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ABSTRACT

The increasing adoption of Internet of Things (IoT) technologies has introduced significant
security and privacy challenges, necessitating the development of robust Intrusion Detection
Systems (IDS). This thesis presents a comprehensive study on enhancing IDS mechanisms for [oT
environments by integrating Artificial Intelligence (Al) and blockchain-based security
frameworks. The research objectives include conducting a comprehensive literature review of
existing IDS approaches, developing Al-driven models for anomaly detection, designing a
blockchain-based framework to enhance security and privacy, and performing a comparative

analysis with state-of-the-art techniques.

To address the challenges of anomaly detection in [oT networks, this research proposes multiple
Al-driven IDS models. The first model, Transfer Learning-Enabled Hybrid Model (TL-BILSTM
IoT), leverages transfer learning with a hybrid CNN-BiLSTM architecture to detect botnet attacks.
The second model, Deep Learning-Enabled Intrusion Detection System for Industrial IoT,
combines CNN and Gated Recurrent Units (GRU) for improved detection in IloT environments.
The third model, Alpha-Net, integrates CNN and GRU to ensure dependable and trustworthy
intrusion detection with rigorous statistical validation. Additionally, an Explainable Al-based IDS,
Cyber-Sentinet, is introduced to enhance interpretability using Shapley Additive Explanations

(SHAP), fostering transparency in decision-making.

To strengthen security and privacy in IDS, this research develops a blockchain-based
framework incorporating Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA),
and SHA-512 for enhanced data integrity and authentication. The framework employs a hybrid
SADE algorithm for cryptographic key optimization, the Practical Byzantine Fault Tolerance
(PBFT) consensus mechanism for secure transactions, and the Interplanetary File System (IPFS)
for scalable off-chain storage. A Genetic Algorithm is applied to optimize IDS performance, while

an XGBoost-based model is designed to detect intrusions in heterogeneous IoT environments.

Furthermore, this thesis explores the application of blockchain in IoT healthcare by proposing
a decentralized system for secure medical certificate management. The system integrates Fully

Homomorphic Encryption (FHE) and Non-Interactive Zero-Knowledge Proofs (NIZKPs) to



ensure privacy-preserving computations and verification, facilitating trustworthy data sharing

among healthcare entities.

A rigorous comparative analysis is conducted, evaluating the proposed IDS models against
state-of-the-art techniques using benchmark datasets such as N BaloT and Edge-IloT 2022.
Performance metrics, including accuracy, recall, precision, Fl-score, and computational
efficiency, demonstrate the superiority of the proposed models in detecting intrusions while

ensuring security and scalability.

This thesis contributes significantly to advancing IDS for IoT by integrating Al, blockchain,
and Explainable Al methodologies. The findings provide a strong foundation for future research
in securing IoT ecosystems, emphasizing the importance of interpretable Al and decentralized
security mechanisms. The conclusions highlight key insights and outline directions for further
enhancing IDS frameworks, including the exploration of federated learning and quantum-resistant

cryptographic techniques.
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Chapter 1: Introduction
1. Introduction

The Internet of Things (IoT) transforms how devices interact, communicate, and make autonomous decisions. IoT
applications have permeated various sectors, from smart homes and healthcare to industrial automation, enabling real-
time data collection, monitoring, and control [1]. However, [oT systems' vast and decentralized nature exposes them
to a myriad of security and privacy challenges, making them susceptible to numerous cyberattacks. Intrusion detection
systems (IDS) are a primary line of defense for identifying and mitigating malicious activities within IoT networks
[2]. Despite various IDS models, traditional IDS mechanisms often fail to address the complexities of modern IoT
environments due to their static nature, limited scalability, and inability to adapt to the heterogeneity of IoT devices.

With the advent of advanced technologies like Artificial Intelligence (AI) and Blockchain, there is a significant
opportunity to redefine the security frameworks for IoT systems. Al-driven models provide intelligent and adaptive
capabilities, allowing for more accurate and efficient detection of anomalies. On the other hand, blockchain introduces
a decentralized and immutable ledger for secure data storage and access control, making it a suitable technology to
enhance trust and transparency in IDS. This research explores the integration of Al and blockchain technology to
develop a novel IDS framework, aiming to provide enhanced security, privacy, and scalability for IoT environments.

1.1. Motivation

The exponential growth in deploying Internet of Things (IoT) devices, expected to surpass 75 billion by 2025, has
revolutionized various industries, including healthcare, manufacturing, transportation, and smart cities [3]. This surge
in IoT adoption has led to significant innovations and the emergence of new business models. However, it has also
introduced considerable security challenges, as increased connectivity creates new vulnerabilities. IoT devices, often
operating in resource-constrained and hostile environments, are susceptible to various cyberattacks, including
Distributed Denial of Service (DDoS), Man-in-the-Middle (MitM) attacks, and data breaches. Reports suggest that
IoT devices face an average of over 5,000 attacks per month, leading to severe disruptions in critical services and
operations [4].

Furthermore, traditional security frameworks designed for conventional networks must be more suited to address the
specific needs of IoT systems, which require real-time communication and support for diverse protocols and
constrained resources. The limitations of existing security mechanisms highlight the need for an advanced Intrusion
Detection System (IDS) framework tailored to the unique challenges of IoT environments. Integrating emerging
technologies such as artificial intelligence (AI) and blockchain has shown promising potential in addressing these
challenges. Al can enhance IDS by enabling the detection of sophisticated attack patterns, while blockchain provides
a secure, decentralized infrastructure for data integrity, traceability, and access control. This research seeks to bridge
the existing security gap by proposing a novel Al-driven IDS framework integrated with blockchain technology to
strengthen security, privacy, and resilience in IoT networks.

1.2. Internet of Things

The Internet of Things (IoT) is a network of physical objects, referred to as "things," embedded with sensors, software,
and other technologies to connect and exchange data with other devices and systems over the Internet [5]. [oT enables
the automation of processes and facilitates seamless communication between devices without human intervention,
creating an interconnected ecosystem of smart devices. As IoT finds applications in various fields such as Industrial
IoT (IIoT), the Internet of Vehicles (IoV), smart medical systems, smart homes, and smart grids, the number and
complexity of [oT applications and their centralized data management platforms have increased [6]. This is shown in
Figure 1.1.

The key characteristics of IoT include:

e  Connectivity: IoT devices are connected through various communication protocols, enabling them to interact
and exchange data.

e Scalability: The ability of IoT systems to scale and support billions of devices without compromising
performance.
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o Intelligence: [oT devices can collect, analyze, and act on data using Al and machine learning algorithms.
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Figure 1.1: Internet of Things mechanism: Applications, devices and data centers

1.2.1. Architecture of IoT

The architecture of 10T is typically structured into multiple layers, each with distinct functionalities to support the
end-to-end operations of IoT applications, as shown in Table 1.1. The basic [oT architecture can be divided into the
following layers:
a) Perception Layer
e Components: Sensors, actuators, RFID tags, and other data acquisition devices.
e  Functionality: This layer captures data from the physical environment, such as temperature, humidity,
motion, and other environmental conditions. Sensors convert physical signals into digital signals, which are
then transmitted to the upper layers for processing.

b) Network Layer

e Components: Gateways, routers, communication protocols (e.g., Wi-Fi, Zigbee, Bluetooth).
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e Functionality: This layer is responsible for transmitting data collected by the perception layer to other
devices, cloud servers, or applications. It employs various networking technologies and protocols to ensure
reliable and secure communication.

¢) Middleware Layer
e Components: [oT platforms, data processing units.
e Functionality: The middleware layer provides a data aggregation, filtering, and processing platform. It
handles the interactions between different loT devices and provides an interface for application development.
d) Application Layer
e Components: [oT applications (smart homes, healthcare monitoring, industrial automation).
e Functionality: This layer provides end-user services and interfaces for IoT applications, enabling users to

interact with the system and make informed decisions based on the data generated by IoT devices.

Table 1.1: IoT Architecture Overview

Layers Component Functionality

Perception Sensors, Actuators Data collection and environmental
Layer monitoring

Network Layer Gateways, Routers, Data transmission and communication
Protocols

Middleware IoT Platform, Data Data aggregation, filtering, and processing
Layer Processing

Application IoT Applications, User User interaction and service delivery
Layer Interface

1.2.2. Industrial IoT

Industrial IoT (ITIoT) refers to the application of IoT technology in industrial settings, including manufacturing, supply
chain management, logistics, and healthcare. 1loT devices monitor and control industrial operations, leading to
improved efficiency, reduced downtime, and enhanced safety [7]. Unlike general IoT, IloT focuses on mission-critical
applications that require high reliability, low latency, and robust security.

a) Applications of IloT

e Smart Manufacturing: Real-time monitoring and control of production processes to optimize resource
utilization and reduce waste.

e Predictive Maintenance: Using IloT devices to monitor the health of equipment and predict failures before
they occur, reducing downtime and maintenance costs.

e  Supply Chain Optimization: Real-time tracking of goods and assets throughout the supply chain to improve
logistics and inventory management.

b) Security Challenges in IToT
e Data Sensitivity: [ToT systems often handle sensitive information about industrial processes and proprietary
technologies. A breach can result in significant financial losses and damage to reputation.

e Complex Infrastructure: The integration of legacy systems with modern IoT devices creates a
heterogeneous environment that is challenging to secure.
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e High Stakes of Attack: Cyberattacks targeting I1oT systems can have catastrophic consequences, including
equipment damage and production shutdowns.

1.3. Intrusion Detection System

An Intrusion Detection System (IDS) is a security mechanism designed to detect, analyze, and respond to a network's
unauthorized activities or malicious behavior [8]. IDS helps safeguard network resources by monitoring system
activities, analyzing patterns, and generating alerts in response to potential threats, as shown in Figure 1.2. In the
context of the Internet of Things (IoT) and the Industrial Internet of Things (IloT), IDS plays a critical role in
protecting the network by providing real-time monitoring and anomaly detection and preventing attacks that disrupt
sensitive operations.

Firewall
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Figure 1.2: Working of Intrusion Detection System

1.3.1. Type of Intrusion Detection System

Various IDS types differ in their monitoring scope, advantages, and limitations. Table 1.2 presents a comparative
analysis of different IDS types, including Network-based IDS (NIDS), Host-based IDS (HIDS), and their specialized
variants [9-10]. The comparison highlights key characteristics, strengths, and challenges associated with each IDS
type, aiding in the selection of an appropriate IDS for specific security requirements. Intrusion Detection Systems can
be classified into three main categories based on their deployment and monitoring scope:

a) Network-based IDS (NIDS)

Monitors network traffic by capturing and analyzing packet data. NIDS is deployed at strategic points within the
network, such as gateways, routers, and firewalls [18]. It helps detect network-level attacks, including:

e Signature-based NIDS: Detects attacks by comparing network traffic against predefined attack signatures

or patterns. It is highly effective in identifying known threats like SQL injection or port scanning but cannot
detect zero-day attacks.
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e Anomaly-based NIDS: Establishes a baseline of normal network behavior and flags deviations as potential
threats. It can detect unknown attacks or new patterns but may produce false positives.

e Protocol-based NIDS: Monitors and validates specific protocol behavior (e.g., HTTP, FTP) for compliance
and consistency. It helps detect protocol misuse or violations, such as incorrect HTTP requests or FTP
commands.

b) Host-based IDS (HIDS)

Monitors system-level activities on individual devices, such as file modifications, process creation, and system logs
[19]. HIDS provides detailed information about the internal state of the host, making it effective in detecting attacks
like:

e File Integrity Monitoring (FIM): Tracks changes in critical system files and directories to detect
unauthorized modifications or malware infections.

e Log-based HIDS: Analyzes system logs for suspicious activities like failed login attempts, privilege
escalation, or process anomalies.

e Behavior-based HIDS: Monitors the behavior of applications and processes to detect deviations from the
expected behavior, such as unusual memory usage or process execution.

¢) Hybrid IDS

It combines the capabilities of both NIDS and HIDS to monitor network traffic and host activities comprehensively.
Hybrid IDS is designed to detect sophisticated attacks that may leverage both network and system vulnerabilities [20]
. It can be further categorized into:

o Distributed IDS: Uses multiple IDS instances deployed at various points in the network to provide a
coordinated approach to intrusion detection. It is effective in detecting large-scale attacks like botnets.

e Cross-layer IDS: Monitors interactions across different layers of the protocol stack (e.g., network, transport,
application) to detect multi-layer attacks.

o Federated IDS: Shares threat intelligence across different IDS instances or organizations to improve
detection capabilities and respond to emerging threats.

Table 1.2: Comparison of IDS Types

IDS Type Monitoring Scope Advantages Limitation
NIDS Network Traffic Real-time detection, wide Limited to network-level attacks
scope
HIDS Host/System Activities Detailed host-level insights High resource consumption
Hybrid IDS Network and Host Comprehensive monitoring Increased complexity

Anomaly-based Network Behavior Detect new/unknown attacks High false-positive rate
NIDS

Signature-based Network Packets Accurate detection of known Ineffective against zero-day
NIDS attacks attacks

File Integrity HIDS Host files and Detect unauthorized file change Can be resource-intensive
Directories

Behavior-based Host Applications Detects application anomalies Complex to configure and

HIDS maintain
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1.3.2. Type of Cyberattack in IoT/IloT

The proliferation of interconnected devices in IoT and IloT ecosystems has introduced new attack surfaces and
vulnerabilities. Cyberattacks in IoT/IIoT environments can disrupt operations, compromise sensitive data, and pose
safety risks. The following are common types of intrusions targeting loT/IloT, along with their impact on
Confidentiality, Integrity, and Availability (CIA) triad:

e Distributed Denial of Service (DDoS): An attacker overwhelms a network or device with excessive traffic,
disrupting services and causing downtime. DDoS attacks often exploit the limited computational resources
of IoT devices.

e  Man-in-the-Middle (MitM): An attacker intercepts and manipulates communication between two parties
without their knowledge. MitM attacks compromise data integrity and confidentiality.

e Sybil Attack: An attacker creates multiple fake identities to manipulate a peer-to-peer network, undermining
the integrity and trust of the system.

e Data Breaches: Unauthorized access to sensitive data stored in IoT devices or transmitted over the network
results in exposure or loss of personal information.

e Replay Attack: An attacker captures and replays valid data packets or authentication information to gain
unauthorized access to a network or device.

e Eavesdropping: An attacker listens to private communication between [oT devices, compromising
confidentiality and potentially gathering sensitive information.

e Jamming Attack: An attacker disrupts wireless communication between IoT devices by emitting
interference signals, causing a loss of connectivity and availability.

e Physical Tampering: Direct physical access to IoT devices enables attackers to alter hardware or software
configurations, compromising device integrity.

e Firmware Manipulation: An attacker modifies the firmware of IoT devices to introduce malicious
functionality or turn off security features.

e Routing Attacks (e.g., Wormhole, Sinkhole): An attacker disrupts the routing protocol in IoT networks,
causing misrouting of packets and network partitioning.

e  Malware Infections: [oT devices can be infected with malware like botnets, ransomware, or spyware,
enabling attackers to launch attacks or steal data.

e Privilege Escalation: An attacker gains higher privileges on an IoT device than intended, enabling
unauthorized actions and access to restricted areas.

e Firmware Reprogramming: An attacker installs malicious firmware on an [oT device to alter its behavior
or bypass security mechanisms.

o Sensor Data Manipulation: An attacker alters sensor data in IoT environments, resulting in incorrect
readings and potentially dangerous decisions.

e Side-channel Attacks: An attacker exploits side-channel information (e.g., power consumption,
electromagnetic emissions) to extract sensitive data from IoT devices.

Cyberattacks pose significant threats to the confidentiality, integrity, and availability (CIA) of IoT systems, impacting
different layers of the IoT architecture. These attacks exploit vulnerabilities in network communication, data storage,
and device operations, leading to severe security and privacy risks. Table 1.3 provides a detailed comparison of various
cyberattacks, their impact on the CIA triad, the affected IoT layers, potential countermeasures, and real-world
examples. Understanding these threats is crucial for designing robust security mechanisms to protect IoT ecosystems
from evolving cyber risks.
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Table 1.3: Impact of Cyberattacks on CIA Triad

Cyberattack Confidentiality Integrity Availability | Affected IoT Layer Countermeasure Example
DDoS Low Low High Network Layer Rate limiting, anomaly Mirai Botnet
detection, access control Attack
lists
MitM High High Medium Communication/Net Encryption, mutual Session
work Layer authentication, Secure Hijacking
protocols
Sybil Attack Medium High Medium Application/Networ Identity validation, trust Blockchain
k Layer management, Sybil consensus
detection algorithm tampering
Data Breaches High High Low Application Layer Data encryption, access Stolen
control policies, secure credentials
storage leading to
data exposure
Replay Attack Medium High Medium Communication Time-stamp mechanism, Replaying
Layer nonce-based authentication | authenticatio
n tokens to
gain access
Eavesdropping High Low Low Communication Encryption, network Wireless
Layer segmentation, intrusion sniffing
detection using rogue
access points
Jamming Attack Low Low High Physical Layer Frequency hopping, spread Jamming
spectrum communication, radio
signal shielding frequencies
in wireless
networks
Physical Medium High Medium Device/Physical Tamper-resistant hardware, | Unauthorized
Tampering Layer physical security, sensor access to [oT
monitoring devices
Firmware High High High Device Layer Secure firmware updates, Modifying
Manipulation integrity checks, digital firmware to
signature introduce
backdoors
Routing Attack Medium High High Network Layer Secure routing protocols, Routing table
trust based mechanism, manipulation
monitoring in [oT
networks
Malware High High Medium Device/Network Anti-Malware solutions, IoT devices
Infections Layer sandboxing, IDS/IPS infected with

malware
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Privilege High High Medium Device/Application Role-based access control Gaining
Escalation Layer (RBAC), vulnerability admin
patching privileges
through
unpatched
firmware
Firmware High High Medium Device Layer Secure boot, cryptographic Installing
Reprogramming checks, firmware signing malicious
firmware to
modify
behavior
Sensor Data Medium High Medium Sensing Layer Data validation, sensor Manipulating
Manipulation fusion, outlier detection sensor
readings
Side-channel High Medium Low Device/Physical Power analysis mitigation, Extracting
Attacks Layer shielding, constant-time Cryptographi
algorithms c keys
through
power
analysis

1.4. Security and Privacy Issues in IoT

IoT security and privacy issues are primarily related to the heterogeneous nature of devices, lack of standardized
protocols, and constrained computational resources. These issues can be categorized as follows:

Data Confidentiality: Ensuring that sensitive information is only accessible to authorized entities. loT
devices often lack robust encryption mechanisms, making them vulnerable to data breaches.

Data Integrity: Protecting data from unauthorized modifications. Data tampering can occur during device
transmission, leading to incorrect or misleading information.

Authentication and Access Control: Verifying the identity of devices and users before granting access to
resources. Weak authentication mechanisms can lead to unauthorized access and control of IoT devices.
Data Privacy: Protecting personal and sensitive information from being disclosed. Privacy concerns arise
due to IoT devices' extensive data collection capabilities, which may include personal health information,
location data, and usage patterns.

Secure Communication: Ensuring data transmitted between IoT devices and the cloud is secure and tamper-
proof. Using lightweight encryption protocols and secure communication channels is crucial to maintaining

data integrity and confidentiality.

This research proposes a comprehensive security framework that leverages blockchain and Al technologies to address

these challenges effectively, providing enhanced security and privacy in IoT networks.

1.5. Background on Blockchain

1.5.1. Overview of Blockchain Technology

Blockchain technology is a decentralized, distributed ledger system that records transactions securely and
transparently across a network of nodes. It was first conceptualized as the underlying technology for Bitcoin in 2008
[11]. However, its potential applications have since expanded to include various industries such as finance, healthcare,
supply chain management, and the Internet of Things (IoT). A blockchain consists of a series of blocks, each
containing a list of transactions cryptographically linked to the previous block. This ensures data integrity and makes
the blockchain resistant to unauthorized modifications.
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Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data [12]. This sequential
structure forms a “chain” of blocks, where each block depends on the previous block's information. This design makes
it computationally infeasible to alter a recorded transaction without modifying all subsequent blocks, ensuring data
immutability and security [13]. Blockchain operates in a peer-to-peer (P2P) network where each node maintains a
copy of the entire ledger, and consensus protocols such as Proof of Work (PoW) and Proof of Stake (PoS) are used to
validate and add new transactions to the blockchain.

1.5.2. Blockchain Characteristics and Features

Blockchain technology possesses several distinctive features that make it an effective solution for enhancing security
and privacy in various applications, particularly in IoT environments:

e Immutability: Once data is recorded in a blockchain, it is cryptographically secured and cannot be altered
without the consensus of most nodes in the network. This immutability ensures that the integrity of the data
remains intact over time.

e Decentralization: Blockchain eliminates the need for a central authority or intermediary by distributing data
and control across all participating nodes. This decentralized nature enhances security by reducing the risk
of single points of failure.

e Transparency: Every transaction on the blockchain is visible to all nodes, promoting transparency and
accountability. This feature is particularly beneficial in multi-stakeholder environments, such as supply
chains, where data integrity and trust are critical.

e  Traceability: Blockchain provides a complete audit trail of all transactions, enabling data traceability from
its origin to its current state. This feature is crucial for healthcare and supply chain management applications,
where tracking the provenance of data and products is essential.

e Consensus Mechanisms: Blockchain employs consensus protocols, such as PoW, PoS, and Practical
Byzantine Fault Tolerance (PBFT), to achieve agreement on the validity of transactions across the network.
These mechanisms ensure that only valid transactions are recorded in the ledger, preventing fraudulent
activities.

1.5.3. Types of Blockchain

Blockchain technology can be broadly classified into three main categories based on its architecture, governance
model, and level of access: Public Blockchain, Private Blockchain, and Consortium or Federated Blockchain [14].
Each type of blockchain offers unique characteristics and serves different use cases depending on the level of
decentralization, transparency, and control required. Table 1.4 provides a comparative analysis of these blockchain
types, highlighting key parameters such as transparency, privacy, trust models, and typical use cases. Understanding
these differences helps in selecting the appropriate blockchain type for various applications, ranging from
cryptocurrencies and enterprise solutions to supply chain management and financial services. Blockchain networks
can be categorized into permissioned and permissionless based on access control, governance, security, and scalability
[15]. Permissioned blockchains restrict access to authorized participants, offering higher privacy and efficiency,
making them suitable for enterprise applications. In contrast, permissionless blockchains are open to anyone, ensuring
decentralization, transparency, and security, commonly used for cryptocurrencies and decentralized applications
(DApps). Table 1.5 provides a comparative analysis of these two blockchain types, highlighting their key
characteristics, advantages, limitations, and typical use cases.

a) Public Blockchain

A public blockchain is a decentralized network where anyone can participate, read, and write transactions. It is
characterized by its openness and permissionless nature, meaning any user can join the network without prior approval.
Participants in a public blockchain can freely interact with the network, participate in the consensus process, and
validate transactions.

i) Characteristics:
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e Permissionless Access: Anyone can join the network and participate in the consensus process.

e Decentralized Governance: All participants make decisions collectively, with no single entity having control
over the network.

e High Transparency: All transaction records are visible to the public, ensuring high transparency.

e Immutability and Security: Transactions, once recorded on the blockchain, cannot be altered or deleted,
making the network resistant to tampering.

e Consensus Mechanisms: Public blockchains typically utilize consensus mechanisms such as Proof of Work
(PoW) or Proof of Stake (PoS) to achieve consensus and validate transactions.

ii) Use Cases:

e  Cryptocurrencies such as Bitcoin and Ethereum.
e  Decentralized applications (DApps) that require high transparency and trustlessness.
e  Public ledgers for asset tracking, digital identity management, and open financial systems.

iii) Limitations:

e  Scalability and Performance: Public blockchains often face scalability and transaction throughput issues due
to the high number of participants and complex consensus mechanisms.

e Energy Consumption: Mechanisms like PoW require significant computational resources, making them
energy-intensive.

b) Private Blockchain

A private blockchain, also known as a permissioned blockchain, operates within a closed network where only
authorized participants can access and interact with the blockchain. It is governed by a central authority or organization
that controls who can join the network and what actions they can perform.

i) Characteristics:

e Permissioned Access: Participants are pre-approved and must meet specific criteria to join the network.

o Centralized Control: A central authority or consortium of organizations governs the network and enforces
policies.

e Enhanced Privacy: Since the network is restricted, private blockchains offer greater transaction privacy and
confidentiality.

e Consensus Mechanisms: Private blockchains often use consensus mechanisms like Practical Byzantine Fault
Tolerance (PBFT), Raft, or Delegated Proof of Stake (DPoS), which are more efficient and require less
computational power than PoW or PoS.

ii) Use Cases:
e Enterprise applications include supply chain management, asset tracking, and inter-organizational
collaborations.
o Financial services where data privacy and regulatory compliance are critical.
e Healthcare systems that require secure and private data sharing among trusted parties.

iii) Limitations:
e Reduced Decentralization: The reliance on a central authority reduces the level of decentralization and can
lead to single points of failure.
e Limited Transparency: Since access is restricted, transparency is lower compared to public blockchains.

¢) Consortium or Federated Blockchain

A federated consortium blockchain is a hybrid model where a group of pre-selected organizations collaboratively
manage the blockchain network. It balances the complete decentralization of public blockchains and the restricted
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access of private blockchains. In a consortium blockchain, multiple entities maintain the network and validate
transactions.

i) Characteristics:

Partial Decentralization: The network is decentralized to the extent that no single entity has complete control;
however, only a selected group of participants can validate transactions.

Collaborative Governance: The member organizations make decisions through mutual agreement, promoting
shared governance and collaboration.

Higher Scalability: Due to the limited number of participants, consortium blockchains can achieve higher
scalability and faster transaction processing than public blockchains.

Consensus Mechanisms: Consortium blockchains often utilize consensus mechanisms like PBFT or Voting-
based algorithms, which are more efficient in speed and resource consumption.

ii) Use Cases:

e Supply chain management, where multiple organizations (e.g., manufacturers, suppliers, and logistics
providers) collaborate to ensure the traceability and authenticity of products.
e Financial consortia for cross-border payments and inter-bank settlements.

e  Multi-organization collaborations in healthcare, where patient data must be securely shared among trusted

parties.

iii) Limitations:

e Complex Governance Structure: Managing a consortium blockchain can be challenging due to the need for

mutual agreement and coordination among multiple parties.

e Lower Transparency: Like private blockchains, consortium blockchains have restricted access, which can

limit transparency.

Table 1.4: Types of Blockchain

Parameter Public Blockchain Private Blockchain Consortium (Federated Blockchain)
Access Control Permissionless: Open to Permissioned: Restricted to Permissioned: Restricted to selected
anyone authorized participants group of organization
Decentralization High Low Partial decentralized among
consortium members
Governance Decentralized: Governed by Centralized controlled by a Collaborative governance among
the community single organization member organizations
Consensus Proof of Work(PoW), Proof Practical Byzantine Fault PBFT, voting-based consensus
Mechanism of Stake (PoS), Proof of Tolerance (PBFT), Raft, mechanisms
Authority (PoA) DPoS
Transaction Lower transaction speed due | Higher transaction speed due Higher transaction speed due to
Speed to public consensus to fewer participants limited participants
Scalability Limited scalability High scalability within Medium scalability (better than public,
private environments but lower than private)
Transparency High Transparency: Anyone Low transparency: Limited Medium transparency based on
can view transactions to authorized participants organizational policies
Security High security due to Lower security if central Medium security with shared
decentralized nature authority is compromised responsibility among members
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Privacy Low privacy: Data is visible High privacy: Data is Medium privacy: Visible to member
to all accessible to authorized organizations
participants only
Immutability High immutability: Once Medium immutability can be Medium immutability: shared
recorded, data cannot be modified with authority consensus to modify data
altered approval
Resource High computational Lower resources required Moderate resources required based on
Requirements resources required for due to centralized control the number of participants
consensus
Trust Model Trustless: No need for pre- Trusted: Based on authority Partially trusted: Mutual trust among
established trust or central organization organizations
Typical Use Cryptocurrencies, public Enterprise applications, Supply chain management, cross-
Cases records, DApps internal data sharing, border payments, healthcare
financial services collaboration
Consensus Probabilistic finality Deterministic finality Deterministic finality based on
Finality consortium rules
Energy High (PoW), Moderate (PoS) | Low Low to moderate based on consensus
Consumption mechanism used
Examples Bitcoin, Ethereum, Polkadot | Hyperledger Fabric, R3 IBM Food Trust, TradeLens(Maersk-
Corda, Quorum IBM), B3i Insurance

1.5.4 Permissioned vs. Permissionless Blockchains

In addition, the primary categories of blockchains can also be classified as Permissioned or Permissionless based on
the access control mechanisms and governance models.

a) Permissionless Blockchains

A permissionless blockchain, also known as a public blockchain, is an open and decentralized ledger where any
participant can join and participate in the network without prior approval. These blockchains are characterized by their
high degree of transparency and censorship resistance. Well-known examples of permissionless blockchains include
Bitcoin and Ethereum.

i) Characteristics:

e Decentralized and open to all participants.
e High level of transparency and trustless consensus.
e  Utilizes consensus mechanisms like Proof of Work (PoW) or Proof of Stake (PoS).

ii) Suitability for IoT:

Permissionless blockchains are less suitable for resource-constrained IoT devices due to the high computational and
energy costs associated with consensus mechanisms like PoW. However, they can be used in [oT environments that
require high transparency and public verifiability, such as supply chain management or public health monitoring.

iii) Use Cases in IoT:

e Decentralized Device Authentication: Public blockchains can be used to create a decentralized identity
management system for IoT devices, ensuring that only authenticated devices can interact with each other.
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e Data Provenance: IoT devices can use permissionless blockchains to record provenance, providing
transparent and tamper-proof sensor data with valuable history for applications like food safety and
environmental monitoring.

b) Permissioned Blockchains

A permissioned blockchain is a private or consortium blockchain restricting access to specific participants. Only
authorized nodes can join the network and participate in consensus and data validation. Permissioned blockchains
offer more control over network access and provide greater flexibility for implementing customized governance and
access control policies.

i) Characteristics:

e Restricted access, where participants must obtain permission to join.
e Lower computational costs and faster transaction processing compared to permissionless blockchains.
e Enhanced privacy and control over data sharing.

ii) Suitability for IoT:

Permissioned blockchains are better suited for [oT environments, as they can be tailored to the requirements of the
specific use case, such as managing a network of smart devices within a factory or healthcare setting. They provide a
secure environment for sensitive applications where data confidentiality and restricted access are critical.

iii) Use Cases in IoT:

e  Smart Healthcare Systems: A permissioned blockchain can securely store and share patient data between
authorized medical devices, healthcare providers, and insurance companies, ensuring data privacy and
compliance with regulations like HIPAA.

e Industrial IoT (IloT): In manufacturing environments, a permissioned blockchain can manage access to
critical control systems, monitor device behavior, and enforce security policies across a distributed network
of sensors and actuators.

Table 1.5: Permissioned vs. Permissionless Blockchains

Parameter Permissioned Blockchain Permissionless Blockchain
Access Control Restricted access: Only authorized Open access: Anyone can join the network
participants
Consensus PBFT, Raft, DPoS PoW, PoS, PoA
Mechanism
Decentralization Low to medium: controlled by a central High: fully decentralized without central control

authority or consortium

Governance Centralized or consortium-based Community-driven governance

governance
Transaction Speed | High speed: Fewer nodes and participants Lower speed: High number of participants impacts

involved in consensus transaction speed

Scalability High: can be scaled to meet specific Low to medium: Limited by consensus mechanisms
enterprise needs like PoW

Security Lower security if central authority is High security due to decentralized consensus

compromised

13| Page



Transparency Limited transparency: Depends on policies High transparency: All transaction records are
and access permissions publicly visible
Privacy High privacy: Data is accessible only to Low privacy: Data is visible to all participants
authorized participants
Immutability Medium immutability: controlled by High immutability: Once recorded, cannot be altered
authority
Trust Model Trusted model: based on known participants | Trustless model: No need for pre-established trust
Energy Low energy consumption due to efficient High energy consumption (e.g., PoW in Bitcoin)
Consumption consensus
Use Cases Enterprise applications, healthcare, financial | Cryptocurrencies, decentralized applications (DApps)
services
Governance Model | Centralized or shared among consortium Decentralized community governance
members
Examples Hyperledger Fabric, Quoru, R3 Corda Bitcoin, Ethereum, Polkadot

1.5.5. Application of Blockchain Technology

Blockchain technology has found applications across various sectors due to its security, transparency, and traceability
features. Some prominent applications include:

Finance and Banking: Blockchain is widely used in the finance sector for creating digital currencies (e.g.,
Bitcoin), enabling secure and transparent cross-border payments, and implementing smart contracts for
automated financial transactions. It reduces the need for intermediaries and enhances the speed and security
of transactions.

Healthcare: In healthcare, blockchain securely stores and shares patient health records, ensuring data privacy
and integrity. It also facilitates the traceability of drugs and medical supplies, reducing the risk of counterfeit
products.

Supply Chain Management: Blockchain provides end-to-end visibility of the supply chain by recording
every transaction from the origin to the delivery of products. It enables real-time tracking and verification of
goods, reducing fraud and enhancing the efficiency of logistics operations.

Identity Management: Blockchain creates decentralized identity management systems that enable users to
control their digital identities securely. This prevents identity theft and unauthorized access to sensitive
information.

Energy and Utilities: Blockchain is used in energy markets to facilitate peer-to-peer energy trading, optimize
grid management, and support renewable energy initiatives. It provides a transparent and secure platform for
tracking energy production and consumption.

Internet of Things (IoT): Blockchain addresses critical challenges in IoT, such as secure data exchange,
device authentication, and trust management. It enables the creation of decentralized IoT networks where
devices can interact autonomously and securely without relying on a central authority.

1.5.6. Blockchain in IoT security

The integration of blockchain technology into IoT environments offers significant advantages in overcoming
traditional security challenges. IoT networks are inherently vulnerable due to their heterogeneous nature, limited
computational resources, and many connected devices [16]. Conventional security frameworks often struggle to
protect adequately against threats such as data breaches, unauthorized access, and distributed denial-of-service
(DDoS) attacks. With its decentralized and cryptographic foundation, blockchain offers a promising solution to
mitigate these challenges and enhance overall security.
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Secure Data Exchange: Blockchain facilitates secure data exchange among IoT devices by providing a
decentralized platform for cryptographically signing and verifying data transactions. This prevents
unauthorized entities from intercepting or tampering with the data, ensuring its integrity and confidentiality
during transmission.

Authentication and Authorization: Blockchain can establish a robust authentication and authorization
framework in IoT systems. Using smart contracts, IoT devices can securely authenticate themselves and
negotiate access control policies in a decentralized manner. This eliminates the reliance on centralized
authentication servers and reduces the risk of single points of failure.

Trust Management: Establishing trust among loT devices and entities is critical, especially when multiple
stakeholders are involved. Blockchain enables trust management through decentralized identity verification
and consensus-based validation of transactions. Trust scores or reputations can be maintained on the
blockchain, allowing devices to assess peers' trustworthiness dynamically.

Mitigation of Single Points of Failure: In conventional IoT architectures, a compromised central server can
disrupt the entire network. Blockchain's decentralized architecture distributes data and controls across all
participating nodes, making it difficult for attackers to disrupt the network by targeting a single point.

Data Provenance and Traceability: Blockchain's inherent traceability ensures that the origin and history of
data can be verified, making it easier to detect and mitigate data manipulation attacks. This is particularly
beneficial in use cases such as supply chain management and industrial IoT, where tracking the authenticity
of products and their movements is critical.

1.5.7. Blockchain for Enhancing in IoT

Blockchain technology can significantly enhance the design and effectiveness of Intrusion Detection Systems (IDS)
in IoT environments [17]. Traditional IDS frameworks often rely on centralized architectures, prone to single points
of failure, bottlenecks, and limited scalability. Blockchain’s decentralized and tamper-resistant architecture addresses
these limitations by enabling the development of a more robust and secure IDS framework.

Decentralized Data Storage: Blockchain can be used to store IDS logs and alerts in a decentralized manner,
ensuring that they are immutable and accessible to authorized nodes. This decentralized storage prevents
attackers from tampering with or deleting IDS records, preserving the integrity of the detection system.
Collaborative Intrusion Detection: Blockchain enables multiple IDS nodes to collaborate and share threat
intelligence securely and transparently. This collaboration allows for a broader perspective on network
activities and enables faster and more accurate detection of sophisticated attacks that may span multiple
devices and network segments.

Smart Contracts for Automated Response: Smart contracts can be programmed to execute predefined
actions in response to specific intrusion events. For example, suppose an IDS node detects suspicious activity.
In that case, a smart contract can trigger the automatic isolation of the affected device from the network,
thereby minimizing the impact of the intrusion.

Enhanced Trust and Accountability: Using blockchain, IDS nodes can establish a decentralized trust
management system where the network collectively evaluates the validity and reputation of detection results.
This reduces the risk of false positives and negatives, as the detection results are subject to peer validation.

In conclusion, blockchain’s unique characteristics of immutability, decentralization, transparency, and security make
it an ideal candidate for enhancing the performance and resilience of IDS frameworks in IoT environments. Integrating
blockchain with IDS can address critical challenges such as secure data storage, collaborative threat detection, and
automated response, paving the way for more secure and reliable IoT networks.

1.6. Research Objectives

RO1. To conduct a Comprehensive Literature Review of existing work on Intrusion Detection System in loT
environment.

RO2. To develop a robust model(s) for an Intrusion Detection System for detecting anomaly behavior using
Artificial Intelligence.
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e RO3. To develop a Blockchain-based framework(s) to enhance the security and privacy issues in
the Intrusion Detection System.
e RO4. To perform a Comparative analysis of the proposed work with the state of-art-work.

1.7. Thesis Organization

This thesis is structured into eight chapters, each addressing a critical aspect of Intrusion Detection Systems (IDS) in
IoT environments, incorporating Artificial Intelligence (AI) and blockchain technologies. The organization follows a
logical progression, beginning with the fundamental background and problem statement, followed by an in-depth
literature review to identify research gaps. Subsequent chapters detail the development of Al-driven IDS models, the
integration of Explainable Al (XAI), and the implementation of blockchain-based frameworks for enhanced security
and privacy. The thesis further explores privacy-preserving data sharing in IoT healthcare, conducts a comparative
analysis with existing IDS solutions, and concludes with key findings, future research directions, and societal
implications. This structured approach ensures a comprehensive understanding of the advancements in IDS for IoT
security.

e Chapter 1: Introduction- This chapter will introduce the background, problem statement, research
objectives, and the significance of developing Intrusion Detection Systems (IDS) in IoT using Al and
blockchain technology.

e  Chapter 2: Literature Review- This chapter will provide a comprehensive review of the existing work on
IDS in IoT environments, highlighting existing gaps, challenges, and recent advancements.

e  Chapter 3: Development of Artificial Intelligence-based Intrusion Detection Models- This chapter will
present the research and development of robust Al-based models for detecting anomalies in IoT networks,
including the developed models' techniques, algorithms, and performance.

e Chapter 4: Design and Implementation of Explainable AI for Intrusion Detection- This chapter will
focus on developing and integrating Explainable Al (XAI) in the IDS framework, explaining the methods
used to make Al decisions interpretable and trustworthy.

e Chapter 5: Blockchain-Based Frameworks for Enhancing Security and Privacy in Intrusion Detection
Systems- This chapter will discuss the design and implementation of a blockchain-based framework to
address the security and privacy challenges in [oT IDS, with details on consensus mechanisms, cryptographic
techniques, and privacy-preserving measures.

e Chapter 6: Privacy-Preserving Data Sharing in Blockchain-Enabled IoT Healthcare Management
System- This paper introduces a novel decentralized application that uses blockchain technology to enhance
medical certificate management security, privacy, and efficiency in the healthcare sector as application.

e  Chapter 7: Comparative Analysis with State-of-the-Art Intrusion Detection Systems- This chapter will
perform a thorough comparative analysis of the proposed Al and blockchain-based IDS models with other
state-of-the-art techniques, covering metrics such as accuracy, performance, and security enhancements.

o Chapter 8: Conclusion, Future Work and Societal Applications- This chapter will summarize the
research's key findings, contributions, and limitations. It will also suggest directions for future work in IDS
development for IoT environments.
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Chapter 2: Literature Review

The rapid expansion of the Internet of Things (IoT) has introduced significant security challenges, necessitating robust
intrusion detection mechanisms. This chapter provides a comprehensive review of existing literature on artificial
intelligence-based intrusion detection systems, blockchain-based security solutions, feature selection techniques, and
publicly available datasets. Additionally, key research gaps are identified, highlighting the need for a more efficient
and secure framework. The chapter concludes with an overview of performance evaluation metrics and a detailed
description of the dataset used in this research.

2.1. Artificial Intelligence-based Intrusion Detection System

Artificial intelligence (AI) has transformed intrusion detection by enhancing threat detection accuracy and
adaptability. This section explores Al-driven IDS approaches, focusing on machine learning and deep learning
techniques for securing IoT networks.

2.1.1 Machine Learning Based IDS

Machine learning (ML)-based IDS leverages classification, clustering, and anomaly detection techniques to identify
cyber threats in IoT environments. This subsection reviews common ML algorithms and their effectiveness in
intrusion detection.

Intrusion Detection Systems (IDS) in IoT environments have witnessed a surge of research endeavors aimed at
fortifying the security posture of interconnected devices. This literature review critically examines pivotal
contributions in this domain, elucidating the evolving landscape of IDS for IoT and highlighting innovative approaches
to address its inherent challenges, as shown in Table 2.1.

Talukder et al. [21] introduced MLSTL-WSN, a novel IDS leveraging machine learning (ML) techniques in Wireless
Sensor Networks (WSNs). By employing SMOTE Tomek to address class imbalance, their methodology demonstrates
enhanced detection accuracy and robustness, addressing a crucial concern in IoT deployments. Alqahtani et al. [22]
explored cyber intrusion detection utilizing machine learning classification techniques. While not explicitly IoT-
focused, their insights into machine learning algorithms' efficacy lay foundational groundwork for IDS in IoT
ecosystems, underscoring the importance of leveraging advanced computational methods for threat detection. Meryem
and Ouahidi [23] proposed a hybrid IDS integrating machine learning algorithms, catering to the intricacies of modern
cyber threats. Their approach showcases the synergistic potential of combining multiple detection mechanisms, vital
for combating sophisticated intrusion attempts targeting IoT infrastructures. Asif et al. [24] devised a MapReduce-
based intelligent model for intrusion detection, leveraging machine learning in IoT environments. Their work
exemplifies the integration of distributed computing paradigms with machine learning techniques to address
scalability challenges in large-scale IoT deployments. Gad et al. [25] delved into IDS for Vehicular Ad Hoc Networks
(VANETS), employing machine learning on the ToN-IoT dataset. Their research underscores the importance of
tailored intrusion detection mechanisms for specific loT applications, emphasizing the need for context-aware security
solutions.

Bangui et al. [26] proposed a hybrid machine-learning model for intrusion detection in VANETS, highlighting the
significance of adaptability and resilience in vehicular IoT environments. Their approach showcases the efficacy of
combining diverse machine-learning techniques to enhance detection accuracy amidst dynamic network conditions.
Alhajjar et al. [27] investigated adversarial machine learning in network IDS, shedding light on the emerging threat
landscape of sophisticated attacks. Their research underscores the importance of incorporating adversarial robustness
into IDS frameworks to mitigate evolving cyber threats targeting IoT infrastructures. Sarhan et al. [28] focused on
feature extraction for machine learning-based IDS in IoT networks, addressing the challenge of extracting relevant
features from heterogeneous loT data sources. Their work lays the groundwork for developing context-aware intrusion
detection mechanisms tailored to loT environments.

Liu et al. [29] proposed an intrusion detection approach for imbalanced network traffic, utilizing machine learning
and deep learning techniques. Their research emphasizes the importance of addressing the class imbalance in IoT
datasets to prevent detection biases and ensure comprehensive threat coverage. Singh et al. [30] introduced AutoML-
ID, an automated machine-learning model for intrusion detection in Wireless Sensor Networks (WSNs). Their
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methodology streamlines the model development process, offering a scalable solution for deploying IDS in resource-
constrained IoT environments. Zou et al. [31] presented HC-DTTSVM, a novel intrusion detection method based on
decision tree twin support vector machine and hierarchical clustering. Their approach showcases the potential of
hybrid machine learning techniques in enhancing detection accuracy and scalability in IoT environments. Louk and
Tama [32] proposed Dual-IDS, a bagging-based gradient-boosting decision tree model for network anomaly intrusion
detection. Their research underscores the importance of ensemble learning techniques in enhancing detection
robustness and resilience against evolving cyber threats. Mohiuddin et al. [33] explored hybridized meta-heuristic
techniques for intrusion detection, integrating the Weighted XGBoost Classifier. Their approach demonstrates the
efficacy of meta-heuristic optimization in enhancing the performance of machine learning-based IDS in IoT
environments. Zouhri et al. [34] evaluated the impact of filter-based feature selection in intrusion detection systems,
highlighting the importance of feature engineering in enhancing detection accuracy and reducing computational
overhead in IoT deployments. Amaouche et al. [35] proposed IDS-XGbFS, an intelligent intrusion detection system
utilizing XGBoost with a recent feature selection for VANET safety. Their methodology showcases the integration of
advanced machine learning algorithms with feature selection techniques tailored to IoT-specific applications.

Table 2.1: A summary of Intrusion Detection System based on Machine Learning (ML) Techniques

References Purpose Methodology Dataset Feature Result Advantages Disadvantages
used extraction
technique
[21] Intrusion DT,RF, MLP, Wireless SMOTE Tomek | Acc= Addresses Limited to WSNss,
detection KNN, XGB, Sensor link 99.70% imbalanced data requires
system for LGB Network investigation on
WSN dataset other network types
[22] Intrusion Bayesian KDD-99 - Acc= Compares multiple Relies on the
detection Network, NB, 94% algorithms, offers unspecified dataset,
system for DT, RF, ANN flexibility limits the
Cyber generalizability
security
[23] Hybrid KNN, NB, NSL-KDD - Acc= | Lacks details on the Requires more
Intrusion SVM, Logistic 98.77% specific hybrid information on the
detection Regression approach hybrid method
system
[24] Intrusion Map reduced- Kaggle ML - Acc= Efficient for large Relies on
detection based repository 97.6% datasets, scalable unspecified dataset,
system for intelligent limited details on
intelligent model-IDS the model
modeling
[25] Intrusion LR, NB, KNN, TON_IOT Chi-Square and Acc= Focuses on Limited
Detection DT, Adaboost, SMOTE 99.1% | VANETSs, ToN-IoT | applicability outside
System for Xgboost, RF, specific VANETs
Vehicular SVM
Adhoc
Networks
[26] Hybrid model | SVM, Bayesian CIC-IDS- Weighted Acc= Offers potentially Requires more
Intrusion coresets, CNN, 2017 clustering 96.93% better accuracy information on the
detection in MLP, RF, specific hybrid
VANET Weighted-KNN model
[27] Network- Generative NSL-KDD, PSO, GA Acc= Improves IDS Enhances security,
based advertised UNSW-NB- 99% robustness against potentially
Intrusion network 15 adversarial attacks computationally
detection expensive
system
[28] Intrusion DFF, CNN, UNSW-NB- | PCA, AE, LDA Acc= Improves intrusion Addresses feature
detection RNN, DT, LR, 15, TON- 96.11% | detection accuracy selection for IoT
system in [oT NB 10T, CIC- in IoT networks, limited
network IDS-2018 details on specific

techniques.
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[29] Intrusion CIC-IDS- Edited Nearest Acc= Effective for Handles imbalanced
detection RF, SVM, 2018, NSL- Neighbor 96.99% imbalanced data and explores
system on Xgboost, KDD network traffic different techniques

network LSTM, Alex- intrusion detection
traffic-based net, Mini-
VGGnet,
DSSTE
[30] Intrusion SVR, GPR, Synthetically K-barriers R=0.93 Achieves good Automates model
detection BDT, generated accuracy with selection reduces
system using Ensemble simulated AutoML human effort
WSN regression, dataset
kernel
regression, LR,
BO
[31] Intrusion HC- NSL _KDD, Hierarchical Acc= Offers potentially Relies on
detection DTTWSVM UNSW-NB - clustering 85.95% | better accuracy and | unspecified dataset,
system 15 reduced false requires
positives investigation on
generalizability

[32] Intrusion GBM, Light NSL_KDD, - Acc= Effective for Relies on

detection GBM, UNSW-NB - 91.75% | anomaly detection, | unspecified dataset,
system Catboost, 15, leverages ensemble limits the
Xgboost HIKARI- learning generalizability
2021
[33] Intrusion xgboost UNSW-NB- Modified Acc= Combines meta- Relies on
detection 15, CIC- wrapper-based 99% heuristics for unspecified dataset,
system IDS-2018 whale sine- optimization and limited details on
cosine XGBoost for meta-heuristics
classification

[34] Intrusion MLP, SVM, CIC-IDS- Relieff, Pearson Acc= Identifies the Relies on

detection Xgboost, RF 2018, CIC- correlation, 98% importance of unspecified IDS
system IDS-2017, mutual feature selection, method and dataset,
TON-IoT information, improves efficiency limited to filter-
ANOVA, chi- based selection
square
[35] Intrusion xgboost NSL-KDD, Boruta, Acc= Focuses on Limited
detection S-routing ADASYN 99% VANET security, applicability outside
system metrics leverages XGBoost, | VANETS, relies on
dataset and feature unspecified recent
selection feature selection

technique

2.1.2 Deep Learning Based IDS

Deep learning (DL)-based IDS utilizes advanced neural networks to detect complex attack patterns with high accuracy.
This subsection examines various DL architectures and their application in IoT security. This Literature review
evaluates recent advancements in Intrusion Detection Systems (IDS), focusing on their applicability to cyber-physical
systems (CPS) and Internet of Things (IoT). The literature review highlights various IDS methodologies, datasets, and
their applications, identifying critical limitations that inform the development of CPS and IoT. A thorough
comparative analysis underscores the challenges faced by existing models in achieving explainability, resilience,
scalability, and trustworthiness, key attributes necessary for effective IDS in CPS and IoT environments.

Upon meticulous examination of the most recent and relevant research, we have discerned a cluster of works
characterized by shared motivations yet distinguished by unique perspectives. The discussion aims to illuminate these
works, furnishing a thorough overview before our proposed methodology exposition. Over the past decade, the
effectiveness of Deep Learning (DL) and Machine Learning (ML) methodologies has been prominently demonstrated
in the identification of anomalous entities within Internet of Things (IoT) networks. For example, most models lack
explainability mechanisms, making it difficult for operators to interpret predictions and take corrective actions. This
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deficiency is critical in safety-sensitive CPS environments where transparency is vital for building trust. Moreover,
the resilience of these models is often inadequate, as they struggle to adapt to evolving threats in dynamic CPS
contexts. Scalability also emerges as a pressing issue, with many methods failing to handle the heterogeneity and
complexity of modern CPS systems due to computational overhead or rigid architectures. The encapsulation of these
findings is succinctly presented in Table 2.2, providing a comprehensive summary of existing literature that not only
converges on similar motivations but also diverges in their applications.

Intrusion Detection Systems (IDS) have been extensively explored in IoT and IIoT to address evolving cybersecurity
threats. For Industry 5.0, hybrid deep learning models, such as Bi-LSTM with Bi-GRU, have demonstrated high
accuracy rates of 99% for multiclass classification on datasets like CICDDoS 2019 [37]. Similarly, encoder-CNN
models have been used for intrusion detection in IoT-based transportation networks, leveraging feature extraction and
classification with moderate explainability [41]. Trustworthiness in IDS frameworks has also been discussed using
approaches like differential privacy and federated learning, achieving notable resilience but with limitations in
performance scalability [39, 43]. Furthermore, integrating advanced neural networks like ResNet for intrusion
detection has shown potential, though challenges in model interpretability and robustness persist [24]. While these
models have made strides in performance, many lack comprehensive capabilities to simultaneously ensure resilience,
trustworthiness, and dependability, which are critical for Industry 5.0's stringent requirements.

While [37] achieves slightly higher accuracy (99%) compared to our model (97.46%), it does not fully account for
high resilience and dependability in real-time heterogeneous environments, as emphasized in Industry 5.0. Moreover,
unlike [41] and [44], which focus on partial model interpretability, our solution integrates advanced Explainable Al
(XAI) mechanisms to enhance transparency and trustworthiness, aligning with Industry 5.0 goals. Additionally, while
prior works such as [39] and [43] emphasize specific aspects of trustworthiness or resilience, our model adopts a
holistic approach by balancing accuracy, trustworthiness, and resilience [64]. This is particularly significant in
Industry 5.0, where dependable and trustworthy systems are paramount for seamless cyber-physical integration.
Ultimately, our proposed model fills the gap by addressing fundamental limitations in explainability, scalability, and
robustness, thereby presenting a comprehensive solution for intrusion detection in critical Industry 5.0 environments.

Table 2.2: A summary of existing research work on Intrusion Detection Systems on different applications

References Purpose Model/ Dataset Type of Result Explainable | Resilient | Dependable Trustworthy
and Year Mechanism used Classification Al
[36] and DoS detection Hybrid Deep BOT- Binary <98% X X Low X
2023 in a cyber- learning 10T classification
physical approach
system CNN-LSTM
[37] and Intrusion Hybrid Deep CICIDD Multiclass <99% v v Low X
2023 detection learning 0S 2019 | classification
system for approach Bi-
Industry 5.0 Istm + Bi-
GRU
[38] and Intrusion Deep CNN Network Binary <99% X X Partial X
2020 detection for traffic classification
Intelligent IoV dataset
[39] and Trustworthy Differential MNIST - <90% X X High N
2020 Framework for privacy + dataset
Privacy Federated
Preserving in Learning CNN
IIoT
[40] and Spam detection Bayesian REFIT Multiclass <84% X X Low X
2020 in [oT devices Generalized project classification
for smart home linear model dataset
appliances
[41]and Intrusion Encoder + UNSW Both <90% v X Partial X
2022 detection in CNN model TON-
IoT-based 10T
transportation dataset
network
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[42] and Software- Dueling deep - Not Simulati Partial v
2018 defined IloT Q-learning mentioned on on
for third-party throughp
synchronizatio ut
n
[43] and Intrusion Deep Fed Gas Multiclass <98% Low v
2020 detection in (Federated pipelinin | classification
industry CPS learning) g dataset
[44] and IDS in the Deep transfer | Heteroge Binary <87% High X
2022 Internet of learning model neous classification
Things (ResNet) IoT
environment sensor
dataset
[45] and Secure & Gradient TON- Multiclass <99% Partial v
2021 privacy- Boosting 10T, classification
preserving Anomaly BOT-
framework for detection 10T
IoT-based
smart cities
[46] and Botnet attack DNN-LSTM N_Balo Multiclass <99% Partial X
2022 detection for T classification
industrial IoT
[47] and Network Graph2vec + CICIDS Multiclass <99% Low X
2023 intrusion RF 2017, classification
detection for CICIDS
early 2018
identification
[48] and Imbalance TMG-GAN CICIDS Multiclass <98% Partial X
2023 learning for 2017, classification
NIDS in IoT UNSW-
NB 15
[49] and Intrusion Conditional Cloud Multiclass <99% Low X
2022 detection denoising IDS classification
system for adversarial dataset
cloud auto-encoder
environment
[50] and Two-level TV-DBN- - - <98% High X
2023 fusion based
architecture for | ensemble-level
CPS intrusion fusion
detection
[51] and Attack An SCADA Multiclass <97% Low N
2022 detection in autoencoder system classification
industrial IoT using FL dataset
[51] and Intrusion Stacked-based | UNSW- Binary <99% Low X
2023 detection ensemble NB 15, Classification
system for IoT | leamning model | N_Balo
network T
[52] and Anomaly- filter-based UNSW- Multiclass <90% Low X
2023 based network feature NB 15 Classification
intrusion selection Deep
detection for Neural
IoT Network
(DNN) model
[53] and SDN-based Bi- N- Multiclass <99% High X
2024 intrusion LSTM+GRU BaloT, Classification
detection for model CICDDo
IoT S 2019
[54] and Robust DDoS | CNN inception | CICDDo Multiclass <96% Low X
2024 Intrusion model S 2019 Classification
Detection
System
[55] and Intrusion Optimized NSW- Binary <98% Low X
2024 detection Forest (OF) NBI15 Classification
system for [oT Based and
Machine NSLKD
Learning D
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[56] and Intrusion CNN+GRU N-BaloT Multiclass <99% High
2024 detection Classification
system for
Industrial IOT
environment
[57] and Intrusion 2D-CNN NSL- Multiclass <98% Partial
2024 detection in KDD Classification
ToT networks and
UNSW-
NB 15
[58] and Intrusion CNN+BILST N-BaloT Multiclass <99% Low
2023 detection M Classification
system in [oT
environment
[59] and Malware DLEX-IMD 1oT-23 Multiclass <99% Partial
2024 detection in Classification
Internet of
Things
[60] and DDoS mGRU-based CICloT Both <98% Low
2024 detection IDS models 2023, Classification
framework for CICDDo
IoT-enabled S2019
mobile health
informatics
systems
[61] and intrusion enable Edge 1II Multiclass <99% Partial
2024 detection Convolutional oT Classification
scheme for IoT Neural dataset
and IloT Network
environment (CNN
[62] and Intrusion proposed Edge 1II Multiclass <99% Partial
2024 Detection in CNNI1D model oT Classification
Industrial- dataset
Internet of
Things
[63] and 10T botnet XGB, ET, RF, N- Binary <98% Low
2024 detection using GBC, LGBM BaloT, Classification
XAI BoT
IoT,
Med-
BloT

2.2. Blockchain-based Intrusion Detection System for IoT Security

Blockchain technology offers a decentralized and tamper-resistant approach to securing IoT networks. This section
discusses blockchain-integrated IDS, highlighting consensus mechanisms and privacy-preserving techniques for
enhancing security. Recent research on detecting cyberattacks in IoT and IIoT networks has explored a variety of
approaches, each contributing uniquely to the field of intrusion detection systems (IDS). This section synthesizes these
studies, highlighting their methodologies and the specific challenges they address, as shown in Table 2.3.

Gad et al. (2020) [65] introduced an XGBoost-based model for vehicular ad-hoc networks, leveraging the TON-IoT
dataset and employing chi-square for feature selection. Their approach, although practical, is confined to a specific
type of ToT network. In contrast, Mighan et al. (2021) [66] proposed a scalable IDS that integrates Support Vector
Machines (SVM) with Stacked Autoencoder (SAE) to handle big data platforms, using tools like Apache Spark to
manage large network traffic volumes. Similarly, Alzahrani et al. (2019) [67] developed a network-based IDS for
Software-Defined Networks (SDN), applying machine learning techniques such as Decision Trees, Random Forests,
and XGBoost on the NSL-KDD dataset. Logeswari et al. (2020) [68] advanced this by proposing a hybrid feature
selection algorithm (HFS-LGBM IDS) to reduce data dimensionality and extract optimal features using CFS and RF-
RFE, demonstrating their model's effectiveness in a Mininet-simulated SDN environment.

A notable contribution by Bowen et al. (2021) [69] introduced BlocNet, a deep learning model designed to address
dataset imbalance, employing various sampling techniques to maintain data integrity. Their work emphasizes the
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importance of handling underrepresented instances in IDS datasets. Kasonogo et al. (2022) [70] offered an IDS using
different RNN frameworks on NSL-KDD and UNSW-NB-15 datasets, incorporating XGBoost for feature selection
and addressing optimization of arbitrary differentiable loss functions. Hnamte et al. (2023) [71] presented a novel
approach combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM)
networks, enhanced by an attention mechanism, to improve classification accuracy in network-based IDS—however,
their model's complexity results in longer training periods than traditional deep learning techniques. Abdelkhalek et
al. (2022) [72] addressed class imbalance by proposing a data resampling strategy using the Adaptive Synthetic and
Tomek Link algorithm, combined with various deep learning models, including MLP, CNN, DNN, and CNN-
BiLSTM, achieving better detection rates for minority classes.

Further advancing the discussion, Thakkar et al. (2023) [73] focused on enhancing DNN-based IDS performance by
introducing a unique feature selection technique based on statistical significance. They utilized standard deviation,
mean, and median to derive highly discernible features, which improved data learning. Imran et al. (2021) [74]
proposed a non-symmetric deep autoencoder for network intrusion detection systems (NIDS) using the KDD-CUP-
99 dataset, highlighting the robustness of their model through various metrics. They also critically reviewed existing
challenges in NIDS approaches. Benadai et al. (2022) [75] explored the application of deep reinforcement learning
(DRL) in IDS, proposing a DRL_IDS model that utilizes the Markov decision process and stochastic game theory to
analyze network traffic. Their approach demonstrated improved detection rates and reduced false alarm rates
compared to other deep learning methods.

Security challenges necessitate innovative solutions in the context of Cyber-Physical Systems (CPS) and [oT. Mansour
et al. (2021) [76] proposed a blockchain-based IDS for CPS environments, integrating a rich and poor optimization
approach with a deep learning model. Kumar et al. (2021) [77] addressed the centralized storage architecture's
limitations by presenting a blockchain-based IoT framework utilizing fog computing for distributed security. This
framework offers decentralized cloud architecture, mitigating issues like security, privacy, and single points of failure.
Ashraf et al. (2022) [78] introduced a federated learning-based IDS for IoT healthcare, leveraging blockchain to train
models on different datasets without data sharing, thereby enhancing privacy. However, variations in local datasets
and uneven distribution affected network-based intrusion detection accuracy. He et al. (2022) [79] proposed a
blockchain-based distributed federated learning approach, providing differential privacy to secure data while enabling
collaborative training. Khraisat et al. (2023) [80] developed a feature selection approach based on information gain,
focusing on identifying IoT features that yield the most feature diversity in network traffic, emphasizing detecting
zero-day attacks with high accuracy.

Table 2.3: Overview of Existing Frameworks for Addressing Security and Privacy Issues in Intrusion Detection
Systems Using Emerging Technologies

Reference Aim Dataset Methodology Feature Paradi | Types of | Scalability Security Single
used Selection gm attack Analysis and point
Techniqu Privacy Failure
e Analysis
Gad et al. Detecting TON-IoT XGBoost Chi- Machin | Specific | Limited to Not Not
(2020) cyberattacks in model square e IoT vehicular addressed discussed
vehicular ad-hoc Learnin attacks ad-hoc
networks g networks
Mighan et | Scalable IDS for UNB- SVM with Machin | Various High Not Not
al. (2021) big data ISCX- Stacked e scalability addressed discussed
platforms 2012 Autoencoder Learnin with big
(SAE), g data
Apache Spark platforms
Alzahrani IDS for SDN NSL- Decision Machin | Various Adaptable Not Not
et al. environments KDD Trees, e to SDN addressed discussed
(2019) Random Learnin environmen
Forests, g ts
XGBoost
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Logeswari Feature Mininet- HFS-LGBM Hybrid Machin | Various | Demonstrat Not Not
et al. selection in IDS | simulated IDS using Feature e ed in SDN addressed discussed
(2020) for SDN SDN CFS and RF- Selection | Learnin environmen
RFE (CFS, RF- g t with
RFE) Mininet
simulation
Bowen et Addressing NSL- BlocNet deep Deep Various Not Focuses on Not
al. (2021) dataset KDD; learning Learnin specified handling discussed
imbalance in 10T-23; model, g underrepres
IDS CIC-IDS; sampling ented
UNSW- techniques instances in
NB-15 datasets
Kasonogo | IDS using RNN NSL- RNN, XGBoost Deep Various Not Not Not
et al. frameworks KDD, XGBoost for Learnin specified addressed discussed
(2022) UNSW- feature g
NB-15 selection
Hnamte et Improve CIC-IDS CNN- - Deep Various Higher Not Not
al. (2023) classification 2018; BiLSTM with Learnin complexity addressed discussed
accuracy in Edge-1loT attention g leads to
network-based mechanism longer
IDS training
periods
Khraisat Feature NSL- Information | Informatio | Machin | Zero-day High Not Not
et al. selection in IDS KDD gain for n gain e attacks accuracy in | addressed discussed
(2023) for IoT feature Learnin detecting
diversity g zero-day
attack
He et al. Blockchain- NSL- Blockchain - Federat | Various | Collaborati Provides Not
(2022) based KDD; with ed ve training | differential discussed
distributed BoT I differential Learnin while privacy to
federated oT; privacy g, securing secure data
learning CICID Blocke data
approach S- hain
2017;
UNS
W-
NB-
15;
DS20
S
dataset
Ashraf et Federated BoT IoT Federat | Various Not Enhances Not
al. (2022) learning-based ed specified | privacy, but | discussed
IDS for IoT Learnin affected by
healthcare g, dataset
Federa Blocke variations
ted learning with hain and
blockchain distribution
Kumar et Blockchain- NSL- Blockchain Blockc | Various | Decentraliz Mitigates Addressed
al. (2021) based loT KDD; with fog hain, ed cloud security, by
framework for CICID computing Fog architecture privacy, blockchain
distributed S- Comput and single
security 2017 ing point
dataset failure
issues
Turukman To design an CSE- hybrid Oppositio | Machin DoS does not not does not
eetal efficient CIC- multilayer n-based e attacks, explicitly discussed provide
(2024) automated IDS SVM model Northern | Learnin | content- address explicit
intrusion 2018 M- Goshawk g based scalability analysis of
detection system and MultiSVM) | Optimizati features, in detail single point
(IDS) using UNSW and failure
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machine -NB15 on traffic
learning to dataset (ONgO) anomalie
address issues s s
such as class
imbalance,
overfitting, and
accurate
classification of
network
intrusions.

