of the 

Intrusion Detection System (IDS), the framework employs a Genetic Algorithm (GA). GA simulates the 

process of natural evolution to refine detection rules and select the most relevant features from network traffic 

data. By iteratively evolving a population of potential solutions, GA identifies patterns that distinguish 

between normal and malicious activities. This process reduces the false positive rate, ensuring that legitimate 

activities are not mistakenly flagged as threats. Moreover, selecting optimal features improves the efficiency 

of the IDS, enabling it to detect genuine threats more accurately and respond to them promptly. 

 Design of XGBoost-Based Model for Intrusion Detection: The framework includes an XGBoost-based 

model for detecting intrusions in heterogeneous IoT networks. XGBoost is a robust machine-learning 

algorithm known for its high accuracy and efficiency, particularly in handling large and complex datasets. 

The model leverages the XGBoost gradient-boosting framework to identify various intrusions, even in 
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diverse and dynamic IoT environments. By effectively analyzing data patterns and distinguishing between 

normal and malicious activities, the XGBoost-based model provides a robust solution for intrusion detection. 

This ensures that the network remains secure against a wide range of threats, maintaining the stability and 

reliability of IoT systems. 

 

4.2.1. ECC-DSA-SHA-512 for Secure Data Management 

In the context of securing data management within a blockchain-based framework, the hybrid cryptographic approach 

involving Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and Secure Hash Algorithm 512 

(SHA-512) is employed to enhance the security and integrity of data. This combined approach leverages the strengths 

of each component to provide a robust mechanism for safeguarding sensitive information. 

Elliptic Curve Cryptography (ECC) provides a high level of security with relatively smaller key sizes compared to 

traditional cryptographic methods. The ECC algorithm operates over elliptic curves defined over finite fields, offering 

efficient and secure public-key cryptography. Specifically, ECC employs the elliptic curve equation: 

                                                         𝑦2 =  𝑥3 + 𝑎𝑥 + 𝑏 𝑚𝑜𝑑 𝑝                                                (1) 

Where 𝑝 is a prime number defining the finite field. The security of ECC is based on the difficulty of the Elliptic 

Curve Discrete Logarithm Problem (ECDLP), which ensures that private keys remain secure against computational 

attacks. The private key 𝑑 is selected from the range, open bracket 1, from the range [1, 𝑛 − 1], and the corresponding 

public key 𝑄 is computed as 𝑄 = 𝑑. 𝐺, where, 𝐺 is the base point on the elliptic curve, and 𝑛 is the order of 𝐺. 

A Digital Signature Algorithm (DSA) is integrated to provide digital signatures that authenticate and verify data 

integrity. The DSA, when combined with ECC, enhances the efficiency and security of the signing process. The 

signing process involves generating a random number 𝑘, calculating the point 𝑅 = 𝑘. 𝐺, and computing the signature 

components 𝑟 𝑎𝑛𝑑 𝑠 𝑎𝑠 𝑓𝑜𝑙𝑙𝑜𝑤𝑠: 

                                                             𝑟 =  𝑥𝑅  𝑚𝑜𝑑 𝑛                                                                 (2) 

                                                 𝑠 = 𝑘−1(ℎ + 𝑑. 𝑟) 𝑚𝑜𝑑 𝑛                                                            (3) 

where 𝑥𝑅 is the x-coordinate of 𝑅, 𝑘−1 is the modular inverse of 𝑘, and ℎ is the hash of the message. The signature 

(𝑟, 𝑠) serves as proof of the authenticity of the message. 

Secure Hash Algorithm 512 (SHA-512) is used to hash the message before signing, ensuring the data remains secure 

and tamper-proof. The hashing function processes the message 𝑀 to produce a 512-bit hash value ℎ: 

                                                    ℎ = 𝑆𝐻𝐴 − 512(𝑀)                                                                 (4) 

This hash value is then used in the signing process to ensure the integrity and non-repudiation of the data. 

In the blockchain framework, these components are combined to provide a comprehensive security solution. ECC 

ensures efficient key management and secure public-key operations, DSA facilitates the generation of verifiable digital 

signatures, and SHA-512 guarantees data integrity through secure hashing. Together, these cryptographic techniques 

form a hybrid approach that enhances the security and reliability of data management within the blockchain. 

ECC, DSA, and SHA-512 integration form a cohesive hybrid algorithm. The process begins with data preparation, 

where the message 𝑀 is hashed using SHA-512 to produce ℎ. ECC then provides the key management framework, 

generating the private key 𝑑 and public key 𝑄. The DSA utilizes these keys alongside the ephemeral key 𝑘, to produce 

the signature (𝑟, 𝑠). This signature is appended to the transaction data, which is then stored in the blockchain. 

For verification, the public key 𝑄 is used alongside the received signature (𝑟, 𝑠) to confirm the authenticity of the data. 

The hash of the received message is recalculated, and the validity of the signature is checked using the relation: 

                                                        𝑢1 =  𝑠−1 ℎ 𝑚𝑜𝑑 𝑛                                                     (5) 
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                                                        𝑢2 =  𝑠−1 𝑟 𝑚𝑜𝑑 𝑛                                                     (6) 

                                                      𝑅′ =  𝑢1. 𝐺 + 𝑢2 . 𝑄                                                     (7) 

The signature is deemed valid if the x-coordinate of 𝑅′ matches 𝑟. This ensures that the data is not altered and 

originates from a legitimate source. 

By merging ECC, DSA, and SHA-512, the proposed hybrid algorithm provides a comprehensive security mechanism 

within the blockchain framework. It ensures that data is securely managed, preventing unauthorized access and 

guaranteeing data integrity and authenticity.  

4.2.2 Self-Adaptive Differential Evolution (SADE) for Key Generation 

In the context of securing data management within a blockchain-based framework, the integration of Elliptic Curve 

Cryptography (ECC), the Digital Signature Algorithm (DSA), and the Secure Hash Algorithm 512 (SHA-512) has 

been recognized as a robust approach for ensuring data integrity, authenticity, and privacy. However, to further 

enhance the system's efficiency and security, the Self-Adaptive Differential Evolution (SADE) algorithm has been 

employed to optimize the key generation process. This optimization is necessary because the strength of ECC and 

DSA heavily depends on the quality of the cryptographic keys generated. SADE dynamically adjusts its parameters 

to produce optimal keys without manual tuning, making it particularly suitable for resource-constrained environments 

where computational power and storage are limited. By generating secure and efficient keys, SADE reduces 

computational overhead and enhances the system's resistance to cryptographic attacks, including brute force and 

cryptanalysis. The algorithm's adaptability ensures that the blockchain network can scale efficiently, maintaining high 

performance and security as the number of transactions increases. Additionally, SADE minimizes vulnerabilities 

associated with weak or predictable keys, thus contributing to a more secure overall system. SADE's proactive 

optimization of key generation has been essential in maintaining the blockchain framework's integrity and protecting 

sensitive data from emerging cyber threats. 

This section proposes a novel Self-Adaptive Differential Evolution (SADE) algorithm to optimize cryptographic key 

generation within the ECC-DSA-SHA-512 framework. SADE dynamically adjusts parameters to enhance key quality, 

ensuring robust security and high entropy. The role of SADE in optimizing the key is as follows: 

1. Key Generation in ECC using SADE 

Key generation in Elliptic Curve Cryptography (ECC) involves selecting a private key 𝑑 and calculating the 

corresponding public key 𝑄. SADE optimizes the private key selection through a population-based approach, 

focusing on improving security metrics like entropy and minimizing correlation. 

a) Initialization: A population of candidate private keys 𝑑𝑖 is initialized within the range(1, 𝑛 − 1), 

where 𝑛 is the order of the base point 𝐺 on the elliptic curve 𝐸. The population size is denoted by 

𝑁𝑃. 

                               di = 𝑟𝑎𝑛𝑑𝑜𝑚(1, 𝑛 − 1), 𝑖 = 1,2 … … . . 𝑁𝑃                                            (8) 

 

 

b) Mutation: For each candidate 𝑑𝑖, a mutant vector 𝑣𝑖 is generated as follows: 

                                                        𝑣𝑖 =  𝑑𝑏𝑒𝑠𝑡 + 𝐹. (𝑑𝑟1 − 𝑑𝑟2) +  𝜑. (𝑑𝑟3 − 𝑑𝑟4)                                (9) 

   Where 𝑑𝑏𝑒𝑠𝑡 is the best solution vector in the current population, 𝐹 is the mutation factor, adaptively adjusted in 

SADE,  𝜑 is an additional exploration factor, also adaptively adjust,  𝑑𝑟1, 𝑑𝑟2, 𝑑𝑟3 , 𝑑𝑟4 are randomly selected distinct 

solutions from the population. 

                            The mutation factor 𝐹 and the exploration factor 𝜑 are dynamically updated as: 

                                         𝐹 =  𝐹𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1). (𝐹𝑚𝑎𝑥 − 𝐹𝑚𝑖𝑛)                                    (10) 
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                                                          𝜑 =  𝜑𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑𝑜𝑚(0,1). (𝜑𝑚𝑎𝑥 − 𝜑𝑚𝑖𝑛)                                 (11) 

   Where 𝐹𝑚𝑖𝑛, 𝐹𝑚𝑎𝑥, 𝜑𝑚𝑖𝑛  𝑎𝑛𝑑 𝜑𝑚𝑎𝑥 are predefined bounds. 

c) Crossover: The crossover operation forms a trial vector 𝑢𝑖 by combining elements from the current 

candidate 𝑑𝑖and the mutant vector 𝑣𝑖: 

                                                                    𝑢𝑖[𝑗] = {
𝑣𝑖[𝑗],  𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚 𝑗 ≤  𝑐𝑟

𝑑𝑖[𝑗],  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                      (12) 

where 𝑐𝑟  is the crossover rate, and 𝑟𝑎𝑛𝑑𝑜𝑚 𝑗 is a uniformly distributed random number. 

d) Selection: The trial vector 𝑢𝑖 is evaluated against the objective function, and the better solution is 

selected for the next generation: 

                                                𝑑𝑖
𝑛𝑒𝑤 = {

𝑢𝑖 ,  𝑖𝑓 (𝑢𝑖) >  𝑓(𝑑𝑖)
𝑑𝑖 ,  𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                               (13) 

 

The objective function 𝑓 is designed to maximize security properties like entropy and minimize the correlation 

between keys. 

e) Convergence Criteria: The algorithm iterates until a convergence criterion is met, such as a 

maximum number of generations 𝐺𝑚𝑎𝑥:  

                                                                         𝐺 ≥  𝐺𝑚𝑎𝑥                                               (14) 

2. Integration with ECC-DSA: Upon determining the optimal private key 𝑑 using SADE, the ECC-DSA 

process proceeds with signing and verification. 

 

a) Message Hashing: The message 𝑀 is hashed using SHA-512: 

                                               ℎ = 𝑆𝐻𝐴 − 512(𝑀)                                  (15) 

b) Signature Generation: A random number 𝑘 is selected, and the point 𝑅 = 𝑘. 𝐺 is computed. The 

signature (𝑟, 𝑠) is generated as follows: 

 
                                                                                     r =  xR mod n                                             (16) 

                                                                    s = k−1(h + d. r) mod n                             (17) 

where 𝑥𝑅 is the x-coordinate of the point 𝑅, and 𝑘−1 is the modular inverse of 𝑘 𝑚𝑜𝑑 𝑛. 

c) Signature Verification: To verify the signature, the following calculations are performed: 

 

 Calculate 𝑢1 and 𝑢2: 

                  𝑢1 =  𝑠−1 ℎ 𝑚𝑜𝑑 𝑛                                             (18) 

𝑢2 =  𝑠−1 𝑟 𝑚𝑜𝑑 𝑛                            (19) 

 

 Compute the point 𝑅′: 

𝑅′ =  𝑢1. 𝐺 + 𝑢2 . 𝑄             (20) 

 Verify if 𝑅′ yields the same value of 𝑟: 

                                                 𝑟 =  𝑥𝑅′  𝑚𝑜𝑑 𝑛              (21) 

The signature is valid if 𝑟 =  𝑟′. 

The SADE algorithm adaptive mechanism balances exploration and exploitation, ensuring robust and high-quality 

key generation. The integration with ECC-DSA-SHA-512 provides a secure and efficient framework for data 
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management in blockchain networks, capable of withstanding evolving threats and maintaining high levels of security 

and performance. SADE's contribution to secure data management in blockchain networks ensures that the system 

can adapt to changing conditions, optimize key generation, and maintain robust security measures. 

Algorithm: SADE for Cryptographic Key Generation   

Input: NP, G_max, CR, F_min, F_max, φ_min, φ_max, G, n   

Output: Optimized Private Key `d_best`   

 

1. Initialize population {d₁, d₂, ..., d_NP} with random values in (1, n-1)   

2. Evaluate objective function f(d₁, d₂, ..., d_NP)   

3. For generation G = 1 to G_max do:   

   a. For each candidate dᵢ:   

      i. Generate mutant vector vᵢ:   

         vᵢ = d_best + F(d_r₁ - d_r₂) + φ(d_r₃ - d_r₄)   

         Update F and φ dynamically.   

      ii. Perform crossover to create trial vector uᵢ.   

      iii. Evaluate uᵢ against f(dᵢ).   

      iv. Update dᵢ = uᵢ if f(uᵢ) > f(dᵢ).   

   b. Update d_best.   

4. Return d_best.   

 

4.2.3. Consensus Mechanism for Proposed Framework 

In a PBFT-based blockchain network, the decision regarding data inclusion on the blockchain ledger is managed by a 

set of validators or replicas, denoted as 𝑁 = {𝑁1,𝑁2,𝑁3, … … … … . 𝑁𝑛 )  is responsible for participating in the consensus 

protocol. The PBFT consensus mechanism is designed to agree on the ledger’s state despite Byzantine faults, where 

a fraction of nodes 𝑓 may act arbitrarily or maliciously. It is assumed that 𝑓 <
𝑛

3
 where 𝑛 is the total number of nodes. 

The PBFT processes in the proposed framework: 

a. Transaction Proposal: 

 Transaction Submission: Transactions are submitted to the network by participants 𝑃 =

{𝑃1, 𝑃2, 𝑃3 … … . 𝑃𝑛). Each transaction 𝑇𝑖  includes data and its associated cryptographic 

signature 𝜎𝑖, which ensures the transaction's authenticity and integrity: 

                                                                                            𝑇𝑖 = (𝑑𝑖 , 𝜎𝑖)        (22) 

Where 𝑑𝑖 represents the transaction data and 𝜎𝑖 is the signature generated using the sender's private key. 

 Pre-prepare Phase: The primary node 𝑁𝑝𝑟𝑖𝑚𝑎𝑟𝑦 proposes a new block 𝐵 that contains the 

transactions received. The block proposal 𝐵 is represented as: 

𝐵 = {𝑇1, 𝑇2, 𝑇3 … . 𝑇𝑘) 

where 𝑘 is the number of transactions included in the block. 

b. Block Creation: 

 Prepare Phase: The primary node broadcasts the proposed block 𝐵 to all other nodes in the 

network. Each node 𝑁𝑖 checks the validity of the block by verifying each transaction’s signature 

and ensuring compliance with the blockchain’s rules: 

𝑉𝑎𝑙𝑖𝑑 (𝑇𝑖 ) = 𝑉𝑒𝑟𝑖𝑓𝑦 (𝑑𝑖 , 𝜎𝑖) 

 Prepare Messages: Nodes send a prepare message 𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒to all other nodes. This message 

confirms the reception and validation of the proposed block 𝐵: 
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𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒 = (𝑃𝑟𝑒𝑝𝑎𝑟𝑒, 𝐵, 𝑁𝑖) 

where 𝑁 is the node sending the prepared message. 

c. Block Verification: 

 Commit Phase: Each node collects prepare messages from other nodes. When a node 𝑁𝑖 

receives prepare messages from at least 
2𝑛

3
 nodes (a supermajority), it considers the block to be 

in the "commit" phase. The threshold for commitment is represented as: 

                 𝐶𝑜𝑚𝑚𝑖𝑡(𝐵) = |{𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒|𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑠 𝐵 𝑓𝑟𝑜𝑚 
2𝑛

3
 nodes| 

 Commit Messages: Nodes then broadcast "commit" messages 𝑀𝑐𝑜𝑚𝑚𝑖𝑡 to all other nodes. 

These messages indicate the readiness to finalize the block 𝐵: 

𝑀𝑐𝑜𝑚𝑚𝑖𝑡 = (𝐶𝑜𝑚𝑚𝑖𝑡, 𝐵, 𝑁𝑖) 

d. Consensus: 

 Finalization: When a node 𝑁𝑖 receives commit messages from a supermajority of nodes, it 

finalizes the block 𝐵. The block is then added to the blockchain ledger. The finalization criterion 

is: 

                                           𝐹𝑖𝑛𝑎𝑙𝑖𝑧𝑒(𝐵) = |{𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒|𝑀𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝐶𝑜𝑛𝑓𝑖𝑟𝑚𝑠 𝐵 𝑓𝑟𝑜𝑚 
2𝑛

3
 nodes| 

 Broadcast: The finalized block 𝐵 is broadcast to the network, and all nodes update their local 

copies of the ledger with the new block. 

In the PBFT consensus algorithm, deciding what data to include on the blockchain ledger involves structured phases: 

transaction proposal, block creation, verification, and consensus. Initially, the primary node proposes and includes 

transactions in a block. The block undergoes a preparation phase where its validity is checked and prepared messages 

are disseminated. Once a supermajority of prepared messages is received, the commit phase is initiated, broadcasting 

commit messages. The block is finalized and added to the blockchain ledger upon receiving commit messages from a 

supermajority. This structured approach ensures consistency and reliability of the blockchain ledger, even in the 

presence of Byzantine faults. 

4.2.4.  Privacy-Preserving Mechanism  

The proposed system introduces privacy-preserving mechanisms using Homomorphic Encryption (HE) and Zero-

Knowledge Proofs (ZKPs). These cryptographic techniques ensure that sensitive data transmitted across the IoT 

network remains confidential and secure, even in untrusted environments. 

a. Homomorphic Encryption (HE) 

Homomorphic encryption allows computations to be performed on encrypted data without decrypting it. This is 

essential in an IoT environment where sensitive data, such as personal health records or financial information, must 

remain private during processing. In IoT, devices transmit encrypted data to a central server for processing. The server 

performs computations on the ciphertext and returns the encrypted result, which can only be decrypted by the rightful 

owner of the data. 

The basic operation of homomorphic encryption can be described by the following: 

i. Encryption function: Let 𝐸𝑛𝑐(𝑥) represent the encryption of a message 𝑥. 

𝐸𝑛𝑐(𝑥) =  𝑥𝑒 𝑚𝑜𝑑 𝑛 

Where 𝑒 is the public encryption exponent, and 𝑛 is part of the public key. 
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ii. Homomorphic property: Homomorphic encryption allows certain operations on encrypted data to be equivalent to 

operations on the decrypted data. For instance, for two encrypted values 𝐸𝑛𝑐(𝑥) and 𝐸𝑛𝑐(𝑦),  the following holds: 

𝐸𝑛𝑐(𝑥 + 𝑦) = 𝐸𝑛𝑐(𝑥) + 𝐸𝑛𝑐(𝑦) 

𝐸𝑛𝑐(𝑥𝑦) = 𝐸𝑛𝑐(𝑥). 𝐸𝑛𝑐(𝑦) 

Using this property, a server can perform necessary operations (like addition or multiplication) on the encrypted data 

without ever decrypting it, ensuring that sensitive information remains secure. 

In the case of IoT devices in a healthcare system transmitting encrypted patient data, a device could send the encrypted 

medical readings to a server. The server could perform necessary computations (e.g., computing averages or 

performing diagnostic algorithms) on the encrypted data, which ensures that the medical data is never exposed to the 

server during the computation process. 

b. Zero-Knowledge Proofs (ZKPs) 

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that allow one party (the prover) to prove to another party 

(the verifier) that they know a value (e.g., a secret or a password) without revealing any information about the value 

itself. In the context of IoT, ZKPs can be used to verify data authenticity, such as a user’s identity or sensor data, 

without revealing any sensitive information. This allows for secure authentication in IoT networks, ensuring that 

sensitive data is not exposed during verification. 

Let 𝑅 be the secret data the prover knows (for example, a private key or an encrypted value). The prover wants to 

prove to the verifier that they know 𝑅 without revealing it. Using ZKPs, the prover can generate a proof 𝜋 that the 

verifier can verify, but at no point is 𝑅 disclosed. The protocol involves three main steps: 

i. Commitment Phase: The prover commits to a value using a cryptographic commitment function 𝐶𝑜𝑚𝑚𝑖𝑡(𝑅). 

ii. Challenge Phase: The verifier challenges the prover to prove they know the value without revealing it. 

iii. Response Phase: The prover provides a response that satisfies the challenge without disclosing the actual value 

𝑅. 

The verification process ensures that the prover knows 𝑅, but the verifier learns nothing about 𝑅 beyond its validity. 

 

Let 𝐶 be the commitment to a secret value 𝑅, where: 

𝐶 = 𝐶𝑜𝑚𝑚𝑖𝑡(𝑅) 

Let 𝑥 be the challenge from the verifier, and 𝑠 be the response from the prover. The prover then sends 𝑠 to the 

verifier, who checks whether: 

𝑉𝑒𝑟𝑖𝑓𝑦 (𝐶, 𝑥, 𝑠) = 1 

If the verification is successful, the prover successfully convinces the verifier they know R without revealing any 

details of R.  

Consider a scenario where an IoT sensor in a healthcare application needs to verify its identity to access a secure 

server. Using a Zero-Knowledge Proof, the sensor can prove it has valid credentials without transmitting sensitive 

information, such as its private key or encrypted data. 

c. Integration of HE and ZKPs for IoT Framework 

In the proposed framework for intrusion detection in IoT, the integration of HE and ZKPs ensures that:  

i. Confidentiality: Data from IoT devices, such as sensor readings, remains encrypted during transmission and 

processing, protecting sensitive information.  
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ii. Authentication: Devices and users can authenticate their identities without exposing private information, ensuring 

only authorized entities can access or process the data. 

The system flow would be as follows: 

 IoT devices encrypt sensitive data using homomorphic encryption. 

 The encrypted data is sent to the central server, where computations are performed on the encrypted data 

(e.g., performing machine learning inference). 

 The result is returned as an encrypted response decrypted by the IoT device. 

 During authentication, devices use Zero-Knowledge Proofs to prove their identity to the central server 

without revealing private information. 

The complete privacy-preserving framework can be represented as: 

o Step 1: Encryption: Each IoT device encrypts its data using homomorphic encryption: 

𝐸𝑛𝑐(𝑥) =  𝑥𝑒 𝑚𝑜𝑑 𝑛 

where 𝑥 is the data and 𝑒 is the encryption exponent. 

o Step 2: Computation: The server performs necessary computations on the encrypted data, such as: 

𝐸𝑛𝑐(𝑥 + 𝑦) = 𝐸𝑛𝑐(𝑥) + 𝐸𝑛𝑐(𝑦) 

to generate results without decrypting the data. 

 

o Step 3: Zero-Knowledge Proofs for Authentication: IoT devices and users prove their identity using ZKPs 

without revealing sensitive credentials: 

𝑉𝑒𝑟𝑖𝑓𝑦 (𝐶, 𝑥, 𝑠) = 1 

Where 𝐶 is the commitment, 𝑥 is the challenge, and 𝑠 is the response. 

The integration of Homomorphic Encryption and Zero-Knowledge Proofs into the proposed IoT-based intrusion 

detection framework enhances data privacy and security. These cryptographic techniques ensure that sensitive data 

remains confidential during computation and that users and devices can prove their identity without disclosing private 

information. This approach offers a robust solution to privacy concerns in IoT environments, ensuring that both data 

confidentiality and authentication processes are securely handled. 

4.2.5. Data Storage through IPFS 

The InterPlanetary File System (IPFS) is introduced in the proposed framework as a decentralized storage solution to 

address blockchain systems' scalability and storage limitations. It efficiently stores large datasets, such as IoT network 

logs, without burdening the blockchain with high storage demands. The integration involves storing data files in IPFS 

while maintaining only the file's hash on the blockchain, known as the Content Identifier (CID). This CID acts as a 

pointer to the file's exact location in the IPFS network, ensuring data privacy and reducing storage overhead. 

Consistency between the blockchain and IPFS is achieved through hash verification. When data is retrieved, the 

system compares the CID in the blockchain with the retrieved file's hash in IPFS to ensure integrity. Any mismatch 

flags tampering or corruption. Regular integrity checks reinforce this mechanism, maintaining the reliability of stored 

data. Moreover, encryption using Elliptic Curve Cryptography (ECC) protects data before uploading it to IPFS. 

Decryption keys are managed using a Role-Based Access Control (RBAC) system, which ensures that only authorized 

users, such as healthcare providers or researchers, can access the data. 

 

The framework also guarantees data immutability and traceability. Blockchain's immutable ledger secures the CID, 

ensuring the data remains unaltered in IPFS. Furthermore, IPFS's versioning feature enables updates to stored files 

while retaining a complete history of changes. This ensures transparency and traceability without compromising data 

integrity. When a user requests data, the system retrieves the CID from the blockchain, fetches the file from IPFS, and 

verifies its integrity against the stored hash before decryption. This integration offers several advantages. By 

offloading large datasets to IPFS, the blockchain becomes more scalable and can handle higher transaction volumes 

without performance degradation. It is also cost-efficient, as storing data off-chain in IPFS reduces the expense 

associated with on-chain storage. The combination of IPFS encryption and blockchain immutability provides robust 

security, while the distributed nature of IPFS enhances data availability and resilience against failures. 
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However, challenges such as data availability and retrieval latency are acknowledged. Files in IPFS may become 

unavailable if nodes fail to host them. To counter this, pinning services ensure critical files remain accessible. Retrieval 

latency, a potential drawback of IPFS's distributed nature, is mitigated by implementing caching mechanisms for 

frequently accessed files. The integration of IPFS with blockchain in the proposed framework provides a secure, 

scalable, and efficient solution for off-chain data storage. It effectively handles large datasets while maintaining 

privacy, integrity, and availability, making it particularly suitable for IoT applications in sensitive domains like 

healthcare. Future research could explore further optimizations in data retrieval speeds and advanced encryption 

methods to enhance system performance. 

 
4.3.  Proposed Intrusion Detection Model 

This section presents a comprehensive Proposed Intrusion Detection System (IDS) model tailored for securing 

heterogeneous IoT environments, as shown in Figure 2. The section begins with data preparation, involving meticulous 

preprocessing and normalization techniques to ensure the dataset is clean, well-organized, and balanced, optimizing 

the accuracy of the subsequent machine learning models. Next, we employ a Genetic Algorithm (GA) to refine 

detection rules, enhancing the IDS's ability to detect intrusions while minimizing false positives and negatives. The 

GA's optimization process, from rule initialization to final selection, is detailed, demonstrating its effectiveness in 

improving IDS performance. Finally, we introduce an XGBoost-based model, an ensemble of decision trees designed 

to identify cyber threats within these networks. The model leverages iterative training and optimization to effectively 

capture complex patterns, thereby enhancing the robustness of the IDS in detecting intrusions in diverse IoT 

environments. 

 

Figure 36: Overview of Proposed Architecture for Intrusion Detection System 

 

4.3.1. Data Preparation 
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Adequate data preparation is integral to the success of machine learning and deep learning models, as it ensures that 

the data is appropriately organized and cleansed before inputting into the algorithms. This process is essential for 

optimizing the learning process and improving model accuracy. Our research employs a comprehensive two-step 

strategy for data preparation, consisting of Data Pre-processing and Data Normalization. 

i. Data Pre-Processing:  In the data pre-processing phase, categorical features with nominal values were 

converted into numerical representations using label encoding. This method aligns these features with the 

input requirements of the neural network. Additionally, irrelevant features, such as date, time, and timestamp 

columns, were removed from the dataset. These features were deemed non-contributory to the prediction 

outcomes, and their exclusion helped streamline the dataset for more efficient processing. 

ii. Data Normalization: We employed data normalization techniques to address the issue of feature imbalance, 

where specific attributes exhibited disproportionately high values that could skew the model's performance. 

Specifically, the min-max scaling technique was utilized to map the data to a standardized range between 0 

and 1 while preserving the original distribution of the data. This technique is mathematically represented as: 

                                                           𝑦 =
X−Xmin

Xmax−Xmin
                                                       (1) 

 

Where x and y are the original and normalized values, the feature's minimum and maximum values are 

given by xmin and xmax, respectively. 

 

As an initial step in the data preparation process, all rows containing NaN or Infinity values were removed 

to mitigate any potential negative impact on model performance preemptively. Subsequently, the Scikit-learn 

label encoder was employed to convert non-numerical values to numerical ones. The dataset's sole non-

numerical feature, 'Label,' was converted to a binary format using this encoder. Comprehensive data 

normalization was then achieved using the Min-Max scaler function, as referenced in [37]. 

4.3.2. Genetic Algorithm (GA) for Optimizing IDS Performance 

In Intrusion Detection Systems (IDS), Genetic Algorithms (GA) optimize performance by refining detection rules and 

features, evolving a population of candidate solutions (chromosomes) to find the optimal set of rules and feature 

combinations. The goal is to maximize the system's ability to detect intrusions while minimizing false positives and 

false negatives. 
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Figure 37: Proposed Flow Chart of Optimized Genetic Algorithm for Feature Selection 

 Detection Rule in IDS: Detection rules are criteria that IDS uses to identify malicious activities within a 

network. These rules specify patterns or signatures associated with known threats or describe normal network 

behavior to identify anomalies. This research develops detection rules specifically for the proposed system, 

leveraging standard sets like the Snort rule set and other established databases. We consider network traffic 

features such as IP addresses, ports, protocols, payload patterns, and timing characteristics. For example, a 

rule might flag an incoming packet with a specific IP address and port combination as suspicious: 

 

 Rule ID: 10001 

 Rule Name: TCP SYN Flood 

 Condition: if (source IP == known malicious IP) AND (destination port == 80) And (packet count 

> 1000 within 1 minute) then alert 

 Action: Alert and log the incident 

These rules form the initial pool for optimization. The GA refines these rules to enhance detection 

accuracy and efficiency. 
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 Genetic Algorithm Optimization Process: The GA optimization process involves the following steps: 

 

 Initialization: A population of chromosomes, each representing a set of detection rules, is randomly 

generated. Each chromosome encodes a potential solution, with genes representing specific rule parameters. 

 

 Fitness Function: The fitness function evaluates each chromosome's performance by measuring the IDS's 

ability to detect intrusions, considering true positives and false negatives. The fitness function 𝑓is defined as: 

𝑓 =  𝛼 ∗ 𝑇𝑃𝑅 −  𝛽 ∗ 𝐹𝑃𝑅 

 Selection: Chromosomes are selected based on their fitness scores, with fitter individuals having a higher 

chance of being chosen for reproduction. Roulette Wheel Selection is used, a probabilistic method where a 

roulette wheel is divided proportionally according to fitness scores. Chromosomes are selected by spinning 

the wheel, with fitter individuals having a larger slice. Mathematically, the probability 𝑝𝑖 of selecting 

chromosome 𝑖 is:  

𝑝𝑖 =  
𝑓𝑖

∑ 𝑓𝑖
𝑁
𝑗=1

 

 Crossover: Edge Recombination Crossover (ERC) is applied, preserving relative ordering and adjacency of 

genes from parent chromosomes. ERC constructs an adjacency list for each gene, representing possible 

successors from both parents. The offspring is generated by traversing the adjacency list, selecting genes with 

the fewest neighbors to minimize breaking gene adjacency. 

Let 𝑨 𝒂𝒏𝒅 𝑩  be two parent chromosomes. The ERC creates offspring by maintaining the order and adjacency of 

edges (connections between genes) present in 𝐴 𝑎𝑛𝑑 𝐵. Mathematically, if 𝐴 = (𝑎1, 𝑎2 … … … … . 𝑎𝑛) and 𝐵 =

(𝑏1,𝑏2 … … … … . 𝑏𝑛), the adjacency list for a gene 𝑔 contains the adjacent genes from 𝐴 𝑎𝑛𝑑 𝐵. For each gene 𝑔 

in the offspring, the next gene is chosen based on the adjacency list, prioritizing genes with fewer neighbors. 

 

 Mutation: Insertion Mutation is applied to maintain diversity. A gene is selected randomly, removed, and 

inserted at a new random position within the chromosome, altering the sequence without changing the set of 

genes.  

Let  𝐶 = (𝑐1, 𝑐2 … … … … … . 𝑐𝑛) be a chromosome. The mutation operation can be represented as:  
𝐶 = (𝑐1, … … . 𝑐𝑘−1, 𝑐𝑘+1, … … … 𝑐𝑛, 𝑐𝑘) 

where gene 𝑐𝑘 is moved to a new position at the end of the sequence. 

 

 Termination: The algorithm iteratively applies these operators until a termination condition is met. 

Terminating conditions include reaching a maximum number of generations 𝐺𝑚𝑎𝑥 . This condition ensures 

that the algorithm halts after a fixed number of iterations, regardless of whether the optimal solution has been 

found. Mathematically, this condition can be expressed as:  

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 𝑖𝑓 𝐺 ≥  𝐺𝑚𝑎𝑥 

The GA optimization results in an optimized set of detection rules that improve the accuracy and efficiency of 

identifying intrusions. This process allows the IDS to adapt to new and evolving threats by refining its detection 

capabilities based on real-world data and scenarios. The optimized rules enhance the system's ability to recognize 

previously unseen patterns indicative of malicious behavior, thus improving security in IoT environments. 

Once the GA has refined the detection rules, the optimized IDS rules are validated through performance metrics such 

as accuracy, detection rate, and efficiency. The optimized rules improve the IDS's adaptability to evolving threats by 

enhancing detection capabilities and reducing the likelihood of false positives. Additionally, the refined rules enable 

the IDS to focus on more relevant network traffic features, improving overall system performance in real-time 
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deployment environments. By using GA to optimize detection rules and feature sets, the IDS becomes more robust, 

capable of adapting to new intrusion patterns, and provides a higher level of security for IoT systems where threats 

are continuously evolving. 

 The GA-based approach significantly improves the performance of IDS by ensuring that the system's detection 

mechanisms evolve with the threat landscape. Combining optimization techniques such as crossover and mutation, 

the GA continuously refines detection rules to adapt to new, sophisticated intrusions while maintaining high accuracy 

and minimizing detection errors. This adaptability is crucial for maintaining the effectiveness of intrusion detection 

systems in the dynamic and rapidly evolving world of IoT security. 

4.3.3. XGBoost-Based Model for Detecting Intrusion in Heterogeneous IoT Networks 

An XGBoost-based model is proposed for detecting cyber threats in heterogeneous IoT networks. XGBoost, or 

Extreme Gradient Boosting, is employed due to its effectiveness in classification tasks. It leverages an ensemble of 

weak learners, specifically decision trees, to create a robust predictive model for identifying malicious activities. Table 

5 presents the key hyperparameters used in the XGBoost-based intrusion detection model and their descriptions and 

values. 

Table 16: Hyperparameters for XGBoost-Based Intrusion Detection Model in Heterogeneous IoT Networks 

Hyperparameter Description Values 

Learning rate Controls the step size at each iteration while moving toward a minimum. 0.3 

n-estimator Number of boosting rounds or trees to build. 100 

Max-depth Maximum depth of the individual trees. A higher value leads to a more 

complex model. 

6 

Min-child weight Minimum sum of instance weight (hessian) needed in a child. 1 

Sub sample Fraction of samples to use for fitting each tree. Prevents overfitting. 1 

Colsample-bytree Fraction of features to use for fitting each tree. 1 

Gamma Minimum loss reduction required to make a further partition. Higher 

values lead to more conservative models. 

0 

Lambda L2 regularization term on weights (Ridge regression). 1 

Alpha L1 regularization term on weights (Lasso regression). 0 

Scale-pos-weight Controls the balance of positive and negative weights. Used in 

imbalanced classes. 

1 

booster Type of boosting model to use. Options: gbtree, gblinear, dart. gbtree 
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Figure 38: Proposed XGBoost-based model for Intrusion Detection in a Heterogeneous IoT environment 

In this framework as shown in figure 4, the ensemble is constructed by aggregating the predictions of multiple decision 

trees, where each tree is trained to correct the errors made by its predecessors. The overall prediction 𝑦𝑖̂ for an instance 

𝑖 is computed as:  

𝑦𝑖̂ =  ∑ 𝑓𝑘(𝑥𝑖)

𝐾

𝑘=1

 

Where 𝑥𝑖 represents the feature vector of the instance, 𝑓𝑘 denotes the 𝑘  𝑖𝑠 decision tree, and 𝐾 is the total number of 

trees in the ensemble. 

The objective function used in XGBoost combines a loss function and a regularization term to guide the training 

process. The loss function quantifies the discrepancy between the predicted values and the actual labels, while the 

regularization term discourages overly complex models. The objective function 𝐿 is given by: 

𝐿(𝜃) =  ∑ 𝑙(𝑦𝑖̂

𝑛

𝑖=1

, 𝑦𝑖) + ∑ 𝜗

𝐾

𝑘=1

(𝑓𝑘) 
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Where 𝑙(𝑦𝑖̂, 𝑦𝑖)is the loss function, for instance 𝑖 is the regularization term for the 𝑘𝑡ℎ tree, and 𝑛 is the number of 

training instances. The regularization term is defined as: 

𝜗(𝑓) =  𝛾 𝑇 + 
1

2
 𝜆 ∑ 𝑤𝑗

2

𝑇

𝑗=1

 

Here, 𝑇 represents the number of leaves in the tree, 𝑤 is the weight of the 𝑗𝑡ℎ leaf,  𝛾 controls the tree's complexity 

and 𝜆 regulates the regularization of leaf weights. 

