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ABSTRACT

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized
by challenges in social communication, restricted interests, and repetitive behaviors. The
condition manifests in early childhood and persists throughout life, impacting an individual’s
ability to interact with their environment. ASD is highly heterogeneous, with symptoms and
severity varying widely across individuals, making its diagnosis and management particularly
challenging. Early and accurate identification of ASD is crucial, as timely interventions can
significantly improve developmental outcomes and enhance the quality of life for those
affected. The traditional approach to diagnosing ASD primarily relies on clinical observations,
caregiver reports, and standardized behavioral assessments. While effective in many cases,
these methods are often time-consuming, subjective, and dependent on the expertise of
clinicians. This reliance on subjective evaluation introduces variability and delays in diagnosis,
particularly in regions with limited access to specialized healthcare services. Consequently,
there is a growing need for innovative solutions to improve the efficiency and accuracy of ASD
detection.

Artificial Intelligence (Al) has emerged as a transformative force in healthcare, offering
powerful tools for analyzing complex and diverse datasets. By leveraging Al techniques, it is
possible to identify patterns and relationships within data that might not be readily apparent
through traditional analysis. Machine learning and deep learning, subsets of Al, have
demonstrated significant potential in various domains, including image analysis, natural
language processing, and predictive modeling. These capabilities make Al particularly well-
suited for addressing the challenges associated with ASD diagnosis. Al-driven approaches
offer the advantage of objectivity, scalability, and the ability to integrate multiple data
modalities, such as behavioral data, clinical records, and imaging studies. Furthermore, Al can
facilitate early detection by identifying subtle patterns indicative of ASD, even in cases that
might be missed by conventional diagnostic methods. As a result, Al-based tools have the
potential to complement existing clinical practices, enhance diagnostic precision, and expand
access to reliable ASD detection in underserved areas. The application of Al in ASD detection
is an evolving field, with ongoing research aimed at developing innovative methods to tackle
the complexities of the disorder. By combining advances in Al with insights from neuroscience

and psychology, researchers aim to create solutions that not only improve diagnostic accuracy
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but also offer interpretable results that can support clinical decision-making. Through such
interdisciplinary efforts, Al holds promise in transforming the landscape of ASD diagnosis and
care, ultimately contributing to better outcomes for individuals and their families. Therefore,
this study represents a structured and methodical effort to assess the effectiveness, potential,
and applicability of deep learning and computational intelligence techniques in the

identification and analysis of ASD.

Objectives: The objectives of this study are structured into four key segments:
* The first objective of the study is to perform a systematic literature review on Autism
Spectrum Disorder (ASD), which aims to critically evaluate the existing research,
methodologies, and advancements in ASD detection.
* The second objective focuses on developing an intelligent diagnostic model for ASD
using deep learning and computational intelligence techniques, aiming to improve the
accuracy and efficiency of diagnosis.
» The third objective is to design a multi-modal framework for ASD detection,
incorporating various data sources/modalities to enhance the overall performance of the
diagnostic model.
» The final objective is to conduct a comparative analysis of the proposed ASD
detection model with existing techniques, evaluating its effectiveness, accuracy, and
applicability in real-world clinical settings.

Methodology: To accomplish the stated objectives, this study leverages advanced machine
learning and deep learning methods, such as evolutionary algorithms, neural networks,
attention mechanisms, and transformer-based architectures, due to their significant potential in
addressing complex challenges in healthcare. The strategies employed to meet these objectives
are as follows:

e To accomplish the first objective, a systematic literature review was conducted,
focusing on machine learning techniques applied to Autism Spectrum Disorder (ASD)
detection. This review analyzed various studies to identify the most effective models,
methodologies, and data sources used in ASD diagnosis.

e For the second objective, two diagnostic models were developed, each utilizing
different deep learning and evolutionary approaches. The first model incorporated an

adaptive feature fusion technique to enhance the diagnosis process by combining

Vi
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various data features obtained from particle swarm optimization (PSO) and the Bat
algorithm effectively. The second model integrated a white shark optimization
algorithm with a deep learning framework utilizing Bi-LSTM to improve the overall
accuracy and robustness of ASD detection.

e To address the third objective, a multimodal diagnostic framework was designed that
combines various data modalities, such as clinical features and imaging data. This
framework employs advanced deep learning techniques, including a multi-head CNN
architecture with channel and spatial attention (CBAC) and BERT, to extract and
integrate features from diverse modalities for enhanced ASD detection.

e For the fourth objective, a comparative analysis was conducted, evaluating the
performance of the above-developed models against existing ASD detection
techniques. Key performance metrics, such as accuracy, sensitivity, specificity, and F1-
score, were used to compare the effectiveness of the proposed models with current

state-of-the-art methods.

Results: The outcomes of the study are as follows:

e A comprehensive review of machine learning techniques for Autism Spectrum Disorder
(ASD) detection was conducted. This review analyzed current trends and identified
potential future directions in the field, providing valuable insights into existing
methodologies and areas for future research.

e A study is conducted to explore bio-inspired techniques for improving ASD diagnosis,
with a focus on evolutionary algorithms. The study highlighted the promising potential
of these algorithms in enhancing diagnostic accuracy for ASD detection.

e An adaptive feature fusion technique was developed for ASD diagnosis. This hybrid
model combined bio-inspired optimization algorithms with feature fusion to effectively
integrate various data features, enhancing the accuracy and robustness of the diagnostic
process.

e A model was developed by integrating an optimization algorithm with the Bi-LSTM
approach. This strategy aimed to improve feature selection, ultimately leading to
improved overall performance in the ASD detection system.

e A multi-modal framework was created, integrating sequential (phenotypic information)

and visual data (brain MRI) using convolutional block attention component and BERT-

Vii
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based deep learning architectures. This framework significantly improved ASD
detection accuracy and robustness by effectively combining different data types.

e A new approach employing facial images of autistic and non-autistic children
combining convolutional networks and vision transformers was developed for the
diagnosis of ASD. This model enhanced the processing of visual data, leading to
improved diagnostic performance.

e A self-supervised and self-distillation learning approach was explored for ASD
classification using facial images. This innovative method aimed to leverage
unsupervised learning to improve the classification accuracy in ASD detection.

e A multi-modal diagnostic framework was designed, incorporating various data sources
such as clinical and imaging data. This framework leveraged advanced deep learning
techniques, including LSTM and transformer-based architectures, to extract and

integrate relevant features, improving the diagnostic performance.

viii
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Chapter 1 INTRODUCTION

The emerging field of Artificial Intelligence (Al) in Autism Spectrum Disorder (ASD) detection offers
groundbreaking tools to streamline the diagnosis and analysis of ASD. Al-based frameworks aim to
enhance the efficiency and accuracy of early detection, significantly improving the support and
interventions available to individuals with ASD. The early diagnosis of ASD is pivotal in addressing
developmental challenges and improving long-term outcomes for individuals. Data-driven approaches
powered by Al have become essential in automating diagnosis processes, shaping clinical practices,
influencing policy development, and refining therapeutic programs. The adoption of Al as a foundation
for ASD diagnosis highlights its transformative potential in healthcare, serving as the backbone for
advancements in the field. ASD detection stands apart from traditional diagnostic methods by its focus on
patterns in data, such as neuroimaging, behavioral assessments, and clinical metrics, rather than solely
relying on manual evaluations. Over the years, ASD diagnostic frameworks have evolved significantly,
with technological innovations enabling the integration of large-scale data analysis and multimodal
inputs. Recent advancements in neural networks and deep learning architectures have revolutionized the
way clinical and imaging data are processed, leading to more robust and reliable ASD detection
frameworks. Al techniques, particularly Machine Learning (ML) and Deep Learning (DL), have emerged
as game changers, leveraging diverse data to enhance diagnostic accuracy. The development of Al
methodologies tailored to ASD detection has accelerated in the past decade, focusing on clinical tasks
such as feature extraction from MRI scans, interpreting behavioral data, and classifying ASD phenotypes.
These advancements have substantially benefited clinicians and researchers by providing data-driven
insights. Additionally, the application of Al in healthcare is expanding, offering predictive capabilities
that enable the estimation of diagnostic outcomes with unparalleled precision. This framework integrates
multimodal data such as MRI imaging and meta-features, enhancing the decision-making process in
clinical settings. Section 1.1 explores the significance of ASD diagnosis, emphasizing the need for Al-
driven approaches. Section 1.2 elaborates on the objectives of developing an ASD diagnosis framework.
Subsections provide insights into the principles and uses of the framework. Section 1.3 delves into
machine learning (ML), detailing its necessity, types, and applications in healthcare. Section 1.4 discusses
the intersection of ASD diagnosis and machine/deep learning, focusing on Al's potential to enhance
diagnostic frameworks. Section 1.5 highlights the motivation behind this study, emphasizing the
importance of addressing current challenges in ASD diagnosis. Section 1.6 outlines the research

objectives, providing a roadmap for the study's focus and direction. Section 1.7 presents the structure of
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the thesis, offering an overview of the chapters to guide the reader through the document. Finally, Section
1.8 concludes the chapter with a summary, encapsulating the key points discussed.

1.1. Autism Spectrum Disorder (ASD)
Real-time analysis in the field of ASD diagnosis has emerged as a rapidly growing area of interest among
researchers worldwide. Advances in this domain have facilitated the introduction of innovative
frameworks for ASD detection and management. The term "autism" originates from the Greek word
"autos," meaning "self," reflecting the inward-focused behavior of individuals with ASD. Globally, there
is a pressing need to enhance the accuracy and timeliness of ASD diagnoses, given its significant impact
on individuals and society. A robust diagnostic framework offers critical insights for developing,
implementing, monitoring, and assessing intervention programs aimed at supporting individuals with
ASD. According to the World Health Organization (WHO), ASD is a developmental disorder
characterized by difficulties in social interaction, communication, and repetitive behaviors. Accurate
diagnosis is crucial for planning and evaluating interventions, as well as for understanding the prevalence
of ASD in various populations. Early detection is acknowledged as a vital component of effective
intervention and care, enabling individuals to access timely support and resources. The primary aim of
ASD detection frameworks is to provide clinicians and researchers with meaningful, data-driven evidence
to guide decisions and improve the quality of care.
Information derived from ASD diagnostic frameworks is used to identify early signs of the disorder,
monitor the effectiveness of intervention strategies, and evaluate emerging trends in ASD prevalence.
Diagnostic statistics are vital for understanding the health status of populations, tailoring therapies, and
developing strategies to mitigate the challenges faced by individuals with ASD. The significant role of
ASD detection in healthcare has motivated research to establish advanced diagnostic methodologies,
strengthening the scientific foundation of ASD frameworks. Early identification of ASD symptoms is
critical for implementing effective interventions, and data on developmental and behavioral patterns are
essential for accurate diagnosis.
The study of ASD detection traces its origins to early developmental psychology and medical
investigations into atypical behaviors in children. Historical records of unusual developmental patterns
date back centuries, reflecting society’s longstanding interest in understanding such conditions. However,
the concept of ASD, as it is understood today, has evolved significantly over time.
Earlier, diagnostic processes relied heavily on observational methods, often leading to delayed or
inaccurate diagnoses. The introduction of advanced technologies such as neuroimaging, machine learning,
and artificial intelligence has revolutionized the field, allowing for the integrating of multimodal data

sources to improve diagnostic accuracy [1]. To distinguish traditional clinical methods from
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contemporary frameworks, modern Al-based methodologies focus on leveraging diverse datasets,
including imaging and clinical features, to assess ASD comprehensively. This transition has marked a
significant milestone in the field, setting the stage for more precise, scalable, and impactful diagnostic

solutions.

(@) (b)

Figure 1.1: Facial images of (a) Autistic and (b) Non-Autistic Children

1.2. Objectives of Autism Spectrum Disorder (ASD) Diagnosis Frameworks

Al-based ASD detection frameworks provide the empirical and data-driven insights necessary for
informed decision-making and effective interventions. The primary goal of these frameworks is to
provide accurate, timely data that can guide clinical actions and improve the support provided to
individuals with ASD. The design and implementation of ASD detection systems are influenced by the
specific objectives and interventions required for optimal care. For instance, if the goal is to diagnose
ASD at an early stage, the framework must be capable of processing data from various sources, such as
neuroimaging, clinical assessments, and behavioral data, to deliver precise results quickly. On the other
hand, monitoring the progression of the disorder in individuals over time might require systems that track
long-term data, such as behavioral changes or intervention outcomes, through continuous or periodic
assessments.

Different health objectives related to ASD diagnosis necessitate distinct information systems. The type of
diagnostic or monitoring system to be used depends on the specific clinical actions that need to be taken,
as well as when and how frequently the data should be collected, analyzed, and used. For example, an Al-
driven system designed to predict ASD risk based on early developmental signs might require real-time
data analysis, while a system for tracking the long-term outcomes of ASD interventions might gather data
over several years.

To design and evaluate an Al-based ASD detection system, it is essential to answer the following

questions:
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+ What constitutes the case definition of ASD in the context of the framework? Is it practical and
clinically relevant?

+ What are the specific goals of the diagnostic framework, and how do they align with clinical or
research objectives?

+ Does the system integrate with other diagnostic and health information systems?

+ How is data handled? What protocols ensure data privacy, security, and the prevention of delays
in data transmission?

++ What are the data sources (e.g., MRI scans, behavioral assessments, clinical evaluations)? Who is
responsible for reporting and updating data?

«» What types of information are collected, and does it meet the needs of healthcare providers and
researchers?

«» How frequently is data collected (e.g., during regular check-ups, or at significant developmental
milestones)?

++ How is the data analyzed? Who performs the analysis, and how regularly are updates made?

« How is the information disseminated to relevant stakeholders (e.g., clinicians, researchers,
policymakers)? Are reports timely and comprehensive?

+« What are the planned applications of the ASD detection framework data?

+ What is the target population for the framework (e.g., infants, children, adults)?

Ultimately, the aim of an Al-based ASD detection framework is to monitor the trends in ASD prevalence,
symptoms, and treatment efficacy within a population to guide research, management, and prevention
strategies. Public health officials and clinicians may utilize the data provided by such frameworks to
design more effective diagnostic procedures, interventions, and support systems. However, the
application of these frameworks is not limited to merely identifying ASD cases. They also serve to
enhance our understanding of the disorder’s biological, developmental, and demographic aspects. This
deeper understanding can lead to the development of more effective preventive measures, diagnostic
tools, and intervention strategies. Additionally, Al-powered ASD detection systems offer a robust
foundation for creating and implementing evidence-based clinical practices that are tailored to the specific

needs of individuals across diverse populations.

1.2.1. Principles and Uses of Autism Spectrum Disorder Diagnosis Frameworks
The goal of collecting, evaluating, and distributing ASD-related information is to improve diagnostic
accuracy and intervention effectiveness. The primary principle of Al-based ASD detection frameworks is

that they should be designed and implemented to provide reliable, timely, and actionable information to
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clinicians, researchers, and policymakers. In the context of ASD, diagnostic frameworks need to ensure
that they are capable of delivering accurate results quickly to support early intervention, which is crucial
for effective management of the disorder. Since early-stage ASD can present subtle variations across
individuals, maintaining accuracy is essential to avoid misdiagnoses, while also ensuring that the system
is efficient and cost-effective to implement at scale. The application of ASD detection data can vary
depending on the clinical setting, whether immediate diagnostic decisions, long-term monitoring, or
historical data analysis are needed.

The existing research emphasizes principles that are directly relevant to autism spectrum disorder (ASD)

detection and management frameworks:
+» ldentifying ASD Cases: Early detection of ASD symptoms or clusters is crucial for timely

diagnosis and intervention, enabling support services that mitigate developmental challenges.
+» Analyzing Prevalence and Impact: Assessing the prevalence, patterns, and societal impacts of
ASD within diverse populations helps shape policies and allocate resources effectively.

+ Evaluating Diagnostic and Therapeutic Interventions: Measuring the efficacy of diagnostic
tools and early intervention strategies ensures the adoption of the most effective approaches for
managing ASD.

+« Building Awareness and Advocacy: Effective frameworks foster greater awareness about ASD
among the public and healthcare providers, leading to earlier detection, reduced stigma, and better
support for affected individuals and their families.

% Supporting Lifespan Approaches: Beyond childhood diagnosis, robust frameworks facilitate
ongoing monitoring and support across an individual’s lifespan, addressing evolving needs in
adolescence and adulthood.

« Advancing ASD Research: Establishing detection frameworks fosters research into the causes,
progression, and treatment of ASD, paving the way for improved understanding, prevention, and
intervention strategies.

Incorporating these principles into Al-based ASD detection frameworks can significantly enhance the

precision and applicability of the tools, making them valuable not only for individual diagnosis but also

for larger-scale epidemiological studies and public health planning. Al in this context helps continuously
refine the diagnostic process and identify areas for improvement, ensuring that ASD detection remains at

the forefront of medical and technological advancements.
1.2.2. Sources of Data

Al-based ASD detection frameworks rely on a variety of data sources to ensure accurate diagnosis and

comprehensive analysis. These data sources are crucial for understanding the complex nature of ASD and
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for developing more effective diagnostic tools and interventions. Some of the most commonly used
sources of data for ASD detection include:

e Clinical Reports and Assessments: Reports from clinicians, including developmental
screenings, behavioral assessments, and psychological evaluations, provide essential data for
diagnosing ASD. These reports often include data on early childhood development, cognitive and
social behaviors, and family medical histories.

e Neuroimaging Data: Structural and functional MRI scans, fMRI, and other neuroimaging
techniques offer valuable insights into the brain structure and activity of individuals with ASD.
These images are crucial for identifying neurobiological markers associated with ASD and for
enhancing diagnostic accuracy.

e Genetic Data: Genomic studies and DNA sequencing provide insights into the genetic
underpinnings of ASD. Data from genetic research help in understanding the hereditary factors
contributing to ASD and may also be used to personalize interventions based on genetic profiles.

e Epidemiological Data: Population-based studies and surveys offer broad data on the prevalence
of ASD across different demographics. This includes data on age, gender, socioeconomic status,
and geographic location, which helps in understanding how ASD manifests in various
populations.

o Behavioral and Developmental Data: Data collected through behavioral observations, parent
and teacher questionnaires, and standardized developmental assessment tools are used to track the
progress of children with ASD and monitor the effectiveness of interventions.

e Sensor Data: Wearable sensors, such as eye trackers, accelerometers, and movement sensors, can
provide real-time data on the behavior and physical activity of individuals with ASD. This data is
used to monitor physical and social behaviors that are indicative of ASD symptoms.

e Social Media and Online Data: Social media platforms and online forums are emerging as
valuable sources of data for understanding public perceptions of ASD, gathering patient feedback,
and identifying potential trends in ASD diagnosis and treatment. This type of data can also
provide insights into the experiences of individuals living with ASD and their caregivers.

e Special Surveys and Questionnaires: Surveys such as the Autism Diagnostic Observation
Schedule (ADOS) and the Autism Spectrum Quotient (AQ) are frequently used to collect specific
diagnostic information about individuals at risk for ASD. These tools help to assess various
aspects of social and communication behaviors.

e Educational and School Records: Data from schools, including performance reports, behavioral
evaluations, and teacher observations, contribute valuable information about a child's social

interaction skills, communication abilities, and academic performance.

6
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1.2.3.Enhancing the Use of Computer Technology in Autism Spectrum Disorder
In the realm of Autism Spectrum Disorder (ASD) diagnosis, the integration of advanced computer
technologies and artificial intelligence (Al) is transforming traditional diagnostic processes and enhancing
the accuracy, speed, and personalization of ASD detection frameworks. Al-based systems, utilizing
machine learning algorithms and neural networks, can analyze large and complex datasets from multiple
sources, thereby improving the understanding and diagnosis of ASD.
Historically, the process of diagnosing ASD has involved clinical assessments, behavioral observations,
and diagnostic tools like the Autism Diagnostic Observation Schedule (ADOS) and the Autism
Diagnostic Interview-Revised (ADI-R). While these methods are effective, they can be subjective and
time-consuming. The introduction of Al-driven models offers a promising solution by automating the
analysis of data such as brain imaging (e.g., MRI scans), genetic data, and behavioral observations. These
systems can process and analyze massive datasets at speeds unimaginable through manual methods,
improving diagnostic precision and reducing the risk of human error.
For example, the use of deep learning algorithms to process neuroimaging data has shown promise in
identifying biomarkers related to ASD, with studies demonstrating the potential of Al models to detect
subtle differences in brain structure and connectivity between individuals with ASD and neurotypical
individuals. Similarly, models, such as convolutional neural networks (CNNs) and vision transformers,
are being applied to analyze MRI scans, helping to detect abnormalities in brain regions associated with
ASD, and providing valuable insights that were previously difficult to identify.
Moreover, the use of Al technologies in predictive modeling is advancing. Machine learning models,
trained on clinical and demographic data, can predict the likelihood of an individual developing ASD at
an early stage, which is crucial for early intervention strategies. For instance, early screening tools
powered by Al are increasingly being developed to detect signs of ASD in toddlers or even infants, often
before observable behaviors manifest. Furthermore, multimodal frameworks that combine different data
sources, such as clinical data, neuroimaging, genetic information, and behavioral data, are gaining
traction. By integrating these diverse sources, Al frameworks are able to build a more holistic profile of
each patient, improving diagnostic accuracy and facilitating personalized treatment recommendations.
The use of Al in ASD detection also addresses some of the challenges faced by traditional diagnostic
methods, such as inter-rater reliability and accessibility. Al-based models can be standardized across
different clinics and regions, offering consistent results and reducing disparities in diagnosis across
geographical and socio-economic contexts. Additionally, Al models can be deployed in telemedicine
settings, enhancing access to diagnostic services in remote areas.
As with any technology, the implementation of Al in healthcare raises important concerns, particularly

around data privacy, security, and ethics. Safeguarding patient confidentiality and ensuring that Al
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systems are transparent and explainable are critical aspects that must be addressed. Research and
development in this area must continue to prioritize these issues while also enhancing the capabilities of
Al-driven ASD detection systems.

The future of ASD detection lies in the continued evolution of Al technologies, where their integration
into clinical practice promises not only more accurate and faster diagnosis but also improved treatment
strategies, early intervention, and better long-term outcomes for individuals with ASD. By harnessing the
power of computer technologies and Al, we can significantly enhance our ability to detect, understand,

and treat Autism Spectrum Disorder.

1.2.4. Autism Spectrum Disorder and Internet Technology

The pervasive presence of the internet and the vast amounts of digital information it generates have
revolutionized numerous fields, including healthcare. This transformation extends to autism spectrum
disorder (ASD), where internet technology is enabling novel diagnostic and therapeutic approaches. New
concepts such as "digital phenotyping™ and "digital health analytics" have emerged, focusing on the use of
online data and computational methodologies to analyze behavior and identify patterns indicative of ASD.
Digital phenotyping refers to the collection and analysis of behavioral and physiological data from
various digital sources, including social media platforms, online interactions, and wearable devices. This
approach complements traditional methods of ASD diagnosis by providing a scalable, real-time means to
capture early indicators of the disorder.

Internet-based tools have shown promise in identifying ASD markers through the analysis of
communication styles, interaction patterns, and user-generated content on online forums and social
networks. For example, the linguistic patterns in posts by individuals with ASD, such as repetitive
language or unusual sentence structures, have been studied to develop predictive models. These models
use deep learning (DL) algorithms to analyze large-scale online behavioral data, enhancing diagnostic
accuracy while reducing reliance on subjective clinical evaluations. The accessibility of internet
technologies has also played a pivotal role in democratizing healthcare, including ASD diagnosis. Remote
telehealth platforms, virtual assessments, and online screening tools allow clinicians to reach individuals
in underserved regions, providing equitable access to diagnostic resources. Furthermore, these
technologies enable the continuous monitoring of ASD symptoms, improving intervention timelines and
developmental outcomes. The integration of internet technology with artificial intelligence (Al) has
propelled advancements in this domain. The availability of open-source libraries, faster data processing,
and collaborative data labeling have enabled researchers to develop Al models capable of analyzing
multimodal datasets, such as neuroimaging data and clinical metadata. These models can uncover

complex relationships and hidden patterns that may elude human observation. For instance, computer
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vision algorithms applied to neuroimaging data have identified structural and functional brain anomalies
associated with ASD. However, the use of internet-based data for ASD diagnosis is not without
challenges. Ensuring the quality and reliability of datasets is critical, as noisy or incomplete data can
affect model performance. Additionally, ethical concerns surrounding data privacy, informed consent, and
the potential for biased predictions highlight the need for transparent and accountable Al systems.
Addressing these challenges requires the development of robust computational approaches that balance
diagnostic accuracy with ethical considerations. This work seeks to bridge the gap between internet
technology, Al, and ASD diagnosis by proposing a novel framework that integrates multimodal data
sources. Through advanced fusion techniques and explainable Al, this work aims to enhance diagnostic
reliability, interpretability, and accessibility, contributing to the broader adoption of Al-driven ASD

detection frameworks.

1.2.5. Popular Public Data Sources for Autism Spectrum Disorder Diagnosis
The development and evaluation of Al-based diagnostic methods for Autism Spectrum Disorder (ASD)
heavily depend on the availability of high-quality, well-curated datasets. Public data sources play a crucial
role in advancing research by providing standardized datasets that enable the training, testing, and
validation of machine learning models. These datasets help researchers identify patterns, train diagnostic
algorithms, and improve the accuracy and generalization of Al-based systems. Several public data sources
have been widely used in ASD diagnosis, ranging from behavioral assessments to neuroimaging data.

Below are some of the most popular public data sources for ASD research:

Table 1.1 Dataset analysis of Publicly available datasets related to autism spectrum disorder

Data Source Dataset Type Description

Images Questionnaire Text Gene Time-

series
ABIDE I [2] v v ASD: Normal = 539:573
ABIDE II [3] v v ASD: Normal = 521:593
AGRE [4] v https://www.autismspeaks.org/agre
NDAR [5] v v v v v https://catalog.data.gov/dataset/national-
database-for-autism-research-ndar
v
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Autism For Adults: instances = 704
Screening attributes = 21
[6] For Toddlers: instances = 1054

attributes = 18
For children: instances =292

attributes = 21

https://www.kaggle.com/datasets/faizun

nabi/autism-screening

NRGR [7] v https://www.nimhgenetics.org/download
-tool/AU

1.25.1.  ABIDE I [45]
Dataset Type: Images, Clinical features
The Autism Brain Imaging Data Exchange (ABIDE) | dataset consists of brain imaging data (structural
MRI) and questionnaires collected from 539 individuals diagnosed with ASD and 573 typically
developing (TD) participants. The primary focus of the dataset is to analyze the brain's structural and
functional differences between these two groups, providing critical insights for the development of

neuroimaging biomarkers for ASD.

1.25.2. ABIDE |1 [46]
Dataset Type: Images, Clinical features
ABIDE Il extends the ABIDE | dataset and offers additional brain imaging data (including both structural
and functional MRI) alongside questionnaires from 521 individuals with ASD and 593 TD individuals. It
aims to provide a more comprehensive analysis of the neurodevelopmental variations in ASD, further

contributing to the understanding of neurobiological markers associated with the disorder.

1.253.  AGRE [47]
Dataset Type: Gene
The Autism Genetic Resource Exchange (AGRE) dataset primarily includes behavioral and diagnostic
questionnaires. It serves as a valuable resource for genetic studies aimed at understanding the hereditary

components of ASD. This dataset allows researchers to explore genetic correlations and how they may
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influence the development of autism, facilitating the identification of potential genetic markers for early
diagnosis.

1.25.4. NDAR [48]
Dataset Type: Images, Questionnaire, Text, Gene, Time-series
The National Database for Autism Research (NDAR) is one of the largest and most comprehensive
repositories of autism-related data. NDAR includes various types of data such as brain imaging (structural
MRI, functional MRI), behavioral questionnaires, genetic data, and time-series data. This extensive
dataset is critical for large-scale research to understand the genetic, behavioral, and neurobiological
factors contributing to ASD. It also supports longitudinal studies that track the progression of the disorder

over time.

1.2.5.5. Autism Screening [49]
Dataset Type: Questionnaire
The Autism Screening dataset is available on Kaggle and includes data from autism screening tests for
different age groups: adults, toddlers, and children. This dataset provides clinical features like age,
gender, jaundice history and demographic attributes like ethnicity, making it useful for training Al models
aimed at ASD diagnosis.

1.1.5.6. NRGR [50]

Dataset Type: Gene

The NeuroGenetics Research Group (NRGR) dataset contains genetic data associated with ASD. This
dataset is valuable for studying the genetic underpinnings of ASD and provides insight into how specific
genetic variations correlate with ASD symptoms and progression.

These publicly available datasets are instrumental in developing, testing, and refining Al-based diagnostic
tools for ASD. By incorporating various data types such as neuroimaging, genetic information, and
clinical assessments, these datasets help researchers create more robust and accurate diagnostic models

that can assist in early detection and personalized interventions for individuals with autism.

1.2.6. Applications of Al-based Autism Spectrum Disorder (ASD) Diagnostic
Methods

Al-based diagnostic methods have gained significant traction in the field of Autism Spectrum Disorder

(ASD) diagnosis, offering the potential to improve early detection, enhance diagnostic accuracy, and

support personalized treatment approaches. These technologies leverage machine learning, deep learning,
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and computer vision to analyze a wide range of data sources, such as behavioral patterns, facial images,
medical records, and neuroimaging data. The application of Al in ASD diagnosis has the potential to
revolutionize the way healthcare professionals identify and treat individuals with ASD. Some of the key
applications of Al-based ASD diagnostic methods include:

1.2.6.1. Early Detection and Screening

Al-based systems can significantly improve early detection of ASD, which is critical for initiating early
interventions that can greatly improve long-term outcomes for individuals with ASD. Machine learning
models, particularly those that analyze behavioral data or diagnostic questionnaires, can be trained to
detect early signs of autism in young children, often before the age of three. For example, Al systems can
analyze patterns in parental questionnaires, such as the Modified Checklist for Autism in Toddlers (M-
CHAT), to flag children who are at risk of ASD. These systems can be integrated into routine pediatric
screenings, enabling quicker identification of children who require further assessment or specialized
intervention. Similarly, Al models can process large-scale datasets, such as those from early childhood
assessments, to identify subtle signs of ASD that may be overlooked by human observers. This early
detection capability can lead to faster referrals to specialists and early therapeutic interventions, which are
known to have a significant positive impact on the development of children with ASD.

1.2.6.2. Analysis of Behavioral Data
Al-based methods can be applied to analyze behavioral data collected from various sources, such as
interviews, questionnaires, or video recordings of children’s interactions. Natural language processing
(NLP) techniques can be used to analyze textual data from parent or caregiver reports to identify
linguistic patterns or behavioral markers associated with ASD. For instance, children with ASD may
exhibit delays in speech development, abnormal conversational patterns, or challenges in understanding
social cues. By analyzing these patterns, Al systems can assist in diagnosing ASD with greater precision,
detecting subtle features that human clinicians may miss. Moreover, computer vision algorithms can
analyze video recordings of children’s behaviors and facial expressions. These algorithms can detect
anomalies in eye contact, social engagement, and emotional recognition, which are typical indicators of
ASD. By processing these visual cues, Al systems can provide valuable insights into a child’s

developmental progress and offer objective data to support the diagnostic process.

1.2.6.3. Neuroimaging and Biomarker Detection
Al is increasingly being used in the analysis of neuroimaging data, such as MRI and fMRI scans, to

identify potential biomarkers for ASD. Deep learning models can be trained to analyze brain images and
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identify structural or functional abnormalities in regions typically associated with social cognition,
language processing, and executive function. These models can detect subtle differences in brain structure
and function that may be indicative of ASD, enabling the development of more objective diagnostic
criteria. Al algorithms can also integrate multiple sources of neuroimaging data, such as structural MRI,
functional MRI, and electroencephalography (EEG), to provide a comprehensive understanding of the
neural underpinnings of ASD. This approach has the potential to lead to the identification of novel
biomarkers that can be used to diagnose ASD more accurately and provide insights into the neurological

basis of the disorder.

1.2.6.4. Facial Image Analysis

Al-based facial image analysis is another promising application in the diagnostic process for ASD.
Computer vision models, particularly convolutional neural networks (CNNs), can be used to analyze
facial features and expressions to detect atypical patterns often observed in individuals with ASD. These
models can examine subtle differences in facial structure, gaze direction, and emotional expressions that
may indicate autism-related traits.

For example, children with ASD may show limited facial expressiveness or differences in their ability to
make eye contact. By processing large datasets of facial images, Al algorithms can be trained to
distinguish between typical and atypical patterns in facial expressions and use this information as part of a
broader diagnostic toolkit. This technology has the potential to be integrated into clinical assessments,

offering objective measures to complement traditional diagnostic methods.

1.2.6.5. Personalized Treatment and Intervention
Once ASD is diagnosed, Al systems can play a significant role in creating personalized treatment and
intervention plans. By analyzing data from various sources, including behavioral assessments,
neuroimaging, and family history, Al models can help tailor interventions to the specific needs of
individuals with ASD. This could involve recommending personalized therapies, such as speech or
occupational therapy, and monitoring the progress of these interventions over time. Al systems can also
provide real-time feedback to clinicians and caregivers, helping to adjust treatment strategies based on an
individual’s response. For instance, machine learning models can analyze data from wearable devices or
mobile apps that track behavioral changes and offer insights into the effectiveness of specific therapies.
This personalized approach enhances the precision of interventions, ensuring that individuals with ASD

receive the most appropriate care based on their unique needs and progress.

1.2.6.6. Monitoring Long-Term Development
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Al-based diagnostic methods can be applied to monitor the long-term development of individuals with
ASD. Machine learning models can analyze longitudinal data collected over extended periods, such as
behavioral assessments, medical records, and educational performance, to track changes in symptoms and
progress. By detecting patterns over time, Al systems can help clinicians identify when interventions are
most needed or when adjustments to treatment plans should be made. This ability to track and predict
developmental trajectories is particularly valuable in managing ASD, as it allows for the early
identification of emerging challenges and the timely adjustment of care plans. Moreover, Al models can
support families and caregivers by providing actionable insights into the individual’s development,

helping them to better understand their child’s needs and progress.

1.2.6.7. Improving Diagnostic Accuracy and Reducing Human Bias

Al-based diagnostic methods can help improve the accuracy and consistency of ASD diagnoses by
reducing human biases and subjectivity. Traditional diagnostic approaches often rely heavily on clinician
experience, which can introduce variability in decision-making. Al systems, however, can process large
volumes of data objectively, identifying patterns and anomalies that might not be immediately apparent to
human clinicians. This leads to more accurate and consistent diagnoses, particularly when using
multimodal data sources such as behavioral data, facial images, and neuroimaging. Furthermore, Al
systems can assist in the identification of co-occurring conditions, such as ADHD or anxiety, that are
often seen in individuals with ASD. By integrating data from multiple sources, Al models can provide a
holistic view of the individual’s health, aiding in the diagnosis and management of comorbidities that
may complicate the treatment process.

Al-based diagnostic methods hold significant promise for advancing the detection, diagnosis, and
treatment of Autism Spectrum Disorder. Through early detection, personalized treatment plans, improved
diagnostic accuracy, and the ability to track long-term development, Al has the potential to revolutionize
ASD care. However, challenges related to data quality, interpretability, and ethical concerns must be
addressed to ensure that these technologies are used responsibly and effectively. As Al continues to
evolve, it is expected to play an increasingly critical role in enhancing the lives of individuals with ASD

and their families.