Nandanwa To develop a N- CNN-GRU- CNN Deep DosS, scalability indirectly does not
ret.al robust and BaloT based deep Learnin | DDoS, by improves provide
(2024) efficient deep dataset learning g data achieving security by explicit

learning-based model named exfiltrati high efficiently | analysis of
intrusion AttackNet on performanc detecting single point
detection system € across botnet failure
(IDS) to detect multiple attacks
and classify classes in
botnet attacks in large
Industrial IoT dataset
(IIoT)
environments,
ensuring real-
time protection
and minimizing
security
vulnerabilities
Karthikey To enhance NSL- FA-ML Firefly Supervi | Denial of not not not
an et.al security in KDD technique Algorithm sed Service explicitly discussed discussed
(2024) WSN-IoT Dataset integrates (FA) machin (DoS), discussed
systems by machine e Probing,
developing a learning learning | Remote
machine (SVM) to Local
learning-based (R2L),
intrusion and User
detection system to Root
(IDS) optimized (U2R)
with the Firefly attacks
Algorithm (FA)
and Grey Wolf
Optimizer
(GWO) for
improved
accuracy,
reliability, and
security
performance.
Hanafi et. To develop a NSL- Opposition- Improved Deep DoS does not does not not been
al (2024) new intrusion KDD Based Binary Learnin | (Denial explicitly explicitly explored
detection system Dataset Learning Golden g of address discuss
(IDS) for IoT and (OBL)-LSTM Jackal Service), security
networks using CICID Optimizati Probe, and privacy
an Improved S2017 on U2R concerns
Binary Golden Dataset (IBGJO) (User-to-
Jackal with Root),
Optimization Oppositio and R2L
(IBGJO) n-Based (Remote-
algorithm and Learning to-Local)
Long Short- (OBL) attacks
Term Memory
(LSTM)
network
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Kumar To develop an UNSW DCRNN Novel Deep detect demonstrati does not does not
et.al efficient -NB-15 Binary Learnin | various ng its explicitly address the
(2024) intrusion Dataset Grasshopp g types of ability to address impact of
detection system , er attacks effectively single point
(IDS) using Cicddo Optimizati scale in failure
Deep Residual s2019 on real-world
Convolutional Dataset Algorithm scenarios
Neural Network ,and (NBGOA) with large
(DCRNN), CIC- datasets
optimized by the IDS-
Improved 2017
Qaz_ellg Dataset
Optimization
Algorithm
(IG0OA)

2.3. Research Gaps

Despite advancements in IDS and blockchain security, several challenges remain unaddressed. This section identifies
existing limitations in current research and highlights the need for innovative solutions in intrusion detection and IoT
security. Based on the insights from recent studies, several significant research gaps have been identified within the
field of intrusion detection systems (IDS) in [oT environments:

e Integration of AI and Blockchain: There is a lack of comprehensive research that combines artificial
intelligence (Al) with blockchain technology for enhanced intrusion detection.

e Scalability and Efficiency: Effective scaling and optimization of performance for deep learning and
blockchain-based IDS remain underexplored.

e Adversarial Attack Resilience: Current deep learning-based IDS are vulnerable to adversarial attacks,
necessitating strategies to fortify detection mechanisms against such threats.

o Interoperability and Data Sharing: While blockchain facilitates decentralized data sharing, research is
needed to effectively integrate it with IDS for collaborative threat detection.

e Privacy-Preserving Mechanisms: Using sensitive network data in deep learning models raises privacy
concerns, highlighting the need for secure data-sharing protocols.

o Network Heterogeneity: Deep learning models often struggle with generalization across different network
environments, indicating a need for transfer learning techniques to enhance adaptability.

e Decentralization of Network Information: Al-based IDS require access to sensitive data, necessitating
methods to balance decentralized data access with privacy protection, such as secure multi-party computation
and zero-knowledge proofs.

e Consensus Protocol Validation: There is a need for research to validate various consensus algorithms'
effects on the security and reliability of IDS within blockchain networks, emphasizing trust-building across
decentralized nodes.

By addressing these gaps, future research can significantly enhance the effectiveness of IDS in [oT ecosystems.

2.4. Publicly Available Dataset

Publicly available datasets are essential for benchmarking IDS performance. This section reviews commonly used
intrusion detection datasets, discussing their characteristics, attack types, and suitability for IoT security research.
Table 2.4 presents a statistical analysis of publicly available datasets for intrusion detection. It outlines dataset
descriptions, the number and types of attacks, whether they are loT-based, the number of features, and if they are
labeled. The datasets span from simulated military traffic to real-world IoT network data, providing varied sources for
analysis.

26| Page




Table 2.4: A statistical analysis of publicly available datasets

Number Number
Datasets & of IoT- of
Year Description of Datasets Attacks Type of Attacks Based | Features | Labeled
DARPA 98
(1998) Simulated military network traffic 4 DOS, Probe, R2L, U2R No 41 Yes
KDD Cup 99 An enhanced version of DARPA 98
(1999) with more attacks 39 DOS, Probe, R2L, U2R No 41 Yes
NSL-KDD Improved KDD Cup 99 with reduced
(2015) redundancy 39 DOS, Probe, R2L, U2R No 41 Yes
Backdoors, DoS, Exploits, Fuzzers,
Modern network traffic with benign Generic, Reconnaissance, Shellcode,
CICIDS 2017 and malicious activities 15 Worms No 85 Yes
UNSW_NB 15 | Real-world network traffic with DoS, U2R, R2L, Analysis, Scanning,
(2015) various attack types 9 Backdoors, Generic No 49 Yes
DDoS, DoS, Injection, MITM,
N_BAIoT Simulated IoT network traffic with Password, Ransomware, Scanning,
(2018) normal and attack data 10 Theft Yes 115 Yes
Backdoors, DoS, Exploits, Fuzzers,
Expanded CICIDS 2017  with Generic, Reconnaissance, Shellcode,
CICIDS 2019 additional attack categories 25 Worms, Web attacks No 80 Yes
Network traffic from IoT devices
Bot 10T (2018) | infected with botnets 4 DDoS, DoS, Reconnaissance, Theft Yes 42 Yes
TON_IoT Real-world IoT network traffic with DDoS, DoS, Injection, MITM,
(2019) normal and attack data 5 Scanning Yes 45 Yes
Backdoors, DoS, Injection, MITM,
Edge lloT Industrial IoT network traffic with Reconnaissance, Shellcode, Theft,
(2022) normal and attack data 14 Zero-day Yes 61 Yes
Network traffic from 23 diverse IoT
IoT 23 (2023) devices 4 DDoS, DoS, Injection, Scanning Yes 80 Yes

2.5. Performance Evaluation Metrics

Evaluating the efficiency and reliability of an intrusion detection system requires well-defined performance metrics.
This section categorizes evaluation metrics into two key domains: Al-based models and blockchain-based security
mechanisms.

2.5.1. Artificial Intelligence-Based Model Evaluation Metrics

Al-driven IDS models are assessed based on classification performance and computational efficiency. This subsection
discusses accuracy, precision, recall, F1-score, False Positive Rate (FPR), False Negative Rate (FNR), and model
execution time as shown in Table 2.5.

Table 2.5: Performance Evaluation Metrics for Intrusion Detection System

Metrics Definition Formula

Confusion matrix Used to evaluate the performance of a classification model by

comparing the predicted labels with the actual labels.
True positive (TP) The record is successfully detected as malicious
False positive (FP) The record is wrongly detected as malicious.
True Negative (TN) The record is classified as non-malicious.
False Negative (FN) The record is undetected by the system.
Accuracy Measure how well the model predicts the correct labels. Accuracy = TP +TN

Y TP+ FP+ TN+ FN
Precision Measure how many of the predicted positive labels are actually L TP
. Precision = ——
positive. TP + FP
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Recall Measure how many of the actual positive labels are correctly Recall = TP
predicted. TP + FN
F1 score The harmonic mean of Recall and Precision. Precision * Recall
F1 Score = 2 % —
Precision + Recall
ROC curve Graphical representation of the performance of a classification TPR = TP ,
model. TPR is the ratio of true positive predictions to the total TP+EN
actual positive labels. FPR is the ratio of false positive predictions FPR = FPEFN
to the total actual negative labels.
True Negative Rate (TNR) Model's ability to correctly classify instances of a specific TNR TN
attack type as non-attacks. TN + FP
Negative Predictive Value (NPV| Model's accuracy in predicting non-attacks for a specific attack type. NPV = TN
TN + FN
False Positive Rate (FPR) The rate at which instances of other attack types are incorrectly FPR = FP
classified as the specific attack type. FP + TN
False Negative Rate (FNR) The rate at which instances of a specific attack type are incorrectly FNR FN
classified as non-attacks or other types. TP + FN
False Discovery Rate (FDR) The rate at which instances are falsely predicted as the specific FDR = FP
attack type when they are not. FP+TN
False Omission Rate (FOR) The rate at which instances of a specific attack type are falsely FOR FN
classified as non-attacks or other types FN + TN

2.5.2. Blockchain Based Evaluation Metrics

When evaluating the performance and reliability of the blockchain framework, it is important to consider a
comprehensive set of metrics that offer insights into the system's efficiency, security, and user experience. These
metrics are instrumental in assessing blockchain performance under varying conditions. This sub-section
systematically defines key evaluation parameters, including fault tolerance, transaction finality, and network overhead.
By examining these metrics, the strengths and limitations of blockchain Framework across different parameters can
be rigorously analyzed, thereby facilitating the development of robust and scalable solutions. The following are the

Evaluation Metrics:

e Fault Tolerance: Fault tolerance in blockchain refers to the network's capability to continue functioning
correctly even when some components fail. This is critical for maintaining system reliability and ensuring
the blockchain remains operational despite disruptions. It is measured by Restoration Efficiency (RE), which
quantifies how effectively the system recovers from failures:

RE = Trestored

Ttotal

@2.1)

o  User Experience (UX): User experience in blockchain systems reflects the ease and efficiency with which
users interact, focusing on the system’s response time and the time required to share records. It is inversely
related to the sum of response time (Ti-¢sponse) and shared record time (Tspqre):

UX = !

Tresponset Tshare

2.2)

e Transaction Finality: Transaction finality measures how quickly a transaction becomes irreversible and
permanently recorded on the blockchain. It is directly related to the time required to create a block Tpocr:

TF = Thiock

2.3)

e Network Overhead (NO): Network overhead refers to the additional computational resources and time
consumed due to managing blockchain transactions, including encryption processes. It is often expressed as
a percentage of the system's throughput and is influenced by the encryption time Tppcrype:

NO% = T"T—h“’f* 100
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e Encryption Time: Encryption time (Tencrype) is the duration required to convert plaintext into encrypted
data using cryptographic algorithms, impacting security and transmission efficiency:

_1yf
- i— i .
Tencrypt f Z 1 tencrypt i (2 5)

e Decryption Time: Decryption time (Tgecrype) is the time taken to convert encrypted data back to its original

form, crucial for accessing secured data efficiently:
1vf
Tdecrypt = in_1 tdecrypt,i (2.6)

e Key Generation Time: Key generation time (Tkey gen r) is the duration required to create cryptographic
keys, affecting overall security and system speed:
1
Tkey GenT = ;Z?—l tkey GenT,i (27)
e Response Time: Response time (Tyesponse) measures the interval between a user request and the system's
response, crucial for performance evaluation in time-sensitive applications:

Tresponse = response_end Trequest_start (28)
o Restoration Efficiency: Restoration efficiency (RE) quantifies the system's ability to recover from faults,
defined as:
Erestoration = oot X 100% 2.9)

orig

Where Ejestoration 18 the restoration efficiency, Dy.g is the amount of data successfully restored, and Dg,.4 is the
original data before any loss or corruption.

e Shared Record Time: Shared record time (Tgqre) is the time taken to transmit or share a record within the
system, impacting the efficiency of data sharing:

Tshare = lsend + Tverify + Tcommit (2~10)

Where Tspqre is the sharing record time, Tgenq is the time to send the record, Tyerify, is the time to verify the record,
T.ommit 18 the time to commit the record to the blockchain.

e Block Creation Time: Block creation time (Ty;oc) is the time required to generate a new block in the
blockchain, affecting transaction finality and throughput:

1
Tyrock = ;Z?Iﬂ thiock,i (2.11)

Where Ty,,c 18 the average block creation time, t;,; is the time taken to create the i — th block, and N is the total
number of blocks created.

e Throughput: Throughput (Th) is the number of transactions processed per second, a key metric for
evaluating the scalability and efficiency of blockchain networks:

Total transaction

Th = (2.12)

total time taken

e Latency: Latency (L) is the delay between the initiation and completion of a transaction, crucial for real-time
processing:

L= Tcompletion — Tinitiation (2.13)
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Chapter 3: Development of Artificial Intelligence-based Intrusion Detection Models

3.1. Introduction

The Internet of Things (IoT) has revolutionized various sectors, enabling seamless connectivity and communication
between devices, sensors, and systems. By integrating physical devices with networked data systems, loT technology
facilitates intelligent data collection, analysis, and action, leading to increased automation, efficiency, and
functionality in fields ranging from healthcare and agriculture to manufacturing and smart cities. However, the
exponential growth of IoT networks has introduced significant security and privacy challenges. IoT devices, often
deployed with minimal security features, have become attractive targets for cybercriminals, who exploit their
vulnerabilities to launch botnet and other network-based attacks. These attacks compromise the functionality of
individual devices and pose a broader risk to the integrity of entire networks, necessitating sophisticated mechanisms
for threat detection and mitigation.

Intrusion Detection Systems (IDS) have been widely adopted to address these concerns as essential components of
IoT security infrastructure. IDS solutions monitor network traffic and system activities, identifying and classifying
potentially malicious behavior to mitigate risks. Traditional IDS approaches, however, struggle to effectively detect
sophisticated and rapidly evolving attacks like IoT botnets, which exploit device heterogeneity, resource constraints,
and the lack of standardization across IoT networks. As a result, Artificial Intelligence (Al)-driven IDS models,
incorporating machine learning and deep learning techniques, have emerged as powerful alternatives. These models
leverage large datasets to autonomously learn, identify patterns, and adapt to new threats, making them particularly
well-suited for detecting botnet attacks and network anomalies in IoT environments.

Despite these advancements, implementing effective IDS solutions within IoT environments presents unique
challenges. The vast number of devices and high diversity in IoT networks make it difficult to develop standardized
detection protocols. Furthermore, the presence of resource-constrained devices limits the computational complexity
that can be applied in detection models, necessitating lightweight and efficient algorithms. Additionally, IoT networks
are highly dynamic, with frequent device additions and deletions, creating a need for IDS models that can adapt in
real-time. Addressing these challenges requires Al-based models that are accurate but also scalable, flexible, and
capable of handling high-dimensional IoT data.

This chapter presents three proposed models to address these challenges within IoT and IloT environments. Each
model uses unique Al architectures and methodologies to improve detection accuracy, scalability, and efficiency:

e Transfer Learning-Enabled Hybrid Model (TL-BILSTM IoT): The first model utilizes transfer learning
in a hybrid approach, combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term
Memory (BiLSTM) networks. This model is designed to efficiently and effectively identify botnet attacks,
explicitly targeting BASHLITE and Mirai botnet attacks. By incorporating transfer learning, the model
enhances its ability to recognize and classify various types of network traffic, reducing the computational
cost typically associated with training on large-scale datasets. This adaptive model is evaluated using the
"Detection of IoT Botnet Attacks N _BaloT" dataset. It showcases its effectiveness in a multi-class
classification setup, distinguishing benign from malicious traffic across multiple attack types.

e Deep Learning-Enabled Intrusion Detection System for Industrial IoT: The second proposed model is
tailored specifically for the Industrial IoT (IIoT) context, where networked industrial devices often exhibit
unique data patterns and security requirements. This model introduces a deep learning framework that
combines CNN and Gated Recurrent Units (GRU) to detect anomalies generated by compromised IloT
devices. It focuses on robust feature extraction and optimization techniques, which enable the model to handle
high-dimensional IIoT data while eliminating redundant features efficiently. This model's adaptive CNN-
GRU architecture is highly effective in identifying network-based attacks, distinguishing various types of
IoT botnet attacks, and is validated using the same N _BaloT dataset, achieving superior performance in
detecting IloT-specific threats.

e Dependable and Trustworthy CNN-GRU-Based IDS (Alpha-Net): The third model, Alpha-Net,

represents a trustworthy and dependable IDS solution designed explicitly for IToT environments. This model
integrates CNN and GRU architectures in a hybrid approach optimized to enhance accuracy and reliability
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in detecting network-based attacks within IIoT systems. Alpha-Net introduces an innovative communication
sequence architecture to illustrate and enhance the interaction between different IloT layers. Additionally,
this model includes a comprehensive statistical analysis of its performance through tests such as the Paired
t-test, Wilcoxon Signed-Rank Test, ANOVA, and Tukey's HSD. These statistical tests reinforce Alpha-Net's
dependability and effectiveness, demonstrating significant improvements over existing IDS models in
various metrics.

These three models contribute to developing a more robust and adaptive intrusion detection framework suitable for
IoT and IloT environments. They establish a foundation for integrating scalable, flexible, and effective Al-driven IDS
solutions by addressing specific challenges in detecting botnet attacks and network anomalies. Subsequent sections of
this chapter will delve into each model's architecture, implementation, and performance evaluations, providing a
detailed analysis of their unique contributions to IoT security.

3.1.1. Experimental Setup

Our experiment was conducted on an ASUS-TUF Gaming F15 (FX506LHB) laptop featuring an Intel Core i5 10th
Gen processor, §GB RAM, 512GB ROM, and Windows 11 OS. This setup was equipped with an NVIDIA GTX 1650
GDDRG6 4GB graphics card, which supported the computational requirements of the experiment efficiently. Data
analysis and processing were facilitated using data analysis libraries such as Pandas, Numpy, Seaborn, Matplotlib,
and Scikit-learn. Memory considerations were carefully managed due to the system's 8GB RAM capacity, ensuring
optimal utilization during processing-intensive tasks.

3.1.2. Dataset Description

In cybersecurity research, accurate and comprehensive datasets are crucial for developing robust security models
capable of detecting anomalies and identifying malicious activities within IoT environments. This research uses the
"Detection of IoT botnet attacks N_BaloT" dataset as the primary data source. This dataset, introduced by Mirsky and
Meidan in 2018 [81], addresses the scarcity of publicly available botnet datasets designed explicitly for IoT networks.
The N _BaloT dataset is unique in that it includes benign and attack traffic captured from nine distinct [oT devices
(Table 3.1). Each device in the dataset generates varying levels of traffic, both normal and malicious, under controlled
conditions that simulate real-world botnet attacks. The malicious traffic includes instances of two prominent botnets,
Mirai and BASHLITE, each introducing various attack types. The N_BaloT dataset is multivariate and sequential,
consisting of 115 attributes that capture critical aspects of network traffic, such as packet size, flow duration, and
packet inter-arrival times, making it suitable for complex anomaly detection and multi-class classification tasks.

Table 3.1: Dataset Description

Name of device Sample for Benign Sample of attack
Danmini doorbell 49,548 9,68,750
Ecobee Thermostat 13,113 8,22,763
Ennio Doorbell 39,100 3,16,400
Philips B120N10- Baby monitor 1,75,240 9,23,437
Provision PT-337E- Security camera 62,154 7,66,106
Provision PT-838- Security camera 98,514 7,38,377
Samsung SNH-1011-N-Webcam 52,150 3,23,072
SimpleHome-XCS7-1002-WHT- Security 46,585 8,16,471

camera
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Name of device Sample for Benign Sample of attack
Danmini doorbell 49,548 9,68,750
Ecobee Thermostat 13,113 8,22,763
Ennio Doorbell 39,100 3,16,400
Philips BI20N10- Baby monitor 1,75,240 9,23,437
Provision PT-337E- Security camera 62,154 7,66,106
Provision PT-838- Security camera 98,514 7,38,377
Samsung SNH-1011-N-Webcam 52,150 3,23,072
SimpleHome-XCS7-1003-WHT- Security 19,528 8,31,298

camera

The dataset provides a realistic scenario for testing and evaluating security models by capturing normal and attack
conditions. Table 3.2 provides a breakdown of the types of attacks in the dataset, offering details about each attack
type and the associated number of instances.

Table 3.2: Types of attacks in the dataset

Mirai and Type of Description Number of
BASHLITE attack instances

BASHLITE Gafgyt Sending spam data to a network- transmitting unsolicited or unwanted messages or advertisements | 15,345

combo to a network, often with the intention of overwhelming the system or spreading malware.
BASHLITE Gafgyt Network scanning for attacking systems- examining a network to identify vulnerabilities or potential | 14,648
Scan targets for a botnet attack.

BASHLITE Gafgyt Sending a flood of requests in connection-oriented- sending a large no. of requests to a server or | 15,602
UDP network in a short period of time, often with the intention of overwhelming the system and causing

it to crash.

BASHLITE Gafgyt Sending a flood of requests in connection-less - sending a large no. of requests to a server or network | 15,676
TCP in a short period of time, often with the intention of overwhelming the system and causing it to crash.

BASHLITE Gafgyt Sending spam data- distributed or transmitting unsolicited or unwanted messages or advertisements | 15,449
Junk through various means such as email, and text messages.

Mirai Mirai Scanning the network activity- it involves scanning the internet for vulnerable devices that can be | 14,517
Scan infected with malware.

Mirai Mirai UDP | Scanning the network for victim devices- the process of searching a network for a specific device | 15,602
that is the intended target of an attack. The scanning is to identify the IP address, open port &
vulnerabilities of the victim device.

Mirai Mirai UDP flooded by optimizing seeding packets per second - UDP is flooded by sending an excessive | 15,304

plainUDP | number of seeding packets per second in an attempt to optimize the process.

Mirai Mirai Syn | Sending a flood of synchronization- overwhelming a network with a large number of synchronization | 16,436
messages, often with the intention of disrupting the normal operation of the system or causing a
denial-of-service attack.

Mirai Mirai Ack | Sending a flood of acknowledgment- overwhelming a network with a large number of | 15,138
acknowledgment messages, often with the intention of disrupting.
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None Benign Unharmful network data- it is legitimate data that is not intended to cause harm or damage to a | 15,538
system.

3.2. Transfer Learning-Enabled Intrusion Detection System for IoT

In this section, we introduce the TL-BiLSTM IoT model, a hybrid architecture designed to enhance the detection of
IoT botnet attacks by leveraging Transfer Learning (TL), Convolutional Neural Networks (CNN), and Bidirectional
Long Short-Term Memory (BiLSTM) layers. This model builds upon CNN's capacity to automatically extract spatial
features and BiLSTM's ability to capture temporal dependencies in sequential data. The hybrid design effectively
combines the strengths of these components, yielding an architecture suited for complex [oT intrusion detection tasks.
Specifically, Transfer Learning allows the model's rapid adaptation to novel threats, making it particularly useful for
detecting highly dynamic and evolving IoT botnet attacks, including BASHLITE and Mirai.

3.2.1. Model Architecture and Design

The TL-BiLSTM model benefits from the flexibility of Transfer Learning, which enables it to adapt pre-trained
knowledge to the IoT security domain without extensive retraining. This adaptability is crucial for IoT environments,
where devices are often resource-constrained and need efficient, scalable solutions for anomaly detection.

The proposed model, termed TL-BiLSTM, combines Convolutional Neural Networks (CNN) and Bidirectional Long
Short-Term Memory (BiLSTM) to develop an advanced framework capable of efficiently processing and classifying
time-series data. The input to this model is a 3D tensor with dimensions (batch_size, timestep, features), where
timestep denotes the sequence length, and features represent the characteristics at each timestep. This configuration
enables the model to effectively capture temporal patterns and dependencies within the data, facilitating robust
identification and classification of intricate patterns and anomalies. The simplified view of the proposed model in
Figure 3.1. The TL-BiLSTM architecture consists of the following layers:

Input Data — ConvlD Layer — ConvlD Layer — Bidirectional LSTM — Bidirectional LSTM — Flatten
— Dense Layer — Dense Layer — Dropout — Qutput Layer

The proposed CNN-BIiLSTM model has been developed to perform multiclass classification on sequential data,
explicitly targeting the identification and categorization of botnet attacks. This architecture uses convolutional neural
networks (CNNs) to extract spatial features and bidirectional long short-term memory networks (BiLSTMs) to capture
sequential dependencies, creating a comprehensive model well-suited for botnet detection complexities. Each layer of
the model contributes uniquely, collectively building a robust framework to enhance predictive accuracy in a
multiclass setting.
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Figure 3.1: Proposed simplified view of hybrid model CNN-BILSTM(TL-BILSTM).

The model's input tensor is (nxmx1), where n represents the number of time steps, m is the number of features, and
the final dimension of 1 denotes a single channel. This configuration is particularly suitable for processing time-series
data, as it allows the model to analyze temporal and feature-based relationships within the sequence.

To initiate the feature extraction, the model uses a 1D convolutional layer equipped with 64 filters, a kernel size of 5,
a stride of 1, and 'same' padding to preserve the dimensionality across layers. This layer aims to identify local patterns
within the data, capturing preliminary spatial features that will serve as the foundation for subsequent layers.
Mathematically, the output from the convolutional layer can be expressed as follows:

Yij = Ykea Wi X

3.1)

el

Where Y denotes the output tensor, wy, represents filter coefficients, and K is the kernel size. An activation function,
denoted by o, is then applied to the convolutional outputs, yielding:

Zjx=0(Yjx+by) (3.2)

Zijk= 0 <Z§=1 Wp,k Xi.j+p—[§]+bk> (3.3)

Where by, is the bias term. This activation helps capture non-linear relationships in the data.

A second convolutional layer, similar in structure but with 32 filters, further refines these spatial features. With a
kernel size of 5, stride of 1, and 'same’ padding, this layer builds upon the initial feature maps, extracting more complex
characteristics essential for capturing the intricacies of botnet behaviors. The output from this layer is similarly
computed by:
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Yijk = Xp=1Wpi X,

- (3.4)

The refined features are now ready for sequential processing. The model employs a bidirectional LSTM (BiLSTM)
layer, which processes the data forward and backward, capturing dependencies between time steps. For the forward
pass, the operations are defined as:

it = O'(Wi'fxt + Ui,fht—l + bl) (35)
fe = c(Wspx; + Us phy_y + by) (3.6)
0r = o(Wy sx; + Uy she_1 + by) (3.7)
9: = tanh(W, px, + Uy thy—y + by) (3.8)
¢ = [OC, +1,Og; (3.9)
h, = 0,0tanh(c,) (3.10)

Where x; is the input at time Stamp, h,_, is the hidden state and i, f;, 0, g;, ¢, h; are the input gate, forget gate,
output gate, cell input, cell state, and hidden state at the time stamp °t.

The backward pass functions similarly but in the reverse direction:

i; = oc(Wypx{ + Uy phiyy + b)) (3.11)
fi = o(Wppx{ + Ug yhisy + bf) (3.12)
of = o(W,px{ + Uy phiys + b)) (3.13)
gt = tanh(W, px{ + Uy phiyy + b)) (3.14)
¢t = f{OCiq + i{Og; (3.15)
ht = o;Otanh(c}) (3.16)

To reinforce the sequence-based learning, a second BiLSTM layer with 16 units further captures sequential
dependencies, refining the temporal representations from the previous BiLSTM layer. The outputs from this layer feed
into a Flatten layer, converting the multi-dimensional sequence output into a 1D tensor. This flattened output provides
a compact representation suitable for dense layer processing.

The dense layers perform high-level feature extraction with two layers: the first with 128 units and the second with
64, both using the ReLU activation function to introduce non-linearity. A dropout layer with a rate of 0.1 follows,
reducing the risk of overfitting by randomly deactivating 10% of the units during each training iteration. Finally, a
softmax-activated output layer yields a probability distribution across the botnet categories, enabling multiclass
classification. This carefully designed architecture balances spatial and sequential feature extraction, leading to high
precision in botnet detection.

3.2.2. Dataset Pre-Processing

The model evaluation utilizes the “Detection of IoT Botnet Attacks N_BaloT” dataset, which includes a broad
spectrum of benign and malicious traffic from various IoT devices affected by BASHLITE and Mirai botnets. A
comprehensive preprocessing phase ensures data consistency and quality, including anomaly and attack identification,
data cleaning, and standardization. Data preprocessing techniques have been described in detail, and the steps followed
for model construction are also depicted in Figure 3.2.
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Figure 3.2: Flow chart of the proposed work.

The preprocessing phase is essential for preparing the dataset for effective and practical model training and evaluation.
This phase consists of several steps, including anomaly detection, data augmentation, feature encoding, and data
standardization, which collectively improve the dataset's quality and suitability for machine learning tasks.

a) Anomaly and Attack Identification

The dataset incorporates multiple attack types from Mirai and BASHLITE botnets, as outlined in Table 3.2. This
multi-class structure is beneficial for a classification model incorporating transfer learning, as it enables the model to
identify and differentiate between distinct attack behaviors. By focusing on the specific attack patterns, the model is
trained to accurately classify these events, an approach that is critical for an effective anomaly detection system.

b) Data Augmentation

Given the dataset's multivariate nature, data augmentation is applied to enhance the diversity and generalizability of
the training set. Augmentation techniques include the addition of random noise to numerical features and transforming
categorical data, which improves the model's resilience against overfitting and enhances its ability to generalize across
similar patterns. For instance, the 'MI_dir L5 weight' feature is augmented by adding random noise using a standard
normal distribution, effectively simulating variability within the dataset:

row['MI_dir L5 weight'] =row['MI _dir L5 weight'] + np.random.normal(0, 1)

In this example, np.random.normal(0, 1) introduces a random noise with a mean of 0 and a standard deviation of 1,
improving the model's robustness. Further, categorical data augmentation involves character shuffling within text
columns, such as in the type field:

row['type'] = ".join(np.random.permutation(list(row['type'])))
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These transformations expand the dataset and simulate real-world conditions where data may have inherent noise or
variations.

¢) Feature Encoding

The N_BaloT dataset contains various data types, including numerical, categorical, and binary features. To enable
model compatibility and enhance computational efficiency, feature encoding is applied. Label Encoding, a more
efficient alternative to One-Hot Encoding, is employed, especially beneficial for high-cardinality categorical features.
Using the Pandas get dummies function, categorical columns are transformed into binary columns, with adjustments
made to ensure accuracy in the representation. For example, "Type benign" is renamed to "benign" for clarity,
ensuring consistency in feature labels across the dataset.

d) Data Standardization

Data standardization is pivotal in rescaling features to a standard scale, which is critical for machine learning models
sensitive to feature magnitudes. The standardization formula used is:
_ x—n
Z=— (3.17)
Where,
u = it shows the mean of the given distribution feature

o = it shows the standard deviation of the given distribution function
Z = refers as the standardization score

By converting each feature into a standardized format with a mean of 0 and a standard deviation of 1, the model can
more effectively compare features, irrespective of their original measurement scales. This transformation enhances
the accuracy of distance-based algorithms and improves convergence rates for gradient-based optimizers, ultimately
resulting in more robust model performance.

3.2.3. Performance Evaluation and Comparative Analysis

The TL-BiLSTM model was rigorously evaluated using standard performance metrics frequently applied in intrusion
detection, including accuracy, precision, recall, Fl-score, and the confusion matrix. This approach provides a
comprehensive assessment of the model's strengths and limitations. The TL-BiLSTM demonstrated substantial
improvements in accuracy, scalability, and adaptability over existing methods, showing robust efficacy in identifying
a range of IoT botnet attacks. Leveraging both temporal and sequential dependency learning through its hybrid
structure, the TL-BiLSTM model is particularly effective in detecting and differentiating IoT botnet threats, such as
BASHLITE and Mirai botnets.

For training and validation, the "Detection of IoT Botnet Attack N BaloT" dataset was split into 80% and 20% for
testing. This allowed for an in-depth evaluation of model performance on unseen data and facilitated hyperparameter
tuning for enhanced results. With a high accuracy of 99.52% achieved by the TL-BiLSTM model, as shown in Table
3.4, the results indicate the model's robust learning capabilities. High accuracy scores across training and testing sets
demonstrate that the model can generalize effectively to new data, accurately identifying intrusion attempts.

Table 3.4 Performance Evaluation of Proposed Model

Dataset Accuracy Loss Precision Recall AUC
Train set 99.55% 0.0144 99.53% 99.49% 99.99%
Validation set 99.52% 0.0145 99.54% 99.51% 99.99%
Testing set 99.52% 0.0150 99.54% 99.50% 99.98%
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The model was optimized with a hybrid CNN-BiLSTM architecture, where the CNN component extracts local data
features, and the BiLSTM captures the sequential dependencies necessary for intrusion detection. Model training
leveraged backpropagation with gradient descent, minimizing the categorical cross-entropy loss function. Figures
3.3(a) through 3.3(e) illustrate various metrics, providing insights into the model’s training and validation accuracy,
precision, recall, and the effect of the learning rate set to 0.01. This learning rate ensures steady convergence without
oscillation, as demonstrated in the stabilized training loss curve in Figure 3.3(b). A consistently high precision score
indicates the model’s efficiency in minimizing false positives, while a high recall score underscores its capacity for
identifying true positives.

Table 3.5: Performance Evaluation and Comparative Analysis

Type of attack Precision Recall F1-score Support
benign 1 1 1 9739
mirai_udp 0.97 1 0.98 11684
gafgyt_combo 0.99 0.95 0.97 6034
gafgyt_junk 1 0.99 0.99 5987
gafgyt_scan 1 1 1 21161
gafgyt udp 0.98 1 0.99 20517
mirai_ack 1 1 1 21299
mirai_scan 1 1 1 24466
mirai_syn 1 0.99 1 47643
mirai_udpplain 1 1 1 16600

Table 3.5 presents the TL-BiLSTM's performance across specific IoT attack types. High precision, recall, and F1
scores across various attack types reveal the model's high efficacy in differentiating between benign and malicious
classes, particularly for complex threats such as Mirai and Gafgyt botnets.

Table 3.6: Performance Evaluation and Comparative Analysis

Macro precision

Macro recall

Macro F1-score

Macro average

99.32%

99.16%

99.23%

100%

Macro precision

Macro recall

Macro Fl-score

Micro average

99.52%

99.52%

99.52%

99%

Macro precision

Macro recall

Macro F1-score

weighted average

99.52%

99.52%

99.52%

100%

Figure 3.4 illustrates each attack type's precision, recall, and F1 score, revealing that the model performs exceptionally
well across all categories. Additionally, Table 3.6 summarizes these metrics' macro, micro, and weighted averages,
indicating that the model maintains high accuracy and robustness across various attack types.

The TL-BiLSTM classification accuracy was further validated using a confusion matrix, shown in Figure 3.5. This
matrix compares the predicted and actual classifications, providing insights into the model's predictive accuracy for
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each class. Figures 3.5(a), (b), and (c) show the matrices for training, validation, and testing sets, respectively. A high
count of true positives and true negatives confirms the model's effectiveness in intrusion detection across all datasets.
Figure 3.6 displays the ROC curve, which measures the model's ability to distinguish between true and false positives,
providing insights into the optimal threshold for maximum sensitivity and specificity.
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Figure 3.3: (a) graphical representation of training and validation accuracy, (b) graphical representation of training
and validation loss, (c) graphical representation of training and validation precision, (d) graphical representation of
training and validation recall, and (e) graphical representation of learning rate.
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proposed model.
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In our research, we assessed the performance of our recursive network by incorporating a diverse set of evaluation
metrics beyond standard measures such as accuracy and precision. These supplementary metrics include the Matthews
Correlation Coefficient (MCC), True Negative Rate (TNR), Negative Predictive Value (NPV), False Positive Rate
(FPR), False Discovery Rate (FDR), False Omission Rate (FOR), and False Negative Rate (FNR) as shown in Table
3.7. This comprehensive approach allows for a better understanding of the stability and effectiveness of our recursive
network under various conditions, providing insights that go beyond conventional accuracy-based assessments. By
evaluating our model's performance across a wide range of metrics, we aim to identify specific strengths and potential
areas for optimization that could further enhance the network's robustness.

To apply MCC in the context of multiclass classification, we computed it for each class as a binary classification
problem by distinguishing each class from the remaining classes. The overall MCC metric for the multiclass model is
the average of these individual MCC values. The MCC value ranges from -1 to 1, where a score 1 represents a perfect
classification, 0 suggests a performance equivalent to random guessing, and -1 indicates complete misclassification.
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Thus, a higher MCC value indicates stronger model performance, with our proposed model achieving an impressive
MCC value of 0.9944 across all classes, highlighting its robustness in multiclass settings. The MCC formula is given

by:

(TP*TN) — (FP*FN)

McC = J(TP+FP) (TP+FN) (TN*FP) (TN+FN) (3.18)
Table 3.7: Experimental stability analysis of the proposed model.

Type of attack TNR NPV FPR FDR FOR FNR
Benign 0.9998 0.9997 0.000182 0.003252 0.000245 0.004365
mirai_udp 0.9996 0.9980 0.000329 0.004878 0.001994 0.028898
gafgyt_combo 0.9981 0.9995 0.001806 0.053678 0.000419 0.012960
gafgyt_junk 0.9996 0.9998 0.000379 0.011358 0.000106 0.003200
gafgyt_scan 0.9998 0.9999 0.000116 0.000898 0.000091 0.000709
gafgyt udp 0.9997 0.9980 0.000213 0.001706 0.001985 0.015714
mirai_ack 0.9999 0.9999 0.000049 0.000376 0.000049 0.000376
mirai_scan 0.9999 0.9999 0.000037 0.000245 0.000044 0.00286
mirai_syn 0.9975 0.9999 0.002401 0.0006948 0.000291 0.00845
Mirai_udp plain 0.9999 0.9999 0.000036 0.000361 0.000036 0.00361

In addition to evaluating the model's overall performance, the metrics utilized in our analysis enable the identification
of classes that present specific classification issues, allowing for the optimization of the model's hyper parameters.
The true negative value (TNR) for each class is depicted in Figure 3.7, with a greater value indicating better
performance in accurately identifying negative cases. A TNR score close to one indicates that all negative cases were
correctly identified as such. Figure 3.8 displays the negative predictive value (NPV) for each class, which assesses the
model's ability to predict negative events properly. A greater NPV suggests better performance in detecting negative
events. Figure 3.9 depicts the false positive rate (FPR) for each class, which measures the frequency with which normal
communication is wrongly classified as an attack in an intrusion detection system (IDS). A lower FPR score denotes
superior performance. The false discovery rate (FDR) is shown in Figure 3.10, and it ranges from O to 1, with a lower
value suggesting higher performance in correctly recognizing positive instances. Lastly, Figure 3.11 depicts the false
omission rate (FOR), which assesses the model's performance in scenarios where correctly identifying negative
instances is more important than correctly identifying positive instances and the cost of false negatives is minimal.
These metrics help identify specific aspects of the model's performance that need to be improved, influencing
hyperparameter modification to increase the model's performance.
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Figure 3.8: Negative predictive value for each class.
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Figure 3.10: False discovery rate for each class.
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Figure 3.11: False omission rate for each class.

In summary, our proposed model excellently classified different types of botnet attacks. It exhibited high precision,
recall, and F1 scores across all attack classes, achieving a commendable balance between accuracy and the ability to
identify relevant instances. The confusion matrix and additional metrics provided further insights into the model's
performance and facilitated optimization efforts.

a) Comparative Analysis with State-of-the-Art Techniques

This section compares our proposed model, TL-BILSTM, against several state-of-the-art IoT botnet attack detection
methodologies using the "Detection of IoT Botnet Attacks N BaloT" security dataset. Table 3.8 displays the
performance metrics, including accuracy, precision, recall, Fl-score, and loss, alongside the scalability and
adaptability of these approaches. Our proposed TL-BILSTM model exhibits superior performance in multiclass
classification for IoT botnet attacks across multiple parameters, outperforming the current methods in terms of
accuracy, recall, and low loss values.

Table 3.8: Comparative Analysis with State-of-the-Art Techniques

Reference Purpose Model | Classification Side Accuracy | Precision | Recall F1- Loss | Scalability Adaptability
& year name type score
2021,[82] IoT attack DNN- Binary Client 83.45 - - - - Low Moderate
detection DRL classification
using deep
reinforceme
nt learning
2022, [83] Attack Variatio Binary Client 96.156 - - - - Moderate Low
detection nal auto- | classification
using encoder
different
autoencoder
2021, [84] | TempCode- | TempCo Binary Client - 98.4 99.4 98.9 - High Moderate
IoT model de- classification
[oT(flow
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for detection | -based
of IDS flow | statistica
1 feature
model)
2022, [85] Anomaly Auto- Multiclass Client 99.54 - - - - High Moderate
detection encoder | classification(
using 3 classes)
transfer
learning for
DDOS
attack
2022, [86] Botnet CNN Multiclass Client 0.98 0.98 0.97 0.976 - Moderate Low
classificatio classification
n in the (3 classes)
Internet of
Things
2021, [87] Botnet Local- Multiclass Client 0.90 0.90 0.90 0.90 0.2 Low Low
attack global classification
detection best bat (10 classes)
using bio- algorith
inspired m for
algorithm neural
network(
LGBA-
NN)
2021, [88] Deep RNN Multiclass Client 89.75 - - - - Moderate Moderate
learning classification
approach for
botnet attack
2021, [89] Hybrid CNN- Multiclass Client 93 94 89 85 0.13 Moderate High
model to LSTM classification
detect the
botnet attack
in loT
application
2022, [90] | Hybrid deep | DNN L Multiclass Client 99.94 99.91 99.86 99.86 High High
learning STM Classification(
approach for 6 classes )
botnet attack
in securing
industrial
IoT
2023, [91] Deep DBoTM Regression Client RM2 = - - - - Moderate Moderate
learning problem 71%
prediction
model
Our Hybrid TL- Multiclass Client- 99.52 99.54 99.50 | 99.52 | 0.015 High High
proposed transfer BILST | classification side 0
model learning M(CNN (On 10
model for | +BILST classes)
IDS in IoT M)
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environmen
t

The enhanced performance of the proposed TL-BILSTM model can be attributed to its two-phase approach.
Significant features impacting training data are initially selected and scaled to normalize the dataset, eliminating
redundant features. In the second phase, the Conv1D layer captures localized patterns, while the BILSTM layer models
the global sequence characteristics by analyzing the entire data sequence. This combination of Conv1D and BILSTM
layers enables the model to accurately classify attack types by capturing low- and high-level features. The non-linear

activation functions ReLU for Conv1D and dense layers, and Softmax for the output layer further contribute to the
model's capacity to generate accurate class probabilities.

This two-stage process effectively balances model complexity and efficiency, significantly enhancing the model's
precision in detecting various botnet attack classes. Figure 3.12 provides a graphical representation of the accuracy
comparison between the proposed TL-BILSTM model and existing methods, demonstrating its robustness in
classifying multiple botnet attack types. Overall, the results indicate that the proposed TL-BILSTM model achieves
high performance with scalability and adaptability, making it well-suited for dynamic IoT environments.
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Figure 3.12: Proposed Model Comparison with existing approaches.
3.3. Deep Learning-Enabled Intrusion Detection for Industrial IoT

The increased deployment of IoT devices in industrial environments introduces security vulnerabilities that expose
systems to severe risks, especially in critical infrastructure settings. Industrial IoT (IToT) networks often consist of
heterogeneous devices, creating complex environments where identifying malicious activities is highly challenging.
This section discusses the proposed deep learning-based intrusion detection model tailored explicitly for IloT

environments. Our model, named AttackNet, leverages an adaptive CNN-GRU architecture to detect and classify
botnet attacks effectively, addressing unique challenges in IIoT security.

3.3.1. IIoT-Specific Anomaly Detection Framework

In the Industrial Internet of Things (IloT) context, detecting network-based anomalies is critical to safeguarding
industrial processes from cyber threats. This section presents an anomaly detection framework explicitly designed for
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IIoT environments, leveraging a Convolutional Neural Network and Gated Recurrent Unit (CNN-GRU) hybrid model
for effective and robust detection of various types of malicious network traffic.

The proposed IIoT anomaly detection framework aims to enhance network security by accurately identifying
malicious data from heterogeneous IoT devices within industrial networks. Given the diverse range of IloT devices
with varying configurations and capabilities, the model must be highly adaptive to ensure accurate threat detection.
Our framework leverages deep learning methodologies, particularly a hybrid CNN-GRU model, which benefits from
both the spatial feature extraction capability of CNN and GRU's temporal sequence modeling capability. This
combination is especially suited for [loT environments, where attacks often involve complex, sequential patterns.

The framework functions through two primary stages:

e Feature Extraction with CNN: Convolutional Neural Networks (CNNs) identify patterns and relevant
features within the input data, such as spatial correlations within network traffic.

e Temporal Modeling with GRU: Gated Recurrent Units (GRUs) handle sequential dependencies, allowing
the model to identify temporal patterns associated with network-based attacks in IIoT.

The CNN-GRU hybrid model allows for efficient multi-class classification, particularly for detecting botnet attacks
using the N _BaloT dataset. This dataset consists of time-series data derived from IloT devices, which provides a
comprehensive testbed for assessing the model's ability to classify benign and malicious activities.

The CNN-GRU model architecture is constructed to perform end-to-end classification, transforming input time-series
data into outputs representing different attack classes. The architecture consists of multiple layers, as detailed below:

The input to the CNN-GRU model is a time-series data matrix, X, of shape (T, F) where T represents the time steps
and F is the number of features in each step. This can be formally defined as:

X = [x(1),x(2), ...... ,x(T)] (3.19)
Where each x(t) represents the feature vector at the time t.

The first layer in the model is a 1-dimensional convolutional layer (Conv1D) with 64 filters, a kernel size of 5, and a
stride of 1. This layer captures spatial features within the input sequence. Defining W(1) as the weight matrix of size
(5,1,64) and b(1) as the bias vector of size (64), the output sequence Z (1) of this layer is calculated as follows:

Z[1][i] = f1X) = 1,2,345 W[1][j] = X[i +j — 3] + b[1]) (3.20)
Where f1 is the activation function (ReLU) and i ranges from 1 to T.

The second Conv1D layer includes 32 filters, with the same kernel size and stride as the first convolutional layer. The
weight matrix W(2) has dimensions (5,64,32), and b(2) is the bias vector of size (32)(32)(32). The output sequence
Z(2) is given by:

Z[2][i] = f2(Xj = 12,345 W[2][j] * Z[1][i +j — 3] + b[2]) (3.21)
Where f2 is the activation function (ReLU) and i ranges from 1 to T.

The output from the second ConvlD layer is passed through a MaxPooling1D layer with a pool size of 4. This
operation reduces the temporal dimension, aggregating spatial features over smaller regions to improve computational
efficiency. The output sequence Z(3) is given by:

ZI31li] = max(Z[2][4* (i — 1)+ 1], Z[2][4*« (i — 1)+ 2], Z[2][4* (i — 1)+ 3L Z[2][4* (i — 1)+ 4]) (3.22)
This pooling operation downsamples the input sequence, thus reducing the feature map size by a factor of 4.

Following the MaxPooling layer, two GRU layers capture temporal dependencies in the downsampled features. The
first GRU layer has 32 units, capturing high-level temporal patterns, while the second GRU layer, with 16 units, further
refines these patterns for classification.
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After pooling, let the input to the GRU layer be Z(3) with a shape (T’,32). The output Z(4) for each time step t in this
GRU layer is computed by applying a series of gating mechanisms (reset and update gates):

r(©) = o(W[3][r] = h(t — 1) + U[3][r] * Z[3][t] + b[3][r]) (3.23)
z(t) = o(W[3][z] = h(t — 1) + U[3][z] * Z[3][t] + b[3][z]) (3.24)
R (t) = tanh(W[3][h] = (r(t) = h(t — 1)) + U[3][R] * Z[3][t] + b[3][R]) (3.25)
h() = (1—2z()) *h(t — 1) + z(t) * h'(¢) (3.26)

Where r(t) and z(t) are the reset and update gates, h'(t) is the hidden state, o denotes the sigmoid activation function,
and * represents element-wise multiplication.

The output of the first GRU layer is fed into a second GRU layer with 16 units, where a similar set of equations
applies, further refining the temporal features.

The output of the final GRU layer is flattened to form a one-dimensional feature vector Z(5). This vector is then passed
through two dense layers for further processing:

e Dense Layer 1: This layer has 128 units with ReLU activation, enhancing the model's ability to learn
complex patterns.

o Dense Layer 2: Another dense layer with 64 units and ReLU activation refines the feature representation
further.

The final output layer is dense with a softmax activation function, classifying input data into different attack categories.
The output of this layer represents the probability distribution across attack classes, with each class corresponding to
a specific type of IloT botnet attack. The model is compiled with cross-entropy loss and is suitable for multi-class
classification. It is optimized using the Adam optimizer with a learning rate of 0.001. Key evaluation metrics include
accuracy, precision, recall, and F1 score, all tailored to assess the model's ability to detect anomalies accurately within
IToT networks.

The IloT-specific anomaly detection framework, based on the CNN-GRU hybrid model, effectively identifies
malicious activities in I[IoT networks. By integrating spatial and temporal feature extraction, the proposed framework
provides an advanced solution for safeguarding IToT environments against a wide range of network-based attacks. The
experimental results demonstrate the model's effectiveness, achieving high accuracy and outperforming existing state-
of-the-art techniques.

3.3.2. Feature Extraction and Optimization

In this section, we delve into the feature extraction and optimization processes foundational to enhancing anomaly
detection accuracy in the proposed framework. Our approach maximizes data relevance by systematically removing
redundant features, thereby improving model performance and resource efficiency. The model achieves a higher
detection capability through optimized feature extraction while requiring fewer computational resources, a critical
factor in Industrial Internet of Things (IloT) environments characterized by resource constraints.

Optimization in feature extraction is accomplished by implementing systematic steps to retain only the most relevant
features in the dataset. This selective feature extraction directly contributes to improved model performance by
allowing the machine learning model to learn efficiently from the most impactful features, increasing anomaly
detection's robustness. Furthermore, reducing data size through optimized extraction enhances resource efficiency,
which is crucial for IIoT systems, where computational resources may be limited.

As detailed below, the feature extraction and optimization pipeline include several pre-processing techniques that
enhance the dataset quality:

49 |Page



a) Data pre-processing

Data pre-processing is crucial in refining the input dataset, ensuring it is well-suited for effective anomaly detection.
The pre-processing techniques applied include data augmentation, shuffling, feature encoding, and data
standardization, each playing a vital role in preparing the data for training and optimizing the model's predictive
performance.

i) Data Augmentation

Data augmentation is employed to increase the size and diversity of the dataset, which is essential for improving model
generalization and robustness. To introduce variability and enhance the dataset, a custom function, augment_ data,
systematically applies transformations to each row. For instance, randomness is introduced to the numerical column
labeled 'MI_dir L5 weight' by adding a value drawn from a normal distribution with a mean of zero and a standard
deviation of one:

row[’MI _dir L5 weight’]=row[’MI dir L5 weight’]4+np.random.normal(0, 1)

Additionally, text columns such as 'type' can undergo character shuffling to add further variability:

# Example of random character shuffling in a text column

row['type'] = "join(np.random.permutation(list(row['type'])))
ii) Data Shuffling

To minimize potential biases and ensure that the dataset is randomized, data shuffling is performed on the data frame,
data. Shuffling rearranges the order of the data instances by randomly permuting the row indices using
"np.random.permutation”, ensuring that the order does not introduce unintended patterns or biases during training.
This randomized arrangement is crucial for obtaining an unbiased model, as it prevents the model from learning
spurious correlations that may occur in non-randomized data.

iii) Feature Encoding

Feature encoding converts categorical variables into a format suitable for machine learning algorithms by transforming
categorical labels into binary representations through dummy encoding. Our dataset encodes the categorical column
'type' into binary columns with unique identifiers for each category using the pd.get dummies function. The encoded
columns are stored in the labels dataframe, and the original 'type' column is dropped from the primary data dataframe:

# Dummy encoding categorical labels and separating from features
labels = pd.get dummies(data['type'])
data = data.drop(columns=["type'])

This encoding process allows for the seamless integration of categorical information as meaningful binary features,
enhancing the model’s ability to interpret categorical data accurately.

iv) Data Standardization

Data standardization ensures that all numerical features are on a comparable scale, facilitating fair comparisons during
model training. Standardization transforms each numerical column in the data dataframe to have a mean of 0 and a
standard deviation of 1. This is achieved using the z-score normalization formula:

7=k (3.27)

g
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Where p = it shows the mean of the given distribution feature, o = it shows the standard deviation of the given
distribution function, and Z = refers to the standardization score. The standardized function applies this formula to
each numerical column, creating a standardized dataset "data st" that ensures all features contribute proportionally,
free from the influence of differing magnitudes. This process is critical for enhancing the model's reliability and
interpretability by normalizing feature scales.

3.3.3. Performance Evaluation and Comparison

The overall performance of the proposed model was extensively evaluated using various quantitative metrics,
including accuracy, precision, recall, receiver operating characteristic (ROC) area under the curve (AUC), F1 score,
and the confusion matrix. We also focused on optimizing the model's hyperparameters to enhance its performance.
In recent years, deep learning (DL) algorithms have made significant advancements, and their application to intrusion
detection and classification problems has been successful. The remarkable progress of hybrid DL approaches has
positioned them as a promising solution for reliable and trustworthy network intrusion detection systems (IDS).

Our proposed model, which combines Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU)
layers, demonstrated optimal performance. It achieved a training accuracy of 99.77% and a testing accuracy of
99.75%, with a loss of 0.0063 as shown in Table 3.9. The precision and recall values were 99.75% and 99.74%,
respectively. The model employed four hidden layers, including two convolutional layers and two GRU layers.
Rectified Linear Unit (ReLU) was used as the activation function in the hidden layers, while softmax served as the
output activation function. The categorical cross-entropy loss function, coupled with the Adam optimizer, was
utilized.

Table 3.9: Quantitative analysis of proposed model

Dataset Accuracy Loss Precision Recall AUC
Train set 0.9977 0.0062 0.9978 0.9976 1.0000
Validation set 0.9977 0.0065 0.9978 0.9976 0.9999
Testing set 0.9975 0.0063 0.9975 0.9974 1.0000

In the context of Figure 3.13 (a) and (b), we evaluate the efficacy of the proposed AttackNet model by elucidating
the interplay between training and testing accuracy and training and testing loss. The horizontal axis of both figures
delineates the progression of epochs, while the vertical axis corresponds to accuracy and loss, respectively. Notably,
a discernible trend emerges wherein minimal epochs coincide with diminished accuracy; conversely, an
augmentation in epochs correlates with an enhancement in accuracy. This dynamic indicates the model's iterative
learning process, progressively refining its ability to discern patterns within the training dataset. Additionally, Figure
3.13 (b) serves as a graphical representation of the model's performance, specifically portraying the loss. Initially,
the loss magnitude is considerable with a sparse number of epochs. However, with the advancement of epochs, there
is a discernible reduction in loss magnitude. This nuanced depiction encapsulates the model's refinement over time,
signifying an improvement in its capacity to minimize errors and enhance overall performance.
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Figure 3.13: (a) graphical representation of training and validation accuracy, (b) graphical representation of training
and validation loss.

After training the model on the N _BaloT dataset and optimizing the hyper parameters, we achieved impressive
performance on the test and validation sets. The model achieved an AUC score of 1.00 on the test set and 0.99 on the
validation set, as demonstrated in the figures 3.14 (a) and (b).
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Figure 3.14: ROC curve for the proposed model: based on the calculated TPR & FPR.

To evaluate the model's performance on different attack classes, we computed evaluation metrics such as precision,
recall, F1 score, and support, as shown in Table 3.10. Across all classes, precision, recall, and F1 score consistently
exhibited high values. This suggests that the model accurately classified various types of botnet attacks, achieving high
accuracy and effectively identifying instances of each attack class.

Precision values of 1 indicate a high level of precision for all attack classes, implying that when the model predicted
instances as a specific type of botnet attack, it was highly likely to be correct. Similarly, recall values of 1 indicate that
the model demonstrated a substantial ability to accurately identify and capture a significant majority of instances
belonging to each specific attack class. Consequently, the model exhibited a remarkable ability to detect instances of
diverse botnet attacks effectively. Moreover, F1 scores approaching 1 indicated a commendable balance between
precision and recall for all attack classes. This exemplified the model's heightened accuracy while adeptly capturing

instances from each attack class.
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Table 3.10: Performance Evaluation Metrics of Proposed Model on Different Attack Classes
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We utilized a confusion matrix to provide a detailed breakdown of the model's predictions for each attack class. The
confusion matrix for the train, validation, and test sets enabled a comprehensive analysis of the model's performance,
as shown in Figure 3.15 (a), (b), and (c). We also assessed additional metrics, including True Negative Rate (TNR),
Negative Predictive Value (NPV), False Positive Rate (FPR), False Negative Rate (FNR), False Discovery Rate
(FDR), and False Omission Rate (FOR), for each class representing different types of botnet attacks shown in the
Table 3.11.
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Figure 3.15: Confusion matrix of the proposed model on the different target classes (a) for the train set (b) for the
validation set (c) for the test set

In evaluating the model's overall performance, these metrics enabled the identification of specific classification issues
within classes, facilitating hyper parameter optimization. Figures 3.16, 3.17 and 3.18 depicting TNR vs. NPV, FPR
vs. FNR, and FDR vs. FOR illustrated the trade-offs between correct identification of non-attack instances, avoidance
of false alarms, and accurate identification of attack instances, respectively.

Table 3.11: Class-wise Performance Metrics Analysis

40000

30000

20000

r 10000

Classes TNR NPV FPR FNR FDR FOR
0 0.999869 0.999960 0.000131 0.000701 0.002301 0.000040
1 0.998222 0.999491 0.001778 0.007330 0.025192 0.000509
2 0.999532 0.998258 0.000468 0.054284 0.015171 0.001742
3 0.999955 0.999872 0.000045 0.003864 0.001347 0.000128
4 0.999835 0.999890 0.000165 0.000842 0.001262 0.000110
5 0.999982 0.999951 0.000018 0.000394 0.000148 0.000049
6 1.000000 0.999994 0.000000 0.000047 0.000000 0.000006
7 0.999975 0.999981 0.000025 0.000122 0.000163 0.000019
8 0.999935 0.999971 0.000065 0.000084 0.000190 0.000029
9 0.999994 0.999988 0.000006 0.000122 0.000061 0.000012

Figure 3.16 shows the TNR v/s NPV on different classes. Higher value of TNR indicates a better ability to correct identif
y non attack instances whereas a higher value of NPV indicates a better ability to correctly identify non attacks instances

among the predicted negative. An increased in TNR generally leads to an increase in NPV and vice versa.
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Figure 3.16: TNR vs NPV: Analyzing Performance Measures

Figure 3.17 shows the FPR v/s FNR on different classes. Lower value of FPR indicates a better ability to avoid false al
arms for non-attack instances whereas lower value of FNR indicates a better ability to correctly identify attack instance
s. AS FPR increases, FNR tends to decrease and vice versa.
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Figure 3.17: FPR vs FNR: Analyzing Performance Measures

Figure 3.18 shows the FDR v/s FOR on different classes. As FDR increases, FOR tends to decrease and vice versa.
When the model makes more incorrect positive prediction (higher FDR), it tends to make fewer incorrect negative
predations (lower FOR), reflecting the trade-off between making incorrect positive and negative predictions.
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Figure 3.18: FDR vs FOR: Analyzing Performance Measures

The class-wise confusion matrix depicted in Figure 3.19 provides valuable insights into the performance of our
proposed AttackNet deep learning model. It enables us to analyze the true negative rate, false positive rate, valid
positive rate, and false negative rate for each class. Upon analysis, we found that the benign class constituted 5.38%
of the dataset, while the gafgyt junk and gafgyt combo classes accounted for only 3.20% and 2.94% respectively.
Furthermore, the Mirai ack class exhibited a false positive rate of 11.60%, indicating a relatively higher
misclassification of benign instances as Mirai_ack attacks. Similarly, the Mirai_scan class had a false positive rate of
13.36%. Overall, we observed that the Mirai_syn attack achieved a remarkably high detection rate, demonstrating the
effectiveness of our approach in identifying instances of this specific attack type.
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Figure 3.19: Class-wise confusion matrix of proposed model on the different target classes
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Figure 3.20: TNR values at each class on train, validation and test sets for correctly classified negative instances
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Figure 3.20 shows the TNR value of each classes. It represents the proportion of true negative prediction out of all
actual negative instances. The range of TNR is from o to 1, with 0 indicating no true negative predictions and 1
indicating perfect performance in identifying negative instances. It gives insight into the model’s performance in
classifying negative prediction which help to assess the model specificity and its ability to minimize false positive
errors. Figure 3.21 shows the FNR values of each attack types. It represents the proportion of false negative predictions
out of all actual positive instances. The range of FNR is from 0 to 1, with 0 indicating no false negative predictions and
1 indicating a high rate of false negative prediction. A lower value of FNR indicates a lower rate of missing positive
instances, meaning the model is more sensitive in identifying true positive class.

In our study, we have expanded the evaluation of our recursive network's performance by incorporating the Matthews
Correlation Coefficient (MCC) as an additional performance metric. The inclusion of MCC allows us to measure the
stability and robustness of our classification approach. The MCC value ranges from -1 to +1, where -1 signifies
completely inaccurate predictions, 0 represents random predictions, and +1 indicates precise predictions. By calculating
MCC for our multiclass classification problem, we are able to assess the model's capability to correctly classify
instances across multiple classes, encompassing both positive and negative predictions.

(TP+TN)—(FP*FN)
J(TP+FP)(TP+FN)(TN+FP)(TN+FN)

Mcc = (3.28)

Our proposed model achieves an impressive MCC value of 0.99707, indicating a high degree of agreement between
the predicted class labels and the actual ground truth across the various classes. This suggests that our model excels in
effectively distinguishing and accurately classifying instances into their respective categories, resulting in a notably
high level of prediction accuracy. The obtained MCC value not only demonstrates the model's strong performance, but
it also serves as a testament to its robustness and stability, reaffirming its reliability in multiclass classification tasks.

In summary, our proposed model (AttackNet) has showcased outstanding performance in effectively classifying various
types of botnet attacks. It has consistently demonstrated elevated precision, recall, and F1 scores across all attack
classes, attaining a commendable equilibrium between accuracy and the capability to identify pertinent instances. The
confusion matrix's elucidation and additional metrics offered comprehensive insights into the model's performance and
streamlined optimization endeavors. Overall, our proposed model stands as a robust solution, excelling in the nuanced
task of botnet attack classification.
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Figure 3.21: FNR values at each class on train, validation and test sets for incorrectly classified positive instances

a) Ablation study of Proposed model

This section incorporates an ablation study aimed at providing comprehensive insights into the constituent elements
of the model and their respective contributions. The assessment encompasses the following scenarios:

Case A: Training the dataset using a 1-D Convolutional Neural Network (CNN).

Case B: Training the dataset utilizing a 2-D Convolutional Neural Network (CNN).
Case C: Training the dataset employing a Gated Recurrent Unit (GRU).
Case D: Training the dataset using the proposed model.

This systematic evaluation of distinct cases serves to dissect the influence and efficacy of each model variant, thereby
facilitating a nuanced understanding of their individual roles and impacts on overall performance.

