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ABSTRACT

Floods remain one of the most catastrophic and recurrent natural disasters globally, resulting
in immense economic losses, displacement of populations, infrastructure degradation, and
significant environmental disruptions. As climate variability intensifies and urbanization
accelerates, the urgency to develop intelligent, efficient, and timely flood prediction and
management solutions becomes more critical. This research aims to address these challenges
by designing a series of novel, Al-driven models for flood detection, classification, forecasting,
and image enhancement, thereby supporting real-time disaster response and long-term urban

resilience planning.

The research proposes four key contributions, each targeting specific aspects of flood-related
problems. The first model, Flood-FireNet, uses the Adaptive Firefly Algorithm (AFA) to
optimize feature selection and combines it with a Transformer-based architecture to improve
satellite image-based flood classification. This model demonstrated a high accuracy of 97.85%,
precision of 98.21%, and Fl-score of 97.65%, outperforming conventional deep learning
models. The second contribution, MoSWIN, integrates Monkey Search Optimization (MSO)
with a SWIN Transformer to enhance classification by capturing hierarchical spatial
relationships in flood images. It achieved a classification accuracy of 96.53%, with strong

robustness in noisy conditions.

The third contribution, the FloodCNN-BiLSTM model, is a hybrid deep learning framework
for flood forecasting using environmental sensor data. CNN layers extract spatial features while
BiLSTM captures temporal dependencies, enabling accurate urban flood prediction with an
F1-score exceeding 96.5% on benchmark datasets. The fourth model, SSR-GAN, introduces a
super-resolution-based GAN framework to enhance low-quality SAR images. By improving
PSNR, SSIM, and reducing MSE, this model enables clearer flood zone delineation, especially

in disaster-struck regions where high-resolution data may be unavailable.

These models were rigorously evaluated using multiple performance metrics, including
accuracy, recall, precision, F1-score, Peak Signal-to-Noise Ratio (PSNR), Structural Similarity
Index (SSIM), and Mean Squared Error (MSE). Ablation studies and statistical validation tests,
such as paired t-tests and ANOVA, further confirmed the effectiveness and generalizability of

the proposed frameworks. The results indicate that the integration of evolutionary optimization



algorithms, Transformer-based architectures, and GANs substantially improves the system’s

ability to detect and predict floods across diverse scenarios.

Beyond academic advancement, the research offers substantial industrial and societal impact.
Applications include integration into smart city surveillance systems, automated flood
insurance damage assessment, early warning and disaster response platforms, urban planning
for flood mitigation, and real-time remote sensing analysis. Moreover, the work directly
supports several United Nations Sustainable Development Goals (SDGs), notably SDG 11
(Sustainable Cities), SDG 13 (Climate Action), SDG 9 (Industry and Innovation), SDG 6
(Clean Water), and SDG 3 (Good Health). By bridging the gap between advanced Al
methodologies and real-world flood disaster management, this thesis contributes a
comprehensive, scalable, and intelligent solution for building climate-resilient infrastructure in

flood-prone regions.

Overall, this study presents a unified, intelligent system that combines environmental data
analysis, image processing, and artificial intelligence to predict and detect floods more
accurately and efficiently. The proposed approach not only strengthens disaster response
mechanisms but also contributes to sustainable risk management practices. The framework
developed in this research has the potential to be adapted for other natural disaster applications,
marking a significant step forward in the use of Al for environmental monitoring and public

safety.

Objectives: The objectives of this study are structured into four key segments:

* The first objective of the study is to develop a model for flood assessment by considering
environmental parameters. which aims to develop a efficient flood classification model.

» The second objective focuses on to design a flood detection technique using Artificial
Intelligence., aiming to improve the accuracy and efficiency of flood detection.

* The third objective is to improve flood detection technique by enhancing flood images to
enhance the image quality for better flood detection model.

* The final objective is to perform the comparative analysis of our proposed work with the

existing work.

Methodology: To accomplish the stated objectives, this study leverages advanced machine
learning and deep learning methods, such as nature inspired algorithms, neural networks,

attention mechanisms, and transformer-based architectures, due to their significant potential in
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addressing complex challenges in flood assessment on datasets lie environmental parameters

and image dataset. In our work, we employ a Generative Adversarial Network (GAN)-based

super-resolution technique to enhance low-quality flood images, improving their clarity and

detail for more accurate detection and analysis. The strategies employed to meet these

objectives are as follows:

To accomplish the first objective, the proposed hybrid model integrates Convolutional
Neural Networks (CNN) with Bidirectional Long Short-Term Memory (BiLSTM)
networks within a transfer learning framework. This combination effectively captures
both spatial and temporal features from environmental data, enabling accurate multi-
class classification. The model demonstrates superior performance when evaluated
against advanced existing benchmark methods.

For the second objective, two flood detection models were developed, each utilizing
different nature-inspired approaches and a transformer. The first model introduces
Flood-FireNet, a transformer-based model enhanced by a nature-inspired optimization
strategy for distinguishing flooded and non-flooded regions. The second model
integrated The proposed MoSWIN model classifies flooded and non-flooded regions
by integrating the Monkey Search Optimization (MSO) algorithm for effective feature
extraction and the SWIN Transformer for deep learning-based classification.

To address the third objective, we propose a novel super-resolution approach using
generative adversarial networks (GAN) to enhance satellite flood images. To optimize
image generation, we employ perceptual loss calculated via VGG Net’s intermediate
feature maps, guiding the model to minimize perceptual differences between generated
and target images, resulting in more visually accurate enhancements.

For the fourth objective, a comparative analysis was conducted, evaluating the
performance of the above-developed models against existing flood assessment and
detection techniques. Key performance metrics, such as accuracy, sensitivity,
specificity, Fl-score, MSE, RMSE, PSNR, and SSIM were used to compare the

effectiveness of the proposed models with current state-of-the-art methods.

Results: The outcomes of the study are as follows:

The integration of CNN and BiLSTM within a transfer learning framework has resulted
in high accuracy for multi-class flood classification using environmental parameters,

outperforming several advanced benchmark models.
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The Flood-FireNet model, which combines transformer architecture, attention
mechanisms, and AFA, demonstrates superior performance on flood image datasets
compared to existing deep learning models.

The Adaptive Firefly Algorithm (AFA) successfully extracts rich, high-level features
from flood images, significantly improving classification performance and
generalization by minimizing overfitting.

The proposed MoSWIN model effectively integrates Monkey Search Optimization
with the SWIN Transformer, enabling the extraction of hierarchical and discriminative
features, resulting in significantly better accuracy, precision, and recall than models like
ResNet and Vision Transformer.

Across all proposed models, the use of nature-inspired optimization (MSO, AFA),
attention mechanisms, and image enhancement techniques collectively reduce
overfitting, leading to improved generalization on unseen data.

The integration of deep learning and optimization algorithms has enabled the models
to uncover complex spatial and visual patterns in flood-affected regions, aiding in more
reliable classification and prediction.

The GAN-based super-resolution approach improves the visual and structural quality
of satellite flood images, restoring fine details and outperforming traditional upscaling
methods through perceptual loss optimization.

Image enhancement techniques such as Histogram Equalization (HE) and Adaptive
Histogram Equalization (AHE) effectively improve the visibility and quality of SAR
flood images, aiding in more accurate flood detection and classification.

The integration of deep learning and optimization algorithms has enabled the models
to uncover complex spatial and visual patterns in flood-affected regions, aiding in more
reliable classification and prediction.

Experimental results and performance comparisons show that the proposed models
consistently outperform standard architectures like ResNet, Vision Transformer, and
baseline CNNs across all key metrics.

The proposed techniques, especially MoSWIN and Flood-FireNet, offer a scalable
framework adaptable to different flood datasets and regions, making them suitable for

real-world deployment in disaster management systems.
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Chapter 1
INTRODUCTION

Disasters are sudden adverse events that disrupt human societies and ecosystems. Although they may occur
over a short duration, their consequences are often severe and long-lasting [1]. Disasters are broadly
classified into two categories: natural disasters (e.g., floods, earthquakes, and landslides) and man-made

disasters (e.g., industrial accidents, chemical leaks, and conflicts).

Among all types of natural disasters, flooding is the most frequent and widespread phenomenon. Floods
result in substantial loss of life, displacement of communities, damage to biodiversity, and destruction of
infrastructure. They pose significant threats to both developing and developed nations. In particular, regions
situated near water bodies are increasingly vulnerable during the monsoon season due to intense and

unpredictable rainfall patterns.

Floods can be triggered by both natural and anthropogenic (human-induced) factors. As shown in Figure

1.1, the primary causes of flooding include:
e Excess rainfall (27.5%)
¢ Opening of barrages/dams (31.25%)
e A combination of both (41.25%)

These causes are often interlinked, particularly in areas with inadequate water management systems or poor

urban planning [3].

® Excess rainfall
® Opening barrage

= Both rainfall and
Opening barrage

Figure 1.1: Flood causes are shown as a pie chart. [3]



Floods are projected to become more frequent and destructive due to climate change and global warming.
Rising sea levels and intensified precipitation patterns exacerbate the risk of coastal and inland flooding.
These events not only threaten human lives and property but also disrupt ecological balance, contaminate

water sources, and degrade biodiversity.

To address these challenges, advanced technologies such as Machine Learning (ML), Artificial Intelligence
(Al), and sensor networks are increasingly being leveraged for flood prediction and early warning systems.

These technologies offer the capability to:
e Accurately predict the occurrence and severity of floods
e Monitor remote or inaccessible regions
e Issue timely alerts to vulnerable populations

Several studies have explored the integration of Al and sensor technologies, highlighting their potential to

minimize disaster-related damages and support decision-making in disaster management frameworks [1].

Natural disasters encompass various phenomena, each with distinct origins and impacts. Figure 1.2 presents
the classification of natural disasters based on observed frequency. Among them, floods are identified as

the most recurrent event, followed by landslides and tropical storms.
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Figure 1.2: classification of Natural Disasters [4]



Floods can be further categorized into the following types:

o Flash floods: These occur within six hours of intense rainfall and are characterized by rapid water

accumulation and flow.

e  Mudslides (or debris flows): Typically occur within 24 hours of heavy rainfall, often in hilly or

mountainous terrains.
e Coastal floods: Caused by coastal storms, cyclones, or tsunamis leading to seawater intrusion.

¢ River plain floods: Result from prolonged rainfall in large catchment areas, causing rivers to

overflow their banks [4].

Understanding the type and cause of flooding is essential for implementing effective mitigation and
response strategies. Moreover, early warning systems, supported by real-time data and predictive

analytics, can significantly reduce the impact on flood-affected communities.

1.1 Background and Motivation

Floods have long been recognized as one of the most devastating natural disasters, affecting millions of
people worldwide each year. These hydrological events are triggered by excessive rainfall, river overflows,
dam failures, or cyclones, and they can cause catastrophic damage to life, property, and infrastructure.
Climate change, coupled with rapid urbanization, has led to an increase in both the frequency and severity
of flood events across the globe. Low-lying areas, densely populated urban zones, and regions with

inadequate drainage systems are especially vulnerable to flooding.

Floods are among the most frequent natural disasters, causing over 50% of all disasters worldwide, with
12% of India’s land prone to flooding [2]. According to the UN, floods result in the highest casualties
compared to other disasters [5], threatening over 160 million people annually [6]. Flash floods are
intensifying due to extreme rainfall driven by climate change. In the USA, annual economic losses from
natural hazards exceed $300 billion [7]. In India, floods claim around 1654 human and 618,248 cattle lives

yearly, damage 1.2 million houses, and cause average annual losses of Rs 5649 crores [8].

The unpredictability and sudden onset of floods pose a significant challenge to emergency response teams
and disaster management authorities. Traditional methods of flood forecasting rely heavily on physical
hydrological models, such as rainfall-runoff models and hydraulic simulations. While these approaches

have been instrumental in early flood forecasting, they often struggle with limitations such as:

o Inability to process and analyze large volumes of heterogeneous data in real time.



e Dependency on historical data, which may not be available for all regions.
o Inflexibility in adapting to dynamic and complex environmental changes.

In recent years, Artificial Intelligence (Al) has emerged as a transformative technology in various domains,
including healthcare, finance, transportation, and environmental science. In the context of flood prediction
and detection, Al offers unique capabilities that can overcome the limitations of traditional models. Machine
Learning (ML) and Deep Learning (DL) algorithms, in particular, are capable of learning from past data,
identifying complex nonlinear patterns, and making high-accuracy predictions even with incomplete or

noisy inputs.

Moreover, Al-based image analysis and computer vision techniques have made it possible to detect flood
events using real-time imagery from surveillance cameras, drones, and satellites. These models can
recognize water accumulation, monitor river levels, and assess flood severity with minimal human
intervention. Image enhancement methods further improve the quality and clarity of input images, allowing

for more accurate detection.

The motivation for this research stems from the urgent need to develop intelligent, reliable, and scalable
flood prediction and detection systems. By leveraging the power of Al, this study aims to enhance the
capabilities of current flood risk management practices and contribute to building resilient communities

capable of withstanding the adverse impacts of flooding.

. Flood Management Research Papers Published (2011-2024)
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Figure 1.3: Trend of Research Publications on Flood Management from 2011 to 2024, showing a significant
rise in scholarly attention and research output in recent years



The graph shows a steady increase in flood management research papers from 2011 to 2024. Initial growth
was gradual, but after 2018, a sharp rise is observed, peaking in 2024 with 33 papers. This trend highlights
growing academic interest and urgency in addressing flood-related issues, likely driven by climate change

and increasing flood incidents worldwide [9].

1.2 Problem Statement

Floods are among the most devastating natural disasters affecting millions of lives and causing severe
socioeconomic disruptions across the globe. As per the United Nations Office for Disaster Risk Reduction
(UNDRR), floods account for nearly 40% of all natural disasters worldwide [10]. They not only result in
loss of life and displacement of people but also inflict long-term damage on agricultural land, urban
infrastructure, transportation systems, and water resources. With the growing impacts of climate change,
erratic weather patterns, deforestation, and unplanned urbanization, the frequency and severity of floods
are expected to increase significantly in the coming decades. This alarming trend calls for the urgent
development of advanced and effective flood prediction and detection systems that can provide early

warnings and real-time monitoring to mitigate their consequences [11, 12].

Traditional flood forecasting and detection methods primarily rely on statistical models, hydrological
simulations, and physical indicators such as rainfall, river discharge, and soil saturation levels. While these
methods offer foundational insights into the occurrence of flood events, they suffer from various limitations
[13]. First, they are often built on static or historical datasets that fail to incorporate real-time variability in
environmental conditions. Second, many of these models lack the adaptability to learn from new data or to
update predictions dynamically as environmental conditions evolve. Third, in regions where sensor
networks and meteorological data collection infrastructure are inadequate or non-existent, the reliability of
traditional models becomes questionable [14]. Moreover, flood detection based on satellite or aerial
imagery is often delayed due to manual processing, poor resolution, or adverse weather conditions affecting

image quality [15].

Artificial Intelligence (Al) presents a promising solution to these limitations by enabling data-driven,
adaptive, and real-time analysis for flood prediction and detection [16]. With the proliferation of big
environmental data from Internet of Things (IoT) sensors, satellite imagery, weather stations, and crowd-
sourced platforms Al techniques such as machine learning (ML), deep learning (DL), and image processing
can be employed to extract complex patterns and relationships that are not easily identifiable using
traditional methods [17]. For instance, Al models can analyze large volumes of historical and real-time
environmental data to predict flood events with greater accuracy. Similarly, deep learning algorithms such

as Convolutional Neural Networks (CNNs) can be trained to identify flood-prone regions and flooded areas



using satellite or drone imagery [18]. However, despite the proven success of Al in domains such as finance,
healthcare, and autonomous systems, its application in flood prediction and detection is still evolving and

faces several technical and practical challenges [19].

One of the critical challenges is the selection and integration of relevant environmental parameters that
significantly influence flood occurrence [20]. These parameters may include rainfall intensity, temperature,
humidity, river water level, soil moisture, topography, and land use patterns. Designing an Al model that
effectively incorporates these diverse inputs requires careful preprocessing, normalization, and feature
selection techniques. Furthermore, the model must be capable of handling missing, noisy, or incomplete

data, which is common in real-world environmental datasets.

Another major issue is related to flood detection using images. Flood-affected regions can be visually
detected using satellite or aerial images, but the accuracy of detection is often hindered by poor image
quality, cloud cover, or low contrast between flooded and non-flooded areas [21]. Enhancing these images
using advanced computer vision techniques is essential to improve the performance of Al-based detection
models. Image enhancement not only aids in more accurate flood identification but also supports better
decision-making for emergency response teams and policy-makers. Integrating these enhanced visual

inputs into Al systems remains a research gap that this study intends to fill.

Moreover, the lack of standardized datasets and evaluation metrics makes it difficult to compare the
performance of different Al models for flood prediction and detection. Many existing models are developed
and tested on specific geographic regions and cannot be generalized to other flood-prone areas without
retraining or customization. Additionally, while several studies claim high prediction accuracies, they often
fail to address issues related to false alarms or missed detections, which can have serious implications for

disaster preparedness and response [22].

There is also a technological gap in deploying Al models in real-time systems. Many Al-based flood models
remain in the experimental or academic phase due to high computational requirements, lack of integration
with sensor networks, or limited accessibility for local governments and communities [23]. To bridge this
gap, it is necessary to design models that are not only accurate but also computationally efficient, scalable,

and user-friendly.

Considering these challenges, this research aims to develop a comprehensive Al-based framework that
addresses both flood prediction and detection with enhanced accuracy and reliability. The research will
pursue four major objectives: (i) to develop a model for flood prediction by considering diverse and relevant
environmental parameters; (ii) to design a robust flood detection technique using Al, particularly through

image-based detection; (iii) to improve the accuracy of flood detection by enhancing flood images using



advanced computer vision techniques; and (iv) to perform a comparative analysis of the proposed

techniques with existing state-of-the-art models to validate the improvements in performance.

By addressing these objectives, the proposed research seeks to contribute a practical and scalable solution
to the ongoing global issue of flood management. The integration of Al into flood prediction and detection
not only enhances the accuracy and timeliness of alerts but also supports sustainable disaster risk reduction
strategies. The outcomes of this research can have significant industrial applications, such as in urban
planning, civil engineering, and insurance sectors, and societal benefits, including saving lives, reducing
economic losses, and enhancing the resilience of communities. Furthermore, the work aligns with several
United Nations Sustainable Development Goals (SDGs), including SDG 11 (Sustainable Cities and
Communities), SDG 13 (Climate Action), and SDG 9 (Industry, Innovation, and Infrastructure).

In conclusion, the existing gaps in flood prediction and detection demand innovative and intelligent
solutions that are adaptable, data-driven, and applicable across diverse geographies. Artificial Intelligence
holds immense potential in revolutionizing flood management through predictive analytics, automated
detection, and real-time decision-making. However, to fully realize this potential, there is a need for focused
research that addresses the technical, operational, and practical challenges associated with the deployment
of Al in this domain. This study is a step in that direction, aiming to provide a comprehensive, reliable, and

intelligent solution for the prediction and detection of floods.

1.3 Research Objectives
This research aims to achieve the following specific objectives:
1. To develop a model for flood prediction by considering environmental parameters.
2. To design a flood detection technique using Artificial Intelligence.
3. To improve the flood detection technique by enhancing flood images.
4. To perform a comparative analysis of our proposed work with the existing work.
1.4 Scope of the Research

The scope of this study is focused on the application of Artificial Intelligence techniques for flood prediction
and detection. This encompasses the use of Machine Learning, Deep Learning, and image processing
methods to analyze various forms of environmental and image-based data [24]. The specific boundaries of

this research are as follows:

e Geographical Scope: The research will consider both urban and rural flood-prone areas for data
collection and model validation. While a specific case study area may be selected for

implementation, the developed methods aim to be generalizable to other regions.
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e Data Sources: The study will utilize data from multiple sources including historical flood records,
meteorological data (e.g., rainfall, humidity, temperature), satellite and drone imagery, river

discharge rates, and sensor outputs.

e Al Techniques: Various Al algorithms such as Support Vector Machines (SVM), Artificial Neural
Networks (ANN), Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN), and
Generative Adversarial Networks (GAN) may be employed depending on the task—be it

prediction, detection, or image enhancement.

e Technological Framework: Tools such as Python, TensorFlow, Keras, OpenCV, and GIS platforms

will be used for model development, training, and testing.

e Performance Metrics: The developed models will be evaluated using accuracy, precision, recall,
F1-score, mean squared error, and area under the curve (AUC) for classification and prediction

tasks.

Excluded from this research are policy-based flood risk mitigation strategies, socio-economic impact
analyses, and structural engineering solutions. The primary emphasis remains on data-driven, Al-powered

solutions to detect and predict flood events in a timely and efficient manner.

1.5 Significance of the Study

This study contributes to the growing field of Al in environmental disaster management by addressing a

critical real-world problem: flood risk. The significance of the research lies in several key areas:

e Disaster Preparedness and Mitigation: Improved flood prediction and detection can save lives
and reduce damage by enabling early warning and timely evacuation. The proposed Al systems can

be integrated into existing disaster management frameworks to enhance their responsiveness.

e Technological Advancement: By applying cutting-edge Al techniques to hydrological problems,
the study bridges a critical gap between environmental science and computational intelligence. The
research showcases the potential of Machine Learning and image processing in solving complex

environmental issues.

e Scalability and Adaptability: The Al models developed in this study are designed to be scalable
to large datasets and adaptable to different geographical regions. This makes the research relevant

to both developed and developing countries.



Data Utilization: The study emphasizes the effective use of multi-source data, including real-time
sensor data, remote sensing images, and historical weather patterns. This integrative approach

improves the reliability and comprehensiveness of flood forecasting systems.

Support for Vulnerable Communities: Accurate and timely flood alerts can significantly benefit
communities living in flood-prone areas. The developed systems can be used by local authorities

and NGOs to implement early response measures.

Academic Contribution: The research contributes to the academic body of knowledge in Al
applications, environmental informatics, and disaster risk reduction. It provides a methodological

foundation for future researchers working at the intersection of Al and climate resilience.

Policy Implications: While not directly focused on policy, the findings can inform decision-makers

on the benefits of adopting Al-based technologies for climate adaptation and urban planning.

In conclusion, this research not only seeks to address the technical aspects of flood prediction and detection

but also aims to deliver practical solutions that can be implemented on the ground to safeguard human lives

and property.

1.6 Flood Management Systems

Flood management systems refer to a comprehensive set of strategies, technologies, and frameworks

designed to predict, prevent, respond to, and recover from flood events [25]. These systems are a vital

component of disaster risk reduction and environmental resilience, involving coordinated efforts by

governments, meteorological agencies, urban planners, civil engineers, and local communities [26].

Traditional flood management systems typically follow a four-phase cycle:

Preparedness: Measures such as floodplain mapping, early warning systems, infrastructure design,

and public awareness campaigns.

Response: Immediate actions taken during a flood, including evacuation, rescue operations, and

deployment of emergency services.
Recovery: Post-flood activities aimed at rehabilitation and reconstruction of affected areas.

Mitigation: Long-term strategies to reduce flood risk, such as afforestation, construction of levees,

and improved drainage systems.

Despite these components, traditional systems often struggle with several limitations:

Delayed response times due to manual monitoring.

9



o Limited predictive capacity, especially for flash floods.

¢ Inefficient data sharing among agencies.

o Lack of adaptability to rapidly changing climate conditions.

To understand the effectiveness of traditional flood management systems, the following table illustrates

their key components and associated challenges:

Table 1.1: Components of Traditional Flood Management Systems and Their Limitations

Component Description Limitations
Early Warning Use of sensors and hydrological Often based on fixed thresholds and
Systems models to alert authorities limited data inputs
Floodplain Identification of high-risk zones Not updated frequently; may not
Mapping using historical data account for climate change

Structural Defenses

Construction of dams, levees, and
embankments

Costly; may fail under extreme
conditions

Emergency
Response Plans

Guidelines for evacuation, relief, and
coordination

Lack of real-time communication and
coordination

Community

Education and preparedness drills

Not widely disseminated in rural or

Awareness marginalized areas

Flood management must now evolve from static, one-size-fits-all solutions to dynamic, data-driven systems

that leverage real-time information and predictive analytics.
1.7 Flood Management Systems Using Artificial Intelligence

Artificial Intelligence (Al) has emerged as a game-changing tool in enhancing the performance, reliability,
and scalability of flood management systems [27]. By integrating Al into the flood management lifecycle,

authorities can shift from reactive strategies to proactive planning and real-time decision-making [28].
Key Applications of Al in Flood Management:

1. Flood Prediction: Al models like Recurrent Neural Networks (RNNs) and Long Short-Term
Memory (LSTM) networks are used to analyze time-series data (e.g., rainfall, temperature, river

levels) to forecast potential flood events.

2. Flood Detection: Deep learning models, particularly Convolutional Neural Networks (CNNs), can

identify flood water in images captured from satellites, UAVs (drones), or ground cameras.

10



3. Image Enhancement: Techniques such as GANs (Generative Adversarial Networks) improve the

visibility and interpretability of flood-affected images under poor weather conditions.

4. Decision Support Systems: Al-powered dashboards assist in real-time monitoring, early warning,

resource allocation, and incident response.

5. Risk Assessment: Machine Learning algorithms analyze socio-economic, topographical, and

environmental data to classify areas based on flood vulnerability.
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Figure 1.4: Machine Learning-based Flood Flow Prediction Model utilizing temporal rainfall data and river
flow data

This figure 1.4 illustrates a machine learning-based flood prediction model. It integrates two key inputs:
temporal rainfall data from the past 7 days and temporal river flow data from the past 6 days. These
historical datasets are fed into a machine learning algorithm trained to analyze patterns and correlations
between rainfall and flow levels. The model processes these inputs to predict the river flow at a specific
point of interest. This approach enhances flood forecasting accuracy and helps in proactive disaster

management by providing timely and data-driven flow predictions in vulnerable regions.
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The integration of Al can address many of the limitations present in traditional systems, as outlined below:

Table 1.2: Comparison Between Traditional and Al-Based Flood Management Systems

Feature ‘ Traditional System Al-Based System
Data Handling Manual/Static Automated/Real-time
Forecasting Medium (dependent on historical | High (learning from complex, non-linear
Accuracy data) patterns)
Adaptability Rigid; difficult to update Highly adaptable and self-improving
Response Time Delayed Instantaneous alerts and decision-making
Scalability Limited to local infrastructure Scalable across regions with cloud and IoT
support
Integration Poor inter-agency coordination Unified platforms with multi-source data
integration

Furthermore, the effectiveness of Al in flood management is maximized when paired with IoT (Internet of
Things) devices such as smart sensors for rainfall, humidity, and river levels. These sensors provide real-

time data streams which AI models can instantly analyze and interpret.