During training, XGBoost minimizes the objective function 𝐿(𝜃) iteratively. Each new decision tree (𝑓𝑡) is added to 

the ensemble to minimize the objective function: 

𝐿(𝑡) =  ∑ 𝑙 (𝑦𝑖 , 𝑦𝑖
(𝑡−1)̂

+  𝑓𝑡(𝑥𝑖))

𝑛

𝑖=1

+  𝜗(𝑓𝑡) 

where 𝑦𝑖
(𝑡−1)

 denotes the prediction from the previous (𝑡 − 1) trees. The optimal decision tree 𝑓𝑡 is found by solving: 

𝑓𝑡 = arg 𝑚𝑖𝑛𝑓  ∑[ 𝑔𝑖𝑓(𝑥𝑖) +  
1

2

𝑛

𝑖=1 

 ℎ𝑖𝑓
2(𝑥𝑖)] + 𝜗(𝑓) 

Where, 𝑔𝑖 =  
𝜕 𝑙(𝑦𝑖 ,   ̂𝑦𝑖)

𝜕𝑦𝑖̂
 is the first-order gradient and ℎ𝑖 =  

𝜕2 𝑙(𝑦𝑖 ,   ̂𝑦𝑖)

𝜕𝑦𝑖
2̂

 is the second-order gradient.  

In the XGBoost framework, the weak learners are decision trees, simple structures with shallow depths. These trees 

are capable of capturing complex patterns when combined in an ensemble. The splitting criteria for these decision 

trees are based on minimizing impurity, which is mathematically represented as: 

𝐺𝑎𝑖𝑛 (𝑆, 𝑎) = 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 (𝑆) − ∑
|𝑆𝑣|

|𝑆|𝑣𝜖𝑉
 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 (𝑆𝑣) 

where 𝑆 is the set of samples before the split, 𝑎 is the feature used for the split, 𝑉 is the set of all possible values for 

the feature 𝑎, and 𝐼𝑚𝑝𝑢𝑟𝑖𝑡𝑦 measures the disorder of the set. 

The proposed XGBoost-based model effectively combines the predictions of individual decision trees to create a 

strong classifier. By iteratively adding trees and optimizing the objective function, the model enhances its ability to 

detect cyber threats, demonstrating robustness in heterogeneous IoT networks. 

5. Experimental Setup and Result Analysis 

This section outlines the experimental setup, describes the benchmark dataset, details the evaluation metrics, and 

analyzes the results of the proposed blockchain-based framework. 

5.1. Experimental Setup 

The experiments were conducted on a laptop equipped with the following hardware specifications: an Intel Core i5 

10th Gen processor, 8GB of RAM, 512GB of ROM, and an NVIDIA GTX 1650 GDDR6 4GB graphics card. The 

operating system used was Windows 11. This setup balanced performance and resource constraints, with the graphics 

card enhancing computational efficiency. Various data analysis frameworks were utilized to manage and analyze the 

data, including Pandas, NumPy, Seaborn, Matplotlib, and Scikit-learn. These tools facilitated data preprocessing, 

visualization, and the application of machine learning algorithms. The dataset was divided into three subsets: 80% for 

training, 20% for testing, and 20% for validation. This split ensured a robust evaluation of the model's performance, 

allowing for a thorough assessment of training efficacy and generalization capabilities. The Hyperledger Fabric 

framework was employed to integrate blockchain technology. Hyperledger Fabric provided a secure and decentralized 

platform for managing data during the training and testing phases. This implementation ensured that data integrity and 
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security were maintained throughout the experimental process, aligning with the study's focus on enhancing security 

and privacy. 

5.2. Dataset Description 

The proposed model uses the Edge-IIoT dataset for intrusion detection in Internet of Things (IoT) and Industrial 

Internet of Things (IIoT) environments. The dataset encompasses data collected from over ten IoT devices, including 

low-cost digital sensors for temperature and humidity sensing, pH meters, ultrasonic sensors, heart rate monitors, 

water-level detectors, soil moisture sensors, and flame sensors. This dataset features an extensive analysis of 14 

distinct attack types related to IoT and IIoT protocols, which are categorized into five major threat groups: Denial of 

Service (DoS) and Distributed Denial of Service (DDoS) attacks, information gathering, injection attacks, man-in-

the-middle attacks, and malware attacks. Of the 1,176 available features, 61 demonstrate high correlation. The dataset 

comprises 20,952,648 instances, with 11,223,940 labeled as normal and 9,728,708 as attacks. The data were split into 

training and testing subsets, with 80% allocated for training and 20% for testing, using stratification to maintain 

proportional representation across all classes. Specifically, 1,909,671 samples were selected, with 1,527,736 assigned 

to the training set and 381,935 to the test set. These samples are distributed across 15 categories, as detailed in Figure 

5.   

 

Figure 39: Statistical representation of samples in each attack class in the Edge_IIoT dataset. 

 

5.3. Performance Evaluation Metrics 

This section comprehensively details the performance evaluation metrics employed to assess the effectiveness and 

efficiency of the proposed blockchain-based framework and intrusion detection model by systematically analyzing 

critical metrics in both phases: Phase 1, which focuses on the blockchain framework, and Phase 2, which evaluates 

the intrusion detection system. This section aims to provide a rigorous examination of the system's capabilities. 

5.3.1. Performance Evaluation Metrics for Blockchain-based Framework (Phase 1) 

When evaluating the performance and reliability of the blockchain framework, it is important to consider a 

comprehensive set of metrics that offer insights into the system's efficiency, security, and user experience. These 

metrics are instrumental in assessing blockchain performance under varying conditions. This sub-section 

Page 142 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 142 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



systematically defines key evaluation parameters, including fault tolerance, transaction finality, and network overhead. 

By examining these metrics, the strengths and limitations of blockchain Framework across different parameters can 

be rigorously analyzed, thereby facilitating the development of robust and scalable solutions. The following are the 

Evaluation Metrics: 

 Fault Tolerance: Fault tolerance in blockchain refers to the network's capability to continue functioning 

correctly even when some components fail. This is critical for maintaining system reliability and ensuring 

the blockchain remains operational despite disruptions. It is measured by Restoration Efficiency (RE), which 

quantifies how effectively the system recovers from failures: 

𝑅𝐸 =  
𝑇𝑟𝑒𝑠𝑡𝑜𝑟𝑒𝑑

𝑇𝑡𝑜𝑡𝑎𝑙
 

 User Experience (UX): User experience in blockchain systems reflects the ease and efficiency with which 

users interact, focusing on the system’s response time and the time required to share records. It is inversely 

related to the sum of response time (𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) and shared record time (𝑇𝑠ℎ𝑎𝑟𝑒): 

𝑈𝑋 =  
1

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 + 𝑇𝑠ℎ𝑎𝑟𝑒
 

 Transaction Finality: Transaction finality measures how quickly a transaction becomes irreversible and 

permanently recorded on the blockchain. It is directly related to the time required to create a block 𝑇𝑏𝑙𝑜𝑐𝑘: 

𝑇𝐹 =  𝑇𝑏𝑙𝑜𝑐𝑘 

 Network Overhead (NO): Network overhead refers to the additional computational resources and time 

consumed due to managing blockchain transactions, including encryption processes. It is often expressed as 

a percentage of the system's throughput and is influenced by the encryption time 𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡: 

𝑁𝑂% =  
𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡

𝑇ℎ
∗ 100 

 Encryption Time: Encryption time (𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡) is the duration required to convert plaintext into encrypted 

data using cryptographic algorithms, impacting security and transmission efficiency: 

𝑇𝑒𝑛𝑐𝑟𝑦𝑝𝑡 =
1

𝑓
∑ 𝑡𝑒𝑛𝑐𝑟𝑦𝑝𝑡,𝑖

𝑓

𝑖−1
 

 Decryption Time: Decryption time (𝑇𝑑𝑒𝑐𝑟𝑦𝑝𝑡) is the time taken to convert encrypted data back to its original 

form, crucial for accessing secured data efficiently: 

𝑇𝑑𝑒𝑐𝑟𝑦𝑝𝑡 =
1

𝑓
∑ 𝑡𝑑𝑒𝑐𝑟𝑦𝑝𝑡,𝑖

𝑓

𝑖−1
 

 Key Generation Time: Key generation time (𝑇𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇) is the duration required to create cryptographic keys, 

affecting overall security and system speed: 

𝑇𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇 =
1

𝑛
∑ 𝑡𝑘𝑒𝑦 𝐺𝑒𝑛 𝑇,𝑖

𝑛

𝑖−1
 

 Response Time: Response time (𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒) measures the interval between a user request and the system's 

response, crucial for performance evaluation in time-sensitive applications: 

𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 =  𝑇𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑒𝑛𝑑 − 𝑇𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑠𝑡𝑎𝑟𝑡 

 Restoration Efficiency: Restoration efficiency (𝑅𝐸) quantifies the system's ability to recover from faults, 

defined as: 

𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 =
𝐷𝑟𝑒𝑠𝑡

𝐷𝑜𝑟𝑖𝑔
× 100% 

Where 𝐸𝑟𝑒𝑠𝑡𝑜𝑟𝑎𝑡𝑖𝑜𝑛 is the restoration efficiency, 𝐷𝑟𝑒𝑠𝑡 is the amount of data successfully restored, and 𝐷𝑜𝑟𝑖𝑔 is the 

original data before any loss or corruption. 

 Shared Record Time: Shared record time (𝑇𝑠ℎ𝑎𝑟𝑒) is the time taken to transmit or share a record within the 

system, impacting the efficiency of data sharing: 

𝑇𝑠ℎ𝑎𝑟𝑒 = 𝑇𝑠𝑒𝑛𝑑 + 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 + 𝑇𝑐𝑜𝑚𝑚𝑖𝑡 
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Where 𝑇𝑠ℎ𝑎𝑟𝑒 is the sharing record time, 𝑇𝑠𝑒𝑛𝑑 is the time to send the record, 𝑇𝑣𝑒𝑟𝑖𝑓𝑦 is the time to verify the record, 

𝑇𝑐𝑜𝑚𝑚𝑖𝑡 is the time to commit the record to the blockchain.  

 Block Creation Time: Block creation time (𝑇𝑏𝑙𝑜𝑐𝑘) is the time required to generate a new block in the 

blockchain, affecting transaction finality and throughput: 

𝑇𝑏𝑙𝑜𝑐𝑘 =
1

𝑁
∑ 𝑡𝑏𝑙𝑜𝑐𝑘,𝑖

𝑁

𝑖=1

 

Where 𝑇𝑏𝑙𝑜𝑐𝑘 is the average block creation time, 𝑡𝑏,𝑖 is the time taken to create the 𝑖 − 𝑡ℎ block, and 𝑁 is the total 

number of blocks created. 

 Throughput: Throughput (𝑇ℎ) is the number of transactions processed per second, a key metric for evaluating 

the scalability and efficiency of blockchain networks: 

𝑇ℎ =  
𝑇𝑜𝑡𝑎𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛

 𝑡𝑜𝑡𝑎𝑙 𝑡𝑖𝑚𝑒 𝑡𝑎𝑘𝑒𝑛
 

 Latency: Latency (𝐿) is the delay between the initiation and completion of a transaction, crucial for real-time 

processing: 

𝐿 =  𝑇𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 − 𝑇𝑖𝑛𝑖𝑡𝑖𝑎𝑡𝑖𝑜𝑛  

5.3.2. Performance Evaluation Metrics for Intrusion Detection Model (Phase 2) 

This subsection presents the performance evaluation metrics for assessing the robustness of the Proposed Intrusion 

Detection System (IDS), as shown in Table 6.  

Table 17: Performance Evaluation Metrics for Intrusion Detection System 

Metrics Definition Formula 
Confusion matrix  Used to evaluate the performance of a classification model by 

comparing the predicted labels with the actual labels. 
 

True positive (TP) The record is successfully detected as malicious  

False positive (FP) The record is wrongly detected as malicious.  

True Negative (TN) The record is classified as non-malicious.  

False Negative (FN)  The record is undetected by the system.  

Accuracy Measure how well the model predicts the correct labels. 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Precision Measure how many of the predicted positive labels are actually 

positive. 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall Measure how many of the actual positive labels are correctly 

predicted. 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

F1 score The harmonic mean of Recall and Precision. 
𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

ROC curve Graphical representation of the performance of a classification 

model. TPR is the ratio of true positive predictions to the total 

actual positive labels. FPR is the ratio of false positive predictions 

to the total actual negative labels. 

𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 , 

   𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝐹𝑁
 

True Negative Rate (TNR) Model's ability to correctly classify instances of a specific 

attack type as non-attacks. 
𝑇𝑁𝑅 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Negative Predictive Value (NPV) Model's accuracy in predicting non-attacks for a specific attack 

type. 
𝑁𝑃𝑉 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

False Positive Rate (FPR) The rate at which instances of other attack types are incorrectly 

classified as the specific attack type. 
𝐹𝑃𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Negative Rate (FNR) The rate at which instances of a specific attack type are incorrectly 

classified as non-attacks or other types. 
𝐹𝑁𝑅 =

𝐹𝑁

𝑇𝑃 + 𝐹𝑁
 

False Discovery Rate (FDR) The rate at which instances are falsely predicted as the specific 

attack type when they are not. 
𝐹𝐷𝑅 =

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

False Omission Rate (FOR) The rate at which instances of a specific attack type are falsely 

classified as non-attacks or other types 
𝐹𝑂𝑅 =

𝐹𝑁

𝐹𝑁 + 𝑇𝑁
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5.4. Result Analysis 

This section provides an in-depth analysis of the performance metrics for the proposed Hybrid Blockchain-Based 

Framework and the GA-Optimized Intrusion Detection Model. The evaluation covers critical aspects such as 

encryption and decryption efficiency, block creation time, throughput, and response times compared to existing 

cryptographic algorithms and intrusion detection models. The results demonstrate significant improvements in 

security, efficiency, and scalability, highlighting the effectiveness of the proposed methodologies in addressing the 

challenges of secure communication and intrusion detection in IoT environments. 

5.4.1. Result Analysis for Blockchain-based Framework (Phase 1) 

In this phase, various cryptographic methods were compared based on multiple performance metrics to evaluate the 

efficiency and security of the proposed SADE-ECC-DSA-SHA-512 framework. Table 7 presents a comparison of 

various cryptographic methods, including Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES), 

Digital Signature Algorithm (DSA), and a proposed approach (SADE-ECC-DSA-SHA-512). The metrics analyzed 

include encryption time, decryption time, block creation time, key generation time, throughput, latency, response time, 

restoration efficiency, and successful sharing record time. These metrics are critical for assessing cryptographic 

techniques performance, efficiency, and security in secure communication systems. The SADE-ECC-DSA-SHA-512 

framework exhibits exceptional performance across multiple metrics, significantly outperforming traditional 

cryptographic techniques such as ECC, AES, DSA, and SADE-ECC. Its superior efficiency stems from the seamless 

integration of advanced cryptographic methods and dynamic optimization mechanisms. The incorporation of Elliptic 

Curve Cryptography (ECC) ensures lightweight and secure operations, while SHA-512 accelerates hashing processes 

with high reliability. The Self-Adaptive Differential Evolution (SADE) algorithm optimizes cryptographic parameters 

dynamically, eliminating unnecessary overhead. These innovations result in faster encryption, decryption, block 

creation, and key generation times. Furthermore, using the Practical Byzantine Fault Tolerance (PBFT) consensus 

mechanism minimizes delays during consensus, enhancing throughput and reducing latency. These optimizations 

collectively allow the proposed framework to process transactions more efficiently than conventional methods, 

making it ideal for resource-constrained environments. 

The framework’s architectural enhancements extend to other critical metrics such as response time, restoration 

efficiency, and successful sharing record time. The proposed methodology uses IPFS for decentralized off-chain 

storage to ensure rapid data retrieval and transaction processing, reducing response times. Restoration efficiency 

benefits from the tamper-proof properties of blockchain and the fast hash generation of SHA-512, ensuring secure and 

seamless data recovery. Additionally, the distributed nature of the blockchain layer, combined with the optimized 

cryptographic operations of SADE-ECC-DSA-SHA-512, enables faster and more reliable sharing of records. These 

combined advancements underscore the framework’s holistic approach to optimizing blockchain performance, 

positioning it as a robust and efficient solution for secure communication systems in high-security environments like 

IoT. 

Table 18: Optimizing Blockchain Security: Performance Metrics Evaluation of ECC, AES, DSA, SADE-ECC, and an Integrated SADE-
ECC-DSA-SHA-512 Proposed Methodology 

Performance Metrics ECC AES DSA SADE-ECC Proposed Methodology 

(SADE-ECC-DSA-SHA-

512) 

Encryption time(seconds) 0.180445 0.192674 0.200632 0.152304 0.113211 

Decryption time(seconds) 0.169943 0.180322 0.190216 0.131107 0.097680 

Block creation 

time(seconds) 

0.254789 0.214789 0.284236 0.187489 0.142591 

Key generation 

time(seconds) 

0.350388 0.372996 0.390848 0.283411 0.210891 

Throughput 54 44 37 59 67 

Latency 0.554 0.482 0.589 0.394 0.342 

Response time(seconds) 230.654 216.134 238.933 201.183 188.786 
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Restoration 

efficiency(seconds) 

0.828343 0.762332 0.852971 0.773512 0.885448 

Successful sharing record 

time(seconds) 

21.8835 18.0304 23.8538 15.6789 13.7679 

 

The performance evaluation of various cryptographic methods, including Elliptic Curve Cryptography (ECC), 

Advanced Encryption Standard (AES), Digital Signature Algorithm (DSA), and the proposed SADE-integrated 

approach (SADE-ECC-DSA-SHA-512), highlights significant improvements in encryption and decryption efficiency. 

The proposed methodology demonstrates the lowest encryption time of 0.113211 seconds and decryption time of 

0.097680 seconds, outperforming all other methods tested. This efficiency is crucial for enhancing overall system 

performance and ensuring timely access to data as shown in Figure 6.  

 

Figure 40: Comparative Visualization of Encryption and Decryption Times  Across Cryptographic Algorithms 

In terms of block creation, the proposed approach achieves a time of 0.142591 seconds, which is quicker than ECC 

(0.254789 seconds), AES (0.214789 seconds), DSA (0.284236 seconds), and SADE-ECC (0.187489 seconds). This 

faster block creation time supports more efficient blockchain operations, vital for maintaining a robust and responsive 

blockchain network. Additionally, the key generation time for the proposed method is 0.210891 seconds, showing 

notable improvements over ECC (0.350388 seconds), AES (0.372996 seconds), and DSA (0.390848 seconds), 

highlighting the effectiveness of the SADE algorithm in producing high-quality cryptographic keys as shown in Figure 

7. 

 

Figure 41: Comparative Visualization of Key Generation and Block Creation Efficiencies Across Cryptographic Algorithms 

The proposed methodology also leads in throughput, achieving 67 units per time unit compared to ECC (54), AES 

(44), DSA (37), and SADE-ECC (59). Figure 8 indicates that the hybrid approach handles data operations more 

efficiently. Latency is another critical metric where the proposed method excels with a value of 0.342 seconds, lower 
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than ECC (0.554 seconds), AES (0.482 seconds), DSA (0.589 seconds), and SADE-ECC (0.394 seconds). Reduced 

latency enhances real-time data processing, essential for effective blockchain and data management. 

 

Figure 42: Comparative Visualization of Throughput and Latency  Across Cryptographic Algorithms 

Response time, which reflects the time taken to respond to data requests, is the shortest for the proposed approach at 

188.786 milliseconds, outperforming ECC (230.654 seconds), AES (216.134 seconds), DSA (238.933 seconds), and 

SADE-ECC (201.183 seconds). Figure 9 underscores the efficiency of the hybrid approach in providing quick 

feedback and ensuring responsive system behavior. Restoration efficiency, a measure of data integrity maintenance, 

is highest, with the proposed methodology at 0.885448, indicating effective data management. Finally, the successful 

sharing record time of 13.7679 seconds with the proposed method is the fastest among all tested methods, 

demonstrating the efficiency of the hybrid approach in secure and timely data sharing. 

 

Figure 43: Comparative Visualization of Response Time, Restoration Efficiency, and Successful Sharing Record Time Across 
Cryptographic Algorithms 

Table 8 compares the throughput and estimated number of IoT devices supported by various cryptographic models, 

including ECC, AES, DSA, SADE-ECC, and the proposed algorithm. The proposed algorithm exhibits the highest 
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throughput at 67 units per time unit, supporting approximately 10,050 IoT devices. This demonstrates its superior 

efficiency and scalability in handling large IoT networks compared to other models, which support fewer devices and 

have lower throughput. 

Table 19: Comparative Analysis of Cryptographic Throughput for IoT Device Support, Optimizing Cryptographic Throughput for 
Large-Scale IoT Deployments 

Model Throughput Estimated IoT devices 

ECC 54 8100 

AES 44 6600 

DSA 37 5550 

SADE-ECC 59 8850 

Proposed Algorithm 67 10050 

 

Table 9 presents the encryption time and security levels of different cryptographic models, including ECC, AES, DSA, 

SADE-ECC, and the proposed algorithm. The security level is quantified based on the cryptographic algorithm's 

resilience to attacks, determined by key size, algorithmic complexity, and resistance to common vulnerabilities such 

as brute force or side-channel attacks. The encryption time is measured in seconds during the execution of encryption 

tasks on a standard computational platform, providing a direct comparison of the speed of each model. The proposed 

algorithm achieves the shortest encryption time (0.113211 seconds) due to its dynamic optimization via SADE and 

efficient cryptographic integration, such as ECC and SHA-512. The "Very High" security rating is assigned based on 

its multi-layered security features, including robust key generation, high-entropy outputs, and tamper resistance 

provided by blockchain integration. Comparatively, models like DSA, which lack advanced optimizations, exhibit 

longer encryption times and lower security ratings. 

Table 20: Evaluating the Relationship Between Encryption Speed and Security Strength, Comparative Analysis of Encryption Time 
and Security Level 

Model Encryption time Security Level 

ECC 0.180445 Medium 

AES 0.192674 Medium 

DSA 0.200632 Low 

SADE-ECC 0.152304 High 

Proposed Algorithm 0.113211 Very High 

 

Table 10 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on 

encryption time, block creation time, and estimated energy consumption. The proposed algorithm demonstrates 

superior performance with the shortest encryption time (0.113211 seconds) and block creation time (0.142591 

seconds), along with the lowest energy consumption (0.000255802 kWh). These results highlight the proposed 

algorithm's efficiency in computational speed and energy usage, making it optimal for resource-constrained and 

energy-sensitive environments such as IoT networks. The significant reduction in energy consumption compared to 

other models like ECC (0.000435234 kWh), AES (0.000407463 kWh), DSA (0.000484868 kWh), and SADE-ECC 

(0.000339793 kWh) underscores the proposed algorithm's suitability for applications where minimizing power usage 

is crucial. 

Table 21: Evaluating the Energy Efficiency of Different Cryptographic Algorithms 

Model Encryption time Block Creation Time Estimated Energy 

Consumption (kWh) 

ECC 0.180445 0.254789 0.000435234 

AES 0.192674 0.214789 0.000407463 

DSA 0.200632 0.284236 0.000484868 

SADE-ECC 0.152304 0.187489 0.000339793 
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Proposed Algorithm 0.113211 0.142591 0.000255802 

 

Table 11 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on 

response time, restoration efficiency, and fault tolerance. The proposed algorithm exhibits the highest restoration 

efficiency (0.885448) and fault tolerance (0.880894), indicating robust data recovery and failure resilience. Despite 

having a longer response time (1888.786 seconds), its superior fault tolerance and restoration capabilities make it a 

reliable choice for critical applications requiring high data integrity and reliability. 

Table 22: Comparative Analysis of Cryptographic Techniques for Response Time, Restoration, and Fault Tolerance 

Model Response Time Restoration Efficiency Fault Tolerance 

ECC 230.654 0.828343 0.810296 

AES 216.134 0.762332 0.748366 

DSA 238.933 0.852971 0.850718 

SADE-ECC 201.183 0.773512 0.761928 

Proposed Algorithm 1888.786 0.885448 0.880894 

 

Table 12 assesses cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on sharing 

record time and interoperability. Interoperability is evaluated by the ability of cryptographic models to integrate 

seamlessly across various systems and protocols in heterogeneous environments. This is assessed using a combination 

of system integration tests and cross-platform compatibility evaluations, considering parameters such as the ease of 

key sharing, compatibility with different architectures, and support for varying communication protocols. The 

proposed algorithm's "Very High" interoperability is justified by its streamlined sharing record time (13.7679 seconds) 

and robust blockchain framework employing IPFS for decentralized data storage. This architecture supports smooth 

data exchange and system integration across diverse platforms. In contrast, DSA's "Low" interoperability reflects 

challenges with slower record sharing and limited adaptability in complex networks. In contrast, ECC and AES 

achieve medium ratings, showcasing moderate flexibility but reduced performance in demanding scenarios. The 

comparative analysis underscores the proposed model's superior efficiency and compatibility, making it ideal for real-

time and multi-platform applications. 

Table 23: Comparative Analysis of Record Sharing and Interoperability in Cryptography 

Model Sharing Record Time Interoperability 

ECC 21.8835 Medium 

AES 18.0304 Medium 

DSA 23.8538 Low 

SADE-ECC 15.6789 High 

Proposed Algorithm 13.7679 Very High 

 

Table 13 evaluates cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on 

response time, sharing record time, and user experience. The proposed algorithm exhibits the best user experience, 

attributed to its "Very High" rating, with the fastest sharing record time (13.7679 seconds) and response time (188.786 

milliseconds). This ensures swift and efficient data handling, enhancing user satisfaction, especially in time-sensitive 

applications. In contrast, DSA has the lowest user experience rating, with the slowest sharing record time (23.8538 

seconds) and longest response time (238.933 milliseconds), indicating potential delays and less efficient interactions. 

ECC and AES offer a "Medium" user experience, balancing moderate performance and usability. The "High" rating 

for SADE-ECC highlights its effective combination of fast processing and user-friendly features.  

Table 24: Comparative Analysis of Cryptographic Techniques on Response Time, Sharing, and User Experience 

Model Response Time Sharing Record Time User Experience 

ECC 230.654 21.8835 Medium 

Page 149 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 149 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



AES 216.134 18.0304 Medium 

DSA 238.933 23.8538 Low 

SADE-ECC 201.183 15.6789 High 

Proposed Algorithm 188.786 13.7679 Very High 

 

Table 14 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm on block creation 

and transaction finality time. The proposed algorithm excels with the shortest times for block creation (0.142591 

seconds) and transaction finality (0.142591 seconds), ensuring rapid transaction processing and confirmation. This 

efficiency significantly enhances the speed and reliability of blockchain operations, making it ideal for high-demand 

environments. In contrast, DSA exhibits the longest times (0.284236 seconds), potentially causing delays in 

transaction processing and finality. ECC and AES offer moderate performance, while SADE-ECC demonstrates 

improved efficiency with relatively low times. 

Table 25: Comparative Analysis of Block Creation and Transaction Finality Times 

Model Block Creation Time Transaction Finality Time 

ECC 0.254789 0.254789 

AES 0.214789 0.214789 

DSA 0.284236 0.284236 

SADE-ECC 0.187489 0.187489 

Proposed Algorithm 0.142591 0.142591 

 

Table 15 evaluates cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on 

throughput, encryption time, and network overhead. The proposed algorithm performs better with the highest 

throughput (67) and the shortest encryption time (0.113211 seconds). It also exhibits the lowest network overhead at 

1.69%, indicating minimal additional data load on the network. In contrast, DSA has the highest network overhead 

(5.42%), suggesting significant extra data load. ECC and AES offer moderate overheads, while SADE-ECC 

demonstrates improved efficiency with lower overhead (2.58%). 

Table 26: Cryptographic Overhead and Its Implications for Network Performance 

Model Throughput Encryption time Network Overhead (%) 

ECC 54 0.180445 3.34 

AES 44 0.192674 4.38 

DSA 37 0.200632 5.42 

SADE-ECC 59 0.152304 2.58 

Proposed Algorithm 67 0.113211 1.69 

 

Table 16 expands the analysis by considering file sizes ranging from 1 MB to 300 MB under varying node counts and 

network conditions. For smaller files (1–50 MB), the latency remains below 1000 ms with relatively high throughput 

(350–450 TPS) and low storage overhead (3–5%). As the file size increases, latency grows significantly due to 

increased metadata and chunking demands, peaking at 2500 ms for a 300 MB file in a constrained 5 Mbps network. 

Storage overhead follows a linear trend, reaching 10% for the largest file size. This analysis illustrates the scalability 

of IPFS and resilience despite increased file sizes. 

Table 27: IPFS Overhead Analysis 

   File Size (MB)                                Node Count Network 

Bandwidth 

Latency (ms) Throughput 

(TPS) 

Storage 

Overhead (%) 

1 10 100 mbps 200 450 3% 

10 21 80 mbps 500 400 4.1% 
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50 30 50 mbps 1000 350 5.3% 

100 49 30 mbps 1500 300 6% 

150 72 20 mbps 1800 270 6.9% 

200 81 15 mbps 2100 240 8% 

250 97 10 mbps 2300 200 9.3% 

300 118 5 mbps 2500 180 11% 

 

Table 17 evaluates system performance across various transaction rates (100–1000 TPS). At lower transaction rates 

(100–300 TPS), consensus and detection latencies remain stable (800–1200 ms), with system throughput nearing the 

transaction rate. At higher transaction rates (350–1000 TPS), the consensus latency increases to 2000 ms due to the 

computational burden, though the system maintains high throughput (930 TPS for 1000 TPS input). This demonstrates 

the proposed framework's ability to handle high network loads while maintaining reliability and efficiency. 

Table 28: Scalability Analysis Under Different Network Loads 

Transaction Rate 

(TPS) 

Blockchain Nodes Consensus Latency 

(ms) 

Detection Latency 

(ms) 

System 

Throughput (TPS) 

100 10 800 500 95 

150 20 900 510 145 

200 30 1000 515 195 

250 40 1100 520 245 

300 50 1200 520 290 

350 60 1300 530 340 

400 70 1500 535 380 

450 80 1700 540 420 

500 90 1800 540 470 

1000 160 2000 540 930 

 

In table 18, Energy consumption is a critical factor for cryptographic algorithms, especially in resource-constrained 

IoT environments. The comparison of energy consumption across various methods shows that the proposed 

methodology (SADE-ECC-DSA-SHA-512) achieves the lowest energy consumption at 8.1 Joules, marking a 35% 

reduction compared to DSA (14.2 Joules) and 23% compared to ECC (12.5 Joules). This efficiency is primarily due 

to the dynamic optimizations introduced by the SADE algorithm, which reduces redundant computations and ensures 

streamlined cryptographic operations. Moreover, the proposed methodology integrates SHA-512, efficiently handling 

hashing processes while minimizing energy requirements. Such energy-efficient cryptographic solutions are 

particularly beneficial for IoT devices, where limited power resources often constrain performance. By significantly 

lowering energy consumption, the proposed methodology extends the operational lifespan of IoT devices and 

enhances sustainability in large-scale deployments. 

The proposed methodology demonstrates superior performance in key generation time, an essential metric for 

cryptographic algorithms in real-time IoT applications. The SADE-ECC method generates keys in 0.283 seconds, 

representing a 24% improvement over ECC (0.350 seconds) and a 28% improvement over DSA (0.390 seconds). The 

proposed methodology further enhances this by reducing the time to 0.210 seconds, a 40% improvement compared to 

ECC. This reduction is achieved through the Self-Adaptive Differential Evolution (SADE) algorithm, which 

dynamically adjusts parameters to optimize key generation processes. The high entropy and robust security SADE 

provides ensure the generated keys are secure while minimizing computational overhead. This adaptability makes the 

proposed methodology highly suitable for large-scale, heterogeneous IoT environments where rapid and secure key 

generation is critical. 

The combination of reduced energy consumption and faster key generation time positions the proposed methodology 

as an efficient and practical solution for IoT security challenges. The reduction in energy consumption directly 

contributes to the feasibility of deploying cryptographic algorithms in IoT devices with limited computational and 
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power resources. Similarly, the faster key generation time enhances the responsiveness of security protocols, ensuring 

that IoT networks can handle high volumes of transactions without performance degradation. 

Table 29: Energy Consumption and Key Generation Time Comparison Cryptographic Algorithms 

Cryptographic Algorithm Energy Consumption (joules) Key Generation Time (seconds) 

ECC 12.5 0.350388 

AES 13.7 0.372996 

DSA 14.2 0.390848 

SADE-ECC 10.3 0.283411 

Proposed Algorithm 8.1 0.210891 

 

To evaluate the efficiency of the proposed SADE-ECC-DSA-SHA-512 framework, we conducted a detailed 

comparative analysis of overhead metrics, including computational, network, and storage overhead, against traditional 

cryptographic methods such as ECC, AES, DSA, and SADE-ECC. The analysis, presented in Table 19, highlights key 

performance indicators such as CPU usage, memory usage, bandwidth consumption, and additional storage 

requirements. 

The computational overhead of a cryptographic method is a critical factor, especially in resource-constrained IoT 

environments. CPU usage and memory usage are primary indicators of computational overhead. As shown in Table 

12, the proposed SADE-ECC-DSA-SHA-512 framework exhibits the lowest computational overhead, with CPU usage 

at 20% and memory usage at 40 MB. This is significantly lower than traditional methods such as DSA, which requires 

40% CPU usage and 80 MB memory, and AES, which demands 35% CPU usage and 70 MB memory. The reduced 

computational load in the proposed framework is attributed to the Self-Adaptive Differential Evolution (SADE) 

algorithm, which optimizes cryptographic parameter selection dynamically, minimizing redundant computations and 

enhancing overall efficiency. 

In terms of network overhead, the proposed methodology achieves low bandwidth usage (8 MB/s) compared to 

existing methods like DSA (18 MB/s) and AES (15 MB/s). This reduction is facilitated by integrating IPFS for 

decentralized off-chain storage, which efficiently manages data distribution and minimizes the volume of data 

transmitted over the network. Consequently, the network overhead is significantly lowered, enhancing the 

framework’s suitability for IoT environments where bandwidth may be limited or costly. Storage overhead is another 

crucial aspect, particularly for devices with constrained storage capacities. The proposed SADE-ECC-DSA-SHA-512 

framework maintains a low storage overhead (5 MB), comparable to ECC (5 MB) and significantly lower than DSA 

(15 MB). This efficiency is achieved through the optimized use of SHA-512 for hashing and streamlined cryptographic 

operations that reduce the need for additional storage for metadata and cryptographic keys. 

The proposed framework demonstrates a balanced and optimized approach to minimizing overhead across 

computational, network, and storage dimensions. This optimization enhances the performance and scalability of 

Intrusion Detection Systems (IDS) in IoT networks and ensures that the framework remains practical and sustainable 

in real-world deployments. 

Table 30: Comparative Overhead Analysis of Cryptographic Methods 

Overhead Metrics ECC AES DSA SADE-ECC Proposed 

Methodology 

(SADE-ECC-DSA-

SHA-512) 

Computational Overhead Moderate High High Moderate Low 

CPU usage(%) 25 35 40 30 20 

Memory usage (MB) 50 70 80 60 40 

Bandwidth usage (MB/s) 10 15 18 12 8 

Network Overhead 3.34 4.38 5.42 2.58 1.69 

Storage Overhead Low Medium High Medium Low 
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Additional Storage (MB) 5 10 15 10 6 

 

The Table 20 highlights a comparative analysis between Traditional Differential Evolution (DE) and Self-Adaptive 

Differential Evolution (SADE) for cryptographic key generation. SADE significantly outperforms Traditional DE 

across three key metrics. It reduces key generation time from 2.1 ms to 1.5 ms, a 28.57% improvement, ensuring faster 

operations critical for IoT environments. SADE also enhances key entropy from 0.92 to 0.98, increasing the 

randomness of keys and strengthening resistance to cryptanalysis by 6.5%. Furthermore, while DE offers only 

moderate brute-force resistance, SADE achieves high resistance, making it highly secure for cryptographic 

applications. These improvements underscore SADE’s suitability for resource-constrained, high-security systems like 

blockchain-based frameworks in IoT. 

Table 31: Comparative Analysis of Key Generation Performance Between Traditional DE and SADE 

Metrics Traditional DE SADE Improvement 

Key Generation Time 2.1 ms 1.5 ms 28.57% 

Key Entropy 0.92 0.98 + 6.5% 

Brute-Force Resistance Moderate High Significant 

 

The comparison of consensus mechanisms highlights the superior performance of the proposed PBFT-based hybrid 

system over traditional PoW and PoS, as shown in Table 21. In terms of average gas computation, the proposed system 

achieves the lowest cost (28,500 Gwei), outperforming PoW (45,000 Gwei) and PoS (38,000 Gwei), thus optimizing 

resource utilization. Similarly, the average transaction fee is significantly reduced to 0.000022 ETH, making the 

proposed framework the most cost-effective option. With a processing speed of 35 transactions per second, the system 

demonstrates enhanced throughput, surpassing PoW and PoS, which achieve 5 and 15 transactions per second, 

respectively. Furthermore, the error rate is reduced to 0.5%, indicating higher reliability. The proposed system also 

offers excellent scalability, supporting up to 450 transactions per block, compared to 100 (PoW) and 200 (PoS). 

Finally, its consensus finality is achieved in just 15 seconds, ensuring rapid transaction validation compared to PoW’s 

120 seconds and PoS’s 50 seconds. 

Table 32: Comparative Analysis of Proposed Consensus Mechanisms in Blockchain-Based IDS Frameworks 

Metrics Proof of Stakes 

(PoS) 

Proof of Work 

(PoW) 

Proposed PBFT 

Average Gas Computation (Gwei) 38500 45000 29500 

Average Transaction Fee (FTH) 0.000045 0.000050 0.000022 

Processing Speed (Tx/Speed) 15 5 35 

Error rate (%) 1.2 2.5 0.5 

Scalability (Max Tx/Block) 200 100 450 

Consensus Finality (seconds) 50 120 15 

 

5.4.2 Result Analysis of Proposed Intrusion Detection Model (Phase 2) 

This phase focused on evaluating the performance of the proposed GA-Optimized XGBoost (GAO-Xgboost) model 

against other GA-optimized models for intrusion detection in heterogeneous IoT networks. The performance 

evaluation of various intrusion detection models, optimized using Genetic Algorithms (GA), including the proposed 

GA-Optimized XGBoost (GAO-Xgboost) model, is detailed in Tables 22 and 23. The findings highlight the efficacy 

of GA in enhancing model performance and demonstrate the superior capabilities of the proposed framework for 

detecting intrusions in heterogeneous IoT networks. 