1.2.7. Limitations and Challenges of Al-based Autism Spectrum Disorder
Diagnostic Methods

This section highlights some of the limitations and challenges encountered when employing Al-based

diagnostic methods for autism spectrum disorder (ASD). While Al models have shown promise in
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advancing early detection and diagnosis of ASD, several factors hinder their widespread application and
effectiveness. Key challenges include:
1.2.7.1. Noise

Noise is a significant challenge in autism data collection, particularly when dealing with autism screening
datasets and facial image datasets. Noise refers to irrelevant or misleading information that may distort
the analysis and conclusions drawn from the data. In autism research, this can occur when datasets
contain extraneous features or mislabeled data that are unrelated to autism characteristics or diagnostic
criteria. Furthermore, missing or incomplete data can add another layer of noise, particularly in datasets
where participant information, such as demographic details or medical history, is insufficiently recorded.
For example, incomplete screening data or facial images with unclear or ambiguous characteristics could
lead to misclassification or incorrect analysis of autism traits. To mitigate such noise, preprocessing
techniques such as feature selection, data cleaning, and normalization are essential. These methods help
eliminate irrelevant data, standardize inputs, and focus on the most relevant features for autism diagnosis.
Advanced data processing techniques, including dimensionality reduction, and feature selection, can also
be applied to ensure the quality of the data before further analysis. Despite these efforts, continuous
refinement and validation of the dataset are necessary to enhance its accuracy and reliability for autism

research.

1.2.7.2.  Demographic Bias in Autism Research
Demographic biases present significant challenges when working with autism screening datasets and
facial image datasets. While such datasets provide valuable insights into autism diagnosis and
intervention, critical demographic details such as age, gender, and ethnicity are often underrepresented or
inconsistently recorded. This limitation can lead to skewed findings and hinder the generalizability of
models developed using these datasets. For instance, autism screening datasets often lack representation
from diverse ethnic backgrounds, focusing predominantly on specific demographic profiles. This bias can
obscure the variability in autism presentation across different cultural contexts. Similarly, facial image
datasets used for autism-related research may overrepresent certain ethnic groups while underrepresenting
others, leading to algorithms that perform poorly on underrepresented populations. Another challenge
arises from accessibility and participation in data collection. Individuals from marginalized or low-
income communities, who may lack access to healthcare services, are often excluded from these datasets.
This exclusion can result in models that fail to address the needs of these populations, who are often
among the most vulnerable and underserved. Additionally, individuals with severe autism traits or
disabilities may be underrepresented due to difficulties in participating in studies, further contributing to

demographic bias. Addressing these biases requires intentional efforts to diversify datasets by including
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individuals from varied age groups, ethnicities, and socioeconomic backgrounds. This approach will
improve the robustness and applicability of autism diagnostic models, ensuring they serve a more

inclusive population.
1.1.7.3. Overfitting and Generalization Challenges

Al models, particularly deep learning models, are prone to overfitting, especially when trained on small or
non-representative datasets. Overfitting occurs when a model performs well on training data but fails to
generalize to new, unseen data. In the context of autism diagnosis, overfitting can lead to models that
inaccurately predict or fail to detect autism in diverse real-world settings. This is particularly problematic
when datasets lack sufficient variation or are too homogeneous, as is often the case with small clinical
samples or limited demographic representation. To address this issue, it is crucial to implement cross-
validation techniques and use larger, more diverse datasets for training. Additionally, techniques such as
regularization and data augmentation can help prevent overfitting by introducing variability into the
model's training process. Ensuring that models can generalize across different population groups,
including those with varying severity of ASD symptoms, is essential for the widespread applicability of
Al-based diagnostic tools.

1.1.7.4. Interpretability and Trust in Al-based Diagnoses

One of the major challenges in deploying Al-based diagnostic systems in clinical settings is the lack of
interpretability of certain machine learning models, particularly deep neural networks. These models are
often considered "black boxes" because their decision-making processes are not easily understood by
humans. In the case of ASD diagnosis, this lack of transparency can lead to hesitation or mistrust among
clinicians, as well as families of individuals with autism, who rely on clear and understandable
explanations of diagnosis and treatment recommendations. Improving the interpretability of Al models is
crucial for fostering trust and ensuring that these tools are used effectively in clinical practice. Techniques
such as explainable Al (XAIl), which provide insights into how models arrive at their conclusions, are
becoming increasingly important in making Al-based diagnostic tools more accessible and reliable.
Ensuring that clinicians and patients understand the rationale behind Al-driven decisions will help

improve the acceptance and adoption of these technologies.

1.1.7.5. Ethical and Privacy Concerns

16

Z'l-.l turnitin Page 50 of 218 - Integrity Submission Submission ID trn:oid::27535:77729745



z'l-.l turnitin Page 51 of 218 - Integrity submission Submission ID trn:oid::27535:77729745

Al-based autism diagnostic methods often rely on sensitive personal data, including medical histories,
behavioral data, and facial images. The use of such data raises significant ethical and privacy concerns.
Data security and patient confidentiality are paramount, especially when dealing with vulnerable
populations such as children with ASD. Additionally, concerns about consent arise when using data from
clinical settings, as individuals may not fully understand how their data will be used or may not have the
option to opt out of participation in research studies. Ensuring that Al models comply with data protection
regulations, such as GDPR or HIPAA, is crucial to safeguarding patient privacy. Furthermore, ethical
considerations must be taken into account when designing data collection protocols and algorithms.
Researchers must ensure that Al-based methods are developed and deployed in a way that respects the

rights and autonomy of individuals, providing transparency about how data is collected, used, and stored.
1.1.7.6. Integration into Clinical Workflow

Even if Al-based autism diagnostic methods achieve high levels of accuracy and reliability, their
integration into clinical practice remains a significant challenge. Healthcare professionals may be resistant
to adopting Al tools due to concerns about the reliability of the system, the potential for Al to replace
human expertise, or simply because of a lack of familiarity with Al technologies. Additionally,
implementing Al tools requires appropriate infrastructure, training, and support to ensure that clinicians
can effectively use these tools as part of their diagnostic process. To overcome these challenges, Al-based
diagnostic methods must be designed with user-friendly interfaces and should complement, rather than
replace, the expertise of clinicians. It is also essential to offer training and ongoing support for healthcare
professionals to integrate these tools seamlessly into their workflows. This will ensure that Al-driven
diagnoses are seen as valuable assets that enhance, rather than undermine, the clinical decision-making
process.

By addressing these limitations and challenges, Al-based diagnostic methods for autism can be further
refined and optimized, making them more effective, reliable, and accessible for both clinicians and

individuals with autism.

1.3. Machine Learning and Deep Learning
Since their inception, humans have leveraged a variety of tools and technologies to perform tasks more
effectively. The ingenuity of the human brain has driven the development of sophisticated systems that
simplify everyday life by addressing diverse needs across domains such as computing, healthcare, and
transportation. Among these groundbreaking innovations are machine learning (ML) and its advanced

subset, deep learning (DL).
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Machine learning refers to the automated discovery of meaningful patterns in data. These patterns can
either enhance our understanding of existing phenomena—such as identifying risk factors for diseases—
or predict future outcomes, such as forecasting the spread of infections. Over the last few decades, ML
has become a cornerstone in extracting valuable insights from large datasets across various fields. For
example, ML algorithms power search engines to deliver the most relevant results, enable anti-spam
software to filter unwanted emails, and safeguard financial transactions by detecting fraudulent activities.
In daily life, ML supports intelligent personal assistants like Siri and Alexa in interpreting voice
commands, while digital cameras utilize it to recognize faces. ML algorithms are also applied in accident
prevention systems in automobiles and contribute to scientific domains such as astronomy, medicine, and
bioinformatics.

Deep learning, a specialized branch of machine learning, pushes these capabilities further by mimicking
the structure and functioning of the human brain through artificial neural networks. Unlike traditional ML
algorithms, which often rely on manually engineered features, DL algorithms automatically extract
complex features and relationships from raw data. This ability has made DL indispensable for tasks
requiring high levels of abstraction, such as image recognition, natural language processing (NLP), and
speech synthesis. Applications of DL include autonomous vehicles that interpret their surroundings,
medical imaging systems that detect diseases, and language models like ChatGPT that generate coherent
text.

The demand for both ML and DL has grown exponentially with the increasing availability of large-scale
datasets and computational resources. Advances in hardware, such as GPUs and TPUs, have enabled the
processing of vast amounts of data, allowing ML and DL systems to achieve state-of-the-art performance
in many domains. For instance, convolutional neural networks (CNNs) have revolutionized computer
vision by excelling at tasks such as object detection and facial recognition, while recurrent neural
networks (RNNSs) and transformers have driven significant progress in sequential data analysis, including
machine translation and time-series forecasting. In summary, ML and DL represent transformative
approaches to processing and analyzing data. Their ability to derive actionable insights from complex
datasets has made them invaluable in a wide range of applications, from everyday conveniences to life-
saving technologies. Their continued evolution promises to further redefine how humans interact with and

benefit from intelligent systems.

1.3.1. When Do We Need Machine Learning?
The necessity for machine learning (ML) and deep learning (DL) arises when conventional programming
approaches fall short of addressing the complexity, scale, or adaptability required by a task. Unlike

traditional systems that rely on explicitly defined rules, ML and DL algorithms leverage data-driven
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approaches to learn, improve, and adapt. Their utility becomes apparent in scenarios involving highly
complex problems, vast amounts of data, and dynamic environments requiring adaptability.
Human-Performed Tasks: Certain tasks that humans perform effortlessly—such as recognizing speech,
understanding visual information, and driving—are incredibly challenging to codify into a traditional
algorithm. These tasks require a nuanced understanding of patterns, context, and variability, which is
often implicit and not easily articulated. For instance, while a human can intuitively distinguish a cat from
a dog in an image, explicitly programming the visual rules for this distinction is an overwhelming
challenge. ML and DL provide a robust solution by learning from large datasets of examples, enabling
systems to achieve near-human accuracy in tasks like image recognition, speech processing, and
autonomous navigation. Advanced DL architectures, such as convolutional neural networks (CNNs) and
transformers, have proven especially effective in handling these challenges by automatically extracting
intricate features from raw data.

Tasks Beyond Human Capabilities: In addition to mimicking human capabilities, ML and DL are
indispensable for tasks involving data that exceed human cognitive capacity. Modern datasets in fields
like e-commerce, healthcare, genomics, weather prediction, and astronomy are vast, multidimensional,
and interlinked, making manual analysis infeasible. For example, in genomics, DL models identify gene
interactions from enormous datasets to predict disease risks, while in astronomy, ML is used to classify
galaxies and detect anomalies in terabytes of data. These applications uncover hidden patterns,
relationships, and insights that would otherwise remain inaccessible, driving innovation across domains.
By harnessing the computational power of ML and DL systems, researchers and industry professionals
can solve problems on a scale previously unimaginable.

Adaptivity: One significant limitation of traditional programming approaches is their inflexibility. Once
designed, a program's behavior is fixed unless it is explicitly reprogrammed to accommodate new
scenarios. This rigidity poses a challenge for tasks that evolve over time or vary among users. ML and DL
models, on the other hand, are inherently adaptive. They continuously learn from new data, refining their
performance to address changing conditions.

Combining Complexity and Adaptivity: Many real-world problems demand solutions that address both
the complexity of the task and the need for adaptability. Autonomous vehicles are a prime example,
requiring DL models to perform real-time object detection, decision-making in complex and dynamic
traffic environments, and adapting to different weather or road conditions. Similarly, in personalized
medicine, ML and DL systems analyze genetic, clinical, and environmental data to recommend tailored
treatments for individual patients, accounting for the dynamic nature of disease progression and patient
response. Furthermore, DL models have extended the reach of ML by achieving breakthroughs in tasks

that were once considered out of reach. For instance, generative adversarial networks (GANS) create
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realistic images and videos, while transformers like BERT and GPT excel in language modeling and
contextual understanding. These advancements have propelled applications like automated content
creation, real-time translation, and advanced virtual assistants, showcasing the ability of DL to address
both complex and adaptive tasks.

Handling Real-Time Decision-Making: In scenarios requiring rapid, real-time decision-making, ML
and DL excel in processing and analyzing data streams almost instantaneously. For example,
Autonomous Systems like Self-driving cars rely on DL algorithms to detect objects, predict pedestrian
movements, and make split-second decisions to ensure passenger safety. Healthcare monitoring, where
continuous patient monitoring using wearable devices generates real-time data that ML models analyze to
detect early signs of health issues, such as arrhythmias or seizures, uses ML models to detect early signs
of health issues, such as arrhythmias or seizures.

As the volume of digital data continues to grow exponentially, the demand for ML and DL is becoming
increasingly urgent. Data from diverse sources—such as social media, 10T devices, medical records, and
satellite imagery—contains invaluable information that traditional methods cannot process efficiently.
ML and DL algorithms thrive in this environment, enabling organizations to unlock actionable insights,
automate decision-making, and optimize processes. Moreover, advancements in computational hardware,
including GPUs and TPUs, have significantly reduced the time and cost required for training complex
models, making these technologies more accessible.

1.3.2.Types of Machine Learning
Machine Learning (ML) encompasses a variety of techniques designed to address diverse data-related
challenges (Figure 1.2). Experts emphasize that there is no universal solution applicable to every problem.
The choice of approach depends on several factors, including the nature of the problem, the number and

type of variables involved, the selection of a suitable model, and other context-specific considerations.

1.3.2.1.  Supervised Learning
Supervised learning is a machine learning approach in which models are trained on labeled data to predict
or classify desired outcomes. The dataset is split into two subsets: a training set and a test set. Each entry
in the training set includes both an input value and its corresponding target output. The goal of supervised
learning is to predict or classify an output variable based on the input data. Algorithms in this approach
analyze the training data to identify patterns, which are then applied to the test data to make predictions or
classifications. By recognizing relationships between input variables and their corresponding outcomes,
supervised learning aims to maximize prediction accuracy. A common example of supervised learning is

regression, where a model is trained to predict a continuous outcome based on input data.
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Figure 1.2 Types of Machine Learning Algorithms

1.3.2.2.  Unsupervised Learning
Unsupervised learning is a machine learning technique where models analyze and uncover patterns from
data that has not been labeled. Instead of being provided with explicit output labels, the algorithm relies
on the inherent structure within the input data to identify relationships and trends. This approach is
commonly used for tasks like feature reduction and clustering, where the goal is to reduce the complexity
of data or group similar data points. In unsupervised learning, the model leverages the natural properties
of the data to discover hidden structures without predefined outputs. Techniques like principal component
analysis (PCA) are often employed to identify underlying covariance patterns within the data, enabling

better understanding and representation of the information.

1.3.2.3.  Semi-Supervised Learning
Semi-supervised learning is an approach that bridges supervised and unsupervised machine learning
techniques [129]. This method involves a small amount of labeled data alongside a large volume of
unlabeled data. Initially, an unsupervised learning technique is employed to identify patterns and structure
in the data. These patterns are then used to assist in labeling the unlabeled data. Semi-supervised learning
is particularly useful in situations where obtaining labeled data is costly or time-consuming, but unlabeled
data are abundant. This hybrid approach is widely applied when accurate predictions are needed, but a
large portion of the data lacks outcome labels. It strikes a balance between the accuracy of supervised

learning and the scalability of unsupervised learning.

21

Z"—'I turnitin | Page 55 of 218 - Integrity Submission Submission ID trn:oid::27535:77729745



006

006

006

zﬂ turnitin Page 56 of 218 - Integrity Submission

1.3.2.4. Reinforcement Learning
Reinforcement learning (RL) has its roots in early cybernetics and has evolved into a significant area of
study in fields such as statistics, psychology, neuroscience, and computer science. Over the past decade,
RL has gained substantial attention in the machine learning and artificial intelligence domains due to its
practical applications. Unlike other machine learning approaches that rely on labeled data, reinforcement
learning involves an agent interacting with a dynamic environment to achieve specific goals. The agent
takes actions based on the current state of the environment and receives feedback in the form of rewards
or penalties. Through this feedback loop, the agent learns to optimize its actions to maximize long-term
rewards. This method is particularly effective in real-time applications, such as robotics, gaming, and
autonomous systems, where the agent must learn continuously from its environment. In essence,
reinforcement learning enables systems to learn by trial and error, improving their performance over time

based on direct experience.

1.3.3. Machine Learning Applications in Healthcare
The primary objective of machine learning in computer science is to enhance the efficiency and reliability
of machines. Machine learning is pervasive across various industries and plays a crucial role in numerous
real-world applications. It is particularly vital in fields like healthcare, where it contributes to the
protection and analysis of medical data. In the healthcare sector, machine learning acts as an extension of
a doctor's expertise, functioning as a powerful tool to augment their capabilities. The purpose of machine
learning is not to replace medical professionals, but rather to support them in delivering superior care and

improving patient outcomes. Some of the applications of machine learning in the healthcare industry are:

1.3.3.1.  Identifying and Diagnosing Diseases
Machine learning (ML) approaches play a pivotal role in enhancing the accuracy and speed of medical
diagnoses, significantly improving clinical decision-making. By analyzing vast amounts of medical data,
including electronic health records (EHRS), imaging data, and genetic information, ML algorithms can
identify subtle patterns and anomalies indicative of various diseases. These systems are capable of
detecting early signs of conditions such as cancer, cardiovascular diseases, and neurological disorders,
providing valuable insights that assist clinicians in making more informed and timely diagnoses.
Additionally, ML models can continuously learn and adapt, improving diagnostic accuracy over time as

they are exposed to larger datasets, ultimately leading to better patient outcomes.

1.3.3.2.  Drug Discovery and Manufacturing
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Machine learning is playing a crucial role in the early stages of drug development, emerging as one of the
most efficient applications in medicine. This includes advancements in research and development such as
precision medicine and next-generation sequencing, which assist in identifying alternative treatment
strategies for complex diseases. At present, ML techniques, particularly unsupervised learning, are
employed to uncover patterns in data without the need for direct predictions. For instance, Microsoft's
Project Hanover leverages ML-driven technologies for various purposes, including the development of
Al-based tools for cancer treatment and the personalization of medication combinations for Acute

Myeloid Leukemia.

1.3.3.3.  Medical Imaging Diagnosis
Computer vision is a transformative technology enabled by both Machine Learning (ML) and Deep
Learning (DL). ML techniques employed in computer-aided detection and diagnosis play a crucial role in
assisting clinicians with the interpretation of medical imaging data, significantly reducing the time
required for analysis. As machine learning becomes increasingly accessible and its analytical capabilities
continue to improve, it is anticipated that a wider range of health imaging data will be integrated into Al-
driven diagnostic systems, further enhancing the accuracy and efficiency of medical diagnoses.

1.3.3.4.  Personalized Medicine
The remarkable performance of machine learning (ML) models in handling complex, large-scale data has
led to significant advancements in personalized medicine over the past decade. By integrating individual
health data with predictive analytics, personalized therapies are not only more effective but also open new
avenues for research and enhanced disease evaluation. Traditionally, clinicians have been limited to
selecting diagnoses from a restricted set of options or estimating a patient's risk based on clinical history
and genetic information. However, ML is driving substantial progress in the field of medicine. A notable
example is IBM Watson for Oncology, which leverages personalized medical data to assist in the
development of tailored treatment options. Moreover, the proliferation of advanced gadgets and
biosensors with enhanced health monitoring capabilities will further expand the availability of data,

facilitating the growth and refinement of such medical systems.

1.3.3.5.  Behavioral Modification
Behavioral modification plays a crucial role in preventive healthcare, and with the increasing integration
of machine learning (ML) in the healthcare sector, numerous startups have emerged focused on cancer
detection, treatment optimization, and various other health-related applications. In addressing mental

health challenges, supervised machine learning methods prove to be highly effective. By leveraging deep
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learning (DL techniques) such as Convolutional Neural Networks (CNN), Recurrent Neural Networks
(RNN), and Artificial Neural Networks (ANN), advanced models can be developed to predict an
individual’s mental health status based on their facial expressions, physical activities, and body
movements.
1.3.3.6.  Maintaining Health Records

Managing health records is often a time-intensive task. While technology has made data entry more
efficient, many processes still require significant time to complete. The primary role of machine learning
(ML) in healthcare is to optimize these operations, reducing effort, time, and costs. For instance, Ciox, a
healthcare technology company, leverages ML to enhance the management and exchange of healthcare
information. The aim is to improve accessibility to medical data, streamline operations, and boost the
accuracy of health records. One of their innovations includes the development of smart charts, which use
ML to extract and consolidate medical data from various health records, creating a unified digital profile
for each patient.

1.3.3.7.  Clinical Trial and Research
Clinical studies are often resource-intensive and can span several years to reach completion. Machine
learning (ML) technology offers a valuable solution by predicting clinical trial outcomes, which can lead
to reduced drug approval timelines, lower costs, and increased funding opportunities for the development
of new treatments [133]. Additionally, ML has been applied to facilitate real-time monitoring of trial
participants, optimize sample size determination, and leverage electronic health records to minimize data-
related errors.

1.3.3.8.  Better Radiotherapy
Radiology is one of the most prominent applications of machine learning (ML) in healthcare. Clinical
image analysis involves numerous complex variables that can arise simultaneously, making it a
challenging task to mathematically model certain diseases, such as tumors, cancerous lesions, and other
abnormalities. However, ML-based approaches, which learn from diverse datasets, significantly enhance
the identification and detection of these factors. By leveraging ML, the automation of cancer diagnosis
and the identification of healthy physiological structures within organs can be greatly improved.
Additionally, ML plays a crucial role in the precise selection of optimal radiation doses, leading to more

accurate and efficient treatment planning.

1.4. Autism Spectrum Disorder and Machine/Deep Learning
Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder marked by impairments in social

communication, restricted interests, and repetitive behaviors. The complexity and heterogeneity of ASD
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make it challenging to diagnose, with traditional methods relying heavily on subjective behavioral
observations. Early and accurate diagnosis is crucial for effective intervention, as it significantly improves
long-term outcomes. In recent years, machine learning (ML) has shown great promise in enhancing the
diagnostic process by providing objective, data-driven insights and enabling the identification of subtle
patterns that may be overlooked by clinicians. Machine learning offers significant advantages in dealing
with the vast and diverse datasets typically associated with ASD research. These datasets include clinical
assessments, genetic information, neuroimaging scans, and behavioral data. With the ability to process
high-dimensional data efficiently, ML algorithms can reveal complex relationships within these datasets
that are difficult for traditional statistical methods to uncover. In particular, ML has proven useful in
handling the "curse of dimensionality" that often arises when working with large datasets, offering a more
efficient approach to feature selection and data analysis. One of the most exciting applications of machine
learning in ASD diagnosis is the analysis of neuroimaging data. Various ML techniques, particularly deep
learning algorithms such as convolutional neural networks (CNNs), have been employed to identify
structural and functional brain abnormalities that are often associated with ASD. These models can
analyze brain scans, such as magnetic resonance imaging (MRI) or functional MRI (fMRI), to detect
patterns indicative of ASD, providing an objective tool for clinicians. The use of machine learning in this
context allows for the analysis of large, high-dimensional imaging data, revealing neurobiological
markers that might not be evident through conventional methods. Another significant area where ML is
contributing to ASD research is in the analysis of language and communication patterns. Individuals with
ASD often exhibit atypical speech and language use, which can serve as early indicators of the disorder.
Natural language processing (NLP) techniques, which focus on the computational analysis of human
language, are increasingly being applied to study speech patterns, written texts, and caregiver reports. By
analyzing linguistic features, such as sentence structure, word usage, and speech rhythm, ML models can
help identify communication impairments that may not be immediately apparent in clinical settings.
These tools offer the potential for early, non-invasive screening, even in pre-verbal children, which could
lead to earlier diagnoses and interventions. Supervised machine learning algorithms, such as support
vector machines (SVM), random forests, and neural networks, have been commonly used in ASD
diagnosis, particularly for classification tasks. These models require labeled data, where each instance
(e.g., an MRI scan or behavioral assessment) is associated with a known diagnosis. By training on these
labeled datasets, the models can learn to differentiate between individuals with ASD and those with
typical development. However, unsupervised learning methods are also being explored in ASD research.
Techniques like clustering and dimensionality reduction allow for the discovery of hidden patterns and
subtypes of ASD without the need for pre-labeled data. These methods are particularly useful for

identifying unique phenotypic presentations of ASD, which can help tailor interventions to specific
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subgroups of individuals. ML has also been used to predict the long-term developmental trajectories of
individuals with ASD. By analyzing early behavioral and clinical data, machine learning models can
predict future outcomes, such as language development, social skills, and adaptive functioning. This
predictive capability is crucial for creating personalized treatment plans that can be adjusted as the child
develops, ensuring that interventions are as effective as possible. Moreover, by identifying at-risk
individuals early, these models enable clinicians to intervene before more severe challenges arise,
potentially improving quality of life and developmental outcomes. Despite the significant promise of ML
in ASD diagnosis and treatment, several challenges remain. One of the primary concerns is the need for
high-quality, well-annotated datasets to train ML models effectively. In particular, neuroimaging data and
behavioral assessments often suffer from small sample sizes, which can limit the generalizability of the
models. Additionally, the "black-box" nature of many ML algorithms, especially deep learning models,
raises concerns about interpretability. Clinicians need to understand how these models make decisions to
trust and incorporate them into their practice. Efforts are underway to develop more explainable Al
models that provide transparent, understandable reasoning behind their predictions, which will help
address this issue. In conclusion, machine learning has the potential to revolutionize the diagnosis and
treatment of ASD by offering objective, scalable, and personalized tools for clinicians. By integrating
various data sources such as neuroimaging, genetic profiles, and behavioral data, ML models can uncover
previously hidden patterns, improve early detection, and enable more effective interventions.
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Figure 1.3: Working of a Generic Autism Spectrum Disorder Diagnosis Framework
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This thesis aims to contribute to the growing body of work in this area by developing a machine learning-
based framework that integrates multimodal data to enhance ASD diagnosis, while also ensuring that the
resulting models are interpretable and clinically useful.

1.5. Motivation of Study
The early detection and diagnosis of Autism Spectrum Disorder (ASD) are critical in shaping the
developmental trajectory and improving the quality of life for affected individuals. ASD is a
neurodevelopmental condition that impacts social interaction, communication, and behavior, with a rising
global prevalence. The ability to detect ASD at an early stage significantly enhances the effectiveness of
intervention programs, which can help mitigate the challenges faced by individuals and their families.
Given the complexity and variability in the presentation of ASD, early and accurate diagnosis remains a
challenge within the medical field. For ASD detection, the use of Artificial Intelligence (Al) holds
immense promise. Traditional diagnostic methods for ASD typically rely on behavioral assessments and
expert evaluations, which can be subjective and resource-intensive. The emergence of Al offers an
opportunity to provide objective, reliable, and scalable tools to complement or enhance these methods.
Machine learning (ML) and deep learning (DL) techniques can analyze vast amounts of multimodal data
from clinical assessments to brain imaging and behavioral data—identifying patterns that may not be
immediately apparent to clinicians. Such Al-driven tools can facilitate earlier diagnosis and personalized
treatment plans, ensuring better outcomes for individuals with ASD. The challenge lies in developing
accurate, interpretable, and generalizable Al models capable of diagnosing ASD across diverse
populations and age groups. The complexities associated with ASD, including varying symptom severity,
co-occurring conditions, and individual differences, make it a difficult disorder to diagnose. Moreover,
the current reliance on limited datasets and the lack of comprehensive, multimodal data further
complicate the development of robust diagnostic models. Therefore, the motivation for this study is to
address these challenges by leveraging Al techniques to analyze diverse datasets that include clinical data,
neuroimaging, and behavioral data. By integrating these multimodal sources, this research aims to
enhance the accuracy, interpretability, and generalizability of ASD detection frameworks. The increasing
availability of large-scale, publicly accessible datasets, such as the ABIDE (Autism Brain Imaging Data
Exchange) dataset, has further fueled the development of Al-driven diagnostic models. These datasets
provide a rich source of information that can be used to train machine learning models capable of
identifying subtle differences between individuals with ASD and those without, thus improving
diagnostic accuracy. However, despite the growing body of research, the challenge remains to develop Al
systems that not only excel in accuracy but also ensure that the results are clinically relevant and

interpretable for healthcare professionals. As the prevalence of ASD continues to rise globally, there is an
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urgent need to implement scalable, cost-effective diagnostic solutions. Al has the potential to
revolutionize the way ASD is diagnosed and monitored by offering tools that can be deployed in a variety
of settings, from hospitals to remote clinics. The goal of this study is to contribute to this transformation
by developing a novel Al-based ASD detection framework that integrates multimodal data sources,
addresses current diagnostic challenges, and improves accessibility to diagnostic resources for individuals
worldwide. By exploring the integration of Al with clinical and behavioral data, this research aims to
enhance the precision and timeliness of ASD diagnosis, ultimately leading to better outcomes for

individuals affected by this disorder.

1.6. Research Objectives
The primary aim of this research is to try to overcome restrictions and build novel and innovative
methods for inspecting technology-driven techniques. In order to accomplish this aim, the following
Research Objectives (ROs) have been established:
For finding the solution to the above sub-queries, the following Research Objectives (ROs) are finalized:
Research Objective 1: To perform a systematic literature review on autism spectrum disorder.
Research Objective 2: To develop an intelligent autism spectrum disorder diagnosis model using deep
learning with computational intelligence techniques.
Research Objective 3: To design a multi-modal autism spectrum disorder detection framework
Research Objective 4: To perform a comparative analysis of the proposed work with the existing
techniques.
The detailed description of the identified research objectives is as follows:
Research Objective 1: This objective aims to build a comprehensive understanding of the current state of
research on Autism Spectrum Disorder (ASD). A systematic literature review (SLR) involves analyzing
and synthesizing existing studies on ASD, focusing on key areas such as diagnostic methods, challenges
in early detection, the use of artificial intelligence (Al) in healthcare, and multi-modal approaches for
ASD diagnosis. The review identifies gaps in existing methodologies and highlights the potential for
applying deep learning (DL) and computational intelligence (CI) techniques. The findings serve as a

foundation for proposing novel frameworks and models for improved ASD diagnosis.

Research Objective 2: This objective focuses on creating a robust and accurate diagnostic model that
leverages advanced DL architectures integrated with CI techniques. The model aims to address challenges
such as overfitting, generalization, interpretability, and computational efficiency. Techniques such as
feature optimization (e.g., White Shark Optimization, Bat-PSO) and classifiers (e.g., Bi-LSTM, CNN) are

employed to enhance model performance.
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Research Objective 3: This objective involves developing a multi-modal framework that integrates
diverse data modalities, such as clinical data, brain MRI scans, and meta-features, for a comprehensive
ASD diagnosis. The framework combines vision transformers and LSTM-based architectures for
effectively processing imaging and non-imaging data. A novel fusion mechanism, such as channel and
spatial attention-based CBAC, ensures seamless integration of multi-modal inputs. This approach not
only improves the accuracy of ASD detection but also addresses the complexities associated with

analyzing heterogeneous datasets, offering a holistic and scalable solution for real-world applications.

Research Objective 4: The final objective ensures a thorough evaluation of the developed models and
frameworks by comparing them with existing state-of-the-art methods. The comparative analysis includes
benchmarking performance metrics, conducting ablation studies, and employing rigorous cross-validation
techniques such as leave-one-dataset-out (LODO) and leave-one-site-out (LOSO). Additionally, the
analysis highlights the advantages of the proposed methods in terms of accuracy, computational
efficiency, and generalization capabilities. This comprehensive evaluation demonstrates the contribution
of the research to advancing ASD diagnosis and underscores its potential for clinical implementation.

In this context, for fulfilling the requirement of ROs, Table 1.1 demonstrates the mapping among ROs,
and publications.

Table 1.2 Aligning of Research Objectives, and Publications

Research Objectives List of Publication
RO1. To perform asystematic literature v" Machine Learning Techniques for Autism Spectrum
review on autism spectrum disorder Disorder: current trends and future directions [Published]

v' Bio-Inspired Techniques in Autism Spectrum Disorder:
Comprehensive  Survey and  Future  Trajectories.
[Submitted]

RO2. To develop an intelligent autism v' AFF-BPL: An adaptive feature fusion technique for the
spectrum disorder diagnosis model using diagnosis of autism spectrum disorder using Bat-PSO-
deep learning with computational LSTM-based framework. [Published]

intelligence techniques

v' WS-BIiTM: Integrating White Shark Optimization with Bi-
LSTM for Enhanced Autism Spectrum Disorder Diagnosis.
[Published]

v' S/SD-ASD: Self-Supervised and Self-Distillation Learning
Approach for Autism Spectrum Disorder Classification
Using Facial Images [Under Review]

v' ASD-CEVT: Convolutional Enhanced Vision Transformer
Architecture for the Diagnosis of Autism Spectrum Disorder
[Under Review]
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RO3. To design a multi-modal autism v" MCBERT: A Multi-Modal Framework for the Diagnosis of
spectrum disorder detection framework Autism Spectrum Disorder [Published]

v' LSTVision: A Multi-Modal Framework for the Diagnosis of
Autism Spectrum Disorder utilizing LSTM and Vision
Transformer [Published]

ROA4. To perform a comparative analysis of v' S/SD-ASD: Self-Supervised and Self-Distillation Learning
the proposed work with the existing Approach for Autism Spectrum Disorder Classification
techniques Using Facial Images [Under Review]

v' ASD-CEVT: Convolutional Enhanced Vision Transformer
Architecture for the Diagnosis of Autism Spectrum Disorder
[Under Review]

1.7. Outline of the Thesis
The thesis consists of six chapters describing the entire study in a very concise and precise way. Each

chapter is summarised below:

Chapter 2: This chapter presents an extensive review of evolutionary and deep learning techniques
applied to ASD diagnosis. It covers machine learning, multi-modality approaches, and self-supervised
learning-based methods. The discussion identifies research gaps, highlights limitations in existing
methodologies, and sets the foundation for the proposed frameworks. The chapter ends with a summary

of the key findings from the literature.

Chapter 3: This chapter describes the methodologies used for ASD classification, including Particle
Swarm Optimization, Bat Algorithm, and Adaptive Feature Fusion. It introduces the WS-BiTM
framework, detailing its components such as White Shark Optimization, neural networks, and Bi-LSTM.
The chapter discusses data preprocessing, feature selection, and performance evaluation. Experimental
results of AFF-BPL and WS-BiTM are analyzed, showcasing their efficacy in ASD diagnosis.

Chapter 4: This chapter proposes a multi-modality framework combining CNNs for image analysis and
MCBERT for meta-features. It explains components like Multi-Head CNN, CBAC, and BERT, along
with preprocessing and classification modules. Experiments demonstrate performance through LOSO
tests, comparison with existing works, and ablation studies. Computational complexity and detailed

discussions provide insights into the proposed approach’s effectiveness.
Chapter 5: This chapter explores various deep learning architectures such as VGG-16, AlexNet, ResNet,
and Vision Transformer. It introduces the proposed ASD_CEVT framework, detailing its design and
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application. Experiments and evaluations measure the framework’s performance and compare it with

baseline models. A discussion on the results highlights its practical implications in ASD diagnosis.