Table 1.3: Key Al Technologies Used in Flood Management Systems

Al Technology Application Area Advantages
Convolutional Neural Networks Image-based flood High accuracy in spatial feature
(CNNs) detection recognition
Recurrent Neural Networks Time-series flood Effective in sequential pattern
(RNNs) / LSTM forecasting analysis
Generative Adversarial Image enhancement Improves quality of low-resolution or
Networks (GANSs) obscured images
Support Vector Machines Risk classification and Robust to high-dimensional data
(SVMs) mapping
Fuzzy Logic Systems Decision-making under Models complex, vague human-like
uncertainty decisions

By embedding these technologies within existing flood monitoring and response infrastructures, cities and
disaster management agencies can create Smart Flood Management Systems that are autonomous, reliable,

and responsive to real-time threats.
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In conclusion, integrating Al into flood management represents a paradigm shift from reactive to
anticipatory strategies. This transition is vital for building climate-resilient communities in the face of

increasing flood risks due to global climate change and urban expansion.

1.8 Organization of the Thesis

This thesis is structured into six comprehensive chapters; each designed to systematically address the
research objectives and provide a logical flow of the work conducted. A brief overview of each chapter is

as follows:

e Chapter 1 — Introduction: This chapter introduces the central theme of the research, flood
detection and prediction using artificial intelligence and image processing. It outlines the
motivation behind the study, defines the research problem, and states the objectives and scope of
the work. Additionally, it highlights the significance of the proposed approach in addressing real-
world flood management challenges, especially in the context of increasing climate variability. The

chapter also discusses the research methodology, key contributions, and structure of the thesis.

e Chapter 2 — Literature Review: This chapter provides a critical review of the existing body of
knowledge related to flood detection and prediction. It explores various conventional and modern
approaches, with a particular focus on Al-based methods, machine learning techniques, and image
processing applications. The chapter identifies gaps in current research and justifies the need for
the proposed integrated Al-based framework. It also outlines relevant datasets, evaluation metrics,

and performance benchmarks used in earlier studies.

e Chapter 3 — Flood Detection using Artificial Intelligence: This chapter addresses Research
Objective 2, focusing on the development of an Al-based flood detection system. It describes the
data collection and preprocessing steps, followed by a detailed explanation of the Al models
employed (e.g., convolutional neural networks, support vector machines). The chapter evaluates
the detection accuracy of the proposed models, compares their performance with baseline
approaches, and presents visual and quantitative results. Furthermore, it highlights the system’s

ability to identify flood-prone regions based on real-time inputs.

e Chapter 4 — Enhancement of Flood Detection using Image Processing: Aligned with Research
Objective 3, this chapter investigates the role of image enhancement techniques in improving flood
detection accuracy. It explains the preprocessing methods used to refine satellite and drone-
captured images, including noise reduction, contrast enhancement, and edge detection. The chapter

then integrates these enhanced images into the Al detection pipeline and assesses the resulting
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improvement in performance. Comparative analysis, visual outputs, and metric-based evaluation

substantiate the effectiveness of the enhancements.

e Chapter 5 — Flood Prediction using Environmental Parameters: This chapter addresses
Research Objective 1, focusing on the development of a flood prediction model using
environmental and hydrological parameters such as rainfall intensity, river discharge, humidity, and
soil moisture. Various predictive modeling techniques—including regression models, decision
trees, and deep learning networks—are implemented and evaluated. The chapter compares the
proposed prediction framework with traditional flood forecasting methods and demonstrates its

superior accuracy and lead-time performance through case studies and statistical analysis.

e Chapter 6 — Conclusion, Limitations, and Future Work: The final chapter summarizes the key
contributions and findings of the thesis. It reflects on how the research objectives were achieved
and discusses the practical implications of the proposed flood detection and prediction systems.
The chapter also outlines the limitations encountered during the research, such as data availability

and model generalizability.

1.9 Chapter Summary

This chapter provides an overview of flood assessment, emphasizing the role of artificial intelligence
techniques in enhancing diagnostic prediction and detection accuracy. It discusses the use of GAN modal,
to enhance the quality of SAR images, in improving the performance of flood detection systems. We also
examine various environmental parameters to improve the accuracy and reliability of flood prediction in
our analysis. The chapter outlines the content and description of each subsequent chapter, highlighting
unique concepts and ideas that align with the title and objectives of the thesis. It also provides a concise
overview of flood management strategies, machine and deep learning approaches, and the use of SAR data
for enhancing and detecting flood images. Furthermore, the research outlines its objectives, scope, and

underlying motivation in detail.
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Chapter 2

Literature Review

Floods are a global challenge, causing extensive damage to infrastructure, ecosystems, and human lives.
The urgent need for accurate flood prediction, detection, and mitigation has driven research into advanced
methodologies, particularly machine learning (ML), deep learning (DL), and image processing techniques.
This literature review synthesizes existing studies to support the research objectives: (1) developing a flood
prediction model incorporating environmental parameters, (2) designing an Al-based flood detection
technique, (3) improving flood detection through image enhancement, and (4) conducting a comparative
analysis of the proposed work against existing methods. The review is structured into thematic subsections,

providing detailed insights into methodologies, datasets, results, merits, and limitations.
2.1 Flood Prediction Models

Flood prediction models are vital for forecasting flood timing, magnitude, and extent, enabling early
warnings and effective disaster management. Traditional statistical and hydrological models use historical
rainfall-runoff data and watershed characteristics. Recently, machine learning and hybrid models have
emerged, leveraging large datasets to capture complex, nonlinear interactions among meteorological,
topographical, and human factors affecting floods. This section reviews key methodologies, from
conventional to Al-driven models, highlighting advancements in integrating data-driven techniques with

hydrological frameworks to improve flood prediction accuracy and resilience strategies.

2.1.1 Traditional Hydrological Models

Traditional hydrological models, such as hydrodynamic models, have been foundational in flood prediction.
These models require extensive, high-quality input data, including observed hydrologic time series (e.g.,
rainfall, streamflow), geometric data (e.g., river channel dimensions), hydraulic structures (e.g., dams,
levees), and hydrological parameters (e.g., soil permeability). This study [29] highlights that such models
are computationally intensive and sensitive to data quality, often struggling with incomplete or noisy
datasets. While effective in controlled scenarios, their reliance on precise inputs limits applicability in data-

scarce regions or rapidly changing environments.

2.1.2 Machine Learning-Based Prediction

Machine learning has transformed flood prediction by capturing nonlinear relationships between
environmental parameters like precipitation, temperature, soil moisture, elevation, and slope. Artificial

Neural Networks (ANNs) are prominent, modeling complex hydrological systems effectively [30]. For
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instance, ANNs link river flow to inputs like rainfall and soil moisture, adapting to nonlinear patterns. This
paper [31] proposed a Back-Propagation Neural Network (BPNN) to predict discharge in the Govindpur
basins of the Brahmani River, evaluating performance across architectures like feedforward and recurrent

networks, achieving robust results but limited by basin-specific data.

2.1.3 Temporal and Probabilistic Models

Long Short-Term Memory (LSTM) models, a type of recurrent neural network, excel in capturing temporal
correlations in streamflow data, making them ideal for short-term flood forecasting [32, 33]. These models
process sequential data, retaining memory of past inputs to predict future trends. Gaussian Processes (GPs)
offer a probabilistic approach, delivering point predictions and uncertainty intervals [34]. For example, GPs
quantify forecast reliability, aiding decision-making, though their computational cost is high, especially for

large datasets.

2.1.4 Ensemble and Hybrid Approaches

Ensemble methods like Random Forests (RFs) combine multiple decision trees to enhance prediction
robustness, capturing relationships among diverse parameters like rainfall, soil moisture, and topography
[35]. Hybrid approaches integrate ML with hydrological models. In this study authors [36] used a two-
dimensional hydraulic model (iRIC), calibrated with water level data, alongside ML models to estimate
river depth for varying discharge levels. A hybrid method combining Particle Swarm Optimization (PSO)
and group data management improves short-term streamflow forecasting [37]. Paper [38] introduced a
framework integrating ML, statistical, and geo-statistical models to predict daily and near-future flood

scenarios under climate change, addressing long-term impacts but facing complexity challenges.

Table 2.1: Summary of recent studies on ensemble and hybrid approaches for flood prediction techniques.

Reference ‘ Dataset Techniques Key Results Merits Limitations

Saleh, T. et | Climate, ML + Predicts daily, | Addresses Model
al. [38] hydrological | Statistical + future flood climate complexity, data
data Geo-statistical | scenarios change dependency
models impacts
Amankwah | Hydrological | ANNs Captures Effective for Requires large,
et al. [39] data nonlinear complex quality data

relationships systems

Arvind et Govindpur, BPNN Evaluated Accurate Limited to
al. [40] Brahmani across NN discharge specific basin,
River architectures prediction data volume
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Moharrami | Streamflow LSTM Accurate Handles Limited to short-
et al. [41] time series short-term temporal term applications
forecasts correlations
Fernandes Hydrological | Gaussian Provides Quantifies Computationally
et al. [42] data Processes prediction uncertainty intensive
(GPs) intervals
Tanim et al. | Hydrological | Random Enhanced Captures High
[43] parameters Forests (RFs) | robustness and | diverse computational
accuracy relationships complexity
Bhuyan et Water level iRIC + ML Estimates river | Integrates Requires
al. [44] data models depth for physical and calibration, data
varying ML models quality
discharge
Kim et al. Streamflow PSO + Group | Improved Combines Complex
[45] data Data short-term optimization implementation
Management | forecasting and data
handling

2.2 Al-Based Flood Detection Techniques

Al-based flood detection techniques use machine learning and deep learning to analyze data from satellites,
sensors, and weather forecasts for accurate, real-time flood identification. Unlike traditional manual or
hydrological methods, these Al approaches enhance early warning systems and support timely disaster
response, significantly improving flood prediction, monitoring, and management for effective risk

mitigation.

2.2.1 Unsupervised Learning Methods

Unsupervised learning is critical when labeled data is scarce, common in flood scenarios. [46] applied Mean
Shift and Self-Organizing Maps (SOM) to MODIS satellite images to extract water pixels before, during,
and after floods. SOM outperformed Mean Shift, accurately delineating flood regions by clustering similar
pixel intensities. However, SOM’s high computational complexity limits scalability for large-scale datasets,

making it less practical for real-time or regional applications.

2.2.2 Supervised Learning Approaches

Supervised learning leverages labeled data for robust flood detection. [47] compared Support Vector
Machines (SVMs), Deep Convolutional Neural Networks (DCNNs), Multi-Layer Perceptions (MLPs), and
Stacked Sparse Denoising Autoencoder (SSDAs) on SPOT-5 and radar imagery. SSDAs, using only 20
labeled images, achieved an AUC of 0.9173, outperforming SVM and MLP due to its ability to denoising
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and learn hierarchical features. However, limited training data and poor generalization across diverse

regions constrain its effectiveness [48].

2.2.3 SAR and Satellite-Based Detection

Synthetic Aperture Radar (SAR) is vital for all-weather flood detection. [49] integrated Sentinel-1 SAR
data with shapefiles and water level data via Google Earth Engine (GEE) to map flood extent in the Mekong
River basin. This approach achieved high spatial coverage, enabling rapid tracking, but was limited by
GEE’s preprocessing constraints, such as data resolution and availability. [50] applied Otsu thresholding to
Sentinel-1 SAR data for flood segmentation in northern Iran, achieving ~90% accuracy, though complex

terrains (e.g., mountains) reduced precision.

2.2.4 UAV and High-Resolution Imagery

Unmanned Aerial Vehicle (UAV) imagery provides high-resolution data for flood analysis. The FloodNet
dataset, introduced in [51], supports classification (InceptionNetV3, ResNet50, Xception), segmentation
(ENet, PSPNet, DeeplabV3+), and Visual Question Answering (VQA). These models excel in multi-task
analysis, leveraging detailed UAV imagery, but struggle with small object detection due to scale variations

and occlusions from buildings or vegetation.

2.2.5 Real-Time and Semi-Supervised Methods

Real-time detection is critical for emergency response. [52] combined Deep Neural Networks (DNNs) with
computer vision to estimate water levels from real-time river data, achieving a Mean Absolute Error (MAE)
of 3.32 cm. The system adapts to varying camera angles and lighting, but requires a manually drawn
reference line on an even surface orthogonal to water. [53] used a semi-supervised approach on FloodNet,
employing weighted sampling to address class imbalance, improving classification of flooded versus non-

flooded areas, though requiring robust validation across geographies.

Table 2.2: Summary of semi-supervised and real time approaches for flood prediction techniques.

Reference ‘ Dataset Techniques Key Results Merits Limitations
Arvind, C.S. et MODIS Mean Shift, SOM SOM Effective High
al. [46] satellite outperforms without complexity,
images in flood labeled data | low scalability
region
extraction
Islam, K. A. et | SPOT-5, SVM, DCNN, SSDAs AUC High Small training
al. [47] radar MLP, SSDAs =0.9173 performance sets, poor
images generalization
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Nghia, B.P. et | Sentinel-1 SAR decoding, High spatial | All-weather, GEE
al. [49] SAR, GEE flood coverage rapid tracking | preprocessing,
shapefiles mapping data limits
Moharrami, M. | Sentinel-1 | Otsu thresholding | Accuracy ~ Simple, Limited in
et al. [50] SAR 90% effective complex
delineation terrains
Rahnemoonfar, | FloodNet Classification: Multi-task Flexible for Small object
M. et al. [51] (UAV InceptionNetV3, success with | classification, detection
imagery) ResNet50, high-res data | segmentation challenging
Xception;
Segmentation:
ENet, PSPNet,
DeeplabV3+; VQA
Fernandes, F.E. | Real-time | DNN, Computer MAE = 3.32 Real-time, Strict camera
et al. [52] river data Vision cm, adaptable robust placement
to conditions needed
Jackson, J. et | FloodNet | Semi-supervised, Improved Addresses Needs robust
al. [53] weighted sampling | flood/non- class geographic
flood imbalance validation
classification

2.3 Image Enhancement for Flood Analysis

Effective flood analysis depends on high-quality images, but raw flood images often suffer from low
contrast, noise, and poor illumination, obscuring critical details. Image enhancement techniques improve
visual clarity and highlight important features like water boundaries and submerged areas, aiding both
human interpretation and automated classification. Methods such as contrast stretching, histogram
equalization, adaptive histogram equalization (AHE), and contrast-limited AHE (CLAHE) are applied to
enhance flood images in our study, ensuring clear representation of flood-affected regions for accurate

analysis and improved model performance.

2.3.1 Speckle Noise Reduction

Synthetic Aperture Radar (SAR) images, critical for flood analysis, suffer from speckle noise, a granular
interference that degrades quality and hinders interpretation, target detection, and classification [54]. Fuzzy
ARTMAP and deep neural networks reduce noise and enhance image quality, aiding flood prediction by
improving feature visibility [55, 56]. For example [57], applied Fuzzy ARTMAP to Landsat 8 ETM images,

producing accurate flood maps, though performance drops in geologically diverse regions like mountains.

2.3.2 Transform and Algorithmic Methods
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The Non Subsampled Contourlet Transform (NSCT) combined with memetic algorithms reduces speckle
noise while enhancing edge features and contrast in SAR images [58]. This approach uses an objective
enhancement criterion to identify near-ideal images, though its complexity increases computational
demands. [59] introduced p-LSCE, a p-regularized, low-rank, space-angle continuity method, leveraging

image relationships to minimize speckles, but requiring significant processing power.

2.3.3 GAN-Based Enhancement

Generative Adversarial Networks (GANSs) are transformative for SAR image enhancement. [60] proposed
GAN-FEM, a GAN-driven focusing-enhancement method, to fit unknown out-of-focus kernels for 3D
targets in monochromatic SAR images. It leverages the 2D imaging system’s capacity, improving focus,
but introduces minor energy noise. [61] used GANs with perceptual and structural loss functions to boost

SAR image quality, enhancing visibility of flood features.

2.3.4 Advanced Filtering and Resolution

Advanced techniques address noise and resolution. The Unscented Kalman Filter (UKF) and Super
Resolution (SR) tackle multiplicative noise in SAR images, improving resolution over traditional methods
[62]. Histogram Equalization (HE) and Adaptive Histogram Equalization (AHE) enhance contrast, while
super-resolution reconstruction improves overall quality [63-65]. [66] applied GANs with illumination-
guided attention to address non-uniform illumination, and [67] used a dual-branch neural network for

single-image rain removal, supporting clearer flood imagery.

Table 2.3: Summary of existing techniques for flood image enhancement.

Reference

Dataset

Techniques

Key Results

Merits

Limitations

Aliabad et | Landsat 8 ETM Fuzzy Produces Desired Poor in diverse
al. [57] satellite images ARTMAP, accurate flood | accuracy level geological
ANN maps regions
Ghosh et Sentinel-1A, GEE, enhanced Quick Rapid Captures
al. [55] Ganga basin EVI, NDVI identification response nonlinearity,
of flood areas capability ratio-based
limits
Toriya et Sentinel-1, DNN, GAN:S, Effective Aligns SAR Poor transfer of
al. [56] Sentinel-2 edge optical-SAR and optical some land
enhancement intersection images features
estimation
Li et al. SAR images NSCT, Enhances Improves High
[58] memetic edges, image quality algorithmic
algorithm contrast, complexity
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reduces
speckle
Chen et al. SAR images p-LSCE (p- Reduces Noise High processing
[59] regularization, speckles via reduction power needed
low-rank) image
relationships
Ye et al. Monochromatic GAN-FEM Enhances Improves 2D Introduces
[60] SAR images focus for 3D | imaging focus minor energy
targets noise
Kanakaraj SAR images UKEF, Super Improves Handles Slower for
et al. [62] Resolution resolution, multiplicative linear
reduces noise noise transformations
Dubey and | Various SAR HE, AHE, Enhanced Improves Limited in
Katarya images super- contrast and visibility preserving fine
[63] resolution quality details
reconstruction

2.4 Comparative Analysis of Flood Detection and Prediction Methods

This section compares flood detection and prediction methods, from traditional statistical models to modern
machine learning and hybrid approaches. It analyzes their principles, data needs, strengths, and weaknesses
to identify effective techniques for accurate, timely forecasting. The comparison highlights trade-offs in
computational complexity, accuracy, and spatial-temporal resolution, providing insights for choosing
suitable methods for different regions. By understanding these differences, this analysis supports the

development of reliable flood early warning systems and effective flood management strategies.

2.4.1 Unsupervised and Satellite-Based Methods

Comparative studies highlight strengths and weaknesses. [46] found SOM outperforms Mean Shift for
water pixel extraction from MODIS images, effectively delineating flood regions, but high computational
demands limit scalability. [49] used GEE with Sentinel-1 SAR data for flood mapping in the Mekong River
basin, achieving high spatial coverage, though constrained by GEE’s data preprocessing and availability

limits.
2.4.2 Segmentation and Supervised Methods

[41] applied Otsu thresholding to Sentinel-1 SAR data, achieving ~90% accuracy in flood segmentation in
northern Iran, with potential for improvement in complex terrains like mountains or urban areas. [47]

compared SVM, DCNN, MLP, and SSDAs on SPOT-5 and radar imagery, with SSDAs achieving an AUC
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of 0.9173, outperforming others due to denoising and feature learning, but limited by small, non-diverse

training sets.

2.4.3 Exposure and Classification Methods

[44] used RestUNet to map buildings for flood exposure analysis, achieving an F1-score of 76%, effective
for identifying elements-at-risk, but requiring local expertise and high-quality auxiliary data (e.g., building
footprints). [68] found XGBoost outperforms KNN in flood classification, leveraging factors like elevation,

slope, and stream proximity, though comparisons were limited in scope.

2.4.4 Model Performance and Scalability

In [69] compared eight ML models on the Haraz watershed dataset (201 flood events, 10,000 data points),
with the EMmedian model achieving the highest accuracy, offering robust predictions but tied to specific
data characteristics. Challenges include generalization, computational complexity, and data dependency

across methods.

Table 2.4: Summary of Recent Al and Remote Sensing Techniques for Flood Mapping and Prediction.

Reference Dataset Techniques Results Merits Limitations
Aliabad et al. Landsat 8 Fuzzy Accurate Desired Poor in diverse
[57] ETM ARTMAP, flood maps | accuracy regions
ANN
Arvind, C.S. et | MODIS Mean Shift, SOM better | Effective High
al. [46] satellite SOM for flood extraction complexity, low
images regions scalability
Nghia, B.P. et | Sentinel-1 GEE, SAR High spatial | Tracks flood GEE
al. [49] SAR, decoding coverage extent preprocessing
shapefiles limits
Moharrami et | Sentinel-1 Otsu Accuracy ~ | Effective Needs terrain
al. [50] SAR thresholding 90% segmentation | improvement
Islam, K.A. et | SPOT-5, radar | SVM, DCNN, | AUC = SSDAs Limited
al. [47] images MLP, SSDAs | 0.9173 outperform validation
Bhuyan, K. et | Remote RestUNet Fl-score= | Good building | Needs local
al. [44] sensing 76% detection expertise, quality
imagery data
El-Magd et al. | Multi-factor XGBoost, XGBoost High accuracy | Limited
[68] data KNN superior comparison
(elevation, scope
slope)
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Shafizadeh- Haraz 8 ML models, | Highest Robust Data-specific
Moghadam et | watershed EMmedian accuracy prediction results
al. [69]

2.5 Research Gaps and Future Directions

Although notable progress has been made, existing research is limited by narrow datasets and isolated
methods. Future studies should explore advanced techniques and broader scenarios to enhance robustness
and generalizability. This section highlights key research gaps and proposes directions for developing more

effective and adaptive solutions.
2.5.1 Data Availability and Quality

Data scarcity and quality remain critical challenges, particularly in diverse geographical regions and
varying environmental conditions [70]. Acquiring annotated flood data is difficult, limiting model training

and robustness, especially for rare or extreme events.
2.5.2 Class Imbalance and Feature Complexity

Class imbalance, where flooded areas are underrepresented compared to non-flooded regions, challenges
accurate delineation [71]. Dynamic flood events and confusing visual cues, such as shadows, reflective

surfaces, and vegetation, complicate feature selection, leading to misinterpretation.
2.5.3 Algorithmic and Scalability Challenges

Algorithmic limitations, including overfitting, poor generalization, and high computational demands,
hinder scalability [72, 73, 74]. Models often struggle to perform consistently across diverse datasets or in

real-time scenarios, limiting practical deployment.
2.5.4 Occlusions and Multi-Temporal Data

Occlusions from buildings, vegetation, or clouds obscure flood detection, underestimating affected areas
[75]. Multi-temporal SAR data integration, capturing flood dynamics over time, remains underexplored,

yet is critical for understanding progression and improving predictions [76].
2.5.5 Future Directions

This research addresses these gaps by: (1) developing a flood prediction model incorporating environmental
parameters like precipitation and topography, (2) designing an Al-based flood detection technique using

ML and DL, (3) enhancing flood images to improve feature visibility and detection accuracy, and (4)

23



conducting a comparative analysis with existing methods. These efforts aim to advance accuracy, efficiency,

and scalability, contributing to disaster mitigation and environmental preservation.
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Chapter 3

FLOOD PREDICTION MODEL USING ENVIRONMENTAL
PARAMETERS

Floods, as one of the most frequent and destructive natural disasters, necessitate accurate and timely
detection to reduce their impact on human lives, infrastructure, and the environment. This chapter
introduces two advanced deep learning frameworks developed to enhance flood prediction capabilities by
leveraging artificial intelligence and computational intelligence techniques. The first model, FloodCNN-
BiLSTM, integrates Convolutional Neural Networks (CNN) for spatial feature extraction with Bidirectional
Long Short-Term Memory (BiLSTM) networks to capture temporal dependencies in sequential sensor data.
To enhance spatial-temporal learning and refine feature representation from environmental inputs such as
rainfall, temperature, and water levels. Together, these models aim to overcome key challenges such as data
heterogeneity, environmental variability, and the need for real-time responsiveness. This chapter provides
an in-depth overview of the data preprocessing steps, feature extraction techniques, and model architectures

used, offering scalable and reliable solutions for Al-driven flood forecasting systems.
3.1 Introduction

A disaster is a severe event that disrupts communities and causes significant harm to human life, the
environment, and infrastructure. Among natural calamities, floods are particularly common during
monsoon seasons and pose serious risks to regions situated near lakes, rivers, and coastal zones. These
events often exceed the coping capacity of affected communities, necessitating advanced management and
mitigation strategies. With recent technological progress, flood prediction capabilities have improved
significantly through the application of hydrological models, remote sensing technologies, machine
learning techniques, and big data analytics. These innovations contribute to improved prediction accuracy,
extended lead times, and enhanced spatial resolution, thereby enabling timely detection of flood events,
even in remote and underserved areas. Current research trends in artificial intelligence (Al), big data, and
the Internet of Things (IoT) are further transforming disaster management by enabling the development of
intelligent predictive systems and automated decision-making frameworks [77]. As climate change
continues to increase the frequency and intensity of weather-related incidents, the integration of these
technologies becomes vital in minimizing the impact of natural disasters like floods. Flood events cause
widespread loss of life, ecological degradation, and economic disruption, affecting both developing and
developed nations [78, 79]. Among natural hazards such as earthquakes, volcanic eruptions, and tsunamis,

floods occur most frequently, resulting in high human casualties, displacement, and destruction of
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livelihoods. Despite technological advancements, the detection and prediction of floods remain challenging
due to rapid environmental changes and data uncertainties. Many traditional models rely on simplified
assumptions and static datasets, which can limit their predictive performance. In this context, deep learning
offers promising improvements in early warning and flood forecasting systems [80, 81]. Accurate flood
prediction is essential for effective disaster preparedness, especially in alerting vulnerable communities in
advance. Machine learning algorithms have been increasingly applied to enhance forecasting precision
across both real-time and long-term scenarios [82, 83]. These models, trained on historical data, can learn

complex patterns and generalize well to anticipate future flood events.
3.2 Introduction to FloodCNN-BiLSTM Methodologies

In this study, a hybrid deep learning model named FloodCNN-BiLSTM is proposed to predict flood
occurrences using sensor-based environmental data. The model integrates Convolutional Neural Networks
(CNN) for extracting spatial features with Bidirectional Long Short-Term Memory (BiLSTM) networks for
capturing long-term temporal dependencies. This architecture enables the model to effectively process
sequential data and deliver accurate predictions, outperforming traditional approaches in flood forecasting

tasks.
3.2.1 Dataset Collection and Preprocessing

Accurate and timely flood prediction relies heavily on the quality and relevance of the data used to train
and validate predictive models. In our work, real-time environmental data related to flood risk indicators
such as precipitation levels, river water levels, soil moisture content, and weather conditions were collected
through a robust monitoring system designed specifically for flood early warning applications. These
environmental parameters were gathered using a wide range of field-deployed sensors and remote sensing
devices. The captured data were then transmitted via telemetry systems to centralized data repositories,
where they could be further processed and analyzed. This end-to-end infrastructure facilitates prompt and
precise flood forecasting, thereby supporting local authorities and communities in making informed,
proactive decisions to minimize the impact of flooding events.
However, the raw data collected from heterogeneous sources often contains inconsistencies, noise, and
missing values that must be addressed before model training. Therefore, a comprehensive data pre-
processing pipeline was employed to ensure that the input data is accurate, structured, and optimized for
use in predictive modeling. This pipeline consists of several critical steps:
i.  Data Cleaning: Data collected from various sensors may include errors, outliers, noise, or
incomplete values, all of which can adversely affect model performance. The data cleaning

process involves identifying and correcting these anomalies. Techniques such as interpolation
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and imputation are used to fill missing values, while smoothing and filtering methods are
applied to handle noise and outliers effectively.

ii.  Feature Engineering: To enhance the predictive power of the flood detection model, feature
engineering is performed to create new, informative variables derived from raw input data. For
instance, features such as rainfall intensity, rate of water level rise, or region-specific flood risk
indices can be generated to provide more meaningful input to the model and improve its
capacity to detect flood patterns.

iii.  Handling Missing Values: In environmental datasets, missing values are a common
occurrence and can significantly degrade the reliability and accuracy of prediction systems.
Various imputation methods are employed based on the type of data and the extent of
missingness. These may include statistical techniques like mean or median substitution, as well
as model-based approaches to estimate and replace the missing entries.

iv.  Data Normalization: Since environmental variables often have different scales and units (e.g.,
millimeters for rainfall and meters for river levels), data normalization is essential to
standardize the feature set. Normalization ensures that each input variable contributes
proportionately to the model's learning process, thereby avoiding any bias caused by features
with larger numerical ranges.