Table 33: Quantitative analysis of the proposed model 

Models Accuracy Precision Recall F1 Score 
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GA-LR 87.32 86.19 87.04 86.61 

GA-KNN 89.72 88.72 89.11 88.91 

GA-SVM 89.54 89.47 88.23 88.85 

GA-DT 92.76 91.23 91.58 91.41 

GA-RF 95.47 95.17 94.97 95.07 

Proposed IDS Model (GAO-Xgboost) 98.12 97.76 97.81 97.78 

 

Table 34: Qualitative analysis of the proposed model 

Models TPR FPR TNR FNR NPV PPV FDR FOR 

GA-LR 87.04 13.81 86.19 12.96 86.19 86.19 13.69 13.07 

GA-KNN 89.11 11.28 88.72 10.89 88.72 88.72 11.23 10.93 

GA-SVM 88.23 10.53 89.47 11.77 89.42 89.47 10.66 11.62 

GA-DT 91.58 8.77 91.23 8.42 91.23 91.23 8.74 8.45 

GA-RF 94.97 4.83 95.17 5.03 95.17 95.17 4.84 5.02 

Proposed IDS Model (GAO-

Xgboost) 

97.81 2.24 97.76 2.19 97.76 97.76 2.24 2.19 

 

The study utilized a Genetic Algorithm (GA) to optimize several machine learning models, including Logistic 

Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random 

Forest (RF). The optimization process was focused on refining detection rules and selecting the most relevant features, 

thus improving the models' accuracy and efficiency in classifying network traffic. The GA-LR model achieved an 

accuracy of 87.32%, with precision and recall values of 86.19% and 87.04%, respectively.  

 

Figure 44: Accuracy Comparison: GA-Based Models vs. the Proposed IDS Model 

Although the model's performance was reasonable, it exhibited a slightly lower precision-recall balance, indicating a 

higher incidence of false positives. The GA-KNN model improved, with an accuracy of 89.72% and a balanced F1 

score of 88.91%. This model effectively minimized false alarms while maintaining a satisfactory detection rate. The 

GA-SVM model demonstrated comparable accuracy at 89.54%, although its recall of 88.23% suggested a potential 

underestimation of certain intrusion types. The GA-DT model exhibited notable performance with an accuracy of 

92.76%, indicating that GA optimization significantly enhanced its decision-making process. The GA-RF model stood 
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out with an accuracy of 95.47%, bolstered by high precision (95.17%) and recall (94.97%), making it particularly 

robust in identifying a wide range of intrusion scenarios. 

 

 

Figure 45: Precision Comparison: GA-Based Models vs. the Proposed IDS Model 

 

 

Figure 46: Recall Comparison: GA-Based Models vs. the Proposed IDS Model 

The proposed GAO-Xgboost model demonstrated exceptional performance, outperforming other models in the study, 

as shown in Figures 10,11,12,13. It achieved an accuracy of 98.12%, reflecting a high level of correctness in 

identifying legitimate and malicious activities. The model's precision of 97.76% indicates its effectiveness in 

minimizing false positives, ensuring that most detected intrusions were genuine threats. With a recall of 97.81%, the 

model effectively captured actual intrusions, reducing the likelihood of missed threats. The F1 score of 97.78% 

confirms the model's balanced performance, making it a reliable choice for practical deployment. 
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Figure 47: F1-Score Comparison: GA-Based Models vs. the Proposed IDS Model 

To further evaluate the performance of the proposed approach on the Edge_IIoT dataset, the Receiver Operating 

Characteristic (ROC) curve was employed. This curve illustrates the relationship between the false positive rate (false 

alarm probability) and the true positive rate (detection probability or recall). The Area Under the Curve (AUC) was 

then computed to quantify the overall performance across all ROC curves. Notably, the AUC values for all attack 

categories exceeded 99%, as depicted in Figure 14, highlighting the effectiveness and reliability of the proposed 

method for attack classification. 

 

Figure 48: ROC Curve of the Proposed Model 
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Figure 49: Confusion Matrix of the proposed IDS model 

The confusion matrix was employed to evaluate the effectiveness of the algorithms further, covering both correct and 

incorrect classifications. Figure 15 presents the multi-class confusion matrices for the proposed model, where the 

columns represent predicted instances of each category, and the rows correspond to the actual instances. Diagonal 

elements of the matrix denote the true positive values from the Edge_IIoT dataset, while non-diagonal elements 

indicate misclassified samples. Analysis of the confusion matrix reveals that the proposed approach achieves a high 

number of true positive classifications, demonstrating its superior categorization performance. 

In addition to these metrics, the GAO-Xgboost model exhibited outstanding True Positive Rate (TPR) and True 

Negative Rate (TNR), both exceeding 97%, while maintaining low False Positive Rate (FPR) and False Negative Rate 

(FNR) values. These results underscore the model's capability to accurately differentiate between normal and 

malicious traffic, making it highly suitable for diverse and complex IoT environments. The False Omission Rate 

(FOR) and False Discovery Rate (FDR) results highlight the effectiveness of the proposed IDS model (GAO-Xgboost) 

in accurately detecting intrusions. With a FOR of 2.19% and an FDR of 2.24%, the model outperforms traditional 

methods, significantly reducing false negatives and false positives. This ensures that actual threats are identified 

without overwhelming the system with false alarms, making the GAO-Xgboost model a robust and reliable choice for 

intrusion detection in complex environments where precision and security are paramount.  

Figure 16 provides a comparative analysis of the True Positive Rate (TPR) and False Negative Rate (FNR) for several 

intrusion detection systems (IDS) models enhanced with Genetic Algorithms (GA) and various machine learning 

classifiers, including Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-

SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, combining Genetic 

Algorithm Optimization with XGBoost (GAO-XGBoost), demonstrates superior performance across both metrics. It 

achieves the highest TPR at 97.81%, indicating its exceptional ability to identify actual intrusions correctly. 

Concurrently, it boasts the lowest FNR at 2.19%, underscoring its effectiveness in minimizing missed detection rates. 

Among the other models, GA-RF shows strong performance with a TPR of 94.97% and an FNR of 5.03%, while GA-

DT also performs well with a TPR of 91.58% and an FNR of 8.42%.  
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Figure 50: Performance Evaluation: TPR and FNR Analysis of GA-Optimized Models Versus the Proposed IDS Model 

Figure 17 compares the True Negative Rate (TNR) and False Positive Rate (FPR) of various intrusion detection system 

(IDS) models enhanced with Genetic Algorithms (GA) and different machine learning classifiers, including Logistic 

Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-SVM), Decision Tree (GA-

DT), and Random Forest (GA-RF). The proposed IDS model, combining Genetic Algorithm Optimization with 

XGBoost (GAO-XGBoost), demonstrates the highest performance in both metrics. It achieves an impressive TNR of 

97.76%, indicating its exceptional ability to correctly identify non-intrusions while maintaining the lowest FPR at 

2.24%, reflecting its effectiveness in minimizing false alarms. Among the other models, GA-RF stands out with a 

strong TNR of 95.17% and an FPR of 4.83%, followed by GA-DT with a TNR of 91.23% and an FPR of 8.77%.  

 

 

Figure 51: Performance Evaluation: TNR and FPR Analysis of GA-Optimized Models Versus the Proposed IDS Model 

Figure 18 presents a comparison of the Negative Predictive Value (NPV) and False Omission Rate (FOR) for various 

intrusion detection system (IDS) models, each enhanced with Genetic Algorithms (GA) and different machine learning 
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classifiers, such as Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-

SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, which combines Genetic 

Algorithm Optimization with XGBoost (GAO-XGBoost), exhibits the highest NPV at 97.76%, indicating its strong 

capability to identify non-intrusions among all instances classified as non-intrusions correctly. It also achieves the 

lowest FOR at 2.19%, demonstrating its effectiveness in minimizing the proportion of actual positives (intrusions) 

that are incorrectly classified as negatives (non-intrusions). Among the other models, GA-RF shows notable 

performance with an NPV of 95.17% and a FOR of 5.02%, followed by GA-DT with an NPV of 91.23% and a FOR 

of 8.45%.  

 

 

Figure 52: Performance Evaluation: NPV and FOR Analysis of GA-Optimized Models Versus the Proposed IDS Model 

 

Figure 19 compares the Positive Predictive Value (PPV) and False Discovery Rate (FDR) of several intrusion 

detection system (IDS) models, each enhanced with Genetic Algorithms (GA) and different machine learning 

classifiers, including Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-

SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, which integrates Genetic 

Algorithm Optimization with XGBoost (GAO-XGBoost), achieves the highest PPV at 97.76%, signifying its strong 

accuracy in correctly identifying true positives (actual intrusions) among all instances classified as positives. 

Additionally, it maintains the lowest FDR at 2.24%, indicating a minimal proportion of false positives (non-intrusions 

incorrectly classified as intrusions). Among the other models, GA-RF also performs well, with a PPV of 95.17% and 

an FDR of 4.84%, followed by GA-DT with a PPV of 91.23% and an FDR of 8.74%. This comparison highlights the 

proposed IDS model's superior precision and reduced likelihood of false alarms, making it a more effective and reliable 

solution for accurately detecting intrusions in IoT environments. 
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Figure 53: Performance Evaluation: PPV and FDR Analysis of GA-Optimized Models Versus the Proposed IDS Model 

Overall, applying GA optimization significantly improved the performance metrics of these models. The enhanced 

precision, recall, and F1 scores underscore the importance of GA in refining model parameters to achieve optimal 

results in intrusion detection. The Genetic Algorithm (GA) significantly enhanced the performance of traditional 

machine learning models, while the proposed GAO-Xgboost model demonstrated superior capabilities in intrusion 

detection. Including less favorable results, such as the relatively lower recall of the GA-SVM model, ensures a 

comprehensive understanding of the research outcomes. Overall, the study emphasizes the effectiveness of GA 

optimization and the robustness of the Xgboost-based approach in securing IoT networks. 

5.5. Security and Privacy Analysis of the Proposed Framework 

5.5.1. Security Analysis 

The proposed blockchain framework is designed to ensure robust security and privacy for secure data management in 

IoT environments. This section analyzes the framework's resilience against various attacks, highlighting its ability to 

maintain data integrity, confidentiality, and availability. 

 Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks: The proposed framework 

employs a combination of ECC, DSA, and SHA-512 for securing the Intrusion Detection System (IDS) and 

utilizes the PBFT consensus algorithm for decision-making within the blockchain. The robust cryptographic 

algorithms (ECC and DSA) and the consensus mechanism of PBFT provide robust defenses against DoS and 

DDoS attacks by ensuring that malicious nodes cannot overwhelm the network. Additionally, the 

decentralized nature of the blockchain makes it resilient to these attacks as the distributed network can 

manage and mitigate the impact of such attacks. 

  Information Gathering: The proposed framework uses encryption and hashing mechanisms to prevent 

unauthorized information gathering. Patient data is encrypted using ECC, and SHA-512 ensures the integrity 

of this data. Encryption will thwart attempts to gather information with authorization, making it nearly 

impossible for attackers to decipher the data. The authentication provided by DSA further ensures that only 

authorized entities can access the information, safeguarding patient privacy. 

  Injection Attacks: The framework's reliance on the blockchain's immutable ledger and cryptographic 

validation (ECC and DSA) prevents injection attacks. Data entered into the blockchain is verified through 

consensus (PBFT) and cannot be altered once confirmed. This immutability ensures that any attempt to inject 

malicious data into the system is detected and rejected, preserving the integrity of the data. 
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  Man-in-the-Middle (MiTM) Attacks: To counter MiTM attacks, the framework employs robust 

encryption (ECC) and digital signatures (DSA) for all communications. These cryptographic methods ensure 

that any intercepted data remains encrypted and unreadable by unauthorized parties. Additionally, using 

secure keys generated by the SADE algorithm further strengthens the encryption, making it extremely 

difficult for attackers to decrypt or alter the data in transit. 

 Malware Attacks: The decentralized and encrypted nature of the blockchain provides a strong defense 

against malware attacks. Any data stored off-chain in IPFS is linked through blockchain references, ensuring 

that only verified and untampered data is retrievable. The consensus mechanism (PBFT) ensures that any 

attempt to introduce malware into the blockchain is identified and blocked by the network of nodes, 

maintaining the integrity and security of the data. 

The proposed blockchain framework, integrating ECC, DSA, SHA-512, PBFT consensus, and IPFS for off-chain 

storage, offers robust protection against various security threats. It mitigates the risks associated with DoS and DDoS 

attacks, unauthorized information gathering, injection attacks, MiTM attacks, and malware attacks. By ensuring data 

integrity, confidentiality, and availability, the framework provides a secure, privacy-preserving solution for managing 

patient healthcare data in IoT environments. 

5.5.2. Privacy Analysis 

The proposed blockchain framework prioritizes patient privacy through advanced cryptographic techniques and strict 

data management protocols. This section explores how the framework safeguards confidentiality, integrity, 

authentication, anonymity, and access control, ensuring comprehensive privacy protection. 

 Data Confidentiality: The proposed framework ensures data confidentiality through Elliptic Curve 

Cryptography (ECC). ECC encrypts sensitive patient data, making it accessible only to authorized parties 

with the correct decryption keys. This robust encryption provides high security with smaller key sizes, which 

is especially important for resource-constrained IoT devices. Using ECC, the framework ensures that IoT 

data remains confidential and protected from unauthorized access. 

 Data Integrity: The framework uses SHA-512 for hashing data, providing a unique hash value for each 

input. This hash value ensures data integrity by detecting any alterations to the data. If the data is tampered 

with, the hash value changes, signaling a breach in integrity. This mechanism ensures that the data remains 

unaltered from its original form, providing a high level of trust in its authenticity. 

 Data Authentication: The Digital Signature Algorithm (DSA) is used to authenticate communication within 

the blockchain network. DSA verifies the parties' identity in the communication, ensuring that legitimate 

entities send and receive the data. This authentication process prevents impersonation attacks, where 

malicious actors attempt to masquerade as legitimate users to gain access to sensitive data. 

  Data Anonymity: To protect IoT data privacy further, the framework can implement data anonymization 

techniques before storing data on the blockchain. Anonymization ensures that individual IoT data identities 

cannot be discerned from the stored data, protecting personal information while allowing for aggregated data 

analysis. 

  Access Control: The framework can incorporate role-based access control (RBAC) to ensure that only 

authorized personnel can access specific data types. This layered access control mechanism ensures that 

sensitive data is only available to those who need it, minimizing the risk of data breaches and ensuring 

compliance with privacy regulations. 

 Decentralization and Transparency: Blockchain technology inherently provides transparency while 

maintaining privacy. Transactions and data entries are recorded on an immutable ledger, providing a 

transparent record that can be audited while keeping the data encrypted and private. This transparency 

enhances trust in the system, as all actions are traceable and accountable without compromising individual 

privacy. 

  Off-Chain Data Storage: The InterPlanetary File System (IPFS) stores large volumes of data off-chain, 

with the blockchain containing only the references to this data. This approach balances the need for 

decentralized, resilient storage with privacy considerations, as data stored in IPFS is linked to its blockchain 
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reference, ensuring its integrity and traceability without storing sensitive information directly on the 

blockchain. 

The proposed blockchain framework excels in protecting IoT data privacy through robust cryptographic techniques, 

data integrity measures, authentication protocols, and controlled access mechanisms. By integrating ECC, DSA, SHA-

512, PBFT consensus, and IPFS for off-chain storage, the framework ensures that IoT data remains confidential, 

integral, and accessible only to authorized users. These privacy-preserving features make the framework highly 

suitable for managing sensitive healthcare data in IoT environments, addressing the critical needs for both security 

and privacy in modern digital healthcare systems. 

5.6. Comparison with the Existing Techniques and State-of-the-Art Methods 

This section comprehensively compares the proposed GAO-XGBoost model with existing techniques and state-of-

the-art methods for intrusion detection systems (IDS). By analyzing the performance across various metrics and 

datasets, the evaluation highlights the proposed model's efficiency, accuracy, and robustness in addressing the 

challenges of intrusion detection in IoT environments. The results underscore the advantages of integrating Genetic 

Algorithm Optimization (GAO) with XGBoost, showcasing its superiority over traditional, deep learning, and cutting-

edge approaches. 

5.6.1. Comparison with the existing techniques 

This subsection evaluates the performance of the proposed GAO-XGBoost model against several widely used machine 

learning and deep learning approaches for intrusion detection systems (IDS). The comparison is based on four standard 

metrics: accuracy, precision, recall, and F1 score. The aim is to demonstrate the advantages of combining Genetic 

Algorithm Optimization (GAO) with XGBoost for enhanced IDS performance. From the table 24, traditional machine 

learning models like Logistic Regression (LR) and K-Nearest Neighbors (KNN) exhibit relatively modest accuracies 

of 83.54% and 85.23%, respectively. These models are outperformed by Support Vector Machine (SVM) and Decision 

Tree (DT), which achieve accuracies of 87.02% and 89.43%, respectively. Among these, Random Forest (RF) 

performs the best, with an accuracy of 93.87%. 

Deep learning models show a significant improvement over traditional methods. Convolutional Neural Networks 

(CNN) and Recurrent Neural Networks (RNN) achieve accuracies of 93.27% and 94.65%, respectively, reflecting 

their ability to capture complex patterns in the dataset. However, despite their advanced capabilities, these models still 

fall short compared to the proposed GAO-XGBoost framework. 

The proposed model achieves an accuracy of 98.12%, precision of 97.76%, recall of 97.81%, and F1 score of 97.48%, 

significantly surpassing all other approaches. These improvements can be attributed to Genetic Algorithm 

Optimization (GAO), which enhances hyperparameter tuning, optimizes feature selection, and mitigates overfitting. 

This optimization allows XGBoost to achieve superior classification performance, making it particularly well-suited 

for intrusion detection in IoT environments. The results emphasize that the integration of GAO with XGBoost provides 

a highly efficient and reliable IDS, outperforming both traditional and deep learning techniques in terms of accuracy 

and other performance metrics. 

Table 35: Performance Comparison of the Proposed GAO-XGBoost Model with Traditional Machine Learning and Deep Learning 
Techniques 

Models Accuracy  Precision  Recall  F1 Score 

LR (Logistic Regression) 83.54 82.12 82.98 82.55 

KNN (K-Nearest Neighbors) 85.23 84.71 84.89 84.80 

SVM (Support Vector Machine) 87.02 86.91 86.32 86.91 

DT (Decision Tree) 89.43 88.71 88.34 88.52 

RF (Random Forest) 93.87 92.65 93.12 92.88 

CNN (Convolutional Neural Network) 93.27 92.15 92.45 92.30 

RNN (Recurrent Neural Network) 94.65 93.85 94.15 94 

Proposed Model(GAO-Xgboost) 98.12 97.76 97.81 97.48 
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5.6.2. Comparison with the State-of-the-Art Methods 

The proposed XGBoost model, integrated with the Genetic Algorithm (GA) for feature selection, outperforms state-

of-the-art techniques in intrusion detection, as shown in Table 25. Compared to models like Growing Tree Clustering 

(97.12%) and iForest (97.37%), our approach achieves the highest accuracy of 98.12%, demonstrating superior 

classification capabilities. Earlier methods, such as REPT using PSO and OC-SVM with PIO, achieved accuracies of 

96.38% and 83%, respectively, indicating limitations in handling complex intrusion patterns. The effectiveness of the 

proposed model highlights the advantage of combining XGBoost with GA, showcasing its robustness and efficiency 

in detecting attacks with improved accuracy over existing methods. 

Table 36: Comparison of the Proposed Model with State-of-the-Art Techniques 

References and Year Model Feature Selection 

Technique 

Accuracy 

[43] and 2024 Growing tree clustering Genetic Algorithm (GA) 97.12 

[44] and 2019 REPT PSO 96.38 

[45] and 2022 OC-SVM PIO 83 

[46] and 2023 iforest LS-PIO 97.37 

Our approach  Proposed Xgboost Genetic Algorithm (GA) 98.12 

 

6. Conclusion and Future Directions 

This section concludes the manuscript by presenting the conclusions and suggesting potential directions for future 

research. 

6.1. Conclusion 

This research presents a Hybrid Blockchain-Based Framework that effectively addresses the security challenges 

associated with Intrusion Detection Systems (IDS) in IoT networks. By integrating advanced cryptographic 

techniques, Elliptic Curve Cryptography (ECC), the Digital Signature Algorithm (DSA), and SHA-512 alongside a 

novel Self-Adaptive Differential Evolution (SADE) algorithm, the proposed framework significantly enhances data 

privacy, authentication, and integrity. Practical Byzantine Fault Tolerance (PBFT) for consensus and InterPlanetary 

File System (IPFS) for off-chain data storage contributes to system resilience and prevents centralized failures. 

Furthermore, applying Genetic Algorithms (GA) and an XGBoost-based model optimizes IDS performance, yielding 

high accuracy and robust intrusion detection capabilities. The results demonstrate substantial improvements in 

blockchain latency, throughput, network overhead, and exceptional performance metrics from the XGBoost model. 

Overall, this comprehensive approach significantly advances IoT security, offering enhanced effectiveness, 

scalability, and resilience. 

6.2. Potential Industrial Applications 

The following are the Potential Industrial Applications of the Proposed Framework:  

 Smart Manufacturing: Enhances the security of IoT-enabled manufacturing systems by providing robust 

intrusion detection and secure data handling, ensuring uninterrupted and safe industrial processes. 

 Critical Infrastructure Protection: Safeguards essential infrastructure such as smart grids and energy 

management systems from sophisticated cyberattacks, maintaining system integrity and reliability. 

 Industrial Automation: Improves the security of automated systems and robotics by detecting and preventing 

intrusions, ensuring operational safety and efficiency in industrial environments. 

 Supply Chain Management: Secures data exchanged between IoT devices in supply chain networks, 

protecting against tampering and unauthorized access and enhancing overall supply chain security. 

 

 

Page 163 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 163 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



6.3. Limitation 

The framework's blockchain component introduces latency and network overhead, while the XGBoost model requires 

extensive computational resources. Adaptability to new cryptographic advancements and consensus models remains 

a challenge. 

6.4. Future Work 

Future research will explore optimizing the SADE algorithm further, evaluating alternative consensus mechanisms, 

integrating real-time threat intelligence, and adapting the framework to emerging technologies and new IoT 

applications. 

6.5. Societal Application 

The following are the Societal Applications of the proposed Framework: 

 Smart Homes: Enhances the security and privacy of IoT devices in smart homes, such as smart thermostats 

and security cameras, protecting personal data and ensuring the safe operation of household systems. 

 Healthcare Monitoring: Secures IoT-based health monitoring systems, ensuring the confidentiality and 

integrity of sensitive patient data and improving trust in remote healthcare technologies. 

 Public Safety Systems: Protects IoT-based public safety networks, such as surveillance and emergency 

response systems, from cyber threats, ensuring reliable and secure public safety services. 

 Consumer IoT Devices: Safeguards a range of consumer IoT devices, from wearable technology to smart 

appliances, by enhancing their security features and protecting users' personal information from breaches. 
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Chapter 6 Privacy-Preserving Data Sharing in Blockchain-Enabled IoT Healthcare Management 

System 

 

 

1. Introduction  

 

The rapid growth and adoption of the Internet of Things (IoT) in healthcare systems have significantly advanced the 

smart healthcare industry by providing effective solutions for saving, maintaining, securing, and sharing healthcare 

documents [1]. Despite these advancements, the proliferation of IoT devices and the massive influx of healthcare data 

pose substantial security and privacy challenges for confidential medical documents. IoT-based healthcare models 

typically use cloud storage systems for data storage and maintenance [2]. However, the centralized architecture of 

these cloud systems introduces vulnerabilities, such as single-point failures, and an increased risk of security attacks, 

including masquerades, phishing, identity theft, and data breaches. Consequently, the privacy and security of 

healthcare documents remain primary concerns as nearly all healthcare data is stored online.  

 

Traditional approaches in the healthcare industry have relied on encoding schemes and cryptographic methods to 

safeguard healthcare documents [3]. Often maintained on centralized databases or cloud storage systems, these 

methods are prone to single-point failure issues and various attacks [4]. Furthermore, attackers frequently clone or 

duplicate medical documents, creating significant challenges for users who need to access their medical records for 

treatment, especially if they misplace critical documents [5].  

 

Blockchain technology offers a promising solution, innovative cryptography and distributed systems development. 

Initially introduced by Santoshi Nakamoto through the cryptocurrency Bitcoin, blockchain technology features a peer-

to-peer network that maintains data in a distributed ledger [6]. This decentralized approach, characterized by data 

integrity, transparency, and security through cryptographic algorithms, has shown potential across various domains, 

including finance, healthcare, and supply chain management [7]. In a blockchain, data is stored in hash format within 

blocks, each linked to the previous one, forming an immutable chain validated by consensus algorithms. 

 

Integrating blockchain technology with IoT-based healthcare systems can enhance transparency, privacy, and security 

while reducing costs. Blockchain enables the healthcare system to maintain trust among its entities by securely 

managing healthcare data and verifying the authenticity of healthcare documents, thereby preventing fraud [8]. It 

stores healthcare details, such as unique identification numbers and certifications, in a blockchain structure, 

strengthening the healthcare system against counterfeiting and unauthorized modifications [9]. Smart contract 

functionalities within blockchain technology further enhance the security and privacy of healthcare documents by 

automating agreements and ensuring they are executed only when specified conditions are met. The generic 

architecture of Blockchain based IoT based Healthcare Management System is shown in Figure 1. The decentralized 

nature of blockchain technology and its cryptographic strengths make it an ideal solution for addressing the security 

and privacy challenges in IoT-based healthcare systems [10]. Researchers have proposed various blockchain-based 

models to enhance the security of medical records [11-13]. For instance, Rhayem et al. [11] developed a blockchain-

based medical system using the Ethereum framework to achieve traceability without involving trusted third parties, 

guaranteeing data security, privacy, and transparency. Other applications, such as the Internet of Medical Things 

(IoMT), utilize smart contracts to manage healthcare records, monitor sensitive data, and ensure secure access to 

global data. 

Despite these advancements, existing systems still require comprehensive security and privacy analysis to manage 

healthcare data effectively. Integrating blockchain technology with healthcare can revolutionize the industry by 

providing a robust IoT healthcare system that ensures transparency, security, and traceability. This paper explores the 

various aspects of blockchain-based healthcare systems and proposes a framework for implementing a blockchain-

based IoT system in the healthcare sector, emphasizing the need for secured centralized systems to protect electronic 

health records (EHRs) from privacy leaks, data breaches, and other security threats. The proposed solution aims to 

reduce storage costs, ensure patient data security, and prevent unauthorized access while maintaining data integrity 

and availability through blockchain's decentralized approach. 
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Figure 54: Blockchain-based IoT based Healthcare Management System 

 

 

1.1. Motivation  

 

In the modern healthcare ecosystem, ensuring the security, privacy, and accessibility of medical records is a critical 

challenge. Traditional centralized systems for managing healthcare data and medical certificates are plagued by 

vulnerabilities such as single points of failure, data breaches, unauthorized access, and document tampering. These 

inefficiencies not only compromise patient trust but also hinder seamless healthcare delivery. Additionally, the rapid 

proliferation of IoT devices in healthcare generates vast amounts of sensitive data, which centralized systems struggle 

to manage efficiently, leading to latency and scalability issues. Blockchain technology, with its decentralized, 

immutable, and transparent nature, offers a promising solution to address these challenges. By leveraging advanced 

cryptographic techniques and consensus mechanisms, blockchain ensures data integrity, enhances privacy, and 

eliminates the risks associated with centralized control. Despite the potential of blockchain-based solutions, existing 

implementations often fail to address critical requirements such as high transaction throughput, real-time scalability, 

and comprehensive privacy preservation. This research aims to bridge these gaps by proposing a robust blockchain-

based framework that integrates IoT devices, hybrid consensus mechanisms, and privacy-preserving cryptographic 

techniques, thereby revolutionizing medical record management in healthcare. 

 

This paper introduces a novel decentralized application that uses blockchain technology to enhance medical certificate 

management security, privacy, and efficiency in the healthcare sector. The key contributions of this work include: 

 

 Proposed a Novel Blockchain-Based IoT Application for Healthcare: We propose an innovative 

decentralized application that utilizes blockchain technology to create a secure communication medium 

between healthcare entities such as hospitals, patients, and doctors. This system integrates various IoT 

devices to maintain and update healthcare information seamlessly. 

 Introducing Unique Identification for Medical Certificates: We introduce a mechanism to generate 

unique identification numbers for each medical certificate, ensuring the integrity and traceability of medical 

records. 
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 Enhancing Consensus Mechanisms: We deploy a hybrid consensus mechanism that combines Proof of 

Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). This hybrid approach improves security and 

transaction speed, making the system capable of handling high transaction volumes in healthcare settings. 

 Implementing Privacy-Preserving Computations: We implement Fully Homomorphic Encryption (FHE) 

to allow secure computations on encrypted medical data. This ensures that sensitive information remains 

private throughout the processing stages. 

 Utilizing Non-Interactive Zero-Knowledge Proofs (NIZKPs): We utilize NIZKPs to verify medical 

certificates without disclosing sensitive patient data, thus enhancing privacy and trust in the system. 

 Incorporating Interplanetary File System (IPFS): We use IPFS as a distributed file system to distribute 

and store all IoT data due to the limited storage capacity available on each block. This approach enables the 

proposed architecture to handle large amounts of IoT data and scale effectively. 

 Integrating an Intrusion Detection System (IDS): We propose an IDS to monitor IoT traffic, detecting 

potential security attacks and anomalies in real time. The IDS enhances overall system security by identifying 

and mitigating potential threats before they can cause harm. 

 Conducting Comprehensive Evaluation: We perform extensive experimental tests to evaluate the proposed 

application on various parameters such as latency, computation time, processing time, throughput, and 

network usage, demonstrating its effectiveness and robustness. 

 

The proposed framework distinguishes itself by integrating blockchain technology with IoT-based healthcare systems 

using a novel combination of mature techniques, including Fully Homomorphic Encryption (FHE), Non-Interactive 

Zero-Knowledge Proofs (NIZKPs), and a hybrid consensus mechanism combining Proof of Work (PoW) and Practical 

Byzantine Fault Tolerance (PBFT). While these techniques have been explored independently in other domains, their 

synergistic application within the context of IoT healthcare systems addresses critical gaps. Specifically, the hybrid 

consensus mechanism balances scalability and security, overcoming the high latency of PoW and the vulnerability of 

PBFT in high-volume systems. The use of FHE ensures secure computations on encrypted data, enabling privacy-

preserving operations, while NIZKPs further enhance trust by allowing verification of sensitive data without exposing 

it. This integrated approach ensures robust performance and privacy preservation, which traditional systems fail to 

achieve due to their reliance on isolated or centralized methods. This research addresses these gaps by proposing a 

novel blockchain-based decentralized application that integrates IoT devices, implements a hybrid consensus 

mechanism combining Proof of Work (PoW) and Practical Byzantine Fault Tolerance (PBFT), and utilizes advanced 

cryptographic techniques, homomorphic encryption, and NIZKPs. The proposed system is thoroughly evaluated based 

on multiple performance parameters, demonstrating its effectiveness and robustness in real-world healthcare settings. 

This research contributes to developing a more secure, efficient, and privacy-preserving healthcare data management 

system by addressing these gaps.   

 

1.2. Paper Structure  

 

The rest of this paper is structured as follows: In Section 2, we review the existing state-of-the-art work and identify 

research gaps. Section 3 details the proposed architecture and its workflow. In Section 4, we analyze the security and 

privacy aspects of the proposed blockchain-based framework. Section 5 presents the experimental setup, results 

analysis, and discussion of our findings. Finally, Section 6 concludes the paper and outlines future work directions. 

  

2. Related Work  

 

2.1. Privacy Preserving in Healthcare Management System 

 

In recent literature, privacy-preserving methods in the Internet of Medical Things (IoMT) have emerged as crucial for 

safeguarding sensitive patient information while enhancing healthcare management efficiency [14]. Existing research 

extensively discusses encryption techniques, such as AES and RSA, employed to secure data at rest and in transit, 
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effectively preventing unauthorized access [15-16]. Another noteworthy approach is signcryption [17], which 

combines encryption and digital signatures to provide confidentiality and data authenticity. 

 

Studies on access control mechanisms highlight role-based access control (RBAC) and attribute-based access control 

(ABAC) as effective methods to restrict data access based on user roles and attributes, ensuring that only authorized 

personnel can access sensitive medical information [18-19]. Data anonymization techniques such as differential 

privacy [20] and pseudonymization [21] are frequently cited. These methods protect patient identities by adding 

statistical noise to datasets and replacing identifying information with tokens. 

 

Blockchain technology has gained significant attention in the literature for its potential to enhance security in 

healthcare management. It introduces a decentralized, immutable ledger for recording all medical data transactions, 

providing security through time-stamped, tamper-resistant records. Smart contracts, as described in several studies, 

automate data-sharing agreements, ensuring compliance with predefined rules and patient consent. 

 

Zero-knowledge proofs (ZKPs) are another area of interest in current research [22]. They allow the verification of 

data transactions without revealing sensitive information, thereby maintaining privacy. Edge computing, which 

processes data locally on IoMT devices, is noted for its ability to reduce the need for central storage and minimize 

data breach risks. 

 

The literature also discusses patient-controlled data access systems [23] that enable individuals to manage who can 

access their data and for what purposes. Continuous auditing and real-time monitoring are crucial for enhancing 

security by promptly detecting and responding to suspicious activities. Collectively, these methods, as reviewed in 

existing studies, ensure robust protection and trust in the digital healthcare ecosystem. 

 

2.2. Literature Review  

 

This literature review examines various blockchain-based architectures and models designed to enhance security, 

privacy, and efficiency in healthcare data management and sharing. One researcher details a blockchain-based 

telehealth architecture [24] focusing on secure storage, decentralized access control, and logging, with verified security 

by AVISPA, demonstrating computational efficiency and strong cryptographic keys. Another researcher introduces a 

triple subject purpose-based access control (TS-PBAC) model [25] for the Internet of Medical Things (IoMT), 

integrating blockchain for secure, privacy-preserving data sharing. This model employs a hierarchical purpose tree, 

local differential privacy, and mutual evaluation metrics, providing superior patient privacy protection and stable 

access control decisions compared to traditional methods. 

 

The review also covers a blockchain-assisted, secure, and privacy-preserving health data-sharing scheme for edge-

based IoMT, which uses a bloom filter with hash functions for keyword ciphertext verification, key-policy attribute-

based encryption for profile matching, and an incentive mechanism with a two-phase Stackelberg game for optimal 

pricing [26]. This protocol achieves high security, scalability, and feasibility in IoMT scenarios. Additionally, a 

blockchain-based smart healthcare system is highlighted for privacy-preserved electronic medical record (EMR) 

exchange and sharing [27]. This system employs dynamic access control, local differential privacy, and multi-level 

smart contracts for secure, reliable, and traceable transactions, validated by experimental results with 200,000 real-

world EMRs. 

 

The review further explores a blockchain and AI-enabled model for secure medical data transmission in IoT networks 

called BAISMDT [28]. This model enhances data security and privacy using signcryption, blockchain, and modified 

particle swarm optimization with wavelet kernel extreme learning machine, achieving high accuracy in disease 

detection. Another blockchain-based scheme for privacy-preserving medical data-sharing balances patient privacy 

with research needs, employing zero-knowledge proofs and proxy re-encryption to maintain confidentiality while 

using PBFT for efficient distributed consensus [29-30][35]. 
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Several papers focus on blockchain-based frameworks and models for secure and privacy-preserving healthcare data 

management. HealthRec-Chain combines blockchain and IPFS for secure, scalable health data storage, utilizing Java-

enabled GPG encryption and a personalized Ethereum dashboard [31]. Another blockchain-based e-health system 

secures electronic health records (EHRs) using pairing-based cryptography and blockchain smart contracts for reliable 

transactions, addressing security challenges with minimal computation overhead [32]. Additionally, a CNN-based 

model combined with blockchain and federated learning [33] enhances electronic health record privacy, improving 

accuracy, data privacy, and malicious activity detection. 

 

BCHealth, a blockchain-based architecture, enhances privacy in IoT healthcare by allowing data owners to define 

access policies [34]. It utilizes two chains for data and policy storage, clustering for scalability, and a modified 

consensus algorithm for performance. A consortium blockchain-based scheme integrates IPFS and zero-knowledge 

proofs to ensure security and privacy in sharing personal health records (PHRs), using attribute-based encryption and 

smart contracts for secure, personalized access [36]. 

 

Lastly, the review discusses various innovative schemes such as OHE-MSC [37], which leverages blockchain and 

homomorphic encryption for secure IoT medical data sharing, and BDSDT, which combines blockchain with deep 

learning for secure data transmission [38]. Lightweight data-sharing schemes integrating outsourcing attribute-based 

encryption and smart contracts are also examined [39]. These approaches enhance security, efficiency, and fault 

tolerance in IoMT data sharing, demonstrating the transformative potential of blockchain and AI technologies in 

healthcare management [40-43].  

 

Existing blockchain-based healthcare systems typically focus on either enhancing data security or improving system 

scalability but rarely address both comprehensively. For instance, systems employing PBFT offer faster consensus but 

struggle with scalability, while PoW-based models prioritize security at the cost of high computational overhead. 

Moreover, while cryptographic techniques like FHE or NIZKPs have been explored individually, their integration into 

a unified framework remains underexplored. This paper bridges these gaps by combining these techniques into a 

cohesive system, providing both scalability and security without compromising efficiency. 

 

2.3. Research Gaps 

 

Despite the potential benefits of blockchain technology in healthcare, several gaps exist in current research and 

implementations: 

 

 Integration with IoT Devices:  While there is a significant focus on blockchain technology in healthcare, 

there needs to be more research on effectively integrating blockchain with IoT devices to ensure real-time, 

secure data acquisition and management. 

 

 Scalability and Performance:  Most existing blockchain-based healthcare applications use traditional 

consensus mechanisms like Proof of Work (PoW), which are inefficient in handling high transaction volumes 

typical in healthcare settings. There is a need to explore and implement more efficient consensus mechanisms 

that can enhance the scalability and performance of these systems. 

 

 Privacy-Preserving Techniques:  Current implementations often fail to adequately protect patient privacy 

while allowing necessary data verification and access. Techniques like Zero-Knowledge Proofs (ZKPs) and 

homomorphic encryption have been proposed in theory but lack practical implementation and evaluation in 

healthcare applications. 

