
Development of Artificial Intelligence-Based 

Autism Spectrum Disorder Detection 

Framework  

 

Thesis submitted in partial fulfillment of the requirements for the 

award of the degree of 

 

Doctor of Philosophy 

by 

KAINAT KHAN  

(2K21/PhD/CO/501) 

 

Under the supervision of 

Prof. Rahul Katarya 

 

 

 

Department of Computer Science and Engineering 

Delhi Technological University 

Delhi, India 

2025 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Dedicated to  

My beloved Parent 

 



i 
 

CANDIDATE DECLARATION 

                                                                                                                                                       

 

I hereby declare that the thesis entitled “Development of Artificial Intelligence-Based Autism 

Spectrum Disorder Detection Framework” submitted to Delhi Technological University, 

Delhi, in the partial fulfillment of the requirements for the award of the degree of Doctor of 

Philosophy in the Department of Computer Science, is an original work and has been done by 

myself under the supervision of Prof. Rahul Katarya (Supervisor), Department of Computer 

Science and Engineering, Delhi Technological University, Delhi, India. 
 

The interpretations presented are based on my study and understanding of the original texts. 

The work reported here has not been submitted to any other institute for the award of any other 

degree. 

 

 

 

 

 

 

Kainat Khan  

Roll No. 2K21/PhD/CO/501 

Department of Computer Science and Engineering 

Delhi Technological University 

Delhi-110042, India 

 

 

 

 

 

 

 

 

 

 



ii 
 

  
 

 

Date:_______________ 

 

CERTIFICATE 

 

This is to certify that the work incorporated in the thesis entitled “Development of Artificial 

Intelligence-Based Autism Spectrum Disorder Detection Framework” submitted by Ms. Kainat 

Khan (Roll No. 2K21/PhD/CO/501) in partial fulfillment of the requirements for the award of 

the degree of Doctor of Philosophy, to the Delhi Technological University, Delhi, India is 

carried out by the candidate under my supervision and guidance at the Department of Computer 

Science and Engineering, Delhi Technological University, Delhi, India. 

The results embodied in this thesis have not been presented to any other University or Institute 

for the award of any degree or diploma. 

 

 

 

 

 

 

 

 

 

Prof. Rahul Katarya 

Department of Computer Science and Engineering 

Delhi Technological University 

Delhi-110042, India 

 

 

 

 

 

 

 

 

DELHI TECHNOLOGICAL UNIVERSITY 

(Formerly Delhi College of Engineering) 

(Govt. of National Capital Territory of Delhi) 

Shahbad Daulatpur, Main Bawana Road, 

Delhi-110042, India 

 



iii 
 

ACKNOWLEDGMENT 

                                                                                                                                 
 

 

I address my sincere thanks to Almighty God for giving me the inner power to complete my 

thesis and guide me in every step of my life. 

 

It is an immense pleasure to have the opportunity to express my heartfelt gratitude to everyone 

who helped me throughout this research. I would like to express my heartfelt gratitude and 

indebtedness to my supervisor Prof. Rahul Katarya (Dept. of Computer Science & 

Engineering), for his invaluable and positive guidance, encouragement, and patience. During 

the research, his motivation and encouragement have inspired me to grow as a scholar and as 

a person. I am deeply indebted to my supervisor for guiding me in carrying out the research 

work and morally supporting me in every way during the course’s challenging times. His 

technical expertise, precise suggestions, kind nature, and detailed, timely discussions are 

wholeheartedly appreciated.  

 

Also, my sincere thank goes to Delhi Technological University for considering my candidature 

for this course. I am also very thankful to Prof. Prateek Sharma, Vice-Chancellor, Delhi 

Technological University, Delhi, India, who has been a constant source of enthusiasm. He has 

always motivated young researchers like me to pursue excellence to achieve higher goals in 

3academics and research. Also, my sincere thanks reciprocate to Dr. Vinod Kumar (HoD, Dept. 

of Computer Science and Engineering), Prof. Rahul Katarya(Chairperson DRC, Dept. of 

Computer Science and Engineering) for insightful comments and valuable suggestions. Special 

thanks to my seniors and colleagues of Delhi Technological University, Delhi, India. My 

sincere thanks to all the professors, faculty, researchers, and nonteaching staff of the Computer 

Science Department. I would also like to express my gratitude to the Delhi Technological 

Univerisity (DTU) New Delhi, for providing financial support for the study. 

 

I also wish to take this opportunity to thank all my teachers who have taught me and shaped 

me into the person I am, aggravated me to be an academician, and have directly indirectly made 

me capable of succeeding in completing this research work. I am thankful to all my colleagues 

and friends during my journey as a Ph.D. scholar. The engaging talks, brainstorming, and 

collaborative teamwork significantly impacted my growth as an independent researcher. 



iv 
 

Finally, but most importantly, my heartfelt gratitude is for my parents, who are the motivations 

behind me; without their blessings, this work could not have been accomplished. I am truly 

indebted to them. 

 

 

 

 

Kainat Khan  

Roll No. 2K21/PhD/CO/501 

Department of Computer Science and Engineering 

Delhi Technological University 

Delhi-110042, India 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 
 

ABSTRACT 

                                                                                                                                                       

 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized 

by challenges in social communication, restricted interests, and repetitive behaviors. The 

condition manifests in early childhood and persists throughout life, impacting an individual’s 

ability to interact with their environment. ASD is highly heterogeneous, with symptoms and 

severity varying widely across individuals, making its diagnosis and management particularly 

challenging. Early and accurate identification of ASD is crucial, as timely interventions can 

significantly improve developmental outcomes and enhance the quality of life for those 

affected. The traditional approach to diagnosing ASD primarily relies on clinical observations, 

caregiver reports, and standardized behavioral assessments. While effective in many cases, 

these methods are often time-consuming, subjective, and dependent on the expertise of 

clinicians. This reliance on subjective evaluation introduces variability and delays in diagnosis, 

particularly in regions with limited access to specialized healthcare services. Consequently, 

there is a growing need for innovative solutions to improve the efficiency and accuracy of ASD 

detection.   

Artificial Intelligence (AI) has emerged as a transformative force in healthcare, offering 

powerful tools for analyzing complex and diverse datasets. By leveraging AI techniques, it is 

possible to identify patterns and relationships within data that might not be readily apparent 

through traditional analysis. Machine learning and deep learning, subsets of AI, have 

demonstrated significant potential in various domains, including image analysis, natural 

language processing, and predictive modeling. These capabilities make AI particularly well-

suited for addressing the challenges associated with ASD diagnosis. AI-driven approaches 

offer the advantage of objectivity, scalability, and the ability to integrate multiple data 

modalities, such as behavioral data, clinical records, and imaging studies. Furthermore, AI can 

facilitate early detection by identifying subtle patterns indicative of ASD, even in cases that 

might be missed by conventional diagnostic methods. As a result, AI-based tools have the 

potential to complement existing clinical practices, enhance diagnostic precision, and expand 

access to reliable ASD detection in underserved areas. The application of AI in ASD detection 

is an evolving field, with ongoing research aimed at developing innovative methods to tackle 

the complexities of the disorder. By combining advances in AI with insights from neuroscience 

and psychology, researchers aim to create solutions that not only improve diagnostic accuracy 
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but also offer interpretable results that can support clinical decision-making. Through such 

interdisciplinary efforts, AI holds promise in transforming the landscape of ASD diagnosis and 

care, ultimately contributing to better outcomes for individuals and their families. Therefore, 

this study represents a structured and methodical effort to assess the effectiveness, potential, 

and applicability of deep learning and computational intelligence techniques in the 

identification and analysis of ASD. 

 

Objectives: The objectives of this study are structured into four key segments: 

• The first objective of the study is to perform a systematic literature review on Autism 

Spectrum Disorder (ASD), which aims to critically evaluate the existing research, 

methodologies, and advancements in ASD detection.   

• The second objective focuses on developing an intelligent diagnostic model for ASD 

using deep learning and computational intelligence techniques, aiming to improve the 

accuracy and efficiency of diagnosis.   

• The third objective is to design a multi-modal framework for ASD detection, 

incorporating various data sources/modalities to enhance the overall performance of the 

diagnostic model.   

• The final objective is to conduct a comparative analysis of the proposed ASD 

detection model with existing techniques, evaluating its effectiveness, accuracy, and 

applicability in real-world clinical settings.   

 

Methodology: To accomplish the stated objectives, this study leverages advanced machine 

learning and deep learning methods, such as evolutionary algorithms, neural networks, 

attention mechanisms, and transformer-based architectures, due to their significant potential in 

addressing complex challenges in healthcare. The strategies employed to meet these objectives 

are as follows: 

• To accomplish the first objective, a systematic literature review was conducted, 

focusing on machine learning techniques applied to Autism Spectrum Disorder (ASD) 

detection. This review analyzed various studies to identify the most effective models, 

methodologies, and data sources used in ASD diagnosis. 

• For the second objective, two diagnostic models were developed, each utilizing 

different deep learning and evolutionary approaches. The first model incorporated an 

adaptive feature fusion technique to enhance the diagnosis process by combining 
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various data features obtained from particle swarm optimization (PSO) and the Bat 

algorithm effectively. The second model integrated a white shark optimization 

algorithm with a deep learning framework utilizing Bi-LSTM to improve the overall 

accuracy and robustness of ASD detection. 

• To address the third objective, a multimodal diagnostic framework was designed that 

combines various data modalities, such as clinical features and imaging data. This 

framework employs advanced deep learning techniques, including a multi-head CNN 

architecture with channel and spatial attention (CBAC) and BERT, to extract and 

integrate features from diverse modalities for enhanced ASD detection. 

• For the fourth objective, a comparative analysis was conducted, evaluating the 

performance of the above-developed models against existing ASD detection 

techniques. Key performance metrics, such as accuracy, sensitivity, specificity, and F1-

score, were used to compare the effectiveness of the proposed models with current 

state-of-the-art methods. 

 

Results: The outcomes of the study are as follows: 

• A comprehensive review of machine learning techniques for Autism Spectrum Disorder 

(ASD) detection was conducted. This review analyzed current trends and identified 

potential future directions in the field, providing valuable insights into existing 

methodologies and areas for future research. 

• A study is conducted to explore bio-inspired techniques for improving ASD diagnosis, 

with a focus on evolutionary algorithms. The study highlighted the promising potential 

of these algorithms in enhancing diagnostic accuracy for ASD detection. 

• An adaptive feature fusion technique was developed for ASD diagnosis. This hybrid 

model combined bio-inspired optimization algorithms with feature fusion to effectively 

integrate various data features, enhancing the accuracy and robustness of the diagnostic 

process. 

• A model was developed by integrating an optimization algorithm with the Bi-LSTM 

approach. This strategy aimed to improve feature selection, ultimately leading to 

improved overall performance in the ASD detection system. 

• A multi-modal framework was created, integrating sequential (phenotypic information) 

and visual data (brain MRI) using convolutional block attention component and BERT-
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based deep learning architectures. This framework significantly improved ASD 

detection accuracy and robustness by effectively combining different data types. 

• A new approach employing facial images of autistic and non-autistic children 

combining convolutional networks and vision transformers was developed for the 

diagnosis of ASD. This model enhanced the processing of visual data, leading to 

improved diagnostic performance. 

• A self-supervised and self-distillation learning approach was explored for ASD 

classification using facial images. This innovative method aimed to leverage 

unsupervised learning to improve the classification accuracy in ASD detection. 

• A multi-modal diagnostic framework was designed, incorporating various data sources 

such as clinical and imaging data. This framework leveraged advanced deep learning 

techniques, including LSTM and transformer-based architectures, to extract and 

integrate relevant features, improving the diagnostic performance. 
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Chapter 1 INTRODUCTION 
 

The emerging field of Artificial Intelligence (AI) in Autism Spectrum Disorder (ASD) detection offers 

groundbreaking tools to streamline the diagnosis and analysis of ASD. AI-based frameworks aim to 

enhance the efficiency and accuracy of early detection, significantly improving the support and 

interventions available to individuals with ASD. The early diagnosis of ASD is pivotal in addressing 

developmental challenges and improving long-term outcomes for individuals. Data-driven approaches 

powered by AI have become essential in automating diagnosis processes, shaping clinical practices, 

influencing policy development, and refining therapeutic programs. The adoption of AI as a foundation 

for ASD diagnosis highlights its transformative potential in healthcare, serving as the backbone for 

advancements in the field. ASD detection stands apart from traditional diagnostic methods by its focus on 

patterns in data, such as neuroimaging, behavioral assessments, and clinical metrics, rather than solely 

relying on manual evaluations. Over the years, ASD diagnostic frameworks have evolved significantly, 

with technological innovations enabling the integration of large-scale data analysis and multimodal 

inputs. Recent advancements in neural networks and deep learning architectures have revolutionized the 

way clinical and imaging data are processed, leading to more robust and reliable ASD detection 

frameworks. AI techniques, particularly Machine Learning (ML) and Deep Learning (DL), have emerged 

as game changers, leveraging diverse data to enhance diagnostic accuracy. The development of AI 

methodologies tailored to ASD detection has accelerated in the past decade, focusing on clinical tasks 

such as feature extraction from MRI scans, interpreting behavioral data, and classifying ASD phenotypes. 

These advancements have substantially benefited clinicians and researchers by providing data-driven 

insights. Additionally, the application of AI in healthcare is expanding, offering predictive capabilities 

that enable the estimation of diagnostic outcomes with unparalleled precision. This framework integrates 

multimodal data such as MRI imaging and meta-features, enhancing the decision-making process in 

clinical settings. Section 1.1 explores the significance of ASD diagnosis, emphasizing the need for AI-

driven approaches. Section 1.2 elaborates on the objectives of developing an ASD diagnosis framework. 

Subsections provide insights into the principles and uses of the framework. Section 1.3 delves into 

machine learning (ML), detailing its necessity, types, and applications in healthcare. Section 1.4 discusses 

the intersection of ASD diagnosis and machine/deep learning, focusing on AI's potential to enhance 

diagnostic frameworks. Section 1.5 highlights the motivation behind this study, emphasizing the 

importance of addressing current challenges in ASD diagnosis. Section 1.6 outlines the research 

objectives, providing a roadmap for the study's focus and direction. Section 1.7 presents the structure of 
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the thesis, offering an overview of the chapters to guide the reader through the document. Finally, Section 

1.8 concludes the chapter with a summary, encapsulating the key points discussed. 

 

1.1. Autism Spectrum Disorder (ASD) 

Real-time analysis in the field of ASD diagnosis has emerged as a rapidly growing area of interest among 

researchers worldwide. Advances in this domain have facilitated the introduction of innovative 

frameworks for ASD detection and management. The term "autism" originates from the Greek word 

"autos," meaning "self," reflecting the inward-focused behavior of individuals with ASD. Globally, there 

is a pressing need to enhance the accuracy and timeliness of ASD diagnoses, given its significant impact 

on individuals and society. A robust diagnostic framework offers critical insights for developing, 

implementing, monitoring, and assessing intervention programs aimed at supporting individuals with 

ASD. According to the World Health Organization (WHO), ASD is a developmental disorder 

characterized by difficulties in social interaction, communication, and repetitive behaviors. Accurate 

diagnosis is crucial for planning and evaluating interventions, as well as for understanding the prevalence 

of ASD in various populations. Early detection is acknowledged as a vital component of effective 

intervention and care, enabling individuals to access timely support and resources. The primary aim of 

ASD detection frameworks is to provide clinicians and researchers with meaningful, data-driven evidence 

to guide decisions and improve the quality of care.   

Information derived from ASD diagnostic frameworks is used to identify early signs of the disorder, 

monitor the effectiveness of intervention strategies, and evaluate emerging trends in ASD prevalence. 

Diagnostic statistics are vital for understanding the health status of populations, tailoring therapies, and 

developing strategies to mitigate the challenges faced by individuals with ASD. The significant role of 

ASD detection in healthcare has motivated research to establish advanced diagnostic methodologies, 

strengthening the scientific foundation of ASD frameworks. Early identification of ASD symptoms is 

critical for implementing effective interventions, and data on developmental and behavioral patterns are 

essential for accurate diagnosis.   

The study of ASD detection traces its origins to early developmental psychology and medical 

investigations into atypical behaviors in children. Historical records of unusual developmental patterns 

date back centuries, reflecting society’s longstanding interest in understanding such conditions. However, 

the concept of ASD, as it is understood today, has evolved significantly over time.  

Earlier, diagnostic processes relied heavily on observational methods, often leading to delayed or 

inaccurate diagnoses. The introduction of advanced technologies such as neuroimaging, machine learning, 

and artificial intelligence has revolutionized the field, allowing for the integrating of multimodal data 

sources to improve diagnostic accuracy [1]. To distinguish traditional clinical methods from 
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contemporary frameworks, modern AI-based methodologies focus on leveraging diverse datasets, 

including imaging and clinical features, to assess ASD comprehensively. This transition has marked a 

significant milestone in the field, setting the stage for more precise, scalable, and impactful diagnostic 

solutions.   

          

(a)                                    (b)  

Figure 1.1: Facial images of (a) Autistic and (b) Non-Autistic Children 

1.2.  Objectives of Autism Spectrum Disorder (ASD) Diagnosis Frameworks 

AI-based ASD detection frameworks provide the empirical and data-driven insights necessary for 

informed decision-making and effective interventions. The primary goal of these frameworks is to 

provide accurate, timely data that can guide clinical actions and improve the support provided to 

individuals with ASD. The design and implementation of ASD detection systems are influenced by the 

specific objectives and interventions required for optimal care. For instance, if the goal is to diagnose 

ASD at an early stage, the framework must be capable of processing data from various sources, such as 

neuroimaging, clinical assessments, and behavioral data, to deliver precise results quickly. On the other 

hand, monitoring the progression of the disorder in individuals over time might require systems that track 

long-term data, such as behavioral changes or intervention outcomes, through continuous or periodic 

assessments.   

Different health objectives related to ASD diagnosis necessitate distinct information systems. The type of 

diagnostic or monitoring system to be used depends on the specific clinical actions that need to be taken, 

as well as when and how frequently the data should be collected, analyzed, and used. For example, an AI-

driven system designed to predict ASD risk based on early developmental signs might require real-time 

data analysis, while a system for tracking the long-term outcomes of ASD interventions might gather data 

over several years. 

To design and evaluate an AI-based ASD detection system, it is essential to answer the following 

questions:   
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❖ What constitutes the case definition of ASD in the context of the framework? Is it practical and 

clinically relevant?   

❖ What are the specific goals of the diagnostic framework, and how do they align with clinical or 

research objectives?   

❖ Does the system integrate with other diagnostic and health information systems?   

❖ How is data handled? What protocols ensure data privacy, security, and the prevention of delays 

in data transmission?   

❖ What are the data sources (e.g., MRI scans, behavioral assessments, clinical evaluations)? Who is 

responsible for reporting and updating data?   

❖ What types of information are collected, and does it meet the needs of healthcare providers and 

researchers?   

❖ How frequently is data collected (e.g., during regular check-ups, or at significant developmental 

milestones)?   

❖ How is the data analyzed? Who performs the analysis, and how regularly are updates made?   

❖ How is the information disseminated to relevant stakeholders (e.g., clinicians, researchers, 

policymakers)? Are reports timely and comprehensive?   

❖ What are the planned applications of the ASD detection framework data?   

❖ What is the target population for the framework (e.g., infants, children, adults)?   

 

Ultimately, the aim of an AI-based ASD detection framework is to monitor the trends in ASD prevalence, 

symptoms, and treatment efficacy within a population to guide research, management, and prevention 

strategies. Public health officials and clinicians may utilize the data provided by such frameworks to 

design more effective diagnostic procedures, interventions, and support systems. However, the 

application of these frameworks is not limited to merely identifying ASD cases. They also serve to 

enhance our understanding of the disorder’s biological, developmental, and demographic aspects. This 

deeper understanding can lead to the development of more effective preventive measures, diagnostic 

tools, and intervention strategies. Additionally, AI-powered ASD detection systems offer a robust 

foundation for creating and implementing evidence-based clinical practices that are tailored to the specific 

needs of individuals across diverse populations. 

  

1.2.1. Principles and Uses of Autism Spectrum Disorder Diagnosis Frameworks 

The goal of collecting, evaluating, and distributing ASD-related information is to improve diagnostic 

accuracy and intervention effectiveness. The primary principle of AI-based ASD detection frameworks is 

that they should be designed and implemented to provide reliable, timely, and actionable information to 



 

5 
 

clinicians, researchers, and policymakers. In the context of ASD, diagnostic frameworks need to ensure 

that they are capable of delivering accurate results quickly to support early intervention, which is crucial 

for effective management of the disorder. Since early-stage ASD can present subtle variations across 

individuals, maintaining accuracy is essential to avoid misdiagnoses, while also ensuring that the system 

is efficient and cost-effective to implement at scale. The application of ASD detection data can vary 

depending on the clinical setting, whether immediate diagnostic decisions, long-term monitoring, or 

historical data analysis are needed.   

The existing research emphasizes principles that are directly relevant to autism spectrum disorder (ASD) 

detection and management frameworks:   

❖ Identifying ASD Cases: Early detection of ASD symptoms or clusters is crucial for timely 

diagnosis and intervention, enabling support services that mitigate developmental challenges.   

❖ Analyzing Prevalence and Impact: Assessing the prevalence, patterns, and societal impacts of 

ASD within diverse populations helps shape policies and allocate resources effectively.   

❖ Evaluating Diagnostic and Therapeutic Interventions: Measuring the efficacy of diagnostic 

tools and early intervention strategies ensures the adoption of the most effective approaches for 

managing ASD.   

❖ Building Awareness and Advocacy: Effective frameworks foster greater awareness about ASD 

among the public and healthcare providers, leading to earlier detection, reduced stigma, and better 

support for affected individuals and their families. 

❖ Supporting Lifespan Approaches: Beyond childhood diagnosis, robust frameworks facilitate 

ongoing monitoring and support across an individual’s lifespan, addressing evolving needs in 

adolescence and adulthood. 

❖ Advancing ASD Research: Establishing detection frameworks fosters research into the causes, 

progression, and treatment of ASD, paving the way for improved understanding, prevention, and 

intervention strategies.   

Incorporating these principles into AI-based ASD detection frameworks can significantly enhance the 

precision and applicability of the tools, making them valuable not only for individual diagnosis but also 

for larger-scale epidemiological studies and public health planning. AI in this context helps continuously 

refine the diagnostic process and identify areas for improvement, ensuring that ASD detection remains at 

the forefront of medical and technological advancements. 

 

1.2.2. Sources of Data   

AI-based ASD detection frameworks rely on a variety of data sources to ensure accurate diagnosis and 

comprehensive analysis. These data sources are crucial for understanding the complex nature of ASD and 
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for developing more effective diagnostic tools and interventions. Some of the most commonly used 

sources of data for ASD detection include: 

• Clinical Reports and Assessments: Reports from clinicians, including developmental 

screenings, behavioral assessments, and psychological evaluations, provide essential data for 

diagnosing ASD. These reports often include data on early childhood development, cognitive and 

social behaviors, and family medical histories. 

• Neuroimaging Data: Structural and functional MRI scans, fMRI, and other neuroimaging 

techniques offer valuable insights into the brain structure and activity of individuals with ASD. 

These images are crucial for identifying neurobiological markers associated with ASD and for 

enhancing diagnostic accuracy. 

• Genetic Data: Genomic studies and DNA sequencing provide insights into the genetic 

underpinnings of ASD. Data from genetic research help in understanding the hereditary factors 

contributing to ASD and may also be used to personalize interventions based on genetic profiles. 

• Epidemiological Data: Population-based studies and surveys offer broad data on the prevalence 

of ASD across different demographics. This includes data on age, gender, socioeconomic status, 

and geographic location, which helps in understanding how ASD manifests in various 

populations. 

• Behavioral and Developmental Data: Data collected through behavioral observations, parent 

and teacher questionnaires, and standardized developmental assessment tools are used to track the 

progress of children with ASD and monitor the effectiveness of interventions. 

• Sensor Data: Wearable sensors, such as eye trackers, accelerometers, and movement sensors, can 

provide real-time data on the behavior and physical activity of individuals with ASD. This data is 

used to monitor physical and social behaviors that are indicative of ASD symptoms.   

• Social Media and Online Data: Social media platforms and online forums are emerging as 

valuable sources of data for understanding public perceptions of ASD, gathering patient feedback, 

and identifying potential trends in ASD diagnosis and treatment. This type of data can also 

provide insights into the experiences of individuals living with ASD and their caregivers.   

• Special Surveys and Questionnaires: Surveys such as the Autism Diagnostic Observation 

Schedule (ADOS) and the Autism Spectrum Quotient (AQ) are frequently used to collect specific 

diagnostic information about individuals at risk for ASD. These tools help to assess various 

aspects of social and communication behaviors. 

• Educational and School Records: Data from schools, including performance reports, behavioral 

evaluations, and teacher observations, contribute valuable information about a child's social 

interaction skills, communication abilities, and academic performance. 
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1.2.3. Enhancing the Use of Computer Technology in Autism Spectrum Disorder 

In the realm of Autism Spectrum Disorder (ASD) diagnosis, the integration of advanced computer 

technologies and artificial intelligence (AI) is transforming traditional diagnostic processes and enhancing 

the accuracy, speed, and personalization of ASD detection frameworks. AI-based systems, utilizing 

machine learning algorithms and neural networks, can analyze large and complex datasets from multiple 

sources, thereby improving the understanding and diagnosis of ASD. 

Historically, the process of diagnosing ASD has involved clinical assessments, behavioral observations, 

and diagnostic tools like the Autism Diagnostic Observation Schedule (ADOS) and the Autism 

Diagnostic Interview-Revised (ADI-R). While these methods are effective, they can be subjective and 

time-consuming. The introduction of AI-driven models offers a promising solution by automating the 

analysis of data such as brain imaging (e.g., MRI scans), genetic data, and behavioral observations. These 

systems can process and analyze massive datasets at speeds unimaginable through manual methods, 

improving diagnostic precision and reducing the risk of human error. 

For example, the use of deep learning algorithms to process neuroimaging data has shown promise in 

identifying biomarkers related to ASD, with studies demonstrating the potential of AI models to detect 

subtle differences in brain structure and connectivity between individuals with ASD and neurotypical 

individuals. Similarly, models, such as convolutional neural networks (CNNs) and vision transformers, 

are being applied to analyze MRI scans, helping to detect abnormalities in brain regions associated with 

ASD, and providing valuable insights that were previously difficult to identify. 

Moreover, the use of AI technologies in predictive modeling is advancing. Machine learning models, 

trained on clinical and demographic data, can predict the likelihood of an individual developing ASD at 

an early stage, which is crucial for early intervention strategies. For instance, early screening tools 

powered by AI are increasingly being developed to detect signs of ASD in toddlers or even infants, often 

before observable behaviors manifest. Furthermore, multimodal frameworks that combine different data 

sources, such as clinical data, neuroimaging, genetic information, and behavioral data, are gaining 

traction. By integrating these diverse sources, AI frameworks are able to build a more holistic profile of 

each patient, improving diagnostic accuracy and facilitating personalized treatment recommendations. 

The use of AI in ASD detection also addresses some of the challenges faced by traditional diagnostic 

methods, such as inter-rater reliability and accessibility. AI-based models can be standardized across 

different clinics and regions, offering consistent results and reducing disparities in diagnosis across 

geographical and socio-economic contexts. Additionally, AI models can be deployed in telemedicine 

settings, enhancing access to diagnostic services in remote areas. 

As with any technology, the implementation of AI in healthcare raises important concerns, particularly 

around data privacy, security, and ethics. Safeguarding patient confidentiality and ensuring that AI 
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systems are transparent and explainable are critical aspects that must be addressed. Research and 

development in this area must continue to prioritize these issues while also enhancing the capabilities of 

AI-driven ASD detection systems. 

The future of ASD detection lies in the continued evolution of AI technologies, where their integration 

into clinical practice promises not only more accurate and faster diagnosis but also improved treatment 

strategies, early intervention, and better long-term outcomes for individuals with ASD. By harnessing the 

power of computer technologies and AI, we can significantly enhance our ability to detect, understand, 

and treat Autism Spectrum Disorder. 

 

1.2.4. Autism Spectrum Disorder and Internet Technology  

The pervasive presence of the internet and the vast amounts of digital information it generates have 

revolutionized numerous fields, including healthcare. This transformation extends to autism spectrum 

disorder (ASD), where internet technology is enabling novel diagnostic and therapeutic approaches. New 

concepts such as "digital phenotyping" and "digital health analytics" have emerged, focusing on the use of 

online data and computational methodologies to analyze behavior and identify patterns indicative of ASD. 

Digital phenotyping refers to the collection and analysis of behavioral and physiological data from 

various digital sources, including social media platforms, online interactions, and wearable devices. This 

approach complements traditional methods of ASD diagnosis by providing a scalable, real-time means to 

capture early indicators of the disorder. 

Internet-based tools have shown promise in identifying ASD markers through the analysis of 

communication styles, interaction patterns, and user-generated content on online forums and social 

networks. For example, the linguistic patterns in posts by individuals with ASD, such as repetitive 

language or unusual sentence structures, have been studied to develop predictive models. These models 

use deep learning (DL) algorithms to analyze large-scale online behavioral data, enhancing diagnostic 

accuracy while reducing reliance on subjective clinical evaluations. The accessibility of internet 

technologies has also played a pivotal role in democratizing healthcare, including ASD diagnosis. Remote 

telehealth platforms, virtual assessments, and online screening tools allow clinicians to reach individuals 

in underserved regions, providing equitable access to diagnostic resources. Furthermore, these 

technologies enable the continuous monitoring of ASD symptoms, improving intervention timelines and 

developmental outcomes. The integration of internet technology with artificial intelligence (AI) has 

propelled advancements in this domain. The availability of open-source libraries, faster data processing, 

and collaborative data labeling have enabled researchers to develop AI models capable of analyzing 

multimodal datasets, such as neuroimaging data and clinical metadata. These models can uncover 

complex relationships and hidden patterns that may elude human observation. For instance, computer 
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vision algorithms applied to neuroimaging data have identified structural and functional brain anomalies 

associated with ASD. However, the use of internet-based data for ASD diagnosis is not without 

challenges. Ensuring the quality and reliability of datasets is critical, as noisy or incomplete data can 

affect model performance. Additionally, ethical concerns surrounding data privacy, informed consent, and 

the potential for biased predictions highlight the need for transparent and accountable AI systems. 

Addressing these challenges requires the development of robust computational approaches that balance 

diagnostic accuracy with ethical considerations. This work seeks to bridge the gap between internet 

technology, AI, and ASD diagnosis by proposing a novel framework that integrates multimodal data 

sources. Through advanced fusion techniques and explainable AI, this work aims to enhance diagnostic 

reliability, interpretability, and accessibility, contributing to the broader adoption of AI-driven ASD 

detection frameworks. 

 

1.2.5. Popular Public Data Sources for Autism Spectrum Disorder Diagnosis 

The development and evaluation of AI-based diagnostic methods for Autism Spectrum Disorder (ASD) 

heavily depend on the availability of high-quality, well-curated datasets. Public data sources play a crucial 

role in advancing research by providing standardized datasets that enable the training, testing, and 

validation of machine learning models. These datasets help researchers identify patterns, train diagnostic 

algorithms, and improve the accuracy and generalization of AI-based systems. Several public data sources 

have been widely used in ASD diagnosis, ranging from behavioral assessments to neuroimaging data. 

Below are some of the most popular public data sources for ASD research:  

 

Table 1.1 Dataset analysis of Publicly available datasets related to autism spectrum disorder 

Data Source Dataset Type Description 

Images Questionnaire Text Gene Time-

series 

ABIDE I [2] 

 

                 ASD: Normal = 539:573 

 

ABIDE II [3] 

 

                 ASD: Normal = 521:593 

 

AGRE [4]      https://www.autismspeaks.org/agre 

NDAR [5]      https://catalog.data.gov/dataset/national-

database-for-autism-research-ndar 

       
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1.2.5.1. ABIDE I [45] 

Dataset Type: Images, Clinical features 

The Autism Brain Imaging Data Exchange (ABIDE) I dataset consists of brain imaging data (structural 

MRI) and questionnaires collected from 539 individuals diagnosed with ASD and 573 typically 

developing (TD) participants. The primary focus of the dataset is to analyze the brain's structural and 

functional differences between these two groups, providing critical insights for the development of 

neuroimaging biomarkers for ASD. 

 

1.2.5.2.  ABIDE II [46] 

Dataset Type: Images, Clinical features 

ABIDE II extends the ABIDE I dataset and offers additional brain imaging data (including both structural 

and functional MRI) alongside questionnaires from 521 individuals with ASD and 593 TD individuals. It 

aims to provide a more comprehensive analysis of the neurodevelopmental variations in ASD, further 

contributing to the understanding of neurobiological markers associated with the disorder. 

 

1.2.5.3.  AGRE [47] 

Dataset Type: Gene  

The Autism Genetic Resource Exchange (AGRE) dataset primarily includes behavioral and diagnostic 

questionnaires. It serves as a valuable resource for genetic studies aimed at understanding the hereditary 

components of ASD. This dataset allows researchers to explore genetic correlations and how they may 

Autism 

Screening 

[6] 

For Adults: instances = 704 

                   attributes = 21    

For Toddlers: instances = 1054 

                      attributes = 18 

For children:  instances = 292 

                      attributes = 21 

 

https://www.kaggle.com/datasets/faizun

nabi/autism-screening 

 

NRGR [7]      https://www.nimhgenetics.org/download

-tool/AU 

https://www.kaggle.com/datasets/faizunnabi/autism-screening
https://www.kaggle.com/datasets/faizunnabi/autism-screening
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influence the development of autism, facilitating the identification of potential genetic markers for early 

diagnosis. 

 

1.2.5.4.  NDAR [48] 

Dataset Type: Images, Questionnaire, Text, Gene, Time-series 

The National Database for Autism Research (NDAR) is one of the largest and most comprehensive 

repositories of autism-related data. NDAR includes various types of data such as brain imaging (structural 

MRI, functional MRI), behavioral questionnaires, genetic data, and time-series data. This extensive 

dataset is critical for large-scale research to understand the genetic, behavioral, and neurobiological 

factors contributing to ASD. It also supports longitudinal studies that track the progression of the disorder 

over time.  

 

1.2.5.5.  Autism Screening [49] 

Dataset Type: Questionnaire 

The Autism Screening dataset is available on Kaggle and includes data from autism screening tests for 

different age groups: adults, toddlers, and children. This dataset provides clinical features like age, 

gender, jaundice history and demographic attributes like ethnicity, making it useful for training AI models 

aimed at ASD diagnosis.  

 

1.1.5.6. NRGR [50] 

Dataset Type: Gene 

The NeuroGenetics Research Group (NRGR) dataset contains genetic data associated with ASD. This 

dataset is valuable for studying the genetic underpinnings of ASD and provides insight into how specific 

genetic variations correlate with ASD symptoms and progression. 

These publicly available datasets are instrumental in developing, testing, and refining AI-based diagnostic 

tools for ASD. By incorporating various data types such as neuroimaging, genetic information, and 

clinical assessments, these datasets help researchers create more robust and accurate diagnostic models 

that can assist in early detection and personalized interventions for individuals with autism. 

 

1.2.6. Applications of AI-based Autism Spectrum Disorder (ASD) Diagnostic 

Methods 

AI-based diagnostic methods have gained significant traction in the field of Autism Spectrum Disorder 

(ASD) diagnosis, offering the potential to improve early detection, enhance diagnostic accuracy, and 

support personalized treatment approaches. These technologies leverage machine learning, deep learning, 
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and computer vision to analyze a wide range of data sources, such as behavioral patterns, facial images, 

medical records, and neuroimaging data. The application of AI in ASD diagnosis has the potential to 

revolutionize the way healthcare professionals identify and treat individuals with ASD. Some of the key 

applications of AI-based ASD diagnostic methods include: 

 

1.2.6.1. Early Detection and Screening 

AI-based systems can significantly improve early detection of ASD, which is critical for initiating early 

interventions that can greatly improve long-term outcomes for individuals with ASD. Machine learning 

models, particularly those that analyze behavioral data or diagnostic questionnaires, can be trained to 

detect early signs of autism in young children, often before the age of three. For example, AI systems can 

analyze patterns in parental questionnaires, such as the Modified Checklist for Autism in Toddlers (M-

CHAT), to flag children who are at risk of ASD. These systems can be integrated into routine pediatric 

screenings, enabling quicker identification of children who require further assessment or specialized 

intervention. Similarly, AI models can process large-scale datasets, such as those from early childhood 

assessments, to identify subtle signs of ASD that may be overlooked by human observers. This early 

detection capability can lead to faster referrals to specialists and early therapeutic interventions, which are 

known to have a significant positive impact on the development of children with ASD. 