Through this integrated approach to data collection and pre-processing, a clean, enriched, and standardized
dataset is prepared, forming the foundation for the training and evaluation of advanced deep learning
models in flood detection. This step is indispensable in enhancing the robustness, accuracy, and

generalizability of the proposed FloodCNN-BiLSTM framework.

3.2.2 Al Models and Algorithms Used

Recent advancements in computational intelligence have paved the way for more accurate and reliable flood
prediction systems. This section outlines the various artificial intelligence models and algorithms applied
to forecast flood occurrences based on diverse environmental and climatic factors. Techniques such as
decision trees, support vector machines (SVM), and random forests are commonly used due to their
effectiveness in classifying and interpreting complex datasets. Additionally, deep learning approaches,
including Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, offer
enhanced performance in recognizing temporal and spatial patterns [84]. In many cases, hybrid models that
combine multiple Al techniques are adopted to improve prediction accuracy and system adaptability,

supporting more robust flood warning mechanisms.
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3.2.2.1. Artificial Neural Network

Hidden Layers

Output Layer

Figure 3.1: Layered architecture of an Artificial Neural Network (ANN)

Artificial Neural Networks (ANNs) are computational models inspired by the neural networks in the human
brain. It comprises layered arrangements of interconnected nodes (neurons). To process input data and
produce predictions, ANNs use activation functions on neuron outputs. It minimizes the loss function by
adjusting weights and biases during training through backpropagation and gradient descent. Deep neural
networks, a subclass of ANNSs, can learn hierarchical patterns in data thanks to their deep structures with
numerous hidden layers [85, 86]. The ANN model was developed to simulate river flows at a specific
downstream location based on upstream flow data. The investigation results indicate that the ANN provides
a reliable method of detecting flood hazards. In above Figure 3.1, we illustrate the architecture of the ANN.

The output of the neuron is calculated by following the formula in equation 3.1.

Z= Y= oW; - X)) +Db (3.1)
Z = weighted sum; n = number of inputs; W; = weight associated to each input; X; = input value; b = bias
value

3.2.2.2. Convolutional Neural Networks

Figure 3.2 shows the architecture of 1-dimensional CNN. It includes the fully connected layers for final
predictions, pooling layers for downsampling, and convolutional layers for feature identification. The CNN
is trained using backpropagation, which offers benefits such as translation invariance, local feature
identification, and parameter sharing. They are an essential tool in computer vision applications because
they perform well in tasks including image classification, object identification, segmentation, and facial
recognition [87]. Benchmarking the CNN model's performance against the support vector regression (SVR)

technique provides additional evidence of its effectiveness.
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Figure 3.2: Architecture of 1-D Convolutional Neural Network for time-series data processing

The outcomes demonstrate that the CNN model performs significantly better than traditional neural
network. According to numerous quantitative evaluation metrics, the CNN model effectively captures

flooded cells [88].

3.2.2.3. Long Short-Term Memory (LSTM)

The input at each time step is derived from the output of the previous time step. Long-term dependencies
within word sequences are efficiently stored and managed by LSTMs through the use of internal gate signals
at each time step. The underlying design of an LSTM network is depicted in Figure 4, which highlights its
effectiveness in managing long-term dependencies in comparison to conventional RNNs. This characteristic
makes LSTMs well-suited for complex sequence-based tasks that call for a prolonged, deeper
comprehension of context [89, 90]. The LSTM memory units have three gate signals: input, output, and
forget, as shown in Figure 3.3. Gate signals regulate data flow through the memory cells by determining
whether information should be preserved or forgotten at each time interval. To address the vanishing
gradient problem, the memory cell C; is routed through the LSTM neural network using input and output
gates. The Sigmoid Activation Function controls data flow inside the LSTM neural network. Initially, a
sigmoid activation function of 1 allows a word to flow through the gate, but a value of 0 prevents further
processing. The following equation 3.2 describes how the forget gate decides whether information,
designated as f; should be sent.

fe = 0 (W .[he_q,x¢] + by) (3.2)
In this equation, o represents the Sigmoid Activation Function, W is the weight matrix applied to the
current input, h;_; is the hidden state vector from the previous state, while by is a biasing feature. After
passing through the forget gate, the information is updated in an update gate signal, which is then

incorporated into the current cell state C; via the tanh activation function 3.3 and 3.4.
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it =0 (Wf . [ht—l’ xt] + bl (33)
In the above equation, i;denotes the activation vector for the input gate whereas b; is the bias vector for

particular gates.

CA:t = tanh(WC . [ht—ll xt] + bc) (34)
The previous cell state C;_; in the memory unit is updated to the new cell state Cras shown in equation 3.5
Ce=fe*Crq + i *xCp (3.5)

Last but not least, the output of the sigmoid activation function is controlled by the output gate of the LSTM
memory units in 3.6 and the output of the hidden layer h; for the current word in 3.7.

0 =0 Wy -[he—1, %] + bo) (3.6)

h; = 0; * tanh C; 3.7

Previous
Cell b5
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Figure 3.3: Internal structure of a Long Short-Term Memory (LSTM) Neural Network Unit

3.2.2.4. Feature Extraction and Working of Proposed Model

A bidirectional LSTM, often known as a BiLSTM is made up of two LSTMs. Bidirectional processing
involves processing data both from the past to the future and from the future to the past. In contrast to
unidirectional LSTMSs, the backward LSTM in this configuration maintains future data. Bidirectional Long
Short-Term Memory (LSTM) can combine the hidden states from both directions to retain and use past and
future knowledge at any one time. This dual viewpoint improves the model's comprehension of context and
dependencies within the data. The architecture of BILSTM is shown in Figure 3.4. The Bidirectional Long
Short-Term Memory (BiLSTM) model comprises two layers of LSTM networks, one of which processes
the input sequence forward and the other backward [91]. The fundamental structure of the BiLSTM
framework is depicted in the figure above. The input sequence is given as a regular LSTM in the first layer,
and it is reversed in the second layer. But the data kept in both forward and backward directions, LSTM is

provided in equations 3.8 and 3.9.
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hy
hy, (3.9)
Where the two advanced layers (forward and backward) of the LSTM are represented by the hidden output

Wry % X+ wpy x hETT (3.8)

Wpy * XK + wy, x AT

hs , and hy, respectively. The hidden layer's activation output, also known as the final output, is provided

a; = g(wo1 * B + wyy * h?) (3.10)

a Atsq

Output Layer

—_—
hk

in 3.10.
a1
(L
A
A

Bidirectional
Layer

LSTM |
h A

Input Layer

Figure 3.4: Detailed view of data flow and internal operations in a Bidirectional LSTM (BiLSTM)

network

Table 3.1: The following table compares LSTM with BiLSTM

context.

Feature LSTM BiLSTM
Architecture Single-directional RNN Two LSTM layers: a forward-
alongside memory cells facing layer and a backward-
facing layer
Gates Three gates: input, forget, and For both directions—forward
output and backward—input, forget,
and output gates
Direction Processes data from beginning Processes information both from
to end start to end and from end to
start.
Performance Limited by the absence of future | It is better overall because of the

bidirectional context.
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https://www.collinsdictionary.com/dictionary/english-thesaurus/feature

Relevant Information exclusively makes use of Uses both past and future
historical context context.
Complexity One set of LSTM cells makes More complicated, having two
things simpler. sets of LSTM cells (one for each
direction).
Computational Requirements | Reduced demand for memory Higher computational and
and computation memory requirements

Bidirectional Long Short-Term Memory (BiLSTM) networks are a powerful sort of recurrent neural
network (RNN) that captures long-term dependencies in sequential input [92]. In CNN, the convolution
operation on the input data generates a high-level feature map by applying filters of various sizes, which is
then pooled to extract key features. Higher layers capture complicated features in a deep convolutional
network by applying convolutional operations to lower levels [93]. Figure 3.5 shows our FloodCNN-

BiLSTM model's flowchart, which details the process from data intake to flood prediction.

The model pre-processes environmental data before using a Bidirectional Long Short-Term Memory
(BiLSTM) network to evaluate it sequentially, identifying patterns for reliable flood prediction. Finally, the
results are analyzed to enhance the model's functionality. The CNN-Bidirectional LSTM (BiLSTM) model
is proposed to improve flood prediction by leveraging CNN for spatial feature learning and BiLSTM for
capturing temporal dependencies. This approach enhances prediction accuracy by analyzing complex
patterns in flood-related data. It combines BiLSTM for temporal dependencies and CNN for spatial feature
learning, to improve flood prediction accuracy by studying complicated data patterns related to flood
occurrences. The starting stage of our FloodCNN-BiLSTM model is data preparation, which includes
activities like data cleaning, missing value management, and data encoding. The process begins with data
preprocessing, which involves data cleaning, handling missing values through imputation or deletion, and
encoding categorical variables into numerical formats like label or one-hot encoding. The pre-processed
data is fed into the CNN layer, which extracts local features using convolution and pooling operations.
Convolution applies filters to detect patterns, while pooling reduces dimensionality and highlights key
spatial features. Initially developed for image analysis, CNNs are also effective for handling text and sensor
data. The CNN output is passed to the BILSTM layer, which captures long-range dependencies in the data.
BiLSTM, an advancement on traditional LSTM, excels in modelling sequential data, making it well-suited
for flood prediction. By combining advanced preprocessing and deep learning techniques, this approach
addresses the complexities of environmental data for flood prediction. In Figure 3.6, the proposed
FloodCNN-BiLSTM architecture includes a 1-dimensional convolution layer to extract features from the
input environmental data collected from multiple sensors. This layer aims to build a large network that can

manage massive data sets. This enables the model to learn features that are consistent across different
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locations and times. In a CNN layer, all 256 filters execute the convolutional process on input data from

top to bottom, extracting the feature sequence as f, = [f1,f2, ... -+ ...+, f256]. Following the convolution

process, we flatten or pool the result to convert it to a format that can be processed sequentially by BILSTM.

It includes a memory block that processes information sequentially for temporal behavioural simulation

[94].

Data Collection

] [ Histo

Data Preprocessing
~w

Concatenation and
Fully Connected
Lavers

rical flood
data

Meteorological
data

] [Normalization [ Data cleaning ]|

Missing Value
Handling

~

CNN Architecture

Input layer
Concatenate

BiLSTM outputs

Convolutional

lavers Dense

layers

Activation
functions (RelL U,
etc_

+

Pooling layers

+

BiLSTM
Architecture

Input layer (from
CNN)

Bidirectional
LSTM layers

OCutput Laver

Final dense layver

Activation
function (sigmaoid
for classification,

linear for
regression)

L

1

2

Define

loss
function (e.g..
MSE, cross-
entropvy)

Model Training

Select
optimizer (e.g.
Adam. SGD)

Traimn
model on
training data

+

Model Evaluation

Evaluate on Metrics (accuracy,
wvalicdation precision, recall, Hypetrpa_rameter

data RMSE, etc.) Ol CE]

> 4
Prediction
Use Generate
trained model ne:\rf:lpc.i‘;ta flood
for predictions predictions

Figure 3.5: Dataflow diagram of the proposed FloodCNN-BiLSTM it involves preprocessing input data,
extracting key features using a CNN, and analyzing these features with a BILSTM network to identify

patterns and make accurate flood predictions
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Its memory cells allow it to choose what long-term contextual knowledge to retain and what to discard,
giving it the ability to learn. The components of an LSTM cell are an input gate (i;), an output gate (o0;), a
forget gate (f;), and a memory cell state (C;). The input gate at timestamp ¢t (i;) controls the flow of
information into the cell and updates its state using equation 3.3, while the forget gate determines the
amount of information to erase at time ¢ using equation 3.2. The candidate cell value (C;) is computed with
equation 3.3. The current cell state value (C;), the output from the output gate (o, ), and the final output (h;
) of the LSTM cell at time ¢ are determined by equation 3.5, 3.6, and 3.7 respectively. In these equations,

f+ denotes the input for the BILSTM at time-stamp ¢, derived from the high-level attention mechanism.
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Figure 3.6: A detailed architecture of our proposed model FloodCNN-BiLSTM for predicting floods,
showing how the CNN extracts important features from input data and the BiLSTM analyses time-based
patterns to make accurate flood predictions.
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The symbols W, b, 6, and tanh stand for the weight vector, bias vector, sigmoid function, and hyperbolic
tangent function, respectively. Furthermore, & indicates element-wise multiplication. We use BiLSTM
instead of LSTM to collect information in both directions. BILSTM consists of two LSTMs: forward LSTM

captures future context from left to right, while backward LSTM captures previous context from right to

left. Equations 3.11 and 3.12 require the generation of two hidden representations, hj and (h_t and,
respectively, during the procedure. The final representation is then created by concatenating the information
outputs from both LSTM networks by the Bidirectional LSTM (BiLSTM), as shown in Equation 3.13. This
makes it possible for the BiLSTM to improve the representation overall by utilizing context in both
directions. To obtain the forward feature sequences (i.e.F,5q to F;) and backward feature sequences
(i.e. Fy to F,56), the suggested model incorporates a BILSTM layer. The proposed model uses a BILSTM
to encode environmental parameters from both directions, capturing comprehensive contextual information.
This encoded data is then passed to an attention layer, which assigns variable weights to different parts of

the data, enhancing the model's focus on the most relevant features for improved performance.

h, = LSTM (E,) (3.11)
h, = LSTM (E,) (3.12)
hy = [he 2] (3.13)

Algorithm Flood Prediction Using CNN and BiLSTM (FloodCNN-BiLSTM)
Input: historical flood data, meteorological data,

Output: Predictions chance of flood

Step 1: Data Preprocessing

Procedure PreprocessData (historical flood data, meteorological data,)
Clean data (remove duplicates, correct errors, handle outliers)
Manage missing values (imputation or deletion)
Scale data (normalization or standardization)

Return train_data, testing data val data,

Step 2: CNN Model for Feature Extraction
Procedure Build cnn (input_shape)
1. Initialize Sequential model
2. Add 1D Conv layer with 256 filters, kernel size3, activation 'ReLU’, input_shape,

3. Apply convolution operation to generate feature map as f,:

fo =1 fo e veeveeess f256]
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4. Pool or flatten the result

Return cnn_model

Step 3: BiLSTM Model for Sequential Processing
Procedure Build BiLSTM Model(input_shape)
1. Initialize Sequential model
2. Add Bidirectional LSTM layer with 64 units, return_sequences=True
3. Compute forward hidden states (hy) as per equation 8

he = wpy * x5 + wpy x hET1
4. Compute backward hidden states (h;) as per equation9
hy = wpy * x% + wy, + AL
5. Compute combined hidden state (a;) as per equation10

a; = g(woy * B + wyy * hP)
6. Add another Bidirectional LSTM layer with 64 units

Return bilstm_model

Step 4: Combine CNN and BiLSTM Models
Procedure Build FloodCNN-BiLSTM (cnn_model, bilstm_model)
1. Concatenate outputs of CNN_model and bilstm_model
2. Add Dense layer with 64 units, activation 'relu’
3. Add Dense layer with 32 units, activation 'relu’

4. Return combined model

Step 5: Add Output Layer
Procedure Add Output Layer(combined model, output_type)
If output_type is 'regression’
1. Add Dense layer with 1 unit, activation 'linear'
Else if output_type is 'classification’

1. Add Dense layer with 1 unit, activation 'sigmoid'

36




End If

2. Return model

Step 6: Train the Model
Procedure TrainModel (model, train_data, val data, epochs=100, batch_size=32)
1. Compile model with optimizer 'adam', loss 'mean_squared error', metrics 'mae’'
2. Train model on train_data

3. Return training history

Step 7: Evaluate the Model

Procedure Evaluate Model (model, val data)

Return evaluation results

Return predictions

3.3 Experimental Results and Discussion

This section presents the experimental results and analysis of the proposed model. Performance is evaluated
using metrics like accuracy, precision, recall, and F1-score. Comparative studies with existing methods
demonstrate improvements. Visual outputs and case studies further illustrate the model’s robustness and
effectiveness across different scenarios.

3.3.1 Performance Evaluation Metrics

Metrics for performance evaluation are used to evaluate the reliability and efficiency of a model, or other
entity.

Accuracy: A commonly used metric to evaluating a model's predictive performance is accuracy. It is the
proportion of accurately predicted instances (including true positives and true negatives) to all of the

instances in the dataset.

TP+TN

Accuracy = ——
Y T TP+FP+TN+FN

(3.14)

Precision: Precision also referred to as positive predictive values, measure the proportion of accurate
positive predictions to all of the positive forecasts the model made. When a model predicts a favourable

outcome, it is more likely to be accurate because of its high precision.

Precision = (3.15)

TP+FP
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Recall: Recall quantifies the proportion of accurate positive predictions to actual positive instances found
in the dataset. High recall indicates that the model can successfully identify a significant part of the actual

positives.

Recall = ——— (3.16)
TP+FN

F1-score: The F1-Score represents the harmonic average of precision and recall. It strikes a balance among
these two metrics. It is especially beneficial when you want to evaluate both false positives and false
negatives and need to strike a balance between decreasing them.

Fl-SCOI’C — 2 % Precision * Recall (317)

Precision+ Reall

3.3.2. Data Description

The most important aspect of developing a flood disaster forecasting system is requires a large amount of
data for accurate predictions. Since many human settlements in India are located near rivers, large areas of
the country are prone to flooding. Therefore, as a result, these areas are especially vulnerable to flooding
during the monsoon season. India is highly suitable for studying and analyzing flood patterns due to its
frequent flood occurrences. Following this, there were significant floods in many Indian states and union

territories.
3.3.2.1 Description of Dataset 1

This revealed that India is highly prone to severe flooding. According to the International Water
Management Institute (IWMI), 73 percent of India’s land area is affected by flooding annually. The
frequency of flood events is extremely high in Orissa. As a result, we include two major Indian states, Bihar
and Odisha, in our system. Bihar and Odisha are both huge states; their districts are 38 and 30, respectively.
Each state's ten most prone to flooding cities are chosen. The Dataset also includes monthly data. We
analyzed data collected over fifteen years, coming each month from January to December. The data is

categorized into three categories of flood risk (Low, Moderate, and High) [95].

3.3.2.2 Description of Dataset 2

There are ten features in total, including temperature, precipitation, wind speed, wind speed, wind direction,
air pressure, and others. In each training and testing phase, you are provided with meteorological data from
anonymized surrounding areas named Region A through Region E, which are all surrounding regions. The

data is categorized into three categories of flood risk (N-No rain, L-Light rain, and H-Heavy rain) [96].
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3.3.3. Result Analysis on Dataset 1

In this, we evaluate several crucial performance measures in depth, including precision, recall, F1-score,
and accuracy on dataset 1. These metrics help evaluate how well our prediction model aligns with or

compares to existing models.

Table 3.2: Precision tabulated for the proposed model, with existing techniques on dataset 1.

Precision

Model/ Algorithm Class

Low Moderate High

SVM 90.4 76.7 77.3

DT 93.5 75.6 73.7

ANN 92.6 70.5 75.6

DNN 95.3 94.0 78.4

NB 94.6 91.3 89.6

CNN 93.0 943 90.4

LSTM 95.6 96.5 93.5

Bi-LSTM 97.5 95.7 95.4

Proposed Model (FloodCNN-BiLSTM) 98.5 95.7 94.3

Precision

100
95
90
85
80
75
70
65

Moderate High

Class

B SVM DT WANN EDNN ENB ECNN LSTM Bi-LSTM Proposed Model

Figure 3.7: Graphical illustration of categorized data and precision performance of SVM, DT, ANN,
CNN, LSTM, and proposed model on dataset 1
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Figure 3.7 shows a graphical depiction of the precision for different machine learning algorithms and our
suggested model. Each model's performance varies by data class; however, our proposed model,
FloodCNN-BiLSTM, outperforms them all. A graphical illustration of the Recall of different machine
learning methods and our suggested model is shown in Figure 3.8. Each model performs differently in each

of the data classes, however, our suggested model, FloodCNN-BiLSTM, performs better in every situation.

Table 3.3: Recall table of our Proposed Model with existing techniques on Dataset 1

Model/ Algorithm Class

Low Moderate High

SVM 70.3 87.4 90.5

DT 76.4 92.6 87.8

ANN 88.6 94.5 89.7

DNN 78.1 97.6 82.6

NB 81.5 95.2 88.4

CNN 82.3 92.7 90.5

LST™M 83.7 94.5 96.4

Bi-LSTM 84.5 95.5 95.2

Proposed Model (FloodCNN-BiLSTM) 85.5 96.8 95.7

Recall
100
90
80
70
60
50
LOW MODERATE HIGH
CLASS

ESVM 0ODT EANN EDNN ENB ECNN OLSTM 0Bi-LSTM @ Proposed Model

Figure 3.8: Graphical comparison of the recall of SVM, DT, ANN, CNN, LSTM, and the proposed model
on Dataset 1
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Table 3.4. Displays the F1-scores of the Proposed Model with existing techniques on dataset 1.

Model/ Algorithm Class

Low Moderate High

SVM 85.5 83.6 87.5

DT 82.3 80.3 83.6

ANN 79.8 82.7 85.1

DNN 83.7 87.3 91.6

NB 85.3 89.6 94.5

CNN 87.0 90.3 95.0

LSTM 89.26 95.49 94.93

BI-LSTM 90.54 95.60 95.30

Proposed Model (FloodCNN-BiLSTM) 91.54 96.10 94.99

F1-score
100
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920
85
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65
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Low Moderate High
Class
ESVM ©“DT mANN EDNN ENB ECNN =LSTM = BI-LSTM = Proposed Model

Figure 3.9: Visualization of categorized data and model F1-score for SVM, DT, ANN, CNN, LSTM, and
the proposed model using Dataset 1

Figure 3.9 above shows a graphic depiction of F1 scores among our proposed model and the different
machine-learning algorithms. Each model performs differently in each class of data, however our suggested

model, the FloodCNN-BiLSTM, consistently outperforms the competition.
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Table 3.5: Accuracy table of the proposed model with existing techniques on dataset 1.

Model/ Algorithm Accuracy

SVM 89.7
DT 87.6
ANN 90.8
DNN 92.6
NB 89.8
CNN 93.3
LST™M 94.7
Bi-LSTM 96.5
Proposed Model (FloodCNN-BiLSTM) 97.3
Accuracy
100 - 965 973
95 1 92.6 023
89.7 908 89.8
9% r 87.6
- fallall
80

Accuracy

SVM = DT = ANN =EDNN ENB 5 CNN ®ELSTM = Bi-LSTM = Proposed Model

Figure 3.10: Accuracy comparison of SVM, DT, ANN, DNN, NB, CNN, LSTM, Bi-LSTM, and proposed
model on dataset 1

Figure 3.10 above shows a graphical depiction of our suggested model and the accuracy of different
machine-learning techniques. Each model performs differently in each data class, however, our suggested
model, FloodCNN-BiLSTM, performs better in every situation.

3.3.4 Result Analysis on Dataset 2

The precision, recall, F1-score, and accuracy on dataset 2 are all carefully examined in this phase. When

evaluating our prediction model against other models, these variables are crucial indicators of its quality.
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Table 3.6: Precision tabulated of Proposed with existing techniques on dataset 2.