Table 3.12: Ablation study score for the proposed model AttackNet

Ablation study cases Cases Accuracy Precision Recall
Train the dataset with 1D CNN A 0.84 0.80 0.79
Train the dataset with 2D CNN B 0.87 0.83 0.80
Train the dataset with GRU C 0.93 0.91 0.91
Train the dataset with Proposed model D 0.9975 0.9954 0.9950
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Figure 3.22 delineates the discernible effects resulting from each implemented enhancement. The ascending trends
observed in accuracy, precision, and recall scores underscore the evident advantages derived from the refinement of
the proposed model, offering profound insights into its constituent elements. Table 3.12 gives a detailed breakdown
of scores from our ablation study. It's important to note that Case D, where we trained the dataset using our proposed
model, performed better than all other cases. This emphasizes that our proposed model is more effective compared to
other setups, showing better results across various evaluation measures.
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Figure 3.22: Ablation study result on N_BaloT dataset.
b) Findings and Comparison with benchmark
i) Comparison with state of artwork

This section compares the proposed model AttackNet to various cutting-edge strategies for detecting IoT botnet attacks
using the "Detection of IoT botnet attacks N_BaloT" security dataset. Table 3.13 shows the performance values for
these current approaches on various parameters. In terms of accuracy, recall, and loss, the proposed AttackNet model
outperforms the other models for multiclass classification of botnet attacks. The DNN-LSTM model [Hasan T et.al]
achieved higher accuracy, precision, recall, and F1 score compared to the proposed AttackNet model. However, the
difference is relatively small and both demonstrate high performance. The number of classes in proposed AttackNet
model is higher (10 classes) compared to the DNN-LSTM model (6 classes). The proposed AttackNet model also
provides detailed loss information, which is valuable for assessing the training performance. The proposed approach's
improved performance is due to its two-phase method. Significant features that have an impact on the training data
are picked while scaling the dataset to normalize it, and redundant features are removed. The Conv 1D layer gathers
local features in the second phase, while the GRU layer captures global characteristics by taking the entire sequence
into account. By collecting both low-level and high-level features from the input sequence, the model is able to
accurately categories data using these two strategies. Deep learning-friendly non-linear activation functions such as
Relu and softmax are used in the model. To generate the final class probabilities, relu is employed in the Conv 1D and
dense layers and softmax in the output layer. The effectiveness of both phases justifies the proposed model's accuracy
in predicting various botnet attack types.

Table 3.13: Comparative Analysis of Proposed Model and State-of-the-Art Approaches on the 'N_BaloT' [oT Botnet
Attack Detection Dataset

Reference Purpose Model Classification Side Accuracy | Precision Recall F1- Loss
& year name type score
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2021,[82] IoT attack DNN- Binary Client 83.45 - - - -
detection DRL classification
using deep
reinforcemen
t learning
2022, [83] Attack Variatio Binary Client 96.156 - - - -
detection nal auto- | classification
using encoder
different
autoencoder
2021, [84] | TempCode- | TempCo Binary Client - 98.4 99.4 98.9 -
IoT model de- classification
for detection | IoT(flow
of IDS flow -based
statistica
1 feature
model)
2022, [85] Anomaly Auto- Multiclass Client 99.54 - - - -
detection encoder | classification(3
using classes)
transfer
learning for
DDOS
attack
2022, [86] Botnet CNN Multiclass Client 0.98 0.98 0.97 0.976 -
classification classification
in the (3 classes)
Internet of
Things
2021, [87] | Botnet attack | Local- Multiclass Client 0.90 0.90 0.90 0.90 0.2
detection global classification
using bio- best bat (10 classes)
inspired algorith
algorithm m for
neural
network(
LGBA-
NN)
2021, [88] Deep RNN Multiclass Client 89.75 - - - -
learning classification
approach for
botnet attack
2021, [89] Hybrid CNN- Multiclass Client 93 94 89 85 0.13
model to LSTM classification
detect the
botnet attack
in [oT
application
2022, [90] | Hybriddeep | DNN_L Multiclass Client 99.94 99.91 99.86 99.86
learning STM Classification(
approach for 6 classes )
botnet attack
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2023, [91] Deep DBoTM Regression Client R"2

learning problem 71%

prediction
model

Our Hybrid- AttackN Multiclass Client- 99.75 99.54 99.50 99.52 | 0.006
proposed deep et classification side 3
model learning (CNN+ | (in 10 classes)
model for GRU)
IDS in IoT
environmen
t

This section provides informative comparisons between the performance of the proposed model and current cutting-
edge IoT botnet attack detection approaches. Figure 3.23 compares the accuracy parameter of the proposed model to

the technique currently in use. Overall, the results reveal that our proposed model AttackNet outperforms other
strategies and correctly classifies various botnet attack types.
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Figure 3.23: Graphical representation of the proposed model with the existing state of artwork on the accuracy
parameter.
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3.3.4 Complexity Analysis
a) Time Complexity

The time complexity of the above model can be approximated by the number of trainable parameters in the model,
which is a function of several hyperparameters such as the number of filters in the convolutional layers, the kernel
size of the convolutional filters, the number of units in the GRU layers, and the number of units in the dense layers.
The number of trainable parameters in the model can be computed as follows:

num_params = (num_filters * kernel size + 1) * num_features + num_features"2 + num_features * num_timesteps *
(num_timesteps - 1) * recurrent_units + num_features * dense units + dense units + num_classes

where:

e num_filters: the number of filters in the convolutional layers

e kernel size: the size of the convolutional kernels

e num_features: the number of input features

e num_timesteps: the number of time steps in the input sequence
e recurrent units: the number of units in the GRU layers

e dense_units: the number of units in the dense layers

e num_classes: the number of output classes

The time complexity of the model can be approximated as proportional to the number of trainable parameters. This is
because the most computationally expensive part of training the model is computing the gradients of the loss function
with respect to the model parameters, which requires evaluating the model at each training step.

The number of training steps required to train the model is proportional to the number of epochs and the size of the
training data. Therefore, the time complexity of the model is also dependent on these factors. Table 3.14 shows the
computational time complexity analysis on the dataset.

Table 3.14. Computational Time Analysis: Training, Validation, and Testing Performance on the Dataset

Dataset Computational Time

Train set 160s 8ms/step
Validation set 23s 8ms/step

Test set 45s 8ms/step

b) Space Complexity

The space complexity of the model is also proportional to the number of trainable parameters in the model. This is
because each trainable parameter requires a certain amount of memory to store its value, and the total memory required
to store all the trainable parameters is proportional to their number. In addition to the trainable parameters, the model
also requires memory to store the input data, intermediate activations, and gradients during training. The memory
required for these operations is proportional to the size of the input data, the number of units in the model, and the
number of training steps required to train the model.

Overall, the time and space complexity of the model can be quite high, especially for large input data and a large
number of trainable parameters. However, efficient algorithms and hardware accelerators such as GPUs can help to
mitigate these issues. Additionally, techniques such as weight regularization and early stopping can help to reduce the
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number of trainable parameters and reduce overfitting, which can also help to reduce the time and space complexity
of the model.

¢) Findings

i) Reliability and Trustworthiness

To evaluate the reliability of our model, we consider a scenario where our model consists of 10 distinct attack types
or learners. Due to the diverse nature of Deep learning, the errors that arise in these various attacks are independent
and unrelated to each other. Even if certain learners exhibit inaccuracies, the remaining learners may still demonstrate
accuracy, thereby allowing our approach to effectively classify intrusion attacks in Deep learning-based Industrial
Internet of Things (IIoT) networks.

Figure 3.24 shows that the error rate of the learner for 10 different attack types is less than 0.006779. This means that
our method is effective at detecting attacks in IIoT networks. We verified the trustworthiness of our model by
classifying attacks with one dataset and found that the error rate was low.

Error Probability
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Figure 3.24. Simulated error probability of each class

Figure 3.25 shows the accuracy of the proposed model using a hybrid approach on 10 different attack types. The
accuracy of the model is higher for some attack types than others, but overall the model is effective at detecting attacks.
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Figure 3.25: Simulated error probability of each class

ii) Dependability performance analysis

In this section, we analyze the dependability performance of our proposed model, which encompasses availability,
efficiency, and scalability. We carefully select features and apply our model to accurately classify both normal and
attack scenarios. This ensures that our model is always available and performs well. We evaluate our model using
metrics such as accuracy, precision, recall, F1 score, and roc. Our model outperforms several existing approaches and
achieves this improved performance with minimal computational loss. This is illustrated in Figure 3.13.
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Figure 3.26: Scalability analysis of our proposed model (AttackNet)

Finally, we have observed enhanced scalability characteristics in our proposed model by incorporating diverse trusted
data sources from various IoT devices into the training dataset. This inclusion ensures maximum consistency and a
wider range of data. Remarkably, as we increased the epoch number from 10 to 100, the accuracy of our proposed
model remained nearly unchanged, indicating its scalability. Figure 3.26 illustrates the scalability performance of our
proposed model.

3.4. Dependable and Trustworthy CNN-GRU-Based Intrusion Detection System for IloT

In this section, we present the design and development of a dependable and trustworthy Intrusion Detection System
(IDS) for Industrial Internet of Things (IloT) environments, leveraging a hybrid model that combines Convolutional
Neural Networks (CNNs) and Gated Recurrent Units (GRUs). The proposed system, Alpha-Net, is designed to
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efficiently detect and mitigate cyber threats, such as network-based attacks by IoT botnets, in complex industrial
networks. We discussed the key design elements of Alpha-Net, including its feature extraction techniques, the
communication sequence architecture, and the statistical analysis used to validate its performance.

3.4.1 Design of the Alpha-Net IIoT Anomaly Detection Framework
a) Data Preparation and Feature Extraction

Data preparation is an important step in machine learning and deep learning workflows as it involves cleaning and
organizing the data before feeding it into the algorithms. This process aims to enhance the learning process and
improve the accuracy of the models. During data preparation, various operations can be performed, including feature
selection, converting non-numerical features to numerical ones, and handling missing values appropriately. In our
research, we adopted a two-step approach for Data Preparation, comprising Data Pre-processing and Data
Normalization techniques as shown in algorithm 3.1:

i) Data Pre-processing

In the data pre-processing, categorical features with nominal values were transformed into numerical values using label
encoding. This conversion ensured compatibility with the neural network's input requirements. Additionally, we
eliminated irrelevant features such as data, time, and timestamp columns, as they did not contribute significantly to the
output predictions.

ii) Data Normalization

Data normalization was applied to address the issue of feature imbalance. Some attributes in the dataset had higher values
than others, thus skewing the model's performance. To overcome this, we employed the min-max scaling technique for data
normalization. This approach maps the data to a range between 0.0 and 1.0 while preserving the inherent distribution of the
data. Mathematically, the min-max scaling formula is expressed as follows:

y = (x — xmin) / (xmax — xmin), (3.29)

where x and y are the original and normalized values. The feature's minimum and maximum values are given by xmin
and xmax, respectively.

Algorithm 3.1: Data Preprocessing for Enhanced Intrusion Detection System

1. Input: Obtain the raw dataset by reading from the specified path.

2. Processing Steps:
a. Introduce a new column, named "type," indicating the attack type.
b. Concatenate the individual datasets into a unified dataset with corresponding labels.
c. Display the dimensions of the resulting dataset: (N *M), where (N =926157 ) and (M =116).
d. Examine feature similarities within the dataset.
e. Eliminate columns with redundant features.
f. Perform data augmentation by introducing noise to the dataset, resulting in augmented data.
g. Display the dimensions of the augmented dataset: (N * M), now reduced to (926157 * 76).
h. Randomly permute the rows of the dataset to introduce variability.

i. Encode categorical labels.
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j- Implement dummy encoding for categorical variables, considering each column and row.
k. Modify the dataset columns with the 'type' prefix for clarity.
1. Standardize the dataset by scaling each column with its mean and standard deviation.

3. Output: The preprocessed dataset is now ready for subsequent analysis.

4. Dataset Splitting:

a. Separate the dataset into training and testing sets using an 80:20 ratios.

5. Output: The dataset is split into training and testing subsets, facilitating model development and evaluation.

The data preprocessing algorithm 1 ensures that the raw input is transformed into a standardized, noise-augmented,
and well-organized dataset, paving the way for robust analysis and model training in cybersecurity research.

b) Feature Selection

Feature selection plays a pivotal role in reducing the dimensionality of high-dimensional datasets while preserving
relevant information. In this research, we propose a Quantum-Inspired Genetic Algorithm (QIGA) for efficient feature
selection as shown in Algorithm 3.2. QIGA integrates principles of quantum computing, such as superposition and
probability amplitudes, with genetic algorithms to identify optimal feature subsets. The following are the steps in the
proposed methodology:

i) Quantum Representation of Features
Each feature is represented as a quantum bit (qubit), which exists in a superposition state defined as:

Where,a and f are probability amplitudes satisfyingla? + p? = 1, ensuring normalization and |0 >
and |1 > represent the states where a feature is excluded or included, respectively.

po=al0> +p|1> (3.30)
The superposition enables simultaneous evaluation of all possible feature subsets, providing an efficient mechanism
for feature exploration.

ii) Fitness Evaluation

The fitness of each quantum chromosome is calculated using a classification model (CNN-GRU in our case). The
fitness function is defined as:

1
1+E(x)

F(x) = + A.R(x) (3.31)

Where, E (x): Classification error rate of the CNN-GRU model on the selected feature subset x, R(x): Regularization
term penalizes the selected subset's size to encourage simplicity, A: Regularization weight balancing accuracy and
simplicity.

iii) Quantum Genetic Operators: Following are the operations performed

e Quantum Crossover: The crossover combines two parent quantum chromosomes, defined by their probability
amplitudes (a,, B,) and (a4, B4) to produce offspring:

Qoffspring = Wi1-0p T Wa. g, ,Boffspring = Wl-Bp + Wz-ﬁq (3.32)

Where w; and w, are weight coefficients ensuring normalization.
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e Quantum Mutation: Mutation adjusts the probability amplitudes to explore new feature subsets:

a' = a.cos(@) — B.sin(0) (3.33)
B' = a.sin(®) + B.cos(0) (3.34)

Where @ is the mutation angle controlling the extent of perturbation.

e Quantum Measurement: Measurement collapses the quantum state into a classical state, determining the final
feature subset for evaluation:

_ (Lif 18> > |ayl?
= {0, Otherwise (3.35)

By applying QIGA, the dimensionality of the dataset is significantly reduced, with a feature subset that maximizes
classification accuracy while minimizing computational overhead. The final selected features enable the CNN-GRU
model to achieve superior performance metrics in anomaly detection.

Algorithm 3.2: Quantum-Inspired Genetic Algorithm for Feature Selection
1. Input: Dataset D, number of iterations T, population size P.
2. Initialize: Quantum chromosomes with random probability amplitudes.
3. Fort=1toT:
a. Evaluate fitness F(x) for each quantum chromosome.
b. Perform quantum crossover and mutation.
c. Collapse quantum states to select features.
4. Output: Optimal feature subset x* with maximum fitness.

3.4.2 Proposed Model (Alpha-Net)

The block diagram of the proposed Intrusion Detection System (IDS) model named Alpha-Net comprises three main
components, as shown in Figure 3.27. The first component is responsible for Data Preparation, where the input data
is gathered, preprocessed, and made ready for further analysis. The second component involves the application of an
Intrusion Detection Technique, which aims to identify potential intrusions or malicious activities within the network.
Simultaneously, this phase incorporates Model Training, where the system learns from labeled data to enhance its
ability to detect intrusions accurately. The final component of the model encompasses Network Data Evaluation. In
this stage, the preprocessed and trained data are subjected to further analysis and refinement to improve its
performance. The evaluation process assesses the efficiency and effectiveness of our proposed IDS model, utilizing
various metrics and benchmarking methods to gauge its performance against existing models and standards.
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Figure 3.27: Block diagram of the proposed model on different performance analyses.
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The primary objective of the proposed model is to enhance the security of IoT devices by safeguarding them against
diverse attacks. A state-of-the-art and up-to-date dataset ensures comprehensive experimentation and evaluation of
the model's performance. In Figure 3.28, the sequence diagram of I1oT illustrates the communication process between
different layers in the Industrial Internet of Things (IloT) architecture. This diagram provides valuable insights into
how information and data flow through the layers, facilitating a better understanding of the communication dynamics

within the IToT framework.

Table 3.15: Hyper Parameter of the Proposed Model

Hyperparameter Value/function

No. of Layers 8

ConV 1D fitters 64,32
ConV1D Kemel Size 5
Map pooling ID 4

GRU Units 32,16

Activation function Relu
Dropout 0.1
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Dense Unit 128,64,64

Activation Function Softmax

Loss Function Categorical cross-entropy

The proposed model underwent extensive empirical experiments aimed at identifying key parameters. After multiple
iterations, the model with the highest predictive performance on the training set was selected as the optimal intrusion
detection model for diverse IoT applications. Training involved utilizing a randomly selected dataset, while validation
was performed on a separate dataset to assess effectiveness. The model's detection performance was comprehensively
analyzed by comparing various parameter settings. Rigorous testing was carried out to ensure the model's
dependability, reliability, trustworthiness, security, and privacy. After thorough evaluation, the most robust model
emerged as the final intrusion detection solution for heterogeneous IoT applications. Table 3.15 details the
hyperparameters of the proposed model, specifically designed for intrusion detection in IoT/IIoT environments using
CSV data. The model comprises different layers, utilizing 64 and 32 Conv1D filters with a kernel size of 5 to capture
local features effectively. Max pooling with a size of 4 reduces dimensionality, while GRU units (32 and 16) capture
temporal dependencies crucial for identifying intrusions. ReLU activation functions are used in the convolutional and
dense layers to introduce non-linearity, and a dropout rate of 0.1 prevents overfitting by deactivating 10% of neurons
during training. The dense layers (128, 64, 64 units) aggregate learned features, with the Softmax activation function
in the output layer generating probability distributions for multi-class classification. The model employs categorical
cross-entropy as the loss function to measure the performance by comparing predicted probabilities with actual class
labels. These hyperparameters are optimized to balance complexity and performance, ensuring efficient memory usage
on a system with 8GB RAM while achieving high accuracy and robustness in detecting and classifying botnet attacks.
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Figure 3.28: Sequence diagram of proposed IloT-based IDS monitoring system.

The Network architecture of the proposed model is shown in Figure 3.29. The input of the network is the same shape.
Define the input sequence X as a metric of size (A, 1), where A is the length of the sequence:

X = [x(1),x(2),x(3), ... x(4)] (3.36)

The first layer in the model is a 1D CNN layer that performs cross-correlation operations on the input data.This layer
helps extract local spatial features from the input data, such as patterns and anomalies that can differentiate between
normal and attack traffic, the output can be obtained as:

Y[1][i] = RELU (€; = 1,2,3,4,5 W[1][j] = X[i + j — 3] + v[1]) (3.37)
Where weight matrix W[1], biasvector v[1], output sequence Y[1] and i = 1<x<A.

The Second 1D CNN layer further captures higher-level spatial features from the output of the first layer. It learns to
detect more Complex patterns and correlations between different spatial regions of the input data. The output sequence
can be obtained as:

Y[2][i] = RELU (€; = 1,2,3,4,5 W[2][j] * Y[1][i + j — 3] + v[1]) (3.38)
Where weight matrix W[2], biasvector v[2], output sequence Y[2] and i = <x<A.
The max pooling layer reduces the spatial dimensions of the input data by selecting the maximum value within each

pooling window. This operation has to abstract the spatial information focusing on the most salient feature and
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reducing computational complexity. It also aids in achieving translation in variance by capturing relevant information,
the output sequence can be obtained as:

Y[3][i] = max (Y[2][4*(i— 1) +1] ,Y[2][4* (-1 +2] ,Y[2][4*(G—1)+3] ,Y[2][4*x(G—1)+4]) (3.39)

The GRU layers, which consist of reset, update, and new Gates along with the hidden States calculations, are coxial
capturing the temporal dependencies in the input data. For attack classification, these layers learn to model the
temporal patterns and dynamics over time, considering the sequential nature of the network traffic. The fourth layer,
with 32 units defining the output sequence as:

r(t) = o(W[3][r] * h(t — 1) + u[3][r] = Y[3][t] + v[3][r]) (3.40)
z(t) = o(W[3][z] * h(t — 1) + u[3][z] * Y[3][t] + v[3][z]) (3.41)
h'(t) = tanh(W[3][h] * (r(t) * h(t — 1)) + u[3][R] * Y[3][t] + v[3][A]) (3.42)
h(t) = (1 —2z(t) *h(t — 1)+ z(t) * h'(t)) (3.43)

The fifth layer is GRU layer with 16 units, defining the output sequences:

r(t) = a(W[4][r] « K'(t — 1) + u[4][r] = h[A/4] + v[3][r]) (3.44)
z(t) = o(W[4]lz] = k' (t — 1) + u[4][z] = h[A/4] + v[3][z]) (3.45)
R'(t) = tanh(W[4][R] * (r(t) = h'(t — 1)) + u[4][h] * h[A/4] + v[4][h]) (3.46)
h(t)= (1 —z(@®) «h'(t — 1) + z(t) * h"'(t)) (3.47)

The sixth layer of the model is a flattening layer, which reshapes the multidimensional output from the GRU layers
into a one-dimensional tensor. This conversion preserves the temporal sequence of the information while reformatting
it to make it compatible with subsequent fully connected layers. The seventh, eighth, and ninth layers are fully
connected layers designed to extract high-level features and classify patterns identified in the preceding layers. These
layers leverage matrix operations and the ReLU activation function to model intricate relationships among features,
enabling accurate predictions. The tenth layer is a dropout layer, implemented with a dropout rate of 0.1, which helps
regularize the model by randomly deactivating a fraction of neurons during training. This approach minimizes
overfitting by encouraging the network to generalize better and avoid reliance on specific neurons.

The final layer is a fully connected output layer utilizing a Softmax activation function. The Softmax function converts
the layer's outputs into a probability distribution across the target classes. For instance, in a scenario with 15 classes,
the output will be a 15-dimensional vector where each element represents the probability of the input belonging to a
particular class.

h, = Flatten(h;) (3.48)
z; = Wihy + by (3.49)
a, = g(z,) (3.50)

z, = W,a, + b, (3.51)

a, = 9(z,) (3.52)

d, = Dropout(a,) (3.53)

z3 = Wady + bs (3.54)

as; = ReLu(zs) (3.55)

zy =Woaz + b, (3.56)

a, = ReLu(z,) (3.57)

y = softmax(Wsa, + bs) (3.58)
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Figure 3.29: Network layered architecture of the proposed model (Alpha-Net).

The proposed model, Alpha-Net, integrates Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU)
to handle the complexities of intrusion detection in Industrial Internet of Things (I[oT) environments. The combination
of CNN and GRU allows the model to effectively capture spatial and temporal dependencies in the data, which is
crucial for identifying attack patterns in network traffic. CNNs excel in extracting spatial features by identifying
patterns in the dataset columns, which is vital for recognizing anomalies and distinguishing between normal and
malicious traffic. Specifically, the 1D CNN layers are responsible for extracting local spatial features. In contrast, the
second CNN layer refines these features, enabling the model to capture more complex patterns across different regions
of the input data. Max pooling is then applied to reduce the dimensionality of the feature maps, focusing on the most
salient information and improving computational efficiency.

On the other hand, GRUs handle the temporal aspects of the data, capturing the sequential nature of the network
traffic. These units model temporal dependencies by learning from previous time steps and identifying how patterns
evolve. This is particularly important in intrusion detection, where attacks often follow temporal patterns or exhibit
periodic behaviors that need to be recognized over time. With their gating mechanisms (reset, update, and new gates),
the GRU layers are designed to capture these dynamic temporal changes in the input data, making them highly
effective for sequential data. By combining CNNs and GRUs, Alpha-Net benefits from the ability to capture both
spatial features and temporal dependencies simultaneously. This synergy makes the model highly adaptable to various
dataset structures, such as those found in IloT environments and enhances its ability to detect intrusions with high
accuracy. While CNNs alone can identify local patterns and anomalies in data, and GRUs alone are proficient at
handling sequential data, the hybrid architecture of Alpha-Net leverages the strengths of both approaches, ensuring
robust performance across different types of data and attack scenarios. This combination significantly improves the
model's ability to detect attacks in various IloT applications.

Algorithm 3.3 entails constructing a sequential neural network model with distinct layers, including Conv1D and GRU
layers followed by Flatten and Dense layers. This model is configured with a designated optimizer, loss function, and
metric before training on the provided training data. Subsequently, the model's performance is evaluated using a
separate test data set, and its predictive capabilities are applied to new data. The evaluation involves assessing metrics
such as accuracy to gauge the model's effectiveness.
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Algorithm 3.3: Proposed Alpha-Net Model

from tensorflow.keras.models import Sequential

from tensorflow.keras.layers import Conv1D, MaxPooling1 D, GRU, Flatten, Dense, Dropout

from tensorflow.keras.optimizers import Adam

# Function to build the Alpha-Net Model

def build_attacknet model(train_data, labels, val data, val labels, num_classes=10):

# Step 1: Define the model architecture

model = Sequential()

# Add Convolutional Layers for feature extraction

model.add(Conv1D(64, kernel size=5, strides=1, padding='same', activation="relu'))

model.add(Conv1D(32, kernel size=5, strides=1, padding='same', activation="relu'))

model.add(MaxPooling1 D(pool_size=4))

# Add GRU Layers for temporal feature modeling

model.add(GRU(32, activation="relu', return_sequences=True))

model.add(GRU(16, return_sequences=True))

# Flatten the output

model.add(Flatten())

# Add Fully Connected (Dense) Layers for classification

model.add(Dense(128, activation="relu'))

model.add(Dense(64, activation="relu'))

model.add(Dropout(0.1))

model.add(Dense(num_classes, activation="softmax"))

# Step 2: Compile the model

optimizer = Adam()

loss = 'categorical crossentropy’

metrics = ['accuracy']

model.compile(optimizer=optimizer, loss=loss, metrics=metrics)
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# Step 3: Train the model
epochs =10
batch_size =32
validation_data = (val_data, val labels)
for epoch in range(epochs):
if epoch == 0:
model.fit(train_data, labels, epochs=1, batch_size=batch_size, validation data=validation data)
else:
model.fit(train_data, labels, epochs=1, batch_size=batch_size)
# Step 4: Evaluate the model
test_data, test labels = load test data() # Replace with actual test data loader
loss, accuracy = model.evaluate(test_data, test labels)
# Step 5: Use the model for predictions
new_data =load new_data() # Replace with actual data loader
predictions = model.predict(new_data)
return model, accuracy, predictions
# Placeholder functions for loading test and new data
def'load test data():
# Replace this with the actual logic to load test data
return None, None
def'load new_data():
# Replace this with the actual logic to load new data for predictions

return None

3.4.3 Result Analysis

The proposed Alpha-Net model underwent rigorous evaluation across several standard metrics, including accuracy,
precision, recall, F1 score, loss, and the receiver operating characteristic (ROC) area under the curve (AUC). These
metrics collectively ensured a comprehensive assessment of the model's effectiveness. The model achieved
exceptional training and testing accuracies of 99.98% and 99.97%, respectively, with a minimal loss of 0.0014,
showcasing its robustness. Table 3.16 summarizes the performance metrics for the training, validation, and test
datasets, demonstrating consistently high precision, recall, and F1 scores across all evaluation phases.

76 |Page



True label

The Alpha-Net model comprises a hybrid architecture integrating Convolutional Neural Networks (CNN) and Gated
Recurrent Unit (GRU) layers. The model includes four hidden layers: two convolutional layers for feature extraction
and two GRU layers for sequential data modeling. The Rectified Linear Unit (ReLU) activation function was
employed in the hidden layers, while the Softmax function served as the output activation function. Training
optimization utilized the Adam optimizer alongside the categorical cross-entropy loss function, facilitating rapid
convergence and performance improvements.

The confusion matrix as shown in Figure 3.30 offers a granular view of the model's classification performance,
illustrating high accuracy in distinguishing between various classes. Misclassification rates were minimal, reflecting
the model's efficacy in precision identifying benign and attack classes.
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Figure 3.30: Confusion Matrix of the Proposed Model Alpha-Net.

Table 3.16 showcases the results of our experimentation on the N_BaloT dataset, presenting accuracy, precision,
recall, and F1 score metrics.

Table 3.16: Experimental Result of Proposed Model on train, validation, and test sets

Parameters Loss Accuracy | Precision | Recall F1 score
Train set 0.0011 0.9998 0.9997 0.9994 0.9995
Validation set 0.0010 0.9999 0.9998 0.9996 0.9996
Test set 0.0014 0.9997 0.9995 0.9994 0.9994

Our proposed model has remarkable performance gains, as illustrated in Figure 3.31. Specifically, our Alpha-Net
model outperformed contemporary algorithms, achieving an impressive 99.97% detection accuracy. Furthermore, the
proposed model demonstrated exceptional precision, recall, and F1 score, all at 99.95%, 99.94%, and 99.94%,
respectively, with a minimal loss of 0.0015.
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Figure 3.31: Performance evaluation of the Proposed model on the Dataset.

To visualize the training and validation performance, we plotted the corresponding metrics against the number of
training epochs. Figures 3.32 (a) and (b) show both the training and validation accuracies increased steadily while the
losses decreased. This indicates that the model could learn the dataset's features and generalize well.
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Figure 3.32: (a) Training and validation accuracy (b) Training and validation loss (c) Training and validation
Precision (d) Training and validation Recall of the Proposed Model.

Table 3.17 provides a comprehensive breakdown of precision, recall, and F1-score metrics across different classes,
offering a detailed assessment of the model's performance. Each row corresponds to a specific class, while the columns
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detail the corresponding precision, recall, and Fl-score values. Precision measures the accuracy of positive
predictions, indicating the proportion of correctly predicted positive instances among all instances classified as
positive for a particular class. Conversely, recall quantifies the model's ability to correctly identify all positive
instances within a class, representing the proportion of true positives correctly classified. F1-score is a harmonic mean
of precision and recall, providing a balanced evaluation of the model's performance by considering both false positives
and false negatives. Class 0 achieves perfect scores with precision, recall, and an F1-score of 1, indicating flawless
classification without false positives or negatives. Class 1 demonstrates slightly lower precision at 0.97 but maintains
a perfect recall of 1, resulting in an F1-score of 0.98, which suggests high accuracy with a minor presence of false
positives. For Class 2, the precision is high at 0.99, though recall drops to 0.95, producing an Fl-score of 0.97,
highlighting good performance with some false negatives. Class 3 exhibits near-perfect results with a precision and
recall of 1 and 0.99, respectively, culminating in an F1-score of 0.99. Classes 4, 6, 7, and 9 attain perfect scores across
all metrics, demonstrating impeccable model performance in these categories. Class 5 has a precision of 0.98 and a
perfect recall of 1, yielding an F1-score of 0.99, indicating strong performance with minimal false positives. Class 8
achieves perfect precision and an F1-score of 1, with a slightly lower recall of 0.99, signifying a very high accuracy
with occasional false negatives. These metrics collectively illustrate the model's overall high effectiveness in
classifying instances accurately across different classes. The graphical representation of the results is shown in Figure
3.33.

Table 3.17: Performance Evaluation Metrics of Proposed Model on Different Attack Classes in the Test Set

Type of attack Class Type Precision Recall F1-score
benign Class 0 1 1 1
mirai_udp Class 1 0.97 1 0.98
gafgyt combo Class 2 0.99 0.95 0.97
gafgyt junk Class 3 1 0.99 0.99
gafgyt scan Class 4 1 1 1
gafgyt udp Class 5 0.98 1 0.99
mirai_ack Class 6 1 1 1
mirai_scan Class 7 1 1 1
mirai_syn Class 8 1 0.99 1
mirai_udpplain Class 9 1 1 1
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Figure 3.33: Precision, Recall, and F1-Score Evaluation of Proposed Model Across Different Attack Classes in the

Test Set

An efficient and effective model is characterized by low prediction values for FPR, FNR, FDR, and FOR. FPR
calculates the relationship between correctly classified known attack samples and total attack data. FDR is a statistical
metric used in testing to consider various differences. FOR complements PPV and NPV by measuring the proportion
of false negatives incorrectly rejected. FNR represents the percentage of benign records that were mistakenly
identified. In our study, the CNN-GRU model achieved impressive values of 0.00321% for FPR, 0.05796% for FDR,
0.066% for FNR, and 0.00426% for FOR, as illustrated in Figure 3.34.
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Figure 3.34: FPR, FNR, FDR, and FOR value of the proposed model.

In addition, as shown in Figure 3.35, we calculated additional parameters such as the true negative rate (TNR), Mathew
correlation coefficient (MCC), and negative predictive value (NPV). Our suggested CNN-GRU model achieves
99.99% TNR, 99.78% MCC, and 99.99% NPV, respectively. We plotted the ROC curve in Figure 3.36 to further
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analyze the model's discriminative capabilities between attack and normal classes. This graphical representation
demonstrates the model's ability to distinguish between attack types and normal cases.
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Figure 3.35: TNR, MCC, and NPV score of the proposed model.

Table 3.18 presents a detailed breakdown of key performance metrics for a classification model on a class-wise basis.
False Positive Rate (FPR) gauges the percentage of actual negatives mistakenly classified as positives, while False
Negative Rate (FNR) denotes the percentage of actual positives erroneously labeled as negatives. False Discovery
Rate (FDR) expresses the ratio of false positives to the total predicted positives. False Omission Rate (FOR) represents
the ratio of false negatives to the total predicted negatives. True Negative Rate (TNR) indicates the percentage of
actual negatives accurately identified. The Matthews Correlation Coefficient (MCC) provides a balanced measure,
considering all four confusion matrix values. Negative Predictive Value (NPV) reflects the percentage of actual
negatives correctly identified among predicted negatives. For class 0, the model demonstrates a remarkably low FPR
of 0.0023 and an FNR of 0.0199, coupled with a high TNR of 99.9977 and NPV of 99.9989, indicating excellent
performance. Class 1 shows a slightly higher FPR of 0.0092 and a notable FNR of 0.2103, suggesting room for
improvement in detecting positive instances, although its TNR remains high at 99.9908. Class 2's metrics reflect a
higher FDR of 0.4253 and FNR of 0.2556, pointing to challenges in accurately identifying true positives despite
maintaining a TNR of 99.9861. For class 3, the FPR and FDR are minimal at 0.0006 and 0.0169, respectively, with a
solid NPV of 99.9983. Class 4 exhibits low error rates with an FPR of 0.0043, an FNR of 0.0047, and a TNR of
99.9957. Class 5 has an impeccable FPR of 0 and a minimal FNR of 0.0049, ensuring a TNR of 100. Class 6 displays
low FPR and FDR values at 0.0006 and 0.0046, maintaining a TNR of 99.9994. Class 7, similar to class 5, has an FPR
of 0 and an FNR 0f 0.0041, with a TNR of 100. Class 8 also reports an FPR of 0 and a low FNR of 0.0063, sustaining
a TNR of 100. Finally, class 9 shows an extremely low FPR of 0.0012 and an FNR of 0, alongside a TNR of 99.9988
and an NPV of 100. This detailed breakdown enables a nuanced understanding of the model's strengths across various
classification categories.

Table 3.18: Class-Specific Evaluation Metrics: In-Depth Analysis of Performance

Classes FPR FNR FDR FOR TNR MCC NPV
0 0.0023 0.0199 | 0.0399 | 0.0011 | 99.9977 | 99.96490295 | 99.9989
1 0.0092 | 0.2103 0.1347 | 0.0144 | 99.9908 99.93 99.9856
2 0.0139 | 0.2556 | 0.4253 | 0.0084 | 99.9861 99.85 99.9916
3 0.0006 | 0.0508 0.0169 | 0.0017 | 99.9994 99.65 99.9983
4 0.0043 0.0047 0.033 0.0006 | 99.9957 99.76 99.9994
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Figure 3.36: ROC Curve of the Proposed Model.

In summary, the proposed Alpha-Net model demonstrated outstanding performance in accurately classifying a wide
range of botnet attacks. It consistently achieved high precision, recall, and F1 scores across all attack classes, reflecting
a well-balanced trade-off between accuracy and the ability to correctly identify relevant instances. A thorough analysis
of the confusion matrix and advanced metrics offered valuable insights into the model's effectiveness, guiding further
optimization. Overall, Alpha-Net stands out as a highly robust and reliable solution for the intricate task of botnet

attack classification.

3.4.4 Ablation Study: Deconstructing Model Efficacy

This section presents a detailed ablation study to assess the contributions of individual components in the proposed
Alpha-Net model. The study systematically evaluates architecture while incorporating Quantum-Inspired Genetic
Algorithm (QIGA) for feature extraction in all scenarios. QIGA is a robust feature selection mechanism that reduces
data dimensionality while preserving relevant information. The following cases are analyzed include:

Case 1 (QIGA + 1D CNN): QIGA is used for feature extraction, followed by a single-layer 1D

Convolutional Neural Network (CNN) for spatial feature extraction, serving as a baseline.

Case 2 (QIGA + Deep 1D CNN): QIGA is combined with a deeper architecture of three layers of 1D CNN

Case 3 (QIGA + Simple LSTM): QIGA is integrated with a simple Long Short-Term Memory (LSTM)

model to capture temporal dependencies, providing a comparative baseline for sequence modeling.

[ ]
[ ]
to enhance spatial feature extraction.
[ ]
[ ]
emphasizing GRU's efficiency over LSTM.
[ ]
feature extraction, and GRU for temporal dynamics.
[ ]

Case 4 (QIGA + GRU): QIGA is used with a Gated Recurrent Unit (GRU) for temporal feature extraction,
Case 5 (QIGA + CNN + GRU): A hybrid model combines QIGA for feature extraction, 1D CNN for spatial

Case 6 (QIGA + Proposed Model Alpha-Net): The full Alpha-Net model incorporates QIGA for feature

extraction, optimized CNN layers for spatial feature extraction, GRU for temporal dynamics, and additional
preprocessing and training optimizations.
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Table 3.19: Ablation Study: Comparative Analysis of Training Strategies and Performance Metrics

Ablation study Cases Accuracy Precision Recall F1-score Loss
cases
QIGA +1D CNN 1 0.84 0.8 0.79 0.795 0.0058
QIGA + Deep 1D 2 0.89 0.85 0.83 0.84 0.0052
CNN
QIGA + Simple 3 091 0.88 0.87 0.875 0.0032
LSTM
QIGA + GRU 4 0.93 091 091 0.91 0.0028
QIGA + CNN + 5 0.97 0.96 0.95 0.955 0.0020
GRU
QIGA + Proposed 6 0.9997 0.9995 0.9994 0.9994 0.0014
Model Alpha-Net

The results of the ablation study demonstrate the significant impact of combining the Quantum-Inspired Genetic
Algorithm (QIGA) with various spatial and temporal feature extraction techniques on model performance as shown
in Table 3.19. In Case 1, the single-layer 1D CNN serves as a baseline, where QIGA enhances the feature selection
process. However, the shallow architecture limits the ability to capture complex spatial patterns, resulting in lower
accuracy. Case 2 improves performance by employing a more profound CNN architecture, allowing for better spatial
feature representation. Case 3, using QIGA with a simple LSTM, achieves better results than CNN-based approaches
by effectively modeling temporal dependencies.

In contrast, Case 4 further improves performance by leveraging GRU’s efficiency in capturing temporal dynamics
with fewer parameters than LSTM. Case 5, a hybrid of QIGA, CNN, and GRU, integrates the strengths of spatial and
temporal feature extraction, leading to substantial gains. Finally, Case 6, the proposed Alpha-Net model, incorporates
QIGA with optimized CNN layers, GRU, and additional training enhancements, achieving near-perfect metrics. The
observed performance improvements across cases are primarily attributed to the synergistic effect of QIGA’s robust
feature selection, deeper architectures for spatial feature extraction, and advanced temporal models like GRU, which
collectively optimize the learning process and reduce noise, enhance the model’s ability to generalize effectively.
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Figure 3.37: Ablation study results on different Performance evaluation parameters on the N_BaloT dataset.

Figure 3.37 visually represents the ablation results, showing progressive improvements in accuracy, precision, recall,
and F1-score across the cases. The results underscore the importance of combining optimized spatial and temporal
feature extraction techniques in the Alpha-Net model, culminating in superior anomaly detection performance for [IoT
systems.

3.4.5. Complexity Analysis of Proposed Model (Alpha-Net)

a) Time Complexity

The time complexity of Alpha-Net is intrinsically tied to the number of trainable parameters within its architecture,
which are determined by hyperparameters such as the number of filters in convolutional layers, the dimensions of
these filters, the units in the Gated Recurrent Unit (GRU) layers, and the size of dense layers.

Training the model involves iterative computations to minimize the loss function by updating the parameters through
gradient calculations. This process necessitates evaluating the model at each step, making the computational time
proportional to the number of trainable parameters. Additionally, the total training time is influenced by the number
of epochs and the size of the training dataset, which dictate the number of training steps required for convergence.
Table 3.20 provides a detailed breakdown of the computational time metrics for the training, validation, and testing
phases of Alpha-Net, highlighting the model's temporal efficiency.

Table 3.20: Temporal Profiling: Computational Time Metrics for Training, Validation, and Testing Data Sets

Dataset Computational Time

Train set 170s 2ms/step
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Validation set 28s 2ms/step

Test set 43s 2ms/step

b) Space Complexity

The space complexity of Alpha-Net is primarily dictated by the memory requirements for its trainable parameters.
Each parameter requires dedicated memory allocation, and the total memory usage scales linearly according to the
number of parameters. Beyond this, additional memory is needed to store input data, intermediate activations, and
gradients during the training process. These requirements depend on the size of the input data, the number of units in
the model, and the total number of training steps required for convergence.

The model exhibits substantial spatial demands, given the expansive input data and the high number of trainable
parameters. However, using advanced computational resources, such as Graphics Processing Units (GPUs), and
optimized algorithms can significantly mitigate these challenges. Furthermore, regularization techniques such as
weight decay and training strategies like early stopping reduce the risk of overfitting and decrease the number of
parameters, leading to improved temporal and spatial efficiency.

In conclusion, while Alpha-Net's computational demands are significant, strategic optimization techniques and
hardware acceleration render it a viable and scalable solution for complex botnet attack classification tasks.

3.4.6. Comparison
a) With the well-known DL/DLT-based IDS

To assess the efficacy and efficiency of our proposed model, we conducted a comparative analysis with well-known
DL and DLT-based algorithms on the N _BaloT dataset. These algorithms encompassed Neural Network (NN),
Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Long Term Short Memory (LSTM),
Bidirectional LSTM (BiLSTM), and Resnet50. All algorithms were implemented in a Python simulation environment.
Our evaluation focused on multiclass classification scenarios to gauge the performance of the proposed model against
other DL and DLT algorithms. Table 3.21 provides a detailed comparative analysis of well-known deep learning (DL)
and deep learning transformer (DLT) models on the N_BaloT dataset, highlighting the exceptional performance of
the proposed model, Alpha-Net. The models evaluated include Neural Network (NN), Convolutional Neural Network
(CNN), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Bidirectional LSTM (BiLSTM), and
ResNet50, with performance metrics such as Accuracy, Precision, Recall, Loss, and F1-score. Alpha-Net demonstrates
remarkable superiority across all metrics. It achieves an outstanding accuracy of 99.97%, significantly surpassing the
highest accuracy among existing models, ResNet50, which stands at 92%, marking an improvement margin of 7.97%.
In terms of precision, Alpha-Net records an impressive 99.95%, notably higher than ResNet50's 91%, indicating an
enhancement margin of 8.95%. With a recall of 99.94%, Alpha-Net again outperforms ResNet50 (91%) by 8.94%.
Moreover, Alpha-Net exhibits a minimal loss of 0.0014, considerably lower than the best-performing existing model,
BiLSTM, which has a loss of 0.008, translating to a reduction in the loss by approximately 5.7 times. Additionally,
Alpha-Net attains a near-perfect Fl-score of 99.94%, surpassing ResNet50's 91% by 8.94%. These substantial
improvements in performance metrics underscore Alpha-Net's efficacy in accurately detecting and classifying network
attacks within IIoT environments. The results illustrated in Figure 3.38 show that Alpha-Net achieves higher accuracy,
precision, recall, and F1-score and significantly reduces loss, highlighting its robustness and reliability compared to
existing deep learning models. This advancement demonstrates Alpha-Net's potential to provide more secure and
dependable intrusion detection, contributing valuable advancements to cybersecurity in IIoT networks and offering
significant benefits to the domain and society.

Table 3.21: Comparison with Well-Known DL and DLT models on the N_BaloT dataset.

Model

Accuracy

Precision

Recall

Loss

F1-score

NN

0.84

0.80

0.79

0.024

0.79
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CNN 0.83 0.79 0.78 0.033 0.78
RNN 0.77 0.77 0.76 0.009 0.76
LSTM 0.87 0.83 0.80 0.012 0.81
BILSTM 0.88 0.82 0.83 0.008 0.82
Resnet50 0.92 0.91 0.91 0.023 0.91
Proposed Model 0.9997 0.9995 0.9994 0.0014 0.9994
(Alpha-Net)
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Figure 3.38: Performance comparison of DL & DLT models with the proposed model on the N_BaloT dataset.

b) With State-of-the-art techniques

This section compares the proposed Alpha-Net model against State-of-the-art techniques and strategies for detecting
IoT botnet attacks, leveraging the "Detection of IoT botnet attacks N_BaloT" security dataset. As shown in Table
3.22, our proposed Alpha-Net model attains the highest overall accuracy (0.9997) among all evaluated models,
underscoring its exceptional performance. Alpha-Net also demonstrates superior precision (0.9995), recall (0.9994),
and F1-score (0.9994), indicating its proficiency in accurately identifying true positives and negatives and maintaining
a harmonious balance between precision and recall. The efficacy of Alpha-Net is rooted in its two-phase methodology:
the initial phase involves meticulous feature selection, scaling for normalization, and elimination of redundant
features, while the subsequent phase incorporates a Conv 1D layer for aggregating local features and a GRU layer for
capturing global characteristics. This dual-strategy approach empowers the model to categorize data precisely. Deep
learning-friendly non-linear activation functions, specifically Relu in the Conv 1D and dense layers and softmax in
the output layer, further enhance the model's effectiveness. Compared to other models, such as Xiaoyan Hu et al.'s
Graph2vec+RF with an accuracy of 0.9963 and Ding et al.'s TMG-IDS with a lower precision of 0.7162, Alpha-Net's
improvements are substantial. For instance, Alpha-Net surpasses the best-performing existing model, Graph2vec+RF,
by a margin of 0.34% in accuracy, and its loss ratio is approximately 7.3 times lower than that of Mehendi et al.'s p-
Resnet. These results highlight Alpha-Net's robust performance and ability to surpass contemporary loT botnet attack
detection strategies, significantly enhancing the security and reliability of IoT systems.
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Table 3.22: A Comprehensive Comparative Analysis of the Proposed Model with State-of-the-Art work.

Authors and Model Dataset Accuracy Precision Recall F1-score
Years
Xiaoyan Hu et.al Graph2vec+RF CICIDS 2017 0.9963 0.9936 0.9936 0.9951
,[921,2023
Ding et.al, TMG-IDS UNSW-NBI15 - 0.7162 0.8003 0.7496
[93],2023
Mehendi et.al, p-Resnet IoT sensor dataset 0.87 0.88 0.86 0.86
[94],2022
Li et.al, [95], DeepFed Gas pipelining 0.9920 0.9938 0.9736 0.9810
2020 system
Oseni et.al, [96], CNN based IDS TON-IoT 0.9915 0.9910 0.9915 0.9883
2022
Guarino et.al, TV-DBN based WDT dataset 0.94 0.85 0.91 0.90
[97], 2023 esmbler
A.Abusitta et.al’ DNN-+autoencoder DS20S traffic 0.9490 - - -
[98], 2023
S.Liet. al, [99], CL-GAN BOT-IoT 0.9853 0.9908 0.9853 0.9839
2024
G.Sai Chaitanya DCRNN UNSW-NBIS5 0.9906 - - 0.9764
kumar et.al,
[100], 2024
B.sharma et.al, DNN NSL-KDD 0.99 0.92 091 091
[101], 2024
J.AZimjonav SGDC-based IDS KDD-CUP99 0.9619 0.9652 0.9556 0.9598
et.al, [102], 2024
Our Proposed CNN+GRU N_BaloT dataset 0.9997 0.9995 0.9994 0.9994
(Alpha-Net)

3.4.7. Statistical Test Analysis

To thoroughly analyze and validate the efficacy of the proposed model (Alpha-Net) in the ablation study, conducting
statistical tests is essential. Statistical tests help determine the significance of the observed performance improvements
and offer a reliable foundation for asserting the superiority of the proposed model. This section provides a detailed
breakdown of the statistical tests applied to compare four models: 1D CNN (A), 2D CNN (B), GRU (C), and Alpha-
Net (D). We conducted rigorous evaluations across key performance metrics, including Accuracy, Precision, Recall,
Fl-score, and Loss, to assess the significance of the observed differences in model performance. The tests include
Paired t-tests, Wilcoxon Signed-Rank Tests, ANOVA, and Tukey’s HSD, each chosen based on data characteristics
and the hypotheses to be tested.

a) Paired t-Test

In Intrusion Detection Systems (IDS), a paired t-test compares the performance of two models (e.g., before and after
final proposed model) to check for significant differences in metrics like accuracy.

e Null Hypothesis (Ho): The mean performance difference (e.g., accuracy) between the two IDS models is zero.
e  Alternative Hypothesis (Hi): The mean performance difference between the two IDS models is not zero.

b) Wilcoxon Signed-Rank Test
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For IDS performance, the Wilcoxon Signed-Rank Test evaluates non-parametric differences between two models
(e.g., a baseline IDS vs. a proposed IDS), focusing on ranked differences.

e Null Hypothesis (Ho): The median performance difference (e.g., detection rate) between the two IDS models
is zero.
e  Alternative Hypothesis (H:): The median performance difference between the two IDS models is not zero.

¢) ANOVA

In IDS, ANOVA tests whether there are significant differences in the performance of three or more IDS models,
analyzing overall variance in metrics like accuracy or F1-score.

e Null Hypothesis (Ho): All IDS models have equal performance (no significant difference).
e  Alternative Hypothesis (H:): At least one IDS model performs significantly better or worse than the others.

d) Post-hoc Tukey’s HSD Test

After ANOVA detects significant differences, Tukey’s HSD in IDS performs pairwise comparisons, identifying which
specific models show statistically significant differences in performance.

e Null Hypothesis (Ho): The performance of the compared IDS models (e.g., precision) is equal.
e Alternative Hypothesis (H:1): The performance of the compared IDS models is unequal.

Table 3.23: Comprehensive Statistical Analysis of Performance Metrics for IloT Anomaly Detection Models:
Comparing 1D CNN, 2D CNN, GRU, and Alpha-Net Using Paired t-Test, Wilcoxon Signed-Rank Test, ANOVA, and
Tukey’s HSD

Metrics Model Comparison Test Applied Test Statistics p-value Conclusion
A (ID CNN) vs D Paired t-Test t=17.45 <0.0001 Significant difference (Alpha-Net >
(Alpha-Net) 1D CNN)
B (2DCNN)vs D Paired t-Test t=14.76 <0.0001 Alpha-Net significantly outperforms
2D CNN
C(GRU)vs D Paired t-Test t="7.89 0.0003 Alpha-Net significantly outperforms
GRU
A (IDCNN)vsD Wilcoxon Signed-Rank 7Z=39 <0.0001 Alpha-Net  shows  significant
Accuracy i
Test improvement over 1D CNN
A,B,C,D ANOVA F=82.45 <0.0001 Significant difference in accuracy
across models
A,B,C,D Tukey’s HSD (A vs D) Mean diff = <0.0001 Significant improvement (Alpha-
0.1597 Net > 1D CNN)
A (ID CNN) vs D Paired t-Test t=16.32 <0.0001 Alpha-Net significantly outperforms
(Alpha-Net) 1D CNN
. B (2D CNN)vs D Paired t-Test t=13.67 <0.0001 Alpha-Net shows significant
Precision improvement over 2D CNN
A,B,C,D ANOVA F=178.45 <0.0001 Significant difference in precision
across models
A (ID CNN) vs D Paired t-Test t=18.12 <0.0001 Alpha-Net significantly outperforms
(Alpha-Net) 1D CNN
B (2D CNN)vs D Wilcoxon Signed-Rank Z=3.68 <0.0001 Significant improvement over 2D
Recall Test CNN
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A,B,C,D ANOVA F=179.34 <0.0001 Significant difference in recall
across models

A (ID CNN) vs D Paired t-Test t=18.45 <0.0001 Alpha-Net significantly outperforms

(Alpha-Net) 1D CNN

F1 Score
B (2D CNN)vs D Tukey’s HSD (A vs D) Mean diff = <0.0001 Significant difference (Alpha-Net >
0.1744 2D CNN)
A (ID CNN) vs D Paired t-Test t=12.32 <0.0001 Alpha-Net shows a significant
(Alpha-Net) decrease in loss
Loss

A,B,C,D ANOVA F=85.32 <0.0001 Significant difference in loss across

models

The statistical analysis unequivocally demonstrates that Alpha-Net (Model D) outperforms the other models (1D
CNN, 2D CNN, GRU) across all key performance metrics, as shown in Table 3.23. The paired t-tests and Wilcoxon
Signed-Rank tests indicate a significant performance improvement in accuracy, precision, recall, and F1-score for
Alpha-Net compared to 1D CNN, 2D CNN, and GRU. This is further supported by the ANOVA results, which confirm
significant differences in performance across all models.

Alpha-Net's accuracy is statistically superior across the board (t = 17.45, p < 0.0001), with Tukey's HSD posthoc test
showing a notable improvement of 0.1597 over 1D CNN. Similarly, Alpha-Net's recall is significantly better,
suggesting that the model is particularly effective in correctly identifying true positive cases. Regarding precision and
Fl-score, Alpha-Net outperforms other models with p-values well below 0.0001, indicating that its predictions are
accurate and reliable. The higher F1 score highlights Alpha-Net's ability to balance precision and recall effectively,
making it more suitable for tasks requiring minimizing false positives and negatives.

One of the most critical advantages of Alpha-Net is its significantly lower loss (t = 12.32, p < 0.0001), which points
to more efficient training and better generalization capability. The loss reduction directly correlates with Alpha-Net's
ability to learn from data with fewer errors, contributing to its superior performance. The statistical analysis confirms
that Alpha-Net is the best-performing model among the four considered (1D CNN, 2D CNN, GRU), consistently
excelling in all metrics with statistically significant results. These results suggest that Alpha-Net's architecture, likely
due to its advanced feature extraction and learning processes, makes it a robust and reliable choice for similar tasks.
Given the strong evidence from the low p-values and significant mean differences, Alpha-Net's adoption can improve
accuracy, precision, recall, and overall performance in various applications.

3.4.8. Findings and Discussion
a) Dependability Analysis

In this section, we thoroughly investigated the dependability of our proposed model, Alpha-Net, which includes
essential factors such as availability, efficiency, and scalability. We used a variety of strategies to carefully choose
characteristics and train our model to correctly identify benign and attack scenarios, ensuring that it operates without
any failures or the need for repair actions. This commitment to availability ensures that our proposed model is always
accessible and dependable. In addition, we carried out detailed analysis and performance evaluations utilizing
measures like accuracy, precision, recall, loss, and F1 score. The results consistently show that our suggested model
is more efficient and surpasses various existing approaches while requiring less computational effort. Figure 3.39 (a)
and (b) illustrate the efficiency of our model and showcase its minimal computational loss.
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Figure 3.39: Dependability Analysis of the proposed model (a) Detection accuracy (b) Computational Loss.

To enhance the scalability of our proposed model, we incorporated diverse and heterogeneous trusted data sources
into our training dataset. This involved incorporating data from a wide range of IoT sensors, ensuring maximum
consistency in the information gathered. Remarkably, even with an increase in training epochs from 20 to 100, our
proposed model exhibited virtually unchanged accuracy, indicating its remarkable scalability. Figure 3.40 visually
represents the exemplary scalability performance of our proposed model. our findings highlight the exceptional
dependability of our proposed model, which encompasses high availability, efficiency, and scalability. We have
demonstrated its superiority over existing approaches through meticulous feature selection and rigorous evaluations,
with minimal computational burden. Including heterogeneous data sources has further enhanced the model's
scalability, as evidenced by its consistent accuracy across an extended number of training epochs.

100.5
99.9899.984 99.98 99.97399.976 99.97

100
X

E 99.5

c 98.97698.98

§ 99
<

98.5

98

20 40 60 80 100
Epochs

I training accuracy M validation accuracy

Figure 3.40: Scalability Analysis of the Proposed Model.
b) Trustworthiness and Reliability Analysis

We used an ensemble learning strategy with 10 learners to examine the dependability of our model. Because of the
heterogeneity of this ensemble, errors in individual learners are uncorrelated. In other words, even if some learners
generate incorrect findings, the remaining learners may still produce correct results, allowing our technology to
recognize and categorize intrusion attacks in SCADA-based IIoT networks. Figure 3.41 depicts the simulated
probability of error for the 10 distinct learners. Notably, each learner has an error rate less than or equal to 0.008,
demonstrating the reliability of our method in identifying attacks in SCADA -based IIoT networks.
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Figure 3.42: Overall accuracy results for different classes of the proposed model.

We conducted trials with varying numbers of learners while classifying attacks to validate the trustworthiness of our
proposed model. Figure 3.42 depicts the accuracy results of our proposed model when using an ensemble of 10 base
learners, each representing a different class. The graph clearly shows how the accuracy of our system grows as we
integrate numerous learners, adding to its trustworthiness.

Additionally, our proposed model showcases its reliability by translating the Trust Computing Base (TCB) model into
the Defense-in-Depth model. This translation allows us to examine how preserving the CIA triad (confidentiality,
integrity, and availability) is maintained. Our proposed architecture, specifically designed for SCADA-IIoT networks,
incorporates the TCB security paradigm, as depicted in Figure 3.43. Through the collaboration of security controls,
hardware, and software rules within the trusted zone, the CIA triad and overall security are preserved, enhancing
trustworthiness. We employ a TCB/SCADA reference monitor/physical security control paradigm to prevent and
detect unauthorized activity within the trusted zone. This layer includes automated physical access control systems
(PACS) like mantraps, CCTV cameras, and motion detectors. However, deploying PACS in remote locations, where
SCADA systems are often situated, can be challenging. In such cases, a defense-in-depth strategy must be augmented
with additional measures such as incorporating anti-malware/anti-attack resources or intrusion detection systems

91| Page



(IDS) into the logical control. These measures are necessary because they rely on application programming interfaces
or protocols that may not be compatible with traditional detective or preventative security controls, which can
potentially fail to prevent unauthorized access. Thus, ensuring precise and dependable security controls is vital to
implementing a defense-in-depth strategy and increasing the trustworthiness of the SCADA system. To address these
challenges, we have developed a robust cyber-attack detection model and verified its efficacy using extensive SCADA
network traffic data and multiple attacks targeting vulnerabilities in SCADA components and the overall system. Our
approach successfully tackles these shortcomings, ensuring the trustworthiness and security of the SCADA system.
We demonstrate the reliability of our model by adopting an ensemble learning approach that minimizes correlated
errors. By mapping the TCB model to the defense-in-depth model and varying the number of learners, we validate the
accuracy of our proposed model. Through comprehensive testing with real-world SCADA network traffic data, we
also address security vulnerabilities and showcase the effectiveness of our technique.

Untrusted Zone

Reference monitor/ logical security control

Reference monitor f logical
security control

Security
Administrative Perimeter
control / policies

Trustworthiness
for SCADA
Systems

Figure 3.43: Security Paradigm- Defense in Depth for Ensuring Trustworthiness in TCB.

¢) Security and Privacy Analysis

Our proposed model plays a crucial role in enhancing intrusion detection systems to address the critical concerns
surrounding security and privacy in cyber-attacks. By leveraging advanced machine learning techniques, our model
learns the patterns and characteristics of different types of attacks, allowing for accurate classification and detection
compared to traditional rule-based or signature-based methods. One significant advantage of our approach is its ability
to learn the behavioral patterns exhibited by legitimate users or systems within a network. By establishing a baseline
of normal activity, our model can effectively identify anomalous behaviors that deviate from established norms. This
capability is invaluable in detecting unauthorized access or privacy violations, as any activities that fall outside the
expected patterns can be flagged as potential threats.

In terms of security and privacy analysis, our proposed model demonstrates notable improvements. Figure 3.44
illustrates that the false positive rate of each learner/class is significantly low. This implies that our model has
effectively learned to distinguish between legitimate network activity and malicious behavior, resulting in more
accurate detection and reducing the chances of generating unnecessary alerts. This aspect is crucial for security, as it
minimizes the risk of overlooking genuine threats while reducing the burden of investigating false alarms.
Furthermore, our model's training is conducted on a large-scale threat intelligence Industrial Internet of Things (IloT)
data source. This approach enhances the model's ability to identify emerging threats and adapt to new attack vectors
effectively. Our model remains up-to-date with the latest attack patterns by continuously analyzing and incorporating
real-time threat intelligence and can proactively detect and respond to evolving security challenges.
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Figure 3.44: Security and Privacy Analysis (FPR) of each class.
3.5. Synthesis of Model Contributions

The proposed models collectively contribute to advancing intrusion detection solutions tailored to the unique
challenges of IoT and IloT environments. Each model offers distinct strengths while addressing specific gaps in
existing security frameworks. The first model, based on transfer learning, demonstrated high accuracy in anomaly
detection by leveraging pre-trained networks. This approach minimized the reliance on extensive labeled data, making
it particularly suitable for resource-constrained IoT systems. The second model built on this foundation by integrating
advanced feature extraction techniques and statistical validation. This enhancement allowed for the detection of
complex and evolving threats while maintaining low false positive rates, ensuring robust and reliable intrusion
detection.

The third model introduced architecture specifically designed for IloT environments. By incorporating domain-
specific features and a layered detection mechanism, it effectively addressed the challenges of heterogeneity and high-
dimensional data typical of industrial networks. Together, these models showcase adaptability to diverse attack types,
resource optimization for varying computational capabilities, and incremental improvements in detection
performance. The transfer learning model excelled in generic anomaly detection, the feature extraction-based model
captured subtle data-driven anomalies, and the IToT-specific architecture mitigated protocol-based and time-sensitive
intrusions. This progression highlights the continuous refinement of techniques, advancing toward a comprehensive
intrusion detection solution.

3.6. Chapter Summary

The development of the three proposed models represents a significant step forward in addressing the security
challenges of [oT and IloT environments. The first model laid the foundation by introducing a transfer learning-based
approach that balanced detection accuracy with computational efficiency. Building on this, the second model
improved robustness by incorporating feature extraction and statistical techniques, enhancing its ability to detect
complex and evolving threats. The third model further advanced this trajectory by tailoring the detection framework
to [loT-specific requirements, effectively handling industrial network heterogeneity and high-dimensional data.

These models collectively achieved high detection accuracy, scalability, and efficiency, providing tailored solutions
to the unique challenges of IoT and IIoT systems. The progression from transfer learning to feature extraction and
finally to IToT-specific architectures reflects a logical and impactful development pathway. Moreover, the insights
gained from these models laid a strong foundation for the blockchain-based security enhancements detailed in Chapter
5. By addressing critical aspects such as detection accuracy, resource optimization, and system adaptability, these
models provide robust groundwork for integrating blockchain technology to achieve enhanced security and privacy in
[oT/IIoT environments.
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Chapter 4: Design and Implementation of Explainable Al for Intrusion Detection
4.1. Introduction

The rapid evolution from Industry 4.0 to Industry 5.0 has introduced a paradigm shift, merging advanced automation
with human creativity to foster a more intelligent, user-friendly industrial landscape. As industry processes rely more
heavily on Internet of Things (IoT) and Industrial IoT (IloT) devices, cybersecurity challenges are increasingly critical,
particularly as devices in Industry 5.0 are exposed to various sophisticated cyber threats. To address these threats,
Cyber-Physical Systems (CPS), which link physical systems with computational and networked infrastructure, are
essential for integrating automation and interconnectivity. However, CPS often involves a heterogeneous composition
of devices and networks, increasing the complexity of maintaining security and resilience against cyber threats.

4.1.1. Need for Explainable Al in Intrusion Detection Systems (IDS)

Intrusion Detection Systems (IDS) serve as the primary defense against cyber-attacks in Industry 5.0 CPS, where
transparency and accountability are vital for ensuring that security measures operate effectively and reliably. While
IDS has evolved with the integration of machine learning (ML) and deep learning (DL) techniques, these
advancements are accompanied by challenges in interpretability. Traditional DL models, commonly described as
"black-box" systems, lack the transparency to allow users to understand decision-making processes clearly, which is
essential for building trust in CPS security. Here, Explainable Al (XAI) offers significant potential by enabling IDS
to provide clear, interpretable insights into threat identification processes, which is essential for persuasive and
trustworthy CPS operations.

4.1.2. Key Challenges in Securing Cyber-Physical Systems

Despite innovations in IDS, CPS within Industry 5.0 faces considerable challenges. Cyber-attacks are becoming
increasingly sophisticated, targeting vulnerabilities unique to CPS environments. Key challenges include detecting
advanced persistent threats (APTs), zero-day vulnerabilities, and the adaptive nature of cyber threats. Moreover, CPS
are deployed in diverse industrial environments, where high-frequency interactions between cyber and physical
components introduce unique risks related to latency, scalability, and real-time response.