Chapter 6: This chapter focuses on self-supervised learning (SSL) and knowledge distillation (KD)
techniques for ASD diagnosis. It introduces the use of facial image datasets and advanced architectures
like transformers and masked autoencoders. The chapter discusses experimental setups, result
visualization, and the implications of SSL and self-distillation in ASD research. A detailed analysis

emphasizes the potential of these approaches.

Chapter 7: The final chapter summarizes the research findings and evaluates the limitations of the work.
It provides a roadmap for future research directions, suggesting enhancements in Al-based ASD
diagnostic methods. Potential advancements include integrating emerging technologies, improving

computational efficiency, and extending applications to diverse datasets and populations.

1.8. Chapter Summary
This chapter provides an overview of autism diagnosis, emphasizing the role of artificial intelligence
techniques in enhancing diagnostic accuracy. It discusses the integration of multi-modal data, such as
clinical and imaging data, in improving the performance of ASD detection systems. The chapter outlines
the content and description of each subsequent chapter, highlighting unique concepts and ideas that align
with the title and objectives of the thesis. Additionally, it briefly explores autism diagnosis, machine/deep
learning methodologies, and publicly available data for ASD detection. The objectives, scope, and

motivation for this research are also presented in detail.
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Chapter 2 METHODICAL LITERATURE REVIEW

This section explores the state-of-the-art advancements in autism spectrum disorder (ASD). After
carefully reviewing the latest and most relevant research, we have identified a group of studies that share
common motivations while offering distinct perspectives. This discussion seeks to highlight these works,
providing a detailed overview before presenting our proposed methodology. In the last decade, the
effectiveness of Deep Learning (DL) and Machine Learning (ML) approaches in diagnosing autism
spectrum disorder has been clearly established. A summary of these findings is concisely presented in the
Tables below, which offers a comprehensive overview of the existing literature that not only aligns with

similar motivations but also varies in its applications.

2.1. Evolutionary and Deep Learning-based ASD Diagnosis works
Table 2.1 shows the literature on deep learning and evolutionary strategies for autism spectrum disorder
(ASD) diagnosis demonstrates diverse approaches, focusing on different datasets and optimization
techniques. Prasad et al. employed a hybrid sewing training optimization (HSTO) with ZFNet on the
ABIDE dataset, achieving a high accuracy of 95.7%, though limited dataset diversity and small sample
size hindered generalizability. Similarly, Thanarajan et al. utilized a chaotic butterfly optimizer with
LSTM on eye-tracking data, obtaining remarkable accuracy (99.29%) but suggested further optimization
and hybrid techniques for improvement. Loganathan et al. achieved comparable performance using Bi-
GRU and chaotic optimization with EEG signals but faced challenges related to computational
complexity and generalizability. For optimization-focused approaches, Vidyadhari et al. leveraged a
fractional social driving training optimizer with a deep quantum neural network on ABIDE, achieving
good sensitivity (0.96) but limited interpretability. Kumar and Jayaraj applied resilient fish swarm
optimization with CNN and zealous particle swarm optimization with neural networks for ASD
classification, noting computational complexities and suboptimal accuracy (77.11%-92.9%). Bhandage et
al. used the Adam war strategy with a deep belief network on ABIDE datasets, achieving high specificity
(0.935) but highlighted the need for improved accuracy. Some studies incorporated advanced techniques,
such as Almars et al., who utilized transfer learning and the gorilla troops framework on autistic facial
image datasets, reporting promising results with DenseNet169 but lacking clinical validation. Sree et al.
combined jellyfish search and bacterial foraging optimization with gated recurrent units, outperforming
existing algorithms but with room for architectural enhancement. Kadry et al. employed whale
optimization for MRI slice classification, achieving 98.5% validation accuracy but emphasized the need
for broader algorithmic inclusion. Finally, Anurekha and Geetha addressed gene selection for robust

feature extraction using deep neural networks, achieving stability in feature selection but lacking
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interpretability. Sriramakrishnan et al. implemented pelican and remora optimization algorithms with a
deep CNN on ABIDE, attaining a high accuracy of 95.2% but recommending additional metrics for
healthcare validation.

Overall, while significant progress has been made in leveraging optimization techniques and deep
learning for ASD diagnosis, common challenges include limited dataset diversity, computational
complexity, lack of interpretability, and insufficient clinical validation, highlighting areas for further

research and development.

Table 2.1 Literature survey performed for the diagnosis of ASD using evolutionary algorithms in

association with machine learning/deep learning

Author Aim Model Dataset Evolutionary | ML/DL | Results Limitations
Technique
Prasad et al. [8] | ASD HSTO_ZFNet ABIDE Hybrid Deep Acc: 95.7%; | Limited dataset
detection sewing learning | TNR: 92.6%; | diversity; small
using HSTO training TPR: 93.7%; | sample size; lack
optimization FNR: 68.7%:; | of
(HSTO) FPR: 75.9% | generalizability
and
interpretability
Thanarajan et | ASD ETASD_CBODL | Eye Chaotic LSTM Acc: Hybrid
al. [9] diagnosis tracking butterfly 99.29%j; techniques can
based on data optimizer Specificity: be  employed;
eye-tracking 99.29% further
data Sensitivity: optimization can
99.29%j; be done
Precision:
98.78%;
Loganathan et | ASD - EEG Chaotic Bi-GRU | Sensitivity: Limited
al. [10] classification signals optimization 98%; generalizability;
and F1: 98%:; computational
detection Acc: 98%:; complexity
using MCC: 99%;
chaotic Precision:
33
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optimization 99%
with Bi-
GRU
Vidyadhari et | ASD FSDTBO-DQNN | ABIDE Fractional Deep Acc: 0.90; Lack of
al. [11] detection social driving | quantum | Specificity: interpretability;
using training- neural 0.94; accuracy needs
optimization based network | Sensitivity: to be improved
and deep optimizer 0.96
learning
Kumar and | ASD RFSO_ECNN ABIDE Resilient fish | CNN Acc: 92.9; Computational
Jayaraj [12] classification swarm TN: 45.15; complexity;
using optimization TP: 47.75%; | Interpretability;
resilient fish FN: 3.14%; Generalization
swarm and FP: 3.95%; to other imaging
CNN F1:93.08 modalities
Bhandage et al. | ASD AWSO_DBN ABIDE | | Adam  war | Deep Specificity: Limited dataset;
[13] classification and strategy belief 0.935; accuracy needs
via ABIDE Il network | Acc: 0.924; to be improved
optimization Sensitivity:
and deep 0.93
belief
network
Anurekha and | Gene IHEGS Six gene | Gene Deep Provided Lack of
Geetha [14] selection expression | selection neural stable results | interpretability
model to data network |in terms of
identify feature
robust and selection and
stable gene accuracy
subset in
ASD
Kumar and | ASD ZPSO-RMLPNN | ABIDE Zealous Neural Acc: 77.11; Accuracy needs
Jayaraj [15] classification particle networks | TN: 37.52; to be improved
using swarm TP: 39.58;
34
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threshold optimization FN: 10.86;
values to FP: 12.02;
assess fMRI F1:77.57,
images FMI: 77.57;
MCC: 54.22
Almars et al. | ASD ASD?- TL * | Autistic Gorilla troop | Transfer | DenseNet169 | Clinical aspects
[16] detection GTO facial optimization | learning | outperforms | and
using image the other | interpretability
transfer dataset, employed of the model
learning and ASD techniques were not
gorilla screening with a loss | addressed
troops value of
framework 0.512
Sreeetal. [17] | ASD JSODL_ASDDC | ASD Jellyfish Gated The The
classification screening | search recurrent | proposed performance of
using deep dataset optimization, | unit technique JSODL_ASDDC
learning and Bacterial outperforms | architecture can
optimization foraging the existing | be enhanced
techniques optimization algorithms
Kadry et al. | Diagnosing | - MRI Whale Deep Validation Results can be
[18] normal/ASD slices optimization | learning | result: 98.5 generalized by
MRI  slices incorporating
with more algorithms
improved
accuracy
Sriramakrishnan | ASD CPROA ABIDE Pelican and | Deep Acc: 0.952; Clinical
etal. [19] detection Remora CNN Recall: validation; lack
using optimization 0.958; of
optimization algorithm F1:0.963 interpretability;
techniques (POA  and other evaluation
and deep ROA) metrics  should
learning also be
considered while
35
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working in the
healthcare

domain

Table 2.2 also shows the integration of evolutionary and deep/machine learning techniques in ASD
diagnosis and related fields has significantly advanced the accuracy and efficiency of machine learning
(ML) and deep learning (DL) models, yet challenges remain in terms of generalizability, interpretability,
and computational cost. Arumugam and Saravanan employed a combination of ShuffleNet_v2, sparse
autoencoders, WSO, and gated GRU for skin cancer classification, achieving improved outcomes, though
statistical validations were absent. Singh et al. utilized WSO with DenseNet and U-Net for tuberculosis
detection, obtaining 94.7% accuracy but identified the need for broader datasets. Hammouri et al.
leveraged binary hybrid-sine-cosine WSO for feature selection across 23 medical datasets, achieving
~90% accuracy, indicating room for improvement. In intrusion detection, Alawad et al. combined WSO
and K-means algorithms, noting limitations in navigating the search space. Focusing on ASD, Bhandage
et al. used Adam War Strategy Optimization with Deep Belief Networks, achieving 92% accuracy but
highlighting the potential for generalizing results across datasets. Several studies utilized ensemble and
hybrid models. Kang et al. implemented PCA, autoencoders, and LSTM-Conv on ABIDE data for ASD
detection, achieving 92.9% accuracy, with suggestions to explore additional feature selection techniques.
Tang et al. introduced a two-stage adversarial deep learning model, achieving 80% accuracy, but
emphasized the need for dataset generalization. Similarly, Loganathan et al. achieved superior accuracy
(99.5%) using chaotic optimization and Bi-GRU on EEG signals. Various approaches were explored by
Ahmed et al., who achieved 95% accuracy in detecting ASD through fine-tuning on facial images but
called for nature-inspired feature selection. Han et al. designed a multimodal model based on EEG and
eye-tracking data, achieving 95.56% accuracy despite high computational costs. Ali et al. and Pavithra
and Jayanti employed bidirectional LSTM and PSO with IANFIS, respectively, achieving accuracies
exceeding 97%, with suggestions for generalization and exploring bio-inspired methods. For graph-based
techniques, Kwon et al. utilized a sparse hierarchical graph framework for brain connectivity in ABIDE,
achieving a mean absolute error of 0.96 but lacking parameter normalization. Gaspar et al. achieved
98.8% accuracy on gaze-tracking images using KELM optimized by the Giza pyramid algorithm, but the
dataset size was limited. Earlier works, such as Li et al., incorporated clonal selection and evolutionary
algorithms for MRI segmentation, but high computation times and low accuracy (84%) were noted.
Meanwhile, Sadeghian et al. employed genetic algorithms with KNN for fMRI-based ASD diagnosis,

reporting low accuracy (62.59%), and suggested exploring DL classifiers. In summary, evolutionary
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techniques have demonstrated potential in enhancing ASD diagnosis and related applications, yet the key

challenges include improving accuracy, reducing computational complexity, addressing interpretability

issues, and validating results across diverse datasets. Future work can focus on integrating advanced bio-

inspired methods and leveraging multimodal approaches for robust outcomes.

Table 2.2 A literature survey performed for autism spectrum disorder incorporating various evolutionary

techniques
Author, Year | Aim Dataset Techniques Results Limitations/Future work
Arumugam Automated skin | ISIC 2017; | Shuffle_Net v2; Improved Lack of interpretability; No
and cancer HAM1000 | Sparse AE; WSO; | detection statistical test performed
Saravanan classification Gated GRU outcomes on the
[20], 2024 (multi-class) employed datasets
Singh et al. | Tuberculosis Sputum Dense_net; WSO; | Acc: 94.7%; Need to incorporate more
[21], 2024 severity images MRO,; U_net; | TNR: 90.6%; datasets
detection Adaptive bilateral | PPV: 89.4%;
filter TPR: 93.3%);
NPV: 88%
Hammouri et | Feature 23 Medical | Binary  hybrid- | Accuracy ~90% | Performance can be
al. [22], 2024 | selection via | datasets sine-cosine WSO improved
WSO
Alawad et al. | Intrusion 12 10T and | WSO; K-means | The  developed | Inability of the model to
[23], 2023 detection system | IDS algorithms architecture connect with the search
via WSO datasets performs  fairly | space
well on all
metrics
Bhandage et | ASD ABIDE |, | DBN+ Adam war | Acc: 92%, Accuracy can be improved;
al. [13], 2023 | classification via | ABIDE 11 strategy algorithm | Specificity: results can be generalized
AWSO + DBN was used 93.5%, on more datasets
Sensitivity: 93%
Talukdar et | Analysis of | ASD NB, LR, SVM, | The highest | No feature selection was
al.[24], 2023 | ASD via ML | screening RF accuracy was | performed; accuracy can be
Techniques dataset achieved by RF | improved; deep learning

(92.65%)

methods need to be
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explored
Kang et Recognition of | ABIDE PCA+ Auto Acc: 92.9% Accuracy can be improved,
al.[25], 2023 | ASD via multi- encoder + LSTM- other feature selections can
view ensemble Conv be explored
learning
Tang et ASD ABIDE Two-stage ADL | Acc: 80%, Accuracy can be improved;
al.[26], 2023 | classification via model + sliding Specificity: 80%, | results can be generalized
adverisal deep window concept | Sensitivity: 81% | on more datasets
learning (ADL)
Loganathan | ASD detection EEG Hybrid model; Acc: 99.5% -
etal. [27], and signals chaotic
2023 classification optimization +
Bi-GRU
Ahmed et al. | Developed a Facial Worked on Achieved Accuracy can be improved;
[28], 2022 feature detection | image InceptionV3, maximum feature selection via
system to find dataset Xception, and accuracy of 95% | nature-inspired techniques
children with Mobilenet models can be explored
ASD by performing
fine-tuning on
layers
Kwon et al. Developed a ABIDE Adopted graph- MAE score: 0.96 | Normalization of
[29], 2022 sparse deep learning parameters was not done
hierarchical model in order to
graph predict ASD
framework for severity
brain
connectivity
Gaspar etal. | Classification of | Gaze KELM + Giza Acc: 98.8% Less number of data
[30], 2022 ASD using tracking pyramid sample
optimized images construction
KELM algorithm
Ajmi N Set | Reviewed ML - Discussed various | Advised to use -
al. [1], 2022 | techniques for ML models + the | graph neural
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ASD general strategy network
adopted for
detecting ASD via
ML
Han et al. Identification of | EEG and Designed two- Achieved The computational cost
[31], 2022 ASD in children | ET data step feature accuracy of was high, accuracy needs
using a learning with a 95.56% to be improved
multimodal fusion model
approach based on SDAE
Sadeghian et | ASD diagnosis | fMRI GA + KNN Acc: 62.59% Small data size; low
al. [32], 2021 | using genetic images accuracy; deep learning-
algorithm based classifiers can be
adopted
Ali etal. Classification of | EEG Bidirectional Acc: 97.3% -
[33], 2021 ASD using dataset LSTM
LSTM
Pavithraand | Detection of ISAA PSO + IANFIS Acc: 97% Results should be
Jayanti [34], | ASD via Sensitivity: 89% | generalized on various
2020 IANFIS datasets; other bio-inspired
techniques can be explored
Lietal. [35], | Segmentation MRI Clonal section + | Acc: 84% Low accuracy; high
2019 and function images differential computation time
optimization of evolution +
brain MRI estimation
distribution
algorithm

2.2. Deep/Machine Learning-based ASD Diagnosis works

Table 2.3 has the literature survey on studies employing deep learning (DL) and machine learning (ML)

strategies for autism spectrum disorder (ASD) detection and analysis highlighting significant

advancements and limitations in the field. Umrani and Harshvadhanan (2024) utilized EEG-based

datasets (DEAP and SEED-1V) with a deep CNN guided by an intelligent search optimizer, achieving

accuracies of 95.83% and 96.93%, respectively. However, their study was constrained by a smaller
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dataset. Similarly, Sandeep and Kumar (2024) applied Mediapipe and ResNeXt to detect pain in autistic
children from facial expressions, achieving 93.83% accuracy, but emphasized the need for advanced
image processing models and larger datasets. Mouatasim and lkermane (2023) implemented a control
subgradient algorithm (CSA) with DenseNet-121 for ASD diagnosis from facial images, achieving 91%
accuracy, which requires further improvement. Kwon et al. (2022) adopted a sparse hierarchical graph
framework with deep learning on the ABIDE dataset to predict ASD severity, reporting a Mean Absolute
Error (MAE) of 0.96 but lacking parameter normalization. Moridian et al. (2022) reviewed 233 research
papers, highlighting the need for larger, multimodal datasets for future ASD research. Wan et al. (2022)
developed the FECTS system for emotion identification in Chinese autistic children, achieving 70.22%
accuracy. However, the study was limited by a small, low-quality dataset focused solely on Chinese
children. Zhang et al. (2022) employed a variational autoencoder to extract functional connectivity
features from the ABIDE dataset, achieving 73.2% accuracy, while Chen et al. (2022) proposed the
NEGAT method with node-edge features and adversarial training, achieving 74.7% accuracy, both studies
underscoring the need for multimodal datasets. Pang et al. (2022) improved classification accuracy by
4.47% using an optimized cascaded classifier for 50 rs-fMRI images but noted room for improvement in
accuracy. Wang et al. (2022) proposed the MC-NFE technique for ASD detection, achieving an accuracy
of 68.42% and suggesting the adoption of self-supervised techniques. Other notable works include Mason
and Happe (2022), who used regression models for quality-of-life prediction, and Sharif and Khan (2021),
who achieved 66% accuracy using the VGG16 model, highlighting the challenge of low accuracy in both
studies. Earlier studies, such as those by Sherkatghanad et al. (2020), Chaitra et al. (2020), and Lu et al.
(2020), explored CNN-based techniques, complex network frameworks, and genetic data combined with
rs-fMRI, respectively. Despite achieving moderate accuracies, these studies emphasized the need for
multimodal data integration and larger datasets. Wawer et al. (2020) achieved 95% accuracy using text
data but faced limitations due to a small dataset. Finally, Pelleriti et al. (2020) called for more research on
unsupervised ML with larger datasets, addressing the relatively limited focus on this area in existing
studies. Overall, while the application of DL and ML has shown promise in ASD diagnosis and analysis,
significant challenges remain, including small datasets, limited multimodal approaches, and the need for

advanced feature extraction and optimization techniques.

Table 2.3 A literature review was performed on the studies adopting deep learning/machine learning
strategies for autism spectrum disorder

z'l-.l turnitin Page 74 of 218 - Integrity submission Submission ID trn:oid::27535:77729745

Authors Year | Objective Dataset Technique Results Limitations
Umrani  and | 2024 | Anxiety DEAP and | Intelligent  search | Accuracy on | Smaller data
Harshvadhana detection in | SEED-1V | optimizer relied on | DEAP = 95.83%; sample size
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n [36] autistic (EEG- deep CNN Accuracy on
individuals based SEED-1V =
datasets) 96.93%;
Sandeep and | 2024 | Pain detection in | Custom Mediapipe and | Accuracy: 93.83% | Data sample
Kumar [37] autistic children | emotion ResNeXt strategies size is small,
via facial | image advance image
expression dataset processing
models can be
employed
Mouatasim 2023 | Control Facial Applied CSA | Accuracy: 91% Accuracy can be
and lkermane subgradient image DenseNet-121 improved
[38] algorithm (CSA) | dataset CNN model
for ASD
diagnosis
Kwon et al. | 2022 | Developed a | ABIDE Adopted graph- | Achieved MAE | Normalization
[29] sparse dataset deep learning | score of 0.96 of  parameters
hierarchical model in order to was not done
graph predict ASD
framework  for severity
brain
connectivity
Moridian et al. | 2022 | Reviewed Reviewed Discussed and | Highlighted the -
[39] automated ASD | 233 compared various | need for larger
detection via Al | research existing employed | datasets and to
papers techniques in detail | adopt multi-modal
datasets for future
research
Wan et al. [40] | 2022 | Developed a | Dataset of | Built a FECTS | Achieved an | The dataset was
framework for | 10 Chinese | system based on | accuracy of | too small and of
emotion autistic different  features | 70.22% low quality, low
identification of | children such as fear, happy recognition rate
Chinese children | aged 5-10 | which were stored for some
suffering from | years in a cloud-based parameters, and
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ASD evaluation system data was from
to analyze features only  Chinese
for future children

Zhang et al. | 2022 | Built a novel | ABIDE Extracted brain | Achieved accuracy | Accuracy needs
[41] feature selection | dataset functional of 73.2% to be improved,;
strategy via connectivity by a  multimodal
variational utilizing MLP dataset can be
autoencoder trained on adopted
variational
autoencoder
Chen et al. | 2022 | ASD ABIDE | Proposed a novel | Gained accuracy of | Accuracy needs
[42] identification NEGAT  method | 74.7% to be improved;
using graph utilizing node-edge can integrate
neural network features, phenotypic
adversarial training information
with  multimodal
MRI data
Pang et al. | 2022 | Developed 50 rs-fMRI | Worked on | Classification Accuracy needs
[43] computer-based | images optimized cascaded | accuracy was | to be improved

diagnosis ~ for | from classifier  through | enhanced by 4.47%

brain disease ABIDE sample distribution
and improved
feature
representation

Wang et al. | 2022 | Proposed MC- | ABIDE Initially classified | Gained an accuracy | Self-supervised
[44] NFE technique | dataset ASD patients and | of 68.42% techniques can
for ASD healthy individuals be adopted to
detection using then extracted decrease the
fMRI features  followed demand of
by linear SVM category labels
Mason and | 2022 | Predicting QoL | Data of 133 | Estimated Only some | Small  sample
Happe [45] through autistic | participants | regression models | parameters adopted | size
traits (42 autistic; | and conducted an | by them influence
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91 normal) | exploratory the QoL
analysis
Sharif and | 2021 | Developed ABIDE | Used VGG16 | Achieved accuracy | Low accuracy
Khan [46] novel ML ASD model  with 16 | of 66%
detection layers, softmax
framework function and Adam
optimizer
Jee et al. 2021 | Detection of | Q-Chat Worked on | LR achieved | DL  techniques
[47] ASD via improving training | accuracy of 100% | can also be
orthogonal & time accuracy | and rest achieved | explored
decomposition via dimensionality | accuracy of nearly
& Pearson reduction and ML | 92%
correlation classifiers such as
Linear Regress,
KNN, NB, SVM,
DT, RF and ANN
Sherkatghanad | 2020 | Development of | fMRI data | Adopted CNN | Achieved accuracy | Low test
et al. [48] automated ASD | from technique to | of 70.22% accuracy, higher
detection ABIDE classify autistic and time complexity
technique typical control
group and also
tested the
performance of
their model using
SVM, KNN, and
RF classifiers
Chaitra et al. | 2020 | ASD prediction | ABIDE Investigated brain | Achieved highest | Low accuracy
[49] via complex network  features, | accuracy of 70.1%
network ML RCE-SVM was
framework adopted
Wawer et al. | 2020 | Explored the | Data of 74 | Worked on Bag-of- | Achieved accuracy | Lower data
[50] limits of | individuals | words, dictionary- | of 95% sample
automatic means | of ASD and | based methods with
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of ASD | 94 machine learning.
detection from | individuals | Used DL methods
textual data of for inference and
schizophre | text representation

nia

Pelleriti et al. | 2020 | Explored the | Reviewed Discussed existing | Highlighted the | Less

applications of | 43 research | studies and | need of more | studies
unsupervised studies techniques adopted | research using | explored
ML for ASD for ASD using | unsupervised ML

unsupervised ML with a larger ASD

dataset

Luetal. [52] 2020 | Classification of | Data of 71 | T-test used for | Achieved accuracy | Accuracy needs

ASD based on | individuals | feature reduction, | of 83.6% to be improved,

genetic data and | taken from | SVM-RFE for no integration of

rs-fMRI NDAR optimized feature multimodal
selection data;

2.3. Multi-Modal-based ASD Diagnosis works
Table 2.4 represents the literature on multimodal architectures for the diagnosis of autism spectrum
disorder (ASD), other medical conditions, and domains such as behavior analysis highlights a diverse
range of methodologies and data modalities. In medical imaging (M1), structural and functional MRI
(SMRI, fMRI) dominate, often combined with meta-features (M3) such as clinical data, to enhance the
diagnostic accuracy for ASD and other disorders. For instance, Han et al. (2022) utilized EEG and eye-
tracking data to design a stacked denoising encoder for ASD diagnosis, achieving an accuracy of 93.56%.
Similarly, Du et al. (2022) focused on functional and structural connectivity measures to classify ASD
and schizophrenia, achieving 83.08% accuracy. However, these studies are limited by the lack of
multimodal feature fusion and reliance on small datasets. Several studies have employed videos (M4) to
analyze behavioral traits, such as Song et al. (2023), who proposed a multimodal method to detect
responses to a child’s name using pose tracking and head pose estimation. Despite achieving ~93.3%
accuracy, the approach is constrained by small sample sizes and sensitivity to reaction speed. In speech-
related tasks, Passos et al. (2023) integrated graph neural networks with canonical correlation analysis to

improve feature learning for energy-efficient speech enhancement, although the study lacked
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quantification of energy savings. Multimodal techniques leveraging deep learning architectures, such as
transformers and attention mechanisms, have gained prominence. For example, Le et al. (2023) developed
a multimodal emotion recognition system combining CNN, ALBERT, and multi-head attention,
achieving 85.9% accuracy. Similarly, Herath et al. (2024) proposed an ensemble classifier combining
Inception V3, MobileNet, DenseNet, and ResNet50 for ASD diagnosis across ABIDE datasets, achieving
97.82% accuracy. However, these techniques often face challenges related to high computational costs,
lack of generalization, and issues with interpretability. In Alzheimer’s diagnosis, multimodal approaches
have incorporated MRI, PET, and cerebrospinal fluid (CSF) data. Sheng et al. (2024) developed a hybrid
framework combining Harris Hawks optimization with kernel extreme learning, achieving an accuracy of
99.2%. However, computational intensity and overfitting remain significant challenges. Similarly, Yu et
al. (2024) employed a transformer-based framework with an AUC of 0.993 but reported limitations in
validation and generalizability. Other innovative applications include behavior change prediction,
drowsiness detection, and aggression detection in surveillance. For instance, Chan et al. (2023) achieved
98% accuracy in behavior change prediction using a combination of sampling techniques, SVM, and
feature engineering, though the binary prediction target limits broader applicability. Meanwhile, Jaafar
and Lachiri (2023) used 3D CNNs to detect aggression in surveillance videos, achieving a weighted
average accuracy of 86.35%, but the results could not generalize across diverse datasets. Despite
significant advancements, multimodal approaches face several limitations. Small and imbalanced
datasets, lack of generalizability, and high computational costs are recurring issues. Future work should
focus on integrating diverse modalities, exploring optimization techniques, and enhancing explainability
to ensure the scalability and robustness of these models across broader applications.

Table 2.4 A literature survey performed on the multimodal architectures developed for the diagnosis of
ASD, various diseases (Medical), and other domains using machine learning/deep learning, where, M:

Image; M2: Text; Ms: Meta-features/Sensor data; Ma: Videos; Ms: Audio; Me: Signals, denotes different
data modalities

Submission ID trn:oid:::27535:77729745

Reference Objective Techniques Included Modalities Target Outcomes Limitations/
Mi | Mz | M3 | Mg | Ms | Mg | Domain Future work
[53] Multimodal Weight 4 4 Medical | Acc: 77.27%; | Small data
ASD learning Pre:77.7%; size; lack of
diagnosis network; (ABIDE I) Recall: interpretability
architecture Graph CNN; 80.96% ; imbalanced
DeepGCN gender ratio
[54] Building - v v Medical | Consists of
multimodal 1315 videos -
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dataset for

for social and

autism movement
analysis behavior
analysis

[55] Multimodal | Human pose vV Medical | Acc: ~93.3% | Small dataset;
technique tracking; limited
based on | Automatic Dataset of 30 participants generalizabilit
response name y; dependency
towards name | detection; on body
behavior of | Head  pose movements;
children estimation sensitivity to
suffering reaction speed
from autism

[56] Multimodal KNN; SVM; Medical | Acc: 80.1%; Small dataset;
drowsiness RF; SHAP; (EEG, ECG, EOG) Sen: 70.35; limited
detection PDA Spec: 82.2% number of
architecture features; Deep
through learning
explainable techniques can
machine be explored
learning

[57] Multimodal Functional v Medical | Acc: 83.08% Lack of
classification | and structural (fMRI, sMRI) assessment of
technique to | connectivity symptoms;
analyze the | measures limited neuro-
uniqueness of imaging
ASD and measures;
Schizophrenia model-level

fusion only

[58] Behavior Feature VoY Behavior | Acc: 98%; Prediction
change engineering; change | Precision: 97% | target is
prediction in | sampling binary; costly
students via | techniques; setup
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multimodal SVM; NB;
architecture DT; RF;
KNN; MLP;
XGbhoost
[59] Survival Region-based | v v Medical | Prediction Lack of
prediction via | via (METABRIC; BASEL dataset) performance: interpretability
multimodal multimodal METABRIC = | ; spatial
graph-based module; 0.7484; simplification
framework Embedding BASEL = impact; less
module; deep 0.7479 generalization
MM  graph- to new data
based
network
[60] Multimodal | Self- v v Speech | Proposed Did not
architecture supervised (AV ChiMe3 dataset) enhancem | framework quantify the
for  energy- | framework ent ensures amount of
efficient integrating improved energy saving;
speech graph NN feature biologically
enhancement | and canonical learning realistic
correlation neuronal
analysis architecture
(CCA) can be
developed
[61] Multilabel Feature vV |V Y Y Emotion | The developed | High
and extraction recognitio | framework computational
multimodal (CNN, (IEMOCAP; CMU-MOSEI) n outperforms cost; time-
emotion ALBERT); existing consuming;
recognition multimodal methods with | redundant
fusion an accuracy of | frames in
(transformers 85.9% videos
); emotion-
level
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embedding
(multi-head
attention)

[31] Proposed Stacked v | Medical | Acc: ~93.56%; | High
multimodal denoising (EEG, ET data of 90 Sen: ~92.50%; | computational
architecture encoder individuals) Spec: ~98.0% | cost; advanced
for (SDAE) NN algorithms
diagnosing can be
ASD in explored
children

[62] Detection of | Multiple vV v v Y Medical | Unweighted Results cannot
aggression in | deep neural average acc = | be generalized
surveillance | networks; (Dataset of aggression in 85.66%; on a huge

3D-CNN trains) Weighted dataset;
average acc = | the model
86.35% cannot specify
all aggressive
situations

[63] Multimodal Multimodal + | v 4 Medical | Best acc: | Other data
ASD multisite 97.82% modalities can
identification | ensemble (improvement | be

classifier of 13.25%) incorporated;

(Inception more number
(ABIDE-I and I1) o

V3; of training

MobileNet, images can be

DensetNet, added

ResNet50)

[64] Decision Seed-based 4 4 Medical | Acc: 82% Accuracy can
support correlation; be enhanced
system  for | data (Eye movement data + fMRI)

ADHD augmentation
: CNN
[65] Classification | EEG and | v v' | Medical | Bestacc: 94% | Small dataset
48
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of ASD using | thermographi
different c feature
modalities extraction; (ADOS-2)
Naive Bayes;
neural  net;
logistic
regression;
random
forest
[66] Multimodal Extreme 4 4 Medical | Acc~98% Lack of
machine learning generalizabilit
learning- machine; (ADNI) y; does not
based entropy- address the
Alzheimer based issue of
diagnosis polynomial missing data
framework function;
attention
mechanism
[67] Multimodal Transformers | v 4 Medical | AUC: 0.993 Lack of
transformer- generalizabilit
based (ADNI) y; lack of
framework result
for Alzheimer validation
[68] Multimodal Harris hawks | v/ Medical | Acc: 99.2% Parameter
hybrid optimization; sensitivity;
framework kernel (ADNI: MRI + CSF + PET) computationall
for extreme y intensive;
Alzheimer’s | learning overfitting
diagnosis
[69] Supervised Self- 4 4 Medical | The developed
and self- | attention; (CINEPS and COEPS datasets) model
supervised latent feature performed Imbalance in
learning  on | extraction; significantly the data ratio;
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multimodal Cross- well on | more data
data modality various modalities can
feature parameters be considered
learning
[70] Multimodal Pyramid v Medical | Acc: 89.9% Small dataset;
Alzheimer's attention accuracy can
disease strategy with be enhanced
diagnosis GAN (ADNI data.tset: MRI and PET
using  brain images)
images
[71] Proposed BERT; v |V Medical | MedVill Scope on
MedVill for | Multimodal performed accuracy
Multimodal attention (MIMIC-CXR; Open-I; VQA- well against improvement;
representation | strategy RAD) various Need to work
learning considered on diverse
techniques multi-view
studies
[72] Multimodal Nakagami 4 Medical | Average dice High number
tumor imaging; score: 92.78% | of training
segmentation | Fuzzy fusion; | (Two types of images: Binary parameters
using a | Segmentation | segmented and FLAIR images)
mathematical
fuzzy
framework
[73] Multimodal 3D-ResNet; v 4 Medical | Acc: 74%; Limited
architecture MLP Recall: 95%; amount of
for F1:0.805 data; Low
diagnosing accuracy;
ASD overfitting
issues;
incorporate
optimization
techniques
50
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with large
dataset
[42] Autism Adversarial Medical | Accuracy: Accuracy

identification | learning; 74.7%; needs to be
via Garph (sMRI and fMRI) Specificity: enhanced; No
adversarial- networks 77.4% incorporation
graph of meta-
learning attributes
networks
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The literature on single-modality architectures for autism spectrum disorder (ASD) diagnosis explores
various deep learning and machine learning techniques across different data types such as fMRI, sMRiI,
and facial images in Table 2.5. In functional MRI (fMRI), Elakkiya and Dejey (2024) proposed two
models, MinAutiNet and AutiNet, achieving maximum accuracies of 88.89% and 77.78%, respectively.
However, the lack of automatic feature extraction techniques limits their performance. Similarly, N. Li et
al. (2024) introduced a multi-level joint learning network leveraging graph networks, achieving 81.5%
accuracy, though the model's complexity and many parameters present significant challenges. Tang et al.
(2023) adopted an LSTM-based two-stage adversarial approach for multi-site ASD diagnosis, attaining an
accuracy and specificity of 0.80 but highlighted the need for improved performance. Kang et al. (2022)
developed a multi-view ensemble model incorporating LSTM-Conv architecture and PCA, but with a
limited accuracy of 72%, it lacked integration with structural MRI (sSMRI). In sMRI-based approaches,
Nogay and Adeli (2024) utilized CNN with data augmentation and grid search optimization, achieving an
accuracy of 85.42%. However, their model considered only two factors, age and gender, indicating
limited scope. Similarly, Mishra and Pati (2023) employed deep CNN with data augmentation and
optimization, obtaining a maximum accuracy of 81.35%, suggesting potential for enhancement with
advanced techniques. For facial imaging, EI Mouatasim and Ikermane (2023) applied a control sub-
gradient approach with deep CNN and DenseNet models, achieving high precision, recall, and F1-scores
of 98%, 97%, and 97%, respectively. Nevertheless, their single-modality architecture and limited
hyperparameter exploration constrain its applicability. Dc et al. (2022) achieved a maximum accuracy of
91.2% using KNN, SVM, and other machine learning algorithms for ASD severity detection but
emphasized the potential benefits of adopting deep learning strategies. Finally, in sensor-based methods,
Parui et al. (2023) achieved 84.79% accuracy using brain connectivity analysis, though the study

underscores the need to enhance accuracy further. Across all studies, limitations such as reliance on single
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modalities, high model complexity, and a lack of integration with other data types suggest opportunities

for future research to focus on multimodal architectures and optimization techniques to improve

diagnostic accuracy and generalizability.