 

1.2.6.2.  Analysis of Behavioral Data 

AI-based methods can be applied to analyze behavioral data collected from various sources, such as 

interviews, questionnaires, or video recordings of children’s interactions. Natural language processing 

(NLP) techniques can be used to analyze textual data from parent or caregiver reports to identify 

linguistic patterns or behavioral markers associated with ASD. For instance, children with ASD may 

exhibit delays in speech development, abnormal conversational patterns, or challenges in understanding 

social cues. By analyzing these patterns, AI systems can assist in diagnosing ASD with greater precision, 

detecting subtle features that human clinicians may miss. Moreover, computer vision algorithms can 

analyze video recordings of children’s behaviors and facial expressions. These algorithms can detect 

anomalies in eye contact, social engagement, and emotional recognition, which are typical indicators of 

ASD. By processing these visual cues, AI systems can provide valuable insights into a child’s 

developmental progress and offer objective data to support the diagnostic process. 

 

1.2.6.3. Neuroimaging and Biomarker Detection 

AI is increasingly being used in the analysis of neuroimaging data, such as MRI and fMRI scans, to 

identify potential biomarkers for ASD. Deep learning models can be trained to analyze brain images and 
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identify structural or functional abnormalities in regions typically associated with social cognition, 

language processing, and executive function. These models can detect subtle differences in brain structure 

and function that may be indicative of ASD, enabling the development of more objective diagnostic 

criteria. AI algorithms can also integrate multiple sources of neuroimaging data, such as structural MRI, 

functional MRI, and electroencephalography (EEG), to provide a comprehensive understanding of the 

neural underpinnings of ASD. This approach has the potential to lead to the identification of novel 

biomarkers that can be used to diagnose ASD more accurately and provide insights into the neurological 

basis of the disorder. 

 

1.2.6.4. Facial Image Analysis 

AI-based facial image analysis is another promising application in the diagnostic process for ASD. 

Computer vision models, particularly convolutional neural networks (CNNs), can be used to analyze 

facial features and expressions to detect atypical patterns often observed in individuals with ASD. These 

models can examine subtle differences in facial structure, gaze direction, and emotional expressions that 

may indicate autism-related traits. 

For example, children with ASD may show limited facial expressiveness or differences in their ability to 

make eye contact. By processing large datasets of facial images, AI algorithms can be trained to 

distinguish between typical and atypical patterns in facial expressions and use this information as part of a 

broader diagnostic toolkit. This technology has the potential to be integrated into clinical assessments, 

offering objective measures to complement traditional diagnostic methods. 

 

1.2.6.5. Personalized Treatment and Intervention 

Once ASD is diagnosed, AI systems can play a significant role in creating personalized treatment and 

intervention plans. By analyzing data from various sources, including behavioral assessments, 

neuroimaging, and family history, AI models can help tailor interventions to the specific needs of 

individuals with ASD. This could involve recommending personalized therapies, such as speech or 

occupational therapy, and monitoring the progress of these interventions over time. AI systems can also 

provide real-time feedback to clinicians and caregivers, helping to adjust treatment strategies based on an 

individual’s response. For instance, machine learning models can analyze data from wearable devices or 

mobile apps that track behavioral changes and offer insights into the effectiveness of specific therapies. 

This personalized approach enhances the precision of interventions, ensuring that individuals with ASD 

receive the most appropriate care based on their unique needs and progress. 

 

1.2.6.6. Monitoring Long-Term Development 
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AI-based diagnostic methods can be applied to monitor the long-term development of individuals with 

ASD. Machine learning models can analyze longitudinal data collected over extended periods, such as 

behavioral assessments, medical records, and educational performance, to track changes in symptoms and 

progress. By detecting patterns over time, AI systems can help clinicians identify when interventions are 

most needed or when adjustments to treatment plans should be made. This ability to track and predict 

developmental trajectories is particularly valuable in managing ASD, as it allows for the early 

identification of emerging challenges and the timely adjustment of care plans. Moreover, AI models can 

support families and caregivers by providing actionable insights into the individual’s development, 

helping them to better understand their child’s needs and progress. 

 

1.2.6.7. Improving Diagnostic Accuracy and Reducing Human Bias 

AI-based diagnostic methods can help improve the accuracy and consistency of ASD diagnoses by 

reducing human biases and subjectivity. Traditional diagnostic approaches often rely heavily on clinician 

experience, which can introduce variability in decision-making. AI systems, however, can process large 

volumes of data objectively, identifying patterns and anomalies that might not be immediately apparent to 

human clinicians. This leads to more accurate and consistent diagnoses, particularly when using 

multimodal data sources such as behavioral data, facial images, and neuroimaging. Furthermore, AI 

systems can assist in the identification of co-occurring conditions, such as ADHD or anxiety, that are 

often seen in individuals with ASD. By integrating data from multiple sources, AI models can provide a 

holistic view of the individual’s health, aiding in the diagnosis and management of comorbidities that 

may complicate the treatment process. 

AI-based diagnostic methods hold significant promise for advancing the detection, diagnosis, and 

treatment of Autism Spectrum Disorder. Through early detection, personalized treatment plans, improved 

diagnostic accuracy, and the ability to track long-term development, AI has the potential to revolutionize 

ASD care. However, challenges related to data quality, interpretability, and ethical concerns must be 

addressed to ensure that these technologies are used responsibly and effectively. As AI continues to 

evolve, it is expected to play an increasingly critical role in enhancing the lives of individuals with ASD 

and their families. 

 

1.2.7. Limitations and Challenges of AI-based Autism Spectrum Disorder 

Diagnostic Methods 

This section highlights some of the limitations and challenges encountered when employing AI-based 

diagnostic methods for autism spectrum disorder (ASD). While AI models have shown promise in 
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advancing early detection and diagnosis of ASD, several factors hinder their widespread application and 

effectiveness. Key challenges include: 

1.2.7.1. Noise  

Noise is a significant challenge in autism data collection, particularly when dealing with autism screening 

datasets and facial image datasets. Noise refers to irrelevant or misleading information that may distort 

the analysis and conclusions drawn from the data. In autism research, this can occur when datasets 

contain extraneous features or mislabeled data that are unrelated to autism characteristics or diagnostic 

criteria. Furthermore, missing or incomplete data can add another layer of noise, particularly in datasets 

where participant information, such as demographic details or medical history, is insufficiently recorded. 

For example, incomplete screening data or facial images with unclear or ambiguous characteristics could 

lead to misclassification or incorrect analysis of autism traits. To mitigate such noise, preprocessing 

techniques such as feature selection, data cleaning, and normalization are essential. These methods help 

eliminate irrelevant data, standardize inputs, and focus on the most relevant features for autism diagnosis. 

Advanced data processing techniques, including dimensionality reduction, and feature selection, can also 

be applied to ensure the quality of the data before further analysis. Despite these efforts, continuous 

refinement and validation of the dataset are necessary to enhance its accuracy and reliability for autism 

research.  

 

1.2.7.2. Demographic Bias in Autism Research 

Demographic biases present significant challenges when working with autism screening datasets and 

facial image datasets. While such datasets provide valuable insights into autism diagnosis and 

intervention, critical demographic details such as age, gender, and ethnicity are often underrepresented or 

inconsistently recorded. This limitation can lead to skewed findings and hinder the generalizability of 

models developed using these datasets. For instance, autism screening datasets often lack representation 

from diverse ethnic backgrounds, focusing predominantly on specific demographic profiles. This bias can 

obscure the variability in autism presentation across different cultural contexts. Similarly, facial image 

datasets used for autism-related research may overrepresent certain ethnic groups while underrepresenting 

others, leading to algorithms that perform poorly on underrepresented populations. Another challenge 

arises from accessibility and participation in data collection. Individuals from marginalized or low-

income communities, who may lack access to healthcare services, are often excluded from these datasets. 

This exclusion can result in models that fail to address the needs of these populations, who are often 

among the most vulnerable and underserved. Additionally, individuals with severe autism traits or 

disabilities may be underrepresented due to difficulties in participating in studies, further contributing to 

demographic bias. Addressing these biases requires intentional efforts to diversify datasets by including 
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individuals from varied age groups, ethnicities, and socioeconomic backgrounds. This approach will 

improve the robustness and applicability of autism diagnostic models, ensuring they serve a more 

inclusive population.  

 

1.1.7.3. Overfitting and Generalization Challenges 

 

AI models, particularly deep learning models, are prone to overfitting, especially when trained on small or 

non-representative datasets. Overfitting occurs when a model performs well on training data but fails to 

generalize to new, unseen data. In the context of autism diagnosis, overfitting can lead to models that 

inaccurately predict or fail to detect autism in diverse real-world settings. This is particularly problematic 

when datasets lack sufficient variation or are too homogeneous, as is often the case with small clinical 

samples or limited demographic representation. To address this issue, it is crucial to implement cross-

validation techniques and use larger, more diverse datasets for training. Additionally, techniques such as 

regularization and data augmentation can help prevent overfitting by introducing variability into the 

model's training process. Ensuring that models can generalize across different population groups, 

including those with varying severity of ASD symptoms, is essential for the widespread applicability of 

AI-based diagnostic tools. 

 

1.1.7.4. Interpretability and Trust in AI-based Diagnoses 

 

One of the major challenges in deploying AI-based diagnostic systems in clinical settings is the lack of 

interpretability of certain machine learning models, particularly deep neural networks. These models are 

often considered "black boxes" because their decision-making processes are not easily understood by 

humans. In the case of ASD diagnosis, this lack of transparency can lead to hesitation or mistrust among 

clinicians, as well as families of individuals with autism, who rely on clear and understandable 

explanations of diagnosis and treatment recommendations. Improving the interpretability of AI models is 

crucial for fostering trust and ensuring that these tools are used effectively in clinical practice. Techniques 

such as explainable AI (XAI), which provide insights into how models arrive at their conclusions, are 

becoming increasingly important in making AI-based diagnostic tools more accessible and reliable. 

Ensuring that clinicians and patients understand the rationale behind AI-driven decisions will help 

improve the acceptance and adoption of these technologies. 

 

1.1.7.5. Ethical and Privacy Concerns 
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AI-based autism diagnostic methods often rely on sensitive personal data, including medical histories, 

behavioral data, and facial images. The use of such data raises significant ethical and privacy concerns. 

Data security and patient confidentiality are paramount, especially when dealing with vulnerable 

populations such as children with ASD. Additionally, concerns about consent arise when using data from 

clinical settings, as individuals may not fully understand how their data will be used or may not have the 

option to opt out of participation in research studies. Ensuring that AI models comply with data protection 

regulations, such as GDPR or HIPAA, is crucial to safeguarding patient privacy. Furthermore, ethical 

considerations must be taken into account when designing data collection protocols and algorithms. 

Researchers must ensure that AI-based methods are developed and deployed in a way that respects the 

rights and autonomy of individuals, providing transparency about how data is collected, used, and stored. 

 

1.1.7.6. Integration into Clinical Workflow 

 

Even if AI-based autism diagnostic methods achieve high levels of accuracy and reliability, their 

integration into clinical practice remains a significant challenge. Healthcare professionals may be resistant 

to adopting AI tools due to concerns about the reliability of the system, the potential for AI to replace 

human expertise, or simply because of a lack of familiarity with AI technologies. Additionally, 

implementing AI tools requires appropriate infrastructure, training, and support to ensure that clinicians 

can effectively use these tools as part of their diagnostic process. To overcome these challenges, AI-based 

diagnostic methods must be designed with user-friendly interfaces and should complement, rather than 

replace, the expertise of clinicians. It is also essential to offer training and ongoing support for healthcare 

professionals to integrate these tools seamlessly into their workflows. This will ensure that AI-driven 

diagnoses are seen as valuable assets that enhance, rather than undermine, the clinical decision-making 

process. 

By addressing these limitations and challenges, AI-based diagnostic methods for autism can be further 

refined and optimized, making them more effective, reliable, and accessible for both clinicians and 

individuals with autism. 

 

1.3. Machine Learning and Deep Learning 

Since their inception, humans have leveraged a variety of tools and technologies to perform tasks more 

effectively. The ingenuity of the human brain has driven the development of sophisticated systems that 

simplify everyday life by addressing diverse needs across domains such as computing, healthcare, and 

transportation. Among these groundbreaking innovations are machine learning (ML) and its advanced 

subset, deep learning (DL). 
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Machine learning refers to the automated discovery of meaningful patterns in data. These patterns can 

either enhance our understanding of existing phenomena—such as identifying risk factors for diseases—

or predict future outcomes, such as forecasting the spread of infections. Over the last few decades, ML 

has become a cornerstone in extracting valuable insights from large datasets across various fields. For 

example, ML algorithms power search engines to deliver the most relevant results, enable anti-spam 

software to filter unwanted emails, and safeguard financial transactions by detecting fraudulent activities. 

In daily life, ML supports intelligent personal assistants like Siri and Alexa in interpreting voice 

commands, while digital cameras utilize it to recognize faces. ML algorithms are also applied in accident 

prevention systems in automobiles and contribute to scientific domains such as astronomy, medicine, and 

bioinformatics. 

Deep learning, a specialized branch of machine learning, pushes these capabilities further by mimicking 

the structure and functioning of the human brain through artificial neural networks. Unlike traditional ML 

algorithms, which often rely on manually engineered features, DL algorithms automatically extract 

complex features and relationships from raw data. This ability has made DL indispensable for tasks 

requiring high levels of abstraction, such as image recognition, natural language processing (NLP), and 

speech synthesis. Applications of DL include autonomous vehicles that interpret their surroundings, 

medical imaging systems that detect diseases, and language models like ChatGPT that generate coherent 

text. 

The demand for both ML and DL has grown exponentially with the increasing availability of large-scale 

datasets and computational resources. Advances in hardware, such as GPUs and TPUs, have enabled the 

processing of vast amounts of data, allowing ML and DL systems to achieve state-of-the-art performance 

in many domains. For instance, convolutional neural networks (CNNs) have revolutionized computer 

vision by excelling at tasks such as object detection and facial recognition, while recurrent neural 

networks (RNNs) and transformers have driven significant progress in sequential data analysis, including 

machine translation and time-series forecasting. In summary, ML and DL represent transformative 

approaches to processing and analyzing data. Their ability to derive actionable insights from complex 

datasets has made them invaluable in a wide range of applications, from everyday conveniences to life-

saving technologies. Their continued evolution promises to further redefine how humans interact with and 

benefit from intelligent systems.  

 

1.3.1. When Do We Need Machine Learning?  

The necessity for machine learning (ML) and deep learning (DL) arises when conventional programming 

approaches fall short of addressing the complexity, scale, or adaptability required by a task. Unlike 

traditional systems that rely on explicitly defined rules, ML and DL algorithms leverage data-driven 
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approaches to learn, improve, and adapt. Their utility becomes apparent in scenarios involving highly 

complex problems, vast amounts of data, and dynamic environments requiring adaptability. 

Human-Performed Tasks: Certain tasks that humans perform effortlessly—such as recognizing speech, 

understanding visual information, and driving—are incredibly challenging to codify into a traditional 

algorithm. These tasks require a nuanced understanding of patterns, context, and variability, which is 

often implicit and not easily articulated. For instance, while a human can intuitively distinguish a cat from 

a dog in an image, explicitly programming the visual rules for this distinction is an overwhelming 

challenge. ML and DL provide a robust solution by learning from large datasets of examples, enabling 

systems to achieve near-human accuracy in tasks like image recognition, speech processing, and 

autonomous navigation. Advanced DL architectures, such as convolutional neural networks (CNNs) and 

transformers, have proven especially effective in handling these challenges by automatically extracting 

intricate features from raw data. 

Tasks Beyond Human Capabilities: In addition to mimicking human capabilities, ML and DL are 

indispensable for tasks involving data that exceed human cognitive capacity. Modern datasets in fields 

like e-commerce, healthcare, genomics, weather prediction, and astronomy are vast, multidimensional, 

and interlinked, making manual analysis infeasible. For example, in genomics, DL models identify gene 

interactions from enormous datasets to predict disease risks, while in astronomy, ML is used to classify 

galaxies and detect anomalies in terabytes of data. These applications uncover hidden patterns, 

relationships, and insights that would otherwise remain inaccessible, driving innovation across domains. 

By harnessing the computational power of ML and DL systems, researchers and industry professionals 

can solve problems on a scale previously unimaginable. 

Adaptivity: One significant limitation of traditional programming approaches is their inflexibility. Once 

designed, a program's behavior is fixed unless it is explicitly reprogrammed to accommodate new 

scenarios. This rigidity poses a challenge for tasks that evolve over time or vary among users. ML and DL 

models, on the other hand, are inherently adaptive. They continuously learn from new data, refining their 

performance to address changing conditions.   

Combining Complexity and Adaptivity: Many real-world problems demand solutions that address both 

the complexity of the task and the need for adaptability. Autonomous vehicles are a prime example, 

requiring DL models to perform real-time object detection, decision-making in complex and dynamic 

traffic environments, and adapting to different weather or road conditions. Similarly, in personalized 

medicine, ML and DL systems analyze genetic, clinical, and environmental data to recommend tailored 

treatments for individual patients, accounting for the dynamic nature of disease progression and patient 

response. Furthermore, DL models have extended the reach of ML by achieving breakthroughs in tasks 

that were once considered out of reach. For instance, generative adversarial networks (GANs) create 
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realistic images and videos, while transformers like BERT and GPT excel in language modeling and 

contextual understanding. These advancements have propelled applications like automated content 

creation, real-time translation, and advanced virtual assistants, showcasing the ability of DL to address 

both complex and adaptive tasks. 

Handling Real-Time Decision-Making: In scenarios requiring rapid, real-time decision-making, ML 

and DL excel in processing and analyzing data streams almost instantaneously. For example, 

Autonomous Systems like Self-driving cars rely on DL algorithms to detect objects, predict pedestrian 

movements, and make split-second decisions to ensure passenger safety. Healthcare monitoring, where 

continuous patient monitoring using wearable devices generates real-time data that ML models analyze to 

detect early signs of health issues, such as arrhythmias or seizures, uses ML models to detect early signs 

of health issues, such as arrhythmias or seizures. 

As the volume of digital data continues to grow exponentially, the demand for ML and DL is becoming 

increasingly urgent. Data from diverse sources—such as social media, IoT devices, medical records, and 

satellite imagery—contains invaluable information that traditional methods cannot process efficiently. 

ML and DL algorithms thrive in this environment, enabling organizations to unlock actionable insights, 

automate decision-making, and optimize processes. Moreover, advancements in computational hardware, 

including GPUs and TPUs, have significantly reduced the time and cost required for training complex 

models, making these technologies more accessible. 

 

1.3.2. Types of Machine Learning 

Machine Learning (ML) encompasses a variety of techniques designed to address diverse data-related 

challenges (Figure 1.2). Experts emphasize that there is no universal solution applicable to every problem. 

The choice of approach depends on several factors, including the nature of the problem, the number and 

type of variables involved, the selection of a suitable model, and other context-specific considerations. 

 

1.3.2.1. Supervised Learning   

Supervised learning is a machine learning approach in which models are trained on labeled data to predict 

or classify desired outcomes. The dataset is split into two subsets: a training set and a test set. Each entry 

in the training set includes both an input value and its corresponding target output. The goal of supervised 

learning is to predict or classify an output variable based on the input data. Algorithms in this approach 

analyze the training data to identify patterns, which are then applied to the test data to make predictions or 

classifications. By recognizing relationships between input variables and their corresponding outcomes, 

supervised learning aims to maximize prediction accuracy. A common example of supervised learning is 

regression, where a model is trained to predict a continuous outcome based on input data. 
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Figure 1.2 Types of Machine Learning Algorithms 

 

1.3.2.2. Unsupervised Learning 

Unsupervised learning is a machine learning technique where models analyze and uncover patterns from 

data that has not been labeled. Instead of being provided with explicit output labels, the algorithm relies 

on the inherent structure within the input data to identify relationships and trends. This approach is 

commonly used for tasks like feature reduction and clustering, where the goal is to reduce the complexity 

of data or group similar data points. In unsupervised learning, the model leverages the natural properties 

of the data to discover hidden structures without predefined outputs. Techniques like principal component 

analysis (PCA) are often employed to identify underlying covariance patterns within the data, enabling 

better understanding and representation of the information. 

 

1.3.2.3. Semi-Supervised Learning 

Semi-supervised learning is an approach that bridges supervised and unsupervised machine learning 

techniques [129]. This method involves a small amount of labeled data alongside a large volume of 

unlabeled data. Initially, an unsupervised learning technique is employed to identify patterns and structure 

in the data. These patterns are then used to assist in labeling the unlabeled data. Semi-supervised learning 

is particularly useful in situations where obtaining labeled data is costly or time-consuming, but unlabeled 

data are abundant. This hybrid approach is widely applied when accurate predictions are needed, but a 

large portion of the data lacks outcome labels. It strikes a balance between the accuracy of supervised 

learning and the scalability of unsupervised learning. 

 

Ty
p

e
s 

o
f 

M
ac

h
in

e 
Le

ar
n

in
g

Supervised Learning

Unsupervised Learning

Semi-supervised Learning

Reinforcement Learning



 

22 
 

1.3.2.4. Reinforcement Learning   

Reinforcement learning (RL) has its roots in early cybernetics and has evolved into a significant area of 

study in fields such as statistics, psychology, neuroscience, and computer science. Over the past decade, 

RL has gained substantial attention in the machine learning and artificial intelligence domains due to its 

practical applications. Unlike other machine learning approaches that rely on labeled data, reinforcement 

learning involves an agent interacting with a dynamic environment to achieve specific goals. The agent 

takes actions based on the current state of the environment and receives feedback in the form of rewards 

or penalties. Through this feedback loop, the agent learns to optimize its actions to maximize long-term 

rewards. This method is particularly effective in real-time applications, such as robotics, gaming, and 

autonomous systems, where the agent must learn continuously from its environment. In essence, 

reinforcement learning enables systems to learn by trial and error, improving their performance over time 

based on direct experience. 

 

1.3.3. Machine Learning Applications in Healthcare 

The primary objective of machine learning in computer science is to enhance the efficiency and reliability 

of machines. Machine learning is pervasive across various industries and plays a crucial role in numerous 

real-world applications. It is particularly vital in fields like healthcare, where it contributes to the 

protection and analysis of medical data. In the healthcare sector, machine learning acts as an extension of 

a doctor's expertise, functioning as a powerful tool to augment their capabilities. The purpose of machine 

learning is not to replace medical professionals, but rather to support them in delivering superior care and 

improving patient outcomes. Some of the applications of machine learning in the healthcare industry are: 

 

1.3.3.1. Identifying and Diagnosing Diseases  

Machine learning (ML) approaches play a pivotal role in enhancing the accuracy and speed of medical 

diagnoses, significantly improving clinical decision-making. By analyzing vast amounts of medical data, 

including electronic health records (EHRs), imaging data, and genetic information, ML algorithms can 

identify subtle patterns and anomalies indicative of various diseases. These systems are capable of 

detecting early signs of conditions such as cancer, cardiovascular diseases, and neurological disorders, 

providing valuable insights that assist clinicians in making more informed and timely diagnoses. 

Additionally, ML models can continuously learn and adapt, improving diagnostic accuracy over time as 

they are exposed to larger datasets, ultimately leading to better patient outcomes. 

 

1.3.3.2. Drug Discovery and Manufacturing  
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Machine learning is playing a crucial role in the early stages of drug development, emerging as one of the 

most efficient applications in medicine. This includes advancements in research and development such as 

precision medicine and next-generation sequencing, which assist in identifying alternative treatment 

strategies for complex diseases. At present, ML techniques, particularly unsupervised learning, are 

employed to uncover patterns in data without the need for direct predictions. For instance, Microsoft's 

Project Hanover leverages ML-driven technologies for various purposes, including the development of 

AI-based tools for cancer treatment and the personalization of medication combinations for Acute 

Myeloid Leukemia. 

 

1.3.3.3. Medical Imaging Diagnosis  

Computer vision is a transformative technology enabled by both Machine Learning (ML) and Deep 

Learning (DL). ML techniques employed in computer-aided detection and diagnosis play a crucial role in 

assisting clinicians with the interpretation of medical imaging data, significantly reducing the time 

required for analysis. As machine learning becomes increasingly accessible and its analytical capabilities 

continue to improve, it is anticipated that a wider range of health imaging data will be integrated into AI-

driven diagnostic systems, further enhancing the accuracy and efficiency of medical diagnoses. 

 

1.3.3.4. Personalized Medicine  

The remarkable performance of machine learning (ML) models in handling complex, large-scale data has 

led to significant advancements in personalized medicine over the past decade. By integrating individual 

health data with predictive analytics, personalized therapies are not only more effective but also open new 

avenues for research and enhanced disease evaluation. Traditionally, clinicians have been limited to 

selecting diagnoses from a restricted set of options or estimating a patient's risk based on clinical history 

and genetic information. However, ML is driving substantial progress in the field of medicine. A notable 

example is IBM Watson for Oncology, which leverages personalized medical data to assist in the 

development of tailored treatment options. Moreover, the proliferation of advanced gadgets and 

biosensors with enhanced health monitoring capabilities will further expand the availability of data, 

facilitating the growth and refinement of such medical systems. 

 

1.3.3.5. Behavioral Modification  

Behavioral modification plays a crucial role in preventive healthcare, and with the increasing integration 

of machine learning (ML) in the healthcare sector, numerous startups have emerged focused on cancer 

detection, treatment optimization, and various other health-related applications. In addressing mental 

health challenges, supervised machine learning methods prove to be highly effective. By leveraging deep 
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learning (DL techniques) such as Convolutional Neural Networks (CNN), Recurrent Neural Networks 

(RNN), and Artificial Neural Networks (ANN), advanced models can be developed to predict an 

individual’s mental health status based on their facial expressions, physical activities, and body 

movements.  

1.3.3.6. Maintaining Health Records  

Managing health records is often a time-intensive task. While technology has made data entry more 

efficient, many processes still require significant time to complete. The primary role of machine learning 

(ML) in healthcare is to optimize these operations, reducing effort, time, and costs. For instance, Ciox, a 

healthcare technology company, leverages ML to enhance the management and exchange of healthcare 

information. The aim is to improve accessibility to medical data, streamline operations, and boost the 

accuracy of health records. One of their innovations includes the development of smart charts, which use 

ML to extract and consolidate medical data from various health records, creating a unified digital profile 

for each patient. 

 

1.3.3.7. Clinical Trial and Research  

Clinical studies are often resource-intensive and can span several years to reach completion. Machine 

learning (ML) technology offers a valuable solution by predicting clinical trial outcomes, which can lead 

to reduced drug approval timelines, lower costs, and increased funding opportunities for the development 

of new treatments [133]. Additionally, ML has been applied to facilitate real-time monitoring of trial 

participants, optimize sample size determination, and leverage electronic health records to minimize data-

related errors. 

1.3.3.8. Better Radiotherapy  

Radiology is one of the most prominent applications of machine learning (ML) in healthcare. Clinical 

image analysis involves numerous complex variables that can arise simultaneously, making it a 

challenging task to mathematically model certain diseases, such as tumors, cancerous lesions, and other 

abnormalities. However, ML-based approaches, which learn from diverse datasets, significantly enhance 

the identification and detection of these factors. By leveraging ML, the automation of cancer diagnosis 

and the identification of healthy physiological structures within organs can be greatly improved. 

Additionally, ML plays a crucial role in the precise selection of optimal radiation doses, leading to more 

accurate and efficient treatment planning. 

 

1.4. Autism Spectrum Disorder and Machine/Deep Learning  

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder marked by impairments in social 

communication, restricted interests, and repetitive behaviors. The complexity and heterogeneity of ASD 
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make it challenging to diagnose, with traditional methods relying heavily on subjective behavioral 

observations. Early and accurate diagnosis is crucial for effective intervention, as it significantly improves 

long-term outcomes. In recent years, machine learning (ML) has shown great promise in enhancing the 

diagnostic process by providing objective, data-driven insights and enabling the identification of subtle 

patterns that may be overlooked by clinicians. Machine learning offers significant advantages in dealing 

with the vast and diverse datasets typically associated with ASD research. These datasets include clinical 

assessments, genetic information, neuroimaging scans, and behavioral data. With the ability to process 

high-dimensional data efficiently, ML algorithms can reveal complex relationships within these datasets 

that are difficult for traditional statistical methods to uncover. In particular, ML has proven useful in 

handling the "curse of dimensionality" that often arises when working with large datasets, offering a more 

efficient approach to feature selection and data analysis. One of the most exciting applications of machine 

learning in ASD diagnosis is the analysis of neuroimaging data. Various ML techniques, particularly deep 

learning algorithms such as convolutional neural networks (CNNs), have been employed to identify 

structural and functional brain abnormalities that are often associated with ASD. These models can 

analyze brain scans, such as magnetic resonance imaging (MRI) or functional MRI (fMRI), to detect 

patterns indicative of ASD, providing an objective tool for clinicians. The use of machine learning in this 

context allows for the analysis of large, high-dimensional imaging data, revealing neurobiological 

markers that might not be evident through conventional methods. Another significant area where ML is 

contributing to ASD research is in the analysis of language and communication patterns. Individuals with 

ASD often exhibit atypical speech and language use, which can serve as early indicators of the disorder. 

Natural language processing (NLP) techniques, which focus on the computational analysis of human 

language, are increasingly being applied to study speech patterns, written texts, and caregiver reports. By 

analyzing linguistic features, such as sentence structure, word usage, and speech rhythm, ML models can 

help identify communication impairments that may not be immediately apparent in clinical settings. 

These tools offer the potential for early, non-invasive screening, even in pre-verbal children, which could 

lead to earlier diagnoses and interventions. Supervised machine learning algorithms, such as support 

vector machines (SVM), random forests, and neural networks, have been commonly used in ASD 

diagnosis, particularly for classification tasks. These models require labeled data, where each instance 

(e.g., an MRI scan or behavioral assessment) is associated with a known diagnosis. By training on these 

labeled datasets, the models can learn to differentiate between individuals with ASD and those with 

typical development. However, unsupervised learning methods are also being explored in ASD research. 

Techniques like clustering and dimensionality reduction allow for the discovery of hidden patterns and 

subtypes of ASD without the need for pre-labeled data. These methods are particularly useful for 

identifying unique phenotypic presentations of ASD, which can help tailor interventions to specific 
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subgroups of individuals. ML has also been used to predict the long-term developmental trajectories of 

individuals with ASD. By analyzing early behavioral and clinical data, machine learning models can 

predict future outcomes, such as language development, social skills, and adaptive functioning. This 

predictive capability is crucial for creating personalized treatment plans that can be adjusted as the child 

develops, ensuring that interventions are as effective as possible. Moreover, by identifying at-risk 

individuals early, these models enable clinicians to intervene before more severe challenges arise, 

potentially improving quality of life and developmental outcomes. Despite the significant promise of ML 

in ASD diagnosis and treatment, several challenges remain. One of the primary concerns is the need for 

high-quality, well-annotated datasets to train ML models effectively. In particular, neuroimaging data and 

behavioral assessments often suffer from small sample sizes, which can limit the generalizability of the 

models. Additionally, the "black-box" nature of many ML algorithms, especially deep learning models, 

raises concerns about interpretability. Clinicians need to understand how these models make decisions to 

trust and incorporate them into their practice. Efforts are underway to develop more explainable AI 

models that provide transparent, understandable reasoning behind their predictions, which will help 

address this issue. In conclusion, machine learning has the potential to revolutionize the diagnosis and 

treatment of ASD by offering objective, scalable, and personalized tools for clinicians. By integrating 

various data sources such as neuroimaging, genetic profiles, and behavioral data, ML models can uncover 

previously hidden patterns, improve early detection, and enable more effective interventions.  

 

 

 

                                    

Figure 1.3: Working of a Generic Autism Spectrum Disorder Diagnosis Framework 
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This thesis aims to contribute to the growing body of work in this area by developing a machine learning-

based framework that integrates multimodal data to enhance ASD diagnosis, while also ensuring that the 

resulting models are interpretable and clinically useful. 

 

1.5. Motivation of Study 

The early detection and diagnosis of Autism Spectrum Disorder (ASD) are critical in shaping the 

developmental trajectory and improving the quality of life for affected individuals. ASD is a 

neurodevelopmental condition that impacts social interaction, communication, and behavior, with a rising 

global prevalence. The ability to detect ASD at an early stage significantly enhances the effectiveness of 

intervention programs, which can help mitigate the challenges faced by individuals and their families. 

Given the complexity and variability in the presentation of ASD, early and accurate diagnosis remains a 

challenge within the medical field. For ASD detection, the use of Artificial Intelligence (AI) holds 

immense promise. Traditional diagnostic methods for ASD typically rely on behavioral assessments and 

expert evaluations, which can be subjective and resource-intensive. The emergence of AI offers an 

opportunity to provide objective, reliable, and scalable tools to complement or enhance these methods. 

Machine learning (ML) and deep learning (DL) techniques can analyze vast amounts of multimodal data 

from clinical assessments to brain imaging and behavioral data—identifying patterns that may not be 

immediately apparent to clinicians. Such AI-driven tools can facilitate earlier diagnosis and personalized 

treatment plans, ensuring better outcomes for individuals with ASD. The challenge lies in developing 

accurate, interpretable, and generalizable AI models capable of diagnosing ASD across diverse 

populations and age groups. The complexities associated with ASD, including varying symptom severity, 

co-occurring conditions, and individual differences, make it a difficult disorder to diagnose. Moreover, 

the current reliance on limited datasets and the lack of comprehensive, multimodal data further 

complicate the development of robust diagnostic models. Therefore, the motivation for this study is to 

address these challenges by leveraging AI techniques to analyze diverse datasets that include clinical data, 

neuroimaging, and behavioral data. By integrating these multimodal sources, this research aims to 

enhance the accuracy, interpretability, and generalizability of ASD detection frameworks. The increasing 

availability of large-scale, publicly accessible datasets, such as the ABIDE (Autism Brain Imaging Data 

Exchange) dataset, has further fueled the development of AI-driven diagnostic models. These datasets 

provide a rich source of information that can be used to train machine learning models capable of 

identifying subtle differences between individuals with ASD and those without, thus improving 

diagnostic accuracy. However, despite the growing body of research, the challenge remains to develop AI 

systems that not only excel in accuracy but also ensure that the results are clinically relevant and 

interpretable for healthcare professionals. As the prevalence of ASD continues to rise globally, there is an 
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urgent need to implement scalable, cost-effective diagnostic solutions. AI has the potential to 

revolutionize the way ASD is diagnosed and monitored by offering tools that can be deployed in a variety 

of settings, from hospitals to remote clinics. The goal of this study is to contribute to this transformation 

by developing a novel AI-based ASD detection framework that integrates multimodal data sources, 

addresses current diagnostic challenges, and improves accessibility to diagnostic resources for individuals 

worldwide. By exploring the integration of AI with clinical and behavioral data, this research aims to 

enhance the precision and timeliness of ASD diagnosis, ultimately leading to better outcomes for 

individuals affected by this disorder. 

 

1.6. Research Objectives 

The primary aim of this research is to try to overcome restrictions and build novel and innovative 

methods for inspecting technology-driven techniques. In order to accomplish this aim, the following 

Research Objectives (ROs) have been established:   

For finding the solution to the above sub-queries, the following Research Objectives (ROs) are finalized: 

Research Objective 1: To perform a systematic literature review on autism spectrum disorder. 

Research Objective 2: To develop an intelligent autism spectrum disorder diagnosis model using deep 

learning with computational intelligence techniques.  

Research Objective 3: To design a multi-modal autism spectrum disorder detection framework  

Research Objective 4: To perform a comparative analysis of the proposed work with the existing 

techniques. 