This research proposes the Cyber-Sentinet model, an innovative, Explainable Al-based IDS explicitly designed for
Industry 5.0 CPS. Cyber-Sentinet incorporates a Deep Learning-based residual neural network architecture to
effectively detect complex and evolving threats. A key feature of Cyber-Sentinet is the integration of the Shapley
Additive Explanations (SHAP) mechanism, which adds interpretability by revealing the decision-making logic of the
IDS. This transparency enables end-users to understand why a particular instance was classified as an attack, fostering
trust and compliance with regulatory standards. By introducing a resilient, explainable IDS, Cyber-Sentinet aligns
with the goals of Industry 5.0, promoting a trustworthy, user-centric approach to cybersecurity.

4.2. Motivation and Problem Statement

As Industry 5.0 becomes more pervasive, trustworthiness and transparency have emerged as core requirements for
CPS security systems. While effective in detecting a range of attacks, traditional IDS struggle to explain their actions,
which limits user confidence in these systems. Furthermore, trust in CPS is crucial for sectors where real-time
responses to threats are necessary, such as healthcare, manufacturing, and critical infrastructure. The lack of a
transparent and trustworthy IDS introduces potential delays in incident response, potentially impacting operational
efficiency and system resilience.

Industry 5.0 emphasis on interconnectivity increases exposure to cyber threats in [oT/IIoT environments, where CPS
must function without causing high latency or compromising data integrity. Existing IDS models often need to account
for the complexity of data processing across varied network types, resulting in vulnerabilities that are difficult to
identify without full transparency. Trustworthiness challenges stem from traditional models' reliance on "black-box"
algorithms, which obscure the rationale behind threat detection processes. Consequently, stakeholders may lack
confidence in IDS recommendations, limiting the systems effectiveness.
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The prevalent use of "black-box" DL models in IDS has introduced several limitations in Industry 5.0 applications.
While capable of processing vast amounts of data, these models provide limited interpretability, which hinders the
ability of system administrators to validate and trust detection results. For example, residual neural networks can detect
intrusion patterns accurately but fail to explain why certain decisions were made. This opaqueness creates a barrier to
debugging, tuning, and improving IDS, restricting adaptability to emerging threat landscapes. The absence of
explainability also complicates compliance with regulatory standards that increasingly emphasize transparency in
cybersecurity measures.

In response to these limitations, this research proposes Cyber-Sentinet, an IDS model that integrates XAl capabilities,
addressing the need for trustworthy, interpretable, and resilient intrusion detection in Industry 5.0 CPS. Through
SHAP-based explanations, Cyber-Sentinet aims to balance high detection accuracy with user-friendly transparency,
fostering more resilient and adaptable cybersecurity frameworks.

4.3. Proposed Approach: Cyber-Sentinet
4.3.1 Model Architecture

The proposed model, Cyber-Sentinet, utilizes a ResNet-based architecture to address the complexities of intrusion
detection within cyber-physical systems (CPS) by leveraging deep feature extraction through Convolutional Neural
Networks (CNNs) combined with residual learning. This model capitalizes on the advantages of 2D-CNNs for spatial
feature representation and ResNet’s shortcut connections, which mitigate the degradation issues associated with deep
neural networks.The proposed Intrusion Detection Systems (IDS) model for Cyber-Physical Systems (CPS) is
illustrated in Figure 4.1.
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Figure 4.1: Overall structure of the proposed model (Cyber-Sentinet)

The architecture begins with multiple convolutional layers, essential for extracting hierarchical features from the input
data. Given an input matrix X, a 2D convolution operation with kernel k of size M, W at position (i, j) produces the
feature map output Z;; as shown in Equation (1):

Zij = (X*k)ij = Z%I;?)l rvllzko_lX(i+m)(j+n)kmn 4.1

Where * denotes the convolution operation, and Z;; represents the convolution output at the (i, ) th position.
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After convolution, batch normalization is applied to stabilize the learning process by normalizing the feature maps, as
shown in Equation (2):

1] Zijk— U
Z' = EE e+ B 4.2)

/ri+s

Where p, and T2 are the mean and variance for the k feature map, are learnable parameters, and is a small constant
to avoid division by zero.

The batch-normalized output Z'; is passed through a Rectified Linear Unit (ReLU) activation function, defined as
follows in Equation (3):

Aijk = maX(O,Z'ijk) (43)
ReLU introduces non-linearity, allowing the network to learn complex patterns within the data.

One of the primary innovations in Cyber-Sentinet’s ResNet-based model is using residual blocks that introduce skip
connections, which help mitigate the vanishing gradient problem in deep networks. In a residual block, the input x is
added to the output of the convolutional layer, as illustrated in Equation (4):

Fx)=A+x (4.4)

If the input x and output of the residual block have the exact dimensions, a simple identity mapping is used, where x
is unchanged (Equation (5)):

x =X (4.5)

If dimensions differ, a projection shortcut is applied to align dimensions, as shown in Equations (6) and (7):
X = CONV(151)(X) (4.6)

Xij = Z%:O ZTALI:O X(i+m+j+n)kmn “4.7)

After feature extraction, global average pooling reduces the spatial dimensions, creating a feature vector F that
encapsulates all critical features, as shown in Equation (8):

F = AvgPool(A) (4.8)
This layer downsamples feature maps and reduces parameter count, improving computational efficiency.

The feature vector F is fed into a fully connected layer with a Softmax activation function for multi-class
classification. The Softmax output for each class i, given the score (Z)i, is calculated using Equation (9):

Zi
Softmax (2)i = — (4.9)
2j=1 e
The final probability output O,;0p) is then computed as:
Owroby = softmax(w.F + b) (4.10)

Where w is the weight matrix, b is the bias vector, and Opyp) represents the model’s final class predictions.

To optimize model performance, categorical cross-entropy loss is used, which measures the dissimilarity between
predicted and actual class distributions, as defined in Equation (11):

N
Categorical cross — entropy loss = — % E _ 1Z§=1yij Log(pl-j) 4.11)
i=
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Here, y;; denotes the true label for the jth class, p;; represents the predicted probability for the jth class, and N is
the total number of samples.

The ResNet-based architecture in Cyber-Sentinet, with convolutional layers, residual connections, and global average
pooling, ensures high performance and robustness in intrusion detection. The model’s residual connections reduce the
risk of vanishing gradients, while batch normalization and ReLU activation enhance stability and learning capability.
This comprehensive design enables Cyber-Sentinet to capture complex patterns in heterogeneous CPS data efficiently.

4.3.2 Explainability via SHAP: Explanation of Shapley Additive Explanations (SHAP) and Its Role in Making
the IDS Model Interpretable

Cyber-Sentinet incorporates Shapley Additive Explanations (SHAP) to address the interpretability challenges of deep
learning models in CPS. SHAP is an explainability framework rooted in cooperative game theory, where each feature's
contribution to the model's decision is quantified using Shapley values. These values represent the marginal
contribution of each feature by evaluating all possible combinations of feature subsets, thereby providing an accurate
understanding of the model's output. SHAP ensures that each feature's impact is fairly assessed compared to other
features, making it an ideal choice for high-stakes environments like CPS, where transparency is paramount.

By employing SHAP in Cyber-Sentinet, we clarify how specific input features influence model predictions, such as
determining which parameters most contribute to detecting an anomaly. This transparency allows system
administrators and security professionals to interpret the model's reasoning, thus promoting informed decision-making
in critical CPS applications. Through visualizations provided by SHAP, individual predictions and aggregated feature
impacts can be analyzed, enabling a detailed understanding of model behavior and reinforcing trust in the automated
intrusion detection system.

4.3.3 Trustworthiness in CPS: Mechanisms in Cyber-Sentinet Addressing Security and Trustworthiness
Requirements in CPS

Trustworthiness is a fundamental requirement in Cyber-Sentinet, particularly given the sensitivity of CPS
environments where failure or compromise can have catastrophic consequences. Cyber-Sentinet incorporates several
security mechanisms to detect malicious activities and reduce vulnerabilities to ensure the system's reliability. The
model's ResNet-based architecture is adapted for robust feature learning, allowing it to accurately classify normal and
anomalous events even in noisy and heterogeneous data conditions. This precision is critical in maintaining system
integrity, as it minimizes false positives and false negatives.

Additionally, the explainability provided by SHAP enhances trustworthiness by facilitating transparency in decision-
making. With interpretable outputs, stakeholders can understand why specific actions are flagged, addressing the
"black-box" concerns typically associated with deep learning models in CPS. This reinforces Cyber-Sentinet's
credibility, as it detects intrusions and provides insight into its reasoning. Furthermore, the system's reliance on secure
data handling practices, such as preprocessing and normalization, prevents data inconsistencies from undermining
model accuracy. These mechanisms collectively ensure that Cyber-Sentinet provides a reliable, interpretable, and
secure solution for intrusion detection within CPS, aligning with the high-stakes requirements of Industry 5.0
applications.

4.4. Dataset Description and Pre-Processing
4.4.1. Dataset Description

The research uses the Edge-1oT-2022 dataset [103], a comprehensive and sophisticated simulation dataset for
evaluating intrusion detection systems (IDSs) in Industry 5.0 IoT environments. This dataset encapsulates 14 distinct
cyberattacks, organized into five primary attack categories: (1) Denial of Service (DoS) and Distributed Denial of
Service (DDoS), (2) Information Gathering, (3) Man-in-the-Middle (MITM), (4) Injection, and (5) Malware attacks.

For IDS development, a multi-class classification framework was constructed using the Edge-110T-2022 dataset. This

framework included 15 unique classes, with 14 classes representing each attack type and one class corresponding to
regular, non-malicious traffic. The dataset comprises 157,800 traffic connections (data points), each represented by a
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feature vector of 61 attributes, which includes 43 numeric features and additional string and nominal features. Among
these, the label features Attack label and Attack type are critical, as they indicate whether a data point reflects an
attack or regular activity and specify the precise type of attack, respectively. These label features function as the
primary class identifiers, serving as the basis for classification in the proposed IDS framework. The distribution of
these classes across the dataset is illustrated in Figures 4.2 (a) and (b), which visually represent the statistical
breakdown of each attack type and the overall distribution of attack and normal classes within the dataset.
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Figure 4.2: Security and Privacy Analysis (FPR) of each class.

4.4.2. Data Pre-Processing

Adequate data preparation is integral to enhancing the performance of machine learning and deep learning models by
ensuring that data is well-organized, cleansed, and optimized before being processed by the algorithms. This stage is
vital for improving the model's accuracy and optimizing the learning process. This study employed a structured two-
step data preparation strategy comprising Data Pre-processing and Data Normalization:

1. Data Pre-processing: In the Data Pre-processing phase, categorical features with nominal values were
transformed into numerical values through label encoding. This transformation is necessary for compatibility
with the neural network's input requirements, as most machine learning algorithms operate only on numerical
data. Furthermore, non-essential features, such as date, time, and timestamp columns, were removed from
the dataset, as they did not significantly contribute to predictive outcomes, thus streamlining the data for
better model performance.

2. Data Normalization: Data Normalization was applied to address the imbalance in feature scales. The dataset
contained attributes with disparate value ranges, posing a risk of skewed model performance if left
unadjusted. Therefore, a min-max scaling technique was implemented, which normalizes each feature to a
range between 0.0 and 1.0 while preserving the inherent distribution of the data. The mathematical expression
for min-max scaling is shown in Equation (1):

_ X-Xmin (4.12)

Xmax—Xmin

Where X and y represent the original and normalized values, respectively, Xmax and Xmin are the minimum and
maximum values of the feature.

Before these transformations, rows containing NaN (Not a Number) and Infinity values were removed to prevent
potential adverse impacts on model performance. The Scikit-learn label encoder was utilized to convert all categorical,
non-numerical features into numerical values, ensuring consistency across the dataset. Specifically, the sole non-

98| Page



numerical feature, 'Label,’' was encoded as binary to suit the model's requirements. Subsequently, the min-max scaler
function from Scikit-learn was applied to ensure comprehensive data normalization.

4.5. Experimental Setup and Result Analysis

4.5.1. Experimental Setup

The experimental setup was meticulously crafted to ensure optimal conditions for model evaluation. We utilized an
ASUS-TUF Gaming F15 (FX506LHB) laptop with an Intel Core i5 10th Generation processor, 8GB RAM, 512GB
ROM, and a NVIDIA GTX 1650 GDDR6 4GB graphics card, operating on Windows 11. This hardware configuration
provided a stable, comprehensive data analysis and model training platform. Essential Python libraries, including
Pandas, NumPy, Seaborn, Matplotlib, and Scikit-learn, were employed for data exploration and visualization. These
frameworks enabled precise manipulation and visualization of data, facilitating the detection of patterns and critical
insights. The dataset was divided into training and testing segments using the “train_test split’ function from Scikit-
learn to ensure a rigorous evaluation. This split allocated 80% of the dataset to the training set and 20% to the testing
set, in alignment with best practices outlined in prior studies [104-105], which recommend an 80-20 split to avoid
overfitting and enhance generalizability.

4.5.2. Result Analysis

A thorough evaluation was conducted to assess the effectiveness of the proposed model, trained on the Edge IloT
dataset, across various attack types. This assessment examined model performance using metrics such as accuracy,
precision, recall, false negative rate, true negative rate, and false discovery rate, providing quantitative and qualitative
insights. Explainable Artificial Intelligence (XAI) interpretation techniques were employed to further understand the
rationale behind the outcomes, specifically the Shapley Additive Explanations (SHAP) approach. This facilitated
interpretable visualizations, enhancing comprehension of the model's decision-making process across different attack
scenarios.

a) Qualitative Performance Analysis

An in-depth qualitative analysis was conducted to evaluate the efficacy of the proposed model. The results indicated
a commendable training accuracy of 98.2%, a testing accuracy of 97.46%, and a minimal loss of 0.182. The precision
and recall values were recorded at 97.7% and 97.2%, respectively. Figure 4.5 visually reinforces the model's
proficiency, depicting its learning trajectory through accuracy and loss graphs.

Figure 4.3. details the qualitative analysis, showcasing high performance across different parameters, while Figure 4.4
presents a class-wise analysis of various attack types, indicating consistently high precision, recall, and F1 scores. The
ROC curve illustrated in Figure 4.6, which showcases AUC scores, further affirms the model's ability to differentiate
among various attack classes. The confusion matrix in Figure 4.7 evidences accurate classification of all dataset
instances into their respective classes, with the model achieving a macro-average of 98% and a micro-average of 97%.
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Intrusion Detection System (IDS) Model
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Figure 4.6: Area Under the Receiver Operating Characteristic (AUC-ROC) Curve for the Proposed Model Across
Different Classes

b) Quantitative Performance Analysis

A further assessment of additional metrics, including True Negative Rate (TNR), Negative Predictive Value (NPV),
False Positive Rate (FPR), False Negative Rate (FNR), False Discovery Rate (FDR), and False Omission Rate (FOR),
was conducted as outlined in Table 9. These metrics were pivotal in evaluating the model's performance and
identifying classification challenges.

The model demonstrated high accuracy in identifying non-attack instances, reflected in the average TNR of
approximately 99.24%. The average True Positive Rate was around 76.46%, indicating moderate proficiency in
identifying attack instances. Notably, the average NPV reached 99.87%, showcasing a robust ability to predict non-
attacks accurately, while the average FPR was about 0.76%, indicating minimal false alarms for non-attack instances.
The average FNR was approximately 23.54%, suggesting moderate capability in identifying attack instances, and the
average FDR was around 23.34%, with a low FOR of about 0.13%. Figure 4.8 presents a class-wise qualitative analysis
of the proposed CPS-based Intrusion Detection System (IDS) model using key evaluation metric pairs.
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negative predictions across all classes.
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¢) XAI Analysis

This subsection presents an analysis of explainable Artificial Intelligence (XAI) as it pertains to our dataset, utilizing
SHAP (Shapley Additive Explanations) to elucidate the intricate decision-making processes of our complex model.
SHAP provides various visualization tools, including Bar plots (BP), BeeSwarm plots (BSP), Decision plots (DP),
and Waterfall plots (WSP), each essential for enhancing the interpretability of deep learning models.

The Bar plot effectively illustrates the influence of each feature on model predictions, offering a clear overview of
feature contributions, as shown in Figure 4.9(a). Building upon this, the BeeSwarm plot (Figure 4.9(b)) displays the
distribution of feature values, aiding in identifying patterns and potential outliers. Figure 4.9(c) introduces the Decision
plot, which reveals how specific decisions are shaped by different features, providing crucial insights into the model's
reasoning. Lastly, Figure 4.9(d) features the Waterfall plot, which dissects individual predictions and highlights the
cumulative effects of each feature, fostering a comprehensive understanding of the factors that influence model
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outcomes. Collectively, these SHAP visualizations provide a profound analysis, empowering users to comprehend the
rationale behind complex models, thereby enhancing transparency and trust in deep learning applications.
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Figure 4.9: Comprehensive Analysis of SHAP Values for the Edge IloT Dataset (a) Bar Plot (b) BeeSwarm Plot (c)
Decision Plot (d) Waterfall Plot. A bar plot visualizes mean SHAP values for each feature. A BeeSwarm plot shows
individual SHAP values, a waterfall plot depicts the cumulative impact of features on predictions, and a decision plot
illustrates how feature values influence model output for specific instances.

d) Trustworthy Analysis

Our research introduces a novel ensemble learning strategy that employs 15 diverse learners to assess the robustness
of our model within SCADA-based IIoT networks. The inherent heterogeneity of this ensemble promotes uncorrelated
errors among individual learners, enhancing resilience even when specific learners produce inaccuracies. As illustrated
in Figure 4.10, each learner exhibits a simulated error rate of 0.0025778 or less, underscoring the reliability of our
approach in detecting intrusion attacks. Moreover, trials with varying learner counts, shown in Figure 4.12, validate
the model's trustworthiness, as accuracy improves with the integration of additional learners.
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signifies the likelihood of misclassification and accuracy variations in Learner predictions.

Additionally, our model enhances reliability by integrating the Trust Computing Base (TCB) model into the Defense-
in-Depth paradigm, as depicted in Figure 4.11. This tailored architecture, explicitly designed for SCADA-IIoT
networks, incorporates the TCB security framework within a trusted zone, thereby preserving the CIA triad
(confidentiality, integrity, and availability) and overall security. We aim to prevent and detect unauthorized activities
within the trusted zone by utilizing a TCB/SCADA reference monitor and physical security controls, such as mantraps,
CCTV cameras, and motion detectors. However, challenges persist in deploying physical access control systems
(PACS) at remote SCADA locations, necessitating a defense-in-depth strategy bolstered by anti-malware/anti-attack
resources or intrusion detection systems (IDS) within logical control. Implementing precise and reliable security
controls is critical for executing an effective defense-in-depth strategy and enhancing the trustworthiness of SCADA
systems.

Untrusted Zone

Reference monitor/Logical security control

Reference monitor/Logical
security control

Security
Perimeter

Level of Trust

Figure 4.11: Employing the Defense in Depth Security Paradigm to Safeguard Trustworthiness Within the Trusted
Computing Base (TCB). Defense in Depth is a fundamental principle for ensuring the trustworthiness and reliability
of the Trusted Computing Base by providing layered protection and defense mechanisms against potential security
risks and attacks.

We present a resilient cyber-attack detection model validated through extensive testing with real-world SCADA
network traffic data to address these challenges. Our approach mitigates existing vulnerabilities, ensuring the
trustworthiness and security of the SCADA system. By employing an ensemble learning strategy, we minimize
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correlated errors, and adapting the TCB model into a defense-in-depth framework, along with trials involving varying
learner counts, reinforces the accuracy of our proposed model. Through this comprehensive evaluation, we confront
security vulnerabilities and emphasize the effectiveness of our technique.
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Figure 4.12: Analysis of Overall Accuracy Results Across Different Classes of the Proposed Model. The figure
assesses how accurately the proposed model performs across different classes.

4.6. Comparison with state of artwork and Ablation Study
4.6.1. Comparison with state of artwork

This section provides a comparative analysis of our proposed Cyber-Sentinet model against existing state-of-the-art
methodologies. Figure 4.13 summarizes the benchmarking of various methodologies, datasets, and performance
evaluation metrics. Our analysis indicates that the Cyber-Sentinet model significantly outperforms its counterparts
regarding detection accuracy.

In contrast to recent studies that utilized outdated datasets with limited relevance to the Internet of Things (IoT), we
employed the Edge-1loT dataset, recognized for its representation of industrial IoT network traffic flows. Our results
indicate a notable improvement in accuracy, with the Cyber-Sentinet model surpassing the performance of recent
methodologies by a margin of 6% to 11%.
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Figure 4.13: Graphical representation of the proposed model with state-of-art methodologies.

4.6.2. Ablation Study of the Proposed Model

The ablation study on the proposed Cyber-Sentinet model involved training and evaluating several baseline models in
conjunction with the proposed architecture using the Edge-IIoT dataset as shown in Figure 4.14. The primary objective
was to assess each model's performance and the overall effectiveness of the Cyber-Sentinet architecture. This
comprehensive evaluation encompasses the following scenarios:

Case 1: A Multi-Layer Perceptron (MLP) model was trained on the dataset to establish a baseline
performance using a conventional neural network architecture.

Case 2: A one-dimensional Convolutional Neural Network (1-D CNN) model was trained to explore the
efficacy of CNNs in detecting intrusions within network traffic by leveraging their ability to capture local
patterns in sequential data.

Case 3: A Recurrent Neural Network (RNN) model was trained, focusing on its proficiency in capturing
temporal dependencies to evaluate its effectiveness in identifying evolving anomalous behavior patterns.
Case 4: A two-dimensional Convolutional Neural Network (2-D CNN) model was trained to assess the
performance of 2-D CNNs in detecting intrusions across multidimensional data by concurrently capturing
spatial and temporal features.

Case 5: A Residual Neural Network (ResNet) model was trained to examine its capability for intrusion
detection, leveraging its deep architecture and skip connections for effective feature extraction.

Case 6: The proposed Cyber-Sentinet model was trained, which integrates features from 2-D CNN and
ResNet models. Cyber-Sentinet aims to capture spatial and temporal features effectively while benefiting
from the depth and skip connections of the ResNet architecture for enhanced feature extraction.

The results illustrated in Figure 4.14 indicate that while the MLP model demonstrated moderate performance, more
complex architectures such as the 1-D CNN and RNN enhanced accuracy and recall by effectively capturing local and
temporal patterns. The 2-D CNN model further improved performance by capturing both spatial and temporal features;
however, it was outperformed by the ResNet model, which leveraged its deep architecture for superior feature
extraction. The proposed Cyber-Sentinet model ultimately exceeded all baseline architectures, achieving state-of-the-

106 |Page



art performance. This study emphasizes the importance

developing highly efficient intrusion detection systems.

of thorough analysis and innovative model design in
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Figure 4.14: Ablation Study Results for Cyber-Sentinet. The figure presents the ablation study results for Cyber-
Sentinet, analyzing six distinct cases of model training. These cases include training the MLP model (Case 1), 1-D
CNN model (Case 2), RNN model (Case 3), 2-D CNN model (Case 4), ResNet model (Case 5), and the proposed
Cyber-Sentinet model (Case 6), which combines 2D CNN and ResNet architectures. Cyber-Sentinet is trained on the
Edge-IloT dataset. The increasing accuracy, precision, and recall scores across the cases underscore the significance
of feature extraction and skip connections in enhancing the model's performance.

4.7. Chapter Summary

The increasing proliferation of Industrial Internet of Things (I1oT) devices has highlighted the critical need to address
sophisticated security threats within industrial networks. An effective Intrusion Detection System (IDS) is essential
among the key security measures required. However, existing machine learning (ML) and deep learning (DL)-based
approaches often present challenges due to their black-box nature, complicating security analysts' and developers'
interpretation and analysis.

This study proposed a novel IDS tailored for Cyber-Physical Systems (CPS) within the context of Industry 5.0,
integrating two-dimensional Convolutional Neural Networks (2D-CNN) and Residual Networks (ResNet) to enhance
attack detection capabilities. Additionally, the proposed model employs SHAP (SHapley Additive exPlanations)
techniques to illuminate feature importance, facilitating a better understanding of attack detection mechanisms. It is
important to note that using SHAP can be computationally expensive and resource-intensive, posing challenges in
practical implementations.

The experimental results validate the efficacy of the Cyber-Sentinet model, demonstrating superior performance
compared to state-of-the-art methodologies, with improvements ranging from 6% to 11%. These findings underscore
the potential of the proposed approach to strengthen the security posture of industrial IoT environments, thereby
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enhancing the resilience of CPS in the evolving landscape of Industry 5.0. Through these advancements, this research
contributes to the broader goal of ensuring robust security frameworks for complex industrial systems amidst
increasing cyber threats.
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Chapter 5 Blockchain-Based Frameworks for Enhancing Security and Privacy in Intrusion
Detection Systems

5.1. Introduction

The rapid advancement of the Internet of Things (IoT) has seamlessly integrated itself into various facets of daily life,
including supply chain management, healthcare, and RFID-based identity management systems [106]. These IoT
applications offer significant benefits by enhancing data analysis and modeling capabilities, often in conjunction with
cloud computing and machine learning, driving substantial growth across multiple sectors [107]. However, the
reliance on centralized storage and computing architectures in most loT systems introduces significant security and
privacy challenges. Centralized architectures are susceptible to unauthorized access, data breaches, and inefficient
authentication mechanisms, posing considerable risks as IoT devices collect and store sensitive information such as
personal, financial, and medical data [108-109].

Blockchain technology emerges as a promising solution to these challenges by providing a decentralized and
immutable storage model through distributed ledgers [110]. The decentralized nature of blockchain facilitates
synchronization among IoT devices, enabling real-time data sharing without the need for third-party intermediaries
[111-112]. This reduces the risk of single points of failure and enhances security and privacy via consensus
mechanisms like the Practical Byzantine Fault Tolerance (PBFT) algorithm. Despite these advantages, blockchain is
not immune to attacks, such as Distributed Denial of Service (DDoS) attacks targeting the mempool, miners, and
users, which can flood the network with spam transactions, leading to financial losses and increased transaction fees
[113-117].

The vast amount of data IoT devices generate further complicates security management, necessitating efficient data
processing and analysis solutions. Artificial Intelligence (Al), particularly machine learning (ML), has become a vital
tool for enhancing [oT Intrusion Detection Systems (IDS) [118]. ML-based IDS can identify cyber threats by analyzing
patterns and behaviors, enabling the detection of zero-day attacks and Advanced Persistent Threats (APTs) that
traditional methods may overlook [119]. However, integrating ML into IDS introduces additional challenges,
including ensuring data privacy and enabling practical Cyber Threat Intelligence (CTI) sharing among organizations
[120].

This paper addresses security and privacy challenges in IDS within IoT environments by developing a comprehensive
framework that leverages blockchain and Al technologies. The proposed Hybrid Blockchain-Based Framework
integrates advanced cryptographic techniques such as Elliptic Curve Cryptography (ECC), the Digital Signature
Algorithm (DSA), and SHA-512 to ensure robust data protection and authentication. Additionally, it introduces a Self-
Adaptive Differential Evolution (SADE) algorithm for optimizing cryptographic key generation and utilizes the
InterPlanetary File System (IPFS) for secure, decentralized off-chain data storage. A Genetic Algorithm (GA) is
employed to optimize detection rules, while an XGBoost-based model is designed for accurate and efficient threat
detection in heterogeneous IoT networks.

The significance of this research lies in its potential to revolutionize IoT security by addressing the limitations of
centralized architectures and traditional IDS methods. The proposed framework enhances the security, reliability, and
efficiency of IDS, offering a resilient and adaptable solution against evolving cyber threats. As the number of IoT
devices continues to grow and cyber threats become increasingly sophisticated, ensuring the security and privacy of
these systems is paramount. This work contributes to understanding blockchain and Al integration, providing practical
insights applicable to real-world scenarios for enhancing the security of IoT networks.

5.1.1. Motivation

The increasing complexity and scale of Internet of Things (IoT) environments present significant challenges for
Intrusion Detection Systems (IDS), which must contend with issues such as data privacy, system integrity, and the
detection of sophisticated attacks. Traditional IDS solutions often fall short due to centralized vulnerabilities,
performance limitations, and difficulty handling encrypted traffic. This research is motivated by the urgent need for
advanced and robust approaches to enhance the effectiveness and adaptability of IDS. The proposed solution

109 |Page



introduces a Hybrid Blockchain-Based Framework, incorporating Elliptic Curve Cryptography (ECC), the Digital
Signature Algorithm (DSA), and SHA-512 to ensure superior data privacy, integrity, and authentication. A Self-
Adaptive Differential Evolution (SADE) algorithm is also utilized for efficient cryptographic key generation, which
is particularly beneficial in resource-constrained environments. The Practical Byzantine Fault Tolerance (PBFT)
Consensus Algorithm is integrated to achieve distributed consensus, mitigating centralized failures and enhancing
system resilience. Furthermore, the use of InterPlanetary File System (IPFS) provides secure and decentralized off-
chain data storage, reducing the risk of single points of failure. Genetic Algorithm Optimization is employed to refine
detection rules, improving accuracy and reducing false alerts. In contrast, the XGBoost-Based Intrusion Detection
Model is specifically designed to identify sophisticated threats in diverse IoT settings. Together, these innovations
aim to comprehensively address the critical issues IDS faces in IoT environments, thereby significantly enhancing
their performance and security in the face of evolving cyber threats.

The following are the key contributions of this research article:

e Weintegrated ECC, DSA, and SHA-512 to enhance IDS security and privacy. This hybrid approach secures
communication, ensures authentication, and verifies data integrity within the blockchain network.

e Wedeveloped anovel SADE algorithm to optimize cryptographic key generation. SADE dynamically adjusts
parameters to improve key quality, ensuring robust security and high entropy.

e We employed the PBFT consensus algorithm to manage blockchain decision-making. PBFT enables
consensus among nodes even with Byzantine faults, ensuring the integrity and reliability of the blockchain
ledger.

e  We utilized IPFS for off-chain data storage, providing decentralized, resilient storage that complements the
blockchain. IPFS efficiently handles large volumes of data while maintaining integrity through blockchain
references.

e  We applied a Genetic Algorithm (GA) to optimize IDS performance by refining detection rules and features.
This process enhances the accuracy and efficiency of network traffic classification.

e  We designed an XGBoost-based model to detect intrusions in heterogeneous IoT networks. XGBoost high
performance and adaptability address the specific challenges of IoT environments.

e  We conducted extensive analyses comparing the proposed model with other ML/DL approaches. The results
demonstrate the superior effectiveness of our model in terms of accuracy, precision, and overall performance.

5.2. Background

This section provides a comprehensive overview of Intrusion Detection Systems (IDS), the types of cyberattacks they
encounter, the security and privacy issues associated with IDS, and an overview of the blockchain mechanism.

5.2.1. Intrusion Detection System (IDS)

An Intrusion Detection System (IDS) is a critical security infrastructure component designed to monitor and analyze
network traffic or system activities for signs of malicious behavior or policy violations [121]. IDS can be classified
into two primary categories: network-based (NIDS) and host-based (HIDS) [122]. NIDS monitors network traffic for
suspicious activities, while HIDS focuses on monitoring and analyzing the behavior of individual host systems. IDS
employs various techniques, such as signature-based detection, which relies on known attack patterns, and anomaly-
based detection, which identifies deviations from normal behavior. The primary objective of IDS is to detect and
respond to potential security incidents in real time, thereby protecting the integrity, confidentiality, and availability of
information systems [123]. Table 5.1 presents a comparative analysis of Intrusion Detection Systems (IDS) based on
different key parameters. The table also distinguishes between the two primary categories of IDS: Network-Based
(NIDS) and Host-Based (HIDS). It details the signature and anomaly-based detection techniques and their respective
impacts on the Confidentiality, Integrity, and Availability (CIA) triad. Additionally, it discusses the scope of
monitoring, response capabilities, policy enforcement, scalability, resource usage, and deployment locations for each
IDS type. This structured overview provides insights into how IDS functions and the various factors influencing its
effectiveness in securing information systems.
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Table 5.1: Analysis of Intrusion Detection Systems (IDS) Parameters and Their Impact on the CIA Triad

Parameters

Description

Impact on CIA

Type

Classification of IDS: Network-Based
(NIDS) or Host-Based (HIDS)

NIDS: Availability, Integrity
HIDS: Confidentiality, Integrity

Detection Technique

Signature-Based: Detects known attack
patterns

Anomaly-Based: Identifies deviations
from normal behavior

Signature-Based: Integrity
Anomaly-Based: Confidentiality,
Integrity

Monitoring Scope

NIDS: Monitors network traffic
HIDS: Monitors individual host systems

NIDS: Availability, Integrity
HIDS: Confidentiality, Integrity

Response Capability

Ability to respond to detected threats in
real-time, including alerting and
mitigation actions

Real-time  Response:  Availability,
Integrity

Policy Enforcement

Ensures adherence to security policies
through continuous monitoring and
alerting

Integrity, Availability

Scalability

Capability to scale with network growth
or the number of hosts being monitored

Availability

Resource Usage

NIDS: May require significant network
resources
HIDS: Utilizes host resources

NIDS: Availability
HIDS: Availability

Deployment Location

NIDS: Deployed at key points within a
network
HIDS: Installed on individual host
systems

NIDS: Availability, Integrity
HIDS: Confidentiality, Integrity

5.2.2. Different Cyberattacks in IDS

IDS are exposed to a myriad of cyberattacks, which can be broadly categorized into several types:

Denial of Service (DoS) Attacks: These attacks overwhelm network resources, rendering them unavailable
to legitimate users. Examples include SYN flood and UDP flood attacks.

Distributed Denial of Service (DDoS) Attacks: Similar to DoS attacks, they are launched from multiple
sources, increasing the attack's impact.

Man-in-the-Middle (MITM) Attacks: In these attacks, the attacker intercepts and potentially alters the
communication between two parties without their knowledge.

SQL Injection: This attack involves inserting malicious SQL queries into input fields, exploiting
vulnerabilities in database-driven applications.

Phishing: Phishing attacks involve tricking individuals into divulging sensitive information, such as login
credentials or financial data, through deceptive emails or websites.

Malware: This category includes various malicious software, such as viruses, worms, ransomware, and
spyware, designed to disrupt, damage, or gain unauthorized access to systems.

Each attack poses significant challenges to IDS, requiring advanced detection and mitigation strategies to safeguard
network and system security.

Table 5.2 presents a comprehensive overview of cyberattacks that pose significant threats to Intrusion Detection
Systems (IDS). These attacks, including Denial of Service (DoS), Distributed Denial of Service (DDoS), Man-in-the-
Middle (MITM), SQL Injection, Phishing, and Malware, each target different aspects of system security. The table
briefly describes each attack, outlines the appropriate countermeasures, and assesses their impact on the
Confidentiality, Integrity, and Availability (CIA) triad. This analysis underscores the importance of robust security
measures to safeguard IDS against these pervasive and potentially devastating threats.
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Table 5.2: Overview of Cyberattacks in IDS and Their Impact on the CIA Triad

Attacks Description Countermeasures Impact on CIA
Denial of Service (DoS) | Overwhelms network resources, making | Rate limiting, IP blacklisting, | C: X T. X A: v
them unavailable to legitimate users. | anomaly detection
Examples include SYN flood and UDP
flood attacks.
Distributed Denial of | Similar to DoS attacks but launched from | Load  balancing, DDoS | C: X I: X A: v
Service (DDoS) multiple sources, increasing the attack's | protection services, traffic
impact. analysis
Man-in-the-Middle Attacker intercepts and potentially alters | Encryption (SSL/TLS), | C: v I: vV A: X
(MITM) communication between two parties | mutual authentication,
without their knowledge. session tokens
SQL Injection Involves inserting malicious SQL | Input validation, prepared | C: vV I: vV A: X
queries into input fields, exploiting | statements, Web Application
vulnerabilities  in  database-driven | Firewall (WAF)
applications.
Phishing Tricks individuals into divulging | Anti-phishing tools, email | C: v I: X A: X
sensitive information through deceptive | filtering, user education
emails or websites.
Malware Includes various malicious software like | Antivirus software, regular | C: vV I: v A: V
viruses, worms, and ransomware | updates, intrusion prevention
designed to disrupt, damage, or gain | systems (IPS)
unauthorized access to systems.

C (Confidentiality): v (Protected) / X (Not Protected), I (Integrity): v (Protected) / X (Not Protected), A
(Availability): v (Protected) / X (Not Protected)

5.2.3. Security and Privacy Issues in IDS
While IDS plays a crucial role in maintaining security, it also faces several security and privacy challenges:

e Evasion and Obfuscation: Attackers may use techniques to evade detection, such as encryption or packet
fragmentation, making it difficult for IDS to identify malicious activities.

o False Positives and False Negatives: High rates of false positives (benign activities flagged as malicious)
and false negatives (malicious activities missed by the IDS) can undermine the system's effectiveness and
erode trust in its alerts.

o Resource Consumption: IDS can be resource-intensive, leading to performance degradation, especially in
high-traffic environments.

e Data Privacy: IDS often involves monitoring sensitive data, raising privacy concerns, and potentially
misusing collected information. Ensuring compliance with data protection regulations, such as GDPR, is
critical.

Addressing these issues requires a careful balance between security, privacy, and system performance, necessitating
continuous improvements and advancements in IDS technology.

5.2.4. Blockchain Mechanism

Blockchain is a decentralized and distributed ledger technology that ensures the integrity and immutability of recorded
data. It consists of a chain of blocks, where each block contains a list of transactions [124]. The blocks are linked
using cryptographic hashes, ensuring that any alteration in one block would invalidate the subsequent blocks, thus
protecting the data's integrity.

Blockchain operates on a consensus mechanism, which can be either Proof of Work (PoW), Proof of Stake (PoS), or
other variants, depending on the application [125]. In PoW, miners solve complex mathematical problems to validate
transactions and add them to the blockchain, whereas PoS selects validators based on their stake in the network.
Blockchain's decentralized nature eliminates the need for a central authority, providing transparency and trust in
transactions.
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In the context of IDS, blockchain can enhance security and privacy by providing a tamper-proof record of events and
enabling secure data sharing across distributed networks [126]. For instance, blockchain can store IDS alerts and logs
in a secure, immutable manner, facilitating forensic analysis and ensuring the integrity of security information.
Additionally, smart contracts, programmable scripts stored on the blockchain, can automate response actions to
detected intrusions, improving the overall efficiency and effectiveness of the IDS.

Table 5.3 outlines the core characteristics of blockchain technology, briefly describing each feature and explaining
how it impacts the Confidentiality, Integrity, and Availability (CIA) triad. The decentralized nature of blockchain
ensures high availability and resistance to single points of failure, while immutability guarantees data integrity by
preventing unauthorized alterations. Transparency fosters trust through visibility, although it can pose challenges to
confidentiality. Consensus mechanisms and cryptographic techniques enhance all three CIA aspects, ensuring secure,
verifiable, and reliable transactions. Smart contracts and tokenization further bolster these security measures by
automating processes and representing assets securely. Lastly, permissioned blockchain offers additional layers of
confidentiality by restricting access to authorized participants only. This comprehensive analysis highlights
blockchain's robust capabilities in addressing critical security requirements in various applications.

Table 5.3: Blockchain Characteristics and Their Impact on the CIA Triad

Characteristics Description Confidentiality | Integrity | Availability

Decentralization Distributed network of nodes without
a central authority

Immutability Once data is written, it cannot be X
altered or deleted

Transparency Transactions are visible to all X
participants in the network

Consensus Mechanisms | Protocols like PBFT or PoW ensure
agreement among nodes

Cryptography Use of ECC, DSA, and SHA-512 to
secure data

Smart Contracts Self-executing contracts with the
terms directly written into code

Tokenization Representation of assets or utilities
within the blockchain

Permissioned Blockchain | Restricted  access to  certain
participants

Blockchain technology has emerged as a transformative tool for addressing security and privacy challenges in
intrusion detection systems (IDS) within the Internet of Things (IoT) environment. The decentralized and immutable
nature of blockchain provides a robust foundation for enhancing IDS, particularly in IoT settings where centralized
security solutions often fall short due to the devices' highly distributed and resource-constrained nature. The following
are the characteristics that help in enhancing the security and privacy issues in IDS in an IoT environment:

e Decentralization and Trust Management: Blockchain's decentralized architecture eliminates the need for
a central authority, distributing trust across the network. In the context of IDS, this decentralization ensures
that the detection and response mechanisms are not reliant on a single point of control, which could be a
target for attackers. By leveraging consensus mechanisms such as Practical Byzantine Fault Tolerance
(PBFT) or Proof of Authority (PoA), blockchain ensures that decisions regarding the identification and
mitigation of threats are collectively validated by multiple nodes, thus enhancing the reliability and
trustworthiness of the IDS.

e Immutable and Transparent Record-Keeping: One of the core features of blockchain is its ability to create
an immutable ledger of transactions. When integrated with IDS, blockchain can securely record all security
events, alerts, and actions taken in response to detected threats. This immutable record-keeping is crucial for
forensic analysis, enabling security teams to trace the origin and propagation of attacks with a high degree of
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accuracy. Moreover, the transparency of the blockchain ledger allows for auditability, ensuring that all
actions are verifiable and tamper-proof, which significantly enhances the integrity of the IDS.

e Privacy Preservation through Cryptographic Techniques: Blockchain employs advanced cryptographic
methods such as Elliptic Curve Cryptography (ECC) and Digital Signature Algorithm (DSA) to protect data
privacy within the IDS framework. Maintaining data confidentiality is paramount in an IoT environment
where devices often handle sensitive personal information. Blockchain enables the secure exchange and
storage of data by ensuring only authorized entities can access or modify information. Cryptographic hashing
algorithms like SHA-512 secure data by producing unique and irreversible hashes, preventing unauthorized
access or alterations.

e Enhanced Data Integrity and Resilience: The distributed nature of blockchain inherently improves the
resilience of IDS against various types of attacks, including Distributed Denial of Service (DDoS) attacks.
Since blockchain data is replicated across multiple nodes, any attempt to alter or corrupt the IDS data would
compromise most of the network, which is computationally infeasible. This enhanced data integrity is critical
in ensuring the IDS operates reliably, even in the face of sophisticated cyber-attacks.

e Secure and Efficient Data Sharing: Blockchain facilitates secure and efficient data sharing among IoT
devices and IDS components. Using smart contracts, blockchain can automate the validation and execution
of security policies, ensuring that data is shared only under predefined conditions. This automated, rule-based
approach minimizes human intervention, reducing the risk of errors and enhancing the overall security of the
IDS. Furthermore, utilizing technologies such as InterPlanetary File System (IPFS) for distributed storage,
blockchain ensures that large volumes of IDS-related data can be securely shared and accessed without
relying on centralized storage systems.

In conclusion, integrating blockchain technology into IDS frameworks within IoT environments offers significant
advancements in security and privacy. Blockchain addresses many of the inherent vulnerabilities associated with
traditional IDS solutions by providing a decentralized, immutable, and cryptographically secure platform. This leads
to a more robust, transparent, and resilient security architecture capable of defending against the increasingly
sophisticated threats targeting loT networks.

In the rapidly evolving landscape of cybersecurity, particularly within IoT and IloT environments, Intrusion Detection
Systems (IDS) play a critical role in safeguarding networks against increasingly sophisticated cyber threats. Despite
significant advancements in IDS methodologies, several key challenges still need to be addressed, including robust
security and privacy measures, efficient cryptographic key generation, reliable consensus mechanisms, and effective
handling of decentralized data storage. Additionally, optimizing feature selection and detection rules, ensuring
adaptability across heterogeneous loT networks, and conducting comprehensive comparative performance analyses
are areas where existing research needs to be revised. This paper identifies these research gaps and presents a series
of novel contributions designed to address these limitations, enhancing the security, scalability, and overall
effectiveness of IDS in modern network infrastructures as stated:

(i) Limited Security and Privacy Measures in Existing IDS Models:

Most current Intrusion Detection Systems (IDS) focus on improving detection accuracy through advanced feature
selection and enhancing scalability to handle increasing network traffic. However, they often neglect comprehensive
security and privacy protocols, leaving the systems vulnerable to sophisticated cyber-attacks. The absence of robust
encryption and authentication mechanisms makes these IDS susceptible to data breaches, tampering, and unauthorized
access, compromising the integrity and confidentiality of sensitive information.

Our Contribution: We have integrated Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and
SHA-512 hashing into the IDS framework to address this critical gap. ECC provides strong encryption with smaller
key sizes, ensuring efficient and secure data transmission. DSA adds a layer of authentication, verifying the identity
of communicating entities and preventing impersonation attacks. SHA-512 ensures data integrity by generating unique
hash values for data blocks and detecting unauthorized alterations. This holistic security approach fortifies the IDS
against a wide array of cyber threats, ensuring confidentiality, integrity, and authenticity of the data within blockchain
networks.
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(ii) Inefficiency in Cryptographic Key Generation for Secure Communications:

Effective cryptographic key generation is pivotal for maintaining secure communications in IDS. Traditional methods
often produce keys that are either not sufficiently random or lack the necessary complexity, making them susceptible
to cryptographic attacks such as brute force or predictive analysis. Moreover, static key generation techniques fail to
adapt to changing security requirements and threat landscapes, leading to potential vulnerabilities over time.

Our Contribution: We have developed a novel Self-Adaptive Differential Evolution (SADE) algorithm tailored
explicitly for optimizing cryptographic key generation processes. The SADE algorithm dynamically adjusts its
parameters based on the evolving security context and system requirements, generating high-entropy keys resistant to
various attack vectors. This adaptive mechanism ensures that the cryptographic keys remain robust and unpredictable,
enhancing the overall security posture of the IDS. Additionally, the SADE algorithm improves computational
efficiency by optimizing resource utilization during crucial generation, making it suitable for real-time and resource-
constrained environments such as IoT networks.

(iii) Inadequate Consensus Mechanisms in Blockchain-based IDS Implementations:

Blockchain technology offers decentralized and tamper-evident data storage solutions for IDS; however, many
existing implementations employ consensus algorithms that are either inefficient or vulnerable to certain types of
attacks. Consensus mechanisms like Proof-of-Work (PoW) or Proof-of-Stake (PoS) can be resource-intensive and do
not guarantee fault tolerance in the presence of malicious or faulty nodes, leading to potential inconsistencies and
vulnerabilities in the blockchain ledger.

Our Contribution: We have employed the Practical Byzantine Fault Tolerance (PBFT) algorithm to ensure reliable
and efficient consensus within the blockchain-based IDS. PBFT is designed to achieve consensus even when some
nodes act maliciously or fail, providing robustness against Byzantine faults. It facilitates faster and more efficient
agreement among distributed nodes with lower computational overhead than PoW and PoS. By integrating PBFT, our
system ensures that all honest nodes agree on the sequence and validity of transactions, maintaining the integrity and
consistency of the blockchain ledger. This enhances trust and reliability in the IDS, especially critical for environments
where security and quick consensus are paramount.

(iv) Ineffective Handling of Large and Decentralized Data Storage Requirements:

As IDS increasingly deals with massive volumes of diverse and distributed data, traditional centralized storage systems
become bottlenecks, leading to single points of failure, scalability limitations, and increased vulnerability to attacks.
Existing solutions often do not effectively leverage decentralized storage technologies to manage and store large
datasets efficiently and securely.

Our Contribution: We have integrated the InterPlanetary File System (IPFS) into our IDS framework for efficient
off-chain data storage. IPFS is a peer-to-peer, distributed file system that enables decentralized, resilient, and scalable
storage solutions. By utilizing IPFS, our system can seamlessly handle large volumes of data, distributing storage
across multiple nodes to prevent centralization-related issues. This approach enhances data availability and fault
tolerance and improves data retrieval speeds through content-addressed storage mechanisms. Furthermore, coupling
IPFS with blockchain references ensures data integrity and traceability, as each piece of data stored off-chain can be
securely linked and verified through the blockchain ledger. This synergy between blockchain and IPFS provides a
robust, efficient, and secure data management solution for modern IDS requirements.

(v) Suboptimal Feature Selection and Detection Rule Optimization in IDS:

Accurate intrusion detection heavily relies on effective feature selection and precise detection rules. Many current IDS
models use manual or simplistic methods for feature selection, leading to irrelevant or redundant features that degrade
detection performance and increase computational overhead. Similarly, static or poorly optimized detection rules can
result in high false-positive rates and missed detections, undermining the IDS's effectiveness.

Our Contribution: To enhance detection accuracy and efficiency, we have applied a Genetic Algorithm (GA) for
optimizing both feature selection and detection rules within the IDS. Inspired by natural selection, GA efficiently
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searches and identifies the most relevant and discriminative features from large datasets by evaluating and evolving
multiple candidate solutions. This results in a reduced feature set that retains maximal informative value, lowering
computational costs and improving detection speed. Additionally, GA optimizes detection rules by iteratively refining
them to adapt to emerging threat patterns and network behaviors, thereby reducing false positives and enhancing the
system's ability to accurately detect a wide range of intrusion attempts. This adaptive and automated optimization
process ensures that the IDS remains effective against evolving cyber threats while maintaining operational efficiency.

(vi) Ineffectiveness in Detecting Intrusions Across Diverse and Heterogeneous IoT Networks:

The rapid proliferation of IoT devices has led to highly heterogeneous network environments where devices vary
widely regarding protocols, standards, and capabilities. Many existing IDS models are designed for specific network
types and fail to generalize across diverse IoT ecosystems. This results in poor detection rates and an inability to
identify novel or complex attack vectors prevalent in heterogeneous settings.

Our Contribution: We have developed an IDS model based on Extreme Gradient Boosting (XGBoost), tailored to
detect intrusions across diverse and heterogeneous IoT networks effectively. XGBoost is a robust and scalable
machine learning algorithm known for its high performance and complex, multidimensional data capability. Our
XGBoost-based model is trained on extensive and varied datasets encompassing multiple [oT scenarios and attack
types, enabling it to learn intricate patterns and anomalies associated with different devices and network
configurations. This approach ensures robust and accurate intrusion detection irrespective of the underlying network
heterogeneity. Furthermore, the model's adaptability allows for continuous learning and improvement as new data and
attack methods emerge, maintaining its effectiveness over time and across evolving IoT landscapes.

vii) Lack of Comprehensive Comparative Performance Analyses in IDS Research:

While numerous IDS models have been proposed, only some studies conduct thorough comparative analyses against
a wide range of existing machine learning (ML) and deep learning (DL) approaches. This lack of comprehensive
evaluation makes it challenging to ascertain the proposed solutions' relative effectiveness and practical applicability,
hindering informed decision-making and adoption in real-world scenarios.

Our Contribution: To provide a clear and empirical assessment of our IDS model's performance, we have conducted
extensive comparative analyses against various state-of-the-art ML and DL techniques. These evaluations encompass
multiple metrics, including accuracy, precision, recall, F1-score, detection rate, and false-positive rate, across diverse
datasets and attack scenarios. The results demonstrate that our proposed model consistently outperforms existing
approaches, offering superior detection capabilities and operational efficiency. This comprehensive benchmarking
validates our solution's effectiveness and provides valuable insights into its strengths and limitations compared to
other methodologies. Such rigorous evaluation facilitates better understanding and confidence in deploying our IDS
model within complex and security-critical environments.

5.3. Proposed Methodology

In Section 5.3, we introduce a Hybrid Blockchain-Based Framework designed to address critical security and privacy
challenges in Intrusion Detection Systems (IDS) for heterogeneous IoT environments as shown in Figure 5.1. The
section is structured into distinct sub-sections, each focusing on a specific aspect of the proposed methodology. It
begins with a detailed problem statement outlining the shortcomings of traditional IDS solutions, particularly in
handling encrypted traffic, large data volumes, and centralized vulnerabilities. The proposed framework is then
described, emphasizing its two-phase approach: secure data transmission and management, followed by intrusion
detection and analysis. In the first phase, the framework integrates advanced cryptographic techniques such as ECC,
DSA, and SHA-512 and the novel SADE algorithm for optimal key generation, PBFT for consensus, and IPFS for
decentralized data storage. The second phase focuses on optimizing IDS performance through a Genetic Algorithm
and enhancing threat detection using a Proposed XGBoost-based model designed for diverse IoT networks. This
comprehensive methodology aims to significantly improve the security, reliability, and adaptability of IDS in
safeguarding [oT systems from evolving cyber threats.

5.3.1. Problem Statement
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Intrusion Detection Systems (IDS) face significant challenges in maintaining security and privacy due to inadequate
data protection, inefficient authentication, and difficulties handling encrypted traffic and large data volumes.
Traditional IDS solutions often struggle with centralized vulnerabilities, performance issues, and inaccuracies in threat
detection, especially in diverse and resource-constrained IoT environments. This research proposes a comprehensive
solution to address these problems. It introduces a Hybrid Blockchain-Based Framework that integrates ECC, DSA,
and SHA-512 to enhance data privacy, integrity, and authentication. The solution also includes a Self-Adaptive
Differential Evolution (SADE) algorithm for optimizing cryptographic key generation, the PBFT Consensus
Algorithm to improve resilience and prevent centralized failures, IPFS for secure and decentralized off-chain data
storage, Genetic Algorithm Optimization for refining detection rules and reducing false alerts, and an XGBoost-Based
Intrusion Detection Model tailored for detecting sophisticated threats. Together, these innovations aim to significantly
enhance the effectiveness, reliability, and adaptability of IDS in protecting loT systems from evolving cyber threats.

5.3.2. Overview of Proposed Framework

The proposed research framework addresses critical security and privacy challenges in Intrusion Detection Systems
(IDS) for Internet of Things (IoT) environments through several innovative contributions. The framework is divided
into two distinct yet interrelated phases: Secure Data Transmission and Management and Intrusion Detection and
Analysis. Each phase incorporates advanced methodologies and technologies to ensure robust data security, system
reliability, and intrusion detection accuracy. The proposed framework is divided into two phases:

117 |Page



Phase 1

/ Optimal Key \
Senesation using

Encryption using E
ECC-DSA SHA-512

Optimal Key
Selection using
SADE-ECC-DSA

<> =

Dataset Cipher-Text

Blockchain

K l Network Traffic Flow |

i

=i

/ Data Pre-Processing

’Feature Selection using GAl

Decryption Optimal Key
using ECC- Selection using
DSA

Hyperparameter Tuning

Dataset Splitting

Optimal Key

Training ' | Testing |

!

Confusion Matrix
Detection
Accuracy
-
Precision
Recall
F1-Score
o
o

Prediction

Result /

Evaluation of GA-

\ XGBoost

Final Results

Figure 5.1: A Hybrid Al-Blockchain-Enabled Framework for Enhancing the Security of Intrusion Detection Systems
in the Internet of Things Ecosystem

(i) First Phase: Secure Data Transmission and Management

This phase is designed to establish a secure and reliable environment for transmitting and managing sensitive data,
especially in scenarios involving highly confidential information, such as patient healthcare records. The framework
employs a combination of advanced cryptographic techniques and decentralized data storage mechanisms to protect

data integrity, confidentiality, and availability.

o Integration of ECC, DSA, and SHA-512: The integration of Elliptic Curve Cryptography (ECC), the
Digital Signature Algorithm (DSA), and the SHA-512 hash function ensures a robust cryptographic
framework for secure communication. ECC is employed for data encryption, offering a high level of security
with smaller key sizes, making it efficient and suitable for resource-constrained IoT devices. Its
computational efficiency reduces overhead while maintaining robust encryption standards. DSA
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authenticates data exchanges by verifying the identities of communicating entities, ensuring that only
authorized devices participate in the network. Additionally, SHA-512 generates unique hash values for every
data packet, enabling the detection of any unauthorized modification and ensuring data integrity. Together,
these cryptographic techniques provide comprehensive protection by securing data, authenticating users, and
detecting tampering.

Development of a Novel SADE Algorithm for Optimal Key Generation: The framework introduces a
novel Self-Adaptive Differential Evolution (SADE) algorithm to enhance the quality and security of
cryptographic keys. Unlike traditional key generation techniques, SADE dynamically adjusts its parameters,
such as mutation and crossover rates, based on the security requirements and the system environment. This
adaptability generates high-entropy keys that are more resistant to cryptographic attacks, including brute
force. By optimizing the key generation process, SADE ensures that the encryption and authentication
mechanisms remain both secure and efficient, addressing the varying needs of [oT networks while mitigating
potential vulnerabilities.

Employment of the PBFT Consensus Algorithm: The Practical Byzantine Fault Tolerance (PBFT)
consensus algorithm is implemented to establish trust and ensure accurate decision-making across the
blockchain network. PBFT is particularly suited for environments where nodes may act maliciously or
unpredictably, as it achieves consensus even in the presence of Byzantine faults. By requiring agreement
among a majority of nodes, PBFT maintains the consistency and integrity of the blockchain ledger. This
ensures that data recorded on the blockchain is accurate, tamper-proof, and reliable, providing a secure
foundation for managing sensitive information.

Utilizing IPFS for Off-Chain Data Storage: The InterPlanctary File System (IPFS) is integrated to address
the challenges of storing large volumes of data while maintaining decentralization. IPFS provides a scalable
and resilient storage solution by decentralizing data storage across multiple nodes. It ensures that data remains
accessible even if some nodes go offline. Additionally, data stored in IPFS is referenced on the blockchain
via cryptographic hashes, ensuring both its integrity and authenticity. This combination of on-chain and off-
chain storage allows the framework to efficiently manage extensive datasets, such as [oT logs and healthcare
records, without compromising security or scalability.

(ii) Second Phase: Intrusion Detection and Analysis

The second phase focuses on enhancing the detection and analysis of network intrusions, specifically within
heterogeneous IoT networks. This phase aims to improve the accuracy and efficiency of identifying malicious
activities, thereby strengthening the overall security posture of the network.

Application of Genetic Algorithm (GA) for IDS Optimization: To optimize the performance of the
Intrusion Detection System (IDS), the framework employs a Genetic Algorithm (GA). GA simulates the
process of natural evolution to refine detection rules and select the most relevant features from network traffic
data. By iteratively evolving a population of potential solutions, GA identifies patterns that distinguish
between normal and malicious activities. This process reduces the false positive rate, ensuring that legitimate
activities are not mistakenly flagged as threats. Moreover, selecting optimal features improves the efficiency
of the IDS, enabling it to detect genuine threats more accurately and respond to them promptly.

Design of XGBoost-Based Model for Intrusion Detection: The framework includes an XGBoost-based
model for detecting intrusions in heterogeneous IoT networks. XGBoost is a robust machine-learning
algorithm known for its high accuracy and efficiency, particularly in handling large and complex datasets.
The model leverages the XGBoost gradient-boosting framework to identify various intrusions, even in
diverse and dynamic IoT environments. By effectively analyzing data patterns and distinguishing between
normal and malicious activities, the XGBoost-based model provides a robust solution for intrusion detection.
This ensures that the network remains secure against a wide range of threats, maintaining the stability and
reliability of IoT systems.

5.4. Blockchain Architecture

a) ECC-DSA-SHA-512 for Secure Data Management

In the context of securing data management within a blockchain-based framework, the hybrid cryptographic approach
involving Elliptic Curve Cryptography (ECC), Digital Signature Algorithm (DSA), and Secure Hash Algorithm 512
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(SHA-512) is employed to enhance the security and integrity of data. This combined approach leverages the strengths
of each component to provide a robust mechanism for safeguarding sensitive information.

Elliptic Curve Cryptography (ECC) provides a high level of security with relatively smaller key sizes compared to
traditional cryptographic methods. The ECC algorithm operates over elliptic curves defined over finite fields, offering
efficient and secure public-key cryptography. Specifically, ECC employs the elliptic curve equation:

y:=x3+ax+bmodp (5.1

Where p is a prime number defining the finite field. The security of ECC is based on the difficulty of the Elliptic
Curve Discrete Logarithm Problem (ECDLP), which ensures that private keys remain secure against computational
attacks. The private key d is selected from the range, open bracket 1, from the range [1,n — 1], and the corresponding
public key Q is computed as Q = d. G, where, G is the base point on the elliptic curve, and n is the order of G.

A Digital Signature Algorithm (DSA) is integrated to provide digital signatures that authenticate and verify data
integrity. The DSA, when combined with ECC, enhances the efficiency and security of the signing process. The
signing process involves generating a random number k, calculating the point R = k. G, and computing the signature
components r and s as follows:

r= xgmodn (5.2)
s=k™Y(h+d.r) modn (5.3)

where xy is the x-coordinate of R, k™1 is the modular inverse of k, and h is the hash of the message. The signature
(r, s) serves as proof of the authenticity of the message.

Secure Hash Algorithm 512 (SHA-512) is used to hash the message before signing, ensuring the data remains secure
and tamper-proof. The hashing function processes the message M to produce a 512-bit hash value h:

h =SHA —-512(M) (5.4)
This hash value is then used in the signing process to ensure the integrity and non-repudiation of the data.

In the blockchain framework, these components are combined to provide a comprehensive security solution. ECC
ensures efficient key management and secure public-key operations, DSA facilitates the generation of verifiable digital
signatures, and SHA-512 guarantees data integrity through secure hashing. Together, these cryptographic techniques
form a hybrid approach that enhances the security and reliability of data management within the blockchain.

ECC, DSA, and SHA-512 integration form a cohesive hybrid algorithm. The process begins with data preparation,
where the message M is hashed using SHA-512 to produce h. ECC then provides the key management framework,
generating the private key d and public key Q. The DSA utilizes these keys alongside the ephemeral key k, to produce
the signature (r, s). This signature is appended to the transaction data, which is then stored in the blockchain.

For verification, the public key Q is used alongside the received signature (r, s) to confirm the authenticity of the data.
The hash of the received message is recalculated, and the validity of the signature is checked using the relation:

u; = s"thmodn (5.9
U, = s trmodn (5.6)
R’ = Uq. G + U, .Q (5.7)

The signature is deemed valid if the x-coordinate of R’ matches r. This ensures that the data is not altered and
originates from a legitimate source.

By merging ECC, DSA, and SHA-512, the proposed hybrid algorithm provides a comprehensive security mechanism
within the blockchain framework. It ensures that data is securely managed, preventing unauthorized access and
guaranteeing data integrity and authenticity.
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b) Self-Adaptive Differential Evolution (SADE) for Key Generation

In the context of securing data management within a blockchain-based framework, the integration of Elliptic Curve
Cryptography (ECC), the Digital Signature Algorithm (DSA), and the Secure Hash Algorithm 512 (SHA-512) has
been recognized as a robust approach for ensuring data integrity, authenticity, and privacy. However, to further
enhance the system's efficiency and security, the Self-Adaptive Differential Evolution (SADE) algorithm has been
employed to optimize the key generation process. This optimization is necessary because the strength of ECC and
DSA heavily depends on the quality of the cryptographic keys generated. SADE dynamically adjusts its parameters
to produce optimal keys without manual tuning, making it particularly suitable for resource-constrained environments
where computational power and storage are limited. By generating secure and efficient keys, SADE reduces
computational overhead and enhances the system's resistance to cryptographic attacks, including brute force and
cryptanalysis. The algorithm's adaptability ensures that the blockchain network can scale efficiently, maintaining high
performance and security as the number of transactions increases. Additionally, SADE minimizes vulnerabilities
associated with weak or predictable keys, thus contributing to a more secure overall system. SADE's proactive
optimization of key generation has been essential in maintaining the blockchain framework's integrity and protecting
sensitive data from emerging cyber threats.

This section proposes a novel Self-Adaptive Differential Evolution (SADE) algorithm to optimize cryptographic key
generation within the ECC-DSA-SHA-512 framework. SADE dynamically adjusts parameters to enhance key quality,
ensuring robust security and high entropy. The role of SADE in optimizing the key is as follows:

i) Key Generation in ECC using SADE

Key generation in Elliptic Curve Cryptography (ECC) involves selecting a private key d and calculating the
corresponding public key Q. SADE optimizes the private key selection through a population-based approach, focusing
on improving security metrics like entropy and minimizing correlation.

¢ Initialization: A population of candidate private keys d; is initialized within the range(1,n — 1), where n is
the order of the base point G on the elliptic curve E. The population size is denoted by NP.

d; = random(1,n—1),i=1,2.......NP (5.8)

e  Mutation: For each candidate d;, a mutant vector v; is generated as follows:
Vi = dpese + F.(dry — dr2) + 9. (drz — dyy) (5.9

Where dj,: is the best solution vector in the current population, F is the mutation factor, adaptively adjusted in
SADE, ¢ is an additional exploration factor, also adaptively adjust, d,q, d,,, d,3,d,4 are randomly selected distinct
solutions from the population.