Table 2.5 Literature survey for autism spectrum disorder on single modality architectures
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Reference Objective Techniques Data Achievements Limitations
Modality
[74] Deep learning | Developed two | fMRI Max Accuracy: Need for automatic
integrated models, namely AutiNet = 77.78%; | feature extraction
activation function | MinAutiNet and MinAutiNet = | techniques:
for the screening of | AutiNet for 88.89% accuracy needs to
autism processing be improved
fMRI
[75] Deep learning- | CNN, data | SMRI Max Accuracy: | Only two factors
based ASD | augmentation, 85.42% were taken into
classification  via | grid search consideration
age and gender | optimization
factors with  multiple
classifications
[76] Multi-level  joint | Graph networks | fMRI Accuracy: 81.5% High model
learning  network complexity; large
for the brain to number of
diagnose ASD parameters
[26] Multi-site ASD | LSTM;  Two- | fMRI Accuracy: 0.80; Accuracy needs to
diagnosis stage adversarial Specificity: 0.80; be improved,
approach Sensitivity: 0.81 single-modality
architecture
[38] ASD diagnosis via | Control sub- | Face images The developed | Single modality
facial imaging gradient approach with | architecture;
approach  with DenseNet enhanced | limited exploration
deep CNN; the overall results | of
52
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DenseNet model with Precision = | hyperparameters;
98%; Recall =
97%;
F1-score = 97%
[77], ASD diagnosis via | Brain fMRI Accuracy: 84.79% | Need to improve
sensor-based  and | connectivity accuracy
Al approach analysis
[78], ASD classification | Deep CNN; data | SMRI Max Accuracy: | Accuracy can be
framework augmentation; 81.35% enhanced;  single
optimization modality model
[25] ASD  recognition | LSTM-Conv fMRI Accuracy: 72.0% No incorporation of
via multi-view | architecture; SMRI,; lower
ensemble and | SDAE; PCA accuracy
multi-site fMRI
[79] ASD severity | KNN, DT, | Face images Max Accuracy: | Deep learning
detection via ML SVM, NB, RF; 91.2% strategies can be
GLCM adopted

2.4. Self-supervised learning strategies-based works

The literature in Table 2.6 on self-supervised learning (SSL) techniques reveals their growing impact on
various domains, including medical image analysis and image-text multimodal tasks. Kumar and Misra
(2024) employed an enhanced MNU2 model with the CAFFE framework to identify masked faces,
gender, and age using a facial image dataset, achieving an accuracy of 96.54%. However, further efforts
are needed to improve real-time prediction accuracy. Ozbay et al. (2024) utilized autoencoders and
transformers to classify kidney tumors using the KAUH and CT dataset, achieving an impressive 99.82%
accuracy, though future work should focus on distinguishing between malignant and benign tumors. Tan
et al. (2024) combined masked autoencoders and Vision Transformers (ViT) to classify COVID-19-
related medical images, achieving a top accuracy of 97.78%. The study highlights challenges with dataset
quality and reconstruction. Similarly, Yang et al. (2024) explored self-supervised image quality
assessment using masked image modeling and contrastive learning, outperforming AVA dataset
benchmarks. The study emphasizes the need for graph-based networks and investigations into mask ratio
variations. Bai et al. (2024) utilized SSL techniques with masked autoencoders and ViT for feature

extraction in esophageal cancer detection, achieving an accuracy of 93.07% and an AUC of 95.31%.
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However, high computational complexity remains a challenge. Ma et al. (2024) proposed joint distillation

with disjoint masking for image modeling using an encoder-decoder architecture, resulting in a 3.4%

accuracy improvement, though scalability and computational overhead persist as barriers. Chen et al.

(2024) focused on multimodal image-text tasks with vision and language encoders paired with a fusion

module, achieving effective performance but identifying the need for advanced fusion mechanisms. Qi et

al. (2024) applied SwinUNeter with grid-based hierarchical masking for 3D medical image segmentation,

outperforming existing SSL methods while noting limitations in handling low-contrast and highly

complex images. Liu et al. (2023) enhanced 3D medical image reconstruction using random masking with

a Transformer encoder, showing improvements in evaluation metrics but requiring better generalization.

Finally, Qi et al. (2024) employed U-Net and masked autoencoders for tumor segmentation in BraTS-

2020, achieving superior performance on key metrics but emphasizing the need for broader validation to

ensure the findings' generalizability. Collectively, these studies highlight SSL's potential while addressing

challenges such as computational demands, dataset quality, and generalization.

Table 2.6 Literature survey conducted on Self-supervised techniques

Reference Dataset Used Obijective Methodology Key Findings Challenges and
Future Directions
Kumar and | Facial images | Identification of | Enhanced Achieved 96.54% | Enhance  real-time
Misra, 2024 | dataset masked face, | MNU2 model | accuracy, error | gender and age
[80] (Sanjaya gender, and age with  CAFFE | rate of 3.46% prediction accuracy
Subedi) framework
Ozbay et al., | KAUH and | Classify kidney | Autoencoder Accuracy Focus on the
2024 [81] CT dataset tumors using self- | and achieved: 99.82% | differentiation
supervised learning | Transformer between a malignant
(SSL) and benign tumor
Tan et al., | SARS-COV- Classify COVID- | Masked Best  accuracy: | Issues with dataset
2024 [82] CT; 19-related medical | autoencoder 97.78% quality and
COVID-CT images combined with reconstruction need
Vision resolution
Transformer
(VIT)
Yang et al., | ImageNet-1K; | Conduct self- | Masked Image | Outperformed Explore graph-based
2024 [83] AVA dataset | supervised image | Modeling; ViT; | AVA dataset | networks; investigate
quality assessment | Contrastive benchmarks the effects of varying
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Learning mask ratios
Bai et al., 2024 | Whole  Slide | Extract features for | SSL;  Masked | Accuracy: Address high
[84] Images (WSI) | esophageal cancer | Autoencoder; 93.07%, AUC: | computational
dataset of 552 | detection ViT 95.31% complexity
cases
Ma et al., 2024 | ImageNet-1K | Use joint | Encoder- Accuracy Reduce  scalability
[85] distillation and | Decoder  with | enhancement: challenges and
disjoint masking for | joint distillation | 3.4% computational
image modeling overhead
Chen et al, | ROCO; Develop Vision and | Effective Investigate advanced
2024 [86] MedICaT multimodal models | language performance data fusion encoder
for image-text tasks | encoders  with | across tasks mechanisms
fusion module
Qi et al., 2024 | Amos-2022; Segment 3D | SwinUNeter; Outperformed Address  limitations
[87] BraTS-2021 medical images | Grid-based existing SSL | on low-contrast and
with adaptive | hierarchical techniques highly complex
masking masking images
Liuetal., 2023 | BTCV; Reconstruct Random Improvements Work needed to
[88] LiTS-2017; boundaries in 3D | masking with | noted in multiple | enhance
BraTS-2020 medical imaging Transformer evaluation metrics | generalization
encoder
Qi et al., 2024 | BraTS-2020 Perform tumor | U-Net; Masked | Achieved better | Generalize findings
[89] segmentation  via | Autoencoder performance on | for broader
SSL key metrics validation

2.5. Research Gaps and Limitations

Based on the insights from recent studies, several significant research gaps have been identified within the

field of autism spectrum disorder using artificial intelligence:

e Overfitting and Generalization Challenges: Conventional ASD diagnostic models often face

overfitting, limiting their generalizability across diverse populations and settings. This is particularly

problematic in ASD research due to high symptom variability and data source diversity.
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e Interpretability of Complex Diagnostic Models: Traditional machine learning models in ASD
diagnosis often lack transparency, hindering clinical applicability. Interpretability is essential for

clinical use, requiring clear insights into feature contributions.

e Limitations of Single-Modality Approaches: Most of the ASD diagnostic research has typically
relied on single data modalities (e.g., MRI or behavioral data), limiting the potential for a holistic
understanding of ASD.

o Limited Identification of Key Autism-Causing Biomarkers: Only a few studies focus on
identifying significant ASD-causing features. These are vital for uncovering ASD’s underlying

mechanisms and developing more targeted diagnostic approaches.

¢ High Computational Cost and Processing Time: Computationally demanding models hinder ASD

diagnostic models' applicability in clinical practice.

e Inadequate Use of Deep Learning and Computational Intelligence: ASD diagnostic research has
been dominated by machine learning methods with limited attributes, while deep learning and

computational intelligence approaches remain less explored.

e Lack of Robust Cross-Validation and Statistical Validation: Basic train-test splits are prevalent in
ASD research. However, they lack rigorous validation like cross-dataset or LOSO cross-validation,

which are critical for model reliability.

By addressing these gaps, future research can significantly enhance the diagnostic capability of Al

systems for autism spectrum disorder.

2.6.Chapter Summary
This chapter presents systematic literature that profoundly discusses evolutionary algorithms,
machine/deep learning, and multi-modality studies for autism spectrum disorder. Thus, this chapter

presents relevant and up-to-date literature about autism spectrum disorder using Al strategies.
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Chapter 3 ASD CLASSIFICATION FRAMEWORK USING
DEEP LEARNING WITH COMPUTATIONAL
INTELLIGENCE TECHNIQUES

The accurate and timely diagnosis of Autism Spectrum Disorder (ASD) is critical for enabling early
intervention and improving developmental outcomes. This chapter introduces a novel classification
framework developed using deep learning in conjunction with computational intelligence techniques,
specifically tailored for autism screening datasets. The framework addresses key challenges in ASD
classification, including the effective selection of features, mitigation of overfitting, and enhancement of
model generalizability. By employing cutting-edge optimization algorithms and advanced neural
architectures, the proposed methodology harnesses the potential of these datasets to identify meaningful
patterns and correlations. The chapter provides an in-depth description of the preprocessing strategies,
feature engineering approaches, and model design utilized to analyze autism screening data, offering a

robust and scalable solution for accurate ASD classification.

3.1 Proposed Methodologies-: AFF-BPL
3.1.1. Particle Swarm Optimization

Nature-inspired algorithms draw inspiration from various biological systems including beehives, anthills,
and swarms of animals like birds and fish [90] [91]. These algorithms explore the interactions among
individuals in a population, their interplay, and their interactions with the environment. In the context of
PSO, it is inspired by the behavior of a flock of birds in search of food location, making it advantageous
for the rest to follow the nearest knowledgeable bird. In this context, each individual in the population
represents a bird, having a fitness value within the search space [92][93]. Its objective is to converge
towards an optimal solution. The potential solutions are called particles, forming the population. Each
particle retains its best solution (Puwest) evaluated using the fitness function, and the best value from the
entire swarm is denoted as gnest. The standard PSO process comprises two key steps: changing velocity
and updating positions. In the first step, particles adjust their velocity based on Puest and gpest. In the
second step, particles update their position using the new velocity. These operations take place in a D-
dimensional place, with each particle represented as x; = ( x}', x?,x3,...xP )T. The velocity of i particle
is denoted as V; = (V, V2, V7, ...V}? )T, and its best previous position as Pj.g.. The inertia weight (w)
balances the trade-off between exploration and exploitation. Equation 1 and 2 guide the velocity and

position updates.
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Vit = oVf +Cin (Plgesti — x{ )+ Cor2(ghest — Xi ) (1)
xl{f+1 - xlgf + Vit+1 (2)

The algorithm is parameterized by several variables, including D (the dimensionality of the problem), N
(number of particles/swarm size), and T (maximum number of iterations).

Random values r; and r, are employed to avoid local optima, while C; and C, determine the particle’s
trajectory, representing self-confidence and swarm confidence factors respectively. Stopping criteria vary
based on the specific problem, commonly involving a fixed number of function evaluations or the
achievement of an error threshold. Notably, PSO employs Ppes: and gres: to update particle positions. The
impact of these values, as constants was explored in previous studies. The gpest plays a critical role in
determining the particle’s trajectory and movement. Table 3.1 represents the values of the hyper-
parameters used in the work. Figure 3.1 explains the overall flow chart of the proposed architecture.

Table 3.1 Description of hyper-parameters of PSO and BAT

Hyper-parameters | Description PSO BAT
Population_size Swarm size in PSO; Bat population size | 50 30
Max_itr Number of iterations 200 200

Cy Cognitive component weight 2 -

C, Social component weight 2 -

w Inertia 0.7 -

Ay Loudness - 0.25

T; Pulse rate - 0.5
Velocity Velocity update As per equation (1) | As per equation (7)
Position Position update As per equation (2) | As per equation (8)

3.1.2.Bat Algorithm

The bat algorithm (BA), draws inspiration from the echolocation ability of microbats (producing loud
sounds and capturing the resulting echoes as they rebound from the environment) [94][95]. This
optimization technique mimics the bat’s foraging behavior and its ability to navigate in low-light

conditions [96][97][98]. The bat algorithm is based on the mentioned assumptions:

(1) All bats utilize an echolocation mechanism to discern both prey and obstacles through the

received sound frequencies [99][100].
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(2) Bats exhibit random flight patterns characterized by their velocity (V;) at a given position (y,).

Various properties such as frequency (f;), wavelength (1), and loudness (4,) play a role in their
behavior.

(3) The loudness transitions from a high positive (4,) to a low positive value (4,,in)-

Step 1: Initialization of parameters

To examine the optimality of a solution denoted as ‘x’ within the context of an objective function ‘f(x)’,

for ASD problem; the formulation is:

Min {f(x) | x € X},
Where f(x) is the objective function

x={x;|i=1,2,...,d} is a set of decision variables
X={X;|i=1,2,...,d}is apossible range of values for every decision variable
d = Number of decision variables

Step 2: Initialization of bat population memory (BM)

BM contains an augmented matrix of size N X d having the set of location vectors of bats (as mentioned

in equation 4). The location vectors are generated randomly as:
x! =LBi+ (UBi- LB) XU(0,1) (3)
vi=1,2,...,d and
v;=1,2,..,N
U(0,1) = Uniform random values between the range of 0 to 1
LB and UB = Lower bound and upper bounds

The produced solutions are saved in BM in ascending manner depending upon their f(x) value, where

fxl) <f(x?) <......... < f(xN)
xt oxdo.ox}
x2 x2 .. x5
avz| @
N Xy xN
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xGbest the global best location of bat is stored, where
xGbest =51 (5)

Step 3: Motion of bats

Every bat x/flies with velocity V7 influenced by the randomly produced frequency f;

fj = fmin + (fmin - fmax) X U(O,l) (6)
vl = V] 4 G = 1P X @
x{j = xij + Vi'j ®)

Where, Vi =1,2,.....,d
vi=12,...,N

The offspring bat’s position undergoes continuous updates by incorporating the positional adjustments of
the parent bat, which are accompanied by relatively minor increments. This minor increment value occurs
when the values at the best global bat location get closer to the parent bat, which in turn becomes near the
offspring bat.

Step 4: Intensification of bat population

This specific step serves as the controlled stochastic element within the bat-inspired algorithm. Operating

X3 2

within a defined probability range of pulse rate denoted as “r;”, every subsequent bat location undergoes
an update procedure involving a local search strategy that incorporates a random walk centered around
the presently identified optimal solutions. The historical bat location represented as “x?¢5¢”, is initially
chosen from the pool of current best locations. Subsequently, the update of the new bat location, denoted
as “x'/” is carried out as:

x;) = xPest + € A 9)

Where Aj= mean loudness of all bats

Summarizing step (3) and (4), new bat location Xl.'j can be evaluated as

(10)

1j xbeSt+ € K]
X7 i .
x) + v

Step 5: Updation of bat population memory

60

Z'l—.l turnitinﬁ Page 94 of 218 - Integrity Submission Submission ID trn:oid:::27535:77729745



Z'l-.l turnitin Page 95 of 218 - Integrity submission Submission ID trn:oid::27535:77729745

For every bat in the bat memory, the new bat location supersedes the current bat location following the

mentioned conditions

(a) The value of objective function f(x%2¢st) surpasses f(x/)
(b) U(0,1) < 4;

The pulse rate value r; and loudness A; will be updated as:

T]-=Tj0(1—e(_y><itr)) (11)

Where itr represents the generation number in the current time step. As itr tends towards infinity, the
mean loudness exhibited by the bat tends to converge to zero. Concurrently, the rate of pulse emission

steadily approaches its initial emission rate.

A]l_t‘r‘ N 0’ .rjltT N TOJ,OO >0

At last, bats are ranked, and their current best (x¢2¢5t) bat location is determined.
Step 6: Stopping criterion

In this phase, the bat algorithm iterates from step 3 to step 5 until the stipulated termination criterion is
satisfied.

3.1.3.  Adaptive Feature Fusion Module
The main novelty of AFF-BPL is its capability to choose and dynamically update feature set. This
segment explains the concept of adaptive feature fusion module with the mathematical portion mentioned
in the algorithm. The employed adaptive feature fusion (ADFF) framework has been devised to overcome
the issues and disadvantages inherent in conventional feature selection techniques. Its design revolves
around dynamically adapting the fusion strategy to accommodate the underlying characteristics of data
and model requirements as mentioned in equation 16. At its core, adaptive feature fusion aims to
synergize the strengths of data-driven as well as model-based fusion strategies, fostering more efficient
and discriminative feature representations. This segment presents a comprehensive overview of the key
components (mentioned in Figure 2) and mechanisms integral to the ADFF framework. Central to this
framework is our adaptive fused layer, a specialistic layer seamlessly fused within the main architecture.
Adaptive fusion layer gathers data (information/features) from numerous sources, such as different layers

of neural networks, and connects them with a blend of model-based and data-driven mechanisms.
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Figure 3.1 . Overall Architecture of the Proposed Work. The baseline techniques were concurrently used
and combined with adaptive feature fusion. Features from the adaptive feature layers is then fed to

LSTM.

In this work, the adaptive feature fusion layer receives features from the PSO and BAT algorithms as

mentioned in Figure 3.1 and Figure 3.2. Data-driven strategies, including graph-based algorithms and

attention-based strategies, are employed to retain optimal fused weights depending on the input/features

and their relationship. Contrary to this, model-based strategies depend on the internal structure of the

model in order to guide the fusion process. The fusion mechanism within the adaptive layer is controlled

via set of rules (functions/ formulas). These rules are retained throughout the training, that allows the

g'r—.| turnitin

Page 96 of 218 - Integrity Submission

62

Submission ID trn:oid:::27535:77729745



Submission ID trn:oid:::27535:77729745

zﬂ turnitin Page 97 of 218 - Integrity Submission

model to adapt to the certain characteristics of the task and the data. This fusion block enhances
adaptability and generalizability. To ensure versatility and scalability, the adaptive feature fusion is

designed in accordant with various architectures.

/Input \
PSO BAT '
: Refined/ Updated LSTM layer
: . s : Feature Set :
Features selected by PSO and BAT Adaptive Feature Fusion : :
A 08 ~ : ' F, —
A=073 T Adjusted Features (as per eq.16)
: . F T ' ! Autistic
Weighted Average (as per eq.15) Original Feature Values | '
i | | 5 L
: . . : F t
; AZ0EH0TISIT B =07 H06572 0.65 0.62 ; 2 >
B 07 Ly | ]
B=065 : i
. - - : : ! Non- Autistic
1 C=0.9+085/2 075 |
C=09
C=085 = ; ; L

Figure 3.3. Architecture of Adaptive Feature Fusion Block

Normalize the scores obtained from PSO and BAT within the range of [0,1]

For each feature:

Normalize the scores using:

(Scorepsg —Min(Scorepsp )) (13)
(Max(Scorepsg ) — Min(Scorepso ))

Normalized_Scorespso =

(Scoregar —Min(Scoregar)) (14)
(Max(Scoregar) — Min(Scoregar))

Normalized_Scoresgat =

Calculate the weighted average using:

(Normalized_gcorepso + Normalizedscoreg 47 ) (15)

Weighted_avg = 5

Merge features based on the calculative adaptive weights: Adjust the features using the calculated
adaptive weights: The combined features will represent a weighted aggregation of the most influential

features as determined by both PSO and BAT.

Adjusted_feature = Weighted_avg * Original feature (16)
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Furthermore, the adaptive feature fusion prevents overfitting and enhances generalization. These
techniques can also include the use of dropout and the introduction of auxiliary tasks that encourage the
model to learn more robust and discriminative feature representations.

Adaptive feature fusion framework for autism spectrum disorder portrays a novel approach for feature
fusion to obtain enhanced performance and generalization capabilities. This framework allows the
creation of more adaptable, effective, and robust model that can intelligently address the complex and

diverse healthcare problems. Figure 2 shows the architecture of adaptive feature fusion block.

ALGORITHM 1: PSO and BAT algorithm running concurrently for Feature selection

Input: Autism screening dataset with features

Qutput: Features obtained from PSO and BAT algorithm
Start

Initialize the swarm randomly;

Fori=1toN do
Initialize the particle’s velocity and position using the uniform distribution
VP and x? « random vectors within [LB, UB]® ;
Ppest; — X{ Initialize Pyest to its initial position

end for

Initialize gpest to position with the minimum fitness value

t «—1;
whilet<=T do
fori=1toN do

I, rz < two independent vectors randomly generated from [0, 1]° ;

Apply equation (1);
Apply equation (2);
if f(x[) < f(Pjege,) then
f(Ppest,) < f(x;)
end if
end for
Update the swarm’s overall best position to find ghg;;
t—t+1;

end while
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End

Start
Initialization of BA parameters
forj=1toN do

fori=1tod do

x! =LBi+ (UBi—LBj) X U(L, d)

end for
end for

find xCbest.

while itr < Total iterations do

forj=1toN do
fj = fimin + (fmin — fmax) X U(0, 1)
fori=1tod do
V’{ — Vij + (xij _ xiGbest) Xf,
vl =+

end for

if U(0,1) >rj then
fori=1tod do
x’{ = xSt + €4
end for
end if
if U(0, 1) <Ajand f(x"/) < f(x¢Pest) then
xJ = x'J
flx’) = f(x"))
Aj= x Aj
ri=r0 (1- e-vitn)
end if
end for

Update x¢best
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end while
End

ALGORITHM 2: Proposed Adaptive Feature Fusion Algorithm
Input: Autism screening dataset with features

Feature importance scores from PSO and BAT

Output: Modified feature set with adaptive feature fusion

Classification of autistic vs non-autistic individuals

1. Calculate feature importance scores using PSO and BAT for each feature:
Implement PSO and BAT: Utilize PSO and BAT algorithms to perform feature selection
concurrently on the dataset.
Obtain feature importance scores: Store the feature importance scores from PSO and BAT

for every feature in the dataset.

2. Normalize the scores obtained from PSO and BAT within the range of [0,1]
For each feature:

Normalize the scores using:

(Scorepsg —Min(Scorepsp ))

Normalized Scorespso = (Max(Scorepsg) — Min(Scorensg))

. s wpin(s
Normalized_Scoresgar = —ocoresar ~Min(Scorepar))

(Max(Scoregar) — Min(Scoregar))

3. Calculate the weighted average using:

(Normalizedscorepg, + Normalizedscoreg 47 )

Weighted_avg = >

4. Merge features based on the calculative adaptive weights
Adjust the features using the calculated adaptive weights: The combined features will
represent a weighted aggregation of the most influential features as determined by both
PSO and BAT.
Adjusted_feature = Weighted_avg * Original feature
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5. Prepare the modified features with adaptive feature fusion as the input for LSTM.

6. Train and evaluate the LSTM model using the updated features.

3.2. Introduction to WS-BiTM-Related Methodologies
3.2.1.White Shark Optimization

WSO lies in the category of bio-inspired techniques (metaheuristic optimization) influenced by the
hunting strategy of white sharks in order to provide solutions to complex optimization problems [101].
WSO can be employed for feature selection in various data mining and machine learning tasks
[102][103][104]. Its objective is to choose a feature subset to enhance the performance of a classification
task. The general strategy of the white shark optimizer is expressed below:

(@) Initialization: initialize the population of white sharks (1)
Every shark shows a potential solution.

Every shark is given a position in search space, which represents a feature subset.

(b) Objective function: describe an objective function that evaluates fitness/quality based on the selected
feature set.

Set max_no_of _iterations and termination criterion 2

(c) Hunting strategy: hunting behavior involves
Exploration — explores new sections of search space in order to find a potential solution
Exploitation — shark focuses on the region with high quality and optimal solutions, directed by the fitness

value

(d) Update: after every iteration, update the shark's position. To do so, various mathematical operators
are applied depending on the problem statement. This helps the population to evolve and converges it

towards optimal solutions.
(e) Evaluation: compute the fitness of every shark in the population

(f) Termination: WSQO’s termination criterion determines when to stop the overall optimization process.

The termination criterion can either be a satisfactory solution or the maximum number of iterations.
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(g) Output: select the best feature subset from the final population
The detailed working strategy adopted for feature selection via WSO is mentioned in section 4.2.

3.2.2.Neural Networks

Neural networks (NN) learn from the existing data and handle complex problems efficiently. NN is a set
of numerous artificial neurons that function as simple processing components [105]. The framework of
NN is based on a weighted graph between the neuron input and the output, with artificial neurons acting
as nodes and directed edges. NN has three layers, node layer (containing input), hidden layer (one or
more), and output layer [106]. The total number of neurons is equal to the total number of features in the
data [107][57]. The output obtained from the input layer is provided to the next layer i.e., the hidden
layer. The number of hidden layers relies on the model size and the size of the dataset. Hidden layers may
have different sum of neurons, that are generally more significant than the number of features. The output
obtained from each layer is computed via matrix multiplication of the preceding layer's output with
learnable weights, followed by the addition of learnable biases and activation functions. These are
important for a system to be non-linear [108]. The output of the hidden layer is passed through operations
such as ‘softmax' or 'sigmoid', which is responsible for converting the output of each class into the
likelihood score. The obtained information is fed to the architecture and the associated output of each
layer is gathered. This level is known as “feed-forward” [109][110].

Feed-forward: compute the error using the error function (cross-entropy, square loss); from this point,

backpropagate to the model by determining the derivatives.

3.2.3.CNN

Convnets are neural networks with shared parameters. A convnet is a multi-layered feed-forward NN
made up of a sequence of layers, each of which is capable of changing from one volume to another via a
differentiable function. They may learn hierarchy because of its sequential design. Convnets employ a
number of different layers with varying functionality (a convolutional layer, a pooling layer, and a fully
connected layer) [106][111]. The convolutional layer calculates the dot product of two matrices, one of
which is a ‘set of learnable parameters’ known as ‘kernel’ and the other is the restricted section of the
receptive field. Convolution makes use of three significant concepts i.e., sparse interaction, parameter
sharing, and equivariant [112].

Sparse interaction specifies that we have to choose key parameters, which not only minimizes the model’s

memory demand but also improves its statistical efficiency.
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Parameter sharing: weights employed to one input are similar to weights used elsewhere when computing
output.

Equivariant: it states that if we modify the input somehow, the output will transform in the same manner.
The activation layer introduces the concept of nonlinearity to the network by adding an ‘activation
function to the previous layer's output. It applies an element-wise activation function to the convolution
layer’s output [100]. ReLu, tanh, and LeakyRelu are some of the types of activation functions [107][113].
The pool_layer changes network outcome at particular points by computing a summary statistic of
surrounding outputs. The strategy helps to decrease the spatial size of the representation, which in turn
reduces the desired number of weights and computations [114]. The pooling function is applied separately
on each slice of the representation. To map the representation between the input and output, a fully
connected (FC) layer is employed [115]. The output obtained from the FC layer is given to a logistic

function for the classification task.

3.24.LSTM

LSTM networks are advanced recurrent neural nets (RNN), which were introduced to overcome the issue
of vanilla RNN i.e., the long-term dependency problem [116][117]. LSTM works via a chain-like
structure having four neural nets with discrete memory blocks known as cells. LSTM has feedback
connections that allow the analysis of the complete data sequences without handling each point in the
sequence separately (as mentioned in Fig. 3.3), but rather by preserving important knowledge about

earlier data points in the sequence to aid in the processing of new incoming data points [118].

C(t-1)

Y

A 4

h(t-1)

Fig 3.3 The architecture of the LSTM unit
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LSTM employs various 'gates' that are responsible for handling how information in a data sequence
enters, is stored in, and exits the network. An LSTM incorporates three basic gates: a forget gate
(determine which bits of the network’s cell state are significant, given both the previous hidden state and
the current input data), an input gate (identifies the new information to be added to the cell state), and an
output gate (extract significant data). The hidden state is termed as ‘short-term memory’, whereas the cell

state is stated as ‘long-term memory’ [119].

Our proposed architecture focuses on the diagnosis of ASD using a hovel WSO- BiLSTM-based network.
The work begins with the data pre-processing, followed by feature selection via WSO (incorporates the
mathematical explanation behind the working of WSO), classification through the Bi-LSTM network, and
comparison of proposed work with baseline techniques i.e., NN, LSTM, CNN. A detailed explanation of

the work is mentioned below:
3.2.5.Data Pre-processing

The data pre-processing step is a crucial task for ASD diagnosis. The dataset employed incorporates
categorical, binary, and continuous attributes. Since the screening dataset includes a few categorical and
non-contributing attributes, we need to pre-process the dataset. Pre-processing defines the transformation
performed on the datasets before giving them to the model. Missing values were handled in this step to
make the dataset suitable for analysis. To handle categorical attributes, label encoding was performed,
which transforms the categorical values/labels into numeric format thus making it machine readable. For
example, the 'sex' column, 'ASD traits', etc. were chosen for binary label encoding as they have only two
classes. The 'Ethnicity’ column incorporates eleven different classes and on them, one hot encoding was

performed.
3.2.6.WSO: Feature Selection

The presence of irrelevant or less significant features in the dataset reduces the overall accuracy of the
developed architecture, making the model learn those unnecessary features. This problem is stated as the
optimization problem. In order to deal with this problem, the optimal solution or the optimal feature set
from the ASD screening data needs to be extracted. To do so, we employed the white shark optimization
technique.

WSO algorithm mimics the foraging behavior of white sharks. WSO incorporates a population of white
sharks, in which every shark represents a candidate solution. WSO aims to solve optimization problems
like feature selection. For this objective, the technique moves with a series of iterations mimicking the
hunting behavior of white sharks until a potential and satisfactory solution is found. The hunting behavior

of white sharks relies on three strategies,
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(1) Velocity of shark for catching prey (target)
(2) Searching towards the best optimal food (optimal solution)
(3) Movement of the rest of the sharks who are close to the food source

The population of white sharks is given as:
]/sz = lb, + n(up, — lb,) ©)

Where W,” denotes the initial parameter of y,, white shark in the z,,, dimension.
up, and lb, denotes the upper bound and lower bound in the z;, dimension. n represents a random
number between [0,1].

The velocity of white shark to find the prey (target) rely on the motion of sea waves and is represented by

viy
VI, =u [vz,{ + Re(Wypeser — W) X Uy + Ry (Wbes’; - ka) x U2] @)
Where k = 1,2,3,..., P is index of white shark having population size P. The updated velocity of the y;,
shark is shown as VI3, , in the (k + 1), step. The initial speed of y,;, shark in k., step is shown as VI3
Wypesti represents the global best position obtained by any y;, shark in kg, step. WY denotes the initial

position of the y,, shark in k., step.

y
Vi)

The best position of y.;, shark and index vector for obtaining best position are shown by W, & and vct,

U, and U, represents the generation of a uniform random number in the interval [1,0].

y
R, and R, in the equation show the force of shark in order to handle the effect of Wy ez and szls"t on

Wy

u denotes the shark’s convergence factor. The white shark index vector is shown by

ve =[a Xrand(1,a)]+1 (5)
rand(1, a) denotes a random number vector achieved through uniform distribution between the interval
[0,1].

R; and R, can be further expanded as:
R1 = Rmax + (Rmax — Rmin) X e—(4-m/M)/\2 (6)
RZ = R‘min + (Rmax — Rmin) X e—(4m/M)/\2 (7)

m and M denote the initial as well as the maximum sum of iterations. R,,;, denotes current velocity and
R.qax denotes the sub-ordinate velocity of white sharks.

The convergence factor u is shown as
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p=212-t-V12—4r| (8)
In which t states the acceleration coefficient.
The process of updating the white shark's position is
Wr,= W) . = Wy+up.h+ lyd; rand < QS 9)
ka + Vl,i’ /faq; rand = QS (10)

The — denotes the negation operator, h and d specifies binary vectors. The lower search space is shown

by [,.
h=sgn(W,” —up) >0 (11)
d=sgn(W) —1)>0 (12)
Wy = (h,d) (13)
fa = famin + FimeLin (14)

fAmax—fqmin
W, represents the logical vector and fq denotes the frequency by which the sharks move. Whereas f q,qx

and f qin define maximum and minimum frequency respectively.

The increment in force at every iteration is

1

QS = , QS shows the weights of the features (15)

ho+ eG0 ha
The equation of the best optimal solution is given a
Wk’-Jl-/l = ngestk +tn mw sgn(n, — 0.5)n; < Str (16)

Where updating the position following the food source of y,, shark is expressed as Wk'i’l :

In order to update the search direction, sgn(n, — 0.5) produces -1 or 1. The optimal food source, shark
distance Dus,, with the strength of white shark to follow other sharks near to food source Str is
represented as

mw = |rand X (ngestk - ka )| 17)
Str=|1— e(h2Xk/K)| (18)

The best initial optimal results are kept constant, whereas the position of the rest of the sharks is modified

as per the two constant optimal results.

AT ,-fitZ)
_, fitz

1
WeY = E * ( (19)
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Where fit? defines the fitness of each feature, which can be further expanded to

WeY = o, [fit 1+ fit? 4+ fit?¥ -+ fitP™L +fitP ]
p—1  fit + fit? ++fitZ= L +fit?4+fitZt 44 fitP~1 +fitP

(20)

The selected features are given as Sel(y = 1,2,........ p). The output of WSO is expressed as (sel) = {
selt,sel?, ...sel? }, which denotes a new sub-part of features in the dataset. At last, the feature selection

process with WSO generates a feature subset having optimal features.

Mathematical Explanation
Assuming the number of features in the dataset = 5

Step 1: Initialization

Initialized the shark_population size = 30

Step 2: Initial position of sharks

Using equation 1, [b, = 0; up, = 1; n = [0,1]

For simplicity, initialize three sharks

Shark 1: Wi = 0.2, W} = 0.7, W3 = 0.3, W} = 0.5,W¢ = 0.9
Shark 2: W# = 0.6, W} = 0.2, W7 = 0.8, W? = 0.4,WZ = 0.7
Shark 3: W2 = 0.3, W3 =09, W3 = 0.4,W2 = 0.6, WS = 0.2

Step 3: Velocity update (calculated using equation 4)
u is calculated using equation 8
p=212-412-V412% - 4.412 |

Expanding and calculating
p=21]2-412-0.4944 |

i~ 0.708

U, and U, are between [0,1]

R, and R, are calculated using equation 6 and 7

For the first iteration (m= 1 and M= 100)
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R, = 1.5+ (1.5 — 0.5) x ¢~ (4X1/100)"2
Ry = 1.5+ 1x ¢ 00016

R, = 1.5+ 1 x 0.9984

Ry~ 2.4984

R, = 0.5+ (1.5 — 0.5) x e~00016
R, = 0.5+ 1x 0.9984
R,~ 1.4984

Calculating for Shark 1 in the first iteration

Vii=0 (assuming initial velocity is 0)

Wypestk (global best position of sharks, assuming initially it is Shark’s 2 position)

Wi
Using random values of U, and U, as 0.5

VI = 0.708[0 + 2.4984(0.6 — 0.2) x 0.5 + 1.4984(0.7 — 0.2) X 0.5]
VI3 = 0.708 x 0.87428

Vil ~0.6192

(best position of current shark)

Step 4: Position update
Using equation 9 and 10
QS =023

Vil ~0.6192

0.6192
0.41

wi=02+

Wi ~1.71

Since W3 exceeds the upper bound of 1, we set it to 1.