 

 Comprehensive Evaluation: Many blockchain-based healthcare solutions lack thorough experimental 

evaluations to test their effectiveness, robustness, and efficiency under real-world conditions. There is a need 

for extensive testing and analysis based on various performance metrics to demonstrate the practical viability 

of these solutions. 

Page 169 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 169 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



 

This research addresses these gaps by proposing a novel blockchain-based decentralized application that integrates 

IoT devices, implements a hybrid consensus mechanism combining PoW and Practical Byzantine Fault Tolerance 

(PBFT), and utilizes advanced cryptographic techniques such as homomorphic encryption and ZKPs. The proposed 

system is thoroughly evaluated based on multiple performance parameters, demonstrating its effectiveness and 

robustness in real-world healthcare settings. This research contributes to developing a more secure, efficient, and 

privacy-preserving healthcare data management system by addressing these gaps. 

 

3. Proposed Methodology  

 

This section proposed a decentralized application that utilizes Blockchain technology to generate and maintain medical 

certificates through various phases, such as data acquisition, Validation, representation, and justification. User can 

maintain their healthcare information using different IoT devices. The proposed applications aim to prevent fraud in 

maintaining and issuing user medical records, including medical test reports, discharge summaries, and operative 

reports. Figure 2 presents the workflow of the proposed blockchain-based IoT decentralized application for the 

Healthcare Management system.   

 

Figure 55: Proposed Workflow of the Novel Blockchain-Based IoT Application for Healthcare Management System 

The diagram presents a decentralized healthcare management system that leverages blockchain technology, Non-

Interactive Zero-Knowledge Proofs (NIZKPs), and the Interplanetary File System (IPFS) to enhance the privacy and 

security of medical certificate management. It delineates the interactions among IoT users, devices, and the healthcare 

management system, which collectively facilitate secure access and validation of medical data. On the left, the IoT 

user engages with the healthcare system through an IoT app and connected devices that transmit user data. Conversely, 

the right side illustrates the blockchain network's critical role in ensuring data integrity and security through nodes, 

identity managers, and consensus mechanisms. Smart contracts automate certificate issuance and verification, while 

ZKP ensures data verification without exposing sensitive information. 
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The workflow initiates with user registration (Step 1) and the issuance of unique credentials (Step 3), secured by the 

blockchain's identity manager. Upon requesting a medical certificate (Step 5), the healthcare system returns credentials 

(Step 4), enabling the user to present them to the decentralized application (Step 6). The application verifies identity 

and processes the request (Step 7), leading to the issuance of a unique certificate ID (Step 8). This ID links to the 

medical certificate stored in IPFS, from which the user retrieves the certificate (Steps 9 and 10). The system's 

architecture, supported by a 5G communication interface, facilitates real-time interactions among its components, 

ensuring a robust, secure, and efficient healthcare management solution.  

3.1. Architecture and Workflow 

 

 

The proposed blockchain-based application is designed to operate within a distributed network that seamlessly 

integrates blockchain technology with Internet of Things (IoT) devices to enhance healthcare management. The 

blockchain network is at the heart of the system, which provides a secure and immutable ledger for managing 

healthcare data. 

User Registration and Verification is the first step in the process. Hospitals, patients, doctors, and IoT devices are 

registered using a smart contract on the Ethereum blockchain. The hospital authority manages this registration, issuing 

credentials to each entity. For hospitals and doctors, the registration involves sending a request through the user portal, 

which the blockchain network verifies. Registration requests are also processed for patients, generating credentials 

that allow them to access application services. IoT devices, such as smartwatches, are similarly registered by 

transmitting a request containing device-specific details like Device ID. The blockchain verifies and stores these 

credentials, associating each device with its user profile. 

Integration of IoT Devices plays a critical role in the system. IoT devices collect real-time health data from users, such 

as heart rate and activity levels. This data is securely transmitted to the blockchain network, where it is encrypted 

using advanced techniques to ensure privacy. Each data point is assigned a unique identifier on the blockchain, 

facilitating secure and immutable storage. This integration ensures that health metrics are recorded accurately and are 

protected against tampering or unauthorized access. 

When patients seek medical services, they submit a Service Request through the application. The hospital authority 

then verifies the request and the patient’s data via the blockchain network, ensuring that all interactions are secure and 

authenticated. Once verification is complete, the hospital can issue a medical certificate. The application processes 

this certificate, which assigns a unique identification number and records it on the blockchain. This ensures the 

certificate’s authenticity and provides a tamper-proof record that authorized parties can easily access. Certificate 

Access is streamlined through the use of unique identifiers. Both users and hospitals can retrieve the generated medical 

certificate using this unique ID. The blockchain’s distributed ledger ensures that access to this information is secure 

and controlled, reducing the risk of unauthorized access or modifications. 

The application integrates a hybrid consensus mechanism combining Proof of Work (PoW) and Practical Byzantine 

Fault Tolerance (PBFT) to secure the network. The PoW component requires computational work to validate and 

record transactions, enhancing data integrity and preventing unauthorized modifications. Simultaneously, PBFT 

ensures consensus among network participants by providing robustness against faulty or malicious nodes, improving 

overall system reliability and efficiency. This hybrid approach leverages the strengths of both algorithms to maintain 

a secure, resilient, and efficient blockchain network. 

The system features a Graphical User Interface (GUI) that facilitates interaction with the blockchain network. This 

intuitive interface allows hospitals, patients, and doctors to quickly manage and access their data, enhancing user 

experience and operational efficiency. Finally, the Distributed Ledger Management ensures that all healthcare data is 

protected from unauthorized access. The blockchain supports secure operations such as data insertion, deletion, and 

updates, maintaining the confidentiality and integrity of sensitive medical information. Figure 3 represents a 

decentralized healthcare system using blockchain and IoT for secure medical certificate management. It includes key 

components like IoT devices, consensus mechanisms, homomorphic encryption, IPFS, NIZKP, and IDS for secure 

communication, certificate validation, and real-time threat detection. 

Page 171 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 171 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



By integrating blockchain technology with IoT devices, the application creates a robust, secure, and efficient system 

for managing medical records and certificates. This innovative approach enhances healthcare data management's 

accuracy, security, and transparency, addressing many challenges associated with traditional centralized systems. 

 

Figure 56: Workflow of a Blockchain-Based IoT Healthcare Application with Homomorphic Encryption, Zero-Knowledge Proofs, 
and Intrusion Detection for Secure Medical Certificate Management 

3.2. Integration of PoW and PBFT 

 

The PoW consensus algorithm creates new blocks in the blockchain network, ensuring that blocks are added securely 

and consistently. Each block contains a hash of the previous block, a timestamp, and transaction data. The goal is to 

find a nonce 𝑛 Such data that the hash of the block denoted as H, meets a specific target T: 

                                                     𝐻 = ℎ𝑎𝑠ℎ(𝑝𝑟𝑒𝑣ℎ𝑎𝑠ℎ, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛, 𝑛) 

𝐻 < 𝑇 

Minor repeatedly changes the nonce 𝑛 and recompute the hash until they find a valid one. Following are the steps in 

the proposed model: 

Step 1: When a new medical certificate is generated, it forms a new term transaction. 

Step 2: Miners in the blockchain network collect these transactions and form a new block. 

Step 3: They compute the hash with different nonce values until they find a valid one that meets the target T. 

Step 4: The first miner to find a valid nonce broadcasts the block to the network  

Step 5: Other nodes verify the block and add it to their blockchain network. 

The PBFT is used to enhance the security and speed of the consensus process, ensuring that the system can handle 

high transaction volume. It contains five phases: 

Phase 1: Initialization Phase 

A client (e.g. a hospital) sends a request to the primary node (leader) to execute a service operation. This can be 

represented as: 

𝑅𝑒𝑞𝑢𝑒𝑠𝑡 = (𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝐶𝑙𝑖𝑒𝑛𝑡 𝐼𝐷) 
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𝐶𝑙𝑖𝑒𝑛𝑡 → 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ∶ {𝑅𝑒𝑞𝑢𝑒𝑠𝑡} 

Phase 2: Pre-prepare Phase 

The primary note receives the client request and multicasts a pre-prepare Message to all replicas. The pre-prepared 

message is denoted as: 

{𝑝𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑} 

𝑃𝑟𝑖𝑚𝑎𝑟𝑦 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠 ∶  {𝑝𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑}  

Where V is the view number, N is the sequence number assigned to the request, and d is the digest (hash) of the request 

completed as d= hash (request). 

Phase 3: Prepare Phase 

Each replica verifies the pre-prepared message. If valid the replica multicasts a prepare message to all other replicas. 

{𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖} 

∀ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 𝑖 ∶ {𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖} 

Where 𝑖 is the replica ID. 

Each replica waits to receive 2𝑓 + 1  prepare message (including its own), where f is the maximum number of faulty 

replicas the system can tolerate. 

𝑊𝑎𝑖𝑡 𝑓𝑜𝑟 2𝑓 + 1 𝑝𝑟𝑒𝑝𝑎𝑟𝑒 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

Phase 4: Commit Phase 

Once a replica has received 2𝑓 + 1 , prepare message, it multicasts a commit message as: 

{𝐶𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖} 

∀ 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 𝑖 ∶ {𝐶𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖} 

Each replica waits to receive 2𝑓 + 1 commit message (including its own).  

𝑊𝑎𝑖𝑡 𝑓𝑜𝑟 2𝑓 + 1 𝑐𝑜𝑚𝑚𝑖𝑡 𝑚𝑒𝑠𝑠𝑎𝑔𝑒 

Phase 5: Reply Phase 

When a replica has received 2𝑓 + 1 commit message, it executes the requested operations and sends a reply to the 

client: 

𝑅𝑒𝑝𝑙𝑦 =  (𝑅𝑒𝑠𝑢𝑙𝑡, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝐶𝑙𝑖𝑒𝑛𝑡 𝐼𝐷) 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝐶𝑙𝑖𝑒𝑛𝑡 ∶ (𝑅𝑒𝑝𝑙𝑦) 

Following are the steps in the proposed model: 

Step 6: When a hospital requests to add a new medical certificate, the request is processed through the PBFT 

consensus. 

Step 7: The primary node initiates the PBFT process. 

Step 8: Replicas go through pre-prepare, and commit phases to agree on adding the new block. 

Step 9: The request is executed, and the result (new block) is added to the blockchain.  
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Considering a scenario where patient P requests a medical certificate from the hospital H. The PBFT consensus ensures 

that this request is processed securely and efficiently. Patient P sends a request R to the primary node (hospital H): 

𝑃 → 𝐻: 𝑅. Hospital H (primary node) assigns a sequence number and creates a pre-prepared message as: 

𝑑 = ℎ𝑎𝑠ℎ(𝑅) 

Hospital H broadcasts the pre-prepared message to all replica nodes (other hospitals/doctors): 

𝐻 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑃𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑) 

Replica nodes verify the pre-prepared message and broadcast the prepared message: 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖) 

The replica node counts the prepare message, and upon receiving f+1 prepares, they broadcast the commit message: 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖) 

The replica node counts the commit message, upon receiving the 2f+1 commit, they execute the transactions and send 

the result to the patient: 

𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝑃: (𝑀𝑒𝑑𝑖𝑐𝑎𝑙 𝐶𝑒𝑟𝑡𝑖𝑓𝑖𝑐𝑎𝑡𝑒) 

The proposed blockchain-based healthcare system can achieve higher security and faster transaction speeds by 

enhancing the consensus mechanism. Figure 4 illustrates the workflow of the Practical Byzantine Fault Tolerance 

(PBFT) mechanism, detailing the interaction phases between the client and nodes during transaction processing and 

consensus. The algorithm 1 outlines a consensus process involving request, pre-prepare, prepare, commit, and reply 

phases, ensuring transaction validity and execution across distributed nodes. 

 

 

Figure 57: Workflow of PBFT mechanism in the proposed framework at different phases 

 

Algorithm1: Working of Consensus Mechanism in the proposed application 

Algorithm 1.1.: Request Phase 

Input: Client request R 

Output: Transaction initiation 

1. Client sends request R to the primary node: 𝐶𝑙𝑖𝑒𝑛𝑡 → 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 ∶ {𝑅𝑒𝑞𝑢𝑒𝑠𝑡} 

 

Algorithm 1.2.: Pre-Prepare Phase 

Input: Request R 

Output: Pre-prepare message 
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1. Primary node assigns a sequence number 𝑛 and creates a pre-prepare message:(𝑃𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑),  where 𝑉 is the view 

number, and 𝑑 is the digest of R: 𝑑 = ℎ𝑎𝑠ℎ(𝑅) 

2. Primary node broadcasts the pre-prepare message to all replica nodes: 𝑃𝑟𝑖𝑚𝑎𝑟𝑦 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑃𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑) 

 

Algorithm 1.3.: Prepare Phase 

Input: Pre-prepare message (𝑃𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑) 
Output: Prepare message 

1. Replica nodes verify the pre-prepare message: if (𝑃𝑟𝑒 − 𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑) is valid 

2. Replica nodes create and broadcast prepare messages: (𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖), where 𝑖 is the node identifier. 
3. Replica nodes send prepare messages to all other nodes: 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖) 

 

Algorithm 1.4.: Commit Phase 

Input: Prepare messages (𝑝𝑟𝑒𝑝𝑎𝑟𝑒, 𝑉, 𝑛, 𝑑, 𝑖) 

Output: Commit message 

1. Replica nodes count the prepare messages. If 𝑓 + 1 prepares are received (where 𝑓 is the maximum number of faulty nodes), they 

create and broadcast commit messages: (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖) 

2. Replica nodes send commit messages to all other nodes: 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠: (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖) 

 

Algorithm 1.5.: Reply Phase 

Input: Commit messages (𝑐𝑜𝑚𝑚𝑖𝑡, 𝑉, 𝑛, 𝑑, 𝑖) 

Output: Transaction execution and client reply 

1. Replica nodes count the commit messages. If 2𝑓 + 1 commits are received, they execute the transaction: 𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑅) 

2. Replica nodes send the result to the client: 𝑅𝑒𝑝𝑙𝑖𝑐𝑎 → 𝐶𝑙𝑖𝑒𝑛𝑡 ∶ (𝑅𝑒𝑝𝑙𝑦(𝑅)) 

 

3.3. Fully Homomorphic Encryption (FHE) for Data Privacy 

 

Fully Homomorphic Encryption (FHE) is a powerful cryptographic method that enables computations on encrypted 

data without decryption, supporting addition and multiplication operations. This capability makes FHE more suited to 

complex medical scenarios than semi-homomorphic techniques like Paillier, which are limited to addition operations. 

FHE protects sensitive medical data in the proposed healthcare blockchain architecture, allowing comprehensive 

analyses and computations. This sub-section explains the utilization of fully homomorphic encryption and illustrates 

an example of how FHE works in the proposed architecture. 

Encryption and Decryption process in FHE: 

In FHE, plain text m is encrypted into cipher text C using an encrypted function E: 

𝐶 = 𝐸(𝑚) 

FHE allows both addition and multiplication operations on cipher texts, making it highly flexible for complex 

computations: 

 Addition: 𝐸(𝑚1). 𝐸(𝑚2)𝑚𝑜𝑑 𝑛2  = 𝐸(𝑚1 + 𝑚2) 

 Multiplication: 𝐸(𝑚1)𝑚2 𝑚𝑜𝑑 𝑛2 = 𝐸(𝑚1 ∗  𝑚2) 

The decryption process using a decryption function D, retrieves the original plain text m from cipher text C: 

𝑚 = 𝐷(𝐶) 

Example: Computation of Total Medical Expenses using FHE: 

Consider a scenario where a hospital must calculate a patient’s total medical expenses while keeping individual 

expenses confidential. With FHE, such computations can be carried out on encrypted data without compromising 

privacy. 

Key Generation: 

 Two large prime number 𝑝 = 31 𝑎𝑛𝑑 𝑞 = 37 are chosen. 

 Compute 𝑛 = 𝑝 ∗ 𝑞 = 31 ∗ 37 = 1147. 
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 Public and private keys are generated to support addition and multiplication operations on encrypted data 

using ƛ = 𝑙𝑐𝑚 (𝑝 − 1, 𝑞 − 1), 𝑔 ∈  𝑍𝑛2
∗ , 𝜇 = (𝐿(𝑔ƛ 𝑚𝑜𝑑 𝑛2))−1mod  n,  Where 𝐿(𝑥)  =

𝑥−1

𝑛
   

 

Encryption: Two medical expenses, 𝑚1 = 200 𝑎𝑛𝑑 𝑚2 = 150, are encrypted using random values 𝑟1 = 5 𝑎𝑛𝑑 𝑟2 =

7. 

𝐶1 = 𝐸(𝑚1) =  𝑔𝑚1 ∗ 𝑟1
𝑛 𝑚𝑜𝑑 𝑛2 

𝐶2 = 𝐸(𝑚2) =  𝑔𝑚2 ∗ 𝑟2
𝑛 𝑚𝑜𝑑 𝑛2 

 

Homomorphic Operations:  Using FHE, both addition and multiplication can be performed on the encrypted data 

without requiring decryption: 

𝐶𝑠𝑢𝑚 =  𝐶1. 𝐶2 𝑚𝑜𝑑 𝑛2 =  𝐸(𝑚1 + 𝑚2)  

𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  𝐶1
𝑚2 𝑚𝑜𝑑 𝑛2 =  𝐸(𝑚1 ∗  𝑚2)  

 

Decryption: After performing the operations, the ciphertext is decrypted using the private key to reveal the results: 

𝑚𝑠𝑢𝑚 = 𝐷(𝐶𝑠𝑢𝑚) =  𝑚1 + 𝑚2 = 350 

𝑚𝑝𝑟𝑜𝑑𝑢𝑐𝑡 = 𝐷(𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡) =  𝑚1 ∗  𝑚2 = 30,000 

 

This example illustrates the versatility of FHE, allowing for complex computations beyond basic addition, which is 

crucial in scenarios that require secure financial calculations or statistical analysis of sensitive medical data. By 

utilizing FHE, the proposed healthcare blockchain system facilitates privacy-preserving computations on encrypted 

data, allowing advanced medical operations without revealing sensitive information. FHE enhances system security 

by supporting secure computations, such as billing, patient statistics, and resource management, within a decentralized 

architecture. This ensures that patient data remains confidential even in complex medical scenarios while enabling 

more flexible computations than semi-homomorphic encryption methods can provide. 
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Figure 58: Workflow of Homomorphic Encryption in the Proposed Framework 

Implementing the FHE for data privacy in the healthcare blockchain system ensures the privacy of sensitive medical 

information while enabling secure computation on encrypted data. This approach enhances security and maintains 

patient confidentiality throughout the data processing phase, as shown in Figure 5. The above example demonstrates 

how Homomorphic encryption is utilized in the proposed architecture, enabling secure and private computation. The 

algorithm 2 describes a cryptographic system's key generation, encryption, decryption, and homomorphic addition, 

enabling secure and privacy-preserving computations on encrypted data. 

Algorithm 2: Homomorphic Encryption process in the proposed application 

Algorithm 2.1.: Key Generation 

Input: Two large prime numbers: 𝑝 𝑎𝑛𝑑  𝑞 

Output: Public key (𝑛, 𝑔) and a private key is (ƛ, µ). 

1. Choose 𝑝 𝑎𝑛𝑑  𝑞 

2. Compute 𝑛 = 𝑝𝑞 

3. Compute ƛ = lcm (p − 1, q − 1) 

4. Select a random g ∈ 𝑍𝑛2
𝑥  

5. Compute 𝜇 = (𝐿(𝑔ƛ 𝑚𝑜𝑑 𝑛2))−1 𝑚𝑜𝑑 𝑛 

 

Algorithm 2.2.: Encryption 

Input: plaintext 𝑚, Public key (𝑛, 𝑔). 

Output: ciphertext 𝐶. 

1. Choose a random 𝑟 ∈  𝑍𝑛
𝑥. 

2. Compute 𝐶_ =  𝑔𝑚1 . 𝑟𝑛 𝑚𝑜𝑑 𝑛2 

 

Algorithm 2.3.: Decryption 

Input: Ciphertext 𝐶, private key is (ƛ, µ). 

Output: Plaintext 𝑚. 

1. Compute 𝑚𝑠𝑢𝑚 = 𝐿 (𝐶𝑠𝑢𝑚 
ƛ 𝑚𝑜𝑑 𝑛2). 𝜇 𝑚𝑜𝑑 𝑛 

 

Algorithm 2.4.: Homomorp Operation 

Input: Ciphertexts 𝐶1 and 𝐶2. 
Output: Ciphertext 𝐶𝑠𝑢𝑚, 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡 

1. Compute 𝐶𝑠𝑢𝑚 =  𝐶1. 𝐶2 𝑚𝑜𝑑 𝑛2 

2. Compute 𝐶𝑝𝑟𝑜𝑑𝑢𝑐𝑡 =  𝐶1
𝑚2 𝑚𝑜𝑑 𝑛2 

 

3.4. Non-interactive Zero-Knowledge Proofs (NIZKPs) for Medical Certificate Verification  
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Zero-knowledge proofs (ZKPs) are cryptographic protocols that allow one party (the prover) to prove the validity of 

a statement to another party (the verifier) without revealing any underlying information. When verifying medical 

certificates, ZKPs can confirm the certificate's authenticity without disclosing sensitive patient data. 

In the previous interactive ZKP protocol, the prover and verifier had to be online simultaneously, exchanging messages 

to complete the verification process. However, this is not practical for blockchain-based systems, as requiring multiple 

parties to be online simultaneously is unrealistic. To address this, we adopt Non-Interactive Zero-Knowledge Proofs 

(NIZKPs) using the Fiat-Shamir heuristic, eliminating the need for real-time interaction between the prover and 

verifier. 

The following steps describe the NIZKP-based verification of medical certificates in a blockchain-based decentralized 

healthcare system: 

 

Step 1: Certificate Issuance  

The hospital (H) issues a medical certificate to a patient. This certificate contains encrypted patient data and a unique 

identifier. 

1. Encrypted patient data: The patient's data 𝑃𝑑 is encrypted using the hospital's public key 𝐾𝐻𝑝𝑢𝑏
: 𝐸(𝑃𝑑) =

𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃𝑑 , 𝐾𝐻𝑝𝑢𝑏
) 

2. Generate Unique Identifier: A unique identifier 𝑈1𝐷 is generated for the medical certificate using a hash 

function that combines the patient's data and the timestamp: 𝑈1𝐷 = ℎ𝑎𝑠ℎ (𝑃𝑑 || 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) 

3. Create the medical certificate: The medical certificate 𝐶 is created, which contains the encrypted patient data, 

unique identifier, and the hospital’s signature: 𝐶 = {𝑈1𝐷, 𝐸(𝑃𝑑), 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝐸(𝑃𝑑), 𝐾𝐻𝑝𝑢𝑏
)} 

4. Store the certificate in the blockchain: The medical certificate 𝐶 is stored immutably on the blockchain. 

 

Step 2: Prover and Verifier Setup 

In a non-interactive setup, the prover (hospital) generates proof that can be verified anytime without requiring real-

time communication with the verifier. 

1. Public Parameters: The prover selects public parameters 𝑔 and 𝑝, where 𝑔 is a generator and 𝑝 is a large 

prime number. 

2. Statement and Secret: The prover (hospital) and verifier agree on a public statement 𝑆, which is based on a 

secret 𝑠 (known only to the prover):    

𝑆 = 𝑔𝑠 𝑚𝑜𝑑 𝑝 

3. Generates Commitment: The prover generates a random value 𝑟 and computes a commitment 𝐶: 

𝐶 = 𝑔𝑟  𝑚𝑜𝑑 𝑝 

Step 3: NIZKP Protocol 

Instead of the verifier sending a challenge in an interactive protocol, the challenge is generated using a cryptographic 

hash function, making the proof non-interactive. 

1. Generate the Challenge: The prover computes the challenge c as a hash of the public statement 𝑆 and 

commitment 𝐶: 𝐶 = ℎ𝑎𝑠ℎ(𝑆, 𝐶) 

2. Compute the response: The prover computes the response 𝑧: 𝑧 = 𝑟 + 𝑐. 𝑠 𝑚𝑜𝑑 (𝑝 − 1) 

3. Store the proof on the blockchain: The prover stores the commitment 𝐶, the challenge c, and the response 𝑧 

on the blockchain, allowing any verifier to verify the proof later without requiring the prover to be online. 

 

Step 4: Proof Verification 

The verifier (or any participant on the blockchain) can verify the authenticity of the medical certificate without 

requiring real-time interaction with the prover. The verifier checks the following conditions: 

𝑔𝑟 = 𝐶. 𝑆𝑐 𝑚𝑜𝑑 𝑝 

If the equation holds, the verification is booming, and the medical certificate is deemed authentic. 

 

By integrating NIZKPs into the proposed blockchain-based decentralized application, we ensure privacy and 

practicality in verifying medical certificates, as the verifier can simultaneously be offline as the prover. This adaptation 
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maintains the privacy-preserving nature of NIZKPs while making the system more suitable for decentralized 

environments like blockchain. The algorithm 3 describes issuing a medical certificate using encryption, generating 

and verifying non-interactive zero-knowledge proofs (NIZKPs) to ensure secure and verifiable certificate issuance 

and validation. 

 
Algorithm 3: NIZKP mechanism in the proposed model for medical certificate verification 

Algorithm 3.1.: Certificate Issuance 

Input: Patient data 𝑃𝑑, Hospital's private key 𝐾𝐻𝑝𝑢𝑏
 

Output: Medical certificate 𝐶, Certificate's unique identifier 𝑈1𝐷 

1. Encrypt patient data using the hospital's public key: 𝐸(𝑃𝑑) = 𝑒𝑛𝑐𝑟𝑦𝑝𝑡 (𝑃𝑑 , 𝐾𝐻𝑝𝑢𝑏
) 

2. Generate a unique identifier for the certificate: 𝑈1𝐷 = ℎ𝑎𝑠ℎ (𝑃𝑑  || 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝) 

3. Create the certificate: 𝐶 = {𝑈1𝐷, 𝐸(𝑃𝑑), 𝑠𝑖𝑔𝑛𝑎𝑡𝑢𝑟𝑒 (𝐸(𝑃𝑑), 𝐾𝐻𝑝𝑢𝑏
)} 

4. Store 𝐶 in the blockchain and provide 𝑈1𝐷 to the patient. 

 

Algorithm 3.2.: Prover and Verifier Setup 

Input: Public parameters 𝑔, 𝑝 Hospital's private key 𝐾𝐻𝑝𝑢𝑏
 

Output: Commitment C, Challenge 𝑐, Response 𝑧 

5. The prover (hospital) and verifier agree on a public statement 𝑆 and secret 𝑠:  
𝑆 = 𝑔𝑠 𝑚𝑜𝑑 𝑝 

6. The prover generates a random value r and computes the commitment C:  
𝐶 = 𝑔𝑟  𝑚𝑜𝑑 𝑝 

 

Algorithm 3.3.: NIZKP Protocol Execution 

Input: Commitment C, Challenge 𝑐, Response 𝑧 

Output: Verification result (true/false) 

7. Commit Phase: 

8. Prover computes the commitment C:  𝐶 = 𝑔𝑟  𝑚𝑜𝑑 𝑝 

9. The prover sends C to the verifier. 

10. Challenge Phase: 

o Verifier sends a random challenge ccc to the prover. 

11. Response Phase: 

o Prover computes the response 𝑧 using the secret 𝑠 and the challenge 𝑐:  

𝑧 = 𝑟 + 𝑐. 𝑠 𝑚𝑜𝑑 (𝑝 − 1) 
 

o Prover sends 𝑧 to the verifier. 

12. Verification Phase: 

o Verifier checks the validity of the response:  

𝑔𝑟 = 𝐶. 𝑆𝑐 𝑚𝑜𝑑 𝑝 
 

o If the equation holds, the verifier accepts the proof; otherwise, it rejects 

the proof. 

 

 

 

3.4.1.  Implementation of Non-Interactive Zero-Knowledge Proofs (NIZKPs)  

To ensure the practical realization of the Non-Interactive Zero-Knowledge Proof (NIZKP) protocol in our proposed 

blockchain-based decentralized healthcare system, we implemented the NIZKP protocol using a combination of smart 

contracts and off-chain computation. 

 

A. Smart Contract-Based Implementation 

The verification process for medical certificates and the cryptographic proof generation were implemented 

using Ethereum smart contracts. These smart contracts handle the interaction between the prover (hospital) 

and the verifier (employers, regulatory bodies, etc.) while maintaining the privacy of patient data. Below is 

a brief description of the smart contract structure and key functions: 

 

1. NIZKP Prover Contract 

The NIZKP Prover Contract is responsible for generating and storing the medical certificate along with 

its cryptographic commitment on the blockchain. The commitment is computed using the unique 
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identifier, encrypted medical data, and a digital signature. This ensures the integrity and authenticity of 

the stored certificate. 

 
// NIZKP Prover Contract 

contract NIZKPProver { 

    struct Certificate { 

        bytes32 uniqueID; 

        bytes encryptedData; 

        bytes signature; 

        bytes32 commitment; // Commitment hash 

    } 

 

    mapping(address => Certificate) public certificates; 

 

    // Function to generate cryptographic commitment 

    function generateCommitment(bytes32 _uniqueID, bytes memory _encryptedData, bytes memory _signature)  

        internal pure returns (bytes32)  

    { 

        return keccak256(abi.encodePacked(_uniqueID, _encryptedData, _signature)); 

    } 

 

    // Function to store medical certificate with commitment 

    function storeCertificate(bytes32 _uniqueID, bytes memory _encryptedData, bytes memory _signature) public { 

        bytes32 commitment = generateCommitment(_uniqueID, _encryptedData, _signature); 

        certificates[msg.sender] = Certificate(_uniqueID, _encryptedData, _signature, commitment); 

    } 

 

    // Function to retrieve the stored certificate and commitment 

    function getCertificate(address user) public view returns (bytes32, bytes memory, bytes memory, bytes32) { 

        Certificate memory cert = certificates[user]; 

        return (cert.uniqueID, cert.encryptedData, cert.signature, cert.commitment); 

    } 

} 

 

2. NIZKP Verifier Contract 

This contract allows verifiers to check the certificate's authenticity using the NIZKP protocol. The 

contract computes the proof and verifies the response without revealing the patient's private data. 

 
contract NIZKPVerifier { 

    uint256 public g; 

    uint256 public p; 

     

    constructor(uint256 _g, uint256 _p) { 

        g = _g; 

        p = _p; 

    } 

     

    // Function to verify the NIZKP proof on-chain 

    function verifyProof(uint256 z, uint256 C, uint256 S, uint256 c) public view returns (bool) { 

        return g**z % p == C * S**c % p; 

    } 

} 

 

B. Off-Chain Computation 

 

While storing the certificates and proof verification process is handled on-chain, the cryptographic computations (such 

as generating the random values and challenge responses) are conducted off-chain. This hybrid approach ensures 

scalability and efficiency by reducing the gas costs of heavy computations on the Ethereum network. 

 

1. Off-Chain Challenge and Response Computation: The challenge c and response z are computed off-chain 

using a Python script, which interacts with the smart contract to store and verify the commitment C and proof 

response z. 
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from web3 import Web3 

import hashlib 

 

def compute_challenge(S, C): 

    # Use SHA-256 hash function to generate a non-interactive challenge 

    challenge = hashlib.sha256((str(S) + str(C)).encode()).hexdigest() 

    return int(challenge, 16)  # Convert the hash to an integer for further computation 

 

def compute_response(r, c, s, p): 

    # Compute z = r + c * s (mod p-1) 

    return (r + c * s) % (p - 1) 

 

i. Prover (Hospital) Process: 

 The hospital encrypts the patient's medical data off-chain. It generates the cryptographic proof 

(including the unique identifier, encrypted data, and signature) and stores it on-chain using the ZKP 

Prover smart contract. 

 Off-chain computation is performed to generate the commitment C, the public statement S, and the 

challenge-response pair (c,z), which are later verified on-chain. 

ii. Verifier Process: 

 The verifier accesses the smart contract to retrieve the cryptographic proof. 

 The challenge c is generated off-chain, and the final proof z is computed off-chain. This challenge-

response pair is sent back to the smart contract to verify the authenticity of the medical certificate 

using the NIZKP Verifier contract. 

 

By implementing both on-chain and off-chain components, we ensure an efficient, secure, and practical system that 

adheres to the privacy-preserving nature of ZKPs without overloading the blockchain with computational tasks. This 

implementation, combining on-chain smart contracts and off-chain cryptographic computations, ensures that the 

proposed NIZKP-based medical certificate verification solution is feasible and practical in real-world blockchain 

environments. 

 

3.5. Proposed Intrusion Detection System  

 

To detect anomalies within the Internet of Medical Things (IoMT) environment, we propose utilizing machine learning 

(ML) models to classify network traffic as normal or malicious. These models are trained and evaluated using the 

WUSTL EHMS 2020 Dataset, which contains labeled instances of IoMT traffic, including normal traffic and various 

attacks. The proposed models include Random Forest (RF), XGBoost, and Support Vector Machines (SVM). These 

models are selected for their robustness in high-dimensional spaces and capacity to handle imbalanced data. Figure 6 

presents the workflow of an Intrusion Detection System (IDS) applied to the WUSTL EHMS 2020 Dataset. It shows 

steps from data pre-processing, feature extraction, model training, deployment, real-time monitoring, anomaly 

detection, and alert generation to prediction.  

 

 
Figure 59: Workflow of Intrusion Detection System (IDS) Model on WUSTL EHMS 2020 Dataset for Anomaly Detection and 
Prediction. 

 

The Random Forest (RF) model was selected for its ability to handle high-dimensional datasets, such as IoMT traffic, 

without overfitting. RF constructs multiple decision trees during the training phase and aggregates their outputs to 

make the final classification. This method is particularly suited to large-scale IoMT environments, as it can effectively 

handle numerous network-based features, including packet size, protocol types, and device metadata. The RF model 

was tuned using grid search, optimizing hyperparameters such as the number of trees, the maximum depth of the trees, 

and the minimum samples per split. XGBoost, a gradient-boosting algorithm, was also employed due to its capacity 
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for handling imbalanced datasets and its computational efficiency. XGBoost improves upon traditional decision tree 

models by using an iterative process to minimize prediction errors, making it highly suitable for detecting a wide range 

of attacks in IoMT traffic. By tuning hyperparameters such as the learning rate, maximum depth, and number of 

estimators, XGBoost achieved the best performance among the models.  Lastly, Support Vector Machines (SVM) 

were implemented to classify network traffic using a hyperplane that maximizes the margin between normal and 

malicious traffic. SVM is particularly effective in high-dimensional spaces, characteristic of IoMT data with multiple 

network-based features. An RBF (Radial Basis Function) kernel was used to manage the non-linear nature of IoMT 

traffic, and the hyperparameters were tuned to optimize model performance. Table 1 shows the Hyperparameter table 

of the proposed intrusion detection models.  

 

Table 37: Hyperparameter Configurations for Proposed Intrusion Detection Models 

Model Hyperparameter Values 

Random Forest (RF) n_estimators 100 

 max_depth 20 

 min_samples_split 2 

XGBoost learning_rate 0.1 

 max_depth 15 

 n_estimators 150 

 subsample 0.8 

 colsample_bytree 0.8 

Support Vector Machine (SVM) C 1 

 gamma 0.1 

 kernel RBF 

 

4. Security and Privacy Analysis of the Proposed Method 

 

This section presents the formal security and privacy verification for the proposed framework. 

4.1. Security Analysis 

 Impersonation Attack: In our novel blockchain-based IoT healthcare application, we address impersonation 

attacks by ensuring that an attacker cannot masquerade as a legitimate entity. The attacker must provide the 

verifier with a temporary credential and Identification and a sensor MAC address to obtain a provisional key. 

A timestamp is generated for the request of Identification, and the Verifier checks the existing credential 

against its records and verifies. If the timestamp verification fails, the process is immediately terminated. 

Zero-knowledge proof (ZKP) verification is conducted for identity creation, ensuring the framework is secure 

from impersonation attacks. 

  Insider Attack: The framework also protects against insider attacks. An insider attacker, even with 

necessary credential information such as temporary credentials or identification and sensor MAC address, 

cannot compute the actual identity due to the timestamp verification over the ZKP prover and challenge-

response protocols. This mechanism prevents insider attacks effectively. 

 MITM and Replay Attack: To counter Man-in-the-Middle (MITM) and replay attacks, the proposed 

framework ensures that an attacker who intercepts messages from an insecure channel cannot exploit this 

information. The attacker must use brute-force techniques to compute the correct timestamp to execute these 

attacks. However, the ZKP process used to verify the timestamp is computationally intensive and challenging 

to predict accurately. Thus, the framework is safeguarded against MITM and replay attacks. 

 Preservation of untraceability and Anonymity Properties: The system maintains untraceability and 

anonymity by using freshly generated timestamps and random secret values in all communicated messages. 

This ensures different messages in each session and prevents message tracing. Additionally, temporary 

identities are used instead of real ones and updated in each session, preserving anonymity. 

 Mitigation of Synchronization Problems and Associated Attacks: Our model ensures synchronization by 

exchanging messages containing timestamps and verifying updated values of temporary identities. This 

mechanism prevents synchronization issues and associated attacks. All heterogeneous devices agree on a 

maximum transmission delay to maintain synchronization. 
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 Prevention of Stolen Verifier Attacks: The system stores registration information in secure memory and 

does not directly store sensitive information. This approach prevents adversaries from launching attacks such 

as password guessing, impersonation, and unauthorized session key computation. 

 

4.2. Privacy Analysis  

 

The proposed framework also includes robust privacy-preserving mechanisms. An attacker attempting to access or 

modify information using short signature techniques from a secure channel will face significant challenges. Two major 

approaches ensure privacy preservation: 

 ZKP Verification for Identity Creation: The Identity is created based on the ZKP verification scheme 

using the prover and verifier challenge-response protocols. The signature is verified during block creation in 

the blockchain network, and the associated Identities are stored as a transaction hash. Modifying this 

information is nearly impossible, as altering one block hash requires altering all subsequent blocks in the 

chain. 

 

 Blockchain Integrity: Information is stored in blocks linked in a chain, making it resistant to tampering. The 

integrity and immutability of blockchain technology ensure that modifying one block would necessitate 

altering all subsequent blocks, thus preserving the privacy and integrity of medical data. 