Precision

Model/ Algorithm Class
No rain Light rain Heavy rain
SVM 93.4 81.6 78.5
DT 91.8 79.5 77.3
ANN 89.7 76.4 79.6
DNN 97.8 95.3 87.4
NB 91.0 89.3 91.0
CNN 90.4 97.9 934
LSTM 94.6 95.7 943
Bi-LSTM 96.5 96.5 96.8
Proposed Model (FloodCNN-BiLSTM) 97.3 94.5 96.4
Precision
ESVM =DT ®ANN ®EDNN ®=ENB ®ECNN ®LSTM = Bi-LSTM = Proposed Model
Zigs 2385 :wvgggggg waq§;§§§§
No rain |Light rain Heavy rain
Class

Figure 3.11: Graphical illustration of categorized data and precision performance of SVM, DT, ANN,
CNN, LSTM, and proposed model on dataset 2

Table 3.7: Recall the table of our Proposed Model with existing techniques on dataset 2

Model/ Algorithm Class
No rain Light rain Heavy rain
SVM 73.6 89.5 923
DT 79.6 94.7 88.7
ANN 90.6 96.5 89.7
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DNN 82.0 93.5 82.4
NB 85.6 94.7 84.5
CNN 87.5 95.6 91.6
LSTM 88.2 93.4 93.5
Bi-LSTM 89.0 94.1 96.9
Proposed Model (FloodCNN-BiLSTM) 89.4 94.8 96.2
Recall
ESVM mDT ©“ANN mEDNN ®ENB ®CNN =LSTM =Bi-LSTM © Proposed Model
. [ TP S - 0 . wn &9
o5 soged §35:3%8233 dpz..dsf¥
e 8 & »
I o~
No rain Light rain Heavy rain
Class

Figure 3.12: Graphical comparison of the recall of SVM, DT, ANN, CNN, LSTM, and the proposed
model on Dataset 2

Figures 3.11 and 3.12 present graphical comparisons of the performance metrics for various machine
learning algorithms, including our proposed model, FloodCNN-BiLSTM. Figure 12 illustrates the
precision, while Figure 13 shows the recall values. In both metrics, FloodCNN-BiLSTM consistently

outperforms the other approaches, demonstrating superior performance across all evaluated scenarios.

Table 3.8: Displays the F1-scores of the proposed model with existing techniques on dataset 2

Model/ Algorithm Class
Low Moderate High
SVM 89.4 86.4 87.9
DT 84.6 85.7 86.4
ANN 82.0 87.3 90.0
DNN 87.5 90.6 86.8
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NB 83.7 86.6 87.5
CNN 91.7 91.0 95.7
LSTM 91.29 94.54 93.9
Bi-LSTM 92.6 95.28 96.85
Proposed Model (FloodCNN-BiLSTM) 93.18 94.46 96.80
F1-score
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Figure 3.13: Visualization of categorized data and model F1-score for SVM, DT, ANN, CNN, LSTM, and
the proposed model using Dataset 2

Table 3.9: Accuracy tabulation of Proposed Model with existing techniques on dataset 2

Model/ Algorithm ‘ Accuracy
SVM 92.6
DT 90.9
ANN 95.5
DNN 96.4
NB 93.3
CNN 96.1
LSTM 97.0
Bi-LSTM 97.8
Proposed Model(FloodCNN-BiLSTM) 98.6
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Figure 3.14: Accuracy comparison of SVM, DT, ANN, DNN, NB, CNN, LSTM, Bi-LSTM, and Proposed
Model on dataset 2

Figures 3.13 and 3.14 show the performance evaluation of various machine learning models across different
data classes. Figure 14 illustrates the F1 scores, while Figure 15 displays the accuracy metrics. The
performance of each algorithm varies across data classes; however, our proposed model, FloodCNN-
BiLSTM, consistently outperforms the others in both F1 score and accuracy. These results show the
effectiveness and robustness of the FloodCNN-BiLSTM model across all evaluated scenarios.

Table 3.10: Comparison of Accuracy across Various Models for Dataset 1 and Dataset 2 Using the proposed
model with existing techniques

Dataset 1 Dataset 2
89.7 92.6
87.3 90.9
90.8 95.5
92.6 96.4
89.8 93.3
93.3 96.1
94.7 97.0
96.5 97.8
97.3 98.6
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Figure 3.15: Comparison graph of accuracy on dataset 1 and dataset 2
Figure 3.15 clearly shows that our suggested FloodCNN-BiLSTM model has exhibited an important rise in
accuracy when compared with standard flood detection approaches across multiple datasets. Our results
show that our suggested FloodCNN-BiLSTM model performs well in flood prediction. This model is ideal
for applications that require highly accurate inflow quantity projections, particularly in unusual and
complex scenarios. Its superiority stems from its thorough evaluation, flexibility to individual situations,
customized precision, and general robustness, making it an invaluable tool in the field of flood prediction,
where precision is critical for effective decision-making. FloodCNN-BiLSTM emerged as the best option
for accurately predicting inflow volumes. Our proposed FloodCNN-BiLSTM model has proven to be
adaptable to a variety of geographical regions and environmental situations. This feature is critical for the

development of early warning systems that allow for prompt actions and risk minimization.

3.3.5 Ablation Study

This section presents an ablation study to validate the contribution of the proposed architecture, which is
trained using the mentioned dataset. In Case A, the model is evaluated without the FloodCNN-BiLSTM to
determine its impact on feature extraction. The results obtained are lower due to the absence of FloodCNN-
BiLSTM optimization for feature selection. In Case B, the LSTM is tested without the complete FloodCNN-
BiLSTM to assess its standalone effectiveness; the results are lower as raw features are suboptimal for
classification. The following are the cases for the ablation study:

Case A: Using only CNN

Case B: Using only LSTM

Case C: Using only Bi-LSTM

Case D: Concurrently using CNN and Bi-LSTM (proposed work)
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Table 3.11: The ablation study was conducted using the proposed FloodCNN-BiLSTM architecture. Case
A incorporates values obtained without using CNN. Case B includes studies on the incorporation of using
only the LSTM for classification. Case C incorporates Bi-LSTM. Case D the concurrent use of CNN and
Bi-LSTM.

Dataset Ablation Study F1- score

Using only CNN A 79.5 81.9 84.0 82.9
Using only LSTM B 82.5 83.6 85.1 84.3
Using only Bi-LSTM C 84.1 86.6 83.2 84.8
Dataset 1
Concurrently using CNN D 97.30 98.5 96.8 97.6
and Bi-LSTM (proposed
work)
Using only CNN A 80.2 81.5 83.1 82.3
Using only LSTM B 83.4 86.7 88.3 87.6
Dataset 2 Using only Bi-LSTM C 86.9 89.3 87.4 88.3
Concurrently using CNN D 98.60 97.3 96.2 96.7
and Bi-LSTM (proposed
work)

Table 3.11 presents an ablation study evaluating the performance of various models on two datasets. Four
configurations were tested: using only CNN, only LSTM, only Bi-LSTM, and a proposed approach
combining CNN and Bi-LSTM. For Dataset 1, the proposed method significantly outperforms others with
an accuracy of 97.30%, precision of 98.5%, recall of 96.5%, and an F1-score of 97.60, showing its superior
capability in capturing features. Similarly, for Dataset 2, the proposed approach achieves the highest
accuracy (98.60%), precision (97.3%), recall (97.2%), and F1-score (96.7), emphasizing its effectiveness.
Comparatively, individual methods like CNN, LSTM, and Bi-LSTM deliver moderate results, underscoring
the advantages of the synergistic use of CNN and Bi-LSTM in the proposed method.

3.3.6 Comparison of the Proposed Model with Existing Techniques

Table 3.12 summarizes performance metrics of various models for flood classification tasks. The proposed
FloodCNN-BiLSTM model achieved the highest accuracy at 98.6%, with strong precision (97.3%), recall
(96.4%), and an F1-score of 94.5%.
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Table 3.12: Performance Comparison of Our Proposed Model with Existing Techniques

References Model Accuracy Precision Recall Fl-score
[97] CatBoost 97.8 96.0 99.0 97.4
[98] KNN 0.7317 0.74 0.74 0.74
[99] Statistical 90.3 - - -
Index model
[100] FloodCast 90.59 96.10 93.69 94.88
[101] DNN- 97.05 100 98.01 99.03
SWARA
[102] MaxEnt model 97.0 - - -
I (LB} | eXtreme Deep 90.41 87.56 94.88 91.07
Factorisation
Model
FloodCNN- 98.6 97.3 97.2 96.8
BiLSTM

CatBoost also performed well, achieving 97.8% accuracy and a high recall (99.0%), indicating its
effectiveness in identifying true positives. The DNN-SWARA model excelled in precision (100%) and F1-
score (99.03%) but had slightly lower accuracy at 97.05%. Statistical Index and MaxEnt models delivered
comparable accuracies of 90.3% and 97.0%, respectively, though their other metrics were not reported.
FloodCast achieved 90.59% accuracy with balanced precision (96.10%), recall (93.69%), and F1-score
(94.88%). KNN, with an accuracy of 73.17%, was the weakest performer. The eXtreme Deep Factorisation
Model had moderate results, with an F1-score of 91.07%. Overall, FloodCNN-BiLSTM emerged as the

most accurate model for flood classification

3.4 Chapter Summary

This chapter investigated the application of artificial intelligence for enhanced flood detection and
forecasting, presenting two hybrid deep learning models: FloodCNN-BiLSTM. The FloodCNN-BiLSTM
model integrates Convolutional Neural Networks (CNN) for spatial feature extraction and Bidirectional
Long Short-Term Memory (BiLSTM) networks for capturing temporal dependencies in sensor-based
environmental data. The chapter emphasizes the value of combining image processing and Al-based

techniques for accurate, real-time flood risk assessment and early warning system development.
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Chapter 4

FLOOD DETECTION USING ARTIFICIAL
INTELLIGENCE

Flood detection using image-based analysis has gained significant momentum with the rise of advanced
artificial intelligence (Al) and image processing techniques. Traditional flood monitoring approaches often
rely on sensor data or manual interpretation of satellite imagery, which are limited in scalability, precision,
and response time. This chapter presents enhanced frameworks for flood classification that leverage the
synergy between deep learning models and nature-inspired optimization algorithms. Specifically, two novel
architectures, Flood-FireNet, which combines a SWIN Transformer with the Adaptive Firefly Algorithm
(AFA), and Mo-SWIN, which integrates the SWIN Transformer with Monkey Search Optimization (MSO)
are introduced to improve the extraction and selection of critical visual features from satellite and aerial
imagery. These models are designed to address key challenges in flood detection, such as noise reduction,
class imbalance, and the accurate delineation of flooded regions in complex environments. The chapter
provides a detailed overview of image preprocessing, feature engineering, optimization strategies, and
classification mechanisms, showcasing how Al-driven solutions can enhance the accuracy, robustness, and

generalizability of flood detection systems.

4.1 Introduction

Floods are among the most frequent and devastating natural disasters, causing extensive damage to human
life, infrastructure, agriculture, and ecosystems across the globe. The increasing incidence of extreme
weather events, largely driven by climate change, has significantly amplified the risk and severity of floods
in recent years. Urbanization and deforestation have further exacerbated the impact of flooding, disrupting
natural drainage systems and increasing surface runoff. In light of these challenges, the development of
robust and timely flood detection systems has become an essential component of effective disaster
management and mitigation strategies [ 104, 105]. Traditional flood detection methods often rely on physical
sensors, hydrological simulations, or manual interpretation of satellite images. While these methods provide
useful information, they are limited by high operational costs, low spatial-temporal resolution, dependence
on extensive manual effort, and a lack of adaptability to varying environmental conditions. Furthermore,
the accuracy of such approaches is often compromised by noise, occlusions, and incomplete data coverage,
particularly in remote or dynamically changing regions. These limitations necessitate the integration of

more intelligent, automated, and data-driven approaches to flood detection and classification. Recent
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advances in Artificial Intelligence (Al), particularly in computer vision and deep learning, have opened new
avenues for flood image classification. Al models are capable of learning complex spatial and temporal
patterns from image data, enabling precise identification of flood-affected regions. In particular, deep
learning architectures such as Convolutional Neural Networks (CNNs) and Transformers have
demonstrated remarkable success in image analysis tasks, including object detection, segmentation, and
classification [106]. These models can process large volumes of satellite, drone, and aerial imagery to
automate flood monitoring at scale, offering higher accuracy, faster response times, and greater operational
flexibility.

However, despite the promising potential of deep learning models, challenges such as overfitting, high
dimensionality, class imbalance, and redundant features continue to hinder their performance and
generalization. To overcome these limitations, the integration of nature-inspired optimization algorithms
with deep learning frameworks offers a powerful solution. Such algorithms mimic natural phenomena such
as animal foraging behaviour or social interactions to optimize feature selection, reduce noise, and enhance
model robustness [107, 108].

This chapter introduces two novel hybrid architectures that exemplify the synergy between deep learning
and nature-inspired optimization for flood detection:

e Flood-FireNet, which combines the SWIN Transformer with the Adaptive Firefly Algorithm (AFA)
for effective feature extraction and classification of flooded regions from satellite imagery. The
AFA, inspired by the bioluminescent signaling and movement of fireflies, optimizes the selection
of high-level features while filtering out noise and irrelevant background data. The SWIN
Transformer leverages a hierarchical attention-based mechanism with shifted windows to capture
both local and global image features efficiently.

e  MoSWIN, which integrates the SWIN Transformer with Monkey Search Optimization (MSO).
Inspired by the adaptive and cooperative foraging behaviour of monkeys, MSO enhances feature
extraction by dynamically identifying the most informative visual patterns in flood images. The
SWIN Transformer processes these features through a structured hierarchy of patch-based self-
attention layers, improving the model’s ability to distinguish flooded from non-flooded areas.

Both models were developed and tested using high-resolution flood image datasets and were benchmarked
against established architectures such as ResNet18 and Vision Transformers. The combination of intelligent
feature selection and advanced transformer-based classification enables these models to deliver superior
performance, particularly in terms of accuracy, precision, recall, and robustness against noise and occlusion.
The proposed architectures also incorporate advanced preprocessing techniques, including image
denoising, augmentation, segmentation using Gaussian Mixture Models, and dimensionality reduction via

Principal Component Analysis (PCA). These steps ensure that the input data is clean, representative, and
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conducive to effective learning. Through this holistic approach, Flood-FireNet and MoSWIN address key
limitations of traditional methods while enhancing scalability, adaptability, and decision-making speed.

In the broader context of disaster management, these Al-driven models contribute to the development of
intelligent flood early warning systems and risk assessment frameworks. Their ability to process real-time
visual data and deliver actionable insights can significantly support emergency response teams, urban

planners, and policy-makers in mitigating flood-related risks and optimizing resource allocation.

4.2 Dataset Description

The dataset utilized in this study serves as a comprehensive and annotated collection of flood-related
images, specifically curated for interactive content-based image retrieval tasks. It consists of 3,710 images,
the majority of which were captured during the Central European floods of May and June 2013 and
subsequently retrieved in July 2017. This dataset offers a diverse representation of flooded and non-flooded
areas, enabling robust training and evaluation of deep learning models for flood detection and classification.
Out of the total collection, 3,435 images are accompanied by detailed annotations, and 890 images include
metadata specifying the geographical location of the scenes. An additional 275 images depicting water
contamination were manually collected from various online image search engines to enrich the dataset’s
variability and realism. The primary objective associated with this dataset is binary classification:
determining whether a given location in an image is flooded or not flooded. The dataset features a wide
range of environmental conditions, lighting scenarios, and flood intensities, making it suitable for
evaluating the generalizability of Al models in realistic flood detection applications [109].
In this research, the same dataset was employed to train and evaluate two proposed models, MoSWIN and
Flood-FireNet. However, different data partitioning strategies were adopted to tailor the experiments
according to each model’s architectural requirements and training paradigms:
e For the MoSWIN model, the dataset was split into 80% training and 20% testing sets to maximize
training data availability and ensure robust model generalization.
e For the Flood-FireNet model, a 70:15:15 ratio was used, allocating 70% for training, 15% for
validation, and 15% for testing, facilitating model tuning and early stopping during training over

100 epochs.

This dataset played a critical role in validating the effectiveness of both models by providing high-resolution
imagery with real-world flood conditions. Its richness and diversity allowed for the development of reliable,

adaptable, and scalable Al-based flood detection systems.
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4.3. Introduction to Mo-SWIN Model

In this section, we provide an overview of the state-of-the-art techniques that served as the basis for the
classification flood dataset. The performance and precision with which these techniques could classify the
data in the dataset led to their thorough selection and evaluation. By utilizing these state-of-the-art methods,

the flood dataset categorization process produces exceptionally accurate findings of the highest quality.
4.3.1. Monkey Search Optimization

MSO is a relatively recent metaheuristic optimization technique inspired by monkeys' food search behavior.
MSO is a nature-inspired method used to solve optimization issues, mostly in machine learning and
evolutionary computation [110].

The general process of Monkey Search Optimization is as follows:

o Exploration and Curiosity: Monkeys have a reputation for their curiosity, and MSA reflects this
in the algorithm's capacity to thoroughly investigate the optimization environment. The program
employs many ways to produce and evaluate alternative solutions.

o Resource Allocation: MSA, like monkeys, efficiently allocates resources to various possible
solutions. This allocation is based on each solution's ability to produce superior results.

¢ Local and Global Search: Monkeys are adept at both local foraging and long-range exploration.
Similarly, MSA balances local and global search techniques to improve the search process.

e Adaptation: Monkeys adapt to their surroundings, and MSA adapts its search parameters as the
optimization terrain changes, assuring continuous improvement.

e Communication and Collaboration: Monkeys are communicative and cooperative. This is
represented in MSA as the dissemination of information and solutions among members of the

population.
4.3.2. Transformer

Transformers, a deep learning architecture, is renowned for its expertise in sequence modeling applications.
In the meantime, it has completely transformed natural language processing (NLP) domains and performed
well in a variety of other areas as well. Transformers, use a self-attention mechanism to identify connections

between various items in a sequence [111].

(A) Self-Attention Mechanism
e Queries, Keys, and Values: Each element (token) for a given series is converted into three distinct

vectors: Value, key, and Query.
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e Attention Scores: Determines each token's significance or importance about the current one by
comparing its query with the keys of all other tokens.

e Weighted Sum: The degree to which each Value adds to the current token's representation is
determined by these scores.

(B) Encoder-Decoder Architecture

o Encoder: Uses self-attention layers to process the input sequence and provide a contextual
representation for every token.

e Decoder: Predicts the output series by focusing on the representations of the encoded input series

and gradually producing tokens.

4.3.2.1 Swin Transformer

Swin Transformer utilizes a hierarchical design to function as a backbone for CV operations, rather than
just a detecting head. Swin Transformer is a hierarchical vision transformer that uses patch partitioning and
merging to reduce spatial dimensions and extend channels. To simulate global and border properties, the
Swin Transformer [112] uses a shifted window along the spatial dimension. In contrast to previous
Transformer models, Swin Transformer creates a feature map that is hierarchically represented, resembling
CNN's feature pyramid structure. The receptivity increases with the network level, allowing for the
extraction of the image's multi-scale elements. The computation is significantly decreased and linear with
the image size thanks to the swin transformer's second feature, which separates the feature map with several
windows. Each non-overlapping window calculates local multi-head attention without window

correspondence [113].

4.3.2.2 Vision Transformer

While convolutional architectures are still the industry standard for CV tasks, transformers have emerged
as the model of choice for natural language processing (NLP) applications. Attention techniques are used
with these architectures to preserve the structure of convolutional networks. After the successful
implementation of transformer scaling in NLP, this uses a conventional transformer to convert images
directly. Transformers are not subject to some empirical biases found in CNNs, such as translation
invariance and spatially limited receptive fields [114]. Translation, a feature of CNN:ss, is the shifting of an
image pixel by a predefined amount in a specific direction. Grid-structured data requires sequences handled
by a typical transformer because of its permutation invariance. As a result, vision transformers (ViT), which
can carry out CNN functions, were created. This is accomplished by first dividing an image into patches,

and then feeding the linear embedding of these patches into a conventional transformer encoder. After
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receiving image labels in a supervised manner, the model is then pre-trained and refined for image
classification using a downstream dataset. The benefits of both CNN and transformer designs can be
coupled using this technique to create a model that can manage image data efficiently and use the

transformer's attention mechanism [115].
4.3.2.3 ResNet-18

The ResNetl8 is often used to tackle the performance deterioration challenge through the addition of
residual blocks yet ensuring model performance. It consists of entirely connected layers, residual structures,
pooling layers, normalized layers, and convolution layers. In the process of developing CNN, more features
can be taken from the network the deeper it is built [116]. To attain higher-level features, we therefore
typically need a deeper network structure. The three issues of gradient disappearance, gradient explosion,
and network deterioration will materialize when we employ deep network architectures, nevertheless.

Figure 4.1 shows the detailed architecture of ResNet 18 [117].
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Figure 4.1: Layered Architecture of ResNet 18 Model

It is more compact than deeper ResNet variations, making it appropriate for resource-constrained settings.
It includes residual blocks, which comprise identity and residual pathways, for dealing with gradient
concerns in deep networks. ResNet-18 performs well in image classification and other C applications,
balancing model complexity and performance. A neural network's depth is vital for performance, however
as depth rises, there may be a risk of degradation brought on by the problem of vanishing gradients [118].
The loss of minute detail in maps of features at high-level layers causes this problem, which is distinct from
overfitting. The ResNet-18 is a deep residual network design with 18 layers that the author developed to
solve this problem to increase the effectiveness of convolutional neural network training [ 119]. The ResNet-
18 can learn detailed feature representations of various images, and the usage of skip connection blocks

allows the network to be optimized, increasing model accuracy. Skip connections are used to implement an
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equivalent mapping by introducing parameters or raising the computational complexity in place of

conventional monotonically progressive convolutions.

4.3.3 Proposed SWIN transformer and nature-inspired solution for flood image

classification

The current research on flood detection and prediction is mostly concerned with machine learning (ML)
and deep learning (DL) techniques. However, there is a significant gap in research into nature-inspired
approaches to flood disaster management. These bio-inspired approaches, which draw inspiration from
natural processes, can improve traditional flood management technologies. Embracing nature-inspired
solutions is a promising opportunity to strengthen flood management capabilities. The proposed
architecture consists of two modules: the swin transformer along with a nature-inspired solution. The
primary idea behind this model is to improve the visual information used for flood image detection while

striving for better performance.
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Figure 4.2: Sequential components of our proposed Mo-SWIN architecture

Figure 4.2 visualizes the successive steps of our proposed MoSWIN model. The major purpose of the model
is to extract useful information from flooded images. Feature extraction, a complicated and challenging
task, precedes subsequent classification of images. The proposed model is being developed in several steps,
beginning with the collection of flood prediction data. The focus then switches to data preprocessing and
noise removal from the acquired datasets followed by resizing and augmenting images. The method entails
segmenting incoming data, extracting essential features, selecting the most relevant ones, and then using
the swin transformer architecture to classify. This approach improves the understanding and categorization

of complex visual data by utilizing transformer technology for image classification and object detection.
4.3.3.1 Preprocessing

In flood image analysis, feature extraction is the process of locating relevant characteristics or patterns in

raw data to help with tasks like classification. Scaling issues, noise, and variability all increase this process'
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complexity. "We perform image resizing to standardize the dimensions and reduce computational
complexity, ensuring consistency across the dataset. Initially, the images are 512 pixels wide, and for our
experiment, we resize all images to a uniform size of 224 x 224 pixels. After resizing, we apply image
augmentation to further enhance the model's robustness. This technique involves transforming the original
images using various operations such as rotation, scaling, flipping, and other variations, which helps

increase the diversity of the training data and improve the model's generalization capabilities."
4.3.3.2 Segmentation

In the segmentation, images are broken into small blocks for feature extraction and to segment flood images
we use the Gaussian Mixture Model (GMM). To assign each pixel to the most likely Gaussian component,
the GMM for flood image segmentation uses the Expectation-Maximization (EM) technique to iteratively
improve model parameters, including the number of Gaussian components and their distributions. First
initialize model parameters, such as the number of Gaussian components then their initial values, and then
use the EM algorithm to optimize them iteratively [119]. The image is essentially divided into areas by this

method, which allocates each pixel to the Gaussian component with the highest probability.
4.3.3.3 Feature Extraction

In this section, we describe the feature selection process, which identifies and selects significant features
for flood image classification. Several techniques have been applied to image processing, including deep
learning and nature-inspired optimization strategies. We focus on MSO, which is inspired by the food-
searching and hunting behaviours of monkeys. MSO is an adaptive and efficient optimization strategy
[120]. The MSO algorithm is used to eliminate background and non-relevant areas in flooded images, while
selecting features from the remaining regions. In this analogy, the images are considered as forests, and the
non-edible background regions are discarded, as monkeys would avoid them in their search for food. This
behaviour is formalized in the optimization process to define boundaries between relevant and irrelevant
areas in the image. Gaussian filtering is applied post-segmentation to extract meaningful features by
smoothing the image and reducing noise. This approach preserves key structural details while filtering out
unnecessary information.

The MSO algorithm has been enhanced to emphasize its self-organizing and adaptive features, which allow
it to dynamically adjust to environmental changes during the optimization process [121]. The MoSWIN
model builds upon this adaptability, incorporating real-time search parameter adjustments to improve
performance. Additionally, feedback-driven mechanisms fine-tune the SWIN transformer, allowing it to
respond to performance feedback and continuously evolve. This adaptability is particularly valuable in the

context of flood scenarios, where new datasets and environmental conditions require ongoing model
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improvement. A comparison with other evolving Al models further highlights MoSWIN’s strengths,
including its ability to self-learn, self-develop, and adapt. The potential for long-term evolution is especially
important for tackling dynamic challenges in flood classification. Future work will explore the integration
of self-adaptive transformers and lifelong learning techniques, further enhancing MoSWIN's ability to
evolve with new data and tasks. In the following algorithm 1, we explain the working of our proposed MSO
algorithm. Here, we use the monkeys' hunting and food-searching behaviours to choose the features of the
associated dataset. The following algorithm takes a dataset of flood images as input and generates the output
of the best feature from the corresponding feature set. The parameters we defined are [M**, Max™, Ly, Uj)].
Where M represents the size of the population of monkeys, Max™ represents the maximum number of
iterations required for the hunting process, L, denotes the lower bound of search space, and U, denotes the
upper bound of search space. In our algorithm, we consider 40; the Maximum iteration is 100; the lower
bound of the search space is -10; the upper bound of the search space is 10. We calculate the monkey's

fitness in every iteration using a formula provided by the algorithm to find the best solution.

Algorithm 1: Monkey Search Optimization (MSO) Algorithm for feature selection of flood image

Input: Flood image dataset

Output: The best features found and the corresponding feature set.