So, the updated position of Shark 1 for feature 1 becomes 1.

Step 5: Iteration

This process continuous for 100 iterations. At each step, velocities and positions are updated based
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on the equations provided, and the sharks converge towards the optimal set of features.
Step 6: Feature Selection
After running for 100 iterations, the positions of the sharks represent the importance of each

feature. The features with higher importance (closer to 1) are considered important.

Assume after several iterations, Shark 1 has the following positions:

wl = 0.95
wi= 04
Wi =092
wl=023
wd = 0.85

We set threshold to select features (for e.g., 0.5), based on this the selected features are 1, 3, and 5

as they have values above 0.5

3.2.7.Bi-LSTM

A Bidirectional Long Short-Term Memory (Bi-LSTM) network is an advanced type of Recurrent Neural
Network (RNN) designed to capture dependencies in sequence data from both forward and backward
directions. This architecture allows the model to consider both past (left context) and future (right
context) information at any point in the sequence, enhancing its ability to understand the context and
improve performance on various tasks such as classification.
An LSTM cell, the fundamental building block of an LSTM network, contains several components
designed to control the flow of information: the input gate, the forget gate, and the output gate. These
gates regulate the information passing through the cell, allowing the network to maintain long-term
dependencies.
1. Forget Gate: The forget gate decides what information from the previous cell state C;_; should be
discarded. It uses a sigmoid activation function to produce a value between 0 and 1 for each number in the
cell state C;_; :

ft = O'(Wf “[heoq, xe] + bf) (21)

where:

- f; is the forget gate vector at time t

- o is the sigmoid function,
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- Wy is the weight matrix for the forget gate,
- hs_4, x; isthe concatenated vector of the previous hidden state and the current input,
- by is the bias term for the forget gate.

2. Input Gate: The input gate controls the updating process of the cell state. It determines which values
will be updated and how much of the new information should be added to the cell state:

ip = oW [he—1, xe] + by) (22)
The candidate cell state ¢; is computed using the tanh activation function, which produces values between
-1and 1:

¢ = tanh(W¢ - [he—q1, x¢] + be) (23)
where:

- i isthe input gate vector at time t,

- W; and W, are the weight matrices for the input gate and the candidate cell state, respectively,

- b; and b are the bias terms for the input gate and candidate cell state, respectively.
3. Cell State Update: The new cell state C; is a combination of the old cell state C;_;, modulated by the
forget gate, and the candidate cell state ¢;, scaled by the input gate:
Co=fe- Cer+ i - & (24)
This equation ensures that important information is carried forward through time, while irrelevant
information is discarded.
4. Output Gate: The output gate determines the hidden state h;, which is used for the next time step and
for any required output. The output gate uses the sigmoid function, and the hidden state is modulated by

the tanh function applied to the cell state:

or = (W, - [he—1, x¢] + by) (25)
where:

- 0; 1S the output gate vector at time t,

- W, is the weight matrix for the output gate,

- b, is the bias term for the output gate,

- h; is the hidden state vector at time t.
In a Bi-LSTM network, these LSTM equations are applied in two parallel layers. One LSTM layer
processes the input sequence in the forward direction from t = 1to t = T, while the other LSTM layer
processes the sequence in the backward direction from t =T to t = 1. The hidden states from both

directions at each time step t are concatenated to form the final output:

Ht = LSTMforward (xt: Et—l) (27)
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< hy = LSTMpqackwara (xt; ht—l) (28)

—

he = [he; < hel (29)
Here, l_{t represents the hidden state from the forward LSTM at time step t, and < h, represents the
hidden state from the backward LSTM at the same time step. The concatenated hidden state h, combines
information from both directions, allowing the model to capture context from the entire sequence, both
past and future.

For classification tasks, the concatenated hidden states h, are typically passed through additional layers,
such as fully connected (dense) layers, to perform the final classification as illustrated in Fig 3.1. The
output layer often uses a softmax activation function to produce probability distributions over the possible
classes:

Ve = softmax[Woye - he + Doyl (30)
where:

- y; is the output vector representing the probability distribution over classes at time t,

- W, 1s the weight matrix for the output layer,

- b,y IS the bias term for the output layer.

By utilizing both forward and backward LSTM layers, Bi-LSTM networks provide a comprehensive
understanding of the data, making them effective for various tasks.

Y, Output Y Yo
T T )
— o - — — - a — - g b —
| I 1 |
. / bt—] ! / bg ' / ]1£+1 i
Formara | {LSTM | | > [ LSTM l | > (LSTM —b
| Y iy L
B;;f::‘éird — LSTM < L LSTM < T i LSTM [—
A | 4 o _ s |
Xet Input X | X

Fig 3.4 The architecture of the Bi-LSTM module

In a questionnaire dataset, while responses are not sequential in a temporal sense, they can be contextually
related. Bi-LSTM’s ability to process data bidirectionally allows it to understand how responses might
influence each other. For example, the answer to one question might provide context for interpreting

answers to subsequent questions, and vice versa. By considering both previous and future responses, Bi-
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LSTM helps in capturing dependencies and interactions that might be missed by unidirectional models.
This bidirectional approach is particularly useful in understanding complex patterns and nuances in ASD
features that could be crucial for accurate diagnosis.

In our work, we also applied dropout regularization within the Bi-LSTM layers to prevent overfitting.
Dropout randomly deactivates a fraction of the neurons during training, which helps the model generalize
better by reducing its reliance on any single neuron. Additionally, during training, we monitored the
model's performance on the test set and implemented early stopping. The training was halted when the
validation performance no longer improved, thereby preventing the model from overfitting to the training
data.

3.2.8.Why choose the white shark optimization technique for autism spectrum disorder?

A bio-inspired meta-heuristic white shark optimization technique is superiorly fitted for the proposed

architecture because of the following reasons.

e White shark optimization is explored in various other fields for cracking numerous complex
problems. The behavior of WSO algorithm is exciting to explore in the field of ASD as well. The
motivating and key idea behind this is the intelligent and social behavior of white sharks which is
somewhat similar to human behavior. The sensing capability, understanding of the environment,
navigation through the complex ocean (search space), and problem-solving behavior are robust and
sturdy as compared to humans. Another appealing behavior of white sharks is the strategy of search
and ambush tactics. Similarly, in the context of ASD, this can be associated with the influence of
related features on classification and prediction tasks.

Algorithm of the proposed WS-BiTM

Input: Pre-processed dataset having various features
Output: Optimized feature set and classification outcome
Initialize White Shark population
Generate initial positions for WSO
For Initial population

Initialize the velocity

Evaluate the position
While (m < M) do

Update the parameters

fori=1tondo
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viy
Vi, =u [Vl,{ + Ry (Wypestr — W) x Uy +R, (Wbes’; - ka) X Uz]
end for

fori=1tondo
if rand < QS then
Wrhi= W .~ Wo+up.h+ l,.d
else
W+ VI /fa
end if
end for
fori=1tondo
if rand < Str
Dis,, = |rand X (Wypeser — W)
ifi==1 then
W2, = Wypestk + 1y Dis,, sgn(n, — 0.5)
else
W)Y, = Wybestk + M1 Dis,, sgn(n, — 0.5)
end if
end if
end for
Adjust the position of white sharks
Evaluate/update the new positions
K=k+1
Return the optimal solution
Final feature set (sel)

Split the dataset D into training and test sets Dyain and Diest using the optimized feature set (sel)

Input features into BiLSTM layer X
Bi-LSTM layer with forward and backward cells
hy = LSTMforwara (xt: ﬁt—l)
< hy = LSTMpackwara (Xe, he-1)
Concatenate the outputs of forward and backward cells

—

he = [he; < hel
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Add the fully connected dense layer

Yt = softmax[Woye - he + Dboye]
Loss function: categorical cross entropy; Optimizer: Adam
Train

Model fit(Dirain,epoch = 100, batch_size = 64)
Evaluate and Return the values obtained

Performance_metrics = model.evaluate(Dies:)

e The velocity of the white shark shows the motion and the direction of exploration in the search space.
The velocity defines how quickly the algorithm will converge toward the optimal solution. For ASD,
it is associated with the exploration of a combination of features to find the most contributing
indicators for the prediction of ASD. By dynamically updating the velocities, the technique
effectively explores the feature space. Parameters like Wpegtk, ka , R{, R,, Uy, U,, and u compute
the magnitude and direction of velocity updates for every shark, and adjustment of these parameters

strikes a balance between exploration and exploitation, which is necessary, enabling efficient search.

v M Ry and R, Qs
l i l ¢ sgn(n, - 0.5) in
Should not cxeced 1.0 cquation 16
| x v
i l Helps in Local and
l Global search
Influence Vary ) i . Controls exploration
fish duri Coefficient hy and h; mfluence direction
| uring
L school terati ()ér,] o exploration and exploitation
Depends position
ont

Fig 3.5 Concept map illustrating the exploration/exploitation abilities of WSO

e WSO leverages parallel processing capability by computing the fitness score of multiple solutions
simultaneously, thus decreasing the computational time. Fig 3.5 illustrates the concept map behind

the selection of WSO parameters and showcases the exploration/exploitation ability of WSO.

o WSO employs a population of white sharks, and this population-based approach allows exploration of
diverse search space and prevents premature convergence to the suboptimal solution, which in turn

improves the ability of the technique to identify near-global/global optimal solutions.
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3.3. Experiments and Results
This module represents the analysis of the experimental outcomes obtained from the proposed AFF-BPL
and WS-BIiTM architectures. The analysis of results is segregated into three sub-sections to effectively
portray the outcomes of the proposed work. Section 3.4.1 explains the results of the proposed work on
three datasets. Section 3.4.2 compares the results of the proposed work with state-of-the-art techniques on
three datasets. Section 3.4.3 provides an ablation study conducted by taking various cases into

consideration.

3.3.1.Performance Evaluation Parameters

The efficacy of the WS-BiTM is evaluated using five key metrics: Sensitivity, Precision, Accuracy,

Specificity, and F1.
3.3.2.Dataset Description

To facilitate the ASD diagnosis work, three ASD datasets incorporating individuals of various age groups
were used: the 'Toddler' dataset, the 'Children' dataset, and the 'Adult' dataset [120] . All three datasets
were obtained from the public platform known as 'Kaggle'. The dataset includes a set of questionnaires
along with personal information. The toddler dataset contains 1054 instances, adults have 704 instances
and children include 292 instances.

Table 3.2 Dataset description of common features

Feature Feature Description

Id
1. Age
2. Gender
3. Ethnicity
4. Jaundice History
5. PDD with Family Members
6. Who is completing the test?
7. Country
8. Whether the users have used the screening app
9. Type of screening method

10-19. Answer of the questions

20. Screening Score
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3.3.3.Result Analysis: Comparison of Proposed work on Three autism datasets on AFF-
BPL

Table 3.3 shows the experimental results of AFF-BPL obtained on various parameters on three autism
screening datasets. As shown in the table, the AFF-BPL architecture performed fairly well on all three
datasets.

Table 3.3 Comparison of AFF-BPL results evaluated on five parameters on three datasets.

Dataset Accuracy Precision Sensitivity Specificity F1-score
Adult (D1) 0.986 0.973 0.973 0.975 0.976
Toddlers (D2) 0.992 0.991 0.984 0.986 0.990
Children (D3) 0.989 0.986 0.986 0.984 0.989

Figure 3.6 portrays the radar plots by comparing the accuracy, precision, specificity, sensitivity, and f1-
socres across datasets. In the radar plots, D1 stands for the ‘Adult’ dataset, D2 stands for the ‘Toddlers’
dataset, and D3 stands for the ‘Children’ dataset.

7 turnitin

Accuracy Precision
D1 D1
0.986 0.973
4 A "
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0.989

0.992 0.986 0.991
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Sensitivity Specificity
D1 D1
0673 0.975
D3 D2 D3 D2
0.986 0.984 0.984 0.986
F1-score
D1

Figure 3.6. Radar plots of Accuracy, precision, sensitivity, specificity, and F1 score on Adult, Toddler, and Children dataset.
Here, D1 stands for Adult dataset, D2 stands for Toddler dataset, and D3 stands for Children dataset

3.3.3.1L Comparison with State-of-the-art Techniques

Table 3.4 compares the experimental results obtained by employing the proposed architecture and the
state-of-the-art techniques on the ‘Adult’ dataset. We evaluated the efficacy of the proposed with neural
network (NN), convolution neural network (CNN), and long short-term memory (LSTM) network.

Table 3.4 Comparison of the proposed with three state-of-the-techniques on the Adult dataset

_ 0.769 0.825 0.857 0.918 0.75
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0.958 0.942 0.934 0.95 0.94
0.937 0.921 0.912 0.84 0.95
0.986 0.973 0.973 0.975 0.976

[En

@ 0.6

Values
o
D

Accuracy  Precision Sensitivity Specificity = F1-Score
Performance Metrics

ENN mCNN LSTM ® Proposed Model

Figure 3.7 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on Adult
dataset

Figure 3.7 illustrates the comparison of the proposed work with neural network, convolution neural

networks and long short-term memory on the Adult dataset in the form of bar plots.

Table 3.5 Comparison of the proposed with three state-of-the-techniques on the Toddler dataset

0.797 0.80 0.80 0.815 0.80
0.936 0.932 0918 0.917 0.932
0.946 0.936 0.925 0.921 0.93
0.992 0.991 0.984 0.986 0.990

Table 3.5 compares the experimental results obtained by employing the proposed architecture and the
state-of-the-art techniques on the ‘Toddler’ dataset. The outcomes highlight the improvement in results

after employing our proposed approach.
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Figure 3.8 represents bar plots to effectively show the comparison of proposed work with neural network,
convolution neural network and long short-term memory on Toddler dataset.

0.8
0.6
0.4
0.2

Values

Accuracy Precision Sensitivity Specificity F1-Score
Performance Metrics
ENN ®mCNN HELSTM M Proposed Model

Figure 3.8 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on
Toddler dataset

Table 3.6 compares the experimental values obtained by employing the proposed architecture and the
state-of-the-art techniques on the ‘Children’ dataset. The outcomes highlight the improvement in results

after employing our proposed approach.

Table 3.6 Comparison of the proposed with three state-of-the-techniques on the Children dataset

0.752 0.812 0.84 0.90 0.84
0.912 0.906 0.90 0.924 0.90
0.926 0.917 0.91 0.925 0.91
0.989 0.986 0.986 0.984 0.989

Figure 3.9 showcases bar plots to effectively show the comparison of proposed work with neural network,
convolution neural network, and long short-term memory on Children dataset. To further validate the
statistical performance results of the AFF-BPL, we performed a paired t-test. It is noteworthy that the
paired t-test was used to achieve our objectives via a pairwise comparison between the employed and the

proposed model to showcase the statistical evidence.
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Figure 3.9 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on

Children dataset

Specifically, we set the p-value (significance level) to be 0.05 and if the obtained result is less than the

significance value, we can reject the null hypothesis and represent that there is a significant difference in

the performances. The obtained statistics and p-values are showcased in Table 3.7.

Table 3.7 Experimental outcomes of statistical performance on three datasets namely Adult(D1),

Toddlers(D2), and Children(D3)

zr'j turnitin Page 120 of 218 - Integrity Submission

Metrics Models | Adult (D1) Toddlers (D2) Children (D3)
Statistics | P-value | Statistics | P-value | Statistics | P-value

NN 4.93 0.00789 | 41.41 2.03¢® 6.06 0.00375

Accuracy CNN 12.61 0.000228 | 22.90 2.15e° 17.57 6.16e”
LSTM | 4.17 0.01404 | 14.62 0.000127 | 22.25 2.42¢”
NN 3.41 0.027 47.67 1.16e° 8.61 0.001

Precision CNN 8.05 0.00129 | 29.22 8.17¢* 17.33 6.50e”
LSTM | 1244 0.00024 | 29.50 7.87¢* 25.21 1.47¢°
NN 5.08 0.00708 | 16.31 5.96e” 10.77 0.00042

Sensitivity | CNN 12.54 0.000233 | 39.39 2.48¢° 15.54 0.0001
LSTM | 4.96 0.00771 | 37.12 3.14¢* 21.35 2.84¢®
NN 3.59 0.02299 | 42.38 1.85¢® 13.51 0.00017

Specificity | CNN 8.82 0.000912 | 34.24 4.34¢° 14.40 1.60e®
LSTM | 9.07 0.000820 | 30.01 7.34¢° 16.49 3.26e°
NN 2.63 0.04822 | 49.25 1.02¢* 11.42 0.00034
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Fl1-score CNN 22.77 2.20e” 26.93 1.13¢” 17.54 6.20e”
LSTM | 3.02 0.03913 | 37.52 3.01e® 25.33 1.44¢°

3.3.3.2. Ablation Study

This segment showcases an ablation study to validate the proposed architecture’s contribution toward
feature selection in AFF-BPL architecture. The AFF-BPL is trained on three autism screening datasets
namely, Adult, Children, and Toddlers. The mentioned study cases are evaluated:

Case A: With only BAT for feature selection

Case B: With only PSO for feature selection

Case C: Concurrently using PSO and BAT without adaptive feature fusion
Case D: Concurrently using PSO and BAT with adaptive feature fusion

Table 3.8 Ablation study values for the proposed architecture. The architecture is trained on three
datasets. Case A contains scores obtained by using only PSO. Case B incorporates scores obtained by
using only BAT. Case C involves concurrently using BAT and PSO without adaptive feature fusion. Case
D involves concurrent use of BAT and PSO with adaptive feature fusion technique.

Dataset Ablation Study Case | Accuracy | Precision | Sensitivity | Specificity | F1-score
Adult With only BAT for feature A 0.934 0.901 0.932 0.931 0.921
selection
With only PSO for feature B 0.948 0.949 0.952 0.951 0.950
selection
Concurrently using PSOand | C 0.958 0.960 0.952 0.952 0.955
BAT without adaptive

feature fusion
Concurrently using PSOand | D 0.986 0.973 0.973 0.975 0.976
BAT with adaptive feature

fusion

Children | With only BAT for feature A 0.937 0.924 0.931 0.928 0.927
selection
With only PSO for feature B 0.945 0.948 0.950 0.949 0.949
selection
Concurrently using PSOand | C 0.951 0.954 0.957 0.952 0.953
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BAT without adaptive
feature fusion

Concurrently using PSO and | D 0.992 0.991 0.984 0.986 0.990
BAT with adaptive feature

fusion
Toddlers | With only BAT for feature A 0.930 0.912 0.925 0.922 0.920
selection
With only PSO for feature B 0.946 0.947 0.950 0.949 0.948
selection
Concurrently using PSOand | C 0.959 0.962 0.956 0.953 0.958
BAT without adaptive
feature fusion

Concurrently using PSO and | D 0.989 0.986 0.986 0.984 0.989
BAT with adaptive feature

fusion

Table 3.8 shows the comprehensive values derived from the conducted ablation study. Specifically, case
D, characterized by the incorporation of concurrent use of PSO and BAT with adaptive feature fusion,

surpasses the performance of all other cases in the analysis.

Adult Dataset- Accuracy
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Figure 3.10 (a), (b), and (c). Ablation study cases for AFF-BPL architecture. The architecture is trained on three
datasets. Case A contains scores obtained by using only PSO. Case B incorporates scores obtained by using only
BAT. Case C involves concurrently using BAT and PSO without adaptive feature fusion. Case D involves the
concurrent use of BAT and PSO with an adaptive feature fusion technique. Increasing values of accuracy highlight
the significance of the proposed architecture.

Figure 3.10 (a), (b), and (c) illustrates the impact of the enhancement made in the techniques. The

increasing values of accuracy on every dataset highlight the significance of developed architecture.

3.3.3.3.Computational Complexity Analysis

The complexity of the model can be estimated by the number of trainable operations/parameters, which

depend on various hyper-parameters in each component: BAT, PSO, adaptive feature fusion, and LSTM.
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These parameters include the number of bats, particles initialized, the number of input features, and the
number of LSTM units. The PSO and BA algorithms, both employed for feature selection, have a
complexity of O(N - D - T), where N is the number of particles or bats, D is the dimensionality of the
feature space, and T is the number of iterations. The Adaptive feature fusion (ADFF) process, which
normalizes and merges the feature importance scores from PSO and BA (as per equation 15 and 16),
operates with a complexity of O(D) due to the linear nature of normalization and averaging computations
across the feature set. Finally, the LSTM classification phase, responsible for classifying individuals
based on the fused feature set, has a complexity of 0(T’ - DZ¢ry,), Where T’ represents the number of
features fed to the LSTM and D%, denotes the dimensionality of the LSTM's hidden layers. Overall, the
total complexity of the system is dominated by the PSO/BA feature selection step and the LSTM
classification step, making it O(N -+ D - T) + O(T" - Disrap)-

3.3.4.  Results Analysis on WS-BiTM
This segment explains the performance evaluation matrices and results obtained on them performing
feature selection, and classification via Bi-LSTM. Experimental outcomes obtained by comparing the
baseline techniques with the proposed architecture, paired t-test, and ablation study cases are briefly
described in this section.
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Fig 3.11 (a) Toddlers, (b) Adult, (c) Child illustrates the correlations and pattern in all three datasets

91

Z"—'I turnitin‘“ Page 125 of 218 - Integrity Submission Submission ID trn:oid:::27535:77729745



z'l-.l turnitin Page 126 of 218 - Integrity Submission Submission ID trn:oid::27535:77729745

3.34.1. Parameter Settings and Feature Selection

The parameter values used for WSO are mentioned in Table 3.9. The shark_population_size defines the
number of candidate solutions (sharks) evaluated at each iteration. A population size of 30 strikes a
balance between exploration (searching broadly in the solution space) and exploitation (refining
solutions) while maintaining computational efficiency. Population sizes between 20 and 50 are commonly

used for optimization to avoid overloading computational resources.

Table 3.9 Parameter settings used for WSO

Parameters Values
Shark_population_size 30
Num_iterations 100
Ronin 0.5
Rinax 15
f Gmax 0.75
famin 0.07
up, 1
Ib, 0
T 4.12
ho 6.25
hy 100
h, 0.0005
Dimensions Num_of features

Table 3.10 represents the features selected by WSO on three different datasets - Dt, D¢, and Da. The
dataset comprises numerous features, but the table consists of the most important features, including
demographic information (e.g., Age, Gender/Sex, Ethnicity) and domain-specific attributes (e.g., Al-
A10, QChat). Some features were consistently selected across all three datasets, implying their
importance and generalizability: A1 — A10, this feature group, likely representing critical domain-specific
attributes, was selected in all datasets (D, Dc, and Da), indicating it plays a significant role regardless of
the dataset used. These features likely capture key patterns that are relevant across various contexts. Age
is another critical feature, selected in all datasets. The fact that "Age" is universally chosen suggests it has
a strong correlation with the classification or outcome prediction task across datasets. Gender/Sex,

Ethnicity, and Class ASD are the demographic features that are also consistently selected across datasets,
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highlighting their importance in the model's decision-making process. It shows that the WSO algorithm
finds these attributes to be essential for achieving high accuracy in classification, potentially due to their
relevance in understanding the factors behind ASD.

Table 3.10 Feature selection using WSO across three datasets (D, Dc, and Da), demonstrating both
consistent and dataset-specific feature importance.

Feature Name Datasets

D+ Dc Da
Al-Al10 v v v
Age v v v
QChat v x x
Gender/Sex v v v
Ethnicity v v v
Country of Origin X v v
Used App x x v
Class ASD v v v

3.34.2. Sensitivity Analysis of Hyper-parameters

In this section of sensitivity analysis, we investigate the impact of various hyperparameters on the
performance of the White Shark Optimization (WSO) algorithm for feature selection. Specifically, we
examine four parameters namely shark population size, number of iterations, and bounds for the
optimization process. By systematically varying these hyperparameters within specified ranges, we aim to

determine their influence on the key performance metric, i.e., classification accuracy.

Table 3.11 Performance comparison after conducting sensitivity analysis of hyper-parameters

Hyper-parameter Accuracy
Shark_population_size | Num_iterations | R,,in Roiax D+ Dc Da
15 50 0.25 1.0 0.804 | 0.812 | 0.801
Tested 30 100 0.5 15 0.976 | 0.964 | 0.962
Values 50 150 0.75 2.0 0.915 | 0.912 | 0.912
60 200 0.5 15 0.922 | 0.932 | 0.936

This analysis not only reinforces the rationale behind our chosen hyperparameter values but also provides
insights into the robustness of the WSO approach. The best accuracy obtained on their specific parameter

value on all three datasets is highlighted in Table 3.11.
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Experimental Outcomes of WS-BiTM on Three Autism Datasets

Table 3.12 Comparison of WS-BiTM outcomes analyzed on five parameters on three datasets.

Dataset Accuracy Precision

Toddlers (Dr) 0.976

S IO 0.964
Adult (D4) 0.962

Table 3.12 enumerates the experimental simulation outcomes of WS-BiTM on three datasets. As

Sensitivity

Specificity

specified in the table, WS-BiTM performed exceptionally well on all three datasets.

Accuracy
Toddlers
0.976
0.964
Adult 9962 Children
Sensitivity
Toddlers
0.981
0.985 0.965
Adult Children
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F1-score

Precision
Toddlers
0.971
Adult, /"~ Children
0.945 0.965
Specificity
Toddlers
0.971
Adult Children
0.942 0.964
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F1-score
Toddlers
0.975
Adult Children
0.964 0.964

Fig 3.12 Radar plots Accuracy, precision, sensitivity, specificity, and F1 score obtained on Children,
Toddlers, and Adults datasets. The value obtained on all three datasets is presented on different color-
coded radar plots for every performance metric.

Fig 3.12 illustrates radar plots of five performance measures employed to showcase the effectiveness of
our work on the employed three datasets. The confusion matrices in Fig 3.13 for the test set datasets:
Toddlers, Children, and Adults; highlight the classification model's performance. In the Toddlers dataset,
the model demonstrated high accuracy with a substantial number of true positives and true negatives
while maintaining a low rate of false positives and false negatives. Similarly, the Children dataset

exhibited robust classification capabilities, with effective differentiation between autistic and non-autistic.

Confusion Matrix for Toddlers Confusion Matrix for Children
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Confusion Matrix for Adults
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Fig 3.13 Confusion matrices of all three datasets on the test set

The Adult dataset also showed effective performance, with the model successfully identifying most
instances while exhibiting minor misclassifications. Overall, these matrices illustrate the model's
effectiveness across various age groups within the test set.

3.3.5.Comparison with State-of-the-Art Approaches

For the ‘Toddlers’ dataset (Table 3.13, denoted as D), we analyzed that the performance values on
different matrices for NN are 0.797, 0.80, 0.80, 0.815, 0.80, whereas for CNN the values are 0.930, 0.923,
0.919, 0.914, 0.929. LSTM performed fairly well with values of 0.951, 0.941, 0.929, 0.949, 0.942. The
integrated WS-BiTM demonstrates better performance with values 0.976, 0.971, 0.981, 0.971, 0.975. As
observed, WS-BIiTM achieved the highest accuracy. Hence for the ‘'toddlers' dataset, the developed
architecture surpassed all baseline techniques considered.

For the ‘Children’ dataset (denoted as D¢), we observed that the performance values on different metrics
for NN are 0.779, 0.835, 0.87, 0.93, 0.86, whereas for CNN the values are 0.912, 0.906, 0.90, 0.924, 0.90.
In this case also, LSTM performed fairly well with values 0.926, 0.917, 0.91, 0.925, 0.91. The integrated
WS-BIiTM shows better performance with values 0.964, 0.965, 0.965, 0.964, 0.964. As observed, WS-
BiTM achieved the highest accuracy. Hence for the 'Children’ dataset also, the developed architecture

outperforms all baseline techniques considered.
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Table 3.13 Comparison of evaluation parameter values on various parameters obtained from three

datasets. Here Dt D¢ , Da signifies values on Toddlers, Children, and Adult dataset respectively

Model Accuracy Precision Sensitivity Specificity Fl1-score
Toddlers (Dr)

NN 0.797 0.80 0.80 0.815 0.80
CNN 0.930 0.923 0.919 0.914 0.929
LSTM 0.951 0.941 0.929 0.949 0.942

WSO- BiTM 0.976 0.971 0.981 0.971 0.975
Children (Dc)

NN 0.779 0.835 0.87 0.93 0.86
CNN 0.912 0.906 0.90 0.924 0.90
LSTM 0.926 0.917 0.91 0.925 0.91

WSO-BiTM 0.964 0.965 0.965 0.964 0.964
Adult (Da)

NN 0.769 0.825 0.857 0.918 0.75
CNN 0.958 0.942 0.934 0.95 0.94
LSTM 0.937 0.921 0.912 0.84 0.95

WSO-BiTM 0.962 0.945 0.985 0.942 0.964

For the ‘Adults’ dataset (denoted as Da ), we examined that the performance values on different
parameters for NN are 0.769, 0.825, 0.857, 0.918, 0.75, whereas for CNN the values are 0.958, 0.942,
0.934, 0.95, 0.94. Values achieved by LSTM are 0.937, 0.921, 0.912, 0.84, 0.95.
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Fig 3.14 Graphical representation of model comparison on various parameters on three datasets, where
(a), (b), and (c) represent statistics of toddlers, children, and adult datasets respectively
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The integrated WS-BiTM shows better performance with values 0.962, 0.945, 0.985, 0.942, 0.964. As
observed, WS-BiTM achieved the highest accuracy. At last, for the 'Adults’ dataset, the developed
architecture serves promising results compared with all baseline techniques. Fig 3.14 (a), (b), and (c)
graphically represent the comparison of performance of all the employed techniques across the three
datasets. We examined that WS-BiTM achieved the highest accuracy across all the datasets. Table 3.14
comprehensively evaluates various classification algorithms, focusing on their accuracy and
computational time across three datasets: Adults, Toddlers, and Children. The neural network (NN)
classifier achieved accuracies of 76.9%, 79.7%, and 77.9%, respectively, with a computation time of
approximately 127.6 seconds, indicating its relatively lower performance compared to more complex
models. The convolutional neural network (CNN) demonstrated significantly higher accuracy, reaching
95.8% for the ‘Adult’ dataset, 93.0% for ‘Toddlers’, and 91.2% for ‘Children’, albeit at a considerably
greater computation time of 520.4 seconds. Long Short-Term Memory (LSTM) networks also performed
well, achieving accuracies of 93.7%, 95.1%, and 92.6%, but required even more computation time,
approximately 1070.5 seconds. Notably, the proposed WS-BiTM model outperformed all other
algorithms, with accuracies of 96.2% for ‘Adult’, 97.6% for ‘Toddlers’, and 96.4% for ‘Children’ data,
albeit at the highest computation cost of around 2800.6 seconds. This analysis underscores the trade-off
between accuracy and computational efficiency, highlighting the superiority of the proposed model in
accuracy while also necessitating significantly greater computational resources.

Table 3.14 Comparison of algorithm’s accuracy and computational time

Algorithm/Classifier Accuracy Computation time
Adult Toddlers Children (Approx)
NN 0.769 0.797 0.779 127.6
CNN 0.958 0.930 0.912 520.4
LSTM 0.937 0.951 0.926 1070.5
Proposed: WS-BiTM 0.962 0.976 0.964 2800.6

3.3.4.4. Statistical Significance: Paired t-Test

In this segment, we sought to further validate the statistical significance of the WS-BiTM model by
conducting a paired t-test. This statistical method enabled us to compare the proposed WS-BiTM model
against various employed models, thereby providing robust statistical evidence through pairwise
comparisons. Specifically, we utilized the paired t-test to evaluate the performance of different models

such as Neural Networks (NN), Convolutional Neural Networks (CNN), and Long Short-Term Memory
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(LSTM), relative to the WS-BiTM model. Our objective was to ascertain whether statistically significant

differences existed in performance metrics, including Accuracy, Precision, Sensitivity, Specificity, and

F1-score, across three distinct datasets: Adults, Toddlers, and Children. In our analysis, each pair in the

paired t-test consisted of the performance metrics (e.g., Accuracy, Precision) of the same model evaluated

on identical datasets. We established a significance level (p-value) of 0.05; a p-value below this threshold

would lead us to reject the null hypothesis, indicating a significant difference in performance between the

models. The statistical results and corresponding p-values obtained from this analysis are summarized in
Table 3.15.

Table 3.15 Statistical results showcasing the significance in model performance across all datasets

Metrics Models | Adult Toddlers Children
Statistics | P-value | Statistics | P-value | Statistics | P-value
NN 3.97 0.00734 | 36.22 3.41e® 5.54 0.00299
Accuracy CNN 10.74 0.000198 | 19.42 3.22¢° 12.02 5.76e”
LSTM |5.18 0.01340 | 11.35 0.000119 | 17.18 3.13¢”
NN 4.88 0.034 42.05 2.86e 9.98 0.0026
Precision CNN 9.70 0.00119 | 21.14 7.81e* 13.05 4.58¢”
LSTM | 11.36 0.00031 | 19.26 6.21e* 19.28 2.33¢”
NN 4.27 0.00698 | 14.45 5.91e” | 11.66 0.00037
Sensitivity CNN 10.24 0.000255 | 30.14 3.69¢® 14.71 0.00062
LSTM | 4.79 0.00664 | 31.06 2.98¢® | 20.12 3.24e”
NN 4.66 0.03311 | 36.47 1.72¢* 12.40 0.00044
Specificity | CNN 7.47 0.000899 | 29.13 4.22¢° 13.57 2.65e”°
LSTM | 10.42 0.000746 | 28.89 2.83¢*® 15.69 2.03e®
NN 3.20 0.03791 | 33.11 1.54e® 12.28 0.00019
F1-score CNN 17.02 2.30e® 18.62 1.69¢® 14.39 4.19e”
LSTM | 3.65 0.02919 | 34.25 3.17e® | 19.04 2.87e”

3.3.4.5. Comparison with Other Bio-inspired Techniques for Feature Selection

This section compares the feature selection performance of the White Shark Optimization (WSO)

technique against the classical Particle Swarm Optimization (PSO) method across multiple datasets. A

thorough examination of hyperparameters associated with PSO, such as swarm size, number of iterations,
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Table 3.16 Hyperparameter values of PSO for feature selection

Hyper-parameters Description PSO
Population_size Swarm size in PSO; 50
Bat population size
Max_itr Number of iterations 100
Cq Cognitive component 2
weight
C, Social component weight 2
w Inertia 0.7
Velocity Velocity update As per equation (1)
Position Position update As per equation (2)

Subsequently, we present the results of both techniques in Table 3.17, highlighting key performance
metrics including accuracy, precision, sensitivity, specificity, and Fl-score. The findings reveal the

efficacy of WSO in enhancing feature selection capabilities, ultimately demonstrating its superiority over

PSO in optimizing classification performance across diverse datasets.