The detailed description of the identified research objectives is as follows:  

Research Objective 1: This objective aims to build a comprehensive understanding of the current state of 

research on Autism Spectrum Disorder (ASD). A systematic literature review (SLR) involves analyzing 

and synthesizing existing studies on ASD, focusing on key areas such as diagnostic methods, challenges 

in early detection, the use of artificial intelligence (AI) in healthcare, and multi-modal approaches for 

ASD diagnosis. The review identifies gaps in existing methodologies and highlights the potential for 

applying deep learning (DL) and computational intelligence (CI) techniques. The findings serve as a 

foundation for proposing novel frameworks and models for improved ASD diagnosis. 

 

Research Objective 2: This objective focuses on creating a robust and accurate diagnostic model that 

leverages advanced DL architectures integrated with CI techniques. The model aims to address challenges 

such as overfitting, generalization, interpretability, and computational efficiency. Techniques such as 

feature optimization (e.g., White Shark Optimization, Bat-PSO) and classifiers (e.g., Bi-LSTM, CNN) are 

employed to enhance model performance.  
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Research Objective 3:  This objective involves developing a multi-modal framework that integrates 

diverse data modalities, such as clinical data, brain MRI scans, and meta-features, for a comprehensive 

ASD diagnosis. The framework combines vision transformers and LSTM-based architectures for 

effectively processing imaging and non-imaging data. A novel fusion mechanism, such as channel and 

spatial attention-based CBAC, ensures seamless integration of multi-modal inputs. This approach not 

only improves the accuracy of ASD detection but also addresses the complexities associated with 

analyzing heterogeneous datasets, offering a holistic and scalable solution for real-world applications. 

 

Research Objective 4: The final objective ensures a thorough evaluation of the developed models and 

frameworks by comparing them with existing state-of-the-art methods. The comparative analysis includes 

benchmarking performance metrics, conducting ablation studies, and employing rigorous cross-validation 

techniques such as leave-one-dataset-out (LODO) and leave-one-site-out (LOSO). Additionally, the 

analysis highlights the advantages of the proposed methods in terms of accuracy, computational 

efficiency, and generalization capabilities. This comprehensive evaluation demonstrates the contribution 

of the research to advancing ASD diagnosis and underscores its potential for clinical implementation. 

In this context, for fulfilling the requirement of ROs, Table 1.1 demonstrates the mapping among ROs, 

and publications. 

Table 1.2 Aligning of Research Objectives, and Publications 

Research Objectives List of Publication 

RO1. To perform a systematic literature 

review on autism spectrum disorder 

 

✓ Machine Learning Techniques for Autism Spectrum 

Disorder: current trends and future directions [Published] 

 

✓ Bio-Inspired Techniques in Autism Spectrum Disorder: 

Comprehensive Survey and Future Trajectories. 

[Submitted] 

 

RO2. To develop an intelligent autism 

spectrum disorder diagnosis model using 

deep learning with computational 

intelligence techniques  

✓ AFF-BPL: An adaptive feature fusion technique for the 

diagnosis of autism spectrum disorder using Bat-PSO-

LSTM-based framework. [Published] 

 

✓ WS-BiTM: Integrating White Shark Optimization with Bi-

LSTM for Enhanced Autism Spectrum Disorder Diagnosis. 
[Published] 

 

✓ S/SD-ASD: Self-Supervised and Self-Distillation Learning 

Approach for Autism Spectrum Disorder Classification 

Using Facial Images [Under Review] 

 

✓ ASD-CEVT: Convolutional Enhanced Vision Transformer 

Architecture for the Diagnosis of Autism Spectrum Disorder 

[Under Review] 
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RO3. To design a multi-modal autism 

spectrum disorder detection framework  

 

✓ MCBERT: A Multi-Modal Framework for the Diagnosis of 

Autism Spectrum Disorder [Published]  

 

✓ LSTVision: A Multi-Modal Framework for the Diagnosis of 

Autism Spectrum Disorder utilizing LSTM and Vision 

Transformer [Published]  

RO4. To perform a comparative analysis of 

the proposed work with the existing 

techniques 

✓ S/SD-ASD: Self-Supervised and Self-Distillation Learning 

Approach for Autism Spectrum Disorder Classification 

Using Facial Images [Under Review] 

 

✓ ASD-CEVT: Convolutional Enhanced Vision Transformer 

Architecture for the Diagnosis of Autism Spectrum Disorder 

[Under Review] 

 

 

1.7. Outline of the Thesis   

The thesis consists of six chapters describing the entire study in a very concise and precise way. Each 

chapter is summarised below: 

 

Chapter 2: This chapter presents an extensive review of evolutionary and deep learning techniques 

applied to ASD diagnosis. It covers machine learning, multi-modality approaches, and self-supervised 

learning-based methods. The discussion identifies research gaps, highlights limitations in existing 

methodologies, and sets the foundation for the proposed frameworks. The chapter ends with a summary 

of the key findings from the literature. 

 

Chapter 3: This chapter describes the methodologies used for ASD classification, including Particle 

Swarm Optimization, Bat Algorithm, and Adaptive Feature Fusion. It introduces the WS-BiTM 

framework, detailing its components such as White Shark Optimization, neural networks, and Bi-LSTM. 

The chapter discusses data preprocessing, feature selection, and performance evaluation. Experimental 

results of AFF-BPL and WS-BiTM are analyzed, showcasing their efficacy in ASD diagnosis. 

 

Chapter 4: This chapter proposes a multi-modality framework combining CNNs for image analysis and 

MCBERT for meta-features. It explains components like Multi-Head CNN, CBAC, and BERT, along 

with preprocessing and classification modules. Experiments demonstrate performance through LOSO 

tests, comparison with existing works, and ablation studies. Computational complexity and detailed 

discussions provide insights into the proposed approach’s effectiveness. 

 

Chapter 5: This chapter explores various deep learning architectures such as VGG-16, AlexNet, ResNet, 

and Vision Transformer. It introduces the proposed ASD_CEVT framework, detailing its design and 
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application. Experiments and evaluations measure the framework’s performance and compare it with 

baseline models. A discussion on the results highlights its practical implications in ASD diagnosis. 

 

Chapter 6: This chapter focuses on self-supervised learning (SSL) and knowledge distillation (KD) 

techniques for ASD diagnosis. It introduces the use of facial image datasets and advanced architectures 

like transformers and masked autoencoders. The chapter discusses experimental setups, result 

visualization, and the implications of SSL and self-distillation in ASD research. A detailed analysis 

emphasizes the potential of these approaches. 

 

Chapter 7: The final chapter summarizes the research findings and evaluates the limitations of the work. 

It provides a roadmap for future research directions, suggesting enhancements in AI-based ASD 

diagnostic methods. Potential advancements include integrating emerging technologies, improving 

computational efficiency, and extending applications to diverse datasets and populations.  

  

1.8. Chapter Summary  

This chapter provides an overview of autism diagnosis, emphasizing the role of artificial intelligence 

techniques in enhancing diagnostic accuracy. It discusses the integration of multi-modal data, such as 

clinical and imaging data, in improving the performance of ASD detection systems. The chapter outlines 

the content and description of each subsequent chapter, highlighting unique concepts and ideas that align 

with the title and objectives of the thesis. Additionally, it briefly explores autism diagnosis, machine/deep 

learning methodologies, and publicly available data for ASD detection. The objectives, scope, and 

motivation for this research are also presented in detail. 
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Chapter 2 METHODICAL LITERATURE REVIEW 
 

This section explores the state-of-the-art advancements in autism spectrum disorder (ASD).  After 

carefully reviewing the latest and most relevant research, we have identified a group of studies that share 

common motivations while offering distinct perspectives. This discussion seeks to highlight these works, 

providing a detailed overview before presenting our proposed methodology. In the last decade, the 

effectiveness of Deep Learning (DL) and Machine Learning (ML) approaches in diagnosing autism 

spectrum disorder has been clearly established. A summary of these findings is concisely presented in the 

Tables below, which offers a comprehensive overview of the existing literature that not only aligns with 

similar motivations but also varies in its applications.   

 

2.1. Evolutionary and Deep Learning-based ASD Diagnosis works 

Table 2.1 shows the literature on deep learning and evolutionary strategies for autism spectrum disorder 

(ASD) diagnosis demonstrates diverse approaches, focusing on different datasets and optimization 

techniques. Prasad et al. employed a hybrid sewing training optimization (HSTO) with ZFNet on the 

ABIDE dataset, achieving a high accuracy of 95.7%, though limited dataset diversity and small sample 

size hindered generalizability. Similarly, Thanarajan et al. utilized a chaotic butterfly optimizer with 

LSTM on eye-tracking data, obtaining remarkable accuracy (99.29%) but suggested further optimization 

and hybrid techniques for improvement. Loganathan et al. achieved comparable performance using Bi-

GRU and chaotic optimization with EEG signals but faced challenges related to computational 

complexity and generalizability. For optimization-focused approaches, Vidyadhari et al. leveraged a 

fractional social driving training optimizer with a deep quantum neural network on ABIDE, achieving 

good sensitivity (0.96) but limited interpretability. Kumar and Jayaraj applied resilient fish swarm 

optimization with CNN and zealous particle swarm optimization with neural networks for ASD 

classification, noting computational complexities and suboptimal accuracy (77.11%-92.9%). Bhandage et 

al. used the Adam war strategy with a deep belief network on ABIDE datasets, achieving high specificity 

(0.935) but highlighted the need for improved accuracy. Some studies incorporated advanced techniques, 

such as Almars et al., who utilized transfer learning and the gorilla troops framework on autistic facial 

image datasets, reporting promising results with DenseNet169 but lacking clinical validation. Sree et al. 

combined jellyfish search and bacterial foraging optimization with gated recurrent units, outperforming 

existing algorithms but with room for architectural enhancement. Kadry et al. employed whale 

optimization for MRI slice classification, achieving 98.5% validation accuracy but emphasized the need 

for broader algorithmic inclusion. Finally, Anurekha and Geetha addressed gene selection for robust 

feature extraction using deep neural networks, achieving stability in feature selection but lacking 
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interpretability. Sriramakrishnan et al. implemented pelican and remora optimization algorithms with a 

deep CNN on ABIDE, attaining a high accuracy of 95.2% but recommending additional metrics for 

healthcare validation. 

Overall, while significant progress has been made in leveraging optimization techniques and deep 

learning for ASD diagnosis, common challenges include limited dataset diversity, computational 

complexity, lack of interpretability, and insufficient clinical validation, highlighting areas for further 

research and development. 

 

Table 2.1 Literature survey performed for the diagnosis of ASD using evolutionary algorithms in 

association with machine learning/deep learning 

Author Aim Model Dataset  Evolutionary 

Technique 

ML/DL Results Limitations 

Prasad et al. [8] ASD 

detection 

using HSTO 

HSTO_ZFNet ABIDE Hybrid 

sewing 

training 

optimization 

(HSTO) 

Deep 

learning 

Acc: 95.7%; 

TNR: 92.6%; 

TPR: 93.7%; 

FNR: 68.7%; 

FPR: 75.9% 

Limited dataset 

diversity; small 

sample size; lack 

of 

generalizability 

and 

interpretability 

Thanarajan et 

al.  [9] 

ASD 

diagnosis 

based on 

eye-tracking 

data 

ETASD_CBODL Eye 

tracking 

data 

Chaotic 

butterfly 

optimizer 

LSTM Acc: 

99.29%; 

Specificity: 

99.29% 

Sensitivity: 

99.29%; 

Precision: 

98.78%; 

Hybrid 

techniques can 

be employed; 

further 

optimization can 

be done 

Loganathan et 

al.  [10] 

ASD 

classification 

and 

detection 

using 

chaotic 

- EEG 

signals 

Chaotic 

optimization 

Bi-GRU Sensitivity: 

98%; 

F1: 98%; 

Acc: 98%; 

MCC: 99%; 

Precision: 

Limited 

generalizability; 

computational 

complexity 
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optimization 

with Bi-

GRU 

99%  

Vidyadhari et 

al.  [11] 

ASD 

detection 

using 

optimization 

and deep 

learning 

FSDTBO-DQNN ABIDE Fractional 

social driving 

training-

based 

optimizer 

Deep 

quantum 

neural 

network 

Acc: 0.90; 

Specificity: 

0.94; 

Sensitivity: 

0.96 

Lack of 

interpretability; 

accuracy needs 

to be improved 

Kumar and 

Jayaraj [12] 

ASD 

classification 

using 

resilient fish 

swarm and 

CNN 

RFSO_ECNN ABIDE Resilient fish 

swarm 

optimization 

CNN Acc: 92.9; 

TN: 45.15; 

TP: 47.75%; 

FN: 3.14%; 

FP: 3.95%; 

F1: 93.08 

Computational 

complexity; 

Interpretability; 

Generalization 

to other imaging 

modalities 

Bhandage et al.  

[13] 

ASD 

classification 

via 

optimization 

and deep 

belief 

network 

AWSO_DBN ABIDE I 

and 

ABIDE II 

Adam war 

strategy 

Deep 

belief 

network 

Specificity: 

0.935; 

Acc: 0.924; 

Sensitivity: 

0.93  

 

Limited dataset; 

accuracy needs 

to be improved 

Anurekha and 

Geetha [14] 

Gene 

selection 

model to 

identify 

robust and 

stable gene 

subset in 

ASD 

IHEGS Six gene 

expression 

data 

Gene 

selection 

Deep 

neural 

network 

Provided 

stable results 

in terms of 

feature 

selection and 

accuracy 

Lack of 

interpretability 

Kumar and 

Jayaraj [15] 

ASD 

classification 

using 

ZPSO-RMLPNN ABIDE Zealous 

particle 

swarm 

Neural 

networks 

Acc: 77.11; 

TN: 37.52; 

TP: 39.58; 

Accuracy needs 

to be improved 
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threshold 

values to 

assess fMRI 

images 

optimization FN: 10.86; 

FP: 12.02; 

F1: 77.57; 

FMI: 77.57; 

MCC: 54.22 

Almars et al.  

[16] 

ASD 

detection 

using 

transfer 

learning and 

gorilla 

troops 

framework 

ASD2– TL * 

GTO 

Autistic 

facial 

image 

dataset, 

ASD 

screening  

Gorilla troop 

optimization 

Transfer 

learning 

DenseNet169 

outperforms 

the other 

employed 

techniques 

with a loss 

value of 

0.512 

Clinical aspects 

and 

interpretability 

of the model 

were not 

addressed 

Sree et al.  [17] ASD 

classification 

using deep 

learning and 

optimization 

techniques 

JSODL_ASDDC ASD 

screening 

dataset 

Jellyfish 

search 

optimization, 

Bacterial 

foraging 

optimization 

Gated 

recurrent 

unit  

The 

proposed 

technique 

outperforms 

the existing 

algorithms 

The  

performance of 

JSODL_ASDDC 

architecture can 

be enhanced 

Kadry et al.  

[18] 

Diagnosing 

normal/ASD 

MRI slices 

with 

improved 

accuracy 

- 

 

MRI 

slices 

Whale 

optimization 

Deep 

learning 

Validation 

result: 98.5 

Results can be 

generalized by 

incorporating 

more algorithms 

Sriramakrishnan 

et al. [19] 

ASD 

detection 

using 

optimization 

techniques 

and deep 

learning 

CPROA ABIDE Pelican and 

Remora 

optimization 

algorithm 

(POA and 

ROA) 

Deep 

CNN 

Acc: 0.952; 

Recall: 

0.958; 

F1: 0.963 

Clinical 

validation; lack 

of 

interpretability; 

other evaluation 

metrics should 

also be 

considered while 
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working in the 

healthcare 

domain 

 

Table 2.2 also shows the integration of evolutionary and deep/machine learning techniques in ASD 

diagnosis and related fields has significantly advanced the accuracy and efficiency of machine learning 

(ML) and deep learning (DL) models, yet challenges remain in terms of generalizability, interpretability, 

and computational cost. Arumugam and Saravanan employed a combination of ShuffleNet_v2, sparse 

autoencoders, WSO, and gated GRU for skin cancer classification, achieving improved outcomes, though 

statistical validations were absent. Singh et al. utilized WSO with DenseNet and U-Net for tuberculosis 

detection, obtaining 94.7% accuracy but identified the need for broader datasets. Hammouri et al. 

leveraged binary hybrid-sine-cosine WSO for feature selection across 23 medical datasets, achieving 

~90% accuracy, indicating room for improvement. In intrusion detection, Alawad et al. combined WSO 

and K-means algorithms, noting limitations in navigating the search space. Focusing on ASD, Bhandage 

et al. used Adam War Strategy Optimization with Deep Belief Networks, achieving 92% accuracy but 

highlighting the potential for generalizing results across datasets. Several studies utilized ensemble and 

hybrid models. Kang et al. implemented PCA, autoencoders, and LSTM-Conv on ABIDE data for ASD 

detection, achieving 92.9% accuracy, with suggestions to explore additional feature selection techniques. 

Tang et al. introduced a two-stage adversarial deep learning model, achieving 80% accuracy, but 

emphasized the need for dataset generalization. Similarly, Loganathan et al. achieved superior accuracy 

(99.5%) using chaotic optimization and Bi-GRU on EEG signals. Various approaches were explored by 

Ahmed et al., who achieved 95% accuracy in detecting ASD through fine-tuning on facial images but 

called for nature-inspired feature selection. Han et al. designed a multimodal model based on EEG and 

eye-tracking data, achieving 95.56% accuracy despite high computational costs. Ali et al. and Pavithra 

and Jayanti employed bidirectional LSTM and PSO with IANFIS, respectively, achieving accuracies 

exceeding 97%, with suggestions for generalization and exploring bio-inspired methods. For graph-based 

techniques, Kwon et al. utilized a sparse hierarchical graph framework for brain connectivity in ABIDE, 

achieving a mean absolute error of 0.96 but lacking parameter normalization. Gaspar et al. achieved 

98.8% accuracy on gaze-tracking images using KELM optimized by the Giza pyramid algorithm, but the 

dataset size was limited. Earlier works, such as Li et al., incorporated clonal selection and evolutionary 

algorithms for MRI segmentation, but high computation times and low accuracy (84%) were noted. 

Meanwhile, Sadeghian et al. employed genetic algorithms with KNN for fMRI-based ASD diagnosis, 

reporting low accuracy (62.59%), and suggested exploring DL classifiers. In summary, evolutionary 
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techniques have demonstrated potential in enhancing ASD diagnosis and related applications, yet the key 

challenges include improving accuracy, reducing computational complexity, addressing interpretability 

issues, and validating results across diverse datasets. Future work can focus on integrating advanced bio-

inspired methods and leveraging multimodal approaches for robust outcomes. 

 

Table 2.2 A literature survey performed for autism spectrum disorder incorporating various evolutionary 

techniques 

Author, Year Aim Dataset Techniques  Results  Limitations/Future work 

Arumugam 

and 

Saravanan 

[20], 2024 

Automated skin 

cancer 

classification 

(multi-class) 

ISIC 2017;  

HAM1000 

Shuffle_Net_v2;  

Sparse AE; WSO; 

Gated GRU  

Improved 

detection 

outcomes on the 

employed datasets 

Lack of interpretability; No 

statistical test performed 

Singh et al. 

[21], 2024 

Tuberculosis 

severity 

detection 

Sputum 

images 

Dense_net; WSO; 

MRO; U_net; 

Adaptive bilateral 

filter 

Acc: 94.7%; 

TNR: 90.6%; 

PPV: 89.4%; 

TPR: 93.3%; 

NPV: 88% 

Need to incorporate more 

datasets 

Hammouri et 

al. [22], 2024 

Feature 

selection via 

WSO  

23 Medical 

datasets 

Binary hybrid-

sine-cosine WSO 

Accuracy ~ 90% Performance can be 

improved 

Alawad et al. 

[23], 2023 

Intrusion 

detection system 

via WSO 

12 IoT and 

IDS 

datasets 

WSO; K-means 

algorithms 

The developed 

architecture 

performs fairly 

well on all 

metrics 

Inability of the model to 

connect with the search 

space 

Bhandage et 

al. [13], 2023 

ASD 

classification via 

AWSO + DBN 

ABIDE I, 

ABIDE II 

DBN+ Adam war 

strategy algorithm 

was used  

Acc: 92%, 

Specificity: 

93.5%, 

Sensitivity: 93% 

Accuracy can be improved; 

results can be generalized 

on more datasets 

Talukdar et 

al.[24], 2023 

Analysis of 

ASD via ML 

Techniques 

ASD 

screening 

dataset 

NB, LR, SVM, 

RF 

The highest 

accuracy was 

achieved by RF 

(92.65%) 

No feature selection was 

performed; accuracy can be 

improved; deep learning 

methods need to be 
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explored 

Kang et 

al.[25], 2023 

Recognition of 

ASD via multi-

view ensemble 

learning 

ABIDE PCA+ Auto 

encoder + LSTM-

Conv 

Acc: 92.9% Accuracy can be improved; 

other feature selections can 

be explored 

Tang et 

al.[26], 2023 

ASD 

classification via 

adverisal deep 

learning (ADL) 

ABIDE Two-stage ADL 

model + sliding 

window concept 

Acc: 80%, 

Specificity: 80%, 

Sensitivity: 81% 

Accuracy can be improved; 

results can be generalized 

on more datasets 

Loganathan 

et al. [27], 

2023 

ASD detection 

and 

classification 

EEG 

signals 

Hybrid model; 

chaotic 

optimization + 

Bi-GRU 

Acc: 99.5% -  

Ahmed et al. 

[28], 2022 

Developed a 

feature detection 

system to find 

children with 

ASD 

Facial 

image 

dataset 

Worked on 

InceptionV3, 

Xception, and 

Mobilenet models 

by performing 

fine-tuning on 

layers 

Achieved 

maximum 

accuracy of 95% 

Accuracy can be improved; 

feature selection via 

nature-inspired techniques 

can be explored 

Kwon et al.  

[29], 2022 

Developed a 

sparse 

hierarchical 

graph 

framework for 

brain 

connectivity  

ABIDE  Adopted graph-

deep learning 

model in order to 

predict ASD 

severity 

MAE score: 0.96 Normalization of 

parameters was not done 

Gaspar et al. 

[30], 2022 

Classification of 

ASD using 

optimized 

KELM 

Gaze 

tracking 

images 

KELM + Giza 

pyramid 

construction 

algorithm 

Acc: 98.8% Less number of data 

sample 

Ajmi N S et 

al. [1], 2022 

Reviewed ML 

techniques for 

       - Discussed various 

ML models + the 

Advised to use 

graph neural 

      - 
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ASD general strategy 

adopted for 

detecting ASD via 

ML 

network 

Han et al. 

[31], 2022 

Identification of 

ASD in children 

using a 

multimodal 

approach 

EEG and 

ET data 

Designed two-

step feature 

learning with a 

fusion model 

based on SDAE 

Achieved 

accuracy of 

95.56% 

The computational cost 

was high, accuracy needs 

to be improved  

Sadeghian et 

al. [32], 2021 

ASD diagnosis 

using genetic 

algorithm 

fMRI 

images 

GA + KNN Acc: 62.59% Small data size; low 

accuracy; deep learning-

based classifiers can be 

adopted 

Ali et al. 

[33], 2021 

Classification of 

ASD using 

LSTM 

EEG 

dataset 

Bidirectional 

LSTM 

Acc: 97.3% -  

Pavithra and 

Jayanti [34], 

2020 

Detection of 

ASD via 

IANFIS 

ISAA PSO + IANFIS Acc: 97% 

Sensitivity: 89% 

Results should be 

generalized on various 

datasets; other bio-inspired 

techniques can be explored 

Li et al. [35], 

2019 

Segmentation 

and function 

optimization of 

brain MRI 

MRI 

images 

Clonal section + 

differential 

evolution + 

estimation 

distribution 

algorithm 

Acc: 84% Low accuracy; high 

computation time 

 

2.2.  Deep/Machine Learning-based ASD Diagnosis works 

Table 2.3 has the literature survey on studies employing deep learning (DL) and machine learning (ML) 

strategies for autism spectrum disorder (ASD) detection and analysis highlighting significant 

advancements and limitations in the field. Umrani and Harshvadhanan (2024) utilized EEG-based 

datasets (DEAP and SEED-1V) with a deep CNN guided by an intelligent search optimizer, achieving 

accuracies of 95.83% and 96.93%, respectively. However, their study was constrained by a smaller 
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dataset. Similarly, Sandeep and Kumar (2024) applied Mediapipe and ResNeXt to detect pain in autistic 

children from facial expressions, achieving 93.83% accuracy, but emphasized the need for advanced 

image processing models and larger datasets. Mouatasim and Ikermane (2023) implemented a control 

subgradient algorithm (CSA) with DenseNet-121 for ASD diagnosis from facial images, achieving 91% 

accuracy, which requires further improvement. Kwon et al. (2022) adopted a sparse hierarchical graph 

framework with deep learning on the ABIDE dataset to predict ASD severity, reporting a Mean Absolute 

Error (MAE) of 0.96 but lacking parameter normalization. Moridian et al. (2022) reviewed 233 research 

papers, highlighting the need for larger, multimodal datasets for future ASD research. Wan et al. (2022) 

developed the FECTS system for emotion identification in Chinese autistic children, achieving 70.22% 

accuracy. However, the study was limited by a small, low-quality dataset focused solely on Chinese 

children. Zhang et al. (2022) employed a variational autoencoder to extract functional connectivity 

features from the ABIDE dataset, achieving 73.2% accuracy, while Chen et al. (2022) proposed the 

NEGAT method with node-edge features and adversarial training, achieving 74.7% accuracy, both studies 

underscoring the need for multimodal datasets. Pang et al. (2022) improved classification accuracy by 

4.47% using an optimized cascaded classifier for 50 rs-fMRI images but noted room for improvement in 

accuracy. Wang et al. (2022) proposed the MC-NFE technique for ASD detection, achieving an accuracy 

of 68.42% and suggesting the adoption of self-supervised techniques. Other notable works include Mason 

and Happe (2022), who used regression models for quality-of-life prediction, and Sharif and Khan (2021), 

who achieved 66% accuracy using the VGG16 model, highlighting the challenge of low accuracy in both 

studies. Earlier studies, such as those by Sherkatghanad et al. (2020), Chaitra et al. (2020), and Lu et al. 

(2020), explored CNN-based techniques, complex network frameworks, and genetic data combined with 

rs-fMRI, respectively. Despite achieving moderate accuracies, these studies emphasized the need for 

multimodal data integration and larger datasets. Wawer et al. (2020) achieved 95% accuracy using text 

data but faced limitations due to a small dataset. Finally, Pelleriti et al. (2020) called for more research on 

unsupervised ML with larger datasets, addressing the relatively limited focus on this area in existing 

studies. Overall, while the application of DL and ML has shown promise in ASD diagnosis and analysis, 

significant challenges remain, including small datasets, limited multimodal approaches, and the need for 

advanced feature extraction and optimization techniques. 

 

Table 2.3 A literature review was performed on the studies adopting deep learning/machine learning 

strategies for autism spectrum disorder 
Authors  Year Objective Dataset  Technique Results Limitations 

Umrani and 

Harshvadhana

2024 Anxiety 

detection in 

DEAP and 

SEED-1V 

Intelligent search 

optimizer relied on 

Accuracy on 

DEAP = 95.83%; 

Smaller data 

sample size 
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n [36]  autistic 

individuals 

(EEG-

based 

datasets) 

deep CNN  Accuracy on 

SEED-1V = 

96.93%; 

Sandeep and 

Kumar [37] 

2024 Pain detection in 

autistic children 

via facial 

expression 

Custom 

emotion 

image 

dataset 

Mediapipe and 

ResNeXt strategies 

Accuracy: 93.83% Data sample 

size is small, 

advance image 

processing 

models can be 

employed 

Mouatasim 

and Ikermane 

[38] 

2023 Control 

subgradient 

algorithm (CSA) 

for ASD 

diagnosis 

Facial 

image 

dataset 

Applied CSA 

DenseNet-121 

CNN model 

Accuracy: 91% Accuracy can be 

improved 

Kwon et al. 

[29] 
 

2022 Developed a 

sparse 

hierarchical 

graph 

framework for 

brain 

connectivity  

ABIDE 

dataset 

Adopted graph-

deep learning 

model in order to 

predict ASD 

severity 

Achieved MAE 

score of 0.96 

Normalization 

of parameters 

was not done 

Moridian et al. 

[39] 

2022 Reviewed 

automated ASD 

detection via AI 

Reviewed 

233 

research 

papers 

Discussed and 

compared various 

existing employed 

techniques in detail  

Highlighted the 

need for larger 

datasets and to 

adopt multi-modal 

datasets for future 

research 

         - 

Wan et al. [40] 
 

2022 Developed a 

framework for 

emotion 

identification of 

Chinese children 

suffering from 

Dataset of 

10 Chinese 

autistic 

children 

aged 5-10 

years 

Built a FECTS 

system based on 

different features 

such as fear, happy 

which were stored 

in a cloud-based 

Achieved an 

accuracy of 

70.22% 

The dataset was 

too small and of 

low quality, low 

recognition rate 

for some 

parameters, and 
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ASD  evaluation system 

to analyze features 

for future  

data was from 

only Chinese 

children 

Zhang et al. 

[41] 

2022 Built a novel 

feature selection 

strategy via 

variational 

autoencoder 

ABIDE 

dataset 

Extracted brain 

functional 

connectivity by 

utilizing MLP 

trained on 

variational 

autoencoder 

Achieved accuracy 

of 73.2% 

Accuracy needs 

to be improved; 

a multimodal 

dataset can be 

adopted 

Chen et al. 

[42] 
 

2022 ASD 

identification 

using graph 

neural network 

ABIDE I Proposed a novel 

NEGAT method 

utilizing node-edge 

features, 

adversarial training 

with multimodal 

MRI data 

Gained accuracy of 

74.7% 

Accuracy needs 

to be improved;  

can integrate 

phenotypic 

information 

Pang et al. 

[43] 
 

2022 Developed 

computer-based 

diagnosis for 

brain disease  

50 rs-fMRI 

images 

from 

ABIDE 

Worked on 

optimized cascaded 

classifier through 

sample distribution 

and improved 

feature 

representation  

Classification 

accuracy was 

enhanced by 4.47% 

Accuracy needs 

to be improved 

Wang et al. 

[44] 

2022 Proposed MC-

NFE technique 

for ASD 

detection using 

fMRI 

ABIDE 

dataset 

Initially classified 

ASD patients and 

healthy individuals 

then extracted 

features followed 

by linear SVM 

Gained an accuracy 

of 68.42% 

Self-supervised 

techniques can 

be adopted to 

decrease the 

demand of 

category labels 

Mason and 

Happe [45] 

2022 Predicting QoL 

through autistic 

traits 

Data of 133 

participants  

(42 autistic; 

Estimated 

regression models 

and conducted an 

Only some 

parameters adopted 

by them influence 

Small sample 

size  
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91 normal) exploratory 

analysis 

the QoL 

Sharif and 

Khan [46] 

2021 Developed 

novel ML ASD 

detection 

framework 

ABIDE I Used VGG16 

model with 16 

layers, softmax 

function and Adam 

optimizer 

Achieved accuracy 

of 66% 

Low accuracy 

Jee et al.  

[47] 

2021 Detection of 

ASD via 

orthogonal 

decomposition 

& Pearson 

correlation 

Q-Chat Worked on 

improving training 

& time accuracy 

via dimensionality 

reduction and ML 

classifiers such as 

Linear Regress, 

KNN, NB, SVM, 

DT, RF and ANN 

LR achieved 

accuracy of 100% 

and rest achieved 

accuracy of nearly 

92% 

DL techniques 

can also be 

explored 

Sherkatghanad 

et al. [48] 

2020 Development of 

automated ASD 

detection 

technique 

fMRI data 

from 

ABIDE 

Adopted CNN 

technique to 

classify autistic and 

typical control 

group and also 

tested the 

performance of 

their model using 

SVM, KNN, and 

RF classifiers 

Achieved accuracy 

of 70.22% 

Low test 

accuracy, higher 

time complexity  

Chaitra et al. 

[49] 

2020 ASD prediction 

via complex 

network ML 

framework 

ABIDE Investigated brain 

network features, 

RCE-SVM was 

adopted 

Achieved highest 

accuracy of 70.1% 

Low accuracy  

Wawer et al. 

[50] 

2020 Explored the 

limits of 

automatic means 

Data of 74 

individuals 

of ASD and 

Worked on Bag-of-

words, dictionary-

based methods with 

Achieved accuracy 

of 95% 

Lower data 

sample 
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of ASD 

detection from 

textual data 

94 

individuals 

of 

schizophre

nia  

machine learning. 

Used DL methods 

for inference and 

text representation 

Pelleriti et al. 

[51] 

2020 Explored the 

applications of 

unsupervised 

ML for ASD 

Reviewed 

43 research 

studies 

Discussed existing 

studies and 

techniques adopted 

for ASD using 

unsupervised ML 

Highlighted the 

need of more 

research using 

unsupervised ML 

with a larger ASD 

dataset 

Less research 

studies were 

explored 

Lu et al. [52] 2020 Classification of 

ASD based on 

genetic data and 

rs-fMRI 

Data of 71 

individuals 

taken from 

NDAR 

T-test used for 

feature reduction, 

SVM-RFE for 

optimized feature 

selection 

Achieved accuracy 

of 83.6% 

Accuracy needs 

to be improved; 

no integration of 

multimodal 

data; lower 

sample size 

 

2.3.  Multi-Modal-based ASD Diagnosis works 

Table 2.4 represents the literature on multimodal architectures for the diagnosis of autism spectrum 

disorder (ASD), other medical conditions, and domains such as behavior analysis highlights a diverse 

range of methodologies and data modalities. In medical imaging (M1), structural and functional MRI 

(sMRI, fMRI) dominate, often combined with meta-features (M3) such as clinical data, to enhance the 

diagnostic accuracy for ASD and other disorders. For instance, Han et al. (2022) utilized EEG and eye-

tracking data to design a stacked denoising encoder for ASD diagnosis, achieving an accuracy of 93.56%. 

Similarly, Du et al. (2022) focused on functional and structural connectivity measures to classify ASD 

and schizophrenia, achieving 83.08% accuracy. However, these studies are limited by the lack of 

multimodal feature fusion and reliance on small datasets. Several studies have employed videos (M4) to 

analyze behavioral traits, such as Song et al. (2023), who proposed a multimodal method to detect 

responses to a child’s name using pose tracking and head pose estimation. Despite achieving ~93.3% 

accuracy, the approach is constrained by small sample sizes and sensitivity to reaction speed. In speech-

related tasks, Passos et al. (2023) integrated graph neural networks with canonical correlation analysis to 

improve feature learning for energy-efficient speech enhancement, although the study lacked 
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quantification of energy savings. Multimodal techniques leveraging deep learning architectures, such as 

transformers and attention mechanisms, have gained prominence. For example, Le et al. (2023) developed 

a multimodal emotion recognition system combining CNN, ALBERT, and multi-head attention, 

achieving 85.9% accuracy. Similarly, Herath et al. (2024) proposed an ensemble classifier combining 

Inception V3, MobileNet, DenseNet, and ResNet50 for ASD diagnosis across ABIDE datasets, achieving 

97.82% accuracy. However, these techniques often face challenges related to high computational costs, 

lack of generalization, and issues with interpretability. In Alzheimer’s diagnosis, multimodal approaches 

have incorporated MRI, PET, and cerebrospinal fluid (CSF) data. Sheng et al. (2024) developed a hybrid 

framework combining Harris Hawks optimization with kernel extreme learning, achieving an accuracy of 

99.2%. However, computational intensity and overfitting remain significant challenges. Similarly, Yu et 

al. (2024) employed a transformer-based framework with an AUC of 0.993 but reported limitations in 

validation and generalizability. Other innovative applications include behavior change prediction, 

drowsiness detection, and aggression detection in surveillance. For instance, Chan et al. (2023) achieved 

98% accuracy in behavior change prediction using a combination of sampling techniques, SVM, and 

feature engineering, though the binary prediction target limits broader applicability. Meanwhile, Jaafar 

and Lachiri (2023) used 3D CNNs to detect aggression in surveillance videos, achieving a weighted 

average accuracy of 86.35%, but the results could not generalize across diverse datasets. Despite 

significant advancements, multimodal approaches face several limitations. Small and imbalanced 

datasets, lack of generalizability, and high computational costs are recurring issues. Future work should 

focus on integrating diverse modalities, exploring optimization techniques, and enhancing explainability 

to ensure the scalability and robustness of these models across broader applications. 