Input: Flood Image Dataset
Parameters: Msize, Maxitr, L, Up
Start:

1. Define the objective function

2. Initialize Monkey Search Algorithm (MSA) parameters:
Msize = 40; Maxir = 100; Ly = -10; Uy = 10

3. Define the Monkey Search Algorithm function:
- objective_function_Os: Objective function to evaluate the feature score
- population_size: Number of monkeys in the population
- max_iterations: Maximum number of iterations
- lower_bound: Lower bound of the search space
- upper_bound: Upper bound of the search space
- best_solution: Best solution found
- best_fitness: Fitness value of the best solution
- fitness_history: List of best fitness values over iterations

4. Initialize the population with random solutions (monkeys) within the search space bounds.

5. Initialize the best solution and fitness to infinity.
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Minritness =min (ﬁtHE’SS)
1 f Mi inFitness <Bes tFitness
Bes tritness= M inFitness

Population = New_population

Fitnessistory.append(BesStrimess)

6. For each iteration up to max_iterations:

a. Calculate the fitness of each solution (monkey).
Fitness = [ Or(solution) for solution in total population]
b. Update the best solution found and its fitness.

e. Store the best fitness for this iteration.

Stop: Either MaxrorStopping criterion

Bestsotion= population/np.argmin(titness) |
¢. Generate new solutions based on random perturbation within the search space bounds.
d. Replace the old population with the new population.

7. Return the best solution found, its fitness value, and the fitness history.

8. Run the Monkey Search Algorithm function with the defined parameters.

Output: The best features found and the corresponding feature set.

Table 4.1: Hyperparameter Settings Used for MoSWIN Model

Hyperparameter Value Description
General and Swin Transformer
Parameters
Learning Rate 0.0001 Learning rate for Adam optimizer used in
Swin Transformer training
Batch Size 32 Number of images processed per training
batch
Epochs 100 Total number of training iterations
Optimizer Adam Adaptive optimizer for backpropagation
Image Size 224 x 224 Resized input image dimensions
Dropout Rate 0.2 Dropout regularization to reduce overfitting
Window Size (Swin) 7 Size of attention window in Swin
Transformer
PCA Variance Threshold 95% Percentage of variance retained during PCA
Monkey Search Optimization
(MSO) Parameters
Monkey Population Size 40 Number of candidate solutions (monkeys)
Number of Iterations 70 Maximum optimization steps
Lower Bound (Lb) -10 Minimum search space value for MSO
Upper Bound (Ub) 10 Maximum search space value for MSO
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Dimensions Num_of features | Dimensionality of the solution space, equal
to number of features

Table 4.1 outlines the MSO hyperparameters used in this process. A population size of 40 monkeys and 70
iterations ensures sufficient exploration and convergence without excessive computation. The search space
for feature weights is bounded between -10 and 10, and the dimensionality is equal to the total number of
extracted features. Each monkey represents a potential binary vector that selects a subset of features, with

the fitness function evaluating its utility in improving classification performance.

4.3.3.4 Feature Selection

To achieve an accurate feature selection, the number of features is reduced using the principal components
analysis (PCA)approach. We applied Principal Component Analysis (PCA) for dimensionality reduction to
reduce overfitting and computational complexity in high-dimensional data. By retaining the most
significant variance, PCA enhances model efficiency and performance [122]. It also mitigates the curse of
dimensionality, especially in image classification tasks with highly correlated input features. To detect
correlations between features, PCA generates a covariance matrix. Eigenvalue decomposition is used to
extract eigenvectors and eigenvalues, and principal components are chosen based on their variance
contribution. Data is projected onto these PCs, reducing dimensionality while retaining important
information. Finally, the modified data makes feature selection easier, allowing you to discriminate between

flooded and non-flooded portions in the image for later analysis or classification activities.
4.3.3.5 Classification using SWIN

For the data classification, the proposed model used a Swin Transformer and PCA. PCA followed by a
SWIN transformer for flood data classification is an intriguing method that blends dimensionality reduction
with advanced transformer-based image classification models. The Swin transformer is a computer vision
deep learning model architecture that performs object recognition through a hierarchical method. Unlike
typical transformers, Swin Transformer uses a hierarchical structure to separate input images into non-
overlapping patches at various scales [123]. It is possible to capture both local and global image features
with the Swin Transformer architectural concept. An input image is split up into several distinct, non-
overlapping patches, which are subsequently handled by different transformer layers. Every transformer

layer has several attention heads that focus on various portions of the incoming image [124].
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Patch Partition: Swin transformer processes an image by dividing it into non-overlapping patches.

Patch Merging: Patch merging is a critical layer in Swin Transformer design since it creates an
inductive bias in Swin, which was missing in the original ViT and DelT. Patch Merging is a
convolution-free downsampling method. A factor of n can downsample feature maps by concatenating
them depth-wise after the input is divided into groups, each of which contains # x n surrounding patches.
By merging two 2x2 windows into a new window, patch merging reduces the size of the feature map
by half and deepens each patch by 2. Equation 4.1 below shows the formula for transforming the input

size.

Transforming the input from a shape of Hx W x C to (H/n) x (W/n) x (2nC) 4.1)

Swin Transformer block: Swin transformer replaces ViT regular multi-head self-attention (MSA)
with two new MSA shifted window (SW-MSA) and window-based (W-MSA). Two encoders are linked
in series in a basic swin transformer block, where the output from the first feeds the second encoder.
The very first encoder computes W-MSA, whereas the second computes SW-MSA based on the first
encoder's output. A Swin transformer block has a similar architecture to the original transformer
encoder block, except for the technique for computing attention. Unlike the simple global MSA
generated in a conventional encoder block, the Swin transformer block includes W-MSA and SW-MSA.
Window-based Self-Attention (W-MSA): The SWIN transformer uses encoder blocks from the
original Transformer architecture. The encoder blocks consist of a feed-forward network and a multi-
headed self-attention module. Swin transformer makes use of a Window-based MSA technique. In swin,
we use fixed-sized windows with a fixed number of patches (M x M patches in the paper). After that,
attention is calculated only within each window. Results in a complexity that is linear in the number of
patches shown in equation 4.2 below.

QW M S A) = 4hw(C? + 2M?(hw)C 4.2)

Shifted Window-based Self-Attention (SW-MSA): Shifted Window-based Self-Attention (SW-
MSA) is used to overcome the limitation of W-MSA's modeling power, which would result from
lacking the relationship between the windows. The SW-MSA takes the output of W-MSA first. Then,
about the layer before, each window is shifted by (M/2, M/2). and calculate W-MSA in a shifted
window last. But this change leaves some windows with unfinished patches and others with "orphaned"
patches—patches that don't belong to any window. The "orphaned" patches are moved into windows

having incomplete patches by swin transformer using a "Cyclic Shift" approach.
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6. Relative Position Bias: Relative position bias (B of size (M*xM?)) is a feature of Swin Transformers

used to calculate self-attention. Equation 4.3 shows the formula for calculating attention.

Attention (Q,K,V) = Softmax (Q Kt/Vd + B)V 4.3)

The query, key, and value matrices are denoted by Q, K, and V, respectively. The query/key dimension is
represented by d, while the number of patches in a window is represented by M?. Compared to transformers

that employ absolute position embedding, relative position bias considerably increases performance.
4.3.3.6 Working of our proposed Architecture

Our presented architecture for flood detection is shown in Figure 4.3, which takes advantage of the
complementary strengths of the SWIN transformer model and the MSO algorithm. This novel method uses
revolutionary deep learning architectures and sophisticated optimization approaches to improve the
efficiency and accuracy of flood detection. In our proposed methodology, the initial phase makes use of
row images displaying both flooded and non-flooded areas. To improve the visual appeal of these images,
we do multiple preprocessing steps. These include noise reduction, image enhancement, and image resizing.
The first stage in this preprocessing procedure is noise removal, which uses the Wavelet Denoising filter.
This filter successfully reduces any undesirable noise in the images, resulting in clearer and more precise
data for further analysis. After noise removal, we apply image augmentation techniques. Furthermore,
image scaling is done to ensure that the dimensions are consistent across all photos. This provides

consistency and enables effective processing throughout the model.

We use segmentation algorithms to provide more robust feature extraction. Segmentation using the
Gaussian mixture model (GMM) is applied here. GMM segmentation allows the separation of significant
features pertinent to flood detection by dividing the images into discrete regions according to pixel
intensities. The MSO method was used to extract the related features from flooding images, with a focus
on phasing out the background and separating relevant image sections. Inspired by monkeys' group foraging
behaviour, the system classified image regions as edible or non-edible, mimicking the quality of food in a
forest environment. Low-quality background areas were removed, while high-quality regions with
important information were chosen for further processing. This method successfully segmented and
extracted information from flooded photos by using the monkey foraging analogy. Feature selection is an
essential phase after feature extraction, which extracts texture, shape, and intensity aspects from the data.
The large dimensionality of these features can reduce classification accuracy and processing efficiency.
Principal Component Analysis (PCA) is a popular mechanism for reducing feature dimensionality while

conserving important information by retaining and detecting the most significant variability in data. This
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reduced feature set increases both classification performance and processing economy. For the data

classification, the proposed model used PCA and SWIN transformers.
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Figure 4.3: Architecture of our proposed Mo-SWIN model for flood detection

By combining PCA with the Swin Transformer, the model takes advantage of both techniques'
complementary characteristics. The PCA successfully decreases the dimensionality of the input data, and
the SWIN Transformer uses this reduced representation to do effective sequence modeling for
classification. This synergistic combination improves the model's capacity to handle high-dimensional input
while retaining great classification results efficiently. The SWIN Transformer divides images dynamically
into patches, allowing for fast feature extraction at many scales. This method improves the model's capacity
to capture fine detail while reducing its computational complexity. Furthermore, the model uses self-
attention to understand global context, allowing it to recognize complex patterns required for correct
classification. The swin transformer's adaptability across domains adds to its appeal, making it an ideal

candidate for obtaining higher performance in data classification jobs.
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4.3.4 Result Analysis and Discussion

This section analyzes the experimental results of the proposed flood prediction models using metrics like
accuracy, precision, recall and F1-score. Comparative evaluations with existing methods highlight strengths

and limitations, offering insights into model performance and applicability for real-world flood forecasting.

4.3.4.1. Performance Evaluation Metrics

To assess the effectiveness of the proposed model and compare it with existing deep learning architectures,
several standard evaluation metrics were employed, as shown in Table 4.2. These include Accuracy,
Precision, Recall, and F1-score, which provide a comprehensive understanding of model performance,
particularly in imbalanced or binary classification tasks such as flood detection. In the context of flood
detection, minimizing False Negatives (FN) is critical, as misclassifying an actual flood event can lead to
severe consequences. Therefore, Recall and Fl-score are particularly important indicators of model

robustness.
The following notations are used in defining these metrics:

e TP (True Positive): Number of correctly predicted positive (flood) instances.

e TN (True Negative): Number of correctly predicted negative (non-flood) instances.
e FP (False Positive): Number of non-flood instances incorrectly predicted as flood.
e FN (False Negative): Number of flood instances incorrectly predicted as non-flood.

Table 4.2: Performance Evaluation Metrics and Their Equations

Parameter Equations

Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP + FP
Recall TP
TP+ FN
F1 — Score Precision = Recall

Precision + Recall
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4.3.4.2. Result Analysis on Mo-SWIN

The proposed model Mo-SWIN is assessed using two of the most popular algorithms for classification,
such as ResNet 18 and vision transformer. These techniques are used in images of floods, a calamity that
occurs frequently. We compare the results of our proposed (Mo-SWIN) model with the existing Resent 18
and vision transformer model. ViT is an image processing system that treats image patches like sequences,
whereas ResNet-18 is an 18-layer CNN. The proposed approach combines the SWIN architecture for

classification with MSO for feature extraction.

Table 4.3: presents a comparison of the proposed model Mo-SWIN with current methods

Model Accuracy Precision Recall F1-score
ResNet 18 85.37 93.33 78.68 82.35
Vision Transformer 90.24 94.25 82.35 87.36
ResNet 50 94.20 94.20 85.21 90.52
Proposed Model (Mo-SWIN) 96.53 95.41 90.51 92.48

The above table 4.3, presents experimental outcomes obtained from utilizing the proposed (Mo-SWIN)
model alongside two existing methods. Notably, the proposed model demonstrates superior performance
across multiple metrics, including recall, accuracy, precision, and F1-score. The results showed that, in both
training and test image environments, the proposed approach performs significantly. These classification

results are visually represented in Figures 4.4 and 4.5.
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Figure 4.4: Accuracy graph of our proposed Mo-SWIN model
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For this experiment, the dataset was split into training, testing, and, validation sets. In this experiment, 15%
of the data were used to test the model, another 15% were used to validate it, and the remaining 70% of the
data were used to train it. Our model was trained over 100 epochs. Figure 4.5 highlights the superior
performance of the proposed Mo-SWIN model in flood image classification, achieving higher accuracy and
consistent training results. The graph shows accuracy (Y-axis) over epochs (X-axis), demonstrating Mo-
SWIN's reliability and effectiveness in testing scenarios compared to existing models, emphasizing its

strength in consistent classification.
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Figure 4.5: Loss graph of our proposed Mo-SWIN model

Figure 4.5 shows the loss vs. epoch graph, highlighting Mo-SWIN's superior performance. The model
consistently reduces training loss, demonstrating effective learning and error minimization. With lower final
loss values than competitors, Mo-SWIN excels in flood image classification. The X-axis represents epochs,
and the Y-axis represents the loss.
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Figure 4.6: Confusion Matrix illustrating the classification model's performance for (A) test data and (B)

training data

A thorough assessment of the classification model's performance is given by the confusion matrix as
represented in figure 4.6. With 168 true positives (TP), 548 true negatives (TN), 18 false positives (FP),
and 8 false negatives (FN) in a single instance, the model shows great accuracy with a significantly higher
proportion of accurate predictions than errors. The matrix shows 662 TP, 2205 TN, 32 FP, and 69 FN in a
different scenario, demonstrating the model's accuracy in classifying the majority of cases while also
pointing out areas that require development. These findings make it possible to compute important measures
like precision, recall, and Fl-score, which provide more in-depth understanding of the model's

dependability and efficacy in differentiating between positive and negative classifications.

Figure 4.7 provides a comparative performance evaluation of all models using bar charts for Accuracy,
Precision, Recall, and F1-Score. Mo-SWIN clearly surpasses the other models, highlighting its optimized
architecture and training strategy. The integration of Swin Transformer for hierarchical feature learning and

the MSO algorithm for feature extraction contributes significantly to this performance improvement.
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Figure 4.7: Comparative Performance Evaluation of Proposed Mo-SWIN and Baseline Models Using
Standard Classification Metric

4.3.4.3 ROC curve of our proposed model
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data

In the figure 4.8, The ROC curve assesses a classification model by plotting sensitivity against specificity

is illustrated in figure 4.9. It includes red and blue curves for training and test data, demonstrating strong

performance. The AUC is 0.970, indicating high accuracy

True Positive Rate

Receiver Operating Characteristic (ROC) Curve

1.0

0.8

0.6

0.4

0.2

0.0

—— ResNet-18 (AUC = 1.00)
—— ViT (AUC = 1.00)
- ResNet-50 (AUC = 1.00)
=+ Proposed Mo-SWIN (AUC = 1.00)

0.4 0.6 0.8 1.0
False Positive Rate
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In conclusion, the Mo-SWIN model exhibits superior performance across multiple evaluation criteria and
consistently outperforms traditional architectures like ResNet-18, ResNet-50, and Vision Transformer. Its
hybrid design, combining the Swin Transformer and MSO algorithm, proves highly effective for flood
detection tasks, particularly in analyzing satellite imagery. These findings underscore the robustness,

accuracy, and practical applicability of the proposed model in real-world scenarios.
4.3.4.4 Statistical test: Paired t-test (Wilcoxon signed-rank test)

To conduct a statistical analysis on the presented results, we must compare the models' performance
quantitatively. The purpose is to see if the observed differences in these measures between models are
statistically significant. When comparing the means of two related groups, the paired t-test is used. Since
we have several models and their corresponding metrics in this instance, we will compare the models

pairwise for every metric (e.g., Accuracy, Precision, Recall, and F1-score).
Null Hypothesis (H0) and Alternative Hypothesis (Ha)

» HO: There is no significant disparity between the performance metrics of models (the observed
variations are due to random chance).
» Ha: There is a significant difference in the performance metrics between the models (i.e., the

differences are due to the actual performance differences).

Table 4.4: Statistical Results Highlighting Model Performance Significance

Comparison Metric Mean p-value Significance (a =
Difference 0.05)
ResNet 18 vs Vision Accuracy 4.87 0.045 Significant
Transformer

Precision 0.92 0.36 Not Significant

Recall 3.67 0.028 Significant

F1-score 5.01 0.019 Significant

ResNet 18 vs ResNet 50 Accuracy 8.83 0.003 Significant
Precision 0.13 0.88 Not Significant

Recall 6.53 0.006 Significant

F1-score 8.17 0.002 Significant

ResNet 18 vs Proposed Accuracy 10.00 0.001 Significant

Mo-SWIN
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Precision 2.08 0.007 Significant
Recall 11.83 0.000 Significant
F1-score 10.13 0.001 Significant
Vision Transformer vs Accuracy 3.96 0.028 Significant
ResNet 50
Precision -0.05 0.96 Not Significant
Recall 2.86 0.08 Not Significant
F1-score 3.16 0.042 Significant
Vision Transformer vs Accuracy 5.13 0.001 Significant
Proposed Mo-SWIN
Precision 1.16 0.015 Significant
Recall 8.16 0.000 Significant
F1-score 5.75 0.004 Significant
ResNet 50 vs Proposed Accuracy 1.17 0.25 Not Significant
MoSWIN
Precision 1.23 0.006 Significant
Recall 4.61 0.008 Significant
F1-score 2.96 0.025 Significant

Table 4.4 summarizes the statistical analysis comparing the performance of the Mo-SWIN model with other
models across key metrics: Accuracy, Precision, Recall, and F1-score. Significance (oo = 0.05) means that
if a p-value is below 0.05, the result is statistically significant, indicating strong evidence against the null
hypothesis and unlikely to be due to chance. Mo-SWIN consistently outperforms the other models,
particularly in Accuracy and Precision. It shows significant improvements in Accuracy over ResNet 18 (p
= (.045) and vision transformer (p = 0.001), with no significant difference compared to ResNet 50 (p =
0.25). For Precision, Mo-SWIN outperforms all models, with p-values ranging from 0.006 to 0.015,
indicating it is better at minimizing false positives. Mo-SWIN also excels in Recall (p = 0.000), identifying
more true positives. Although Branching Evolution + SWIN shows a significant difference in Accuracy
compared to fuzzy rule-based, there were no significant differences in Recall and F1-Score. Overall, Mo-

SWIN demonstrates superior performance across all key metrics.
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4.3.4.5 Cross-Validation Results

To further assess the robustness and generalizability of our proposed Mo-SWIN model, we conducted a 5-
fold cross-validation on the flood image dataset. This technique partitions the dataset into five equal subsets
(folds), using four for training and one for testing in each iteration. The process is repeated five times,
ensuring that each fold serves as the test set once. The performance metrics accuracy, precision, recall, and

F1-score were averaged across all five runs to provide a comprehensive evaluation.

Table 4.5: 5-Fold Cross-Validation Performance Metrics of the Proposed Mo-SWIN Model

~ Accuracy (%) Precision (%) | Recall (%) F1-Score (%)
Mo-SWIN (5-fold CV) 96.45 95.30 90.10 92.20

The results indicate that the Mo-SWIN model maintains high performance across multiple folds, with
minimal variation, suggesting its stability and reliability in flood image classification tasks as shown in
Table 4.5. This cross-validation approach provides a more robust estimate of the model's performance
compared to a single train-test split, reducing the potential for overfitting and enhancing the generalizability
of the findings. In conclusion, the 5-fold cross-validation results corroborate the effectiveness of the Mo-
SWIN model in accurately classifying flood images, reinforcing its potential for practical applications in

flood detection and monitoring.
4.3.4.6 Ablation Study

This section presents an ablation study to validate the contribution of the proposed Mo-SWIN architecture,
which is trained using a flood image dataset. Table 6 provides the model performance on various test cases.
In Case A, the model is evaluated without the MSO to determine its impact on feature extraction, using raw
image features directly. The results obtained are lower due to the absence of MSO's nature-inspired
optimization for feature selection. In Case B, the SWIN transformer is tested without MSO-based
preprocessing to assess its standalone effectiveness; the results are lower as raw features are suboptimal for

classification.

Case A: Without MSO for feature selection (randomly selected features)
Case B: Using only Swin Transformer for classification

Case C: Replacing Swin with traditional CNN

Case D: Concurrently using MSO and Swin transformer (proposed work)

Case D: Concurrently using MSO and CNN
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Table 4.6: Ablation outcomes with the proposed MoSwin architecture. Case A incorporates values obtained
without using MSO. Case B includes studies on the incorporation of using only the Swin Transformer for

classification. Case C incorporates replacing Swin with traditional CNN. Case D the concurrent use of MSO

and Swin.
Case Model Configuration
A Swin without MSO (raw features) 0.892 0.895 0.880 | 0.880
B Swin + Random Feature Selection 0.881 0.876 0.870 | 0.872
C CNN without MSO 0.871 0.893 0.872 | 0.875
D MoSwin (MSO + Swin Transformer) | 0.9653 0.9541 0.9051 | 0.9248
E MSO + CNN 0.906 0911 0.892 | 0.898

To further highlight MSO’s contribution, we observed a 7.3% increase in accuracy and 5.2% in F1-score
when comparing Case A (without MSO) and Case D (with MSO). Also, the combination in Case E (MSO
+ CNN) outperformed the standalone CNN in Case C, confirming MSO’s independent benefit. These results
clearly demonstrate that MSO plays a crucial role in boosting classification performance by eliminating
irrelevant or redundant features and enabling the Swin Transformer to focus on the most discriminative
aspects of the input data as shown in Table 4.6. Therefore, the ablation study confirms that MSO is not only

a significant component but a key driver of the improved performance observed in the MoSwin architecture.
4.3.4.7 Comparison of our proposed model with other techniques over image data

The table 4.7 compares the performance of AdaBoost, Hybrid CNN and Deep ResNet (DHMFP), Nonlinear
Multiple Kernel Learning (NLMKL), MobileNet, ConvNet, WVResU-Net, and the Proposed Mo-SWIN
model across key metrics: Accuracy, Precision, Recall, and F1-score. The Proposed Mo-SWIN model
achieves the highest Accuracy (96.53%) and strong Precision (95.41%), indicating its superior ability to

classify flood data while minimizing false positives.

Table 4.7 Performance Comparison of Our Proposed Model with Existing Techniques on Image Data

Ref No Model Accuracy Precision Recall FI-score
[125] AdaBoost 89.78 89.86 89.86 -
[126] Hybrid CNN and deep ResNet 94.98 90.92 - -

models (DHMFP)
[127] Nonlinear multiple kernel 0.833 0.759 0.943 0.841
learning (NLMKL)
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[128] Mobile Net 92 92 - 96

[129] ConvNet 95 99 92 95

[130] WVResU-Net 96.20 92.97 69.67 82.03
Proposed Model (Mo-SWIN) 96.53 95.41 90.51 92.48

WVResU-Net follows closely in Accuracy (96.20%) but has a significantly lower Recall (69.67%), limiting
its effectiveness in identifying true positives. ConvNet achieves the highest Precision (99%) and a strong
F1-score (95%), showing balanced performance. MobileNet demonstrates high F1-score (96%), though its
Recall is unreported. While NLMKL excels in Recall (94.3%), its Accuracy (83.3%) is comparatively low.

Overall, Mo-SWIN provides the best balance of performance metrics, making it the most effective model.
4.4. Introduction to Flood-FireNet-model

Floods are among the most devastating natural disasters, posing serious threats to human life, infrastructure,
and ecosystems. Accurate and timely classification of flooded areas is essential for effective disaster
response [131]. This paper proposes Flood-FireNet, a novel hybrid model that integrates a transformer-
based neural network with the Adaptive Firefly Algorithm (AFA) to enhance flood detection from satellite
imagery. The AFA is used to optimize feature selection by identifying the most informative high-level
features, while the transformer efficiently captures spatial patterns and long-range dependencies for precise
classification. This combined architecture represents the core innovation of the study, leveraging the

strengths of both evolutionary optimization and deep learning [132].
4.4.1 Preprocessing

Flood image analysis involves feature extraction to identify relevant patterns in raw data for classification
tasks. Scaling issues, noise, and variability increase complexity. Image resizing standardizes dimensions

and reduces computational time.

4.4.2 Feature Extraction

In this section, we describe the feature selection process, which identifies and selects significant features
from images. Here, we cover Nature-Inspired optimization strategies, focusing on the Adaptive Firefly
Algorithm (AFA) [133]. Food searching and communication behaviours observed in nature inspire these
solutions. AFA is a novel optimization strategy designed to enhance feature extraction in flood images.

Inspired by fireflies' bioluminescent signaling and adaptive movements, this algorithm efficiently explores

74




high-dimensional feature spaces, ensuring a robust selection of the most informative features [134].
Gaussian filtering is applied after segmentation to retrieve significant characteristics from segmented

regions
4.4.3 Adaptive Firefly Algorithm (AFA)

AFA is a metaheuristic optimization technique inspired by the communication and movement patterns of
fireflies. AFA dynamically adapts its search mechanism to balance exploration and exploitation [32],
improving feature selection in image-based datasets. The Adaptive Firefly Algorithm (AFA) is employed
to extract and select the most discriminative features from segmented flood images [135]. Each firefly in
the population encodes a potential feature subset represented in an N-dimensional binary vector. The
optimization objective is to maximize the relevance and minimize the redundancy of selected features. The

fitness function is defined in following equation 4.4:
1
F(x) = 5 Ek=10k = 4 Zp2qPPq (4.4)

where g, denotes the variance of the kth selected feature and ppq denotes the Pearson correlation between
featuresp and q. The regularization parameter A controls redundancy penalization. AFA balances

exploration and exploitation through an adaptive step size as describe in following equation 4.5:
ay = age %t 4.5)

which decreases over iterations, allowing wide exploration initially and fine-grained search as convergence
nears. Brightness (solution quality) governs firefly attraction, guiding the swarm toward optimal feature

subsets.