Table 3.17 Comparative representation of performance parameters by using PSO and WSO for feature

selection across three datasets

Technique Dataset Accuracy | Precision | Sensitivity | Specificity | F1-score
PSO Dataset 1: 0.936 0.932 0.928 0.907 0.931
WSO Dr 0.976 0.971 0.981 0.971 0.975
PSO Dataset 2: 0.902 0.916 0.915 0.911 0.914
WSO Dc 0.964 0.965 0.965 0.964 0.964
PSO Dataset 3: 0.914 0.907 0.901 0.926 0.911
WSO Da 0.962 0.945 0.985 0.942 0.964

3.3.4.6. Ablation Study

This section presents an ablation study to validate the contribution of the proposed WS-BiTM

architecture. The WS-BiTM is trained using three screening datasets: ‘Toddlers’, ‘Adults’, and

‘Children’. The work evaluates the performance across the cases mentioned below:
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Case 1: Without WSO for feature selection (randomly selected features)
Case 2: With using only LSTM for classification
Case 3: Concurrently using WSO and Bi-LSTM (proposed work)

Table 3.18 Ablation outcomes with the proposed WS-BiTM architecture. The architecture is trained via
three datasets. Case 1 incorporates scores obtained without WSO. Case 2 studies the incorporation of

using only LSTM for classification. Case 3 involves the concurrent use of WSO and Bi-LSTM.

Dataset | Ablation Study Case | Accuracy | Precision | Sensitivity | Specificity | F1-
score

Toddlers | Without WSO for 1 0.902 0.90 0.912 0.911 0.913
feature selection
With using only LSTM | 2 0.933 0.932 0.931 0.932 0.925
for classification
Concurrently using 0.976 0.971 0.981 0.971 0.975
WSO and Bi-LSTM

Adult Without WSO for 1 0.904 0.903 0.911 0.912 0.914
feature selection
With using only LSTM | 2 0.938 0.930 0.932 0.932 0.935
for classification
Concurrently using 0.964 0.965 0.965 0.964 0.964
WSO and Bi-LSTM

Children | Without WSO for 1 0.904 0.912 0.902 0.901 0.901
feature selection
With using only LSTM | 2 0.938 0.930 0.932 0.932 0.935
for classification
Concurrently using 0.962 0.945 0.985 0.942 0.964
WSO and Bi-LSTM

The findings from the experimental simulations highlight the significant contribution of the WS-BiTM
network in enhancing the reliability and accuracy of ASD diagnosis. The obtained results lay the

foundation for future research advancements and development in the domain of ASD.
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3.3.4.7. Leave-One-Dataset-Out (LODO) Cross Validation

To ensure the generalization of the proposed WS-BiTM model across different populations and verify that
the model does not overfit a particular dataset, we performed Leave-One-Dataset-Out cross-validation
(LODO-CV). This approach allows us to evaluate the model's performance when trained on two datasets
and tested on a third, independent dataset, thus simulating real-world scenarios where the model is
applied to unseen data. We conducted the LODO-CV using three datasets as mentioned in the above
sections i.e., Toddler, Adult, and Children. For each experiment, the model was trained on two datasets
and evaluated on the left-out dataset. This procedure was repeated until each dataset had been used as a
testing set. We have constructed three cases based on our datasets as mentioned below.

Case 1: Train on Toddler and Adult, Test on Children: In this case, the WS-BiTM model was trained on
the combined Toddler and Adult datasets, which consisted of a total of 1758 instances. The model was
then evaluated on the Children dataset, which contained 292. The results showed that the model achieved
an accuracy of 97% on the Children dataset, indicating its ability to generalize to this population.

Case 2: Train on Toddler and Children, Test on Adult: The second experiment involved training the WS-
BiTM model on the combined Toddler and Children datasets, with a total of 1346 instances. The Adult
dataset, containing 704 instances, was used for testing. In this configuration, the model achieved an
accuracy of 95.9%, demonstrating good generalization to the adult population.

Case 3: Train on Adult and Children, Test on Toddler: For the final experiment, the model was trained on
the combined Adult and Children datasets, comprising a total of 996 instances, and tested on the Toddler
dataset, with 1054 instances. The performance metrics on the Toddler dataset showed an accuracy of

93.5%, indicating fair model performance even when tested on a larger population.

Table 3.19 Leave-One-Dataset-Out cross-validation

Training Datasets Test Accuracy | Precision | Sensitivity | Specificity | F1-
Toddler | Adult | Children | Dataset Score
4 4 Children 0.97 0.968 0.967 0.967 0.969
v v Adult 0.959 0.957 0.954 0.957 0.956
v v Toddlers 0.935 0.933 0.936 0.934 0.934

The results of the LODO-CV experiments are summarized in Table 3.19. Across all three configurations,
the WS-BiTM model demonstrated consistent performance in two cases. In case 3, there is a drop in
accuracy when compared with other cases due to the larger number of test instances and lower training

instances. Fig 3.15 shows the graphical illustration of the LODO-CV in these cases. Cross-dataset
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validation confirmed that the model effectively generalizes across different populations and is not
overfitting to any particular dataset.

Casel Case 2 Case 3

0.98
0.97
0.96
0.95
0.94
0.93
0.92

0.91
ACCURACY PRECISION SENSITIVITY SPECIFICITY F1-SCORE

Fig 3.15 Graphical representation of the LODO-CV across three cases

3.4.  Chapter Summary
This chapter emphasizes the integration of machine learning, nature-inspired algorithms, and deep
learning techniques to enhance the diagnostic process for ASD. Traditional methods often face challenges
such as insufficient feature representation and a lack of semantic understanding, limiting their
effectiveness. To overcome these challenges, this research introduces two novel approaches: AFF-BPL
(Adaptive Feature Fusion with Bat-PSO-LSTM) and WS-BiTM (White Shark-BiLSTM-based network).
Both methods demonstrate significant advancements in ASD diagnosis. The AFF-BPL model employs
adaptive feature fusion to integrate bio-inspired optimization with deep learning, achieving exceptional
diagnostic accuracy across three distinct autism datasets (Toddlers, Children, and Adults). Experimental
results highlight its superior performance, attaining accuracies of 0.992, 0.989, and 0.986, respectively, on
the toddler, children, and adult datasets. Similarly, the WS-BiTM model combines White Shark
optimization with BiLSTM to address the complexities of ASD diagnosis, achieving an accuracy of
97.6%, thereby outperforming baseline models such as NN, LSTM, and CNN. The findings underscore
the potential of combining bio-inspired techniques with deep learning methodologies to enhance feature
representation. By harnessing the synergy of computational intelligence and machine learning, this work
anticipates significant advancements in the efficacy and accuracy of ASD diagnosis, contributing to

improved healthcare outcomes.
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Chapter 4 ASD DIAGNOSIS USING MULTI-MODALITY
ARCHITECTURE

The diagnosis of Autism Spectrum Disorder (ASD) has remained a challenging task due to the complex
and heterogeneous nature of the disorder. In recent years, the integration of multi-modal data sources,
such as neuroimaging and clinical features, has shown promising potential for improving diagnostic
accuracy. This chapter presents the development and evaluation of a novel multi-modality architecture for
ASD diagnosis, leveraging the complementary strengths of structural MRI data and non-imaging meta-
features. By combining advanced computational techniques, such as convolutional neural networks
(CNNs), attention mechanisms, and transformer-based models, the proposed framework provides a robust
and interpretable solution for ASD detection. The chapter elaborates on the design, implementation, and
performance of the architecture, highlighting its ability to capture nuanced patterns from diverse data
modalities and its superior performance compared to existing approaches. Section 4.1 provides an
overview of the chapter, introducing the role of multi-modality architectures in ASD diagnosis. Section
4.2 discusses the use of CNNs for image analysis, while Section 4.3 presents the proposed MCBERT
architecture, integrating CNNs, attention mechanisms, and BERT for enhanced diagnosis. Section 4.4
outlines the experiments and results, including dataset details, evaluation metrics, comparative analysis,
and generalization testing. Section 4.5 examines the computational complexity of the approach. Section
4.6 provides a discussion of the findings and their significance. Finally, Section 4.7 summarizes the

chapter's contributions and insights.

4.1. Overview
Within the domain of neurodevelopmental disorders, autism spectrum disorder (ASD) emerges as a
distinctive neurological condition characterized by multifaceted challenges. The delayed identification of
ASD poses a considerable hurdle in effectively managing its impact and mitigating its severity.
Addressing these complexities requires a nuanced understanding of data modalities and the underlying
patterns. Existing studies have focused on a single data modality for ASD diagnosis. Recently, there has
been a significant shift towards multimodal architectures with deep learning strategies due to their ability
to handle and incorporate complex data modalities. In recent developments, non-invasive brain imaging
has provided a more comprehensive understanding of the neural circuitry linked with neural
developmental disorders [121]. Notably, fMRI enables the visual evaluation of the functional
characteristics of the brain. This offers precise insights into various neurological disorders [122]. For
example, in the diagnosis of ASD, rather than solely depending on observational methods and patient

interactions, physicians leverage neuroimages to detect anomalies in brain activity. This approach
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enhances the efficiency and precision of identifying differences in neural pathways among patients.
Developing an architecture that takes both images and its meta-data (multi-modal) into account, can
enhance the efficacy and association between both modalities. This multi-modal strategy can prove to be
effective in diagnosing ASD.

There has been a substantial accumulation of non-imaging (meta-features) datasets. Elements like gender,
behavioral characteristics, patient history, and genetic sequences significantly influence disease diagnosis.
The integration of non-imaging and imaging data through multimodal architecture is crucial for
enhancing the efficacy of algorithms. Nonetheless, non-imaging/meta-features exhibit high
dimensionality, constraining the representational capabilities of conventional machine-learning
approaches [123]. Deep learning strategies present an avenue for efficiently amalgamating multimodal
data to facilitate the diagnosis of autism spectrum disorder (ASD). The research framework built in this
paper primarily concentrates on adopting deep-learning image and text-processing techniques to establish
a multi-modal framework for diagnosing ASD. This is achieved by employing various techniques and
fusing their outputs at the end. In the developed architecture, we introduced blocks/ components for

image and meta-features modalities to diagnose ASD.

4.2. Convolution Neural Network (CNN)

In contemporary deep learning for image recognition/classification, CNNs stand out as a prominent neural
network architecture. The architecture of CNN is structured into three layers: (i) the entry layer, (ii) the
hidden (latent) layer, and (iii) the output layer. The hidden layers, alternatively termed pooling, or

completely connected layers, play a major role in the overall architecture [29] [116].

The Convolutional Layer: The convolutional strategy is applied recurrently within this layer to induce
changes in the output function. Comprising the neuronal maps, also known as the “filter/feature maps” or
“characteristic maps”, the discrete convolution of receptors quantifies neural activity (Figure 4.1, block
A). This process involves computing the overall neural weights of the input and activation function

assignments [40]. Figure 4.1 provides a visual representation of a generic discrete convolutional layer.

Max Pool Layer: The max pool layer forms a multitude of grids from the segmented convolutional layer’s
output. Sequential matrices are created using the maximum grid value. Operators are employed to derive
the average or maximum value for each matrix. Figure 1, block B, illustrates the construction of the max

pool layer [50].

Fully Connected Layer (FCL): Constituting 90% of the entirety of the structural elements of the CNN, the

FCL allows the transmission of the input across the network with a pre-configured vector length. Data is
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transformed within this portion before grading. The convolutional layer is also transformed to conserve
information integrity. Neurons from every preceding layer are utilized in these FCLs, serving as the

network’s ultimate layer [124].

Global Pooling
Output

; Activation ’

Function

Global Pooling Layer

O000 00

Convolutional Layver
| | Feature map
! Block A I after Global Pooling
| |
Block B

Figure 4.1 Visual representation of the workflow of generic convolution neural network

4.3. Proposed Architecture
4.3.1.Multi-Head CNN

In this research paper, we introduced a three-headed convolutional neural network specifically crafted to
extract pertinent patterns from input images. The convolutional layer comprises multiple convolutional
filters that, through convolution operations, generate the output feature map (mainly explained in the
above section) from input images. Within the convolutional layers, the obtained feature maps via the
preceding layer undergo convolution via various kernels [125]. Additionally, bias is incorporated to
augment the outcome of the convolution operation, which subsequently passes via an activation function,
giving rise to the feature maps for the subsequent layers. Mathematically, the mth feature map at the Ith

layer of the eth head of the multi-head CNN is represented as a matrix, with the value at the kth row

denoted as le,',f. The calculation of this value follows the formula presented in equation (1).

Kt
ler‘rf = fRelu(fceonUZd(lef))’ Ve =1,2,3 Q)
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Here, fren, denotes the activation function that replaces all negative values with O (zero) in the feature
map, while f2,..4 represents the convolution function of the eth head in our multi-head CNNs, s

articulated in equation (2).

. z : nf-1 . )
k+ e+,
fceonVZd(Rl—lj ) = byn + Zj—o M/hj‘ffi R(l—]l)e @)
. =

b, represents the bias for a particular feature map, where i is the index of the feature map at the (1 — 1)

layer. Additionally, M/l{;fisignifies the weight matrix present at the position j of the convolution kernels,
and n; represents the length of the kernel of the eth head in our multi-head CNN. A crucial element in the
developed multi-head CNN architecture is the pooling layer. This layer plays a pivotal role in reducing
the parameter count and computations by decreasing the spatial size of the feature representation. Among

the various pooling techniques, max pooling is the most popular and widely utilized method.
Ppim = maxy, ze Rym Yhyz (3)

Here Py, represents the pool operation of the hth feature maps. vy, signifies the component at position

(v, z) enclosed by the pool region R, ,,,. This region shows a receptive field around (I, m).
4.3.2.Convolution Block Attention Component (CBAC)

In the developed architecture, each head incorporates two CBACs to optimize training performance by
accentuating both spatial and channel features with brain MRI images. The CAC network empowers the
MCBERT framework to concentrate on crucial channel features while disregarding others. These channel
features contain intricacies intrinsic to the individual color or feature channels, delineating distinct aspects
such as textual nuances and color variations. This channel-level scrutiny is necessary for capturing fine-
grain details by facilitating a comprehensive characterization of image content. To assess the importance
of every channel, diverse weight information is utilized to various feature channels and feature
dimensions of the visual data. SAC enables the architecture (Figure 4.2, block A) to prioritize spatial
dimension information on the feature map. The features encapsulate the spatial relationships, structural
configurations, and overall layout of the image, presenting a holistic perspective on the contextual
arrangement of visual elements. The analysis of spatial features is pivotal for decoding the spatial
semantics and intrinsic geometry embedded within the visual data. For feature extraction, CBAC
sequentially extracts a 1-D channel attention map A; e R***1 and a 2-D spatial attention map
Ag e RPHXW - from the provided intermediate feature map I e R#*W  of the MRI visual data. The

comprehensive attention mechanism is articulated in equations (4) and (5).
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I'=Ac() ® 1 (4)
I"= A0 ®Tr (5)

In this context, the symbol @ denotes element-wise multiplication, producing the refined feature I'". The
channel attention features undergo compression along the spatial dimension, and reciprocally. The CAC
network, illustrated in Figure 4.3, augments the significance of relevant information while diminishing
the weight of unnecessary details in the feature channel. Consequently, the developed module accentuates
channels within the MRI images.

Block A

Kernel size=3x 3 Kernel size =5x 3 Kernel size=7x7

Classification Module

@

Dropout (0.3)
Dropout (0.3)
Dropout (0.4)

Dense (128, ReL.U}
Dense (32, ReL.U)
Dense (16, Rel.U)
Dense (1, Soltmax)

Autism Diagnosis

v

Fusion
g
Global Max Pooling
Dense (256, ReLU)

Meta-Features

Block C

BERT Module

Block B

Figure 4.2 Multimodal architecture of MCBERT incorporating convolutional layers with channel block
attention component (Block A) for image modality, a BERT module (Block B) for the meta-features,
fusing the output of the block A and block B, and passing it through global max pooling and the final
classification module (Block C) to diagnose ASD.

Within the CAC, average-pooled patterns and max-pooled attributes are extracted (as in Figure 3) from
the aggregated feature map, employing both average-pooling and max-pooling operations on spatial
information [126][127]. These high-level patterns undergo processing in a shared multi-layer perceptron
(MLP) model, featuring a hidden layer. The outcome of the shared network traverses a pipeline involving

additional max-pooling and average-pooling operations, coupled with a non-linear activation function
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(ReLU) [128], to generate the channel attention map A. e RE*™1, The utilization of two pooling
operations enhances the extraction of high-level features [129]. The mathematical calculation of channel

attention is expressed in equation (6), where o represents the sigmoid function.
Ac(D=0c (MLP (Angool(I))) + (MLP (MaxPool(l))) (6)

As(IN) = o (f 77 ([AvgPool(I'); MaxPool(I)])) )

Channel Attention Spatial Attention
Component Component

Spatial attention
A

)

Channel
Mazx-Pool —>» attention A,

Co
) " fayey

Avg-Pool —>»

Input Feature ( I}
Qutput feature map

[AvgPool, MaxPool]

Channel Refined Feature ( r )

Shared MLP

Element-wise Element-wisc ~ | Sigmoeid Function
Summation Multiplication

Figure 4.3 Detailed architecture of convolution block attention component (CBAC) incorporating the

visual representation of channel attention component (CAC) and spatial attention component (SAC)

Moving to the SAC network, depicted in Figure 4.3, enhances the spatial dimension features in the feature
map through feature filtering on pixels at different positions within the same spatial dimension, assigning
weights to significant features. SAC executes average-pooling and max-pooling operations on the feature
map I’ along the channel dimension, producing two feature maps that are subsequently fused and
convolved by a 7x7 kernel size. This convolution operation yields the final spatial attention map
Ag € RPHXW \Where 7x7 denotes the convolution operation with a filter size of 7x7. The mathematical
formulation of SAC is provided in equation (7). The extracted feature maps from the multi-head CNN,

refined through CBAC, are then combined with patient meta-features for further analysis.
4.3.3.Bidirectional Encoder Representations from Transformers

BERT or Bidirectional encoder representations from transformers stand out as an efficient and

revolutionary model for feature extraction in various tasks. For the meta-features (patient information),
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we employed the BERT model, a pre-trained language representation model (Figure 2, Block B). The
employed BERT model transforms the input patient data into vector representations. These vectors
capture both inter-feature relationships and sentence-level features from the patient information. Its
primary function is to transform input into vectors [130]. In contrast to conventional language pre-training
models, BERT incorporates two tasks for model pre-training. Consequently, the word vectors produced
by BERT not only convey inter-word features but also encompass features at the sentence level [131].
The pivotal component in BERT is the Bi-transformer, utilizing a self-attention mechanism and fully
connected (FCL) layer to model input, diverging from the use of recurrent neural networks and CNN for
feature extraction. The self-attention mechanism, paramount in transformers, computes relationships
between the data, adjusting the weight of importance based on these relationships. Thus, each word’s
vector not only signifies its meaning but also provides insights into relationships with other features
[132]. The BERT module’s output is then used as input for the multi-head self-attention mechanism, as
described in Equation (8). The computational process is depicted in equation (8), where @ denotes the
guery vector, K is for the representation vector, the value vector is V, and the input vector dimension is
denoted by dj. Here, the input vectors are derived from the meta-features encoded by BERT, and the
attention mechanism computes the relationships between the features, adjusting their weights based on
their relevance.

Attention(Q,K,V) = softmax (%) 1% (8

The transformer also incorporates a multi-attention mechanism as the self-attention mechanism alone is
limited to capturing information in a single dimension. Initially, the vectors @, K, and V undergo linear
mapping h times. Finally, the resulting attention matrices are concatenated, enabling the acquisition of

multi-dimensional information. The formula describing the process is as follows:

Multihead(V,Q,K) = concat( head,, head}, ) 9)

head; = attention( QW,%, KWX,vw}) (10)
4.3.4.Pre-processing:

To address the distinct statistical properties in our multimodal data during training, we adopted a
standardization and normalization approach for meta-features (non-imaging data). Specifically,
dictionaries are crafted from the data, encompassing age, site, and gender information for each sample.
Age values fall within the range of (6,64), while the 17 sites are encoded as (0, 1, ...... ,15, 16). And
gender is represented as (0,1). A normalization process is applied to both sites and ages, transforming

their values to lie within the standardized interval of (0, 1). This meticulous preprocessing ensures that the
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non-imaging input data is appropriately rescaled and ready for integration with the multi-modal data,

promoting improved convergence and effectiveness during the training process.

Function normalize_meta_features(u):
Create an empty dictionary for normalized data
Normalized_data = {}
For data_type in [‘site’, ‘age’, ‘gender’]:
Extract the data for the current_type
X = u[data_type]
Normalize the data to the range [0, 1]
X_normalized = (X - min (X)) / (max (X) — min (X))
Standardization of the data
X_standardized = (X — np.mean (X)) / np.std (X)
Add the normalized data to the dictionary
Normalized_data [data_type] = X_normalized

Return normalized_data

Due to the inherent limitation of the self-attention mechanism in capturing the sequential order of input,
BERT introduces position embedding and segment embedding to discern between adjacent sentences.
Within the BERT framework, each input variable in its input sequence is derived through the summation
of a word vector, a position vector, and a segment vector. The ultimate word vector is produced via a
process of deep bidirectional coding, following which it is sent into the classification module mentioned

in the section below.
4.3.5.Classification Module

The combined output vectors generated by the multi-head CNN (Block A) and the BERT module are
integrated and fed into the classification module for the diagnosis of ASD through the utilization of global
max pooling (GMP). The GMP layer efficiently selects the most salient features and produces a feature
map for both the target classes, contributing to the reduction of trainable parameters. Following this, fully
connected layers are employed, incorporating neurons with ReL U activation function, specifically 256,

128, 32, and 16 neurons in each layer. To address potential overfitting, dropout layers are strategically
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inserted in conjunction with these fully connected (FCL) layers. The final stage involves applying the
softmax activation function to calculate the class score for both target classes, determining the correct
diagnosis result with the high probability score. The representation of the softmax function during
diagnosis is formulated in equations (11) and (12). Where ¢ denotes the output features from the
preceding FCLs. During training, the cross-entropy loss function ( £ ) is employed to minimize the loss
value, as depicted in equation (13). Here, y; signifies the actual classes, and ¥; indicates the outcomes
through the developed architecture.

P = softmax(#) = 7250 (12)
y = argmax(P) (12)
£= 23 [yilog®) + (1 - y)log (1~ 5] 13

N signify the data samples.

4.4. Experiments and Results
In this segment, we explained the experimental outcomes obtained from the multimodal autism spectrum
disorder (ASD) diagnosis architecture to present the efficacy of the developed architecture. This segment
incorporates sub-sections giving brief descriptions of the experimental configuration, the ASD
multimodal dataset employed, performance evaluation metrics considered, the quantitative analysis of
results, and the leave-one-site-out-classification test. Furthermore, we conducted a comparative analysis

to contrast the findings of our work with various existing state-of-the-art approaches.

4.4.1.Experimental Configuration

All experiments in this study were conducted on a laptop with an Intel Core i5 10th Generation processor,
8GB of RAM, 512GB of storage, and running the Windows 11 operating system. The system was also
equipped with an NVIDIA GTX 1650 graphics card with 4GB of VRAM, which was utilized to enhance
computational performance, particularly during model training. The experiments were implemented using
Python, and several libraries were employed for data analysis and model development. Numpy was used
for numerical computations and matrix operations, while Pandas handled data manipulation tasks,
including loading and preprocessing datasets. For visualization, Matplotlib and Seaborn were used to plot
training results and statistical graphics, respectively. Scikit-learn was applied for model evaluation and
computation of performance metrics. These tools and frameworks formed the core of the experimental

setup and were integral to the development and evaluation of the proposed model.
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4.4.2.Dataset Description

Our research conducted experiments on ABIDE-I, a publicly available data repository. This multi-modal
data is gathered from 1112 participants across 17 sites worldwide [133]. This multimodal dataset
comprises (a) MRI scans and comprehensive (b) phenotypic information (as in Table 5) for each subject.
These phenotypic measures included demographic information (age, gender), and count of autism
spectrum disorder (ASD) to TD participants. We selected these specific measures as they are clinically
relevant to understanding ASD, capturing all dimensions essential for a comprehensive analysis. Table 3
represents the phenotypic measure summary of the employed ABIDE dataset. The inclusion of these
phenotypic measures complements the imaging data, allowing us to address the heterogeneity observed in
ASD. This multimodal approach aligns with our objective of developing a model that integrates both
neuroimaging and non-imaging data for better diagnostic accuracy. Our study focuses on resting-state
structural MRI (rs- MRI) scans for the imaging part. To maintain data quality and maintain
methodological comparability, we meticulously excluded data with missing series (hon-imaging part),
incomplete brain coverage, and other scanning artifacts. Our analysis ultimately focused on 875
participants, including 403 participants diagnosed with autism spectrum disorder (ASD) and 472 typically
developed (TD). Table 6 describes the dataset description with a training and test split ratio of 80:20.

Table 4.1 Phenotypic measure summary of the ABIDE-I dataset

Site ASD TD Male count Female count Average age
CMU 14 13 21 6 26
Caltech 19 18 29 8 27
Leuven 29 34 55 8 18
KKI 20 28 36 12 10
NYU 75 100 139 36 15
MaxMun 24 28 48 4 25
OLIN 19 15 29 5 16
OHSU 12 14 26 0 10
SBL 15 15 30 0 34
PITT 29 27 48 8 18
Stanford 19 20 31 8 9
SDSU 14 22 29 7 14
UCLA 54 44 86 12 13
Trinity 22 25 47 0 16
USM 46 25 71 0 22
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UM
Yale

66

74
28

113
40

27
16

14
12

Table 4.2 Dataset description of the employed ABIDE-I dataset

14,105

Images with ASD

Images of typically 16,520
developed (without

ASD)

Total = 30,625

Training: Testing (80:20)

24,500: 6,125

4.4.3.Performance Evaluation Metrics

The efficacy of the MCBERT model is evaluated using the three primary metrics, namely sensitivity,

accuracy, and specificity. Table 7 shows the metrics and their respective formulas.

Table 4.3 Key classification metrics employed to evaluate the proposed work

Performance

Metric

Accuracy

Formula

TP+TN

TP+ FP+TN+FEN

Sensitivity (Recall)

Specificity

TP

TP+ FN

TN

TN + FP

Value Range

[0,1]

Cases Assumed

TP: Autistic individuals
identified as autistic
individuals.

TN: Non-autistic/Healthy
individuals identified as
non-autistic

FP: Non-autistic/Healthy
individuals identified as
autistic

FN: Autistic individuals

identified as non-autistic

4.4.4.Result Analysis

The performance of our developed approach, which leverages BERT for meta-feature extraction and a

multi-head CNN for image feature extraction, followed by the fusion of their outputs and passing them to
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a classification module, yielded promising results. Through the methodology, we aimed to enhance the
diagnostic process by incorporating rich contextual embeddings from the BERT module and extracting
spatial and channel-specific features through the multi-head CNN. We conducted experiments for
approximately 100 epochs to both train and assess the performance of the developed MCBERT
architecture. The use of BERT for meta-feature extraction allowed the model to capture complex
semantic relationships between patient metadata and brain MRI data, which proved beneficial in

enhancing diagnostic accuracy. The output from the multi-head CNN is illustrated in Figures 4.4 and 4.5.

Rl KRRl

e Bl -l o
b b L
S ] e

(@)

(b)
Figure 4.4 (a), (b). The output obtained via the activation pattern learned in the initial

convolutional layer when the brain images are passed by block A

Figure 4.4 demonstrates the activation patterns captured by the initial convolutional layer of the multi-
head CNN, which includes our Convolution Attention Block (CAB) module, during the processing of

brain MRI images where each matrix represents the output from distinct filters of the initial convolutional
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layer, visualizing how different regions of the brain MRI images are processed by the CNN. The inclusion
of multiple matrices serves to illustrate the model's ability to focus on various diagnostic regions
simultaneously, enabling it to capture complementary information for accurate classification. The
activation maps are represented using a color gradient, where blue indicates low activation, green denotes
medium activation, and yellow represents high activation levels. These color-coded maps show how the
CNN’s filters respond to specific regions of the input image. Early convolutional layers in CNNs
generally focus on detecting fundamental image features, such as edges or anatomical structures. In
Figure 4.4 (a) and (b), the high activations (yellow) in certain regions highlight key anatomical
boundaries, edges, or structures that are likely to hold diagnostic significance, such as cortical boundaries
or ventricles. These regions are critical for constructing hierarchical representations of the data as it

passes through deeper layers of the network.

Figure 4.5 Visual representation of the feature maps/feature extraction capablllty of multi-head CNN
when applied to brain images

Conversely, the medium (green) and low (blue) activation areas correspond to regions with less
prominent or diagnostic features. Over approximately 100 epochs, the model refined its feature extraction
process. Early in the training, activations in the initial layers are more generalized, but as training
progresses, these patterns become more focused, allowing the network to identify the most informative
features for the diagnostic task. The activation maps presented in Figure 4.5 provide visual evidence of
this learning process, showing how the model transitions from emphasizing simple, low-level patterns,

such as edges, to capturing more complex features that contribute to the improved classification accuracy
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of the MCBERT architecture. This hierarchical feature extraction is typical of CNNs, where initial layers
detect basic patterns, and deeper layers identify more abstract, high-level features. The observed
activation patterns are crucial for understanding how the multi-head CNN processes spatial and channel-
specific features from the MRI data. By activating different filters in response to specific brain structures
or abnormalities, the network demonstrates its ability to capture spatial relationships between anatomical
structures, which directly supports the effectiveness of our approach in improving diagnostic accuracy.
Additionally, the presence of distinct activations in key regions of the MRI images suggests that the
model is effectively identifying features associated with autism. Figure 4.5 further illustrates the
contributions of each of the three heads in the multi-head CNN in the initial learning layers. Each head
processes the MRI image through distinct convolutional paths, allowing the model to extract diverse,
complementary features from different regions of the input, such as anatomical structures, textures, and
abnormalities. After passing through convolutional and global max pooling layers, the extracted feature
maps are reduced to fixed-size vectors, preserving critical information for classification. The diverse
activation patterns across the three heads indicate that the multi-head CNN is capable of focusing on
various aspects of the MRI images, which is essential for identifying subtle differences in brain structures
that could be associated with ASD. These visualizations effectively demonstrate the hierarchical nature of
feature extraction in the multi-head CNN, where early layers detect simple patterns like edges, while
deeper layers capture more complex, high-level features.

Model accuracy

1.00 A
— test

| — train

0.60

T T T T T T
0 20 40 60 80 100
Epoch

Figure 4.6 (a) Epoch vs Accuracy curve of MCBERT
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Figure 4.6 (b) Epoch vs Loss curve of MCBERT

The figure provides valuable insights into how the convolutional layers of the CAB module interact with
the MRI data and highlights the model's ability to focus on important diagnostic features. This contributes
to the overall success of the MCBERT architecture in accurately classifying MRI images, demonstrating
the robustness of the proposed approach in improving neuroimaging-based diagnosis. Upon analyzing the
experimental outcomes, we observed significant improvement in accuracy as compared to existing
techniques (comparison with existing techniques is mentioned in the further sub-sections). Figure 4.6 (a)
represents the accuracy vs epoch curve demonstrating a diagnosing accuracy of 93.4%. Figure 4.6 (b)
represents the loss curve of the developed architecture.

Confusion Matrix for Test data

3000

2500

2000

True label

- 1500

1000

- 500

Predicted label
Figure 4.7 Confusion matrix obtained on the test set
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Overall, our results demonstrate the effectiveness of the developed multi-modal MCBERT, a BERT,
multi-head CNN, and its seamless integration with the classification module for the diagnosis of autism
spectrum disorder. This approach not only showcases the power of utilizing pre-training architectures but
also showcases the potential of deep learning in feature extraction and further advancement in the
healthcare domain. Figure 4.7 illustrates the performance of the developed model through the confusion

matrix obtained from the test data. The test set consists of 6,125 images.

4.4.5.Comparison with existing works

This section highlights a comparison of various methods used for autism spectrum disorder (ASD)
diagnosis on the ABIDE dataset, focusing on the performance of the proposed MCBERT model against
other state-of-the-art techniques. The quantitative results of this comparison are summarized in Table 8.
[78] proposed an sMRI-based ASD detection framework using an ensemble of deep convolutional neural
networks (DCNN) combined with different optimizers (Adam, Nadam, and RMSProp). After filtering out
noisy slices, the study utilized raw sMRI scans from the ABIDE dataset without advanced preprocessing.
The ensemble of optimizers aimed to enhance model performance by improving robustness. They tested
the model using three data splits (70:30, 80:20, and 90:10) and achieved accuracies of 77.58%, 77.66%,
and 81.35%, respectively. [26] proposed a two-stage adversarial learning model to address the challenges
associated with multi-site ASD classification using resting-state functional magnetic resonance imaging
(rs-fMRI). Their approach begins with the sliding window sampling technigue, which preserves spatial
and temporal information from rs-fMRI data. This is followed by an adversarial learning model that
extracts site-shared features, effectively tackling the issue of site heterogeneity common in multi-site
studies. The model is then fine-tuned to extract disease-related features, specific to ASD classification.
The data used in this study was sourced from the ABIDE dataset. For model evaluation, the authors
employed ten-fold cross-validation, with the dataset randomly split into training (81%), validation (9%),
and test sets (10%). [53] developed a WL-DeepGCN framework that combines fMRI data and non-
imaging demographic information for ASD diagnosis. The model uses a weight-learning network to
define graph edge weights in the latent space, and residual connections in the GCN to avoid gradient
issues. An edge-drop strategy reduces overfitting by sparsifying node connections. The study applied a
nested 10-fold cross-validation on the ABIDE-I dataset to ensure robust evaluation, avoiding feature
peeking and overfitting. Recursive feature elimination (RFE) was used for feature selection. [134]
conducted a comprehensive review of different brain networks and their functional connectivity to
distinguish between individuals with ASD and TD participants. The study utilized 871 rs-fMRI samples
from the ABIDE repository. The authors employed bootstrap analysis of stable clusters (BASC) as the

most predictive brain parcellation technique, aiming to find the optimal method for classifying ASD. The
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methodology involved exploring eight different brain parcellation techniques, which included structural,
functional, and data-driven approaches, to identify the best brain atlas for ASD classification.
Additionally, three functional connectivity metrics, correlation, partial correlation, and tangent space,
were evaluated to assess their stability and efficiency. The study found that the correlation metric was the
most stable among the metrics. In terms of machine learning models, the paper compared four supervised
learning algorithms: kernel Support Vector Machine (kSVM), which was identified as the optimal
classifier for the task, outperforming others. The experiments used 5-fold cross-validation, repeated 10
times to ensure the reliability and stability of the results. [135] worked on an unimodal ASD identification
architecture incorporating Inception V3 model with CNN. They worked on fMRI employed from
the ABIDE dataset. They took three imaging features into account i.e., epi images, glass brain images,
and stat map images. In another work by [63], they focused on developing multimodal ASD architecture
incorporating transfer learning with deep ensemble learning. They developed a multimodal-multisite
ensemble classifier to diagnose ASD from fMRI and phenotypic information from the ABIDE dataset.
They tested their model on various parameters and presented a detailed analysis of their work. [136]
focused on using a combination of functional and structural MRI data for the classification of ASD
patients versus control participants. The key features used included functional connectivity patterns
among brain regions from fMRI and volumetric correspondences of gray matter volumes from sMRI.
Their classification network was built using stacked autoencoders trained in an unsupervised manner,
combined with multilayer perceptrons (MLP) trained in a supervised manner. The study analyzed data
from 817 cases in the ABIDE-I dataset, involving 368 ASD patients and 449 controls. The evaluation
methodology involved 10-fold cross-validation, wherein each fold, 10% of the data was used for testing,
while 90% was used for training and validation (split into 70% for training and 30% for validation).
Additionally, they conducted leave-one-site-out cross-validation to assess the model's performance. This
paradigm, alongside reporting of accuracy, sensitivity, and specificity, provided a thorough quantitative

and qualitative comparison with other state-of-the-art methods.