Table 2.4 A literature survey performed on the multimodal architectures developed for the diagnosis of 

ASD, various diseases (Medical), and other domains using machine learning/deep learning, where, M1: 

Image; M2: Text; M3: Meta-features/Sensor data; M4: Videos; M5: Audio; M6: Signals,  denotes different 

data modalities 

Reference Objective Techniques Included Modalities Target 

Domain 

Outcomes Limitations/ 

Future work M1 M2 M3 M4 M5 M6 

[53] 

 

Multimodal 

ASD 

diagnosis 

architecture 

Weight 

learning 

network; 

Graph CNN; 

DeepGCN 

         Medical Acc: 77.27%; 

Pre:77.7%; 

Recall: 

80.96% 

Small data 

size; lack of 

interpretability

; imbalanced 

gender ratio 

 

(ABIDE I) 

[54] Building 

multimodal 

-        Medical Consists of 

1315 videos 

 

-   
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dataset for 

autism 

analysis 

for social and 

movement 

behavior 

analysis 

[55] 

 

Multimodal 

technique 

based on 

response 

towards name 

behavior of 

children 

suffering 

from autism 

Human pose 

tracking; 

Automatic 

name 

detection; 

Head pose 

estimation 

      Medical Acc: ~93.3% Small dataset; 

limited 

generalizabilit

y; dependency 

on body 

movements; 

sensitivity to 

reaction speed 

 

Dataset of 30 participants  

[56] Multimodal 

drowsiness 

detection 

architecture 

through 

explainable 

machine 

learning 

KNN; SVM; 

RF; SHAP; 

PDA 

      Medical Acc: 80.1%; 

Sen: 70.35; 

Spec: 82.2% 

Small dataset; 

limited 

number of 

features; Deep 

learning 

techniques can 

be explored 

(EEG, ECG, EOG) 

[57] 

 

Multimodal 

classification 

technique to 

analyze the 

uniqueness of 

ASD and 

Schizophrenia 

Functional 

and structural 

connectivity 

measures 

      Medical Acc: 83.08% Lack of 

assessment of 

symptoms; 

limited neuro-

imaging 

measures; 

model-level 

fusion only 

(fMRI, sMRI) 

[58] Behavior 

change 

prediction in 

students via 

Feature 

engineering; 

sampling 

techniques; 

      Behavior 

change 

Acc: 98%; 

Precision: 97% 

Prediction 

target is 

binary; costly 

setup 
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multimodal 

architecture 

SVM; NB; 

DT; RF; 

KNN; MLP; 

XGboost 

 

[59] Survival 

prediction via 

multimodal 

graph-based 

framework 

Region-based 

via 

multimodal 

module; 

Embedding 

module; deep 

MM graph-

based 

network 

 

      Medical Prediction 

performance: 

METABRIC = 

0.7484; 

BASEL = 

0.7479 

Lack of 

interpretability

; spatial 

simplification 

impact; less 

generalization 

to new data 

(METABRIC; BASEL dataset) 

[60] Multimodal 

architecture 

for energy-

efficient 

speech 

enhancement 

Self-

supervised 

framework 

integrating 

graph NN 

and canonical 

correlation 

analysis 

(CCA) 

      Speech 

enhancem

ent 

Proposed 

framework 

ensures 

improved 

feature 

learning 

Did not 

quantify the 

amount of 

energy saving; 

biologically 

realistic 

neuronal 

architecture 

can be 

developed 

(AV ChiMe3 dataset) 

[61] 

 

Multilabel 

and 

multimodal 

emotion 

recognition 

Feature 

extraction 

(CNN, 

ALBERT); 

multimodal 

fusion 

(transformers

); emotion-

level 

      Emotion 

recognitio

n 

The developed 

framework 

outperforms 

existing 

methods with 

an accuracy of 

85.9% 

High 

computational 

cost; time-

consuming; 

redundant 

frames in 

videos 

 

(IEMOCAP; CMU-MOSEI) 
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embedding 

(multi-head 

attention) 

[31] 

 

Proposed 

multimodal 

architecture 

for 

diagnosing 

ASD in 

children 

Stacked 

denoising 

encoder 

(SDAE) 

      Medical Acc: ~93.56%; 

Sen: ~92.50%; 

Spec: ~98.0% 

High 

computational 

cost; advanced 

NN algorithms 

can be 

explored  

(EEG, ET data of 90 

individuals) 

[62] Detection of 

aggression in 

surveillance 

Multiple 

deep neural 

networks; 

3D-CNN 

       

  

 Medical Unweighted 

average acc = 

85.66%;  

Weighted 

average acc = 

86.35% 

Results cannot 

be generalized 

on a huge 

dataset; 

the model 

cannot specify 

all aggressive 

situations 

(Dataset of aggression in 

trains) 

[63] Multimodal 

ASD 

identification 

Multimodal + 

multisite 

ensemble 

classifier 

(Inception 

V3; 

MobileNet, 

DensetNet, 

ResNet50) 

         Medical Best acc: 

97.82% 

(improvement 

of  3.25%) 

Other data 

modalities can 

be 

incorporated; 

more number 

of training 

images can be 

added 

(ABIDE-I and II) 

[64] Decision 

support 

system for 

ADHD 

Seed-based 

correlation; 

data 

augmentation

; CNN 

         Medical Acc: 82% Accuracy can 

be enhanced  

(Eye movement data + fMRI) 

[65] Classification EEG and         Medical Best acc: 94% Small dataset 
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of ASD using 

different 

modalities 

thermographi

c feature 

extraction; 

Naïve Bayes; 

neural net; 

logistic 

regression; 

random 

forest 

 

 

(ADOS-2) 

[66] Multimodal 

machine 

learning-

based 

Alzheimer 

diagnosis 

framework 

Extreme 

learning 

machine; 

entropy-

based 

polynomial 

function; 

attention 

mechanism 

         Medical Acc~ 98% Lack of 

generalizabilit

y; does not 

address the 

issue of 

missing data 

 

(ADNI) 

[67]  Multimodal 

transformer-

based 

framework 

for Alzheimer 

Transformers           Medical  AUC: 0.993 Lack of 

generalizabilit

y; lack of 

result 

validation 

 

(ADNI) 

[68] Multimodal 

hybrid 

framework 

for 

Alzheimer’s 

diagnosis 

Harris hawks 

optimization; 

kernel 

extreme 

learning 

       Medical  Acc: 99.2% Parameter 

sensitivity; 

computationall

y intensive; 

overfitting  

 

(ADNI: MRI + CSF + PET) 

[69]  Supervised 

and self-

supervised 

learning on 

Self-

attention; 

latent feature 

extraction; 

         Medical  The developed 

model 

performed 

significantly 

 

 

Imbalance in 

the data ratio; 

(CINEPS and COEPS datasets) 
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multimodal 

data 

cross-

modality 

feature 

learning  

well on 

various 

parameters 

more data 

modalities can 

be considered 

 

[70] Multimodal 

Alzheimer's 

disease 

diagnosis 

using brain 

images 

Pyramid 

attention 

strategy with 

GAN 

      Medical  Acc: 89.9% Small dataset; 

accuracy can 

be enhanced 
(ADNI dataset: MRI and PET 

images) 

[71] 

 

Proposed 

MedVill for 

Multimodal 

representation 

learning  

BERT; 

Multimodal 

attention 

strategy 

           Medical MedVill 

performed 

well against 

various 

considered 

techniques 

Scope on 

accuracy 

improvement; 

Need to work 

on diverse 

multi-view 

studies 

 

(MIMIC-CXR; Open-I; VQA-

RAD) 

[72]  

 

Multimodal 

tumor 

segmentation 

using a 

mathematical 

fuzzy 

framework 

Nakagami 

imaging; 

Fuzzy fusion; 

Segmentation 

         Medical Average dice 

score: 92.78% 

High number 

of training 

parameters 

 

(Two types of images: Binary 

segmented and FLAIR images) 

[73] 

 

Multimodal 

architecture 

for 

diagnosing 

ASD 

3D-ResNet; 

MLP 

           Medical Acc: 74%; 

Recall: 95%; 

F1: 0.805 

Limited 

amount of 

data; Low 

accuracy; 

overfitting 

issues; 

incorporate 

optimization 

techniques 
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with large 

dataset 

[42]  

 

Autism 

identification 

via 

adversarial-

graph 

learning 

networks 

Adversarial 

learning; 

Garph 

networks 

         Medical Accuracy: 

74.7%; 

Specificity: 

77.4% 

Accuracy 

needs to be 

enhanced; No 

incorporation 

of meta-

attributes 

 

(sMRI and fMRI) 

 

The literature on single-modality architectures for autism spectrum disorder (ASD) diagnosis explores 

various deep learning and machine learning techniques across different data types such as fMRI, sMRI, 

and facial images in Table 2.5. In functional MRI (fMRI), Elakkiya and Dejey (2024) proposed two 

models, MinAutiNet and AutiNet, achieving maximum accuracies of 88.89% and 77.78%, respectively. 

However, the lack of automatic feature extraction techniques limits their performance. Similarly, N. Li et 

al. (2024) introduced a multi-level joint learning network leveraging graph networks, achieving 81.5% 

accuracy, though the model's complexity and many parameters present significant challenges. Tang et al. 

(2023) adopted an LSTM-based two-stage adversarial approach for multi-site ASD diagnosis, attaining an 

accuracy and specificity of 0.80 but highlighted the need for improved performance. Kang et al. (2022) 

developed a multi-view ensemble model incorporating LSTM-Conv architecture and PCA, but with a 

limited accuracy of 72%, it lacked integration with structural MRI (sMRI).  In sMRI-based approaches, 

Nogay and Adeli (2024) utilized CNN with data augmentation and grid search optimization, achieving an 

accuracy of 85.42%. However, their model considered only two factors, age and gender, indicating 

limited scope. Similarly, Mishra and Pati (2023) employed deep CNN with data augmentation and 

optimization, obtaining a maximum accuracy of 81.35%, suggesting potential for enhancement with 

advanced techniques. For facial imaging, El Mouatasim and Ikermane (2023) applied a control sub-

gradient approach with deep CNN and DenseNet models, achieving high precision, recall, and F1-scores 

of 98%, 97%, and 97%, respectively. Nevertheless, their single-modality architecture and limited 

hyperparameter exploration constrain its applicability. Dc et al. (2022) achieved a maximum accuracy of 

91.2% using KNN, SVM, and other machine learning algorithms for ASD severity detection but 

emphasized the potential benefits of adopting deep learning strategies. Finally, in sensor-based methods, 

Parui et al. (2023) achieved 84.79% accuracy using brain connectivity analysis, though the study 

underscores the need to enhance accuracy further. Across all studies, limitations such as reliance on single 
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modalities, high model complexity, and a lack of integration with other data types suggest opportunities 

for future research to focus on multimodal architectures and optimization techniques to improve 

diagnostic accuracy and generalizability. 

 

Table 2.5 Literature survey for autism spectrum disorder on single modality architectures  

Reference Objective Techniques Data 

Modality 

Achievements Limitations 

[74]  Deep learning 

integrated 

activation function 

for the screening of 

autism 

Developed two 

models, namely 

MinAutiNet and 

AutiNet for 

processing 

fMRI 

 

fMRI  Max Accuracy: 

AutiNet = 77.78%; 

MinAutiNet = 

88.89% 

Need for automatic 

feature extraction 

techniques: 

accuracy needs to 

be improved 

[75]  Deep learning-

based ASD 

classification via 

age and gender 

factors 

CNN, data 

augmentation, 

grid search 

optimization 

with multiple 

classifications 

 

sMRI  Max Accuracy: 

85.42% 

Only two factors 

were taken into 

consideration 

[76]  Multi-level joint 

learning network 

for the brain to 

diagnose ASD 

Graph networks fMRI Accuracy: 81.5% High model 

complexity; large 

number of 

parameters 

[26]  Multi-site ASD 

diagnosis 

LSTM; Two-

stage adversarial 

approach 

 

fMRI Accuracy: 0.80; 

Specificity: 0.80; 

Sensitivity: 0.81 

Accuracy needs to 

be improved; 

single-modality 

architecture 

[38] ASD diagnosis via 

facial imaging 

Control sub-

gradient 

approach with 

deep CNN; 

Face images The developed 

approach with 

DenseNet enhanced 

the overall results 

Single modality 

architecture; 

limited exploration 

of 
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DenseNet model with Precision = 

98%; Recall = 

97%; 

F1-score = 97% 

hyperparameters; 

[77],   ASD diagnosis via 

sensor-based and 

AI approach 

Brain 

connectivity 

analysis 

fMRI Accuracy: 84.79% Need to improve 

accuracy 

[78],  ASD classification 

framework 

Deep CNN; data 

augmentation; 

optimization 

 

sMRI Max Accuracy: 

81.35% 

 Accuracy can be 

enhanced; single 

modality model 

[25] ASD recognition 

via multi-view 

ensemble and 

multi-site fMRI 

LSTM-Conv 

architecture; 

SDAE; PCA 

  

fMRI Accuracy: 72.0% No incorporation of 

sMRI; lower 

accuracy  

[79] ASD severity 

detection via ML 

KNN, DT, 

SVM, NB, RF; 

GLCM 

Face images Max Accuracy: 

91.2% 

Deep learning 

strategies can be 

adopted 

 

2.4. Self-supervised learning strategies-based works 

The literature in Table 2.6 on self-supervised learning (SSL) techniques reveals their growing impact on 

various domains, including medical image analysis and image-text multimodal tasks. Kumar and Misra 

(2024) employed an enhanced MNU2 model with the CAFFE framework to identify masked faces, 

gender, and age using a facial image dataset, achieving an accuracy of 96.54%. However, further efforts 

are needed to improve real-time prediction accuracy. Ozbay et al. (2024) utilized autoencoders and 

transformers to classify kidney tumors using the KAUH and CT dataset, achieving an impressive 99.82% 

accuracy, though future work should focus on distinguishing between malignant and benign tumors. Tan 

et al. (2024) combined masked autoencoders and Vision Transformers (ViT) to classify COVID-19-

related medical images, achieving a top accuracy of 97.78%. The study highlights challenges with dataset 

quality and reconstruction. Similarly, Yang et al. (2024) explored self-supervised image quality 

assessment using masked image modeling and contrastive learning, outperforming AVA dataset 

benchmarks. The study emphasizes the need for graph-based networks and investigations into mask ratio 

variations. Bai et al. (2024) utilized SSL techniques with masked autoencoders and ViT for feature 

extraction in esophageal cancer detection, achieving an accuracy of 93.07% and an AUC of 95.31%. 
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However, high computational complexity remains a challenge. Ma et al. (2024) proposed joint distillation 

with disjoint masking for image modeling using an encoder-decoder architecture, resulting in a 3.4% 

accuracy improvement, though scalability and computational overhead persist as barriers. Chen et al. 

(2024) focused on multimodal image-text tasks with vision and language encoders paired with a fusion 

module, achieving effective performance but identifying the need for advanced fusion mechanisms. Qi et 

al. (2024) applied SwinUNeter with grid-based hierarchical masking for 3D medical image segmentation, 

outperforming existing SSL methods while noting limitations in handling low-contrast and highly 

complex images. Liu et al. (2023) enhanced 3D medical image reconstruction using random masking with 

a Transformer encoder, showing improvements in evaluation metrics but requiring better generalization. 

Finally, Qi et al. (2024) employed U-Net and masked autoencoders for tumor segmentation in BraTS-

2020, achieving superior performance on key metrics but emphasizing the need for broader validation to 

ensure the findings' generalizability. Collectively, these studies highlight SSL's potential while addressing 

challenges such as computational demands, dataset quality, and generalization. 

 

Table 2.6 Literature survey conducted on Self-supervised techniques 

Reference Dataset Used Objective Methodology Key Findings Challenges and 

Future Directions 

Kumar and 

Misra, 2024 

[80] 

Facial images 

dataset 

(Sanjaya 

Subedi) 

Identification of 

masked face, 

gender, and age 

Enhanced 

MNU2 model 

with CAFFE 

framework 

Achieved 96.54% 

accuracy, error 

rate of 3.46% 

 

Enhance real-time 

gender and age 

prediction accuracy 

Ozbay et al., 

2024 [81] 

KAUH and 

CT dataset 

Classify kidney 

tumors using self-

supervised learning 

(SSL) 

Autoencoder 

and 

Transformer 

Accuracy 

achieved: 99.82% 

Focus on the 

differentiation 

between a malignant 

and benign tumor 

Tan et al., 

2024 [82] 

SARS-COV-

CT; 

COVID-CT 

Classify COVID-

19-related medical 

images 

Masked 

autoencoder 

combined with 

Vision 

Transformer 

(ViT) 

Best accuracy: 

97.78% 

Issues with dataset 

quality and 

reconstruction need 

resolution 

Yang et al., 

2024 [83] 

ImageNet-1K; 

AVA dataset 

Conduct self-

supervised image 

quality assessment 

Masked Image 

Modeling; ViT; 

Contrastive 

Outperformed 

AVA dataset 

benchmarks 

Explore graph-based 

networks; investigate 

the effects of varying 



 

55 
 

Learning mask ratios 

Bai et al., 2024 

[84] 

Whole Slide 

Images (WSI) 

dataset of 552 

cases 

Extract features for 

esophageal cancer 

detection 

SSL; Masked 

Autoencoder; 

ViT 

Accuracy: 

93.07%, AUC: 

95.31% 

Address high 

computational 

complexity 

Ma et al., 2024 

[85] 

ImageNet-1K Use joint 

distillation and 

disjoint masking for 

image modeling 

Encoder-

Decoder with 

joint distillation 

Accuracy 

enhancement: 

3.4% 

Reduce scalability 

challenges and 

computational 

overhead 

Chen et al., 

2024 [86] 

ROCO; 

MedICaT 

Develop 

multimodal models 

for image-text tasks 

Vision and 

language 

encoders with 

fusion module 

Effective 

performance 

across tasks 

Investigate advanced 

data fusion encoder 

mechanisms 

Qi et al., 2024 

[87] 

 

Amos-2022; 

BraTS-2021 

Segment 3D 

medical images 

with adaptive 

masking 

SwinUNeter; 

Grid-based 

hierarchical 

masking 

Outperformed 

existing SSL 

techniques 

Address limitations 

on low-contrast and 

highly complex 

images 

Liu et al., 2023 

[88] 

BTCV; 

LiTS-2017; 

BraTS-2020 

Reconstruct 

boundaries in 3D 

medical imaging 

Random 

masking with 

Transformer 

encoder 

Improvements 

noted in multiple 

evaluation metrics 

Work needed to 

enhance 

generalization 

Qi et al., 2024 

[89] 

BraTS-2020 Perform tumor 

segmentation via 

SSL 

U-Net; Masked 

Autoencoder 

Achieved better 

performance on 

key metrics 

Generalize findings 

for broader 

validation 

 

2.5. Research Gaps and Limitations 

Based on the insights from recent studies, several significant research gaps have been identified within the 

field of autism spectrum disorder using artificial intelligence: 

 

• Overfitting and Generalization Challenges: Conventional ASD diagnostic models often face 

overfitting, limiting their generalizability across diverse populations and settings. This is particularly 

problematic in ASD research due to high symptom variability and data source diversity. 
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• Interpretability of Complex Diagnostic Models: Traditional machine learning models in ASD 

diagnosis often lack transparency, hindering clinical applicability. Interpretability is essential for 

clinical use, requiring clear insights into feature contributions. 

 

• Limitations of Single-Modality Approaches: Most of the ASD diagnostic research has typically 

relied on single data modalities (e.g., MRI or behavioral data), limiting the potential for a holistic 

understanding of ASD.  

 

• Limited Identification of Key Autism-Causing Biomarkers: Only a few studies focus on 

identifying significant ASD-causing features. These are vital for uncovering ASD’s underlying 

mechanisms and developing more targeted diagnostic approaches. 

 

• High Computational Cost and Processing Time: Computationally demanding models hinder ASD 

diagnostic models' applicability in clinical practice.  

 

• Inadequate Use of Deep Learning and Computational Intelligence: ASD diagnostic research has 

been dominated by machine learning methods with limited attributes, while deep learning and 

computational intelligence approaches remain less explored.  

 

• Lack of Robust Cross-Validation and Statistical Validation: Basic train-test splits are prevalent in 

ASD research. However, they lack rigorous validation like cross-dataset or LOSO cross-validation, 

which are critical for model reliability.  

 

By addressing these gaps, future research can significantly enhance the diagnostic capability of AI 

systems for autism spectrum disorder. 

 

2.6.Chapter Summary  

This chapter presents systematic literature that profoundly discusses evolutionary algorithms, 

machine/deep learning, and multi-modality studies for autism spectrum disorder. Thus, this chapter 

presents relevant and up-to-date literature about autism spectrum disorder using AI strategies. 
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Chapter 3 ASD CLASSIFICATION FRAMEWORK USING 

DEEP LEARNING WITH COMPUTATIONAL 

INTELLIGENCE TECHNIQUES 

 

The accurate and timely diagnosis of Autism Spectrum Disorder (ASD) is critical for enabling early 

intervention and improving developmental outcomes. This chapter introduces a novel classification 

framework developed using deep learning in conjunction with computational intelligence techniques, 

specifically tailored for autism screening datasets. The framework addresses key challenges in ASD 

classification, including the effective selection of features, mitigation of overfitting, and enhancement of 

model generalizability. By employing cutting-edge optimization algorithms and advanced neural 

architectures, the proposed methodology harnesses the potential of these datasets to identify meaningful 

patterns and correlations. The chapter provides an in-depth description of the preprocessing strategies, 

feature engineering approaches, and model design utilized to analyze autism screening data, offering a 

robust and scalable solution for accurate ASD classification. 

 

3.1 Proposed Methodologies-: AFF-BPL 

3.1.1. Particle Swarm Optimization 

Nature-inspired algorithms draw inspiration from various biological systems including beehives, anthills, 

and swarms of animals like birds and fish [90] [91]. These algorithms explore the interactions among 

individuals in a population, their interplay, and their interactions with the environment. In the context of 

PSO, it is inspired by the behavior of a flock of birds in search of food location, making it advantageous 

for the rest to follow the nearest knowledgeable bird. In this context, each individual in the population 

represents a bird, having a fitness value within the search space [92][93]. Its objective is to converge 

towards an optimal solution. The potential solutions are called particles, forming the population. Each 

particle retains its best solution (Pbest) evaluated using the fitness function, and the best value from the 

entire swarm is denoted as gbest. The standard PSO process comprises two key steps: changing velocity 

and updating positions. In the first step, particles adjust their velocity based on Pbest and gbest. In the 

second step, particles update their position using the new velocity. These operations take place in a D-

dimensional place, with each particle represented as 𝑥𝑖  = ( 𝑥𝑖
1, 𝑥𝑖

2, 𝑥𝑖
3, … 𝑥𝑖

𝐷 )T. The velocity of ⅈ𝑡ℎ particle 

is denoted as 𝑉𝑖  = ( 𝑉𝑖
1, 𝑉𝑖

2, 𝑉𝑖
3, …𝑉𝑖

𝐷 )T, and its best previous position as 𝑃𝑏𝑒𝑠𝑡𝑖

𝑡−1 . The inertia weight (𝜔) 

balances the trade-off between exploration and exploitation. Equation 1 and 2 guide the velocity and 

position updates. 
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     𝑉𝑖
𝑡+1 = 𝜔𝑉𝑖

𝑡 + 𝐶1r1 (𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 − 𝑥𝑖
𝑡 ) + 𝐶2r2 (𝑔𝑏𝑒𝑠𝑡

𝑡 − 𝑥𝑖
𝑡  )                                                                      (1) 

     𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑉𝑖
𝑡+1                                                                                                                                (2) 

The algorithm is parameterized by several variables, including D (the dimensionality of the problem), N 

(number of particles/swarm size), and T (maximum number of iterations). 

Random values r1 and r2 are employed to avoid local optima, while 𝐶1 and 𝐶2 determine the particle’s 

trajectory, representing self-confidence and swarm confidence factors respectively. Stopping criteria vary 

based on the specific problem, commonly involving a fixed number of function evaluations or the 

achievement of an error threshold. Notably, PSO employs Pbest and gbest to update particle positions. The 

impact of these values, as constants was explored in previous studies. The gbest plays a critical role in 

determining the particle’s trajectory and movement. Table 3.1 represents the values of the hyper-

parameters used in the work. Figure 3.1 explains the overall flow chart of the proposed architecture. 

 

   Table 3.1 Description of hyper-parameters of PSO and BAT 

Hyper-parameters Description PSO BAT 

Population_size Swarm size in PSO; Bat population size 50 30 

Max_itr Number of iterations 200 200 

𝑪𝟏 Cognitive component weight 2 - 

𝑪𝟐 Social component weight 2 - 

𝝎 Inertia 0.7 - 

𝑨𝟎 Loudness - 0.25 

𝒓𝒋̇ Pulse rate - 0.5 

Velocity Velocity update As per equation (1) As per equation (7) 

Position Position update As per equation (2) As per equation (8) 

 

3.1.2. Bat Algorithm 

The bat algorithm (BA), draws inspiration from the echolocation ability of microbats (producing loud 

sounds and capturing the resulting echoes as they rebound from the environment) [94][95]. This 

optimization technique mimics the bat’s foraging behavior and its ability to navigate in low-light 

conditions [96][97][98]. The bat algorithm is based on the mentioned assumptions: 

(1) All bats utilize an echolocation mechanism to discern both prey and obstacles through the 

received sound frequencies [99][100]. 
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(2) Bats exhibit random flight patterns characterized by their velocity (𝑉1) at a given position (𝑦1). 

Various properties such as frequency (𝑓1), wavelength (𝜆), and loudness (𝐴0) play a role in their 

behavior. 

(3) The loudness transitions from a high positive (𝐴0) to a low positive value (𝐴𝑚𝑖𝑛). 

Step 1: Initialization of parameters 

To examine the optimality of a solution denoted as ‘𝑥’ within the context of an objective function ‘f(𝑥)’, 

for ASD problem; the formulation is: 

                                        Min {f(𝑥) | 𝑥 ∈ X}, 

Where f(𝑥) is the objective function 

             𝑥 = { 𝑥𝑖 | ⅈ = 1,2,…, d} is a set of decision variables 

             X = {𝑋𝑖 | ⅈ = 1,2,…, d} is a possible range of values for every decision variable 

             d = Number of decision variables 

Step 2: Initialization of bat population memory (BM) 

BM contains an augmented matrix of size N X d having the set of location vectors of bats (as mentioned 

in equation 4). The location vectors are generated randomly as:  

     𝑥𝑖
𝑗
  = LBi + (UBi – LBi) X U(0,1)                                                                                                                    (3) 

      ∀i  = 1, 2,….., d   and 

      ∀j  = 1, 2,….., N    

        U(0,1) = Uniform random values between the range of 0 to 1 

        LB and UB = Lower bound and upper bounds 

The produced solutions are saved in BM in ascending manner depending upon their f(x) value, where 

f(𝑥1) ≤ f(𝑥2) ≤………≤ f(𝑥𝑁) 

             BM = 

[
 
 
 
 
 
 
 

 

 𝑥1
1   𝑥2

1    …  𝑥𝑑
1      

𝑥1
2   𝑥2

2    …  𝑥𝑑     
2  

…  …   …                 
     ..                                  

 ..                              
..                             
𝑥1

𝑁   𝑥2
𝑁    …  𝑥𝑑

𝑁  ]
 
 
 
 
 
 
 

                                                                                         (4) 
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𝑥𝐺𝑏𝑒𝑠𝑡  , the global best location of bat is stored, where  

         𝑥𝐺𝑏𝑒𝑠𝑡  = 𝑥1                                                                                                                              (5) 

Step 3: Motion of bats 

Every bat 𝑥𝑗flies with velocity 𝑉𝑗 influenced by the randomly produced frequency fj 

                          fj = fmin + (fmin - fmax) X U(0,1)                                                                                            (6) 

                          𝑉𝑖
′𝑗

 = 𝑉𝑖
𝑗
 + (𝑥𝑖

𝑗
− 𝑥𝑖

𝐺𝑏𝑒𝑠𝑡) X fj                                                                                                                                                 (7) 

                          𝑥𝑖
′𝑗

  = 𝑥𝑖
𝑗
+ 𝑉𝑖

′𝑗
                                                                                                                       (8) 

Where, ∀i  = 1, 2,….., d  

            ∀j  = 1, 2,….., N    

The offspring bat’s position undergoes continuous updates by incorporating the positional adjustments of 

the parent bat, which are accompanied by relatively minor increments. This minor increment value occurs 

when the values at the best global bat location get closer to the parent bat, which in turn becomes near the 

offspring bat. 

Step 4: Intensification of bat population 

This specific step serves as the controlled stochastic element within the bat-inspired algorithm. Operating 

within a defined probability range of pulse rate denoted as “𝑟𝑗̇”, every subsequent bat location undergoes 

an update procedure involving a local search strategy that incorporates a random walk centered around 

the presently identified optimal solutions. The historical bat location represented as “𝑥𝑏𝑒𝑠𝑡”, is initially 

chosen from the pool of current best locations. Subsequently, the update of the new bat location, denoted 

as “𝑥′𝑗” is carried out as: 

                                    𝑥𝑖
′𝑗

 = 𝑥𝑖
𝑏𝑒𝑠𝑡 + ∈ Âj                                                                                                   (9) 

Where 𝐴̂j = mean loudness of all bats 

Summarizing step (3) and (4), new bat location 𝑋𝑖
′𝑗

 can be evaluated as  

         𝑥′𝑗 ← {
𝑥𝑏𝑒𝑠𝑡+ ∈ Âj 

𝑥𝑗  + 𝑉′𝑗    
                                                                                                                        (10)   

Step 5: Updation of bat population memory 
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For every bat in the bat memory, the new bat location supersedes the current bat location following the 

mentioned conditions 

(a) The value of objective function f(𝑥𝐺𝑏𝑒𝑠𝑡) surpasses f(𝑥𝑗) 

(b) U(0,1) <  𝐴𝑗 

The pulse rate value 𝑟𝑗̇  and loudness 𝐴𝑗  will be updated as: 

      𝑟𝑗̇ = 𝑟𝑗
0 ( 1 − ⅇ(−𝛾 × 𝑖𝑡𝑟) )                                                                                                                             (11) 

    𝐴𝑗 = 𝛼𝐴𝑗                                                                                                                                                              (12) 

Where itr represents the generation number in the current time step. As itr tends towards infinity, the 

mean loudness exhibited by the bat tends to converge to zero. Concurrently, the rate of pulse emission 

steadily approaches its initial emission rate. 

         𝐴𝑗
𝑖𝑡𝑟  → 0, 𝑟𝑗

𝑖𝑡𝑟  →  𝑟0
𝑗
, ∞ → 0 

At last, bats are ranked, and their current best (𝑥𝐺𝑏𝑒𝑠𝑡) bat location is determined. 

Step 6: Stopping criterion 

In this phase, the bat algorithm iterates from step 3 to step 5 until the stipulated termination criterion is 

satisfied. 

3.1.3. Adaptive Feature Fusion Module 

The main novelty of AFF-BPL is its capability to choose and dynamically update feature set. This 

segment explains the concept of adaptive feature fusion module with the mathematical portion mentioned 

in the algorithm. The employed adaptive feature fusion (ADFF) framework has been devised to overcome 

the issues and disadvantages inherent in conventional feature selection techniques. Its design revolves 

around dynamically adapting the fusion strategy to accommodate the underlying characteristics of data 

and model requirements as mentioned in equation 16. At its core, adaptive feature fusion aims to 

synergize the strengths of data-driven as well as model-based fusion strategies, fostering more efficient 

and discriminative feature representations. This segment presents a comprehensive overview of the key 

components (mentioned in Figure 2) and mechanisms integral to the ADFF framework. Central to this 

framework is our adaptive fused layer, a specialistic layer seamlessly fused within the main architecture. 

Adaptive fusion layer gathers data (information/features) from numerous sources, such as different layers 

of neural networks, and connects them with a blend of model-based and data-driven mechanisms.  
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Figure 3.1 . Overall Architecture of the Proposed Work. The baseline techniques were concurrently used 

and combined with adaptive feature fusion. Features from the adaptive feature layers is then fed to 

LSTM. 

In this work, the adaptive feature fusion layer receives features from the PSO and BAT algorithms as 

mentioned in Figure 3.1 and Figure 3.2. Data-driven strategies, including graph-based algorithms and 

attention-based strategies, are employed to retain optimal fused weights depending on the input/features 

and their relationship. Contrary to this, model-based strategies depend on the internal structure of the 

model in order to guide the fusion process. The fusion mechanism within the adaptive layer is controlled 

via set of rules (functions/ formulas). These rules are retained throughout the training, that allows the 
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model to adapt to the certain characteristics of the task and the data. This fusion block enhances 

adaptability and generalizability. To ensure versatility and scalability, the adaptive feature fusion is 

designed in accordant with various architectures. 

 

Figure  3.3. Architecture of Adaptive Feature Fusion Block 

 

Normalize the scores obtained from PSO and BAT within the range of [0,1] 

         For each feature:  

                Normalize the scores using: 

         Normalized_ScoresPSO = 
(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 −𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ))

(𝑀𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ) − 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ))
                                             (13)                           

  

       Normalized_ScoresBAT = 
(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 −𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ))

(𝑀𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ) − 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ))
                                               (14) 

 

Calculate the weighted average using: 

          Weighted_avg = 
(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 

+ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 
 )

2
                                             (15) 

Merge features based on the calculative adaptive weights: Adjust the features using the calculated 

adaptive weights: The combined features will represent a weighted aggregation of the most influential 

features as determined by both PSO and BAT. 

       Adjusted_feature =  Weighted_avg * Original feature                                                     (16) 
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Furthermore, the adaptive feature fusion prevents overfitting and enhances generalization. These 

techniques can also include the use of dropout and the introduction of auxiliary tasks that encourage the 

model to learn more robust and discriminative feature representations. 

Adaptive feature fusion framework for autism spectrum disorder portrays a novel approach for feature 

fusion to obtain enhanced performance and generalization capabilities. This framework allows the 

creation of more adaptable, effective, and robust model that can intelligently address the complex and 

diverse healthcare problems. Figure 2 shows the architecture of adaptive feature fusion block. 

 

ALGORITHM 1: PSO and BAT algorithm running concurrently for Feature selection 

Input: Autism screening dataset with features 

Output: Features obtained from PSO and BAT algorithm 

Start 

 Initialize the swarm randomly; 

 For i = 1 to N   do 

       Initialize the particle’s velocity and position using the uniform distribution 

       𝑉𝑖
0 and 𝑥𝑖

0  ←  random vectors within [LB, UB]D  ; 

       𝑃𝑏𝑒𝑠𝑡𝑖

0  ← 𝑥𝑖
0                           Initialize Pbest to its initial position 

 end for              

 Initialize gbest to position with the minimum fitness value 

        t  ← 1; 

        while t <= T   do 

              for i = 1 to N   do 

                 r1 , r2 ← two independent vectors randomly generated from [0, 1]D  ; 

 

        Apply equation (1); 

        Apply equation (2); 

        if f(𝑥𝑖
𝑡) < f(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡−1 )  then 

                  f(𝑃𝑏𝑒𝑠𝑡𝑖

𝑡 ) ← f(𝑥𝑖
𝑡) 

       end if 

end for 

       Update the swarm’s overall best position to find 𝑔𝑏𝑒𝑠𝑡
𝑡 ; 

         t ← t + 1; 

end while 
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End 

 

Start 

Initialization of BA parameters  

 for j = 1 to N  do 

      for i = 1 to d   do 

             𝑥𝑖
𝑗
 = LBi + (UBi – LBi)  X  U(1, d) 

 end for 

end for 

      find xGbest, 

while itr  <  Total iterations   do 

 

      for j = 1 to N   do 

            fj = fmin + (fmin – fmax) X  U(0, 1) 

            for i = 1 to d   do 

            𝑉′𝑖
𝑗
 = 𝑉𝑖

𝑗
 + (𝑥𝑖

𝑗
− 𝑥𝑖

𝐺𝑏𝑒𝑠𝑡) X fj 

                   𝑥′𝑖
𝑗
 = 𝑥𝑖

𝑗
 + 𝑉′𝑖

𝑗
 

     end for 

 

     if U(0,1) > rj   then 

         for i = 1 to d   do 

              𝑥′𝑖
𝑗
 = 𝑥𝑖

𝑏𝑒𝑠𝑡 + 𝜖𝐴̂𝑗 

         end for 

    end if 

    if  U(0, 1) < Aj and f(𝑥′𝑗) < f(𝑥𝐺𝑏𝑒𝑠𝑡)  then 

                 𝑥𝑗 = 𝑥′𝑗 

            f(𝑥𝑗) =  f(𝑥′𝑗) 

                  Aj = ∝ Aj 

                           𝑟𝑗 = 𝑟𝑗
0 (1 - ⅇ(−𝛾𝑖𝑡𝑟)) 

   end if 

end for 

  Update 𝑥𝐺𝑏𝑒𝑠𝑡  
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  end while 

End 

 

 

ALGORITHM 2: Proposed Adaptive Feature Fusion Algorithm 

Input: Autism screening dataset with features  

           Feature importance scores from PSO and BAT 

 

Output: Modified feature set with adaptive feature fusion 

              Classification of autistic vs non-autistic individuals 

 

1. Calculate feature importance scores using PSO and BAT for each feature: 

Implement PSO and BAT: Utilize PSO and BAT algorithms to perform feature selection 

concurrently on the dataset. 