 

5. Experimental Setup and Result Analysis 

 

This section discusses the experimental setup, result analysis, and findings based on the experimental testing 

conducted in the context of blockchain-based architectures in healthcare data management. 

 

5.1. Experimental Setup 

 

The proposed framework uses Ethereum, an open-source blockchain network, to develop smart contracts supporting 

all system functions. It enables users and patients to register, verify, and access healthcare certificates through smart 

contract functionalities. We utilized the Ganache tool to set up the blockchain network, deploy smart contracts, and 

execute performance evaluations on latency, processing time, throughput, and computation time. The framework's 

portal, designed with React Native for compatibility with Ethereum, connects via Node.js. Solidity is used to develop 

smart contracts, with Remix IDE for writing and deploying these contracts on the test network and transaction fees 

managed through Ethers. Metamask, a browser plugin, and wallet, generated Ethereum addresses and facilitated 

transactions. The experimental setup is deployed on a laptop featuring an Intel Core i5 10th Gen processor, 8GB RAM, 

512GB ROM, Windows 11 OS, and an NVIDIA GTX 1650 GDDR6 4GB graphics card, with TestRPC and SQL 

installed to support the deployment. 

 

5.2. Result Analysis  

 

The Etherscan tool is utilized to evaluate the operational costs of our proposed blockchain-based application. 

Etherscan, an analytics tool for exploring blocks in the blockchain network, functions as an Ethereum platform Gas 

tracker. It tracks transactions, verifies the performance of smart contracts, and checks the process’s state. Transactions 

on the Ethereum blockchain network require Gas, representing the cost needed to perform a function within the 

network. Miners set the Gas price based on supply and demand, with the cost depending on the execution, deployment, 

and transfer processes involved in transactions. Gas has two main parameters: limit and price, where the limit depends 

on the user's willingness to execute a transaction and is presented as ‘gwei’. 

 

Our proposed application deploys smart contracts on TestRPC and collects details of all executed tasks using the 

Etherscan tool. Table 2 presents the operational costs evaluated by Etherscan. Etherscan provides detailed analytics, 

tracking all transactions, analyzing Gas costs, evaluating smart contract efficiency, and validating transaction states. 
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The proposed application incurs Gas costs for executing each transaction on the Ethereum public blockchain network, 

with Gas measuring the cost of executing operations in a transaction. Miners set the Gas price based on demand and 

supply. Deploying smart contract functions and transactions on the proposed blockchain network requires significant 

computational power. Table 1 presents a detailed analysis of the deployment costs for key smart contract functions 

within our proposed blockchain framework. This table aims to elucidate each function's gas consumption, transaction 

fees, and overall efficiency, providing insights into the resource demands and economic implications of executing 

these smart contracts. 

 

The table 2 includes four main functions: Registration, Block Generation, Issuing Certificates, and Verifying 

Certificates. Each function gas usage is listed in Gwei, a measure of computational effort required by the Ethereum 

Virtual Machine (EVM). For example, the Registration function consumes 34,219 Gwei, reflecting the substantial 

resources needed for initial setup and data storage. In comparison, Block Generation uses 37,127 Gwei, the highest 

among the functions due to the complex process of creating a new block. Issuing Certificates and Verifying 

Certificates use 29,120 Gwei and 37,100 Gwei, respectively, indicating the computational demands associated with 

certificate management and verification. 

 

Transaction fees, calculated from the gas used and gas price, provide a clear picture of the economic cost of executing 

each function. The Registration function incurs a fee of 0.000036 ETH, which is relatively low, highlighting the 

efficient cost of initial data registration. With its higher complexity, block generation results in the highest fee of 

0.000048 ETH. Issuing Certificates has a lower fee of 0.000028 ETH, while Verifying Certificates costs 0.000040 

ETH, placing it between the issuance and generation costs. The average gas price for each function is also included, 

showing variations in transaction costs based on network conditions. The Registration function has an average gas 

price of 15 Gwei, while Block Generation has a higher price of 20 Gwei, reflecting increased competition and resource 

demands. Issuing certificates have an average price of 12 Gwei, and verifying certificates at 18 Gwei indicates 

different levels of cost efficiency. 

 

The table 2 also provides details such as transaction hash, block size, transaction nonce, and transaction index. The 

transaction hash ensures traceability, allowing for verification of transaction details on the blockchain. Block size 

varies across functions, with Registration producing a larger block size of 9,523 bytes, while Block Generation results 

in a smaller block size of 479. This variation reflects the data processing requirements of each function. The transaction 

nonce and index provide information on transaction ordering and sequencing within the block, which is crucial for 

understanding transaction processing and potential conflicts. Efficiency ratios, calculated as gas usage per transaction, 

offer insights into the cost-effectiveness of each function. The Registration function has an efficiency ratio of 1.5, 

Block Generation is 1.8, Issuing Certificates is 1.2, and Verifying Certificates is 1.6. These ratios illustrate the relative 

gas efficiency of each function, with Issuing Certificates demonstrating the highest efficiency. 

 

In summary, Table 2 offers a comprehensive view of our blockchain system's gas and transaction fees associated with 

smart contract functions. By presenting detailed metrics and efficiency ratios, the table supports an in-depth analysis 

of smart contract deployment's economic and resource implications, contributing to the overall evaluation of the 

proposed system's performance and cost-effectiveness. 

 

Table 2: Comprehensive Breakdown of Deployment Costs for Smart Contracts 

Function Amount 

of Gas 

used 

Transac

tion Fee 

Gas 

Price 

Transaction hash Block 

size in 

bytes 

Transacti

on Nonce 

Transacti

on index 

Average 

Gas Price 

(Gwei) 

Efficiency 

Ratio 

(Gas/Tx) 

Average 

Transacti

on  

(ETH) 

Std. 

Deviation 

Transacti

on Fee 

(ETH) 

Registration 

() 

34219  

(96.24%) 

0.000036 0xe71c1f75615dff900d818bece81399

bee2dc4c41f21cb446ab642cf359ddae

59 

9523 4 5 1.5 15 0.000038 0.000004 

Generation of 

block () 

37127 

(99.72%) 

0.000048 0x3adee67dee564457fc404efabba5f1b

0cdd43b1cae9966af5eda9faa55f350ed 

479 7 4 1.8 20 0.000045 0.000005 

Issuing_Certi

ficate () 

29120 

(94.79%) 

0.000028 0x6c48deabfce5c2dc2caf8cadce8dacf

9da5ae6d5e70bf0511dceac5fa0f9f96c 

8896 4 7 1.2 12 0.000030 0.000003 
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Verifying_Ce

rtificate () 

37100 0.000040 0xebbd766ce75aeeb2e3ec64581ecc06

bf19e49bdaf60cf8cfdc8ca93f9dbb85b

e 

523 7 2 1.6 18 0.000042 0.000004 

 

 

The expanded Table 3 offers a comprehensive view of deployment costs, incorporating additional parameters to 

address scalability, gas price fluctuations, and environmental impact. Including maximum and minimum gas prices 

provides a range of potential costs for each function, reflecting the variability in transaction fees due to network 

congestion and market demand. For instance, the Block Generation function shows a maximum gas price of 25 Gwei 

and a minimum of 15 Gwei, illustrating the potential for fee variability. This helps in understanding how fluctuations 

in gas prices can affect the overall cost of deploying and executing smart contracts. 

 

The estimated cost per user and scalability factor provides insights into how costs and resource usage scale with 

increased transaction volume or user base. The scalability factor, for example, indicates that the Block Generation 

function might experience a 50% increase in costs as the transaction volume doubles. This parameter helps assess how 

well the system can handle growth and informs potential scaling strategies. The environmental impact column 

estimates the carbon footprint per transaction, reflecting the broader implications of smart contract deployment on 

sustainability. For example, the Block Generation function has an estimated environmental impact of 0.015 CO2 per 

transaction. This parameter highlights the need for environmentally conscious design choices and supports discussions 

on the ecological effects of blockchain technology. 

 

Table 3 provides a more detailed and nuanced analysis of deployment costs, incorporating essential factors such as 

gas price fluctuations, scalability, and environmental impact. This comprehensive approach offers valuable insights 

into the economic and ecological implications of smart contract deployment, enhancing the overall evaluation of the 

proposed blockchain system. 

 

Table 3: Comprehensive Analysis of Deployment Costs: Gas Price Variability, Scalability, and Environmental Impact per Function 

Function Estimated Cost per User Scalability Factor Environmental Impact 

(CO2/Tx) 

Registration () 0.000036 1.2 0.012 

Generation of block () 0.000048 1.5 0.015 

Issuing_Certificate () 0.000028 1.1 0.010 

Verifying_Certificate () 0.000040 1.4 0.014 

 

The smart contracts in our proposed application are deployed on the TestRPC network with localhost 8545 and the 

Ropsten network. The Etherscan tool collects transaction details, and Table 4 also shows the total Gas cost involved 

in generating medical certificates, calculated by adding the transaction costs. 

 

Table 4:  Detailed Gas Costs for Varying Certificate Values 

Number of Certificates Gas Limit Gas Limit (ETH) 

1 19543 123200 

10 170219 1147622 

20 374430 2531218 

30 654860 2250439 

40 782290 4987682 

50 926720 3741129 

100 1017271 11291749 

120 2321416 13721123 

 

 

 Table 5 compares the operational costs on TestRPC-based Ethereum blockchain and Remix platforms, considering 

functions like Registration (), Generation of block (), Issuing_Certificate (), and Verifying_Certificate ().  
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Table 5: Operational Cost Analysis of the Proposed System Across Different Functions 

Caller Functions Test RPC Gas Cost Remix Gas Cost 

Healthcare Management Registration () 0.000398 0.000643 

Healthcare Management Generation of block () 0.000472 0.000732 

Healthcare Management Issuing_Certificate () 0.000718 0.000737 

Healthcare Management/Users(admins) Verifying_Certificate () 0.000293 0.000268 

 

The application analyzes Gas cost consumption for around 120 medical certificates deployed on the Remix Ethereum 

blockchain network and Test RPC network using the Metamask wallet, as shown in Table 6. Figure 7 shows that Gas 

costs increase with the number of medical certificates due to more transactions and blocks in the blockchain network. 

The test RPC platform, a Node.js-based Ethereum platform for testing and development, requires more Gas than the 

Ethereum platform because it first generates events as a remote procedural call before initiating transactions. 

 

Table 6: Comparative Gas Costs for Medical Certificates Across Different Platforms 

Number of Medical Certificates GAS COST 

Gas Cost (Remix) 105 Gas Cost (Test RPC) 105 

10 1.7 2.09 

20 2.14 2.54 

30 2.23 2.98 

40 2.31 3.17 

50 2.34 3.39 

60 2.39 3.63 

70 2.47 3.91 

80 2.58 4.42 

90 2.64 4.79 

100 2.75 5.13 

110 2.83 5.51 

120 2.91 5.84 

 

 

 
Figure 60: Gas Costs Across Different Platforms for Medical Certificate Transactions 

Figure 8 depicts the overall operational costs on the Ethereum platform using Remix IDE and Ropsten network with 

localhost 8545 web. The total ether cost increases with the number of medical certificates, as generating more 

certificates requires more time for transaction completion.  
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Figure 61: Total Ether Consumption for Generating Medical Certificates 

Table 7 presents the transaction and execution costs for the smart contract functions in the proposed application. 

Transaction costs represent the cost to generate a transaction per the user’s request. In contrast, execution costs signify 

the total cost to generate and append a block to the existing blockchain. Each block contains multiple transactions 

initiated by different users. 

 

Table 7: Cost Estimation of Smart Contract Functions Based on Consensus Mechanism 

Consensus Mechanism Function  GAS 

Transaction Cost Execution Cost 

Registration () 1732986 1454321 

Generation of block () 732457 621104 

Issuing_Certificate () 954319 83897 

Verifying_Certificate () 87632 82174 

 

Table 8 shows the proposed application’s performance based on latency and processing time. Results indicate higher 

time consumption for blockchain-deployed systems than non-blockchain systems due to internal computations like 

mining, cryptographic hash evaluation, transaction, block creation, and adding new blocks.  

 

Table 8: Latency and Processing Time Comparison of Proposed Application with and Without Ethereum Blockchain 

Blockchain Platform Parameters Issuing Certificate () Operation Verifying Certificate () Operation 

Yes Latency time (seconds) 4.32 6.19 

No Processing time (seconds) 5.17 9.72 

Yes Latency time (seconds) 3.97 3.03 

No Processing time (seconds) 4.37 7.21 

 

Figures 9(a) and 9(b) compare the performance of the blockchain-based system to a non-blockchain SQL platform, 

focusing on latency and processing time for two key operations: Issuing_Certificate() and Verifying_Certificate(). 

Latency measures the delay from initiating a transaction to when it is appended as a block on the blockchain. As 

shown in Figure 9(a), the Ethereum-based system has a higher latency (7.12 ms) for certificate verification compared 

to SQL (2.63 ms). This is expected due to the consensus mechanism in Ethereum, which requires miners to validate 

and append transactions. In contrast, SQL does not require such validation, leading to lower latency. 

 

Processing Time (Figure 9b) refers to the total time from transaction request submission to receiving a response. 

Ethereum again shows higher processing times, with 9.72 ms for Verifying_Certificate() compared to SQL 6.41 ms. 

The added time in Ethereum is primarily due to block creation, consensus verification, and the validation of blockchain 

header parameters. On the other hand, SQL databases process transactions directly without this overhead. 
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Figure 9(c) presents Throughput comparisons. The Ethereum-based system shows better throughput for 

Issuing_Certificate() (6.38 Kbps) compared to SQL (5.38 Kbps). This reflects the blockchain's ability to concurrently 

handle multiple certificate generation requests across nodes. However, for Verifying_Certificate(), SQL shows higher 

throughput (10.57 Kbps) due to its more straightforward structure and lack of blockchain validation steps. 

 

In Figure 9(d), Computation Time is analyzed for 500 transaction simulations. The results show that Ethereum's 

Issuing_Certificate() takes 83 ms, while SQL takes 87 ms. For Verifying_Certificate(), Ethereum takes 89 ms 

compared to SQL 93 ms. Although SQL is generally faster in latency and processing, Ethereum-optimized block 

handling and reduced database locking during verification give it an advantage in computation time, particularly for 

larger transaction volumes. 

 
Figure 62: Comprehensive Performance Comparison of Throughput, Processing Speed, Latency, and Consumption Time Between 

Ethereum and SQL-Based Models 

Table 9 summarizes the proposed application's latency, throughput, computation, and processing times. The table 7 

summarizes performance metrics, confirming that Ethereum performs better for issuing certificates due to its 

distributed architecture despite higher latency and processing times. SQL performs better for certificate verification, 

but as transactions scale up, Ethereum's distributed nature can handle higher transaction volumes more efficiently, 

particularly in computation and throughput. 

 

Table 9:  Comparative Analysis of Throughput, Processing, Latency, and Consumption Time for the Proposed Model Utilizing 
Ethereum and SQL Platforms 

Parameters Issuing Certificate () Verifying Certificate () 

Ethereum SQL Ethereum SQL 

Latency Time (milliseconds) 5.32 3.72 7.12 2.63 

Processing Time (milliseconds) 6.37 4.87 9.72 6.41 

Throughput (Kbps) 6.38 5.38 8.54 10.57 

Computation Time (milliseconds) 83 87 89 93 
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The security and privacy evaluation of the proposed blockchain architecture involved assessing various performance 

metrics under different conditions. Each metric was analyzed to understand the impact of increasing the number of 

IoT nodes and transactions on the system's performance, as shown in Figure 10. 

 

 
Figure 63:(a): Comparative Assessment of IoT Node Registration Time Within a Blockchain Network. (b): Performance 
Benchmarking of Hybrid POW and PBFT Consensus Algorithms Across Diverse Transaction Loads. (c): Comprehensive Analysis of 
Block Creation Time Across Varied Transaction Volumes and Node Configurations. (d): Evaluation of Block Access Time Relative to 
Transaction Sizes and Node Configurations. (e): In-depth analysis of Gas Price Consumption for Varying Transaction Sizes on the 
Ethereum Blockchain. (f): Detailed Execution Time Analysis of Transaction Signing for Non-Repudiation Across Different Node 
Configurations. (g): Smart Contract Deployment Time Analysis Across Different Transaction Sizes and Node Configurations. (h): 
Evaluation of IPFS-Based Off-Chain Storage Utilization for Various Transaction Sizes. 
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The registration time of IoT nodes in the proposed blockchain architecture was measured to determine how the system 

scales with increasing nodes. Table 10 presents the registration times for different numbers of IoT nodes. As the table 

shows, the registration time increases progressively with the number of nodes. For instance, registering 20 nodes takes 

25 seconds, while registering 100 nodes takes 308 seconds. This increase in time suggests that the system's registration 

process becomes more time-consuming as more nodes are added, highlighting a scalability challenge. 

Table 10: Evaluation of Registration Time for IoT Nodes in the Blockchain Network 

Execution Time (in Seconds) Nodes (No. of Transaction (Tx)) 

25 20 

43 40 

119 60 

214 80 

308 100 

 

The hybrid Proof-of-Work (POW) and Practical Byzantine Fault Tolerance (PBFT) consensus algorithm is evaluated 

for its execution time with varying transaction sizes and node numbers. Table 11 shows that as the number of 

transactions and nodes increases, the time required for consensus also rises. For example, with 100 nodes and 350 

transactions, the execution time is 1436 seconds, compared to just 18 seconds with 20 nodes and 100 transactions. 

This trend indicates that the consensus process becomes more resource-intensive and time-consuming as the network 

grows, potentially affecting the overall performance and responsiveness of the blockchain. 

 

Table 11: Performance Analysis of Hybrid POW and PBFT Consensus Algorithm Across Different Transaction Sizes 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 18 41.4 103 210 297 

150 56 68.8 171.92 443 415.8 

200 94 103 290.8 714 846.6 

250 136 147 371.4 927 1074.3 

300 174 186 524 1141 1243 

350 198 212 573 1373 1436 

 

Block creation and access times were analyzed to understand the time required for these operations as the network 

scales. Tables 12 and 13 illustrate these times for various transaction sizes and node numbers. The data reveals that 

the times remain relatively stable, up to 40 nodes and 300 transactions. However, when the number of nodes increases 

from 60 to 100, there is a significant rise in both block creation and access times. For example, with 100 nodes and 

350 transactions, block creation and access times are 1433 seconds and 1433 seconds, respectively, compared to 17 

seconds for 20 nodes and 100 transactions. This increase in time reflects the additional computational and storage 

overhead required to manage large networks. 
 

Table 12: Analysis of Block Creation Time for Various Transaction Sizes and Node Configurations 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 17 39 101 208 295 

150 54 66 169 440 413 

200 92 100 287 710 842 

250 133 144 369 925 1073 

300 170 183 521 1139 1240 

350 194 210 570 1370 1433 

 

Table 13: Evaluation of Block Access Time for Different Transaction Sizes and Node Configurations 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 17 39 101 208 295 

150 54 66 169 440 413 

200 92 100 287 710 842 
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250 133 144 369 925 1073 

300 170 183 521 1139 1240 

350 194 210 570 1370 1433 

 

The gas price consumption for smart contract access and deployment is also evaluated. Table 14 shows that gas prices 

increase steadily with the number of IoT nodes and transactions. This suggests that more computational resources are 

required as the network grows, leading to higher operational costs. For instance, with 100 nodes and 350 transactions, 

the gas price is 74,510, compared to 20,000 for 20 nodes and 100 transactions. This increase indicates the additional 

cost burden on the system as it scales. 
 

Table 14: Evaluation of Gas Price Consumption Across Different Transaction Sizes on the Ethereum Blockchain Network 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 20000 25000 18000 35000 40010 

150 20150 26000 20000 37000 42000 

200 22000 37000 45000 48000 49010 

250 23500 44000 49500 64300 66000 

300 43700 52000 55000 69000 72000 

350 52000 57000 59000 72100 74510 

 

 

The signing time taken by participating IoT nodes was calculated to ensure non-repudiation within the blockchain 

architecture. Table 15 shows that signing times increase with the number of nodes and transactions. For example, with 

100 nodes and 350 transactions, the signing time is 1,109 seconds, compared to 43 seconds for 20 nodes and 100 

transactions. This increase reflects the additional computational effort required to process large numbers of nodes and 

transactions. 
 

Table 15: Execution Time Analysis of Transaction Signing for Non-Repudiation Across Different Node Configurations 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 43 47 169 297 350 

150 52 56 325 415 483 

200 60 64 418 593 629 

250 94 99 520 703 757 

300 113 117 690 811 892 

350 137 143 743 1032 1109 

 

The deployment time for the proposed smart contracts was evaluated, with the results shown in Table 16. The data 

indicates that deployment time increases significantly with the number of nodes and transactions. For example, with 

100 nodes and 350 transactions, the deployment time is 1,109 seconds, compared to 43 seconds for 20 nodes and 100 

transactions. This increase highlights the additional time required to deploy smart contracts as the network grows. 
 

Table 16: Analysis of Smart Contract Deployment Time for Varying Transaction Sizes and Node Configurations 

No. of Transaction 

(Tx) 

20 nodes 40 nodes 60 nodes 80 nodes 100 nodes 

100 43 47 169 297 350 

150 52 56 325 415 483 

200 60 64 418 593 629 

250 94 99 520 703 757 

300 113 117 690 811 892 

350 137 143 743 1032 1109 

 

The storage size required for storing transaction data in IPFS-based off-chain storage was also analyzed. Table 17 

shows that the storage size in kilobytes (KB) increases with the transaction size. For example, with 350 transactions, 
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the storage size is 39 KB, compared to 9 KB for 100 transactions. This increase in storage size reflects the growing 

data requirements as the number of transactions increases.  

 

Table 17: Assessment of IPFS-Based Off-Chain Storage Utilization for Various Transaction Sizes 

No. of Transaction (Tx) Storage Size in KB 

100 9 

150 17 

200 24 

250 29 

300 34 

350 39 

 

In summary, the proposed blockchain architecture demonstrates an increase in registration, consensus, block creation, 

access, and smart contract deployment times as the number of nodes and transactions increases. Additionally, gas 

price consumption and storage requirements rise with network growth. These findings highlight the scalability 

challenges and resource demands of maintaining security and privacy in a growing IoT environment. 

 

 

5.3. Statistical Analysis of Security and Data Privacy  

 

This section comprehensively evaluates the proposed system security and privacy mechanisms, including 

cryptographic techniques, consensus algorithm robustness, and data protection measures, ensuring resilience against 

various attacks and safeguarding sensitive IoT data. 

 

5.3.1. Threat Model  

 

The system is designed to resist several critical security threats, including: 

 Man-in-the-Middle (MITM) attacks: Encryption techniques protect sensitive IoT data during transmission. 

 Sybil attacks: The hybrid PoW-PBFT consensus algorithm requires substantial computational resources, 

making it challenging for adversaries to introduce numerous fake nodes. 

 Double-spending and tampering: Blockchain immutability ensures that transactions, once recorded, cannot 

be altered. 

 

5.3.2. Security Mechanism and Metrics  

 

This section evaluated key cryptographic and consensus mechanisms using dummy data. Each metric was measured 

under different transaction loads and network sizes. The security evaluation focuses on homomorphic encryption, 

zero-knowledge proofs (ZKPs), and resistance to Sybil and 51% attacks. 

 

5.3.3. Result Analysis of Proposed Intrusion Detection System  

 

The performance of the proposed Intrusion Detection System (IDS) was evaluated using three machine learning 

models, Random Forest (RF), XGBoost, and Support Vector Machines (SVM), on the WUSTL EHMS 2020 Dataset 

for IoMT Cybersecurity Research. Each model was assessed based on key performance metrics, including accuracy, 

precision, recall, F1-score, false positive rate (FPR), true positive rate (TPR), and the area under the ROC curve 

(AUC). The results provide insight into the effectiveness of each model in detecting anomalies in IoMT traffic within 

the blockchain-based healthcare framework, as shown in Table 18. 

 

Table 18: Performance Metrics Comparison of Intrusion Detection Models 

Model Accuracy Precision Recall F1 Score False 

Positive 

Rate 

True 

Positive 

Rate 

AUC-

ROC 

Curve 

Random Forest (RF) 97.4 97.1 96.5 96.8 2.6 96.5 0.97 
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XGBoost 98.1 98.0 97.6 97.8 1.9 97.6 0.98 

Support Vector Machines (SVM) 96.4 96.4 96.1 96.3 3.3 96.1 0.96 

 

 

Random Forest (RF) demonstrated strong performance, achieving an accuracy of 97.4%. This high accuracy indicates 

the model's ability to distinguish between normal and malicious traffic effectively. The precision (97.1%) and recall 

(96.5%) metrics suggest that the model excels at correctly identifying malicious traffic (true positives) while 

minimizing the number of false positives. The F1-score of 96.8% further confirms the model balanced performance 

between precision and recall. The low false positive rate (2.6%) and high true positive rate (96.5%) indicate that the 

Random Forest model is well-suited for real-time anomaly detection in the healthcare IoMT environment. Its AUC 

score of 0.97 reflects strong discriminatory power in identifying attacks. 

 

XGBoost outperformed the Random Forest model across all evaluation metrics, achieving an accuracy of 98.1%, the 

highest among the three models. XGBoost precision (98.0%) and recall (97.6%) demonstrate its ability to effectively 

handle the diverse types of traffic in IoMT networks, including normal and attack instances. The model's F1 score of 

97.8% highlights its superior performance in terms of precision-recall balance. A false positive rate of 1.9% and a true 

positive rate of 97.6% further emphasize XGBoost robustness in detecting intrusion attempts. The AUC score of 0.98 

illustrates that XGBoost has excellent predictive power, making it the most suitable model for intrusion detection in 

the proposed system. 

 

Support Vector Machines (SVM) also performed well, though slightly lower than the other two models. With an 

accuracy of 96.7%, SVM effectively differentiates between normal and attack traffic. The precision (96.4%) and recall 

(96.1%) indicate that SVM maintains a good balance between identifying true positives and avoiding false positives. 

The F1-score of 96.3% suggests that while SVM may not be as effective as RF or XGBoost in some instances, it 

remains a reliable option for intrusion detection. The false positive rate of 3.3% and true positive rate of 96.1% reflect 

SVM's tendency to occasionally misclassify normal traffic as malicious, though it still offers strong overall 

performance. With an AUC score of 0.96, SVM maintains solid classification power in the context of IoMT traffic. 

 

In summary, all three models, RF, XGBoost, and SVM, performed well in the intrusion detection task. However, 

XGBoost emerged as the top performer, achieving the highest accuracy, precision, recall, and AUC scores. Its ability 

to handle imbalanced data and complex traffic patterns in IoMT systems makes it the most suitable model for the 

proposed IDS. Due to its ensemble learning capabilities, Random Forest also showed robust performance and is a 

viable alternative for large-scale IoMT applications. While SVM provided slightly lower metrics, it remains a 

competitive choice, particularly in scenarios where clear class separation is essential. Overall, the results confirm that 

integrating machine learning models into the IDS layer of the blockchain-based healthcare framework significantly 

enhances the detection of security breaches, ensuring the protection of sensitive medical data. 

 

5.3.4. Efficiency and Overhead Analysis of Fully Homomorphic Encryption (FHE) in Healthcare 

Systems 

 

This sub-section analyzes the computational overhead of Fully Homomorphic Encryption (FHE) within a blockchain-

based healthcare system. FHE enables secure computations on encrypted data, ensuring patient privacy is maintained. 

The table 19 summarizes the performance comparison between FHE and Paillier encryption, indicating that FHE is 

more secure but incurs a higher computational cost. The evaluation using dummy medical expenses shows that the 

total overhead for FHE operations, including encryption, homomorphic operations (addition and multiplication), and 

decryption, is 67 milliseconds(ms). Specifically, encryption took 29 ms, while the homomorphic operations added 16 

ms, and decryption required 22 ms. These times reflect the complexity of FHE, which performs operations on 

encrypted data without exposing sensitive information. Although the total computational time may seem high 

compared to non-encrypted operations, the privacy and security benefits make this overhead acceptable in privacy-

critical environments like healthcare. 
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Table 19: Comparative Performance Analysis of Fully Homomorphic Encryption (FHE) and Paillier Encryption 

Operations FHE Time (ms) Paillier Time (ms) 
Encryption 29 10 

Homomorphic Addition 7 6 

Homomorphic Multiplication 9 Not Supported 

Decryption 22 9 

Total Overhead 67 ms 25 ms 

 

 

In comparison, the Paillier semi-homomorphic encryption scheme was evaluated, which supports only addition 

operations. The Paillier scheme exhibited a lower overall overhead of 25 milliseconds, with 10 ms for encryption, 6 

ms for homomorphic addition, and 9 ms for decryption. However, the limited capability of Paillier to handle only 

addition makes it inadequate for more complex medical computations, such as multiplication, often required in 

healthcare scenarios.  

 

The results highlight a tradeoff between performance and functionality. While introducing a higher computational 

cost, FHE provides the flexibility to perform addition and multiplication on encrypted data, making it a more suitable 

solution for secure, privacy-preserving computations in healthcare applications. In contrast, Paillier's lower overhead 

makes it faster but limits its use to more straightforward scenarios. Ultimately, the choice between FHE and Paillier 

depends on the required balance between computational efficiency and the complexity of operations needed. 

 

5.3.5. Cryptographic Strength Evaluation 

 

The encryption strength was analyzed by evaluating the system’s resistance to known cryptographic attacks. We tested 

the system’s homomorphic encryption by measuring computational overhead and encryption time for varying 

transaction sizes and node configurations. As seen in Table 20, the overhead associated with homomorphic encryption 

increased with the number of nodes and transactions. For example, with 20 nodes and 100 transactions, the encryption 

overhead was only 5 milliseconds, while for 100 nodes and 350 transactions, the overhead increased to 120 

milliseconds. This shows a linear increase in computational time as the system scales, demonstrating the cryptographic 

robustness. The results show that encryption overhead remains manageable even as the number of nodes and 

transactions increases, ensuring that the system can securely process IoT data without significant performance 

degradation. 

 
Table 20: Homomorphic Encryption Overhead Based on Transaction Load and Node Count 

No. of Transaction 

(Tx) 

20 nodes 

(ms) 

40 nodes 

(ms) 

60 nodes 

(ms) 

80 nodes 

(ms) 

100 nodes 

(ms) 

100 5 9 14 20 32 

150 8 13 19 26 42 

200 12 18 27 35 55 

250 16 22 32 41 68 

300 21 27 38 49 83 

350 25 34 45 58 120 

  

 

5.3.6. Non-Interactive Zero-Knowledge Proofs (NIZKP) Privacy Evaluation 

 

To evaluate the performance of the Non-Interactive Zero-Knowledge Proof (NIZKP) scheme within the blockchain-

based healthcare framework, a comprehensive statistical analysis was conducted. The key focus areas of the analysis 

were gas consumption, latency, and privacy validation, all of which are crucial to determining the system’s feasibility 

and efficiency in a real-world blockchain environment. 

 

Table 21 shows the gas consumption and corresponding transaction fees for various NIZKP operations in the 

blockchain environment. Smart contract deployment, a one-time cost, required the highest gas consumption 

(2,350,000 Gwei), translating into a transaction fee of 0.021 ETH. Certificate issuance, which represents the process 
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of generating and issuing a medical certificate on the blockchain, consumed 150,000 Gwei with a nominal transaction 

fee of 0.00135 ETH. Similarly, proof generation and proof verification required 80,000 Gwei (0.00072 ETH) and 

110,000 Gwei (0.001 ETH), respectively, indicating efficient gas usage for the ongoing operations. This analysis 

demonstrates that after the initial deployment cost, the system operates with minimal gas consumption, making it 

feasible and cost-effective for large-scale healthcare applications. 

 

Table 21: Gas Consumption and Transaction Fees for NIZKP Operations in Blockchain-Based Healthcare System 

Action Gas Computation (Gwei) Transaction Fee (ETH) 

Smart Contract Deployment 2,350,000 0.021 

Certificate Issuance 150,000 0.00135 

Proof Generation 80,000 0.00072 

Prof Verification 110,000 0.001 

 

Table 22 presents the average latency experienced during certificate issuance, proof generation, and proof verification. 

Certificate issuance recorded the highest latency at 1200 milliseconds (ms), reflecting the time required to execute an 

on-chain transaction. Proof generation, performed off-chain, had a low latency of 350 ms, highlighting the efficiency 

of off-chain computations in the NIZKP framework. Proof verification, an on-chain process, was also efficient, with 

an average latency of 500 ms. The low latency values for proof generation and verification indicate that the NIZKP-

based system can meet the real-time demands of healthcare environments, where rapid validation of medical 

certificates is crucial. 

 

Table 22: Latency Analysis of Certificate Issuance and NIZKP Verification in Real-Time Blockchain Environment 

Operation Average Latency (ms) 

Certificate Issuance 1200 

Proof Generation 350 

Proof Verification 500 

 

Table 23 summarizes the privacy validation results, confirming the system’s secure handling of sensitive medical data. 

The experiments showed that 100% of the verifications were successful, with no privacy breaches detected. This 

reinforces the effectiveness of the NIZKP approach in ensuring that patient data remains private during certificate 

verification. By using cryptographic proofs without revealing sensitive information, the system guarantees high data 

privacy, addressing one of the core challenges in healthcare data management. 

 

Table 23: Privacy Validation Results for NIZKP-Based Medical Certificate Verification 

Metrics Percentage (%) 

Successful Verification 100% 

Privacy Breaches Detected 0% 

 

 

NIZKPs were analyzed to determine their effect on privacy during transaction verification. We evaluated the NIZKP 

verification time under different node and transaction loads. As seen in Table 24, the verification time for NIZKPs 

increased with the number of transactions and nodes but remained within acceptable limits. The verification time for 

20 nodes and 100 transactions was 3 milliseconds, while for 100 nodes and 350 transactions, it increased to 55 

milliseconds. The NIZKP verification time remains low enough to maintain privacy without significantly affecting 

system performance, even with increasing transaction loads and node counts.   

 

Table 24: Non-Interactive Zero-Knowledge Proof (NIZKP) Verification Time Across Different Node and Transaction Configurations 

No. of Transaction 

(Tx) 
20 nodes 

(ms) 
40 nodes 

(ms) 
60 nodes 

(ms) 
80 nodes 

(ms) 
100 nodes 

(ms) 
100 3 5 8 12 18 

150 5 7 11 17 25 

200 8 11 15 21 33 
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250 10 14 19 25 40 

300 13 18 23 31 47 

350 15 21 27 35 55 

 

The statistical analysis of the NIZKP execution demonstrates that the proposed framework offers a highly efficient 

and secure solution for medical certificate verification in blockchain-enabled healthcare systems. The low gas 

consumption ensures cost-effective operations, while the minimal latency for key processes such as proof generation 

and verification supports the system’s ability to operate in real-time environments. 

The privacy validation confirmed that no sensitive patient data was exposed during the proof verification process, 

affirming the framework’s capacity to maintain high data privacy standards. These findings collectively address the 

concerns regarding scalability, cost, and security, highlighting the practical applicability of the NIZKP framework in 

real-world healthcare systems. 

 

5.3.7. Consensus Algorithm Security Evaluation 

 

The security of the hybrid PoW-PBFT consensus mechanism was evaluated by simulating attacks such as Sybil attacks 

and double-spending attempts. The consensus delay was measured based on the number of malicious nodes attempting 

to disrupt the network. Table 25 presents the delay introduced by the hybrid consensus mechanism in the presence of 

malicious nodes. With no malicious nodes, the delay was 25 milliseconds. The delay increased as the number of 

malicious nodes increased, reaching 115 milliseconds with 30 malicious nodes. The results demonstrate that the hybrid 

PoW-PBFT consensus algorithm is robust against Sybil and double-spending attacks, as the system continues to 

achieve consensus even in the presence of malicious nodes, albeit with an increased delay. 

 

Table 25: Consensus Delay in the Presence of Malicious Nodes for Hybrid PoW-PBFT Mechanism 

No. of malicious node Consensus Delay(ms) 

0 25 

5 32 

10 48 

15 65 

20 85 

25 99 

30 115 

 

 

5.3.8. Data Confidentiality and Integrity  

 

We conducted penetration tests to assess the system's resistance to unauthorized data access. During the tests, the 

system's encryption and access control measures blocked attempts to access encrypted data stored on the blockchain 

and IPFS. In all test cases, unauthorized attempts to access data were unsuccessful. Table 26 summarizes the number 

of unauthorized attempts blocked by the system across different node configurations. The system effectively prevents 

unauthorized access, maintaining data confidentiality and integrity across increasing node and transaction loads. 

 

Table 26: Number of Unauthorized Access Attempts Blocked by the System Under Varying Node Configurations 

No. of Transaction 

(Tx) 
20 nodes 

(No. of Blocked 

attempt) 

40 nodes 

(No. of Blocked 

attempt) 

60 nodes 

(No. of Blocked 

attempt) 

80 nodes 

(No. of Blocked 

attempt) 

100 nodes 

(No. of Blocked 

attempt) 
100 10 18 24 31 40 

150 14 22 30 39 48 

200 19 28 38 49 60 

250 24 35 45 56 70 

300 28 40 52 64 80 

350 35 45 58 70 90 
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This security and privacy evaluation demonstrates that the proposed blockchain architecture successfully addresses 

critical security concerns. Homomorphic encryption, zero-knowledge proofs, and the hybrid PoW-PBFT consensus 

mechanism provide robust protection against common blockchain attacks. Additionally, the system maintains data 

confidentiality and integrity under increasing transaction and node loads, ensuring scalability while preserving 

privacy. 

 

5.4. Comparison with State-of-artwork 

 

In this section, we evaluate the performance of the proposed hybrid PoW-PBFT consensus mechanism in comparison 

with other widely used consensus algorithms, including Traditional Proof of Work (PoW), Pure Practical Byzantine 

Fault Tolerance (PBFT), Delegated Proof of Stake (DPoS), Proof of Authority (PoA), and Raft. The analysis focuses 

on key metrics such as gas consumption, transaction fees, processing speed, error rate, scalability, and consensus 

finality. The comparative performance data highlights the advantages and trade-offs of each approach, offering a 

comprehensive understanding of how the proposed method stands against state-of-the-art solutions in Table 27. 