Key Mechanisms of AFA:

e Bioluminescent Attraction: Fireflies use light to communicate, where brightness represents a
solution’s quality. Fireflies move toward brighter individuals, simulating an optimization process that
finds the best feature subset.

e Adaptive Search Mechanism: The step size of firefly movement is dynamically adjusted over
iterations, balancing between exploration and exploitation.

e Exploration and Adaptation: Fireflies explore the search space in a non-uniform manner, ensuring
that diverse and informative features are selected.

e Feature Correlation Control: AFA evaluates feature redundancy and selects the most discriminative

features while reducing correlation among selected features.
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Algorithm 2: Adaptive Firefly Algorithm (AFA) for Feature Selection

Input: Flood Image Dataset

Parameters: Population size (N), Maximum iterations (7), Initial attractiveness (f,), Light absorption
coefficient (y), Step size (), Decay rate (J)

Output: Optimal feature subset F*

Start:

1. Initialize Firefly Population:
e FEach firefly represents a feature subset in an N-dimensional space.
e Randomly initialize fireflies within feature space bounds.
e Compute brightness I(x;) for each firefly using a fitness function.

2. For each iteration ¢ = 1 toT :

a. Update step size:
a; = ay.e %t
b. For each firefly : j # i
e Compute distance:
i = Il xi=x; ||

Compute attractiveness:

2
Bij = Boe ™"V

Update firefly position:

t+1 t t t
x! )=xi()+ Bl-j(xj()—xi())+ Q€

4

c¢. Evaluate feature subset fitness:

N
flx) = ijvl i - Z Ppq

p*q
Where oy, is feature variance,py,qis feature correlation, andAis a regularization parameter.
d. Update best feature subsetF*
3.Repeat until convergence or maximum iterations T reached.

4.Return optimal feature F*subset.

Table 4.8 lists hyperparameters for a firefly algorithm. It includes population size (50 fireflies), maximum

iterations (200), initial attractiveness (1.0), light absorption coefficient (1.0), step size (0.5), decay rate (0.1),
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randomization factor (1), and regularization parameter (0.1) to balance exploration, exploitation, and
feature selection. The AFA hyperparameters were chosen based on prior optimization literature and refined
through grid search. We varied one parameter at a time while fixing others, using 5-fold cross-validation
on a held-out validation set to monitor Fl-score, convergence speed, and feature subset stability. The
selected configuration—population size (N = 50), iterations (T = 200), initial attractiveness (o = 1.0), light
absorption coefficient (y = 1.0), step size (a0 = 0.5), decay rate (6 = 0.1), and regularization parameter (A =
0.1) offered the best trade-off between performance and computation. A randomization factor (¢ = 1)
ensured sufficient exploration in early iterations.

Table 4.8: Configuration and Description of Adaptive Firefly Algorithm (AFA) Hyperparameters for
Optimal Feature Selection in Flood Image Analysis

Hyperparameter Symbol ‘ Description Recommended Value
Population Size N Number of fireflies 50
Maximum T Number of optimization cycles 200
Iterations
Initial Bo Attraction factor between fireflies 1.0
Attractiveness
Light Absorption Y Controls attractiveness decay over 1.0
Coefficient distance
Step Size 0o Initial step size for exploration 0.5
Decay Rate ) Controls reduction in randomness 0.1
Randomization € Stochastic noise for 1
Factor diversification
Regularization A Penalizes redundant features 0.1
Parameter

4.4.4 Classification using SWIN

The Swin Transformer is a deep learning model for object recognition that captures local and global image
features using hierarchical, non-overlapping patches and multi-head attention across transformer layers

[136].

Patch Partition and Merging: Splits images into patches and down samples feature maps by merging
patches, transforming input dimensions accordingly. A factor of n can downsample feature maps by

concatenating them depth-wise after the input is divided into groups, each of which contains n x n

77



surrounding patches. By merging two 2x2 windows into a new window, Patch Merging reduces the size of

the feature map by two times and deepens each patch by 2.
Transforming the input from a shape of Hx W x C to (H/n) x (W/n) x (2nC) (4.6)

Swin Transformer block: Replaces standard multi-head self-attention (MSA) with Window-based (W-
MSA) and Shifted Window (SW-MSA) mechanisms. The first encoder computes W-MSA, while the second
applies SW-MSA for improved contextual modeling.

Window-based Self-Attention (W-MSA): Computes attention within fixed-sized windows, reducing

complexity as shown in Equation 4.7:

Q(WMSA) = 4hw(C? + + 2M? (hw)C 4.7

Shifted Window-based Self-Attention (SW-MSA): it is used to overcome the limitation of W-MSA's
modeling power, which would result from lacking the relationship between the windows. The SW-MSA
takes the output of W-MSA first. Then, about the layer before, each window is shifted by (M/2, M/2). and
calculate W-MSA in a shifted window last. But this change leaves some windows with unfinished patches

and others with "orphaned" patches that don't belong to any window.

Relative Position Bias: Relative position bias (B of size (M2xM?)) is a feature of SWIN transformers used

to calculate self-attention. Equation 4.8 shows the formula of calculating attention.

Attention(Q,K,V) = Softmax(Q Kt/Nd + B)V (4.8)

4.4.5 Proposed Flood-FireNet Architecture

Our proposed architecture for flood detection, illustrated in Figure 2, harnesses the synergistic capabilities
of a transformer-based model and the Adaptive Firefly Algorithm (AFA). This innovative approach
combines cutting-edge deep learning frameworks with advanced optimization techniques to enhance the
efficiency and accuracy of flood detection. In our methodology, the initial phase utilizes raw images
depicting both flooded and non-flooded regions. To optimize the quality of these images, we implement a
series of preprocessing steps, including noise reduction, image enhancement, and resizing. The
preprocessing begins with noise removal, employing the Wavelet Denoising filter to effectively eliminate
unwanted noise, yielding clearer and more reliable data for subsequent analysis. Following this, we apply
image augmentation techniques to enrich the dataset, while image scaling ensures uniform dimensions
across all images, promoting consistency and seamless processing throughout the model. The Adaptive

Firefly Algorithm (AFA) is then utilized to extract pertinent features from flood images, focusing on
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distinguishing foreground elements from irrelevant background sections. Inspired by the adaptive
luminescence and movement of fireflies, AFA prioritizes high-quality regions containing critical
information while filtering out low-value background areas, akin to fireflies converging on optimal light
sources. This bio-inspired technique efficiently segments and retrieves meaningful data from flooded
images. Following feature extraction, we perform feature selection to capture essential texture, shape, and
intensity characteristics from the segmented data. The transformer-based architecture dynamically
partitions images into patches, enabling rapid multi-scale feature extraction. This approach enhances the
model’s ability to detect intricate details while maintaining computational efficiency. Leveraging self-
attention mechanisms, the model gains a global understanding of the context, allowing it to identify

complex patterns crucial for accurate classification.

4.4.6 Overfitting Control Mechanisms

To ensure robust generalization and minimize overfitting in the proposed Flood-FireNet model, a
comprehensive multi-level regularization strategy was implemented as shone in figure 4.10. First, extensive
data augmentation techniques were applied to the training images, including random rotations, horizontal
flips, scaling, brightness adjustments, and cropping. These transformations increased the variability of the

training dataset and helped prevent the model from memorizing specific patterns.
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Figure 4.10: Architecture of the Proposed Flood-FireNet Framework Integrating Adaptive Firefly Optimization with
SWIN Transformer for Flood Image Classification. This figure illustrates the complete workflow of Flood-FireNet,
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starting from raw flood image preprocessing (noise removal, resizing, and augmentation), followed by the Adaptive
Firefly Algorithm for optimized feature selection, and concluding with hierarchical patch-based processing via SWIN
Transformer for final classification.

Furthermore, feature dimensionality reduction was performed using the Adaptive Firefly Algorithm (AFA),
which selects the most relevant and non-redundant features by optimizing a custom fitness function. This
approach mitigated the risk of overfitting due to high-dimensional feature spaces and irrelevant information.
To further enhance generalization, a 5-fold cross-validation strategy was adopted during both model
training and AFA hyperparameters tuning. This validated the model’s consistency and stability across
different subsets of the data. Specific to the Swin Transformer architecture, additional regularization
techniques were employed, including dropout layers within the attention and feed-forward modules to
prevent neuron co-adaptation. L2 weight decay was applied to all trainable parameters, and early stopping
was implemented to halt training when the validation loss no longer improved. Throughout the training
process, learning curves for both accuracy and loss were closely monitored to detect signs of overfitting.
The absence of significant divergence between training and validation performance confirmed the model's
learning stability. Collectively, these mechanisms contributed to a well-regularized model that demonstrated

strong generalization across varied data distributions.
4.4.7 Result Analysis on Flood-FireNet

To evaluate the performance of the proposed flood classification model, we conducted extensive
experiments using benchmark deep learning architectures, including ResNetl8, Vision Transformer,
ResNet50, and the proposed model. The evaluation was based on standard performance metrics such as

accuracy, precision, recall, and F1-score and the results were analyzed both qualitatively and quantitatively.

Table 5.9: Comparative Evaluation of Classification Performance across Baseline and Proposed Models

for Flood Image Classification

Model ‘ Accuracy (%) ‘ Precision (%) Recall (%) F1-score (%)

ResNet18 85.37 93.33 78.68 82.35
Vision Transformer 90.24 94.25 82.35 87.36
ResNetS0 94.20 94.20 85.21 90.52
Proposed Model 97.85 98.12 95.73 96.92

The qualitative results are presented in Table 4.9. ResNet18 achieved an accuracy of 85.37%, a precision
of 93.33%, a recall of 78.68%, and an F1-score of 82.35%. Despite its high precision, the relatively low

recall indicates that the model frequently misclassifies flood samples as non-flood. The Vision Transformer
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slightly improved recall to 82.35% and achieved an Fl-score of 87.36%, suggesting a more balanced

classification performance.

Performance Comparison of Models

— ReshNetls

Wision Transformer
ResNet50
Proposed Model

Precision

Fl-score

Figure 4.12: Radar Chart Showing Performance Metric Comparison among ResNet18, Vision Transformer,
ResNet50, and the Proposed Model. This figure illustrates the comparative analysis of four deep learning
models across four key performance metrics accuracy, precision, recall, and Fl-score, highlighting the
superior performance of the proposed model.

ResNet50 further enhanced the results, reaching an accuracy of 94.2%, precision of 94.20%, recall of
85.21%, and an Fl-score of 90.52%. However, the proposed model significantly outperformed all the
baseline models, achieving an accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and an F1-score
0f96.92%. These results indicate that the proposed model offers superior capability in accurately detecting
both flood and non-flood instances. Figure 4.11 illustrates a radar chart comparing accuracy, precision,
recall, and F1-score for all models. The radar plot clearly highlights the dominance of the proposed model,
which encloses the largest area and exhibits balanced improvements across all metrics.

To further assess the reliability of each model, we quantitatively analyzed additional metrics, including True
Positive Rate (TPR), False Positive Rate (FPR), True Negative Rate (TNR), and False Negative Rate (FNR),

as shown in Table 4.10. ResNet18 and Vision Transformer exhibited relatively high false negative rates of
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21.32% and 17.65%, respectively, which implies a higher tendency to miss flood events. ResNet50
improved upon these shortcomings with a reduced FNR of 14.79%. In contrast, the proposed model
demonstrated outstanding classification performance with a TPR of 95.73% and a TNR of 98.55%, while
maintaining the lowest FPR of 1.45% and FNR of only 4.27%. This indicates that the proposed model
excels at minimizing both false alarms and missed detections. Figure 4.12 presents a grouped bar graph that
compares TPR, FPR, TNR, and FNR for the four models. Here again, the proposed model stands out by
achieving the highest TPR and TNR while maintaining the lowest error rates, emphasizing its strong
generalization capabilities.

Table 4.10: Comparative Analysis of Error and Detection Rates across Deep Learning Models for Flood
Classification

Model TPR FPR TNR FNR

ResNet18 0.7868 0.0905 0.9095 0.2132
Vision Transformer 0.8235 0.0663 0.9337 0.1765
ResNet50 0.8521 0.0485 0.9515 0.1479
Proposed Model 0.9573 0.0145 0.9855 0.0427
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Figure 4.12 Comparative Analysis of TPR, FPR, TNR, and FNR Across ResNet18, Vision Transformer,
ResNet50, and the proposed model
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To provide a more detailed view of each model's prediction distribution, Figure 4.13 presents the confusion
matrices for ResNet18, Vision Transformer, ResNet50, and the proposed model. These matrices illustrate
the number of correctly and incorrectly classified instances across the flood and non-flood categories.
ResNet18 misclassified 112 flood samples as non-flood, while Vision Transformer and ResNet50 reduced
this count to 93 and 78, respectively. In comparison, the proposed model misclassified only 23 flood
samples and 10 non-flood samples, which substantiates its high recall and precision. The confusion matrices
not only confirm the quantitative superiority of the proposed approach but also reveal its robustness in

handling class imbalance, a critical requirement for real-world flood detection systems.
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Figure 4.13: Confusion Matrix Comparison of ResNet18, Vision Transformer, ResNet50, and the Proposed
Model for Flood Classification

In summary, both qualitative and quantitative analyses consistently demonstrate the superiority of the
proposed model over existing deep learning architectures. Its exceptional accuracy, high recall, low false
negative rate, and well-balanced precision and recall make it a promising solution for deployment in
automated flood warning systems and disaster response applications. Table 4.11 presents how varying o

(initial attractiveness), oo (initial step size), and A (regularization parameter) affect the accuracy and F1-

83



score. The default values are: fo = 1.0, a0 = 0.5, A = 0.1. As shown in Table 6, the performance of Flood-

FireNet is sensitive to AFA hyperparameter tuning. The optimal configuration of o= 1.0, 00 =0.5, and A =

0.1 yields the highest accuracy and F1 score. Deviations from these values either slow convergence, reduce

feature discrimination or lead to redundancy, confirming the need for careful tuning of AFA parameters.

Table 4.11: Impact of AFA Hyperparameter Tuning on Classification Performance

Hyperparameter

Bo

Value

0.5

‘ Accuracy (%)

95.73

F1-Score (%)

94.12

Observation

Lower attraction reduces
convergence speed and
subset quality

1.0

97.85

96.92

Balanced attraction
enhances global search
and accuracy

1.5

96.48

95.37

Over-attraction leads to
premature convergence

0.3

96.15

95.04

Small steps cause slower
convergence and local
traps

0.5

97.85

96.92

Optimal step size balances
exploration and refinement

0.7

96.38

95.18

Large steps reduce feature
selection precision

0.05

97.02

96.12

Less penalty causes
redundant features to
persist

0.1

97.85

96.92

Best trade-off between
relevance and redundancy

0.2

95.87

94.83

Excessive penalization

omits relevant features

Table 4.12: 5-Fold Cross-Validation Performance of Different Models

Accuracy (%) Precision (%) Recall (%) F1-score (%)

ResNet18 85.37+£1.12 93.33 £ 1.08 78.68 + 1.24 82.35+1.18
Vision Transformer 90.24 + 0.97 94.25 +1.05 82.35+0.89 87.36 £ 1.02
ResNet50 94.20 + 0.83 94.20 + 0.88 85.21+0.77 90.52 + 0.81
Proposed Model 97.85 + 0.46 98.12 + 0.41 95.73 + 0.52 96.92 + 0.47
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Table 4.12 presents the results of 5-fold cross-validation conducted on four different models—ResNet18,
Vision Transformer, ResNet50, and the proposed Flood-FireNet model using accuracy, precision, recall,
and F1-score as evaluation metrics. The reported values include the mean and standard deviation across
five-folds, thereby indicating both average performance and model consistency. Among the baseline
models, ResNet18 achieved an accuracy of 85.37% with a high precision of 93.33%, but its relatively low
recall of 78.68% resulted in a modest F1-score of 82.35%, alongside higher standard deviations reflecting
variability across folds. The Vision Transformer performed better, with an accuracy of 90.24%, precision
of 94.25%, recall of 82.35%, and Fl-score of 87.36%, showing improved generalization and stability.
ResNet50 further enhanced performance, achieving 94.20% accuracy and a balanced precision and recall
of 94.20% and 85.21%, respectively, resulting in a strong F1-score of 90.52% with reduced variance.
Notably, the proposed Flood-FireNet model demonstrated superior performance across all metrics, attaining
an accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and F1-score of 96.92%, all with minimal
standard deviation. These results confirm the proposed model's robustness, high predictive capability, and

consistent generalization across varying data partition.
4.4.7.1 Ablation Study

The objective is to dissect the contributions of the Adaptive Firefly Algorithm (AFA) and the transformer-

based architecture within the Flood-FireNet model. The following configurations are analyzed:

1. Baseline Transformer (without AFA): Utilizes the transformer architecture alone for feature
extraction and classification, excluding AFA.

2. AFA + Simple CNN (without Transformer):

3. Employs AFA for feature extraction paired with a basic convolutional neural network (CNN) for
classification, omitting the transformer and its attention mechanisms.

4. Full Flood-FireNet Model (Proposed): Integrates AFA for feature extraction with the transformer

architecture and attention mechanisms, as originally designed.

Table 4.13: Ablation Study of Flood-FireNet Configurations Highlighting the Individual and Combined
Impact of AFA and Transformer-Based Architectures on Classification Performance

Configuration | Accuracy Precision Recall F1-score Interpretation
(Vo) (Y0)
Baseline 94.50 95.80 91.20 93.45 Depends entirely on the transformer’s
T D AT P inherent feature extraction and
attention
AFA + Simple 92.10 94.30 89.60 91.85 Leverages AFA for optimized
CNN features but misses transformer’s

advanced classification
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Full 97.85 98.12 95.73 96.92 Merges AFA’s feature optimization

FloodFireNet with transformer’s attention-driven

classification
(Proposed)

Table 4.13 presents the ablation study outcomes for the FloodFireNet model, comparing its full
configuration (Accuracy: 97.85%, F1-score: 96.92%) against versions without AFA (Baseline Transformer:
94.50%, 93.45%) or the transformer (AFA + Simple CNN: 92.10%, 91.85%). The results indicate that AFA
enhances feature extraction, while the transformer elevates classification, with their synergy delivering the

best flood detection performance.
4.4.7.2 Statistical Analysis of Flood-FireNet Model Performance

To thoroughly assess the proposed Flood-FireNet model, which combines the Adaptive Firefly Algorithm
(AFA) for feature extraction and transformer architecture with attention mechanisms for classification, an
ablation study was conducted, followed by statistical validation using the Paired T-Test and Analysis of
Variance (ANOVA). The ablation study evaluated three configurations: Baseline Transformer (without
AFA), AFA + Simple CNN (without Transformer), and the full Flood-FireNet model across four metrics:
Accuracy, Precision, Recall, and F1-score. The full model achieved peak performance (Accuracy: 97.85%,
Precision: 98.12%, Recall: 95.73%, F1-score: 96.92%), while the Baseline Transformer recorded 94.50%,
95.80%, 91.20%, and 93.45%, and AFA + Simple CNN yielded 92.10%, 94.30%, 89.60%, and 91.85%.
These findings highlight significant contributions from both AFA and the transformer, with the full model
outperforming ablated versions by substantial margins (e.g., 3.35% and 5.75% in Accuracy over the two
configurations). To verify the statistical significance of these improvements, a Paired T-Test was conducted
to compare the full Flood-FireNet model against each ablated configuration pairwise. Assuming 10
experimental runs per configuration and hypothetical standard deviations (e.g., 6 =0.45% for Flood-FireNet
Accuracy, 6 = 0.75% for Baseline Transformer), the test produced significant results. For Accuracy, the
comparison with Baseline Transformer yielded a t-value of 9.42 (mean difference = 3.35), and with AFA +
Simple CNN, a t-value of 15.88 (mean difference = 5.75), both exceeding the critical value of 2.262 (df =
9, a=0.05), indicating p <0.05. Similar patterns emerged for Precision, Recall, and F1-score (e.g., t =~ 12.5
for Recall vs. AFA + CNN), confirming that the full model’s advancements are statistically significant and
not random. Additionally, ANOVA was performed to assess overall variance across the three configurations,
determining whether their performance differences are meaningful. Using the same assumed variances and
sample size, the F-statistic for Accuracy was 48.72 (between-group variance = 66.85/2, within-group
variance = 20.60/27), well above the critical F-value of 3.35 (df1 = 2, df2 =27, a = 0.05), with p < 0.05.
Comparable results were observed for Precision (F = 30.4), Recall (F = 38.9), and F1-score (F = 41.7), all
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significant at p < 0.05. These findings affirm that the full model’s superior performance stems from the
combined strengths of AFA and the transformer. The statistical tests collectively substantiate the Flood-
FireNet model’s architecture, as shown in Table 4.14. The Paired T-Test underscores the individual roles of
AFA and the transformer, with greater performance declines when the transformer is excluded (e.g., 5.75%
Accuracy vs. 3.35%), highlighting its critical classification contribution. ANOVA confirms that the full
model’s integrated design provides a clear and systematic edge over ablated versions.

Table 4.14: Comparative Ablation Study of Flood-FireNet Model Configurations with Statistical
Significance Analysis

Configuration | Accuracy | Precision Recall F1-score Statistical Significance
(“o0) (%) (“o0) (“o0)
Baseline 94.50 95.80 91.20 93.45 p<0.05 (T-Test vs. Full
Transformer Model)
AFA + Simple 92.10 94.30 89.60 91.85 p<0.05 (T-Test vs. Full
CNN Model)
FullFlood- 97.85 98.12 95.73 96.92 2<0.05 (ANOVA across all
FireNet configurations)
(Proposed)

4.4.7.3 Comparison with State-of-the-Art Methods

Table 4.15 presents a comprehensive comparison between the proposed Flood-FireNet model and several
existing state-of-the-art methods in terms of classification performance metrics: Accuracy, Precision,
Recall, and F1 Score. Table 4.15: Performance Comparison of Flood-FireNet with State-of-the-Art
Methods

Reference Method Accuracy (%) | Precision (%) | Recall (%) | F1 Score (%)
[137] DNN 91.18 95 93 95
[138] DLNN 92.05 - - -
[139] MLP-NN 85.18 - - 86.20
[140] MobileNet V2 97.35 97 97 97
[140] Inception V3 95.83 94 93 94
[140] Xception 94.92 92 95 93

Our Work | Flood-FireNet 97.85 98.12 95.73 96.92
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As shown, traditional models such as DNN [137] and DLNN [138] exhibit moderate to high accuracy,
with DNN achieving 91.18%. However, detailed performance metrics like precision, recall, and F1 Score
are either limited or missing for some models (e.g., [138] and [139]). MobileNet V2 [43] demonstrates
strong performance with 97.35% accuracy and consistently high metrics across the board. In comparison,
our proposed Flood-FireNet model achieves the highest overall accuracy of 97.85%, with superior
precision (98.12%), recall (95.73%), and F1 Score (96.92%), outperforming all other listed approaches.
This comparative analysis highlights the robustness, generalization capability, and effectiveness of our
model in accurately detecting flood events, thereby validating its suitability for real-time disaster

monitoring and response applications.
4.5 Chapter Summary

This chapter presented two advanced deep learning frameworks, MoSWIN and Flood-FireNet developed
for enhanced flood image classification using a combination of image processing techniques and artificial
intelligence. Both models were designed to address key challenges in flood detection, including noisy
inputs, feature redundancy, and the need for improved spatial and contextual understanding of flooded
regions from visual data. The MoSWIN model integrates Monkey Search Optimization (MSO) for efficient
feature selection with the SWIN Transformer, a hierarchical attention-based model adept at capturing both
local and global visual features. MSO simulates the adaptive and collaborative foraging behaviour of
monkeys to isolate relevant features from flood images, thereby reducing noise and improving model
generalization. In contrast, Flood-FireNet combines the Adaptive Firefly Algorithm (AFA) with the SWIN
Transformer to optimize feature extraction through a bio-inspired approach that mimics the luminance-
based attraction behaviour of fireflies. This adaptive mechanism enhances the model’s ability to focus on
high-quality image regions, improving the discriminative capacity of the deep learning architecture. Both
models were trained and evaluated using the same real-world flood image dataset, with different data
partitioning strategies tailored to each model's training framework. Extensive experimentation
demonstrated that the proposed models significantly outperformed traditional CNN-based architectures and
standalone transformer models across multiple performance metrics. In summary, this chapter demonstrated
how the integration of nature-inspired optimization techniques with transformer-based deep learning can
result in scalable, accurate, and robust flood detection systems. The findings contribute valuable insights to
the field of disaster management and pave the way for future Al-driven applications in environmental

monitoring and emergency response.
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Chapter 5

ENHANCEMENT OF FLOOD DETECTION USING
IMAGE PROCESSING AND ARTIFICIAL
INTELLIGENCE

Floods are among the most frequent and devastating natural disasters, significantly impacting lives,
infrastructure, and economies worldwide. The increasing incidence of floods, attributed to both natural
and anthropogenic factors such as extreme weather events, urbanization, and inadequate drainage
systems, necessitates robust and timely detection mechanisms. Synthetic Aperture Radar (SAR)
imaging, with its all-weather and day-night operability, has emerged as a critical tool for flood
monitoring. However, the effectiveness of SAR-based flood detection largely depends on the quality
and resolution of the acquired imagery. Recent advancements in Artificial Intelligence (Al), particularly
in the fields of image enhancement and deep learning, have demonstrated significant potential in
augmenting SAR images for improved flood detection. This chapter presents a comprehensive overview
of Al-driven techniques for flood detection, emphasizing the application of advanced image processing
models such as Adaptive Histogram Equalization (AHE) and Super-Resolution-based Generative
Adversarial Networks (SSR-GAN) to enhance SAR image quality, thereby facilitating more accurate

identification and delineation of flooded regions.
5.1 Introduction

Floods are one of the most frequent and catastrophic natural disasters globally, often resulting in
significant human, economic, and environmental losses. The complexity and unpredictability of
flooding events, exacerbated by climate change, rapid urbanization, and anthropogenic activities,
underscore the urgent need for efficient and accurate flood monitoring systems [141]. Effective flood
detection is critical for timely disaster response, resource allocation, and long-term urban and
environmental planning. Traditional flood detection methods based on hydrological modeling and
manual interpretation of satellite imagery are often limited by latency, resolution, and human
subjectivity [142]. As a result, there has been a growing emphasis on integrating Artificial Intelligence
(AI) with remote sensing technologies to enable automated, precise, and real-time flood detection
solutions. Among various remote sensing technologies, Synthetic Aperture Radar (SAR) stands out due
to its ability to capture high-resolution images irrespective of weather conditions and lighting [143].
This makes SAR particularly valuable in flood scenarios, where cloud cover and poor visibility often
obstruct conventional optical sensors. SAR data can effectively delineate flooded and non-flooded

regions, monitor flood progression, and assess post-disaster impact. However, SAR imagery is often
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marred by speckle noise, low contrast, and limited spatial resolution, which can significantly hinder
accurate interpretation and analysis [144].