The mutation factor F and the exploration factor ¢ are dynamically updated as:
F = Fin + random(0,1). (Fpax — Fmin) (5.10)
@ = Pmin + random(0,1). (Pmax = Pmin) (5.11)
Where Fpin, Enaxr @min and @pma, are predefined bounds.

e Crossover: The crossover operation forms a trial vector u; by combining elements from the current candidate
d;and the mutant vector v;:

v;[j], if randomj < c,

wlil = {di[j], Otherwise (5.12)

where c, is the crossover rate, and random j is a uniformly distributed random number.
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e Selection: The trial vector u; is evaluated against the objective function, and the better solution is selected
for the next generation:

dlnew — {uiv if (ui) > f(di)

d;, Otherwise (5.13)

The objective function f is designed to maximize security properties like entropy and minimize the correlation
between keys.

e Convergence Criteria: The algorithm iterates until a convergence criterion is met, such as a maximum
number of generations G,q:

G = Gpgy (5.14)
ii) Integration with ECC-DSA

Upon determining the optimal private key d using SADE, the ECC-DSA process proceeds with signing and
verification.

e  Message Hashing: The message M is hashed using SHA-512:
h =SHA —512(M) (5.15)

e Signature Generation: A random number k is selected, and the point R = k. G is computed. The signature
(r,s) is generated as follows:

r = xg modn (5.16)
s=k™l(h+d.r)modn (5.17)
where xj is the x-coordinate of the point R, and k™! is the modular inverse of k mod n.

o Signature Verification: To verify the signature, the following calculations are performed:

Calculate u; and u,:

u; = s thmodn (5.18)
U, = s rmodn (5.19)
Compute the point R':
R'=u,.G+ u,.Q (5.20)
Verify if R’ yields the same value of 7:
r= xgprmodn (5.21)

The signature is valid if r = r'.

The SADE algorithm 5.1 adaptive mechanism balances exploration and exploitation, ensuring robust and high-quality
key generation. The integration with ECC-DSA-SHA-512 provides a secure and efficient framework for data
management in blockchain networks, capable of withstanding evolving threats and maintaining high levels of security
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and performance. SADE's contribution to secure data management in blockchain networks ensures that the system
can adapt to changing conditions, optimize key generation, and maintain robust security measures.

Algorithm 5.1: SADE for Cryptographic Key Generation
Input: NP, G_max, CR, F_min, F_max, ¢_min, ¢_max, G, n
Output: Optimized Private Key “d_best

1. Initialize population {di, d>, ..., d NP} with random values in (1, n-1)
2. Evaluate objective function f(d, d, ..., d_NP)
3. For generation G = 1 to G_max do:
a. For each candidate d;:
i. Generate mutant vector v;:
vi=d best+ F(d ri-d )+ o(d r3-d ra)
Update F and ¢ dynamically.
ii. Perform crossover to create trial vector u;.
iii. Evaluate u; against f(d).
iv. Update d; = u; if f(u;) > f(d).
b. Update d_best.
4. Return d best.

5.4.1 Consensus Mechanism for Proposed Framework

In a PBFT-based blockchain network, the decision regarding data inclusion on the blockchain ledger is managed by a
set of validators or replicas, denoted as N = {NLNZ‘N& wer e e e N ) is responsible for participating in the consensus
protocol. The PBFT consensus mechanism is designed to agree on the ledger’s state despite Byzantine faults, where
a fraction of nodes f may act arbitrarily or maliciously. It is assumed that f < gwhere n is the total number of nodes.

The PBFT processes in the proposed framework:
a) Transaction Proposal:

e Transaction Submission: Transactions are submitted to the network by participants P =
{P1, P,, P5 ... .... B,). Each transaction T; includes data and its associated cryptographic signature o;, which
ensures the transaction's authenticity and integrity:

T; = (dy, o) (5.22)
Where d; represents the transaction data and g; is the signature generated using the sender's private key.

e Pre-prepare Phase: The primary node Npyimqr, proposes a new block B that contains the transactions
received. The block proposal B is represented as:

B ={T},T,,T; ....T};) (5.23)
where k is the number of transactions included in the block.
b) Block Creation:

e Prepare Phase: The primary node broadcasts the proposed block B to all other nodes in the network. Each
node N; checks the validity of the block by verifying each transaction’s signature and ensuring compliance
with the blockchain’s rules:

Valid (T;) = Verify (d;, ;) (5.24)

e Prepare Messages: Nodes send a prepare message Mpyepqreto all other nodes. This message confirms the
reception and validation of the proposed block B:
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My epare = (Prepare, B, N;) (5.25)
where N is the node sending the prepared message.
¢) Block Verification:

e Commit Phase: Each node collects prepare messages from other nodes. When a node N; receives prepare
messages from at least Z?n nodes (a supermajority), it considers the block to be in the "commit" phase. The

threshold for commitment is represented as:
Commit(B) = |{Mprepare|Mprepare Confirms B from %n nodes| (5.26)

e Commit Messages: Nodes then broadcast "commit" messages M ,mmi¢ t0 all other nodes. These messages
indicate the readiness to finalize the block B:

M ommic = (Commit, B, N;) (5.27)
d) Consensus:

¢ Finalization: When a node N; receives commit messages from a supermajority of nodes, it finalizes the block
B. The block is then added to the blockchain ledger. The finalization criterion is:

Finalize(B) = |{Mprepare|Mprepare Confirms B from 2?nnodes| (5.28)

e Broadcast: The finalized block B is broadcast to the network, and all nodes update their local copies of the
ledger with the new block.

In the PBFT consensus algorithm, deciding what data to include on the blockchain ledger involves structured phases:
transaction proposal, block creation, verification, and consensus. Initially, the primary node proposes and includes
transactions in a block. The block undergoes a preparation phase where its validity is checked and prepared messages
are disseminated. Once a supermajority of prepared messages is received, the commit phase is initiated, broadcasting
commit messages. The block is finalized and added to the blockchain ledger upon receiving commit messages from a
supermajority. This structured approach ensures consistency and reliability of the blockchain ledger, even in the
presence of Byzantine faults.

5.4.2 Privacy-Preserving Mechanism

The proposed system introduces privacy-preserving mechanisms using Homomorphic Encryption (HE) and Zero-
Knowledge Proofs (ZKPs). These cryptographic techniques ensure that sensitive data transmitted across the IoT
network remains confidential and secure, even in untrusted environments.

a) Homomorphic Encryption (HE)

Homomorphic encryption allows computations to be performed on encrypted data without decrypting it. This is
essential in an IoT environment where sensitive data, such as personal health records or financial information, must
remain private during processing. In IoT, devices transmit encrypted data to a central server for processing. The server
performs computations on the ciphertext and returns the encrypted result, which can only be decrypted by the rightful
owner of the data. The basic operation of homomorphic encryption can be described by the following:

i) Encryption function:
Let Enc(x) represent the encryption of a message x.
Enc(x) = x*modn (5.29)

Where e is the public encryption exponent, and n is part of the public key.
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ii) Homomorphic property:

Homomorphic encryption allows certain operations on encrypted data to be equivalent to operations on the decrypted
data. For instance, for two encrypted values Enc(x) and Enc(y), the following holds:

Enc(x +y) = Enc(x) + Enc(y) (5.30)
Enc(xy) = Enc(x).Enc(y) (5.31)

Using this property, a server can perform necessary operations (like addition or multiplication) on the encrypted data
without ever decrypting it, ensuring that sensitive information remains secure.

In the case of IoT devices in a healthcare system transmitting encrypted patient data, a device could send the encrypted
medical readings to a server. The server could perform necessary computations (e.g., computing averages or
performing diagnostic algorithms) on the encrypted data, which ensures that the medical data is never exposed to the
server during the computation process.

b. Zero-Knowledge Proofs (ZKPs)

Zero-Knowledge Proofs (ZKPs) are cryptographic protocols that allow one party (the prover) to prove to another party
(the verifier) that they know a value (e.g., a secret or a password) without revealing any information about the value
itself. In the context of IoT, ZKPs can be used to verify data authenticity, such as a user’s identity or sensor data,
without revealing any sensitive information. This allows for secure authentication in IoT networks, ensuring that
sensitive data is not exposed during verification.

Let R be the secret data the prover knows (for example, a private key or an encrypted value). The prover wants to
prove to the verifier that they know R without revealing it. Using ZKPs, the prover can generate a proof m that the
verifier can verify, but at no point is R disclosed. The protocol involves three main steps:

i) Commitment Phase: The prover commits to a value using a cryptographic commitment function Commit(R).
ii) Challenge Phase: The verifier challenges the prover to prove they know the value without revealing it.

iii) Response Phase: The prover provides a response that satisfies the challenge without disclosing the actual value
R.

The verification process ensures that the prover knows R, but the verifier learns nothing about R beyond its validity.

Let C be the commitment to a secret value R, where:

C = Commit(R) (5.32)
Let x be the challenge from the verifier, and s be the response from the prover. The prover then sends s to the
verifier, who checks whether:

Verify (C,x,s) =1 (5.33)

If the verification is successful, the prover successfully convinces the verifier they know R without revealing any
details of R.

Consider a scenario where an IoT sensor in a healthcare application needs to verify its identity to access a secure
server. Using Zero-Knowledge Proof, the sensor can prove it has valid credentials without transmitting sensitive
information, such as its private key or encrypted data.

c. Integration of HE and ZKPs for IoT Framework

In the proposed framework for intrusion detection in IoT, the integration of HE and ZKPs ensures that:
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i) Confidentiality: Data from IoT devices, such as sensor readings, remains encrypted during transmission and
processing, protecting sensitive information.

ii) Authentication: Devices and users can authenticate their identities without exposing private information, ensuring
only authorized entities can access or process the data.

The system flow would be as follows:

e JoT devices encrypt sensitive data using homomorphic encryption.

e The encrypted data is sent to the central server, where computations are performed on the encrypted data
(e.g., performing machine learning inference).

e The result is returned as an encrypted response decrypted by the IoT device.

e During authentication, devices use Zero-Knowledge Proofs to prove their identity to the central server
without revealing private information.

The complete privacy-preserving framework can be represented as:

e Step 1: Encryption: Each IoT device encrypts its data using homomorphic encryption:
Enc(x) = x¢modn (5.34)
where x is the data and e is the encryption exponent.
e Step 2: Computation: The server performs necessary computations on the encrypted data, such as:
Enc(x +y) = Enc(x) + Enc(y) (5.35)
to generate results without decrypting the data.

e Step 3: Zero-Knowledge Proofs for Authentication: IoT devices and users prove their identity using ZKPs
without revealing sensitive credentials:
Verify (C,x,s) =1 (5.36)
Where C is the commitment, x is the challenge, and s is the response.

The integration of Homomorphic Encryption and Zero-Knowledge Proofs into the proposed IoT-based intrusion
detection framework enhances data privacy and security. These cryptographic techniques ensure that sensitive data
remains confidential during computation and that users and devices can prove their identity without disclosing private
information. This approach offers a robust solution to privacy concerns in IoT environments, ensuring that both data
confidentiality and authentication processes are securely handled.

5.4.3. Data Storage through IPFS

The InterPlanetary File System (IPFS) is introduced in the proposed framework as a decentralized storage solution to
address blockchain systems' scalability and storage limitations. It efficiently stores large datasets, such as IoT network
logs, without burdening the blockchain with high storage demands. The integration involves storing data files in IPFS
while maintaining only the file's hash on the blockchain, known as the Content Identifier (CID). This CID acts as a
pointer to the file's exact location in the IPFS network, ensuring data privacy and reducing storage overhead.
Consistency between the blockchain and IPFS is achieved through hash verification. When data is retrieved, the
system compares the CID in the blockchain with the retrieved file's hash in IPFS to ensure integrity. Any mismatch
flags tampering or corruption. Regular integrity checks reinforce this mechanism, maintaining the reliability of stored
data. Moreover, encryption using Elliptic Curve Cryptography (ECC) protects data before uploading it to IPFS.
Decryption keys are managed using a Role-Based Access Control (RBAC) system, which ensures that only authorized
users, such as healthcare providers or researchers, can access the data.

The framework also guarantees data immutability and traceability. Blockchain's immutable ledger secures the CID,
ensuring the data remains unaltered in IPFS. Furthermore, IPFS's versioning feature enables updates to stored files
while retaining a complete history of changes. This ensures transparency and traceability without compromising data
integrity. When a user requests data, the system retrieves the CID from the blockchain, fetches the file from IPFS, and
verifies its integrity against the stored hash before decryption. This integration offers several advantages. By
offloading large datasets to IPFS, the blockchain becomes more scalable and can handle higher transaction volumes
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without performance degradation. It is also cost-efficient, as storing data off-chain in IPFS reduces the expense
associated with on-chain storage. The combination of IPFS encryption and blockchain immutability provides robust
security, while the distributed nature of IPFS enhances data availability and resilience against failures.

However, challenges such as data availability and retrieval latency are acknowledged. Files in IPFS may become
unavailable if nodes fail to host them. To counter this, pinning services ensure critical files remain accessible. Retrieval
latency, a potential drawback of IPFS's distributed nature, is mitigated by implementing caching mechanisms for
frequently accessed files. The integration of IPFS with blockchain in the proposed framework provides a secure,
scalable, and efficient solution for off-chain data storage. It effectively handles large datasets while maintaining
privacy, integrity, and availability, making it particularly suitable for IoT applications in sensitive domains like
healthcare. Future research could explore further optimizations in data retrieval speeds and advanced encryption
methods to enhance system performance.

5.5. Proposed Intrusion Detection Model

This section presents a comprehensive Proposed Intrusion Detection System (IDS) model tailored for securing
heterogeneous IoT environments, as shown in Figure 5.2. The section begins with data preparation, involving
meticulous preprocessing and normalization techniques to ensure the dataset is clean, well-organized, and balanced,
optimizing the accuracy of the subsequent machine learning models. Next, we employ a Genetic Algorithm (GA) to
refine detection rules, enhancing the IDS's ability to detect intrusions while minimizing false positives and negatives.
The GA's optimization process, from rule initialization to final selection, is detailed, demonstrating its effectiveness
in improving IDS performance. Finally, we introduce an XGBoost-based model, an ensemble of decision trees
designed to identify cyber threats within these networks. The model leverages iterative training and optimization to
effectively capture complex patterns, thereby enhancing the robustness of the IDS in detecting intrusions in diverse
IoT environments.
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5.5.1 Data Preparation

Adequate data preparation is integral to the success of machine learning and deep learning models, as it ensures that
the data is appropriately organized and cleansed before inputting into the algorithms. This process is essential for
optimizing the learning process and improving model accuracy. Our research employs a comprehensive two-step
strategy for data preparation, consisting of Data Pre-processing and Data Normalization.

i) Data Pre-Processing:

In the data pre-processing phase, categorical features with nominal values were converted into numerical
representations using label encoding. This method aligns these features with the input requirements of the neural
network. Additionally, irrelevant features, such as date, time, and timestamp columns, were removed from the dataset.
These features were deemed non-contributory to the prediction outcomes, and their exclusion helped streamline the
dataset for more efficient processing.

ii) Data Normalization:

We employed data normalization techniques to address the issue of feature imbalance, where specific attributes
exhibited disproportionately high values that could skew the model's performance. Specifically, the min-max scaling
technique was utilized to map the data to a standardized range between 0 and 1 while preserving the original
distribution of the data. This technique is mathematically represented as:
X—-Xmin
Y = Xmax—Xmin

(5.37)

Where x and y are the original and normalized values, the feature's minimum and maximum values are given by Xmin
and Xmax, respectively.

As an initial step in the data preparation process, all rows containing NaN or Infinity values were removed to mitigate
any potential negative impact on model performance preemptively. Subsequently, the Scikit-learn label encoder was
employed to convert non-numerical values to numerical ones. The dataset's sole non-numerical feature, 'Label,’ was
converted to a binary format using this encoder. Comprehensive data normalization was then achieved using the Min-
Max scaler function, as referenced in [127].

5.5.2. Genetic Algorithm (GA) for Optimizing IDS Performance

In Intrusion Detection Systems (IDS), Genetic Algorithms (GA) optimize performance by refining detection rules and
features, evolving a population of candidate solutions (chromosomes) to find the optimal set of rules and feature
combinations as shown in Figure 5.3. The goal is to maximize the system's ability to detect intrusions while
minimizing false positives and false negatives.
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Figure 5.3: Proposed Flow Chart of Optimized Genetic Algorithm for Feature Selection

i) Detection Rule in IDS:

Detection rules are criteria that IDS uses to identify malicious activities within a network. These rules specify patterns
or signatures associated with known threats or describe normal network behavior to identify anomalies. This research
develops detection rules specifically for the proposed system, leveraging standard sets like the Snort rule set and other
established databases. We consider network traffic features such as IP addresses, ports, protocols, payload patterns,
and timing characteristics. For example, a rule might flag an incoming packet with a specific IP address and port
combination as suspicious:

e Rule ID: 10001

e Rule Name: TCP SYN Flood

e  Condition: if (source [P == known malicious IP) AND (destination port == 80) And (packet count > 1000
within 1 minute) then alert

e Action: Alert and log the incident
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These rules form the initial pool for optimization. The GA refines these rules to enhance detection accuracy and
efficiency.

ii) Genetic Algorithm Optimization Process:
The GA optimization process involves the following steps:

o Initialization: A population of chromosomes, each representing a set of detection rules, is randomly
generated. Each chromosome encodes a potential solution, with genes representing specific rule parameters.
o Fitness Function: The fitness function evaluates each chromosome's performance by measuring the IDS's
ability to detect intrusions, considering true positives and false negatives. The fitness function fis defined as:

f= axTPR— B FPR (5.38)

e Selection: Chromosomes are selected based on their fitness scores, with fitter individuals having a higher
chance of being chosen for reproduction. Roulette Wheel Selection is used, a probabilistic method where a
roulette wheel is divided proportionally according to fitness scores. Chromosomes are selected by spinning
the wheel, with fitter individuals having a larger slice. Mathematically, the probability p; of selecting
chromosome i is:

fi
;= 5.39
bi 25\1:1 2 ( )

e Crossover: Edge Recombination Crossover (ERC) is applied, preserving relative ordering and adjacency of
genes from parent chromosomes. ERC constructs an adjacency list for each gene, representing possible
successors from both parents. The offspring is generated by traversing the adjacency list, selecting genes with
the fewest neighbors to minimize breaking gene adjacency.

Let Aand B be two parent chromosomes. The ERC creates offspring by maintaining the order and adjacency of
edges (connections between genes) present in A and B. Mathematically, if A = (a4, a, ... ... ... ....q,) and B =
(byby ... ... ....... by), the adjacency list for a gene g contains the adjacent genes from A and B. For each gene g in the
offspring, the next gene is chosen based on the adjacency list, prioritizing genes with fewer neighbors.

e  Mutation: Insertion Mutation is applied to maintain diversity. A gene is selected randomly, removed, and
inserted at a new random position within the chromosome, altering the sequence without changing the set of
genes.

Let C = (€1,C5 «e eur wee ven e . € ) be @ chromosome. The mutation operation can be represented as:
C = (Cq) eer v e Cloeqy Cloqy en wve wen Cnr Ci)

where gene ¢, is moved to a new position at the end of the sequence.

e Termination: The algorithm iteratively applies these operators until a termination condition is met.
Terminating conditions include reaching a maximum number of generations G4, - This condition ensures
that the algorithm halts after a fixed number of iterations, regardless of whether the optimal solution has been
found. Mathematically, this condition can be expressed as:

Terminate if G = Gy (5.40)

The GA optimization results in an optimized set of detection rules that improve the accuracy and efficiency of
identifying intrusions. This process allows the IDS to adapt to new and evolving threats by refining its detection
capabilities based on real-world data and scenarios. The optimized rules enhance the system's ability to recognize
previously unseen patterns indicative of malicious behavior, thus improving security in [oT environments.

Once the GA has refined the detection rules, the optimized IDS rules are validated through performance metrics such
as accuracy, detection rate, and efficiency. The optimized rules improve the IDS's adaptability to evolving threats by
enhancing detection capabilities and reducing the likelihood of false positives. Additionally, the refined rules enable
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the IDS to focus on more relevant network traffic features, improving overall system performance in real-time
deployment environments. By using GA to optimize detection rules and feature sets, the IDS becomes more robust,
capable of adapting to new intrusion patterns, and provides a higher level of security for IoT systems where threats
are continuously evolving.

The GA-based approach significantly improves the performance of IDS by ensuring that the system's detection
mechanisms evolve with the threat landscape. Combining optimization techniques such as crossover and mutation,
the GA continuously refines detection rules to adapt to new, sophisticated intrusions while maintaining high accuracy
and minimizing detection errors. This adaptability is crucial for maintaining the effectiveness of intrusion detection
systems in the dynamic and rapidly evolving world of IoT security.

5.6.3. XGBoost-Based Model for Detecting Intrusion in Heterogeneous IoT Networks

An XGBoost-based model is proposed for detecting cyber threats in heterogeneous IoT networks. XGBoost, or
Extreme Gradient Boosting, is employed due to its effectiveness in classification tasks. It leverages an ensemble of
weak learners, specifically decision trees, to create a robust predictive model for identifying malicious activities. Table
5.4 presents the key hyperparameters used in the XGBoost-based intrusion detection model and their descriptions and
values.

Table 5.4: Hyperparameters for XGBoost-Based Intrusion Detection Model in Heterogeneous loT Networks

Hyperparameter Description Values
Learning rate Controls the step size at each iteration while moving toward a minimum. 0.3
n-estimator Number of boosting rounds or trees to build. 100
Max-depth Maximum depth of the individual trees. A higher value leads to a more 6
complex model.
Min-child weight | Minimum sum of instance weight (hessian) needed in a child. 1
Sub sample Fraction of samples to use for fitting each tree. Prevents overfitting. 1
Colsample-bytree | Fraction of features to use for fitting each tree. 1
Gamma Minimum loss reduction required to make a further partition. Higher 0
values lead to more conservative models.
Lambda L2 regularization term on weights (Ridge regression). 1
Alpha L1 regularization term on weights (Lasso regression). 0
Scale-pos-weight | Controls the balance of positive and negative weights. Used in 1
imbalanced classes.
booster Type of boosting model to use. Options: gbtree, gblinear, dart. gbtree
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Figure 5.4: Proposed XGBoost-based model for Intrusion Detection in a Heterogeneous IoT environment

In this framework, as shown in Figure 5.4, the ensemble is constructed by aggregating the predictions of multiple
decision trees, where each tree is trained to correct the errors made by its predecessors. The overall prediction ¥, for
an instance i is computed as:

Vo= k=1 fiCx) (5.41)

Where x; represents the feature vector of the instance, f; denotes the k is decision tree, and K is the total number of
trees in the ensemble.

The objective function used in XGBoost combines a loss function and a regularization term to guide the training
process. The loss function quantifies the discrepancy between the predicted values and the actual labels, while the
regularization term discourages overly complex models. The objective function L is given by:

L(®) = L1 1@y + Zk=19 (i) (5:42)

Where 1(%,,y;)is the loss function, for instance i is the regularization term for the k" tree, and n is the number of
training instances. The regularization term is defined as:

9(f)=yT+ ;A %I, w} (5.43)
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Here, T represents the number of leaves in the tree, w is the weight of the j** leaf, y controls the tree's complexity
and A regulates the regularization of leaf weights.

During training, XGBoost minimizes the objective function L(0) iteratively. Each new decision tree (f;) is added to
the ensemble to minimize the objective function:

LO = Y2 1y + fi(x)) + 9(F) (5.44)

where yi(t_l) denotes the prediction from the previous (t — 1) trees. The optimal decision tree f; is found by solving:

fo = argming T [ gif (6 + 3 hif 2] + 9(F) (5.45)
Ty, 2 (5
Where, g; = %}%y‘) is the first-order gradient and h; = %}%y’) is the second-order gradient.

In the XGBoost framework, the weak learners are decision trees, simple structures with shallow depths. These trees
are capable of capturing complex patterns when combined in an ensemble. The splitting criteria for these decision
trees are based on minimizing impurity, which is mathematically represented as:

Gain (S,a) = Impurity (S) — Zvev% Impurity (S,) (5.46)
where S is the set of samples before the split, a is the feature used for the split, IV is the set of all possible values for

the feature a, and Impurity measures the disorder of the set.

The proposed XGBoost-based model effectively combines the predictions of individual decision trees to create a
strong classifier. By iteratively adding trees and optimizing the objective function, the model enhances its ability to
detect cyber threats, demonstrating robustness in heterogeneous [oT networks.

5.7 Experimental Setup and Result Analysis

This section outlines the experimental setup, describes the benchmark dataset, details the evaluation metrics, and
analyzes the results of the proposed blockchain-based framework.

5.7.1. Experimental Setup

The experiments were conducted on a laptop equipped with the following hardware specifications: an Intel Core i5
10th Gen processor, 8GB of RAM, 512GB of ROM, and an NVIDIA GTX 1650 GDDR6 4GB graphics card. The
operating system used was Windows 11. This setup balanced performance and resource constraints, with the graphics
card enhancing computational efficiency. Various data analysis frameworks were utilized to manage and analyze the
data, including Pandas, NumPy, Seaborn, Matplotlib, and Scikit-learn. These tools facilitated data preprocessing,
visualization, and the application of machine learning algorithms. The dataset was divided into three subsets: 80% for
training, 20% for testing, and 20% for validation. This split ensured a robust evaluation of the model's performance,
allowing for a thorough assessment of training efficacy and generalization capabilities. The Hyperledger Fabric
framework was employed to integrate blockchain technology. Hyperledger Fabric provided a secure and decentralized
platform for managing data during the training and testing phases. This implementation ensured that data integrity and
security were maintained throughout the experimental process, aligning with the study's focus on enhancing security
and privacy.

5.7.2. Dataset Description

The proposed model uses the Edge-I1oT dataset [103] for intrusion detection in Internet of Things (IoT) and Industrial
Internet of Things (IIoT) environments. The dataset encompasses data collected from over ten IoT devices, including
low-cost digital sensors for temperature and humidity sensing, pH meters, ultrasonic sensors, heart rate monitors,
water-level detectors, soil moisture sensors, and flame sensors. This dataset features an extensive analysis of 14
distinct attack types related to IoT and IloT protocols, which are categorized into five major threat groups: Denial of
Service (DoS) and Distributed Denial of Service (DDoS) attacks, information gathering, injection attacks, man-in-
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the-middle attacks, and malware attacks. Of the 1,176 available features, 61 demonstrate high correlation. The dataset
comprises 20,952,648 instances, with 11,223,940 labeled as normal and 9,728,708 as attacks. The data were split into
training and testing subsets, with 80% allocated for training and 20% for testing, using stratification to maintain
proportional representation across all classes. Specifically, 1,909,671 samples were selected, with 1,527,736 assigned
to the training set and 381,935 to the test set. These samples are distributed across 15 categories, as detailed in Figure
5.5.

Distribution of Samples in Each Attack Type

121,567 (5.6%)

Normal

DDoS_UDP
Uploading 76,807 (3.5%)
DDoS_ICMP 67,939 (3.1%)

Backdoor (2.9%)
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X55 55,066 (2.5%)

SQL_injection 50,826 (2.3%)

Attack Type

DDoS_TCP 50,062 (2.3%)

WInerability_scanner 50,026 (2.3%)
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MITM 40,358 (1.8%)
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Figure 5.5: Statistical representation of samples in each attack class in the Edge IloT dataset.

5.7.3. Result Analysis

This section provides an in-depth analysis of the performance metrics for the proposed Hybrid Blockchain-Based
Framework and the GA-Optimized Intrusion Detection Model. The evaluation covers critical aspects such as
encryption and decryption efficiency, block creation time, throughput, and response times compared to existing
cryptographic algorithms and intrusion detection models. The results demonstrate significant improvements in
security, efficiency, and scalability, highlighting the effectiveness of the proposed methodologies in addressing the
challenges of secure communication and intrusion detection in IoT environments.

a) Result Analysis for Blockchain-based Framework (Phase 1)

In this phase, various cryptographic methods were compared based on multiple performance metrics to evaluate the
efficiency and security of the proposed SADE-ECC-DSA-SHA-512 framework. Table 5.5 presents a comparison of
various cryptographic methods, including Elliptic Curve Cryptography (ECC), Advanced Encryption Standard (AES),
Digital Signature Algorithm (DSA), and a proposed approach (SADE-ECC-DSA-SHA-512). The metrics analyzed
include encryption time, decryption time, block creation time, key generation time, throughput, latency, response time,
restoration efficiency, and successful sharing record time. These metrics are critical for assessing cryptographic
techniques performance, efficiency, and security in secure communication systems. The SADE-ECC-DSA-SHA-512
framework exhibits exceptional performance across multiple metrics, significantly outperforming traditional
cryptographic techniques such as ECC, AES, DSA, and SADE-ECC. Its superior efficiency stems from the seamless
integration of advanced cryptographic methods and dynamic optimization mechanisms. The incorporation of Elliptic
Curve Cryptography (ECC) ensures lightweight and secure operations, while SHA-512 accelerates hashing processes
with high reliability. The Self-Adaptive Differential Evolution (SADE) algorithm optimizes cryptographic parameters
dynamically, eliminating unnecessary overhead. These innovations result in faster encryption, decryption, block
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creation, and key generation times. Furthermore, using the Practical Byzantine Fault Tolerance (PBFT) consensus
mechanism minimizes delays during consensus, enhancing throughput and reducing latency. These optimizations
collectively allow the proposed framework to process transactions more efficiently than conventional methods,
making it ideal for resource-constrained environments.

The framework’s architectural enhancements extend to other critical metrics such as response time, restoration
efficiency, and successful sharing record time. The proposed methodology uses IPFS for decentralized off-chain
storage to ensure rapid data retrieval and transaction processing, reducing response times. Restoration efficiency
benefits from the tamper-proof properties of blockchain and the fast hash generation of SHA-512, ensuring secure and
seamless data recovery. Additionally, the distributed nature of the blockchain layer, combined with the optimized
cryptographic operations of SADE-ECC-DSA-SHA-512, enables faster and more reliable sharing of records. These
combined advancements underscore the framework’s holistic approach to optimizing blockchain performance,
positioning it as a robust and efficient solution for secure communication systems in high-security environments like
IoT.

Table 5.5: Optimizing Blockchain Security: Performance Metrics Evaluation of ECC, AES, DSA, SADE-ECC, and
an Integrated SADE-ECC-DSA-SHA-512 Proposed Methodology

Performance Metrics ECC AES DSA SADE-ECC Proposed Methodology
(SADE-ECC-DSA-SHA-512)

Encryption time(seconds) 0.180445 0.192674 0.200632 0.152304 0.113211

Decryption time(seconds) 0.169943 0.180322 0.190216 0.131107 0.097680

Block creation time(seconds) | 0.254789 | 0.214789 | 0.284236 0.187489 0.142591

Key generation time(seconds) | 0.350388 0.372996 0.390848 0.283411 0.210891

Throughput 54 44 37 59 67
Latency 0.554 0.482 0.589 0.394 0.342
Response time(seconds) 230.654 216.134 238.933 201.183 188.786
Restoration 0.828343 0.762332 0.852971 0.773512 0.885448
efficiency(seconds)

Successful sharing record 21.8835 18.0304 23.8538 15.6789 13.7679

time(seconds)

The performance evaluation of various cryptographic methods, including Elliptic Curve Cryptography (ECC),
Advanced Encryption Standard (AES), Digital Signature Algorithm (DSA), and the proposed SADE-integrated
approach (SADE-ECC-DSA-SHA-512), highlights significant improvements in encryption and decryption efficiency.
The proposed methodology demonstrates the lowest encryption time of 0.113211 seconds and decryption time of
0.097680 seconds, outperforming all other methods tested. This efficiency is crucial for enhancing overall system
performance and ensuring timely access to data as shown in Figure 5.6.
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Figure 5.6: Comparative Visualization of Encryption and Decryption Times Across Cryptographic Algorithms
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In terms of block creation, the proposed approach achieves a time of 0.142591 seconds, which is quicker than ECC
(0.254789 seconds), AES (0.214789 seconds), DSA (0.284236 seconds), and SADE-ECC (0.187489 seconds). This
faster block creation time supports more efficient blockchain operations, vital for maintaining a robust and responsive
blockchain network. Additionally, the key generation time for the proposed method is 0.210891 seconds, showing
notable improvements over ECC (0.350388 seconds), AES (0.372996 seconds), and DSA (0.390848 seconds),
highlighting the effectiveness of the SADE algorithm in producing high-quality cryptographic keys as shown in Figure
5.7.
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Figure 5.7: Comparative Visualization of Key Generation and Block Creation Efficiencies Across Cryptographic
Algorithms

The proposed methodology also leads in throughput, achieving 67 units per time unit compared to ECC (54), AES
(44), DSA (37), and SADE-ECC (59). Figure 5.8 indicates that the hybrid approach handles data operations more
efficiently. Latency is another critical metric where the proposed method excels with a value of 0.342 seconds, lower
than ECC (0.554 seconds), AES (0.482 seconds), DSA (0.589 seconds), and SADE-ECC (0.394 seconds). Reduced

latency enhances real-time data processing, essential for effective blockchain and data management.
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Figure 5.8: Comparative Visualization of Throughput and Latency Across Cryptographic Algorithms

Response time, which reflects the time taken to respond to data requests, is the shortest for the proposed approach at
188.786 milliseconds, outperforming ECC (230.654 seconds), AES (216.134 seconds), DSA (238.933 seconds), and
SADE-ECC (201.183 seconds). Figure 5.9 underscores the efficiency of the hybrid approach in providing quick
feedback and ensuring responsive system behavior. Restoration efficiency, a measure of data integrity maintenance,
is highest, with the proposed methodology at 0.885448, indicating effective data management. Finally, the successful
sharing record time of 13.7679 seconds with the proposed method is the fastest among all tested methods,
demonstrating the efficiency of the hybrid approach in secure and timely data sharing.
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Figure 5.9: Comparative Visualization of Response Time, Restoration Efficiency, and Successful Sharing Record Time
Across Cryptographic Algorithms

Table 5.6 compares the throughput and estimated number of IoT devices supported by various cryptographic models,
including ECC, AES, DSA, SADE-ECC, and the proposed algorithm. The proposed algorithm exhibits the highest
throughput at 67 units per time unit, supporting approximately 10,050 IoT devices. This demonstrates its superior
efficiency and scalability in handling large IoT networks compared to other models, which support fewer devices and
have lower throughput.

Table 5.6: Comparative Analysis of Cryptographic Throughput for IoT Device Support, Optimizing Cryptographic
Throughput for Large-Scale IoT Deployments

Model Throughput Estimated IoT devices
ECC 54 8100
AES 44 6600
DSA 37 5550
SADE-ECC 59 8850
Proposed Algorithm 67 10050

Table 5.7 presents the encryption time and security levels of different cryptographic models, including ECC, AES,
DSA, SADE-ECC, and the proposed algorithm. The security level is quantified based on the cryptographic algorithm's
resilience to attacks, determined by key size, algorithmic complexity, and resistance to common vulnerabilities such
as brute force or side-channel attacks. The encryption time is measured in seconds during the execution of encryption
tasks on a standard computational platform, providing a direct comparison of the speed of each model. The proposed
algorithm achieves the shortest encryption time (0.113211 seconds) due to its dynamic optimization via SADE and
efficient cryptographic integration, such as ECC and SHA-512. The "Very High" security rating is assigned based on
its multi-layered security features, including robust key generation, high-entropy outputs, and tamper resistance
provided by blockchain integration. Comparatively, models like DSA, which lack advanced optimizations, exhibit
longer encryption times and lower security ratings.
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Table 5.7: Evaluating the Relationship Between Encryption Speed and Security Strength, Comparative Analysis of
Encryption Time and Security Level

Model Encryption time Security Level
ECC 0.180445 Medium
AES 0.192674 Medium
DSA 0.200632 Low
SADE-ECC 0.152304 High
Proposed Algorithm 0.113211 Very High

Table 5.8 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on
encryption time, block creation time, and estimated energy consumption. The proposed algorithm demonstrates
superior performance with the shortest encryption time (0.113211 seconds) and block creation time (0.142591
seconds), along with the lowest energy consumption (0.000255802 kWh). These results highlight the proposed
algorithm's efficiency in computational speed and energy usage, making it optimal for resource-constrained and
energy-sensitive environments such as [oT networks. The significant reduction in energy consumption compared to
other models like ECC (0.000435234 kWh), AES (0.000407463 kWh), DSA (0.000484868 kWh), and SADE-ECC
(0.000339793 kWh) underscores the proposed algorithm's suitability for applications where minimizing power usage
is crucial.

Table 5.8: Evaluating the Energy Efficiency of Different Cryptographic Algorithms

Model Encryption time Block Creation Time Estimated Energy
Consumption (KkWh)
ECC 0.180445 0.254789 0.000435234
AES 0.192674 0.214789 0.000407463
DSA 0.200632 0.284236 0.000484868
SADE-ECC 0.152304 0.187489 0.000339793
Proposed Algorithm 0.113211 0.142591 0.000255802

Table 5.9 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on
response time, restoration efficiency, and fault tolerance. The proposed algorithm exhibits the highest restoration
efficiency (0.885448) and fault tolerance (0.880894), indicating robust data recovery and failure resilience. Despite
having a longer response time (1888.786 seconds), its superior fault tolerance and restoration capabilities make it a
reliable choice for critical applications requiring high data integrity and reliability.

Table 5.9: Comparative Analysis of Cryptographic Techniques for Response Time, Restoration, and Fault Tolerance

Model Response Time Restoration Efficiency Fault Tolerance
ECC 230.654 0.828343 0.810296
AES 216.134 0.762332 0.748366
DSA 238.933 0.852971 0.850718
SADE-ECC 201.183 0.773512 0.761928
Proposed Algorithm 1888.786 0.885448 0.880894

Table 5.10 assesses cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on sharing
record time and interoperability. Interoperability is evaluated by the ability of cryptographic models to integrate
seamlessly across various systems and protocols in heterogeneous environments. This is assessed using a combination
of system integration tests and cross-platform compatibility evaluations, considering parameters such as the ease of
key sharing, compatibility with different architectures, and support for varying communication protocols. The
proposed algorithm's "Very High" interoperability is justified by its streamlined sharing record time (13.7679 seconds)
and robust blockchain framework employing IPFS for decentralized data storage. This architecture supports smooth
data exchange and system integration across diverse platforms. In contrast, DSA's "Low" interoperability reflects
challenges with slower record sharing and limited adaptability in complex networks. In contrast, ECC and AES
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achieve medium ratings, showcasing moderate flexibility but reduced performance in demanding scenarios. The
comparative analysis underscores the proposed model's superior efficiency and compatibility, making it ideal for real-
time and multi-platform applications.

Table 5.10: Comparative Analysis of Record Sharing and Interoperability in Cryptography

Model Sharing Record Time Interoperability
ECC 21.8835 Medium
AES 18.0304 Medium
DSA 23.8538 Low
SADE-ECC 15.6789 High
Proposed Algorithm 13.7679 Very High

Table 5.11 evaluates cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on
response time, sharing record time, and user experience. The proposed algorithm exhibits the best user experience,
attributed to its "Very High" rating, with the fastest sharing record time (13.7679 seconds) and response time (188.786
milliseconds). This ensures swift and efficient data handling, enhancing user satisfaction, especially in time-sensitive
applications. In contrast, DSA has the lowest user experience rating, with the slowest sharing record time (23.8538
seconds) and longest response time (238.933 milliseconds), indicating potential delays and less efficient interactions.
ECC and AES offer a "Medium" user experience, balancing moderate performance and usability. The "High" rating
for SADE-ECC highlights its effective combination of fast processing and user-friendly features.

Table 5.11: Comparative Analysis of Cryptographic Techniques on Response Time, Sharing, and User Experience

Model Response Time Sharing Record Time User Experience
ECC 230.654 21.8835 Medium
AES 216.134 18.0304 Medium
DSA 238.933 23.8538 Low
SADE-ECC 201.183 15.6789 High
Proposed Algorithm 188.786 13.7679 Very High

Table 5.12 compares cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm on block
creation and transaction finality time. The proposed algorithm excels with the shortest times for block creation
(0.142591 seconds) and transaction finality (0.142591 seconds), ensuring rapid transaction processing and
confirmation. This efficiency significantly enhances the speed and reliability of blockchain operations, making it ideal
for high-demand environments. In contrast, DSA exhibits the longest times (0.284236 seconds), potentially causing
delays in transaction processing and finality. ECC and AES offer moderate performance, while SADE-ECC
demonstrates improved efficiency with relatively low times.

Table 5.12: Comparative Analysis of Block Creation and Transaction Finality Times

Model Block Creation Time Transaction Finality Time
ECC 0.254789 0.254789
AES 0.214789 0.214789
DSA 0.284236 0.284236
SADE-ECC 0.187489 0.187489
Proposed Algorithm 0.142591 0.142591

Table 5.13 evaluates cryptographic models ECC, AES, DSA, SADE-ECC, and the proposed algorithm based on
throughput, encryption time, and network overhead. The proposed algorithm performs better with the highest
throughput (67) and the shortest encryption time (0.113211 seconds). It also exhibits the lowest network overhead at
1.69%, indicating minimal additional data load on the network. In contrast, DSA has the highest network overhead
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(5.42%), suggesting significant extra data load. ECC and AES offer moderate overheads, while SADE-ECC
demonstrates improved efficiency with lower overhead (2.58%).

Table 5.13: Cryptographic Overhead and Its Implications for Network Performance

Model Throughput Encryption time Network Overhead (%)
ECC 54 0.180445 3.34
AES 44 0.192674 438
DSA 37 0.200632 5.42
SADE-ECC 59 0.152304 2.58
Proposed Algorithm 67 0.113211 1.69

Table 5.14 expands the analysis by considering file sizes ranging from 1 MB to 300 MB under varying node counts
and network conditions. For smaller files (1-50 MB), the latency remains below 1000 ms with relatively high
throughput (350—450 TPS) and low storage overhead (3—5%). As the file size increases, latency grows significantly
due to increased metadata and chunking demands, peaking at 2500 ms for a 300 MB file in a constrained 5 Mbps
network. Storage overhead follows a linear trend, reaching 10% for the largest file size. This analysis illustrates the
scalability of IPFS and resilience despite increased file sizes.

Table 5.14: IPFS Overhead Analysis

File Size (MB) Node Count Network Latency (ms) Throughput Storage
Bandwidth (TPS) Overhead (%)

1 10 100 mbps 200 450 3%

10 21 80 mbps 500 400 4.1%
50 30 50 mbps 1000 350 5.3%

100 49 30 mbps 1500 300 6%

150 72 20 mbps 1800 270 6.9%

200 81 15 mbps 2100 240 8%

250 97 10 mbps 2300 200 9.3%

300 118 5 mbps 2500 180 11%

Table 5.15 evaluates system performance across various transaction rates (100—1000 TPS). At lower transaction rates
(100300 TPS), consensus and detection latencies remain stable (800—1200 ms), with system throughput nearing the
transaction rate. At higher transaction rates (350—1000 TPS), the consensus latency increases to 2000 ms due to the
computational burden, though the system maintains high throughput (930 TPS for 1000 TPS input). This demonstrates
the proposed framework's ability to handle high network loads while maintaining reliability and efficiency.

Table 5.15: Scalability Analysis Under Different Network Loads

Transaction Rate Blockchain Nodes Consensus Latency Detection Latency System Throughput
(TPS) (ms) (ms) (TPS)
100 10 800 500 95
150 20 900 510 145
200 30 1000 515 195
250 40 1100 520 245
300 50 1200 520 290
350 60 1300 530 340
400 70 1500 535 380
450 80 1700 540 420
500 90 1800 540 470
1000 160 2000 540 930
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In Table 5.16, Energy consumption is a critical factor for cryptographic algorithms, especially in resource-constrained
IoT environments. The comparison of energy consumption across various methods shows that the proposed
methodology (SADE-ECC-DSA-SHA-512) achieves the lowest energy consumption at 8.1 Joules, marking a 35%
reduction compared to DSA (14.2 Joules) and 23% compared to ECC (12.5 Joules). This efficiency is primarily due
to the dynamic optimizations introduced by the SADE algorithm, which reduces redundant computations and ensures
streamlined cryptographic operations. Moreover, the proposed methodology integrates SHA-512, efficiently handling
hashing processes while minimizing energy requirements. Such energy-efficient cryptographic solutions are
particularly beneficial for IoT devices, where limited power resources often constrain performance. By significantly
lowering energy consumption, the proposed methodology extends the operational lifespan of IoT devices and
enhances sustainability in large-scale deployments.

The proposed methodology demonstrates superior performance in key generation time, an essential metric for
cryptographic algorithms in real-time IoT applications. The SADE-ECC method generates keys in 0.283 seconds,
representing a 24% improvement over ECC (0.350 seconds) and a 28% improvement over DSA (0.390 seconds). The
proposed methodology further enhances this by reducing the time to 0.210 seconds, a 40% improvement compared to
ECC. This reduction is achieved through the Self-Adaptive Differential Evolution (SADE) algorithm, which
dynamically adjusts parameters to optimize key generation processes. The high entropy and robust security SADE
provides ensure the generated keys are secure while minimizing computational overhead. This adaptability makes the
proposed methodology highly suitable for large-scale, heterogeneous loT environments where rapid and secure key
generation is critical.

The combination of reduced energy consumption and faster key generation time positions the proposed methodology
as an efficient and practical solution for IoT security challenges. The reduction in energy consumption directly
contributes to the feasibility of deploying cryptographic algorithms in IoT devices with limited computational and
power resources. Similarly, the faster key generation time enhances the responsiveness of security protocols, ensuring
that IoT networks can handle high volumes of transactions without performance degradation.

Table 5.16: Energy Consumption and Key Generation Time Comparison Cryptographic Algorithms

Cryptographic Algorithm Energy Consumption (joules) Key Generation Time (seconds)
ECC 12.5 0.350388
AES 13.7 0.372996
DSA 14.2 0.390848
SADE-ECC 10.3 0.283411
Proposed Algorithm 8.1 0.210891

To evaluate the efficiency of the proposed SADE-ECC-DSA-SHA-512 framework, we conducted a detailed
comparative analysis of overhead metrics, including computational, network, and storage overhead, against traditional
cryptographic methods such as ECC, AES, DSA, and SADE-ECC. The analysis, presented in Table 5.17, highlights
key performance indicators such as CPU usage, memory usage, bandwidth consumption, and additional storage
requirements.

The computational overhead of a cryptographic method is a critical factor, especially in resource-constrained IoT
environments. CPU usage and memory usage are primary indicators of computational overhead. As shown in Table
12, the proposed SADE-ECC-DSA-SHA-512 framework exhibits the lowest computational overhead, with CPU usage
at 20% and memory usage at 40 MB. This is significantly lower than traditional methods such as DSA, which requires
40% CPU usage and 80 MB memory, and AES, which demands 35% CPU usage and 70 MB memory. The reduced
computational load in the proposed framework is attributed to the Self-Adaptive Differential Evolution (SADE)
algorithm, which optimizes cryptographic parameter selection dynamically, minimizing redundant computations and
enhancing overall efficiency.

In terms of network overhead, the proposed methodology achieves low bandwidth usage (8 MB/s) compared to
existing methods like DSA (18 MB/s) and AES (15 MB/s). This reduction is facilitated by integrating IPFS for
decentralized off-chain storage, which efficiently manages data distribution and minimizes the volume of data
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transmitted over the network. Consequently, the network overhead is significantly lowered, enhancing the
framework’s suitability for IoT environments where bandwidth may be limited or costly. Storage overhead is another
crucial aspect, particularly for devices with constrained storage capacities. The proposed SADE-ECC-DSA-SHA-512
framework maintains a low storage overhead (5 MB), comparable to ECC (5 MB) and significantly lower than DSA
(15 MB). This efficiency is achieved through the optimized use of SHA-512 for hashing and streamlined cryptographic
operations that reduce the need for additional storage for metadata and cryptographic keys.

The proposed framework demonstrates a balanced and optimized approach to minimizing overhead across
computational, network, and storage dimensions. This optimization enhances the performance and scalability of
Intrusion Detection Systems (IDS) in IoT networks and ensures that the framework remains practical and sustainable
in real-world deployments.

Table 5.17: Comparative Overhead Analysis of Cryptographic Methods

Overhead Metrics ECC AES DSA SADE-ECC Proposed
Methodology (SADE-
ECC-DSA-SHA-512)
Computational Overhead Moderate High High Moderate Low
CPU usage (%) 25 35 40 30 20
Memory usage (MB) 50 70 80 60 40
Bandwidth usage (MB/s) 10 15 18 12 8
Network Overhead 3.34 4.38 542 2.58 1.69
Storage Overhead Low Medium High Medium Low
Additional Storage (MB) 5 10 15 10 6

Table 5.18 highlights a comparative analysis between Traditional Differential Evolution (DE) and Self-Adaptive
Differential Evolution (SADE) for cryptographic key generation. SADE significantly outperforms Traditional DE
across three key metrics. It reduces key generation time from 2.1 ms to 1.5 ms, a 28.57% improvement, ensuring faster
operations critical for IoT environments. SADE also enhances key entropy from 0.92 to 0.98, increasing the
randomness of keys and strengthening resistance to cryptanalysis by 6.5%. Furthermore, while DE offers only
moderate brute-force resistance, SADE achieves high resistance, making it highly secure for cryptographic
applications. These improvements underscore SADE’s suitability for resource-constrained, high-security systems like
blockchain-based frameworks in IoT.

Table 5.18: Comparative Analysis of Key Generation Performance Between Traditional DE and SADE

Metrics Traditional DE SADE Improvement
Key Generation Time 2.1 ms 1.5 ms 28.57%
Key Entropy 0.92 0.98 +6.5%
Brute-Force Resistance Moderate High Significant

The comparison of consensus mechanisms highlights the superior performance of the proposed PBFT-based hybrid
system over traditional PoW and PoS, as shown in Table 5.19. In terms of average gas computation, the proposed
system achieves the lowest cost (28,500 Gwei), outperforming PoW (45,000 Gwei) and PoS (38,000 Gwei), thus
optimizing resource utilization. Similarly, the average transaction fee is significantly reduced to 0.000022 ETH,
making the proposed framework the most cost-effective option. With a processing speed of 35 transactions per second,
the system demonstrates enhanced throughput, surpassing PoW and PoS, which achieve 5 and 15 transactions per
second, respectively. Furthermore, the error rate is reduced to 0.5%, indicating higher reliability. The proposed system
also offers excellent scalability, supporting up to 450 transactions per block, compared to 100 (PoW) and 200 (PoS).
Finally, its consensus finality is achieved in just 15 seconds, ensuring rapid transaction validation compared to PoW’s
120 seconds and PoS’s 50 seconds.
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Table 5.19: Comparative Analysis of Proposed Consensus Mechanisms in Blockchain-Based IDS Frameworks

Metrics Proof of Stakes Proof of Work Proposed PBFT
(PoS) (PoW)
Average Gas Computation (Gwei) 38500 45000 29500
Average Transaction Fee (FTH) 0.000045 0.000050 0.000022

Processing Speed (Tx/Speed) 15 5 35
Error rate (%) 1.2 2.5 0.5
Scalability (Max Tx/Block) 200 100 450
Consensus Finality (seconds) 50 120 15

b) Result Analysis of Proposed Intrusion Detection Model (Phase 2)

This phase focused on evaluating the performance of the proposed GA-Optimized XGBoost (GAO-Xgboost) model
against other GA-optimized models for intrusion detection in heterogeneous IoT networks. The performance
evaluation of various intrusion detection models, optimized using Genetic Algorithms (GA), including the proposed
GA-Optimized XGBoost (GAO-Xgboost) model, is detailed in Tables 5.20 and 5.21. The findings highlight the
efficacy of GA in enhancing model performance and demonstrate the superior capabilities of the proposed framework
for detecting intrusions in heterogeneous loT networks.

Table 5.20: Quantitative analysis of the proposed model

Models Accuracy Precision Recall F1 Score

GA-LR 87.32 86.19 87.04 86.61

GA-KNN 89.72 88.72 89.11 88.91

GA-SVM 89.54 89.47 88.23 88.85

GA-DT 92.76 91.23 91.58 9141

GA-RF 95.47 95.17 94.97 95.07

Proposed IDS Model (GAO-Xgboost) 98.12 97.76 97.81 97.78

Table 5.21: Qualitative analysis of the proposed model

Models TPR FPR TNR | FNR NPV PPV FDR FOR
GA-LR 87.04 | 13.81 86.19 | 12.96 86.19 86.19 13.69 13.07
GA-KNN 89.11 1128 | 88.72 | 10.89 88.72 88.72 11.23 10.93
GA-SVM 88.23 10.53 | 89.47 | 11.77 89.42 89.47 10.66 11.62
GA-DT 91.58 8.77 91.23 8.42 91.23 91.23 8.74 8.45
GA-RF 94.97 4.83 95.17 5.03 95.17 95.17 4.84 5.02
Proposed IDS Model (GAO-Xgboost) 97.81 2.24 97.76 2.19 97.76 97.76 2.24 2.19

The study utilized a Genetic Algorithm (GA) to optimize several machine learning models, including Logistic
Regression (LR), K-Nearest Neighbors (KNN), Support Vector Machine (SVM), Decision Tree (DT), and Random
Forest (RF). The optimization process was focused on refining detection rules and selecting the most relevant features,
thus improving the models' accuracy and efficiency in classifying network traffic. The GA-LR model achieved an
accuracy of 87.32%, with precision and recall values of 86.19% and 87.04%, respectively.
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Figure 5.10: Accuracy Comparison: GA-Based Models vs. the Proposed IDS Model

Although the model's performance was reasonable, it exhibited a slightly lower precision-recall balance, indicating a
higher incidence of false positives. The GA-KNN model improved, with an accuracy of 89.72% and a balanced F1
score of 88.91%. This model effectively minimized false alarms while maintaining a satisfactory detection rate. The
GA-SVM model demonstrated comparable accuracy at 89.54%, although its recall of 88.23% suggested a potential
underestimation of certain intrusion types. The GA-DT model exhibited notable performance with an accuracy of
92.76%, indicating that GA optimization significantly enhanced its decision-making process. The GA-RF model stood

out with an accuracy of 95.47%, bolstered by high precision (95.17%) and recall (94.97%), making it particularly
robust in identifying a wide range of intrusion scenarios.
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Figure 5.11: Precision Comparison: GA-Based Models vs. the Proposed IDS Model
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Figure 5.12: Recall Comparison: GA-Based Models vs. the Proposed IDS Model

The proposed GAO-Xgboost model demonstrated exceptional performance, outperforming other models in the study,
as shown in Figures 5.10,5.11,5.12,5.13. It achieved an accuracy of 98.12%, reflecting a high level of correctness in
identifying legitimate and malicious activities. The model's precision of 97.76% indicates its effectiveness in
minimizing false positives, ensuring that most detected intrusions were genuine threats. With a recall of 97.81%, the
model effectively captured actual intrusions, reducing the likelihood of missed threats. The F1 score of 97.78%
confirms the model's balanced performance, making it a reliable choice for practical deployment.
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Figure 5.13: F1-Score Comparison: GA-Based Models vs. the Proposed IDS Model

To further evaluate the performance of the proposed approach on the Edge IloT dataset, the Receiver Operating
Characteristic (ROC) curve was employed. This curve illustrates the relationship between the false positive rate (false
alarm probability) and the true positive rate (detection probability or recall). The Area Under the Curve (AUC) was
then computed to quantify the overall performance across all ROC curves. Notably, the AUC values for all attack
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categories exceeded 99%, as depicted in Figure 5.14, highlighting the effectiveness and reliability of the proposed
method for attack classification.
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Figure 5.14: ROC Curve of the Proposed Model
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Figure 5.15: Confusion Matrix of the proposed IDS model

The confusion matrix was employed to evaluate the effectiveness of the algorithms further, covering both correct and
incorrect classifications. Figure 5.15 presents the multi-class confusion matrices for the proposed model, where the
columns represent predicted instances of each category, and the rows correspond to the actual instances. Diagonal
elements of the matrix denote the true positive values from the Edge IloT dataset, while non-diagonal elements
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indicate misclassified samples. Analysis of the confusion matrix reveals that the proposed approach achieves a high
number of true positive classifications, demonstrating its superior categorization performance.

In addition to these metrics, the GAO-Xgboost model exhibited outstanding True Positive Rate (TPR) and True
Negative Rate (TNR), both exceeding 97%, while maintaining low False Positive Rate (FPR) and False Negative Rate
(FNR) values. These results underscore the model's capability to accurately differentiate between normal and
malicious traffic, making it highly suitable for diverse and complex IoT environments. The False Omission Rate
(FOR) and False Discovery Rate (FDR) results highlight the effectiveness of the proposed IDS model (GAO-Xgboost)
in accurately detecting intrusions. With a FOR of 2.19% and an FDR of 2.24%, the model outperforms traditional
methods, significantly reducing false negatives and false positives. This ensures that actual threats are identified
without overwhelming the system with false alarms, making the GAO-Xgboost model a robust and reliable choice for
intrusion detection in complex environments where precision and security are paramount.

Figure 5.16 provides a comparative analysis of the True Positive Rate (TPR) and False Negative Rate (FNR) for
several intrusion detection systems (IDS) models enhanced with Genetic Algorithms (GA) and various machine
learning classifiers, including Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector
Machine (GA-SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, combining
Genetic Algorithm Optimization with XGBoost (GAO-XGBoost), demonstrates superior performance across both
metrics. It achieves the highest TPR at 97.81%, indicating its exceptional ability to identify actual intrusions correctly.
Concurrently, it boasts the lowest FNR at 2.19%, underscoring its effectiveness in minimizing missed detection rates.
Among the other models, GA-RF shows strong performance with a TPR of 94.97% and an FNR of 5.03%, while GA-
DT also performs well with a TPR of 91.58% and an FNR of 8.42%.
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Figure 5.16. Performance Evaluation: TPR and FNR Analysis of GA-Optimized Models Versus the Proposed IDS
Model

Figure 5.17 compares the True Negative Rate (TNR) and False Positive Rate (FPR) of various intrusion detection
system (IDS) models enhanced with Genetic Algorithms (GA) and different machine learning classifiers, including
Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-SVM), Decision Tree
(GA-DT), and Random Forest (GA-RF). The proposed IDS model, combining Genetic Algorithm Optimization with
XGBoost (GAO-XGBoost), demonstrates the highest performance in both metrics. It achieves an impressive TNR of
97.76%, indicating its exceptional ability to correctly identify non-intrusions while maintaining the lowest FPR at

147 |Page



2.24%, reflecting its effectiveness in minimizing false alarms. Among the other models, GA-RF stands out with a
strong TNR of 95.17% and an FPR of 4.83%, followed by GA-DT with a TNR of 91.23% and an FPR of 8.77%.
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Figure 5.17: Performance Evaluation: TNR and FPR Analysis of GA-Optimized Models Versus the Proposed IDS
Model

Figure 5.18 presents a comparison of the Negative Predictive Value (NPV) and False Omission Rate (FOR) for various
intrusion detection system (IDS) models, each enhanced with Genetic Algorithms (GA) and different machine learning
classifiers, such as Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-
SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, which combines Genetic
Algorithm Optimization with XGBoost (GAO-XGBoost), exhibits the highest NPV at 97.76%, indicating its strong
capability to identify non-intrusions among all instances classified as non-intrusions correctly. It also achieves the
lowest FOR at 2.19%, demonstrating its effectiveness in minimizing the proportion of actual positives (intrusions)
that are incorrectly classified as negatives (non-intrusions). Among the other models, GA-RF shows notable
performance with an NPV of 95.17% and a FOR of 5.02%, followed by GA-DT with an NPV of 91.23% and a FOR
of 8.45%.
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Figure 5.18: Performance Evaluation: NPV and FOR Analysis of GA-Optimized Models Versus the Proposed IDS
Model

Figure 5.19 compares the Positive Predictive Value (PPV) and False Discovery Rate (FDR) of several intrusion
detection system (IDS) models, each enhanced with Genetic Algorithms (GA) and different machine learning
classifiers, including Logistic Regression (GA-LR), K-Nearest Neighbors (GA-KNN), Support Vector Machine (GA-
SVM), Decision Tree (GA-DT), and Random Forest (GA-RF). The proposed IDS model, which integrates Genetic
Algorithm Optimization with XGBoost (GAO-XGBoost), achieves the highest PPV at 97.76%, signifying its strong
accuracy in correctly identifying true positives (actual intrusions) among all instances classified as positives.
Additionally, it maintains the lowest FDR at 2.24%, indicating a minimal proportion of false positives (non-intrusions
incorrectly classified as intrusions). Among the other models, GA-RF also performs well, with a PPV of 95.17% and
an FDR of 4.84%, followed by GA-DT with a PPV of 91.23% and an FDR of 8.74%. This comparison highlights the
proposed IDS model's superior precision and reduced likelihood of false alarms, making it a more effective and reliable
solution for accurately detecting intrusions in IoT environments.
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Figure 5.19: Performance Evaluation: PPV and FDR Analysis of GA-Optimized Models Versus the Proposed IDS
Model

Overall, applying GA optimization significantly improved the performance metrics of these models. The enhanced
precision, recall, and F1 scores underscore the importance of GA in refining model parameters to achieve optimal
results in intrusion detection. The Genetic Algorithm (GA) significantly enhanced the performance of traditional
machine learning models, while the proposed GAO-Xgboost model demonstrated superior capabilities in intrusion
detection. Including less favorable results, such as the relatively lower recall of the GA-SVM model, ensures a
comprehensive understanding of the research outcomes. Overall, the study emphasizes the effectiveness of GA
optimization and the robustness of the Xgboost-based approach in securing IoT networks.

5.8. Security and Privacy Analysis of the Proposed Framework
5.8.1. Security Analysis

The proposed blockchain framework is designed to ensure robust security and privacy for secure data management in
IoT environments. This section analyzes the framework's resilience against various attacks, highlighting its ability to
maintain data integrity, confidentiality, and availability.

e Denial of Service (DoS) and Distributed Denial of Service (DDoS) Attacks: The proposed framework
employs a combination of ECC, DSA, and SHA-512 for securing the Intrusion Detection System (IDS) and
utilizes the PBFT consensus algorithm for decision-making within the blockchain. The robust cryptographic
algorithms (ECC and DSA) and the consensus mechanism of PBFT provide robust defenses against DoS and
DDoS attacks by ensuring that malicious nodes cannot overwhelm the network. Additionally, the
decentralized nature of the blockchain makes it resilient to these attacks as the distributed network can
manage and mitigate the impact of such attacks.

e Information Gathering: The proposed framework uses encryption and hashing mechanisms to prevent
unauthorized information gathering. Patient data is encrypted using ECC, and SHA-512 ensures the integrity
of this data. Encryption will thwart attempts to gather information with authorization, making it nearly
impossible for attackers to decipher the data. The authentication provided by DSA further ensures that only
authorized entities can access the information, safeguarding patient privacy.

o Injection Attacks: The framework's reliance on the blockchain's immutable ledger and cryptographic
validation (ECC and DSA) prevents injection attacks. Data entered into the blockchain is verified through
consensus (PBFT) and cannot be altered once confirmed. This immutability ensures that any attempt to inject
malicious data into the system is detected and rejected, preserving the integrity of the data.
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Man-in-the-Middle (MiTM) Attacks: To counter MiTM attacks, the framework employs robust
encryption (ECC) and digital signatures (DSA) for all communications. These cryptographic methods ensure
that any intercepted data remains encrypted and unreadable by unauthorized parties. Additionally, using
secure keys generated by the SADE algorithm further strengthens the encryption, making it extremely
difficult for attackers to decrypt or alter the data in transit.

Malware Attacks: The decentralized and encrypted nature of the blockchain provides a strong defense
against malware attacks. Any data stored off-chain in IPFS is linked through blockchain references, ensuring
that only verified and untampered data is retrievable. The consensus mechanism (PBFT) ensures that any
attempt to introduce malware into the blockchain is identified and blocked by the network of nodes,
maintaining the integrity and security of the data.

The proposed blockchain framework, integrating ECC, DSA, SHA-512, PBFT consensus, and IPFS for off-chain
storage, offers robust protection against various security threats. It mitigates the risks associated with DoS and DDoS
attacks, unauthorized information gathering, injection attacks, MiTM attacks, and malware attacks. By ensuring data
integrity, confidentiality, and availability, the framework provides a secure, privacy-preserving solution for managing
patient healthcare data in [oT environments.

5.8.2. Privacy Analysis

The proposed blockchain framework prioritizes patient privacy through advanced cryptographic techniques and strict
data management protocols. This section explores how the framework safeguards confidentiality, integrity,
authentication, anonymity, and access control, ensuring comprehensive privacy protection.