 

Table 27: Comparative Analysis of Different Consensus Mechanisms with Proposed Method 

Metrics Traditional 

PoW 

Pure PBFT DPoS PoA Raft Proposed Hybrid PoW-

PBFT 

Average Gas 

Computation 

(Gwei) 

45000 38000 32500 30000 29500 28500 

Average 

Transaction 

Fee(ETH) 

0.000050 0.000045 0.000032 0.000030 0.000028 0.000022 

Processing Speed 

(Tx/Second) 

5 15 25 30 28 35 

Error Rate(%) 2.5 1.2 0.6 0.4 0.3 0.5 

Scalability (Max 

Tx/Block) 

100 200 350 400 320 450 

Consensus Finality 

(second) 

120 50 30 25 20 15 

 

 

The Hybrid PoW-PBFT (Proposed) consensus mechanism demonstrates superiority in several key performance 

metrics. For instance, average gas consumption is reduced to 28,500 Gwei, significantly lower than the Traditional 

PoW (45,000 Gwei) and Pure PBFT (38,000 Gwei). This makes the hybrid model more energy-efficient and cost-

effective. Regarding average transaction fees, the proposed mechanism achieves the lowest cost at 0.000022 ETH, 

significantly outperforming other models like DPoS and PoA, further enhancing its cost-efficiency for high-volume 

transactions. 

In terms of processing speed, the proposed model handles 35 transactions per second, surpassing both Traditional 

PoW (5 Tx/sec) and Pure PBFT (15 Tx/sec) while remaining competitive with more centralized systems like PoA (30 

Tx/sec). Additionally, the error rate is reduced to 0.5%, highlighting the robustness of the Hybrid PoW-PBFT model, 

which offers better reliability than Pure PBFT and other consensus mechanisms. Regarding scalability, the proposed 

approach supports up to 450 transactions per block, far exceeding the scalability of Traditional PoW (100 Tx/block) 

and Pure PBFT (200 Tx/block). Finally, consensus finality is improved dramatically to just 15 seconds, significantly 

faster than PoW (120 seconds) and even better than Pure PBFT (50 seconds), making it suitable for applications 

requiring quick finality and high throughput. As a result, the Hybrid PoW-PBFT consensus mechanism emerges as a 

highly suitable option for large-scale blockchain systems that demand high performance and efficiency. It is suitable 

for high-transaction-volume applications requiring robust security and efficient processing. 

 

5.5. Discussion and Findings 
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The integration of blockchain technology into IoT-based healthcare systems presents significant advancements in 

securing and managing healthcare data. This research paper has examined the effectiveness of a blockchain-based IoT 

healthcare management system, focusing on privacy-preserving data sharing and the impact of various factors on 

system performance. The following discussion highlights the key findings from the experimental evaluation and 

analysis of the proposed system: 

 

 Security and Privacy Enhancements: The proposed blockchain-based system demonstrates a robust 

approach to enhancing the security and privacy of healthcare data. The system ensures data integrity and 

traceability by leveraging unique identification numbers for medical certificates. The hybrid consensus 

mechanism, which combines Proof of Work (PoW) and Practical Byzantine Fault Tolerance (PBFT), 

provides a balanced solution for improving security and transaction speed. Additionally, homomorphic 

encryption for privacy-preserving computations and zero-knowledge proofs (ZKPs) for verifying certificates 

without revealing sensitive patient data significantly strengthen the privacy and trustworthiness of the system. 

 Performance Analysis: The analysis of operational costs reveals that the proposed system incurs varying 

Gas costs depending on the functions performed. The cost of executing operations such as registration, 

generation of blocks, issuing certificates, and verifying certificates was evaluated using the Etherscan tool. 

Results indicate that costs increase with the complexity of transactions. For instance, the registration function 

required 34,219 Gas, while verifying a certificate required 37,100 Gas. This variance highlights the impact 

of different operations on the overall cost and emphasizes the need for efficient Gas management in 

blockchain-based systems. When comparing Ethereum-based blockchain platforms with SQL databases, 

notable differences in performance metrics were observed. While the Ethereum blockchain exhibited higher 

latency and processing times, it provided superior security and privacy features compared to traditional SQL 

databases. For example, the issuing certificate operation on Ethereum had a latency of 5.32 milliseconds and 

a processing time of 6.37 milliseconds. In contrast, SQL platforms had lower latency but lacked the security 

benefits of blockchain. This trade-off underscores the importance of considering security and performance 

when evaluating blockchain-based systems. 

Scalability analysis of the proposed system uncovered several challenges associated with increasing the 

number of IoT nodes and transactions. Registration time, consensus execution time, block creation, and 

access times progressively increased with the number of nodes and transactions. For instance, registering 100 

nodes took 308 seconds, while generating a block with 100 nodes and 350 transactions required 1,433 

seconds. These findings highlight the scalability challenges inherent in blockchain systems and underscore 

the need for optimized consensus mechanisms and block management strategies to handle more extensive 

networks efficiently. The evaluation of Gas price consumption demonstrated a steady increase in nodes and 

transactions. For example, with 100 nodes and 350 transactions, the Gas price reached 74,510, compared to 

20,000 for 20 nodes and 100 transactions. This increase reflects the growing computational and storage 

demands as the network scales, emphasizing the need for cost-effective strategies to manage operational 

expenses. Regarding storage size and off-chain utilization, the analysis of IPFS-based off-chain storage 

indicated that storage requirements increase with the number of transactions. For instance, with 350 

transactions, the storage size was 39 KB, compared to 9 KB for 100 transactions. This growing storage 

requirement highlights the importance of efficient data management strategies to accommodate larger 

transaction volumes without compromising system performance. 

 Latency and Throughput: The evaluation of latency and throughput revealed that the Ethereum blockchain-

based system generally had higher latency and lower throughput than SQL databases. For example, the 

latency for verifying certificates on Ethereum was 7.12 milliseconds, compared to 2.63 milliseconds on SQL 

platforms. Throughput was also lower on Ethereum, with 6.38 Kbps compared to 10.57 Kbps on SQL 

platforms. These performance differences highlight the trade-offs between blockchain's security benefits and 

traditional database performance metrics. 

 

In conclusion, integrating blockchain technology into IoT-based healthcare systems offers significant security, 

privacy, and data integrity advantages. The proposed system demonstrates a promising approach to addressing privacy 
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concerns and managing healthcare data effectively. The findings from this study provide valuable insights for 

developing more efficient and secure blockchain-based healthcare solutions in the future. 

 

6. Conclusion and Future Work  

 

6.1. Conclusion  

This paper presents a novel blockchain-based IoT application to improve medical certificate management's security, 

privacy, and efficiency in healthcare systems. The proposed solution uses unique identification numbers for medical 

certificates. It incorporates a hybrid consensus mechanism combining Proof of Work (PoW) and Practical Byzantine 

Fault Tolerance (PBFT) for enhanced security and transaction speed. Privacy is safeguarded through homomorphic 

encryption and Non-Interactive Zero-Knowledge Proofs (NIZKPs), which enable secure medical certificate 

verification without revealing sensitive data. Integrating the Interplanetary File System (IPFS) also ensures scalable 

and efficient data storage. An Intrusion Detection System (IDS) has been added to monitor IoT traffic and detect 

security threats. Experimental results demonstrate the system's robustness, achieving an accuracy of 98.1% for the 

IDS. At the same time, blockchain evaluation metrics show low latency, high throughput, and enhanced security, 

positioning this solution as a transformative approach to secure healthcare management. 

 

6.2. Limitation  

The application faces high energy consumption and computational costs due to the PoW component. Advanced 

cryptography adds overhead, and IPFS may struggle with data retrieval and reliability issues. 

 

6.3. Potential Industrial Applications 

The proposed system offers significant industrial benefits across various sectors, particularly in healthcare: 

 Healthcare Providers: Simplifies the management and verification of medical certificates, improving 

operational efficiency by reducing manual processes and paperwork. 

 Insurance Companies: Enhances the validation of medical claims and records, minimizing fraud and 

reducing administrative errors using secure blockchain-backed certificates. 

 Medical Institutions: Provides an efficient platform to manage large volumes of medical records, ensuring 

the security and privacy of sensitive patient information through advanced encryption and IDS monitoring. 

 

6.4. Future Work 

Future work will explore more efficient consensus algorithms, optimize smart contracts, improve IPFS integration, 

and conduct real-world testing to enhance scalability and performance. 

 

6.5. Societal Applications  

This system holds great potential for improving the security, privacy, and trust in healthcare operations: 

 Data Security and Privacy: Ensures patient data remains confidential, addressing data breaches and 

unauthorized access concerns. Patients can have peace of mind knowing their medical records are secure. 

 Trust in Healthcare: By leveraging transparent and secure certificate management, this system reduces 

fraudulent activities in medical certificate handling and increases trust among patients, healthcare providers, 

and insurers. 

 Wider Technological Adoption: The adoption of blockchain in healthcare can inspire its broader integration 

across other sectors, enhancing overall data security and setting a standard for secure information sharing in 

various industries. 
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Chapter 7 Comparative Analysis with State-of-the-Art Intrusion Detection Systems 

 

 

1. Introduction 

With the expansion of Internet technology applications, the transformation of traditional industrial manufacturing 

systems, and the advancement of 5G communication technology, the Industrial Internet of Things (IIoT) is advancing 

towards grander scale and more profound network interconnections, playing an increasingly pivotal role in modern 

industrial reform [1]. As a bridge between traditional industrial systems and the new Internet industry [2], IIoT 

provides essential support for modernizing traditional industries. IIoT comprises physical service systems and digital 

devices such as sensors and actuators, managing data generated during industrial production to facilitate intelligent 

production and management, as shown in Figure 1. During the COVID-19 pandemic, IIoT proved vital in maintaining 

efficient production management and continuity amid isolation and economic turmoil [3-4]. 

 

However, the vast volumes of data stored in IIoT systems elevate the risk of cyber-attacks, posing significant threats 

to industrial management and production [5]. As IIoT grows, more industries integrate into its network, resulting in 

increasingly complex structures and heightened demands for robust defense capabilities [6]. Consequently, IIoT 

security has become more urgent, driving research on intrusion detection technology to the forefront. Intrusion 

detection, a proactive security technology, automatically detects and reports abnormal traffic affecting IIoT network 

security, including internal attacks, external attacks, and misoperations [7]. Upon detecting abnormal traffic, intrusion 

detection technology swiftly identifies the type of anomaly and implements defensive measures to block it before 

compromising the network system [8]. Thus, intrusion detection is crucial for protecting IIoT network security, 

ensuring data integrity, reliability, and normal industrial production [9-10]. 

 

 
Figure 64: Architecture of Industrial Internet of Things (IIoT) 

 

Current IIoT intrusion detection technology faces two key challenges [11]: extracting and distinguishing network 

behavior. The Internet of Things (IoT) plays a significant role in daily life, connecting various devices, from smart 
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home appliances to industrial control systems [12]. However, the widespread use of IoT has led to a surge in botnet 

attacks, including denial of service (DoS), distributed denial of service (DDoS), reconnaissance, theft, Mirai, and 

Gafgyt, which threaten IoT device security and privacy [13] IoT networks are particularly vulnerable to botnet attacks 

due to weak security protocols and inadequately protected devices. 

 

Botnet Intrusion Detection Systems (IDSs) have been developed to combat these threats. These systems detect botnets, 

block communication between compromised devices and command and control (C&C) servers, and alert network 

administrators [14]. Deploying botnet IDSs enhances IoT network security and protects against botnets and other 

cyber-attacks. Therefore, designing efficient IDSs capable of detecting and preventing attacks on low-power IoT 

devices is crucial. IDSs maintain IoT network security and integrity by identifying and neutralizing harmful network 

packets. 

 

However, traditional IDSs, which often rely on data mining, fuzzy techniques, heuristics, or complex machine learning 

methods, typically need more accuracy and energy efficiency. This is a significant concern for IoT networks, 

consisting of numerous interconnected devices requiring efficient power usage. Addressing these challenges requires 

accurate, high-performing IDSs that are energy-efficient and capable of detecting a wide range of threats. Developing 

IDSs involves using feature-selection algorithms to identify the most relevant and efficient features from datasets and 

training models with these selected features. Detection accuracy increases by focusing on important features and 

eliminating irrelevant ones, and packet processing time decreases. 

 

Feature selection plays a crucial role in developing lightweight IDSs [15]. Model-based feature selectors, such as 

importance- and correlation-coefficient methods and forward- and backward-sequential approaches, are commonly 

used due to their high performance and low false positive rates [16]. These approaches utilize regression algorithms, 

such as linear, lasso, logistic, or ridge, to calculate importance coefficients by analyzing the relationship between input 

features and output labels [17-18]. Based on these coefficients, feature-selection algorithms determine the most 

relevant and efficient features, enhancing IDS performance by eliminating irrelevant and inefficient ones. 

 

1.1.  Motivation 

The rapid development of IoT network technology introduces vulnerabilities in data transmissions due to insecure 

network connections, demanding robust protection against unauthorized access, malicious activities, and potential 

security threats. Network intrusions jeopardize user data security and disrupt functionality, while sophisticated 

cyberattacks threaten data confidentiality, integrity, and availability. Current intrusion detection methods often need 

more accuracy and incur high computational costs, leading to suboptimal performance in detecting various attacks. 

These challenges drive us to innovate in intrusion detection and prevention. By implementing a deep learning-based 

approach, we aim to develop a robust and flexible model for early detection of network intrusions. Although 

advancements exist, current models need help with timely detection, scalability, and reliance on low-dimensional 

security data. To address these limitations, we propose an Efficient Feature Selection-based Intrusion Detection 

System using Artificial Intelligence (AI)-based Models to enhance security and effectively prevent network attacks. 

 

          The key contributions of this paper are as follows: 

 We deployed 10 state-of-the-art Artificial Intelligence (AI)-based Intrusion Detection Models in an Industrial 

IoT environment. 

 We utilized advanced wrapper-based feature selection methods, including forward-based, backward-based, 

and recursive feature elimination methods, to optimize feature selection, reduce computation time, and 

enhance the accuracy of intrusion detection in IoT networks. 

 We rigorously tested the 10 AI-based Intrusion Detection Models using two well-known publicly available 

IoT/IIoT datasets, N_BaIoT and Edge-IIoT 2022. 

 We conducted an in-depth performance analysis of all 10 models across both datasets, focusing on critical 

metrics such as accuracy, recall, F1-score, precision, G-mean, and specificity. 

 We provided detailed insights into the effectiveness of each feature selection techniques methods, 

highlighting their impact on the models' performance. 
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This research focuses on applying AI-driven intrusion detection in Industrial IoT environments. By leveraging cutting-

edge feature selection methods and performance evaluation matrices, the study aims to develop high-performing, 

energy-efficient IDSs capable of defending against a wide range of cyber threats. The context of this research is the 

growing complexity and interconnectedness of IIoT networks, which necessitate robust and scalable security 

solutions. 

 

1.2.  Paper Structure 

This research paper is structured as follows: Section 2 delves into the foundational aspects of intrusion detection, 

exploring its various types, security and privacy issues, and the different cyber-attacks prevalent in IoT and IIoT. 

Section 3 conducts an extensive literature review, critically examining existing techniques for detecting cyber-attacks 

and identifying these methods' significant challenges. Section 4 details the problem statement, dataset description, 

preprocessing techniques, feature selection methods, and the AI-based models employed for intrusion detection. 

Section 5 outlines the experimental design, presents an in-depth analysis of the results, and compares the performance 

of our AI-based models against current state-of-the-art approaches. Finally, Section 6 concludes the paper on the study 

findings and suggests potential directions for future research. 

 

2. Background and Related Work 

This section establishes the groundwork for comprehending IIoT networks and their associated Intrusion detection 

strategies. 

2.1. Intrusion Detection System (IDS) 

Intrusion Detection Systems (IDS) are essential components in cybersecurity. They serve as vigilant guardians that 

monitor network or system activities to identify and respond to potential security threats. IDS is critical in protecting 

organizations' digital assets by detecting malicious activities, unauthorized access attempts, and policy violations. One 

of the primary types of IDS is the signature-based IDS. This system compares observed events with predefined 

signatures or patterns of known threats. When a match is found between the observed activity and a signature in the 

database, the IDS generates an alert to notify system administrators or security personnel. Signature-based IDS excel 

at detecting well-known attacks that have identifiable patterns or signatures, making them an effective defense against 

known threats. In contrast, anomaly-based IDS take a different approach to threat detection, rather than relying on 

predefined signatures, anomaly-based IDS establishes a baseline of normal network or system behavior by analyzing 

historical data. These systems continuously monitor network traffic or system activities and flag any deviations from 

the established baseline as potential security threats. Anomaly-based IDS are handy for detecting new or unknown 

threats that do not have existing signatures, making them valuable tools for identifying unusual or suspicious behavior 

that may indicate a security breach [19]. Figure 2 shows the Intrusion Detection System mechanism and its type.  

  

Organizations can establish a comprehensive defense strategy addressing cyber threats using signature-based and 

anomaly-based IDS. Signature-based IDS protects against known attacks, while anomaly-based IDS offers a proactive 

defense against emerging threats and zero-day vulnerabilities. Together, these IDS work synergistically to enhance an 

organization's overall security, helping to mitigate risks and protect critical assets from cyber threats in an ever-

evolving digital landscape. The core functionalities of an Intrusion Detection System (IDS), extensively studied, 

encompass a series of crucial steps designed to safeguard networks and systems from potential security threats, with 

its components elaborated upon to detail these protective measures [19] as follows:  

 

 Network Monitoring: This component involves continuously monitoring network traffic to capture packets 

containing vital network-related information. The IDS can identify threats and security vulnerabilities by 

analyzing network packets and flows. 

 Data Collection Techniques: The IDS employs various data collection techniques to gather information 

about target systems and network activities. These may involve using network commands, tools like 

"Wireshark" for packet sniffing, or querying domain details using tools such as nslookup. 
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 Packet Analysis: In this stage, the IDS scans network packets to uncover potential security threats, such as 

unauthorized access attempts, data breaches, or malware injections. The IDS can detect anomalies indicative 

of malicious activities by analyzing packet contents. 

 Signature Identification and Storage: Following packet analysis, the IDS identifies attack patterns or 

signatures of known threats. These signatures are stored in a centralized database, enabling the IDS to 

efficiently recognize and respond to similar attack patterns in the future. 

 Alert Generation Mechanisms: When an attack pattern is detected, the IDS promptly generates alerts or 

alarms to notify security administrators. These alerts provide critical information about the nature of the 

threat, facilitating rapid response and mitigation efforts. 

Despite its capability to scrutinize network packet contents for detecting and quantifying attacks, Intrusion Detection 

Systems (IDS) exhibit several limitations: 

 IDS cannot preemptively block or prevent identified attacks solely based on pattern recognition or signature 

matching from a database. Integration with additional security mechanisms, such as Intrusion Prevention 

Systems, is necessary to execute blocking actions. 

 While IDS conducts thorough network analysis and monitors network activity, it needs the capability to take 

immediate action upon attack detection. Consequently, continuous intervention by a security officer or 

administrator is required to respond effectively to identified threats. 

 IDS exhibits inefficiency in processing encrypted network packets, necessitating specialized networking 

tools for examination. This may render system resources vulnerable until intrusion detection occurs. 

 The prevalence of false positives generated by IDS significantly impacts system efficiency and reliability. 

 Regularly updating the attack signature database is essential to ensure the IDS remains effective against 

evolving threats. 

 As identified in prior research, IDS vulnerabilities extend to protocol-based attacks.  

 

2.2.  Industrial Internet of Things (IIoT) 

The Industrial Internet of Things (IIoT) represents a pivotal evolution in industrial processes, blending traditional 

manufacturing with cutting-edge digital technologies to optimize efficiency, productivity, and connectivity in Industry 

5.0. Unlike its predecessors, IIoT integrates intelligent sensors, devices, and machinery into interconnected networks, 

enabling real-time data collection, analysis, and decision-making [20]. This interconnectedness facilitates seamless 

communication between machines, systems, and humans, unlocking new avenues for automation, predictive 

maintenance, and resource optimization in industrial settings. 

However, adopting IIoT introduces new cybersecurity challenges, particularly concerning intrusion detection and 

prevention. As industrial systems become increasingly interconnected and digitized, they become more susceptible to 

cyber threats, including unauthorized access, data breaches, and system tampering [21]. Cyber-attacks targeting IIoT 

infrastructure can have severe consequences, ranging from operational disruptions and production downtime to 

compromised safety and financial losses. 

It is crucial to delve into the specific cybersecurity implications of IIoT and explore effective intrusion detection 

mechanisms tailored to industrial environments. This involves investigating advanced anomaly detection techniques, 

machine learning algorithms, and AI-driven solutions capable of identifying and mitigating cyber threats in real-time. 

Additionally, understanding the unique characteristics of IIoT networks, such as legacy systems integration, resource 

constraints, and critical infrastructure dependencies, is essential for designing robust intrusion detection systems 

capable of safeguarding Industry 5.0 ecosystems against evolving cyber threats. 

Security and privacy issues in IoT (Internet of Things) and IIoT (Industrial Internet of Things) environments are 

multifaceted and pose significant challenges to data and systems integrity, confidentiality, and availability [21]. Some 

key issues include: 
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 Device Vulnerabilities: IoT and IIoT devices often have limited computing resources and may lack robust 

security features, making them vulnerable to attacks such as malware infections, firmware exploits, and 

physical tampering. 

 Data Security: Data transmitted between IoT/IIoT devices and backend systems may be susceptible to 

interception and tampering, raising concerns about data confidentiality and integrity. Additionally, data 

stored on devices or in the cloud may be at risk of unauthorized access or data breaches. 

 Network Security: Inadequately secured communication channels between IoT/IIoT devices and backend 

systems can be exploited by attackers to intercept data, launch man-in-the-middle attacks, or disrupt 

communication through denial-of-service (DoS) attacks. 

 Privacy Concerns: IoT and IIoT devices often collect vast amounts of data about users, their behaviors, and 

their environments. However, this data's indiscriminate collection and sharing raise significant privacy 

concerns, especially regarding personally identifiable information (PII) and sensitive data. 

 Supply Chain Risks: The global nature of IoT/IIoT supply chains introduces security risks, including 

counterfeit components, insecure firmware/software updates, and vulnerabilities introduced during 

manufacturing or distribution processes. 

 Regulatory Compliance: Compliance with data protection regulations such as the General Data Protection 

Regulation (GDPR) and industry-specific standards (e.g., NIST, ISO 27001) is a significant challenge for 

IoT/IIoT deployments, especially considering the diverse regulatory landscape across different regions and 

industries. 

 Lifecycle Management: Effective management of IoT/IIoT device lifecycles, including provisioning, 

monitoring, patching, and decommissioning, is critical for maintaining security posture and mitigating risks 

associated with outdated or unsupported devices. 

 Interoperability Challenges: Integrating diverse IoT/IIoT devices and systems from different vendors often 

leads to interoperability challenges, which can introduce security vulnerabilities and complicate security 

management and monitoring efforts. 
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Figure 65: Intrusion Detection System mechanism and its type 
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Table 1 provides a comprehensive overview of the significant security and privacy issues prevalent in IoT/IIoT 

networks, detailing their impacts on the CIA triad, the affected layers of the IoT/IIoT architecture, and the 

recommended countermeasures to mitigate these risks. Addressing these security and privacy issues requires an 

advanced approach encompassing technical and regulatory measures. This includes implementing robust security 

protocols, encryption mechanisms, access controls, and intrusion detection systems and enhancing the culture of 

security awareness and compliance within systems. 

Table 38: Security and Privacy Issues in IoT/IIoT Networks: Impact, Affected Layers, and Countermeasures 

Security and 

Privacy Issues 

CIA triad Impact on 

confidentiality 

Impact on 

Integrity 

Impact on 

availability 

Layered of IoT/IIoT 

architecture 

Countermeasures 

Device 

Vulnerabilities 

Vulnerability to malware, 

firmware exploits, physical 

tampering 

✔ ✔ ✔ Device/Endpoint Layer Regular firmware updates, 

security patches, and device 

hardening 

Data Security Data breaches, 

unauthorized access, data 

tampering 

✔ ✔ ✔ Communication Layer End-to-end encryption, data 

anonymization, access 

controls 

Network Security Data interception, man-in-

the-middle attacks, denial-

of-service 

✔ ✔ ✔ Network Layer Secure communication 

protocols, network 

segmentation 

Privacy Concerns Unauthorized data 

collection, privacy 

violations 

✔ ✘ ✘ Application Layer Data minimization, user 

consent, privacy-enhancing 

technologies 

Supply Chain 

Risks 

Counterfeit components, 

insecure updates, 

vulnerabilities 

✔ ✔ ✔ Device/Endpoint Layer Supply chain audits, vendor 

risk assessments 

Regulatory 

Compliance 

Non-compliance fines, 

legal liabilities 
✔ ✔ ✔ Data Layer Compliance frameworks, data 

governance policies 

Lifecycle 

Management 

Security risks from 

outdated devices, 

unpatched vulnerabilities 

✔ ✔ ✔ Device/Endpoint Layer Device monitoring, patch 

management, end-of-life 

policies 

Interoperability 

Challenges 

Security vulnerabilities, 

integration issues 
✔ ✔ ✔ Communication Layer Standards compliance, 

interoperability testing 

 

2.3.  Type of Cyber-attack on IoT/IIoT Environment 

The security of IoT/IIoT environments is paramount due to the increasing prevalence and sophistication of cyber-

attacks, which target different layers of the architecture and pose significant threats to confidentiality, integrity, and 

availability, as represented in Table 2. 

Table 39: Types of Attacks in IoT/IIoT Architecture: Description, Countermeasures, and Impact on CIA 

Types of attacks Layer in IoT /IIoT 

architecture 

Description Countermeasures Impact on CIA 

Denial of Service (DoS) Network Layer Overloads system, 

disrupting service 

Implement network traffic 

filtering and rate-limiting 
C: ✘ I: ✘ A: ✔ 

Man-in-the-Middle 

(MitM) 

Communication Layer Intercepts and alters 

communication 

Use encryption and 

authentication protocols 
C: ✔ I: ✔ A: ✘ 

Phishing Application Layer Deceives users into sharing 

sensitive information 

User awareness training and 

email filtering 
C: ✔ I: ✘ A: ✘ 

Malware Device/Endpoint Layer Infects devices, 

compromising security 

Install antivirus software 

and regular updates 
C: ✔ I: ✔ A: ✔ 

Distributed Denial of 

Service (DDoS) 

Network Layer Floods network with 

traffic, causing system 

failure 

Deploy DDoS protection 

services and load balancers 
C: ✘ I: ✘ A: ✔ 

Insider Threat Data Layer Malicious actions by 

authorized users 

Implement role-based access 

control and monitoring 
C: ✔ I: ✔ A: ✔ 

Brute Force Attack Authentication Layer Repeated login attempts to 

guess credentials 

Enforce strong password 

policies and account lockout 
C: ✘ I: ✘ A: ✔ 

Firmware Exploitation Device/Endpoint Layer Exploits vulnerabilities in 

device firmware 

Regular firmware updates 

and vulnerability scanning 
C: ✔ I: ✔ A: ✔ 
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Replay Attack Communication Layer Replays previously 

captured data to gain 

unauthorized access 

Implement timestamping 

and secure communication 

protocols 

C: ✔ I: ✔ A: ✘ 

SQL Injection Data Layer Injects malicious SQL 

commands into databases 

Use parameterized queries 

and input validation 
C: ✔ I: ✔ A: ✘ 

 

2.4. Literature Review 

This section investigates the utilization of Machine Learning (ML) and Deep Learning (DL) methodologies in previous 

research for designing Intrusion Detection Systems (IDSs), which play a critical role in protecting computer networks 

against Cyber threats. 

2.4.1.  Machine Learning for IDS in IIoT 

Intrusion Detection Systems (IDS) in IoT environments have witnessed a surge of research endeavors aimed at 

fortifying the security posture of interconnected devices. This literature review critically examines pivotal 

contributions in this domain, elucidating the evolving landscape of IDS for IoT and highlighting innovative approaches 

to address its inherent challenges, as shown in Table 3. 

 

Talukder et al. [22] introduced MLSTL-WSN, a novel IDS leveraging machine learning (ML) techniques in Wireless 

Sensor Networks (WSNs). By employing SMOTE Tomek to address class imbalance, their methodology demonstrates 

enhanced detection accuracy and robustness, addressing a crucial concern in IoT deployments. Alqahtani et al. [23] 

explored cyber intrusion detection utilizing machine learning classification techniques. While not explicitly IoT-

focused, their insights into machine learning algorithms' efficacy lay foundational groundwork for IDS in IoT 

ecosystems, underscoring the importance of leveraging advanced computational methods for threat detection. Meryem 

and Ouahidi [24] proposed a hybrid IDS integrating machine learning algorithms, catering to the intricacies of modern 

cyber threats. Their approach showcases the synergistic potential of combining multiple detection mechanisms, vital 

for combating sophisticated intrusion attempts targeting IoT infrastructures. Asif et al. [25] devised a MapReduce-

based intelligent model for intrusion detection, leveraging machine learning in IoT environments. Their work 

exemplifies the integration of distributed computing paradigms with machine learning techniques to address 

scalability challenges in large-scale IoT deployments. Gad et al. [26] delved into IDS for Vehicular Ad Hoc Networks 

(VANETs), employing machine learning on the ToN-IoT dataset. Their research underscores the importance of 

tailored intrusion detection mechanisms for specific IoT applications, emphasizing the need for context-aware security 

solutions. 

 

Bangui et al. [27] proposed a hybrid machine-learning model for intrusion detection in VANETs, highlighting the 

significance of adaptability and resilience in vehicular IoT environments. Their approach showcases the efficacy of 

combining diverse machine-learning techniques to enhance detection accuracy amidst dynamic network conditions. 

Alhajjar et al. [28] investigated adversarial machine learning in network IDS, shedding light on the emerging threat 

landscape of sophisticated attacks. Their research underscores the importance of incorporating adversarial robustness 

into IDS frameworks to mitigate evolving cyber threats targeting IoT infrastructures. Sarhan et al. [29] focused on 

feature extraction for machine learning-based IDS in IoT networks, addressing the challenge of extracting relevant 

features from heterogeneous IoT data sources. Their work lays the groundwork for developing context-aware intrusion 

detection mechanisms tailored to IoT environments. 

 

Liu et al. [30] proposed an intrusion detection approach for imbalanced network traffic, utilizing machine learning 

and deep learning techniques. Their research emphasizes the importance of addressing the class imbalance in IoT 

datasets to prevent detection biases and ensure comprehensive threat coverage. Singh et al. [31] introduced AutoML-

ID, an automated machine-learning model for intrusion detection in Wireless Sensor Networks (WSNs). Their 

methodology streamlines the model development process, offering a scalable solution for deploying IDS in resource-

constrained IoT environments. Zou et al. [32] presented HC-DTTSVM, a novel intrusion detection method based on 

decision tree twin support vector machine and hierarchical clustering. Their approach showcases the potential of 

hybrid machine learning techniques in enhancing detection accuracy and scalability in IoT environments. Louk and 

Tama [33] proposed Dual-IDS, a bagging-based gradient-boosting decision tree model for network anomaly intrusion 

detection. Their research underscores the importance of ensemble learning techniques in enhancing detection 

robustness and resilience against evolving cyber threats. Mohiuddin et al. [34] explored hybridized meta-heuristic 

techniques for intrusion detection, integrating the Weighted XGBoost Classifier. Their approach demonstrates the 
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efficacy of meta-heuristic optimization in enhancing the performance of machine learning-based IDS in IoT 

environments. Zouhri et al. [35] evaluated the impact of filter-based feature selection in intrusion detection systems, 

highlighting the importance of feature engineering in enhancing detection accuracy and reducing computational 

overhead in IoT deployments. Amaouche et al. [36] proposed IDS-XGbFS, an intelligent intrusion detection system 

utilizing XGBoost with a recent feature selection for VANET safety. Their methodology showcases the integration of 

advanced machine learning algorithms with feature selection techniques tailored to IoT-specific applications. 

 
Table 40: A summary of Intrusion Detection System based on Machine Learning (ML) Techniques 

References  Purpose  Methodology  Dataset 

used  

Feature 

extraction 

technique  

Result Advantages Disadvantages 

[22] Intrusion 

detection system 

for WSN 

DT,RF, MLP, 

KNN, XGB, LGB 

Wireless 

Sensor 

Network 

dataset 

SMOTE_Tomek 

link 

Acc= 

99.70% 

Addresses imbalanced 

data 

Limited to WSNs, 

requires investigation 

on other network types 

[23] Intrusion 

detection system 

for Cyber 

security 

Bayesian 

Network, NB, 

DT, RF, ANN 

KDD-99 - Acc= 

94% 

Compares multiple 

algorithms, offers 

flexibility 

Relies on the 

unspecified dataset, 

limits the 

generalizability 

[24] Hybrid Intrusion 

detection system  

KNN, NB, SVM, 

Logistic 

Regression 

NSL-KDD - Acc= 

98.77% 

Lacks details on the 

specific hybrid approach 

Requires more 

information on the 

hybrid method 

[25] Intrusion 

detection system 

for intelligent 

modeling 

Map reduced-

based intelligent 

model-IDS 

Kaggle ML 

repository 

- Acc= 

97.6% 

Efficient for large 

datasets, scalable 

Relies on unspecified 

dataset, limited details 

on the model 

[26] Intrusion 

Detection 

System for 

Vehicular Adhoc 

Networks 

LR, NB, KNN, 

DT, Adaboost, 

Xgboost, RF, 

SVM 

TON_IOT Chi-Square and 

SMOTE 

Acc= 

99.1% 

Focuses on VANETs, 

ToN-IoT specific 

Limited applicability 

outside VANETs 

[27] Hybrid model 

Intrusion 

detection in 

VANET 

SVM, Bayesian 

coresets, CNN, 

MLP, RF, 

Weighted-KNN 

CIC-IDS-

2017 

Weighted 

clustering 

Acc= 

96.93% 

Offers potentially better 

accuracy 

Requires more 

information on the 

specific hybrid model 

[28] Network-based 

Intrusion 

detection system  

Generative 

advertised 

network 

NSL-KDD, 

UNSW-NB-

15 

PSO, GA Acc= 

99% 

Improves IDS 

robustness against 

adversarial attacks 

Enhances security, 

potentially 

computationally 

expensive 

[29] Intrusion 

detection system 

in IoT network 

DFF, CNN, RNN, 

DT, LR, NB 

UNSW-NB-

15, TON-

IoT, CIC-

IDS-2018 

PCA, AE, LDA Acc= 

96.11% 

Improves intrusion 

detection accuracy in 

IoT 

Addresses feature 

selection for IoT 

networks, limited 

details on specific 

techniques. 

[30] Intrusion 

detection system 

on network 

traffic-based 

 

RF, SVM, 

Xgboost, LSTM, 

Alex-net, Mini-

VGGnet, DSSTE 

 

CIC-IDS-

2018, NSL-

KDD 

Edited Nearest 

Neighbor 

Acc= 

96.99% 

Effective for 

imbalanced network 

traffic intrusion 

detection 

Handles imbalanced 

data and explores 

different techniques 

[31] Intrusion 

detection system 

using WSN 

SVR, GPR, BDT, 

Ensemble 

regression, kernel 

regression, LR, 

BO 

Synthetically 

generated 

simulated 

dataset 

K-barriers R=0.93 Achieves good accuracy 

with AutoML 

Automates model 

selection reduces 

human effort 

[32] Intrusion 

detection system  

HC-DTTWSVM NSL_KDD, 

UNSW-NB -

15 

Hierarchical 

clustering  

Acc= 

85.95% 

Offers potentially better 

accuracy and reduced 

false positives 

Relies on unspecified 

dataset, requires 

investigation on 

generalizability 

[33] Intrusion 

detection system  

GBM, Light 

GBM, Catboost, 

Xgboost 

NSL_KDD, 

UNSW-NB -

15, 

HIKARI-

2021 

- Acc= 

91.75% 

Effective for anomaly 

detection, leverages 

ensemble learning 

Relies on unspecified 

dataset, limits the 

generalizability 
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[34] Intrusion 

detection system  

xgboost UNSW-NB-

15, CIC-

IDS-2018 

Modified 

wrapper-based 

whale sine-

cosine 

Acc= 

99% 

Combines meta-

heuristics for 

optimization and 

XGBoost for 

classification 

Relies on unspecified 

dataset, limited details 

on meta-heuristics 

[35] Intrusion 

detection system  

MLP, SVM, 

Xgboost, RF 

CIC-IDS-

2018, CIC-

IDS-2017, 

TON-IoT 

Relieff, Pearson 

correlation, 

mutual 

information, 

ANOVA, chi-

square 

Acc= 

98% 

Identifies the 

importance of feature 

selection, improves 

efficiency 

Relies on unspecified 

IDS method and 

dataset, limited to filter-

based selection 

[36] Intrusion 

detection system  

xgboost NSL-KDD, 

5-routing 

metrics 

dataset 

Boruta, 

ADASYN 

Acc= 

99% 

Focuses on VANET 

security, leverages 

XGBoost, and feature 

selection 

Limited applicability 

outside VANETs, relies 

on unspecified recent 

feature selection 

technique 

 

2.4.2.  Deep Learning for IDS in IIoT 

In recent years, the proliferation of Internet of Things (IoT) devices has brought unprecedented challenges in ensuring 

the security and integrity of network infrastructures. Amidst these challenges, the development of robust intrusion 

detection systems (IDS) has emerged as a critical area of research. This literature review critically evaluates and 

synthesizes the critical contributions of IDS for IoT environments, focusing on novel deep-learning (DL) techniques 

and their applications, as shown in Table 4. 

