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ABSTRACT 

                                                                                                                                                       

 

Floods remain one of the most catastrophic and recurrent natural disasters globally, resulting 

in immense economic losses, displacement of populations, infrastructure degradation, and 

significant environmental disruptions. As climate variability intensifies and urbanization 

accelerates, the urgency to develop intelligent, efficient, and timely flood prediction and 

management solutions becomes more critical. This research aims to address these challenges 

by designing a series of novel, AI-driven models for flood detection, classification, forecasting, 

and image enhancement, thereby supporting real-time disaster response and long-term urban 

resilience planning. 

The research proposes four key contributions, each targeting specific aspects of flood-related 

problems. The first model, Flood-FireNet, uses the Adaptive Firefly Algorithm (AFA) to 

optimize feature selection and combines it with a Transformer-based architecture to improve 

satellite image-based flood classification. This model demonstrated a high accuracy of 97.85%, 

precision of 98.21%, and F1-score of 97.65%, outperforming conventional deep learning 

models. The second contribution, MoSWIN, integrates Monkey Search Optimization (MSO) 

with a SWIN Transformer to enhance classification by capturing hierarchical spatial 

relationships in flood images. It achieved a classification accuracy of 96.53%, with strong 

robustness in noisy conditions. 

The third contribution, the FloodCNN-BiLSTM model, is a hybrid deep learning framework 

for flood forecasting using environmental sensor data. CNN layers extract spatial features while 

BiLSTM captures temporal dependencies, enabling accurate urban flood prediction with an 

F1-score exceeding 96.5% on benchmark datasets. The fourth model, SSR-GAN, introduces a 

super-resolution-based GAN framework to enhance low-quality SAR images. By improving 

PSNR, SSIM, and reducing MSE, this model enables clearer flood zone delineation, especially 

in disaster-struck regions where high-resolution data may be unavailable. 

These models were rigorously evaluated using multiple performance metrics, including 

accuracy, recall, precision, F1-score, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity 

Index (SSIM), and Mean Squared Error (MSE). Ablation studies and statistical validation tests, 

such as paired t-tests and ANOVA, further confirmed the effectiveness and generalizability of 

the proposed frameworks. The results indicate that the integration of evolutionary optimization 
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algorithms, Transformer-based architectures, and GANs substantially improves the system’s 

ability to detect and predict floods across diverse scenarios. 

Beyond academic advancement, the research offers substantial industrial and societal impact. 

Applications include integration into smart city surveillance systems, automated flood 

insurance damage assessment, early warning and disaster response platforms, urban planning 

for flood mitigation, and real-time remote sensing analysis. Moreover, the work directly 

supports several United Nations Sustainable Development Goals (SDGs), notably SDG 11 

(Sustainable Cities), SDG 13 (Climate Action), SDG 9 (Industry and Innovation), SDG 6 

(Clean Water), and SDG 3 (Good Health). By bridging the gap between advanced AI 

methodologies and real-world flood disaster management, this thesis contributes a 

comprehensive, scalable, and intelligent solution for building climate-resilient infrastructure in 

flood-prone regions. 

Overall, this study presents a unified, intelligent system that combines environmental data 

analysis, image processing, and artificial intelligence to predict and detect floods more 

accurately and efficiently. The proposed approach not only strengthens disaster response 

mechanisms but also contributes to sustainable risk management practices. The framework 

developed in this research has the potential to be adapted for other natural disaster applications, 

marking a significant step forward in the use of AI for environmental monitoring and public 

safety. 

 

Objectives: The objectives of this study are structured into four key segments: 

• The first objective of the study is to develop a model for flood assessment by considering 

environmental parameters.  which aims to develop a efficient flood classification model.   

• The second objective focuses on to design a flood detection technique using Artificial 

Intelligence., aiming to improve the accuracy and efficiency of flood detection.   

• The third objective is to improve flood detection technique by enhancing flood images to 

enhance the image quality for better flood detection model.   

• The final objective is to perform the comparative analysis of our proposed work with the 

existing work. 

Methodology: To accomplish the stated objectives, this study leverages advanced machine 

learning and deep learning methods, such as nature inspired algorithms, neural networks, 

attention mechanisms, and transformer-based architectures, due to their significant potential in 
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addressing complex challenges in flood assessment on datasets lie environmental parameters 

and image dataset. In our work, we employ a Generative Adversarial Network (GAN)-based 

super-resolution technique to enhance low-quality flood images, improving their clarity and 

detail for more accurate detection and analysis. The strategies employed to meet these 

objectives are as follows: 

• To accomplish the first objective, the proposed hybrid model integrates Convolutional 

Neural Networks (CNN) with Bidirectional Long Short-Term Memory (BiLSTM) 

networks within a transfer learning framework. This combination effectively captures 

both spatial and temporal features from environmental data, enabling accurate multi-

class classification. The model demonstrates superior performance when evaluated 

against advanced existing benchmark methods. 

• For the second objective, two flood detection models were developed, each utilizing 

different nature-inspired approaches and a transformer. The first model introduces 

Flood-FireNet, a transformer-based model enhanced by a nature-inspired optimization 

strategy for distinguishing flooded and non-flooded regions. The second model 

integrated The proposed MoSWIN model classifies flooded and non-flooded regions 

by integrating the Monkey Search Optimization (MSO) algorithm for effective feature 

extraction and the SWIN Transformer for deep learning-based classification. 

• To address the third objective, we propose a novel super-resolution approach using 

generative adversarial networks (GAN) to enhance satellite flood images.  To optimize 

image generation, we employ perceptual loss calculated via VGG Net’s intermediate 

feature maps, guiding the model to minimize perceptual differences between generated 

and target images, resulting in more visually accurate enhancements. 

• For the fourth objective, a comparative analysis was conducted, evaluating the 

performance of the above-developed models against existing flood assessment and 

detection techniques. Key performance metrics, such as accuracy, sensitivity, 

specificity, F1-score, MSE, RMSE, PSNR, and SSIM were used to compare the 

effectiveness of the proposed models with current state-of-the-art methods. 

 

Results: The outcomes of the study are as follows: 

• The integration of CNN and BiLSTM within a transfer learning framework has resulted 

in high accuracy for multi-class flood classification using environmental parameters, 

outperforming several advanced benchmark models. 
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• The Flood-FireNet model, which combines transformer architecture, attention 

mechanisms, and AFA, demonstrates superior performance on flood image datasets 

compared to existing deep learning models. 

• The Adaptive Firefly Algorithm (AFA) successfully extracts rich, high-level features 

from flood images, significantly improving classification performance and 

generalization by minimizing overfitting. 

• The proposed MoSWIN model effectively integrates Monkey Search Optimization 

with the SWIN Transformer, enabling the extraction of hierarchical and discriminative 

features, resulting in significantly better accuracy, precision, and recall than models like 

ResNet and Vision Transformer. 

• Across all proposed models, the use of nature-inspired optimization (MSO, AFA), 

attention mechanisms, and image enhancement techniques collectively reduce 

overfitting, leading to improved generalization on unseen data. 

• The integration of deep learning and optimization algorithms has enabled the models 

to uncover complex spatial and visual patterns in flood-affected regions, aiding in more 

reliable classification and prediction. 

• The GAN-based super-resolution approach improves the visual and structural quality 

of satellite flood images, restoring fine details and outperforming traditional upscaling 

methods through perceptual loss optimization. 

• Image enhancement techniques such as Histogram Equalization (HE) and Adaptive 

Histogram Equalization (AHE) effectively improve the visibility and quality of SAR 

flood images, aiding in more accurate flood detection and classification. 

• The integration of deep learning and optimization algorithms has enabled the models 

to uncover complex spatial and visual patterns in flood-affected regions, aiding in more 

reliable classification and prediction. 

• Experimental results and performance comparisons show that the proposed models 

consistently outperform standard architectures like ResNet, Vision Transformer, and 

baseline CNNs across all key metrics. 

• The proposed techniques, especially MoSWIN and Flood-FireNet, offer a scalable 

framework adaptable to different flood datasets and regions, making them suitable for 

real-world deployment in disaster management systems. 
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Chapter 1  

INTRODUCTION 
Disasters are sudden adverse events that disrupt human societies and ecosystems. Although they may occur 

over a short duration, their consequences are often severe and long-lasting [1]. Disasters are broadly 

classified into two categories: natural disasters (e.g., floods, earthquakes, and landslides) and man-made 

disasters (e.g., industrial accidents, chemical leaks, and conflicts). 

Among all types of natural disasters, flooding is the most frequent and widespread phenomenon. Floods 

result in substantial loss of life, displacement of communities, damage to biodiversity, and destruction of 

infrastructure. They pose significant threats to both developing and developed nations. In particular, regions 

situated near water bodies are increasingly vulnerable during the monsoon season due to intense and 

unpredictable rainfall patterns. 

Floods can be triggered by both natural and anthropogenic (human-induced) factors. As shown in Figure 

1.1, the primary causes of flooding include: 

• Excess rainfall (27.5%) 

• Opening of barrages/dams (31.25%) 

• A combination of both (41.25%) 

These causes are often interlinked, particularly in areas with inadequate water management systems or poor 

urban planning [3]. 

 

Figure 1.1: Flood causes are shown as a pie chart. [3] 
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Floods are projected to become more frequent and destructive due to climate change and global warming. 

Rising sea levels and intensified precipitation patterns exacerbate the risk of coastal and inland flooding. 

These events not only threaten human lives and property but also disrupt ecological balance, contaminate 

water sources, and degrade biodiversity. 

To address these challenges, advanced technologies such as Machine Learning (ML), Artificial Intelligence 

(AI), and sensor networks are increasingly being leveraged for flood prediction and early warning systems. 

These technologies offer the capability to: 

• Accurately predict the occurrence and severity of floods 

• Monitor remote or inaccessible regions 

• Issue timely alerts to vulnerable populations 

Several studies have explored the integration of AI and sensor technologies, highlighting their potential to 

minimize disaster-related damages and support decision-making in disaster management frameworks [1]. 

Natural disasters encompass various phenomena, each with distinct origins and impacts. Figure 1.2 presents 

the classification of natural disasters based on observed frequency. Among them, floods are identified as 

the most recurrent event, followed by landslides and tropical storms. 

 

Figure 1.2: classification of Natural Disasters [4] 
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Floods can be further categorized into the following types: 

• Flash floods: These occur within six hours of intense rainfall and are characterized by rapid water 

accumulation and flow. 

• Mudslides (or debris flows): Typically occur within 24 hours of heavy rainfall, often in hilly or 

mountainous terrains. 

• Coastal floods: Caused by coastal storms, cyclones, or tsunamis leading to seawater intrusion. 

• River plain floods: Result from prolonged rainfall in large catchment areas, causing rivers to 

overflow their banks [4]. 

Understanding the type and cause of flooding is essential for implementing effective mitigation and 

response strategies. Moreover, early warning systems, supported by real-time data and predictive 

analytics, can significantly reduce the impact on flood-affected communities. 

1.1 Background and Motivation 

Floods have long been recognized as one of the most devastating natural disasters, affecting millions of 

people worldwide each year. These hydrological events are triggered by excessive rainfall, river overflows, 

dam failures, or cyclones, and they can cause catastrophic damage to life, property, and infrastructure. 

Climate change, coupled with rapid urbanization, has led to an increase in both the frequency and severity 

of flood events across the globe. Low-lying areas, densely populated urban zones, and regions with 

inadequate drainage systems are especially vulnerable to flooding. 

Floods are among the most frequent natural disasters, causing over 50% of all disasters worldwide, with 

12% of India’s land prone to flooding [2]. According to the UN, floods result in the highest casualties 

compared to other disasters [5], threatening over 160 million people annually [6]. Flash floods are 

intensifying due to extreme rainfall driven by climate change. In the USA, annual economic losses from 

natural hazards exceed $300 billion [7]. In India, floods claim around 1654 human and 618,248 cattle lives 

yearly, damage 1.2 million houses, and cause average annual losses of Rs 5649 crores [8]. 

The unpredictability and sudden onset of floods pose a significant challenge to emergency response teams 

and disaster management authorities. Traditional methods of flood forecasting rely heavily on physical 

hydrological models, such as rainfall-runoff models and hydraulic simulations. While these approaches 

have been instrumental in early flood forecasting, they often struggle with limitations such as: 

• Inability to process and analyze large volumes of heterogeneous data in real time. 
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• Dependency on historical data, which may not be available for all regions. 

• Inflexibility in adapting to dynamic and complex environmental changes. 

In recent years, Artificial Intelligence (AI) has emerged as a transformative technology in various domains, 

including healthcare, finance, transportation, and environmental science. In the context of flood prediction 

and detection, AI offers unique capabilities that can overcome the limitations of traditional models. Machine 

Learning (ML) and Deep Learning (DL) algorithms, in particular, are capable of learning from past data, 

identifying complex nonlinear patterns, and making high-accuracy predictions even with incomplete or 

noisy inputs. 

Moreover, AI-based image analysis and computer vision techniques have made it possible to detect flood 

events using real-time imagery from surveillance cameras, drones, and satellites. These models can 

recognize water accumulation, monitor river levels, and assess flood severity with minimal human 

intervention. Image enhancement methods further improve the quality and clarity of input images, allowing 

for more accurate detection. 

The motivation for this research stems from the urgent need to develop intelligent, reliable, and scalable 

flood prediction and detection systems. By leveraging the power of AI, this study aims to enhance the 

capabilities of current flood risk management practices and contribute to building resilient communities 

capable of withstanding the adverse impacts of flooding. 

 

Figure 1.3: Trend of Research Publications on Flood Management from 2011 to 2024, showing a significant 

rise in scholarly attention and research output in recent years 
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The graph shows a steady increase in flood management research papers from 2011 to 2024. Initial growth 

was gradual, but after 2018, a sharp rise is observed, peaking in 2024 with 33 papers. This trend highlights 

growing academic interest and urgency in addressing flood-related issues, likely driven by climate change 

and increasing flood incidents worldwide [9]. 

1.2 Problem Statement 

Floods are among the most devastating natural disasters affecting millions of lives and causing severe 

socioeconomic disruptions across the globe. As per the United Nations Office for Disaster Risk Reduction 

(UNDRR), floods account for nearly 40% of all natural disasters worldwide [10]. They not only result in 

loss of life and displacement of people but also inflict long-term damage on agricultural land, urban 

infrastructure, transportation systems, and water resources. With the growing impacts of climate change, 

erratic weather patterns, deforestation, and unplanned urbanization, the frequency and severity of floods 

are expected to increase significantly in the coming decades. This alarming trend calls for the urgent 

development of advanced and effective flood prediction and detection systems that can provide early 

warnings and real-time monitoring to mitigate their consequences [11, 12]. 

Traditional flood forecasting and detection methods primarily rely on statistical models, hydrological 

simulations, and physical indicators such as rainfall, river discharge, and soil saturation levels. While these 

methods offer foundational insights into the occurrence of flood events, they suffer from various limitations 

[13]. First, they are often built on static or historical datasets that fail to incorporate real-time variability in 

environmental conditions. Second, many of these models lack the adaptability to learn from new data or to 

update predictions dynamically as environmental conditions evolve. Third, in regions where sensor 

networks and meteorological data collection infrastructure are inadequate or non-existent, the reliability of 

traditional models becomes questionable [14]. Moreover, flood detection based on satellite or aerial 

imagery is often delayed due to manual processing, poor resolution, or adverse weather conditions affecting 

image quality [15]. 

Artificial Intelligence (AI) presents a promising solution to these limitations by enabling data-driven, 

adaptive, and real-time analysis for flood prediction and detection [16]. With the proliferation of big 

environmental data from Internet of Things (IoT) sensors, satellite imagery, weather stations, and crowd-

sourced platforms AI techniques such as machine learning (ML), deep learning (DL), and image processing 

can be employed to extract complex patterns and relationships that are not easily identifiable using 

traditional methods [17]. For instance, AI models can analyze large volumes of historical and real-time 

environmental data to predict flood events with greater accuracy. Similarly, deep learning algorithms such 

as Convolutional Neural Networks (CNNs) can be trained to identify flood-prone regions and flooded areas 
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using satellite or drone imagery [18]. However, despite the proven success of AI in domains such as finance, 

healthcare, and autonomous systems, its application in flood prediction and detection is still evolving and 

faces several technical and practical challenges [19]. 

One of the critical challenges is the selection and integration of relevant environmental parameters that 

significantly influence flood occurrence [20]. These parameters may include rainfall intensity, temperature, 

humidity, river water level, soil moisture, topography, and land use patterns. Designing an AI model that 

effectively incorporates these diverse inputs requires careful preprocessing, normalization, and feature 

selection techniques. Furthermore, the model must be capable of handling missing, noisy, or incomplete 

data, which is common in real-world environmental datasets. 

Another major issue is related to flood detection using images. Flood-affected regions can be visually 

detected using satellite or aerial images, but the accuracy of detection is often hindered by poor image 

quality, cloud cover, or low contrast between flooded and non-flooded areas [21]. Enhancing these images 

using advanced computer vision techniques is essential to improve the performance of AI-based detection 

models. Image enhancement not only aids in more accurate flood identification but also supports better 

decision-making for emergency response teams and policy-makers. Integrating these enhanced visual 

inputs into AI systems remains a research gap that this study intends to fill. 

Moreover, the lack of standardized datasets and evaluation metrics makes it difficult to compare the 

performance of different AI models for flood prediction and detection. Many existing models are developed 

and tested on specific geographic regions and cannot be generalized to other flood-prone areas without 

retraining or customization. Additionally, while several studies claim high prediction accuracies, they often 

fail to address issues related to false alarms or missed detections, which can have serious implications for 

disaster preparedness and response [22]. 

There is also a technological gap in deploying AI models in real-time systems. Many AI-based flood models 

remain in the experimental or academic phase due to high computational requirements, lack of integration 

with sensor networks, or limited accessibility for local governments and communities [23]. To bridge this 

gap, it is necessary to design models that are not only accurate but also computationally efficient, scalable, 

and user-friendly. 

Considering these challenges, this research aims to develop a comprehensive AI-based framework that 

addresses both flood prediction and detection with enhanced accuracy and reliability. The research will 

pursue four major objectives: (i) to develop a model for flood prediction by considering diverse and relevant 

environmental parameters; (ii) to design a robust flood detection technique using AI, particularly through 

image-based detection; (iii) to improve the accuracy of flood detection by enhancing flood images using 
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advanced computer vision techniques; and (iv) to perform a comparative analysis of the proposed 

techniques with existing state-of-the-art models to validate the improvements in performance. 

By addressing these objectives, the proposed research seeks to contribute a practical and scalable solution 

to the ongoing global issue of flood management. The integration of AI into flood prediction and detection 

not only enhances the accuracy and timeliness of alerts but also supports sustainable disaster risk reduction 

strategies. The outcomes of this research can have significant industrial applications, such as in urban 

planning, civil engineering, and insurance sectors, and societal benefits, including saving lives, reducing 

economic losses, and enhancing the resilience of communities. Furthermore, the work aligns with several 

United Nations Sustainable Development Goals (SDGs), including SDG 11 (Sustainable Cities and 

Communities), SDG 13 (Climate Action), and SDG 9 (Industry, Innovation, and Infrastructure). 

In conclusion, the existing gaps in flood prediction and detection demand innovative and intelligent 

solutions that are adaptable, data-driven, and applicable across diverse geographies. Artificial Intelligence 

holds immense potential in revolutionizing flood management through predictive analytics, automated 

detection, and real-time decision-making. However, to fully realize this potential, there is a need for focused 

research that addresses the technical, operational, and practical challenges associated with the deployment 

of AI in this domain. This study is a step in that direction, aiming to provide a comprehensive, reliable, and 

intelligent solution for the prediction and detection of floods. 

1.3 Research Objectives 

This research aims to achieve the following specific objectives: 

1. To develop a model for flood prediction by considering environmental parameters. 

2. To design a flood detection technique using Artificial Intelligence. 

3. To improve the flood detection technique by enhancing flood images. 

4. To perform a comparative analysis of our proposed work with the existing work. 

1.4 Scope of the Research 

The scope of this study is focused on the application of Artificial Intelligence techniques for flood prediction 

and detection. This encompasses the use of Machine Learning, Deep Learning, and image processing 

methods to analyze various forms of environmental and image-based data [24]. The specific boundaries of 

this research are as follows: 

• Geographical Scope: The research will consider both urban and rural flood-prone areas for data 

collection and model validation. While a specific case study area may be selected for 

implementation, the developed methods aim to be generalizable to other regions. 
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• Data Sources: The study will utilize data from multiple sources including historical flood records, 

meteorological data (e.g., rainfall, humidity, temperature), satellite and drone imagery, river 

discharge rates, and sensor outputs. 

• AI Techniques: Various AI algorithms such as Support Vector Machines (SVM), Artificial Neural 

Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and 

Generative Adversarial Networks (GAN) may be employed depending on the task—be it 

prediction, detection, or image enhancement. 

• Technological Framework: Tools such as Python, TensorFlow, Keras, OpenCV, and GIS platforms 

will be used for model development, training, and testing. 

• Performance Metrics: The developed models will be evaluated using accuracy, precision, recall, 

F1-score, mean squared error, and area under the curve (AUC) for classification and prediction 

tasks. 

Excluded from this research are policy-based flood risk mitigation strategies, socio-economic impact 

analyses, and structural engineering solutions. The primary emphasis remains on data-driven, AI-powered 

solutions to detect and predict flood events in a timely and efficient manner. 

1.5 Significance of the Study 

This study contributes to the growing field of AI in environmental disaster management by addressing a 

critical real-world problem: flood risk. The significance of the research lies in several key areas: 

• Disaster Preparedness and Mitigation: Improved flood prediction and detection can save lives 

and reduce damage by enabling early warning and timely evacuation. The proposed AI systems can 

be integrated into existing disaster management frameworks to enhance their responsiveness. 

• Technological Advancement: By applying cutting-edge AI techniques to hydrological problems, 

the study bridges a critical gap between environmental science and computational intelligence. The 

research showcases the potential of Machine Learning and image processing in solving complex 

environmental issues. 

• Scalability and Adaptability: The AI models developed in this study are designed to be scalable 

to large datasets and adaptable to different geographical regions. This makes the research relevant 

to both developed and developing countries. 
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• Data Utilization: The study emphasizes the effective use of multi-source data, including real-time 

sensor data, remote sensing images, and historical weather patterns. This integrative approach 

improves the reliability and comprehensiveness of flood forecasting systems. 

• Support for Vulnerable Communities: Accurate and timely flood alerts can significantly benefit 

communities living in flood-prone areas. The developed systems can be used by local authorities 

and NGOs to implement early response measures. 

• Academic Contribution: The research contributes to the academic body of knowledge in AI 

applications, environmental informatics, and disaster risk reduction. It provides a methodological 

foundation for future researchers working at the intersection of AI and climate resilience. 

• Policy Implications: While not directly focused on policy, the findings can inform decision-makers 

on the benefits of adopting AI-based technologies for climate adaptation and urban planning. 

In conclusion, this research not only seeks to address the technical aspects of flood prediction and detection 

but also aims to deliver practical solutions that can be implemented on the ground to safeguard human lives 

and property. 

1.6 Flood Management Systems 

Flood management systems refer to a comprehensive set of strategies, technologies, and frameworks 

designed to predict, prevent, respond to, and recover from flood events [25]. These systems are a vital 

component of disaster risk reduction and environmental resilience, involving coordinated efforts by 

governments, meteorological agencies, urban planners, civil engineers, and local communities [26]. 

Traditional flood management systems typically follow a four-phase cycle: 

• Preparedness: Measures such as floodplain mapping, early warning systems, infrastructure design, 

and public awareness campaigns. 

• Response: Immediate actions taken during a flood, including evacuation, rescue operations, and 

deployment of emergency services. 

• Recovery: Post-flood activities aimed at rehabilitation and reconstruction of affected areas. 

• Mitigation: Long-term strategies to reduce flood risk, such as afforestation, construction of levees, 

and improved drainage systems. 

Despite these components, traditional systems often struggle with several limitations: 

• Delayed response times due to manual monitoring. 
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• Limited predictive capacity, especially for flash floods. 

• Inefficient data sharing among agencies. 

• Lack of adaptability to rapidly changing climate conditions. 

To understand the effectiveness of traditional flood management systems, the following table illustrates 

their key components and associated challenges: 

Table 1.1: Components of Traditional Flood Management Systems and Their Limitations 

Component Description Limitations 

Early Warning 

Systems 

Use of sensors and hydrological 

models to alert authorities 

Often based on fixed thresholds and 

limited data inputs 

Floodplain 

Mapping 

Identification of high-risk zones 

using historical data 

Not updated frequently; may not 

account for climate change 

Structural Defenses Construction of dams, levees, and 

embankments 

Costly; may fail under extreme 

conditions 

Emergency 

Response Plans 

Guidelines for evacuation, relief, and 

coordination 

Lack of real-time communication and 

coordination 

Community 

Awareness 

Education and preparedness drills Not widely disseminated in rural or 

marginalized areas 

 

Flood management must now evolve from static, one-size-fits-all solutions to dynamic, data-driven systems 

that leverage real-time information and predictive analytics. 

1.7 Flood Management Systems Using Artificial Intelligence 

Artificial Intelligence (AI) has emerged as a game-changing tool in enhancing the performance, reliability, 

and scalability of flood management systems [27]. By integrating AI into the flood management lifecycle, 

authorities can shift from reactive strategies to proactive planning and real-time decision-making [28]. 

Key Applications of AI in Flood Management: 

1. Flood Prediction: AI models like Recurrent Neural Networks (RNNs) and Long Short-Term 

Memory (LSTM) networks are used to analyze time-series data (e.g., rainfall, temperature, river 

levels) to forecast potential flood events. 

2. Flood Detection: Deep learning models, particularly Convolutional Neural Networks (CNNs), can 

identify flood water in images captured from satellites, UAVs (drones), or ground cameras. 
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3. Image Enhancement: Techniques such as GANs (Generative Adversarial Networks) improve the 

visibility and interpretability of flood-affected images under poor weather conditions. 

4. Decision Support Systems: AI-powered dashboards assist in real-time monitoring, early warning, 

resource allocation, and incident response. 