Data Confidentiality: The proposed framework ensures data confidentiality through Elliptic Curve
Cryptography (ECC). ECC encrypts sensitive patient data, making it accessible only to authorized parties
with the correct decryption keys. This robust encryption provides high security with smaller key sizes, which
is especially important for resource-constrained IoT devices. Using ECC, the framework ensures that IoT
data remains confidential and protected from unauthorized access.

Data Integrity: The framework uses SHA-512 for hashing data, providing a unique hash value for each
input. This hash value ensures data integrity by detecting any alterations to the data. If the data is tampered
with, the hash value changes, signaling a breach in integrity. This mechanism ensures that the data remains
unaltered from its original form, providing a high level of trust in its authenticity.

Data Authentication: The Digital Signature Algorithm (DSA) is used to authenticate communication within
the blockchain network. DSA verifies the parties' identity in the communication, ensuring that legitimate
entities send and receive the data. This authentication process prevents impersonation attacks, where
malicious actors attempt to masquerade as legitimate users to gain access to sensitive data.

Data Anonymity: To protect IoT data privacy further, the framework can implement data anonymization
techniques before storing data on the blockchain. Anonymization ensures that individual [oT data identities
cannot be discerned from the stored data, protecting personal information while allowing for aggregated data
analysis.

Access Control: The framework can incorporate role-based access control (RBAC) to ensure that only
authorized personnel can access specific data types. This layered access control mechanism ensures that
sensitive data is only available to those who need it, minimizing the risk of data breaches and ensuring
compliance with privacy regulations.

Decentralization and Transparency: Blockchain technology inherently provides transparency while
maintaining privacy. Transactions and data entries are recorded on an immutable ledger, providing a
transparent record that can be audited while keeping the data encrypted and private. This transparency
enhances trust in the system, as all actions are traceable and accountable without compromising individual
privacy.

Off-Chain Data Storage: The InterPlanetary File System (IPFS) stores large volumes of data off-chain,
with the blockchain containing only the references to this data. This approach balances the need for
decentralized, resilient storage with privacy considerations, as data stored in IPFS is linked to its blockchain
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reference, ensuring its integrity and traceability without storing sensitive information directly on the
blockchain.

The proposed blockchain framework excels in protecting loT data privacy through robust cryptographic techniques,
data integrity measures, authentication protocols, and controlled access mechanisms. By integrating ECC, DSA, SHA -
512, PBFT consensus, and IPFS for off-chain storage, the framework ensures that IoT data remains confidential,
integral, and accessible only to authorized users. These privacy-preserving features make the framework highly
suitable for managing sensitive healthcare data in IoT environments, addressing the critical needs for both security
and privacy in modern digital healthcare systems.

5.9. Comparison with the Existing Techniques and State-of-the-Art Methods

This section comprehensively compares the proposed GAO-XGBoost model with existing techniques and state-of-
the-art methods for intrusion detection systems (IDS). By analyzing the performance across various metrics and
datasets, the evaluation highlights the proposed model's efficiency, accuracy, and robustness in addressing the
challenges of intrusion detection in IoT environments. The results underscore the advantages of integrating Genetic
Algorithm Optimization (GAO) with XGBoost, showcasing its superiority over traditional, deep learning, and cutting-
edge approaches.

5.9.1. Comparison with the existing techniques

This subsection evaluates the performance of the proposed GAO-XGBoost model against several widely used machine
learning and deep learning approaches for intrusion detection systems (IDS). The comparison is based on four standard
metrics: accuracy, precision, recall, and F1 score. The aim is to demonstrate the advantages of combining Genetic
Algorithm Optimization (GAO) with XGBoost for enhanced IDS performance. From table 5.22, traditional machine
learning models like Logistic Regression (LR) and K-Nearest Neighbors (KNN) exhibit relatively modest accuracies
0f'83.54% and 85.23%, respectively. These models are outperformed by Support Vector Machine (SVM) and Decision
Tree (DT), which achieve accuracies of 87.02% and 89.43%, respectively. Among these, Random Forest (RF)
performs the best, with an accuracy of 93.87%.

Deep learning models show a significant improvement over traditional methods. Convolutional Neural Networks
(CNN) and Recurrent Neural Networks (RNN) achieve accuracies of 93.27% and 94.65%, respectively, reflecting
their ability to capture complex patterns in the dataset. However, despite their advanced capabilities, these models still
fall short compared to the proposed GAO-XGBoost framework.

The proposed model achieves an accuracy of 98.12%, precision of 97.76%, recall of 97.81%, and F1 score of 97.48%,
significantly surpassing all other approaches. These improvements can be attributed to Genetic Algorithm
Optimization (GAO), which enhances hyperparameter tuning, optimizes feature selection, and mitigates overfitting.
This optimization allows XGBoost to achieve superior classification performance, making it particularly well-suited
for intrusion detection in IoT environments. The results emphasize that the integration of GAO with XGBoost provides
a highly efficient and reliable IDS, outperforming both traditional and deep learning techniques in terms of accuracy
and other performance metrics.

Table 5.22: Performance Comparison of the Proposed GAO-XGBoost Model with Traditional Machine Learning
and Deep Learning Techniques

Models Accuracy | Precision Recall F1 Score
LR (Logistic Regression) 83.54 82.12 82.98 82.55
KNN (K-Nearest Neighbors) 85.23 84.71 84.89 84.80
SVM (Support Vector Machine) 87.02 86.91 86.32 86.91
DT (Decision Tree) 89.43 88.71 88.34 88.52
RF (Random Forest) 93.87 92.65 93.12 92.88
CNN (Convolutional Neural Network) 93.27 92.15 92.45 92.30

RNN (Recurrent Neural Network) 94.65 93.85 94.15 94

Proposed Model(GAO-Xgboost) 98.12 97.76 97.81 97.48
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5.9.2. Comparison with the State-of-the-Art Methods

The proposed XGBoost model, integrated with the Genetic Algorithm (GA) for feature selection, outperforms state-
of-the-art techniques in intrusion detection, as shown in Table 5.23. Compared to models like Growing Tree Clustering
(97.12%) and iForest (97.37%), our approach achieves the highest accuracy of 98.12%, demonstrating superior
classification capabilities. Earlier methods, such as REPT using PSO and OC-SVM with PIO, achieved accuracies of
96.38% and 83%, respectively, indicating limitations in handling complex intrusion patterns. The effectiveness of the
proposed model highlights the advantage of combining XGBoost with GA, showcasing its robustness and efficiency
in detecting attacks with improved accuracy over existing methods.

Table 5.23: Comparison of the Proposed Model with State-of-the-Art Techniques

References and Year Model Feature Selection Accuracy
Technique
[128] and 2024 Growing tree clustering Genetic Algorithm (GA) 97.12
[129] and 2019 REPT PSO 96.38
[130] and 2022 OC-SVM PIO 83
[131] and 2023 iforest LS-PIO 97.37
Our approach Proposed Xgboost Genetic Algorithm (GA) 98.12

5.10. Chapter Summary

This Chapter presents a Hybrid Blockchain-Based Framework that effectively addresses the security challenges
associated with Intrusion Detection Systems (IDS) in IoT networks. By integrating advanced cryptographic
techniques, Elliptic Curve Cryptography (ECC), the Digital Signature Algorithm (DSA), and SHA-512 alongside a
novel Self-Adaptive Differential Evolution (SADE) algorithm, the proposed framework significantly enhances data
privacy, authentication, and integrity. Practical Byzantine Fault Tolerance (PBFT) for consensus and InterPlanetary
File System (IPFS) for off-chain data storage contributes to system resilience and prevents centralized failures.
Furthermore, applying Genetic Algorithms (GA) and an XGBoost-based model optimizes IDS performance, yielding
high accuracy and robust intrusion detection capabilities. The results demonstrate substantial improvements in
blockchain latency, throughput, network overhead, and exceptional performance metrics from the XGBoost model.
Overall, this comprehensive approach significantly advances IoT security, offering enhanced effectiveness,
scalability, and resilience.
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Chapter 6 Privacy-Preserving Data Sharing in Blockchain-Enabled IoT Healthcare
Management System

6.1. Introduction

The rapid growth and adoption of the Internet of Things (IoT) in healthcare systems have significantly advanced the
smart healthcare industry by providing effective solutions for saving, maintaining, securing, and sharing healthcare
documents [132]. Despite these advancements, the proliferation of IoT devices and the massive influx of healthcare
data pose substantial security and privacy challenges for confidential medical documents. loT-based healthcare models
typically use cloud storage systems for data storage and maintenance [133]. However, the centralized architecture of
these cloud systems introduces vulnerabilities, such as single-point failures, and an increased risk of security attacks,
including masquerades, phishing, identity theft, and data breaches. Consequently, the privacy and security of
healthcare documents remain primary concerns as nearly all healthcare data is stored online.

Traditional approaches in the healthcare industry have relied on encoding schemes and cryptographic methods to
safeguard healthcare documents [134]. Often maintained on centralized databases or cloud storage systems, these
methods are prone to single-point failure issues and various attacks [135]. Furthermore, attackers frequently clone or
duplicate medical documents, creating significant challenges for users who need to access their medical records for
treatment, especially if they misplace critical documents [136].

Blockchain technology offers a promising solution, innovative cryptography and distributed systems development.
Initially introduced by Santoshi Nakamoto through the cryptocurrency Bitcoin, blockchain technology features a peer-
to-peer network that maintains data in a distributed ledger [137]. This decentralized approach, characterized by data
integrity, transparency, and security through cryptographic algorithms, has shown potential across various domains,
including finance, healthcare, and supply chain management [138]. In a blockchain, data is stored in hash format
within blocks, each linked to the previous one, forming an immutable chain validated by consensus algorithms.

Integrating blockchain technology with IoT-based healthcare systems can enhance transparency, privacy, and security
while reducing costs. Blockchain enables the healthcare system to maintain trust among its entities by securely
managing healthcare data and verifying the authenticity of healthcare documents, thereby preventing fraud [139]. It
stores healthcare details, such as unique identification numbers and certifications, in a blockchain structure,
strengthening the healthcare system against counterfeiting and unauthorized modifications [140]. Smart contract
functionalities within blockchain technology further enhance the security and privacy of healthcare documents by
automating agreements and ensuring they are executed only when specified conditions are met. The generic
architecture of a Blockchain-based IoT-based Healthcare Management System is shown in Figure 6.1. The
decentralized nature of blockchain technology and its cryptographic strengths make it an ideal solution for addressing
the security and privacy challenges in loT-based healthcare systems [141]. Researchers have proposed various
blockchain-based models to enhance the security of medical records [142-144]. For instance, Rhayem et al. [142]
developed a blockchain-based medical system using the Ethereum framework to achieve traceability without
involving trusted third parties, guaranteeing data security, privacy, and transparency. Other applications, such as the
Internet of Medical Things (IoMT), utilize smart contracts to manage healthcare records, monitor sensitive data, and
ensure secure access to global data.

Despite these advancements, existing systems still require comprehensive security and privacy analysis to manage
healthcare data effectively. Integrating blockchain technology with healthcare can revolutionize the industry by
providing a robust IoT healthcare system that ensures transparency, security, and traceability. This paper explores the
various aspects of blockchain-based healthcare systems and proposes a framework for implementing a blockchain-
based IoT system in the healthcare sector, emphasizing the need for secured centralized systems to protect electronic
health records (EHRs) from privacy leaks, data breaches, and other security threats. The proposed solution aims to
reduce storage costs, ensure patient data security, and prevent unauthorized access while maintaining data integrity
and availability through blockchain's decentralized approach.
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Figure 6.2: Blockchain-based loT-based Healthcare Management System

6.1.1. Motivation

In the modern healthcare ecosystem, ensuring the security, privacy, and accessibility of medical records is a critical
challenge. Traditional centralized systems for managing healthcare data and medical certificates are plagued by
vulnerabilities such as single points of failure, data breaches, unauthorized access, and document tampering. These
inefficiencies not only compromise patient trust but also hinder seamless healthcare delivery. Additionally, the rapid
proliferation of IoT devices in healthcare generates vast amounts of sensitive data, which centralized systems struggle
to manage efficiently, leading to latency and scalability issues. Blockchain technology, with its decentralized,
immutable, and transparent nature, offers a promising solution to address these challenges. By leveraging advanced
cryptographic techniques and consensus mechanisms, blockchain ensures data integrity, enhances privacy, and
eliminates the risks associated with centralized control. Despite the potential of blockchain-based solutions, existing
implementations often fail to address critical requirements such as high transaction throughput, real-time scalability,
and comprehensive privacy preservation. This research aims to bridge these gaps by proposing a robust blockchain-
based framework that integrates IoT devices, hybrid consensus mechanisms, and privacy-preserving cryptographic
techniques, thereby revolutionizing medical record management in healthcare.

This paper introduces a novel decentralized application that uses blockchain technology to enhance medical certificate
management security, privacy, and efficiency in the healthcare sector. The key contributions of this work include:

e Proposed a Novel Blockchain-Based IoT Application for Healthcare: We propose an innovative
decentralized application that utilizes blockchain technology to create a secure communication medium
between healthcare entities such as hospitals, patients, and doctors. This system integrates various IoT
devices to maintain and update healthcare information seamlessly.

e Introducing Unique Identification for Medical Certificates: We introduce a mechanism to generate
unique identification numbers for each medical certificate, ensuring the integrity and traceability of medical
records.

e Enhancing Consensus Mechanisms: We deploy a hybrid consensus mechanism that combines Proof of
Work (PoW) and Practical Byzantine Fault Tolerance (PBFT). This hybrid approach improves security and
transaction speed, making the system capable of handling high transaction volumes in healthcare settings.
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e Implementing Privacy-Preserving Computations: We implement Fully Homomorphic Encryption (FHE)
to allow secure computations on encrypted medical data. This ensures that sensitive information remains
private throughout the processing stages.

o Utilizing Non-Interactive Zero-Knowledge Proofs (NIZKPs): We utilize NIZKPs to verify medical
certificates without disclosing sensitive patient data, thus enhancing privacy and trust in the system.

e Incorporating Interplanetary File System (IPFS): We use IPFS as a distributed file system to distribute
and store all IoT data due to the limited storage capacity available on each block. This approach enables the
proposed architecture to handle large amounts of IoT data and scale effectively.

e Integrating an Intrusion Detection System (IDS): We propose an IDS to monitor IoT traffic, detecting
potential security attacks and anomalies in real time. The IDS enhances overall system security by identifying
and mitigating potential threats before they can cause harm.

o Conducting Comprehensive Evaluation: We perform extensive experimental tests to evaluate the proposed
application on various parameters such as latency, computation time, processing time, throughput, and
network usage, demonstrating its effectiveness and robustness.

The proposed framework distinguishes itself by integrating blockchain technology with IoT-based healthcare systems
using a novel combination of mature techniques, including Fully Homomorphic Encryption (FHE), Non-Interactive
Zero-Knowledge Proofs (NIZKPs), and a hybrid consensus mechanism combining Proof of Work (PoW) and Practical
Byzantine Fault Tolerance (PBFT). While these techniques have been explored independently in other domains, their
synergistic application within the context of IoT healthcare systems addresses critical gaps. Specifically, the hybrid
consensus mechanism balances scalability and security, overcoming the high latency of PoW and the vulnerability of
PBFT in high-volume systems. The use of FHE ensures secure computations on encrypted data, enabling privacy-
preserving operations, while NIZKPs further enhance trust by allowing verification of sensitive data without exposing
it. This integrated approach ensures robust performance and privacy preservation, which traditional systems fail to
achieve due to their reliance on isolated or centralized methods. This research addresses these gaps by proposing a
novel blockchain-based decentralized application that integrates IoT devices, implements a hybrid consensus
mechanism combining Proof of Work (PoW) and Practical Byzantine Fault Tolerance (PBFT), and utilizes advanced
cryptographic techniques, homomorphic encryption, and NIZKPs. The proposed system is thoroughly evaluated based
on multiple performance parameters, demonstrating its effectiveness and robustness in real-world healthcare settings.
This research contributes to developing a more secure, efficient, and privacy-preserving healthcare data management
system by addressing these gaps.

6.2. Related Work
6.2.1. Privacy Preserving in Healthcare Management System

In recent literature, privacy-preserving methods in the Internet of Medical Things (IoMT) have emerged as crucial for
safeguarding sensitive patient information while enhancing healthcare management efficiency [145]. Existing research
extensively discusses encryption techniques, such as AES and RSA, employed to secure data at rest and in transit,
effectively preventing unauthorized access [146-147]. Another noteworthy approach is signeryption [148], which
combines encryption and digital signatures to provide confidentiality and data authenticity.

Studies on access control mechanisms highlight role-based access control (RBAC) and attribute-based access control
(ABAC) as effective methods to restrict data access based on user roles and attributes, ensuring that only authorized
personnel can access sensitive medical information [149-150]. Data anonymization techniques such as differential
privacy [151] and pseudonymization [152] are frequently cited. These methods protect patient identities by adding
statistical noise to datasets and replacing identifying information with tokens.

Blockchain technology has gained significant attention in the literature for its potential to enhance security in
healthcare management. It introduces a decentralized, immutable ledger for recording all medical data transactions,
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providing security through time-stamped, tamper-resistant records. Smart contracts, as described in several studies,
automate data-sharing agreements, ensuring compliance with predefined rules and patient consent.

Zero-knowledge proofs (ZKPs) are another area of interest in current research [153]. They allow the verification of
data transactions without revealing sensitive information, thereby maintaining privacy. Edge computing, which
processes data locally on IoMT devices, is noted for its ability to reduce the need for central storage and minimize
data breach risks.

The literature also discusses patient-controlled data access systems [154] that enable individuals to manage who can
access their data and for what purposes. Continuous auditing and real-time monitoring are crucial for enhancing
security by promptly detecting and responding to suspicious activities. Collectively, these methods, as reviewed in
existing studies, ensure robust protection and trust in the digital healthcare ecosystem.

6.2.2. Literature Review

This literature review examines various blockchain-based architectures and models designed to enhance security,
privacy, and efficiency in healthcare data management and sharing. One researcher details a blockchain-based
telehealth architecture [155] focusing on secure storage, decentralized access control, and logging, with verified
security by AVISPA, demonstrating computational efficiency and strong cryptographic keys. Another researcher
introduces a triple subject purpose-based access control (TS-PBAC) model [156] for the Internet of Medical Things
(IoMT), integrating blockchain for secure, privacy-preserving data sharing. This model employs a hierarchical purpose
tree, local differential privacy, and mutual evaluation metrics, providing superior patient privacy protection and stable
access control decisions compared to traditional methods.

The review also covers a blockchain-assisted, secure, and privacy-preserving health data-sharing scheme for edge-
based IoMT, which uses a bloom filter with hash functions for keyword ciphertext verification, key-policy attribute-
based encryption for profile matching, and an incentive mechanism with a two-phase Stackelberg game for optimal
pricing [157]. This protocol achieves high security, scalability, and feasibility in IoMT scenarios. Additionally, a
blockchain-based smart healthcare system is highlighted for privacy-preserved electronic medical record (EMR)
exchange and sharing [158]. This system employs dynamic access control, local differential privacy, and multi-level
smart contracts for secure, reliable, and traceable transactions, validated by experimental results with 200,000 real-
world EMRs.

The review further explores a blockchain and Al-enabled model for secure medical data transmission in IoT networks
called BAISMDT [159]. This model enhances data security and privacy using signcryption, blockchain, and modified
particle swarm optimization with wavelet kernel extreme learning machine, achieving high accuracy in disease
detection. Another blockchain-based scheme for privacy-preserving medical data-sharing balances patient privacy
with research needs, employing zero-knowledge proofs and proxy re-encryption to maintain confidentiality while
using PBFT for efficient distributed consensus [160-161][166].

Several papers focus on blockchain-based frameworks and models for secure and privacy-preserving healthcare data
management. HealthRec-Chain combines blockchain and IPFS for secure, scalable health data storage, utilizing Java-
enabled GPG encryption and a personalized Ethereum dashboard [162]. Another blockchain-based e-health system
secures electronic health records (EHRs) using pairing-based cryptography and blockchain smart contracts for reliable
transactions, addressing security challenges with minimal computation overhead [163]. Additionally, a CNN-based
model combined with blockchain and federated learning [164] enhances electronic health record privacy, improving
accuracy, data privacy, and malicious activity detection.

BCHealth, a blockchain-based architecture, enhances privacy in IoT healthcare by allowing data owners to define

access policies [165]. It utilizes two chains for data and policy storage, clustering for scalability, and a modified
consensus algorithm for performance. A consortium blockchain-based scheme integrates IPFS and zero-knowledge
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proofs to ensure security and privacy in sharing personal health records (PHRs), using attribute-based encryption and
smart contracts for secure, personalized access [166].

Lastly, the review discusses various innovative schemes such as OHE-MSC [167], which leverages blockchain and
homomorphic encryption for secure loT medical data sharing, and BDSDT, which combines blockchain with deep
learning for secure data transmission [ 168]. Lightweight data-sharing schemes integrating outsourcing attribute-based
encryption and smart contracts are also examined [169]. These approaches enhance security, efficiency, and fault
tolerance in IoMT data sharing, demonstrating the transformative potential of blockchain and Al technologies in
healthcare management [170-173].

Existing blockchain-based healthcare systems typically focus on either enhancing data security or improving system
scalability but rarely address both comprehensively. For instance, systems employing PBFT offer faster consensus but
struggle with scalability, while PoW-based models prioritize security at the cost of high computational overhead.
Moreover, while cryptographic techniques like FHE or NIZKPs have been explored individually, their integration into
a unified framework remains underexplored. This paper bridges these gaps by combining these techniques into a
cohesive system, providing both scalability and security without compromising efficiency.

6.2.3. Research Gaps

Despite the potential benefits of blockchain technology in healthcare, several gaps exist in current research and
implementations:

o Integration with IoT Devices: While there is a significant focus on blockchain technology in healthcare,
there needs to be more research on effectively integrating blockchain with IoT devices to ensure real-time,
secure data acquisition and management.

e Scalability and Performance: Most existing blockchain-based healthcare applications use traditional
consensus mechanisms like Proof of Work (PoW), which are inefficient in handling high transaction volumes
typical in healthcare settings. There is a need to explore and implement more efficient consensus mechanisms
that can enhance the scalability and performance of these systems.

e  Privacy-Preserving Techniques: Current implementations often fail to adequately protect patient privacy
while allowing necessary data verification and access. Techniques like Zero-Knowledge Proofs (ZKPs) and
homomorphic encryption have been proposed in theory but lack practical implementation and evaluation in
healthcare applications.

e Comprehensive Evaluation: Many blockchain-based healthcare solutions lack thorough experimental
evaluations to test their effectiveness, robustness, and efficiency under real-world conditions. There is a need
for extensive testing and analysis based on various performance metrics to demonstrate the practical viability
of these solutions.

This research addresses these gaps by proposing a novel blockchain-based decentralized application that integrates
IoT devices, implements a hybrid consensus mechanism combining PoW and Practical Byzantine Fault Tolerance
(PBFT), and utilizes advanced cryptographic techniques such as homomorphic encryption and ZKPs. The proposed
system is thoroughly evaluated based on multiple performance parameters, demonstrating its effectiveness and
robustness in real-world healthcare settings. This research contributes to developing a more secure, efficient, and
privacy-preserving healthcare data management system by addressing these gaps.

6.3. Proposed Methodology
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This section proposed a decentralized application that utilizes Blockchain technology to generate and maintain medical
certificates through various phases, such as data acquisition, Validation, representation, and justification. User can
maintain their healthcare information using different IoT devices. The proposed applications aim to prevent fraud in
maintaining and issuing user medical records, including medical test reports, discharge summaries, and operative
reports. Figure 6.2 presents the workflow of the proposed blockchain-based IoT decentralized application for the
Healthcare Management system.
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Figure 6.3: Proposed Workflow of the Novel Blockchain-Based IoT Application for Healthcare Management System

The diagram presents a decentralized healthcare management system that leverages blockchain technology, Non-
Interactive Zero-Knowledge Proofs (NIZKPs), and the Interplanetary File System (IPFS) to enhance the privacy and
security of medical certificate management. It delineates the interactions among IoT users, devices, and the healthcare
management system, which collectively facilitate secure access and validation of medical data. On the left, the IoT
user engages with the healthcare system through an IoT app and connected devices that transmit user data. Conversely,
the right side illustrates the blockchain network's critical role in ensuring data integrity and security through nodes,
identity managers, and consensus mechanisms. Smart contracts automate certificate issuance and verification, while
ZKP ensures data verification without exposing sensitive information.

The workflow initiates with user registration (Step 1) and the issuance of unique credentials (Step 3), secured by the
blockchain's identity manager. Upon requesting a medical certificate (Step 5), the healthcare system returns credentials
(Step 4), enabling the user to present them to the decentralized application (Step 6). The application verifies identity
and processes the request (Step 7), leading to the issuance of a unique certificate ID (Step 8). This ID links to the
medical certificate stored in IPFS, from which the user retrieves the certificate (Steps 9 and 10). The system's
architecture, supported by a 5G communication interface, facilitates real-time interactions among its components,
ensuring a robust, secure, and efficient healthcare management solution.

6.3.1. Architecture and Workflow
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The proposed blockchain-based application is designed to operate within a distributed network that seamlessly
integrates blockchain technology with Internet of Things (IoT) devices to enhance healthcare management. The
blockchain network is at the heart of the system, which provides a secure and immutable ledger for managing
healthcare data.

User Registration and Verification is the first step in the process. Hospitals, patients, doctors, and IoT devices are
registered using a smart contract on the Ethereum blockchain. The hospital authority manages this registration, issuing
credentials to each entity. For hospitals and doctors, the registration involves sending a request through the user portal,
which the blockchain network verifies. Registration requests are also processed for patients, generating credentials
that allow them to access application services. IoT devices, such as smartwatches, are similarly registered by
transmitting a request containing device-specific details like Device ID. The blockchain verifies and stores these
credentials, associating each device with its user profile.

Integration of IoT Devices plays a critical role in the system. IoT devices collect real-time health data from users, such
as heart rate and activity levels. This data is securely transmitted to the blockchain network, where it is encrypted
using advanced techniques to ensure privacy. Each data point is assigned a unique identifier on the blockchain,
facilitating secure and immutable storage. This integration ensures that health metrics are recorded accurately and are
protected against tampering or unauthorized access.

When patients seek medical services, they submit a Service Request through the application. The hospital authority
then verifies the request and the patient’s data via the blockchain network, ensuring that all interactions are secure and
authenticated. Once verification is complete, the hospital can issue a medical certificate. The application processes
this certificate, which assigns a unique identification number and records it on the blockchain. This ensures the
certificate’s authenticity and provides a tamper-proof record that authorized parties can easily access. Certificate
Access is streamlined through the use of unique identifiers. Both users and hospitals can retrieve the generated medical
certificate using this unique ID. The blockchain’s distributed ledger ensures that access to this information is secure
and controlled, reducing the risk of unauthorized access or modifications.

The application integrates a hybrid consensus mechanism combining Proof of Work (PoW) and Practical Byzantine
Fault Tolerance (PBFT) to secure the network. The PoW component requires computational work to validate and
record transactions, enhancing data integrity and preventing unauthorized modifications. Simultaneously, PBFT
ensures consensus among network participants by providing robustness against faulty or malicious nodes, improving
overall system reliability and efficiency. This hybrid approach leverages the strengths of both algorithms to maintain
a secure, resilient, and efficient blockchain network.

The system features a Graphical User Interface (GUI) that facilitates interaction with the blockchain network. This
intuitive interface allows hospitals, patients, and doctors to quickly manage and access their data, enhancing user
experience and operational efficiency. Finally, the Distributed Ledger Management ensures that all healthcare data is
protected from unauthorized access. The blockchain supports secure operations such as data insertion, deletion, and
updates, maintaining the confidentiality and integrity of sensitive medical information. Figure 6.3 represents a
decentralized healthcare system using blockchain and [oT for secure medical certificate management. It includes key
components like IoT devices, consensus mechanisms, homomorphic encryption, IPFS, NIZKP, and IDS for secure
communication, certificate validation, and real-time threat detection.

By integrating blockchain technology with IoT devices, the application creates a robust, secure, and efficient system
for managing medical records and certificates. This innovative approach enhances healthcare data management's
accuracy, security, and transparency, addressing many challenges associated with traditional centralized systems.
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Figure 6.4: Workflow of a Blockchain-Based IoT Healthcare Application with Homomorphic Encryption, Zero-
Knowledge Proofs, and Intrusion Detection for Secure Medical Certificate Management

6.3.2. Integration of PoW and PBFT

The PoW consensus algorithm creates new blocks in the blockchain network, ensuring that blocks are added securely
and consistently. Each block contains a hash of the previous block, a timestamp, and transaction data. The goal is to
find a nonce n Such data that the hash of the block denoted as H, meets a specific target T:

H = hash(prevy,sn, timestamp, transaction, n)
H<T

Minor repeatedly changes the nonce n and recompute the hash until they find a valid one. Following are the steps in
the proposed model:

e Step 1: When a new medical certificate is generated, it forms a new term transaction.

e  Step 2: Miners in the blockchain network collect these transactions and form a new block.

e  Step 3: They compute the hash with different nonce values until they find a valid one that meets the target T.
o  Step 4: The first miner to find a valid nonce broadcasts the block to the network

e  Step 5: Other nodes verify the block and add it to their blockchain network.

The PBFT is used to enhance the security and speed of the consensus process, ensuring that the system can handle
high transaction volume. It contains five phases:

a) Phase 1: Initialization Phase

A client (e.g. a hospital) sends a request to the primary node (leader) to execute a service operation. This can be
represented as:

Request = (operation, Timestamp, Client ID)
Client - Primary : {Request}
b) Phase 2: Pre-prepare Phase

The primary note receives the client request and multicasts a pre-prepare Message to all replicas. The pre-prepared
message is denoted as:

{pre — prepare,V,n,d}
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Primary — Replicas : {pre — prepare,V,n,d}

Where V is the view number, N is the sequence number assigned to the request, and d is the digest (hash) of the request
completed as d= hash (request).

c¢) Phase 3: Prepare Phase
Each replica verifies the pre-prepared message. If valid the replica multicasts a prepare message to all other replicas.
{prepare,V,n,d, i}
V Replica i : {prepare,V,n,d, i}
Where i is the replica ID.

Each replica waits to receive 2f + 1 prepare message (including its own), where f is the maximum number of faulty
replicas the system can tolerate.

Wait for 2f + 1 prepare message
d) Phase 4: Commit Phase
Once a replica has received 2f + 1, prepare message, it multicasts a commit message as:

{Commit,V,n,d,i}
V Replica i : {Commit,V,n,d, i}

Each replica waits to receive 2f + 1 commit message (including its own).

Wait for 2f + 1 commit message
e) Phase 5: Reply Phase

When a replica has received 2f + 1 commit message, it executes the requested operations and sends a reply to the
client:

Reply = (Result, Timestamp, Client ID)
Replica — Client : (Reply)
Following are the steps in the proposed model:

e  Step 6: When a hospital requests to add a new medical certificate, the request is processed through the PBFT
consensus.

e Step 7: The primary node initiates the PBFT process.

e  Step 8: Replicas go through pre-prepare, and commit phases to agree on adding the new block.

o Step 9: The request is executed, and the result (new block) is added to the blockchain.

Considering a scenario where patient P requests a medical certificate from the hospital H. The PBFT consensus ensures
that this request is processed securely and efficiently. Patient P sends a request R to the primary node (hospital H):
P — H:R. Hospital H (primary node) assigns a sequence number and creates a pre-prepared message as:

d = hash(R)
Hospital H broadcasts the pre-prepared message to all replica nodes (other hospitals/doctors):
H — Replicas: (Pre — prepare,V,n,d)

Replica nodes verify the pre-prepared message and broadcast the prepared message:
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Replica — Replicas: (prepare,V,n,d, i)
The replica node counts the prepare message, and upon receiving f+1 prepares, they broadcast the commit message:
Replica — Replicas: (commit,V,n,d, i)

The replica node counts the commit message, upon receiving the 2f+1 commit, they execute the transactions and send
the result to the patient:

Replica = P: (Medical Certificate)

The proposed blockchain-based healthcare system can achieve higher security and faster transaction speeds by
enhancing the consensus mechanism. Figure 6.4 illustrates the workflow of the Practical Byzantine Fault Tolerance
(PBFT) mechanism, detailing the interaction phases between the client and nodes during transaction processing and
consensus. The algorithm 6.1 outlines a consensus process involving request, pre-prepare, prepare, commit, and reply
phases, ensuring transaction validity and execution across distributed nodes.

request : pre-prepare. preapre . commit reply
Client >
Node 0 : : ] : >
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Figure 6.5: Workflow of PBFT mechanism in the proposed framework at different phases

Algorithm 6.1: Working of Consensus Mechanism in the proposed application
Algorithm 6.1.1.: Request Phase
Input: Client request R
Output: Transaction initiation
1. Client sends request R to the primary node: Client — Primary : {Request}

Algorithm 6.1.2.: Pre-Prepare Phase
Input: Request R
Output: Pre-prepare message
1. Primary node assigns a sequence number n and creates a pre-prepare message:(Pre — prepare,V,n,d),
where I/ is the view number, and d is the digest of R: d = hash(R)
2. Primary node broadcasts the pre-prepare message to all replica nodes: Primary — Replicas: (Pre —
prepare,V,n,d)

Algorithm 6.1.3.: Prepare Phase
Input: Pre-prepare message (Pre — prepare,V,n,d)
Output: Prepare message
1. Replica nodes verify the pre-prepare message: if (Pre — prepare,V,n, d) is valid
2. Replica nodes create and broadcast prepare messages: (prepare,V,n, d, i), where i is the node identifier.
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3. Replica nodes send prepare messages to all other nodes: Replica — Replicas: (prepare,V,n,d, i)

Algorithm 6.1.4.: Commit Phase
Input: Prepare messages (prepare,V,n,d, i)
Output: Commit message
1. Replica nodes count the prepare messages. If f 4+ 1 prepares are received (where f is the maximum
number of faulty nodes), they create and broadcast commit messages: (commit,V,n,d, i)
2. Replica nodes send commit messages to all other nodes: Replica = Replicas: (commit,V,n,d, i)

Algorithm 6.1.5.: Reply Phase
Input: Commit messages (commit,V,n,d, i)
Output: Transaction execution and client reply
1. Replica nodes count the commit messages. If 2f + 1 commits are received, they execute the transaction:
execute(R)
2. Replica nodes send the result to the client: Replica — Client : (Reply(R))

6.3.3. Fully Homomorphic Encryption (FHE) for Data Privacy

Fully Homomorphic Encryption (FHE) is a powerful cryptographic method that enables computations on encrypted
data without decryption, supporting addition and multiplication operations. This capability makes FHE more suited to
complex medical scenarios than semi-homomorphic techniques like Paillier, which are limited to addition operations.
FHE protects sensitive medical data in the proposed healthcare blockchain architecture, allowing comprehensive
analyses and computations. This sub-section explains the utilization of fully homomorphic encryption and illustrates
an example of how FHE works in the proposed architecture.

a) Encryption and Decryption process in FHE:
In FHE, plain text m is encrypted into cipher text C using an encrypted function E:
C =E(m)

FHE allows both addition and multiplication operations on cipher texts, making it highly flexible for complex
computations:

e Addition: E(m,).E(my)mod n? = E(m; + m,)
e  Multiplication: E(m;)™ mod n? = E(m, * m,)

The decryption process using a decryption function D, retrieves the original plain text m from cipher text C:
m = D(C)
Example: Computation of Total Medical Expenses using FHE:

Consider a scenario where a hospital must calculate a patient’s total medical expenses while keeping individual
expenses confidential. With FHE, such computations can be carried out on encrypted data without compromising
privacy.

b) Key Generation:

e Two large prime number p = 31 and q = 37 are chosen.

e Computen =p+*q=31%37 =1147.

e Public and private keys are generated to support addition and multiplication operations on encrypted data
using X =lem (p —1,q — 1), g € Z}2,u = (L(g" mod n?)) *mod n, Where L(x) = XT_l
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¢) Encryption:
Two medical expenses, m; = 200 and m, = 150, are encrypted using random valuesr;, = 5andr, = 7.
C; = E(m)) = g™ *r mod n?

C, = E(m,) = g™ =} mod n?

d) Homomorphic Operations:
Using FHE, both addition and multiplication can be performed on the encrypted data without requiring decryption:
Coym = C1.C; mod n? = E(m; + my)
Coroduct = C™ mod n* = E(my * my)
e) Decryption:
After performing the operations, the ciphertext is decrypted using the private key to reveal the results:
Meym = D(Coym) = My + m, = 350
Mproduct = D(Cproduct) = my x m, = 30,000

This example illustrates the versatility of FHE, allowing for complex computations beyond basic addition, which is
crucial in scenarios that require secure financial calculations or statistical analysis of sensitive medical data. By
utilizing FHE, the proposed healthcare blockchain system facilitates privacy-preserving computations on encrypted
data, allowing advanced medical operations without revealing sensitive information. FHE enhances system security
by supporting secure computations, such as billing, patient statistics, and resource management, within a decentralized
architecture. This ensures that patient data remains confidential even in complex medical scenarios while enabling
more flexible computations than semi-homomorphic encryption methods can provide.
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Figure 6.5: Workflow of Homomorphic Encryption in the Proposed Framework

Implementing the FHE for data privacy in the healthcare blockchain system ensures the privacy of sensitive medical
information while enabling secure computation on encrypted data. This approach enhances security and maintains
patient confidentiality throughout the data processing phase, as shown in Figure 6.5. The above example demonstrates
how Homomorphic encryption is utilized in the proposed architecture, enabling secure and private computation.
Algorithm 6.2 describes a cryptographic system's key generation, encryption, decryption, and homomorphic addition,
enabling secure and privacy-preserving computations on encrypted data.

Algorithm 6.2.1.: Key Generation

Input: Two large prime numbers: p and g

Output: Public key (n, g) and a private key is (%, p).
1. Choose p and q

Compute n = pq

Compute A =lcm (p—1,q—1)

Select a random g € Z,

ok v

Compute u = (L(g" mod n?))"tmod n

Algorithm 6.2.2.: Encryption
Input: plaintext m, Public key (n, g).
Output: ciphertext C.

1. Choosearandomr € Zj.

2. Compute C_= g™.r" mod n?

Algorithm 6.2.3.: Decryption
Input: Ciphertext C, private key is (&, p).
Output: Plaintext m.
1. Compute Mgy, = L (CL,, mod n?).umod n

Algorithm 6.2.4.: Homomorphic Operation
Input: Ciphertexts C; and C,.
Output: Ciphertext Cgym, Cproguct

1. Compute Cqypy = Cy.C, mod n?

Algorithm 6.2: Homomorphic Encryption process in the proposed application
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2. Compute Cproguee = Ci"* mod n®

6.3.4. Non-interactive Zero-Knowledge Proofs (NIZKPs) for Medical Certificate Verification

Zero-knowledge proofs (ZKPs) are cryptographic protocols that allow one party (the prover) to prove the validity of
a statement to another party (the verifier) without revealing any underlying information. When verifying medical
certificates, ZKPs can confirm the certificate's authenticity without disclosing sensitive patient data.

In the previous interactive ZKP protocol, the prover and verifier had to be online simultaneously, exchanging messages
to complete the verification process. However, this is not practical for blockchain-based systems, as requiring multiple
parties to be online simultaneously is unrealistic. To address this, we adopt Non-Interactive Zero-Knowledge Proofs
(NIZKPs) using the Fiat-Shamir heuristic, eliminating the need for real-time interaction between the prover and
verifier.

The following steps describe the NIZKP-based verification of medical certificates in a blockchain-based decentralized
healthcare system:

Step 1: Certificate Issuance

The hospital (H) issues a medical certificate to a patient. This certificate contains encrypted patient data and a unique
identifier.

e Encrypted patient data: The patient's data P, is encrypted using the hospital's public key K| Hypup' E(P,) =

encrypt (Py, KHpub)

e  Generate Unique Identifier: A unique identifier U; D is generated for the medical certificate using a hash
function that combines the patient's data and the timestamp: U;D = hash (P, || timestamp)

e  Create the medical certificate: The medical certificate C is created, which contains the encrypted patient data,
unique identifier, and the hospital’s signature: C = {U,D, E(P,), sighature (E Py), KHpub)}

e  Store the certificate in the blockchain: The medical certificate C is stored immutably on the blockchain.
Step 2: Prover and Verifier Setup

In a non-interactive setup, the prover (hospital) generates proof that can be verified anytime without requiring real-
time communication with the verifier.

e  Public Parameters: The prover selects public parameters g and p, where g is a generator and p is a large
prime number.
e Statement and Secret: The prover (hospital) and verifier agree on a public statement S, which is based on a
secret s (known only to the prover):
S=g"modp

e  Generates Commitment: The prover generates a random value r and computes a commitment C:
C=g modp

Step 3: NIZKP Protocol

Instead of the verifier sending a challenge in an interactive protocol, the challenge is generated using a cryptographic
hash function, making the proof non-interactive.

e Generate the Challenge: The prover computes the challenge c¢ as a hash of the public statement S and

commitment C: C = hash(S, C)
e  Compute the response: The prover computes the response z: z =r + c.smod (p — 1)
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e  Store the proof on the blockchain: The prover stores the commitment C, the challenge c, and the response z
on the blockchain, allowing any verifier to verify the proof later without requiring the prover to be online.

Step 4: Proof Verification

The verifier (or any participant on the blockchain) can verify the authenticity of the medical certificate without
requiring real-time interaction with the prover. The verifier checks the following conditions:

g =C.S°modp
If the equation holds, the verification is booming, and the medical certificate is deemed authentic.

By integrating NIZKPs into the proposed blockchain-based decentralized application, we ensure privacy and
practicality in verifying medical certificates, as the verifier can simultaneously be offline as the prover. This adaptation
maintains the privacy-preserving nature of NIZKPs while making the system more suitable for decentralized
environments like blockchain. The algorithm 6.3 describes issuing a medical certificate using encryption, generating
and verifying non-interactive zero-knowledge proofs (NIZKPs) to ensure secure and verifiable certificate issuance
and validation.

Algorithm 6.3: NIZKP mechanism in the proposed model for medical
certificate verification
Algorithm 6.3.1.: Certificate Issuance

Input: Patient data P, Hospital's private key K| Hpup

Output: Medical certificate C, Certificate's unique identifier U; D
1. Encrypt patient data using the hospital's public key: E(P;) =

encrypt (Pd,KHpub)

2. Generate a unique identifier for the certificate: U;D =
hash (P || timestamp)

3. Create the certificate: C=

{UlD, E(P,), signature (E(Pd), KHpub)}
4. Store C in the blockchain and provide U; D to the patient.

Algorithm 6.3.2.: Prover and Verifier Setup

Input: Public parameters g, p Hospital's private key K Hopup

Output: Commitment C, Challenge c, Response z
5. The prover (hospital) and verifier agree on a public statement S
and secret s:
S=g"modp
6. The prover generates a random value r and computes the
commitment C:
C=g" modp

Algorithm 6.3.3.: NIZKP Protocol Execution
Input: Commitment C, Challenge c, Response z
Output: Verification result (true/false)
7. Commit Phase:
8. Prover computes the commitment C: C = g" mod p
9. The prover sends C to the verifier.
10. Challenge Phase:
o Verifier sends a random challenge ccc to the prover.
11. Response Phase:
o Prover computes the response z using the secret s and the
challenge c:
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z=r+c.smod(p—1)

o Prover sends z to the verifier.
12. Verification Phase:
o Verifier checks the validity of the response:
g =C.S°modp

o If the equation holds, the verifier accepts the proof;
otherwise, it rejects the proof.

a) Implementation of Non-Interactive Zero-Knowledge Proofs (NIZKPs)

To ensure the practical realization of the Non-Interactive Zero-Knowledge Proof (NIZKP) protocol in our proposed
blockchain-based decentralized healthcare system, we implemented the NIZKP protocol using a combination of smart
contracts and off-chain computation.

i) Smart Contract-Based Implementation

The verification process for medical certificates and the cryptographic proof generation were implemented using
Ethereum smart contracts. These smart contracts handle the interaction between the prover (hospital) and the verifier
(employers, regulatory bodies, etc.) while maintaining the privacy of patient data. Below is a brief description of the
smart contract structure and key functions:

e NIZKP Prover Contract: The NIZKP Prover Contract is responsible for generating and storing the medical
certificate along with its cryptographic commitment on the blockchain. The commitment is computed using
the unique identifier, encrypted medical data, and a digital signature. This ensures the integrity and
authenticity of the stored certificate.

// NIZKP Prover Contract
contract NIZKPProver {
struct Certificate {
bytes32 uniquelD;
bytes encryptedData;
bytes signature;
bytes32 commitment; / Commitment hash

}

mapping(address => Certificate) public certificates;

// Function to generate cryptographic commitment
function generateCommitment(bytes32 uniquelD, bytes memory _encryptedData, bytes
memory _signature)
internal pure returns (bytes32)
{
return keccak256(abi.encodePacked(_uniquelD, _encryptedData, _signature));

}

// Function to store medical certificate with commitment
function storeCertificate(bytes32 uniquelD, bytes memory _encryptedData, bytes
memory _signature) public {
bytes32 commitment = generateCommitment(_uniquelD, encryptedData, signature);
certificates[msg.sender] = Certificate(_uniquelD, encryptedData, _signature,
commitment);
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}

// Function to retrieve the stored certificate and commitment
function getCertificate(address user) public view returns (bytes32, bytes memory, bytes
memory, bytes32) {
Certificate memory cert = certificates[user];
return (cert.uniquelD, cert.encryptedData, cert.signature, cert.commitment);

}

H

e NIZKP Verifier Contract: This contract allows verifiers to check the certificate's authenticity using the
NIZKP protocol. The contract computes the proof and verifies the response without revealing the patient's
private data.

contract NIZKPVerifier {
uint256 public g;
uint256 public p;

constructor(uint256 g, uint256 p) {
g=_8
pP=_p;

}

// Function to verify the NIZKP proof on-chain
function verifyProof(uint256 z, uint256 C, uint256 S, uint256 ¢) public view returns (bool)

return g**z % p == C * S**¢ % p;

}

H

b) Off-Chain Computation

While storing the certificates and proof verification process is handled on-chain, the cryptographic computations (such
as generating the random values and challenge responses) are conducted off-chain. This hybrid approach ensures
scalability and efficiency by reducing the gas costs of heavy computations on the Ethereum network.

i) Off-Chain Challenge and Response Computation:

The challenge ¢ and response z are computed off-chain using a Python script, which interacts with the smart contract
to store and verify the commitment C and proof response z.

from web3 import Web3
import hashlib

def compute_challenge(S, C):
# Use SHA-256 hash function to generate a non-interactive challenge
challenge = hashlib.sha256((str(S) + str(C)).encode()).hexdigest()
return int(challenge, 16) # Convert the hash to an integer for further computation

def compute_response(r, c, s, p):
# Compute z=r+ ¢ * s (mod p-1)
return (r+c*s) % (p-1)

i. Prover (Hospital) Process:
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e The hospital encrypts the patient's medical data off-chain. It generates the cryptographic proof
(including the unique identifier, encrypted data, and signature) and stores it on-chain using the ZKP
Prover smart contract.

e  Off-chain computation is performed to generate the commitment C, the public statement S, and the
challenge-response pair (c,z), which are later verified on-chain.

ii. Verifier Process:

e  The verifier accesses the smart contract to retrieve the cryptographic proof.

e  The challenge c is generated off-chain, and the final proof z is computed off-chain. This challenge-
response pair is sent back to the smart contract to verify the authenticity of the medical certificate
using the NIZKP Verifier contract.

By implementing both on-chain and off-chain components, we ensure an efficient, secure, and practical system that
adheres to the privacy-preserving nature of ZKPs without overloading the blockchain with computational tasks. This
implementation, combining on-chain smart contracts and off-chain cryptographic computations, ensures that the
proposed NIZKP-based medical certificate verification solution is feasible and practical in real-world blockchain
environments.

6.3.5. Proposed Intrusion Detection System

To detect anomalies within the Internet of Medical Things (IoMT) environment, we propose utilizing machine learning
(ML) models to classify network traffic as normal or malicious. These models are trained and evaluated using the
WUSTL EHMS 2020 Dataset, which contains labeled instances of [oMT traffic, including normal traffic and various
attacks. The proposed models include Random Forest (RF), XGBoost, and Support Vector Machines (SVM). These
models are selected for their robustness in high-dimensional spaces and capacity to handle imbalanced data. Figure
6.6 presents the workflow of an Intrusion Detection System (IDS) applied to the WUSTL EHMS 2020 Dataset. It
shows steps from data pre-processing, feature extraction, model training, deployment, real-time monitoring, anomaly
detection, and alert generation to prediction.
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Figure 6.6: Workflow of Intrusion Detection System (IDS) Model on WUSTL EHMS 2020 Dataset for Anomaly
Detection and Prediction.

The Random Forest (RF) model was selected for its ability to handle high-dimensional datasets, such as [oMT traffic,
without overfitting. RF constructs multiple decision trees during the training phase and aggregates their outputs to
make the final classification. This method is particularly suited to large-scale [oMT environments, as it can effectively
handle numerous network-based features, including packet size, protocol types, and device metadata. The RF model
was tuned using grid search, optimizing hyperparameters such as the number of trees, the maximum depth of the trees,
and the minimum samples per split. XGBoost, a gradient-boosting algorithm, was also employed due to its capacity
for handling imbalanced datasets and its computational efficiency. XGBoost improves upon traditional decision tree
models by using an iterative process to minimize prediction errors, making it highly suitable for detecting a wide range
of attacks in IoMT traffic. By tuning hyperparameters such as the learning rate, maximum depth, and number of
estimators, XGBoost achieved the best performance among the models. Lastly, Support Vector Machines (SVM)
were implemented to classify network traffic using a hyperplane that maximizes the margin between normal and
malicious traffic. SVM is particularly effective in high-dimensional spaces, characteristic of [oMT data with multiple
network-based features. An RBF (Radial Basis Function) kernel was used to manage the non-linear nature of [oMT
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traffic, and the hyperparameters were tuned to optimize model performance. Table 6.1 shows the Hyperparameter
table of the proposed intrusion detection models.

Table 6.1: Hyperparameter Configurations for Proposed Intrusion Detection Models

Model Hyperparameter Values

Random Forest (RF) n_estimators 100
max_depth 20
min_samples split 2

XGBoost learning_rate 0.1
max_depth 15

n_estimators 150

subsample 0.8

colsample bytree 0.8
Support Vector Machine (SVM) C 1
gamma 0.1

kernel RBF

6.4. Security and Privacy Analysis of the Proposed Method

This section presents the formal security and privacy verification for the proposed framework.

6.4.1. Security Analysis

o Impersonation Attack: In our novel blockchain-based IoT healthcare application, we address impersonation
attacks by ensuring that an attacker cannot masquerade as a legitimate entity. The attacker must provide the
verifier with a temporary credential and Identification and a sensor MAC address to obtain a provisional key.
A timestamp is generated for the request of Identification, and the Verifier checks the existing credential
against its records and verifies. If the timestamp verification fails, the process is immediately terminated.
Zero-knowledge proof (ZKP) verification is conducted for identity creation, ensuring the framework is secure
from impersonation attacks.

o Insider Attack: The framework also protects against insider attacks. An insider attacker, even with
necessary credential information such as temporary credentials or identification and sensor MAC address,
cannot compute the actual identity due to the timestamp verification over the ZKP prover and challenge-
response protocols. This mechanism prevents insider attacks effectively.

e MITM and Replay Attack: To counter Man-in-the-Middle (MITM) and replay attacks, the proposed
framework ensures that an attacker who intercepts messages from an insecure channel cannot exploit this
information. The attacker must use brute-force techniques to compute the correct timestamp to execute these
attacks. However, the ZKP process used to verify the timestamp is computationally intensive and challenging
to predict accurately. Thus, the framework is safeguarded against MITM and replay attacks.

o Preservation of untraceability and Anonymity Properties: The system maintains untraceability and
anonymity by using freshly generated timestamps and random secret values in all communicated messages.
This ensures different messages in each session and prevents message tracing. Additionally, temporary
identities are used instead of real ones and updated in each session, preserving anonymity.

e  Mitigation of Synchronization Problems and Associated Attacks: Our model ensures synchronization by
exchanging messages containing timestamps and verifying updated values of temporary identities. This
mechanism prevents synchronization issues and associated attacks. All heterogeneous devices agree on a
maximum transmission delay to maintain synchronization.

e Prevention of Stolen Verifier Attacks: The system stores registration information in secure memory and
does not directly store sensitive information. This approach prevents adversaries from launching attacks such
as password guessing, impersonation, and unauthorized session key computation.
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6.4.2. Privacy Analysis

The proposed framework also includes robust privacy-preserving mechanisms. An attacker attempting to access or
modify information using short signature techniques from a secure channel will face significant challenges. Two major
approaches ensure privacy preservation:

e ZKP Verification for Identity Creation: The Identity is created based on the ZKP verification scheme
using the prover and verifier challenge-response protocols. The signature is verified during block creation in
the blockchain network, and the associated Identities are stored as a transaction hash. Modifying this
information is nearly impossible, as altering one block hash requires altering all subsequent blocks in the
chain.

e  Blockchain Integrity: Information is stored in blocks linked in a chain, making it resistant to tampering. The
integrity and immutability of blockchain technology ensure that modifying one block would necessitate
altering all subsequent blocks, thus preserving the privacy and integrity of medical data.

6.5. Experimental Setup and Result Analysis

This section discusses experimental setup, result analysis, and findings based on the experimental testing conducted
in the context of blockchain-based architectures in healthcare data management.

6.5.1. Experimental Setup

The proposed framework uses Ethereum, an open source blockchain network, to develop smart contracts supporting
all system functions. It enables users and patients to register, verify, and access healthcare certificates through smart
contract functionalities. We utilized the Ganache tool to set up the blockchain network, deploy smart contracts, and
execute performance evaluations on latency, processing time, throughput, and computation time. The framework's
portal, designed with React Native for compatibility with Ethereum, connects via Node.js. Solidity is used to develop
smart contracts, with Remix IDE for writing and deploying these contracts on the test network and transaction fees
managed through Ethers. Metamask, a browser plugin, and wallet, generated Ethereum addresses and facilitated
transactions. The experimental setup is deployed on a laptop featuring an Intel Core i5 10th Gen processor, §GB RAM,
512GB ROM, Windows 11 OS, and an NVIDIA GTX 1650 GDDR6 4GB graphics card, with TestRPC and SQL
installed to support the deployment.

6.5.2. Result Analysis

The Etherscan tool is utilized to evaluate the operational costs of our proposed blockchain-based application.
Etherscan, an analytics tool for exploring blocks in the blockchain network, functions as an Ethereum platform Gas
tracker. It tracks transactions, verifies the performance of smart contracts, and checks the process’s state. Transactions
on the Ethereum blockchain network require Gas, representing the cost needed to perform a function within the
network. Miners set the Gas price based on supply and demand, with the cost depending on the execution, deployment,
and transfer processes involved in transactions. Gas has two main parameters: limit and price, where the limit depends
on the user's willingness to execute a transaction and is presented as ‘gwei’.

Our proposed application deploys smart contracts on TestRPC and collects details of all executed tasks using the
Etherscan tool. Table 6.2 presents the operational costs evaluated by Etherscan. Etherscan provides detailed analytics,
tracking all transactions, analyzing Gas costs, evaluating smart contract efficiency, and validating transaction states.
The proposed application incurs Gas costs for executing each transaction on the Ethereum public blockchain network,
with Gas measuring the cost of executing operations in a transaction. Miners set the Gas price based on demand and
supply. Deploying smart contract functions and transactions on the proposed blockchain network requires significant
computational power. Table 6.2 presents a detailed analysis of the deployment costs for key smart contract functions
within our proposed blockchain framework. This table aims to elucidate each function's gas consumption, transaction
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fees, and overall efficiency, providing insights into the resource demands and economic implications of executing
these smart contracts.

Table 6.3 includes four main functions: Registration, Block Generation, Issuing Certificates, and Verifying
Certificates. Each function gas usage is listed in Gwei, a measure of computational effort required by the Ethereum
Virtual Machine (EVM). For example, the Registration function consumes 34,219 Gwei, reflecting the substantial
resources needed for initial setup and data storage. In comparison, Block Generation uses 37,127 Gwei, the highest
among the functions due to the complex process of creating a new block. Issuing Certificates and Verifying
Certificates use 29,120 Gwei and 37,100 Gwei, respectively, indicating the computational demands associated with
certificate management and verification.

Transaction fees, calculated from the gas used and gas price, provide a clear picture of the economic cost of executing
each function. The Registration function incurs a fee of 0.000036 ETH, which is relatively low, highlighting the
efficient cost of initial data registration. With its higher complexity, block generation results in the highest fee of
0.000048 ETH. Issuing Certificates has a lower fee of 0.000028 ETH, while Verifying Certificates costs 0.000040
ETH, placing it between the issuance and generation costs. The average gas price for each function is also included,
showing variations in transaction costs based on network conditions. The Registration function has an average gas
price of 15 Gwei, while Block Generation has a higher price of 20 Gwei, reflecting increased competition and resource
demands. Issuing certificates have an average price of 12 Gwei, and verifying certificates at 18 Gwei indicates
different levels of cost efficiency.

Table 6.3 also provides details such as transaction hash, block size, transaction nonce, and transaction index. The
transaction hash ensures traceability, allowing for verification of transaction details on the blockchain. Block size
varies across functions, with Registration producing a larger block size of 9,523 bytes, while Block Generation results
in a smaller block size of479. This variation reflects the data processing requirements of each function. The transaction
nonce and index provide information on transaction ordering and sequencing within the block, which is crucial for
understanding transaction processing and potential conflicts. Efficiency ratios, calculated as gas usage per transaction,
offer insights into the cost-effectiveness of each function. The Registration function has an efficiency ratio of 1.5,
Block Generation is 1.8, Issuing Certificates is 1.2, and Verifying Certificates is 1.6. These ratios illustrate the relative
gas efficiency of each function, with Issuing Certificates demonstrating the highest efficiency.

In summary, Table 6.3 offers a comprehensive view of our blockchain system's gas and transaction fees associated
with smart contract functions. By presenting detailed metrics and efficiency ratios, the table supports an in-depth
analysis of smart contract deployment's economic and resource implications, contributing to the overall evaluation of
the proposed system's performance and cost-effectiveness.

Table 6.2: Comprehensive Breakdown of Deployment Costs for Smart Contracts

Function Amount | Transac Transaction hash Block Transacti | Transacti | Average | Efficiency | Average Std.
of Gas tion Fee size in on Nonce on index Gas Price Ratio Transacti | Deviation
used Gas bytes (Gwei) (Gas/Tx) on Transacti
Price (ETH) on Fee
(ETH)
Registration 34219 0.000036 | 0xe71c1f75615dff900d818bece81399 9523 4 5 1.5 15 0.000038 0.000004
0 (96.24%) bee2dc4c41f21cb446ab642cf359ddae
59
Generation of 37127 0.000048 | Ox3adee67dee564457fc404efabbas5tlb 479 7 4 1.8 20 0.000045 0.000005
block () (99.72%) Ocdd43blcae9966af5edadfaas55f350ed
Issuing_Certi 29120 0.000028 | 0Ox6c48deabfceSc2dc2caf8cadce8dact 8896 4 7 1.2 12 0.000030 0.000003
ficate () (94.79%) 9daSae6d5e70bf0511dceac5ta0f9196¢
Verifying Ce 37100 0.000040 | Oxebbd766ce75aceb2e3ec64581ecc06 523 7 2 1.6 18 0.000042 0.000004
rtificate () bf19e49bdaf60ct8cfdc8ca93f9dbb85b
e
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The expanded Table 6.4 offers a comprehensive view of deployment costs, incorporating additional parameters to
address scalability, gas price fluctuations, and environmental impact. Including maximum and minimum gas prices
provides a range of potential costs for each function, reflecting the variability in transaction fees due to network
congestion and market demand. For instance, the Block Generation function shows a maximum gas price of 25 Gwei
and a minimum of 15 Gwei, illustrating the potential for fee variability. This helps in understanding how fluctuations
in gas prices can affect the overall cost of deploying and executing smart contracts.

The estimated cost per user and scalability factor provides insights into how costs and resource usage scale with
increased transaction volume or user base. The scalability factor, for example, indicates that the Block Generation
function might experience a 50% increase in costs as the transaction volume doubles. This parameter helps assess how
well the system can handle growth and informs potential scaling strategies. The environmental impact column
estimates the carbon footprint per transaction, reflecting the broader implications of smart contract deployment on
sustainability. For example, the Block Generation function has an estimated environmental impact of 0.015 CO2 per
transaction. This parameter highlights the need for environmentally conscious design choices and supports discussions
on the ecological effects of blockchain technology.

Table 6.3 provides a more detailed and nuanced analysis of deployment costs, incorporating essential factors such as
gas price fluctuations, scalability, and environmental impact. This comprehensive approach offers valuable insights
into the economic and ecological implications of smart contract deployment, enhancing the overall evaluation of the
proposed blockchain system.

Table 6.3: Comprehensive Analysis of Deployment Costs: Gas Price Variability, Scalability, and Environmental
Impact per Function

Function Estimated Cost per Scalability Factor Environmental
User Impact (CO2/Tx)
Registration () 0.000036 1.2 0.012
Generation of block () 0.000048 1.5 0.015
Issuing_Certificate () 0.000028 1.1 0.010
Verifying_Certificate 0.000040 1.4 0.014
0

The smart contracts in our proposed application are deployed on the TestRPC network with localhost 8545 and the
Ropsten network. The Etherscan tool collects transaction details, and Table 6.4 also shows the total Gas cost involved
in generating medical certificates, calculated by adding the transaction costs.

Table 6.4: Detailed Gas Costs for Varying Certificate Values

Number of Certificates Gas Limit Gas Limit (ETH)
1 19543 123200
10 170219 1147622
20 374430 2531218
30 654860 2250439
40 782290 4987682
50 926720 3741129
100 1017271 11291749
120 2321416 13721123

Table 6.5 compares the operational costs on TestRPC-based Ethereum blockchain and Remix platforms, considering
functions like Registration (), Generation of block (), Issuing_Certificate (), and Verifying Certificate ().
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Table 6.5: Operational Cost Analysis of the Proposed System Across Different Functions

Caller Functions Test RPC Gas Cost Remix Gas Cost
Healthcare Management Registration () 0.000398 0.000643
Healthcare Management Generation of block 0.000472 0.000732
Q
Healthcare Management Issuing Certificate () 0.000718 0.000737
Healthcare Verifying_Certificate 0.000293 0.000268
Management/Users(admins) 0

The application analyzes Gas cost consumption for around 120 medical certificates deployed on the Remix Ethereum
blockchain network and Test RPC network using the Metamask wallet, as shown in Table 6.6. Figure 6.7 shows that
Gas costs increase with the number of medical certificates due to more transactions and blocks in the blockchain
network. The test RPC platform, a Node.js-based Ethereum platform for testing and development, requires more Gas
than the Ethereum platform because it first generates events as a remote procedural call before initiating transactions.

Table 6.6: Comparative Gas Costs for Medical Certificates Across Different Platforms

Number of Medical GAS COST
Certificates Gas Cost (Remix) Gas Cost (Test RPC)
103 10°
10 1.7 2.09
20 2.14 2.54
30 2.23 2.98
40 2.31 3.17
50 2.34 3.39
60 2.39 3.63
70 247 391
80 2.58 4.42
90 2.64 4.79
100 2.75 5.13
110 2.83 5.51
120 291 5.84
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Figure 6.7: Gas Costs Across Different Platforms for Medical Certificate Transactions

Figure 6.8 depicts the overall operational costs on the Ethereum platform using Remix IDE and Ropsten network with
localhost 8545 web. The total ether cost increases with the number of medical certificates, as generating more
certificates requires more time for transaction completion.
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Figure 6.8: Total Ether Consumption for Generating Medical Certificates

Table 6.7 presents the transaction and execution costs for the smart contract functions in the proposed application.
Transaction costs represent the cost to generate a transaction per the user’s request. In contrast, execution costs signify
the total cost to generate and append a block to the existing blockchain. Each block contains multiple transactions

initiated by different users.

Table 6.7: Cost Estimation of Smart Contract Functions Based on Consensus Mechanism

Consensus Mechanism Function GAS
Transaction Cost Execution Cost
Registration () 1732986 1454321
Generation of block () 732457 621104
Issuing_Certificate () 954319 83897
Verifying Certificate () 87632 82174

Table 6.8 shows the proposed application’s performance based on latency and processing time. Results indicate higher
time consumption for blockchain-deployed systems than non-blockchain systems due to internal computations like
mining, cryptographic hash evaluation, transaction, block creation, and adding new blocks.