Obtain feature importance scores: Store the feature importance scores from PSO and BAT 

for every feature in the dataset. 

 

2. Normalize the scores obtained from PSO and BAT within the range of [0,1] 

         For each feature:  

                Normalize the scores using: 

                         Normalized_ScoresPSO = 
(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 −𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ))

(𝑀𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ) − 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 ))
 

  

                       Normalized_ScoresBAT = 
(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 −𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ))

(𝑀𝑎𝑥(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ) − 𝑀𝑖𝑛(𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 ))
 

 

3. Calculate the weighted average using: 

                      Weighted_avg = 
(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝑃𝑆𝑂 

+ 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝐵𝐴𝑇 
 )

2
 

 

4. Merge features based on the calculative adaptive weights 

     Adjust the features using the calculated adaptive weights: The combined features will 

represent a weighted aggregation of the most influential features as determined by both 

PSO and BAT. 

                     Adjusted_feature =  Weighted_avg * Original feature 
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5. Prepare the modified features with adaptive feature fusion as the input for LSTM. 

 

6. Train and evaluate the LSTM model using the updated features. 

 

 

3.2. Introduction to WS-BiTM-Related Methodologies 

3.2.1. White Shark Optimization 

WSO lies in the category of bio-inspired techniques (metaheuristic optimization) influenced by the 

hunting strategy of white sharks in order to provide solutions to complex optimization problems [101]. 

WSO can be employed for feature selection in various data mining and machine learning tasks 

[102][103][104]. Its objective is to choose a feature subset to enhance the performance of a classification 

task. The general strategy of the white shark optimizer is expressed below: 

(a) Initialization: initialize the population of white sharks                                                                        (1) 

Every shark shows a potential solution. 

Every shark is given a position in search space, which represents a feature subset. 

 

(b) Objective function: describe an objective function that evaluates fitness/quality based on the selected 

feature set. 

Set max_no_of_iterations and termination criterion                                                                                   (2) 

 

(c) Hunting strategy: hunting behavior involves 

Exploration – explores new sections of search space in order to find a potential solution  

Exploitation – shark focuses on the region with high quality and optimal solutions, directed by the fitness 

value  

 

(d) Update: after every iteration, update the shark's position. To do so, various mathematical operators 

are applied depending on the problem statement. This helps the population to evolve and converges it 

towards optimal solutions. 

 

(e) Evaluation: compute the fitness of every shark in the population  

 

(f) Termination: WSO’s termination criterion determines when to stop the overall optimization process. 

The termination criterion can either be a satisfactory solution or the maximum number of iterations. 
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(g) Output: select the best feature subset from the final population  

The detailed working strategy adopted for feature selection via WSO is mentioned in section 4.2. 

 

3.2.2. Neural Networks 

Neural networks (NN) learn from the existing data and handle complex problems efficiently. NN is a set 

of numerous artificial neurons that function as simple processing components [105]. The framework of 

NN is based on a weighted graph between the neuron input and the output, with artificial neurons acting 

as nodes and directed edges. NN has three layers, node layer (containing input), hidden layer (one or 

more), and output layer [106]. The total number of neurons is equal to the total number of features in the 

data [107][57]. The output obtained from the input layer is provided to the next layer i.e., the hidden 

layer. The number of hidden layers relies on the model size and the size of the dataset. Hidden layers may 

have different sum of neurons, that are generally more significant than the number of features. The output 

obtained from each layer is computed via matrix multiplication of the preceding layer's output with 

learnable weights, followed by the addition of learnable biases and activation functions. These are 

important for a system to be non-linear [108]. The output of the hidden layer is passed through operations 

such as ‘softmax' or 'sigmoid', which is responsible for converting the output of each class into the 

likelihood score. The obtained information is fed to the architecture and the associated output of each 

layer is gathered. This level is known as “feed-forward” [109][110]. 

Feed-forward: compute the error using the error function (cross-entropy, square loss); from this point, 

backpropagate to the model by determining the derivatives.   

 

3.2.3. CNN 

Convnets are neural networks with shared parameters. A convnet is a multi-layered feed-forward NN 

made up of a sequence of layers, each of which is capable of changing from one volume to another via a 

differentiable function. They may learn hierarchy because of its sequential design. Convnets employ a 

number of different layers with varying functionality (a convolutional layer, a pooling layer, and a fully 

connected layer) [106][111]. The convolutional layer calculates the dot product of two matrices, one of 

which is a ‘set of learnable parameters’ known as ‘kernel’ and the other is the restricted section of the 

receptive field. Convolution makes use of three significant concepts i.e., sparse interaction, parameter 

sharing, and equivariant [112]. 

Sparse interaction specifies that we have to choose key parameters, which not only minimizes the model’s 

memory demand but also improves its statistical efficiency. 
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Parameter sharing: weights employed to one input are similar to weights used elsewhere when computing 

output. 

Equivariant: it states that if we modify the input somehow, the output will transform in the same manner. 

The activation layer introduces the concept of nonlinearity to the network by adding an 'activation 

function to the previous layer's output. It applies an element-wise activation function to the convolution 

layer’s output [100]. ReLu, tanh, and LeakyRelu are some of the types of activation functions [107][113]. 

The pool_layer changes network outcome at particular points by computing a summary statistic of 

surrounding outputs. The strategy helps to decrease the spatial size of the representation, which in turn 

reduces the desired number of weights and computations [114]. The pooling function is applied separately 

on each slice of the representation. To map the representation between the input and output, a fully 

connected (FC) layer is employed [115]. The output obtained from the FC layer is given to a logistic 

function for the classification task.   

 

3.2.4. LSTM 

LSTM networks are advanced recurrent neural nets (RNN), which were introduced to overcome the issue 

of vanilla RNN i.e., the long-term dependency problem [116][117]. LSTM works via a chain-like 

structure having four neural nets with discrete memory blocks known as cells.  LSTM has feedback 

connections that allow the analysis of the complete data sequences without handling each point in the 

sequence separately (as mentioned in Fig. 3.3), but rather by preserving important knowledge about 

earlier data points in the sequence to aid in the processing of new incoming data points [118]. 

 

Fig 3.3 The architecture of the LSTM unit 
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LSTM employs various 'gates' that are responsible for handling how information in a data sequence 

enters, is stored in, and exits the network. An LSTM incorporates three basic gates: a forget gate 

(determine which bits of the network's cell state are significant, given both the previous hidden state and 

the current input data), an input gate (identifies the new information to be added to the cell state), and an 

output gate (extract significant data). The hidden state is termed as ‘short-term memory’, whereas the cell 

state is stated as ‘long-term memory’ [119]. 

Our proposed architecture focuses on the diagnosis of ASD using a novel WSO- BiLSTM-based network. 

The work begins with the data pre-processing, followed by feature selection via WSO (incorporates the 

mathematical explanation behind the working of WSO), classification through the Bi-LSTM network, and 

comparison of proposed work with baseline techniques i.e., NN, LSTM, CNN. A detailed explanation of 

the work is mentioned below: 

3.2.5. Data Pre-processing 

The data pre-processing step is a crucial task for ASD diagnosis. The dataset employed incorporates 

categorical, binary, and continuous attributes. Since the screening dataset includes a few categorical and 

non-contributing attributes, we need to pre-process the dataset. Pre-processing defines the transformation 

performed on the datasets before giving them to the model. Missing values were handled in this step to 

make the dataset suitable for analysis. To handle categorical attributes, label encoding was performed, 

which transforms the categorical values/labels into numeric format thus making it machine readable. For 

example, the 'sex' column, 'ASD traits', etc. were chosen for binary label encoding as they have only two 

classes. The 'Ethnicity' column incorporates eleven different classes and on them, one hot encoding was 

performed. 

3.2.6. WSO: Feature Selection                              

The presence of irrelevant or less significant features in the dataset reduces the overall accuracy of the 

developed architecture, making the model learn those unnecessary features. This problem is stated as the 

optimization problem. In order to deal with this problem, the optimal solution or the optimal feature set 

from the ASD screening data needs to be extracted. To do so, we employed the white shark optimization 

technique. 

WSO algorithm mimics the foraging behavior of white sharks. WSO incorporates a population of white 

sharks, in which every shark represents a candidate solution. WSO aims to solve optimization problems 

like feature selection. For this objective, the technique moves with a series of iterations mimicking the 

hunting behavior of white sharks until a potential and satisfactory solution is found. The hunting behavior 

of white sharks relies on three strategies, 
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(1) Velocity of shark for catching prey (target) 

(2) Searching towards the best optimal food (optimal solution) 

(3) Movement of the rest of the sharks who are close to the food source 

The population of white sharks is given as: 

                                  𝑊𝑧
𝑦

= 𝑙𝑏𝑧 + 𝑛(𝑢𝑝𝑧 − 𝑙𝑏𝑧)                                                                                      (3) 

Where  𝑊𝑧
𝑦

 denotes the initial parameter of 𝑦𝑡ℎ white shark in the 𝑧𝑡ℎ  dimension. 

𝑢𝑝𝑧 and 𝑙𝑏𝑧 denotes the upper bound and lower bound in the 𝑧𝑡ℎ  dimension. 𝑛 represents a random 

number between [0,1]. 

The velocity of white shark to find the prey (target) rely on the motion of sea waves and is represented by 

𝑉𝑙𝑘+1
𝑦

= 𝜇 [𝑉𝑙𝑘
𝑦
 +  𝑅1(𝑊𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑊𝑘

𝑦
) × 𝑈1  + 𝑅2  (𝑊𝑏𝑒𝑠𝑡 

𝑉𝑙𝑘
𝑦

− 𝑊𝑘
𝑦
) × 𝑈2]                                           (4) 

Where k = 1,2,3,…, P is index of white shark having population size P. The updated velocity of the 𝑦𝑡ℎ 

shark is shown as 𝑉𝑙𝑘+1
𝑦

 in the (𝑘 + 1)𝑡ℎ step. The initial speed of 𝑦𝑡ℎ shark in 𝑘𝑡ℎ step is shown as 𝑉𝑙𝑘
𝑦

 

𝑊𝑔𝑏𝑒𝑠𝑡𝑘 represents the global best position obtained by any 𝑦𝑡ℎ shark in 𝑘𝑡ℎ step. 𝑊𝑘
𝑦

 denotes the initial 

position of the 𝑦𝑡ℎ shark in 𝑘𝑡ℎ step. 

The best position of 𝑦𝑡ℎ shark and index vector for obtaining best position are shown by 𝑊𝑏𝑒𝑠𝑡 

𝑉𝑙𝑘
𝑦

 and 𝑣𝑐𝑖.  

𝑈1 and 𝑈2 represents the generation of a uniform random number in the interval [1,0]. 

 𝑅1 and  𝑅2 in the equation show the force of shark in order to handle the effect of 𝑊𝑔𝑏𝑒𝑠𝑡𝑘 and 𝑊𝑏𝑒𝑠𝑡 

𝑉𝑙𝑘
𝑦

on 

𝑊𝑘
𝑦

. 

𝜇 denotes the shark’s convergence factor. The white shark index vector is shown by  

𝑣𝑐 = [𝑎 × 𝑟𝑎𝑛𝑑(1, 𝑎)] + 1                                                                                                                    (5) 

𝑟𝑎𝑛𝑑(1, 𝑎) denotes a random number vector achieved through uniform distribution between the interval 

[0,1]. 

 𝑅1 and  𝑅2 can be further expanded as: 

 𝑅1 =  𝑅𝑚𝑎𝑥 + ( 𝑅𝑚𝑎𝑥 −  𝑅𝑚𝑖𝑛) × ⅇ−(4𝑚/𝑀)^2                                                                                  (6) 

 𝑅2 =  𝑅𝑚𝑖𝑛 + ( 𝑅𝑚𝑎𝑥 −  𝑅𝑚𝑖𝑛) × ⅇ−(4𝑚/𝑀)^2                                                                                  (7) 

m and M denote the initial as well as the maximum sum of iterations.  𝑅𝑚𝑖𝑛 denotes current velocity and 

 𝑅𝑚𝑎𝑥 denotes the sub-ordinate velocity of white sharks. 

The convergence factor 𝜇 is shown as 
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𝜇 = 2 / | 2- 𝜏 - √ 𝜏2 − 4𝜏 |                                                                                                                         (8)         

In which 𝜏 states the acceleration coefficient. 

The process of updating the white shark's position is  

                                 𝑊𝑘+1
𝑦

 =   𝑊𝑘
𝑦

 . ¬  𝑊0 + 𝑢𝑝. ℎ +  𝑙0. 𝑑 ;            𝑟𝑎𝑛𝑑 < 𝑄𝑆                                     (9) 

                                          𝑊𝑘
𝑦

 +  𝑉𝑙𝑘
𝑦
 /𝑓𝑞 ;                                  𝑟𝑎𝑛𝑑 ≥ 𝑄𝑆                                           (10) 

 

The ¬ denotes the negation operator, h and d specifies binary vectors. The lower search space is shown 

by  𝑙0. 

                        h = sgn(𝑊𝑘
𝑦

− 𝑢𝑝) > 0                                                                                                   (11) 

                           d = sgn(𝑊𝑘
𝑦

− 1) > 0                                                                                                    (12) 

                            𝑊0 = ⊕ (ℎ, 𝑑)                                                                                                    (13) 

 𝑓𝑞 = 𝑓𝑞𝑚𝑖𝑛 + 
𝑓𝑞𝑚𝑎𝑥−𝑓𝑞𝑚𝑖𝑛

𝑓𝑞𝑚𝑎𝑥−𝑓𝑞𝑚𝑖𝑛
                                                                                                      (14) 

 𝑊0 represents the logical vector and fq denotes the frequency by which the sharks move. Whereas 𝑓𝑞𝑚𝑎𝑥 

and 𝑓𝑞𝑚𝑖𝑛 define maximum and minimum frequency respectively. 

The increment in force at every iteration is  

 

                                   𝑄𝑆 =
1

 ℎ0+ 𝑒
(
𝑘
2
−𝑘)/ ℎ1

  , QS shows the weights of the features                                (15) 

The equation of the best optimal solution is given a 

𝑊𝑘+1 
′𝑦

= 𝑊𝑔𝑏𝑒𝑠𝑡𝑘 + 𝑛1 𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤 𝑠𝑔𝑛(𝑛2 − 0.5)𝑛3  < 𝑆𝑡𝑟                                                                          (16) 

Where updating the position following the food source of 𝑦𝑡ℎ shark is expressed as 𝑊𝑘+1 
′𝑦

.  

In order to update the search direction, 𝑠𝑔𝑛(𝑛2 − 0.5) produces -1 or 1. The optimal food source, shark 

distance 𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤 with the strength of white shark to follow other sharks near to food source 𝑆𝑡𝑟 is 

represented as 

𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤 = |𝑟𝑎𝑛𝑑 × (𝑊𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑊𝑘

𝑦
 )|                                                                                                      (17) 

                                   𝑆𝑡𝑟 = | 1 − ⅇ( ℎ2× 𝑘/𝐾) |                                                                                            (18) 

The best initial optimal results are kept constant, whereas the position of the rest of the sharks is modified 

as per the two constant optimal results. 

𝑊ⅇ𝑦 =
1

𝑝−1
∗ (

∑ 𝑓𝑖𝑡𝑧𝑝
Ƴ=1,Ƴ≠ 𝑗

∑ 𝑓𝑖𝑡𝑧𝑝
Ƴ=1

)                                                                                                         (19) 
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Where 𝑓ⅈ𝑡𝑧 defines the fitness of each feature, which can be further expanded to 

𝑊ⅇ𝑦 = 
1

𝑝−1
 ∗ 

[ 𝑓𝑖𝑡1+ 𝑓𝑖𝑡2 +⋯+𝑓𝑖𝑡𝑧+1 +⋯+𝑓𝑖𝑡𝑝−1 +𝑓𝑖𝑡𝑝 ]

𝑓𝑖𝑡1+ 𝑓𝑖𝑡2 +⋯+𝑓𝑖𝑡𝑧−1 +𝑓𝑖𝑡𝑧+𝑓𝑖𝑡𝑧+1 +⋯+𝑓𝑖𝑡𝑝−1 +𝑓𝑖𝑡𝑝                                                 (20) 

The selected features are given as Sel(y = 1,2,……..p).  The output of WSO is expressed as (sel) = { 

𝑠ⅇ𝑙1, 𝑠ⅇ𝑙2 , … 𝑠ⅇ𝑙𝑝 }, which denotes a new sub-part of features in the dataset. At last, the feature selection 

process with WSO generates a feature subset having optimal features. 

Mathematical Explanation 

 

Assuming the number of features in the dataset = 5  

 

Step 1: Initialization  

Initialized the shark_population size = 30 

 

Step 2: Initial position of sharks 

Using equation 1, 𝑙𝑏𝑧 = 0;  𝑢𝑝𝑧 = 1;  𝑛 = [0,1] 

For simplicity, initialize three sharks 

Shark 1: 𝑊1
1 = 0.2,𝑊2

1 = 0.7,𝑊3
1 = 0.3,𝑊4

1 = 0.5,𝑊5
1 = 0.9  

Shark 2: 𝑊1
2 = 0.6,𝑊2

2 = 0.2,𝑊3
2 = 0.8,𝑊4

2 = 0.4,𝑊5
2 = 0.7 

Shark 3: 𝑊1
3 = 0.3,𝑊2

3 = 0.9,𝑊3
3 = 0.4,𝑊4

3 = 0.6,𝑊5
3 = 0.2 

 

Step 3: Velocity update (calculated using equation 4) 

𝜇 is calculated using equation 8 

𝜇 = 2 / | 2- 4.12 - √ 4.122 − 4. 4.12 |      

Expanding and calculating  

𝜇 = 2 / | 2- 4.12 - √ 0. 4944 |  

𝜇 ~ 0.708  

 

𝑈1 and 𝑈2 are between [0,1] 

𝑅1 and 𝑅2 are calculated using equation 6 and 7 

 

For the first iteration (m= 1 and M= 100) 
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  𝑅1 =  1.5 + (1.5 −  0.5) × ⅇ−(4𝑋1/100)^2                                                                                                         

 𝑅1 =  1.5 + 1 × ⅇ−0.0016                                                                                                                                                                                                                                       

 𝑅1 =  1.5 + 1 ×  0.9984                                                                                                                                                                                                                                 

 𝑅1~ 2.4984 

 

 𝑅2 =  0.5 + (1.5 −  0.5) × ⅇ−0.0016 

 𝑅2 =  0.5 + 1 ×  0.9984            

 𝑅2~ 1.4984              

 

Calculating for Shark 1 in the first iteration 

   𝑉𝑙1
1 = 0         (assuming initial velocity is 0)     

                                                                                                                                                     

𝑊𝑔𝑏𝑒𝑠𝑡𝑘 (global best position of sharks, assuming initially it is Shark’s 2 position) 

𝑊𝑏𝑒𝑠𝑡 

𝑉𝑙𝑘
𝑦

 (best position of current shark) 

 Using random values of   𝑈1 and  𝑈2 as 0.5 

𝑉𝑙2
1 = 0.708[0 + 2.4984(0.6 − 0.2)  × 0.5 + 1.4984(0.7 − 0.2) × 0.5]  

𝑉𝑙2
1 = 0.708 × 0.87428  

𝑉𝑙2
1 ~ 0.6192  

 

Step 4: Position update  

Using equation 9 and 10 

𝑄𝑆 = 0.3   

𝑉𝑙2
1 ~ 0.6192  

 

𝑊2
1 =  0.2 +

0.6192

0.41
  

𝑊2
1 ~ 1.71  

 

Since 𝑊2
1 exceeds the upper bound of 1, we set it to 1. 

So, the updated position of Shark 1 for feature 1 becomes 1.  

 

Step 5: Iteration 

This process continuous for 100 iterations. At each step, velocities and positions are updated based 



 

75 
 

on the equations provided, and the sharks converge towards the optimal set of features. 

 

Step 6: Feature Selection 

After running for 100 iterations, the positions of the sharks represent the importance of each 

feature. The features with higher importance (closer to 1) are considered important. 

 

Assume after several iterations, Shark 1 has the following positions: 

𝑊1
1 =  0.95  

𝑊2
1 =  0.4  

𝑊3
1 =  0.92  

𝑊4
1 =  0.3  

𝑊5
1 =  0.85  

 

We set threshold to select features (for e.g., 0.5), based on this the selected features are 1, 3, and 5 

as they have values above 0.5 

 

3.2.7. Bi-LSTM  

A Bidirectional Long Short-Term Memory (Bi-LSTM) network is an advanced type of Recurrent Neural 

Network (RNN) designed to capture dependencies in sequence data from both forward and backward 

directions. This architecture allows the model to consider both past (left context) and future (right 

context) information at any point in the sequence, enhancing its ability to understand the context and 

improve performance on various tasks such as classification. 

An LSTM cell, the fundamental building block of an LSTM network, contains several components 

designed to control the flow of information: the input gate, the forget gate, and the output gate. These 

gates regulate the information passing through the cell, allowing the network to maintain long-term 

dependencies. 

1. Forget Gate: The forget gate decides what information from the previous cell state 𝐶𝑡−1 should be 

discarded. It uses a sigmoid activation function to produce a value between 0 and 1 for each number in the 

cell state 𝐶𝑡−1 : 

   𝑓𝑡 = 𝜎(𝑊𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                                                                                                            (21) 

   where: 

- 𝑓𝑡 is the forget gate vector at time t 

- 𝜎 is the sigmoid function, 
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- 𝑊𝑓 is the weight matrix for the forget gate, 

- ℎ𝑡−1, 𝑥𝑡 is the concatenated vector of the previous hidden state and the current input, 

- 𝑏𝑓 is the bias term for the forget gate. 

2. Input Gate: The input gate controls the updating process of the cell state. It determines which values 

will be updated and how much of the new information should be added to the cell state: 

   ⅈ𝑡 = 𝜎(𝑊𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                                                                                                                  (22)  

The candidate cell state 𝑐̃𝑡 is computed using the tanh activation function, which produces values between 

-1 and 1: 

   𝑐̃𝑡 =   𝑡𝑎𝑛ℎ(𝑊𝐶 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝐶)                                                                                                         (23) 

where: 

- ⅈ𝑡 is the input gate vector at time t, 

- 𝑊𝑖 and 𝑊𝐶 are the weight matrices for the input gate and the candidate cell state, respectively, 

- 𝑏𝑖 and 𝑏𝐶 are the bias terms for the input gate and candidate cell state, respectively. 

3. Cell State Update: The new cell state 𝐶𝑡 is a combination of the old cell state 𝐶𝑡−1, modulated by the 

forget gate, and the candidate cell state 𝑐̃𝑡, scaled by the input gate: 

𝐶𝑡 = 𝑓𝑡 ⋅  𝐶𝑡−1 + ⅈ𝑡  ⋅  𝑐̃𝑡                                                                                                                          (24) 

This equation ensures that important information is carried forward through time, while irrelevant 

information is discarded. 

4. Output Gate: The output gate determines the hidden state ℎ𝑡, which is used for the next time step and 

for any required output. The output gate uses the sigmoid function, and the hidden state is modulated by 

the tanh function applied to the cell state: 

   𝑜𝑡 = 𝜎(𝑊𝑜 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                                                                                        (25) 

 ℎ𝑡 = 𝑜𝑡 ⋅ tanh (𝐶𝑡)                                                                                                                                 (26) 

   where: 

   - 𝑜𝑡 is the output gate vector at time t, 

   - 𝑊𝑜 is the weight matrix for the output gate, 

   - 𝑏𝑜 is the bias term for the output gate, 

   - ℎ𝑡 is the hidden state vector at time t. 

In a Bi-LSTM network, these LSTM equations are applied in two parallel layers. One LSTM layer 

processes the input sequence in the forward direction from 𝑡 = 1 to 𝑡 = 𝑇, while the other LSTM layer 

processes the sequence in the backward direction from 𝑡 = 𝑇 to 𝑡 = 1. The hidden states from both 

directions at each time step t are concatenated to form the final output:  

ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥𝑡 , ℎ⃗ 𝑡−1)                                                                                                                   (27) 
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← ℎ𝑡 = 𝐿𝑆𝑇𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑡 , ℎ𝑡−1)                                                                                                             (28) 

ℎ𝑡 = [ℎ⃗⃗  ⃗
𝑡; ← ℎ𝑡]                                                                                                                                        (29) 

Here, ℎ⃗ 𝑡 represents the hidden state from the forward LSTM at time step t, and ← ℎ𝑡 represents the 

hidden state from the backward LSTM at the same time step. The concatenated hidden state ℎ𝑡 combines 

information from both directions, allowing the model to capture context from the entire sequence, both 

past and future. 

For classification tasks, the concatenated hidden states ℎ𝑡  are typically passed through additional layers, 

such as fully connected (dense) layers, to perform the final classification as illustrated in Fig 3.1. The 

output layer often uses a softmax activation function to produce probability distributions over the possible 

classes: 

𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[𝑊𝑜𝑢𝑡  ⋅  ℎ𝑡 + 𝑏𝑜𝑢𝑡]                                                                                                          (30)  

where: 

- 𝑦𝑡 is the output vector representing the probability distribution over classes at time t, 

- 𝑊𝑜𝑢𝑡 is the weight matrix for the output layer, 

- 𝑏𝑜𝑢𝑡 is the bias term for the output layer. 

By utilizing both forward and backward LSTM layers, Bi-LSTM networks provide a comprehensive 

understanding of the data, making them effective for various tasks. 

 

Fig 3.4 The architecture of the Bi-LSTM module 

 

In a questionnaire dataset, while responses are not sequential in a temporal sense, they can be contextually 

related. Bi-LSTM’s ability to process data bidirectionally allows it to understand how responses might 

influence each other. For example, the answer to one question might provide context for interpreting 

answers to subsequent questions, and vice versa. By considering both previous and future responses, Bi-
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LSTM helps in capturing dependencies and interactions that might be missed by unidirectional models. 

This bidirectional approach is particularly useful in understanding complex patterns and nuances in ASD 

features that could be crucial for accurate diagnosis. 

In our work, we also applied dropout regularization within the Bi-LSTM layers to prevent overfitting. 

Dropout randomly deactivates a fraction of the neurons during training, which helps the model generalize 

better by reducing its reliance on any single neuron. Additionally, during training, we monitored the 

model's performance on the test set and implemented early stopping. The training was halted when the 

validation performance no longer improved, thereby preventing the model from overfitting to the training 

data. 

3.2.8. Why choose the white shark optimization technique for autism spectrum disorder? 

A bio-inspired meta-heuristic white shark optimization technique is superiorly fitted for the proposed 

architecture because of the following reasons. 

• White shark optimization is explored in various other fields for cracking numerous complex 

problems. The behavior of WSO algorithm is exciting to explore in the field of ASD as well. The 

motivating and key idea behind this is the intelligent and social behavior of white sharks which is 

somewhat similar to human behavior. The sensing capability, understanding of the environment, 

navigation through the complex ocean (search space), and problem-solving behavior are robust and 

sturdy as compared to humans. Another appealing behavior of white sharks is the strategy of search 

and ambush tactics. Similarly, in the context of ASD, this can be associated with the influence of 

related features on classification and prediction tasks. 

 

 

Input: Pre-processed dataset having various features 

Output: Optimized feature set and classification outcome 

Initialize White Shark population  

Generate initial positions for WSO 

For Initial population 

        Initialize the velocity  

        Evaluate the position 

While (m < M) do 

      Update the parameters 

      for i=1 to n do 

Algorithm of the proposed WS-BiTM 
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          𝑉𝑙𝑘+1
𝑦

= 𝜇 [𝑉𝑙𝑘
𝑦
 +  𝑅1(𝑊𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑊𝑘

𝑦
) × 𝑈1  + 𝑅2  (𝑊𝑏𝑒𝑠𝑡 

𝑉𝑙𝑘
𝑦

− 𝑊𝑘
𝑦
) × 𝑈2]       

      end for 

       for i=1 to n do 

        if  𝑟𝑎𝑛𝑑 < 𝑄𝑆 then 

               𝑊𝑘+1
𝑦

 =   𝑊𝑘
𝑦

 . ¬  𝑊0 + 𝑢𝑝. ℎ +  𝑙0. 𝑑                      

        else 

                𝑊𝑘
𝑦

 +  𝑉𝑙𝑘
𝑦
 /𝑓𝑞 

        end if 

      end for 

          for i=1 to n do 

               if  𝑟𝑎𝑛𝑑 < 𝑆𝑡𝑟     

                 𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤 = |𝑟𝑎𝑛𝑑 × (𝑊𝑔𝑏𝑒𝑠𝑡𝑘 − 𝑊𝑘

𝑦
 )|                                                                                                                     

                  if i==1 then 

                       𝑊𝑘+1 
𝑦

= 𝑊𝑔𝑏𝑒𝑠𝑡𝑘 + 𝑛1 𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤  𝑠𝑔𝑛(𝑛2 − 0.5) 

                  else 

                        𝑊𝑘+1 
′𝑦

= 𝑊𝑔𝑏𝑒𝑠𝑡𝑘 + 𝑛1 𝐷𝑖𝑠⃗⃗⃗⃗ ⃗⃗  
𝑤  𝑠𝑔𝑛(𝑛2 − 0.5) 

                   end if 

                end if 

             end for 

Adjust the position of white sharks 

Evaluate/update the new positions 

K = k+1 

Return the optimal solution 

Final feature set (sel) 

Split the dataset D into training and test sets Dtrain  and Dtest using the optimized feature set (sel) 

Input features into BiLSTM layer X 

Bi-LSTM layer with forward and backward cells 

       ℎ⃗ 𝑡 = 𝐿𝑆𝑇𝑀𝑓𝑜𝑟𝑤𝑎𝑟𝑑(𝑥𝑡 , ℎ⃗ 𝑡−1)  

     ← ℎ𝑡 = 𝐿𝑆𝑇𝑀𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑(𝑥𝑡, ℎ𝑡−1) 

Concatenate the outputs of forward and backward cells 

         ℎ𝑡 = [ℎ⃗⃗  ⃗
𝑡; ← ℎ𝑡]  
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Add the fully connected dense layer 

        𝑦𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥[𝑊𝑜𝑢𝑡  ⋅  ℎ𝑡 + 𝑏𝑜𝑢𝑡] 

Loss function: categorical cross entropy; Optimizer: Adam 

Train 

        Model.fit(Dtrain ,epoch = 100, batch_size = 64) 

Evaluate and Return the values obtained 

Performance_metrics = model.evaluate(Dtest) 

         

• The velocity of the white shark shows the motion and the direction of exploration in the search space. 

The velocity defines how quickly the algorithm will converge toward the optimal solution. For ASD, 

it is associated with the exploration of a combination of features to find the most contributing 

indicators for the prediction of ASD. By dynamically updating the velocities, the technique 

effectively explores the feature space. Parameters like  𝑊𝑔𝑏𝑒𝑠𝑡𝑘, 𝑊𝑘
𝑦

, 𝑅1, 𝑅2, 𝑈1, 𝑈2, and 𝜇 compute 

the magnitude and direction of velocity updates for every shark, and adjustment of these parameters 

strikes a balance between exploration and exploitation, which is necessary, enabling efficient search. 

 

Fig 3.5 Concept map illustrating the exploration/exploitation abilities of WSO 

• WSO leverages parallel processing capability by computing the fitness score of multiple solutions 

simultaneously, thus decreasing the computational time. Fig 3.5 illustrates the concept map behind 

the selection of WSO parameters and showcases the exploration/exploitation ability of WSO. 

 

• WSO employs a population of white sharks, and this population-based approach allows exploration of 

diverse search space and prevents premature convergence to the suboptimal solution, which in turn 

improves the ability of the technique to identify near-global/global optimal solutions. 
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3.3. Experiments and Results 

This module represents the analysis of the experimental outcomes obtained from the proposed AFF-BPL 

and WS-BiTM architectures. The analysis of results is segregated into three sub-sections to effectively 

portray the outcomes of the proposed work. Section 3.4.1 explains the results of the proposed work on 

three datasets. Section 3.4.2 compares the results of the proposed work with state-of-the-art techniques on 

three datasets. Section 3.4.3 provides an ablation study conducted by taking various cases into 

consideration.    

 

3.3.1. Performance Evaluation Parameters 

The efficacy of the WS-BiTM is evaluated using five key metrics: Sensitivity, Precision, Accuracy, 

Specificity, and F1.                              

3.3.2. Dataset Description 

To facilitate the ASD diagnosis work, three ASD datasets incorporating individuals of various age groups 

were used: the 'Toddler' dataset, the 'Children' dataset, and the 'Adult' dataset [120] . All three datasets 

were obtained from the public platform known as 'Kaggle'. The dataset includes a set of questionnaires 

along with personal information. The toddler dataset contains 1054 instances, adults have 704 instances 

and children include 292 instances.  

Table 3.2 Dataset description of common features 

Feature 

Id 

Feature Description 

1.  Age  

2.  Gender  

3.  Ethnicity  

4.  Jaundice History 

5.  PDD with Family Members 

6.  Who is completing the test? 

7.  Country 

8.  Whether the users have used the screening app 

9.  Type of screening method 

   10-19.  Answer of the questions  

      20. Screening Score 
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3.3.3. Result Analysis: Comparison of Proposed work on Three autism datasets on AFF-

BPL 

 

Table 3.3 shows the experimental results of AFF-BPL obtained on various parameters on three autism 

screening datasets. As shown in the table, the AFF-BPL architecture performed fairly well on all three 

datasets.  

Table 3.3 Comparison of AFF-BPL results evaluated on five parameters on three datasets.  

Dataset Accuracy Precision  Sensitivity Specificity  F1-score 

Adult (D1) 0.986 0.973 0.973 0.975 0.976 

Toddlers (D2) 0.992 0.991 0.984 0.986 0.990 

Children (D3) 0.989 0.986 0.986 0.984 0.989 

 

Figure 3.6 portrays the radar plots by comparing the accuracy, precision, specificity, sensitivity, and f1-

socres across datasets. In the radar plots, D1 stands for the ‘Adult’ dataset, D2 stands for the ‘Toddlers’ 

dataset, and D3 stands for the ‘Children’ dataset. 

  

0.986

0.992
0.989
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D2D3

Accuracy

0.973

0.9910.986

D1

D2D3

Precision 



 

83 
 

  

 
    
Figure 3.6. Radar plots of Accuracy, precision, sensitivity, specificity, and F1 score on Adult, Toddler, and Children dataset.  
Here, D1 stands for Adult dataset, D2 stands for Toddler dataset, and D3 stands for Children dataset 

 

3.3.3.1. Comparison with State-of-the-art Techniques 

 

Table 3.4 compares the experimental results obtained by employing the proposed architecture and the 

state-of-the-art techniques on the ‘Adult’ dataset.  We evaluated the efficacy of the proposed with neural 

network (NN), convolution neural network (CNN), and long short-term memory (LSTM) network.  

 

Table 3.4 Comparison of the proposed with three state-of-the-techniques on the Adult dataset  

Model Accuracy Precision Sensitivity Specificity F1-Score 

NN 0.769 0.825 0.857 0.918 0.75 

0.973

0.9840.986

D1

D2D3

Sensitivity

0.975

0.9860.984

D1

D2D3

Specificity 

0.976

0.990.989

D1

D2D3

F1-score
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CNN 0.958 0.942 0.934 0.95 0.94 

LSTM 0.937 0.921 0.912 0.84 0.95 

Proposed 

Model 

0.986 0.973 0.973 0.975 0.976 

 

 
 

 Figure 3.7 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on Adult 
dataset   

Figure 3.7 illustrates the comparison of the proposed work with neural network, convolution neural 

networks and long short-term memory on the Adult dataset in the form of bar plots.  