5. Risk Assessment: Machine Learning algorithms analyze socio-economic, topographical, and 

environmental data to classify areas based on flood vulnerability. 

 

 

Figure 1.4: Machine Learning-based Flood Flow Prediction Model utilizing temporal rainfall data and river 

flow data  

This figure 1.4 illustrates a machine learning-based flood prediction model. It integrates two key inputs: 

temporal rainfall data from the past 7 days and temporal river flow data from the past 6 days. These 

historical datasets are fed into a machine learning algorithm trained to analyze patterns and correlations 

between rainfall and flow levels. The model processes these inputs to predict the river flow at a specific 

point of interest. This approach enhances flood forecasting accuracy and helps in proactive disaster 

management by providing timely and data-driven flow predictions in vulnerable regions.  
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The integration of AI can address many of the limitations present in traditional systems, as outlined below: 

Table 1.2: Comparison Between Traditional and AI-Based Flood Management Systems 

Feature Traditional System AI-Based System 

Data Handling Manual/Static Automated/Real-time 

Forecasting 

Accuracy 

Medium (dependent on historical 

data) 

High (learning from complex, non-linear 

patterns) 

Adaptability Rigid; difficult to update Highly adaptable and self-improving 

Response Time Delayed Instantaneous alerts and decision-making 

Scalability Limited to local infrastructure Scalable across regions with cloud and IoT 

support 

Integration Poor inter-agency coordination Unified platforms with multi-source data 

integration 

 

Furthermore, the effectiveness of AI in flood management is maximized when paired with IoT (Internet of 

Things) devices such as smart sensors for rainfall, humidity, and river levels. These sensors provide real-

time data streams which AI models can instantly analyze and interpret. 

Table 1.3:  Key AI Technologies Used in Flood Management Systems 

AI Technology Application Area Advantages 

Convolutional Neural Networks 

(CNNs) 

Image-based flood 

detection 

High accuracy in spatial feature 

recognition 

Recurrent Neural Networks 

(RNNs) / LSTM 

Time-series flood 

forecasting 

Effective in sequential pattern 

analysis 

Generative Adversarial 

Networks (GANs) 

Image enhancement Improves quality of low-resolution or 

obscured images 

Support Vector Machines 

(SVMs) 

Risk classification and 

mapping 

Robust to high-dimensional data 

Fuzzy Logic Systems Decision-making under 

uncertainty 

Models complex, vague human-like 

decisions 

 

By embedding these technologies within existing flood monitoring and response infrastructures, cities and 

disaster management agencies can create Smart Flood Management Systems that are autonomous, reliable, 

and responsive to real-time threats. 
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In conclusion, integrating AI into flood management represents a paradigm shift from reactive to 

anticipatory strategies. This transition is vital for building climate-resilient communities in the face of 

increasing flood risks due to global climate change and urban expansion. 

1.8 Organization of the Thesis 

This thesis is structured into six comprehensive chapters; each designed to systematically address the 

research objectives and provide a logical flow of the work conducted. A brief overview of each chapter is 

as follows: 

• Chapter 1 – Introduction: This chapter introduces the central theme of the research, flood 

detection and prediction using artificial intelligence and image processing. It outlines the 

motivation behind the study, defines the research problem, and states the objectives and scope of 

the work. Additionally, it highlights the significance of the proposed approach in addressing real-

world flood management challenges, especially in the context of increasing climate variability. The 

chapter also discusses the research methodology, key contributions, and structure of the thesis. 

• Chapter 2 – Literature Review: This chapter provides a critical review of the existing body of 

knowledge related to flood detection and prediction. It explores various conventional and modern 

approaches, with a particular focus on AI-based methods, machine learning techniques, and image 

processing applications. The chapter identifies gaps in current research and justifies the need for 

the proposed integrated AI-based framework. It also outlines relevant datasets, evaluation metrics, 

and performance benchmarks used in earlier studies. 

• Chapter 3 – Flood Detection using Artificial Intelligence: This chapter addresses Research 

Objective 2, focusing on the development of an AI-based flood detection system. It describes the 

data collection and preprocessing steps, followed by a detailed explanation of the AI models 

employed (e.g., convolutional neural networks, support vector machines). The chapter evaluates 

the detection accuracy of the proposed models, compares their performance with baseline 

approaches, and presents visual and quantitative results. Furthermore, it highlights the system’s 

ability to identify flood-prone regions based on real-time inputs. 

• Chapter 4 – Enhancement of Flood Detection using Image Processing: Aligned with Research 

Objective 3, this chapter investigates the role of image enhancement techniques in improving flood 

detection accuracy. It explains the preprocessing methods used to refine satellite and drone-

captured images, including noise reduction, contrast enhancement, and edge detection. The chapter 

then integrates these enhanced images into the AI detection pipeline and assesses the resulting 
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improvement in performance. Comparative analysis, visual outputs, and metric-based evaluation 

substantiate the effectiveness of the enhancements. 

• Chapter 5 – Flood Prediction using Environmental Parameters: This chapter addresses 

Research Objective 1, focusing on the development of a flood prediction model using 

environmental and hydrological parameters such as rainfall intensity, river discharge, humidity, and 

soil moisture. Various predictive modeling techniques—including regression models, decision 

trees, and deep learning networks—are implemented and evaluated. The chapter compares the 

proposed prediction framework with traditional flood forecasting methods and demonstrates its 

superior accuracy and lead-time performance through case studies and statistical analysis. 

• Chapter 6 – Conclusion, Limitations, and Future Work: The final chapter summarizes the key 

contributions and findings of the thesis. It reflects on how the research objectives were achieved 

and discusses the practical implications of the proposed flood detection and prediction systems. 

The chapter also outlines the limitations encountered during the research, such as data availability 

and model generalizability. 

1.9 Chapter Summary  

This chapter provides an overview of flood assessment, emphasizing the role of artificial intelligence 

techniques in enhancing diagnostic prediction and detection accuracy. It discusses the use of GAN modal, 

to enhance the quality of SAR images, in improving the performance of flood detection systems. We also 

examine various environmental parameters to improve the accuracy and reliability of flood prediction in 

our analysis. The chapter outlines the content and description of each subsequent chapter, highlighting 

unique concepts and ideas that align with the title and objectives of the thesis. It also provides a concise 

overview of flood management strategies, machine and deep learning approaches, and the use of SAR data 

for enhancing and detecting flood images. Furthermore, the research outlines its objectives, scope, and 

underlying motivation in detail. 
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Chapter 2 

Literature Review 

Floods are a global challenge, causing extensive damage to infrastructure, ecosystems, and human lives. 

The urgent need for accurate flood prediction, detection, and mitigation has driven research into advanced 

methodologies, particularly machine learning (ML), deep learning (DL), and image processing techniques. 

This literature review synthesizes existing studies to support the research objectives: (1) developing a flood 

prediction model incorporating environmental parameters, (2) designing an AI-based flood detection 

technique, (3) improving flood detection through image enhancement, and (4) conducting a comparative 

analysis of the proposed work against existing methods. The review is structured into thematic subsections, 

providing detailed insights into methodologies, datasets, results, merits, and limitations. 

2.1 Flood Prediction Models 

Flood prediction models are vital for forecasting flood timing, magnitude, and extent, enabling early 

warnings and effective disaster management. Traditional statistical and hydrological models use historical 

rainfall-runoff data and watershed characteristics. Recently, machine learning and hybrid models have 

emerged, leveraging large datasets to capture complex, nonlinear interactions among meteorological, 

topographical, and human factors affecting floods. This section reviews key methodologies, from 

conventional to AI-driven models, highlighting advancements in integrating data-driven techniques with 

hydrological frameworks to improve flood prediction accuracy and resilience strategies. 

2.1.1 Traditional Hydrological Models 

Traditional hydrological models, such as hydrodynamic models, have been foundational in flood prediction. 

These models require extensive, high-quality input data, including observed hydrologic time series (e.g., 

rainfall, streamflow), geometric data (e.g., river channel dimensions), hydraulic structures (e.g., dams, 

levees), and hydrological parameters (e.g., soil permeability). This study [29] highlights that such models 

are computationally intensive and sensitive to data quality, often struggling with incomplete or noisy 

datasets. While effective in controlled scenarios, their reliance on precise inputs limits applicability in data-

scarce regions or rapidly changing environments. 

2.1.2 Machine Learning-Based Prediction 

Machine learning has transformed flood prediction by capturing nonlinear relationships between 

environmental parameters like precipitation, temperature, soil moisture, elevation, and slope. Artificial 

Neural Networks (ANNs) are prominent, modeling complex hydrological systems effectively [30]. For 
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instance, ANNs link river flow to inputs like rainfall and soil moisture, adapting to nonlinear patterns. This 

paper [31] proposed a Back-Propagation Neural Network (BPNN) to predict discharge in the Govindpur 

basins of the Brahmani River, evaluating performance across architectures like feedforward and recurrent 

networks, achieving robust results but limited by basin-specific data. 

2.1.3 Temporal and Probabilistic Models 

Long Short-Term Memory (LSTM) models, a type of recurrent neural network, excel in capturing temporal 

correlations in streamflow data, making them ideal for short-term flood forecasting [32, 33]. These models 

process sequential data, retaining memory of past inputs to predict future trends. Gaussian Processes (GPs) 

offer a probabilistic approach, delivering point predictions and uncertainty intervals [34]. For example, GPs 

quantify forecast reliability, aiding decision-making, though their computational cost is high, especially for 

large datasets. 

2.1.4 Ensemble and Hybrid Approaches 

Ensemble methods like Random Forests (RFs) combine multiple decision trees to enhance prediction 

robustness, capturing relationships among diverse parameters like rainfall, soil moisture, and topography 

[35]. Hybrid approaches integrate ML with hydrological models. In this study authors [36] used a two-

dimensional hydraulic model (iRIC), calibrated with water level data, alongside ML models to estimate 

river depth for varying discharge levels. A hybrid method combining Particle Swarm Optimization (PSO) 

and group data management improves short-term streamflow forecasting [37]. Paper [38] introduced a 

framework integrating ML, statistical, and geo-statistical models to predict daily and near-future flood 

scenarios under climate change, addressing long-term impacts but facing complexity challenges. 

Table 2.1: Summary of recent studies on ensemble and hybrid approaches for flood prediction techniques. 

Reference Dataset Techniques Key Results Merits Limitations 

Saleh, T. et 

al. [38] 

Climate, 

hydrological 

data 

ML + 

Statistical + 

Geo-statistical 

models 

Predicts daily, 

future flood 

scenarios 

Addresses 

climate 

change 

impacts 

Model 

complexity, data 

dependency 

Amankwah 

et al. [39] 

Hydrological 

data 

ANNs Captures 

nonlinear 

relationships 

Effective for 

complex 

systems 

Requires large, 

quality data 

Arvind et 

al. [40] 

Govindpur, 

Brahmani 

River 

BPNN Evaluated 

across NN 

architectures 

Accurate 

discharge 

prediction 

Limited to 

specific basin, 

data volume 
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Moharrami 

et al. [41] 

Streamflow 

time series 

LSTM Accurate 

short-term 

forecasts 

Handles 

temporal 

correlations 

Limited to short-

term applications 

Fernandes 

et al. [42] 

Hydrological 

data 

Gaussian 

Processes 

(GPs) 

Provides 

prediction 

intervals 

Quantifies 

uncertainty 

Computationally 

intensive 

Tanim et al. 

[43] 

Hydrological 

parameters 

Random 

Forests (RFs) 

Enhanced 

robustness and 

accuracy 

Captures 

diverse 

relationships 

High 

computational 

complexity 

Bhuyan et 

al. [44] 

Water level 

data 

iRIC + ML 

models 

Estimates river 

depth for 

varying 

discharge 

Integrates 

physical and 

ML models 

Requires 

calibration, data 

quality 

Kim et al. 

[45] 

Streamflow 

data 

PSO + Group 

Data 

Management 

Improved 

short-term 

forecasting 

Combines 

optimization 

and data 

handling 

Complex 

implementation 

 

2.2 AI-Based Flood Detection Techniques 

AI-based flood detection techniques use machine learning and deep learning to analyze data from satellites, 

sensors, and weather forecasts for accurate, real-time flood identification. Unlike traditional manual or 

hydrological methods, these AI approaches enhance early warning systems and support timely disaster 

response, significantly improving flood prediction, monitoring, and management for effective risk 

mitigation. 

2.2.1 Unsupervised Learning Methods 

Unsupervised learning is critical when labeled data is scarce, common in flood scenarios. [46] applied Mean 

Shift and Self-Organizing Maps (SOM) to MODIS satellite images to extract water pixels before, during, 

and after floods. SOM outperformed Mean Shift, accurately delineating flood regions by clustering similar 

pixel intensities. However, SOM’s high computational complexity limits scalability for large-scale datasets, 

making it less practical for real-time or regional applications. 

2.2.2 Supervised Learning Approaches 

Supervised learning leverages labeled data for robust flood detection. [47] compared Support Vector 

Machines (SVMs), Deep Convolutional Neural Networks (DCNNs), Multi-Layer Perceptions (MLPs), and 

Stacked Sparse Denoising Autoencoder (SSDAs) on SPOT-5 and radar imagery. SSDAs, using only 20 

labeled images, achieved an AUC of 0.9173, outperforming SVM and MLP due to its ability to denoising 
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and learn hierarchical features. However, limited training data and poor generalization across diverse 

regions constrain its effectiveness [48]. 

2.2.3 SAR and Satellite-Based Detection 

Synthetic Aperture Radar (SAR) is vital for all-weather flood detection. [49] integrated Sentinel-1 SAR 

data with shapefiles and water level data via Google Earth Engine (GEE) to map flood extent in the Mekong 

River basin. This approach achieved high spatial coverage, enabling rapid tracking, but was limited by 

GEE’s preprocessing constraints, such as data resolution and availability. [50] applied Otsu thresholding to 

Sentinel-1 SAR data for flood segmentation in northern Iran, achieving ~90% accuracy, though complex 

terrains (e.g., mountains) reduced precision. 

2.2.4 UAV and High-Resolution Imagery 

Unmanned Aerial Vehicle (UAV) imagery provides high-resolution data for flood analysis. The FloodNet 

dataset, introduced in [51], supports classification (InceptionNetV3, ResNet50, Xception), segmentation 

(ENet, PSPNet, DeeplabV3+), and Visual Question Answering (VQA). These models excel in multi-task 

analysis, leveraging detailed UAV imagery, but struggle with small object detection due to scale variations 

and occlusions from buildings or vegetation. 

2.2.5 Real-Time and Semi-Supervised Methods 

Real-time detection is critical for emergency response. [52] combined Deep Neural Networks (DNNs) with 

computer vision to estimate water levels from real-time river data, achieving a Mean Absolute Error (MAE) 

of 3.32 cm. The system adapts to varying camera angles and lighting, but requires a manually drawn 

reference line on an even surface orthogonal to water. [53] used a semi-supervised approach on FloodNet, 

employing weighted sampling to address class imbalance, improving classification of flooded versus non-

flooded areas, though requiring robust validation across geographies. 

Table 2.2: Summary of semi-supervised and real time approaches for flood prediction techniques.  

Reference Dataset Techniques Key Results Merits Limitations 

Arvind, C.S. et 

al. [46] 

MODIS 

satellite 

images 

Mean Shift, SOM SOM 

outperforms 

in flood 

region 

extraction 

Effective 

without 

labeled data 

High 

complexity, 

low scalability 

Islam, K. A. et 

al. [47] 

SPOT-5, 

radar 

images 

SVM, DCNN, 

MLP, SSDAs 

SSDAs AUC 

= 0.9173 

High 

performance 

Small training 

sets, poor 

generalization 
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Nghia, B.P. et 

al.  [49] 

Sentinel-1 

SAR, 

shapefiles 

SAR decoding, 

GEE flood 

mapping 

High spatial 

coverage 

All-weather, 

rapid tracking 

GEE 

preprocessing, 

data limits 

Moharrami, M. 

et al.   [50] 

Sentinel-1 

SAR 

Otsu thresholding Accuracy ~ 

90% 

Simple, 

effective 

delineation 

Limited in 

complex 

terrains 

Rahnemoonfar, 

M. et al. [51] 

FloodNet 

(UAV 

imagery) 

Classification: 

InceptionNetV3, 

ResNet50, 

Xception; 

Segmentation: 

ENet, PSPNet, 

DeeplabV3+; VQA 

Multi-task 

success with 

high-res data 

Flexible for 

classification, 

segmentation 

Small object 

detection 

challenging 

Fernandes, F.E. 

et al.  [52] 

Real-time 

river data 

DNN, Computer 

Vision 

MAE = 3.32 

cm, adaptable 

to conditions 

Real-time, 

robust 

Strict camera 

placement 

needed 

Jackson, J. et 

al. [53] 

FloodNet Semi-supervised, 

weighted sampling 

Improved 

flood/non-

flood 

classification 

Addresses 

class 

imbalance 

Needs robust 

geographic 

validation 

 

 

2.3 Image Enhancement for Flood Analysis 

Effective flood analysis depends on high-quality images, but raw flood images often suffer from low 

contrast, noise, and poor illumination, obscuring critical details. Image enhancement techniques improve 

visual clarity and highlight important features like water boundaries and submerged areas, aiding both 

human interpretation and automated classification. Methods such as contrast stretching, histogram 

equalization, adaptive histogram equalization (AHE), and contrast-limited AHE (CLAHE) are applied to 

enhance flood images in our study, ensuring clear representation of flood-affected regions for accurate 

analysis and improved model performance. 

2.3.1 Speckle Noise Reduction 

Synthetic Aperture Radar (SAR) images, critical for flood analysis, suffer from speckle noise, a granular 

interference that degrades quality and hinders interpretation, target detection, and classification [54]. Fuzzy 

ARTMAP and deep neural networks reduce noise and enhance image quality, aiding flood prediction by 

improving feature visibility [55, 56]. For example [57], applied Fuzzy ARTMAP to Landsat 8 ETM images, 

producing accurate flood maps, though performance drops in geologically diverse regions like mountains. 

2.3.2 Transform and Algorithmic Methods 
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The Non Subsampled Contourlet Transform (NSCT) combined with memetic algorithms reduces speckle 

noise while enhancing edge features and contrast in SAR images [58]. This approach uses an objective 

enhancement criterion to identify near-ideal images, though its complexity increases computational 

demands. [59] introduced p-LSCE, a p-regularized, low-rank, space-angle continuity method, leveraging 

image relationships to minimize speckles, but requiring significant processing power. 

2.3.3 GAN-Based Enhancement 

Generative Adversarial Networks (GANs) are transformative for SAR image enhancement. [60] proposed 

GAN-FEM, a GAN-driven focusing-enhancement method, to fit unknown out-of-focus kernels for 3D 

targets in monochromatic SAR images. It leverages the 2D imaging system’s capacity, improving focus, 

but introduces minor energy noise. [61] used GANs with perceptual and structural loss functions to boost 

SAR image quality, enhancing visibility of flood features. 

2.3.4 Advanced Filtering and Resolution 

Advanced techniques address noise and resolution. The Unscented Kalman Filter (UKF) and Super 

Resolution (SR) tackle multiplicative noise in SAR images, improving resolution over traditional methods 

[62]. Histogram Equalization (HE) and Adaptive Histogram Equalization (AHE) enhance contrast, while 

super-resolution reconstruction improves overall quality [63-65]. [66] applied GANs with illumination-

guided attention to address non-uniform illumination, and [67] used a dual-branch neural network for 

single-image rain removal, supporting clearer flood imagery. 

Table 2.3: Summary of existing techniques for flood image enhancement. 

Reference Dataset Techniques Key Results Merits Limitations 

Aliabad et 

al.  [57] 

Landsat 8 ETM 

satellite images 

Fuzzy 

ARTMAP, 

ANN 

Produces 

accurate flood 

maps 

Desired 

accuracy level 

Poor in diverse 

geological 

regions 

Ghosh et 

al. [55] 

Sentinel-1A, 

Ganga basin 

GEE, enhanced 

EVI, NDVI 

Quick 

identification 

of flood areas 

Rapid 

response 

capability 

Captures 

nonlinearity, 

ratio-based 

limits 

Toriya et 

al. [56] 

Sentinel-1, 

Sentinel-2 

DNN, GANs, 

edge 

enhancement 

Effective 

optical-SAR 

intersection 

estimation 

Aligns SAR 

and optical 

images 

Poor transfer of 

some land 

features 

Li et al. 

[58] 

SAR images NSCT, 

memetic 

algorithm 

Enhances 

edges, 

contrast, 

Improves 

image quality 

High 

algorithmic 

complexity 
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reduces 

speckle 

Chen et al. 

[59] 

SAR images p-LSCE (p-

regularization, 

low-rank) 

Reduces 

speckles via 

image 

relationships 

Noise 

reduction 

High processing 

power needed 

Ye et al. 

[60] 

Monochromatic 

SAR images 

GAN-FEM Enhances 

focus for 3D 

targets 

Improves 2D 

imaging focus 

Introduces 

minor energy 

noise 

Kanakaraj 

et al. [62] 

SAR images UKF, Super 

Resolution 

Improves 

resolution, 

reduces noise 

Handles 

multiplicative 

noise 

Slower for 

linear 

transformations 

Dubey and 

Katarya 

[63] 

Various SAR 

images 

HE, AHE, 

super-

resolution 

reconstruction 

Enhanced 

contrast and 

quality 

Improves 

visibility 

Limited in 

preserving fine 

details 

 

2.4 Comparative Analysis of Flood Detection and Prediction Methods 

This section compares flood detection and prediction methods, from traditional statistical models to modern 

machine learning and hybrid approaches. It analyzes their principles, data needs, strengths, and weaknesses 

to identify effective techniques for accurate, timely forecasting. The comparison highlights trade-offs in 

computational complexity, accuracy, and spatial-temporal resolution, providing insights for choosing 

suitable methods for different regions. By understanding these differences, this analysis supports the 

development of reliable flood early warning systems and effective flood management strategies. 

2.4.1 Unsupervised and Satellite-Based Methods 

Comparative studies highlight strengths and weaknesses. [46] found SOM outperforms Mean Shift for 

water pixel extraction from MODIS images, effectively delineating flood regions, but high computational 

demands limit scalability. [49] used GEE with Sentinel-1 SAR data for flood mapping in the Mekong River 

basin, achieving high spatial coverage, though constrained by GEE’s data preprocessing and availability 

limits. 

2.4.2 Segmentation and Supervised Methods 

[41] applied Otsu thresholding to Sentinel-1 SAR data, achieving ~90% accuracy in flood segmentation in 

northern Iran, with potential for improvement in complex terrains like mountains or urban areas. [47] 

compared SVM, DCNN, MLP, and SSDAs on SPOT-5 and radar imagery, with SSDAs achieving an AUC 
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of 0.9173, outperforming others due to denoising and feature learning, but limited by small, non-diverse 

training sets. 

2.4.3 Exposure and Classification Methods 

[44] used RestUNet to map buildings for flood exposure analysis, achieving an F1-score of 76%, effective 

for identifying elements-at-risk, but requiring local expertise and high-quality auxiliary data (e.g., building 

footprints). [68] found XGBoost outperforms KNN in flood classification, leveraging factors like elevation, 

slope, and stream proximity, though comparisons were limited in scope. 

2.4.4 Model Performance and Scalability 

In [69] compared eight ML models on the Haraz watershed dataset (201 flood events, 10,000 data points), 

with the EMmedian model achieving the highest accuracy, offering robust predictions but tied to specific 

data characteristics. Challenges include generalization, computational complexity, and data dependency 

across methods. 

Table 2.4: Summary of Recent AI and Remote Sensing Techniques for Flood Mapping and Prediction. 

Reference Dataset Techniques Results Merits Limitations 

Aliabad et al. 

[57] 

Landsat 8 

ETM 

Fuzzy 

ARTMAP, 

ANN 

Accurate 

flood maps 

Desired 

accuracy 

Poor in diverse 

regions 

Arvind, C.S. et 

al.  [46] 

MODIS 

satellite 

images 

Mean Shift, 

SOM 

SOM better 

for flood 

regions 

Effective 

extraction 

High 

complexity, low 

scalability 

Nghia, B.P. et 

al. [49] 

Sentinel-1 

SAR, 

shapefiles 

GEE, SAR 

decoding 

High spatial 

coverage 

Tracks flood 

extent 

GEE 

preprocessing 

limits 

Moharrami et 

al. [50] 

Sentinel-1 

SAR 

Otsu 

thresholding 

Accuracy ~ 

90% 

Effective 

segmentation 

Needs terrain 

improvement 

Islam, K.A. et 

al. [47] 

SPOT-5, radar 

images 

SVM, DCNN, 

MLP, SSDAs 

AUC = 

0.9173 

SSDAs 

outperform 

Limited 

validation 

Bhuyan, K. et 

al. [44] 

Remote 

sensing 

imagery 

RestUNet F1-score = 

76% 

Good building 

detection 

Needs local 

expertise, quality 

data 

El-Magd et al. 

[68] 

Multi-factor 

data 

(elevation, 

slope) 

XGBoost, 

KNN 

XGBoost 

superior 

High accuracy Limited 

comparison 

scope 
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Shafizadeh-

Moghadam et 

al. [69] 

Haraz 

watershed 

8 ML models, 

EMmedian 

Highest 

accuracy 

Robust 

prediction 

Data-specific 

results 

 

2.5 Research Gaps and Future Directions 

Although notable progress has been made, existing research is limited by narrow datasets and isolated 

methods. Future studies should explore advanced techniques and broader scenarios to enhance robustness 

and generalizability. This section highlights key research gaps and proposes directions for developing more 

effective and adaptive solutions. 

2.5.1 Data Availability and Quality 

Data scarcity and quality remain critical challenges, particularly in diverse geographical regions and 

varying environmental conditions [70]. Acquiring annotated flood data is difficult, limiting model training 

and robustness, especially for rare or extreme events. 

2.5.2 Class Imbalance and Feature Complexity 

Class imbalance, where flooded areas are underrepresented compared to non-flooded regions, challenges 

accurate delineation [71]. Dynamic flood events and confusing visual cues, such as shadows, reflective 

surfaces, and vegetation, complicate feature selection, leading to misinterpretation. 