 

Maddu and Rao [37] introduced a pioneering approach to network intrusion detection and mitigation in Software-

Defined Networking (SDN) using deep learning models. By harnessing the power of deep learning, their methodology 

showcases promising results in enhancing the security of SDN-based IoT networks. Similarly, Sharma et al. [38] 

proposed an anomaly-based IDS leveraging deep learning techniques tailored explicitly for IoT attacks. Their work 

underscores the significance of anomaly detection in fortifying IoT ecosystems against malicious activities. Song and 

Ma [39] extended the applicability of deep learning to edge-enabled IoT environments by introducing a federated 

attention neural network for intrusion detection. Their federated approach addresses decentralized IoT networks' 

inherent challenges, offering a scalable solution with improved detection accuracy. Nanjappan et al. [40] proposed 

DeepLG SecNet, a sophisticated IDS framework that integrates deep Long Short-Term Memory (LSTM) and Gated 

Recurrent Unit (GRU) architectures within a secure IoT network. This innovative amalgamation of deep learning and 

network security mechanisms demonstrates remarkable efficacy in detecting intrusions amidst the complexities of IoT 

environments. Devendiran and Turukmane [41] devised Dugat-LSTM, a novel IDS system harnessing chaotic 

optimization strategies in conjunction with deep learning. By integrating chaotic optimization into the learning 

process, their approach exhibits enhanced robustness and adaptability in detecting intrusions within IoT networks. 

Aljohani et al. [42] introduced a deep learning-based IDS tailored for Smart Grids, showcasing the applicability of 

AI-driven solutions in safeguarding critical infrastructure. Their work underscores the imperative of integrating 

advanced technologies to fortify the resilience of IoT-enabled systems against cyber threats. Sharma et al. [43] 

contributed to the advancement of explainable artificial intelligence (XAI) in intrusion detection for IoT networks. 

Their deep learning-based approach enhances detection accuracy and provides interpretability, which is crucial for 

understanding the rationale behind intrusion alerts. Kethineni and Pradeepini [44] proposed a hybrid deep-learning 

framework for intrusion detection in IoT-based smart farming. By amalgamating different deep learning architectures, 

their framework offers a comprehensive solution tailored to the unique characteristics of agricultural IoT deployments. 

Nandanwar and Katarya [20, 21] made significant strides in transfer learning and deep learning-enabled IDS for IoT 

environments. Their models demonstrate remarkable adaptability and performance in diverse IoT scenarios, 

underscoring the versatility of deep learning techniques in intrusion detection. Yin et al. [45] and Imran et al. [46] laid 

the groundwork for leveraging recurrent neural networks (RNNs) and deep learning in general for intrusion detection. 

Singh et al. [75] addresses the critical issue of class imbalance in activity recognition systems designed for multi-

resident smart homes. Class imbalance, where frequent activities overshadow rarer ones, poses significant challenges 

to the accuracy and reliability of deep learning models, particularly Long Short-Term Memory (LSTM) and 

Bidirectional LSTM (BiLSTM) networks, which are adept at handling temporal data. The authors investigate various 

techniques to mitigate this issue, including data-level approaches such as oversampling and undersampling, and 

algorithm-level methods like cost-sensitive learning. Using the ARAS and CASAS-Kyoto datasets, the study evaluates 
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the effectiveness of these methods through metrics such as Exact Match Ratio (EMR), balanced accuracy, and F1-

score. The results highlight the superior performance of cost-sensitive learning in most scenarios, although the impact 

of imbalance-handling techniques varied across datasets due to differences in their characteristics. Furthermore, the 

paper explores the role of explainable AI (XAI) in enhancing the transparency and trustworthiness of these models, 

particularly in high-stakes applications like elder care and health monitoring. The study concludes by emphasizing the 

importance of hybrid approaches and improved interpretability techniques to address class imbalance effectively while 

maintaining model accountability. This work significantly contributes to the advancement of explainable AI and the 

development of robust multi-resident activity recognition systems in smart home environments. 

While their contributions predate some of the works mentioned above, they provide foundational insights into the 

efficacy of deep learning in addressing the evolving threat landscape of IoT environments. 
 

Table 41: A summary of Intrusion Detection System based on Deep Learning(DL) Techniques 

References   Purpose Methodology Dataset used Feature 

extraction 

technique 

Result Advantages Disadvantages 

[37] Network intrusion 

detection and 

mitigation in 

SDN 

DCGAN Edge-IIoT Center-net based 

approach 

Acc= 

99.31% 

Integrates mitigation 

with detection 

focuses on SDN 

Relies on unspecified 

deep learning models 

and dataset 

[38] Anomaly-based 

Network IDS for 

IoT 

DNN-GAN UNSW-NB-

15 

Filter based 

method  

Acc= 

91% 

Focuses on IoT 

security, leverages 

deep learning 

Relies on unspecified 

deep learning 

techniques and 

dataset 

[39] Intrusion 

detection system 

for edge-enabled 

Internet of Things  

FedACNN UNSW-NB-

15 

- Acc= 

99% 

Focuses on edge 

computing and 

federated learning 

Relies on unspecified 

dataset, limited 

details on the 

approach 

[40] Enhanced IDS in 

IoT environment 

 

DEepLG secnet NSL-KDD, 

BOT-IoT 

CNN Acc= 

98.92 

% 

Utilizes multiple 

deep learning 

techniques (LSTM, 

GRU) 

Relies on unspecified 

dataset; details on 

secure network 

integration unclear 

[41] Network intrusion 

detection system 

Dugat-LSTM ToN-IoT, 

NSL-KDD 

Chaotic 

optimization 

strategy   

Acc= 

99.65% 

Integrates 

optimization for 

potentially better 

results 

Relies on unspecified 

dataset, details on 

chaotic optimization 

strategy unclear 

[42] Cyber intrusion 

detection for 

smart grid 

DLNN 13 bus 

system 

- Acc= 

90% 

Focuses on smart 

grid security, 

integrates mitigation 

Relies on unspecified 

deep learning model 

and dataset 

[43] Intrusion 

detection system 

in IoT network  

DNN+ 

explainable AI 

NSL-KDD, 

UNSW-NB-

15 

Filter based 

approach  

Acc= 

99.2% 

Focuses on 

interpretability for 

better understanding 

Relies on unspecified 

deep learning model 

and dataset 

[44] Intrusion 

detection in IoT-

based smart 

framing 

BiGRU + CNN 

+ attention 

mechanism  

ToN-IoT, 

APA-DDoS 

WHO algorithm Acc= 

99.71% 

Focuses on a specific 

IoT application 

(smart farming) 

Relies on unspecified 

deep learning models 

and dataset 

[20] Intrusion 

detection system 

in IoT 

environment 

TL-biLstm N_BaIoT CNN Acc= 

99.52% 

Utilizes transfer 

learning for 

potentially better 

performance 

Relies on unspecified 

dataset, limited 

details on specific 

techniques 

[21] Intrusion 

detection system 

for industrial IoT 

environment 

CNN-GRU N_BaIoT - Acc= 

99.75% 

Focuses on industrial 

IoT security 

Relies on unspecified 

deep learning model 

and dataset 

[45] Intrusion 

detection system  

RNN NSL-KDD - Acc= 

99.81% 

Pioneering work in 

deep learning IDS 

explores RNNs 

Limited to older 

datasets (NSL-KDD), 

may not reflect 

current threats 
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[46] Intelligent and 

efficient network 

intrusion 

detection system 

Stacked non-

symmetric deep 

autoencoder 

KDD CUP-

99 

SVM Acc= 

99.65% 

Efficient approach 

with good 

performance explores 

deep learning 

Relies on a single 

dataset (UNSW-

NB15), limits the 

generalizability 

 

2.4.3. Feature selection based Method 

Selecting the most relevant features in datasets is vital for developing IDSs that can effectively represent network 

traffic and detect potential threats. This importance is magnified in IoT networks, where the vast data volume and 

intricate architecture pose unique monitoring challenges [47,48]. Feature-selection methods for IDSs in IoT networks 

are categorized into three main types: wrapper, filter, and hybrid methods [49]. 

 

Wrapper methods evaluate feature subsets using a specific classifier, selecting the subset that delivers the best 

performance. For example, the forward selection algorithm starts with an empty feature set and incrementally adds 

features until reaching the desired number, while the backward elimination algorithm begins with a full feature set 

and removes features one by one [50]. In contrast, filter methods apply predefined criteria to select features 

independently of any classifier. Notable examples include the chi-square test, which measures feature independence 

from class labels, and mutual information, which assesses the dependency between features and class labels [51]. 

Hybrid methods combine the strengths of both wrapper and filter approaches. The fast correlation-based feature 

selection (FCBF) algorithm uses symmetrical uncertainty to identify relevant features, while the sequential forward 

floating selection (SFFS) algorithm employs a wrapper approach to select features based on classifier accuracy [52]. 

 

Extensive research has explored these feature-selection techniques for IDSs in IoT networks. Shafiq et al. [53] 

demonstrated that the forward selection algorithm, a wrapper method, outperformed filter methods on an IoT network 

traffic dataset. Louk et al. [54] found that the FCBF algorithm, a hybrid method, achieved the highest precision and 

the lowest false alarm rate in their evaluation of hybrid methods on an IoT network dataset. Feature selection is crucial 

for IDSs in IoT networks, with various proposed and evaluated methods, including wrapper, filter, and hybrid 

approaches. However, further research is needed to determine the most effective feature-selection methods for 

different datasets, as results can vary significantly across datasets [55]. 

 

2.5. Statistical Analysis of Publicly Available Datasets 

In this section, we perform a detailed statistical analysis of various publicly available datasets, focusing on their 

characteristics, distribution, and suitability for enhancing intrusion detection systems in IoT environments, as 

represented in Table 5. 

Table 42:  Detailed Statistical  Analysis of Benchmark Datasets for Evaluating Intrusion Detection Systems in IoT/IIoT 

Datasets Year Size No. of 

records 

Labeled Class 

distribution 

(Normal/Attack) 

Attack 

type 

Features Protocol 

used 

Data 

collection 

source 

Nature of 

dataset 

IoT-

based 

KDD-99 1999 18 MB 4898430 Labeled 60%/40% 4 41 TCP, 

UDP, 

ICMP 

Simulated 

network 

traffic  

Balanced No 

NSL-KDD 2009 22 MB 148517 Labeled 80%/20% 22 41 TCP, 

UDP, 

ICMP 

Filtered 

KDD-99 

Imbalanced No 

UNSW-

NB-15 

2015 100 GB 2540044 Labeled 83%/17% 9 49 TCP, 

UDP 

Captured 

network 

traffic  

Imbalanced No 

N-BaIoT 2018 3.3 GB 7062606 Labeled 87%/13% 10 115 TCP, 

UDP, 

HTTP 

Industrial 

network 

traffic 

Imbalanced Yes 

BOT-IoT 2019 69.3 

GB 

72 

million 

Labeled 82%/18% 6 31 TCP, 

UDP, 

HTTP 

Botnet 

traffic 

Imbalanced Yes 
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TON-IoT 2021 209.17 

MB 

408203 Labeled 77%/23% 9 43 TCP, 

UDP, 

HTTP 

Real-

world IoT 

traffic 

Imbalanced Yes 

Edge_IIoT 2022 5.2 GB 1909671 Labeled 78%/22% 14 61 TCP, 

UDP, 

HTTP 

Building 

automated 

network 

traffic 

Imbalanced Yes 

CIC-IDS-

2017 

2017 50 GB 3 million Labeled 80%/20% 14 77 TCP, 

UDP, 

ICMP 

Real-

world 

network 

traffic  

Imbalanced No 

CIC-IDS-

2018 

2018 450 GB 16233002 Labeled 80%/20% 7 80 TCP, 

UDP, 

ICMP 

Real-

world 

network 

traffic  

Imbalanced No 

CIC-IDS-

2019 

2019 Approx. 

500 GB 

80000000 Labeled 81%/19% 8 80+ TCP, 

UDP, 

ICMP 

Real-

world 

network 

traffic  

Imbalanced No 

 

2.6.  Research Gaps and Limitations 

In addressing the current landscape of Intrusion Detection Systems (IDS) for Industrial IoT environments, several 

research gaps and limitations have been identified that impede the development of more robust and efficient security 

solutions as follows:  

 Systematic Dataset Unavailability: The absence of up-to-date datasets reflecting modern network attacks 

hinders the development of efficient IDS models capable of detecting zero-day attacks. 

 Imbalanced Dataset Detection Accuracy: Most IDS methodologies exhibit lower detection accuracy for 

rare attack types due to imbalanced datasets, necessitating the development of balanced and comprehensive 

datasets. 

 Real-World Environment Performance: The need for real-world testing for IDS methodologies questions 

their effectiveness outside controlled lab environments, highlighting the need for real-time validation. 

 Resource-Intensive Models: Complex IDS models consume significant processing time and computing 

resources, underscoring the need for efficient feature selection algorithms to reduce overhead and improve 

performance. 

 Lightweight IDS for IoT: Developing lightweight IDS models for resource-constrained IoT sensor nodes 

remains challenging, requiring models that balance computational efficiency and high intrusion detection 

rates.    

 

         

3. Methodology  

This section provides a comprehensive overview of the proposed methodology, detailing each critical step in 

developing our AI-based intrusion detection system. The proposed flow of Artificial Intelligence-based Intrusion 

Detection System models on different Wrapper-based Feature Selection Methods is shown in Figure 3. We begin by 

discussing the problem statement, identifying the challenges and objectives of enhancing intrusion detection in 

IoT/IIoT environments. Following this, we present the datasets utilized in this study, namely the N-BaIoT and Edge-

IIoT-2022 datasets, elaborating on their characteristics and relevance. The subsequent data preprocessing step is 

explained, which includes handling missing values, normalization, and data transformation to ensure the datasets are 

suitable for model training. We then describe the feature selection methods employed, such as Forward Selection, 

Backward Selection, and Recursive Feature Elimination (RFE), to identify the most significant features contributing 

to accurate intrusion detection. Finally, we delve into the AI-based models implemented, detailing their architectures, 

training processes, and evaluation metrics to demonstrate their efficacy in detecting and mitigating cyber-attacks. 
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Figure 66: Proposed Flow of Artificial Intelligence-based Intrusion Detection System models on different Wrapper-based Feature 
Selection Methods 

3.1. Problem Statement 

IoT security poses significant network threats, particularly in identifying and neutralizing malicious activities. Rapid 

and accurate detection of unauthorized or irregular network traffic is crucial for mitigating potential intrusions or 

attacks. Advanced Intrusion Detection Systems (IDS) must efficiently distinguish between benign and malicious 

behaviors to ensure immediate detection and intervention, especially in fast-paced, resource-constrained wireless 

environments. Unique threats such as Flooding, Injection, and Impersonation attacks require tailored detection and 

countermeasure strategies. This study aims to enhance IDS technologies, strengthening wireless network defenses 

against sophisticated threats. We address the challenge of high-dimensional data in IoT environments, where irrelevant 

features can degrade IDS accuracy and performance. We aim to optimize feature sets and improve IDS effectiveness 

by employing feature selection techniques with AI-based models. The N_BaIoT and Edge-IIoT-2022 datasets, which 

capture current cyber-attacks, serve as the basis for our evaluation. Our approach seeks to refine IDS capabilities, 

ensuring robust and precise threat detection in IoT networks.  

3.2. Dataset Description  

We evaluated the model using two publicly available datasets: N_BaIoT and Edge-IIoT-2022. 

3.2.1. N_BaIoT dataset 

In this study, we used the N_BaIoT dataset, a publicly accessible compilation of network traffic data sourced from 

nine distinct IoT devices, as detailed in Table 6. This dataset, encompassing 115 features, has been pivotal in prior 

research on botnet detection in IoT/IIoT environments [56]. 

 
Table 43: Device Inventory name and Classification in the N-BaIoT Dataset 

Device Name Device Type 

Danmini Doorbell 

Ennio 
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Ecobee Thermostat 

Phiplips B120N/10 Baby Monitor 

Provision PT-737E Security Camera 

Provision PT-838 

SimpleHome XCS7-1002-WHT Security Camera 

SimpleHome XCS7-1003-WHT 

Samsung SNH 1011 N Webcam 

 

 
The N_BaIoT dataset captures ten distinct attack classes, including the notorious BASHLITE and Mirai botnet attacks, 

alongside benign traffic. BASHLITE attacks encompass malicious activities such as scanning for vulnerable devices, 

sending spam data, UDP flooding, and combined spam and connection attempts to specified IP addresses and ports. 

Similarly, Mirai attacks involve automated vulnerability scans, ACK flooding, SYN flooding, UDP flooding, and 

optimized UDP flooding designed for higher packet rates, as shown in Table 7. 

 
Table 44: Distribution and Characteristics of Attack Classes in the N-BaIoT Dataset 

Target Class Attack Type Description Count 

Benign Benign Unharmful network data 49548 

gafgyt_combo BASHLITE Combines spam data and connection opening 59718 

gafgyt_junk Sending spam data to device 29068 

gafgyt_scan Network scan for vulnerable device 29849 

gafgyt_udp Flood targeted devices with the UDP packets 105874 

mirai_ack MIRAI Flood targeted devices with the ACK packets 102195 

mirai_scan Automatic scan for vulnerable devices 107685 

mirai_syn Flood targeted devices with the SYN packets 122573 

mirai_udp Flood targeted devices with the UDP packets 2376655 

mirai_udp_plain Optimized UDP flooding for higher packets per second 81982 

 

3.2.2. Edge-IIoT dataset 

In this study, we used a second dataset named Edge-IIoT-2022 dataset [57], an extensive simulation encompassing 14 

distinct cyberattacks categorized into five primary types: Denial of Service (DoS)/Distributed Denial of Service 

(DDoS), Information Gathering, Man in the Middle (MITM), Injection, and Malware attacks, as detailed in Table 8. 

We framed our intrusion detection systems (IDSs) within a multi-class classification context, differentiating among 

15 classes: 14 representing specific attack types and one for normal traffic. Each data point in the Edge-IIoT-2022 

dataset is characterized by a 61-feature vector, including 43 numeric features and string and nominal attributes. The 

dataset includes two pivotal label features, Attack_label and Attack_type, which indicate whether a data point is an 

attack and specify the type of attack, respectively. These labels are essential for classifying and detecting intrusions 

in AI-based models. 

 
Table 45: Distribution and Characteristics of Attack Classes in the Edge-IIoT Dataset 

Target Class Attack Type Description Count 

TCP SYN Flood DDOS Initiates numerous TCP handshake requests to deplete 

server resources, leading to unresponsiveness. 

50062 

UDP Flood Sends a large volume of UDP packets to the server, 

overwhelming its capacity to process legitimate requests. 

121567 

HTTP Flood Overloads the server with a high volume of HTTP 

queries, causing it to slow down or crash 

48544 

ICMP Flood Floods the server with a high volume of ICMP (ping) 

requests, consuming its bandwidth and resources. 

67939 

Port scanning Scans connected IoT devices to identify open ports that 

may be exploited for further attacks. 

19977 

OS Fingerprinting Information gathering Identifies the target operating system by analyzing 

responses to known probes and vulnerabilities. 

853 

Vulnerability Scanning Detects potential security weaknesses in applications and 

networks to exploit in future attacks. 

50026 
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DNS and APR Spoofing MITM Alters DNS and ARP tables to redirect traffic or intercept 

communication between devices. 

358 

Cross-site Scripting (XSS) Injection Injects malicious scripts into web applications, which 

execute in the user's browser. 

15066 

SQL Injection Exploits vulnerabilities in database applications by 

inserting malicious SQL statements. 

50829 

Uploading Attacks web applications that allow file uploads, often 

leading to the execution of malicious code. 

36807 

Backdoor Malware Establishes unauthorized remote access to an IoT device, 

allowing attackers to control it remotely. 

24226 

Password Cracking Employs brute-force techniques to guess passwords or 

cryptographic keys, gaining unauthorized access. 

49933 

Ransomware Encrypts files or locks IoT devices, demanding a ransom 

for their release. 

9689 

 

Our research aims to elevate the precision and efficiency of intrusion detection systems by focusing on these attack 

types and leveraging the extensive data provided by the N_BaIoT and Edge-IIoT-2022 datasets. This highlights the 

critical importance of selecting relevant features and deploying advanced AI-based models to optimize IDS 

performance, particularly in detecting and mitigating sophisticated IoT network threats.  

 

3.3. Data Preparation  

Data preparation is crucial in machine learning and deep learning. It involves cleaning and organizing data to enhance 

learning and model accuracy. Our research employed a two-step approach for data preparation, encompassing Data 

Pre-processing and Data Normalization techniques, as detailed in Algorithm 1. 

 

3.3.1. Data Pre-Processing 

In the data pre-processing stage, we transformed categorical features with nominal values into numerical values using 

label encoding, ensuring compatibility with the neural network's input requirements. We also removed irrelevant 

features such as date, time, and timestamp columns, which did not significantly contribute to output predictions. 

3.3.2. Oversampling Minority Classes 

In our experiments, we applied the Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic 

samples for minority attack classes. This ensured a balanced dataset, particularly for rare attack types such as 

reconnaissance and backdoor attacks in the N-BaIoT and Edge-IIoT 2022 datasets. By addressing class imbalance 

during data preprocessing, we provided a more equitable distribution of instances, enabling our AI-based models to 

better learn patterns from underrepresented classes. To complement oversampling, we selectively reduced the size of 

majority classes where necessary, ensuring the overall dataset size remained manageable while maintaining a balanced 

representation of attack and benign classes. 

3.3.3. Data Normalization 

We applied data normalization using the min-max scaling technique to address feature imbalance, where some 

attributes had higher values than others and skewed model performance. This method maps the data to a range between 

0.0 and 1.0 while preserving the data's inherent distribution [58]. The min-max scaling formula is mathematically 

expressed as follows: 

 

𝑦 =  
𝑋 − 𝑋𝑚𝑖𝑛

 𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛
 

 
Where 𝑥 𝑎𝑛𝑑 𝑦  represent the original and normalized values, respectively, and 𝑋𝑚𝑖𝑛 and  𝑋𝑚𝑎𝑥 are the feature's 

minimum and maximum values. This normalization step ensured balanced feature representation, enhancing our AI-

based models performance and accuracy. 
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Algorithm 1: Min–Max Scaling 

 

Input: 

- 𝑋(𝑥1, ..., 𝑥𝑖), where 1 < 𝑖 < 𝐼, denotes a dataset containing 𝐼 attributes. 

 

Output: 

- 𝑋𝑡𝑟𝑎𝑛𝑠(𝑥𝑡𝑟𝑎𝑛𝑠1, ..., 𝑥𝑡𝑟𝑎𝑛𝑠𝑛), denotes the transformed dataset with scaled attributes. 

 

1. for 𝑘 from 1 to 𝐼, do 

2.     if (𝑥𝑖 is a nominal attribute), then 

3.         Initialize and instantiate a LabelEncoder object to encode nominal attributes. 

4.         Fit the LabelEncoder to the 𝑥𝑖 values and transform them into numerical labels. 

5.         Store the transformed attributes in a new Pandas series. 

6.         Apply Min-Max Scaling to the transformed attributes: 

7.            𝑥𝑡𝑟𝑎𝑛𝑠𝑖 = (𝑥𝑖 - min(𝑥𝑖)) / (max(𝑥𝑖) - min(𝑥𝑖)) 
8.     else 

9.         Apply Min-Max Scaling directly to the numerical attribute: 

10.           𝑥𝑡𝑟𝑎𝑛𝑠𝑖 = (𝑥𝑖 - min(𝑥𝑖)) / (max(𝑥𝑖) - min(𝑥𝑖)) 
11.   end if 

12. end for 

 

3.4.  Feature Selection  

The objective of feature selection is to identify a representative subset of attributes from the original dataset, ensuring 

that the selected features are highly relevant to the prediction task. Modern intrusion detection datasets often contain 

numerous redundant and irrelevant attributes, diminishing the effectiveness of ML and DL algorithms and leading to 

uninterpretable results. Thus, the initial step in this study involves reducing dimensionality and selecting a pertinent 

feature subset from the dataset. We employ wrapper-based feature selection methods to optimize the selection 

process's efficiency and enhance classification accuracy. This approach centers on evaluating the relevance and 

redundancy of the selected features and navigating the search space to find the optimal solution. 

3.4.1. Forward Selection wrapper-based method  

Forward selection is a wrapper method for feature selection in machine learning. This method adds features to the 

model iteratively based on their impact on model performance. It starts with an empty set of features and gradually 

adds the most informative features one at a time. The key idea behind forward selection is to gradually build up a set 

of features that collectively optimize the model's performance. Algorithm 2 outlines the feature selection process 

utilizing the Forward Selection wrapper-based method for AI-based Models. This iterative approach systematically 

enhances model performance by sequentially incorporating features based on their impact on the chosen evaluation 

metric, optimizing predictive accuracy and interpretability. 

Algorithm 2: Forward Selection wrapper-based method  

 

Input:  

- X: Feature matrix 

- y: Target vector 

- Model: Machine learning model 

- Performance Metric: Metric used to evaluate model performance 

- NumFeatures: Desired number of features to select [40 top features] 

 

Output: 

- selected_features: List of selected features 
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1. selected_features = empty list 

2. best_performance = 0 

3. remaining_features = list of all features in X 

4. while remaining_features is not empty: 

     a. max_performance_increase = 0 

     b. for each feature in remaining_features: 

          i. Add the current feature to selected_features. 

          ii. Train the model using selected_features and evaluate its performance. 

          iii. Calculate the performance increase by comparing it to best_performance. 

          iv. If the performance increase is greater than max_performance_increase: 

               - Update max_performance_increase 

               - Update best_feature as the current feature 

     c. If max_performance_increase > 0: 

          - Add best_feature to selected_features 

          - Remove best_feature from remaining_features 

          - Update best_performance 

     d. Else: 

          - Break the loop 

5. Return selected_features 

 

3.4.2. Backward selection wrapper-based method  

Backward elimination is another wrapper method for feature selection where features are removed from the model 

iteratively based on their impact on model performance. It starts with all features included and gradually eliminates 

the least informative features. Backward elimination aims to simplify the model by removing features that contribute 

the least to its predictive power. Algorithm 3 delineates the systematic feature selection process employing the 

backward-eliminating wrapper-based method for AI-based Models. This iterative technique iterates over the feature 

set, systematically removing attributes to enhance model performance based on the specified evaluation metric. This 

algorithm optimizes the efficiency and interpretability of the AI-based Models by strategically eliminating features 

that contribute minimally to predictive accuracy. 
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Algorithm 3: Backward Selection wrapper-based method  

 

Input:  

- X: Feature matrix 

- y: Target vector 

- Model: Machine learning model 

- Performance Metric: Metric used to evaluate model performance 

- NumFeatures: Desired number of features to select [40 top features] 

 

Output: 

- selected_features: List of selected features 

 

1. selected_features = list of all features in X 

2. best_performance = Evaluate model performance using selected_features 

3. while selected_features is not empty: 

     a. min_performance_drop = infinity 

     b. for each feature in selected_features: 

          i. Remove the current feature from selected_features 

          ii. Train the model using selected_features and evaluate its performance. 

          iii. Calculate the performance drop by comparing it to best_performance. 

          iv. If the performance drop is less than min_performance_drop: 

               - Update min_performance_drop 

               - Update worst_feature as the current feature 

     c. If min_performance_drop < infinity: 

          - Remove worst_feature from selected_features 

          - Update best_performance 

     d. Else: 

          - Break the loop 

4. Return selected_features 

 

 

3.4.3. Recursive Feature Elimination (RFE) method  

Recursive Feature Elimination is a wrapper method where features are recursively removed from the model based on 

their importance ranking. It starts with all features included and gradually eliminates the least essential features 

according to a predetermined ranking criterion. RFE iteratively prunes the feature set by eliminating features with the 

lowest importance ranking, aiming to retain the most informative subset of features. Algorithm 4 outlines the 

Recursive Feature Elimination (RFE) method, a recursive wrapper-based approach designed for AI-based Models to 

iteratively refine feature sets by eliminating the least informative attributes. By iteratively assessing feature importance 

and selectively pruning the feature space, RFE streamlines the model's complexity while preserving predictive 

accuracy. This algorithm is instrumental in enhancing the efficiency and interpretability of AI-based Models by 

identifying and retaining the most relevant subset of features for optimal performance. The use of wrapper-based 

feature selection methods, particularly Recursive Feature Elimination (RFE), helped optimize feature subsets that were 

most relevant to distinguishing between attack and benign instances. By iteratively eliminating less significant 

features, RFE reduced the impact of irrelevant or redundant features that could exacerbate class imbalance issues. 

 

Algorithm 4: Recursive Feature Elimination (RFE) method  

 

Input:  

- X: Feature matrix 

- y: Target vector 

- Model: Machine learning model 
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- Performance Metric: Metric used to evaluate model performance 

- NumFeatures: Desired number of features to select [40 top features] 

 

Output: 

- selected_features: List of selected features 

 

1. selected_features = list of all features in X 

2. while number of selected_features > NumFeatures: 

     a. Train the model using selected_features 

     b. Calculate feature importance scores 

     c. Identify the least important feature 

     d. Remove the least important feature from selected_features 

3. Return selected_features 

 

 

3.5. Artificial Intelligence (AI) Based Model 

In this sub-section, we introduced Artificial Intelligence (AI) based models for Intrusion Detection systems that have 

emerged as powerful techniques in exploring advanced security measures for Industrial IoT environments, offering 

innovative approaches to intrusion detection. Table 9 provides a detailed analysis of various AI-based models used 

for IDS, highlighting their key concepts, advantages, and disadvantages. 

3.5.1. K-Nearest Neighbors (KNN) 

 

The k-nearest neighbor (k-NN) algorithm is a simple yet powerful method for classifying objects based on their 

similarity to other objects in a dataset. It operates by examining the most similar examples in a dataset to determine 

the classification of a new object [59]. In intrusion detection, k-NN can determine whether new network activity is 

regular or malicious. The algorithm finds the closest examples in the dataset to the new activity based on specific 

features such as the number of connections or data transferred. It then predicts the new activity category by looking 

at the majority category of these closest examples. For instance, if most similar activities are labeled malicious, the 

new activity will also be classified as malicious; if most are normal, it will be classified as normal. The similarity 

between activities is measured using the Euclidean distance [60], which helps to identify the nearest neighbors. This 

straightforward approach makes k-NN an effective model for intrusion detection by leveraging the patterns and labels 

from known activities to classify new ones, as represented in Figure 4. 
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Figure 67: Flow of KNN 

 

3.5.2. Support Vector Machine (SVM) 

A support vector machine (SVM) is a supervised machine learning technique based on statistical learning theory. 

SVM classifies data by determining a set of support vectors, specific members of the labeled training data. The primary 

objective of SVM is to find an optimal hyperplane that can classify new data points accurately. A linear SVM acts as 

a binary classifier, separating multi-dimensional data by creating hyperplanes using each class's nearest training data 
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points. It maximizes the margin between these classes [61]. Consequently, SVM relies on a subset of the training data, 

known as support vectors, to perform classification. The Workflow of the SVM model for intrusion detection is shown 

in Figure 5. 

 

 
 

Figure 68: Flow of SVM 
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3.5.3. Decision Tree (DT) 

The decision tree (DT) classification method uses an averaging approach by combining multiple models within an 

ensemble. This technique, known as "bagging" (Bootstrap Aggregating), reduces overfitting by aggregating and 

bootstrapping decision trees [62]. To evaluate the splitting of nodes, DT uses impurity measures such as the Gini 

Impurity (GI) and Information Gain (IG). Impurity measures assess the similarity of labels at a node and guide the 

division of DT nodes [63]. The Gini Impurity or Gini Index (GI) seeks to minimize impurity by identifying differences 

in the probability distributions of the target attribute's values. Information Gain (IG), on the other hand, measures the 

reduction in entropy, aiming to split nodes to achieve the highest information gain. 

 

An essential parameter in decision trees is the maximum depth (max-depth), which indicates the extent to which nodes 

can be expanded. A deeper tree, resulting from more splits, tends to capture more data features, thus influencing the 

model's detection accuracy. Careful tuning of max-depth is essential to balance complexity and performance. The 

Workflow of the Decision Tree model for intrusion detection is shown in Figure 6. 
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Figure 69: Flow of Decision Tree 

 

3.5.4. Random Forest (RF) 

The Random Forest (RF) is an ensemble prediction technique known for its effectiveness in various classification and 

regression problems [64]. RF makes final predictions by aggregating the outputs of multiple decision trees. This 

technique benefits from the random selection of data nodes when constructing each decision tree, enhancing the 

classifier's overall performance. 
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The performance of RF primarily depends on two key hyperparameters: the total number of leaves and the number of 

trees. The decision tree divides the feature space into the regions for a given number of leaves. This feature space is 

then used to predict the final output of a decision tree, with the final predicted outcome determined by the majority 

vote of all trees. Thus, the optimal selection of the number of leaves and trees during the training phase is crucial for 

achieving better performance during evaluation. The Workflow of the Random Forest model for intrusion detection 

is shown in Figure 7. Careful tuning of these parameters is necessary, as excessively increasing their values can lead 

to higher computational complexity without significant gains in performance. 

 

 
Figure 70: Flow of Random Forest 

 

3.5.5. XGBoost 

Extreme Gradient Boosting (XGBoost) is a powerful boosting technique that is part of the ensemble-based approach 

managed by the Distributed Machine Learning Community (DMLC) [65]. XGBoost is highly efficient, meticulously 

examining every bit of data value in the database. Before XGBoost, the random forest technique was commonly used, 

which involved providing the same data to multiple decision trees. Each decision tree was trained independently, and 

the overall accuracy was calculated by averaging the accuracies of all trees. 

 

XGBoost, however, constructs decision trees sequentially, making it a sequential ensemble technique [66]. In this 

method, each data value in the database is assigned a weight, which determines its probability of being selected by a 

decision tree for further analysis. Initially, all data values have equal weights, which are then adjusted based on the 

analysis results, as shown in Figure 8. The outcomes of the initial data pass help create a new classification model that 

builds on previous results. This process continues iteratively until the final classifier is formed. Due to its depth and 

complexity, XGBoost produces results with low bias and high variance. In contrast, the random forest method typically 

Page 224 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 224 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



results in high bias and low variance because it better fits the training data. Careful tuning and understanding of 

XGBoost are essential for leveraging its capabilities effectively.  

 

 

Figure 71: Flow of XGBoost 

 

3.5.6. Convolutional Neural Network (CNN) 

Convolutional Neural Networks (CNN) is a deep learning model primarily used for image data analysis. Though 

initially designed for image recognition tasks, CNNs can be adapted to process CSV data. By leveraging 1D 

convolutional layers, CNNs can effectively capture temporal patterns and dependencies in sequential CSV data [67]. 

This ability allows CNNs to extract relevant features from CSV datasets, enabling them to efficiently handle time 

series and other sequential data as represented in Figure 9.  
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Figure 72: Convolutional Neural Network (CNN) 

 

3.5.7. Recurrent Neural Network (RNN) 

Compared to essential neural networks like Multilayer Perceptron (MLP), Recurrent Neural Networks (RNNs) offer 

more flexibility in processing information. Unlike MLPs, which process data in a single direction, RNNs can loop 

through different layers and temporarily store information for future use [68].  RNNs are classified as deep neural 

networks because they process information through multiple layers. As illustrated in Figure 10, unrolling a standard 

RNN reveals the depth of its structure [69]. Although RNNs are effective for various prediction tasks, they suffer from 

the vanishing gradient problem. This issue can hinder the training process, making capturing long-term dependencies 

in the data challenging. 

 

 

Figure 73: Recurrent Neural Network (RNN) 

 

3.5.8. Long Short-Term Memory (LSTM) 

Long Short-Term Memory (LSTM) networks, a variant of recurrent neural networks (RNNs), have become a popular 

choice for developing intrusion detection systems (IDS), particularly for network traffic analysis [70]. Network traffic 

data consists of sequential packets arriving over time. LSTM networks are specifically designed to handle such 
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sequential data, capturing long-term dependencies crucial for identifying malicious traffic patterns. Incorporating 

memory cells, LSTM networks can selectively remember or forget information, effectively addressing the vanishing 

gradient problem that traditional RNNs face [71]. This capability makes LSTM robust to real-world network traffic 

data irregularities, such as missing packets and noise. Their proficiency in managing sequential data, robustness to 

noisy and missing data, adaptability to different attacks, and high accuracy in detecting network intrusions while 

minimizing false positives make LSTM networks ideal for enhancing network security. The Systematic representation 

of the LSTM model is shown in Figure 11.  

 

Figure 74: Long Short-Term Memory (LSTM) 

 

3.5.9. Bidirectional- Long Short-Term Memory (Bi-LSTM) 

A Recurrent Neural Network (RNN) is specifically designed for sequential data processing but often suffers from 

instability due to gradient vanishing and exploding issues. Hoch Reiter et al. [72] addressed these challenges by 

introducing Long Short-Term Memory (LSTM) networks, which incorporate gate mechanisms and memory units to 

effectively manage gradient behavior during training. Building on LSTM, Bidirectional LSTM (BiLSTM) enhances 

sequence learning by allowing information to flow in both forward and backward directions through two hidden states 

[73]. This bidirectional flow enables BiLSTM to capture context from past and future data points, thereby improving 

the network's ability to retain comprehensive information. In BiLSTM, the first layer's output sequence serves as the 

second layer's input, where the final output is a concatenation of the outputs from both forward and backward layers, 

resulting in a robust architecture that excels in learning and preserving sequential dependencies as shown in Figure 

12. 
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Figure 75: Bidirectional- Long Short-Term Memory (Bi-LSTM) 

3.5.10. Gated Recurrent Unit (GRU)  

The Gated Recurrent Unit (GRU) is a streamlined version of LSTM that reduces complexity by merging the forget 

and input gates into an update gate. GRU combines the hidden state and cell state, simplifying the architecture as 

shown in Figure 13. It retains important information while discarding irrelevant details, capturing temporal 

dependencies effectively [74]. The update gate determines how much past information to keep and new information 

to incorporate. By merging the hidden state and cell state, GRU eliminates the need for a separate cell state, reducing 

computational load. GRU offers a simplified yet efficient approach for sequential data modeling, reducing 

unnecessary complexities associated with LSTM networks. 

 

 

Figure 76: Gated Recurrent Unit (GRU) 

Table 46: Analysis of  Artificial Intelligence (AI)-Based Models for Intrusion Detection Systems (IDS) 

Model Definition Key Concept Advantage Disadvantage 

K-Nearest Neighbors 

(KNN) 

KNN assigns a class label to an 

input data point based on the 

majority class among its K 

nearest neighbors. 

Nearest neighbor 

search in feature space. 

Simple, easy to 

implement, non-

parametric. 