 

Table 3.5 Comparison of the proposed with three state-of-the-techniques on the Toddler dataset  

Model Accuracy Precision Sensitivity Specificity F1-Score 

NN 0.797 0.80 0.80 0.815 0.80 

CNN 0.936 0.932 0.918 0.917 0.932 

LSTM 0.946 0.936 0.925 0.921 0.93 

Proposed 

Model 

0.992 0.991 0.984 0.986 0.990 

 

Table 3.5 compares the experimental results obtained by employing the proposed architecture and the 

state-of-the-art techniques on the ‘Toddler’ dataset. The outcomes highlight the improvement in results 

after employing our proposed approach.   

0

0.2

0.4

0.6

0.8

1

Accuracy Precision Sensitivity Specificity F1-Score

V
al

u
es

Performance Metrics

NN CNN LSTM Proposed Model



 

85 
 

Figure 3.8 represents bar plots to effectively show the comparison of proposed work with neural network, 

convolution neural network and long short-term memory on Toddler dataset.  

 
Figure 3.8 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on 
Toddler dataset 

Table 3.6 compares the experimental values obtained by employing the proposed architecture and the 

state-of-the-art techniques on the ‘Children’ dataset. The outcomes highlight the improvement in results 

after employing our proposed approach. 

 

Table 3.6 Comparison of the proposed with three state-of-the-techniques on the Children dataset  

Model Accuracy Precision Sensitivity Specificity F1-Score 

NN 0.752 0.812 0.84 0.90 0.84 

CNN 0.912 0.906 0.90 0.924 0.90 

LSTM 0.926 0.917 0.91 0.925 0.91 

Proposed 

Model 

0.989 0.986 0.986 0.984 0.989 

 

Figure 3.9 showcases bar plots to effectively show the comparison of proposed work with neural network, 

convolution neural network, and long short-term memory on Children dataset. To further validate the 

statistical performance results of the AFF-BPL, we performed a paired t-test. It is noteworthy that the 

paired t-test was used to achieve our objectives via a pairwise comparison between the employed and the 

proposed model to showcase the statistical evidence.  
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Figure 3.9 Diagrammatic representation of comparative analysis of the proposed work with state-of-the-art techniques on 
Children dataset 

Specifically, we set the p-value (significance level) to be 0.05 and if the obtained result is less than the 

significance value, we can reject the null hypothesis and represent that there is a significant difference in 

the performances. The obtained statistics and p-values are showcased in Table 3.7. 

Table 3.7 Experimental outcomes of statistical performance on three datasets namely Adult(D1), 

Toddlers(D2), and Children(D3) 

Metrics  Models Adult (D1) Toddlers (D2) Children (D3) 

Statistics  P-value Statistics  P-value Statistics  P-value 

 

Accuracy 

NN 4.93 0.00789 41.41 2.03e-6 6.06 0.00375 

CNN 12.61 0.000228 22.90 2.15e-5 17.57 6.16e-5 

LSTM 4.17 0.01404 14.62 0.000127 22.25 2.42e-5 

 

Precision 

NN 3.41 0.027 47.67 1.16e-6 8.61 0.001 

CNN 8.05 0.00129 29.22 8.17e-6 17.33 6.50e-5 

LSTM 12.44 0.00024 29.50 7.87e-6 25.21 1.47e-5 

 

Sensitivity 

NN 5.08 0.00708 16.31 5.96e-7 10.77 0.00042 

CNN 12.54 0.000233 39.39 2.48e-6 15.54 0.0001 

LSTM 4.96 0.00771 37.12 3.14e-6 21.35 2.84e-5 

 

Specificity 

NN 3.59 0.02299 42.38 1.85e-6 13.51 0.00017 

CNN 8.82 0.000912 34.24 4.34e-6 14.40 1.60e-9 

LSTM 9.07 0.000820 30.01 7.34e-6 16.49 3.26e-8 

 NN 2.63 0.04822 49.25 1.02e-6 11.42 0.00034 
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F1-score CNN 22.77 2.20e-5 26.93 1.13e-5 17.54 6.20e-5 

LSTM 3.02 0.03913 37.52 3.01e-6 25.33 1.44e-5 

 

3.3.3.2. Ablation Study 

 

This segment showcases an ablation study to validate the proposed architecture’s contribution toward 

feature selection in AFF-BPL architecture. The AFF-BPL is trained on three autism screening datasets 

namely, Adult, Children, and Toddlers. The mentioned study cases are evaluated: 

Case A: With only BAT for feature selection 

Case B: With only PSO for feature selection 

Case C: Concurrently using PSO and BAT without adaptive feature fusion 

Case D: Concurrently using PSO and BAT with adaptive feature fusion 

Table 3.8 Ablation study values for the proposed architecture. The architecture is trained on three 

datasets. Case A contains scores obtained by using only PSO. Case B incorporates scores obtained by 

using only BAT. Case C involves concurrently using BAT and PSO without adaptive feature fusion. Case 

D involves concurrent use of BAT and PSO with adaptive feature fusion technique.  

Dataset Ablation Study Case Accuracy Precision Sensitivity Specificity  F1- score 

Adult With only BAT for feature 

selection 

A 0.934 0.901 0.932 0.931 0.921 

With only PSO for feature 

selection 

B 0.948 0.949 0.952 0.951 0.950 

Concurrently using PSO and 

BAT without adaptive 

feature fusion 

C 0.958 0.960 0.952 0.952 0.955 

Concurrently using PSO and 

BAT with adaptive feature 

fusion 

D 0.986 0.973 0.973 0.975 0.976 

Children With only BAT for feature 

selection 

A 0.937 0.924 0.931 0.928 0.927 

With only PSO for feature 

selection 

B 0.945 0.948 0.950 0.949 0.949 

Concurrently using PSO and C 0.951 0.954 0.957 0.952 0.953 
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BAT without adaptive 

feature fusion 

Concurrently using PSO and 

BAT with adaptive feature 

fusion 

D 0.992 0.991 0.984 0.986 0.990 

Toddlers With only BAT for feature 

selection 

A 0.930 0.912 0.925 0.922 0.920 

With only PSO for feature 

selection 

B 0.946 0.947 0.950 0.949 0.948 

Concurrently using PSO and 

BAT without adaptive 

feature fusion 

C 0.959 0.962 0.956 0.953 0.958 

Concurrently using PSO and 

BAT with adaptive feature 

fusion 

D 0.989 0.986 0.986 0.984 0.989 

 

Table 3.8 shows the comprehensive values derived from the conducted ablation study. Specifically, case 

D, characterized by the incorporation of concurrent use of PSO and BAT with adaptive feature fusion, 

surpasses the performance of all other cases in the analysis. 
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 (b)  

 

 (c) 

Figure 3.10 (a), (b), and (c). Ablation study cases for AFF-BPL architecture. The architecture is trained on three 
datasets. Case A contains scores obtained by using only PSO. Case B incorporates scores obtained by using only 
BAT. Case C involves concurrently using BAT and PSO without adaptive feature fusion. Case D involves the 
concurrent use of BAT and PSO with an adaptive feature fusion technique. Increasing values of accuracy highlight 
the significance of the proposed architecture. 

Figure 3.10 (a), (b), and (c) illustrates the impact of the enhancement made in the techniques. The 

increasing values of accuracy on every dataset highlight the significance of developed architecture. 

 

3.3.3.3.Computational Complexity Analysis 

The complexity of the model can be estimated by the number of trainable operations/parameters, which 

depend on various hyper-parameters in each component: BAT, PSO, adaptive feature fusion, and LSTM. 
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These parameters include the number of bats, particles initialized, the number of input features, and the 

number of LSTM units. The PSO and BA algorithms, both employed for feature selection, have a 

complexity of 𝑂(𝑁 ⋅  𝐷 ⋅ 𝑇), where 𝑁 is the number of particles or bats, 𝐷 is the dimensionality of the 

feature space, and 𝑇 is the number of iterations. The Adaptive feature fusion (ADFF) process, which 

normalizes and merges the feature importance scores from PSO and BA (as per equation 15 and 16), 

operates with a complexity of 𝑂(𝐷) due to the linear nature of normalization and averaging computations 

across the feature set. Finally, the LSTM classification phase, responsible for classifying individuals 

based on the fused feature set, has a complexity of 0(𝑇′ ⋅ 𝐷𝐿𝑆𝑇𝑀
2 ), where 𝑇′ represents the number of 

features fed to the LSTM and 𝐷𝐿𝑆𝑇𝑀
2  denotes the dimensionality of the LSTM's hidden layers. Overall, the 

total complexity of the system is dominated by the PSO/BA feature selection step and the LSTM 

classification step, making it 𝑂(𝑁 ⋅  𝐷 ⋅ 𝑇) + 0(𝑇′ ⋅ 𝐷𝐿𝑆𝑇𝑀
2 ).  

 

3.3.4. Results Analysis on WS-BiTM 

This segment explains the performance evaluation matrices and results obtained on them performing 

feature selection, and classification via Bi-LSTM. Experimental outcomes obtained by comparing the 

baseline techniques with the proposed architecture, paired t-test, and ablation study cases are briefly 

described in this section.  

 

(a) 
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(b) 

 

(c) 

Fig 3.11 (a) Toddlers, (b) Adult, (c) Child illustrates the correlations and pattern in all three datasets  
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3.3.4.1. Parameter Settings and Feature Selection 

The parameter values used for WSO are mentioned in Table 3.9. The shark_population_size defines the 

number of candidate solutions (sharks) evaluated at each iteration. A population size of 30 strikes a 

balance between exploration (searching broadly in the solution space) and exploitation (refining 

solutions) while maintaining computational efficiency. Population sizes between 20 and 50 are commonly 

used for optimization to avoid overloading computational resources. 

                                                     Table 3.9 Parameter settings used for WSO 

Parameters Values 

Shark_population_size 30 

Num_iterations 100 

 𝑅𝑚𝑖𝑛 0.5 

 𝑅𝑚𝑎𝑥 1.5 

𝑓𝑞𝑚𝑎𝑥 0.75 

𝑓𝑞𝑚𝑖𝑛 0.07 

𝑢𝑝𝑧 1 

𝑙𝑏𝑧 0 

𝜏 4.12 

 ℎ0 6.25 

 ℎ1 100 

 ℎ2 0.0005 

Dimensions Num_of_features 

 

Table 3.10 represents the features selected by WSO on three different datasets - DT,  DC, and DA.  The 

dataset comprises numerous features, but the table consists of the most important features, including 

demographic information (e.g., Age, Gender/Sex, Ethnicity) and domain-specific attributes (e.g., A1–

A10, QChat). Some features were consistently selected across all three datasets, implying their 

importance and generalizability: A1 – A10, this feature group, likely representing critical domain-specific 

attributes, was selected in all datasets (DT,  DC, and DA), indicating it plays a significant role regardless of 

the dataset used. These features likely capture key patterns that are relevant across various contexts. Age 

is another critical feature, selected in all datasets. The fact that "Age" is universally chosen suggests it has 

a strong correlation with the classification or outcome prediction task across datasets. Gender/Sex, 

Ethnicity, and Class ASD are the demographic features that are also consistently selected across datasets, 
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highlighting their importance in the model's decision-making process. It shows that the WSO algorithm 

finds these attributes to be essential for achieving high accuracy in classification, potentially due to their 

relevance in understanding the factors behind ASD. 

Table 3.10 Feature selection using WSO across three datasets (DT,  DC, and DA), demonstrating both 

consistent and dataset-specific feature importance.  

       Feature Name Datasets 

DT DC DA 

A1 – A10 ✓ ✓ ✓ 

Age ✓ ✓ ✓ 

QChat ✓   

Gender/Sex ✓ ✓ ✓ 

Ethnicity ✓ ✓ ✓ 

Country of Origin  ✓ ✓ 

Used App   ✓ 

Class ASD ✓ ✓ ✓ 

 

3.3.4.2. Sensitivity Analysis of Hyper-parameters 

In this section of sensitivity analysis, we investigate the impact of various hyperparameters on the 

performance of the White Shark Optimization (WSO) algorithm for feature selection. Specifically, we 

examine four parameters namely shark population size, number of iterations, and bounds for the 

optimization process. By systematically varying these hyperparameters within specified ranges, we aim to 

determine their influence on the key performance metric, i.e., classification accuracy.  

Table 3.11 Performance comparison after conducting sensitivity analysis of hyper-parameters 

 

 

 

Tested 

Values 

Hyper-parameter Accuracy 

Shark_population_size Num_iterations  𝑅𝑚𝑖𝑛  𝑅𝑚𝑎𝑥 DT DC DA 

15 50 0.25 1.0 0.804 0.812 0.801 

30 100 0.5 1.5 0.976 0.964 0.962 

50 150 0.75 2.0 0.915 0.912 0.912 

60 200 0.5 1.5 0.922 0.932 0.936 

This analysis not only reinforces the rationale behind our chosen hyperparameter values but also provides 

insights into the robustness of the WSO approach. The best accuracy obtained on their specific parameter 

value on all three datasets is highlighted in Table 3.11. 
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3.3.4.3. Experimental Outcomes of WS-BiTM on Three Autism Datasets 

Table 3.12 Comparison of WS-BiTM outcomes analyzed on five parameters on three datasets. 

Dataset Accuracy Precision  Sensitivity Specificity  F1-score 

Toddlers (DT ) 0.976 0.971 0.981 0.971 0.975 

Children (DC ) 0.964 0.965 0.965 0.964 0.964 

Adult (DA ) 0.962 0.945 0.985 0.942 0.964 

 

Table 3.12 enumerates the experimental simulation outcomes of WS-BiTM on three datasets. As 

specified in the table, WS-BiTM performed exceptionally well on all three datasets.  
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Fig 3.12 Radar plots Accuracy, precision, sensitivity, specificity, and F1 score obtained on Children, 

Toddlers, and Adults datasets. The value obtained on all three datasets is presented on different color-

coded radar plots for every performance metric. 

  

Fig 3.12 illustrates radar plots of five performance measures employed to showcase the effectiveness of 

our work on the employed three datasets. The confusion matrices in Fig 3.13 for the test set datasets: 

Toddlers, Children, and Adults; highlight the classification model's performance. In the Toddlers dataset, 

the model demonstrated high accuracy with a substantial number of true positives and true negatives 

while maintaining a low rate of false positives and false negatives. Similarly, the Children dataset 

exhibited robust classification capabilities, with effective differentiation between autistic and non-autistic.  
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Fig 3.13 Confusion matrices of all three datasets on the test set 

The Adult dataset also showed effective performance, with the model successfully identifying most 

instances while exhibiting minor misclassifications. Overall, these matrices illustrate the model's 

effectiveness across various age groups within the test set. 

3.3.5. Comparison with State-of-the-Art Approaches 

For the ‘Toddlers’ dataset (Table 3.13, denoted as DT), we analyzed that the performance values on 

different matrices for NN are 0.797, 0.80, 0.80, 0.815, 0.80, whereas for CNN the values are 0.930, 0.923, 

0.919, 0.914, 0.929. LSTM performed fairly well with values of 0.951, 0.941, 0.929, 0.949, 0.942. The 

integrated WS-BiTM demonstrates better performance with values 0.976, 0.971, 0.981, 0.971, 0.975. As 

observed, WS-BiTM achieved the highest accuracy. Hence for the 'toddlers' dataset, the developed 

architecture surpassed all baseline techniques considered.  

For the ‘Children’ dataset (denoted as DC), we observed that the performance values on different metrics 

for NN are 0.779, 0.835, 0.87, 0.93, 0.86, whereas for CNN the values are 0.912, 0.906, 0.90, 0.924, 0.90. 

In this case also, LSTM performed fairly well with values 0.926, 0.917, 0.91, 0.925, 0.91. The integrated 

WS-BiTM shows better performance with values 0.964, 0.965, 0.965, 0.964, 0.964. As observed, WS-

BiTM achieved the highest accuracy. Hence for the 'Children' dataset also, the developed architecture 

outperforms all baseline techniques considered. 
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Table 3.13 Comparison of evaluation parameter values on various parameters obtained from three 

datasets. Here DT DC , DA signifies values on Toddlers, Children, and Adult dataset respectively  

Model Accuracy Precision Sensitivity Specificity F1-score 

Toddlers (DT ) 

NN 0.797 0.80 0.80 0.815 0.80 

CNN 0.930 0.923 0.919 0.914 0.929 

LSTM 0.951 0.941 0.929 0.949 0.942 

WSO- BiTM 0.976 0.971 0.981 0.971 0.975 

Children (DC ) 

NN 0.779 0.835 0.87 0.93 0.86 

CNN 0.912 0.906 0.90 0.924 0.90 

LSTM 0.926 0.917 0.91 0.925 0.91 

WSO-BiTM 0.964 0.965 0.965 0.964 0.964 

Adult (DA ) 

NN 0.769 0.825 0.857 0.918 0.75 

CNN 0.958 0.942 0.934 0.95 0.94 

LSTM 0.937 0.921 0.912 0.84 0.95 

WSO-BiTM 0.962 0.945 0.985 0.942 0.964 

 

For the ‘Adults’ dataset (denoted as DA ), we examined that the performance values on different 

parameters for NN are 0.769, 0.825, 0.857, 0.918, 0.75, whereas for CNN the values are 0.958, 0.942, 

0.934, 0.95, 0.94.  Values achieved by LSTM are 0.937, 0.921, 0.912, 0.84, 0.95.  
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(b)  

  

 

(c)  

Fig 3.14 Graphical representation of model comparison on various parameters on three datasets, where 

(a), (b), and (c) represent statistics of toddlers, children, and adult datasets respectively 
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The integrated WS-BiTM shows better performance with values 0.962, 0.945, 0.985, 0.942, 0.964. As 

observed, WS-BiTM achieved the highest accuracy. At last, for the 'Adults’ dataset, the developed 

architecture serves promising results compared with all baseline techniques. Fig 3.14 (a), (b), and (c) 

graphically represent the comparison of performance of all the employed techniques across the three 

datasets. We examined that WS-BiTM achieved the highest accuracy across all the datasets. Table 3.14 

comprehensively evaluates various classification algorithms, focusing on their accuracy and 

computational time across three datasets: Adults, Toddlers, and Children. The neural network (NN) 

classifier achieved accuracies of 76.9%, 79.7%, and 77.9%, respectively, with a computation time of 

approximately 127.6 seconds, indicating its relatively lower performance compared to more complex 

models. The convolutional neural network (CNN) demonstrated significantly higher accuracy, reaching 

95.8% for the ‘Adult’ dataset, 93.0% for ‘Toddlers’, and 91.2% for ‘Children’, albeit at a considerably 

greater computation time of 520.4 seconds. Long Short-Term Memory (LSTM) networks also performed 

well, achieving accuracies of 93.7%, 95.1%, and 92.6%, but required even more computation time, 

approximately 1070.5 seconds. Notably, the proposed WS-BiTM model outperformed all other 

algorithms, with accuracies of 96.2% for ‘Adult’, 97.6% for ‘Toddlers’, and 96.4% for ‘Children’ data, 

albeit at the highest computation cost of around 2800.6 seconds. This analysis underscores the trade-off 

between accuracy and computational efficiency, highlighting the superiority of the proposed model in 

accuracy while also necessitating significantly greater computational resources. 

 

              Table 3.14 Comparison of algorithm’s accuracy and computational time  

Algorithm/Classifier Accuracy Computation time 

(Approx) Adult Toddlers Children 

NN 0.769 0.797 0.779 127.6 

CNN 0.958 0.930 0.912 520.4 

LSTM 0.937 0.951 0.926 1070.5 

Proposed: WS-BiTM 0.962 0.976 0.964 2800.6 

 

3.3.4.4. Statistical Significance: Paired t-Test 

 

In this segment, we sought to further validate the statistical significance of the WS-BiTM model by 

conducting a paired t-test. This statistical method enabled us to compare the proposed WS-BiTM model 

against various employed models, thereby providing robust statistical evidence through pairwise 

comparisons. Specifically, we utilized the paired t-test to evaluate the performance of different models 

such as Neural Networks (NN), Convolutional Neural Networks (CNN), and Long Short-Term Memory 
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(LSTM), relative to the WS-BiTM model. Our objective was to ascertain whether statistically significant 

differences existed in performance metrics, including Accuracy, Precision, Sensitivity, Specificity, and 

F1-score, across three distinct datasets: Adults, Toddlers, and Children. In our analysis, each pair in the 

paired t-test consisted of the performance metrics (e.g., Accuracy, Precision) of the same model evaluated 

on identical datasets. We established a significance level (p-value) of 0.05; a p-value below this threshold 

would lead us to reject the null hypothesis, indicating a significant difference in performance between the 

models. The statistical results and corresponding p-values obtained from this analysis are summarized in 

Table 3.15. 

 

           Table 3.15 Statistical results showcasing the significance in model performance across all datasets 

Metrics  Models Adult  Toddlers Children  

Statistics  P-value Statistics  P-value Statistics  P-value 

 

Accuracy 

NN 3.97 0.00734 36.22 3.41e-6 5.54 0.00299 

CNN 10.74 0.000198 19.42 3.22e-5 12.02 5.76e-5 

LSTM 5.18 0.01340 11.35 0.000119 17.18 3.13e-5 

 

Precision 

NN 4.88 0.034 42.05 2.86e-6 9.98 0.0026 

CNN 9.70 0.00119 21.14 7.81e-6 13.05 4.58e-5 

LSTM 11.36 0.00031 19.26 6.21e-6 19.28 2.33e-5 

 

Sensitivity 

NN 4.27 0.00698 14.45 5.91e-7 11.66 0.00037 

CNN 10.24 0.000255 30.14 3.69e-6 14.71 0.00062 

LSTM 4.79 0.00664 31.06 2.98e-6 20.12 3.24e-5 

 

Specificity 

NN 4.66 0.03311 36.47 1.72e-6 12.40 0.00044 

CNN 7.47 0.000899 29.13 4.22e-6 13.57 2.65e-9 

LSTM 10.42 0.000746 28.89 2.83e-6 15.69 2.03e-8 

 

F1-score 

NN 3.20 0.03791 33.11 1.54e-6 12.28 0.00019 

CNN 17.02 2.30e-5 18.62 1.69e-5 14.39 4.19e-5 

LSTM 3.65 0.02919 34.25 3.17e-6 19.04 2.87e-5 

 

3.3.4.5. Comparison with Other Bio-inspired Techniques for Feature Selection 

 

This section compares the feature selection performance of the White Shark Optimization (WSO) 

technique against the classical Particle Swarm Optimization (PSO) method across multiple datasets. A 

thorough examination of hyperparameters associated with PSO, such as swarm size, number of iterations, 
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and cognitive and social component weights provides a foundation for understanding the algorithm's 

operational framework.  

                         Table 3.16 Hyperparameter values of PSO for feature selection  

Hyper-parameters Description PSO 

Population_size Swarm size in PSO; 

Bat population size 

50 

Max_itr Number of iterations 100 

𝑪𝟏 Cognitive component 

weight 

2 

𝑪𝟐 Social component weight 2 

𝝎 Inertia 0.7 

Velocity Velocity update As per equation (1) 

Position Position update As per equation (2) 

 

Subsequently, we present the results of both techniques in Table 3.17, highlighting key performance 

metrics including accuracy, precision, sensitivity, specificity, and F1-score. The findings reveal the 

efficacy of WSO in enhancing feature selection capabilities, ultimately demonstrating its superiority over 

PSO in optimizing classification performance across diverse datasets. 

Table 3.17 Comparative representation of performance parameters by using PSO and WSO for feature 

selection across three datasets 

Technique Dataset Accuracy Precision Sensitivity Specificity F1-score 

PSO Dataset 1: 

DT 

0.936 0.932 0.928 0.907 0.931 

WSO 0.976 0.971 0.981 0.971 0.975 

PSO Dataset 2: 

DC 

0.902 0.916 0.915 0.911 0.914 

WSO 0.964 0.965 0.965 0.964 0.964 

PSO Dataset 3: 

DA 

0.914 0.907 0.901 0.926 0.911 

WSO 0.962 0.945 0.985 0.942 0.964 

 

3.3.4.6. Ablation Study 

 

This section presents an ablation study to validate the contribution of the proposed WS-BiTM 

architecture. The WS-BiTM is trained using three screening datasets: ‘Toddlers’, ‘Adults’, and 

‘Children’. The work evaluates the performance across the cases mentioned below: 
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Case 1: Without WSO for feature selection (randomly selected features) 

Case 2: With using only LSTM for classification 

Case 3: Concurrently using WSO and Bi-LSTM (proposed work) 

Table 3.18 Ablation outcomes with the proposed WS-BiTM architecture. The architecture is trained via 

three datasets. Case 1 incorporates scores obtained without WSO. Case 2 studies the incorporation of 

using only LSTM for classification. Case 3 involves the concurrent use of WSO and Bi-LSTM. 

Dataset Ablation Study Case Accuracy Precision Sensitivity Specificity  F1- 

score 

Toddlers Without WSO for 

feature selection 

1 

 

0.902 

 

0.90 

 

0.912 

 

0.911 

 

0.913 

 

With using only LSTM 

for classification 

2 0.933 0.932 0.931 0.932 0.925 

Concurrently using 

WSO and Bi-LSTM 

3 0.976 0.971 0.981 0.971 0.975 

Adult Without WSO for 

feature selection 

1 

 

0.904 

 

0.903 

 

0.911 

 

0.912 

 

0.914 

 

With using only LSTM 

for classification 

2 0.938 0.930 0.932 0.932 0.935 

Concurrently using 

WSO and Bi-LSTM 

3 0.964 0.965 0.965 0.964 0.964 

Children Without WSO for 

feature selection 

1 

 

0.904 

 

0.912 

 

0.902 

 

0.901 

 

0.901 

 

With using only LSTM 

for classification 

2 0.938 0.930 0.932 0.932 0.935 

Concurrently using 

WSO and Bi-LSTM 

3 0.962 0.945 0.985 0.942 0.964 

 

The findings from the experimental simulations highlight the significant contribution of the WS-BiTM 

network in enhancing the reliability and accuracy of ASD diagnosis. The obtained results lay the 

foundation for future research advancements and development in the domain of ASD. 
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3.3.4.7. Leave-One-Dataset-Out (LODO) Cross Validation  

 

To ensure the generalization of the proposed WS-BiTM model across different populations and verify that 

the model does not overfit a particular dataset, we performed Leave-One-Dataset-Out cross-validation 

(LODO-CV). This approach allows us to evaluate the model's performance when trained on two datasets 

and tested on a third, independent dataset, thus simulating real-world scenarios where the model is 

applied to unseen data. We conducted the LODO-CV using three datasets as mentioned in the above 

sections i.e., Toddler, Adult, and Children. For each experiment, the model was trained on two datasets 

and evaluated on the left-out dataset. This procedure was repeated until each dataset had been used as a 

testing set. We have constructed three cases based on our datasets as mentioned below. 

Case 1: Train on Toddler and Adult, Test on Children: In this case, the WS-BiTM model was trained on 

the combined Toddler and Adult datasets, which consisted of a total of 1758 instances. The model was 

then evaluated on the Children dataset, which contained 292. The results showed that the model achieved 

an accuracy of 97% on the Children dataset, indicating its ability to generalize to this population. 

Case 2: Train on Toddler and Children, Test on Adult: The second experiment involved training the WS-

BiTM model on the combined Toddler and Children datasets, with a total of 1346 instances. The Adult 

dataset, containing 704 instances, was used for testing. In this configuration, the model achieved an 

accuracy of 95.9%, demonstrating good generalization to the adult population. 

Case 3: Train on Adult and Children, Test on Toddler: For the final experiment, the model was trained on 

the combined Adult and Children datasets, comprising a total of 996 instances, and tested on the Toddler 

dataset, with 1054 instances. The performance metrics on the Toddler dataset showed an accuracy of 

93.5%,  indicating fair model performance even when tested on a larger population. 

 

Table 3.19 Leave-One-Dataset-Out cross-validation 

Training Datasets Test 

Dataset 

Accuracy Precision Sensitivity Specificity F1-

Score Toddler Adult Children 

✓ ✓  Children 0.97 0.968 0.967 0.967 0.969 

✓  ✓ Adult 0.959 0.957 0.954 0.957 0.956 

 ✓ ✓ Toddlers 0.935 0.933 0.936 0.934 0.934 

 

The results of the LODO-CV experiments are summarized in Table 3.19.  Across all three configurations, 

the WS-BiTM model demonstrated consistent performance in two cases. In case 3, there is a drop in 

accuracy when compared with other cases due to the larger number of test instances and lower training 

instances. Fig 3.15 shows the graphical illustration of the LODO-CV in these cases. Cross-dataset 
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validation confirmed that the model effectively generalizes across different populations and is not 

overfitting to any particular dataset.  

 

 

Fig 3.15 Graphical representation of the LODO-CV across three cases 

 

3.4. Chapter Summary 

This chapter emphasizes the integration of machine learning, nature-inspired algorithms, and deep 

learning techniques to enhance the diagnostic process for ASD. Traditional methods often face challenges 

such as insufficient feature representation and a lack of semantic understanding, limiting their 

effectiveness. To overcome these challenges, this research introduces two novel approaches: AFF-BPL 

(Adaptive Feature Fusion with Bat-PSO-LSTM) and WS-BiTM (White Shark-BiLSTM-based network). 

Both methods demonstrate significant advancements in ASD diagnosis. The AFF-BPL model employs 

adaptive feature fusion to integrate bio-inspired optimization with deep learning, achieving exceptional 

diagnostic accuracy across three distinct autism datasets (Toddlers, Children, and Adults). Experimental 

results highlight its superior performance, attaining accuracies of 0.992, 0.989, and 0.986, respectively, on 

the toddler, children, and adult datasets. Similarly, the WS-BiTM model combines White Shark 

optimization with BiLSTM to address the complexities of ASD diagnosis, achieving an accuracy of 

97.6%, thereby outperforming baseline models such as NN, LSTM, and CNN. The findings underscore 

the potential of combining bio-inspired techniques with deep learning methodologies to enhance feature 

representation. By harnessing the synergy of computational intelligence and machine learning, this work 

anticipates significant advancements in the efficacy and accuracy of ASD diagnosis, contributing to 

improved healthcare outcomes. 
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Chapter 4 ASD DIAGNOSIS USING MULTI-MODALITY 

ARCHITECTURE 
 

The diagnosis of Autism Spectrum Disorder (ASD) has remained a challenging task due to the complex 

and heterogeneous nature of the disorder. In recent years, the integration of multi-modal data sources, 

such as neuroimaging and clinical features, has shown promising potential for improving diagnostic 

accuracy. This chapter presents the development and evaluation of a novel multi-modality architecture for 

ASD diagnosis, leveraging the complementary strengths of structural MRI data and non-imaging meta-

features. By combining advanced computational techniques, such as convolutional neural networks 

(CNNs), attention mechanisms, and transformer-based models, the proposed framework provides a robust 

and interpretable solution for ASD detection. The chapter elaborates on the design, implementation, and 

performance of the architecture, highlighting its ability to capture nuanced patterns from diverse data 

modalities and its superior performance compared to existing approaches. Section 4.1 provides an 

overview of the chapter, introducing the role of multi-modality architectures in ASD diagnosis. Section 

4.2 discusses the use of CNNs for image analysis, while Section 4.3 presents the proposed MCBERT 

architecture, integrating CNNs, attention mechanisms, and BERT for enhanced diagnosis. Section 4.4 

outlines the experiments and results, including dataset details, evaluation metrics, comparative analysis, 

and generalization testing. Section 4.5 examines the computational complexity of the approach. Section 

4.6 provides a discussion of the findings and their significance. Finally, Section 4.7 summarizes the 

chapter's contributions and insights. 

4.1. Overview 

Within the domain of neurodevelopmental disorders, autism spectrum disorder (ASD) emerges as a 

distinctive neurological condition characterized by multifaceted challenges. The delayed identification of 

ASD poses a considerable hurdle in effectively managing its impact and mitigating its severity. 

Addressing these complexities requires a nuanced understanding of data modalities and the underlying 

patterns. Existing studies have focused on a single data modality for ASD diagnosis. Recently, there has 

been a significant shift towards multimodal architectures with deep learning strategies due to their ability 

to handle and incorporate complex data modalities. In recent developments, non-invasive brain imaging 

has provided a more comprehensive understanding of the neural circuitry linked with neural 

developmental disorders [121]. Notably, fMRI enables the visual evaluation of the functional 

characteristics of the brain. This offers precise insights into various neurological disorders [122]. For 

example, in the diagnosis of ASD, rather than solely depending on observational methods and patient 

interactions, physicians leverage neuroimages to detect anomalies in brain activity. This approach 
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enhances the efficiency and precision of identifying differences in neural pathways among patients. 

Developing an architecture that takes both images and its meta-data (multi-modal) into account, can 

enhance the efficacy and association between both modalities. This multi-modal strategy can prove to be 

effective in diagnosing ASD. 

There has been a substantial accumulation of non-imaging (meta-features) datasets. Elements like gender, 

behavioral characteristics, patient history, and genetic sequences significantly influence disease diagnosis. 

The integration of non-imaging and imaging data through multimodal architecture is crucial for 

enhancing the efficacy of algorithms. Nonetheless, non-imaging/meta-features exhibit high 

dimensionality, constraining the representational capabilities of conventional machine-learning 

approaches [123]. Deep learning strategies present an avenue for efficiently amalgamating multimodal 

data to facilitate the diagnosis of autism spectrum disorder (ASD). The research framework built in this 

paper primarily concentrates on adopting deep-learning image and text-processing techniques to establish 

a multi-modal framework for diagnosing ASD. This is achieved by employing various techniques and 

fusing their outputs at the end. In the developed architecture, we introduced blocks/ components for 

image and meta-features modalities to diagnose ASD.  

 

4.2. Convolution Neural Network (CNN) 

In contemporary deep learning for image recognition/classification, CNNs stand out as a prominent neural 

network architecture. The architecture of CNN is structured into three layers: (i) the entry layer, (ii) the 

hidden (latent) layer, and (iii) the output layer. The hidden layers, alternatively termed pooling, or 

completely connected layers, play a major role in the overall architecture [29] [116].   

The Convolutional Layer: The convolutional strategy is applied recurrently within this layer to induce 

changes in the output function. Comprising the neuronal maps, also known as the “filter/feature maps” or 

“characteristic maps”, the discrete convolution of receptors quantifies neural activity (Figure 4.1, block 

A). This process involves computing the overall neural weights of the input and activation function 

assignments [40]. Figure 4.1 provides a visual representation of a generic discrete convolutional layer. 

Max Pool Layer: The max pool layer forms a multitude of grids from the segmented convolutional layer’s 

output. Sequential matrices are created using the maximum grid value. Operators are employed to derive 

the average or maximum value for each matrix. Figure 1, block B, illustrates the construction of the max 

pool layer [50]. 

Fully Connected Layer (FCL): Constituting 90% of the entirety of the structural elements of the CNN, the 

FCL allows the transmission of the input across the network with a pre-configured vector length. Data is 
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transformed within this portion before grading. The convolutional layer is also transformed to conserve 

information integrity. Neurons from every preceding layer are utilized in these FCLs, serving as the 

network’s ultimate layer [124]. 

 

 

Figure 4.1 Visual representation of the workflow of generic convolution neural network  

 

4.3. Proposed Architecture 

4.3.1. Multi-Head CNN 

In this research paper, we introduced a three-headed convolutional neural network specifically crafted to 

extract pertinent patterns from input images. The convolutional layer comprises multiple convolutional 

filters that, through convolution operations, generate the output feature map (mainly explained in the 

above section) from input images. Within the convolutional layers, the obtained feature maps via the 

preceding layer undergo convolution via various kernels [125]. Additionally, bias is incorporated to 

augment the outcome of the convolution operation, which subsequently passes via an activation function, 

giving rise to the feature maps for the subsequent layers. Mathematically, the 𝑚th feature map at the 𝑙th 

layer of the ⅇth head of the multi-head CNN is represented as a matrix, with the value at the 𝑘th row 

denoted as 𝑅𝑙𝑚
𝑘,𝑒

. The calculation of this value follows the formula presented in equation (1). 