2.5.3 Algorithmic and Scalability Challenges 

Algorithmic limitations, including overfitting, poor generalization, and high computational demands, 

hinder scalability [72, 73, 74]. Models often struggle to perform consistently across diverse datasets or in 

real-time scenarios, limiting practical deployment. 

2.5.4 Occlusions and Multi-Temporal Data 

Occlusions from buildings, vegetation, or clouds obscure flood detection, underestimating affected areas 

[75]. Multi-temporal SAR data integration, capturing flood dynamics over time, remains underexplored, 

yet is critical for understanding progression and improving predictions [76]. 

2.5.5 Future Directions 

This research addresses these gaps by: (1) developing a flood prediction model incorporating environmental 

parameters like precipitation and topography, (2) designing an AI-based flood detection technique using 

ML and DL, (3) enhancing flood images to improve feature visibility and detection accuracy, and (4) 
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conducting a comparative analysis with existing methods. These efforts aim to advance accuracy, efficiency, 

and scalability, contributing to disaster mitigation and environmental preservation. 
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Chapter 3  

FLOOD PREDICTION MODEL USING ENVIRONMENTAL 

PARAMETERS 

Floods, as one of the most frequent and destructive natural disasters, necessitate accurate and timely 

detection to reduce their impact on human lives, infrastructure, and the environment. This chapter 

introduces two advanced deep learning frameworks developed to enhance flood prediction capabilities by 

leveraging artificial intelligence and computational intelligence techniques. The first model, FloodCNN-

BiLSTM, integrates Convolutional Neural Networks (CNN) for spatial feature extraction with Bidirectional 

Long Short-Term Memory (BiLSTM) networks to capture temporal dependencies in sequential sensor data. 

To enhance spatial-temporal learning and refine feature representation from environmental inputs such as 

rainfall, temperature, and water levels. Together, these models aim to overcome key challenges such as data 

heterogeneity, environmental variability, and the need for real-time responsiveness. This chapter provides 

an in-depth overview of the data preprocessing steps, feature extraction techniques, and model architectures 

used, offering scalable and reliable solutions for AI-driven flood forecasting systems. 

3.1 Introduction  

A disaster is a severe event that disrupts communities and causes significant harm to human life, the 

environment, and infrastructure. Among natural calamities, floods are particularly common during 

monsoon seasons and pose serious risks to regions situated near lakes, rivers, and coastal zones. These 

events often exceed the coping capacity of affected communities, necessitating advanced management and 

mitigation strategies. With recent technological progress, flood prediction capabilities have improved 

significantly through the application of hydrological models, remote sensing technologies, machine 

learning techniques, and big data analytics. These innovations contribute to improved prediction accuracy, 

extended lead times, and enhanced spatial resolution, thereby enabling timely detection of flood events, 

even in remote and underserved areas. Current research trends in artificial intelligence (AI), big data, and 

the Internet of Things (IoT) are further transforming disaster management by enabling the development of 

intelligent predictive systems and automated decision-making frameworks [77]. As climate change 

continues to increase the frequency and intensity of weather-related incidents, the integration of these 

technologies becomes vital in minimizing the impact of natural disasters like floods. Flood events cause 

widespread loss of life, ecological degradation, and economic disruption, affecting both developing and 

developed nations [78, 79]. Among natural hazards such as earthquakes, volcanic eruptions, and tsunamis, 

floods occur most frequently, resulting in high human casualties, displacement, and destruction of 
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livelihoods. Despite technological advancements, the detection and prediction of floods remain challenging 

due to rapid environmental changes and data uncertainties. Many traditional models rely on simplified 

assumptions and static datasets, which can limit their predictive performance. In this context, deep learning 

offers promising improvements in early warning and flood forecasting systems [80, 81]. Accurate flood 

prediction is essential for effective disaster preparedness, especially in alerting vulnerable communities in 

advance. Machine learning algorithms have been increasingly applied to enhance forecasting precision 

across both real-time and long-term scenarios [82, 83]. These models, trained on historical data, can learn 

complex patterns and generalize well to anticipate future flood events. 

3.2 Introduction to FloodCNN-BiLSTM Methodologies 

In this study, a hybrid deep learning model named FloodCNN-BiLSTM is proposed to predict flood 

occurrences using sensor-based environmental data. The model integrates Convolutional Neural Networks 

(CNN) for extracting spatial features with Bidirectional Long Short-Term Memory (BiLSTM) networks for 

capturing long-term temporal dependencies. This architecture enables the model to effectively process 

sequential data and deliver accurate predictions, outperforming traditional approaches in flood forecasting 

tasks. 

3.2.1 Dataset Collection and Preprocessing 

Accurate and timely flood prediction relies heavily on the quality and relevance of the data used to train 

and validate predictive models. In our work, real-time environmental data related to flood risk indicators 

such as precipitation levels, river water levels, soil moisture content, and weather conditions were collected 

through a robust monitoring system designed specifically for flood early warning applications. These 

environmental parameters were gathered using a wide range of field-deployed sensors and remote sensing 

devices. The captured data were then transmitted via telemetry systems to centralized data repositories, 

where they could be further processed and analyzed. This end-to-end infrastructure facilitates prompt and 

precise flood forecasting, thereby supporting local authorities and communities in making informed, 

proactive decisions to minimize the impact of flooding events. 

However, the raw data collected from heterogeneous sources often contains inconsistencies, noise, and 

missing values that must be addressed before model training. Therefore, a comprehensive data pre-

processing pipeline was employed to ensure that the input data is accurate, structured, and optimized for 

use in predictive modeling. This pipeline consists of several critical steps: 

i. Data Cleaning: Data collected from various sensors may include errors, outliers, noise, or 

incomplete values, all of which can adversely affect model performance. The data cleaning 

process involves identifying and correcting these anomalies. Techniques such as interpolation 
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and imputation are used to fill missing values, while smoothing and filtering methods are 

applied to handle noise and outliers effectively. 

ii. Feature Engineering: To enhance the predictive power of the flood detection model, feature 

engineering is performed to create new, informative variables derived from raw input data. For 

instance, features such as rainfall intensity, rate of water level rise, or region-specific flood risk 

indices can be generated to provide more meaningful input to the model and improve its 

capacity to detect flood patterns. 

iii. Handling Missing Values: In environmental datasets, missing values are a common 

occurrence and can significantly degrade the reliability and accuracy of prediction systems. 

Various imputation methods are employed based on the type of data and the extent of 

missingness. These may include statistical techniques like mean or median substitution, as well 

as model-based approaches to estimate and replace the missing entries. 

iv. Data Normalization: Since environmental variables often have different scales and units (e.g., 

millimeters for rainfall and meters for river levels), data normalization is essential to 

standardize the feature set. Normalization ensures that each input variable contributes 

proportionately to the model's learning process, thereby avoiding any bias caused by features 

with larger numerical ranges. 

Through this integrated approach to data collection and pre-processing, a clean, enriched, and standardized 

dataset is prepared, forming the foundation for the training and evaluation of advanced deep learning 

models in flood detection. This step is indispensable in enhancing the robustness, accuracy, and 

generalizability of the proposed FloodCNN-BiLSTM framework. 

 

3.2.2 AI Models and Algorithms Used 

 

Recent advancements in computational intelligence have paved the way for more accurate and reliable flood 

prediction systems. This section outlines the various artificial intelligence models and algorithms applied 

to forecast flood occurrences based on diverse environmental and climatic factors. Techniques such as 

decision trees, support vector machines (SVM), and random forests are commonly used due to their 

effectiveness in classifying and interpreting complex datasets. Additionally, deep learning approaches, 

including Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, offer 

enhanced performance in recognizing temporal and spatial patterns [84]. In many cases, hybrid models that 

combine multiple AI techniques are adopted to improve prediction accuracy and system adaptability, 

supporting more robust flood warning mechanisms. 
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3.2.2.1. Artificial Neural Network 

 

Figure 3.1: Layered architecture of an Artificial Neural Network (ANN) 

Artificial Neural Networks (ANNs) are computational models inspired by the neural networks in the human 

brain. It comprises layered arrangements of interconnected nodes (neurons). To process input data and 

produce predictions, ANNs use activation functions on neuron outputs. It minimizes the loss function by 

adjusting weights and biases during training through backpropagation and gradient descent. Deep neural 

networks, a subclass of ANNs, can learn hierarchical patterns in data thanks to their deep structures with 

numerous hidden layers [85, 86]. The ANN model was developed to simulate river flows at a specific 

downstream location based on upstream flow data. The investigation results indicate that the ANN provides 

a reliable method of detecting flood hazards. In above Figure 3.1, we illustrate the architecture of the ANN. 

The output of the neuron is calculated by following the formula in equation 3.1. 

                                                                Z= ∑ (𝑊𝐼  ∙   𝑋𝐼) + b                                                                    𝑛
𝐼=0 (3.1) 

Z = weighted sum; n = number of inputs; 𝑊𝐼 = weight associated to each input; 𝑋𝐼 = input value; b = bias 

value 

3.2.2.2. Convolutional Neural Networks 

Figure 3.2 shows the architecture of 1-dimensional CNN. It includes the fully connected layers for final 

predictions, pooling layers for downsampling, and convolutional layers for feature identification. The CNN 

is trained using backpropagation, which offers benefits such as translation invariance, local feature 

identification, and parameter sharing. They are an essential tool in computer vision applications because 

they perform well in tasks including image classification, object identification, segmentation, and facial 

recognition [87]. Benchmarking the CNN model's performance against the support vector regression (SVR) 

technique provides additional evidence of its effectiveness. 
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Figure 3.2: Architecture of 1-D Convolutional Neural Network for time-series data processing 
 

The outcomes demonstrate that the CNN model performs significantly better than traditional neural 

network. According to numerous quantitative evaluation metrics, the CNN model effectively captures 

flooded cells [88]. 

3.2.2.3. Long Short-Term Memory (LSTM) 

The input at each time step is derived from the output of the previous time step. Long-term dependencies 

within word sequences are efficiently stored and managed by LSTMs through the use of internal gate signals 

at each time step. The underlying design of an LSTM network is depicted in Figure 4, which highlights its 

effectiveness in managing long-term dependencies in comparison to conventional RNNs. This characteristic 

makes LSTMs well-suited for complex sequence-based tasks that call for a prolonged, deeper 

comprehension of context [89, 90]. The LSTM memory units have three gate signals: input, output, and 

forget, as shown in Figure 3.3. Gate signals regulate data flow through the memory cells by determining 

whether information should be preserved or forgotten at each time interval. To address the vanishing 

gradient problem, the memory cell 𝐶𝑡 is routed through the LSTM neural network using input and output 

gates. The Sigmoid Activation Function controls data flow inside the LSTM neural network. Initially, a 

sigmoid activation function of 1 allows a word to flow through the gate, but a value of 0 prevents further 

processing. The following equation 3.2 describes how the forget gate decides whether information, 

designated as 𝑓𝑡 should be sent. 

                                                                      𝑓𝑡 =  𝜎 (𝑊𝑓  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                      (3.2) 

In this equation, σ represents the Sigmoid Activation Function, 𝑊𝑓  is the weight matrix applied to the 

current input, ℎ𝑡−1 is the hidden state vector from the previous state, while 𝑏𝑓 is a biasing feature. After 

passing through the forget gate, the information is updated in an update gate signal, which is then 

incorporated into the current cell state 𝐶𝑡̃  via the tanh activation function 3.3 and 3.4. 
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                                                                        𝑖𝑡 = 𝜎 (𝑊𝑓  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖                                                           (3.3) 

In the above equation, 𝑖𝑡denotes the activation vector for the input gate whereas 𝑏𝑖 is the bias vector for 

particular gates.  

                                                                    𝐶𝑡̃ = tanh(𝑊𝐶  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                                       (3.4) 

The previous cell state 𝐶𝑡−1 in the memory unit is updated to the new cell state 𝐶𝑡as shown in equation 3.5 

                                                                               𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1  +  𝑖𝑡 ∗ 𝐶𝑡  ̃                                                                (3.5) 

Last but not least, the output of the sigmoid activation function is controlled by the output gate of the LSTM 

memory units in 3.6 and the output of the hidden layer ℎ𝑡 for the current word in 3.7. 

                                                                    𝑂𝑡 = 𝜎 (𝑊𝑂  . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑂)                                                         (3.6) 

                                                                                   ℎ𝑡 = 𝑂𝑡 ∗ tanh𝐶𝑡                                                                        (3.7) 

 

 
         Figure 3.3: Internal structure of a Long Short-Term Memory (LSTM) Neural Network Unit 

 

3.2.2.4. Feature Extraction and Working of Proposed Model  

A bidirectional LSTM, often known as a BiLSTM is made up of two LSTMs. Bidirectional processing 

involves processing data both from the past to the future and from the future to the past. In contrast to 

unidirectional LSTMs, the backward LSTM in this configuration maintains future data. Bidirectional Long 

Short-Term Memory (LSTM) can combine the hidden states from both directions to retain and use past and 

future knowledge at any one time. This dual viewpoint improves the model's comprehension of context and 

dependencies within the data. The architecture of BiLSTM is shown in Figure 3.4. The Bidirectional Long 

Short-Term Memory (BiLSTM) model comprises two layers of LSTM networks, one of which processes 

the input sequence forward and the other backward [91]. The fundamental structure of the BiLSTM 

framework is depicted in the figure above. The input sequence is given as a regular LSTM in the first layer, 

and it is reversed in the second layer. But the data kept in both forward and backward directions, LSTM is 

provided in equations 3.8 and 3.9. 
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                                                                 ℎ𝑓 = 𝑤𝑓1 ∗ 𝑥𝑘  +  𝑤𝑓2 ∗ ℎ𝑘−1                                                                                   (3.8) 

                                                                 ℎ𝑏 = 𝑤𝑏1 ∗  𝑥𝑘  +  𝑤𝑏2 ∗  ℎ𝑘+1                                                                      (3.9) 

Where the two advanced layers (forward and backward) of the LSTM are represented by the hidden output 

ℎ𝑓 , and ℎ𝑏, respectively. The hidden layer's activation output, also known as the final output, is provided 

in 3.10. 

                                                             𝑎𝑖 = 𝑔(𝑤𝑜1 ∗ ℎ𝑓 + 𝑤𝑜2 ∗ ℎ𝑏)                                                        (3.10) 

 
Figure 3.4: Detailed view of data flow and internal operations in a Bidirectional LSTM (BiLSTM) 

network 

 

Table 3.1: The following table compares LSTM with BiLSTM 

Feature LSTM BiLSTM 
Architecture Single-directional RNN 

alongside memory cells 

Two LSTM layers: a forward-

facing layer and a backward-

facing layer 

Gates Three gates: input, forget, and 

output 

For both directions—forward 

and backward—input, forget, 

and output gates 

Direction Processes data from beginning 

to end 

Processes information both from 

start to end and from end to 

start. 

Performance Limited by the absence of future 

context. 

It is better overall because of the 

bidirectional context. 

https://www.collinsdictionary.com/dictionary/english-thesaurus/feature
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Relevant Information exclusively makes use of 

historical context 

Uses both past and future 

context. 

Complexity One set of LSTM cells makes 

things simpler. 

 

More complicated, having two 

sets of LSTM cells (one for each 

direction). 

Computational Requirements Reduced demand for memory 

and computation 

Higher computational and 

memory requirements 

 

Bidirectional Long Short-Term Memory (BiLSTM) networks are a powerful sort of recurrent neural 

network (RNN) that captures long-term dependencies in sequential input [92]. In CNN, the convolution 

operation on the input data generates a high-level feature map by applying filters of various sizes, which is 

then pooled to extract key features. Higher layers capture complicated features in a deep convolutional 

network by applying convolutional operations to lower levels [93]. Figure 3.5 shows our FloodCNN-

BiLSTM model's flowchart, which details the process from data intake to flood prediction.  

The model pre-processes environmental data before using a Bidirectional Long Short-Term Memory 

(BiLSTM) network to evaluate it sequentially, identifying patterns for reliable flood prediction. Finally, the 

results are analyzed to enhance the model's functionality. The CNN-Bidirectional LSTM (BiLSTM) model 

is proposed to improve flood prediction by leveraging CNN for spatial feature learning and BiLSTM for 

capturing temporal dependencies. This approach enhances prediction accuracy by analyzing complex 

patterns in flood-related data. It combines BiLSTM for temporal dependencies and CNN for spatial feature 

learning, to improve flood prediction accuracy by studying complicated data patterns related to flood 

occurrences. The starting stage of our FloodCNN-BiLSTM model is data preparation, which includes 

activities like data cleaning, missing value management, and data encoding. The process begins with data 

preprocessing, which involves data cleaning, handling missing values through imputation or deletion, and 

encoding categorical variables into numerical formats like label or one-hot encoding. The pre-processed 

data is fed into the CNN layer, which extracts local features using convolution and pooling operations. 

Convolution applies filters to detect patterns, while pooling reduces dimensionality and highlights key 

spatial features. Initially developed for image analysis, CNNs are also effective for handling text and sensor 

data. The CNN output is passed to the BiLSTM layer, which captures long-range dependencies in the data. 

BiLSTM, an advancement on traditional LSTM, excels in modelling sequential data, making it well-suited 

for flood prediction. By combining advanced preprocessing and deep learning techniques, this approach 

addresses the complexities of environmental data for flood prediction. In Figure 3.6, the proposed 

FloodCNN-BiLSTM architecture includes a 1-dimensional convolution layer to extract features from the 

input environmental data collected from multiple sensors. This layer aims to build a large network that can 

manage massive data sets. This enables the model to learn features that are consistent across different 
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locations and times. In a CNN layer, all 256 filters execute the convolutional process on input data from 

top to bottom, extracting the feature sequence as  𝑓𝑛 = [𝑓1 , 𝑓2,, ……… . . , 𝑓256]. Following the convolution 

process, we flatten or pool the result to convert it to a format that can be processed sequentially by BiLSTM. 

It includes a memory block that processes information sequentially for temporal behavioural simulation 

[94]. 

 
 

Figure 3.5: Dataflow diagram of the proposed FloodCNN-BiLSTM it involves preprocessing input data, 

extracting key features using a CNN, and analyzing these features with a BiLSTM network to identify 

patterns and make accurate flood predictions 
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 Its memory cells allow it to choose what long-term contextual knowledge to retain and what to discard, 

giving it the ability to learn. The components of an LSTM cell are an input gate (𝑖𝑡), an output gate (𝑜𝑡), a 

forget gate (𝑓𝑡), and a memory cell state (𝐶𝑡). The input gate at timestamp 𝑡 (𝑖𝑡) controls the flow of 

information into the cell and updates its state using equation 3.3, while the forget gate determines the 

amount of information to erase at time 𝑡 using equation 3.2. The candidate cell value (𝐶𝑡̌) is computed with 

equation 3.3. The current cell state value (𝐶𝑡), the output from the output gate (𝑜𝑡), and the final output (ℎ𝑡

) of the LSTM cell at time 𝑡 are determined by equation 3.5, 3.6, and 3.7 respectively. In these equations, 

𝑓𝑡 denotes the input for the BiLSTM at time-stamp 𝑡, derived from the high-level attention mechanism.  

 

 

 

Figure 3.6: A detailed architecture of our proposed model FloodCNN-BiLSTM for predicting floods, 

showing how the CNN extracts important features from input data and the BiLSTM analyses time-based 

patterns to make accurate flood predictions. 
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The symbols 𝑊,𝑏, σ, and tanh stand for the weight vector, bias vector, sigmoid function, and hyperbolic 

tangent function, respectively. Furthermore, ⊗ indicates element-wise multiplication. We use BiLSTM 

instead of LSTM to collect information in both directions. BiLSTM consists of two LSTMs: forward LSTM 

captures future context from left to right, while backward LSTM captures previous context from right to 

left. Equations 3.11 and 3.12 require the generation of two hidden representations, ℎ𝑡
⃗⃗  ⃗ 𝑎𝑛𝑑 ℎ𝑡

⃖⃗ ⃗⃗   and, 

respectively, during the procedure. The final representation is then created by concatenating the information 

outputs from both LSTM networks by the Bidirectional LSTM (BiLSTM), as shown in Equation 3.13. This 

makes it possible for the BiLSTM to improve the representation overall by utilizing context in both 

directions. To obtain the forward feature sequences (i. e. 𝐹256 𝑡𝑜 𝐹1) and backward feature sequences 

(i. e. 𝐹1 𝑡𝑜 𝐹256), the suggested model incorporates a BiLSTM layer. The proposed model uses a BiLSTM 

to encode environmental parameters from both directions, capturing comprehensive contextual information. 

This encoded data is then passed to an attention layer, which assigns variable weights to different parts of 

the data, enhancing the model's focus on the most relevant features for improved performance. 

ℎ𝑡
⃖⃗ ⃗⃗ = 𝐿𝑆𝑇𝑀⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ (𝐹𝑛)                                                                   (3.11) 

ℎ𝑡
⃗⃗  ⃗ =  𝐿𝑆𝑇𝑀 ⃖⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝐹𝑛)                                                                           (3.12) 

ℎ𝑛 = [ℎ𝑡
⃖⃗ ⃗⃗  , ℎ𝑡

⃗⃗  ⃗ ]                                                                                 (3.13) 

 

Algorithm Flood Prediction Using CNN and BiLSTM (FloodCNN-BiLSTM) 

Input: historical_flood_data, meteorological_data,  

Output: Predictions chance of flood 

Step 1: Data Preprocessing 

 Procedure PreprocessData (historical_flood_data, meteorological_data,) 

        Clean data (remove duplicates, correct errors, handle outliers) 

        Manage missing values (imputation or deletion) 

        Scale data (normalization or standardization) 

   Return train_data, testing_data val_data, 

 

Step 2: CNN Model for Feature Extraction 

    Procedure Build cnn (input_shape) 

        1. Initialize Sequential model 

        2. Add 1D Conv layer with 256 filters, kernel_size3, activation 'ReLU', input_shape, 

        3. Apply convolution operation to generate feature map as 𝑓𝑛: 

𝑓𝑛 = [𝑓1 , 𝑓2,, ……… . . , 𝑓256] 
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        4. Pool or flatten the result 

     Return cnn_model 

 

Step 3: BiLSTM Model for Sequential Processing 

    Procedure Build BiLSTM Model(input_shape) 

        1. Initialize Sequential model 

        2. Add Bidirectional LSTM layer with 64 units, return_sequences=True 

        3. Compute forward hidden states (ℎ𝑓) as per equation 8 

                ℎ𝑓 = 𝑤𝑓1 ∗  𝑥𝑘  +  𝑤𝑓2 ∗ ℎ𝑘−1 

 

        4. Compute backward hidden states (ℎ𝑏) as per equation9 

 

ℎ𝑏 = 𝑤𝑏1 ∗  𝑥𝑘  +  𝑤𝑏2 ∗  ℎ𝑘+1 

 

        5. Compute combined hidden state (𝑎𝑖) as per equation10 

 

𝑎𝑖 = 𝑔(𝑤𝑜1 ∗ ℎ𝑓 + 𝑤𝑜2 ∗ ℎ𝑏) 

        6. Add another Bidirectional LSTM layer with 64 units 

    Return bilstm_model 

 

Step 4: Combine CNN and BiLSTM Models 

    Procedure Build FloodCNN-BiLSTM (cnn_model, bilstm_model) 

        1. Concatenate outputs of CNN_model and bilstm_model 

        2. Add Dense layer with 64 units, activation 'relu' 

        3. Add Dense layer with 32 units, activation 'relu' 

        4. Return combined_model 

 

 Step 5: Add Output Layer 

    Procedure Add Output Layer(combined model, output_type) 

        If output_type is 'regression' 

              1. Add Dense layer with 1 unit, activation 'linear' 

        Else if output_type is 'classification' 

               1. Add Dense layer with 1 unit, activation 'sigmoid' 
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        End If 

        2. Return model 

 

 Step 6: Train the Model 

    Procedure TrainModel (model, train_data, val_data, epochs=100, batch_size=32) 

        1. Compile model with optimizer 'adam', loss 'mean_squared_error', metrics 'mae' 

        2. Train model on train_data 

        3. Return training history 

 

 Step 7: Evaluate the Model 

 

    Procedure Evaluate Model (model, val_data) 

Return evaluation results 

Return predictions 

 

3.3 Experimental Results and Discussion 

This section presents the experimental results and analysis of the proposed model. Performance is evaluated 

using metrics like accuracy, precision, recall, and F1-score. Comparative studies with existing methods 

demonstrate improvements. Visual outputs and case studies further illustrate the model’s robustness and 

effectiveness across different scenarios. 

3.3.1 Performance Evaluation Metrics 

Metrics for performance evaluation are used to evaluate the reliability and efficiency of a model, or other 

entity.  

Accuracy: A commonly used metric to evaluating a model's predictive performance is accuracy. It is the 

proportion of accurately predicted instances (including true positives and true negatives) to all of the 

instances in the dataset. 

  Accuracy = 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
                                                             (3.14) 

Precision: Precision also referred to as positive predictive values, measure the proportion of accurate 

positive predictions to all of the positive forecasts the model made. When a model predicts a favourable 

outcome, it is more likely to be accurate because of its high precision. 

                                                            Precision = 
𝑇𝑃

𝑇𝑃+𝐹𝑃 
                                                                               (3.15) 
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Recall: Recall quantifies the proportion of accurate positive predictions to actual positive instances found 

in the dataset. High recall indicates that the model can successfully identify a significant part of the actual 

positives. 

Recall = 
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                          (3.16) 

F1-score: The F1-Score represents the harmonic average of precision and recall. It strikes a balance among 

these two metrics. It is especially beneficial when you want to evaluate both false positives and false 

negatives and need to strike a balance between decreasing them. 

F1-score = 2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+ 𝑅𝑒𝑎𝑙𝑙
                                                        (3.17) 

3.3.2. Data Description  

The most important aspect of developing a flood disaster forecasting system is requires a large amount of 

data for accurate predictions. Since many human settlements in India are located near rivers, large areas of 

the country are prone to flooding. Therefore, as a result, these areas are especially vulnerable to flooding 

during the monsoon season. India is highly suitable for studying and analyzing flood patterns due to its 

frequent flood occurrences. Following this, there were significant floods in many Indian states and union 

territories. 