Table 6.8: Latency and Processing Time Comparison of Proposed Application with and Without Ethereum

Blockchain
Blockchain Platform Parameters Issuing Certificate () Verifying Certificate ()
Operation Operation

Yes Latency time (seconds) 4.32 6.19

No Processing time 5.17 9.72
(seconds)

Yes Latency time (seconds) 3.97 3.03

No Processing time 4.37 7.21
(seconds)

Figures 6.9(a) and 6.9(b) compare the performance of the blockchain-based system to a non-blockchain SQL platform,
focusing on latency and processing time for two key operations: Issuing Certificate() and Verifying Certificate().
Latency measures the delay from initiating a transaction to when it is appended as a block on the blockchain. As
shown in Figure 6.9(a), the Ethereum-based system has a higher latency (7.12 ms) for certificate verification compared
to SQL (2.63 ms). This is expected due to the consensus mechanism in Ethereum, which requires miners to validate
and append transactions. In contrast, SQL does not require such validation, leading to lower latency.
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Processing Time (Figure 6.9b) refers to the total time from transaction request submission to receiving a response.
Ethereum again shows higher processing times, with 9.72 ms for Verifying_Certificate() compared to SQL 6.41 ms.
The added time in Ethereum is primarily due to block creation, consensus verification, and the validation of blockchain
header parameters. On the other hand, SQL databases process transactions directly without this overhead.

Figure 6.9(c) presents Throughput comparisons. The Ethereum-based system shows better throughput for
Issuing_Certificate() (6.38 Kbps) compared to SQL (5.38 Kbps). This reflects the blockchain's ability to concurrently
handle multiple certificate generation requests across nodes. However, for Verifying_ Certificate(), SQL shows higher
throughput (10.57 Kbps) due to its more straightforward structure and lack of blockchain validation steps.

In Figure 6.9(d), Computation Time is analyzed for 500 transaction simulations. The results show that Ethereum's
Issuing_Certificate() takes 83 ms, while SQL takes 87 ms. For Verifying Certificate(), Ethereum takes 89 ms
compared to SQL 93 ms. Although SQL is generally faster in latency and processing, Ethereum-optimized block
handling and reduced database locking during verification give it an advantage in computation time, particularly for
larger transaction volumes.
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Figure 6.9: Comprehensive Performance Comparison of Throughput, Processing Speed, Latency, and Consumption
Time Between Ethereum and SQL-Based Models

Table 6.9 summarizes the proposed application's latency, throughput, computation, and processing times. The table
6.9 summarizes performance metrics, confirming that Ethereum performs better for issuing certificates due to its
distributed architecture despite higher latency and processing times. SQL performs better for certificate verification,
but as transactions scale up, Ethereum's distributed nature can handle higher transaction volumes more efficiently,
particularly in computation and throughput.

Table 6.9: Comparative Analysis of Throughput, Processing, Latency, and Consumption Time for the Proposed
Model Utilizing Ethereum and SQL Platforms

Parameters Issuing Certificate () Verifying Certificate ()
Ethereum SQL Ethereum SQL
Latency Time (milliseconds) 5.32 3.72 7.12 2.63
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Processing Time (milliseconds) 6.37 4.87 9.72 6.41
Throughput (Kbps) 6.38 5.38 8.54 10.57
Computation Time (milliseconds) 83 87 89 93

The security and privacy evaluation of the proposed blockchain architecture involved assessing various performance
metrics under different conditions. Each metric was analyzed to understand the impact of increasing the number of
IoT nodes and transactions on the system's performance, as shown in Figure 6.10.

350 1600
=20 nodes ™40nodes =60 nodes 80 nodes ™ 100 nodes
300 1400
z z
] 2 1200
g 250 ]
< S
» S 1000
& 200 g
&€ -
& £ so00
E 150 g
H £ 600
8 S
g 100 g
g 5 400
=
59 200
o 4
‘I] 30 40 50 60 70 80 90 100 110 E 100 150 200 250 300 350
Nodes (No. of Transaction (Tx)) No. of Transaction (Tx)
1600 1600
1400 ®20nodes =40 nodes ¥ 60 nodes 80 nodes ™ 100 nodes 1400 =20 nodes =40nodes ™60 nodes 80nodes ™ 100 nodes
P —_
21200 2
g e
S S
£ 1000 3
ot o
g
E 800 g
g g
£ 600 g
€ g
< =
a 400 =
200
4
100 150 200 250 300 350 I_d_—] 100 150 200 250 300 350
No. of Transaction (Tx) No. of Transaction (Tx)
80000 1200
N e e\ o =20nodes ®40nodes =60Onodes ~80modes =100 nodes
70000
1000
- —
€60000 2
g S s00
& 50000 é
@
Emooo & oo0
g g
£30000 £
< < 400
& 1
azmmn E
200
10000
e 100 150 200 250 300 350 f 100 150 200 50 300 350
No. of Transaction (Tx) No. of Transaction (Tx)
1200 45
m20nodes =40nodes = 60nodes 80 nodes ™ 100 nodes 40
1000
2 35
£
g s00 E 30
@
by 25
E 600 é
=) 20
= S
s
g £
£ 400 £
g
a 104
200 5
0 4
[g | 100 150 200 250 300 350 m 1350 200 230 300 530 400
No. of Transaction (Tx) No. of Transaction (Tx)

Figure 6.10:(a): Comparative Assessment of loT Node Registration Time Within a Blockchain Network. (b):
Performance Benchmarking of Hybrid POW and PBFT Consensus Algorithms Across Diverse Transaction Loads.
(c): Comprehensive Analysis of Block Creation Time Across Varied Transaction Volumes and Node Configurations.
(d): Evaluation of Block Access Time Relative to Transaction Sizes and Node Configurations. (e): In-depth analysis
of Gas Price Consumption for Varying Transaction Sizes on the Ethereum Blockchain. (f): Detailed Execution Time
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Analysis of Transaction Signing for Non-Repudiation Across Different Node Configurations. (g): Smart Contract
Deployment Time Analysis Across Different Transaction Sizes and Node Configurations. (h): Evaluation of IPFS-
Based Off-Chain Storage Utilization for Various Transaction Sizes.

The registration time of IoT nodes in the proposed blockchain architecture was measured to determine how the system
scales with increasing nodes. Table 6.10 presents the registration times for different numbers of IoT nodes. As the
table shows, the registration time increases progressively with the number of nodes. For instance, registering 20 nodes
takes 25 seconds, while registering 100 nodes takes 308 seconds. This increase in time suggests that the system's
registration process becomes more time-consuming as more nodes are added, highlighting a scalability challenge.

Table 6.10: Evaluation of Registration Time for IoT Nodes in the Blockchain Network

Execution Time (in Seconds) Nodes (No. of Transaction (Tx))
25 20
43 40
119 60
214 80
308 100

The hybrid Proof-of-Work (POW) and Practical Byzantine Fault Tolerance (PBFT) consensus algorithm is evaluated
for its execution time with varying transaction sizes and node numbers. Table 6.11 shows that as the number of
transactions and nodes increases, the time required for consensus also rises. For example, with 100 nodes and 350
transactions, the execution time is 1436 seconds, compared to just 18 seconds with 20 nodes and 100 transactions.
This trend indicates that the consensus process becomes more resource-intensive and time-consuming as the network
grows, potentially affecting the overall performance and responsiveness of the blockchain.

Table 6.11: Performance Analysis of Hybrid POW and PBFT Consensus Algorithm Across Different Transaction

Sizes
No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 18 414 103 210 297
150 56 68.8 171.92 443 415.8
200 94 103 290.8 714 846.6
250 136 147 371.4 927 1074.3
300 174 186 524 1141 1243
350 198 212 573 1373 1436

Block creation and access times were analyzed to understand the time required for these operations as the network
scales. Tables 6.12 and 6.13 illustrate these times for various transaction sizes and node numbers. The data reveals
that the times remain relatively stable, up to 40 nodes and 300 transactions. However, when the number of nodes
increases from 60 to 100, there is a significant rise in both block creation and access times. For example, with 100
nodes and 350 transactions, block creation and access times are 1433 seconds and 1433 seconds, respectively,
compared to 17 seconds for 20 nodes and 100 transactions. This increase in time reflects the additional computational
and storage overhead required to manage large networks.

Table 6.12: Analysis of Block Creation Time for Various Transaction Sizes and Node Configurations

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 17 39 101 208 295
150 54 66 169 440 413
200 92 100 287 710 842
250 133 144 369 925 1073
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Table 6.13: Evaluation of Block Access Time for Different Transaction Sizes and Node Configurations

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 17 39 101 208 295
150 54 66 169 440 413
200 92 100 287 710 842
250 133 144 369 925 1073
300 170 183 521 1139 1240
350 194 210 570 1370 1433

The gas price consumption for smart contract access and deployment is also evaluated. Table 6.14 shows that gas
prices increase steadily with the number of IoT nodes and transactions. This suggests that more computational
resources are required as the network grows, leading to higher operational costs. For instance, with 100 nodes and 350
transactions, the gas price is 74,510, compared to 20,000 for 20 nodes and 100 transactions. This increase indicates
the additional cost burden on the system as it scales.

Table 6.14: Evaluation of Gas Price Consumption Across Different Transaction Sizes on the Ethereum Blockchain

Network
No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 20000 25000 18000 35000 40010
150 20150 26000 20000 37000 42000
200 22000 37000 45000 48000 49010
250 23500 44000 49500 64300 66000
300 43700 52000 55000 69000 72000
350 52000 57000 59000 72100 74510

The signing time taken by participating IoT nodes was calculated to ensure non-repudiation within the blockchain
architecture. Table 6.15 shows that signing times increase with the number of nodes and transactions. For example,
with 100 nodes and 350 transactions, the signing time is 1,109 seconds, compared to 43 seconds for 20 nodes and 100
transactions. This increase reflects the additional computational effort required to process large numbers of nodes and
transactions.

Table 6.15: Execution Time Analysis of Transaction Signing for Non-Repudiation Across Different Node

Configurations
No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 43 47 169 297 350
150 52 56 325 415 483
200 60 64 418 593 629
250 94 99 520 703 757
300 113 117 690 811 892
350 137 143 743 1032 1109

The deployment time for the proposed smart contracts was evaluated, with the results shown in Table 6.16. The data
indicates that deployment time increases significantly with the number of nodes and transactions. For example, with
100 nodes and 350 transactions, the deployment time is 1,109 seconds, compared to 43 seconds for 20 nodes and 100
transactions. This increase highlights the additional time required to deploy smart contracts as the network grows.
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Table 6.16: Analysis of Smart Contract Deployment Time for Varying Transaction Sizes and Node Configurations

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx)
100 43 47 169 297 350
150 52 56 325 415 483
200 60 64 418 593 629
250 94 99 520 703 757
300 113 117 690 811 892
350 137 143 743 1032 1109

The storage size required for storing transaction data in IPFS-based off-chain storage was also analyzed. Table 6.17
shows that the storage size in kilobytes (KB) increases with the transaction size. For example, with 350 transactions,
the storage size is 39 KB, compared to 9 KB for 100 transactions. This increase in storage size reflects the growing
data requirements as the number of transactions increases.

Table 6.17: Assessment of IPFS-Based Off-Chain Storage Utilization for Various Transaction Sizes

No. of Transaction (Tx) Storage Size in KB
100 9
150 17
200 24
250 29
300 34
350 39

In summary, the proposed blockchain architecture demonstrates an increase in registration, consensus, block creation,
access, and smart contract deployment times as the number of nodes and transactions increases. Additionally, gas
price consumption and storage requirements rise with network growth. These findings highlight the scalability
challenges and resource demands of maintaining security and privacy in a growing loT environment.

6.6. Statistical Analysis of Security and Data Privacy

This section comprehensively evaluates the proposed system security and privacy mechanisms, including
cryptographic techniques, consensus algorithm robustness, and data protection measures, ensuring resilience against
various attacks and safeguarding sensitive [oT data.

6.6.1. Threat Model

The system is designed to resist several critical security threats, including:
e  Man-in-the-Middle (MITM) attacks: Encryption techniques protect sensitive IoT data during transmission.
e  Sybil attacks: The hybrid PoW-PBFT consensus algorithm requires substantial computational resources,
making it challenging for adversaries to introduce numerous fake nodes.
e Double-spending and tampering: Blockchain immutability ensures that transactions, once recorded, cannot
be altered.

6.6.2. Security Mechanism and Metrics
This section evaluated key cryptographic and consensus mechanisms using dummy data. Each metric was measured
under different transaction loads and network sizes. The security evaluation focuses on homomorphic encryption,

zero-knowledge proofs (ZKPs), and resistance to Sybil and 51% attacks.

6.6.3. Result Analysis of Proposed Intrusion Detection System
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The performance of the proposed Intrusion Detection System (IDS) was evaluated using three machine learning
models, Random Forest (RF), XGBoost, and Support Vector Machines (SVM), on the WUSTL EHMS 2020 Dataset
for IoMT Cybersecurity Research. Each model was assessed based on key performance metrics, including accuracy,
precision, recall, F1-score, false positive rate (FPR), true positive rate (TPR), and the area under the ROC curve
(AUC). The results provide insight into the effectiveness of each model in detecting anomalies in [oMT traffic within
the blockchain-based healthcare framework, as shown in Table 6.18.

Table 6.18: Performance Metrics Comparison of Intrusion Detection Models

Model Accuracy | Precision | Recall | F1 Score False True AUC-
Positive Positive ROC
Rate Rate Curve
Random Forest (RF) 974 97.1 96.5 96.8 2.6 96.5 0.97
XGBoost 98.1 98.0 97.6 97.8 1.9 97.6 0.98
Support Vector Machines 96.4 96.4 96.1 96.3 33 96.1 0.96
(SVM)

Random Forest (RF) demonstrated strong performance, achieving an accuracy of 97.4%. This high accuracy indicates
the model's ability to distinguish between normal and malicious traffic effectively. The precision (97.1%) and recall
(96.5%) metrics suggest that the model excels at correctly identifying malicious traffic (true positives) while
minimizing the number of false positives. The F1-score of 96.8% further confirms the model balanced performance
between precision and recall. The low false positive rate (2.6%) and high true positive rate (96.5%) indicate that the
Random Forest model is well-suited for real-time anomaly detection in the healthcare [oMT environment. Its AUC
score of 0.97 reflects strong discriminatory power in identifying attacks.

XGBoost outperformed the Random Forest model across all evaluation metrics, achieving an accuracy of 98.1%, the
highest among the three models. XGBoost precision (98.0%) and recall (97.6%) demonstrate its ability to effectively
handle the diverse types of traffic in [oMT networks, including normal and attack instances. The model's F1 score of
97.8% highlights its superior performance in terms of precision-recall balance. A false positive rate of 1.9% and a true
positive rate of 97.6% further emphasize XGBoost robustness in detecting intrusion attempts. The AUC score of 0.98
illustrates that XGBoost has excellent predictive power, making it the most suitable model for intrusion detection in
the proposed system.

Support Vector Machines (SVM) also performed well, though slightly lower than the other two models. With an
accuracy of 96.7%, SVM effectively differentiates between normal and attack traffic. The precision (96.4%) and recall
(96.1%) indicate that SVM maintains a good balance between identifying true positives and avoiding false positives.
The Fl-score of 96.3% suggests that while SVM may not be as effective as RF or XGBoost in some instances, it
remains a reliable option for intrusion detection. The false positive rate of 3.3% and true positive rate of 96.1% reflect
SVM's tendency to occasionally misclassify normal traffic as malicious, though it still offers strong overall
performance. With an AUC score of 0.96, SVM maintains solid classification power in the context of [oMT traffic.

In summary, all three models, RF, XGBoost, and SVM, performed well in the intrusion detection task. However,
XGBoost emerged as the top performer, achieving the highest accuracy, precision, recall, and AUC scores. Its ability
to handle imbalanced data and complex traffic patterns in IoMT systems makes it the most suitable model for the
proposed IDS. Due to its ensemble learning capabilities, Random Forest also showed robust performance and is a
viable alternative for large-scale IoMT applications. While SVM provided slightly lower metrics, it remains a
competitive choice, particularly in scenarios where clear class separation is essential. Overall, the results confirm that
integrating machine learning models into the IDS layer of the blockchain-based healthcare framework significantly
enhances the detection of security breaches, ensuring the protection of sensitive medical data.
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6.6.4. Efficiency and Overhead Analysis of Fully Homomorphic Encryption (FHE) in Healthcare Systems

This sub-section analyzes the computational overhead of Fully Homomorphic Encryption (FHE) within a blockchain-
based healthcare system. FHE enables secure computations on encrypted data, ensuring patient privacy is maintained.
Table 6.19 summarizes the performance comparison between FHE and Paillier encryption, indicating that FHE is
more secure but incurs a higher computational cost. The evaluation using dummy medical expenses shows that the
total overhead for FHE operations, including encryption, homomorphic operations (addition and multiplication), and
decryption, is 67 milliseconds(ms). Specifically, encryption took 29 ms, while the homomorphic operations added 16
ms, and decryption required 22 ms. These times reflect the complexity of FHE, which performs operations on
encrypted data without exposing sensitive information. Although the total computational time may seem high
compared to non-encrypted operations, the privacy and security benefits make this overhead acceptable in privacy-
critical environments like healthcare.

Table 6.19: Comparative Performance Analysis of Fully Homomorphic Encryption (FHE) and Paillier Encryption

Operations FHE Time (ms) Paillier Time (ms)
Encryption 29 10
Homomorphic Addition 7 6
Homomorphic Multiplication 9 Not Supported
Decryption 22 9
Total Overhead 67 ms 25 ms

In comparison, the Paillier semi-homomorphic encryption scheme was evaluated, which supports only addition
operations. The Paillier scheme exhibited a lower overall overhead of 25 milliseconds, with 10 ms for encryption, 6
ms for homomorphic addition, and 9 ms for decryption. However, the limited capability of Paillier to handle only
addition makes it inadequate for more complex medical computations, such as multiplication, often required in
healthcare scenarios.

The results highlight a tradeoff between performance and functionality. While introducing a higher computational
cost, FHE provides the flexibility to perform addition and multiplication on encrypted data, making it a more suitable
solution for secure, privacy-preserving computations in healthcare applications. In contrast, Paillier's lower overhead
makes it faster but limits its use to more straightforward scenarios. Ultimately, the choice between FHE and Paillier
depends on the required balance between computational efficiency and the complexity of operations needed.

6.6.5. Cryptographic Strength Evaluation

The encryption strength was analyzed by evaluating the system’s resistance to known cryptographic attacks. We tested
the system’s homomorphic encryption by measuring computational overhead and encryption time for varying
transaction sizes and node configurations. As seen in Table 6.20, the overhead associated with homomorphic
encryption increased with the number of nodes and transactions. For example, with 20 nodes and 100 transactions,
the encryption overhead was only 5 milliseconds, while for 100 nodes and 350 transactions, the overhead increased
to 120 milliseconds. This shows a linear increase in computational time as the system scales, demonstrating the
cryptographic robustness. The results show that encryption overhead remains manageable even as the number of nodes
and transactions increases, ensuring that the system can securely process loT data without significant performance
degradation.

Table 6.20: Homomorphic Encryption Overhead Based on Transaction Load and Node Count

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx) (ms) (ms) (ms) (ms) (ms)
100 5 9 14 20 32
150 8 13 19 26 42
200 12 18 27 35 55
250 16 22 32 41 68
300 21 27 38 49 83
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6.6.6. Non-Interactive Zero-Knowledge Proofs (NIZKP) Privacy Evaluation

To evaluate the performance of the Non-Interactive Zero-Knowledge Proof (NIZKP) scheme within the blockchain-
based healthcare framework, a comprehensive statistical analysis was conducted. The key focus areas of the analysis
were gas consumption, latency, and privacy validation, all of which are crucial to determining the system’s feasibility
and efficiency in a real-world blockchain environment.

Table 6.21 shows the gas consumption and corresponding transaction fees for various NIZKP operations in the
blockchain environment. Smart contract deployment, a one-time cost, required the highest gas consumption
(2,350,000 Gwei), translating into a transaction fee of 0.021 ETH. Certificate issuance, which represents the process
of generating and issuing a medical certificate on the blockchain, consumed 150,000 Gwei with a nominal transaction
fee of 0.00135 ETH. Similarly, proof generation and proof verification required 80,000 Gwei (0.00072 ETH) and
110,000 Gwei (0.001 ETH), respectively, indicating efficient gas usage for the ongoing operations. This analysis
demonstrates that after the initial deployment cost, the system operates with minimal gas consumption, making it
feasible and cost-effective for large-scale healthcare applications.

Table 6.21: Gas Consumption and Transaction Fees for NIZKP Operations in Blockchain-Based Healthcare System

Action Gas Computation (Gwei) Transaction Fee (ETH)
Smart Contract Deployment 2,350,000 0.021
Certificate Issuance 150,000 0.00135
Proof Generation 80,000 0.00072
Prof Verification 110,000 0.001

Table 6.22 presents the average latency experienced during certificate issuance, proof generation, and proof
verification. Certificate issuance recorded the highest latency at 1200 milliseconds (ms), reflecting the time required
to execute an on-chain transaction. Proof generation, performed off-chain, had a low latency of 350 ms, highlighting
the efficiency of off-chain computations in the NIZKP framework. Proof verification, an on-chain process, was also
efficient, with an average latency of 500 ms. The low latency values for proof generation and verification indicate that
the NIZKP-based system can meet the real-time demands of healthcare environments, where rapid validation of
medical certificates is crucial.

Table 6.22: Latency Analysis of Certificate Issuance and NIZKP Verification in Real-Time Blockchain Environment

Operation Average Latency (ms)
Certificate Issuance 1200
Proof Generation 350
Proof Verification 500

Table 6.23 summarizes the privacy validation results, confirming the system’s secure handling of sensitive medical
data. The experiments showed that 100% of the verifications were successful, with no privacy breaches detected. This
reinforces the effectiveness of the NIZKP approach in ensuring that patient data remains private during certificate
verification. By using cryptographic proofs without revealing sensitive information, the system guarantees high data

privacy, addressing one of the core challenges in healthcare data management.

Table 6.23: Privacy Validation Results for NIZKP-Based Medical Certificate Verification

Metrics Percentage (%)
Successful Verification 100%
Privacy Breaches Detected 0%
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NIZKPs were analyzed to determine their effect on privacy during transaction verification. We evaluated the NIZKP
verification time under different node and transaction loads. As seen in Table 6.24, the verification time for NIZKPs
increased with the number of transactions and nodes but remained within acceptable limits. The verification time for
20 nodes and 100 transactions was 3 milliseconds, while for 100 nodes and 350 transactions, it increased to 55
milliseconds. The NIZKP verification time remains low enough to maintain privacy without significantly affecting
system performance, even with increasing transaction loads and node counts.

Table 6.24: Non-Interactive Zero-Knowledge Proof (NIZKP) Verification Time Across Different Node and
Transaction Configurations

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx) (ms) (ms) (ms) (ms) (ms)
100 3 5 8 12 18
150 5 7 11 17 25
200 8 11 15 21 33
250 10 14 19 25 40
300 13 18 23 31 47
350 15 21 27 35 55

The statistical analysis of the NIZKP execution demonstrates that the proposed framework offers a highly efficient
and secure solution for medical certificate verification in blockchain-enabled healthcare systems. The low gas
consumption ensures cost-effective operations, while the minimal latency for key processes such as proof generation
and verification supports the system’s ability to operate in real-time environments.

The privacy validation confirmed that no sensitive patient data was exposed during the proof verification process,
affirming the framework’s capacity to maintain high data privacy standards. These findings collectively address the
concerns regarding scalability, cost, and security, highlighting the practical applicability of the NIZKP framework in
real-world healthcare systems.

6.6.7. Consensus Algorithm Security Evaluation

The security of the hybrid PoOW-PBFT consensus mechanism was evaluated by simulating attacks such as Sybil attacks
and double-spending attempts. The consensus delay was measured based on the number of malicious nodes attempting
to disrupt the network. Table 6.25 presents the delay introduced by the hybrid consensus mechanism in the presence
of malicious nodes. With no malicious nodes, the delay was 25 milliseconds. The delay increased as the number of
malicious nodes increased, reaching 115 milliseconds with 30 malicious nodes. The results demonstrate that the hybrid
PoW-PBFT consensus algorithm is robust against Sybil and double-spending attacks, as the system continues to
achieve consensus even in the presence of malicious nodes, albeit with an increased delay.

Table 6.25: Consensus Delay in the Presence of Malicious Nodes for Hybrid PoW-PBFT Mechanism

No. of malicious node Consensus Delay(ms)
0 25
5 32
10 48
15 65
20 85
25 99
30 115

6.6.8. Data Confidentiality and Integrity

We conducted penetration tests to assess the system's resistance to unauthorized data access. During the tests, the
system's encryption and access control measures blocked attempts to access encrypted data stored on the blockchain
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and IPFS. In all test cases, unauthorized attempts to access data were unsuccessful. Table 6.26 summarizes the number
of unauthorized attempts blocked by the system across different node configurations. The system effectively prevents
unauthorized access, maintaining data confidentiality and integrity across increasing node and transaction loads.

Table 6.26: Number of Unauthorized Access Attempts Blocked by the System Under Varying Node Configurations

No. of 20 nodes 40 nodes 60 nodes 80 nodes 100 nodes
Transaction (Tx) (No. of Blocked (No. of Blocked (No. of Blocked (No. of Blocked (No. of Blocked

attempt) attempt) attempt) attempt) attempt)

100 10 18 24 31 40

150 14 22 30 39 48

200 19 28 38 49 60

250 24 35 45 56 70

300 28 40 52 64 80

350 35 45 58 70 90

This security and privacy evaluation demonstrates that the proposed blockchain architecture successfully addresses
critical security concerns. Homomorphic encryption, zero-knowledge proofs, and the hybrid PoW-PBFT consensus
mechanism provide robust protection against common blockchain attacks. Additionally, the system maintains data
confidentiality and integrity under increasing transaction and node loads, ensuring scalability while preserving
privacy.

6.6.9. Comparison with State-of-artwork

In this section, we evaluate the performance of the proposed hybrid PoOW-PBFT consensus mechanism in comparison
with other widely used consensus algorithms, including Traditional Proof of Work (PoW), Pure Practical Byzantine
Fault Tolerance (PBFT), Delegated Proof of Stake (DPoS), Proof of Authority (PoA), and Raft. The analysis focuses
on key metrics such as gas consumption, transaction fees, processing speed, error rate, scalability, and consensus
finality. The comparative performance data highlights the advantages and trade-offs of each approach, offering a
comprehensive understanding of how the proposed method stands against state-of-the-art solutions in Table 6.27.

Table 6.27: Comparative Analysis of Different Consensus Mechanisms with Proposed Method

Metrics Traditional Pure PBFT DPoS PoA Raft Proposed Hybrid
PoW PoW-PBFT
Average Gas 45000 38000 32500 30000 29500 28500
Computation
(Gwei)
Average 0.000050 0.000045 0.000032 0.000030 0.000028 0.000022
Transaction
Fee(ETH)
Processing Speed 5 15 25 30 28 35
(Tx/Second)
Error Rate(%) 2.5 1.2 0.6 0.4 0.3 0.5
Scalability (Max 100 200 350 400 320 450
Tx/Block)
Consensus 120 50 30 25 20 15
Finality (second)

The Hybrid PoW-PBFT (Proposed) consensus mechanism demonstrates superiority in several key performance
metrics. For instance, average gas consumption is reduced to 28,500 Gwei, significantly lower than the Traditional
PoW (45,000 Gwei) and Pure PBFT (38,000 Gwei). This makes the hybrid model more energy-efficient and cost-

187 |Page



effective. Regarding average transaction fees, the proposed mechanism achieves the lowest cost at 0.000022 ETH,
significantly outperforming other models like DPoS and PoA, further enhancing its cost-efficiency for high-volume
transactions.

In terms of processing speed, the proposed model handles 35 transactions per second, surpassing both Traditional
PoW (5 Tx/sec) and Pure PBFT (15 Tx/sec) while remaining competitive with more centralized systems like PoA (30
Tx/sec). Additionally, the error rate is reduced to 0.5%, highlighting the robustness of the Hybrid PoW-PBFT model,
which offers better reliability than Pure PBFT and other consensus mechanisms. Regarding scalability, the proposed
approach supports up to 450 transactions per block, far exceeding the scalability of Traditional PoW (100 Tx/block)
and Pure PBFT (200 Tx/block). Finally, consensus finality is improved dramatically to just 15 seconds, significantly
faster than PoW (120 seconds) and even better than Pure PBFT (50 seconds), making it suitable for applications
requiring quick finality and high throughput. As a result, the Hybrid PoW-PBFT consensus mechanism emerges as a
highly suitable option for large-scale blockchain systems that demand high performance and efficiency. It is suitable
for high-transaction-volume applications requiring robust security and efficient processing.

6.6.10. Discussion and Findings

The integration of blockchain technology into IoT-based healthcare systems presents significant advancements in
securing and managing healthcare data. This research paper has examined the effectiveness of a blockchain-based IoT
healthcare management system, focusing on privacy-preserving data sharing and the impact of various factors on
system performance. The following discussion highlights the key findings from the experimental evaluation and
analysis of the proposed system:

a) Security and Privacy Enhancements:

The proposed blockchain-based system demonstrates a robust approach to enhancing the security and privacy of
healthcare data. The system ensures data integrity and traceability by leveraging unique identification numbers for
medical certificates. The hybrid consensus mechanism, which combines Proof of Work (PoW) and Practical Byzantine
Fault Tolerance (PBFT), provides a balanced solution for improving security and transaction speed. Additionally,
homomorphic encryption for privacy-preserving computations and zero-knowledge proofs (ZKPs) for verifying
certificates without revealing sensitive patient data significantly strengthen the privacy and trustworthiness of the
system.

b) Performance Analysis:

The analysis of operational costs reveals that the proposed system incurs varying Gas costs depending on the functions
performed. The cost of executing operations such as registration, generation of blocks, issuing certificates, and
verifying certificates was evaluated using the Etherscan tool. Results indicate that costs increase with the complexity
of transactions. For instance, the registration function required 34,219 Gas, while verifying a certificate required
37,100 Gas. This variance highlights the impact of different operations on the overall cost and emphasizes the need
for efficient Gas management in blockchain-based systems. When comparing Ethereum-based blockchain platforms
with SQL databases, notable differences in performance metrics were observed. While the Ethereum blockchain
exhibited higher latency and processing times, it provided superior security and privacy features compared to
traditional SQL databases. For example, the issuing certificate operation on Ethereum had a latency of 5.32
milliseconds and a processing time of 6.37 milliseconds. In contrast, SQL platforms had lower latency but lacked the
security benefits of blockchain. This trade-off underscores the importance of considering security and performance
when evaluating blockchain-based systems.

Scalability analysis of the proposed system uncovered several challenges associated with increasing the number of
IoT nodes and transactions. Registration time, consensus execution time, block creation, and access times
progressively increased with the number of nodes and transactions. For instance, registering 100 nodes took 308
seconds, while generating a block with 100 nodes and 350 transactions required 1,433 seconds. These findings
highlight the scalability challenges inherent in blockchain systems and underscore the need for optimized consensus
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mechanisms and block management strategies to handle more extensive networks efficiently. The evaluation of Gas
price consumption demonstrated a steady increase in nodes and transactions. For example, with 100 nodes and 350
transactions, the Gas price reached 74,510, compared to 20,000 for 20 nodes and 100 transactions. This increase
reflects the growing computational and storage demands as the network scales, emphasizing the need for cost-effective
strategies to manage operational expenses. Regarding storage size and off-chain utilization, the analysis of IPFS-based
off-chain storage indicated that storage requirements increase with the number of transactions. For instance, with 350
transactions, the storage size was 39 KB, compared to 9 KB for 100 transactions. This growing storage requirement
highlights the importance of efficient data management strategies to accommodate larger transaction volumes without
compromising system performance.

¢) Latency and Throughput:

The evaluation of latency and throughput revealed that the Ethereum blockchain-based system generally had higher
latency and lower throughput than SQL databases. For example, the latency for verifying certificates on Ethereum
was 7.12 milliseconds, compared to 2.63 milliseconds on SQL platforms. Throughput was also lower on Ethereum,
with 6.38 Kbps compared to 10.57 Kbps on SQL platforms. These performance differences highlight the trade-offs
between blockchain's security benefits and traditional database performance metrics.

In conclusion, integrating blockchain technology into IoT-based healthcare systems offers significant security,
privacy, and data integrity advantages. The proposed system demonstrates a promising approach to addressing privacy
concerns and managing healthcare data effectively. The findings from this study provide valuable insights for
developing more efficient and secure blockchain-based healthcare solutions in the future.

6.7 Chapter Summary

This Chapter presents a novel blockchain-based [oT application to improve medical certificate management's security,
privacy, and efficiency in healthcare systems. The proposed solution uses unique identification numbers for medical
certificates. It incorporates a hybrid consensus mechanism combining Proof of Work (PoW) and Practical Byzantine
Fault Tolerance (PBFT) for enhanced security and transaction speed. Privacy is safeguarded through homomorphic
encryption and Non-Interactive Zero-Knowledge Proofs (NIZKPs), which enable secure medical certificate
verification without revealing sensitive data. Integrating the Interplanetary File System (IPFS) also ensures scalable
and efficient data storage. An Intrusion Detection System (IDS) has been added to monitor IoT traffic and detect
security threats. Experimental results demonstrate the system's robustness, achieving an accuracy of 98.1% for the
IDS. At the same time, blockchain evaluation metrics show low latency, high throughput, and enhanced security,
positioning this solution as a transformative approach to secure healthcare management.
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Chapter 7 Comparative Analysis with State-of-the-Art Intrusion Detection Systems
7.1 Introduction

With the expansion of Internet technology applications, the transformation of traditional industrial manufacturing
systems, and the advancement of 5G communication technology, the Industrial Internet of Things (IloT) is advancing
towards grander scale and more profound network interconnections, playing an increasingly pivotal role in modern
industrial reform [174]. As a bridge between traditional industrial systems and the new Internet industry [175], IloT
provides essential support for modernizing traditional industries. [IoT comprises physical service systems and digital
devices such as sensors and actuators, managing data generated during industrial production to facilitate intelligent
production and management, as shown in Figure 7.1. During the COVID-19 pandemic, IloT proved vital in
maintaining efficient production management and continuity amid isolation and economic turmoil [176-177].

However, the vast volumes of data stored in IIoT systems elevate the risk of cyber-attacks, posing significant threats
to industrial management and production [178]. As IIoT grows, more industries integrate into its network, resulting
in increasingly complex structures and heightened demands for robust defense capabilities [ 179]. Consequently, [IoT
security has become more urgent, driving research on intrusion detection technology to the forefront. Intrusion
detection, a proactive security technology, automatically detects and reports abnormal traffic affecting [IoT network
security, including internal attacks, external attacks, and misoperations [180]. Upon detecting abnormal traffic,
intrusion detection technology swiftly identifies the type of anomaly and implements defensive measures to block it
before compromising the network system [181]. Thus, intrusion detection is crucial for protecting IloT network
security, ensuring data integrity, reliability, and normal industrial production [ 182-183].
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Figure 7.1: Architecture of Industrial Internet of Things (lloT)

Current IIoT intrusion detection technology faces two key challenges [184]: extracting and distinguishing network
behavior. The Internet of Things (IoT) plays a significant role in daily life, connecting various devices, from smart
home appliances to industrial control systems [185]. However, the widespread use of IoT has led to a surge in botnet
attacks, including denial of service (DoS), distributed denial of service (DDoS), reconnaissance, theft, Mirai, and
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Gafgyt, which threaten IoT device security and privacy [186] IoT networks are particularly vulnerable to botnet attacks
due to weak security protocols and inadequately protected devices.

Botnet Intrusion Detection Systems (IDSs) have been developed to combat these threats. These systems detect botnets,
block communication between compromised devices and command and control (C&C) servers, and alert network
administrators [187]. Deploying botnet IDSs enhances [oT network security and protects against botnets and other
cyber-attacks. Therefore, designing efficient IDSs capable of detecting and preventing attacks on low-power lIoT
devices is crucial. IDSs maintain IoT network security and integrity by identifying and neutralizing harmful network
packets.

However, traditional IDSs, which often rely on data mining, fuzzy techniques, heuristics, or complex machine learning
methods, typically need more accuracy and energy efficiency. This is a significant concern for IoT networks,
consisting of numerous interconnected devices requiring efficient power usage. Addressing these challenges requires
accurate, high-performing IDSs that are energy-efficient and capable of detecting a wide range of threats. Developing
IDSs involves using feature-selection algorithms to identify the most relevant and efficient features from datasets and
training models with these selected features. Detection accuracy increases by focusing on important features and
eliminating irrelevant ones, and packet processing time decreases.

Feature selection plays a crucial role in developing lightweight IDSs [ 188]. Model-based feature selectors, such as
importance- and correlation-coefficient methods and forward- and backward-sequential approaches, are commonly
used due to their high performance and low false positive rates [189]. These approaches utilize regression algorithms,
such as linear, lasso, logistic, or ridge, to calculate importance coefficients by analyzing the relationship between input
features and output labels [190-191]. Based on these coefficients, feature-selection algorithms determine the most
relevant and efficient features, enhancing IDS performance by eliminating irrelevant and inefficient ones.

7.1.1 Motivation

The rapid development of IoT network technology introduces vulnerabilities in data transmissions due to insecure
network connections, demanding robust protection against unauthorized access, malicious activities, and potential
security threats. Network intrusions jeopardize user data security and disrupt functionality, while sophisticated
cyberattacks threaten data confidentiality, integrity, and availability. Current intrusion detection methods often need
more accuracy and incur high computational costs, leading to suboptimal performance in detecting various attacks.
These challenges drive us to innovate in intrusion detection and prevention. By implementing a deep learning-based
approach, we aim to develop a robust and flexible model for early detection of network intrusions. Although
advancements exist, current models need help with timely detection, scalability, and reliance on low-dimensional
security data. To address these limitations, we propose an Efficient Feature Selection-based Intrusion Detection
System using Artificial Intelligence (Al)-based Models to enhance security and effectively prevent network attacks.

The key contributions of this paper are as follows:

e  Wedeployed 10 state-of-the-art Artificial Intelligence (Al)-based Intrusion Detection Models in an Industrial
IoT environment.

e  We utilized advanced wrapper-based feature selection methods, including forward-based, backward-based,
and recursive feature elimination methods, to optimize feature selection, reduce computation time, and
enhance the accuracy of intrusion detection in IoT networks.

e We rigorously tested the 10 Al-based Intrusion Detection Models using two well-known publicly available
TIoT/IloT datasets, N_BaloT and Edge-IIoT 2022.

e We conducted an in-depth performance analysis of all 10 models across both datasets, focusing on critical
metrics such as accuracy, recall, F1-score, precision, G-mean, and specificity.

e We provided detailed insights into the effectiveness of each feature selection techniques methods,
highlighting their impact on the models' performance.

This research focuses on applying Al-driven intrusion detection in Industrial IoT environments. By leveraging cutting-
edge feature selection methods and performance evaluation matrices, the study aims to develop high-performing,
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energy-efficient IDSs capable of defending against a wide range of cyber threats. The context of this research is the
growing complexity and interconnectedness of IIoT networks, which necessitate robust and scalable security
solutions.

7.2 Background

This section establishes the groundwork for comprehending I1oT networks and their associated Intrusion detection
strategies.

7.2.1 Intrusion Detection System (IDS)

Intrusion Detection Systems (IDS) are essential components in cybersecurity. They serve as vigilant guardians that
monitor network or system activities to identify and respond to potential security threats. IDS is critical in protecting
organizations' digital assets by detecting malicious activities, unauthorized access attempts, and policy violations. One
of the primary types of IDS is the signature-based IDS. This system compares observed events with predefined
signatures or patterns of known threats. When a match is found between the observed activity and a signature in the
database, the IDS generates an alert to notify system administrators or security personnel. Signature-based IDS excel
at detecting well-known attacks that have identifiable patterns or signatures, making them an effective defense against
known threats. In contrast, anomaly-based IDS take a different approach to threat detection, rather than relying on
predefined signatures, anomaly-based IDS establishes a baseline of normal network or system behavior by analyzing
historical data. These systems continuously monitor network traffic or system activities and flag any deviations from
the established baseline as potential security threats. Anomaly-based IDS are handy for detecting new or unknown
threats that do not have existing signatures, making them valuable tools for identifying unusual or suspicious behavior
that may indicate a security breach [192]. Figure 7.2 shows the Intrusion Detection System mechanism and its type.

Organizations can establish a comprehensive defense strategy addressing cyber threats using signature-based and
anomaly-based IDS. Signature-based IDS protects against known attacks, while anomaly-based IDS offers a proactive
defense against emerging threats and zero-day vulnerabilities. Together, these IDS work synergistically to enhance an
organization's overall security, helping to mitigate risks and protect critical assets from cyber threats in an ever-
evolving digital landscape. The core functionalities of an Intrusion Detection System (IDS), extensively studied,
encompass a series of crucial steps designed to safeguard networks and systems from potential security threats, with
its components elaborated upon to detail these protective measures [192] as follows:

o Network Monitoring: This component involves continuously monitoring network traffic to capture packets
containing vital network-related information. The IDS can identify threats and security vulnerabilities by
analyzing network packets and flows.

o Data Collection Techniques: The IDS employs various data collection techniques to gather information
about target systems and network activities. These may involve using network commands, tools like
"Wireshark" for packet sniffing, or querying domain details using tools such as nslookup.

o Packet Analysis: In this stage, the IDS scans network packets to uncover potential security threats, such as
unauthorized access attempts, data breaches, or malware injections. The IDS can detect anomalies indicative
of malicious activities by analyzing packet contents.

o Signature Identification and Storage: Following packet analysis, the IDS identifies attack patterns or
signatures of known threats. These signatures are stored in a centralized database, enabling the IDS to
efficiently recognize and respond to similar attack patterns in the future.

o Alert Generation Mechanisms: When an attack pattern is detected, the IDS promptly generates alerts or
alarms to notify security administrators. These alerts provide critical information about the nature of the
threat, facilitating rapid response and mitigation efforts.

Despite its capability to scrutinize network packet contents for detecting and quantifying attacks, Intrusion Detection
Systems (IDS) exhibit several limitations:

e IDS cannot preemptively block or prevent identified attacks solely based on pattern recognition or signature
matching from a database. Integration with additional security mechanisms, such as Intrusion Prevention
Systems, is necessary to execute blocking actions.
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e  While IDS conducts thorough network analysis and monitors network activity, it needs the capability to take
immediate action upon attack detection. Consequently, continuous intervention by a security officer or
administrator is required to respond effectively to identified threats.

e DS exhibits inefficiency in processing encrypted network packets, necessitating specialized networking
tools for examination. This may render system resources vulnerable until intrusion detection occurs.

e The prevalence of false positives generated by IDS significantly impacts system efficiency and reliability.

e Regularly updating the attack signature database is essential to ensure the IDS remains effective against
evolving threats.

e As identified in prior research, IDS vulnerabilities extend to protocol-based attacks.

a) Industrial Internet of Things (IloT)

The Industrial Internet of Things (IloT) represents a pivotal evolution in industrial processes, blending traditional
manufacturing with cutting-edge digital technologies to optimize efficiency, productivity, and connectivity in Industry
5.0. Unlike its predecessors, IIoT integrates intelligent sensors, devices, and machinery into interconnected networks,
enabling real-time data collection, analysis, and decision-making [192]. This interconnectedness facilitates seamless
communication between machines, systems, and humans, unlocking new avenues for automation, predictive
maintenance, and resource optimization in industrial settings.

However, adopting IIoT introduces new cybersecurity challenges, particularly concerning intrusion detection and
prevention. As industrial systems become increasingly interconnected and digitized, they become more susceptible to
cyber threats, including unauthorized access, data breaches, and system tampering [192]. Cyber-attacks targeting IToT
infrastructure can have severe consequences, ranging from operational disruptions and production downtime to
compromised safety and financial losses.

It is crucial to delve into the specific cybersecurity implications of IIoT and explore effective intrusion detection
mechanisms tailored to industrial environments. This involves investigating advanced anomaly detection techniques,
machine learning algorithms, and Al-driven solutions capable of identifying and mitigating cyber threats in real-time.
Additionally, understanding the unique characteristics of IloT networks, such as legacy systems integration, resource
constraints, and critical infrastructure dependencies, is essential for designing robust intrusion detection systems
capable of safeguarding Industry 5.0 ecosystems against evolving cyber threats.

Security and privacy issues in IoT (Internet of Things) and IIoT (Industrial Internet of Things) environments are
multifaceted and pose significant challenges to data and systems integrity, confidentiality, and availability [ 194]. Some
key issues include:

e Device Vulnerabilities: IoT and IIoT devices often have limited computing resources and may lack robust
security features, making them vulnerable to attacks such as malware infections, firmware exploits, and
physical tampering.

e Data Security: Data transmitted between IoT/IloT devices and backend systems may be susceptible to
interception and tampering, raising concerns about data confidentiality and integrity. Additionally, data
stored on devices or in the cloud may be at risk of unauthorized access or data breaches.

e Network Security: Inadequately secured communication channels between IoT/IIoT devices and backend
systems can be exploited by attackers to intercept data, launch man-in-the-middle attacks, or disrupt
communication through denial-of-service (DoS) attacks.

o Privacy Concerns: IoT and IIoT devices often collect vast amounts of data about users, their behaviors, and
their environments. However, this data's indiscriminate collection and sharing raise significant privacy
concerns, especially regarding personally identifiable information (PII) and sensitive data.

e Supply Chain Risks: The global nature of IoT/IloT supply chains introduces security risks, including
counterfeit components, insecure firmware/software updates, and vulnerabilities introduced during
manufacturing or distribution processes.

o Regulatory Compliance: Compliance with data protection regulations such as the General Data Protection
Regulation (GDPR) and industry-specific standards (e.g., NIST, ISO 27001) is a significant challenge for
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IoT/IIoT deployments, especially considering the diverse regulatory landscape across different regions and
industries.

Lifecycle Management: Effective management of IoT/IloT device lifecycles, including provisioning,
monitoring, patching, and decommissioning, is critical for maintaining security posture and mitigating risks
associated with outdated or unsupported devices.

Interoperability Challenges: Integrating diverse IoT/IloT devices and systems from different vendors often
leads to interoperability challenges, which can introduce security vulnerabilities and complicate security
management and monitoring efforts.
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Table 7.1 provides a comprehensive overview of the significant security and privacy issues prevalent in IoT/IIoT
networks, detailing their impacts on the CIA triad, the affected layers of the IoT/IloT architecture, and the
recommended countermeasures to mitigate these risks. Addressing these security and privacy issues requires an
advanced approach encompassing technical and regulatory measures. This includes implementing robust security
protocols, encryption mechanisms, access controls, and intrusion detection systems and enhancing the culture of
security awareness and compliance within systems.

Table 7.1: Security and Privacy Issues in loT/IloT Networks: Impact, Affected Layers, and Countermeasures

Security and CIA triad Impact on Impact Impact on Layered of Countermeasures
Privacy Issues confidentialit on availabilit IoT/IIoT
y Integrity y architecture
Device Vulnerability to N4 v v Device/Endpoint Regular firmware updates,
Vulnerabilities malware, firmware Layer security patches, and
exploits, physical device hardening
tampering
Data Security Data breaches, N4 v v Communication End-to-end encryption,
unauthorized access, Layer data anonymization, access
data tampering controls
Network Data interception, man- v v v Network Layer Secure communication
Security in-the-middle attacks, protocols, network
denial-of-service segmentation
Privacy Unauthorized data v X X Application Layer Data minimization, user
Concerns collection, privacy consent, privacy-
violations enhancing technologies
Supply Chain Counterfeit v v v Device/Endpoint Supply chain audits,
Risks components, insecure Layer vendor risk assessments
updates, vulnerabilities
Regulatory Non-compliance fines, v v v Data Layer Compliance frameworks,
Compliance legal liabilities data governance policies
Lifecycle Security risks from v v v Device/Endpoint Device monitoring, patch
Management outdated devices, Layer management, end-of-life
unpatched policies
vulnerabilities
Interoperability | Security vulnerabilities, v v v Communication Standards compliance,
Challenges integration issues Layer interoperability testing

b) Type of Cyber-attack on IoT/IIoT Environment

The security of IoT/IloT environments is paramount due to the increasing prevalence and sophistication of cyber-
attacks, which target different layers of the architecture and pose significant threats to confidentiality, integrity, and
availability, as represented in Table 7.2.

Table 7.2: Types of Attacks in IoT/IIoT Architecture: Description, Countermeasures, and Impact on CIA

Types of attacks Layer in IoT /IIoT Description Countermeasures Impact on CIA
architecture
Denial of Service Network Layer Overloads system, Implement network CXLXAV
(DoS) disrupting service traffic filtering and rate-
limiting
Man-in-the-Middle Communication Layer Intercepts and alters Use encryption and CVvLEVAX
(MitM) communication authentication protocols
Phishing Application Layer Deceives users into User awareness training CVvLEXAX
sharing sensitive and email filtering
information
Malware Device/Endpoint Layer | Infects devices, Install antivirus software | C: v I: v A: Vv
compromising security and regular updates
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Distributed Denial of Network Layer Floods network with Deploy DDoS protection | C: X I: X A: v
Service (DDoS) traffic, causing system services and load
failure balancers
Insider Threat Data Layer Malicious actions by Implement role-based CVvIEVAV
authorized users access control and
monitoring
Brute Force Attack Authentication Layer Repeated login attempts | Enforce strong password | C: X I: X A: v
to guess credentials policies and account
lockout
Firmware Device/Endpoint Layer | Exploits vulnerabilities Regular firmware CVvIEVAV
Exploitation in device firmware updates and vulnerability
scanning
Replay Attack Communication Layer | Replays previously Implement timestamping | C: v I: v A: X
captured data to gain and secure
unauthorized access communication protocols
SQL Injection Data Layer Injects malicious SQL Use parameterized CVvLEVAX
commands into queries and input
databases validation

7.2.2. Research Gaps and Limitations

In addressing the current landscape of Intrusion Detection Systems (IDS) for Industrial IoT environments, several
research gaps and limitations have been identified that impede the development of more robust and efficient security
solutions as follows:

e Systematic Dataset Unavailability: The absence of up-to-date datasets reflecting modern network attacks
hinders the development of efficient IDS models capable of detecting zero-day attacks.

e Imbalanced Dataset Detection Accuracy: Most IDS methodologies exhibit lower detection accuracy for
rare attack types due to imbalanced datasets, necessitating the development of balanced and comprehensive
datasets.

e Real-World Environment Performance: The need for real-world testing for IDS methodologies questions
their effectiveness outside controlled lab environments, highlighting the need for real-time validation.

e Resource-Intensive Models: Complex IDS models consume significant processing time and computing
resources, underscoring the need for efficient feature selection algorithms to reduce overhead and improve
performance.

o Lightweight IDS for IoT: Developing lightweight IDS models for resource-constrained IoT sensor nodes
remains challenging, requiring models that balance computational efficiency and high intrusion detection
rates.

7.3 Methodology

This section provides a comprehensive overview of the proposed methodology, detailing each critical step in
developing our Al-based intrusion detection system. The proposed flow of Artificial Intelligence-based Intrusion
Detection System models on different Wrapper-based Feature Selection Methods is shown in Figure 7.3. We begin
by discussing the problem statement, identifying the challenges and objectives of enhancing intrusion detection in
[oT/IIoT environments. Following this, we present the datasets utilized in this study, namely the N-BaloT and Edge-
[IoT-2022 datasets, elaborating on their characteristics and relevance. The subsequent data preprocessing step is
explained, which includes handling missing values, normalization, and data transformation to ensure the datasets are
suitable for model training. We then describe the feature selection methods employed, such as Forward Selection,
Backward Selection, and Recursive Feature Elimination (RFE), to identify the most significant features contributing
to accurate intrusion detection. Finally, we delve into the Al-based models implemented, detailing their architectures,
training processes, and evaluation metrics to demonstrate their efficacy in detecting and mitigating cyber-attacks.

197 |Page



Input Dataset

a0
E
e

N_BaloT Dataset

Edge-lloT Dataset

Checking

Remove

Missing values Redundancy

Result Analysis |
viip

Confusion Matrix

0,°
«°0%
o 0 o

Detection Accuracy

-

i

Recall

Model Testing

Q.

Testing Data

l
=

Model Learning

!

&

Evaluation

Data PreProcessing

Label
Encoding

Madel Training

Al-Based IDS Model

Train Set
(80%)

SVM

DT

RF

XgBoost  gpy

CNN

RNN

LSTM

BILSTM

» _>_—973—>£$:—>

Data
Normalization

Train Set
(80%)

Test Set
(20%)

-
o
‘.I—f

Refined
Dataset

Dataset Splitting

B ¢
‘i}

Feature Selection

==
=&

=

Wrapper-based Feature
Selection Method

Forward-based
Method

Backward-based
Method

Recursive Feature
Elimination

Figure 7.3: Proposed Flow of Artificial Intelligence-based Intrusion Detection System models on different Wrapper-
based Feature Selection Methods

7.3.1 Problem Statement

IoT security poses significant network threats, particularly in identifying and neutralizing malicious activities. Rapid
and accurate detection of unauthorized or irregular network traffic is crucial for mitigating potential intrusions or
attacks. Advanced Intrusion Detection Systems (IDS) must efficiently distinguish between benign and malicious
behaviors to ensure immediate detection and intervention, especially in fast-paced, resource-constrained wireless
environments. Unique threats such as Flooding, Injection, and Impersonation attacks require tailored detection and
countermeasure strategies. This study aims to enhance IDS technologies, strengthening wireless network defenses
against sophisticated threats. We address the challenge of high-dimensional data in IoT environments, where irrelevant
features can degrade IDS accuracy and performance. We aim to optimize feature sets and improve IDS effectiveness
by employing feature selection techniques with Al-based models. The N_BaloT and Edge-110T-2022 datasets, which
capture current cyber-attacks, serve as the basis for our evaluation. Our approach seeks to refine IDS capabilities,
ensuring robust and precise threat detection in IoT networks.

7.3.2 Dataset Description

We evaluated the model using two publicly available datasets: N_BaloT and Edge-110T-2022.

a) N_BaloT dataset

In this study, we used the N _BaloT dataset, a publicly accessible compilation of network traffic data sourced from
nine distinct IoT devices, as detailed in Table 7.4. This dataset, encompassing 115 features, has been pivotal in prior
research on botnet detection in [oT/IloT environments [56].

Table 7.4: Device Inventory name and Classification in the N-BaloT Dataset

Device Name Device Type
Danmini Doorbell
Ennio
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Ecobee Thermostat
Phiplips B120N/10 Baby Monitor
Provision PT-737E Security Camera
Provision PT-838
SimpleHome XCS7-1002-WHT Security Camera
SimpleHome XCS7-1003-WHT
Samsung SNH 1011 N Webcam

The N_BaloT dataset captures ten distinct attack classes, including the notorious BASHLITE and Mirai botnet attacks,
alongside benign traffic. BASHLITE attacks encompass malicious activities such as scanning for vulnerable devices,
sending spam data, UDP flooding, and combined spam and connection attempts to specified IP addresses and ports.
Similarly, Mirai attacks involve automated vulnerability scans, ACK flooding, SYN flooding, UDP flooding, and
optimized UDP flooding designed for higher packet rates, as shown in Table 7.5.

Table 7.5: Distribution and Characteristics of Attack Classes in the N-BaloT Dataset

Target Class Attack Type Description Count
Benign Benign Unharmful network data 49548
gafgyt combo BASHLITE Combines spam data and connection opening 59718
gafgyt junk Sending spam data to device 29068
gafgyt scan Network scan for vulnerable device 29849
gafgyt udp Flood targeted devices with the UDP packets 105874
mirai_ack MIRAI Flood targeted devices with the ACK packets 102195
mirai_scan Automatic scan for vulnerable devices 107685
mirai_syn Flood targeted devices with the SYN packets 122573
mirai_udp Flood targeted devices with the UDP packets 2376655
mirai_udp plain Optimized UDP flooding for higher packets per second 81982

b) Edge-IloT dataset

In this study, we used a second dataset named Edge-110T-2022 dataset [103], an extensive simulation encompassing
14 distinct cyberattacks categorized into five primary types: Denial of Service (DoS)/Distributed Denial of Service
(DDoS), Information Gathering, Man in the Middle (MITM), Injection, and Malware attacks, as detailed in Table 7.6.
We framed our intrusion detection systems (IDSs) within a multi-class classification context, differentiating among
15 classes: 14 representing specific attack types and one for normal traffic. Each data point in the Edge-110T-2022
dataset is characterized by a 61-feature vector, including 43 numeric features and string and nominal attributes. The
dataset includes two pivotal label features, Attack label and Attack type, which indicate whether a data point is an

attack and specify the type of attack, respectively. These labels are essential for classifying and detecting intrusions
in Al-based models.

Table 7.6: Distribution and Characteristics of Attack Classes in the Edge-I1loT Dataset

Target Class Attack Type Description Count
TCP SYN Flood DDOS Initiates numerous TCP handshake requests to 50062

deplete server resources, leading to
unresponsiveness.

UDP Flood Sends a large volume of UDP packets to the server, 121567
overwhelming its capacity to process legitimate
requests.

HTTP Flood Overloads the server with a high volume of HTTP 48544
queries, causing it to slow down or crash

ICMP Flood Floods the server with a high volume of ICMP 67939
(ping) requests, consuming its bandwidth and
resources.
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Port scanning Scans connected [oT devices to identify open 19977
ports that may be exploited for further attacks.
OS Fingerprinting Information Identifies the target operating system by analyzing 853
gathering responses to known probes and vulnerabilities.
Vulnerability Scanning Detects potential security ~weaknesses in 50026
applications and networks to exploit in future
attacks.
DNS and APR Spoofing MITM Alters DNS and ARP tables to redirect traffic or 358
intercept communication between devices.
Cross-site Scripting (XSS) Injection Injects malicious scripts into web applications, 15066
which execute in the user's browser.
SQL Injection Exploits vulnerabilities in database applications by 50829
inserting malicious SQL statements.
Uploading Attacks web applications that allow file uploads, 36807
often leading to the execution of malicious code.
Backdoor Malware Establishes unauthorized remote access to an IoT 24226
device, allowing attackers to control it remotely.
Password Cracking Employs brute-force techniques to guess 49933
passwords or cryptographic keys, gaining
unauthorized access.
Ransomware Encrypts files or locks IoT devices, demanding a 9689
ransom for their release.

Our research aims to elevate the precision and efficiency of intrusion detection systems by focusing on these attack
types and leveraging the extensive data provided by the N BaloT and Edge-11oT-2022 datasets. This highlights the
critical importance of selecting relevant features and deploying advanced Al-based models to optimize IDS
performance, particularly in detecting and mitigating sophisticated IoT network threats.

7.3.3. Data Preparation

Data preparation is crucial in machine learning and deep learning. It involves cleaning and organizing data to enhance
learning and model accuracy. Our research employed a two-step approach for data preparation, encompassing Data
Pre-processing and Data Normalization techniques, as detailed in Algorithm 7.1.

a) Data Pre-Processing

In the data pre-processing stage, we transformed categorical features with nominal values into numerical values using
label encoding, ensuring compatibility with the neural network's input requirements. We also removed irrelevant
features such as date, time, and timestamp columns, which did not significantly contribute to output predictions.

b) Oversampling Minority Classes

In our experiments, we applied the Synthetic Minority Oversampling Technique (SMOTE) to generate synthetic
samples for minority attack classes. This ensured a balanced dataset, particularly for rare attack types such as
reconnaissance and backdoor attacks in the N-BaloT and Edge-IIoT 2022 datasets. By addressing class imbalance
during data preprocessing, we provided a more equitable distribution of instances, enabling our Al-based models to
better learn patterns from underrepresented classes. To complement oversampling, we selectively reduced the size of
majority classes where necessary, ensuring the overall dataset size remained manageable while maintaining a balanced
representation of attack and benign classes.

¢) Data Normalization

We applied data normalization using the min-max scaling technique to address feature imbalance, where some
attributes had higher values than others and skewed model performance. This method maps the data to a range between
0.0 and 1.0 while preserving the data's inherent distribution [58]. The min-max scaling formula is mathematically
expressed as follows:
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X—Xmin

y = X min_ (7.1)

Xmax—Xmin

Where x and y represent the original and normalized values, respectively, and X,,;, and X, are the feature's
minimum and maximum values. This normalization step ensured balanced feature representation, enhancing our Al-
based models performance and accuracy.

Algorithm 7.1: Min—Max Scaling

Input:
- X(x1, ..., xi), where 1 <i <[, denotes a dataset containing I attributes.

Output:
- Xtrans(xtransl, ..., xtransn), denotes the transformed dataset with scaled attributes.

. for k from 1 to I, do
if (xi is a nominal attribute), then
Initialize and instantiate a LabelEncoder object to encode nominal attributes.
Fit the LabelEncoder to the xi values and transform them into numerical labels.
Store the transformed attributes in a new Pandas series.
Apply Min-Max Scaling to the transformed attributes:
xtransi = (xi - min(xi)) / (max(xi) - min(xi))
else
Apply Min-Max Scaling directly to the numerical attribute:
10. xtransi = (xi - min(xi)) / (max(xi) - min(xi))
11. endif
12. end for

X NA U R W~

d) Feature Selection

The objective of feature selection is to identify a representative subset of attributes from the original dataset, ensuring
that the selected features are highly relevant to the prediction task. Modern intrusion detection datasets often contain
numerous redundant and irrelevant attributes, diminishing the effectiveness of ML and DL algorithms and leading to
uninterpretable results. Thus, the initial step in this study involves reducing dimensionality and selecting a pertinent
feature subset from the dataset. We employ wrapper-based feature selection methods to optimize the selection
process's efficiency and enhance classification accuracy. This approach centers on evaluating the relevance and
redundancy of the selected features and navigating the search space to find the optimal solution.

i) Forward Selection wrapper-based method

Forward selection is a wrapper method for feature selection in machine learning. This method adds features to the
model iteratively based on their impact on model performance. It starts with an empty set of features and gradually
adds the most informative features one at a time. The key idea behind forward selection is to gradually build up a set
of features that collectively optimize the model's performance. Algorithm 7.2 outlines the feature selection process
utilizing the Forward Selection wrapper-based method for Al-based Models. This iterative approach systematically
enhances model performance by sequentially incorporating features based on their impact on the chosen evaluation
metric, optimizing predictive accuracy and interpretability.

Algorithm 7.2: Forward Selection wrapper-based method

Input:

- X: Feature matrix

- y: Target vector

- Model: Machine learning model

- Performance Metric: Metric used to evaluate model performance
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- NumFeatures: Desired number of features to select [40 top features]

Output:
- selected_features: List of selected features

1. selected features = empty list
2. best_performance = 0
3. remaining_features = list of all features in X
4. while remaining_features is not empty:
a. max_performance increase = 0
b. for each feature in remaining_features:
i. Add the current feature to selected_features.
ii. Train the model using selected features and evaluate its performance.

iv. If the performance increase is greater than max_performance increase:
- Update max_performance_increase
- Update best _feature as the current feature
c. If max_performance_increase > 0:
- Add best_feature to selected_features
- Remove best_feature from remaining_features
- Update best_performance
d. Else:
- Break the loop
5. Return selected features

iii. Calculate the performance increase by comparing it to best_performance.

ii) Backward selection wrapper-based method

Backward elimination is another wrapper method for feature selection where features are removed from the model
iteratively based on their impact on model performance. It starts with all features included and gradually eliminates
the least informative features. Backward elimination aims to simplify the model by removing features that contribute
the least to its predictive power. Algorithm 7.3 delineates the systematic feature selection process employing the
backward-eliminating wrapper-based method for Al-based Models. This iterative technique iterates over the feature
set, systematically removing attributes to enhance model performance based on the specified evaluation metric. This
algorithm optimizes the efficiency and interpretability of the Al-based Models by strategically eliminating features

that contribute minimally to predictive accuracy.
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Algorithm 7.3: Backward Selection wrapper-based method

Input:

- X: Feature matrix

- y: Target vector

- Model: Machine learning model

- Performance Metric: Metric used to evaluate model performance

- NumFeatures: Desired number of features to select [40 top features]

Output:
- selected_features: List of selected features

1. selected features = list of all features in X
2. best_performance = Evaluate model performance using selected features
3. while selected _features is not empty:
a. min_performance drop = infinity
b. for each feature in selected _features:
i. Remove the current feature from selected_features
ii. Train the model using selected features and evaluate its performance.
iii. Calculate the performance drop by comparing it to best_performance.
iv. If the performance drop is less than min_performance_drop:
- Update min_performance_drop
- Update worst_feature as the current feature
c. If min_performance drop < infinity:
- Remove worst_feature from selected_features
- Update best_performance
d. Else:
- Break the loop
4. Return selected features

iii) Recursive Feature Elimination (RFE) method

Recursive Feature Elimination is a wrapper method where features are recursively removed from the model based on
their importance ranking. It starts with all features included and gradually eliminates the least essential features
according to a predetermined ranking criterion. RFE iteratively prunes the feature set by eliminating features with the
lowest importance ranking, aiming to retain the most informative subset of features. Algorithm 7.4 outlines the
Recursive Feature Elimination (RFE) method, a recursive wrapper-based approach designed for Al-based Models to
iteratively refine feature sets by eliminating the least informative attributes. By iteratively assessing feature importance
and selectively pruning the feature space, RFE streamlines the model's complexity while preserving predictive
accuracy. This algorithm is instrumental in enhancing the efficiency and interpretability of Al-based Models by
identifying and retaining the most relevant subset of features for optimal performance. The use of wrapper-based
feature selection methods, particularly Recursive Feature Elimination (RFE), helped optimize feature subsets that were
most relevant to distinguishing between attack and benign instances. By iteratively eliminating less significant
features, RFE reduced the impact of irrelevant or redundant features that could exacerbate class imbalance issues.