𝑅𝑙𝑚
𝑘,𝑒 = 𝑓𝑅𝑒𝑙𝑢(𝑓𝑐𝑜𝑛𝑣2𝑑

𝑒 (𝑅𝑙−1
𝑘+𝑗

)),      ∀ⅇ  = 1, 2, 3                                                                                           (1) 
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Here, 𝑓𝑅𝑒𝑙𝑢 denotes the activation function that replaces all negative values with 0 (zero) in the feature 

map, while 𝑓𝑐𝑜𝑛𝑣2𝑑
𝑒  represents the convolution function of the ⅇth head in our multi-head CNNs, s 

articulated in equation (2). 

𝑓𝑐𝑜𝑛𝑣2𝑑
𝑒 (𝑅𝑙−1

𝑘+𝑗
 ) = 𝑏𝑙𝑚  + ∑ ∑ 𝑊𝑙𝑚𝑖

𝑗𝑒
𝜂𝑙

𝑒−1

𝑗=0
𝑖

 𝑅(𝑙−1)
𝑘+𝑗,𝑒

                                                                                  (2) 

𝑏𝑙𝑚  represents the bias for a particular feature map, where ⅈ is the index of the feature map at the ( 𝑙 − 1 ) 

layer. Additionally, 𝑊𝑙𝑚𝑖
𝑗𝑒

signifies the weight matrix present at the position 𝑗 of the convolution kernels, 

and 𝜂𝑙
𝑒 represents the length of the kernel of the ⅇth head in our multi-head CNN. A crucial element in the 

developed multi-head CNN architecture is the pooling layer. This layer plays a pivotal role in reducing 

the parameter count and computations by decreasing the spatial size of the feature representation. Among 

the various pooling techniques, max pooling is the most popular and widely utilized method. 

𝑃ℎ𝑙𝑚 = 𝑚𝑎𝑥(𝑦,   𝑧) ∈ ℝ𝑙,𝑚
 𝜈ℎ𝑦𝑧                                                                                                                  (3) 

Here 𝑃ℎ𝑙𝑚 represents the pool operation of the ℎth feature maps.  𝜈ℎ𝑦𝑧 signifies the component at position 

(𝑦, 𝑧) enclosed by the pool region ℝ𝑙,𝑚. This region shows a receptive field around (𝑙, 𝑚). 

4.3.2. Convolution Block Attention Component (CBAC) 

In the developed architecture, each head incorporates two CBACs to optimize training performance by 

accentuating both spatial and channel features with brain MRI images. The CAC network empowers the 

MCBERT framework to concentrate on crucial channel features while disregarding others. These channel 

features contain intricacies intrinsic to the individual color or feature channels, delineating distinct aspects 

such as textual nuances and color variations. This channel-level scrutiny is necessary for capturing fine-

grain details by facilitating a comprehensive characterization of image content. To assess the importance 

of every channel, diverse weight information is utilized to various feature channels and feature 

dimensions of the visual data. SAC enables the architecture (Figure 4.2, block A) to prioritize spatial 

dimension information on the feature map. The features encapsulate the spatial relationships, structural 

configurations, and overall layout of the image, presenting a holistic perspective on the contextual 

arrangement of visual elements. The analysis of spatial features is pivotal for decoding the spatial 

semantics and intrinsic geometry embedded within the visual data. For feature extraction, CBAC 

sequentially extracts a 1-D channel attention map 𝐴𝐶  𝜖 ℝ𝑐×1×1 and a 2-D spatial attention map 

𝐴𝑠 𝜖 ℝ
1×𝐻×𝑊  from the provided intermediate feature map 𝐼 𝜖 ℝ𝑐×𝐻×𝑊   of the MRI visual data. The 

comprehensive attention mechanism is articulated in equations (4) and (5). 
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𝐼′ = 𝐴𝐶(𝐼)  ⊗  𝐼                                                                                                                                       (4)                                                  

𝐼′′ = 𝐴𝑠(𝐼)  ⊗  𝐼′                                                                                                                                       (5)  

In this context, the symbol ⊗ denotes element-wise multiplication, producing the refined feature 𝐼′′. The 

channel attention features undergo compression along the spatial dimension, and reciprocally. The CAC 

network, illustrated in Figure 4.3, augments the significance of relevant information while diminishing 

the weight of unnecessary details in the feature channel. Consequently, the developed module accentuates 

channels within the MRI images. 

 

Figure 4.2 Multimodal architecture of MCBERT incorporating convolutional layers with channel block 

attention component (Block A) for image modality, a BERT module (Block B) for the meta-features, 

fusing the output of the block A and block B, and passing it through global max pooling and the final 

classification module (Block C) to diagnose ASD. 

Within the CAC, average-pooled patterns and max-pooled attributes are extracted (as in Figure 3) from 

the aggregated feature map, employing both average-pooling and max-pooling operations on spatial 

information [126][127]. These high-level patterns undergo processing in a shared multi-layer perceptron 

(MLP) model, featuring a hidden layer. The outcome of the shared network traverses a pipeline involving 

additional max-pooling and average-pooling operations, coupled with a non-linear activation function 
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(ReLU) [128], to generate the channel attention map 𝐴𝐶  𝜖 ℝ𝑐×1×1. The utilization of two pooling 

operations enhances the extraction of high-level features [129]. The mathematical calculation of channel 

attention is expressed in equation (6), where 𝜎 represents the sigmoid function. 

𝐴𝐶(𝐼) = 𝜎 (𝑀𝐿𝑃 (𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐼))) + (𝑀𝐿𝑃 (𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐼)))                                                                   (6) 

𝐴𝑠(𝐼′) = 𝜎 (𝑓7×7 ( [𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐼′);   𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐼′)]) )                                                                               (7) 

 

Figure 4.3 Detailed architecture of convolution block attention component (CBAC) incorporating the 

visual representation of channel attention component (CAC) and spatial attention component (SAC) 

Moving to the SAC network, depicted in Figure 4.3, enhances the spatial dimension features in the feature 

map through feature filtering on pixels at different positions within the same spatial dimension, assigning 

weights to significant features. SAC executes average-pooling and max-pooling operations on the feature 

map 𝐼′ along the channel dimension, producing two feature maps that are subsequently fused and 

convolved by a 7×7 kernel size. This convolution operation yields the final spatial attention map 

𝐴𝑠 𝜖 ℝ
1×𝐻×𝑊. Where 7×7 denotes the convolution operation with a filter size of 7×7. The mathematical 

formulation of SAC is provided in equation (7). The extracted feature maps from the multi-head CNN, 

refined through CBAC, are then combined with patient meta-features for further analysis. 

4.3.3. Bidirectional Encoder Representations from Transformers 

BERT or Bidirectional encoder representations from transformers stand out as an efficient and 

revolutionary model for feature extraction in various tasks. For the meta-features (patient information), 
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we employed the BERT model, a pre-trained language representation model (Figure 2, Block B). The 

employed BERT model transforms the input patient data into vector representations. These vectors 

capture both inter-feature relationships and sentence-level features from the patient information. Its 

primary function is to transform input into vectors [130]. In contrast to conventional language pre-training 

models, BERT incorporates two tasks for model pre-training. Consequently, the word vectors produced 

by BERT not only convey inter-word features but also encompass features at the sentence level [131]. 

The pivotal component in BERT is the Bi-transformer, utilizing a self-attention mechanism and fully 

connected (FCL) layer to model input, diverging from the use of recurrent neural networks and CNN for 

feature extraction. The self-attention mechanism, paramount in transformers, computes relationships 

between the data, adjusting the weight of importance based on these relationships. Thus, each word’s 

vector not only signifies its meaning but also provides insights into relationships with other features 

[132]. The BERT module’s output is then used as input for the multi-head self-attention mechanism, as 

described in Equation (8). The computational process is depicted in equation (8), where 𝑄 denotes the 

query vector, 𝐾 is for the representation vector, the value vector is 𝑉, and the input vector dimension is 

denoted by 𝑑𝑘. Here, the input vectors are derived from the meta-features encoded by BERT, and the 

attention mechanism computes the relationships between the features, adjusting their weights based on 

their relevance. 

𝐴𝑡𝑡ⅇ𝑛𝑡ⅈ𝑜𝑛(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝑘𝑇

√𝑑𝑘
)𝑉                                                                                                (8) 

The transformer also incorporates a multi-attention mechanism as the self-attention mechanism alone is 

limited to capturing information in a single dimension. Initially, the vectors 𝑄, 𝐾, and 𝑉 undergo linear 

mapping ℎ times. Finally, the resulting attention matrices are concatenated, enabling the acquisition of 

multi-dimensional information. The formula describing the process is as follows: 

𝑀𝑢𝑙𝑡ⅈℎⅇ𝑎𝑑(𝑉, 𝑄, 𝐾) = 𝑐𝑜𝑛𝑐𝑎𝑡( ℎⅇ𝑎𝑑1,  ℎⅇ𝑎𝑑ℎ  )                                                                                   (9) 

ℎⅇ𝑎𝑑𝑖   = 𝑎𝑡𝑡ⅇ𝑛𝑡ⅈ𝑜𝑛( 𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝐾 , 𝑉𝑊𝑖
𝑉)                                                                                             (10) 

4.3.4. Pre-processing: 

To address the distinct statistical properties in our multimodal data during training, we adopted a 

standardization and normalization approach for meta-features (non-imaging data). Specifically, 

dictionaries are crafted from the data, encompassing age, site, and gender information for each sample. 

Age values fall within the range of (6,64), while the 17 sites are encoded as (0, 1, ……,15, 16). And 

gender is represented as (0,1). A normalization process is applied to both sites and ages, transforming 

their values to lie within the standardized interval of (0, 1). This meticulous preprocessing ensures that the 
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non-imaging input data is appropriately rescaled and ready for integration with the multi-modal data, 

promoting improved convergence and effectiveness during the training process. 

 

Function normalize_meta_features(u): 

    Create an empty dictionary for normalized data 

         Normalized_data = {} 

    For data_type in [‘site’, ‘age’, ‘gender’]: 

         Extract the data for the current_type 

              X = u[data_type] 

    Normalize the data to the range [0, 1] 

             X_normalized = (X - min (X)) / (max (X) – min (X)) 

    Standardization of the data 

             X_standardized = (X – np.mean (X)) / np.std (X) 

    Add the normalized data to the dictionary  

             Normalized_data [data_type] = X_normalized 

 

Return normalized_data 

 

 

Due to the inherent limitation of the self-attention mechanism in capturing the sequential order of input, 

BERT introduces position embedding and segment embedding to discern between adjacent sentences. 

Within the BERT framework, each input variable in its input sequence is derived through the summation 

of a word vector, a position vector, and a segment vector. The ultimate word vector is produced via a 

process of deep bidirectional coding, following which it is sent into the classification module mentioned 

in the section below. 

4.3.5. Classification Module 

The combined output vectors generated by the multi-head CNN (Block A) and the BERT module are 

integrated and fed into the classification module for the diagnosis of ASD through the utilization of global 

max pooling (GMP). The GMP layer efficiently selects the most salient features and produces a feature 

map for both the target classes, contributing to the reduction of trainable parameters. Following this, fully 

connected layers are employed, incorporating neurons with ReLU activation function, specifically 256, 

128, 32, and 16 neurons in each layer. To address potential overfitting, dropout layers are strategically 
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inserted in conjunction with these fully connected (FCL) layers. The final stage involves applying the 

softmax activation function to calculate the class score for both target classes, determining the correct 

diagnosis result with the high probability score. The representation of the softmax function during 

diagnosis is formulated in equations (11) and (12). Where 𝜙 denotes the output features from the 

preceding FCLs. During training, the cross-entropy loss function ( ℒ ) is employed to minimize the loss 

value, as depicted in equation (13). Here, 𝑦𝑖 signifies the actual classes, and 𝑦̂𝑖 indicates the outcomes 

through the developed architecture. 

𝑃 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝜙) =
exp(𝜙)

𝑓0
1 exp(𝜙)

                                                                                                  (11) 

𝑦̂ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑃)                                                                                                              (12) 

ℒ =  −
1

𝑁
∑ [𝑦𝑖 log(𝑦̂𝑖) + (1 − 𝑦𝑖) log (1 − 𝑦̂𝑖)]

𝑁

𝑖=1
                                                                          (13) 

𝑁 signify the data samples. 

4.4. Experiments and Results 

In this segment, we explained the experimental outcomes obtained from the multimodal autism spectrum 

disorder (ASD) diagnosis architecture to present the efficacy of the developed architecture. This segment 

incorporates sub-sections giving brief descriptions of the experimental configuration, the ASD 

multimodal dataset employed, performance evaluation metrics considered, the quantitative analysis of 

results, and the leave-one-site-out-classification test. Furthermore, we conducted a comparative analysis 

to contrast the findings of our work with various existing state-of-the-art approaches. 

 

4.4.1. Experimental Configuration 

All experiments in this study were conducted on a laptop with an Intel Core i5 10th Generation processor, 

8GB of RAM, 512GB of storage, and running the Windows 11 operating system. The system was also 

equipped with an NVIDIA GTX 1650 graphics card with 4GB of VRAM, which was utilized to enhance 

computational performance, particularly during model training. The experiments were implemented using 

Python, and several libraries were employed for data analysis and model development. Numpy was used 

for numerical computations and matrix operations, while Pandas handled data manipulation tasks, 

including loading and preprocessing datasets. For visualization, Matplotlib and Seaborn were used to plot 

training results and statistical graphics, respectively. Scikit-learn was applied for model evaluation and 

computation of performance metrics. These tools and frameworks formed the core of the experimental 

setup and were integral to the development and evaluation of the proposed model.  
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4.4.2. Dataset Description 

Our research conducted experiments on ABIDE-I, a publicly available data repository. This multi-modal 

data is gathered from 1112 participants across 17 sites worldwide [133]. This multimodal dataset 

comprises (a) MRI scans and comprehensive (b) phenotypic information (as in Table 5) for each subject. 

These phenotypic measures included demographic information (age, gender), and count of autism 

spectrum disorder (ASD) to TD participants. We selected these specific measures as they are clinically 

relevant to understanding ASD, capturing all dimensions essential for a comprehensive analysis. Table 3 

represents the phenotypic measure summary of the employed ABIDE dataset. The inclusion of these 

phenotypic measures complements the imaging data, allowing us to address the heterogeneity observed in 

ASD. This multimodal approach aligns with our objective of developing a model that integrates both 

neuroimaging and non-imaging data for better diagnostic accuracy. Our study focuses on resting-state 

structural MRI (rs- MRI) scans for the imaging part. To maintain data quality and maintain 

methodological comparability, we meticulously excluded data with missing series (non-imaging part), 

incomplete brain coverage, and other scanning artifacts. Our analysis ultimately focused on 875 

participants, including 403 participants diagnosed with autism spectrum disorder (ASD) and 472 typically 

developed (TD). Table 6 describes the dataset description with a training and test split ratio of 80:20. 

Table 4.1 Phenotypic measure summary of the ABIDE-I dataset 

Site ASD TD Male count Female count Average age 

CMU 14 13 21 6 26 

Caltech 19 18 29 8 27 

Leuven  29 34 55 8 18 

KKI 20 28 36 12 10 

NYU 75 100 139 36 15 

MaxMun 24 28 48 4 25 

OLIN 19 15 29 5 16 

OHSU 12 14 26 0 10 

SBL 15 15 30 0 34 

PITT 29 27 48 8 18 

Stanford 19 20 31 8 9 

SDSU 14 22 29 7 14 

UCLA 54 44 86 12 13 

Trinity  22 25 47 0 16 

USM 46 25 71 0 22 
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UM 66 74 113 27 14 

Yale 28 28 40 16 12 

 

Table 4.2 Dataset description of the employed ABIDE-I dataset 

Images with ASD 

 

14,105  

Total = 30,625 

 

Training: Testing (80:20) 

24,500: 6,125 Images of typically 

developed (without 

ASD) 

16,520 

 

4.4.3. Performance Evaluation Metrics 

The efficacy of the MCBERT model is evaluated using the three primary metrics, namely sensitivity, 

accuracy, and specificity. Table 7 shows the metrics and their respective formulas. 

  Table 4.3 Key classification metrics employed to evaluate the proposed work  

Performance 

Metric 

Formula Value Range Cases Assumed 

 

Accuracy 

 

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁
 

 

 

 

 

 

[0,1] 

𝑻𝑷: Autistic individuals 

identified as autistic 

individuals. 

𝑻𝑵: Non-autistic/Healthy 

individuals identified as 

non-autistic 

𝑭𝑷:  Non-autistic/Healthy 

individuals identified as 

autistic 

𝑭𝑵:  Autistic individuals 

identified as non-autistic 

 

Sensitivity (Recall) 

 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

 

Specificity 

 

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
 

 

 

4.4.4. Result Analysis 

The performance of our developed approach, which leverages BERT for meta-feature extraction and a 

multi-head CNN for image feature extraction, followed by the fusion of their outputs and passing them to 
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a classification module, yielded promising results. Through the methodology, we aimed to enhance the 

diagnostic process by incorporating rich contextual embeddings from the BERT module and extracting 

spatial and channel-specific features through the multi-head CNN. We conducted experiments for 

approximately 100 epochs to both train and assess the performance of the developed MCBERT 

architecture. The use of BERT for meta-feature extraction allowed the model to capture complex 

semantic relationships between patient metadata and brain MRI data, which proved beneficial in 

enhancing diagnostic accuracy. The output from the multi-head CNN is illustrated in Figures 4.4 and 4.5.  

 

(a)  

 

(b)  

Figure 4.4 (a), (b). The output obtained via the activation pattern learned in the initial 

convolutional layer when the brain images are passed by block A 

Figure 4.4 demonstrates the activation patterns captured by the initial convolutional layer of the multi-

head CNN, which includes our Convolution Attention Block (CAB) module, during the processing of 

brain MRI images where each matrix represents the output from distinct filters of the initial convolutional 
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layer, visualizing how different regions of the brain MRI images are processed by the CNN. The inclusion 

of multiple matrices serves to illustrate the model's ability to focus on various diagnostic regions 

simultaneously, enabling it to capture complementary information for accurate classification. The 

activation maps are represented using a color gradient, where blue indicates low activation, green denotes 

medium activation, and yellow represents high activation levels. These color-coded maps show how the 

CNN’s filters respond to specific regions of the input image. Early convolutional layers in CNNs 

generally focus on detecting fundamental image features, such as edges or anatomical structures. In 

Figure 4.4 (a) and (b), the high activations (yellow) in certain regions highlight key anatomical 

boundaries, edges, or structures that are likely to hold diagnostic significance, such as cortical boundaries 

or ventricles. These regions are critical for constructing hierarchical representations of the data as it 

passes through deeper layers of the network.  

Figure 4.5 Visual representation of the feature maps/feature extraction capability of multi-head CNN 

when applied to brain images 

Conversely, the medium (green) and low (blue) activation areas correspond to regions with less 

prominent or diagnostic features. Over approximately 100 epochs, the model refined its feature extraction 

process. Early in the training, activations in the initial layers are more generalized, but as training 

progresses, these patterns become more focused, allowing the network to identify the most informative 

features for the diagnostic task. The activation maps presented in Figure 4.5 provide visual evidence of 

this learning process, showing how the model transitions from emphasizing simple, low-level patterns, 

such as edges, to capturing more complex features that contribute to the improved classification accuracy 
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of the MCBERT architecture. This hierarchical feature extraction is typical of CNNs, where initial layers 

detect basic patterns, and deeper layers identify more abstract, high-level features. The observed 

activation patterns are crucial for understanding how the multi-head CNN processes spatial and channel-

specific features from the MRI data. By activating different filters in response to specific brain structures 

or abnormalities, the network demonstrates its ability to capture spatial relationships between anatomical 

structures, which directly supports the effectiveness of our approach in improving diagnostic accuracy. 

Additionally, the presence of distinct activations in key regions of the MRI images suggests that the 

model is effectively identifying features associated with autism. Figure 4.5 further illustrates the 

contributions of each of the three heads in the multi-head CNN in the initial learning layers. Each head 

processes the MRI image through distinct convolutional paths, allowing the model to extract diverse, 

complementary features from different regions of the input, such as anatomical structures, textures, and 

abnormalities. After passing through convolutional and global max pooling layers, the extracted feature 

maps are reduced to fixed-size vectors, preserving critical information for classification. The diverse 

activation patterns across the three heads indicate that the multi-head CNN is capable of focusing on 

various aspects of the MRI images, which is essential for identifying subtle differences in brain structures 

that could be associated with ASD. These visualizations effectively demonstrate the hierarchical nature of 

feature extraction in the multi-head CNN, where early layers detect simple patterns like edges, while 

deeper layers capture more complex, high-level features.  

 

Figure 4.6 (a) Epoch vs Accuracy curve of MCBERT 
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Figure 4.6 (b) Epoch vs Loss curve of MCBERT 

The figure provides valuable insights into how the convolutional layers of the CAB module interact with 

the MRI data and highlights the model's ability to focus on important diagnostic features. This contributes 

to the overall success of the MCBERT architecture in accurately classifying MRI images, demonstrating 

the robustness of the proposed approach in improving neuroimaging-based diagnosis. Upon analyzing the 

experimental outcomes, we observed significant improvement in accuracy as compared to existing 

techniques (comparison with existing techniques is mentioned in the further sub-sections). Figure 4.6 (a) 

represents the accuracy vs epoch curve demonstrating a diagnosing accuracy of 93.4%. Figure 4.6 (b) 

represents the loss curve of the developed architecture.  

 

Figure 4.7 Confusion matrix obtained on the test set 
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Overall, our results demonstrate the effectiveness of the developed multi-modal MCBERT, a BERT, 

multi-head CNN, and its seamless integration with the classification module for the diagnosis of autism 

spectrum disorder. This approach not only showcases the power of utilizing pre-training architectures but 

also showcases the potential of deep learning in feature extraction and further advancement in the 

healthcare domain. Figure 4.7 illustrates the performance of the developed model through the confusion 

matrix obtained from the test data. The test set consists of 6,125 images. 

 

4.4.5. Comparison with existing works 

This section highlights a comparison of various methods used for autism spectrum disorder (ASD) 

diagnosis on the ABIDE dataset, focusing on the performance of the proposed MCBERT model against 

other state-of-the-art techniques. The quantitative results of this comparison are summarized in Table 8. 

[78] proposed an sMRI-based ASD detection framework using an ensemble of deep convolutional neural 

networks (DCNN) combined with different optimizers (Adam, Nadam, and RMSProp). After filtering out 

noisy slices, the study utilized raw sMRI scans from the ABIDE dataset without advanced preprocessing. 

The ensemble of optimizers aimed to enhance model performance by improving robustness. They tested 

the model using three data splits (70:30, 80:20, and 90:10) and achieved accuracies of 77.58%, 77.66%, 

and 81.35%, respectively. [26] proposed a two-stage adversarial learning model to address the challenges 

associated with multi-site ASD classification using resting-state functional magnetic resonance imaging 

(rs-fMRI). Their approach begins with the sliding window sampling technique, which preserves spatial 

and temporal information from rs-fMRI data. This is followed by an adversarial learning model that 

extracts site-shared features, effectively tackling the issue of site heterogeneity common in multi-site 

studies. The model is then fine-tuned to extract disease-related features, specific to ASD classification. 

The data used in this study was sourced from the ABIDE dataset. For model evaluation, the authors 

employed ten-fold cross-validation, with the dataset randomly split into training (81%), validation (9%), 

and test sets (10%). [53] developed a WL-DeepGCN framework that combines fMRI data and non-

imaging demographic information for ASD diagnosis. The model uses a weight-learning network to 

define graph edge weights in the latent space, and residual connections in the GCN to avoid gradient 

issues. An edge-drop strategy reduces overfitting by sparsifying node connections. The study applied a 

nested 10-fold cross-validation on the ABIDE-I dataset to ensure robust evaluation, avoiding feature 

peeking and overfitting. Recursive feature elimination (RFE) was used for feature selection. [134] 

conducted a comprehensive review of different brain networks and their functional connectivity to 

distinguish between individuals with ASD and TD participants. The study utilized 871 rs-fMRI samples 

from the ABIDE repository. The authors employed bootstrap analysis of stable clusters (BASC) as the 

most predictive brain parcellation technique, aiming to find the optimal method for classifying ASD. The 
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methodology involved exploring eight different brain parcellation techniques, which included structural, 

functional, and data-driven approaches, to identify the best brain atlas for ASD classification. 

Additionally, three functional connectivity metrics, correlation, partial correlation, and tangent space, 

were evaluated to assess their stability and efficiency. The study found that the correlation metric was the 

most stable among the metrics. In terms of machine learning models, the paper compared four supervised 

learning algorithms: kernel Support Vector Machine (kSVM), which was identified as the optimal 

classifier for the task, outperforming others. The experiments used 5-fold cross-validation, repeated 10 

times to ensure the reliability and stability of the results. [135] worked on an unimodal ASD identification 

architecture incorporating Inception V3 model with CNN. They worked on fMRI employed from 

the ABIDE dataset. They took three imaging features into account i.e., epi images, glass brain images, 

and stat map images. In another work by [63], they focused on developing multimodal ASD architecture 

incorporating transfer learning with deep ensemble learning. They developed a multimodal-multisite 

ensemble classifier to diagnose ASD from fMRI and phenotypic information from the ABIDE dataset. 

They tested their model on various parameters and presented a detailed analysis of their work. [136] 

focused on using a combination of functional and structural MRI data for the classification of ASD 

patients versus control participants. The key features used included functional connectivity patterns 

among brain regions from fMRI and volumetric correspondences of gray matter volumes from sMRI. 

Their classification network was built using stacked autoencoders trained in an unsupervised manner, 

combined with multilayer perceptrons (MLP) trained in a supervised manner. The study analyzed data 

from 817 cases in the ABIDE-I dataset, involving 368 ASD patients and 449 controls.  The evaluation 

methodology involved 10-fold cross-validation, wherein each fold, 10% of the data was used for testing, 

while 90% was used for training and validation (split into 70% for training and 30% for validation). 

Additionally, they conducted leave-one-site-out cross-validation to assess the model's performance. This 

paradigm, alongside reporting of accuracy, sensitivity, and specificity, provided a thorough quantitative 

and qualitative comparison with other state-of-the-art methods.  

Table 4.4 Comparison with existing works conducted for ASD on the ABIDE dataset 

Reference Methodology Dataset Modalities 

Incorporated 

Best 

accuracy 

Sen Spec 

[78]  Optimizer + 

Deep CNN 

sMRI 1  77.58%  78.16% 76.99% 

[137] Graph NN + 

Ensemble 

technique 

Phenotypic 

+ HO 

2 73.13% 76.00% 69.00% 
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[26]  Adversarial 

learning + LSTM 

fMRI 1 80.00% 81.00% 80.00% 

[53]    Weight learning 

+ Graph CNN + 

Deep CNN 

Phenotypic 

+ HO 

2 77.27% 80.96% -  

[135] Inception V3 fMRI 1 98.35% - - 

[63] Inception V3 + 

ResNet50 + 

DenseNet + 

MobileNet 

fMRI + 

Phenotypic 

2 97.82% - - 

[134] Feature 

extraction via 

function 

connectivity 

matrix 

fMRI 1 69.43% 64.57% 73.61% 

[136] MLP + 

Autoencoder 

sMRI + 

CC200 

2 85.06% 81.00% 89.00% 

[77] Correlation 

matrix + Graph 

Theory 

fMRI 1 84.79% 89.63% 78.96% 

MCBERT 

(Proposed) 

Multi-Head 

CNN + BERT 

Phenotypic 

+ sMRI 

2 93.4% 92.1% 94.5% 

 

[77] utilized rs-fMRI data from the ABIDE-I dataset to propose an approach for diagnosing ASD. The 

study focuses on constructing functional connectivity networks from the rs-fMRI time-series data, 

calculating correlation matrices that represent interactions between brain regions. The ABIDE-I dataset, 

consisting of 1,112 individuals (539 ASD and 573 typically developing controls), served as the basis for 

the experiments. The authors tested 11 classification algorithms, including linear support vector machines 

(SVM) and 2D CNN, and identified these as the best-performing methods across all atlases. Additionally, 

the authors also performed stratified 10-fold and 3-fold cross-validation on the best classifiers (Linear 

SVM and 2D CNN), observing consistent accuracy across these methods. Most of the existing works in 

the literature have utilized deep learning frameworks. Some approaches focus on single-modality data, 

such as structural MRI (sMRI) or functional MRI (fMRI), while others combine multiple data modalities, 

like phenotypic information and neuroimaging data. Our proposed MCBERT model, which integrates a 
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Multi-Head CNN and BERT architecture, operates on multimodal inputs, specifically phenotypic data and 

sMRI. As shown in Table 4.4, the MCBERT model outperforms other methods in terms of accuracy, 

sensitivity, and specificity, which demonstrates its effectiveness in ASD diagnosis. The model's ability to 

handle both phenotypic and sMRI data contributes to its robust performance, leading to higher 

classification accuracy compared to the methods that rely on single-modality data. 

4.4.6. Leave-one-site-out (LOSO) cross-validation test 

In this study, the primary experimental paradigm utilized was leave-one-site-out (LOSO) cross-validation. 

This method was chosen to evaluate the generalization ability of the MCBERT model across different 

screening sites within the ABIDE-I dataset, which includes data from 17 different sites. For each LOSO 

iteration, one site was selected as the test set, while the remaining sites were split into training and 

validation sets. This setup allowed the model to be tested on unseen data from various sites, highlighting 

its adaptability to site-specific variations in the dataset. Each site/data was trained and tested under 

identical conditions, and performance metrics, including accuracy, specificity, sensitivity, and AUC, were 

recorded for each site. Table 4.5 presents the performance outcomes of the LOSO test, demonstrating the 

robustness of MCBERT in generalizing across different sites. The mean accuracy of MCBERT across all 

sites was determined to be 83.64%. Notably, four sites UM, STANFORD, PITT, and MAX_MUN 

exhibited lower performance compared to the mean values of the evaluated metrics. This observation 

underscores the presence of site-specific variability and a lack of homogeneity in the dataset. Despite 

these variations, the high global mean values attest to the effectiveness of the MCBERT architecture. 

Table 4.5 Quantitative performance analysis of the MCBERT model on the LOSO test using the ABIDE-

I dataset 

Site Accuracy Specificity Sensitivity AUC 

CMU 91.00 95.00 87.00 84.00 

CALTECH 88.50 88.00 86.00 85.00 

MAX_MUN 79.30 80.00 78.70 76.00 

LEUVEN 85.00 86.00 84.01 87.00 

KKI 86.08 84.03 91.03 90.03 

OHSU 84.00 83.79 83.46 77.31 

NYU 86.02 80.81 82.55 88.61 

OLIN 89.50 87.62 91.52 89.01 

SDSU 87.00 80.34 81.53 81.34 

PITT 76.09 75.50 75.00 74.50 
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SBL 89.60 86.02 89.04 87.57 

STANFORD 78.00 78.42 77.67 86.40 

UCLA 80.50 82.09 78.52 79.66 

TRINITY 81.07 82.41 80.54 82.24 

USM 87.30 87.80 86.80 90.30 

UM 75.40 76.03 75.51 76.06 

YALE 87.50 82.47 82.47 79.84 

Mean 83.64 81.96 80.81 83.86 

 

4.4.7. Ablation Study 

This section presents an ablation study to validate the contribution of the proposed MCBERT architecture 

on the multimodal ABIDE-I dataset. In Case A (baseline model without attention mechanisms) both the 

channel attention component (CAC) and spatial attention component (SAC) are removed from the multi-

head CNN architecture. The model relies solely on core convolutional layers without attention 

mechanisms to process the input data. This case aims to quantify the contribution of attention 

mechanisms by comparing the model's performance with a standard CNN, allowing us to isolate the 

effect of the attention modules on classification performance. For case B (without channel attention) the 

channel attention component (CAC) is disabled while the spatial attention component (SAC) remains 

active. This setup focuses on analyzing the spatial features of the MRI data. This experiment aims to 

evaluate the importance of channel-specific attention. It provides insight into whether focusing on 

channel-specific features significantly impacts the model’s ability to classify ASD. Similarly, for case C 

(without spatial attention) the spatial attention component (SAC) is removed, while the channel attention 

component (CAC) remains active. This setup assesses the model's performance when spatial patterns are 

not specifically highlighted. The focus here is to understand the role of spatial attention in identifying 

relevant spatial features from MRI images and determine its contribution to the model's overall 

performance. For the case D (without the BERT module) the BERT module, which processes meta-

features, is removed entirely. The model uses only the multi-head CNN to process the MRI image data 

without leveraging any meta-feature information. The purpose of this experiment is to evaluate how much 

of the model's success is attributable to the BERT-processed meta-features. It will show whether the 

image data alone is sufficient to achieve high diagnostic accuracy or if meta-features play a crucial role.  
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Table 4.6 Ablation outcomes with the proposed MCBERT architecture.  

Dataset Case Case description Accuracy Specificity Sensitivity 

 

 

ABIDE-I 

A Without attention 

mechanism i.e. CAC and 

SAC 

72.9 81.2 81.8 

B Without channel attention 

(CAC) 

85.3 84.8 85.1 

C Without spatial attention 

(SAC) 

83.4 82.6 83.2 

D Without BERT module 

(Image-only model) 

78.3 78.2 78.3 

E BERT module only 73.1 72.6 84.9 

F Without global max 

pooling (GMP) 

91.6 90.1 91.2 

G Complete architecture 

(MCBERT) 

93.4% 92.1% 94.5% 

 

In case E (BERT module only) the multi-head CNN is removed it explores the performance of the model 

when only meta-features are used for classification, without the additional information provided by the 

MRI images. It allows an assessment of the relative value of meta-feature data compared to image data in 

ASD classification. For case F (without global max pooling) the global max pooling (GMP) layer is 

removed from the architecture and replaced with the average pooling. The goal here is to determine the 

significance of the GMP layer in selecting the most salient features before the fully connected layers. It 

helps assess whether the GMP layer plays a critical role in the final classification performance by 

maximizing key features. The work evaluates the performance across the cases mentioned in Table 4.6. 

At last, case G refers to the performance of the complete architecture i.e., MCBERT. 

 

4.5. Computational Complexity 

The computational complexity of the proposed model can be described in terms of the dominant 

operations in its architecture, including convolutional layers, attention mechanisms, and BERT. The 

convolutional layers, responsible for processing image data, contribute a complexity of 𝑂(𝑁2), where 

𝑁 is the spatial dimension of the input (MRI images). This quadratic complexity arises from input size, 

number of channels, and filter sizes in the convolution operations. The channel and spatial attention 
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mechanisms, which operate on feature maps, also scale linearly with the number of channels and spatial 

dimensions but remain dominated by the 𝑂(𝑁2) behavior. Additionally, the BERT component, used for 

processing meta-features, introduces a complexity of 𝑂(𝐿2), where 𝐿 is the sequence length, reflecting the 

quadratic nature of the self-attention mechanism. As a result, the overall computational complexity of the 

model is approximately 𝑂(𝑁2 + 𝐿2), with the convolutional layers typically dominating for large image 

inputs, while the BERT module adds significant complexity depending on the length of the meta-feature 

sequences. This combined quadratic complexity is characteristic of deep learning models utilizing both 

convolution and attention mechanisms. 

Generally, BERT requires high computational demands, but several strategies could be employed to 

reduce the computational needs. One approach is to use model compression techniques such as pruning 

and quantization, which can reduce the number of parameters without significantly impacting model 

performance. Additionally, lighter versions of BERT, such as DistilBERT or ALBERT, could be 

considered, as they retain most of the model's accuracy while offering reduced complexity. Furthermore, 

implementing mixed-precision training or utilizing distributed training frameworks may also help 

optimize computational resource usage. These techniques, in combination, can effectively reduce the 

overall processing load while maintaining the efficacy of the models. 

 

4.6. Discussion 

4.6.1. Study contributions 

In this study, we proposed a novel multimodal architecture, MCBERT, for diagnosing autism spectrum 

disorder (ASD) by integrating brain MRI images and meta-features such as gender, behavioral 

characteristics, and patient history. Our model fuses a Multi-Head CNN (MCNN) with bidirectional 

encoder representations from transformers (BERT) to capture both spatial and channel attributes from the 

image modality, while efficiently handling the high dimensionality of meta-features. The results 

demonstrated that MCBERT achieves high diagnostic accuracy, with an overall accuracy of 93.4%, 

surpassing other state-of-the-art systems.  