3.3.2.1 Description of Dataset 1 

This revealed that India is highly prone to severe flooding. According to the International Water 

Management Institute (IWMI), 73 percent of India’s land area is affected by flooding annually. The 

frequency of flood events is extremely high in Orissa. As a result, we include two major Indian states, Bihar 

and Odisha, in our system. Bihar and Odisha are both huge states; their districts are 38 and 30, respectively. 

Each state's ten most prone to flooding cities are chosen. The Dataset also includes monthly data. We 

analyzed data collected over fifteen years, coming each month from January to December. The data is 

categorized into three categories of flood risk (Low, Moderate, and High) [95]. 

3.3.2.2 Description of Dataset 2 

There are ten features in total, including temperature, precipitation, wind speed, wind speed, wind direction, 

air pressure, and others. In each training and testing phase, you are provided with meteorological data from 

anonymized surrounding areas named Region A through Region E, which are all surrounding regions. The 

data is categorized into three categories of flood risk (N-No rain, L-Light rain, and H-Heavy rain) [96]. 
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3.3.3. Result Analysis on Dataset 1 

In this, we evaluate several crucial performance measures in depth, including precision, recall, F1-score, 

and accuracy on dataset 1. These metrics help evaluate how well our prediction model aligns with or 

compares to existing models. 

 

Table 3.2: Precision tabulated for the proposed model, with existing techniques on dataset 1. 

 

 

Figure 3.7: Graphical illustration of categorized data and precision performance of SVM, DT, ANN, 

CNN, LSTM, and proposed model on dataset 1 
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Precision 

Model/ Algorithm Class 

Low Moderate High 

SVM 90.4 76.7 77.3 

DT 93.5 75.6 73.7 

ANN 92.6 70.5 75.6 

DNN 95.3 94.0 78.4 

NB 94.6 91.3 89.6 

CNN 93.0 94.3 90.4 

LSTM 95.6 96.5 93.5 

Bi-LSTM 97.5 95.7 95.4 

Proposed Model (FloodCNN-BiLSTM) 98.5 95.7 94.3 
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Figure 3.7 shows a graphical depiction of the precision for different machine learning algorithms and our 

suggested model. Each model's performance varies by data class; however, our proposed model, 

FloodCNN-BiLSTM, outperforms them all. A graphical illustration of the Recall of different machine 

learning methods and our suggested model is shown in Figure 3.8. Each model performs differently in each 

of the data classes, however, our suggested model, FloodCNN-BiLSTM, performs better in every situation. 

Table 3.3: Recall table of our Proposed Model with existing techniques on Dataset 1 

Recall 
Model/ Algorithm Class 

Low Moderate High 

SVM 70.3 87.4 90.5 

DT 76.4 92.6 87.8 

ANN 88.6 94.5 89.7 

DNN 78.1 97.6 82.6 

NB 81.5 95.2 88.4 

CNN 82.3 92.7 90.5 

LSTM 83.7 94.5 96.4 

Bi-LSTM 84.5 95.5 95.2 

Proposed Model (FloodCNN-BiLSTM) 85.5 96.8 95.7 

 

 

Figure 3.8: Graphical comparison of the recall of SVM, DT, ANN, CNN, LSTM, and the proposed model 

on Dataset 1 

 

 

 

50

60

70

80

90

100

LOW MODERATE HIGH

CLASS

Recall

SVM DT ANN DNN NB CNN LSTM Bi-LSTM Proposed Model



41 
 

Table 3.4. Displays the F1-scores of the Proposed Model with existing techniques on dataset 1.   
 

F1-score 

Model/ Algorithm Class 

Low Moderate High 

SVM 85.5 83.6 87.5 

DT 82.3 80.3 83.6 

ANN 79.8 82.7 85.1 

DNN 83.7 87.3 91.6 

NB 85.3 89.6 94.5 

CNN 87.0 90.3 95.0 

LSTM 89.26  95.49  94.93 

BI-LSTM 90.54  95.60 95.30 

Proposed Model (FloodCNN-BiLSTM) 91.54  96.10  94.99 

 

Figure 3.9: Visualization of categorized data and model F1-score for SVM, DT, ANN, CNN, LSTM, and 

the proposed model using Dataset 1 
 

Figure 3.9 above shows a graphic depiction of F1 scores among our proposed model and the different 

machine-learning algorithms. Each model performs differently in each class of data, however our suggested 

model, the FloodCNN-BiLSTM, consistently outperforms the competition. 
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Table 3.5: Accuracy table of the proposed model with existing techniques on dataset 1. 

 

Model/ Algorithm Accuracy 

SVM 89.7 

DT 87.6 

ANN 90.8 

DNN 92.6 

NB 89.8 

CNN 93.3 

LSTM 94.7 

Bi-LSTM 96.5 

Proposed Model (FloodCNN-BiLSTM) 97.3 

 

 

 
Figure 3.10: Accuracy comparison of SVM, DT, ANN, DNN, NB, CNN, LSTM, Bi-LSTM, and proposed 

model on dataset 1 
 

Figure 3.10 above shows a graphical depiction of our suggested model and the accuracy of different 

machine-learning techniques. Each model performs differently in each data class, however, our suggested 

model, FloodCNN-BiLSTM, performs better in every situation. 

3.3.4 Result Analysis on Dataset 2 

The precision, recall, F1-score, and accuracy on dataset 2 are all carefully examined in this phase. When 

evaluating our prediction model against other models, these variables are crucial indicators of its quality. 
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Table 3.6: Precision tabulated of Proposed with existing techniques on dataset 2. 

 

Precision 

Model/ Algorithm Class 

No rain Light rain Heavy rain 

SVM 93.4 81.6 78.5 

DT 91.8 79.5 77.3 

ANN 89.7 76.4 79.6 

DNN 97.8 95.3 87.4 

NB 91.0 89.3 91.0 

CNN 90.4 97.9 93.4 

LSTM 94.6 95.7 94.3 

Bi-LSTM 96.5 96.5 96.8 

Proposed Model (FloodCNN-BiLSTM) 97.3 94.5 96.4 

 

Figure 3.11: Graphical illustration of categorized data and precision performance of SVM, DT, ANN, 

CNN, LSTM, and proposed model on dataset 2 
 

Table 3.7: Recall the table of our Proposed Model with existing techniques on dataset 2  

Recall 
Model/ Algorithm Class 

No rain Light rain Heavy rain 

SVM 73.6 89.5 92.3 

DT 79.6 94.7 88.7 

ANN 90.6 96.5 89.7 
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DNN 82.0 93.5 82.4 

NB 85.6 94.7 84.5 

CNN 87.5 95.6 91.6 

LSTM 88.2 93.4 93.5 

Bi-LSTM 89.0 94.1 96.9 

Proposed Model (FloodCNN-BiLSTM) 89.4 94.8 96.2 

 

Figure 3.12: Graphical comparison of the recall of SVM, DT, ANN, CNN, LSTM, and the proposed 

model on Dataset 2 

Figures 3.11 and 3.12 present graphical comparisons of the performance metrics for various machine 

learning algorithms, including our proposed model, FloodCNN-BiLSTM. Figure 12 illustrates the 

precision, while Figure 13 shows the recall values. In both metrics, FloodCNN-BiLSTM consistently 

outperforms the other approaches, demonstrating superior performance across all evaluated scenarios. 

Table 3.8: Displays the F1-scores of the proposed model with existing techniques on dataset 2 

F1-score 
Model/ Algorithm Class 

Low Moderate High 

SVM 89.4 86.4 87.9 

DT 84.6 85.7 86.4 

ANN 82.0 87.3 90.0 

DNN 87.5 90.6 86.8 
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NB 83.7 86.6 87.5 

CNN 91.7 91.0 95.7 

LSTM 91.29 94.54 93.9 

Bi-LSTM 92.6 95.28 96.85 

Proposed Model (FloodCNN-BiLSTM) 93.18 94.46       96.80 

 

 

Figure 3.13: Visualization of categorized data and model F1-score for SVM, DT, ANN, CNN, LSTM, and 

the proposed model using Dataset 2 

Table 3.9: Accuracy tabulation of Proposed Model with existing techniques on dataset 2 

Model/ Algorithm Accuracy 

SVM 92.6 

DT 90.9 

ANN 95.5 

DNN 96.4 

NB 93.3 

CNN 96.1 

LSTM 97.0 

Bi-LSTM 97.8 

Proposed Model(FloodCNN-BiLSTM) 98.6 
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Figure 3.14: Accuracy comparison of SVM, DT, ANN, DNN, NB, CNN, LSTM, Bi-LSTM, and Proposed 

Model on dataset 2 

 

Figures 3.13 and 3.14 show the performance evaluation of various machine learning models across different 

data classes. Figure 14 illustrates the F1 scores, while Figure 15 displays the accuracy metrics. The 

performance of each algorithm varies across data classes; however, our proposed model, FloodCNN-

BiLSTM, consistently outperforms the others in both F1 score and accuracy. These results show the 

effectiveness and robustness of the FloodCNN-BiLSTM model across all evaluated scenarios. 

Table 3.10: Comparison of Accuracy across Various Models for Dataset 1 and Dataset 2 Using the proposed 

model with existing techniques 
 

Accuracy 

Model/ Algorithm Dataset 1 Dataset 2 

SVM 89.7 92.6 

DT 87.3 90.9 

ANN 90.8 95.5 

DNN 92.6 96.4 

NB 89.8 93.3 

CNN 93.3 96.1 

LSTM 94.7 97.0 

Bi-LSTM 96.5 97.8 

Proposed Model (FloodCNN-BiLSTM) 97.3 98.6 
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Figure 3.15: Comparison graph of accuracy on dataset 1 and dataset 2 

Figure 3.15 clearly shows that our suggested FloodCNN-BiLSTM model has exhibited an important rise in 

accuracy when compared with standard flood detection approaches across multiple datasets. Our results 

show that our suggested FloodCNN-BiLSTM model performs well in flood prediction. This model is ideal 

for applications that require highly accurate inflow quantity projections, particularly in unusual and 

complex scenarios. Its superiority stems from its thorough evaluation, flexibility to individual situations, 

customized precision, and general robustness, making it an invaluable tool in the field of flood prediction, 

where precision is critical for effective decision-making. FloodCNN-BiLSTM emerged as the best option 

for accurately predicting inflow volumes. Our proposed FloodCNN-BiLSTM model has proven to be 

adaptable to a variety of geographical regions and environmental situations. This feature is critical for the 

development of early warning systems that allow for prompt actions and risk minimization. 

3.3.5 Ablation Study 

This section presents an ablation study to validate the contribution of the proposed architecture, which is 

trained using the mentioned dataset. In Case A, the model is evaluated without the FloodCNN-BiLSTM to 

determine its impact on feature extraction. The results obtained are lower due to the absence of FloodCNN-

BiLSTM optimization for feature selection. In Case B, the LSTM is tested without the complete FloodCNN-

BiLSTM to assess its standalone effectiveness; the results are lower as raw features are suboptimal for 

classification. The following are the cases for the ablation study: 

Case A: Using only CNN 

Case B: Using only LSTM 

Case C: Using only Bi-LSTM 

Case D: Concurrently using CNN and Bi-LSTM (proposed work) 
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Table 3.11: The ablation study was conducted using the proposed FloodCNN-BiLSTM architecture. Case 

A incorporates values obtained without using CNN. Case B includes studies on the incorporation of using 

only the LSTM for classification. Case C incorporates Bi-LSTM. Case D the concurrent use of CNN and 

Bi-LSTM. 

 

Dataset Ablation Study Case Accuracy Precision Recall F1- score 

 

 

 

Dataset 1 

Using only CNN A 79.5 81.9 84.0 82.9 

Using only LSTM B 82.5 83.6 85.1 84.3 

Using only Bi-LSTM C 84.1 86.6 83.2 84.8 

Concurrently using CNN 

and Bi-LSTM (proposed 

work) 

D 97.30 98.5 96.8 97.6 

 

 

Dataset 2 

Using only CNN A 80.2 81.5 83.1 82.3 

Using only LSTM B 83.4 86.7 88.3 87.6 

Using only Bi-LSTM C 86.9 89.3 87.4 88.3 

Concurrently using CNN 

and Bi-LSTM (proposed 

work) 

D 98.60 97.3 96.2 96.7 

 

Table 3.11 presents an ablation study evaluating the performance of various models on two datasets. Four 

configurations were tested: using only CNN, only LSTM, only Bi-LSTM, and a proposed approach 

combining CNN and Bi-LSTM. For Dataset 1, the proposed method significantly outperforms others with 

an accuracy of 97.30%, precision of 98.5%, recall of 96.5%, and an F1-score of 97.60, showing its superior 

capability in capturing features. Similarly, for Dataset 2, the proposed approach achieves the highest 

accuracy (98.60%), precision (97.3%), recall (97.2%), and F1-score (96.7), emphasizing its effectiveness. 

Comparatively, individual methods like CNN, LSTM, and Bi-LSTM deliver moderate results, underscoring 

the advantages of the synergistic use of CNN and Bi-LSTM in the proposed method. 

3.3.6 Comparison of the Proposed Model with Existing Techniques 

Table 3.12 summarizes performance metrics of various models for flood classification tasks. The proposed 

FloodCNN-BiLSTM model achieved the highest accuracy at 98.6%, with strong precision (97.3%), recall 

(96.4%), and an F1-score of 94.5%.  
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Table 3.12: Performance Comparison of Our Proposed Model with Existing Techniques  

References Model Accuracy Precision Recall F1-score 

[97] CatBoost 97.8 96.0 99.0 97.4 

[98] KNN 0.7317 0.74 0.74 0.74 

[99] Statistical 

Index model 

90.3 - - - 

[100] FloodCast 90.59 96.10 93.69 94.88 

[101] DNN- 

SWARA 

97.05 100 98.01 99.03 

[102] MaxEnt model 97.0 - - - 

[103] eXtreme Deep 

Factorisation 

Model 

90.41 87.56 94.88 91.07 

 FloodCNN-

BiLSTM 

98.6 97.3 97.2 96.8 

 

CatBoost also performed well, achieving 97.8% accuracy and a high recall (99.0%), indicating its 

effectiveness in identifying true positives. The DNN-SWARA model excelled in precision (100%) and F1-

score (99.03%) but had slightly lower accuracy at 97.05%. Statistical Index and MaxEnt models delivered 

comparable accuracies of 90.3% and 97.0%, respectively, though their other metrics were not reported. 

FloodCast achieved 90.59% accuracy with balanced precision (96.10%), recall (93.69%), and F1-score 

(94.88%). KNN, with an accuracy of 73.17%, was the weakest performer. The eXtreme Deep Factorisation 

Model had moderate results, with an F1-score of 91.07%. Overall, FloodCNN-BiLSTM emerged as the 

most accurate model for flood classification 

3.4 Chapter Summary 

This chapter investigated the application of artificial intelligence for enhanced flood detection and 

forecasting, presenting two hybrid deep learning models: FloodCNN-BiLSTM. The FloodCNN-BiLSTM 

model integrates Convolutional Neural Networks (CNN) for spatial feature extraction and Bidirectional 

Long Short-Term Memory (BiLSTM) networks for capturing temporal dependencies in sensor-based 

environmental data. The chapter emphasizes the value of combining image processing and AI-based 

techniques for accurate, real-time flood risk assessment and early warning system development. 
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Chapter 4  

FLOOD DETECTION USING ARTIFICIAL 

INTELLIGENCE  

Flood detection using image-based analysis has gained significant momentum with the rise of advanced 

artificial intelligence (AI) and image processing techniques. Traditional flood monitoring approaches often 

rely on sensor data or manual interpretation of satellite imagery, which are limited in scalability, precision, 

and response time. This chapter presents enhanced frameworks for flood classification that leverage the 

synergy between deep learning models and nature-inspired optimization algorithms. Specifically, two novel 

architectures, Flood-FireNet, which combines a SWIN Transformer with the Adaptive Firefly Algorithm 

(AFA), and Mo-SWIN, which integrates the SWIN Transformer with Monkey Search Optimization (MSO) 

are introduced to improve the extraction and selection of critical visual features from satellite and aerial 

imagery. These models are designed to address key challenges in flood detection, such as noise reduction, 

class imbalance, and the accurate delineation of flooded regions in complex environments. The chapter 

provides a detailed overview of image preprocessing, feature engineering, optimization strategies, and 

classification mechanisms, showcasing how AI-driven solutions can enhance the accuracy, robustness, and 

generalizability of flood detection systems. 

 

4.1 Introduction 

Floods are among the most frequent and devastating natural disasters, causing extensive damage to human 

life, infrastructure, agriculture, and ecosystems across the globe. The increasing incidence of extreme 

weather events, largely driven by climate change, has significantly amplified the risk and severity of floods 

in recent years. Urbanization and deforestation have further exacerbated the impact of flooding, disrupting 

natural drainage systems and increasing surface runoff. In light of these challenges, the development of 

robust and timely flood detection systems has become an essential component of effective disaster 

management and mitigation strategies [104, 105]. Traditional flood detection methods often rely on physical 

sensors, hydrological simulations, or manual interpretation of satellite images. While these methods provide 

useful information, they are limited by high operational costs, low spatial-temporal resolution, dependence 

on extensive manual effort, and a lack of adaptability to varying environmental conditions. Furthermore, 

the accuracy of such approaches is often compromised by noise, occlusions, and incomplete data coverage, 

particularly in remote or dynamically changing regions. These limitations necessitate the integration of 

more intelligent, automated, and data-driven approaches to flood detection and classification. Recent 
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advances in Artificial Intelligence (AI), particularly in computer vision and deep learning, have opened new 

avenues for flood image classification. AI models are capable of learning complex spatial and temporal 

patterns from image data, enabling precise identification of flood-affected regions. In particular, deep 

learning architectures such as Convolutional Neural Networks (CNNs) and Transformers have 

demonstrated remarkable success in image analysis tasks, including object detection, segmentation, and 

classification [106]. These models can process large volumes of satellite, drone, and aerial imagery to 

automate flood monitoring at scale, offering higher accuracy, faster response times, and greater operational 

flexibility. 

However, despite the promising potential of deep learning models, challenges such as overfitting, high 

dimensionality, class imbalance, and redundant features continue to hinder their performance and 

generalization. To overcome these limitations, the integration of nature-inspired optimization algorithms 

with deep learning frameworks offers a powerful solution. Such algorithms mimic natural phenomena such 

as animal foraging behaviour or social interactions to optimize feature selection, reduce noise, and enhance 

model robustness [107, 108]. 

This chapter introduces two novel hybrid architectures that exemplify the synergy between deep learning 

and nature-inspired optimization for flood detection: 

• Flood-FireNet, which combines the SWIN Transformer with the Adaptive Firefly Algorithm (AFA) 

for effective feature extraction and classification of flooded regions from satellite imagery. The 

AFA, inspired by the bioluminescent signaling and movement of fireflies, optimizes the selection 

of high-level features while filtering out noise and irrelevant background data. The SWIN 

Transformer leverages a hierarchical attention-based mechanism with shifted windows to capture 

both local and global image features efficiently. 

• MoSWIN, which integrates the SWIN Transformer with Monkey Search Optimization (MSO). 

Inspired by the adaptive and cooperative foraging behaviour of monkeys, MSO enhances feature 

extraction by dynamically identifying the most informative visual patterns in flood images. The 

SWIN Transformer processes these features through a structured hierarchy of patch-based self-

attention layers, improving the model’s ability to distinguish flooded from non-flooded areas. 

Both models were developed and tested using high-resolution flood image datasets and were benchmarked 

against established architectures such as ResNet18 and Vision Transformers. The combination of intelligent 

feature selection and advanced transformer-based classification enables these models to deliver superior 

performance, particularly in terms of accuracy, precision, recall, and robustness against noise and occlusion. 

The proposed architectures also incorporate advanced preprocessing techniques, including image 

denoising, augmentation, segmentation using Gaussian Mixture Models, and dimensionality reduction via 

Principal Component Analysis (PCA). These steps ensure that the input data is clean, representative, and 
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conducive to effective learning. Through this holistic approach, Flood-FireNet and MoSWIN address key 

limitations of traditional methods while enhancing scalability, adaptability, and decision-making speed. 

In the broader context of disaster management, these AI-driven models contribute to the development of 

intelligent flood early warning systems and risk assessment frameworks. Their ability to process real-time 

visual data and deliver actionable insights can significantly support emergency response teams, urban 

planners, and policy-makers in mitigating flood-related risks and optimizing resource allocation. 

 

4.2   Dataset Description 

The dataset utilized in this study serves as a comprehensive and annotated collection of flood-related 

images, specifically curated for interactive content-based image retrieval tasks. It consists of 3,710 images, 

the majority of which were captured during the Central European floods of May and June 2013 and 

subsequently retrieved in July 2017. This dataset offers a diverse representation of flooded and non-flooded 

areas, enabling robust training and evaluation of deep learning models for flood detection and classification. 

Out of the total collection, 3,435 images are accompanied by detailed annotations, and 890 images include 

metadata specifying the geographical location of the scenes. An additional 275 images depicting water 

contamination were manually collected from various online image search engines to enrich the dataset’s 

variability and realism. The primary objective associated with this dataset is binary classification: 

determining whether a given location in an image is flooded or not flooded. The dataset features a wide 

range of environmental conditions, lighting scenarios, and flood intensities, making it suitable for 

evaluating the generalizability of AI models in realistic flood detection applications [109]. 

In this research, the same dataset was employed to train and evaluate two proposed models, MoSWIN and 

Flood-FireNet. However, different data partitioning strategies were adopted to tailor the experiments 

according to each model’s architectural requirements and training paradigms: 

• For the MoSWIN model, the dataset was split into 80% training and 20% testing sets to maximize 

training data availability and ensure robust model generalization. 

• For the Flood-FireNet model, a 70:15:15 ratio was used, allocating 70% for training, 15% for 

validation, and 15% for testing, facilitating model tuning and early stopping during training over 

100 epochs. 

This dataset played a critical role in validating the effectiveness of both models by providing high-resolution 

imagery with real-world flood conditions. Its richness and diversity allowed for the development of reliable, 

adaptable, and scalable AI-based flood detection systems. 
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4.3. Introduction to Mo-SWIN Model 

In this section, we provide an overview of the state-of-the-art techniques that served as the basis for the 

classification flood dataset. The performance and precision with which these techniques could classify the 

data in the dataset led to their thorough selection and evaluation. By utilizing these state-of-the-art methods, 

the flood dataset categorization process produces exceptionally accurate findings of the highest quality. 

4.3.1. Monkey Search Optimization 

MSO is a relatively recent metaheuristic optimization technique inspired by monkeys' food search behavior. 

MSO is a nature-inspired method used to solve optimization issues, mostly in machine learning and 

evolutionary computation [110]. 

The general process of Monkey Search Optimization is as follows: 

• Exploration and Curiosity: Monkeys have a reputation for their curiosity, and MSA reflects this 

in the algorithm's capacity to thoroughly investigate the optimization environment. The program 

employs many ways to produce and evaluate alternative solutions. 

• Resource Allocation: MSA, like monkeys, efficiently allocates resources to various possible 

solutions. This allocation is based on each solution's ability to produce superior results. 

• Local and Global Search: Monkeys are adept at both local foraging and long-range exploration. 

Similarly, MSA balances local and global search techniques to improve the search process. 

• Adaptation: Monkeys adapt to their surroundings, and MSA adapts its search parameters as the 

optimization terrain changes, assuring continuous improvement. 

• Communication and Collaboration: Monkeys are communicative and cooperative. This is 

represented in MSA as the dissemination of information and solutions among members of the 

population. 

4.3.2. Transformer 

Transformers, a deep learning architecture, is renowned for its expertise in sequence modeling applications. 

In the meantime, it has completely transformed natural language processing (NLP) domains and performed 

well in a variety of other areas as well. Transformers, use a self-attention mechanism to identify connections 

between various items in a sequence [111]. 

(A) Self-Attention Mechanism 

• Queries, Keys, and Values: Each element (token) for a given series is converted into three distinct 

vectors: Value, key, and Query. 
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• Attention Scores: Determines each token's significance or importance about the current one by 

comparing its query with the keys of all other tokens. 

• Weighted Sum: The degree to which each Value adds to the current token's representation is 

determined by these scores. 

(B) Encoder-Decoder Architecture 

• Encoder: Uses self-attention layers to process the input sequence and provide a contextual 

representation for every token. 

• Decoder: Predicts the output series by focusing on the representations of the encoded input series 

and gradually producing tokens. 

 

4.3.2.1 Swin Transformer 

Swin Transformer utilizes a hierarchical design to function as a backbone for CV operations, rather than 

just a detecting head. Swin Transformer is a hierarchical vision transformer that uses patch partitioning and 

merging to reduce spatial dimensions and extend channels. To simulate global and border properties, the 

Swin Transformer [112] uses a shifted window along the spatial dimension. In contrast to previous 

Transformer models, Swin Transformer creates a feature map that is hierarchically represented, resembling 

CNN's feature pyramid structure. The receptivity increases with the network level, allowing for the 

extraction of the image's multi-scale elements. The computation is significantly decreased and linear with 

the image size thanks to the swin transformer's second feature, which separates the feature map with several 

windows. Each non-overlapping window calculates local multi-head attention without window 

correspondence [113]. 

4.3.2.2 Vision Transformer 

While convolutional architectures are still the industry standard for CV tasks, transformers have emerged 

as the model of choice for natural language processing (NLP) applications. Attention techniques are used 

with these architectures to preserve the structure of convolutional networks. After the successful 

implementation of transformer scaling in NLP, this uses a conventional transformer to convert images 

directly. Transformers are not subject to some empirical biases found in CNNs, such as translation 

invariance and spatially limited receptive fields [114]. Translation, a feature of CNNs, is the shifting of an 

image pixel by a predefined amount in a specific direction. Grid-structured data requires sequences handled 

by a typical transformer because of its permutation invariance. As a result, vision transformers (ViT), which 

can carry out CNN functions, were created. This is accomplished by first dividing an image into patches, 

and then feeding the linear embedding of these patches into a conventional transformer encoder. After 
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receiving image labels in a supervised manner, the model is then pre-trained and refined for image 

classification using a downstream dataset. The benefits of both CNN and transformer designs can be 

coupled using this technique to create a model that can manage image data efficiently and use the 

transformer's attention mechanism [115]. 