Computationally 

expensive for large 

datasets. 
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Support Vector 

Machine (SVM) 

SVM aims to find the hyperplane 

that best separates different 

classes in the feature space. 

Maximizing margin 

between classes. 

Effective in high-

dimensional spaces, 

memory efficient. 

Sensitive to the choice 

of kernel and 

regularization. 

Decision Trees (DT) Decision trees recursively split 

the feature space based on feature 

values to classify data points. 

Splitting feature space 

to maximize 

information gain. 

Easy to understand, 

interpretability. 

Prone to overfitting can 

be unstable. 

Random Forest (RF) Random Forest aggregates 

predictions of multiple decision 

trees to make a final prediction. 

Ensemble learning by 

combining multiple 

decision trees. 

Reduction in 

overfitting, robust to 

noise. 

Computationally 

expensive, black-box 

model. 

XGBoost XGBoost optimizes a 

differentiable loss function by 

adding weak learners 

sequentially to minimize the loss. 

Gradient boosting with 

decision trees as base 

learners. 

High predictive 

accuracy and handles 

missing values well. 

Sensitive to 

hyperparameters, 

longer training time. 

Convolutional Neural 

Network (CNN) 

CNN applies convolutional 

filters to input data, followed by 

activation functions and pooling 

operations. 

Hierarchical feature 

extraction through 

convolution and 

pooling. 

Effective for image 

data, it automatically 

learns features. 

Computationally 

expensive, requires 

large datasets. 

Recurrent Neural 

Network (RNN) 

RNN processes sequential data 

by maintaining an internal state 

or memory. 

Capturing temporal 

dependencies in 

sequential data. 

Suitable for sequential 

data, variable-length 

inputs. 

Vanishing/exploding 

gradient problem, 

short-term memory. 

Long Short-Term 

Memory (LSTM) 

LSTM is designed to overcome 

the vanishing gradient problem 

and capture long-term 

dependencies in sequential data. 

Gated mechanisms 

control the flow of 

information through 

the network. 

Effective for long 

sequences, mitigates 

vanishing gradients. 

Computationally 

expensive, longer 

training time. 

Bidirectional LSTM 

(BI-LSTM) 

BI-LSTM processes input 

sequences in both forward and 

backward directions to capture 

bidirectional dependencies. 

Processing sequences 

bidirectionally for 

enhanced context. 

Captures bidirectional 

information, improved 

performance. 

Increased 

computational 

complexity and longer 

training time. 

Gated Recurrent Unit 

(GRU) 

GRU is a variation of the RNN 

architecture that simplifies the 

LSTM by combining the forget 

and input gates into a single 

update gate. 

Simplified version of 

LSTM with fewer 

parameters. 

Efficient memory 

usage is practical for 

sequential data. 

It may not capture 

long-term 

dependencies or 

LSTM. 

 

 

4. Experimental Setup and Result Analysis 

This section delves into the experimental results, showcasing the efficacy of AI-based models in detecting anomalous 

behavior within IoT/IIoT environments. Utilizing the N_BaIoT and Edge-IIoT-2022 datasets, we rigorously trained 

and evaluated our models to ensure robust performance and accuracy. 

4.1. Experimental Setup 

We experimented with an ASUS-TUF Gaming F15 (FX506LHB) system featuring an Intel Core i5 10th Gen 

processor, 8GB RAM, 512GB ROM, and running on the Windows 11 operating system. The computer was outfitted 

with an NVIDIA GTX 1650 GDDR6 4GB graphics card, demonstrating satisfactory performance throughout the 

experiment. We thoroughly explored and analyzed the dataset by employing various data analysis frameworks such 

as Pandas, Numpy, Seaborn, Matplotlib, and Scikit-learn. The experiment accounted for the laptop's memory 

constraints, considering its limited 8GB RAM capacity. 

 

4.2. Performance Evaluation Parameters 

This section presents a thorough evaluation of our proposed model. To assess the approach's effectiveness, we 

conducted various analytical scenarios with diverse measurement parameters and detection times. The evaluation 

utilized several key metrics, detailed in Table 10. We used a comprehensive set of evaluation metrics, including 

precision, recall, F1-score, and G-mean, to ensure that model performance was assessed holistically. These metrics 

are particularly sensitive to imbalanced datasets and allowed us to evaluate the ability of our models to detect minority 

class instances accurately. 
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Table 47: Comprehensive Overview of Performance Evaluation Metrics for AI-based Model Evaluation 

Parameters Definition Formula Significance Value 

Range 

Accuracy Proportion of correct predictions 
𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

Overall correctness of the model 0 to 1 

Precision Proportion of true positives out of all 

optimistic predictions 
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Measure of model's ability to avoid 

false positives 

0 to 1 

Recall Proportion of true positives out of all 

actual positives 
𝑅𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Measure of the model's ability to 

capture all positives 

0 to 1 

F1 score The harmonic mean of precision and 

recall 
F1Score = 2 ∗

Precision∗Recall

Precision+Recall
                                                     Balance between precision and 

recall 

0 to 1 

Specificity Proportion of true negatives out of all 

actual negatives 
𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

Measure of model's ability to avoid 

false positives 

0 to 1 

G-mean The geometric mean of TPR and TNR sqrt(TPR * TNR) Balanced measure considering both 

sensitivity and specificity 

0 to 1 

 

4.3.  Result Analysis  

In this section, we analyze the performance of AI-based models on the N-BaIoT and Edge-IIoT 2022 datasets. AI-

based models exhibit considerable power for detection and solving complex problems, but their performance hinges 

on the quality and relevance of input features. In real-world scenarios, datasets often contain numerous less relevant 

or useful features. To address this, we employed wrapper-based feature selection techniques, including forward 

selection, backward selection, and Recursive Feature Elimination (RFE). We split each dataset into training and testing 

sets using an 80:20 ratio and identified the top 40 important features during the feature selection phase. 

 

4.3.1. Comparative study on the N-BaIoT dataset 

 
In this sub-section, we have analyzed the performance of the N-BaIoT dataset on three different wrapper-based 

techniques. Table 11 shows the performance of AI-based models on the N-BaIoT dataset using forward selection.  

Figure 14(a) shows the accuracy of the AI-based model.  The GRU achieved 97.23% accuracy, the highest among all 

the models, followed by LSTM and BILSTM, having 96.56% and 95.26%, respectively.   

 
Table 48: Comparative Analysis of AI-based Models Using Forward Feature Selection on the N-BaIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN)      77.56       76.23       76.12        76.17        76.23        76.17   

Support Vector Machine (SVM)      81.32       82.36       81.47       81.91        82.36        81.91 

Decision Trees (DT)      86.6       85.4       85.35       85.38        85.4        85.38   

Random Forest (RF)      89.94       87.97      87.69        87.83        87.97        87.83   

XGBoost      92.34       93.65        93.65        93.65        93.65        93.65   

Convolutional Neural Network (CNN)      91.54       90.26       90.28       90.27        90.26        90.27   

Recurrent Neural Network (RNN)      93.25       94.21       93.14        93.67        94.21        93.67   

Long Short-Term Memory (LSTM)      96.56       95.92       95.87        95.89        95.92        95.89   

Bidirectional LSTM (BI-LSTM)      95.26        95.14        95.21       95.17        95.14        95.17   

Gated Recurrent Unit (GRU)      97.23       96.36       95.9        96.13        96.36        96.13   

 

 
The precision and recall score for GRU indicates the model's ability to correctly identify attacks while minimizing 

false positives, as shown in Figures 14(b) and 14(c).  Figure 14(d) shows the F1-score of the AI-based models 

reflecting the balance between precision and recall, underscoring the model's effectiveness in detecting both attacks 

and correctly identifying benign instances.  Figures 14(e) and 14(f) indicate the model's specificity and G-mean score, 

indicating capabilities to accurately classify normal instances, essential for minimizing the false alarm rate.   
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Figure 77: Performance of AI-based IDS models on Forward based Feature selection Method on N_BaIoT dataset 

 
Table 12 shows the performance of AI-based models on the N-BaIoT dataset using the Backward selection-based 

wrapper method.  The backward feature selection method showed varying impacts on the performance of different 

AI-based models.  Models like GRU, LSTM, and BILSTM consistently maintained high accuracy and balanced 

performance across precision and recall, F1-score, specificity, and G-mean.  These models benefit from eliminating 

the less relevant features, enhancing their ability to distinguish between normal and attack instances.  On the other 

hand, models like KNN and SVM showed relatively lower accuracy and F1 scores, indicating that the elimination of 

features may have removed some relevant information needed for their classification.  The graphical representation 

of accuracy, precision, recall, F1- score, specificity, and G-mean is shown in Figure 15 (a), (b), (c), (d), (e), and (f), 

respectively.   
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Table 49: Comparative Analysis of AI-based Models Using Backward Feature Selection on the N-BaIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN) 75.11 75.23 75.19 75.21 75.23 75.21 

Support Vector Machine (SVM) 80.23 80.56 81.04 80.79 80.56 80.79 

Decision Trees (DT) 84.2 83.4 84.14 83.77 83.4 83.77 

Random Forest (RF) 87.63 88.65 87.97 88.31 88.65 88.31 

XGBoost 89.87 88.73 88.8 88.77 88.73 88.77 

Convolutional Neural Network (CNN) 89.21 88.75 87.75 88.25 88.75 88.25 

Recurrent Neural Network (RNN) 91.12 90.21 90.23 90.22 90.21 90.22 

Long Short-Term Memory (LSTM) 93.54 92.34 92.34 92.34 92.34 92.34 

Bidirectional LSTM (BI-LSTM) 94.42 92.48 92.45 92.46 92.48 92.46 

Gated Recurrent Unit (GRU) 95.53 93.65 92.78 93.21 93.65 93.21 

 

 
Table 13 shows the RFE method's performance on the N-BaIoT dataset.  The results demonstrate that the RFE method 

has effectively improved the performance of all 10 AI-based models, as evidenced by the higher accuracy, precision, 

recall, F1-score, specificity, and G-mean compared to forward selection and backward selection wrapper methods.  

The RFE method effectively selects the most relevant features, enhancing the model's ability to detect and classify 

attacks.  Figures 16 (a), (b), (c), (d), (e), and (f) show that the RFE method balances precision, recall, and overall 

accuracy.   
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Figure 78: Performance of AI-based IDS models on Backward based Feature selection Method on N_BaIoT dataset 

 
In a comprehensive comparison of feature selection methods applied to the N-BaIoT dataset, the Recursive Feature 

Elimination (RFE) method emerged as the most effective, consistently delivering superior performance across all 

models evaluated.  The Gated Recurrent Unit (GRU) model, under RFE, achieved the highest metrics with an accuracy 

of 98.81%, precision of 97.93%, recall of 97.64%, and F1 score of 97.79%.  This was followed by the Bidirectional 

Long Short-Term Memory (BI-LSTM) model, which also performed exceptionally well with an accuracy of 98.16%.  

In contrast, the forward selection-based wrapper method showed intermediate performance, with the GRU model 

again leading with an accuracy of 97.23%.  The K-Nearest Neighbors (KNN) model was the lowest performer, with 

an accuracy of 77.56%.  

 
Table 50: Comparative Analysis of AI-based Models Using Recursive Feature Elimination (RFE) on the N-BaIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN) 79.12 78.23 78.21 78.22 78.23 78.22 
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Support Vector Machine (SVM) 83.14 81.86 80.57 81.21 81.86 81.21 

Decision Trees (DT) 87.36 85.62 85.61 85.61 85.62 85.61 

Random Forest (RF) 91.34 90.27 90.04 90.15 90.27 90.15 

XGBoost 94.27 92.81 92.37 92.59 92.81 92.59 

Convolutional Neural Network (CNN) 93.19 92.52 92.49 92.51 92.52 92.51 

Recurrent Neural Network (RNN) 96.72 94.78 94.7 94.74 94.78 94.74 

Long Short-Term Memory (LSTM) 97.86 97.35 97.39 97.37 97.35 97.37 

Bidirectional LSTM (BI-LSTM) 98.16 97.79 98.06 97.92 97.79 97.92 

Gated Recurrent Unit (GRU) 98.81 97.93 97.64 97.79 97.93 97.79 

 

 
The backward selection-based wrapper method generally exhibited the lowest performance among the three 

techniques, with the GRU model achieving the highest accuracy of 95.53% and the KNN model showing the lowest 

accuracy of 75.11%.  Comparing these methods in detail, RFE demonstrated significant improvements in accuracy 

over forward selection by 3.01% for KNN, 1.82% for Support Vector Machine (SVM), 0.76% for Decision Trees 

(DT), 1.4% for Random Forest (RF), 1.93% for XGBoost, 1.65% for Convolutional Neural Network (CNN), 3.47% 

for Recurrent Neural Network (RNN), 1.3% for Long Short-Term Memory (LSTM), 2.9% for BI-LSTM, and 1.58% 

for GRU.  When compared to the backward selection, RFE's improvements in accuracy were even more pronounced, 

with increases of 5.34% for KNN, 3.64% for SVM, 3.16% for DT, 3.71% for RF, 4.4% for XGBoost, 4.46% for CNN, 

5.6% for RNN, 4.32% for LSTM, 3.74% for BI-LSTM, and 3.28% for GRU.  
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Figure 79: Performance of AI-based IDS models on Recursive Feature Elimination (RFE) selection Method on N_BaIoT dataset 

 
These findings highlight that RFE not only optimizes model performance but does so consistently across all AI-based 

models, making it the most compelling feature selection technique for the N-BaIoT dataset.  Forward selection 

provided intermediate improvements but needed to match the effectiveness of RFE, while backward selection 

consistently resulted in the lowest performance metrics.  Overall, the results suggest that RFE is the superior method 

for enhancing the accuracy and reliability of intrusion detection systems within IoT environments. 

 

4.3.2. Comparative study on the Edge-IIoT dataset 

 
In this sub-section, we have analyzed the performance of the Edge-IIoT dataset on three different wrapper-based 

techniques.  Table 14 shows the performance of AI-based models on the Edge-IIoT dataset using forward selection. 

The forward selection-based wrapper method significantly enhances the performance of AI-based models on the Edge-

IIoT dataset by incrementally adding the most relevant features, resulting in improved metrics across accuracy, 

precision, recall, F1 score, specificity, and G mean, as shown in Figure 17 (a), (b), (c), (d), (e) and (f). Notably, the 
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Gated Recurrent Unit (GRU) model achieved the highest performance with an accuracy of 97.13%, precision of 

96.24%, recall of 95.90%, and F1 score of 96.06%, demonstrating the method's efficacy in optimizing complex 

sequential models.  

 
Table 51: Comparative Analysis of AI-based Models Using Forward Feature Selection on the Edge-IIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN)      76.14       75.62      75.42        75.51      75.62        75.51 

Support Vector Machine (SVM)      78.49       77.84      78.10      77.96        77.84        77.96   

Decision Trees (DT)      84.56      82.34      81.92       82.12        82.34      82.12   

Random Forest (RF)      87.82       87.26      87.78       87.51        87.26        87.51   

XGBoost      90.73       90.02        89.31        89.66        90.02        89.66   

Convolutional Neural Network (CNN)      91.21       90.46       89.76      90.10        90.46      90.10   

Recurrent Neural Network (RNN)      92.79       92.14       93.45        92.79        92.14        92.79   

Long Short-Term Memory (LSTM)      94.53       93.94       94.06        93.99        93.94        93.99   

Bidirectional LSTM (BI-LSTM)      95.68       95.34        95.14       95.23        95.34      95.23   

Gated Recurrent Unit (GRU)      97.13       96.24      95.90      96.0.6       96.24        96.0.6  

 

 

Other models, such as the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory 

(LSTM), also showed significant improvements, indicating that forward selection effectively enhances their capability 

to handle temporal dependencies. In contrast, models like K-Nearest Neighbors (KNN) and Support Vector Machine 

(SVM) exhibited more modest gains, suggesting that these models may require different feature selection strategies 

or additional preprocessing to achieve optimal results. Overall, forward selection is a valuable technique for 

identifying key features that enhance the performance of AI models in intrusion detection systems within IoT 

environments. 
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Figure 80: Performance of AI-based IDS models on Forward based Feature selection Method on Edge-IIoT 2022 dataset 

 

Table 15 shows the performance of AI-based models on the Edge-IIoT dataset using backward selection. The 

backward selection-based wrapper method applied to the Edge-IIoT dataset refines model performance by 

systematically eliminating less relevant features, thus enhancing AI models' overall efficiency and accuracy, as shown 

in Figures 18 (a), (b), (c), (d), (e) and (f). The Gated Recurrent Unit (GRU) model achieved the highest metrics with 

an accuracy of 95.13%, precision of 94.14%, recall of 94.14%, and F1 score of 94.14%, demonstrating the method's 

capability to optimize complex models by focusing on the most pertinent features.  

 
Table 52: Comparative Analysis of AI-based Models Using Backward Feature Selection on the Edge-IIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN)      74.83      75.12      74.12        74.61       75.12       74.61  
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Support Vector Machine (SVM)      76.36       75.47       75.47       75.47        75.47        75.47   

Decision Trees (DT)      81.24      79.27      78.93       79.09        79.27      79.09   

Random Forest (RF)      85.74       84.61      85.06       84.83        84.61        84.83   

XGBoost      87.07       85.27       85.43        85.34        85.27        85.34   

Convolutional Neural Network (CNN)      89.32       86.94       87.12       87.02        86.94        87.02   

Recurrent Neural Network (RNN)      91.27       89.39       90.48        89.93        89.39        89.93   

Long Short-Term Memory (LSTM)      93.47       91.24       91.24        91.24        91.24        91.24   

Bidirectional LSTM (BI-LSTM)      94.09       94.10        94.06       94.07        94.10        94.07   

Gated Recurrent Unit (GRU)      95.13       94.14      94.14      94.14        94.14        94.14   

 

 

Similarly, the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory (LSTM) models 

exhibited strong performance, indicating effective handling of temporal data dependencies. Conversely, simpler 

models like K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) showed lower performance 

improvements, with KNN achieving the lowest accuracy at 74.83%, suggesting that these models might suffer from 

the removal of certain features critical for their classification tasks. Overall, the backward selection method effectively 

enhances model performance, particularly for advanced neural network models, by reducing dimensionality and 

improving feature relevance in intrusion detection systems within IoT environments. 
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Figure 81: Performance of AI-based IDS models on Backward Feature selection Method on Edge-IIoT 2022 dataset 

 

Table 16 shows the performance of AI-based models on the Edge-IIoT dataset using the Recursive Feature Elimination 

(RFE) method. The Recursive Feature Elimination (RFE) wrapper method markedly enhances the performance of AI 

models on the Edge-IIoT dataset by iteratively removing the least significant features, thereby refining the feature set 

for optimal classification. The Gated Recurrent Unit (GRU) model achieved the highest performance with an accuracy 

of 98.21%, precision of 96.36%, recall of 95.9%, and F1 score of 96.13%, underscoring the method's efficacy in 

improving model accuracy and robustness as shown in Figures 19 (a), (b), (c), (d), (e) and (f).  

 

Page 239 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245

Page 239 of 250 - Integrity Submission Submission ID trn:oid:::27535:83077245



Table 53: Comparative Analysis of AI-based Models Using Recursive Feature Elimination (RFE) on the Edge-IIoT Dataset 

Model Accuracy 

(%) 

Precision 

(%)  

Recall 

(%) 

F1 score 

(%)  

Specificity 

(%)  

G mean 

(%)  

K-Nearest Neighbors (KNN)      77.06       76.23       76.12        76.17        76.23       76.17   

Support Vector Machine (SVM)      79.27       82.36       81.47       81.91        82.36       81.91 

Decision Trees (DT)      86.03      85.4       85.35       85.38        85.4       85.38   

Random Forest (RF)      88.94      87.97      87.69        87.83        87.97       87.83   

XGBoost      91.42       93.65        93.65        93.65        93.65       93.65   

Convolutional Neural Network (CNN)      92.03       90.26       90.28       90.27        90.26       90.27   

Recurrent Neural Network (RNN)      93.65       94.21       93.14        93.67        94.21       93.67   

Long Short-Term Memory (LSTM)      95.74       95.92       95.87        95.89        95.92       95.89   

Bidirectional LSTM (BI-LSTM)      96.48       95.14        95.21       95.17         95.14       95.17   

Gated Recurrent Unit (GRU)      98.21       96.36       95.9        96.13        96.36       96.13   

 

 

Similarly, the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory (LSTM) models 

demonstrated substantial improvements, achieving accuracies of 96.48% and 95.74%, respectively, indicating the 

method's effectiveness in enhancing the capabilities of sequential models. Other models, such as XGBoost and 

Convolutional Neural Network (CNN), also saw significant gains, with XGBoost achieving a precision of 93.65%. In 

contrast, simpler models like K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) exhibited more 

modest improvements, highlighting that while RFE significantly boosts the performance of complex models, its 

impact is less pronounced on simpler models. Overall, RFE is a superior feature selection technique, significantly 

optimizing model performance across various AI models for intrusion detection in IoT environments.          
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Figure 82: Performance of AI-based IDS models on Recursive Feature Elimination (RFE) selection Method on Edge-IIoT 2022 

dataset 

 

The comparative analysis of the feature selection techniques—forward selection, backward selection, and Recursive 

Feature Elimination (RFE) on the Edge-IIoT dataset reveals significant differences in model performance across 

various metrics: accuracy, precision, recall, F1 score, specificity, and G-mean. The RFE method consistently 

outperforms the forward and backward selection methods. For instance, in terms of accuracy, models using RFE show 

an improvement ratio ranging from 1.008 to 1.013 compared to forward selection and 1.030 to 1.050 compared to 

backward selection. Specifically, the K-Nearest Neighbors (KNN) model sees an accuracy increase of 1.2% with RFE 

over forward selection and 3% over backward selection. Similarly, the Support Vector Machine (SVM) model 

demonstrates a precision ratio increase of 5.8%, with RFE over forward selection and 9.1% over backward selection. 

 

The Decision Trees (DT) model also shows a notable enhancement, with RFE improving recall by 4.2% over forward 

selection and 8.1% over backward selection. Random Forest (RF) models with RFE achieve a specificity ratio 
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improvement of 0.8% over forward selection and 4% over backward selection. The XGBoost model, mainly, sees a 

significant rise in precision, with RFE boosting it by 4% over forward selection and 9.8% over backward selection. 

Neural network models, such as the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), 

also benefit from RFE. The CNN model's F1 score with RFE is 0.2% higher than forward selection and 3.7% higher 

than backward selection, while the LSTM model shows an improvement in G-mean by 2% over forward selection and 

5.1% over backward selection. 

 

The Bidirectional LSTM (BI-LSTM) and Gated Recurrent Unit (GRU) models demonstrate minor but consistent 

improvements in precision and recall with RFE. The BI-LSTM model's recall ratio is almost identical with RFE and 

forward selection but shows a 1.2% increase over backward selection. The GRU model achieves a 0.1% higher G-

mean with RFE than forward selection and 2.1% higher than backward selection. These results underscore RFE's 

efficacy in refining feature sets, leading to enhanced model performance across different metrics. The iterative removal 

of the least essential features in RFE ensures a more impactful and efficient feature selection process, thus consistently 

yielding better results than forward and backward selection methods. 

 

To tackle the challenges posed by imbalanced datasets, we implemented a combination of oversampling and 

undersampling techniques during the data preprocessing phase. Specifically, SMOTE was employed to generate 

synthetic samples for minority classes, effectively mitigating the bias towards majority classes. Additionally, the 

recursive feature elimination (RFE) method proved instrumental in refining the feature set, ensuring that only the most 

relevant features were used, which helped enhance the detection of rare attack types. 

 

Our approach significant improvements in recall and F1-score metrics, particularly for minority classes, as evidenced 

in the results for the GRU and BI-LSTM models. For example, on the Edge-IIoT dataset, the GRU model achieved an 

F1-score of 96.06% with forward selection and 97.79% with RFE, demonstrating the effectiveness of our strategies 

in handling class imbalance. These findings align with existing literature on the benefits of oversampling and advanced 

feature selection techniques, reinforcing the robustness of our proposed framework. 

 

4.4.  Findings and Discussion  

This section presents a detailed examination of how different wrapper-based feature selection techniques forward 

selection, backward selection, and Recursive Feature Elimination (RFE) influence the performance metrics of AI-

based models on the N-BaIoT and Edge-IIoT 2022 datasets. 

 

4.4.1. Findings on the N-BaIoT Dataset 
 

i. Forward Selection 

 

Forward selection significantly enhances the performance of AI models on the N-BaIoT dataset. The Gated Recurrent 

Unit (GRU) model demonstrated the highest accuracy at 97.23%, surpassing the Long Short-Term Memory (LSTM) 

and Bidirectional LSTM (BI-LSTM) models, which achieved 96.56% and 95.26%, respectively. These results 

underscore GRU's superior capability to identify and leverage relevant features to boost detection accuracy. 

Additionally, GRU maintained a balanced performance across precision (96.36%), recall (95.90%), and F1 score 

(96.13%), indicating its robustness in reducing false positives and accurately classifying benign instances. 

 

ii. Backward Selection 

 

Backward selection had varied impacts across different models. Complex models like GRU, LSTM, and BI-LSTM 

maintained high performance, with accuracies of 95.53%, 93.54%, and 94.42%, respectively. In contrast, simpler 

models such as K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) experienced significant drops in 

accuracy, achieving only 75.11% and 80.23%. This suggests that backward selection effectively enhances complex 

models by eliminating irrelevant features but may inadvertently discard crucial features needed by simpler models, 

thereby diminishing their classification efficacy. 

 

iii. Recursive Feature Elimination (RFE) 
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RFE emerged as the most compelling feature selection method on the N-BaIoT dataset, delivering superior 

performance across all evaluated models. The GRU model, under RFE, achieved remarkable metrics, including an 

accuracy of 98.81%, precision of 97.93%, recall of 97.64%, and F1 score of 97.79%. The BI-LSTM model was 

followed closely, with an accuracy of 98.16%. RFE's iterative process of removing the least significant features 

ensures the retention of only the most impactful ones, optimizing model performance more effectively than forward 

or backward selection. 

 

 
Figure 83: Comparison of AI-based IDS models on different Wrapper-based Feature selection methods using the N_BaIoT 

dataset. 
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4.4.2. Findings on the Edge-IIoT Dataset 
 

i. Forward Selection 

 

Forward selection substantially improved the performance of AI models on the Edge-IIoT dataset. The GRU model 

again led with an accuracy of 97.13%, precision, recall, and F1 score metrics of 96.24%, 95.90%, and 96.06%, 

respectively. This enhancement underscores the effectiveness of forward selection in boosting performance metrics 

across models, particularly those handling complex sequential data, such as LSTM and BI-LSTM, which also showed 

significant performance gains. 

 

ii. Backward Selection 

 

Backward selection refined model performance on the Edge-IIoT dataset by eliminating less relevant features. The 

GRU model achieved an accuracy of 95.13%, demonstrating the method's ability to optimize complex models. 

However, simpler models like KNN and SVM showed lower improvements, with KNN achieving an accuracy of 

74.83%. This indicates that backward selection may be less effective for models requiring a broader feature set for 

optimal performance. 

 

 

 

iii. Recursive Feature Elimination (RFE) 

 

RFE produced the most pronounced improvements on the Edge-IIoT dataset. The GRU model achieved an impressive 

accuracy of 98.21%, further solidifying RFE's superiority. Other models, including BI-LSTM and LSTM, also saw 

substantial gains, achieving accuracies of 96.48% and 95.74%, respectively. RFE's ability to iteratively refine the 

feature set results in enhanced classification accuracy and robustness across various models. 
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Figure 84: Comparison of AI-based IDS models on different Wrapper-based Feature selection methods using Edge-IIoT 2022 

dataset 

 

4.4.3. Overall Impact of Feature Selection Methods 
 

Our comparative analysis underscores RFE as the superior feature selection technique in both datasets. On the N-

BaIoT dataset, RFE improved model accuracy by up to 5.34% over forward selection and up to 5.6% over backward 

selection, as shown in Figure 20. Similarly, on the Edge-IIoT dataset, RFE outperformed forward selection by 1.008 

to 1.013 times and backward selection by 1.030 to 1.050 times, as shown in Figure 21. These improvements were 
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particularly notable in complex models such as GRU, LSTM, and BI-LSTM, highlighting RFE's effectiveness in 

optimizing feature sets for advanced neural networks. In contrast, forward selection provided intermediate 

improvements, enhancing model performance but not matching RFE's effectiveness. Backward selection generally 

resulted in the lowest performance metrics, suggesting it may only be suitable for some model types, notably simpler 

ones. 

 

In conclusion, RFE consistently outperformed forward and backward selection methods, making it the most 

compelling feature selection technique for enhancing the accuracy and reliability of AI-based intrusion detection 

systems in IoT environments. This comprehensive evaluation of feature selection methods provides valuable insights 

for researchers and practitioners aiming to optimize AI models for complex detection tasks. 

 

5. Conclusion and Future Work 

This section encapsulates the study findings and outlines the potential scope for future research. 

5.1. Conclusion  

This study thoroughly examined the efficacy of various wrapper-based feature selection methods—forward selection, 

backward selection, and Recursive Feature Elimination (RFE) when applied to ten state-of-the-art AI-based Intrusion 

Detection Systems (IDSs) in Industrial IoT (IIoT) environments. Our results, derived from testing on the N-BaIoT and 

Edge-IIoT 2022 datasets, consistently demonstrated that RFE significantly outperforms forward and backward 

selection methods. Specifically, RFE enhanced model performance by optimizing the feature sets, leading to higher 

accuracy, precision, recall, and F1 scores. The Gated Recurrent Unit (GRU) model exhibited the best performance, 

achieving remarkable accuracy and balanced metrics across both datasets. This highlights RFE's capacity to improve 

the robustness and reliability of complex AI models, particularly in scenarios requiring precise detection of cyber-

attacks. Conversely, forward selection provided moderate improvements, while backward selection generally resulted 

in the lowest performance metrics, indicating its limited suitability for certain models, significantly simpler ones. 

Our comprehensive analysis underscores the critical role of feature selection in developing efficient, high-performing 

IDSs for IIoT networks. By focusing on relevant features and eliminating redundant ones, RFE enhances detection 

accuracy and reduces computational overhead, making it the most effective method for optimizing AI-based IDSs in 

complex IIoT environments. 

 

5.2. Future Work  

Future research will extend this work by exploring several avenues to enhance further the effectiveness and 

applicability of AI-based IDSs in IIoT environments: 

 

 Integration of Real-Time Data: Incorporating real-time data from live IIoT networks will provide a more 

dynamic and practical evaluation of IDS performance, ensuring the models can adapt to evolving threats and 

real-world conditions. 

 

 Hybrid Feature Selection Methods: Investigating the combination of wrapper-based and filter-based 

feature selection methods may yield even more efficient and effective feature sets, potentially enhancing 

model performance beyond what RFE alone can achieve. 

 

 Deployment in Edge and Fog Computing Environments: Evaluating the performance of AI-based IDSs 

in edge and fog computing scenarios will address the challenges of latency and resource constraints, making 

IDS deployment more practical for IIoT systems. 

 

 Enhancing Model Interpretability: Developing techniques to improve the interpretability of AI models 

will facilitate their acceptance and trustworthiness, enabling better understanding and management of the 

IDSs by network administrators. 
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 Exploring New AI Architectures: Examining the potential of emerging AI architectures, such as 

Transformer models, may provide insights into further improving detection capabilities and computational 

efficiency. 

 

 Longitudinal Studies: Conducting longitudinal studies to assess the long-term performance and adaptability 

of AI-based IDSs will ensure their sustainability and resilience against sophisticated, evolving cyber threats. 

 

By addressing these future directions, we aim to develop more robust, adaptive, and efficient IDS solutions, thereby 

enhancing the overall security and resilience of IIoT networks against a wide array of cyber threats. 
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Chapter 8: Conclusion, Future Work and Societal Applications 

 

This chapter summarizes the key findings of this research, highlighting its contributions to enhancing security and 

privacy in intrusion detection systems (IDS) using blockchain and AI-driven methodologies. Additionally, the chapter 

outlines the limitations of the study, proposes future research directions, and discusses the potential industrial and 

societal applications of the proposed framework. 

 

8.1. Conclusion  

 

The increasing integration of IoT in various domains has amplified the need for robust security mechanisms against 

cyber threats. This research proposed a hybrid blockchain-based intrusion detection system (IDS) leveraging AI-

driven models to enhance network security. The proposed framework incorporated federated learning-based CNN-

BiLSTM for anomaly detection, IBFT consensus for blockchain-based security, and Explainable AI (XAI) for model 

interpretability. The integration of Elliptic Curve Cryptography (ECC) and Zero-Knowledge Proofs (ZKP) ensured 

data confidentiality and privacy. Experimental evaluations demonstrated that the proposed IDS outperforms traditional 

security models in terms of detection accuracy, computational efficiency, and resilience to adversarial attacks. 

Comparative analysis against existing methodologies, including SAGBO-RSA, GBO-RSA, and ECC, highlighted the 

effectiveness of the proposed framework in reducing computational overhead while maintaining high security. 

 

Despite its advantages, this study has certain limitations, including dependency on computational resources, scalability 

challenges in large-scale deployments, and potential latency introduced by blockchain operations. However, these 

challenges pave the way for future research directions aimed at optimizing security and efficiency. The insights gained 

from this research contribute to advancing IDS mechanisms, ensuring robust security for next-generation IoT 

environments. 

 

8.2. Limitation of the study  

 

Although the proposed framework significantly enhances IoT security, it has certain limitations that need further 

investigation. These limitations are primarily associated with computational demands, scalability, and blockchain 

integration complexity. 

 

 The computational complexity of federated learning and deep learning-based IDS may require high-

performance hardware, limiting its deployment in resource-constrained environments. 

 The blockchain integration introduces latency, which may affect real-time intrusion detection efficiency in 

highly dynamic networks. 

 The scalability of the proposed framework remains a challenge when applied to large-scale IoT 

infrastructures with heterogeneous devices and dynamic network conditions. 

 The need for secure key management in ECC and ZKP implementations introduces an additional security 

overhead. 

 Explainable AI (XAI) techniques require further refinement to provide more intuitive and human-

understandable justifications for IDS decisions. 

 

8.3. Potential Industrial Application  

 

 

The proposed security framework has extensive industrial applications, addressing security, privacy, and intrusion 

detection challenges across multiple domains. Its integration of blockchain, AI, and cryptographic techniques ensures 

enhanced protection against cyber threats. 
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 Smart Healthcare Systems: Protects electronic health records (EHRs) and patient data from cyber threats 

by implementing blockchain-based access control and federated learning-powered anomaly detection to 

prevent unauthorized data modifications and breaches. 

 Autonomous Vehicles: Enhances cybersecurity in autonomous vehicle networks by securing vehicle-to-

vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, reducing risks of cyber hijacking and 

unauthorized data manipulations. 

 Critical Infrastructure Protection: Safeguards industrial control systems (ICS) and smart grid networks by 

detecting and mitigating cyber-physical attacks using AI-driven intrusion detection integrated with 

blockchain-based trust management mechanisms. 

 Financial Sector Security: Prevents financial fraud, identity theft, and insider threats by leveraging 

federated learning-based anomaly detection and blockchain-based transaction security, ensuring transparency 

and secure digital payments. 

 Smart Cities and IoT Networks: Enhances the security of interconnected urban infrastructure by deploying 

decentralized, AI-powered intrusion detection for smart traffic systems, surveillance networks, and public 

utilities. 

 Supply Chain Security: Ensures data integrity and transparency in logistics and supply chain management 

by employing blockchain for secure transaction records and AI-driven anomaly detection to detect fraudulent 

activities. 

 Military and Defense Networks: Strengthens cybersecurity in defense communication systems by using 

AI-driven threat intelligence and blockchain-based encrypted communication protocols to prevent cyber 

espionage and unauthorized data access. 

 

 

8.4. Future Work 

 

While this research provides a novel hybrid security framework, several areas require further exploration. Future work 

will focus on enhancing the proposed model's efficiency, scalability, and real-time adaptability. 

 Lightweight AI Models: Develop resource-efficient AI-driven IDS models to support low-power IoT devices 

without compromising detection accuracy. 

 Optimized Blockchain Consensus: Improve blockchain efficiency by designing a lightweight consensus 

mechanism to minimize computational overhead and transaction latency. 

 Adaptive Intrusion Response: Implement self-healing mechanisms using reinforcement learning to 

autonomously mitigate detected threats in real-time. 

 Cross-Domain Security Framework: Extend the proposed model to secure multi-cloud and edge computing 

environments with decentralized trust management. 

 Enhanced XAI Techniques: Develop more interpretable AI models to improve transparency and 

trustworthiness in IDS decision-making processes. 

 

 

 

8.5. Societal Applications 

 

Beyond industrial implementations, the proposed framework significantly contributes to societal cybersecurity 

by addressing privacy concerns, securing critical data, and ensuring safer digital environments across various 

sectors. 

 Privacy Protection in Smart Homes: Mitigates unauthorized access and cyber threats in IoT-enabled smart 

homes by deploying AI-driven intrusion detection and blockchain-based access control mechanisms, 

ensuring secure automation and data privacy. 

 Secure Public Health Data Management: Safeguards sensitive healthcare records and epidemiological data 

from cyber breaches using cryptographic techniques, ensuring compliance with data protection regulations 

and enhancing trust in healthcare systems. 
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 Digital Identity Protection: Enhances security in digital identity management by using blockchain-based 

decentralized authentication, reducing risks of identity theft, data breaches, and unauthorized access to online 

services. 

 Cybersecurity Awareness and Education: Supports cyber literacy initiatives by providing an explainable 

AI-based security model, helping individuals and organizations understand and mitigate cybersecurity threats 

effectively. 

 Emergency Communication Systems: Strengthens disaster response networks by ensuring secure and 

resilient communication infrastructure using blockchain and AI-based anomaly detection for rapid and 

uninterrupted emergency response. 

 Ethical AI and Decision Transparency: Promotes fairness and accountability in AI-driven security 

solutions by integrating explainable AI techniques, ensuring transparent decision-making processes in 

cybersecurity applications. 

 Child Online Safety: Protects minors from cyber threats by implementing AI-driven monitoring systems in 

smart devices, detecting malicious activities, and preventing exposure to harmful digital content. 
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