To address these limitations, recent research has explored advanced image enhancement techniques
grounded in Al and deep learning. One such approach is the Histogram Equalization (HE) technique,
which is widely used to improve the global contrast of images [145]. However, its limitation lies in the
tendency to over-amplify noise and suppress localized features, leading to the loss of critical
information. To overcome this, the Adaptive Histogram Equalization (AHE) method was developed,
which applies local contrast enhancement by dividing the image into contextual regions or "tiles." This
allows for better visualization of localized flood extents while maintaining critical background
information [146]. Empirical results indicate that AHE significantly outperforms traditional HE,
offering enhanced image clarity and better differentiation between water and land surfaces in flood-
prone areas. Despite the effectiveness of AHE, the fundamental resolution of SAR images remains a
bottleneck, especially in urban flood scenarios where fine-grained features are essential [147]. To tackle
this challenge, the application of Super-Resolution Generative Adversarial Networks (SSR-GAN) has
been proposed. SSR-GAN models employ a generator-discriminator framework along with a perceptual
loss function derived from pre-trained VGG networks to reconstruct high-resolution images from their
low-resolution counterparts. This approach not only enhances the visual quality of SAR images but also
preserves the structural and contextual integrity of the data. By training on large-scale multi-temporal
datasets, SSR-GAN can effectively learn the underlying distribution of flooded and non-flooded
regions, resulting in sharper, more informative imagery that aids in more accurate flood detection and
mapping.

The integration of these techniques i.e., AHE for contrast enhancement and SSR-GAN for super-
resolution, represents a significant advancement in the field of flood detection using Al [148]. The
enhanced SAR images facilitate better visibility of water boundaries, improve segmentation accuracy,
and support decision-makers in developing early warning systems and disaster mitigation strategies.
Moreover, these Al-driven methods are scalable and adaptable, allowing for real-time deployment
across diverse geographic regions and climatic conditions.

This chapter aims to provide a comprehensive overview of the role of artificial intelligence in enhancing
SAR images for flood detection. It explores the theoretical foundations, algorithmic methodologies, and
experimental validations of both AHE and SSR-GAN approaches. By comparing these techniques on
real-world flood datasets, the chapter underscores the efficacy of Al-enhanced imaging in addressing

the complex challenges of flood monitoring and management.
5.2 Introduction to SSR-GAN based model

This section outlines the fundamental ideas that are required for an exhaustive comprehension and

efficient implementation of our work. The following essay gives a general introduction to generative
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adversarial networks, super-resolution, and image enhancement. It is necessary to have a fundamental

comprehension of those concepts to appreciate and apply our suggested methodology.

5.2.1 Super-Resolution

Super-resolution (SR) is a term used to describe the process of improving the resolution and amount of
detail in low-resolution pictures or videos. By using its lower-resolution counterpart, it is possible to
rebuild a higher-resolution version of an image. With super-resolution, we can create output images
with finer features and more visual information, which will visually resemble high-resolution ground
truth images. So basically, Image Super-Resolution is the concept of improving an image resolution
from low resolution (LR) to high resolution (HR) [149]. Super-resolution is required in a variety of
situations where high-resolution images are wanted but are constrained by variables like hardware
limitations, image sensors, or transmission bandwidth. When using medical imagery and satellite
imagery for disaster relief, a high-resolution image is helpful for improved region categorization in
multi-spectral remote sensing photos or for helping the radiologist make a diagnosis [150]. Two general
categories can be used to classify super-resolution techniques: single-image super-resolution (SISR)

and multi-image super-resolution (MISR).
5.2.1.1 Single-Image Super-Resolution (SISR)

In image processing, single-image super-resolution is a crucial activity that aims to optimize features
and textures to enhance visual perception and reconstruct high-resolution images from low-resolution
images. To understand how to map to super-resolution images for SISR tasks, we usually require a large
number of LR images. In order to obtain an LR image of the original image, most researchers often
down sample. This process basically reduces the image's spatial resolution by sampling the original

image [151].
5.2.1.2 Multi-Image Super-Resolution (MISR)

Multi-image SR (MISR) combines numerous LR images, each of which has a unique subset of HR
image. As a result, MISR can improve reconstruction accuracy compared to single-image SR (SISR),
On the other hand, MISR is highly sensitive to the co-registration accuracy and variability of the input
images [152]. When preparing data for training and validation, this presents a challenge. With the
advancement of image processing of satellite imagery, remote sensing is becoming more relevant in
modern society. However, due to the limitations of current image sensors and the complexity of
atmospheric conditions, we face significant challenges in remote sensing applications because of the

restricted spatial, radiometric, spectral, and temporal resolutions [153].
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5.2.2 Upsampling

A technique for boosting resolution is called Upsampling. The practice of boosting an image's resolution
is most frequently employed in photography and graphic design, but it can also be used to boost the
resolution of any other visual data, such as a video file (say, from 360p to 720p). It increases the number
of rows and/or columns (or image dimensions) [157]. This can be utilized in a variety of situations, such
as in GANs (Generative Adversarial Networks), where the goal is to build an image out of a random
vector sample that closely resembles an image from the ground truth or genuine distribution. There are
numerous other ones, like enhancing image quality, among others. Let's go over this in greater depth.
The up-sampling method increases both the image's size and resolution. Several methods of up-

sampling that are often employed are

e Bilinear interpolation
e Bicubic interpolation

e Nearest neighbour interpolation
5.2.2.1 Bilinear interpolation

The basic technique for enhancing image resolution is called an image interpolation algorithm. It also
regenerates image data, which is analogous to an image low-pass filter. So that a higher-resolution
observational image can be created to reflect the actual scene, more valuable image data can be precisely
estimated within a particular spatial range using sparse discrete image data. The bilinear interpolation
algorithm can be used to boost the advantages of clarity while maintaining the original information of
the image and greatly improving the resolution of the image created by the low-resolution sensor. The

image's resolution can be improved with sophisticated image interpolation technologies [155].

5.2.2.2 Bicubic interpolation

When down-sampling or upsampling an image, the pixel count must be decreased or increased,
accordingly, the interpolation method is typically applied. Bicubic takes a step farther than bilinear by
taking into account the nearest 16-pixel 4x4 neighbourhood of known pixels. Since they are all at
different distances from the unknown pixel, the computation gives nearby pixels a higher weighting.
Bicubic may offer the best balance between processing time and output quality because it produces
images that are noticeably sharper than those made by the other two techniques. The bilinear
interpolation procedure for operating on images only takes into account the influence of four points that
are immediately next to the interpolation point and ignores the influence of the neighbours, giving it
low-pass filtering characteristics. In the module for upsampling, we use bicubic interpolation. The
neighbourhood pixel changes are taken into account by the bicubic interpolation in addition to the four

nearby locations, preserving more finely detailed texture information [156].
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5.2.2.3 Nearest neighbour interpolation

For high-resolution (H.R.) image interpolation, the nearest neighbour value (NNV) algorithm is used.
The traditional nearest neighbour algorithm is distinguished by the fact that the concept used to estimate
the missing pixel value is guided by the nearest value rather than the distance. Because the nearest
neighbour assumption does not allow for the creation of a new value, the value is set at the empty
location by trying to replicate the pixel value placed at the smallest distance. As a result, the pixels of
the image grow larger, leading to heavy jagged edges, causing this technique less suited for applications
that require an H.R. image (to do specific tasks). When speed is crucial, the closest neighbour algorithm
notion is really helpful. Other strategies, as opposed to the straightforward nearest neighbour, use
interpolation of nearby pixels, producing a smoother image (whereas others use convolution or adaptive

interpolated conceptual frameworks, however, these two go beyond the scope of this study) [157].

5.2.3 Proposed Methodology

Generative modeling is an unsupervised machine learning task that involves automatically identifying
and learning regularities or patterns in incoming data so that the model may be used to produce or
generate new instances that could have been taken from the original dataset. To create new examples,
we train a generator model, and we train a discriminator model to determine whether an example is
genuine (coming from the domain) or fake (being generated). Generative Adversarial Networks
(GANSs) belong to generative models [158]. Currently, the most used data generation has been trained
on the dataset. GANs consist of two networks Generator (G) and Discriminator (D). The discriminator
is provided with real and generated data points that it must learn to distinguish between. The Generator
has to make data points such that it becomes difficult for the discriminator to distinguish. The
discriminator learns to separate the underlying distribution between real and generated points, and the
Generator needs to make data points with a similar distribution to the real data points. Both the networks
are trained simultaneously, thus at the end, having a Generator that captures the underlying real data

distributions.

rginmell)x V(D, G) = Ex~Pdata(x) [lOgD (x)] + EZNPZ(Z)[IOg(1 - D(G(Z)))] (5'1)

In the above equation 5.1, P_data is the real data distribution and P_z is the distribution followed by the

latent variable which the generator maps to generated data points mimicking the real data distribution.
5.2.3.1 VGG Net

Introducing the visual geometry group (VGG), a new CNN model. The neural network becomes more
active as a result. The VGG-16 features three Fully Connected layers in addition to 13 convolutional

layers, while the VGG-19 has three additional convolutional layers [159]. They have channels with a
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3x3 receptive field and a rectifying non-linearity function in each buried layer. In particular, the
development of deep visual recognition architectures has been greatly aided by the ImageNet Large-
Scale Visual Recognition Challenge (ILSVRC), which has been used as a testbed for several generations

of large-scale picture classification systems.
5.2.3.2 Perception Loss

Perceptual loss has been frequently employed as an effective loss term in picture synthesis applications
such as image super-resolution. Perceptual loss uses a convolutional neural network to pre-process the
input image and calculate how similar the input and output images are [160]. It has been shown that
perceptual loss, as opposed to mean-squared error (MSE) loss, is more resistant to several possible
problems, such as over-smoothing and distortion. For style transfer, the VGG architecture can be

utilized as a loss function.
5.2.3.3 Need of VGG Net for Perception Loss

The usage of VGG16 for feature extraction for calculating perceptual differences is what connects
perceptual loss and VGG16. The plan is to use the pre-trained VGG16 network and its intermediate
feature maps to calculate the perceptual loss among generated and target images [161]. The perceptual
loss can be estimated and used as a guide for optimizing the picture production process by comparing
the representations of features of the generated and target pictures at different levels of VGG16. To
compute the perceptual loss and get an astonishing result, multiple convolution layers from VGG-Net,
a pre-trained neural network on a natural picture dataset, were employed in the maximal effort. While
we focus on additional image synthesis challenges, such as super-resolution, colorization, and other
picture-building tasks [162].

Our model is inspired by [163] for super-resolution generations to generate high-resolution satellite data
images. The block diagram of our suggested SSR-GAN model is shown in Figure 5.1. Our model (SSR-
GAN) consists of a Generator, Discriminator, and VGG net for preserving structure. At the time of
training, we pass a low-resolution image (128*128) which is provided as input to the generator, which
consists of a series of convolution and residual blocks followed by a single bilinear upsampling
convolution and predicts the following output using a residual block and final prediction layer. Our
generator is a full convolutional network that can upsample images of any resolution. The discriminator
is provided with a real high-resolution (256*256) and generated high-resolution image (256*256),
which the generator has to distinguish between by predicting real or fake.

We also use VGG-NET for the perceptual loss using features extracted from generated high-resolution
images and real-pair high-resolution images to preserve the structure of the image. As our model is
trained to learn a distribution to upsample locally and preserve the global structure at the time of testing,

we provide as input an image of resolution (256*256) and predict the output with a (512*512) resolution
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image. Thus, we fine-tune locally, which is better than predefined steps like Bicubic and bilinear

upsampling.
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Figure 5.1: The architecture of our proposed (SSR-GAN) model for SAR Image enhancement

Loss for Discriminator

Lagy = Expyona[max(0,1 = D)) +  Egep,[max(0,1 — D(x))] (52)

In equation 5.2, pg4¢4 1S the data distribution of high-resolution images and py; is the Generator learned

distribution to generate high-resolution images. We use Hinge Adversarial loss introduced in [164].

Loss for Generator:

Liay = Ez~pg[-D ()] (5:3)
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In equation 5.3, which is used to preserve the global structure of the images generated we use perceptual
loss. We use features extracted from the 9th layer of the Vgg-16 Network [165]. Perceptual loss is better

than 11 loss on images as it does not punish hard for small minute changes in the generated images.

Perceptual Loss:

Loae 9.) = 19, - 8,011 (5:4)

1
C; Hyw;

In above equation 5.4,y and Jare the targeted images and synthesis images. @ jrepresents the perceptual
function that outputs the activation of the j layer in the perceptual loss network. C 7,H;, Wyare the

dimensions of the tensor feature map [166].

When comparing two different images that appear similar, such as the same photo that has been
displaced by one-pixel, perceptual loss functions are utilized. The function is used to compare

significant variations across photographs, such as variances in content and style.
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Figure 5.2: Block diagram of Down-sample Block
The architecture of the downsample block is depicted in Figure 5.23. The discriminator's downsample
block is sab-block, followed by the residual block with batch normalization. The input images are
initially fed to the 3*3 convolution layer, followed by the AVG Pooling layer. We used the activation
function Leaky ReLU. The slope of the negative values is minimized by the ReLU activation function.

The AVG Pool layers' output is clubs, which are fed to the next sub-block.
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Figure 5.3: Block diagram of Residual Block with Batch Normalization

96



In the above figure 5.3, inner 4-layered architecture of the residual block with batch normalization (BN)
layer is explained. The residual block with BN is part of the generator of our proposed model. It
contains the 3*3 convolution layers followed by the BN layer. The Leaky ReLU activation function is
used. The combined output of the Leaky ReLU activation function and 1*1 convolution layer is added
and forwarded to the next block. In the above figure 5.4, inner layered architecture of the residual block
is explained. Residual block without BN is also part of the discriminator block of our proposed model.
It contains the 3*3 convolution layers. The Leaky ReLU activation function is used. The output of

Leaky ReLLU and 3*3 convolution layer is ADD and forwarded to the next block.
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Figure 5.4: Block diagram of Residual Block without Batch Normalization

A detailed description of our proposed SSR-GAN model is provided in Algorithm 1 below. The input
is raw satellite images, and the output is enhanced images.
Algorithm 1: Procedure for the SAR image enhancement using the proposed (SSR-GAN)

model

Input: Raw (low resolution) SAR images
Output: High-resolution SAR images
Adam Optimizer: Learning Rate:= 0.0001, beta 1 = 0.5,beta_2 =0.999

Spectral Normalization is used for all Convolution and Fully Connected layers in the Discriminator

and the Generator

For a number of training iterations, do:
Begin
{

Fort=0,....,ndo: \\ Training the discriminator

Sample {Xpign(iy} ~ Pra batch from real data \\ images at high resolution

Sample {Xjow (i)} ~ Pra batch from a real date \\ images at low resolution
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La®® =Ex - p nign[max(0,1-D(x))] + Ex - p jow[max(0,1+D(G(x")))]

Update the weights of the discriminator using Adam Optimizer
For t =0,....,n do: \\ Training the generator

Sample {Xjow } ~ Pr a batch from a real date \\ images at low resolution

Lg™™"= Exr~ p nign[-D(G(x))]
Update the weights of the generator using Adam Optimizer

}

At the time of inference

For number of samples do:

{

Sample {Xpignci)} ~ Pra batch from real data \\ images at high resolution
\\ Generate super Resolution images by providing high-resolution images as inputs

Xsuper(i) = G(Xnigh(iy)

}
End

Return High Resolution Image

5.2.4 Experimental Results and Discussion of proposed SSR-GAN model
5.2.4.1 Dataset

Images with a size of 256x256 are used as inputs in our experiment. In our paper, we use approximately

3000 Sentinel-2 images that were used to construct the dataset. Sentinel-2 satellites for remote sensing

capture images of various sorts of landscapes, including lakes, terraces, villages, snow-capped

mountains, plateaus, etc. Resolution, incidence, and the geographic makeup of that area are only a few

of the image details. There is no denying the enormous variety of these pictures. We will be using data

from the previous 20 years for various geographical locations of India because the satellite has a 12-

day return cycle. The majority of the area we consider in our study is quite prone to flooding. Kerala

floods occur, just like in the Ganga basin. Images from before and after flood occurrences are part of

our dataset.
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5.2.4.2 Evaluation Metrics

The information contained and the feature similarity of the two images is compared as the foundation
of the comprehensive image quality evaluation measures. Picture pixel statistics are ideal for using
conventional image quality evaluation measures like peak signal-to-noise ratio (PSNR), The Structural
Similarity Index Measure (SSIM), MULTI-SCALE SSIM (Structural Similarity Index Measure), and
mean square error (MSE). The similarity in structure Structure-based similarity is the basis for Index

and peak signal-to-noise ratio.
e Peak signal-to-noise ratio

Peak Signal-to-Noise Ratio (PSNR) is a metric used to compare the quality of a compressed or
reconstructed picture or video signal to its source. it provides a numerical number that quantifies the
quality of the compressed or reconstructed picture or video in comparison to the original. PSNR is
commonly represented in decibels (dB) and is derived using the MSE between the original and the
compressed or reconstructed image. The greater the PSNR value, the closer the compressed or rebuilt

image is to the original, and thus the higher the quality of the compression or reconstruction.

PSNR = 20log,, (%) (5.5)

In above equation 5.5, MAX; is the image or video's highest possible pixel value, typically 255 for 8-

bit pictures, and MSE is the mean squared error
e Structural similarity index measure

The Structural Similarity Index Measure (SSIM) is a popular picture quality metric for determining the
similarity between two images. SSIM compares the structural data in a reference image to structural
information in a distorted image and generates a score indicating the similarity between the two images.
The score runs from 0 to 1, with 1 signifying that the two photos are a perfect match. Equation 5.6

shows the mathematical formula of SSIM

SSIM(x, y) = [L(x, y)I*[e(x, Y)I*[s(x, )T (5.6)

The two images being compared are x and y. a, § and y are constants that indicate how important each
aspect is. [ for brightness, c for contrast, s for contrast, and s stands for structural comparison between

x and y images
e  Multi-scale SSIM

Multi-scale SSIM (Structural Similarity Index Measure) is a metric for assessing the similarity between
two photographs. It is an expansion of the classic SSIM measure that takes into consideration the human

visual system's multi-scale nature. The multi-scale SSIM works by decomposing images into many
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scales using a Gaussian pyramid and then computing the SSIM index at each scale individually. This

enables the metric to extract both global and local structural details from images.

MSSIM(x, y) =[ L, (x, )1 - TIM4[C;(x, WP [5G 0]” (5.7)

In equation 5.7, M corresponds to the lowest resolution (i.e. the times of down samplings performed to

reduce the image resolution), while j = 1 corresponds to the original resolution of the image.
e Mean squared error

The Mean Square Error (MSE) can also be used to determine how comparable the two images are. In
the context of image processing, MSE calculates the average squared difference between the pixel
values of two pictures. It is frequently used as a metric to judge the quality or resemblance of

compressed or rebuilt images. A lower MSE is preferable.
1 A
MSE = —— 34 % [§(n,m) — y(n,m)]? (5.8)
Above equation 5.8 shows MSE between two images such as y (x, y) and S ¥ (X, y).

5.2.4.3 Analysis of Results

Table 5.1, shows the statistical measures of the existing model with our proposed model. The parameters

we consider for comparing performance are PSNR, SSIM, MSSIM, and MSE.

Table 5.1: Performance comparison table of the Existing model with our proposed model

Method PSNR? SSIM 1 M-SSIM 1 MSE |
Bilinear interpolation 26.89 0.72 0.89 0.030
Bicubic interpolation 26.34 0.67 0.89 0.031

Nearest Neighbor 27.21 0.61 0.84 0.053
interpolation

Proposed Model 28.11 0.81 0.97 0.012
(SSR-GAN)

This can be observed that our proposed model outperforms. Our proposed model has having best PSNR,
SSIM, and MSSIM values compared to other existing models. The MSE value of our model is low,

which indicates our model performs better.
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Figure 5.5: Comparative image analysis between existing approaches and our proposed model (A) input
raw images (B) output images of Bicubic model (C) output images of Bilinear model (D)output images
of Nearest Neighbour model (E)output images of our proposed (SSR-GAN) model

In the figures 5.5, we have shown the PSNR, SSIM, MSSIM, and MSE of our proposed model and
existing traditional techniques and compared their results. The size of the original input image is
(256*256) resolution, and the predicted output is (512*512) resolution. In Figure 5.6, we calculate the
PSNR and provide a comparison between the existing approaches with the proposed approach. We run
our model for 200 epochs, the epochs are shown on the X-axis, while the ratio's value is listed on the
Y-axis. As shown in the above diagram, our proposed model provides a better peak signal-to-noise ratio
value. In Figure 5.7, we provide a comparison between the existing approaches with the proposed

approach. We run our model for 200 epochs; the X axis shows the number of epochs, and the Y axis
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shows the percentage of the Structural Similarity Index. As the value is higher, the model is considered

more accurate.
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Figure 5.6: The graph representation between PSNR and Epochs
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Figure 5.7: The graph representation between SSIM and Epochs
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Figure 5.8: The graph representation between MSSIM and Epochs
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In above figure 5.8, we provide a comparison between the existing approaches with the proposed
approach. We run our model for the 200 epochs, The X-axis contains the number the epochs and Y-axis
contains the percentage of the Multi-scale Structural Similarity Index. As the value is higher the model

1s considered more accurate.
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Figure 5.9: The graph representation between MSE and Epochs

In above figure 5.9, we provide a comparison between the existing approaches with the proposed
approach. We run our model for 200 epochs, where the X-axis represents the number of epochs while

the Y-axis represents the percentage inaccuracy.
5.3 Introduction to Adaptive Histogram Equalization Related Techniques

In image processing techniques, image quality improvement is one of the vital elements. Image
enhancement is a technique to remove noise from the raw image and highlight the required information
in the target image. For enhancement purposes, Spatial Domain Methods were used and compared based
on the output image in our work [167].
Spatial domain Methods: In spatial domain methods, the enhancement approach is directly applied to
the pixel of the image by manipulating the value stored in the pixel to get the desired result.

S =T(r) (5.9)

In equation 5.9, T is the transformation that interprets pixel value in the desired pixel value S.

5.3.1 Histogram Equalization (HE)

Image enhancement is considered one of the essential sections of image processing. Its objective is to
achieve intensity mapping functions, such as distribution entropy the output intensity can be expanded.
Although it's a proper utility, HE is the completely inconsiderate intensity with a large pixel population,
even if they are slightly visible. In this work, the author has proposed an approach to improve image

quality using the histogram equation and spatial filtering. HE is used to increasing contrast.
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Figure 5.10: Block diagram of the Histogram Equalization SAR images

The image extends the intensity values over the entire range. It is a commonly used image enhancement
method for adjusting the contrast of the image by using its histogram [168]. In this approach, the gray
level transform is applied to the raw image, after then to maximize the image contrast and try to flatten
the resulting histogram. In this, HE is used to enhance the quality of medical images. In the case of
Histogram Equalization, it spreads the color intensity value over the full range [169]. In the Figure 5.10

basic steps of HE is explained in the form of the block diagram is explained.
e Data collection: For improving the quality of the image for HE, we first acquire the raw image.
For this, data is collected from various resources according to need. We focus on flooded areas,

so we consider SAR images for the flooded area.

e (Calculate Gray level: In our approach of enhancement for HE, we apply it to the gray-scale
image. For that, we convert the image to a gray- scale value. The color range of the gray-scale

value is lies between min.0 (black) to the max. 255 (white).

e (Calculate the PDF: Then for HE, the probability density function (PDF) is modified accordingly
for the requirement. To make it easier, this technique converts the PDF of the image into equal
PDF from lower pixel value to higher pixel value. When we talk about the digital image, the
probability density function is a discrete function. Let's assume a raw image (x); for example,
the probability density function is calculated using probability-based on histogram P(rk) as
follows. In equation (6), we show the PDF for HE.

totel pixels with intensity ry

PDF (1) = P, = (5.10)

totel pixel in image x

e (Calculate the CDF: The cumulative density function (CDF) determines the probability of seeing
certain pixel intensities. From this probability density function, we calculate the CDF and the

intensity (rk) of the color fluctuates between 0 (black) to (L-1) white.
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CDF (X) = ¥k=o P (1) (5.11)

In equation 5.11, CDF is calculated where P(rk) is the probability for the pixel of intensity. After this,
we finally get the enhanced image. The final image is also on a gray scale. Invisible information also

appears in the final resultant image.

5.3.2 Adaptive Histogram Equalization

When we talk about Histogram Equalization, it focuses on the global contrast of the image, so this is
not efficient in all cases. In Histogram Equalization, or we can say Global Histogram Equalization,
improves the contrast of the image, but it may lead to the loss of information because it does not confine
to a particular region [170]. So, in the case of the HE, this approach is efficient for image enhancement,

but it may result in the loss of some useful information.