4.3.2.3 ResNet-18 

The ResNet18 is often used to tackle the performance deterioration challenge through the addition of 

residual blocks yet ensuring model performance. It consists of entirely connected layers, residual structures, 

pooling layers, normalized layers, and convolution layers. In the process of developing CNN, more features 

can be taken from the network the deeper it is built [116]. To attain higher-level features, we therefore 

typically need a deeper network structure. The three issues of gradient disappearance, gradient explosion, 

and network deterioration will materialize when we employ deep network architectures, nevertheless. 

Figure 4.1 shows the detailed architecture of ResNet 18 [117]. 

 

Figure 4.1: Layered Architecture of ResNet 18 Model 

It is more compact than deeper ResNet variations, making it appropriate for resource-constrained settings. 

It includes residual blocks, which comprise identity and residual pathways, for dealing with gradient 

concerns in deep networks. ResNet-18 performs well in image classification and other C applications, 

balancing model complexity and performance.  A neural network's depth is vital for performance, however 

as depth rises, there may be a risk of degradation brought on by the problem of vanishing gradients [118]. 

The loss of minute detail in maps of features at high-level layers causes this problem, which is distinct from 

overfitting. The ResNet-18 is a deep residual network design with 18 layers that the author developed to 

solve this problem to increase the effectiveness of convolutional neural network training [119]. The ResNet-

18 can learn detailed feature representations of various images, and the usage of skip connection blocks 

allows the network to be optimized, increasing model accuracy. Skip connections are used to implement an 
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equivalent mapping by introducing parameters or raising the computational complexity in place of 

conventional monotonically progressive convolutions. 

4.3.3 Proposed SWIN transformer and nature-inspired solution for flood image 

classification 

The current research on flood detection and prediction is mostly concerned with machine learning (ML) 

and deep learning (DL) techniques. However, there is a significant gap in research into nature-inspired 

approaches to flood disaster management. These bio-inspired approaches, which draw inspiration from 

natural processes, can improve traditional flood management technologies. Embracing nature-inspired 

solutions is a promising opportunity to strengthen flood management capabilities. The proposed 

architecture consists of two modules: the swin transformer along with a nature-inspired solution. The 

primary idea behind this model is to improve the visual information used for flood image detection while 

striving for better performance.  

 

Figure 4.2: Sequential components of our proposed Mo-SWIN architecture 

Figure 4.2 visualizes the successive steps of our proposed MoSWIN model. The major purpose of the model 

is to extract useful information from flooded images. Feature extraction, a complicated and challenging 

task, precedes subsequent classification of images. The proposed model is being developed in several steps, 

beginning with the collection of flood prediction data. The focus then switches to data preprocessing and 

noise removal from the acquired datasets followed by resizing and augmenting images. The method entails 

segmenting incoming data, extracting essential features, selecting the most relevant ones, and then using 

the swin transformer architecture to classify. This approach improves the understanding and categorization 

of complex visual data by utilizing transformer technology for image classification and object detection. 

4.3.3.1 Preprocessing  

In flood image analysis, feature extraction is the process of locating relevant characteristics or patterns in 

raw data to help with tasks like classification. Scaling issues, noise, and variability all increase this process' 
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complexity. "We perform image resizing to standardize the dimensions and reduce computational 

complexity, ensuring consistency across the dataset. Initially, the images are 512 pixels wide, and for our 

experiment, we resize all images to a uniform size of 224 x 224 pixels. After resizing, we apply image 

augmentation to further enhance the model's robustness. This technique involves transforming the original 

images using various operations such as rotation, scaling, flipping, and other variations, which helps 

increase the diversity of the training data and improve the model's generalization capabilities." 

4.3.3.2 Segmentation  

In the segmentation, images are broken into small blocks for feature extraction and to segment flood images 

we use the Gaussian Mixture Model (GMM). To assign each pixel to the most likely Gaussian component, 

the GMM for flood image segmentation uses the Expectation-Maximization (EM) technique to iteratively 

improve model parameters, including the number of Gaussian components and their distributions. First 

initialize model parameters, such as the number of Gaussian components then their initial values, and then 

use the EM algorithm to optimize them iteratively [119]. The image is essentially divided into areas by this 

method, which allocates each pixel to the Gaussian component with the highest probability. 

4.3.3.3 Feature Extraction 

In this section, we describe the feature selection process, which identifies and selects significant features 

for flood image classification. Several techniques have been applied to image processing, including deep 

learning and nature-inspired optimization strategies. We focus on MSO, which is inspired by the food-

searching and hunting behaviours of monkeys. MSO is an adaptive and efficient optimization strategy 

[120]. The MSO algorithm is used to eliminate background and non-relevant areas in flooded images, while 

selecting features from the remaining regions. In this analogy, the images are considered as forests, and the 

non-edible background regions are discarded, as monkeys would avoid them in their search for food. This 

behaviour is formalized in the optimization process to define boundaries between relevant and irrelevant 

areas in the image. Gaussian filtering is applied post-segmentation to extract meaningful features by 

smoothing the image and reducing noise. This approach preserves key structural details while filtering out 

unnecessary information.  

The MSO algorithm has been enhanced to emphasize its self-organizing and adaptive features, which allow 

it to dynamically adjust to environmental changes during the optimization process [121]. The MoSWIN 

model builds upon this adaptability, incorporating real-time search parameter adjustments to improve 

performance. Additionally, feedback-driven mechanisms fine-tune the SWIN transformer, allowing it to 

respond to performance feedback and continuously evolve. This adaptability is particularly valuable in the 

context of flood scenarios, where new datasets and environmental conditions require ongoing model 
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improvement. A comparison with other evolving AI models further highlights MoSWIN’s strengths, 

including its ability to self-learn, self-develop, and adapt. The potential for long-term evolution is especially 

important for tackling dynamic challenges in flood classification. Future work will explore the integration 

of self-adaptive transformers and lifelong learning techniques, further enhancing MoSWIN's ability to 

evolve with new data and tasks. In the following algorithm 1, we explain the working of our proposed MSO 

algorithm. Here, we use the monkeys' hunting and food-searching behaviours to choose the features of the 

associated dataset. The following algorithm takes a dataset of flood images as input and generates the output 

of the best feature from the corresponding feature set.  The parameters we defined are [MSize, Maxitr, Lb, Ub].  

Where MSize represents the size of the population of monkeys, Maxitr represents the maximum number of 

iterations required for the hunting process, Lb denotes the lower bound of search space, and Ub denotes the 

upper bound of search space. In our algorithm, we consider 40; the Maximum iteration is 100; the lower 

bound of the search space is -10; the upper bound of the search space is 10. We calculate the monkey's 

fitness in every iteration using a formula provided by the algorithm to find the best solution. 

Algorithm 1: Monkey Search Optimization (MSO) Algorithm for feature selection of flood image 

Input: Flood image dataset 

Output: The best features found and the corresponding feature set. 

Input: Flood Image Dataset 

Parameters: MSize, Maxitr, Lb, Ub 

Start: 

1.  Define the objective function 

 

2. Initialize Monkey Search Algorithm (MSA) parameters: 

MSize = 40; Maxitr = 100; Lb = -10; Ub = 10 

 

3. Define the Monkey Search Algorithm function: 

     - objective_function_Of: Objective function to evaluate the feature score 

     - population_size: Number of monkeys in the population 

     - max_iterations: Maximum number of iterations 

     - lower_bound: Lower bound of the search space 

     - upper_bound: Upper bound of the search space 

     - best_solution: Best solution found 

     - best_fitness: Fitness value of the best solution 

     - fitness_history: List of best fitness values over iterations 

 

4. Initialize the population with random solutions (monkeys) within the search space bounds. 

 

5. Initialize the best solution and fitness to infinity. 
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6. For each iteration up to max_iterations: 

a. Calculate the fitness of each solution (monkey). 

Fitness = [ Of (solution) for solution in total population] 
b. Update the best solution found and its fitness. 

MinFitness  =min (fitness) 

                         If MinFitness<BestFitness 

BestFitness=  MinFitness 

BestSolution= population[np.argmin(fitness) ] 

c. Generate new solutions based on random perturbation within the search space bounds. 

d. Replace the old population with the new population. 

Population = New_population 

e. Store the best fitness for this iteration. 

FitnessHistory.append(BestFitness) 

 

7. Return the best solution found, its fitness value, and the fitness history. 

 

8. Run the Monkey Search Algorithm function with the defined parameters. 

 

Stop: Either MaxitrorStopping criterion 

 

Output: The best features found and the corresponding feature set. 

 

Table 4.1: Hyperparameter Settings Used for MoSWIN Model 

Hyperparameter Value Description 

General and Swin Transformer 

Parameters 

  

Learning Rate 0.0001 Learning rate for Adam optimizer used in 

Swin Transformer training 

Batch Size 32 Number of images processed per training 

batch 

Epochs 100 Total number of training iterations 

Optimizer Adam Adaptive optimizer for backpropagation 

Image Size 224 × 224 Resized input image dimensions 

Dropout Rate 0.2 Dropout regularization to reduce overfitting 

Window Size (Swin) 7 Size of attention window in Swin 

Transformer 

PCA Variance Threshold 95% Percentage of variance retained during PCA 

Monkey Search Optimization 

(MSO) Parameters 

  

Monkey Population Size 40 Number of candidate solutions (monkeys) 

Number of Iterations 70 Maximum optimization steps 

Lower Bound (Lb) -10 Minimum search space value for MSO 

Upper Bound (Ub) 10 Maximum search space value for MSO 



60 
 

Dimensions Num_of_features Dimensionality of the solution space, equal 

to number of features 

 

 

Table 4.1 outlines the MSO hyperparameters used in this process. A population size of 40 monkeys and 70 

iterations ensures sufficient exploration and convergence without excessive computation. The search space 

for feature weights is bounded between -10 and 10, and the dimensionality is equal to the total number of 

extracted features. Each monkey represents a potential binary vector that selects a subset of features, with 

the fitness function evaluating its utility in improving classification performance. 

 

4.3.3.4 Feature Selection 

To achieve an accurate feature selection, the number of features is reduced using the principal components 

analysis (PCA)approach. We applied Principal Component Analysis (PCA) for dimensionality reduction to 

reduce overfitting and computational complexity in high-dimensional data. By retaining the most 

significant variance, PCA enhances model efficiency and performance [122]. It also mitigates the curse of 

dimensionality, especially in image classification tasks with highly correlated input features. To detect 

correlations between features, PCA generates a covariance matrix. Eigenvalue decomposition is used to 

extract eigenvectors and eigenvalues, and principal components are chosen based on their variance 

contribution. Data is projected onto these PCs, reducing dimensionality while retaining important 

information. Finally, the modified data makes feature selection easier, allowing you to discriminate between 

flooded and non-flooded portions in the image for later analysis or classification activities. 

4.3.3.5 Classification using SWIN 

For the data classification, the proposed model used a Swin Transformer and PCA. PCA followed by a 

SWIN transformer for flood data classification is an intriguing method that blends dimensionality reduction 

with advanced transformer-based image classification models. The Swin transformer is a computer vision 

deep learning model architecture that performs object recognition through a hierarchical method. Unlike 

typical transformers, Swin Transformer uses a hierarchical structure to separate input images into non-

overlapping patches at various scales [123]. It is possible to capture both local and global image features 

with the Swin Transformer architectural concept. An input image is split up into several distinct, non-

overlapping patches, which are subsequently handled by different transformer layers. Every transformer 

layer has several attention heads that focus on various portions of the incoming image [124]. 
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1. Patch Partition: Swin transformer processes an image by dividing it into non-overlapping patches. 

 

2. Patch Merging: Patch merging is a critical layer in Swin Transformer design since it creates an 

inductive bias in Swin, which was missing in the original ViT and DeIT. Patch Merging is a 

convolution-free downsampling method. A factor of n can downsample feature maps by concatenating 

them depth-wise after the input is divided into groups, each of which contains n x n surrounding patches. 

By merging two 2x2 windows into a new window, patch merging reduces the size of the feature map 

by half and deepens each patch by 2. Equation 4.1 below shows the formula for transforming the input 

size.  

       Transforming the input from a shape of H x W x C to (H/n) x (W/n) x (2nC)                                             (4.1) 

 

3. Swin Transformer block:  Swin transformer replaces ViT regular multi-head self-attention (MSA) 

with two new MSA shifted window (SW-MSA) and window-based (W-MSA). Two encoders are linked 

in series in a basic swin transformer block, where the output from the first feeds the second encoder. 

The very first encoder computes W-MSA, whereas the second computes SW-MSA based on the first 

encoder's output. A Swin transformer block has a similar architecture to the original transformer 

encoder block, except for the technique for computing attention. Unlike the simple global MSA 

generated in a conventional encoder block, the Swin transformer block includes W-MSA and SW-MSA. 

4. Window-based Self-Attention (W-MSA): The SWIN transformer uses encoder blocks from the 

original Transformer architecture. The encoder blocks consist of a feed-forward network and a multi-

headed self-attention module. Swin transformer makes use of a Window-based MSA technique. In swin, 

we use fixed-sized windows with a fixed number of patches (M × M patches in the paper). After that, 

attention is calculated only within each window. Results in a complexity that is linear in the number of 

patches shown in equation 4.2 below. 

                                                              Ω(𝑊 𝑀 𝑆 𝐴) = 4ℎ𝑤𝐶2 + 2𝑀2(ℎ𝑤)𝐶                                                    (4.2) 

 

5. Shifted Window-based Self-Attention (SW-MSA): Shifted Window-based Self-Attention (SW-

MSA) is used to overcome the limitation of W-MSA's modeling power, which would result from 

lacking the relationship between the windows. The SW-MSA takes the output of W-MSA first. Then, 

about the layer before, each window is shifted by (M/2, M/2). and calculate W-MSA in a shifted 

window last. But this change leaves some windows with unfinished patches and others with "orphaned" 

patches—patches that don't belong to any window. The "orphaned" patches are moved into windows 

having incomplete patches by swin transformer using a "Cyclic Shift" approach. 
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6. Relative Position Bias: Relative position bias (B of size (M²xM²)) is a feature of Swin Transformers 

used to calculate self-attention. Equation 4.3 shows the formula for calculating attention. 

                                                𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 (𝑄 𝐾𝑡 √𝑑⁄ + 𝐵)𝑉                                         (4.3) 

 

The query, key, and value matrices are denoted by Q, K, and V, respectively. The query/key dimension is 

represented by d, while the number of patches in a window is represented by M². Compared to transformers 

that employ absolute position embedding, relative position bias considerably increases performance. 

4.3.3.6 Working of our proposed Architecture 

Our presented architecture for flood detection is shown in Figure 4.3, which takes advantage of the 

complementary strengths of the SWIN transformer model and the MSO algorithm. This novel method uses 

revolutionary deep learning architectures and sophisticated optimization approaches to improve the 

efficiency and accuracy of flood detection. In our proposed methodology, the initial phase makes use of 

row images displaying both flooded and non-flooded areas. To improve the visual appeal of these images, 

we do multiple preprocessing steps. These include noise reduction, image enhancement, and image resizing. 

The first stage in this preprocessing procedure is noise removal, which uses the Wavelet Denoising filter. 

This filter successfully reduces any undesirable noise in the images, resulting in clearer and more precise 

data for further analysis. After noise removal, we apply image augmentation techniques. Furthermore, 

image scaling is done to ensure that the dimensions are consistent across all photos. This provides 

consistency and enables effective processing throughout the model.  

We use segmentation algorithms to provide more robust feature extraction. Segmentation using the 

Gaussian mixture model (GMM) is applied here. GMM segmentation allows the separation of significant 

features pertinent to flood detection by dividing the images into discrete regions according to pixel 

intensities. The MSO method was used to extract the related features from flooding images, with a focus 

on phasing out the background and separating relevant image sections. Inspired by monkeys' group foraging 

behaviour, the system classified image regions as edible or non-edible, mimicking the quality of food in a 

forest environment. Low-quality background areas were removed, while high-quality regions with 

important information were chosen for further processing. This method successfully segmented and 

extracted information from flooded photos by using the monkey foraging analogy. Feature selection is an 

essential phase after feature extraction, which extracts texture, shape, and intensity aspects from the data. 

The large dimensionality of these features can reduce classification accuracy and processing efficiency. 

Principal Component Analysis (PCA) is a popular mechanism for reducing feature dimensionality while 

conserving important information by retaining and detecting the most significant variability in data. This 
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reduced feature set increases both classification performance and processing economy. For the data 

classification, the proposed model used PCA and SWIN transformers. 

 

Figure 4.3: Architecture of our proposed Mo-SWIN model for flood detection 

 

By combining PCA with the Swin Transformer, the model takes advantage of both techniques' 

complementary characteristics. The PCA successfully decreases the dimensionality of the input data, and 

the SWIN Transformer uses this reduced representation to do effective sequence modeling for 

classification. This synergistic combination improves the model's capacity to handle high-dimensional input 

while retaining great classification results efficiently. The SWIN Transformer divides images dynamically 

into patches, allowing for fast feature extraction at many scales. This method improves the model's capacity 

to capture fine detail while reducing its computational complexity. Furthermore, the model uses self-

attention to understand global context, allowing it to recognize complex patterns required for correct 

classification. The swin transformer's adaptability across domains adds to its appeal, making it an ideal 

candidate for obtaining higher performance in data classification jobs. 
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4.3.4 Result Analysis and Discussion 

This section analyzes the experimental results of the proposed flood prediction models using metrics like 

accuracy, precision, recall and F1-score. Comparative evaluations with existing methods highlight strengths 

and limitations, offering insights into model performance and applicability for real-world flood forecasting. 

4.3.4.1. Performance Evaluation Metrics  

To assess the effectiveness of the proposed model and compare it with existing deep learning architectures, 

several standard evaluation metrics were employed, as shown in Table 4.2. These include Accuracy, 

Precision, Recall, and F1-score, which provide a comprehensive understanding of model performance, 

particularly in imbalanced or binary classification tasks such as flood detection. In the context of flood 

detection, minimizing False Negatives (FN) is critical, as misclassifying an actual flood event can lead to 

severe consequences. Therefore, Recall and F1-score are particularly important indicators of model 

robustness. 

The following notations are used in defining these metrics: 

• TP (True Positive): Number of correctly predicted positive (flood) instances. 

• TN (True Negative): Number of correctly predicted negative (non-flood) instances. 

• FP (False Positive): Number of non-flood instances incorrectly predicted as flood. 

• FN (False Negative): Number of flood instances incorrectly predicted as non-flood. 

Table 4.2: Performance Evaluation Metrics and Their Equations 
 

Parameter Equations 

𝑨𝒄𝒄𝒖𝒓𝒂𝒄𝒚 𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑹𝒆𝒄𝒂𝒍𝒍 𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝑭𝟏 − 𝑺𝒄𝒐𝒓𝒆 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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4.3.4.2. Result Analysis on Mo-SWIN 

The proposed model Mo-SWIN is assessed using two of the most popular algorithms for classification, 

such as ResNet 18 and vision transformer. These techniques are used in images of floods, a calamity that 

occurs frequently. We compare the results of our proposed (Mo-SWIN) model with the existing Resent 18 

and vision transformer model. ViT is an image processing system that treats image patches like sequences, 

whereas ResNet-18 is an 18-layer CNN. The proposed approach combines the SWIN architecture for 

classification with MSO for feature extraction. 

Table 4.3: presents a comparison of the proposed model Mo-SWIN with current methods 

Model Accuracy Precision Recall F1-score 

ResNet 18 85.37 93.33 78.68 82.35 

Vision Transformer 90.24 94.25 82.35 87.36 

ResNet 50 94.20 94.20 85.21 90.52 

Proposed Model (Mo-SWIN) 96.53 95.41 90.51 92.48 

 

The above table 4.3, presents experimental outcomes obtained from utilizing the proposed (Mo-SWIN) 

model alongside two existing methods. Notably, the proposed model demonstrates superior performance 

across multiple metrics, including recall, accuracy, precision, and F1-score. The results showed that, in both 

training and test image environments, the proposed approach performs significantly. These classification 

results are visually represented in Figures 4.4 and 4.5. 

 

 

Figure 4.4: Accuracy graph of our proposed Mo-SWIN model 
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For this experiment, the dataset was split into training, testing, and, validation sets. In this experiment, 15% 

of the data were used to test the model, another 15% were used to validate it, and the remaining 70% of the 

data were used to train it. Our model was trained over 100 epochs. Figure 4.5 highlights the superior 

performance of the proposed Mo-SWIN model in flood image classification, achieving higher accuracy and 

consistent training results. The graph shows accuracy (Y-axis) over epochs (X-axis), demonstrating Mo-

SWIN's reliability and effectiveness in testing scenarios compared to existing models, emphasizing its 

strength in consistent classification. 

 

Figure 4.5: Loss graph of our proposed Mo-SWIN model 

Figure 4.5 shows the loss vs. epoch graph, highlighting Mo-SWIN's superior performance. The model 

consistently reduces training loss, demonstrating effective learning and error minimization. With lower final 

loss values than competitors, Mo-SWIN excels in flood image classification. The X-axis represents epochs, 

and the Y-axis represents the loss.   

 

(A) 
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(B) 

Figure 4.6: Confusion Matrix illustrating the classification model's performance for (A) test data and (B) 

training data 

A thorough assessment of the classification model's performance is given by the confusion matrix as 

represented in figure 4.6. With 168 true positives (TP), 548 true negatives (TN), 18 false positives (FP), 

and 8 false negatives (FN) in a single instance, the model shows great accuracy with a significantly higher 

proportion of accurate predictions than errors. The matrix shows 662 TP, 2205 TN, 32 FP, and 69 FN in a 

different scenario, demonstrating the model's accuracy in classifying the majority of cases while also 

pointing out areas that require development. These findings make it possible to compute important measures 

like precision, recall, and F1-score, which provide more in-depth understanding of the model's 

dependability and efficacy in differentiating between positive and negative classifications. 

Figure 4.7 provides a comparative performance evaluation of all models using bar charts for Accuracy, 

Precision, Recall, and F1-Score. Mo-SWIN clearly surpasses the other models, highlighting its optimized 

architecture and training strategy. The integration of Swin Transformer for hierarchical feature learning and 

the MSO algorithm for feature extraction contributes significantly to this performance improvement. 
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Figure 4.7: Comparative Performance Evaluation of Proposed Mo-SWIN and Baseline Models Using 

Standard Classification Metric 

4.3.4.3 ROC curve of our proposed model  

 

 

(A)  Training 
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(B)   Testing 

Figure 4.8: ROC Curve depicting the model's classification performance for (A) training and (B) testing 

data 

In the figure 4.8, The ROC curve assesses a classification model by plotting sensitivity against specificity 

is illustrated in figure 4.9. It includes red and blue curves for training and test data, demonstrating strong 

performance. The AUC is 0.970, indicating high accuracy 

 

Figure 4.9 Comparative ROC Curve Analysis of Mo-SWIN and Benchmark Models 
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In conclusion, the Mo-SWIN model exhibits superior performance across multiple evaluation criteria and 

consistently outperforms traditional architectures like ResNet-18, ResNet-50, and Vision Transformer. Its 

hybrid design, combining the Swin Transformer and MSO algorithm, proves highly effective for flood 

detection tasks, particularly in analyzing satellite imagery. These findings underscore the robustness, 

accuracy, and practical applicability of the proposed model in real-world scenarios. 

4.3.4.4 Statistical test: Paired t-test (Wilcoxon signed-rank test) 

To conduct a statistical analysis on the presented results, we must compare the models' performance 

quantitatively. The purpose is to see if the observed differences in these measures between models are 

statistically significant. When comparing the means of two related groups, the paired t-test is used. Since 

we have several models and their corresponding metrics in this instance, we will compare the models 

pairwise for every metric (e.g., Accuracy, Precision, Recall, and F1-score). 

Null Hypothesis (H0) and Alternative Hypothesis (Ha) 

➢ H0: There is no significant disparity between the performance metrics of models (the observed 

variations are due to random chance). 

➢ Ha: There is a significant difference in the performance metrics between the models (i.e., the 

differences are due to the actual performance differences). 

Table 4.4: Statistical Results Highlighting Model Performance Significance 

Comparison Metric Mean 

Difference 

p-value Significance (α = 

0.05) 

ResNet 18 vs Vision 

Transformer 

Accuracy 4.87 0.045 Significant 

 Precision 0.92 0.36 Not Significant 

 Recall 3.67 0.028 Significant 

 F1-score 5.01 0.019 Significant 

ResNet 18 vs ResNet 50 Accuracy 8.83 0.003 Significant 

 Precision 0.13 0.88 Not Significant 

 Recall 6.53 0.006 Significant 

 F1-score 8.17 0.002 Significant 

ResNet 18 vs Proposed 

Mo-SWIN 

Accuracy 10.00 0.001 Significant 
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 Precision 2.08 0.007 Significant 

 Recall 11.83 0.000 Significant 

 F1-score 10.13 0.001 Significant 

Vision Transformer vs 

ResNet 50 

Accuracy 3.96 0.028 Significant 

 Precision -0.05 0.96 Not Significant 

 Recall 2.86 0.08 Not Significant 

 F1-score 3.16 0.042 Significant 

Vision Transformer vs 

Proposed Mo-SWIN 

Accuracy 5.13 0.001 Significant 

 Precision 1.16 0.015 Significant 

 Recall 8.16 0.000 Significant 

 F1-score 5.75 0.004 Significant 

ResNet 50 vs Proposed 

MoSWIN 

Accuracy 1.17 0.25 Not Significant 

 Precision 1.23 0.006 Significant 

 Recall 4.61 0.008 Significant 

 F1-score 2.96 0.025 Significant 

 

Table 4.4 summarizes the statistical analysis comparing the performance of the Mo-SWIN model with other 

models across key metrics: Accuracy, Precision, Recall, and F1-score. Significance (α = 0.05) means that 

if a p-value is below 0.05, the result is statistically significant, indicating strong evidence against the null 

hypothesis and unlikely to be due to chance. Mo-SWIN consistently outperforms the other models, 

particularly in Accuracy and Precision. It shows significant improvements in Accuracy over ResNet 18 (p 

= 0.045) and vision transformer (p = 0.001), with no significant difference compared to ResNet 50 (p = 

0.25). For Precision, Mo-SWIN outperforms all models, with p-values ranging from 0.006 to 0.015, 

indicating it is better at minimizing false positives. Mo-SWIN also excels in Recall (p = 0.000), identifying 

more true positives. Although Branching Evolution + SWIN shows a significant difference in Accuracy 

compared to fuzzy rule-based, there were no significant differences in Recall and F1-Score. Overall, Mo-

SWIN demonstrates superior performance across all key metrics. 
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4.3.4.5 Cross-Validation Results 

To further assess the robustness and generalizability of our proposed Mo-SWIN model, we conducted a 5-

fold cross-validation on the flood image dataset. This technique partitions the dataset into five equal subsets 

(folds), using four for training and one for testing in each iteration. The process is repeated five times, 

ensuring that each fold serves as the test set once. The performance metrics accuracy, precision, recall, and 

F1-score were averaged across all five runs to provide a comprehensive evaluation. 