Algorithm 7.4: Recursive Feature Elimination (RFE) method

Input:

- X: Feature matrix

- y: Target vector

- Model: Machine learning model

- Performance Metric: Metric used to evaluate model performance

- NumFeatures: Desired number of features to select [40 top features]
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Output:
- selected_features: List of selected features

1. selected features = list of all features in X
2. while number of selected_features > NumFeatures:

a. Train the model using selected features

b. Calculate feature importance scores

c. Identify the least important feature

d. Remove the least important feature from selected features
3. Return selected features

7.4 Artificial Intelligence (AI) Based Model

In this sub-section, we introduced Artificial Intelligence (AI) based models for Intrusion Detection systems that have
emerged as powerful techniques in exploring advanced security measures for Industrial IoT environments, offering
innovative approaches to intrusion detection. Table 7.7 provides a detailed analysis of various Al-based models used
for IDS, highlighting their key concepts, advantages, and disadvantages.

7.4.1 K-Nearest Neighbors (KNN)

The k-nearest neighbor (k-NN) algorithm is a simple yet powerful method for classifying objects based on their
similarity to other objects in a dataset. It operates by examining the most similar examples in a dataset to determine
the classification of a new object [59]. In intrusion detection, k-NN can determine whether new network activity is
regular or malicious. The algorithm finds the closest examples in the dataset to the new activity based on specific
features such as the number of connections or data transferred. It then predicts the new activity category by looking
at the majority category of these closest examples. For instance, if most similar activities are labeled malicious, the
new activity will also be classified as malicious; if most are normal, it will be classified as normal. The similarity
between activities is measured using the Euclidean distance [60], which helps to identify the nearest neighbors. This
straightforward approach makes k-NN an effective model for intrusion detection by leveraging the patterns and labels
from known activities to classify new ones, as represented in Figure 7.4.
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Figure 7.4: Flow of KNN

7.4.2 Support Vector Machine (SVM)

A support vector machine (SVM) is a supervised machine learning technique based on statistical learning theory.
SVM classifies data by determining a set of support vectors, specific members of the labeled training data. The primary
objective of SVM is to find an optimal hyperplane that can classify new data points accurately. A linear SVM acts as
a binary classifier, separating multi-dimensional data by creating hyperplanes using each class's nearest training data
points. It maximizes the margin between these classes [61]. Consequently, SVM relies on a subset of the training data,
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known as support vectors, to perform classification. The Workflow of the SVM model for intrusion detection is shown
in Figure 7.5.
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7.4.3. Decision Tree (DT)

The decision tree (DT) classification method uses an averaging approach by combining multiple models within an
ensemble. This technique, known as "bagging" (Bootstrap Aggregating), reduces overfitting by aggregating and
bootstrapping decision trees [62]. To evaluate the splitting of nodes, DT uses impurity measures such as the Gini
Impurity (GI) and Information Gain (IG). Impurity measures assess the similarity of labels at a node and guide the
division of DT nodes [63]. The Gini Impurity or Gini Index (GI) seeks to minimize impurity by identifying differences
in the probability distributions of the target attribute's values. Information Gain (IG), on the other hand, measures the
reduction in entropy, aiming to split nodes to achieve the highest information gain.

An essential parameter in decision trees is the maximum depth (max-depth), which indicates the extent to which nodes
can be expanded. A deeper tree, resulting from more splits, tends to capture more data features, thus influencing the
model's detection accuracy. Careful tuning of max-depth is essential to balance complexity and performance. The
Workflow of the Decision Tree model for intrusion detection is shown in Figure 7.6.
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7.4.4. Random Forest (RF)

The Random Forest (RF) is an ensemble prediction technique known for its effectiveness in various classification and
regression problems [64]. RF makes final predictions by aggregating the outputs of multiple decision trees. This
technique benefits from the random selection of data nodes when constructing each decision tree, enhancing the
classifier's overall performance.

The performance of RF primarily depends on two key hyperparameters: the total number of leaves and the number of
trees. The decision tree divides the feature space into the regions for a given number of leaves. This feature space is

208 | Page



then used to predict the final output of a decision tree, with the final predicted outcome determined by the majority
vote of all trees. Thus, the optimal selection of the number of leaves and trees during the training phase is crucial for
achieving better performance during evaluation. The Workflow of the Random Forest model for intrusion detection
is shown in Figure 7.7. Careful tuning of these parameters is necessary, as excessively increasing their values can lead
to higher computational complexity without significant gains in performance.

/ Use a bootstrap method for
| Start 3| Input Data Sample —— training sample with ——>
\, / replacement

.
YES

Create a random
vector

r

Use a random vector to
build multiple decision
tree

vo. of decision tree

Train a Decision |
«
tree

= given values

Vote or take the average to o | Merge all decision . | Prediction of
get the result - tree - Output
[ End

Figure 7.7: Flow of Random Forest
7.4.5. XGBoost

Extreme Gradient Boosting (XGBoost) is a powerful boosting technique that is part of the ensemble-based approach
managed by the Distributed Machine Learning Community (DMLC) [65]. XGBoost is highly efficient, meticulously
examining every bit of data value in the database. Before XGBoost, the random forest technique was commonly used,
which involved providing the same data to multiple decision trees. Each decision tree was trained independently, and
the overall accuracy was calculated by averaging the accuracies of all trees.

XGBoost, however, constructs decision trees sequentially, making it a sequential ensemble technique [66]. In this
method, each data value in the database is assigned a weight, which determines its probability of being selected by a
decision tree for further analysis. Initially, all data values have equal weights, which are then adjusted based on the
analysis results, as shown in Figure 7.8. The outcomes of the initial data pass help create a new classification model
that builds on previous results. This process continues iteratively until the final classifier is formed. Due to its depth
and complexity, XGBoost produces results with low bias and high variance. In contrast, the random forest method
typically results in high bias and low variance because it better fits the training data. Careful tuning and understanding
of XGBoost are essential for leveraging its capabilities effectively.
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7.4.6. Convolutional Neural Network (CNN)

Convolutional Neural Networks (CNN) is a deep learning model primarily used for image data analysis. Though
initially designed for image recognition tasks, CNNs can be adapted to process CSV data. By leveraging 1D
convolutional layers, CNNs can effectively capture temporal patterns and dependencies in sequential CSV data [67].
This ability allows CNNs to extract relevant features from CSV datasets, enabling them to efficiently handle time
series and other sequential data as represented in Figure 7.9.
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Figure 7.9: Convolutional Neural Network (CNN)

7.4.7. Recurrent Neural Network (RNN)

Compared to essential neural networks like Multilayer Perceptron (MLP), Recurrent Neural Networks (RNNs) offer
more flexibility in processing information. Unlike MLPs, which process data in a single direction, RNNs can loop
through different layers and temporarily store information for future use [68]. RNNs are classified as deep neural
networks because they process information through multiple layers. As illustrated in Figure 7.10, unrolling a standard
RNN reveals the depth of its structure [69]. Although RNNs are effective for various prediction tasks, they suffer from
the vanishing gradient problem. This issue can hinder the training process, making capturing long-term dependencies
in the data challenging.
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7.4.8. Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) networks, a variant of recurrent neural networks (RNNs), have become a popular
choice for developing intrusion detection systems (IDS), particularly for network traffic analysis [70]. Network traffic
data consists of sequential packets arriving over time. LSTM networks are specifically designed to handle such
sequential data, capturing long-term dependencies crucial for identifying malicious traffic patterns. Incorporating
memory cells, LSTM networks can selectively remember or forget information, effectively addressing the vanishing
gradient problem that traditional RNNs face [71]. This capability makes LSTM robust to real-world network traffic
data irregularities, such as missing packets and noise. Their proficiency in managing sequential data, robustness to
noisy and missing data, adaptability to different attacks, and high accuracy in detecting network intrusions while
minimizing false positives make LSTM networks ideal for enhancing network security. The Systematic representation
of the LSTM model is shown in Figure 7.11.
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Figure 7.11: Long Short-Term Memory (LSTM)

7.4.9. Bidirectional- Long Short-Term Memory (Bi-LSTM)

A Recurrent Neural Network (RNN) is specifically designed for sequential data processing but often suffers from
instability due to gradient vanishing and exploding issues. Hoch Reiter et al. [72] addressed these challenges by
introducing Long Short-Term Memory (LSTM) networks, which incorporate gate mechanisms and memory units to
effectively manage gradient behavior during training. Building on LSTM, Bidirectional LSTM (BiLSTM) enhances
sequence learning by allowing information to flow in both forward and backward directions through two hidden states
[73]. This bidirectional flow enables BiLSTM to capture context from past and future data points, thereby improving
the network's ability to retain comprehensive information. In BiLSTM, the first layer's output sequence serves as the
second layer's input, where the final output is a concatenation of the outputs from both forward and backward layers,
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resulting in a robust architecture that excels in learning and preserving sequential dependencies as shown in Figure
7.12.
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Figure 7.12: Bidirectional- Long Short-Term Memory (Bi-LSTM)

7.4.10. Gated Recurrent Unit (GRU)

The Gated Recurrent Unit (GRU) is a streamlined version of LSTM that reduces complexity by merging the forget
and input gates into an update gate. GRU combines the hidden state and cell state, simplifying the architecture as
shown in Figure 7.13. It retains important information while discarding irrelevant details, capturing temporal
dependencies effectively [74]. The update gate determines how much past information to keep and new information
to incorporate. By merging the hidden state and cell state, GRU eliminates the need for a separate cell state, reducing
computational load. GRU offers a simplified yet efficient approach for sequential data modeling, reducing
unnecessary complexities associated with LSTM networks.
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Figure 7.13: Gated Recurrent Unit (GRU)

Table 7.7: Analysis of Artificial Intelligence (AI)-Based Models for Intrusion Detection Systems (IDS)

Model Definition Key Concept Advantage Disadvantage
K-Nearest Neighbors | KNN assigns a class label to | Nearest neighbor Simple, easy to Computationally
(KNN) an input data point based on | search in feature implement, non- expensive for large

the majority class among its | space. parametric. datasets.
K nearest neighbors.
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Support Vector SVM aims to find the | Maximizing margin | Effective in high- Sensitive to the

Machine (SVM) hyperplane that best | between classes. dimensional spaces, | choice of kernel and
separates different classes in memory efficient. regularization.
the feature space.

Decision Trees (DT) | Decision trees recursively | Splitting feature Easy to understand, | Prone to overfitting
split the feature space based | space to maximize interpretability. can be unstable.
on feature values to classify | information gain.
data points.

Random Forest (RF) | Random Forest aggregates | Ensemble learning Reduction in Computationally
predictions  of  multiple | by combining overfitting, robust expensive, black-box
decision trees to make a final | multiple decision to noise. model.
prediction. trees.

XGBoost XGBoost  optimizes  a | Gradient boosting High predictive Sensitive to
differentiable loss function | with decision trees accuracy and hyperparameters,
by adding weak learners | as base learners. handles missing longer training time.
sequentially to minimize the values well.
loss.

Convolutional CNN applies convolutional | Hierarchical feature | Effective for image | Computationally

Neural Network filters to input data, followed | extraction through data, it expensive, requires

(CNN) by activation functions and | convolution and automatically learns | large datasets.
pooling operations. pooling. features.

Recurrent Neural RNN processes sequential | Capturing temporal Suitable for Vanishing/exploding

Network (RNN)

data by maintaining an
internal state or memory.

dependencies in
sequential data.

sequential data,
variable-length
inputs.

gradient problem,
short-term memory.

Long Short-Term

LSTM is designed to

Gated mechanisms

Effective for long

Computationally

Memory (LSTM) overcome the vanishing | control the flow of sequences, expensive, longer
gradient problem and capture | information through | mitigates vanishing | training time.
long-term dependencies in | the network. gradients.
sequential data.

Bidirectional LSTM | BI-LSTM processes input | Processing Captures Increased

(BI-LSTM) sequences in both forward | sequences bidirectional computational
and backward directions to | bidirectionally for information, complexity and
capture bidirectional | enhanced context. improved longer training time.
dependencies. performance.

Gated Recurrent GRU is a variation of the | Simplified version Efficient memory It may not capture

Unit (GRU) RNN  architecture  that | of LSTM with fewer | usage is practical long-term
simplifies the LSTM by | parameters. for sequential data. | dependencies or
combining the forget and LSTM.

input gates into a single
update gate.

7.5. Experimental Setup and Result Analysis

This section delves into experimental results, showcasing the efficacy of Al-based models in detecting anomalous
behavior within [oT/IloT environments. Utilizing the N_BaloT and Edge-I1oT-2022 datasets, we rigorously trained
and evaluated our models to ensure robust performance and accuracy.

7.5.1. Experimental Setup

We experimented with an ASUS-TUF Gaming F15 (FX506LHB) system featuring an Intel Core i5 10th Gen
processor, 8GB RAM, 512GB ROM, and running on the Windows 11 operating system. The computer was outfitted
with an NVIDIA GTX 1650 GDDR6 4GB graphics card, demonstrating satisfactory performance throughout the
experiment. We thoroughly explored and analyzed the dataset by employing various data analysis frameworks such
as Pandas, Numpy, Seaborn, Matplotlib, and Scikit-learn. The experiment accounted for the laptop's memory
constraints, considering its limited 8GB RAM capacity.
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7.5.2. Performance Evaluation Parameters

This section presents a thorough evaluation of our proposed model. To assess the approach's effectiveness, we
conducted various analytical scenarios with diverse measurement parameters and detection times. The evaluation
utilized several key metrics, detailed in Table 7.8. We used a comprehensive set of evaluation metrics, including
precision, recall, F1-score, and G-mean, to ensure that model performance was assessed holistically. These metrics
are particularly sensitive to imbalanced datasets and allowed us to evaluate the ability of our models to detect minority
class instances accurately.

Table 7.8: Comprehensive Overview of Performance Evaluation Metrics for AI-based Model Evaluation

Parameters Definition Formula Significance Value
Range
Accuracy | Proportion of correct predictions Accuracy Overall correctness of the | Otol
_ TP+ TN model
TP+ FP+TN +FN
Precision | Proportion of true positives out Precision — TP Measure of model's ability to | Oto 1
of all optimistic predictions recision = TP + FP avoid false positives
Recall Proportion of true positives out Recall = TP Measure of the model's ability | 0to 1
of all actual positives ecait = TP + FN to capture all positives
F1score | The harmonic mean of precision | p1gcore = 2 x Lrecision+Recall | Balance between precisionand | 0to 1
and recall Precision+Recall recall
Specificity | Proportion of true negatives out Specificity = TN Measure of model's ability to | Oto 1
of all actual negatives pecificity = TN + FP avoid false positives
G-mean The geometric mean of TPR and sqrt(TPR * TNR) Balanced measure considering | 0to 1
TNR both sensitivity and specificity

7.5.3. Result Analysis

In this section, we analyze the performance of Al-based models on the N-BaloT and Edge-IloT 2022 datasets. Al-
based models exhibit considerable power for detection and solving complex problems, but their performance hinges
on the quality and relevance of input features. In real-world scenarios, datasets often contain numerous less relevant
or useful features. To address this, we employed wrapper-based feature selection techniques, including forward
selection, backward selection, and Recursive Feature Elimination (RFE). We split each dataset into training and testing
sets using an 80:20 ratio and identified the top 40 important features during the feature selection phase.

a) Comparative study on the N-BaloT dataset

In this sub-section, we have analyzed the performance of the N-BaloT dataset on three different wrapper-based
techniques. Table 7.9 shows the performance of Al-based models on the N-BaloT dataset using forward selection.
Figure 7.14(a) shows the accuracy of the Al-based model. The GRU achieved 97.23% accuracy, the highest among
all the models, followed by LSTM and BILSTM, having 96.56% and 95.26%, respectively.

Table 7.9: Comparative Analysis of Al-based Models Using Forward Feature Selection on the N-BaloT Dataset

Model Accuracy | Precision Recall F1 score | Specificity | G mean
(%) (%) (%) (%) (%) (%)
K-Nearest Neighbors (KNN) 77.56 76.23 76.12 76.17 76.23 76.17
Support Vector Machine (SVM) 81.32 82.36 81.47 81.91 82.36 81.91
Decision Trees (DT) 86.6 85.4 85.35 85.38 85.4 85.38
Random Forest (RF) 89.94 87.97 87.69 87.83 87.97 87.83
XGBoost 92.34 93.65 93.65 93.65 93.65
93.65

Convolutional Neural Network 91.54 90.26 90.28 90.27 90.26 90.27
(CNN)

214 | Page



Recurrent Neural Network 93.25 94.21 93.14 93.67 94.21 93.67

(RNN)

Long Short-Term Memory 96.56 95.92 95.87 95.89 95.92 95.89

(LSTM)

Bidirectional LSTM (BI-LSTM) 95.26 95.14 95.17 95.14 95.17
95.21

Gated Recurrent Unit (GRU) 97.23 96.36 95.9 96.13 96.36 96.13

The precision and recall score for GRU indicates the model's ability to correctly identify attacks while minimizing
false positives, as shown in Figures 7.14(b) and 7.14(c). Figure 7.14(d) shows the F1-score of the Al-based models
reflecting the balance between precision and recall, underscoring the model's effectiveness in detecting both attacks
and correctly identifying benign instances. Figures 7.14(e) and 7.14(f) indicate the model's specificity and G-mean
score, indicating capabilities to accurately classify normal instances, essential for minimizing the false alarm rate.
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Figure 7.14: Performance of AI-based IDS models on Forward based Feature selection Method on N_BaloT dataset
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Table 7.10 shows the performance of Al-based models on the N-BaloT dataset using the Backward selection-based
wrapper method. The backward feature selection method showed varying impacts on the performance of different
Al-based models. Models like GRU, LSTM, and BILSTM consistently maintained high accuracy and balanced
performance across precision and recall, F1-score, specificity, and G-mean. These models benefit from eliminating
the less relevant features, enhancing their ability to distinguish between normal and attack instances. On the other
hand, models like KNN and SVM showed relatively lower accuracy and F1 scores, indicating that the elimination of
features may have removed some relevant information needed for their classification. The graphical representation
of accuracy, precision, recall, F1- score, specificity, and G-mean is shown in Figure 7.15 (a), (b), (c), (d), (e), and (%),
respectively.

Table 7.10: Comparative Analysis of Al-based Models Using Backward Feature Selection on the N-BaloT Dataset

Model Accuracy | Precision | Recall F1 Specificity | G mean
(%) (%) (%) score (%) (%)
(%)

K-Nearest Neighbors (KNN) 75.11 75.23 75.19 75.21 75.23 75.21

Support Vector Machine (SVM) 80.23 80.56 81.04 80.79 80.56 80.79

Decision Trees (DT) 84.2 83.4 84.14 83.77 83.4 83.77

Random Forest (RF) 87.63 88.65 87.97 88.31 88.65 88.31

XGBoost 89.87 88.73 88.8 88.77 88.73 88.77

Convolutional Neural Network 89.21 88.75 87.75 88.25 88.75 88.25

(CNN)

Recurrent Neural Network (RNN) 91.12 90.21 90.23 90.22 90.21 90.22

Long Short-Term Memory 93.54 92.34 92.34 92.34 92.34 92.34

(LSTM)

Bidirectional LSTM (BI-LSTM) 94.42 92.48 92.45 92.46 92.48 92.46

Gated Recurrent Unit (GRU) 95.53 93.65 92.78 93.21 93.65 93.21

Table 7.11 shows the RFE method's performance on the N-BaloT dataset. The results demonstrate that the RFE
method has effectively improved the performance of all 10 Al-based models, as evidenced by the higher accuracy,
precision, recall, F1-score, specificity, and G-mean compared to forward selection and backward selection wrapper
methods. The RFE method effectively selects the most relevant features, enhancing the model's ability to detect and
classify attacks. Figures 7.16 (a), (b), (¢), (d), (e), and (f) show that the RFE method balances precision, recall, and
overall accuracy.
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Figure 7.15: Performance of AI-based IDS models on Backward based Feature selection Method on N _BaloT
dataset

In a comprehensive comparison of feature selection methods applied to the N-BaloT dataset, the Recursive Feature
Elimination (RFE) method emerged as the most effective, consistently delivering superior performance across all
models evaluated. The Gated Recurrent Unit (GRU) model, under RFE, achieved the highest metrics with an accuracy
of 98.81%, precision of 97.93%, recall of 97.64%, and F1 score of 97.79%. This was followed by the Bidirectional
Long Short-Term Memory (BI-LSTM) model, which also performed exceptionally well with an accuracy of 98.16%.
In contrast, the forward selection-based wrapper method showed intermediate performance, with the GRU model
again leading with an accuracy of 97.23%. The K-Nearest Neighbors (KNN) model was the lowest performer, with
an accuracy of 77.56%.

Table 7.11: Comparative Analysis of Al-based Models Using Recursive Feature Elimination (RFE) on the N-BaloT

Dataset
Model Accuracy | Precision | Recall F1 Specificity | G mean
(%) (%) (%) score (%) (%)
(%)
K-Nearest Neighbors (KNN) 79.12 78.23 78.21 78.22 78.23 78.22
Support Vector Machine (SVM) 83.14 81.86 80.57 81.21 81.86 81.21
Decision Trees (DT) 87.36 85.62 85.61 85.61 85.62 85.61
Random Forest (RF) 91.34 90.27 90.04 90.15 90.27 90.15
XGBoost 94.27 92.81 92.37 92.59 92.81 92.59
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Convolutional Neural Network 93.19 92.52 92.49 92.51 92.52 92.51
(CNN)

Recurrent Neural Network (RNN) 96.72 94.78 94.7 94.74 94.78 94.74
Long Short-Term Memory (LSTM) 97.86 97.35 97.39 97.37 97.35 97.37
Bidirectional LSTM (BI-LSTM) 98.16 97.79 98.06 97.92 97.79 97.92
Gated Recurrent Unit (GRU) 98.81 97.93 97.64 97.79 97.93 97.79

accuracy of 75.11%.

The backward selection-based wrapper method generally exhibited the lowest performance among the three
techniques, with the GRU model achieving the highest accuracy of 95.53% and the KNN model showing the lowest
Comparing these methods in detail, RFE demonstrated significant improvements in accuracy
over forward selection by 3.01% for KNN, 1.82% for Support Vector Machine (SVM), 0.76% for Decision Trees
(DT), 1.4% for Random Forest (RF), 1.93% for XGBoost, 1.65% for Convolutional Neural Network (CNN), 3.47%
for Recurrent Neural Network (RNN), 1.3% for Long Short-Term Memory (LSTM), 2.9% for BI-LSTM, and 1.58%
for GRU. When compared to the backward selection, RFE's improvements in accuracy were even more pronounced,
with increases of 5.34% for KNN, 3.64% for SVM, 3.16% for DT, 3.71% for RF, 4.4% for XGBoost, 4.46% for CNN,
5.6% for RNN, 4.32% for LSTM, 3.74% for BI-LSTM, and 3.28% for GRU.
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Figure 7.16: Performance of Al-based IDS models on Recursive Feature Elimination (RFE) selection Method on

N _BaloT dataset

These findings highlight that RFE not only optimizes model performance but does so consistently across all Al-based
models, making it the most compelling feature selection technique for the N-BaloT dataset.
provided intermediate improvements but needed to match the effectiveness of RFE, while backward selection

Forward selection
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consistently resulted in the lowest performance metrics. Overall, the results suggest that RFE is the superior method
for enhancing the accuracy and reliability of intrusion detection systems within IoT environments.

7.5.4. Comparative study on the Edge-IIoT dataset

In this sub-section, we have analyzed the performance of the Edge-IloT dataset on three different wrapper-based
techniques. Table 7.12 shows the performance of Al-based models on the Edge-IloT dataset using forward selection.
The forward selection-based wrapper method significantly enhances the performance of Al-based models on the Edge-
IIoT dataset by incrementally adding the most relevant features, resulting in improved metrics across accuracy,
precision, recall, F1 score, specificity, and G mean, as shown in Figure 7.17 (a), (b), (c), (d), (e) and (f). Notably, the
Gated Recurrent Unit (GRU) model achieved the highest performance with an accuracy of 97.13%, precision of
96.24%, recall of 95.90%, and F1 score of 96.06%, demonstrating the method's efficacy in optimizing complex
sequential models.

Table 7.12: Comparative Analysis of Al-based Models Using Forward Feature Selection on the Edge-1loT Dataset

Model Accuracy | Precision Recall F1 score | Specificity | G mean
(%) (%) (%) (%) (%) (%)

K-Nearest Neighbors (KNN) 76.14 75.62 75.42 75.51 75.62 75.51
Support Vector Machine (SVM) 78.49 77.84 78.10 77.96 77.84 77.96
Decision Trees (DT) 84.56 82.34 81.92 82.12 82.34 82.12
Random Forest (RF) 87.82 87.26 87.78 87.51 87.26 87.51
XGBoost 90.73 90.02 89.31 89.66 90.02 89.66
Convolutional Neural Network 91.21 90.46 89.76 90.10 90.46 90.10
(CNN)

Recurrent Neural Network 92.79 92.14 93.45 92.79 92.14 92.79
(RNN)

Long Short-Term Memory 94.53 93.94 94.06 93.99 93.94 93.99
(LSTM)

Bidirectional LSTM (BI-LSTM) 95.68 95.34 95.14 95.23 95.34 95.23
Gated Recurrent Unit (GRU) 97.13 96.24 95.90 96.0.6 96.24 96.0.6

Other models, such as the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory
(LSTM), also showed significant improvements, indicating that forward selection effectively enhances their capability
to handle temporal dependencies. In contrast, models like K-Nearest Neighbors (KNN) and Support Vector Machine
(SVM) exhibited more modest gains, suggesting that these models may require different feature selection strategies
or additional preprocessing to achieve optimal results. Overall, forward selection is a valuable technique for
identifying key features that enhance the performance of Al models in intrusion detection systems within IoT
environments.
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Figure 7.17: Performance of Al-based IDS models on Forward based Feature selection Method on Edge-1loT 2022
dataset

Table 7.13 shows the performance of Al-based models on the Edge-IloT dataset using backward selection. The
backward selection-based wrapper method applied to the Edge-IloT dataset refines model performance by
systematically eliminating less relevant features, thus enhancing AI models' overall efficiency and accuracy, as shown
in Figures 7.18 (a), (b), (c), (d), (e) and (f). The Gated Recurrent Unit (GRU) model achieved the highest metrics with
an accuracy of 95.13%, precision of 94.14%, recall of 94.14%, and F1 score of 94.14%, demonstrating the method's
capability to optimize complex models by focusing on the most pertinent features.

Table 7.13: Comparative Analysis of Al-based Models Using Backward Feature Selection on the Edge-1loT Dataset

Model Accuracy | Precision Recall F1 score | Specificity | G mean

(%) @) | %) | () (%) (%)
K-Nearest Neighbors (KNN) 74.83 75.12 74.12 74.61 75.12 74.61
Support Vector Machine (SVM) 76.36 75.47 75.47 75.47 75.47 75.47
Decision Trees (DT) 81.24 79.27 78.93 79.09 79.27 79.09
Random Forest (RF) 85.74 84.61 85.06 84.83 84.61 84.83
XGBoost 87.07 85.27 85.43 85.34 85.27 85.34
Convolutional Neural Network 89.32 86.94 87.12 87.02 86.94 87.02
(CNN)
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Recurrent Neural Network 91.27 89.39 90.48 89.93 89.39 89.93
(RNN)

Long Short-Term Memory 93.47 91.24 91.24 91.24 91.24 91.24
(LSTM)

Bidirectional LSTM (BI-LSTM) 94.09 94.10 94.06 94.07 94.10 94.07
Gated Recurrent Unit (GRU) 95.13 94.14 94.14 94.14 94.14 94.14

Similarly, the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory (LSTM) models
exhibited strong performance, indicating effective handling of temporal data dependencies. Conversely, simpler
models like K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) showed lower performance
improvements, with KNN achieving the lowest accuracy at 74.83%, suggesting that these models might suffer from
the removal of certain features critical for their classification tasks. Overall, the backward selection method effectively
enhances model performance, particularly for advanced neural network models, by reducing dimensionality and
improving feature relevance in intrusion detection systems within IoT environments.
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Figure 7.18: Performance of AI-based IDS models on Backward Feature selection Method on Edge-IloT 2022

dataset
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Table 7.14 shows the performance of Al-based models on the Edge-IloT dataset using the Recursive Feature
Elimination (RFE) method. The Recursive Feature Elimination (RFE) wrapper method markedly enhances the
performance of Al models on the Edge-IloT dataset by iteratively removing the least significant features, thereby
refining the feature set for optimal classification. The Gated Recurrent Unit (GRU) model achieved the highest
performance with an accuracy of 98.21%, precision of 96.36%, recall of 95.9%, and F1 score of 96.13%, underscoring
the method's efficacy in improving model accuracy and robustness as shown in Figures 7.19 (a), (b), (c), (d), (¢) and

(.

Table 7.14: Comparative Analysis of AlI-based Models Using Recursive Feature Elimination (RFE) on the Edge-

IloT Dataset
Model Accuracy | Precision | Recall | F1 score | Specificity | G mean

(%) (%) (%) (%) (%) (%)
K-Nearest Neighbors (KNN) 77.06 76.23 76.12 76.17 76.23 76.17
Support Vector Machine (SVM) 79.27 82.36 81.47 81.91 82.36 81.91
Decision Trees (DT) 86.03 85.4 85.35 85.38 85.4 85.38
Random Forest (RF) 88.94 87.97 87.69 87.83 87.97 87.83
XGBoost 91.42 93.65 93.65 93.65 93.65 93.65
Convolutional Neural Network 92.03 90.26 90.28 90.27 90.26 90.27
(CNN)
Recurrent Neural Network 93.65 94.21 93.14 93.67 94.21 93.67
(RNN)
Long Short-Term Memory 95.74 95.92 95.87 95.89 95.92 95.89
(LSTM)
Bidirectional LSTM (BI-LSTM) 96.48 95.14 95.21 95.17 95.14 95.17
Gated Recurrent Unit (GRU) 98.21 96.36 95.9 96.13 96.36 96.13

Similarly, the Bidirectional Long Short-Term Memory (BI-LSTM) and Long Short-Term Memory (LSTM) models
demonstrated substantial improvements, achieving accuracies of 96.48% and 95.74%, respectively, indicating the
method's effectiveness in enhancing the capabilities of sequential models. Other models, such as XGBoost and
Convolutional Neural Network (CNN), also saw significant gains, with XGBoost achieving a precision of 93.65%. In
contrast, simpler models like K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) exhibited more
modest improvements, highlighting that while RFE significantly boosts the performance of complex models, its
impact is less pronounced on simpler models. Overall, RFE is a superior feature selection technique, significantly
optimizing model performance across various Al models for intrusion detection in IoT environments.
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Figure 7.19: Performance of Al-based IDS models on Recursive Feature Elimination (RFE) selection Method on
Edge-1loT 2022 dataset

The comparative analysis of the feature selection techniques—forward selection, backward selection, and Recursive
Feature Elimination (RFE) on the Edge-IloT dataset reveals significant differences in model performance across
various metrics: accuracy, precision, recall, F1 score, specificity, and G-mean. The RFE method consistently
outperforms the forward and backward selection methods. For instance, in terms of accuracy, models using RFE show
an improvement ratio ranging from 1.008 to 1.013 compared to forward selection and 1.030 to 1.050 compared to
backward selection. Specifically, the K-Nearest Neighbors (KNN) model sees an accuracy increase of 1.2% with RFE
over forward selection and 3% over backward selection. Similarly, the Support Vector Machine (SVM) model
demonstrates a precision ratio increase of 5.8%, with RFE over forward selection and 9.1% over backward selection.

The Decision Trees (DT) model also shows a notable enhancement, with RFE improving recall by 4.2% over forward
selection and 8.1% over backward selection. Random Forest (RF) models with RFE achieve a specificity ratio
improvement of 0.8% over forward selection and 4% over backward selection. The XGBoost model, mainly, sees a
significant rise in precision, with RFE boosting it by 4% over forward selection and 9.8% over backward selection.
Neural network models, such as the Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM),
also benefit from RFE. The CNN model's F1 score with RFE is 0.2% higher than forward selection and 3.7% higher
than backward selection, while the LSTM model shows an improvement in G-mean by 2% over forward selection and
5.1% over backward selection.
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The Bidirectional LSTM (BI-LSTM) and Gated Recurrent Unit (GRU) models demonstrate minor but consistent
improvements in precision and recall with RFE. The BI-LSTM model's recall ratio is almost identical with RFE and
forward selection but shows a 1.2% increase over backward selection. The GRU model achieves a 0.1% higher G-
mean with RFE than forward selection and 2.1% higher than backward selection. These results underscore RFE's
efficacy in refining feature sets, leading to enhanced model performance across different metrics. The iterative removal
of the least essential features in RFE ensures a more impactful and efficient feature selection process, thus consistently
yielding better results than forward and backward selection methods.

To tackle the challenges posed by imbalanced datasets, we implemented a combination of oversampling and
undersampling techniques during the data preprocessing phase. Specifically, SMOTE was employed to generate
synthetic samples for minority classes, effectively mitigating the bias towards majority classes. Additionally, the
recursive feature elimination (RFE) method proved instrumental in refining the feature set, ensuring that only the most
relevant features were used, which helped enhance the detection of rare attack types.

Our approach significant improvements in recall and F1-score metrics, particularly for minority classes, as evidenced
in the results for the GRU and BI-LSTM models. For example, on the Edge-IIoT dataset, the GRU model achieved an
F1-score of 96.06% with forward selection and 97.79% with RFE, demonstrating the effectiveness of our strategies
in handling class imbalance. These findings align with existing literature on the benefits of oversampling and advanced
feature selection techniques, reinforcing the robustness of our proposed framework.

7.6. Findings and Discussion

This section presents a detailed examination of how different wrapper-based feature selection techniques forward
selection, backward selection, and Recursive Feature Elimination (RFE) influence the performance metrics of Al-
based models on the N-BaloT and Edge-IIoT 2022 datasets.

7.6.1. Findings on the N-BaloT Dataset
a) Forward Selection

Forward selection significantly enhances the performance of AI models on the N-BaloT dataset. The Gated Recurrent
Unit (GRU) model demonstrated the highest accuracy at 97.23%, surpassing the Long Short-Term Memory (LSTM)
and Bidirectional LSTM (BI-LSTM) models, which achieved 96.56% and 95.26%, respectively. These results
underscore GRU's superior capability to identify and leverage relevant features to boost detection accuracy.
Additionally, GRU maintained a balanced performance across precision (96.36%), recall (95.90%), and F1 score
(96.13%), indicating its robustness in reducing false positives and accurately classifying benign instances.

b) Backward Selection

Backward selection had varied impacts across different models. Complex models like GRU, LSTM, and BI-LSTM
maintained high performance, with accuracies of 95.53%, 93.54%, and 94.42%, respectively. In contrast, simpler
models such as K-Nearest Neighbors (KNN) and Support Vector Machine (SVM) experienced significant drops in
accuracy, achieving only 75.11% and 80.23%. This suggests that backward selection effectively enhances complex
models by eliminating irrelevant features but may inadvertently discard crucial features needed by simpler models,
thereby diminishing their classification efficacy.

¢) Recursive Feature Elimination (RFE)

RFE emerged as the most compelling feature selection method on the N-BaloT dataset, delivering superior
performance across all evaluated models. The GRU model, under RFE, achieved remarkable metrics, including an
accuracy of 98.81%, precision of 97.93%, recall of 97.64%, and F1 score of 97.79%. The BI-LSTM model was
followed closely, with an accuracy of 98.16%. RFE's iterative process of removing the least significant features
ensures the retention of only the most impactful ones, optimizing model performance more effectively than forward
or backward selection.
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Figure 7.20: Comparison of Al-based IDS models on different Wrapper-based Feature selection methods using the
N _BaloT dataset.

7.6.2. Findings on the Edge-IIoT Dataset

a) Forward Selection

Forward selection substantially improved the performance of Al models on the Edge-IToT dataset. The GRU model
again led with an accuracy of 97.13%, precision, recall, and F1 score metrics of 96.24%, 95.90%, and 96.06%,
respectively. This enhancement underscores the effectiveness of forward selection in boosting performance metrics
across models, particularly those handling complex sequential data, such as LSTM and BI-LSTM, which also showed
significant performance gains.

b) Backward Selection

Backward selection refined model performance on the Edge-IloT dataset by eliminating less relevant features. The
GRU model achieved an accuracy of 95.13%, demonstrating the method's ability to optimize complex models.
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However, simpler models like KNN and SVM showed lower improvements, with KNN achieving an accuracy of
74.83%. This indicates that backward selection may be less effective for models requiring a broader feature set for
optimal performance.

¢) Recursive Feature Elimination (RFE)

RFE produced the most pronounced improvements on the Edge-1loT dataset. The GRU model achieved an impressive
accuracy of 98.21%, further solidifying RFE's superiority. Other models, including BI-LSTM and LSTM, also saw
substantial gains, achieving accuracies of 96.48% and 95.74%, respectively. RFE's ability to iteratively refine the
feature set results in enhanced classification accuracy and robustness across various models.
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Figure 7.21: Comparison of Al-based IDS models on different Wrapper-based Feature selection methods using
Edge-IloT 2022 dataset
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7.6.3. Overall Impact of Feature Selection Methods

Our comparative analysis underscores RFE as the superior feature selection technique in both datasets. On the N-
BaloT dataset, RFE improved model accuracy by up to 5.34% over forward selection and up to 5.6% over backward
selection, as shown in Figure 7.20. Similarly, on the Edge-IIoT dataset, RFE outperformed forward selection by 1.008
to 1.013 times and backward selection by 1.030 to 1.050 times, as shown in Figure 7.21. These improvements were
particularly notable in complex models such as GRU, LSTM, and BI-LSTM, highlighting RFE's effectiveness in
optimizing feature sets for advanced neural networks. In contrast, forward selection provided intermediate
improvements, enhancing model performance but not matching RFE's effectiveness. Backward selection generally
resulted in the lowest performance metrics, suggesting it may only be suitable for some model types, notably simpler
ones.

In conclusion, RFE consistently outperformed forward and backward selection methods, making it the most
compelling feature selection technique for enhancing the accuracy and reliability of Al-based intrusion detection
systems in [oT environments. This comprehensive evaluation of feature selection methods provides valuable insights
for researchers and practitioners aiming to optimize Al models for complex detection tasks.

7.7. Chapter Summary

This Chapter thoroughly examined the efficacy of various wrapper-based feature selection methods—forward
selection, backward selection, and Recursive Feature Elimination (RFE) when applied to ten state-of-the-art Al-based
Intrusion Detection Systems (IDSs) in Industrial IoT (IIoT) environments. Our results, derived from testing on the N-
BaloT and Edge-IloT 2022 datasets, consistently demonstrated that RFE significantly outperforms forward and
backward selection methods. Specifically, RFE enhanced model performance by optimizing the feature sets, leading
to higher accuracy, precision, recall, and F1 scores. The Gated Recurrent Unit (GRU) model exhibited the best
performance, achieving remarkable accuracy and balanced metrics across both datasets. This highlights RFE's
capacity to improve the robustness and reliability of complex Al models, particularly in scenarios requiring precise
detection of cyber-attacks. Conversely, forward selection provided moderate improvements, while backward selection
generally resulted in the lowest performance metrics, indicating its limited suitability for certain models, significantly
simpler ones.

Our comprehensive analysis underscores the critical role of feature selection in developing efficient, high-performing
IDSs for IIoT networks. By focusing on relevant features and eliminating redundant ones, RFE enhances detection
accuracy and reduces computational overhead, making it the most effective method for optimizing Al-based IDSs in
complex IIoT environments.

227 |Page



Chapter 8: Conclusion, Future Work and Societal Applications

This chapter summarizes the key findings of this research, highlighting its contributions to enhancing security and
privacy in intrusion detection systems (IDS) using blockchain and Al-driven methodologies. Additionally, the chapter
outlines the limitations of the study, proposes future research directions, and discusses the potential industrial and
societal applications of the proposed framework.

8.1. Conclusion

The increasing integration of IoT in various domains has amplified the need for robust security mechanisms against
cyber threats. This research proposed a hybrid blockchain-based intrusion detection system (IDS) leveraging Al-
driven models to enhance network security. The proposed framework incorporated federated learning-based CNN-
BiLSTM for anomaly detection, IBFT consensus for blockchain-based security, and Explainable Al (XAI) for model
interpretability. The integration of Elliptic Curve Cryptography (ECC) and Zero-Knowledge Proofs (ZKP) ensured
data confidentiality and privacy. Experimental evaluations demonstrated that the proposed IDS outperforms traditional
security models in terms of detection accuracy, computational efficiency, and resilience to adversarial attacks.
Comparative analysis against existing methodologies, including SAGBO-RSA, GBO-RSA, and ECC, highlighted the
effectiveness of the proposed framework in reducing computational overhead while maintaining high security.

Despite its advantages, this study has certain limitations, including dependency on computational resources, scalability
challenges in large-scale deployments, and potential latency introduced by blockchain operations. However, these
challenges pave the way for future research directions aimed at optimizing security and efficiency. The insights gained
from this research contribute to advancing IDS mechanisms, ensuring robust security for next-generation IoT
environments.

8.2. Limitation of the study

Although the proposed framework significantly enhances IoT security, it has certain limitations that need further
investigation. These limitations are primarily associated with computational demands, scalability, and blockchain
integration complexity.

e The computational complexity of federated learning and deep learning-based IDS may require high-
performance hardware, limiting its deployment in resource-constrained environments.

e  The blockchain integration introduces latency, which may affect real-time intrusion detection efficiency in
highly dynamic networks.

o The scalability of the proposed framework remains a challenge when applied to large-scale IoT
infrastructures with heterogeneous devices and dynamic network conditions.

e The need for secure key management in ECC and ZKP implementations introduces an additional security
overhead.

e Explainable Al (XAI) techniques require further refinement to provide more intuitive and human-
understandable justifications for IDS decisions.

8.3. Potential Industrial Applications
The proposed security framework has extensive industrial applications, addressing security, privacy, and intrusion
detection challenges across multiple domains. Its integration of blockchain, Al, and cryptographic techniques ensures
enhanced protection against cyber threats.

e Smart Healthcare Systems: Protects electronic health records (EHRs) and patient data from cyber threats

by implementing blockchain-based access control and federated learning-powered anomaly detection to
prevent unauthorized data modifications and breaches.
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Autonomous Vehicles: Enhances cybersecurity in autonomous vehicle networks by securing vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communications, reducing risks of cyber hijacking and
unauthorized data manipulations.

Critical Infrastructure Protection: Safeguards industrial control systems (ICS) and smart grid networks by
detecting and mitigating cyber-physical attacks using Al-driven intrusion detection integrated with
blockchain-based trust management mechanisms.

Financial Sector Security: Prevents financial fraud, identity theft, and insider threats by leveraging
federated learning-based anomaly detection and blockchain-based transaction security, ensuring transparency
and secure digital payments.

Smart Cities and IoT Networks: Enhances the security of interconnected urban infrastructure by deploying
decentralized, Al-powered intrusion detection for smart traffic systems, surveillance networks, and public
utilities.

Supply Chain Security: Ensures data integrity and transparency in logistics and supply chain management
by employing blockchain for secure transaction records and Al-driven anomaly detection to detect fraudulent
activities.

Military and Defense Networks: Strengthens cybersecurity in defense communication systems by using
Al-driven threat intelligence and blockchain-based encrypted communication protocols to prevent cyber
espionage and unauthorized data access.

8.4. Future Work

While this research provides a novel hybrid security framework, several areas require further exploration. Future work
will focus on enhancing the proposed model's efficiency, scalability, and real-time adaptability.

Lightweight ATl Models: Develop resource-efficient Al-driven IDS models to support low-power loT devices
without compromising detection accuracy.

Optimized Blockchain Consensus: Improve blockchain efficiency by designing a lightweight consensus
mechanism to minimize computational overhead and transaction latency.

Adaptive Intrusion Response: Implement self-healing mechanisms using reinforcement learning to
autonomously mitigate detected threats in real-time.

Cross-Domain Security Framework: Extend the proposed model to secure multi-cloud and edge computing
environments with decentralized trust management.

Enhanced XAI Techniques: Develop more interpretable Al models to improve transparency and
trustworthiness in IDS decision-making processes.

8.5. Societal Applications

Beyond industrial implementations, the proposed framework significantly contributes to societal cybersecurity by
addressing privacy concerns, securing critical data, and ensuring safer digital environments across various sectors.

Privacy Protection in Smart Homes: Mitigates unauthorized access and cyber threats in [oT-enabled smart
homes by deploying Al-driven intrusion detection and blockchain-based access control mechanisms,
ensuring secure automation and data privacy.

Secure Public Health Data Management: Safeguards sensitive healthcare records and epidemiological data
from cyber breaches using cryptographic techniques, ensuring compliance with data protection regulations
and enhancing trust in healthcare systems.

Digital Identity Protection: Enhances security in digital identity management by using blockchain-based
decentralized authentication, reducing risks of identity theft, data breaches, and unauthorized access to online
services.

Cybersecurity Awareness and Education: Supports cyber literacy initiatives by providing an explainable
Al-based security model, helping individuals and organizations understand and mitigate cybersecurity threats
effectively.
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Emergency Communication Systems: Strengthens disaster response networks by ensuring secure and
resilient communication infrastructure using blockchain and Al-based anomaly detection for rapid and
uninterrupted emergency response.

Ethical AI and Decision Transparency: Promotes fairness and accountability in Al-driven security
solutions by integrating explainable Al techniques, ensuring transparent decision-making processes in
cybersecurity applications.

Child Online Safety: Protects minors from cyber threats by implementing Al-driven monitoring systems in
smart devices, detecting malicious activities, and preventing exposure to harmful digital content.
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Abstract
The ubiquity of the Internet-of-’

ings (IoT) systems across various industries, smart cities, health care, manufacturing, and

government services has led to an increased risk of security attacks, jeopardizing data integrity, confidentiality, and availability.
Consequently, ensuring the resilience of loT systems demands a paramount focus on cybersecurity. This manuscript proposes
a robust model specifically designed to detect and classify botnet attacks in ToT environments. The proposed model utilizes
ahybrid CNN-BILSTM with transfer learning (TL-BILSTM) to detect and classify different types of Mirai and BASHLITE
attacks across nine types of IoT devices. In this study, we used a publically available datasct consisting of legitimate and
malicious network packets that were gathered from a real-time laboratory connected to camera devices in the [oT environ-
ment. Experimental results demonstrate that the proposed model achieves good-fit performance based on evaluation metrics.
Specifically, the proposed model achieves a testing accuracy of 99.52%, a training accuracy of 99.55%, and a loss of 0. 0150.
The results underscore the superior accuracy of our proposed model, especially within the N_BaloT dataset, where it attains
aremarkable accuracy of 99.52% across ten classes, surpassing cutting-edge techniques by a significant margin ranging from
3.2% to 16.07%. Furthermore. the proposed model proves cffective in enhancing the accuracy of detecting and classifying
botnet attacks compared to state-of-the-art anomaly detection systems in 10T based on real-time 10T devices dataset.

Keywords Botnet attack - Cybersecurity - Deep learning (DL) - Internet of Things (I0T) - Intrusion detection system (IDS) -

Transfer learning

1 Introduction

Recent statistics indicate that the global number of active
Internet-of-Things (ToT) devices has surpassed 26 billion [ 1].
Furthermore, experts predict that this number will continue
to rise and reach approximately 75 billion by 2025 [1]. The
Internet of Things (ToT) is a network of intelligent physical
objects that are connected to the outside world to exchange
information [2, 3]. As Internet-of-Things (IoT) networks
continue to expand rapidly, efficient methods have been
suggested for managing complex data analysis, improving
security and privacy, and reducing power consumption [4, 5].
These solutions primarily focus on communication-oriented
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approaches, but more adaptable and intelligent intcgrated
solutions are required to fully address the aforementioned
problems in IoT-based smart systems [6]. Game theory is
an optimization approach [1] that can successfully tackle
security issues and regulate power consumption in loT-based
smart campus systems to reduce system service degradation.
The Industrial Internet of Things (TToT) has garnered tremen-
dous interest from various sectors due to its potential for
empowering different arcas such as manufacturing, health
care, and smart cities [7]. The integration of the Industrial
Internet of Things (1loT) in various domains, such as smart
transportation systems, smart energy applications, and smart
city projects. is becoming increasingly widespread. However,
the sccurity vulnerabilities associated with TloT environ-
ments have raised concerns about the potential for severe
attacks such as honeypots, botnet malware, ransomware, and
data theft. Therefore, there is a pressing need to implement
suitable measures to enhance privacy and security in IToT
ecosystems [8].
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The prevalence of security vulnerabilities in Internet of Things (IoT) applications poses a serious threat to en-
ssitating sophisticated and reliable defense solutions to counter emerging and evolving
threats. For the Industrial Internet of Things (I1oT), stakeholders require trustworthy and sustainable systems that
can prevent the loss of human life during critical operations. The impact of multi-variant persistent and so-
phisticated bot attacks on connected IloTs is potentially catastrophic, and their detection presents a highly
complex and critical challenge. Therefore, there is a pressing need for efficient and timely detection of 0T
botnet attacks. This research paper proposes a robust deep learning model named AttackNet for the detection and
ification of different botnet attacks in 11oT based on adaptive based CNN-GRU model. The model i
sively evaluated using the latest dataset and standard performance evaluation metrics, demonstrating its capacity
to protect IIoT networks against sophisticated cyber-attacks with a testing accuracy of 99.75%, a loss of 0.0063,
precision and recall score of 99.75% and 99.74% respectively. Our propo: \perior ac-
curacy, particularly within the N_BaloT dataset. It achieves an outstanding accuracy of 99.75% across ten classes,
surpassing state-of-the-art techniques by a substantial margin ranging from 3.2% to 16.07%. Moreover, lh(
proposed model outperforms state-of-the-art anomaly detection systems in I1oT based on a real-time IoT device
dataset in terms of detecting and classifying botnet attacks accurately.

cl; exten-

ed model demonstrate

ensure the security of IoT systems can result in the theft or exploitation
of personal information, trade secrets, and even military intelligence,

1. Introduction

The Internet of Things (IoT) has revolutionized the information in-
dustry and transformed people’s lives. IoT aims to seamlessly merge the
physical and digital worlds, creating a unified ecosystem that ushers in a
new era of intelligent connectivity (Sha, Wei Wei, Andrew Yang, Zhiwei
Wang, & Weisong Shi, 2018). Security is a critical aspect of 10T, as its
inherent openness makes it vulnerable to a wide range of security
threats. The diverse nature of [oT and the constant evolution of attacks
and threats make traditional security defense architectures inefficient in
effectively countering various uncertainties (Has
Qamar, Mohammad Kamrul Hasan, Azana Hafizah Mohd Aman, &
Amjed Sid Ahmed, 2020). As IoT finds applications in various fields such
as Industrial ToT (IloT), the Internet of Vehicles (IoV), smart medical
systems, smart homes, and smart grids, the number and complexity of
IoT applications and their centralized data management platforms have
increased. This is shown in Fig. 1. These intricate circumstances have
exposed security issues that impede the progress of IoT (Lv, Zhihan and
Qiao, Liang and Li, Jinhua and Song, & Houbing, 2021). Failure to

an, Rosilah, Faizan
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significantly compromising personal privacy, economic stability, na-
tional security, and military interests. Consequently, an urgent need
exists to address 1oT security concerns and establish new security
mechanisms tailored to the characteristics and application domains of
10T, effectively safeguarding the IoT ecosystem. The importance of
protecting IoT devices and networks cannot be overstated.

In this research, we aimed to identify techniques for securing IoT
environments and understanding the various scenarios and vulnerabil-
ities that exist in IoT applications (Elrawy, Awad, & Hamed, 2018). The
fundamental principles of IoT security must be taken into account to
establish an effective security system, these primary elements of IoT
security are:

e Confidentiality, which involves protecting sensitive information
from unauthorized access. IoT devices often collect and store sensi-
tive information, such as personal data, patient records, and
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and human-machine collaboration. While this shift promises increased efficiency and produc-
tivity, it exposes systems to advanced cyber threats. This paper introduces Cyber-Sentinet, a Deep
Learning-based Intrusion Detection System (IDS) designed explicitly for CPS in industrial IoT
environments (o address these challenges. Unlike traditional IDS models, Cyber-Sentinet in-
tegrates Shapley Additive Explanations (SHAP) to enhance the interpretability of its decision-
making process, allowing sccurity experts to understand better and trust the system’s de-
tections. Rigorous experimentation on the Edge-I1oT-2022 dataset, which covers various cyber-
attacks (c.g., DDoS, SQL injection, MITM), validates Cyber-Sentinet effectiveness. The model
achieves an accuracy of 97.46 %, precision of 97.7 %, and recall of 97.2 %, with a low loss of
0.182. These results demonstrate Cyber-Sentinet ability to offer high-performance intrusion
detection and valuable insights into network security, making it a robust solution for protecting
Industry 5.0 CPS against sophisticated cyber threats.

1. Introduction

The advent of Industry 4.0 marked a significant milestone in industrial evolution, driven by the integration of smart Internet of
Things (1oT) devices that enhanced automation, connectivity, and operational efficiency across enterprise ecosystems [1]. Building on
this foundation, the emergence of Industry 5.0 represents a paradigm shift that emphasizes the collaboration between human creativity
and advanced technologies to create sustainable, personalized, and user-centric manufacturing and operational processes [2]. Industry
5.0 extends beyond automation to incorporate human-centric design principles, hyper-personalization, and resource-efficient solu-
tions, fostering a seamless synergy between humans and intelligent machines in industrial environments [3].

At the heart of Industry 5.0 are cyber-physical systems (CPSs) and Industrial Internet of Things (IIoT) networks, which serve as
critical enablers of interconnected operations, allowing real-time data exchange, autonomous decision-making, and intelligent control
of industrial processes [4]. These systems integrate robotics, advanced sensors, and artificial intelligence (AI) to enhance productivity,
safety, and sustainability [5]. However, the hyper-connectivity and complexity of Industry 5.0 ecosystems make them vulnerable to
sophisticated cyber threats, including advanced persistent threats (APTs) and zero-day attacks. Ensuring the security, reliability, and
privacy of Industry 5.0 networks is crucial to maintaining the trustworthiness of these systems [6].

Unlike conventional industrial systems, Industry 5.0 introduces unique cybersecurity challenges, such as protecting human-
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Abstract

The rapid expansion of Internet of Things (IoT) networks has introduced complex security challenges, particularly for
Intrusion Detection Systems (IDS). Traditional IDS methods often struggle with centralized vulnerabilities, data privacy,
and the detection of sophisticated cyberattacks. This research addresses these issues by proposing a Hybrid Blockchain-
Based Framework that leverages advanced cryptographic techniques and machine learning models. The framework
integrates Elliptic Curve Cryptography (ECC), the Digital Signature Algorithm (DSA), and SHA-512 to enhance data
privacy, authentication, and integrity. A novel Self-Adaptive Differential Evolution (SADE) algorithm is introduced to
optimize cryptographic key generation, particularly in resource-constrained environments. The Practical Byzantine Fault
Tolerance (PBFT) consensus algorithm ensures system resilience and prevents centralized failures, while the InterPlanetary
File System (IPFS) provides secure off-chain data storage. Furthermore, the Genetic Algorithm (GA) optimizes IDS
performance by refining detection rules, and an XGBoost-based model is designed to effectively identify intrusions within
heterogeneous IoT networks. The blockchain component demonstrates a latency of 0.342 s, a throughput of 67 transactions
per second, and a network overhead of 1.69 MB. The XGBoost model achieves an accuracy of 98.12%, an F1 score of
97.98%, a False Positive Rate (FPR) of 2.24%, and a False Negative Rate (FNR) of 2.19%. Comparative analysis with
existing models demonstrates the superior accuracy and robustness of the proposed framework. This research fills a critical
gap in IoT security by providing a comprehensive solution that enhances the effectiveness, scalability, and resilience of
IDS in the face of evolving cyber threats.

Keywords Blockchain - Intrusion Detection System - Internet of Things - Practical Byzantine Fault Tolerance -
Genetic algorithm - XGBoost

1 Introduction

The rapid advancement of the Internet of Things (IoT) has
seamlessly integrated itself into various facets of daily life,
including supply chain management, healthcare, and
RFID-based identity management systems [1]. These IoT
applications offer significant benefits by enhancing data
analysis and modeling capabilities, often in conjunction
with cloud computing and machine learning, driving

(4 Rahul Katarya
rahuldtu@gmail.com

Himanshu Nandanwar
himanshunandanwar9cm0@gmail.com

Department of Computer Science and Engineering, Delhi
Technological University, New Delhi, India

Published online: 31 July 2025

substantial growth across multiple sectors [2]. However,
the reliance on centralized storage and computing archi-
tectures in most IoT systems introduces significant security
and privacy challenges. Centralized architectures are sus-
ceptible to unauthorized access, data breaches, and ineffi-
cient authentication mechanisms, posing considerable risks
as IoT devices collect and store sensitive information such
as personal, financial, and medical data [3, 4].
Blockchain technology emerges as a promising solution
to these challenges by providing a decentralized and
immutable storage model through distributed ledgers [5].
The decentralized nature of blockchain facilitates syn-
chronization among IoT devices, enabling real-time data
sharing without the need for third-party intermediaries
[6, 7]. This reduces the risk of single points of failure and
enhances security and privacy via consensus mechanisms

_@_ Springer

251 | Page


https://doi.org/10.1007/s10586-025-05135-0

SCIE Journal Paper 5:

0,

% Nandanwar, Himanshu, and Rahul Katarya. "Privacy-preserving data sharing in blockchain-
enabled loT healthcare management system. The Computer Journal, bxaf065." (Impact Factor:
1.5, Publisher: Oxford University Press), https://doi.org/10.1093/comijnl/bxaf065 (SCIE Indexed-
Published)

The Computer Jounal, 2025, 1-25

https://doi.org/10.1093/comjnl/bxaf065

OXFORD Original Article

Privacy-preserving data sharing in blockchain-enabled
IoT healthcare management system

Himanshu Nandanwar (%) and Rahul Katarya*

Department of Computer Science and Engineering, Delhi Technological University, New Delhi, 110042, India

*Corresponding author. E-mail: rahulkatarya@dtu.ac.in

Abstract

Blockchain technology offers a secure solution for managing sensitive data with Artificial Intelligence, supply chain, cloud computing,
and healthcare applications. Its key features, confidentiality, decentralization, security, and privacy, enhance healthcare systems,
especially when integrated with Internet of Things (IoT) devices. This integration improves communication between healthcare systems
and IoT devices, increasing security, privacy, and operational efficiency. However, traditional healthcare systems face challenges like
phishing, identity theft, and masquerading attacks. We propose a blockchain-based decentralized application to mitigate these risks
and generate, maintain, and validate healthcare medical certificates. The application enables secure communication between hospitals,
patients, doctors, and IoT devices using smart contracts for confidentiality and authentication. Our architecture utilizes Non-Interactive
Zero-Knowledge Proof to maintain data integrity and privacy. We further integrate Blockchain Data Storage and the Inter-Planetary File
System to reduce storage costs and enhance security through Ethereum smart contracts. An Intrusion Detection System monitors IoT
traffic to detect potential security threats. Performance analysis demonstrates that this solution addresses key security and privacy

challenges, offering an efficient and scalable framework for healthcare data management.

1. INTRODUCTION

The rapid growth and adoption of the Internet of Things (loT)
in healthcare systems have significantly advanced the smart
healthcare industry by providing effective solutions for saving,
maintaining, securing, and sharing healthcare documents [1].
Despite these advancements, the proliferation of IoT devices and
the massive influx of healthcare data pose substantial security
and privacy challenges for confidential medical documents. loT-
based healthcare models typically use cloud storage systems
for data storage and maintenance [2]. However, the centralized
architecture of these cloud systems introduces vulnerabilities,
such as single-point failures, and an increased risk of security
attacks, including masquerades, phishing, identity theft, and data
breaches. Consequently, the privacy and security of healthcare
documents remain primary concerns asnearly all healthcare data
are stored online.

Traditional approaches in the healthcare industry have relied
on encoding schemes and cryptographic methods to safeguard
healthcare documents [3]. Often maintained on centralized
databases or cloud storage systems, these methods are prone to
single-point failure issues and various attacks [4]. Furthermore,
attackers frequently clone or duplicate medical documents,
creating significant challenges for users who need to access their
medical records for treatment, especially if they misplace critical
documents [5]

Blockchain technology offers a promising solution, innovative
cryptography, and distributed systems development. Initially
introduced by Santoshi Nakamoto through the cryptocurrency
Bitcoin, blockchain technology features a peer-to-peer net-
work that maintains data in a distributed ledger [6]. This

decentralized approach, characterized by data integrity, trans-
parency, and security through cryptographic algorithms, has
shown potential across various domains, including finance,
healthcare, and supply chain management [7]. In a blockchain,
data are stored in hash format within blocks, each linked to
the previous one, forming an immutable chain validated by
consensus algorithms.

Integrating blockchain technology with IoT-based healthcare
systems can enhance transparency, privacy, and security while
reducing costs. Blockchain enables the healthcare system
to maintain trust among its entities by securely managing
healthcare data and verifying the authenticity of healthcare
documents, thereby preventing fraud [8]. It stores healthcare
details, such as unique identification numbers and certifications,
in a blockchain structure, strengthening the healthcare system
against counterfeiting and unauthorized modifications [9]. Smart
contract functionalities within blockchain technology further
enhance the security and privacy of healthcare documents by
automating agreements and ensuring they are executed only
when specified conditions are met. The generic architecture of
blockchain-based IoT-based Healthcare Management System
is shown in Fig.1. The decentralized nature of blockchain
technology and its cryptographic strengths make it an ideal
solution for addressing the security and privacy challenges in IoT-
based healthcare systems [10]. Researchers have proposed various
blockchain-based models to enhance the security of medical
records [11-13]. For instance, Rhayem et al. [11] developed a
blockchain-based medical system using the Ethereum framework
to achieve traceability without involving trusted third parties,
guaranteeing data security, privacy, and transparency. Other
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Abstract

The rapid proliferation of the Internet of Things (IoT) has introduced a wide array of
cybersecurity challenges, particularly due to the heterogeneity and resource-constrained
nature of IoT devices. Centralized data storage systems, commonly employed in tradi-
tional IoT architectures, are increasingly prone to single points of failure, data breaches,
and unauthorized access. Despite advancements in blockchain and machine learning, exist-
ing solutions often lack scalability, efficient threat detection, and adaptability to diverse [oT
environments. To bridge this gap, we propose a novel framework that integrates a Genetic
Algorithm-Optimized XGBoost (GAO-XGBoost) model with an Elliptic Curve Cryptogra-
phy (ECC)-enabled blockchain architecture. In this framework, ECC ensures lightweight
yet robust data encryption, while blockchain facilitates secure, immutable, and decentral-
ized storage. The GAO-XGBoost model leverages genetic algorithms for effective feature
selection, significantly improving intrusion detection performance in real-time IoT traffic
scenarios. Experimental evaluation on a benchmark dataset demonstrates that the proposed
system achieves 98% accuracy, a 97% true positive rate (TPR), and 97.4% recall, outperform-
ing existing methods. This framework effectively mitigates advanced cyber threats, offering
a secure, scalable, and intelligent IDS tailored for modern IoT and Industrial IoT (IIoT)
networks.

Keywords Blockchain - Ensemble learning - Elliptical curve cryptography (ECC) -
Intrusion detection - Internet of things (IoT) - Security
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