Table 4.4 Comparison with existing works conducted for ASD on the ABIDE dataset

Reference Methodology Dataset Modalities Best Sen Spec
Incorporated accuracy
[78] Optimizer + SMRI 1 77.58% 78.16% 76.99%
Deep CNN
[137] Graph NN + Phenotypic 2 73.13% 76.00% 69.00%
Ensemble + HO
technique
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[26] Adversarial fMRI 1 80.00% 81.00% 80.00%
learning + LSTM
[53] Weight learning Phenotypic 2 77.27% 80.96% -
+ Graph CNN + +HO
Deep CNN
[135] Inception V3 fMRI 1 98.35% - -
[63] Inception V3 + fMRI + 2 97.82% - -
ResNet50 + Phenotypic
DenseNet +
MobileNet
[134] Feature fMRI 1 69.43% 64.57% 73.61%
extraction via
function
connectivity
matrix
[136] MLP + SMRI + 2 85.06% 81.00% 89.00%
Autoencoder CC200
[77] Correlation fMRI 1 84.79% 89.63% 78.96%
matrix + Graph
Theory
MCBERT Multi-Head Phenotypic 2 93.4% 92.1% 94.5%
(Proposed) CNN + BERT + sMRI

[77] utilized rs-fMRI data from the ABIDE-I dataset to propose an approach for diagnosing ASD. The
study focuses on constructing functional connectivity networks from the rs-fMRI time-series data,
calculating correlation matrices that represent interactions between brain regions. The ABIDE-I dataset,
consisting of 1,112 individuals (539 ASD and 573 typically developing controls), served as the basis for
the experiments. The authors tested 11 classification algorithms, including linear support vector machines
(SVM) and 2D CNN, and identified these as the best-performing methods across all atlases. Additionally,
the authors also performed stratified 10-fold and 3-fold cross-validation on the best classifiers (Linear
SVM and 2D CNN), observing consistent accuracy across these methods. Most of the existing works in
the literature have utilized deep learning frameworks. Some approaches focus on single-modality data,
such as structural MRI (sSMRI) or functional MRI (fMRI), while others combine multiple data modalities,

like phenotypic information and neuroimaging data. Our proposed MCBERT model, which integrates a
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Multi-Head CNN and BERT architecture, operates on multimodal inputs, specifically phenotypic data and
SMRI. As shown in Table 4.4, the MCBERT model outperforms other methods in terms of accuracy,
sensitivity, and specificity, which demonstrates its effectiveness in ASD diagnosis. The model's ability to
handle both phenotypic and sMRI data contributes to its robust performance, leading to higher
classification accuracy compared to the methods that rely on single-modality data.

4.4.6.Leave-one-site-out (LOSO) cross-validation test

In this study, the primary experimental paradigm utilized was leave-one-site-out (LOSO) cross-validation.
This method was chosen to evaluate the generalization ability of the MCBERT model across different
screening sites within the ABIDE-I dataset, which includes data from 17 different sites. For each LOSO
iteration, one site was selected as the test set, while the remaining sites were split into training and
validation sets. This setup allowed the model to be tested on unseen data from various sites, highlighting
its adaptability to site-specific variations in the dataset. Each site/data was trained and tested under
identical conditions, and performance metrics, including accuracy, specificity, sensitivity, and AUC, were
recorded for each site. Table 4.5 presents the performance outcomes of the LOSO test, demonstrating the
robustness of MCBERT in generalizing across different sites. The mean accuracy of MCBERT across all
sites was determined to be 83.64%. Notably, four sites UM, STANFORD, PITT, and MAX_MUN
exhibited lower performance compared to the mean values of the evaluated metrics. This observation
underscores the presence of site-specific variability and a lack of homogeneity in the dataset. Despite

these variations, the high global mean values attest to the effectiveness of the MCBERT architecture.

Table 4.5 Quantitative performance analysis of the MCBERT model on the LOSO test using the ABIDE-

| dataset
Site Accuracy Specificity Sensitivity AUC
CMU 91.00 95.00 87.00 84.00
CALTECH 88.50 88.00 86.00 85.00
MAX_MUN 79.30 80.00 78.70 76.00
LEUVEN 85.00 86.00 84.01 87.00
KKI 86.08 84.03 91.03 90.03
OHSU 84.00 83.79 83.46 77.31
NYU 86.02 80.81 82.55 88.61
OLIN 89.50 87.62 91.52 89.01
SDSU 87.00 80.34 81.53 81.34
PITT 76.09 75.50 75.00 74.50
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SBL 89.60 86.02 89.04 87.57
STANFORD 78.00 78.42 77.67 86.40
UCLA 80.50 82.09 78.52 79.66
TRINITY 81.07 82.41 80.54 82.24
USM 87.30 87.80 86.80 90.30
UM 75.40 76.03 75.51 76.06
YALE 87.50 82.47 82.47 79.84
Mean 83.64 81.96 80.81 83.86

4.4.7.Ablation Study

This section presents an ablation study to validate the contribution of the proposed MCBERT architecture
on the multimodal ABIDE-I dataset. In Case A (baseline model without attention mechanisms) both the
channel attention component (CAC) and spatial attention component (SAC) are removed from the multi-
head CNN architecture. The model relies solely on core convolutional layers without attention
mechanisms to process the input data. This case aims to quantify the contribution of attention
mechanisms by comparing the model's performance with a standard CNN, allowing us to isolate the
effect of the attention modules on classification performance. For case B (without channel attention) the
channel attention component (CAC) is disabled while the spatial attention component (SAC) remains
active. This setup focuses on analyzing the spatial features of the MRI data. This experiment aims to
evaluate the importance of channel-specific attention. It provides insight into whether focusing on
channel-specific features significantly impacts the model’s ability to classify ASD. Similarly, for case C
(without spatial attention) the spatial attention component (SAC) is removed, while the channel attention
component (CAC) remains active. This setup assesses the model's performance when spatial patterns are
not specifically highlighted. The focus here is to understand the role of spatial attention in identifying
relevant spatial features from MRI images and determine its contribution to the model's overall
performance. For the case D (without the BERT module) the BERT module, which processes meta-
features, is removed entirely. The model uses only the multi-head CNN to process the MRI image data
without leveraging any meta-feature information. The purpose of this experiment is to evaluate how much
of the model's success is attributable to the BERT-processed meta-features. It will show whether the

image data alone is sufficient to achieve high diagnostic accuracy or if meta-features play a crucial role.
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Table 4.6 Ablation outcomes with the proposed MCBERT architecture.

Dataset Case Case description Accuracy Specificity  Sensitivity
A Without attention 72.9 81.2 81.8
mechanism i.e. CAC and
ABIDE-I SAC
B Without channel attention 85.3 84.8 85.1
(CAC)
C Without spatial attention 83.4 82.6 83.2
(SAC)
D Without BERT module 78.3 78.2 78.3
(Image-only model)
E BERT module only 73.1 72.6 84.9
F Without global max 91.6 90.1 91.2
pooling (GMP)
G Complete architecture 93.4% 92.1% 94.5%
(MCBERT)

In case E (BERT module only) the multi-head CNN is removed it explores the performance of the model
when only meta-features are used for classification, without the additional information provided by the
MRI images. It allows an assessment of the relative value of meta-feature data compared to image data in
ASD classification. For case F (without global max pooling) the global max pooling (GMP) layer is
removed from the architecture and replaced with the average pooling. The goal here is to determine the
significance of the GMP layer in selecting the most salient features before the fully connected layers. It
helps assess whether the GMP layer plays a critical role in the final classification performance by
maximizing key features. The work evaluates the performance across the cases mentioned in Table 4.6.

At last, case G refers to the performance of the complete architecture i.e., MCBERT.

4.5. Computational Complexity

The computational complexity of the proposed model can be described in terms of the dominant
operations in its architecture, including convolutional layers, attention mechanisms, and BERT. The
convolutional layers, responsible for processing image data, contribute a complexity of O(N?2), where
N is the spatial dimension of the input (MRI images). This quadratic complexity arises from input size,

number of channels, and filter sizes in the convolution operations. The channel and spatial attention
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mechanisms, which operate on feature maps, also scale linearly with the number of channels and spatial
dimensions but remain dominated by the 0(N?) behavior. Additionally, the BERT component, used for
processing meta-features, introduces a complexity of 0(L?), where L is the sequence length, reflecting the
guadratic nature of the self-attention mechanism. As a result, the overall computational complexity of the
model is approximately O(N? + L?), with the convolutional layers typically dominating for large image
inputs, while the BERT module adds significant complexity depending on the length of the meta-feature
sequences. This combined quadratic complexity is characteristic of deep learning models utilizing both
convolution and attention mechanisms.

Generally, BERT requires high computational demands, but several strategies could be employed to
reduce the computational needs. One approach is to use model compression techniques such as pruning
and quantization, which can reduce the number of parameters without significantly impacting model
performance. Additionally, lighter versions of BERT, such as DistiiBERT or ALBERT, could be
considered, as they retain most of the model's accuracy while offering reduced complexity. Furthermore,
implementing mixed-precision training or utilizing distributed training frameworks may also help
optimize computational resource usage. These techniques, in combination, can effectively reduce the

overall processing load while maintaining the efficacy of the models.

4.6. Discussion
4.6.1.Study contributions

In this study, we proposed a novel multimodal architecture, MCBERT, for diagnosing autism spectrum
disorder (ASD) by integrating brain MRI images and meta-features such as gender, behavioral
characteristics, and patient history. Our model fuses a Multi-Head CNN (MCNN) with bidirectional
encoder representations from transformers (BERT) to capture both spatial and channel attributes from the
image modality, while efficiently handling the high dimensionality of meta-features. The results
demonstrated that MCBERT achieves high diagnostic accuracy, with an overall accuracy of 93.4%,
surpassing other state-of-the-art systems.

The key contributions of this study include the development of a novel fusion technique that integrates
multimodal data for ASD diagnosis. By combining the strengths of CNN for processing brain MRI
images and BERT for extracting meaningful information from meta-features, we were able to achieve
superior performance. Additionally, the incorporation of convolutional block attention components
(CBAC) enhances the model's ability to capture spatial and channel attributes, further improving its

diagnostic power. The use of leave-one-site-out (LOSO) cross-validation provided a rigorous assessment
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of the model's ability to generalize across different data sites, which is crucial for ensuring the robustness
of ASD diagnostic models in real-world clinical settings.

4.6.2.Challenges and future directions
Despite these contributions, the proposed MCBERT architecture has several limitations that should be
acknowledged. Firstly, the model only utilizes structural MRI (sMRI) data and does not include
functional MRI (fMRI) data, which captures brain activity and could provide deeper insights into the
neural mechanisms associated with ASD. By focusing solely on sMRI, the model may overlook important
functional abnormalities that are often present in individuals with ASD. Furthermore, the study is limited
to the ABIDE-I dataset, which constrains the ability to generalize the findings to other datasets or
populations. The diversity of ASD manifestations across different groups means that relying on a single
dataset could limit the model's applicability in broader clinical settings. Additionally, the reliance on pre-
existing meta-features, which are not universally standardized across datasets, introduces potential
variability in model performance when applied to new data.
Looking ahead, there are several promising directions for future work. One of the key areas for expansion
is the inclusion of fMRI data in conjunction with SMRI, which would allow for a more comprehensive
analysis of both structural and functional aspects of the brain. Exploring the combination of these two
imaging modalities could enhance diagnostic accuracy and provide a more detailed understanding of
ASD's underlying neural mechanisms. Additionally, extending the model to the ABIDE-II dataset and
other large, multimodal datasets would enable further validation of the model’s generalizability across
different populations. The incorporation of advanced hybrid networks, combining convolutional and
transformer-based architectures, could also lead to improved performance in early ASD detection. These
advancements hold the potential to refine ASD diagnosis and contribute to the development of
personalized treatment plans based on a more thorough understanding of each individual's
neurodevelopmental profile.

4.6.3.Real-world applicability
In terms of real-world deployment, the MCBERT model shows strong potential for integration into
clinical workflows, provided that certain developments are made. Future work should focus on adapting
the model to handle large-scale, real-time clinical data, ensuring that it meets regulatory standards and is
interpretable by medical professionals. This could involve refining the model’s output to provide clear,
actionable insights that clinicians can easily integrate into their decision-making process. Additionally,
integrating the model into existing hospital information systems or diagnostic software platforms would
help streamline its adoption in clinical practice. By focusing on these areas, MCBERT could be
positioned as a supportive diagnostic tool for healthcare professionals, facilitating more efficient and

accurate ASD diagnoses. The model’s multimodal approach, which combines brain imaging with meta-
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features, offers a robust framework that is aligned with the growing trend of precision medicine and
personalized healthcare.

Another critical step toward real-world application is the validation of the model’s results with input from
medical experts. Collaboration with neurologists, radiologists, and other healthcare professionals
specializing in ASD is essential for establishing the clinical credibility of the model. Future studies should
focus on comparing the model’s predictions with expert diagnoses to ensure its reliability in a clinical
setting. Expert feedback could also be invaluable in refining the model further, particularly in cases where
subtle patterns in the data might lead to misclassification. This validation process would not only enhance
the model's accuracy but also foster trust among healthcare providers, increasing the likelihood of its
integration into routine clinical practice.

In summary, the MCBERT architecture is well-positioned to be adopted as a real-world clinical tool.
With further validation and refinement, particularly in the areas of regulatory compliance, scalability, and
expert validation, the model could play a significant role in improving the early diagnosis of ASD. These
advancements would ultimately contribute to better patient outcomes, supporting early interventions and
more personalized treatment plans for individuals with ASD. By addressing these limitations and
expanding the scope of the research, future work aims to push the boundaries of ASD diagnosis through

more advanced multimodal deep learning techniques.

4.7. Chapter Summary
In this work, we propose a novel fusion technique for diagnosing Autism Spectrum Disorder (ASD) in a
multimodal setting, integrating information from brain MRI images and associated meta-features. This is
achieved by combining the outputs of a multi-head CNN and Bidirectional Encoder Representations from
Transformers (BERT). To enhance feature fusion, we utilize a convolutional block attention component
(CBAC) for extracting spatial and channel attributes. Additionally, a BERT-based architecture is designed
to efficiently handle meta-features, enabling the extraction of key attributes from this modality. The
proposed fusion approach demonstrates significant improvements in feature integration and predictive

performance for ASD diagnosis, validated against baseline methods.
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Chapter 5 APPLICATIONS OF DEEP LEARNING FOR ASD
DIAGNOSIS

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide
range of symptoms and behavioral patterns, often requiring early and accurate diagnosis for effective
intervention. In recent years, deep learning has emerged as a transformative approach in medical research,
leveraging its ability to process and analyze complex, high-dimensional data with remarkable precision.
This chapter delves into the applications of deep learning techniques for ASD diagnosis, highlighting
their potential to address critical challenges such as early detection, personalized treatment planning, and
the integration of diverse data modalities. By exploring advanced architectures, including convolutional
neural networks (CNNs), recurrent neural networks (RNNs), and hybrid models, this chapter aims to
illustrate how deep learning facilitates breakthroughs in understanding and diagnosing ASD. Through
case studies, comparative analyses, and novel methodologies, the chapter underscores the critical role of
deep learning in shaping the future of ASD diagnosis and care. Section 5.1 introduces the chapter,
highlighting the role of deep learning in ASD applications. Section 5.2 provides background information
on key deep learning models, including VGG-16, AlexNet, ResNet, and Vision Transformers. Section 5.3
presents the proposed ASD_CEVT architecture, designed for enhanced ASD diagnosis. Section 5.4
details the experiments and results, covering evaluation measures and result analysis. Section 5.5
discusses the findings and their implications. Finally, Section 5.6 concludes the chapter with a summary
of the key contributions.

5.1.0verview
Autism spectrum disorder is one of the most complex neuro-developmental conditions that hinders one’s
social communication. Autism is called a “spectrum” disorder because the intensity and the type of
symptoms differ greatly. Individuals suffering from ASD require special treatment and care [138] [139].
The broad range of characteristics linked with ASD makes diagnosis difficult and its causes are
multifactorial [140] [141]. ASD influences people of every racial, socio-economic, and ethnic background
[142][13]. ASD sufferers face communication difficulties and they cannot convey themselves via words,
facial expressions, or gestures [27][143]. Although ASD is a lifetime illness, researchers have proven that
early diagnosis and advanced medical care can increase the chances of better mental health [144]. The
prevalence of ASD is a global concern and as per reports, one in every 54 children (in the USA) has been
detected with ASD [145][146]. Boys have more chances of being diagnosed with ASD than girls. The
pediatrics have recommended that everyone should have an early screening test for ASD as a routine

health checkup in order to identify whether they should look for an advanced clinical diagnosis or not.
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World Health Organization report of June 2021, discloses the epidemiological statistics showing that one
in 160 children are affected by ASD worldwide, whereas the statistics of ASD in middle and low-income
countries still remain unknown [147]. The lack of appropriate tools, medical tests, and treatment makes
the diagnosis of ASD difficult. ASD is a disorder that influences various sections of the brain and is
caused by a problem called polymorphism (a genetic effect caused by human gene interaction). These
gene variants affect biological processes, like synaptic connectivity, and brain development, which are
necessary for brain functioning. Consequently, further research is needed to unleash the intricate factors
that contribute to the development of ASD [148][149].

Medical experts diagnose ASD on the basis of neurophysiological signs generated, as there is no
diagnostic procedure that can detect ASD at any time [124][150]. There is no particular medication for
ASD. The advancements in cost-effective, reliable, and easy-to-use screening tools are necessary due to
the increasing number of ASD cases. To diagnose ASD efficiently, physicians require a child’s
progressive history and the presence of ASD biomarkers. Some of the essential biomarkers that are being
explored by researchers are eye-tracking, neurophysiological, functional/anatomical brain characteristics,
genetic, and behavioral [151]. The face is one of the crucial bio-markers as the nervous system takes and
processes data via facial elements directly. The potential to classify different facial features and
expressions are crucial characteristic that will aid in classifying brain asymmetry (neuro-developmental
disorder) [152][78]. Various conventional screening techniques are used to diagnose ASD such as
interviews where the severity is assessed by various questionnaires (Q-chat, AQ-10, ADOS-2, ADI-R).
These techniques are cost-effective, easy, and lead to reliable diagnosis. The limitation of these
techniques is ‘bias’. Some other modalities, like functional magnetic resource imaging (fMRI), blood
tests, and electroencephalograms (EEG) are used for diagnosis depending upon the physician [153][123].
However, most of these methods come with higher costs, and may not be accessible for people living in
low-income areas. To address the requirement for better ASD diagnostic tools, medical professionals and
researchers are working on creating widely accessible tools. The investigation of early bio-markers is
never-ending. The extraction of facial characteristics as a physical element to diagnose autism is amongst
the most trending, fairly new, and rapidly evolving areas of autism. Due to its distinctive characteristics,
facial image recognition might be the most accurate technique of diagnosis. Recent research portrays the
capability of deep neural networks (DNN), specifically the significance of convolutional neural network
models in disease diagnosis. Because of its remarkable capability to understand via automatically fetching
the hidden characteristics (features) from a huge pool of images, CNNs are extensively acquired feature
extractors for image classification and object detection. CNN proves to be exceptionally efficient and
appropriate, training a CNN model takes a considerable number of computational resources and time.

Thus, rather than developing from scratch, it is favorable to work with pre-trained models that have been
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built using a large pool of data and supercomputers. Transfer learning is an approach that associates
parameters and weights of the pre-trained models to improve and modify the ultimate outcome depending
upon the desired tasks, which in turn enhances classification accuracy. In this work, we worked on 2D
face images using CNN and a vision transformer to extract features (attributes) from images. We
proposed an optimal transfer learning-based framework to detect autism precisely. We worked on a
variety of face images of autistic and non-autistic individuals with various deep learning and optimized
pre-trained models for analysis. Our work is primarily an image classification task, in which a well-
trained transfer learning model detects autism when exposed to an input facial image.
5.2.Background
52.1. VGG16

VGG (Visual Geometry Group) is a well-known deep learning network in the domain of computer vision,
prominent for its exceptional achievements in object classification and detection tasks, capable of
classifying thousands of images of numerous categories. Figure 5.1 illustrates the workflow of VGG16
that has sixteen weight layers (learnable parameters) and incorporates 13 convolutional layers, 5
max_pooling layers, and 3 dense layers, making it a deep architecture responsible for learning crucial
features from images [154][155]. Instead of using a massive amount of hyperparameters, VGG16 has a

convolution layer of ‘3X 3 filter’ with stride 1 and a max_pool layer of ‘2X 2 filter’ with stride 2.
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Figure 5.1 The general architecture of VGG16 comprising various pre-trained layers having convolution
layer (in green) to process information and extract features from the facial images and customized fully

connected layers to produce output

The convolutional layers are the essential building blocks capable of capturing hierarchical depictions of
the input data. The selection of stride and filter size promotes the effective extraction of feature maps
while managing a high-resolution feature map. The pooling layer optimizes the spatial dimensions of the
feature map. It helps in making the network recognize objects irrespective of the location in the input

image. The fully connected layers are responsible for giving final predictions from the learned
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characteristics. The softmax activation function converts final scores into probabilities, showing the

likelihood of an image belonging to each class [156].
5.2.2. AlexNet

Alexnet is one of the most used CNN with a substantial count of 60 million parameters. Consisting a total
of eight layers, the network includes five initial convolutional layers, followed by three fully connected
layers [157]. Figure 5.2 illustrates the workflow of AlexNet, where every convolutional layer is equipped
with an activation function, which introduces non-linearity and facilitates the architecture's ability to learn
intricate features from the image. The initial 2 conv layers are seamlessly connected with overlapping
max_pooling layers, meticulously combined to extract the most significant features from the input image.
This strategic incorporation of max_pooling helps reduce the spatial dimensions of the data, promoting
translation invariance and capturing essential patterns regardless of their location within the image.
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Figure 5.2 General architecture of AlexNet illustrating the sequence and size of convolutional, and fully

connected layers to produce final predictions

The last three conv layers form a direct linkage with a fully connected layer, enabling a seamless flow of

information from the conv feature maps to the dense layers [158][159].
Output(conv layer) + output(FC layer) are connected to —» ReLU function

The integration of fully connected layers at the end of architecture fosters high-level feature

representation contributing to more robust and discriminative classification capabilities [160][31].

5.2.3. ResNet

Residual network 18 is an 18-layer deep convolutional neural network to overcome the challenge of
training deeper networks efficiently by incorporating the strategy of skip connections (known as

shortcuts). A residual unit incorporates multiple convolutional layers, followed by skip connections that
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sum the input with the output of the layers [161][162]. Figure 5.3 shows the diagrammatic representation
of how the skip connection in Resnet works, which serves as a base for our proposed architecture. The
main motive of these skip connections is to mitigate the problem known as the ‘vanishing gradient’ (the
gradients of the loss function diminish as they backpropagate through various layers), which hinders
successful training of deep networks and leads to suboptimal convergence. Resnet addresses this issue
through the strategic introduction of skip connections, enabling the layers to bypass certain layers and
facilitate the direct flow of gradients across various depths. Skip connection takes the activation from (n-
1)th convolution layer and adds it to the output of (n+1)th layer and then applies ReLU function on this
sum, hence skipping the n layer. This facilitates efficient gradient propagation during training, allowing
the network to learn meaningful features from the data [25][24]. The model incorporates various residual
units which propagate in both backward and forward directions using identity mapping. Propagation can
happen among blocks having a high rate of accuracy with respect to classification performance. These
residual mappings make training more generalized and more accessible. Resnet18 has nearly *11 million’
trainable parameters. Resnet models are over 100 layers deep and they exhibit exceptional classification

accuracy.
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Figure 5.3 Diagrammatic representation of the working of skip connections in ResNet that takes the
activation from (n-1)th convolution layer and adds it to the output of (n+1)th layer and then applies ReLU

function on this sum
5.2.4. Vision Transformer (ViT)

ViT is a cutting-edge neural network tailored for various computer vision applications, specifically image
classification. ViT draws inspiration from transformer networks (originally designed for natural language
processing tasks), they undergo significant enhancements to optimize their efficacy in image processing.

Notably, the primary distinction lies in how images are represented within the network [27][163]. In

133

Z'l—.l turnitinﬁ Page 167 of 218 - Integrity Submission Submission ID trn:oid:::27535:77729745



Z'l-.l turnitin Page 168 of 218 - Integrity Submission Submission ID trn:oid::27535:77729745

contrast to NLP tasks, where text is represented as a sequence of words, ViT handles images as a
sequence of smaller patches (each typically measuring 16 X 16 pixels). These patches are then processed
via a CNN to get significant features specific to every patch, enabling optimized representation and
understanding of the input image. The subsequent transformation incorporates passing the patch vectors

via a stack of transformer encoder layers.
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Figure 5.4 Diagrammatic representation of the workflow of multi-head attention segment in transformers

Within this architecture, the attention mechanism conducts computation repeatedly through instances
called attention heads. Subsequently, the outcome of these parallel attention calculations is aggregated to
generate a consolidated attention score. This is termed as multi-head attention. Figure 5.4 represents the
internal structure of multi-head attention in transformers which enables the model to learn and focus on
different sections of the input sequence simultaneously. In other words, each head conducts the self-
attention mechanism independently, empowering the network to learn and grasp long-term dependencies
between the individual patches of the image. This capability is specifically pertinent for image
classification, as it fosters an understanding of how different portions within the image collectively
contribute towards the overall classification. Further, the outcome of this transformation is a sequence of
vectors that holistically combines the essential features of the input image. These vectors act as potent
input for image categorization tasks and other computer vision endeavors, showcasing the ViT power in
this domain [164].

Attention: Attention is an essential mechanism within deep learning networks that facilitates the focus on
specific portions of input during processing. This concept takes inspiration from the human cognitive

process, by how humans concentrate on different elements of an image when assimilating visual
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information. By adopting attention, deep learning networks can efficiently prioritize relevant information,
enabling them to perform more precise tasks across domains.

5.3.Proposed Architecture

The proposed ASD-CEVT model is relatively inspired by the architecture of ResNet. The ResNet
incorporates the concept of skip connection (refers to the inclusion of the actual input into the outcome of
every convolutional block). Building upon the original vision transformer architecture, ASD-CEVT
introduces a novel enhancement where the original image (actual input) is repeatedly given to the output
of every encoder layer. This iterative process is achieved by integrating a parallel CNN block alongside
the transformer network. Specifically, the whole facial image of autistic individuals undergoes processing
via CNN block, which creates embedding of the image as output, and this output is iteratively
concatenated with the output of every encoder layer. The continual integration of the initial image
representation throughout the encoding process ensures the preservation of significant details, making the
architecture remember the actual image at every end of the encoder output as shown in Figure 5.5. The
ASD-CEVT architecture incorporates both global feature information (via vision transformer) and local
detailed features via CNN. This fusion approach ensures robust feature extraction, enabling the model to
perform better across the dataset.

The CNN block proposed in the architecture incorporates a 2D conv layer in a stacked manner and a 1D
average pooling layer. Table 5.1 represents the size of the kernel and the filters at various levels/layers of

our architecture.

Table 5.1 Filters and kernel size used at various layers of the ASD-CEVT architecture

Layer 1 16 filters Kernel size = 3
Layer 2 25 filters Kernel size =5
Layer 3 D filters Kernel size =5

The average pooling layer was used to calculate the output vector V;,,, with size D, which refers to the

mapping of input to the D dimension. In the transformer section, the input was partitioned in N = il

Pz
patches, having (P, P) as the resolution of every patch. These patches were then flattened among all the D
dimensions to make a sequence of flattened patches V,, with a total size of N x (P% - C).

Further the patch embeddings were made by mapping all the patches to dimensions D via trainable linear
projection:

Ep=[VAS,V3S, ..., VNS 1)
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S ¢ R(P?C)xD @)

A learnable 1-D position embedding with size D was incorporated for all the N+1 embeddings, where the

position of additional V., embedding was set to 0. The path embedding E, was calculated as:
Eo=[Veiass Ep 1 + Spos 3

Spos€ ROVFDXD (4)

Further, encoder layers L were stacked, with E, as the input of layer one, then E; was calculated by the

concatenation of V;,,, , (image embedding) to the output E; of every encoder layer I.

Where, 1=1,2,3...... ,L (%)
E = [E}Vimgl (6)
El € RW+1+1)xD @)

E, is given as input to the next encoder layer L. Here the encoder layer of ASD-CEVT inputs

representation of the complete input facial image including the output of the previous encoder layer.

Training and Evaluation

For the training of ASD-CEVT, cross-entropy as loss function, Adam optimizer, batch size of 20 with 50
epochs, with a learning rate of 0.0001 was used. Table 5.2 presents the values of the hyper-parameters

adopted while implementing the architecture.

Table 5.2 Hyper-parameters adopted for the development of ASD-CEVT architecture

Parameters Size
Embed_dimension 256
Hidden_dimension 512

Learning_rate 0.0001
Loss_function Cross_entropy
Optimizer Adam
Batch_size 20
Num_epoch 50
Patch_size 4
Num_classes 2
136
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Figure 5.5 Overall structure of the proposed ASD-CEVT architecture comprising facial images
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In order to adapt the existing weights on the facial data, a low learning rate was chosen. Label smoothing
was performed while training to prevent overfitting, thus making the model to generalize well.

Algorithm: ASD-CEVT framework for ASD classification

Input: Set of facial images of autistic individuals

Configuration parameters: D, N, C, P, L, learning rate, batch size, epochs
Output: Trained ASD-CEVT model

1. Initialize CNN block:
Initialize a CNN block with a stacked 2D convolution layer and 1D average pooling
layer
Configure convolutional layers with specific filter size and kernel size

Computer Vi, g With dimension D

2. Initialize Transformer:
Partition image into N= patches, each with size (P, P)
Create a sequence of flattened patches V, with size N x (P%2-0)
Introduce learnable V.. embedding of size D and 1D position embedding

Compute E, using Equation 3

3. Encoder Layer:
Repeat L times
Fori=1toL
Concatenate V;;,, + output
Compute E; by applying the encoder layer to concatenated embedding using

Equation 6

4. Training
Cross entropy loss function for training
Apply adam optimizer with learning rate
Set batch size = 20, epoch = 50

Implement label smoothing

5. Output: Obtained a trained ASD-CEVT model capable of accurately classifying ASD from
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facial images

The algorithm shown above represents the generic view of the overall methodology adopted in our work.

5.4. Experimental Setup and Results Analysis

In this segment, we discussed the experimental outcomes obtained from the developed autism spectrum
disorder (ASD) diagnosis architecture to showcase the efficacy of the proposed architecture. Furthermore,
we conducted a comparative analysis to contrast the findings of our work with various existing state-of-

the-art approaches.
5.4.1. Performance Evaluation Parameters

Performance measures are employed to measure how appropriately a model is detecting/predicting the
outcomes. These measures are also crucial while comparing models. In this work, we employed accuracy,

precision, and recall as these measures are most crucial when working in the healthcare domain.

5.4.2. Result Analysis

In this section, we analyze and describe the outcomes of our experimental evaluation on the classification
performance of four distinct deep learning models, namely VGG16, Resnet, AlexNet, and the developed
ASD-CEVT architecture. These models were trained using the Adam optimizer and evaluated via three

key parameters.

Original Image ; :
J J Interpretation of model Attention

(@) (b)
Figure 5.6 Visual illustration of (a) original input (autistic child) image vs the (b) interpretation of the
model attention
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Figure 5.6 showcases the original/actual input image of an autistic child vs the interpretation done by the
model attention component. The area highlighted with a colored pattern in (b) illustrates the region of

high importance. This region incorporates the most crucial points identified by the architecture. As per the

existing research and the studies reviewed in this work, the main facial biomarkers are the portion from
eyes to lips. Proving that our ASD-CEVT architecture has also assigned importance to those features.

The obtained outcomes along with accompanying graphs, highlight the effectiveness and comparison of

each architecture in addressing the task of classifying ASD.
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Figure 5.7 Graphical Plots of accuracy and model loss, where (a), (b) corresponds to ASD-CEVT; (c), (d)

corresponds to AlexNet; (e), () corresponds to ResNet; and (g), (h) corresponds to VGG16 respectively

Figures 5.7 (c) and (d) portray that Alexnet achieved an accuracy of 0.908 demonstrating good

classification performance on our dataset. The Resnet architecture showcases strong performance across

all parameters (Figure 5.7 (e) and (f)) with an accuracy of 0.866% it maintains a balance in the values

between precision and recall indicating its efficiency in achieving decent accuracy.

Table 5.3 Model performance achieved on various parameters

Model Accuracy

ResNet 0.866
AlexNet 0.908
VGG16 0.835
ASD-CEVT 0.924

Precision REE
0.866 0.866
0.0908 0.0908
0.835 0.835
0.909 0.909

Figures 5.7 (g) and (h) demonstrate the results of the VGG16 architecture showecasing notable

performance. It achieved an accuracy of 0.835, having lower precision and recall values. Our developed
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ASD-CEVT architecture outperforms all parameters (Figure 5.7 (a) and (b)) with a value of 0.924. The
results suggest that ASD-CEVT architecture is well suited to our dataset, showing robustness in making
accurate classifications on facial images. Table 5.3 shows the results on various metrics for each of the
four models. The analysis relies on the 300 test samples, where the highest accuracy achieved is 92.4%
(on our proposed ASD-CEVT model).

0.92
0.9
0.88
" os6
S .84
<>E 0.82
0.8
0.78

0.76
ResNet VGG16 AlexNet ASD-EVT

MODELS

Accuracy Precision Recall
Figure 5.8 Comparison graph of classification performance of the developed model with baseline
models

Figure 5.8 illustrates a visual comparison of the performance achieved by each model on the autism facial

dataset allowing for an easy comparison of the true model’s performance.
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Figure 5.9 Confusion matrix of four models where (a) ASD-CEVT, (b) ResNet, (c) VGG16, (d) AlexNet
respectively

Confusion matrix in Figure 5.9 visually illustrates the architecture’s performance. Each architecture is

evaluated on a 300-image set.

As seen from the confusion matrix, ASD-CEVT performed the best with only 12 input images incorrectly
predicted as compared to the other employed models.