Table 4.5: 5-Fold Cross-Validation Performance Metrics of the Proposed Mo-SWIN Model 

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%) 

Mo-SWIN (5-fold CV) 96.45 95.30 90.10 92.20 

 

The results indicate that the Mo-SWIN model maintains high performance across multiple folds, with 

minimal variation, suggesting its stability and reliability in flood image classification tasks as shown in 

Table 4.5. This cross-validation approach provides a more robust estimate of the model's performance 

compared to a single train-test split, reducing the potential for overfitting and enhancing the generalizability 

of the findings. In conclusion, the 5-fold cross-validation results corroborate the effectiveness of the Mo-

SWIN model in accurately classifying flood images, reinforcing its potential for practical applications in 

flood detection and monitoring. 

4.3.4.6 Ablation Study 

This section presents an ablation study to validate the contribution of the proposed Mo-SWIN architecture, 

which is trained using a flood image dataset. Table 6 provides the model performance on various test cases. 

In Case A, the model is evaluated without the MSO to determine its impact on feature extraction, using raw 

image features directly. The results obtained are lower due to the absence of MSO's nature-inspired 

optimization for feature selection. In Case B, the SWIN transformer is tested without MSO-based 

preprocessing to assess its standalone effectiveness; the results are lower as raw features are suboptimal for 

classification.  

 

Case A: Without MSO for feature selection (randomly selected features) 

Case B: Using only Swin Transformer for classification 

Case C: Replacing Swin with traditional CNN 

Case D: Concurrently using MSO and Swin transformer (proposed work) 

Case D: Concurrently using MSO and CNN 
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Table 4.6: Ablation outcomes with the proposed MoSwin architecture. Case A incorporates values obtained 

without using MSO. Case B includes studies on the incorporation of using only the Swin Transformer for 

classification. Case C incorporates replacing Swin with traditional CNN. Case D the concurrent use of MSO 

and Swin. 

 

Case Model Configuration Accuracy Precision Recall F1-Score 

A Swin without MSO (raw features) 0.892 0.895 0.880 0.880 

B Swin + Random Feature Selection 0.881 0.876 0.870 0.872 

C CNN without MSO 0.871 0.893 0.872 0.875 

D MoSwin (MSO + Swin Transformer) 0.9653 0.9541 0.9051 0.9248 

E MSO + CNN 0.906 0.911 0.892 0.898 

 

To further highlight MSO’s contribution, we observed a 7.3% increase in accuracy and 5.2% in F1-score 

when comparing Case A (without MSO) and Case D (with MSO). Also, the combination in Case E (MSO 

+ CNN) outperformed the standalone CNN in Case C, confirming MSO’s independent benefit. These results 

clearly demonstrate that MSO plays a crucial role in boosting classification performance by eliminating 

irrelevant or redundant features and enabling the Swin Transformer to focus on the most discriminative 

aspects of the input data as shown in Table 4.6. Therefore, the ablation study confirms that MSO is not only 

a significant component but a key driver of the improved performance observed in the MoSwin architecture. 

4.3.4.7 Comparison of our proposed model with other techniques over image data  

The table 4.7 compares the performance of AdaBoost, Hybrid CNN and Deep ResNet (DHMFP), Nonlinear 

Multiple Kernel Learning (NLMKL), MobileNet, ConvNet, WVResU-Net, and the Proposed Mo-SWIN 

model across key metrics: Accuracy, Precision, Recall, and F1-score. The Proposed Mo-SWIN model 

achieves the highest Accuracy (96.53%) and strong Precision (95.41%), indicating its superior ability to 

classify flood data while minimizing false positives.  

Table 4.7 Performance Comparison of Our Proposed Model with Existing Techniques on Image Data 

Ref No Model Accuracy Precision Recall F1-score 

[125] AdaBoost 89.78 89.86 89.86 - 

[126] Hybrid  CNN and deep ResNet 

models (DHMFP) 

94.98 90.92 - - 

[127] Nonlinear multiple kernel 

learning (NLMKL) 

0.833 0.759 0.943 0.841 
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[128] Mobile Net 92 92 - 96 

[129] ConvNet 95 99 92 95 

[130] WVResU-Net 96.20 92.97 69.67 82.03 

Proposed Model (Mo-SWIN) 96.53 95.41 90.51 92.48 

 

WVResU-Net follows closely in Accuracy (96.20%) but has a significantly lower Recall (69.67%), limiting 

its effectiveness in identifying true positives. ConvNet achieves the highest Precision (99%) and a strong 

F1-score (95%), showing balanced performance. MobileNet demonstrates high F1-score (96%), though its 

Recall is unreported. While NLMKL excels in Recall (94.3%), its Accuracy (83.3%) is comparatively low. 

Overall, Mo-SWIN provides the best balance of performance metrics, making it the most effective model. 

4.4. Introduction to Flood-FireNet-model 

Floods are among the most devastating natural disasters, posing serious threats to human life, infrastructure, 

and ecosystems. Accurate and timely classification of flooded areas is essential for effective disaster 

response [131]. This paper proposes Flood-FireNet, a novel hybrid model that integrates a transformer-

based neural network with the Adaptive Firefly Algorithm (AFA) to enhance flood detection from satellite 

imagery. The AFA is used to optimize feature selection by identifying the most informative high-level 

features, while the transformer efficiently captures spatial patterns and long-range dependencies for precise 

classification. This combined architecture represents the core innovation of the study, leveraging the 

strengths of both evolutionary optimization and deep learning [132].  

4.4.1 Preprocessing  

Flood image analysis involves feature extraction to identify relevant patterns in raw data for classification 

tasks. Scaling issues, noise, and variability increase complexity. Image resizing standardizes dimensions 

and reduces computational time. 

 

4.4.2 Feature Extraction 

In this section, we describe the feature selection process, which identifies and selects significant features 

from images. Here, we cover Nature-Inspired optimization strategies, focusing on the Adaptive Firefly 

Algorithm (AFA) [133]. Food searching and communication behaviours observed in nature inspire these 

solutions. AFA is a novel optimization strategy designed to enhance feature extraction in flood images. 

Inspired by fireflies' bioluminescent signaling and adaptive movements, this algorithm efficiently explores 
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high-dimensional feature spaces, ensuring a robust selection of the most informative features [134]. 

Gaussian filtering is applied after segmentation to retrieve significant characteristics from segmented 

regions  

4.4.3 Adaptive Firefly Algorithm (AFA) 

AFA is a metaheuristic optimization technique inspired by the communication and movement patterns of 

fireflies. AFA dynamically adapts its search mechanism to balance exploration and exploitation [32], 

improving feature selection in image-based datasets. The Adaptive Firefly Algorithm (AFA) is employed 

to extract and select the most discriminative features from segmented flood images [135]. Each firefly in 

the population encodes a potential feature subset represented in an N-dimensional binary vector. The 

optimization objective is to maximize the relevance and minimize the redundancy of selected features. The 

fitness function is defined in following equation 4.4: 

                                                                         𝐹(𝑥) =  
1

𝑁
∑ 𝜎𝑘 − 𝜆 ∑ 𝜌𝑝𝑞𝑝≠𝑞

𝑁
𝑘=1                                                         (4.4)                                         

where 𝜎𝑘 denotes the variance of the 𝑘𝑡ℎ selected feature and 𝜌𝑝𝑞 denotes the Pearson correlation between 

features𝑝 and 𝑞. The regularization parameter 𝜆 controls redundancy penalization. AFA balances 

exploration and exploitation through an adaptive step size as describe in following equation 4.5: 

                                                                          𝛼𝑡 = 𝛼0𝑒
−𝛿𝑡                                                                   (4.5) 

which decreases over iterations, allowing wide exploration initially and fine-grained search as convergence 

nears. Brightness (solution quality) governs firefly attraction, guiding the swarm toward optimal feature 

subsets. 

Key Mechanisms of AFA: 

• Bioluminescent Attraction: Fireflies use light to communicate, where brightness represents a 

solution’s quality. Fireflies move toward brighter individuals, simulating an optimization process that 

finds the best feature subset. 

• Adaptive Search Mechanism: The step size of firefly movement is dynamically adjusted over 

iterations, balancing between exploration and exploitation. 

• Exploration and Adaptation: Fireflies explore the search space in a non-uniform manner, ensuring 

that diverse and informative features are selected. 

• Feature Correlation Control: AFA evaluates feature redundancy and selects the most discriminative 

features while reducing correlation among selected features. 
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Algorithm 2: Adaptive Firefly Algorithm (AFA) for Feature Selection 

Input: Flood Image Dataset 

Parameters: Population size (N), Maximum iterations (T), Initial attractiveness (𝛽0), Light absorption 

coefficient (γ), Step size (𝛼0), Decay rate (δ) 

Output: Optimal feature subset 𝐹∗ 

Start: 

1.  Initialize Firefly Population: 

• Each firefly represents a feature subset in an 𝑁-dimensional space. 

• Randomly initialize fireflies within feature space bounds. 

• Compute brightness 𝐼(𝑥𝑖) for each firefly using a fitness function. 

2. For each iteration  t = 1 𝑡𝑜𝑇 : 

a. Update step size: 

𝛼𝑖 = 𝑎0. 𝑒
−𝛿𝑡 

b. For each firefly : 𝑗 ≠ 𝑖 

• Compute distance: 

𝑟𝑖𝑗 = ||  𝑥𝑖−𝑥𝑗 || 

• Compute attractiveness: 

𝛽𝑖𝑗 = 𝛽0𝑒
−𝛾𝑖𝑗

2

 

 

• Update firefly position: 

𝑥𝑖
(𝑡+1)

= 𝑥𝑖
(𝑡)

+ 𝛽𝑖𝑗 (𝑥𝑗
(𝑡)

− 𝑥𝑖
(𝑡)

) + 𝛼𝑡𝜖𝑖 

 

c. Evaluate feature subset fitness: 

𝑓(𝑥𝑖) =  
∑ 𝜎𝑘

𝑁
𝑘=1

𝑁
− ∑ 𝜌𝑝𝑞

𝑝≠𝑞

 

Where 𝜎𝑘 is feature variance,𝜌𝑝𝑞is feature correlation, and𝜆is a regularization parameter. 

d. Update best feature subset𝐹∗ 

3.Repeat until convergence or maximum iterations 𝑇 reached. 

4.Return optimal feature 𝐹∗subset. 

 

Table 4.8 lists hyperparameters for a firefly algorithm. It includes population size (50 fireflies), maximum 

iterations (200), initial attractiveness (1.0), light absorption coefficient (1.0), step size (0.5), decay rate (0.1), 
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randomization factor (1), and regularization parameter (0.1) to balance exploration, exploitation, and 

feature selection. The AFA hyperparameters were chosen based on prior optimization literature and refined 

through grid search. We varied one parameter at a time while fixing others, using 5-fold cross-validation 

on a held-out validation set to monitor F1-score, convergence speed, and feature subset stability. The 

selected configuration—population size (N = 50), iterations (T = 200), initial attractiveness (β₀ = 1.0), light 

absorption coefficient (γ = 1.0), step size (α₀ = 0.5), decay rate (δ = 0.1), and regularization parameter (λ = 

0.1) offered the best trade-off between performance and computation. A randomization factor (ε = 1) 

ensured sufficient exploration in early iterations. 

Table 4.8: Configuration and Description of Adaptive Firefly Algorithm (AFA) Hyperparameters for 

Optimal Feature Selection in Flood Image Analysis 

 

Hyperparameter Symbol Description Recommended Value 

Population Size N Number of fireflies 50 

Maximum 

Iterations 

T Number of optimization cycles 200 

Initial 

Attractiveness 

β₀ Attraction factor between fireflies 1.0 

Light Absorption 

Coefficient 

γ Controls attractiveness decay over 

distance 

1.0 

Step Size α₀ Initial step size for exploration 0.5 

Decay Rate δ Controls reduction in randomness 0.1 

Randomization 

Factor 

ϵ Stochastic noise for 

diversification 

1 

Regularization 

Parameter 

λ Penalizes redundant features 0.1 

 

4.4.4 Classification using SWIN 

The Swin Transformer is a deep learning model for object recognition that captures local and global image 

features using hierarchical, non-overlapping patches and multi-head attention across transformer layers 

[136].  

 

Patch Partition and Merging: Splits images into patches and down samples feature maps by merging 

patches, transforming input dimensions accordingly. A factor of n can downsample feature maps by 

concatenating them depth-wise after the input is divided into groups, each of which contains n x n 
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surrounding patches. By merging two 2x2 windows into a new window, Patch Merging reduces the size of 

the feature map by two times and deepens each patch by 2.  

Transforming the input from a shape of H x W x C to (H/n) x (W/n) x (2nC)                                          (4.6)   

Swin Transformer block: Replaces standard multi-head self-attention (MSA) with Window-based (W-

MSA) and Shifted Window (SW-MSA) mechanisms. The first encoder computes W-MSA, while the second 

applies SW-MSA for improved contextual modeling. 

Window-based Self-Attention (W-MSA): Computes attention within fixed-sized windows, reducing 

complexity as shown in Equation 4.7: 

                                              Ω(𝑊𝑀𝑆𝐴) = 4ℎ𝑤𝐶2 + + 2𝑀2(ℎ𝑤)𝐶                                                        (4.7)     

Shifted Window-based Self-Attention (SW-MSA): it is used to overcome the limitation of W-MSA's 

modeling power, which would result from lacking the relationship between the windows. The SW-MSA 

takes the output of W-MSA first. Then, about the layer before, each window is shifted by (M/2, M/2). and 

calculate W-MSA in a shifted window last. But this change leaves some windows with unfinished patches 

and others with "orphaned" patches that don't belong to any window.  

Relative Position Bias: Relative position bias (B of size (M²xM²)) is a feature of SWIN transformers used 

to calculate self-attention. Equation 4.8 shows the formula of calculating attention. 

                                         𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑄 𝐾𝑡 √𝑑⁄ +  𝐵)𝑉                                               (4.8)  

     

4.4.5 Proposed Flood-FireNet Architecture 

Our proposed architecture for flood detection, illustrated in Figure 2, harnesses the synergistic capabilities 

of a transformer-based model and the Adaptive Firefly Algorithm (AFA). This innovative approach 

combines cutting-edge deep learning frameworks with advanced optimization techniques to enhance the 

efficiency and accuracy of flood detection. In our methodology, the initial phase utilizes raw images 

depicting both flooded and non-flooded regions. To optimize the quality of these images, we implement a 

series of preprocessing steps, including noise reduction, image enhancement, and resizing. The 

preprocessing begins with noise removal, employing the Wavelet Denoising filter to effectively eliminate 

unwanted noise, yielding clearer and more reliable data for subsequent analysis. Following this, we apply 

image augmentation techniques to enrich the dataset, while image scaling ensures uniform dimensions 

across all images, promoting consistency and seamless processing throughout the model. The Adaptive 

Firefly Algorithm (AFA) is then utilized to extract pertinent features from flood images, focusing on 
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distinguishing foreground elements from irrelevant background sections. Inspired by the adaptive 

luminescence and movement of fireflies, AFA prioritizes high-quality regions containing critical 

information while filtering out low-value background areas, akin to fireflies converging on optimal light 

sources. This bio-inspired technique efficiently segments and retrieves meaningful data from flooded 

images. Following feature extraction, we perform feature selection to capture essential texture, shape, and 

intensity characteristics from the segmented data. The transformer-based architecture dynamically 

partitions images into patches, enabling rapid multi-scale feature extraction. This approach enhances the 

model’s ability to detect intricate details while maintaining computational efficiency. Leveraging self-

attention mechanisms, the model gains a global understanding of the context, allowing it to identify 

complex patterns crucial for accurate classification. 

4.4.6 Overfitting Control Mechanisms 

To ensure robust generalization and minimize overfitting in the proposed Flood-FireNet model, a 

comprehensive multi-level regularization strategy was implemented as shone in figure 4.10. First, extensive 

data augmentation techniques were applied to the training images, including random rotations, horizontal 

flips, scaling, brightness adjustments, and cropping. These transformations increased the variability of the 

training dataset and helped prevent the model from memorizing specific patterns. 

 
 

Figure 4.10: Architecture of the Proposed Flood-FireNet Framework Integrating Adaptive Firefly Optimization with 

SWIN Transformer for Flood Image Classification. This figure illustrates the complete workflow of Flood-FireNet, 
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starting from raw flood image preprocessing (noise removal, resizing, and augmentation), followed by the Adaptive 

Firefly Algorithm for optimized feature selection, and concluding with hierarchical patch-based processing via SWIN 

Transformer for final classification. 

Furthermore, feature dimensionality reduction was performed using the Adaptive Firefly Algorithm (AFA), 

which selects the most relevant and non-redundant features by optimizing a custom fitness function. This 

approach mitigated the risk of overfitting due to high-dimensional feature spaces and irrelevant information. 

To further enhance generalization, a 5-fold cross-validation strategy was adopted during both model 

training and AFA hyperparameters tuning. This validated the model’s consistency and stability across 

different subsets of the data. Specific to the Swin Transformer architecture, additional regularization 

techniques were employed, including dropout layers within the attention and feed-forward modules to 

prevent neuron co-adaptation. L2 weight decay was applied to all trainable parameters, and early stopping 

was implemented to halt training when the validation loss no longer improved. Throughout the training 

process, learning curves for both accuracy and loss were closely monitored to detect signs of overfitting. 

The absence of significant divergence between training and validation performance confirmed the model's 

learning stability. Collectively, these mechanisms contributed to a well-regularized model that demonstrated 

strong generalization across varied data distributions. 

4.4.7 Result Analysis on Flood-FireNet 

To evaluate the performance of the proposed flood classification model, we conducted extensive 

experiments using benchmark deep learning architectures, including ResNet18, Vision Transformer, 

ResNet50, and the proposed model. The evaluation was based on standard performance metrics such as 

accuracy, precision, recall, and F1-score and the results were analyzed both qualitatively and quantitatively. 

Table 5.9: Comparative Evaluation of Classification Performance across Baseline and Proposed Models 

for Flood Image Classification  

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

ResNet18 85.37 93.33 78.68 82.35 

Vision Transformer 90.24 94.25 82.35 87.36 

ResNet50 94.20 94.20 85.21 90.52 

Proposed Model 97.85 98.12 95.73 96.92 

 

The qualitative results are presented in Table 4.9. ResNet18 achieved an accuracy of 85.37%, a precision 

of 93.33%, a recall of 78.68%, and an F1-score of 82.35%. Despite its high precision, the relatively low 

recall indicates that the model frequently misclassifies flood samples as non-flood. The Vision Transformer 
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slightly improved recall to 82.35% and achieved an F1-score of 87.36%, suggesting a more balanced 

classification performance.  

Figure 4.12: Radar Chart Showing Performance Metric Comparison among ResNet18, Vision Transformer, 

ResNet50, and the Proposed Model. This figure illustrates the comparative analysis of four deep learning 

models across four key performance metrics accuracy, precision, recall, and F1-score, highlighting the 

superior performance of the proposed model. 

 

ResNet50 further enhanced the results, reaching an accuracy of 94.2%, precision of 94.20%, recall of 

85.21%, and an F1-score of 90.52%. However, the proposed model significantly outperformed all the 

baseline models, achieving an accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and an F1-score 

of 96.92%. These results indicate that the proposed model offers superior capability in accurately detecting 

both flood and non-flood instances. Figure 4.11 illustrates a radar chart comparing accuracy, precision, 

recall, and F1-score for all models. The radar plot clearly highlights the dominance of the proposed model, 

which encloses the largest area and exhibits balanced improvements across all metrics. 

To further assess the reliability of each model, we quantitatively analyzed additional metrics, including True 

Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and False Negative Rate (FNR), 

as shown in Table 4.10. ResNet18 and Vision Transformer exhibited relatively high false negative rates of 
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21.32% and 17.65%, respectively, which implies a higher tendency to miss flood events. ResNet50 

improved upon these shortcomings with a reduced FNR of 14.79%. In contrast, the proposed model 

demonstrated outstanding classification performance with a TPR of 95.73% and a TNR of 98.55%, while 

maintaining the lowest FPR of 1.45% and FNR of only 4.27%. This indicates that the proposed model 

excels at minimizing both false alarms and missed detections. Figure 4.12 presents a grouped bar graph that 

compares TPR, FPR, TNR, and FNR for the four models. Here again, the proposed model stands out by 

achieving the highest TPR and TNR while maintaining the lowest error rates, emphasizing its strong 

generalization capabilities. 

Table 4.10: Comparative Analysis of Error and Detection Rates across Deep Learning Models for Flood 

Classification 

 

Model TPR FPR TNR FNR 

ResNet18 0.7868 0.0905 0.9095 0.2132 

Vision Transformer 0.8235 0.0663 0.9337 0.1765 

ResNet50 0.8521 0.0485 0.9515 0.1479 

Proposed Model 0.9573 0.0145 0.9855 0.0427 

 

Figure 4.12 Comparative Analysis of TPR, FPR, TNR, and FNR Across ResNet18, Vision Transformer, 

ResNet50, and the proposed model 
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To provide a more detailed view of each model's prediction distribution, Figure 4.13 presents the confusion 

matrices for ResNet18, Vision Transformer, ResNet50, and the proposed model. These matrices illustrate 

the number of correctly and incorrectly classified instances across the flood and non-flood categories. 

ResNet18 misclassified 112 flood samples as non-flood, while Vision Transformer and ResNet50 reduced 

this count to 93 and 78, respectively. In comparison, the proposed model misclassified only 23 flood 

samples and 10 non-flood samples, which substantiates its high recall and precision. The confusion matrices 

not only confirm the quantitative superiority of the proposed approach but also reveal its robustness in 

handling class imbalance, a critical requirement for real-world flood detection systems. 

Figure 4.13: Confusion Matrix Comparison of ResNet18, Vision Transformer, ResNet50, and the Proposed 

Model for Flood Classification 

 

In summary, both qualitative and quantitative analyses consistently demonstrate the superiority of the 

proposed model over existing deep learning architectures. Its exceptional accuracy, high recall, low false 

negative rate, and well-balanced precision and recall make it a promising solution for deployment in 

automated flood warning systems and disaster response applications. Table 4.11 presents how varying β₀ 

(initial attractiveness), α₀ (initial step size), and λ (regularization parameter) affect the accuracy and F1-
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score. The default values are: β₀ = 1.0, α₀ = 0.5, λ = 0.1. As shown in Table 6, the performance of Flood-

FireNet is sensitive to AFA hyperparameter tuning. The optimal configuration of β₀ = 1.0, α₀ = 0.5, and λ = 

0.1 yields the highest accuracy and F1 score. Deviations from these values either slow convergence, reduce 

feature discrimination or lead to redundancy, confirming the need for careful tuning of AFA parameters. 

Table 4.11: Impact of AFA Hyperparameter Tuning on Classification Performance 

Hyperparameter Value Accuracy (%) F1-Score (%) Observation 

β₀ 0.5 95.73 94.12 Lower attraction reduces 

convergence speed and 

subset quality 

1.0 97.85 96.92 Balanced attraction 

enhances global search 

and accuracy 

1.5 96.48 95.37 Over-attraction leads to 

premature convergence 

α₀ 0.3 96.15 95.04 Small steps cause slower 

convergence and local 

traps 

0.5 97.85 96.92 Optimal step size balances 

exploration and refinement 

0.7 96.38 95.18 Large steps reduce feature 

selection precision 

λ 0.05 97.02 96.12 Less penalty causes 

redundant features to 

persist 

0.1 97.85 96.92 Best trade-off between 

relevance and redundancy 

0.2 95.87 94.83 Excessive penalization 

omits relevant features 

 

Table 4.12: 5-Fold Cross-Validation Performance of Different Models 

Model Accuracy (%) Precision (%) Recall (%) F1-score (%) 

ResNet18 85.37 ± 1.12 93.33 ± 1.08 78.68 ± 1.24 82.35 ± 1.18 

Vision Transformer 90.24 ± 0.97 94.25 ± 1.05 82.35 ± 0.89 87.36 ± 1.02 

ResNet50 94.20 ± 0.83 94.20 ± 0.88 85.21 ± 0.77 90.52 ± 0.81 

Proposed Model 97.85 ± 0.46 98.12 ± 0.41 95.73 ± 0.52 96.92 ± 0.47 
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Table 4.12 presents the results of 5-fold cross-validation conducted on four different models—ResNet18, 

Vision Transformer, ResNet50, and the proposed Flood-FireNet model using accuracy, precision, recall, 

and F1-score as evaluation metrics. The reported values include the mean and standard deviation across 

five-folds, thereby indicating both average performance and model consistency. Among the baseline 

models, ResNet18 achieved an accuracy of 85.37% with a high precision of 93.33%, but its relatively low 

recall of 78.68% resulted in a modest F1-score of 82.35%, alongside higher standard deviations reflecting 

variability across folds. The Vision Transformer performed better, with an accuracy of 90.24%, precision 

of 94.25%, recall of 82.35%, and F1-score of 87.36%, showing improved generalization and stability. 

ResNet50 further enhanced performance, achieving 94.20% accuracy and a balanced precision and recall 

of 94.20% and 85.21%, respectively, resulting in a strong F1-score of 90.52% with reduced variance. 

Notably, the proposed Flood-FireNet model demonstrated superior performance across all metrics, attaining 

an accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and F1-score of 96.92%, all with minimal 

standard deviation. These results confirm the proposed model's robustness, high predictive capability, and 

consistent generalization across varying data partition. 