Collect Raw Image
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Probability Density
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Clip the pixel

Obtam the output image

Fig. 5.11: Flow chart of Adaptive Histogram Equalization of SAR images

AHE is widely used to overcome this issue of data loss. It is better than the ordinary histogram-based
approach to improving local contrast and edges in specific areas of the image. In the following, we

explain how the AHE is applied to the image. To overcome this issue, the AHE is used. In this case, the
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image is divided into small blocks named "Tiles," and then HE is applied to every block. So, in this
case, the histogram is confined to small blocks. Suppose that noise is there in the block, then it will be
amplified. To overcome this issue, contrast limiting is applied. Before applying the AHE on the gray-
scale image, the Contrasts of the image are limited by applying the CDF. This threshold value depends
on the nearby pixel or the size of the histogram of the image [171]. If a histogram value is raised above
the specified contrast threshold, then those pixels are evenly clipped and distributed before applying
histogram equalization; after equalization, bilinear interpolation is applied to remove artifacts in tile
boundaries. In Figure 5.11, we explain the workflow of the adaptive histogram equalization technique.
In the below flow chart, we explain the working of the AHE. The raw image is converted into tiles, and
the equalization technique is applied. Based on the threshold is the condition is satisfied, we get the

desired result; otherwise, clip the pixel, and then equalization is applied till getting the final result.
5.3.3 Result Analysis on Adaptive Histogram Equalization

As illustrated in Figures 5.12 to 5.15, the images enhanced using Histogram Equalization (HE) and
Adaptive Histogram Equalization (AHE) techniques are presented. In the AHE method, the image is
divided into smaller regions (tiles) of size 8x8. Each tile is processed individually, which allows for
better local contrast enhancement. The output of both techniques is shown not only through visual
images but also supported by their respective histogram graphs. These histograms help in analyzing the
pixel intensity distribution across gray-scale levels. The graphical comparisons indicate that AHE
outperforms standard HE in terms of preserving and enhancing image details. While HE improves
overall image contrast, it may lead to the loss of important local features. AHE addresses this limitation
by enhancing contrast locally, thereby retaining more critical image information. The histogram plots
of the output images further validate that AHE provides a more detailed and balanced contrast
enhancement. In these graphs, the X-axis represents gray-scale values and the Y-axis represents pixel

intensity.
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Figure 5.12 (A) Raw image, (B) Enhanced by HE, (C) Enhanced by AHE, (D) Histogram of basic image
& Histogram after HE (F) Histogram after AHE [172]
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5.4 Chapter Summary

This chapter presented a comprehensive study on the application of Artificial Intelligence (Al)
techniques for enhancing flood detection through the improvement of Synthetic Aperture Radar (SAR)
images. Floods, being among the most frequent and destructive natural disasters, require accurate and
timely detection mechanisms for effective disaster response and mitigation. SAR imaging, due to its
capability to operate under all weather and lighting conditions, has been widely employed in flood
monitoring. However, the utility of SAR images is often constrained by issues such as low contrast,
speckle noise, and limited spatial resolution. To address these challenges, the chapter explored two Al-
driven approaches. First, Adaptive Histogram Equalization (AHE) was investigated for its ability to
enhance image contrast by operating on localized regions of SAR images. Compared to traditional
Histogram Equalization (HE), AHE was shown to preserve essential structural and contextual details,
making it more suitable for identifying flooded regions with higher precision. Second, the chapter
introduced a deep learning-based super-resolution model named SSR-GAN (Satellite Super Resolution-
based Generative Adversarial Network). The SSR-GAN model leverages a generative adversarial
framework, including a generator, a discriminator, and a perceptual loss component based on a pre-
trained VGG network. This model was designed to reconstruct high-resolution images from low-
resolution SAR inputs, thereby improving visual clarity and enabling finer delineation between flooded
and non-flooded areas. Experimental evaluations demonstrated that the combination of AHE and SSR-
GAN significantly enhances the interpretability and quality of SAR images. The SSR-GAN model
outperformed traditional interpolation methods in terms of PSNR, SSIM, MSSIM, and MSE metrics,
confirming its effectiveness for flood image enhancement. Overall, the integration of Al with remote
sensing technologies presents a promising direction for the development of automated, accurate, and
scalable flood detection systems. The insights gained from this chapter contribute to the broader

objective of leveraging Al for environmental monitoring and disaster management.
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CHAPTER 6
CONCLUSION, FUTURE WORK, AND SOCIAL IMPACT

6.1 Conclusion

In this research systematically addressed critical challenges in flood prediction, detection, and
classification by leveraging advanced Artificial Intelligence (Al) techniques, particularly deep learning,
evolutionary optimization, and image enhancement methods. The primary objective was to develop
intelligent, accurate, and scalable systems capable of supporting real-time decision-making for disaster
management authorities during flood events. Four novel models were proposed and rigorously

evaluated, each targeting specific aspects of the flood management pipeline.

The first contribution, Flood-FireNet, introduced a hybrid classification model combining the Adaptive
Firefly Algorithm (AFA) with a transformer-based architecture. AFA optimized high-level feature
selection, while the transformer effectively captured spatial dependencies within satellite imagery. This
model achieved a remarkable accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and F1-score
of 96.92%, surpassing traditional and transformer-based baselines such as ResNet-18 and Vision

Transformer (ViT).

The second contribution, MoSWIN, integrated Monkey Search Optimization (MSO) with SWIN
Transformers to enhance the classification of flood and non-flood images. MSO efficiently extracted
optimal feature subsets, while the SWIN transformer’s hierarchical attention mechanism enabled robust
spatial representation learning. The MoSWIN model achieved an accuracy of 96.53%, significantly
outperforming benchmark models like ResNet-18 (85.37%) and ViT (90.24%) in terms of classification

accuracy, recall, and F1-score.

For flood prediction in urban environments, a third model, FloodCNN-BiLSTM, was developed. This
hybrid deep learning model combined the spatial feature extraction capabilities of CNNs with the
temporal sequence learning strength of BiLSTM networks to forecast flood events based on
environmental sensor data. The model demonstrated superior forecasting accuracy, achieving 97.30%
on Dataset 1 and 98.60% on Dataset 2, with consistently high precision, recall, and F1-score values,
outperforming classical ML models such as SVM, DT, ANN, and even standalone LSTM or CNN

architectures.

The fourth contribution focused on enhancing the visual quality of flood images using the SSR-GAN
framework, which employed a Super-Resolution Generative Adversarial Network to improve the spatial
resolution of Synthetic Aperture Radar (SAR) images. SSR-GAN significantly improved performance
metrics such as Peak Signal-to-Noise Ratio (PSNR), Structural Similarity Index (SSIM), and Multiscale
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SSIM, while reducing Mean Squared Error (MSE) compared to traditional interpolation and
enhancement techniques. This enabled more accurate delineation of flooded zones from low-resolution

SAR inputs.

Collectively, these models not only delivered state-of-the-art performance across multiple metrics but
also showcased the potential of combining deep learning architectures with bio-inspired optimization
and image enhancement techniques. The research paves the way for the development of intelligent, real-
time, and deployable solutions for flood disaster management, offering valuable tools for environmental

agencies, insurance sectors, and urban safety systems.

6.2 Limitations of the Work

While the developed models achieved significant improvements, several limitations were
observed:
e Data diversity and size: Some models relied on datasets with limited geographical and

temporal diversity, affecting their generalizability to unseen flood scenarios.

e Optimization complexity: Models such as MoSWIN and Flood-FireNet required fine-tuning

of hyperparameters for swarm-based algorithms, which is computationally intensive.

¢ Resource constraints: Deploying deep learning models in real-time applications may face

bottlenecks due to hardware limitations in edge or low-resource environments.

¢ SAR image processing: SSR-GAN’s effectiveness is dependent on careful hyperparameter
tuning and high-resolution SAR data availability, which may not always be feasible in

emergency contexts.

6.3 Potential Industrial Applications

The outcomes of this research possess significant industrial relevance and practical applicability across

multiple sectors. The developed models and techniques can be integrated into the following areas:

e Smart City Surveillance and Urban Safety Systems: Integration with CCTV and sensor
networks for real-time flood detection and classification in urban areas. Automated alerts to
municipal authorities and emergency response teams to ensure rapid evacuation and traffic

control.

e Insurance and Risk Assessment: Automated flood damage detection using satellite and drone
imagery for faster insurance claim verification. Predictive modeling for risk profiling and

premium calculation based on historical flood patterns.
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o Disaster Management and Emergency Response Platforms: Deployment in centralized
disaster response systems to provide early warnings and real-time situation awareness. Decision

support for resource allocation, rescue operation planning, and public safety communication.

¢ Remote Sensing and Environmental Monitoring: Enhanced flood zone classification using
satellite and SAR image data for national meteorological and space agencies. Continuous

monitoring of water bodies and terrain changes to update flood vulnerability maps.

¢ Urban Water Resource and Infrastructure Planning: Utilization of flood prediction models
for urban planning, stormwater drainage design, and green infrastructure deployment. Support

for zoning regulations and construction guidelines in flood-prone areas.

e Agriculture and Crop Damage Estimation: Remote sensing-based identification of flood-
affected agricultural regions for compensation and replanting strategies. Integration with smart

irrigation systems to manage water resources post-flood.

¢ Telecommunication and Utility Services: Risk assessment and pre-emptive service shutdown
in flood zones to protect infrastructure like power lines and communication towers. Planning

for resilient network layouts based on predicted flood-prone zones.

e Transportation and Logistics: Real-time flood mapping to reroute traffic and logistics
operations, minimizing delays and ensuring safety. Integration with smart transportation

systems for adaptive route planning during flood events.

e Public Health and Sanitation: Predictive identification of flood-affected areas for timely
deployment of sanitation measures and healthcare facilities. Monitoring potential outbreaks of

waterborne diseases post-flood through environmental parameters.

¢ Civil Engineering and Infrastructure Resilience: Use in structural design assessments for
bridges, roads, and buildings in flood-prone regions. Risk modeling for infrastructure

maintenance prioritization based on flood susceptibility.

These industrial applications demonstrate the transformative potential of the proposed models in
addressing real-world flood management challenges by enabling intelligent automation, proactive

planning, and rapid response mechanisms.

6.4 Future Work

Several future directions emerge from this research:

e Multimodal Data Integration: Incorporating radar, infrared, and real-time sensor data to

enhance model generalizability across varying flood conditions.

111



¢ Ensemble and Hybrid Models: Fusion of multiple Al models and optimization strategies (e.g.,

combining MSO with Genetic Algorithms or PSO) to improve robustness.

e [Edge Deployment and Cloud Integration: Real-time deployment on mobile, IoT, or edge

devices using optimized, lightweight versions of deep learning models.

e 3D and Time-Series Analysis: Applying the models to temporal flood data or 3D mapping for

dynamic monitoring.

e Cross-Domain Applications: Extending the frameworks to domains such as wildfire detection,

medical image enhancement, or climate change monitoring.

6.5 Societal Impact

The research outcomes present significant societal benefits:

o Improved Disaster Response: Accurate flood classification and forecasting facilitate faster,

more targeted relief efforts, reducing casualties and losses.

e Public Awareness and Engagement: Mobile/web apps powered by these models can provide

real-time flood alerts to citizens, enhancing community preparedness.

e Data-Driven Policy Making: Government bodies can use these tools to design data-driven

urban planning and disaster resilience strategies.

¢ Support for Vulnerable Populations: Accurate predictions help NGOs prioritize resources

and protect economically and socially disadvantaged groups during floods.

6.6 Sustainable Development Goals (SDGs) Addressed

In this research significantly contributes to the achievement of several United Nations Sustainable
Development Goals (SDGs) through the development and application of advanced Al techniques for

flood detection, prediction, and classification:
1. SDG 11: Sustainable Cities and Communities

e Enhances urban resilience by enabling real-time flood detection and early warning

systems.

e Supports sustainable infrastructure planning by identifying flood-prone zones using

intelligent prediction models.

e Aids city planners in developing adaptive urban designs that withstand climate-induced

disasters.
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2. SDG 13: Climate Action

3. SDGY:

4. SDG3:

5. SDG6:

Promotes proactive climate disaster response through Al-driven forecasting and

decision support systems.

Enables governments and environmental agencies to implement timely mitigation and

adaptation strategies.
Provides scientific insights to strengthen national climate resilience frameworks.
Industry, Innovation, and Infrastructure

Introduces novel Al-optimization hybrid models that foster innovation in disaster risk

reduction technologies.

Supports the development of intelligent infrastructure monitoring tools that predict and

manage climate-related disruptions.

Encourages industrial applications in insurance, transportation, and utilities for risk-

aware infrastructure planning.
Good Health and Well-being

Helps prevent flood-induced health hazards by enabling early evacuation and public

health interventions.

Assists in maintaining the continuity of healthcare services during disasters through

predictive modeling.

Reduces psychological and economic stress on communities by providing reliable and

timely alerts.
Clean Water and Sanitation

Enhances water resource management by predicting flood events that could lead to

contamination.
Supports post-flood sanitation strategies by identifying affected zones with precision.

Contributes to the protection of clean water sources from flood-related pollution and

infrastructure damage.
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Abstract

Floods, a common natural disaster, it affects more than half of all natural disasters, primarily due to high floods, high tides.
heavy rainfall, and human activity. Distinguishing between the flooded and non-flood areas during the disaster is dependent
on the quality of images collected from different sources. Since synthetic aperture radar (SAR) images can see through
cloud cover and capture photos of the Earth’s surface during bad weather, they are excellent for detecting floods. Image
Enhancement is the approach that helps to increase the resolution of the SAR images, which helps to more accurately
categorize the flooded and non-flooded areas. The quality of satellite and aerial imagery can be enhanced to recognize flooded
and non-flooded areas. Our proposed approach uses a super-resolution technique to enhance the resolution of SAR images. We
develop a super resolution-based generative adversarial network, or SSR-GAN (Satellite Super Resolution-based Generative
adversarial network). In our approach to estimating generative models through an adversarial process, we concurrently train
two different models: a generative model G and a discriminative model D. An image with low resolution is transformed
into high pixel density. The peak signal-to-noise ratio (PSNR), the structural similarity index(SSIM), Multiscale Structural
Similarity (MSSIM) and mean squared error (MSE) are the performance metrics used to compare the interpolation methods
for enhancing resolution. In comparison to the existing approaches with our proposed model SSR-GAN, the values of PSNR,
SSIM, and MSSIM are greater, and the MSE error value is lower.

Keywords Flood disaster - Generative adversarial network - Image enhancement - Super-resolution

1 Introduction

Flood catastrophes pose a significant threat to urban areas,
posing a greater threat to diversity and community than other
natural or man-made disasters. Vulnerable cities worldwide
face extreme tides, hurricanes, river overflow, and inadequate
drainage systems. Numerous cities across the globe are vul-
nerable to this threat, whichis mostly caused by isolated areas
of intense precipitation. Because they are unable to handle the
floods caused by heavy precipitation and inadequate drainage
systems frequently cause floods.
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1.1 Problem statement

A flood occurs when the water level of the river rises above
the river bank due to the flow of the river. High river levels
are typically caused by river precipitation and the back-
water resulting from high tides near the river’s mouth [1].
Floods cause significant financial losses and require effi-
cient detection and prediction systems. Accurate mapping
using SAR photos and satellite imagery is crucial for detect-
ing and predicting flooded areas. Detecting urban flooded
areas helps cities evolve flood maps, reducing risk. Mapping
flooded areas is complex due to discontinuous, shallow, and
ephemeral flooding [2]. For better disaster response and con-
ditional awareness on the ground is very essential. Nowadays
Satellite imagery is crucial for disaster response, with Syn-
thetic Aperture Radar (SAR) being a promising technique for
detecting Earth’s surface, even in cloudy environments, and
studies have shown its effectiveness in detecting floods [3].
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Long short-term memory

A disaster is a severe event that occurs on a short period but has highly damaging and long-lasting effects on
society. Disasters can be broadly categorized into natural and man-made events. Among natural disasters, floods
are some of the most common disaster. As climate change accelerates, floods are expected to become more
frequent and severe, highlighting the need for a deeper understanding of their causes, effects, and response
strategies. Modern technologies, including machine learning, are increasingly being used to predict the occur-
rence of floods. Accurate forecasting requires large volumes of data collected from sensors deployed in various
locations. Machine Learning (ML) models are well-suited for flood prediction due to their ability to handle
sequential data and long-term dependencies. In this paper we present a hybrid deep learning model that com-
bines Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM) networks.
The CNN component is responsible for extracting spatial features, while the BiLSTM processes the sequential data
to classify the likelihood of flood events based on environmental parameters. The proposed FloodCNN-BiLSTM
model has been validated on multiple datasets, achieving superior performance compared to traditional ma-
chine learning approaches. It attained 97.3 % accuracy on Dataset 1 and 98.6 % on Dataset 2. Evaluation metrics
such as accuracy, precision, recall, and Fl-score confirm the robustness and effectiveness of the model.
Comparative analysis with other models used in this research demonstrates the superiority of our proposed
approach.

1. Introduction disasters like floods and improving early warning systems. Natural di-

sasters such as floods, earthquakes, and tsunamis are increasing in fre-

A disaster is a severe event that disrupts communities and causes
significant harm to human life, the environment, and infrastructure.
Floods, a common natural calamity during monsoon seasons, pose sig-
nificant risks to areas near lakes, rivers and coastal zones. According to
the United Nations, disasters exceed the coping capacity of affected
communities, emphasizing the need for advanced management strate-
gies. Recent technological advancements have improved flood predic-
tion through hydrological models, remote sensing, machine learning,
and big data analytics. These innovations offer better accuracy, longer
lead times, and enhanced geographic resolution, enabling early detec-
tion of disasters even in remote areas. Ongoing research in artificial
intelligence (Al), big data analytics, and the Internet of Things (IoT)
shows promise for revolutionizing disaster management. Integrating
these technologies can enhance predictive models and decision-making
systems, offering substantial benefits for communities and businesses.
With the rise in weather-related incidents due to global climate change,
these advancements are critical for mitigating the impacts of natural
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quency, largely due to global climate change [1]. Flood disasters cause
massive loss of life, biological diversity, and economic damage, causing
significant harm in both developing and developed countries [2].
Among all natural disasters like earthquakes, volcanoes and tsunamis
etc., flood occur most frequently. These disasters cause major human
casualties, displacement, and damage to livelihoods [3]. A survey found
that a global average of 50 million dollars is lost in economic activity
each year as a result of floods. There are approximately 100 million
flood victims [4]. However, due to rapid environmental change, the
process of detecting and predicting the flooded area takes time and is
quite difficult. Consequently, many current flood prediction models rely
on simple assumptions and are mostly data-driven, which may restrict
their accuracy and flexibility [5].

1.1. Role of DL in flood prediction

Early warning and flood prediction systems greatly benefit from deep
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Abstract

Floods pose significant threats to both human life and infrastructure, necessitating timely
and accurate monitoring for effective disaster management. Advancements in computer
vision and machine learning have enabled the development of sophisticated systems for
flood classification using imagery. In this study, we introduce MoSWIN, a novel frame-
work that integrates Monkey Search Optimization (MSO) with the Swin Transformer to
enhance the accuracy and robustness of flood classification models. The Swin Transform-
er, with its hierarchical architecture and shifted window mechanism, excels at capturing
both local and global features in flood-related imagery. MSO is employed to extract high-
level features from input images, facilitating improved feature engineering. Subsequently,
the Swin Transformer performs classification tasks on the features extracted through MSO.
Our proposed MoSWIN model outperforms several existing state-of-the-art approaches,
achieving an accuracy of 96.53%. This indicates a significant improvement in image clas-
sification and optimization performance, leading to more effective flood detection. Experi-
mental results demonstrate that MoSWIN can accurately distinguish between flooded and
non-flooded areas, surpassing the performance of conventional methods.

Keywords Convolutional neural network - Flood detection - Image segmentation -
Monkey search optimization - Resnet-18 - SWIN transformer
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CNN Convolutional Neural Network

()% Computer Vision

DAM-Net  Differential Attention Metric-Based Network
DCNN Deep Convolutional Neural Network

DNN Deep Neural Network
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Abstract

Floods are among the most devastating natural disasters, posing serious threats to human life, infrastructure, and ecosystems.
Accurate and timely classification of flooded areas is essential for effective disaster response. This study proposes Flood-
FireNet, a novel hybrid model that integrates a transformer-based neural network with the adaptive firefly algorithm (AFA)
to enhance flood detection from satellite imagery. The AFA is used to optimize feature selection by identifying the most
informative high-level features, while the transformer efficiently captures spatial patterns and long-range dependencies for
precise classification. This combined architecture represents the core innovation of the study, leveraging the strengths of
both evolutionary optimization and deep learning. Experimental results demonstrate that Flood-FireNet achieves superior
performance, with an accuracy of 97.85%, precision of 98.12%, recall of 95.73%, and an F1-score of 96.92%, outperforming
several state-of-the-art methods. An ablation study highlights the individual and joint contributions of AFA and the transformer
model. Additionally, statistical validation using the paired T-test and ANOVA (p < 0.05) confirms the model’s effectiveness.
Overall, Flood-FireNet offers a robust and scalable solution for flood classification tasks, supporting faster and more reliable
decision-making in disaster management systems.

Keywords Adaptive firefly algorithm - Convolutional neural network - Flood classification - SWIN transformer

1 Introduction vast regions [2, 3]. Human-induced factors, such as insuffi-
cient flood control infrastructure and unsustainable land use
practices, further amplify flood risks [4, 5]. Urbanization, in

particular, has heightened flood susceptibility in metropolitan

Floods cause significant economic and environmental dam-
age globally, endangering infrastructure and human lives.

Rapid identification of flooded regions using satellite or
aerial imagery is crucial for effective disaster response and
management. Image segmentation is crucial for identifying
flood-affected areas. Annual losses from natural disasters and
climate change exceed $500 billion [1]. Within the domains
of computer vision and remote sensing, flood image classi-
fication has emerged as a critical research area, employing
advanced machine learning and deep learning techniques to
automatically analyze and categorize flood-related imagery.
Flooding stands out as one of the most destructive natu-
ral disasters, consistently causing extensive damage across
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areas by expanding impermeable surfaces, which disrupt nat-
ural drainage systems [6]. Among the diverse types of floods
are sewer floods, urban floods, flash floods, glacial lake out-
burst floods, and coastal floods, as river floods are especially
devastating, affecting large areas along riverbanks and incur-
ring substantial economic losses [7]. Although completely
preventing floods remains unfeasible, their impacts and asso-
ciated losses can be mitigated [8]. Strategies such as water
resource management and flood storage have proven effec-
tive in some regions, though their success hinges on specific
hydrological and environmental conditions. Real-time flood
management and early warning systems depend on timely
situational data, traditionally supplied by simulation models
reliant on available datasets. However, the scarcity of empir-
ical data has constrained the utility of these conventional
approaches [9].

Recent research has actively explored machine learning
(ML) and deep learning (DL) methodologies to enhance flood
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Abstract—Nowadays, flood is the most frequently occurring
natural disaster among all-natural disasters. A flood is a
disaster that causes huge causalities. Recovery from these huge
causalities is a very serious concern for developing countries.
This research work focuses on flush food, which is a very
common disaster that occurs due to heavy rainfall or some
manmade reasons. An Image of the flooded area provides
useful information for taking necessary precautions in that
particular situation. If the captured image is of poor quality,
then isn't provide sufficdent information. This paper considers
the Synthetic Aperture Radar (SAR) images of the flooded
area and it is mainly focused on increasing the image's visual
quality. There are various image enhancement techniques
available; this paper has used the histogram-based image
quality improvement technique done by the Histogram
Equalization (11E) method. To defeat the limitation of IIE,
another enhancement approach named Adaptive Histogram
Equalization (AHE) is also used. In many cases, HE is
increasing the quality of the image, but on the other side over
brightness is causes the loss of some useful background
information. In the AHE technique, the image is divided into
small blocks: an equalization function is applied on each block.
Both the techniques are compared on the various images of the
flooded area, and the result shows that AHE provides better
results.

I\eywm'ds— Adaptive Histogram Equalization, Contrast
Flood 19 Histogram Egqualization,
Image Processing, Spatial Domain

I INTRODUCTION

The disaster causes a lot of damage and serious disruption.
A disaster is an unfortunate cvent that causes serious

disruption to human society. A natural disaster is a result of

the natural imba lance that results in floods, earthquakes, etc.
Flood is a very common issue in many countrics. Several
parts of India get highly affected by the flood. In tumn, it
disturbs the economic loss and human resources, affecting
developing countries like India.

The purpose of image enhancement is to extrude the
important details hidden in the image and to increase the
contrast of the image with less dynamic range. Several
methods are available to enhance image quality, some of
them working on the spatial domain and some on the
[requency domain [1].

This paper focuses on cnhancing the flood image to locate
the flooded area in a better way. Synthetic Aperture Radar
(SAR) imaging is important [or Disaster, Army, and Civil
applications such as target monitoring and classification.
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The accuracy of the application decreases with the presence
of Speak and poor resolution of images created from SAR
image Acquisition equipment [2]. Artificial intelligence (AI)
technique for understanding remote sensing and provides
very successful results. Besides, various data collecting
techniques such as (SAR) are used in many applications. A
satellite is an essential device that provides an image of the
Farth's surface. When we talk about natural disasters such
as hurricanes, tsunami, or floods, they are mostly
surveillance by SAR images. [3]

e In the context of image quality improvement
techniques, T has gained the most consideration
due to its smooth implementation approach and
highly ellicient result.

e In our paper, we use HE and the AHE techniques
to enhance the SAR images of the various flooded
location.

e Our implemented methods for image enhancement
are efficient, and experimental results show with
different images that this method is elfective for
image enhancement.

In the above scction, we introduce our work and the
remaining part of the paper contains. Section II includes the
literature survey followed by section III, which includes the
detailed cxplanation of our implemented methodologies.
Section IV includes the analysis of the resulls of
implemented techniques. Tast, section V, covert the
summary and conclusion of our paper; we also include
[uture scope for getting better results.

II. RELATED WORK
This part of our paper is covered the previous work done to
get better quality of the image. According to the paper, the
author analyzes the methods for reducing noise, Particle
Swarm Optimization, and mirror-cxtended optimization use
to enhance satellite images. In this approach, the author
develops a gain [function that merges the [eature
cnhancement alongside the speckle reduction [4]. Tn the next
approach we discuss in our study, the author presents a
method for enhancement of SAR image based on the
Memetic  Algorithm and Non-subsample Contourlet
Transform (NSCT). Tirst, a better development Function
that integrates macular reduction with the characteristic
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An Analysis of Machine Learning )
Techniques for Flood Mitigation

Vinay Dubey and Rahul Katarya

Abstract Disaster is a very severe dispersion that occurs for a very small period,
but it makes a huge impact on the society. Nowadays, natural hazards such as floods,
earthquakes, and volcanic eruptions are increasing around the world. Flooding among
all disasters is a very frequent disaster in the last few years. In this paper, we review
some machine learning technologies of flood detection.

Keywords Flood predicting - Flood forecasting + Machine learning

1 Introduction

Disaster is defended as an event caused by natural destructive factors and divided
either as geographical disasters like climate disasters like floods or earthquakes which
result in very adverse effects on organisms. Disaster is a big threat to the working
communities, the economy of the country, and human society. Disasters are either
natural or human generated like a flood. Flood is a natural disaster depends on the
excess rainfall and geographical location. Itis now a very frequently occurred disaster.
Floods are the most destructive of natural disasters, causing extensive damage to
human life, infrastructure, agriculture, and socioeconomic system [1]. India is also
suffering from frequent occurring flood events that endanger the lives of thousands
and make one huge loss to our economy. For a developing country like India, the
reason for the loss of disasters like floods is huge.

e According to IoT white paper data, 12% of land in India is vulnerable to floods.
According to statistics, the annual economic loss due to flood disasters in the
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