5.5. Discussion

Our research investigates the diagnosis of autism spectrum disorder (ASD) utilizing an enhanced
convolution network-based transformer architecture applied to facial images of autistic and healthy
(typically developing) children. While there are several methods for identifying autism within the current
diagnostic framework, the most prominent approach remains brain MRIs and interview-based evaluation,
despite its costly and lengthy diagnosis timeline. The significance of early detection offers the best
prospects for ASD individuals to lead normal lives. Consequently, the impetus behind our work is self-
evident i.e., to formulate a straightforward and precise identification strategy applicable from an early
age. Recent trends in healthcare research underscore the utilization and efficacy of pattern recognition,
image processing, and facial identification in this domain. Following the research literature on ASD and
the fact that facial patterns (biomarkers) reflect underlying psychological functioning, facial identification
emerges as a promising avenue for ASD. Studies developing the ASD identification architecture are still
limited, as the limitations inherent in the training dataset pose several challenges for researchers. The
dataset employed lacks data diversity as it is biased toward white ethnicity, posing a challenge in
accurately identifying and generalizing individuals from other ethnicities. Furthermore, the dataset size
and suboptimal visual quality are constraints. Additionally, relying solely on facial biomarkers is deemed
inadequate, integrating and developing multi-modal architecture can notably augment accuracy. Table 5.4
showcases a comparative analysis of recent research findings providing their performance on various
metrics. Some of the performance values mentioned represent the values near our developed architecture

but most of them lack real-world applicability.

Table 5.4 Comparison with recent state-of-the-art strategies with their performance on various parameters

Reference | Purpose Techniques Highest Precision | Recall | F1 AUC
Test
Accuracy

[165] ASD MobileNet 87% 87% 87% 87% -
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recognition via
facial

expressions

[166]

Detection of
ASD via deep
image learning

strategies

VGG19, NasNet
large,
V3, ResNet50

Inception

87.50%

[167]

Classification of
ASD via facial

images

(VGG16,
MobileNet,
VGG19), +
LSTM

75.85%

76.56%

76.85%

75.69%

[168]

ASD diagnosis
via facial

landmarks

Hybrid VGG19,
MobileNet V2

92%

92%

92%

92%

[169]

Detecting
autistic
individuals
using face

image

MobileNet,
Inception V3,
InceptionResNet
V2

87%

[170]

ASD detection
system for face

images

CNN

91%

[171]

ASD diagnosis
using deep

learning

VGG16,
EfficientnetBO,
VGG19

87.9%

93.06%

[172]

Detection of
ASD at early

stage

MobileNet V1

92.1%

[173]

Face images

based ASD

diagnosis

VGG16,
Random
Gradient
VGG19

KNN,
forest,

boost,

0.88

0.87

0.88

0.88

[174]

ASD diagnosis

ResNet34,

92%
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for diagnosing
ASD

using transfer | VGG19, AlexNet,
learning ResNet50,
VGG16,
MobileNet V2
Our Convolutional | CNN 92.4% 90.9% 90.9% 96.3%
Proposed | enhanced incorporated
vision vision
transformers transformer

5.6.Chapter Summary

This chapter presents a comprehensive exploration of our major contributions toward advancing Autism

Spectrum Disorder (ASD) detection using facial image analysis. We proposed an optimized transfer

learning-based face identification architecture capable of capturing autism with high accuracy,

accompanied by visualizations of key facial features influencing the model's decisions. The novel

enhanced vision transformer architecture integrates an attention mechanism with CNN blocks in parallel,

supported by skip connections, to facilitate effective feature extraction and smooth information flow

across layers. The proposed architecture addresses critical challenges, including overfitting, thereby

improving generalization capabilities. Furthermore, this work pioneers a relatively underexplored area of

image processing by focusing on ASD classification using facial images, diverging from conventional

approaches that rely on brain imaging or EEG signals. The results underscore the potential of facial

image-based diagnosis as an innovative and effective approach for ASD detection.
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Chapter 6 SELF-SUPERVISED AND SELF-DISTILLATION
APPROACH FOR ASD

The early and accurate diagnosis of Autism Spectrum Disorder (ASD) remains a complex challenge due
to the diverse presentation of symptoms and the need for large annotated datasets. To address these
limitations, this chapter explores the integration of self-supervised learning (SSL) and self-distillation
techniques as innovative approaches for ASD diagnosis. By leveraging unlabeled data through SSL, the
framework aims to extract robust feature representations, while self-distillation enhances the
generalization and efficiency of the predictive model. This dual approach not only reduces dependency on
annotated datasets but also improves the model's interpretability and diagnostic accuracy. The chapter
presents a comprehensive analysis of these techniques, including their implementation, evaluation, and
contribution toward advancing ASD detection methodologies. Section 6.1 provides an overview of the
chapter, focusing on self-supervised and self-distillation approaches for ASD diagnosis. Section 6.2
outlines the background, emphasizing Self-Supervised Learning (SSL) and Knowledge Distillation (KD).
Section 6.3 introduces the Autism Facial Image Dataset used in the study. Sections 6.4 and 6.5 describe
the integration of Transformers and Masked Autoencoders, while Section 6.6 explores the self-distillation
process. Section 6.7 presents the experiments and results, detailing the experimental setup and analysis.
Section 6.8 discusses the findings and their implications. Finally, Section 6.9 summarizes the chapter's

key contributions and insights.

6.1. Overview
This work delves into the development of an advanced deep-learning framework designed to improve
Autism Spectrum Disorder (ASD) classification using facial images. The work focuses on addressing the
challenges associated with early ASD detection, which is often hindered by the limitations of
conventional diagnostic methods. The proposed framework, S/SD-ASD (Self-Supervised and Self-
Distillation Learning for ASD), aims to provide a more accurate and efficient alternative for diagnosing
ASD by utilizing cutting-edge techniques in deep learning and self-supervised learning. The core of this
approach lies in the use of a Masked Auto-Encoder (MAE), which is an unsupervised model that learns to
reconstruct masked regions of input data in this case, facial images from the known portions. This
mechanism allows the model to focus on the underlying patterns within the image data and enhance
feature extraction. By incorporating self-supervision, the model is trained to predict and infer missing
parts of the image, improving its ability to learn from limited data. The MAE framework is further
augmented by Self-Distillation, where a student model learns from the teacher model’s global features

through logits-based knowledge distillation. This helps in transferring valuable knowledge from the more
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complex teacher model to the simpler student model, thereby improving the latter’s efficiency in
representing important features from the data. A key innovation of the S/SD-ASD framework is its ability
to work effectively with limited data, a common issue in ASD diagnosis where large labeled datasets are
often unavailable. By combining self-supervised pretext tasks and self-distillation, the model is able to
train on the target dataset alone without the need for additional external knowledge, addressing the

scarcity of labeled data and reducing the risk of overfitting.

6.2. Background
6.2.1. Self-supervised learning (SSL)

A lot of deep learning architectures are trained through supervised learning, which needs a substantial
amount of labeled data. However, some field lack datasets as extensive as those used in general-purpose
applications. To address this issue, pre-trained models can be an effective solution [175]. These models
are initially trained on large datasets and then fine-tuned for specific tasks. This approach has two main
advantages: first, the parameters of a model trained on a large dataset provide a strong starting point for
further training, facilitating faster convergence; second, such a model can effectively extract hierarchical
semantic information, reducing the risk of overfitting on smaller datasets. Consequently, the performance
of these models heavily depends on the size of the labeled dataset. In the medical field, gathering and
labeling data in this domain is both costly and time-consuming, largely due to patient privacy concerns
and the need for high-quality annotations. To address this challenge, self-supervised learning presents an
excellent alternative, as it can be trained on unlabelled datasets.

Self-supervised learning/SSL leverages innovative pretext tasks for various applications, such as data
augmentation, active learning, alignment, and anomaly detection. The general approach involves
proposing a pretext task allowing the network to generate pseudo-labels from the data’s attributes. These
pseudo-labels then serve as supervisory signals during training. The resulting model can be transferred to
the target data domain or task. In terms of representation learning, SSL can match the performance of
supervised learning. Given the nature of human learning, which often does not rely on large labeled
datasets, humans can learn effectively from unlabeled samples, demonstrating the potential of self-

supervised learning in scenarios with limited labeled data.

6.2.2. Knowledge Distillation/KD

With the evolution of neural networks, Knowledge distillation/KD has emerged as a significant model
compression and transfer learning technique, gaining prominence in domains of artificial intelligence due

to its effectiveness and simplicity [176]. KD addresses many practical problems by employing a "teacher-
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@ student-network" training approach, wherein the knowledge from a trained model (the teacher network) is
distilled and transferred to another model (the student network). This enhances the student model's
learning capability by leveraging the teacher model's knowledge. Typically, the teacher module is a high-
capacity network, while the student module is a smaller, more efficient network. Thus, knowledge
distillation facilitates the training of a smaller student network under the supervision of a larger teacher
module. Unlike the other compression algorithms, KD can effectively work across networks with
different structures. Deep learning has achieved remarkable success across numerous domains, primarily
due to the large, complex models capable of learning intricate patterns and features from data. However,
these large models pose deployment challenges, especially on mobile devices. Knowledge distillation
offers a solution by producing smaller models that retain the functionality of their larger counterparts.
Consequently, an increasing number of researchers are focusing on knowledge distillation to overcome

these deployment challenges. Table 2 summarizes the list of publicly accessible autism datasets.

6.3. Autism facial image dataset

The primary challenge encountered in this research was the lack of substantial and publicly available
autism image datasets, which are essential for developing an image classification model. To address this,
we employed an image dataset of autistic children from the Kaggle repository, as it is freely accessible
[177]. Fig 6.1 provides a diagrammatic representation of the dataset, consisting of images of 2,940
subjects. This dataset includes 2D-RGB face images of both autistic and typically developing children
aged 2-14 years, with the majority aged between 2-8 years.

(b)
Fig 6.1 (a) Autistic, and (b) Non-Autistic sample from the image dataset

Q The gender ratio (male to female) in the dataset is approximately 3:1, and the ratio of autistic to non-
autistic subjects is 1:1. It is crucial to note that the dataset lacks meta-information such as the clinical

history of participants, the severity level of ASD among individuals, socio-economic background, and
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ethnicity. Many of the facial images were of suboptimal quality concerning brightness, image size, and
face alignment. Table 6.2 shows the data distribution of the employed image dataset.

Table 6.1 Distribution of Autism Facial Image Dataset

Type Class Total
Autistic Non-Autistic

Train 1176 1176 2352

Test 294 294 588

Subjects (Total) 1470 1470 2940

6.4. Transformers

Convolutional Neural Networks (CNNSs) exhibit limited capability in capturing localized relationships of
foci in medical domain. In this paper, we employ a transformer-based attention strategy to identify long-
term relationships. When applied directly to patch sequences, transformers prove to be highly effective in
image classification tasks. Compared to the most advanced CNNs, the ViT achieves enhanced diagnostic
performance with significantly fewer computational resources during training.

Fig 6.2 illustrates the VIT architecture, incorporating three primary components: (a) patch embedding; (b)
positional embedding; and (c) transformer module.

Patch embedding: Within this, data is handled sequentially. Initially, a high-dimensional image is
converted into a sequence format. The facial images are first uniformly resized to 224 x 224, passed
through a convolutional layer, and then flattened into xp € R¥*(P“0) where P signifies the resolution of
each image patch. The number of patches is determined by N = HW /P?. Each patch is linearly projected
into a D-dimensional vector space, with D = P2C .

Position embedding: In our work, this layer enhances patch embedding with positional information. A
learnable 1D -positional embedding LP; € RW*+D*P js typically used in traditional ViT’s.

Transformer module: This block consists of layer normalization (layer;, ), multi-head self-attention
(MSA), and a multi-layer perceptron (MLP). Input images X € R"*WXC out of the patch embedding
layer are converted into a sequence of patches, concatenated with a class token for classification. This
process parallels the transformer architecture used in natural language processing (NLP). The resultant
patches are concatenated to the LPg positional embedding and fed into the transformer encoder for
computation. The class token outputted from this process is then inputted into the MLP module for

classification. Formulas for these computations are detailed as follows:
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Fig 6.2 Visual representation of the ViT module

6.5. Image modeling using masks/Masked Autoencoder

In this segment, we unraveled the masked auto-encoder (MAE) components utilized in the S/SD-ASD
method: decoder, encoder, and loss function. Fig 6.4 illustrates the structure of MAE. The encoder branch
of MAE utilizes the transformer block from the vision transformer (ViT). Following procedures akin to
ViT, the input image is initially divided into disjoint/non-overlapping image patches X € RHXWxC,
which are then linearly mapped to obtain LPy patch embeddings. Subsequently, a random masking
process occurs at a specified ratio. Visible patches are denoted as Visp, while invisible patches are
Invisp. Upon receiving positional information from P, ,, the encoder generates corresponding latent
representations essential for subsequent image reconstruction. The encoder outputs an encoded vector
along with a mask token, constituting the complete token set fed into the MAE decoder. Each token
receives relevant positional embedding, whereas the mask token represents a shared, learnable vector

symbolizing the anticipated missing pixel. Failure to include positional embedding can lead to suboptimal
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image reconstruction, particularly from the mask token without associated patch position information. To

optimize computational efficiency, the decoder is designed to be lightweight.
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Fig 6.2 Diagrammatic illustration of the proposed S/SD-ASD architecture

The reconstruction entropy loss L in conjunction with MAE is computed by comparing the original region

value y with the masked image patch's predicted value yp, using MSE.
Lvse= MSE(yp ,y) )

y represents the pixel value of the original facial image and y, represents the pixel value of the predicted

facial image patch.
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Fig 6.4 Visual representation of the workflow of MAE

6.6. Self-distillation

Fig 6.5 illustrates a diagrammatic representation of the self-distillation module. The image is noted for
containing a significant amount of spatial redundancy compared to the semantic framework of language.
It emphasizes that even if a portion of the image is obscured, sufficient identification can often still be
derived from the remaining visible areas. However, this principle should not be misconstrued to imply
that high-definition results can be achieved from an imperfect image. In contrast to this perspective, Mean
Absolute Error (MAE) training focuses on the visible but insufficiently global features rather than the
entire image. This approach can be enhanced by incorporating supervised labels into the network, a
straightforward and effective method ensuring the network comprehends the necessary concepts for
reconstruction. Fig 6.3 demonstrates the integration of two separate supervised branches into the system:
one following the encoder and another after the decoder, facilitating comprehensive processing of all
patches (40% local) during training. A student mapping vector distills. The encoder outputs global
information. The goal is to augment the encoder's capacity for feature extraction through the decoder

based on the teacher mapping vector.

M, = MLP(Visp); My, = MLP(Visy) (6)
Lagistinn=0.5L¢e(Mg; y)+0.5Lc(My; M) (7)
L=Lwmse + Laistiu (8)

The proposed distillation method employs a single MLP layer in each referenced student and teacher

branch within the encoder and decoder. To minimize L in the MAE process, vector Visp from the encoder
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and vector Vis, from the decoder are branched from vectors M, and M, ensuring alignment between the

two vector distributions and total loss formulation.

;Tcach cr, S 1 *
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Y Y

Distilled
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Fig 6.5. Schematic representation of self-distillation
6.7. Result Analysis and Discussion

This section sub-divides into various sections explaining the experimental setup, and visual and statistical
comparison of the proposed work with SOTA techniques. To validate the effectiveness of S/ISD-ASD, an

ablation study was also conducted.
6.7.1. Experimental setup

The picture samples used in the renal datasets were resized to 224 x 224 in size. The training was finished
after 200 epochs of pre-training and 60 epochs of fine-tuning. Every patch was split into sixteen-by-

sixteen-inch pieces. The parameters used in this paper were changed to match those in the MAE.

6.7.2. Result Discussion and Visualization

The section provides a comprehensive evaluation of the results obtained by using modern computational
approaches to autism spectrum disorder (ASD) diagnosis. This section digs into the insights acquired
from applying S/SD-ASD to facial imaging data, intending to improve diagnostic accuracy and better
understand the underlying visual indicators of ASD. This article explains how Al-driven methodologies
contribute to interpreting and diagnosing ASD from medical pictures by analyzing model-generated
visualizations in detail, such as patch segmentation, masked regions, token extraction, saliency maps, and

essential feature identification.
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Upon inputting an image into the vision transformer (ViT) model for autism spectrum disorder (ASD)
diagnosis, a series of visualizations are generated to elucidate the model's processing and interpretation:
The initial step involves dividing the original medical image into smaller patches. This segmentation
allows the VIiT model to efficiently process spatially localized information, enhancing its ability to
capture fine-grained details crucial for diagnosis. As part of the self-supervised learning (SSL) strategy,
specific patches of the image are masked during training and replaced with visible patches (as shown in
Fig 6.6). This technique encourages the model to learn robust features invariant to variations in localized
image regions, thus improving its generalization capability.

After processing each patch, the model takes out tokens corresponding to abstract features. These tokens
all capture essential visual details including texture, color, and spatial connections within the image,
mentioned in Fig 6.7. These characteristics are essential for later classification steps or diagnostic

decision-making.

Fig 6.7 Embedding vectors obtained after masking the image

The portions of the input image that contribute most significantly to the model's decision-making process
are highlighted in a saliency map that is created. This map provides insights into the particular visual cues
suggestive of ASD by graphically indicating the areas that are critical for the model's categorization
output. Certain areas or elements inside the image are recognized as crucial for the diagnosis of ASD
based on the saliency map. The areas that are highlighted indicate the locations where the model has

identified relevant patterns or irregularities in visual cues related to autism spectrum disorder. For the
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facial features, eyes and lower part of the face i.e. lips and jawline are the main biomarkers which
categorizes autistic and non-autistic individuals. Same phenomenon is learned by our model and it

highlighted the significant areas of the face as seen in Fig 6.8.

Original Image Highlighted Important Areas

Saliency Map

Fig 6.8 Visual comparison of the original image, saliency map, and the important regions highlighted by
the model

These visualizations not only validate the model's decision-making processes but also provide vital
insights into the complex visual signals associated with ASD, allowing for more informed clinical

decisions and furthering the field of computer-assisted autism diagnosis.

Table 6.2 Fine-tuning (%) accuracy outcomes with various mask ratios for S/SD-ASD

RatiOmask

0.1

0.2

0.3

0.4

05

0.6

0.75

0.8

0.9

Fine-tune accuracy
(%)

96.32

96.98

97.21

97.43

97.5

96.32

97.42

94.06

91.08

Table 6.3 shows the performance metrics attained by the model during the downstream fine-tuning task at
various mask ratios (ranging from 0.1 to 0.9). The results show that our model performs optimally at a
mask ratio of 50% i.e., 0.5, exceeding the MAE ideal mask ratio of 75%. This highlights the different
qualities of ASD facial images as opposed to natural images. ASD facial images have richer features and
better information density, requiring more advanced reconstruction guiding algorithms. Distillation
processes can further improve the encoder's feature extraction capabilities, allowing for the creation of

more informative features in later decoding phases. Notably, our model performs well even at a high
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mask ratio of 90% (0.90), demonstrating its capacity to extract useful insights from the few visible
patches used during pre-training, which are critical for downstream fine-tuning tasks.

6.7.2.1. Comparison with classification methods

This section discusses the outcomes obtained on MAE, BEIT, ViT, VGG16, VGG19, MobileNetV2, and
ResNet50 with respect to our proposed S/SD-ASD. As seen from Table 6.4, we compare several model’s
performance on the ASD diagnosis problem by employing supervised and self-supervised learning
strategies. In comparison to other models, the suggested approach, S/SD-ASD, exhibits substantial
superiority across several criteria. In particular, S/SD-ASD exhibits a 97.5% accuracy rate, surpassing
both MAE and BEIT by 6.54% and 6.66%, respectively. S/SD-ASD outperforms supervised models ViT
by 9.84%, VGG19 by 27.35%, MobileNetV2 by 6.40%, and ResNet50 by 9.31% in accuracy.
Furthermore, S/SD-ASD consistently outperforms other models in measures such as precision, recall, and
F1 score, demonstrating its effectiveness in identifying distinguishing characteristics that are pertinent to
the diagnosis of ASD. Compared to current state-of-the-art techniques, these results demonstrate the
promise of S/SD-ASD as a reliable technique for improving diagnostic accuracy in autism.

Table 6.3 Comparison of models performance on various measures

Model Accuracy Precision Recall F1
Self-Supervised
MAE 91.53 93.10 88.80 90.31
BEIT 91.42 95.49 88.76 91.04
Supervised

ViT 88.77 96.53 80.68 87.98
VGG19 70.15 68.54 66.55 67.53
MobileNetV2 91.10 93.27 88.79 90.97
ResNet50 88.19 93.13 82.79 87.60
Proposed: S/SD-ASD 97.5 97.31 97.89 97.60

During the fine-tuning stage, we finished all of the verifications for the epochs used into the S/SD-ASD
technique. To ensure a fair comparison, the S/SD-ASD and MAE algorithms were pre-trained for 200
epochs and both use the ViT-B/16 backbone network structure. Evaluations were carried out across 60
epochs after the pre-trained weights were transferred to the fine-tuning system. Fig 6.9, illustrates the

fine-tuning performance of these strategies graphically. It can be seen from Fig 6.9., that the S/SD-ASD
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approach continuously produced great accuracy right from the beginning of the epochs. MAE, on the
other hand, started out with inferior accuracy. This discrepancy can be explained by the S/SD-ASD
method’s pre-training reconstruction, which enables it to learn features with more detailed information on

facial features.

Epoch vs Accuracy

1001 . MAE Model

= 5/SD-ASD

95

90

Accuracy (%)

85 1

80 1

75 1

T T T T T T T
0 10 20 30 40 50 60
Epoch

Fig 6.9 Fine-tuning (%) accuracy of MAE with the proposed S/SD-ASD
6.7.2.2. Ablation Study

In this segment, we conducted ablation experiments of our S/SD-ASD model on autism facial image
dataset to validate the effectiveness of the proposed approach. We examine the effects of various pre-
training objectives on the experimental outcomes in Table 6.5(a). Here, FT denotes fine-tuning in the
downstream task, KD stands for self-distillation, and Irec stands for masked image reconstruction. As a
single pre-training target, the results suggest that masked picture reconstruction has a modest advantage
over self-distillation. This benefit is probably caused by the encoder only trains 50% of the visible picture
patches, which helps the model reach its full potential by enabling it to extract as many useful features as
possible. Furthermore, this procedure might lessen superfluous information in the facial images, which
would minimize interference and improve the functionality of the model. The advantages of each strategy
are combined when Irec and KD are used, leading to a more successful overall performance. We present
experimental investigations of the count of MLP layers on the decoder and encoder sides in Table 6.5(b).
Using two linear layers reduces the accuracy of the model for the encoder. Our hypothesis is that the

encoded vector will include comparatively more important information if just 50% (0.5) of the viewable
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(unmasked) image is fed into the encoder. As a result, adding two linear layers to this vector causes more
information to be lost, which reduces the encoder's capacity to extract features. By processing the entire
image encoding, on the other hand, the decoder preserves more global information. With just one linear
layer, it can successfully generate a vector that is linearly separable. However, some information is lost

during transmission and transformation when two linear layers are used.

Table 6.4 S/SD-ASD ablation cases on the facial image data

(a) Pre-training (b) MLP layers
Irec v v Encoder 1 1 2 2
KD v v Decoder 1 2 1 2

FT (%) | 91.37 | 9056 | 975 | FT(%) | 975 | 9213 | 9581 | 9546

6.7.2.3. Comparison with existing ASD architectures

Table 6.6 showcases the comparison of various previous architectures with the proposed S/SD-ASD. As
seen from the table below, our proposed model, S/SD-ASD, demonstrates the effectiveness of integrating
knowledge distillation (KD), vision transformer (ViT), and masked autoencoder (MAE), achieving an
unprecedented accuracy of 97.5%. This achievement marks a significant advancement over previous
models. The highest prior accuracy reported in the literature was 96%, achieved by Khan et al. (2024).
Our model surpasses this by 1.56%, indicating a notable improvement. Hosseini et al. (2022) achieved an
accuracy of 94.6%, and our model improves upon this by 2.9%. Lu and Perkowski (2021) attained an
accuracy of 95%, which our model exceeds by 2.5%. Additionally, Ahmad et al. (2023) reported an
accuracy of 92%, and our model demonstrates a substantial enhancement of 5.5% over this result. These
improvements underscore the superior performance and effectiveness of our proposed approach. By
integrating KD, VIiT, and MAE, we have developed a model that not only outperforms existing
methodologies but also sets a new benchmark for accuracy in this domain. The incremental improvements
over the best prior results highlight the robustness and innovation inherent in our approach, making a

significant contribution to advancing the state of the art.

Table 6.5 Comparative evaluation of ASD classification methods using facial image dataset

Reference Year Methods Maximum Accuracy
Dodia et al. [178] 2024 MobileNet 89.58%
Anjum et al. [179] 2024 MobileNet; EfficientNet; 88.33%
Xception; VGG19; VGG16
Kurniawan and 2024 VGG19 75.85%
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Gunawan [180]
Khan et al. [181] 2024 MobileNetV2; ResNet50; 96%
Xception; DenseNet121; VGG16
Ahmad et al. [182] 2023 ResNet50; ResNet34; 92%
MobileNetV2; AlexNet; VGG19;
VGG16
Gaddala et al. [183] 2023 VGG19; VGG16 84%
Hosseini et al. [184] 2022 MobileNet 94.6%
Lu and Perkoswki [185] | 2021 VGG16 95%
Proposed: S/SD-ASD 2024 KD; ViT; MAE 97.5%

6.8. Discussion

The neurological illness known as autism spectrum disorder (ASD) is typified by difficulties with
communication, social interaction, and repetitive activities. It is essential to recognize and diagnose ASD
since early intervention can greatly enhance the lives of those who are impacted. ASD symptoms are
influenced by several factors, including brain development, environmental circumstances, and genetic
susceptibility. The frequency of ASD has increased noticeably in recent decades, underscoring the critical
need for precise and effective diagnostic instruments. In contrast to medical illnesses, the diagnosis of
ASD is largely based on clinical evaluations and behavioral observations, which leaves it vulnerable to
subjectivity and variation amongst physicians. ASD is a challenge in terms of early detection because of
its diverse presentation and lack of conclusive biological indicators. Unfortunately, the lack of complete
and labeled datasets required for training robust models causes many current techniques to suffer. This
restriction highlights the significance of creating techniques that can use self-supervised learning (SSL) to
utilize tiny datasets efficiently. To improve the classification accuracy of ASD, we present in this paper a
strategy we call S/SD-ASD, which combines SSL and self-distillation (SD) techniques. To maximize
feature extraction capabilities essential for precise classification, S/SD-ASD first masks portions of the
input data and then reconstructs the masked regions using visible patches. The approach successfully
directs the model toward learning discriminative features pertinent to ASD diagnosis by integrating label
information into the reconstruction job. A significant obstacle in ASD research is addressed by the S/SD-
ASD methodology, which shows encouraging results in obtaining high classification accuracy even with
little labeled data. It reduces the effect of data shortage and improves diagnostic accuracy by enhancing
the encoder's feature extraction capabilities through SD loss. Furthermore, the method can be applied

practically in clinical situations where data availability is sometimes limited due to its flexibility to small
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training datasets. Although S/SD-ASD works well, it has several drawbacks, especially during the
reconstruction and labeling stages. Reconstruction with random masking may limit the quality of feature
extraction, requiring attention techniques to be used for refining. Furthermore, the reliance on labeled
datasets presents difficulties in situations where there are few complete labeled datasets. Further
investigations could focus on ways to reduce labeling dependencies by employing contrastive learning

and enhancing feature quality by using unlabeled datasets.

6.9. Chapter Summary
This chapter presents a novel, innovative methodology for ASD classification using facial images,
combining self-supervised learning with self-distillation. The S/SD-ASD framework effectively tackles
challenges such as data scarcity, enhances feature extraction, and achieves superior diagnostic accuracy. It
represents a valuable contribution to the fields of autism research and healthcare technology, advancing
the development of automated systems for early ASD detection. To ensure the robustness of the proposed
approach, an ablation study is conducted, where different components of the model are individually
analyzed to confirm their contribution to the overall performance. Additionally, the chapter highlights the
significance of this research in the broader context of computer-aided diagnostic systems, particularly in
the field of autism. By leveraging deep learning and self-supervised learning, the proposed method
provides a promising direction for developing automated, scalable tools to assist healthcare professionals
in the timely diagnosis of ASD. This work not only contributes to the academic literature on ASD
diagnosis but also has potential implications for clinical applications, offering a reliable and efficient tool

to support clinicians in their decision-making processes.
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Chapter 7 CONCLUSION AND FUTURE SCOPE

This chapter provides a comprehensive overview of the various approaches employed for Autism
Spectrum Disorder detection using artificial intelligence-based frameworks. Section 7.1 outlines the key
research contributions of this study. Section 7.2 highlights the limitations of the proposed framework, and
Section 7.3 explores potential directions for future work.

7.1. Research Summary

This thesis tackles the pressing challenge of Autism Spectrum Disorder (ASD) diagnosis by introducing
an artificial intelligence-based framework that combines computational intelligence and multimodal data
integration. ASD diagnosis remains hindered by subjective assessment techniques, limited data
interpretability, and insufficient generalizability. The work spans a systematic literature review, the
development of advanced diagnosis models, multimodal framework design, and detailed comparative
analysis to advance the field of ASD detection and diagnosis.

To achieve Research Objective 1 (RO1), a comprehensive systematic literature review was conducted to
explore the landscape of ASD diagnostic methods. The review synthesizes information on traditional
diagnostic techniques, machine learning (ML), and deep learning (DL) applications in ASD research,
highlighting their limitations such as the lack of multimodal data utilization, overfitting issues, and
restricted scalability. By identifying these gaps, this objective lays the groundwork for the development of
more robust, accurate, and interpretable models.

For Research Objective 2 (RO2), two advanced ASD diagnosis models were developed to address key
challenges in computational intelligence. The first model, AFF-BPL (Adaptive Feature Fusion Technique
for the Diagnosis of Autism Spectrum Disorder using Bat-PSO-LSTM-based Framework), introduces a
novel feature fusion method. This model employs a hybrid optimization approach combining Bat
Algorithm and Particle Swarm Optimization (PSO) to select optimal features, followed by an LSTM-
based classifier for precise diagnosis. The adaptive feature fusion enhances the model’s ability to process
diverse data types while improving classification accuracy and computational efficiency.

The second model, WS-BIiTM (Integrating White Shark Optimization with Bi-LSTM for Enhanced
Autism Spectrum Disorder Diagnosis), focuses on leveraging White Shark Optimization (WSO) for
optimal feature selection. This model integrates WSO with a Bidirectional Long Short-Term Memory (Bi-
LSTM) network to improve the model’s generalization and mitigate overfitting. Experimental results

demonstrate that WS-BiTM outperforms conventional models, particularly in datasets with high-
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dimensional and complex features. Both models are validated using paired t-tests, ablation studies, and
extensive performance metrics, including accuracy, precision, sensitivity, and specificity.

To address Research Objective 3 (RO3), a multimodal ASD detection framework was designed,
incorporating diverse data modalities such as clinical records, brain MRI images, and facial features. This
framework employs Channel-Based Attention Combination (CBAC) for effective feature fusion and
integrates Vision Transformers with LSTM networks for robust analysis of multimodal inputs. The
proposed framework bridges the gaps of single-modality models by leveraging the complementary
strengths of different data types, leading to significant improvements in diagnostic accuracy. Evaluations
on the ABIDE dataset using leave-one-site-out cross-validation further affirm the efficacy of the proposed
framework.

Finally, to fulfill Research Objective 4 (RO4), an extensive comparative analysis was conducted between
the proposed models and state-of-the-art ASD diagnosis techniques. The analysis underscores the
advantages of the proposed models in terms of accuracy, computational efficiency, and robustness. The
study also provides critical insights into the limitations of existing approaches, reinforcing the
significance of multimodal data and hybrid optimization techniques for advancing ASD diagnosis
research.

The contributions of this thesis lie at the intersection of artificial intelligence, computational intelligence,
and healthcare, offering new possibilities for the timely and accurate diagnosis of ASD. The proposed
frameworks demonstrate substantial potential for integration into clinical practice, providing valuable
tools for early detection and personalized intervention strategies. This research not only enhances
diagnostic accuracy but also establishes a foundation for future advancements in artificial intelligence

applications for healthcare challenges.

7.2. Limitations of the Work
No one is perfect in the world, and every study has certain limits and constraints. This work is also
subject to the following limitations:
o Dataset Diversity: The datasets used in this study are limited in terms of demographic and
geographical diversity, which may impact the generalizability of the proposed framework across

different populations.

o Sample Size: Despite employing multiple datasets, the relatively small sample size, especially in
specific age groups or demographic categories, may influence the robustness and statistical

reliability of the findings.
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o Feature Scope: The study primarily focuses on features derived from clinical data, MRI scans,
and facial images. However, it does not incorporate other potentially impactful modalities such as
genetic data or behavioral assessments. The data for non-medical health determinants risk factors

for some regions of the study area are not accessible.

e Focus on Binary Classification: The framework is tailored for binary classification (ASD vs.
non-ASD) and does not explore multi-class problems, such as predicting ASD severity or

comorbidities.

e Dependency on High-Quality Data: The framework's performance depends on the availability

of high-quality and preprocessed data, which may not always be accessible in practical scenarios.

7.3. Future Aspects
Following are the future perspectives of the work:

e Hybrid Networks for MRI Analysis: Develop hybrid networks combining deep learning and
traditional techniques to analyze MRI scans, enhancing early ASD detection through
neuroimaging.

e Integration of more nature-inspired algorithms (e.g., Grey Wolf Optimizer, Ant Colony
Optimization) with deep learning models to improve feature selection and model efficiency.

e Analyze functional MRI data, incorporating multimodal neurocimaging techniques (e.g., fMRI,
DTI) to study neural mechanisms underlying ASD.

e Facial Image Data Across Age Groups: Extend analysis to datasets containing facial images from
diverse age groups to identify phenotypic markers of ASD for early detection.

e Scalable Algorithms for Diverse Datasets: Develop scalable models to handle large, diverse
datasets, ensuring better generalization and clinical applicability.

e Longitudinal ASD Studies: Conduct longitudinal studies to understand ASD progression and

predict outcomes using time-series analysis and recurrent neural networks.

o Global Dataset Creation: Develop globally diverse datasets with demographic variations to
enhance model generalization and inclusivity.

e Integration of Genomic Data: Explore the inclusion of genomic data to identify potential genetic
markers and their correlation with neuroimaging findings.

e Clinical Validation and Trials: Collaborate with clinicians to validate Al-based frameworks in

real-world settings through clinical trials.
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Personalized Treatment Insights: Use Al models to predict individual responses to therapies,
aiding in the development of precision medicine strategies for ASD treatment.

Cross-Cultural ASD Studies: Conduct cross-cultural analyses to identify region-specific ASD
markers, improving diagnostic models for diverse populations.

Synthetic Data Generation: Employ generative models, such as GANSs, to synthesize realistic
neuroimaging or facial datasets for augmenting training data and overcoming data scarcity.
Collaborative Learning Models: Explore federated or collaborative learning approaches to train
models across decentralized, privacy-preserving datasets from multiple institutions.

Multi-View Learning: Implement multi-view learning techniques to combine information from
different sources, such as 2D images, 3D MRI scans, and clinical data, for comprehensive
analysis.

Ethical and Societal Implications: Address ethical considerations in ASD diagnosis using Al,

focusing on bias mitigation, transparency, and the societal impact of automated decision-making.
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