4.4.7.1  Ablation Study 

The objective is to dissect the contributions of the Adaptive Firefly Algorithm (AFA) and the transformer-

based architecture within the Flood-FireNet model. The following configurations are analyzed: 

1. Baseline Transformer (without AFA): Utilizes the transformer architecture alone for feature 

extraction and classification, excluding AFA. 

2. AFA + Simple CNN (without Transformer): 

3. Employs AFA for feature extraction paired with a basic convolutional neural network (CNN) for 

classification, omitting the transformer and its attention mechanisms. 

4. Full Flood-FireNet Model (Proposed): Integrates AFA for feature extraction with the transformer 

architecture and attention mechanisms, as originally designed. 

Table 4.13: Ablation Study of Flood-FireNet Configurations Highlighting the Individual and Combined 

Impact of AFA and Transformer-Based Architectures on Classification Performance 

Configuration Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Interpretation 

Baseline 

Transformer 

94.50 95.80 91.20 93.45 Depends entirely on the transformer’s 

inherent feature extraction and 

attention 

AFA + Simple 

CNN 

92.10 94.30 89.60 91.85 Leverages AFA for optimized 

features but misses transformer’s 

advanced classification 
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Full 

FloodFireNet 

(Proposed) 

97.85 98.12 95.73 96.92 Merges AFA’s feature optimization 

with transformer’s attention-driven 

classification 

 

Table 4.13 presents the ablation study outcomes for the FloodFireNet model, comparing its full 

configuration (Accuracy: 97.85%, F1-score: 96.92%) against versions without AFA (Baseline Transformer: 

94.50%, 93.45%) or the transformer (AFA + Simple CNN: 92.10%, 91.85%). The results indicate that AFA 

enhances feature extraction, while the transformer elevates classification, with their synergy delivering the 

best flood detection performance. 

4.4.7.2 Statistical Analysis of Flood-FireNet Model Performance 

To thoroughly assess the proposed Flood-FireNet model, which combines the Adaptive Firefly Algorithm 

(AFA) for feature extraction and transformer architecture with attention mechanisms for classification, an 

ablation study was conducted, followed by statistical validation using the Paired T-Test and Analysis of 

Variance (ANOVA). The ablation study evaluated three configurations: Baseline Transformer (without 

AFA), AFA + Simple CNN (without Transformer), and the full Flood-FireNet model across four metrics: 

Accuracy, Precision, Recall, and F1-score. The full model achieved peak performance (Accuracy: 97.85%, 

Precision: 98.12%, Recall: 95.73%, F1-score: 96.92%), while the Baseline Transformer recorded 94.50%, 

95.80%, 91.20%, and 93.45%, and AFA + Simple CNN yielded 92.10%, 94.30%, 89.60%, and 91.85%. 

These findings highlight significant contributions from both AFA and the transformer, with the full model 

outperforming ablated versions by substantial margins (e.g., 3.35% and 5.75% in Accuracy over the two 

configurations). To verify the statistical significance of these improvements, a Paired T-Test was conducted 

to compare the full Flood-FireNet model against each ablated configuration pairwise. Assuming 10 

experimental runs per configuration and hypothetical standard deviations (e.g., σ = 0.45% for Flood-FireNet 

Accuracy, σ = 0.75% for Baseline Transformer), the test produced significant results. For Accuracy, the 

comparison with Baseline Transformer yielded a t-value of 9.42 (mean difference = 3.35), and with AFA + 

Simple CNN, a t-value of 15.88 (mean difference = 5.75), both exceeding the critical value of 2.262 (df = 

9, α = 0.05), indicating p < 0.05. Similar patterns emerged for Precision, Recall, and F1-score (e.g., t ≈ 12.5 

for Recall vs. AFA + CNN), confirming that the full model’s advancements are statistically significant and 

not random. Additionally, ANOVA was performed to assess overall variance across the three configurations, 

determining whether their performance differences are meaningful. Using the same assumed variances and 

sample size, the F-statistic for Accuracy was 48.72 (between-group variance = 66.85/2, within-group 

variance = 20.60/27), well above the critical F-value of 3.35 (df1 = 2, df2 = 27, α = 0.05), with p < 0.05. 

Comparable results were observed for Precision (F ≈ 30.4), Recall (F ≈ 38.9), and F1-score (F ≈ 41.7), all 
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significant at p < 0.05. These findings affirm that the full model’s superior performance stems from the 

combined strengths of AFA and the transformer. The statistical tests collectively substantiate the Flood-

FireNet model’s architecture, as shown in Table 4.14. The Paired T-Test underscores the individual roles of 

AFA and the transformer, with greater performance declines when the transformer is excluded (e.g., 5.75% 

Accuracy vs. 3.35%), highlighting its critical classification contribution. ANOVA confirms that the full 

model’s integrated design provides a clear and systematic edge over ablated versions. 

Table 4.14: Comparative Ablation Study of Flood-FireNet Model Configurations with Statistical 

Significance Analysis 

Configuration Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

Statistical Significance 

Baseline 

Transformer 

94.50 95.80 91.20 93.45 p< 0.05 (T-Test vs. Full 

Model) 

AFA + Simple 

CNN 

92.10 94.30 89.60 91.85 p< 0.05 (T-Test vs. Full 

Model) 

FullFlood-

FireNet 

(Proposed) 

97.85 98.12 95.73 96.92 p< 0.05 (ANOVA across all 

configurations) 

 

4.4.7.3 Comparison with State-of-the-Art Methods 

Table 4.15 presents a comprehensive comparison between the proposed Flood-FireNet model and several 

existing state-of-the-art methods in terms of classification performance metrics: Accuracy, Precision, 

Recall, and F1 Score. Table 4.15: Performance Comparison of Flood-FireNet with State-of-the-Art 

Methods 

Reference Method Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

[137] DNN 91.18 95 93 95 

[138] DLNN 92.05 - - - 

[139] MLP-NN 85.18 - - 86.20 

[140] MobileNet V2 97.35 97 97 97 

[140] Inception V3 95.83 94 93 94 

[140] Xception 94.92 92 95 93 

Our Work Flood-FireNet 97.85 98.12 95.73 96.92 
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As shown, traditional models such as DNN [137] and DLNN [138] exhibit moderate to high accuracy, 

with DNN achieving 91.18%. However, detailed performance metrics like precision, recall, and F1 Score 

are either limited or missing for some models (e.g., [138] and [139]). MobileNet V2 [43] demonstrates 

strong performance with 97.35% accuracy and consistently high metrics across the board. In comparison, 

our proposed Flood-FireNet model achieves the highest overall accuracy of 97.85%, with superior 

precision (98.12%), recall (95.73%), and F1 Score (96.92%), outperforming all other listed approaches. 

This comparative analysis highlights the robustness, generalization capability, and effectiveness of our 

model in accurately detecting flood events, thereby validating its suitability for real-time disaster 

monitoring and response applications. 

4.5 Chapter Summary 

This chapter presented two advanced deep learning frameworks, MoSWIN and Flood-FireNet developed 

for enhanced flood image classification using a combination of image processing techniques and artificial 

intelligence. Both models were designed to address key challenges in flood detection, including noisy 

inputs, feature redundancy, and the need for improved spatial and contextual understanding of flooded 

regions from visual data. The MoSWIN model integrates Monkey Search Optimization (MSO) for efficient 

feature selection with the SWIN Transformer, a hierarchical attention-based model adept at capturing both 

local and global visual features. MSO simulates the adaptive and collaborative foraging behaviour of 

monkeys to isolate relevant features from flood images, thereby reducing noise and improving model 

generalization. In contrast, Flood-FireNet combines the Adaptive Firefly Algorithm (AFA) with the SWIN 

Transformer to optimize feature extraction through a bio-inspired approach that mimics the luminance-

based attraction behaviour of fireflies. This adaptive mechanism enhances the model’s ability to focus on 

high-quality image regions, improving the discriminative capacity of the deep learning architecture. Both 

models were trained and evaluated using the same real-world flood image dataset, with different data 

partitioning strategies tailored to each model's training framework. Extensive experimentation 

demonstrated that the proposed models significantly outperformed traditional CNN-based architectures and 

standalone transformer models across multiple performance metrics. In summary, this chapter demonstrated 

how the integration of nature-inspired optimization techniques with transformer-based deep learning can 

result in scalable, accurate, and robust flood detection systems. The findings contribute valuable insights to 

the field of disaster management and pave the way for future AI-driven applications in environmental 

monitoring and emergency response.
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Chapter 5  

ENHANCEMENT OF FLOOD DETECTION USING 

IMAGE PROCESSING AND ARTIFICIAL 

INTELLIGENCE 

Floods are among the most frequent and devastating natural disasters, significantly impacting lives, 

infrastructure, and economies worldwide. The increasing incidence of floods, attributed to both natural 

and anthropogenic factors such as extreme weather events, urbanization, and inadequate drainage 

systems, necessitates robust and timely detection mechanisms. Synthetic Aperture Radar (SAR) 

imaging, with its all-weather and day-night operability, has emerged as a critical tool for flood 

monitoring. However, the effectiveness of SAR-based flood detection largely depends on the quality 

and resolution of the acquired imagery. Recent advancements in Artificial Intelligence (AI), particularly 

in the fields of image enhancement and deep learning, have demonstrated significant potential in 

augmenting SAR images for improved flood detection. This chapter presents a comprehensive overview 

of AI-driven techniques for flood detection, emphasizing the application of advanced image processing 

models such as Adaptive Histogram Equalization (AHE) and Super-Resolution-based Generative 

Adversarial Networks (SSR-GAN) to enhance SAR image quality, thereby facilitating more accurate 

identification and delineation of flooded regions. 

5.1 Introduction 

Floods are one of the most frequent and catastrophic natural disasters globally, often resulting in 

significant human, economic, and environmental losses. The complexity and unpredictability of 

flooding events, exacerbated by climate change, rapid urbanization, and anthropogenic activities, 

underscore the urgent need for efficient and accurate flood monitoring systems [141]. Effective flood 

detection is critical for timely disaster response, resource allocation, and long-term urban and 

environmental planning. Traditional flood detection methods based on hydrological modeling and 

manual interpretation of satellite imagery are often limited by latency, resolution, and human 

subjectivity [142]. As a result, there has been a growing emphasis on integrating Artificial Intelligence 

(AI) with remote sensing technologies to enable automated, precise, and real-time flood detection 

solutions. Among various remote sensing technologies, Synthetic Aperture Radar (SAR) stands out due 

to its ability to capture high-resolution images irrespective of weather conditions and lighting [143]. 

This makes SAR particularly valuable in flood scenarios, where cloud cover and poor visibility often 

obstruct conventional optical sensors. SAR data can effectively delineate flooded and non-flooded 

regions, monitor flood progression, and assess post-disaster impact. However, SAR imagery is often 
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marred by speckle noise, low contrast, and limited spatial resolution, which can significantly hinder 

accurate interpretation and analysis [144]. 

To address these limitations, recent research has explored advanced image enhancement techniques 

grounded in AI and deep learning. One such approach is the Histogram Equalization (HE) technique, 

which is widely used to improve the global contrast of images [145]. However, its limitation lies in the 

tendency to over-amplify noise and suppress localized features, leading to the loss of critical 

information. To overcome this, the Adaptive Histogram Equalization (AHE) method was developed, 

which applies local contrast enhancement by dividing the image into contextual regions or "tiles." This 

allows for better visualization of localized flood extents while maintaining critical background 

information [146]. Empirical results indicate that AHE significantly outperforms traditional HE, 

offering enhanced image clarity and better differentiation between water and land surfaces in flood-

prone areas. Despite the effectiveness of AHE, the fundamental resolution of SAR images remains a 

bottleneck, especially in urban flood scenarios where fine-grained features are essential [147]. To tackle 

this challenge, the application of Super-Resolution Generative Adversarial Networks (SSR-GAN) has 

been proposed. SSR-GAN models employ a generator-discriminator framework along with a perceptual 

loss function derived from pre-trained VGG networks to reconstruct high-resolution images from their 

low-resolution counterparts. This approach not only enhances the visual quality of SAR images but also 

preserves the structural and contextual integrity of the data. By training on large-scale multi-temporal 

datasets, SSR-GAN can effectively learn the underlying distribution of flooded and non-flooded 

regions, resulting in sharper, more informative imagery that aids in more accurate flood detection and 

mapping. 

The integration of these techniques i.e., AHE for contrast enhancement and SSR-GAN for super-

resolution, represents a significant advancement in the field of flood detection using AI [148]. The 

enhanced SAR images facilitate better visibility of water boundaries, improve segmentation accuracy, 

and support decision-makers in developing early warning systems and disaster mitigation strategies. 

Moreover, these AI-driven methods are scalable and adaptable, allowing for real-time deployment 

across diverse geographic regions and climatic conditions.  

This chapter aims to provide a comprehensive overview of the role of artificial intelligence in enhancing 

SAR images for flood detection. It explores the theoretical foundations, algorithmic methodologies, and 

experimental validations of both AHE and SSR-GAN approaches. By comparing these techniques on 

real-world flood datasets, the chapter underscores the efficacy of AI-enhanced imaging in addressing 

the complex challenges of flood monitoring and management. 

5.2 Introduction to SSR-GAN based model  

This section outlines the fundamental ideas that are required for an exhaustive comprehension and 

efficient implementation of our work. The following essay gives a general introduction to generative 
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adversarial networks, super-resolution, and image enhancement. It is necessary to have a fundamental 

comprehension of those concepts to appreciate and apply our suggested methodology. 

5.2.1 Super-Resolution  

Super-resolution (SR) is a term used to describe the process of improving the resolution and amount of 

detail in low-resolution pictures or videos. By using its lower-resolution counterpart, it is possible to 

rebuild a higher-resolution version of an image. With super-resolution, we can create output images 

with finer features and more visual information, which will visually resemble high-resolution ground 

truth images. So basically, Image Super-Resolution is the concept of improving an image resolution 

from low resolution (LR) to high resolution (HR) [149]. Super-resolution is required in a variety of 

situations where high-resolution images are wanted but are constrained by variables like hardware 

limitations, image sensors, or transmission bandwidth. When using medical imagery and satellite 

imagery for disaster relief, a high-resolution image is helpful for improved region categorization in 

multi-spectral remote sensing photos or for helping the radiologist make a diagnosis [150]. Two general 

categories can be used to classify super-resolution techniques: single-image super-resolution (SISR) 

and multi-image super-resolution (MISR). 

5.2.1.1 Single-Image Super-Resolution (SISR) 

In image processing, single-image super-resolution is a crucial activity that aims to optimize features 

and textures to enhance visual perception and reconstruct high-resolution images from low-resolution 

images. To understand how to map to super-resolution images for SISR tasks, we usually require a large 

number of LR images. In order to obtain an LR image of the original image, most researchers often 

down sample. This process basically reduces the image's spatial resolution by sampling the original 

image [151].  

5.2.1.2 Multi-Image Super-Resolution (MISR) 

Multi-image SR (MISR) combines numerous LR images, each of which has a unique subset of HR 

image. As a result, MISR can improve reconstruction accuracy compared to single-image SR (SISR), 

On the other hand, MISR is highly sensitive to the co-registration accuracy and variability of the input 

images [152]. When preparing data for training and validation, this presents a challenge. With the 

advancement of image processing of satellite imagery, remote sensing is becoming more relevant in 

modern society. However, due to the limitations of current image sensors and the complexity of 

atmospheric conditions, we face significant challenges in remote sensing applications because of the 

restricted spatial, radiometric, spectral, and temporal resolutions [153]. 
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5.2.2 Upsampling 

A technique for boosting resolution is called Upsampling. The practice of boosting an image's resolution 

is most frequently employed in photography and graphic design, but it can also be used to boost the 

resolution of any other visual data, such as a video file (say, from 360p to 720p). It increases the number 

of rows and/or columns (or image dimensions) [157]. This can be utilized in a variety of situations, such 

as in GANs (Generative Adversarial Networks), where the goal is to build an image out of a random 

vector sample that closely resembles an image from the ground truth or genuine distribution. There are 

numerous other ones, like enhancing image quality, among others. Let's go over this in greater depth. 

The up-sampling method increases both the image's size and resolution. Several methods of up-

sampling that are often employed are 

• Bilinear interpolation 

• Bicubic interpolation 

• Nearest neighbour interpolation 

5.2.2.1 Bilinear interpolation 

The basic technique for enhancing image resolution is called an image interpolation algorithm. It also 

regenerates image data, which is analogous to an image low-pass filter. So that a higher-resolution 

observational image can be created to reflect the actual scene, more valuable image data can be precisely 

estimated within a particular spatial range using sparse discrete image data. The bilinear interpolation 

algorithm can be used to boost the advantages of clarity while maintaining the original information of 

the image and greatly improving the resolution of the image created by the low-resolution sensor. The 

image's resolution can be improved with sophisticated image interpolation technologies [155]. 

 

5.2.2.2 Bicubic interpolation 

When down-sampling or upsampling an image, the pixel count must be decreased or increased, 

accordingly, the interpolation method is typically applied. Bicubic takes a step farther than bilinear by 

taking into account the nearest 16-pixel 4x4 neighbourhood of known pixels. Since they are all at 

different distances from the unknown pixel, the computation gives nearby pixels a higher weighting. 

Bicubic may offer the best balance between processing time and output quality because it produces 

images that are noticeably sharper than those made by the other two techniques. The bilinear 

interpolation procedure for operating on images only takes into account the influence of four points that 

are immediately next to the interpolation point and ignores the influence of the neighbours, giving it 

low-pass filtering characteristics. In the module for upsampling, we use bicubic interpolation. The 

neighbourhood pixel changes are taken into account by the bicubic interpolation in addition to the four 

nearby locations, preserving more finely detailed texture information [156]. 
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5.2.2.3 Nearest neighbour interpolation 

For high-resolution (H.R.) image interpolation, the nearest neighbour value (NNV) algorithm is used. 

The traditional nearest neighbour algorithm is distinguished by the fact that the concept used to estimate 

the missing pixel value is guided by the nearest value rather than the distance. Because the nearest 

neighbour assumption does not allow for the creation of a new value, the value is set at the empty 

location by trying to replicate the pixel value placed at the smallest distance. As a result, the pixels of 

the image grow larger, leading to heavy jagged edges, causing this technique less suited for applications 

that require an H.R. image (to do specific tasks). When speed is crucial, the closest neighbour algorithm 

notion is really helpful. Other strategies, as opposed to the straightforward nearest neighbour, use 

interpolation of nearby pixels, producing a smoother image (whereas others use convolution or adaptive 

interpolated conceptual frameworks, however, these two go beyond the scope of this study) [157]. 

 

5.2.3 Proposed Methodology   

Generative modeling is an unsupervised machine learning task that involves automatically identifying 

and learning regularities or patterns in incoming data so that the model may be used to produce or 

generate new instances that could have been taken from the original dataset. To create new examples, 

we train a generator model, and we train a discriminator model to determine whether an example is 

genuine (coming from the domain) or fake (being generated).  Generative Adversarial Networks 

(GANs) belong to generative models [158]. Currently, the most used data generation has been trained 

on the dataset. GANs consist of two networks Generator (G) and Discriminator (D). The discriminator 

is provided with real and generated data points that it must learn to distinguish between. The Generator 

has to make data points such that it becomes difficult for the discriminator to distinguish. The 

discriminator learns to separate the underlying distribution between real and generated points, and the 

Generator needs to make data points with a similar distribution to the real data points. Both the networks 

are trained simultaneously, thus at the end, having a Generator that captures the underlying real data 

distributions. 

 

                                minmax
G          D

 𝑉(𝐷, 𝐺) = Ex~Pdata(x)[log𝐷 (𝑥)] + Ez~Pz(z)[log(1 − 𝐷(𝐺(𝑧)))]         (5.1) 

In the above equation 5.1, P_data is the real data distribution and P_z is the distribution followed by the 

latent variable which the generator maps to generated data points mimicking the real data distribution. 

5.2.3.1 VGG Net 

Introducing the visual geometry group (VGG), a new CNN model. The neural network becomes more 

active as a result. The VGG-16 features three Fully Connected layers in addition to 13 convolutional 

layers, while the VGG-19 has three additional convolutional layers [159]. They have channels with a 
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3x3 receptive field and a rectifying non-linearity function in each buried layer. In particular, the 

development of deep visual recognition architectures has been greatly aided by the ImageNet Large-

Scale Visual Recognition Challenge (ILSVRC), which has been used as a testbed for several generations 

of large-scale picture classification systems. 

5.2.3.2   Perception Loss 

Perceptual loss has been frequently employed as an effective loss term in picture synthesis applications 

such as image super-resolution. Perceptual loss uses a convolutional neural network to pre-process the 

input image and calculate how similar the input and output images are [160]. It has been shown that 

perceptual loss, as opposed to mean-squared error (MSE) loss, is more resistant to several possible 

problems, such as over-smoothing and distortion. For style transfer, the VGG architecture can be 

utilized as a loss function. 

5.2.3.3 Need of VGG Net for Perception Loss 

The usage of VGG16 for feature extraction for calculating perceptual differences is what connects 

perceptual loss and VGG16. The plan is to use the pre-trained VGG16 network and its intermediate 

feature maps to calculate the perceptual loss among generated and target images [161]. The perceptual 

loss can be estimated and used as a guide for optimizing the picture production process by comparing 

the representations of features of the generated and target pictures at different levels of VGG16. To 

compute the perceptual loss and get an astonishing result, multiple convolution layers from VGG-Net, 

a pre-trained neural network on a natural picture dataset, were employed in the maximal effort. While 

we focus on additional image synthesis challenges, such as super-resolution, colorization, and other 

picture-building tasks [162]. 

Our model is inspired by [163] for super-resolution generations to generate high-resolution satellite data 

images. The block diagram of our suggested SSR-GAN model is shown in Figure 5.1. Our model (SSR-

GAN) consists of a Generator, Discriminator, and VGG net for preserving structure. At the time of 

training, we pass a low-resolution image (128*128) which is provided as input to the generator, which 

consists of a series of convolution and residual blocks followed by a single bilinear upsampling 

convolution and predicts the following output using a residual block and final prediction layer. Our 

generator is a full convolutional network that can upsample images of any resolution. The discriminator 

is provided with a real high-resolution (256*256) and generated high-resolution image (256*256), 

which the generator has to distinguish between by predicting real or fake. 

We also use VGG-NET for the perceptual loss using features extracted from generated high-resolution 

images and real-pair high-resolution images to preserve the structure of the image. As our model is 

trained to learn a distribution to upsample locally and preserve the global structure at the time of testing, 

we provide as input an image of resolution (256*256) and predict the output with a (512*512) resolution 
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image. Thus, we fine-tune locally, which is better than predefined steps like Bicubic and bilinear 

upsampling. 

 

Figure 5.1: The architecture of our proposed (SSR-GAN) model for SAR Image enhancement 

 

Loss for Discriminator 

                      ℒ𝐴𝑑𝑣
𝐷 = 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎

[max(0,1 − 𝐷(𝑥))] +   𝐸𝑥~𝑝𝐺
[max(0,1 − 𝐷(𝑥))]                         (5.2) 

In equation 5.2, 𝑝𝑑𝑎𝑡𝑎 is the data distribution of high-resolution images and 𝑝𝐺  is the Generator learned 

distribution to generate high-resolution images. We use Hinge Adversarial loss introduced in [164]. 

Loss for Generator: 

                                                          ℒ𝐴𝑑𝑣
𝐺  = 𝐸𝑥 ~ 𝑝𝐺

[−𝐷 (𝑥)]                                                     (5.3) 
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In equation 5.3, which is used to preserve the global structure of the images generated we use perceptual 

loss. We use features extracted from the 9th layer of the Vgg-16 Network [165]. Perceptual loss is better 

than l1 loss on images as it does not punish hard for small minute changes in the generated images. 

Perceptual Loss:   

                                                        ℓ𝑓𝑒𝑎𝑡  
∅,𝑗 (𝑦̂, 𝑦) =

1

𝐶𝐽   𝐻𝐽𝑊𝐽
   ||∅𝑗(𝑦̂) − ∅𝑗(𝑦) ||

2  
2   

                                   (5.4) 

In above equation 5.4,𝑦 and 𝑦̂are the targeted images and synthesis images. ∅𝑗represents the perceptual 

function that outputs the activation of the jth layer in the perceptual loss network. 𝐶𝐽,𝐻𝐽,𝑊𝐽are the 

dimensions of the tensor feature map [166]. 

When comparing two different images that appear similar, such as the same photo that has been 

displaced by one-pixel, perceptual loss functions are utilized. The function is used to compare 

significant variations across photographs, such as variances in content and style. 

 

Figure 5.2: Block diagram of Down-sample Block 

The architecture of the downsample block is depicted in Figure 5.23. The discriminator's downsample 

block is sab-block, followed by the residual block with batch normalization. The input images are 

initially fed to the 3*3 convolution layer, followed by the AVG Pooling layer. We used the activation 

function Leaky ReLU. The slope of the negative values is minimized by the ReLU activation function. 

The AVG Pool layers' output is clubs, which are fed to the next sub-block. 

 

Figure 5.3: Block diagram of Residual Block with Batch Normalization 
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In the above figure 5.3, inner 4-layered architecture of the residual block with batch normalization (BN) 

layer is explained.  The residual block with BN is part of the generator of our proposed model. It 

contains the 3*3 convolution layers followed by the BN layer. The Leaky ReLU activation function is 

used. The combined output of the Leaky ReLU activation function and 1*1 convolution layer is added 

and forwarded to the next block. In the above figure 5.4, inner layered architecture of the residual block 

is explained. Residual block without BN is also part of the discriminator block of our proposed model. 

It contains the 3*3 convolution layers. The Leaky ReLU activation function is used. The output of 

Leaky ReLU and 3*3 convolution layer is ADD and forwarded to the next block. 

 

 

Figure 5.4: Block diagram of Residual Block without Batch Normalization 

A detailed description of our proposed SSR-GAN model is provided in Algorithm 1 below. The input 

is raw satellite images, and the output is enhanced images. 

Algorithm 1:  Procedure for the SAR image enhancement using the proposed (SSR-GAN) 

model 

Input:  Raw (low resolution) SAR images 

Output: High-resolution SAR images 

Adam Optimizer: Learning Rate:= 0.0001, beta_1 = 0.5,beta_2 = 0.999 

Spectral Normalization is used for all Convolution and Fully Connected layers in the Discriminator 

and the Generator 

--------------------------------------------------------------------------------------------------------------------- 

For a number of training iterations, do: 

Begin 

                      { 

 For t = 0,....,n do:    \\ Training the discriminator 

   

Sample {𝑋ℎ𝑖𝑔ℎ(𝑖))} ~ Pra batch from real data \\ images at high resolution 

Sample {𝑋𝑙𝑜𝑤(𝑖))} ~ Pra batch from a real date \\ images at low resolution  
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Ld
adv =Ex ~ P_high[max(0,1-D(x))] + Ex ~ P_low[max(0,1+D(G(x`)))]  

  Update the weights of the discriminator using Adam Optimizer 

 

 For t = 0,....,n do: \\ Training the generator 

   

Sample {Xlow } ~ Pr a batch from a real date \\ images at low resolution  

 

Lg
adv= Ex′~ P_high[-D(G(x`))]  

  Update the weights of the generator using Adam Optimizer 

                              } 

At the time of inference  

For number of samples do: 

                     { 

 Sample {Xhigh(i)} ~ Pra batch from real data \\ images at high resolution 

 

 \\ Generate super Resolution images by providing high-resolution images as inputs 

 

Xsuper(i) = G(Xhigh(i))) 

                      } 

End 

               Return High Resolution Image 

 

5.2.4 Experimental Results and Discussion of proposed SSR-GAN model 

5.2.4.1 Dataset 

Images with a size of 256x256 are used as inputs in our experiment. In our paper, we use approximately 

3000 Sentinel-2 images that were used to construct the dataset. Sentinel-2 satellites for remote sensing 

capture images of various sorts of landscapes, including lakes, terraces, villages, snow-capped 

mountains, plateaus, etc. Resolution, incidence, and the geographic makeup of that area are only a few 

of the image details. There is no denying the enormous variety of these pictures. We will be using data 

from the previous 20 years for various geographical locations of India because the satellite has a 12-

day return cycle. The majority of the area we consider in our study is quite prone to flooding. Kerala 

floods occur, just like in the Ganga basin. Images from before and after flood occurrences are part of 

our dataset. 
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5.2.4.2 Evaluation Metrics 

The information contained and the feature similarity of the two images is compared as the foundation 

of the comprehensive image quality evaluation measures. Picture pixel statistics are ideal for using 

conventional image quality evaluation measures like peak signal-to-noise ratio (PSNR), The Structural 

Similarity Index Measure (SSIM), MULTI-SCALE SSIM (Structural Similarity Index Measure), and 

mean square error (MSE). The similarity in structure Structure-based similarity is the basis for Index 

and peak signal-to-noise ratio. 

• Peak signal-to-noise ratio 

Peak Signal-to-Noise Ratio (PSNR) is a metric used to compare the quality of a compressed or 

reconstructed picture or video signal to its source. it provides a numerical number that quantifies the 

quality of the compressed or reconstructed picture or video in comparison to the original. PSNR is 

commonly represented in decibels (dB) and is derived using the MSE between the original and the 

compressed or reconstructed image. The greater the PSNR value, the closer the compressed or rebuilt 

image is to the original, and thus the higher the quality of the compression or reconstruction. 

                                                                      PSNR = 20log10 (
𝑀𝐴𝑋𝑓

√𝑀𝑆𝐸
)                                                             (5.5) 

In above equation 5.5, 𝑀𝐴𝑋𝑓 is the image or video's highest possible pixel value, typically 255 for 8-

bit pictures, and MSE is the mean squared error 

• Structural similarity index measure 

The Structural Similarity Index Measure (SSIM) is a popular picture quality metric for determining the 

similarity between two images. SSIM compares the structural data in a reference image to structural 

information in a distorted image and generates a score indicating the similarity between the two images. 

The score runs from 0 to 1, with 1 signifying that the two photos are a perfect match. Equation 5.6 

shows the mathematical formula of SSIM 

                                                           SSIM(x, y) = [𝑙(x, y)]α∙[c(x, y)]β∙[s(x, y)]γ                                                (5.6) 

The two images being compared are x and y. α, β and γ are constants that indicate how important each 

aspect is. 𝑙 for brightness, c for contrast, s for contrast, and s stands for structural comparison between 

x and y images 

• Multi-scale SSIM 

Multi-scale SSIM (Structural Similarity Index Measure) is a metric for assessing the similarity between 

two photographs. It is an expansion of the classic SSIM measure that takes into consideration the human 

visual system's multi-scale nature. The multi-scale SSIM works by decomposing images into many 
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scales using a Gaussian pyramid and then computing the SSIM index at each scale individually. This 

enables the metric to extract both global and local structural details from images. 

                                        MSSIM(𝑥, 𝑦) =[ 𝑙𝑚(𝑥, 𝑦)]𝛼𝑀 ∙  ∏ [𝐶𝑗(𝑥, 𝑦)]
𝛽𝑗𝑀

𝑗=1 ∙ [𝑆𝑗(𝑥, 𝑦)]
𝛾𝑗

                   (5.7) 

In equation 5.7, M corresponds to the lowest resolution (i.e. the times of down samplings performed to 

reduce the image resolution), while j = 1 corresponds to the original resolution of the image. 

• Mean squared error 

The Mean Square Error (MSE) can also be used to determine how comparable the two images are. In 

the context of image processing, MSE calculates the average squared difference between the pixel 

values of two pictures. It is frequently used as a metric to judge the quality or resemblance of 

compressed or rebuilt images. A lower MSE is preferable. 

                                                     MSE =  
1

𝑀𝑁
∑ ∑ [ŷ(𝑛,𝑚) − y(𝑛,𝑚)]2𝑁

𝑚−1
𝑀
𝑛−1                                          (5.8) 

Above equation 5.8 shows MSE between two images such as y (x, y) and S ŷ (x, y). 

5.2.4.3 Analysis of Results 

Table 5.1, shows the statistical measures of the existing model with our proposed model. The parameters 

we consider for comparing performance are PSNR, SSIM, MSSIM, and MSE. 

Table 5.1: Performance comparison table of the Existing model with our proposed model 

Method PSNR↑ SSIM ↑ M-SSIM ↑ MSE ↓ 

Bilinear interpolation 26.89 0.72 0.89 0.030 

Bicubic interpolation 26.34 0.67 0.89 0.031 

Nearest Neighbor 

interpolation 

27.21 0.61 0.84 0.053 

Proposed Model 

(SSR-GAN) 

28.11 0.81 0.97 0.012 

 

This can be observed that our proposed model outperforms. Our proposed model has having best PSNR, 

SSIM, and MSSIM values compared to other existing models. The MSE value of our model is low, 

which indicates our model performs better. 
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Figure 5.5: Comparative image analysis between existing approaches and our proposed model (A) input 

raw images (B) output images of Bicubic model (C) output images of Bilinear model (D)output images 

of Nearest Neighbour model (E)output images of our proposed (SSR-GAN) model 

In the figures 5.5, we have shown the PSNR, SSIM, MSSIM, and MSE of our proposed model and 

existing traditional techniques and compared their results. The size of the original input image is 

(256*256) resolution, and the predicted output is (512*512) resolution. In Figure 5.6, we calculate the 

PSNR and provide a comparison between the existing approaches with the proposed approach. We run 

our model for 200 epochs, the epochs are shown on the X-axis, while the ratio's value is listed on the 

Y-axis. As shown in the above diagram, our proposed model provides a better peak signal-to-noise ratio 

value. In Figure 5.7, we provide a comparison between the existing approaches with the proposed 

approach. We run our model for 200 epochs; the X axis shows the number of epochs, and the Y axis 
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shows the percentage of the Structural Similarity Index. As the value is higher, the model is considered 

more accurate.   

 

Figure 5.6: The graph representation between PSNR and Epochs 

 

 

Figure 5.7: The graph representation between SSIM and Epochs 

 

 

Figure 5.8: The graph representation between MSSIM and Epochs 
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In above figure 5.8, we provide a comparison between the existing approaches with the proposed 

approach. We run our model for the 200 epochs, The X-axis contains the number the epochs and Y-axis 

contains the percentage of the Multi-scale Structural Similarity Index. As the value is higher the model 

is considered more accurate. 

 

Figure 5.9: The graph representation between MSE and Epochs 

In above figure 5.9, we provide a comparison between the existing approaches with the proposed 

approach. We run our model for 200 epochs, where the X-axis represents the number of epochs while 

the Y-axis represents the percentage inaccuracy.   

5.3 Introduction to Adaptive Histogram Equalization Related Techniques 

In image processing techniques, image quality improvement is one of the vital elements. Image 

enhancement is a technique to remove noise from the raw image and highlight the required information 

in the target image. For enhancement purposes, Spatial Domain Methods were used and compared based 

on the output image in our work [167]. 

Spatial domain Methods: In spatial domain methods, the enhancement approach is directly applied to 

the pixel of the image by manipulating the value stored in the pixel to get the desired result. 

                                                                      S = T(r)                                                                         (5.9) 

In equation 5.9, T is the transformation that interprets pixel value in the desired pixel value S. 

5.3.1 Histogram Equalization (HE) 

Image enhancement is considered one of the essential sections of image processing. Its objective is to 

achieve intensity mapping functions, such as distribution entropy the output intensity can be expanded. 

Although it's a proper utility, HE is the completely inconsiderate intensity with a large pixel population, 

even if they are slightly visible. In this work, the author has proposed an approach to improve image 

quality using the histogram equation and spatial filtering. HE is used to increasing contrast.  
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Figure 5.10: Block diagram of the Histogram Equalization SAR images 

The image extends the intensity values over the entire range. It is a commonly used image enhancement 

method for adjusting the contrast of the image by using its histogram [168]. In this approach, the gray 

level transform is applied to the raw image, after then to maximize the image contrast and try to flatten 

the resulting histogram. In this, HE is used to enhance the quality of medical images. In the case of 

Histogram Equalization, it spreads the color intensity value over the full range [169]. In the Figure 5.10 

basic steps of HE is explained in the form of the block diagram is explained. 

• Data collection: For improving the quality of the image for HE, we first acquire the raw image. 

For this, data is collected from various resources according to need. We focus on flooded areas, 

so we consider SAR images for the flooded area. 

 

• Calculate Gray level: In our approach of enhancement for HE, we apply it to the gray-scale 

image. For that, we convert the image to a gray- scale value. The color range of the gray-scale 

value is lies between min.0 (black) to the max. 255 (white). 

 

• Calculate the PDF: Then for HE, the probability density function (PDF) is modified accordingly 

for the requirement. To make it easier, this technique converts the PDF of the image into equal 

PDF from lower pixel value to higher pixel value. When we talk about the digital image, the 

probability density function is a discrete function. Let's assume a raw image (x); for example, 

the probability density function is calculated using probability-based on histogram P(rk) as 

follows. In equation (6), we show the PDF for HE. 

                                   𝑃𝐷𝐹 (𝑟𝑘) =  𝑃𝑟𝑘
= 

𝑡𝑜𝑡𝑒𝑙 𝑝𝑖𝑥𝑒𝑙𝑠 𝑤𝑖𝑡ℎ 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑟𝑘

𝑡𝑜𝑡𝑒𝑙 𝑝𝑖𝑥𝑒𝑙 𝑖𝑛 𝑖𝑚𝑎𝑔𝑒 𝑥
                                      (5.10) 

• Calculate the CDF: The cumulative density function (CDF) determines the probability of seeing 

certain pixel intensities. From this probability density function, we calculate the CDF and the 

intensity (rk) of the color fluctuates between 0 (black) to (L-1) white. 
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                                CDF (X) =  ∑ 𝑃 (𝑟𝑘)
𝐿−1
𝑘=0                                                                              (5.11) 

 

In equation 5.11, CDF is calculated where P(rk) is the probability for the pixel of intensity. After this, 

we finally get the enhanced image. The final image is also on a gray scale. Invisible information also 

appears in the final resultant image. 

 

5.3.2 Adaptive Histogram Equalization 

When we talk about Histogram Equalization, it focuses on the global contrast of the image, so this is 

not efficient in all cases. In Histogram Equalization, or we can say Global Histogram Equalization, 

improves the contrast of the image, but it may lead to the loss of information because it does not confine 

to a particular region [170]. So, in the case of the HE, this approach is efficient for image enhancement, 

but it may result in the loss of some useful information.  

 

Fig. 5.11: Flow chart of Adaptive Histogram Equalization of SAR images 

AHE is widely used to overcome this issue of data loss. It is better than the ordinary histogram-based 

approach to improving local contrast and edges in specific areas of the image. In the following, we 

explain how the AHE is applied to the image. To overcome this issue, the AHE is used. In this case, the 
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image is divided into small blocks named "Tiles," and then HE is applied to every block. So, in this 

case, the histogram is confined to small blocks. Suppose that noise is there in the block, then it will be 

amplified. To overcome this issue, contrast limiting is applied. Before applying the AHE on the gray-

scale image, the Contrasts of the image are limited by applying the CDF. This threshold value depends 

on the nearby pixel or the size of the histogram of the image [171]. If a histogram value is raised above 

the specified contrast threshold, then those pixels are evenly clipped and distributed before applying 

histogram equalization; after equalization, bilinear interpolation is applied to remove artifacts in tile 

boundaries. In Figure 5.11, we explain the workflow of the adaptive histogram equalization technique. 

In the below flow chart, we explain the working of the AHE. The raw image is converted into tiles, and 

the equalization technique is applied. Based on the threshold is the condition is satisfied, we get the 

desired result; otherwise, clip the pixel, and then equalization is applied till getting the final result. 

5.3.3 Result Analysis on Adaptive Histogram Equalization 

As illustrated in Figures 5.12 to 5.15, the images enhanced using Histogram Equalization (HE) and 

Adaptive Histogram Equalization (AHE) techniques are presented. In the AHE method, the image is 

divided into smaller regions (tiles) of size 8×8. Each tile is processed individually, which allows for 

better local contrast enhancement. The output of both techniques is shown not only through visual 

images but also supported by their respective histogram graphs. These histograms help in analyzing the 

pixel intensity distribution across gray-scale levels. The graphical comparisons indicate that AHE 

outperforms standard HE in terms of preserving and enhancing image details. While HE improves 

overall image contrast, it may lead to the loss of important local features. AHE addresses this limitation 

by enhancing contrast locally, thereby retaining more critical image information. The histogram plots 

of the output images further validate that AHE provides a more detailed and balanced contrast 

enhancement. In these graphs, the X-axis represents gray-scale values and the Y-axis represents pixel 

intensity. 

 
Figure 5.12 (A) Raw image, (B) Enhanced by HE, (C) Enhanced by AHE, (D) Histogram of basic image 

& Histogram after HE (F) Histogram after AHE [172] 
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Figure 5.13 (A) Raw image, (B) Enhanced by HE, (C) Enhanced by AHE, (D) Histogram of basic image 

& Histogram after HE (F) Histogram after AHE [173] 

 

Figure 5.14 (A) Raw image, (B) Enhanced by HE, (C) Enhanced by AHE, (D) Histogram of basic image 

& Histogram after HE (F) Histogram after AHE [174] 

 

 
 

Figure 5.15 (A) Raw image, (B) Enhanced by HE, (C) Enhanced by AHE, (D) Histogram of basic image & 
Histogram after HE (F) Histogram after AHE [ 175] 
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5.4 Chapter Summary 

This chapter presented a comprehensive study on the application of Artificial Intelligence (AI) 

techniques for enhancing flood detection through the improvement of Synthetic Aperture Radar (SAR) 

images. Floods, being among the most frequent and destructive natural disasters, require accurate and 

timely detection mechanisms for effective disaster response and mitigation. SAR imaging, due to its 

capability to operate under all weather and lighting conditions, has been widely employed in flood 

monitoring. However, the utility of SAR images is often constrained by issues such as low contrast, 

speckle noise, and limited spatial resolution. To address these challenges, the chapter explored two AI-

driven approaches. First, Adaptive Histogram Equalization (AHE) was investigated for its ability to 

enhance image contrast by operating on localized regions of SAR images. Compared to traditional 

Histogram Equalization (HE), AHE was shown to preserve essential structural and contextual details, 

making it more suitable for identifying flooded regions with higher precision. Second, the chapter 

introduced a deep learning-based super-resolution model named SSR-GAN (Satellite Super Resolution-

based Generative Adversarial Network). The SSR-GAN model leverages a generative adversarial 

framework, including a generator, a discriminator, and a perceptual loss component based on a pre-

trained VGG network. This model was designed to reconstruct high-resolution images from low-

resolution SAR inputs, thereby improving visual clarity and enabling finer delineation between flooded 

and non-flooded areas. Experimental evaluations demonstrated that the combination of AHE and SSR-

GAN significantly enhances the interpretability and quality of SAR images. The SSR-GAN model 

outperformed traditional interpolation methods in terms of PSNR, SSIM, MSSIM, and MSE metrics, 

confirming its effectiveness for flood image enhancement. Overall, the integration of AI with remote 

sensing technologies presents a promising direction for the development of automated, accurate, and 

scalable flood detection systems. The insights gained from this chapter contribute to the broader 

objective of leveraging AI for environmental monitoring and disaster management. 
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CHAPTER 6 

CONCLUSION, FUTURE WORK, AND SOCIAL IMPACT 

 

6.1 Conclusion 

In this research systematically addressed critical challenges in flood prediction, detection, and 

classification by leveraging advanced Artificial Intelligence (AI) techniques, particularly deep learning, 

evolutionary optimization, and image enhancement methods. The primary objective was to develop 

intelligent, accurate, and scalable systems capable of supporting real-time decision-making for disaster 

management authorities during flood events. Four novel models were proposed and rigorously 

evaluated, each targeting specific aspects of the flood management pipeline. 

The first contribution, Flood-FireNet, introduced a hybrid classification model combining the Adaptive 

Firefly Algorithm (AFA) with a transformer-based architecture. AFA optimized high-level feature 

selection, while the transformer effectively captured spatial dependencies within satellite imagery. This 

model achieved a remarkable accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and F1-score 

of 96.92%, surpassing traditional and transformer-based baselines such as ResNet-18 and Vision 

Transformer (ViT). 

The second contribution, MoSWIN, integrated Monkey Search Optimization (MSO) with SWIN 

Transformers to enhance the classification of flood and non-flood images. MSO efficiently extracted 

optimal feature subsets, while the SWIN transformer’s hierarchical attention mechanism enabled robust 

spatial representation learning. The MoSWIN model achieved an accuracy of 96.53%, significantly 

outperforming benchmark models like ResNet-18 (85.37%) and ViT (90.24%) in terms of classification 

accuracy, recall, and F1-score. 

For flood prediction in urban environments, a third model, FloodCNN-BiLSTM, was developed. This 

hybrid deep learning model combined the spatial feature extraction capabilities of CNNs with the 

temporal sequence learning strength of BiLSTM networks to forecast flood events based on 

environmental sensor data. The model demonstrated superior forecasting accuracy, achieving 97.30% 

on Dataset 1 and 98.60% on Dataset 2, with consistently high precision, recall, and F1-score values, 

outperforming classical ML models such as SVM, DT, ANN, and even standalone LSTM or CNN 

architectures. 

The fourth contribution focused on enhancing the visual quality of flood images using the SSR-GAN 

framework, which employed a Super-Resolution Generative Adversarial Network to improve the spatial 

resolution of Synthetic Aperture Radar (SAR) images. SSR-GAN significantly improved performance 

metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Multiscale 
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SSIM, while reducing Mean Squared Error (MSE) compared to traditional interpolation and 

enhancement techniques. This enabled more accurate delineation of flooded zones from low-resolution 

SAR inputs. 

Collectively, these models not only delivered state-of-the-art performance across multiple metrics but 

also showcased the potential of combining deep learning architectures with bio-inspired optimization 

and image enhancement techniques. The research paves the way for the development of intelligent, real-

time, and deployable solutions for flood disaster management, offering valuable tools for environmental 

agencies, insurance sectors, and urban safety systems. 

6.2 Limitations of the Work 

While the developed models achieved significant improvements, several limitations were 

observed: 

• Data diversity and size: Some models relied on datasets with limited geographical and 

temporal diversity, affecting their generalizability to unseen flood scenarios. 

• Optimization complexity: Models such as MoSWIN and Flood-FireNet required fine-tuning 

of hyperparameters for swarm-based algorithms, which is computationally intensive. 

• Resource constraints: Deploying deep learning models in real-time applications may face 

bottlenecks due to hardware limitations in edge or low-resource environments. 

• SAR image processing: SSR-GAN’s effectiveness is dependent on careful hyperparameter 

tuning and high-resolution SAR data availability, which may not always be feasible in 

emergency contexts. 

6.3 Potential Industrial Applications 

The outcomes of this research possess significant industrial relevance and practical applicability across 

multiple sectors. The developed models and techniques can be integrated into the following areas: 

• Smart City Surveillance and Urban Safety Systems: Integration with CCTV and sensor 

networks for real-time flood detection and classification in urban areas. Automated alerts to 

municipal authorities and emergency response teams to ensure rapid evacuation and traffic 

control. 

• Insurance and Risk Assessment: Automated flood damage detection using satellite and drone 

imagery for faster insurance claim verification. Predictive modeling for risk profiling and 

premium calculation based on historical flood patterns. 
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• Disaster Management and Emergency Response Platforms: Deployment in centralized 

disaster response systems to provide early warnings and real-time situation awareness. Decision 

support for resource allocation, rescue operation planning, and public safety communication. 

• Remote Sensing and Environmental Monitoring: Enhanced flood zone classification using 

satellite and SAR image data for national meteorological and space agencies. Continuous 

monitoring of water bodies and terrain changes to update flood vulnerability maps. 

• Urban Water Resource and Infrastructure Planning: Utilization of flood prediction models 

for urban planning, stormwater drainage design, and green infrastructure deployment. Support 

for zoning regulations and construction guidelines in flood-prone areas. 

• Agriculture and Crop Damage Estimation: Remote sensing-based identification of flood-

affected agricultural regions for compensation and replanting strategies. Integration with smart 

irrigation systems to manage water resources post-flood. 

• Telecommunication and Utility Services: Risk assessment and pre-emptive service shutdown 

in flood zones to protect infrastructure like power lines and communication towers. Planning 

for resilient network layouts based on predicted flood-prone zones. 

• Transportation and Logistics: Real-time flood mapping to reroute traffic and logistics 

operations, minimizing delays and ensuring safety. Integration with smart transportation 

systems for adaptive route planning during flood events. 

• Public Health and Sanitation: Predictive identification of flood-affected areas for timely 

deployment of sanitation measures and healthcare facilities. Monitoring potential outbreaks of 

waterborne diseases post-flood through environmental parameters. 

• Civil Engineering and Infrastructure Resilience: Use in structural design assessments for 

bridges, roads, and buildings in flood-prone regions. Risk modeling for infrastructure 

maintenance prioritization based on flood susceptibility. 

These industrial applications demonstrate the transformative potential of the proposed models in 

addressing real-world flood management challenges by enabling intelligent automation, proactive 

planning, and rapid response mechanisms. 

6.4 Future Work 

Several future directions emerge from this research: 

• Multimodal Data Integration: Incorporating radar, infrared, and real-time sensor data to 

enhance model generalizability across varying flood conditions. 
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• Ensemble and Hybrid Models: Fusion of multiple AI models and optimization strategies (e.g., 

combining MSO with Genetic Algorithms or PSO) to improve robustness. 

• Edge Deployment and Cloud Integration: Real-time deployment on mobile, IoT, or edge 

devices using optimized, lightweight versions of deep learning models. 

• 3D and Time-Series Analysis: Applying the models to temporal flood data or 3D mapping for 

dynamic monitoring. 

• Cross-Domain Applications: Extending the frameworks to domains such as wildfire detection, 

medical image enhancement, or climate change monitoring. 

6.5 Societal Impact 

The research outcomes present significant societal benefits: 

• Improved Disaster Response: Accurate flood classification and forecasting facilitate faster, 

more targeted relief efforts, reducing casualties and losses. 

• Public Awareness and Engagement: Mobile/web apps powered by these models can provide 

real-time flood alerts to citizens, enhancing community preparedness. 

• Data-Driven Policy Making: Government bodies can use these tools to design data-driven 

urban planning and disaster resilience strategies. 

• Support for Vulnerable Populations: Accurate predictions help NGOs prioritize resources 

and protect economically and socially disadvantaged groups during floods. 

6.6 Sustainable Development Goals (SDGs) Addressed 

In this research significantly contributes to the achievement of several United Nations Sustainable 

Development Goals (SDGs) through the development and application of advanced AI techniques for 

flood detection, prediction, and classification: 

1. SDG 11: Sustainable Cities and Communities 

• Enhances urban resilience by enabling real-time flood detection and early warning 

systems. 

• Supports sustainable infrastructure planning by identifying flood-prone zones using 

intelligent prediction models. 

• Aids city planners in developing adaptive urban designs that withstand climate-induced 

disasters. 
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2. SDG 13: Climate Action 

• Promotes proactive climate disaster response through AI-driven forecasting and 

decision support systems. 

• Enables governments and environmental agencies to implement timely mitigation and 

adaptation strategies. 

• Provides scientific insights to strengthen national climate resilience frameworks. 

3. SDG 9: Industry, Innovation, and Infrastructure 

• Introduces novel AI-optimization hybrid models that foster innovation in disaster risk 

reduction technologies. 

• Supports the development of intelligent infrastructure monitoring tools that predict and 

manage climate-related disruptions. 

• Encourages industrial applications in insurance, transportation, and utilities for risk-

aware infrastructure planning. 

4. SDG 3: Good Health and Well-being 

• Helps prevent flood-induced health hazards by enabling early evacuation and public 

health interventions. 

• Assists in maintaining the continuity of healthcare services during disasters through 

predictive modeling. 

• Reduces psychological and economic stress on communities by providing reliable and 

timely alerts. 

5. SDG 6: Clean Water and Sanitation 

• Enhances water resource management by predicting flood events that could lead to 

contamination. 

• Supports post-flood sanitation strategies by identifying affected zones with precision. 

• Contributes to the protection of clean water sources from flood-related pollution and 

infrastructure damage. 
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