The key contributions of this study include the development of a novel fusion technique that integrates 

multimodal data for ASD diagnosis. By combining the strengths of CNN for processing brain MRI 

images and BERT for extracting meaningful information from meta-features, we were able to achieve 

superior performance. Additionally, the incorporation of convolutional block attention components 

(CBAC) enhances the model's ability to capture spatial and channel attributes, further improving its 

diagnostic power. The use of leave-one-site-out (LOSO) cross-validation provided a rigorous assessment 
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of the model's ability to generalize across different data sites, which is crucial for ensuring the robustness 

of ASD diagnostic models in real-world clinical settings. 

4.6.2. Challenges and future directions 

Despite these contributions, the proposed MCBERT architecture has several limitations that should be 

acknowledged. Firstly, the model only utilizes structural MRI (sMRI) data and does not include 

functional MRI (fMRI) data, which captures brain activity and could provide deeper insights into the 

neural mechanisms associated with ASD. By focusing solely on sMRI, the model may overlook important 

functional abnormalities that are often present in individuals with ASD. Furthermore, the study is limited 

to the ABIDE-I dataset, which constrains the ability to generalize the findings to other datasets or 

populations. The diversity of ASD manifestations across different groups means that relying on a single 

dataset could limit the model's applicability in broader clinical settings. Additionally, the reliance on pre-

existing meta-features, which are not universally standardized across datasets, introduces potential 

variability in model performance when applied to new data. 

Looking ahead, there are several promising directions for future work. One of the key areas for expansion 

is the inclusion of fMRI data in conjunction with sMRI, which would allow for a more comprehensive 

analysis of both structural and functional aspects of the brain. Exploring the combination of these two 

imaging modalities could enhance diagnostic accuracy and provide a more detailed understanding of 

ASD's underlying neural mechanisms. Additionally, extending the model to the ABIDE-II dataset and 

other large, multimodal datasets would enable further validation of the model’s generalizability across 

different populations. The incorporation of advanced hybrid networks, combining convolutional and 

transformer-based architectures, could also lead to improved performance in early ASD detection. These 

advancements hold the potential to refine ASD diagnosis and contribute to the development of 

personalized treatment plans based on a more thorough understanding of each individual's 

neurodevelopmental profile.  

4.6.3. Real-world applicability 

In terms of real-world deployment, the MCBERT model shows strong potential for integration into 

clinical workflows, provided that certain developments are made. Future work should focus on adapting 

the model to handle large-scale, real-time clinical data, ensuring that it meets regulatory standards and is 

interpretable by medical professionals. This could involve refining the model’s output to provide clear, 

actionable insights that clinicians can easily integrate into their decision-making process. Additionally, 

integrating the model into existing hospital information systems or diagnostic software platforms would 

help streamline its adoption in clinical practice. By focusing on these areas, MCBERT could be 

positioned as a supportive diagnostic tool for healthcare professionals, facilitating more efficient and 

accurate ASD diagnoses. The model’s multimodal approach, which combines brain imaging with meta-
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features, offers a robust framework that is aligned with the growing trend of precision medicine and 

personalized healthcare. 

Another critical step toward real-world application is the validation of the model’s results with input from 

medical experts. Collaboration with neurologists, radiologists, and other healthcare professionals 

specializing in ASD is essential for establishing the clinical credibility of the model. Future studies should 

focus on comparing the model’s predictions with expert diagnoses to ensure its reliability in a clinical 

setting. Expert feedback could also be invaluable in refining the model further, particularly in cases where 

subtle patterns in the data might lead to misclassification. This validation process would not only enhance 

the model's accuracy but also foster trust among healthcare providers, increasing the likelihood of its 

integration into routine clinical practice. 

In summary, the MCBERT architecture is well-positioned to be adopted as a real-world clinical tool. 

With further validation and refinement, particularly in the areas of regulatory compliance, scalability, and 

expert validation, the model could play a significant role in improving the early diagnosis of ASD. These 

advancements would ultimately contribute to better patient outcomes, supporting early interventions and 

more personalized treatment plans for individuals with ASD. By addressing these limitations and 

expanding the scope of the research, future work aims to push the boundaries of ASD diagnosis through 

more advanced multimodal deep learning techniques. 

4.7.  Chapter Summary 

In this work, we propose a novel fusion technique for diagnosing Autism Spectrum Disorder (ASD) in a 

multimodal setting, integrating information from brain MRI images and associated meta-features. This is 

achieved by combining the outputs of a multi-head CNN and Bidirectional Encoder Representations from 

Transformers (BERT). To enhance feature fusion, we utilize a convolutional block attention component 

(CBAC) for extracting spatial and channel attributes. Additionally, a BERT-based architecture is designed 

to efficiently handle meta-features, enabling the extraction of key attributes from this modality. The 

proposed fusion approach demonstrates significant improvements in feature integration and predictive 

performance for ASD diagnosis, validated against baseline methods. 
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Chapter 5 APPLICATIONS OF DEEP LEARNING FOR ASD 

DIAGNOSIS 
 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental condition characterized by a wide 

range of symptoms and behavioral patterns, often requiring early and accurate diagnosis for effective 

intervention. In recent years, deep learning has emerged as a transformative approach in medical research, 

leveraging its ability to process and analyze complex, high-dimensional data with remarkable precision. 

This chapter delves into the applications of deep learning techniques for ASD diagnosis, highlighting 

their potential to address critical challenges such as early detection, personalized treatment planning, and 

the integration of diverse data modalities. By exploring advanced architectures, including convolutional 

neural networks (CNNs), recurrent neural networks (RNNs), and hybrid models, this chapter aims to 

illustrate how deep learning facilitates breakthroughs in understanding and diagnosing ASD. Through 

case studies, comparative analyses, and novel methodologies, the chapter underscores the critical role of 

deep learning in shaping the future of ASD diagnosis and care. Section 5.1 introduces the chapter, 

highlighting the role of deep learning in ASD applications. Section 5.2 provides background information 

on key deep learning models, including VGG-16, AlexNet, ResNet, and Vision Transformers. Section 5.3 

presents the proposed ASD_CEVT architecture, designed for enhanced ASD diagnosis. Section 5.4 

details the experiments and results, covering evaluation measures and result analysis. Section 5.5 

discusses the findings and their implications. Finally, Section 5.6 concludes the chapter with a summary 

of the key contributions.  

5.1.Overview 

Autism spectrum disorder is one of the most complex neuro-developmental conditions that hinders one’s 

social communication. Autism is called a “spectrum” disorder because the intensity and the type of 

symptoms differ greatly. Individuals suffering from ASD require special treatment and care [138] [139]. 

The broad range of characteristics linked with ASD makes diagnosis difficult and its causes are 

multifactorial [140] [141]. ASD influences people of every racial, socio-economic, and ethnic background 

[142][13]. ASD sufferers face communication difficulties and they cannot convey themselves via words, 

facial expressions, or gestures [27][143]. Although ASD is a lifetime illness, researchers have proven that 

early diagnosis and advanced medical care can increase the chances of better mental health [144]. The 

prevalence of ASD is a global concern and as per reports, one in every 54 children (in the USA) has been 

detected with ASD [145][146]. Boys have more chances of being diagnosed with ASD than girls. The 

pediatrics have recommended that everyone should have an early screening test for ASD as a routine 

health checkup in order to identify whether they should look for an advanced clinical diagnosis or not. 
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World Health Organization report of June 2021, discloses the epidemiological statistics showing that one 

in 160 children are affected by ASD worldwide, whereas the statistics of ASD in middle and low-income 

countries still remain unknown [147]. The lack of appropriate tools, medical tests, and treatment makes 

the diagnosis of ASD difficult. ASD is a disorder that influences various sections of the brain and is 

caused by a problem called polymorphism (a genetic effect caused by human gene interaction). These 

gene variants affect biological processes, like synaptic connectivity, and brain development, which are 

necessary for brain functioning. Consequently, further research is needed to unleash the intricate factors 

that contribute to the development of ASD [148][149]. 

Medical experts diagnose ASD on the basis of neurophysiological signs generated, as there is no 

diagnostic procedure that can detect ASD at any time [124][150]. There is no particular medication for 

ASD. The advancements in cost-effective, reliable, and easy-to-use screening tools are necessary due to 

the increasing number of ASD cases. To diagnose ASD efficiently, physicians require a child’s 

progressive history and the presence of ASD biomarkers. Some of the essential biomarkers that are being 

explored by researchers are eye-tracking, neurophysiological, functional/anatomical brain characteristics, 

genetic, and behavioral [151]. The face is one of the crucial bio-markers as the nervous system takes and 

processes data via facial elements directly. The potential to classify different facial features and 

expressions are crucial characteristic that will aid in classifying brain asymmetry (neuro-developmental 

disorder) [152][78]. Various conventional screening techniques are used to diagnose ASD such as 

interviews where the severity is assessed by various questionnaires (Q-chat, AQ-10, ADOS-2, ADI-R). 

These techniques are cost-effective, easy, and lead to reliable diagnosis. The limitation of these 

techniques is ‘bias’. Some other modalities, like functional magnetic resource imaging (fMRI), blood 

tests, and electroencephalograms (EEG) are used for diagnosis depending upon the physician [153][123]. 

However, most of these methods come with higher costs, and may not be accessible for people living in 

low-income areas. To address the requirement for better ASD diagnostic tools, medical professionals and 

researchers are working on creating widely accessible tools. The investigation of early bio-markers is 

never-ending. The extraction of facial characteristics as a physical element to diagnose autism is amongst 

the most trending, fairly new, and rapidly evolving areas of autism. Due to its distinctive characteristics, 

facial image recognition might be the most accurate technique of diagnosis. Recent research portrays the 

capability of deep neural networks (DNN), specifically the significance of convolutional neural network 

models in disease diagnosis. Because of its remarkable capability to understand via automatically fetching 

the hidden characteristics (features) from a huge pool of images, CNNs are extensively acquired feature 

extractors for image classification and object detection. CNN proves to be exceptionally efficient and 

appropriate, training a CNN model takes a considerable number of computational resources and time. 

Thus, rather than developing from scratch, it is favorable to work with pre-trained models that have been 
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built using a large pool of data and supercomputers. Transfer learning is an approach that associates 

parameters and weights of the pre-trained models to improve and modify the ultimate outcome depending 

upon the desired tasks, which in turn enhances classification accuracy. In this work, we worked on 2D 

face images using CNN and a vision transformer to extract features (attributes) from images. We 

proposed an optimal transfer learning-based framework to detect autism precisely. We worked on a 

variety of face images of autistic and non-autistic individuals with various deep learning and optimized 

pre-trained models for analysis. Our work is primarily an image classification task, in which a well-

trained transfer learning model detects autism when exposed to an input facial image. 

5.2.Background 

5.2.1. VGG16 

VGG (Visual Geometry Group) is a well-known deep learning network in the domain of computer vision, 

prominent for its exceptional achievements in object classification and detection tasks, capable of 

classifying thousands of images of numerous categories. Figure 5.1 illustrates the workflow of VGG16 

that has sixteen weight layers (learnable parameters) and incorporates 13 convolutional layers, 5 

max_pooling layers, and 3 dense layers, making it a deep architecture responsible for learning crucial 

features from images [154][155]. Instead of using a massive amount of hyperparameters, VGG16 has a 

convolution layer of ‘3X 3 filter’ with stride 1 and a max_pool layer of ‘2X 2 filter’ with stride 2.  

Figure 5.1 The general architecture of VGG16 comprising various pre-trained layers having convolution 

layer (in green) to process information and extract features from the facial images and customized fully 

connected layers to produce output 

The convolutional layers are the essential building blocks capable of capturing hierarchical depictions of 

the input data. The selection of stride and filter size promotes the effective extraction of feature maps 

while managing a high-resolution feature map.  The pooling layer optimizes the spatial dimensions of the 

feature map. It helps in making the network recognize objects irrespective of the location in the input 

image. The fully connected layers are responsible for giving final predictions from the learned 
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characteristics. The softmax activation function converts final scores into probabilities, showing the 

likelihood of an image belonging to each class [156]. 

5.2.2. AlexNet 

Alexnet is one of the most used CNN with a substantial count of 60 million parameters. Consisting a total 

of eight layers, the network includes five initial convolutional layers, followed by three fully connected 

layers [157]. Figure 5.2 illustrates the workflow of AlexNet, where every convolutional layer is equipped 

with an activation function, which introduces non-linearity and facilitates the architecture's ability to learn 

intricate features from the image. The initial 2 conv layers are seamlessly connected with overlapping 

max_pooling layers, meticulously combined to extract the most significant features from the input image. 

This strategic incorporation of max_pooling helps reduce the spatial dimensions of the data, promoting 

translation invariance and capturing essential patterns regardless of their location within the image.  

 

Figure 5.2  General architecture of AlexNet illustrating the sequence and size of convolutional, and fully 

connected layers to produce final predictions 

The last three conv layers form a direct linkage with a fully connected layer, enabling a seamless flow of 

information from the conv feature maps to the dense layers [158][159]. 

Output(conv layer) + output(FC layer) are connected to             ReLU function 

The integration of fully connected layers at the end of architecture fosters high-level feature 

representation contributing to more robust and discriminative classification capabilities [160][31]. 

5.2.3. ResNet 

Residual network 18 is an 18-layer deep convolutional neural network to overcome the challenge of 

training deeper networks efficiently by incorporating the strategy of skip connections (known as 

shortcuts). A residual unit incorporates multiple convolutional layers, followed by skip connections that 
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sum the input with the output of the layers [161][162]. Figure 5.3 shows the diagrammatic representation 

of how the skip connection in Resnet works, which serves as a base for our proposed architecture. The 

main motive of these skip connections is to mitigate the problem known as the ‘vanishing gradient’ (the 

gradients of the loss function diminish as they backpropagate through various layers), which hinders 

successful training of deep networks and leads to suboptimal convergence. Resnet addresses this issue 

through the strategic introduction of skip connections, enabling the layers to bypass certain layers and 

facilitate the direct flow of gradients across various depths. Skip connection takes the activation from (n-

1)th convolution layer and adds it to the output of (n+1)th layer and then applies ReLU function on this 

sum, hence skipping the n layer. This facilitates efficient gradient propagation during training, allowing 

the network to learn meaningful features from the data [25][24]. The model incorporates various residual 

units which propagate in both backward and forward directions using identity mapping. Propagation can 

happen among blocks having a high rate of accuracy with respect to classification performance. These 

residual mappings make training more generalized and more accessible. Resnet18 has nearly ’11 million’ 

trainable parameters. Resnet models are over 100 layers deep and they exhibit exceptional classification 

accuracy.  

 

 Figure 5.3 Diagrammatic representation of the working of skip connections in ResNet that takes the 

activation from (n-1)th convolution layer and adds it to the output of (n+1)th layer and then applies ReLU 

function on this sum  

5.2.4. Vision Transformer (ViT) 

ViT is a cutting-edge neural network tailored for various computer vision applications, specifically image 

classification. ViT draws inspiration from transformer networks (originally designed for natural language 

processing tasks), they undergo significant enhancements to optimize their efficacy in image processing. 

Notably, the primary distinction lies in how images are represented within the network [27][163]. In 
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contrast to NLP tasks, where text is represented as a sequence of words, ViT handles images as a 

sequence of smaller patches (each typically measuring 16 X 16 pixels). These patches are then processed 

via a CNN to get significant features specific to every patch, enabling optimized representation and 

understanding of the input image. The subsequent transformation incorporates passing the patch vectors 

via a stack of transformer encoder layers.  

 

 

 

Figure 5.4 Diagrammatic representation of the workflow of multi-head attention segment in transformers 

 

Within this architecture, the attention mechanism conducts computation repeatedly through instances 

called attention heads. Subsequently, the outcome of these parallel attention calculations is aggregated to 

generate a consolidated attention score. This is termed as multi-head attention. Figure 5.4 represents the 

internal structure of multi-head attention in transformers which enables the model to learn and focus on 

different sections of the input sequence simultaneously. In other words, each head conducts the self-

attention mechanism independently, empowering the network to learn and grasp long-term dependencies 

between the individual patches of the image. This capability is specifically pertinent for image 

classification, as it fosters an understanding of how different portions within the image collectively 

contribute towards the overall classification. Further, the outcome of this transformation is a sequence of 

vectors that holistically combines the essential features of the input image. These vectors act as potent 

input for image categorization tasks and other computer vision endeavors, showcasing the ViT power in 

this domain [164]. 

Attention: Attention is an essential mechanism within deep learning networks that facilitates the focus on 

specific portions of input during processing. This concept takes inspiration from the human cognitive 

process, by how humans concentrate on different elements of an image when assimilating visual 
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information. By adopting attention, deep learning networks can efficiently prioritize relevant information, 

enabling them to perform more precise tasks across domains. 

 

5.3. Proposed Architecture 

The proposed ASD-CEVT model is relatively inspired by the architecture of ResNet. The ResNet 

incorporates the concept of skip connection (refers to the inclusion of the actual input into the outcome of 

every convolutional block). Building upon the original vision transformer architecture, ASD-CEVT 

introduces a novel enhancement where the original image (actual input) is repeatedly given to the output 

of every encoder layer. This iterative process is achieved by integrating a parallel CNN block alongside 

the transformer network. Specifically, the whole facial image of autistic individuals undergoes processing 

via CNN block, which creates embedding of the image as output, and this output is iteratively 

concatenated with the output of every encoder layer. The continual integration of the initial image 

representation throughout the encoding process ensures the preservation of significant details, making the 

architecture remember the actual image at every end of the encoder output as shown in Figure 5.5. The 

ASD-CEVT architecture incorporates both global feature information (via vision transformer) and local 

detailed features via CNN. This fusion approach ensures robust feature extraction, enabling the model to 

perform better across the dataset. 

The CNN block proposed in the architecture incorporates a 2D conv layer in a stacked manner and a 1D 

average pooling layer. Table 5.1 represents the size of the kernel and the filters at various levels/layers of 

our architecture. 

                        

                Table 5.1 Filters and kernel size used at various layers of the ASD-CEVT architecture 

Layer 1  16 filters Kernel size = 3 

Layer 2  25 filters Kernel size = 5 

Layer 3  D filters Kernel size = 5 

 

The average pooling layer was used to calculate the output vector 𝑉𝑖𝑚𝑔 with size D, which refers to the 

mapping of input to the D dimension. In the transformer section, the input was partitioned in 𝑁 =
𝐻𝑊

𝑃2  

patches, having (P, P) as the resolution of every patch. These patches were then flattened among all the D 

dimensions to make a sequence of flattened patches 𝑉𝑃, with a total size of 𝑁 × (𝑃2 ⋅ 𝐶).  

Further the patch embeddings were made by mapping all the patches to dimensions D via trainable linear 

projection: 

        𝐸𝑃=[𝑉𝑃
1𝑆, 𝑉𝑃

2𝑆,…… , 𝑉𝑃
𝑁𝑆 ]                                                                                                                  (1) 
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𝑆 𝜖 ℝ(𝑃2⋅𝐶)×𝐷                                                                                                                                               (2)                                                      

A learnable 1-D position embedding with size D was incorporated for all the N+1 embeddings, where the 

position of additional 𝑉𝑐𝑙𝑎𝑠𝑠  embedding was set to 0. The path embedding 𝐸0  was calculated as: 

                                    𝐸0= [ 𝑉𝑐𝑙𝑎𝑠𝑠, 𝐸𝑃 ] + 𝑆𝑃𝑜𝑠                                                                                           (3) 

                                                𝑆𝑃𝑜𝑠𝜖 ℝ
(𝑁+1)×𝐷                                                                                           (4) 

Further, encoder layers L were stacked, with 𝐸0 as the input of layer one, then 𝐸𝑙 was calculated by the 

concatenation of 𝑉𝑖𝑚𝑔 (image embedding) to the output 𝐸𝑙 of every encoder layer l. 

                                     Where, l = 1,2,3……, L                                                                                     (5) 

                                            𝐸̂𝑙 =  [𝐸𝑙 , 𝑉𝑖𝑚𝑔]                                                                                               (6) 

                                         𝐸̂𝑙  𝜖 ℝ
(𝑁+1+1)×𝐷                                                                                               (7)                                                       

𝐸̂𝑙 is given as input to the next encoder layer L. Here the encoder layer of ASD-CEVT inputs 

representation of the complete input facial image including the output of the previous encoder layer.  

Training and Evaluation 

For the training of ASD-CEVT, cross-entropy as loss function, Adam optimizer, batch size of 20 with 50 

epochs, with a learning rate of 0.0001 was used. Table 5.2 presents the values of the hyper-parameters 

adopted while implementing the architecture. 

Table 5.2 Hyper-parameters adopted for the development of ASD-CEVT architecture 

Parameters Size 

Embed_dimension 256 

Hidden_dimension 512 

Learning_rate 0.0001 

Loss_function Cross_entropy 

Optimizer  Adam  

Batch_size 20 

Num_epoch 50 

Patch_size 4 

Num_classes 2 
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Figure 5.5 Overall structure of the proposed ASD-CEVT architecture comprising facial images  
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In order to adapt the existing weights on the facial data, a low learning rate was chosen. Label smoothing 

was performed while training to prevent overfitting, thus making the model to generalize well. 

Algorithm:  ASD-CEVT framework for ASD classification 

Input: Set of facial images of autistic individuals 

Configuration parameters: D, N, C, P, L, learning rate, batch size, epochs 

Output: Trained ASD-CEVT model 

 

1. Initialize CNN block: 

                    Initialize a CNN block with a stacked 2D convolution layer and 1D average pooling 

layer 

                    Configure convolutional layers with specific filter size and kernel size 

                    Computer 𝑉𝑖𝑚𝑔 with dimension D 

 

2. Initialize Transformer: 

     Partition image into N= patches, each with size (P, P) 

     Create a sequence of flattened patches 𝑉𝑝 with size 𝑁 × (𝑃2 ⋅ 𝐶) 

     Introduce learnable 𝑉𝑐𝑙𝑎𝑠𝑠 embedding of size D and 1D position embedding 

     Compute 𝐸0 using Equation 3 

 

3. Encoder Layer: 

        Repeat L times 

                For i = 1 to L 

                      Concatenate 𝑉𝑖𝑚𝑔 + output  

                              Compute 𝐸̂𝑙 by applying the encoder layer to concatenated embedding using 

Equation 6 

 

4. Training 

      Cross entropy loss function for training 

      Apply adam optimizer with learning rate 

      Set batch size = 20, epoch = 50 

      Implement label smoothing 

 

5. Output: Obtained a trained ASD-CEVT model capable of accurately classifying ASD from 
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facial images 

 

 

The algorithm shown above represents the generic view of the overall methodology adopted in our work.   

 

5.4. Experimental Setup and Results Analysis 

In this segment, we discussed the experimental outcomes obtained from the developed autism spectrum 

disorder (ASD) diagnosis architecture to showcase the efficacy of the proposed architecture. Furthermore, 

we conducted a comparative analysis to contrast the findings of our work with various existing state-of-

the-art approaches. 

5.4.1. Performance Evaluation Parameters 

Performance measures are employed to measure how appropriately a model is detecting/predicting the 

outcomes. These measures are also crucial while comparing models. In this work, we employed accuracy, 

precision, and recall as these measures are most crucial when working in the healthcare domain.  

   

5.4.2. Result Analysis 

In this section, we analyze and describe the outcomes of our experimental evaluation on the classification 

performance of four distinct deep learning models, namely VGG16, Resnet, AlexNet, and the developed 

ASD-CEVT architecture. These models were trained using the Adam optimizer and evaluated via three 

key parameters.  

 

(a)                                                                  (b)  

Figure 5.6 Visual illustration of (a) original input (autistic child) image vs the (b) interpretation of the 

model attention 
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Figure 5.6 showcases the original/actual input image of an autistic child vs the interpretation done by the 

model attention component. The area highlighted with a colored pattern in (b) illustrates the region of 

high importance. This region incorporates the most crucial points identified by the architecture. As per the 

existing research and the studies reviewed in this work, the main facial biomarkers are the portion from 

eyes to lips. Proving that our ASD-CEVT architecture has also assigned importance to those features.  

The obtained outcomes along with accompanying graphs, highlight the effectiveness and comparison of 

each architecture in addressing the task of classifying ASD. 

 

 

 

                   (a)                                                                                    (b)       

                                                                 

 

                                           (c)                                                                                  (d) 
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                                     (e)                                                                                          (f)  

 

    

                                         (g)                                                                                       (h) 

 

Figure 5.7 Graphical Plots of accuracy and model loss, where (a), (b) corresponds to ASD-CEVT; (c), (d) 

corresponds to AlexNet; (e), (f) corresponds to ResNet; and (g), (h) corresponds to VGG16 respectively  

Figures 5.7 (c) and (d) portray that Alexnet achieved an accuracy of 0.908 demonstrating good 

classification performance on our dataset. The Resnet architecture showcases strong performance across 

all parameters (Figure 5.7 (e) and (f)) with an accuracy of 0.866% it maintains a balance in the values 

between precision and recall indicating its efficiency in achieving decent accuracy.  

                  Table 5.3 Model performance achieved on various parameters 

Model Accuracy Precision Recall 

ResNet 0.866 0.866 0.866 

AlexNet 0.908 0.0908 0.0908 

VGG16 0.835 0.835 0.835 

ASD-CEVT 0.924 0.909 0.909 

Figures 5.7 (g) and (h) demonstrate the results of the VGG16 architecture showcasing notable 

performance. It achieved an accuracy of 0.835, having lower precision and recall values. Our developed 
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ASD-CEVT architecture outperforms all parameters (Figure 5.7 (a) and (b)) with a value of 0.924. The 

results suggest that ASD-CEVT architecture is well suited to our dataset, showing robustness in making 

accurate classifications on facial images. Table 5.3 shows the results on various metrics for each of the 

four models. The analysis relies on the 300 test samples, where the highest accuracy achieved is 92.4% 

(on our proposed ASD-CEVT model).  

 

   Figure 5.8  Comparison graph of classification performance of the developed model with baseline 

models 

Figure 5.8 illustrates a visual comparison of the performance achieved by each model on the autism facial 

dataset allowing for an easy comparison of the true model’s performance. 

                                       

(a)                                                                                            (b) 
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Figure 5.9  Confusion matrix of four models where (a) ASD-CEVT, (b) ResNet, (c) VGG16, (d) AlexNet 

respectively 

Confusion matrix in Figure 5.9 visually illustrates the architecture’s performance. Each architecture is 

evaluated on a 300-image set. 

As seen from the confusion matrix, ASD-CEVT performed the best with only 12 input images incorrectly 

predicted as compared to the other employed models. 

5.5. Discussion 

Our research investigates the diagnosis of autism spectrum disorder (ASD) utilizing an enhanced 

convolution network-based transformer architecture applied to facial images of autistic and healthy 

(typically developing) children. While there are several methods for identifying autism within the current 

diagnostic framework, the most prominent approach remains brain MRIs and interview-based evaluation, 

despite its costly and lengthy diagnosis timeline. The significance of early detection offers the best 

prospects for ASD individuals to lead normal lives. Consequently, the impetus behind our work is self-

evident i.e., to formulate a straightforward and precise identification strategy applicable from an early 

age. Recent trends in healthcare research underscore the utilization and efficacy of pattern recognition, 

image processing, and facial identification in this domain. Following the research literature on ASD and 

the fact that facial patterns (biomarkers) reflect underlying psychological functioning, facial identification 

emerges as a promising avenue for ASD. Studies developing the ASD identification architecture are still 

limited, as the limitations inherent in the training dataset pose several challenges for researchers. The 

dataset employed lacks data diversity as it is biased toward white ethnicity, posing a challenge in 

accurately identifying and generalizing individuals from other ethnicities. Furthermore, the dataset size 

and suboptimal visual quality are constraints. Additionally, relying solely on facial biomarkers is deemed 

inadequate, integrating and developing multi-modal architecture can notably augment accuracy. Table 5.4 

showcases a comparative analysis of recent research findings providing their performance on various 

metrics. Some of the performance values mentioned represent the values near our developed architecture 

but most of them lack real-world applicability. 

Table 5.4 Comparison with recent state-of-the-art strategies with their performance on various parameters 

Reference Purpose  Techniques Highest 

Test 

Accuracy 

Precision Recall F1 AUC 

[165]  ASD MobileNet 87% 87% 87% 87% - 
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recognition via 

facial 

expressions 

[166] Detection of 

ASD via deep 

image learning 

strategies 

VGG19, NasNet 

large, Inception 

V3, ResNet50 

87.50% - - - - 

[167] Classification of 

ASD via facial 

images 

(VGG16, 

MobileNet, 

VGG19), + 

LSTM 

75.85% 76.56% 76.85% 75.69% - 

[168] ASD diagnosis 

via facial 

landmarks 

Hybrid VGG19, 

MobileNet V2 

92% 92% 92% 92% - 

[169] Detecting 

autistic 

individuals 

using face 

image 

MobileNet, 

Inception V3, 

InceptionResNet 

V2 

87% - - - - 

[170] ASD detection 

system for face 

images 

CNN 91% - - - - 

[171] ASD diagnosis 

using deep 

learning 

VGG16, 

EfficientnetB0, 

VGG19 

87.9% - - - 93.06% 

[172] Detection of 

ASD at early 

stage 

MobileNet V1 92.1% - - - - 

[173] Face images 

based ASD 

diagnosis 

VGG16, KNN, 

Random forest, 

Gradient boost, 

VGG19 

0.88 0.87 0.88 0.88 - 

[174] ASD diagnosis ResNet34, 92% - - - - 
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using transfer 

learning 

VGG19, AlexNet, 

ResNet50, 

VGG16, 

MobileNet V2 

Our 

Proposed 

Convolutional 

enhanced 

vision 

transformers 

for diagnosing 

ASD 

CNN 

incorporated 

vision 

transformer 

92.4% 90.9% 90.9% - 96.3% 

 

5.6.Chapter Summary 

This chapter presents a comprehensive exploration of our major contributions toward advancing Autism 

Spectrum Disorder (ASD) detection using facial image analysis. We proposed an optimized transfer 

learning-based face identification architecture capable of capturing autism with high accuracy, 

accompanied by visualizations of key facial features influencing the model's decisions. The novel 

enhanced vision transformer architecture integrates an attention mechanism with CNN blocks in parallel, 

supported by skip connections, to facilitate effective feature extraction and smooth information flow 

across layers. The proposed architecture addresses critical challenges, including overfitting, thereby 

improving generalization capabilities. Furthermore, this work pioneers a relatively underexplored area of 

image processing by focusing on ASD classification using facial images, diverging from conventional 

approaches that rely on brain imaging or EEG signals. The results underscore the potential of facial 

image-based diagnosis as an innovative and effective approach for ASD detection. 
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Chapter 6 SELF-SUPERVISED AND SELF-DISTILLATION 

APPROACH FOR ASD 
 

The early and accurate diagnosis of Autism Spectrum Disorder (ASD) remains a complex challenge due 

to the diverse presentation of symptoms and the need for large annotated datasets. To address these 

limitations, this chapter explores the integration of self-supervised learning (SSL) and self-distillation 

techniques as innovative approaches for ASD diagnosis. By leveraging unlabeled data through SSL, the 

framework aims to extract robust feature representations, while self-distillation enhances the 

generalization and efficiency of the predictive model. This dual approach not only reduces dependency on 

annotated datasets but also improves the model's interpretability and diagnostic accuracy. The chapter 

presents a comprehensive analysis of these techniques, including their implementation, evaluation, and 

contribution toward advancing ASD detection methodologies. Section 6.1 provides an overview of the 

chapter, focusing on self-supervised and self-distillation approaches for ASD diagnosis. Section 6.2 

outlines the background, emphasizing Self-Supervised Learning (SSL) and Knowledge Distillation (KD). 

Section 6.3 introduces the Autism Facial Image Dataset used in the study. Sections 6.4 and 6.5 describe 

the integration of Transformers and Masked Autoencoders, while Section 6.6 explores the self-distillation 

process. Section 6.7 presents the experiments and results, detailing the experimental setup and analysis. 

Section 6.8 discusses the findings and their implications. Finally, Section 6.9 summarizes the chapter's 

key contributions and insights. 

6.1. Overview 

This work delves into the development of an advanced deep-learning framework designed to improve 

Autism Spectrum Disorder (ASD) classification using facial images. The work focuses on addressing the 

challenges associated with early ASD detection, which is often hindered by the limitations of 

conventional diagnostic methods. The proposed framework, S/SD-ASD (Self-Supervised and Self-

Distillation Learning for ASD), aims to provide a more accurate and efficient alternative for diagnosing 

ASD by utilizing cutting-edge techniques in deep learning and self-supervised learning. The core of this 

approach lies in the use of a Masked Auto-Encoder (MAE), which is an unsupervised model that learns to 

reconstruct masked regions of input data in this case, facial images from the known portions. This 

mechanism allows the model to focus on the underlying patterns within the image data and enhance 

feature extraction. By incorporating self-supervision, the model is trained to predict and infer missing 

parts of the image, improving its ability to learn from limited data. The MAE framework is further 

augmented by Self-Distillation, where a student model learns from the teacher model’s global features 

through logits-based knowledge distillation. This helps in transferring valuable knowledge from the more 
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complex teacher model to the simpler student model, thereby improving the latter’s efficiency in 

representing important features from the data. A key innovation of the S/SD-ASD framework is its ability 

to work effectively with limited data, a common issue in ASD diagnosis where large labeled datasets are 

often unavailable. By combining self-supervised pretext tasks and self-distillation, the model is able to 

train on the target dataset alone without the need for additional external knowledge, addressing the 

scarcity of labeled data and reducing the risk of overfitting. 

 

6.2. Background 

6.2.1.  Self-supervised learning (SSL) 

A lot of deep learning architectures are trained through supervised learning, which needs a substantial 

amount of labeled data. However, some field lack datasets as extensive as those used in general-purpose 

applications. To address this issue, pre-trained models can be an effective solution [175]. These models 

are initially trained on large datasets and then fine-tuned for specific tasks. This approach has two main 

advantages: first, the parameters of a model trained on a large dataset provide a strong starting point for 

further training, facilitating faster convergence; second, such a model can effectively extract hierarchical 

semantic information, reducing the risk of overfitting on smaller datasets. Consequently, the performance 

of these models heavily depends on the size of the labeled dataset. In the medical field, gathering and 

labeling data in this domain is both costly and time-consuming, largely due to patient privacy concerns 

and the need for high-quality annotations. To address this challenge, self-supervised learning presents an 

excellent alternative, as it can be trained on unlabelled datasets.  

Self-supervised learning/SSL leverages innovative pretext tasks for various applications, such as data 

augmentation, active learning, alignment, and anomaly detection. The general approach involves 

proposing a pretext task allowing the network to generate pseudo-labels from the data’s attributes. These 

pseudo-labels then serve as supervisory signals during training. The resulting model can be transferred to 

the target data domain or task. In terms of representation learning, SSL can match the performance of 

supervised learning. Given the nature of human learning, which often does not rely on large labeled 

datasets, humans can learn effectively from unlabeled samples, demonstrating the potential of self-

supervised learning in scenarios with limited labeled data. 

 

6.2.2. Knowledge Distillation/KD 

With the evolution of neural networks, Knowledge distillation/KD has emerged as a significant model 

compression and transfer learning technique, gaining prominence in domains of artificial intelligence due 

to its effectiveness and simplicity [176]. KD addresses many practical problems by employing a "teacher-
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student-network" training approach, wherein the knowledge from a trained model (the teacher network) is 

distilled and transferred to another model (the student network). This enhances the student model's 

learning capability by leveraging the teacher model's knowledge. Typically, the teacher module is a high-

capacity network, while the student module is a smaller, more efficient network. Thus, knowledge 

distillation facilitates the training of a smaller student network under the supervision of a larger teacher 

module. Unlike the other compression algorithms, KD can effectively work across networks with 

different structures. Deep learning has achieved remarkable success across numerous domains, primarily 

due to the large, complex models capable of learning intricate patterns and features from data. However, 

these large models pose deployment challenges, especially on mobile devices. Knowledge distillation 

offers a solution by producing smaller models that retain the functionality of their larger counterparts. 

Consequently, an increasing number of researchers are focusing on knowledge distillation to overcome 

these deployment challenges. Table 2 summarizes the list of publicly accessible autism datasets. 

 

6.3. Autism facial image dataset  

The primary challenge encountered in this research was the lack of substantial and publicly available 

autism image datasets, which are essential for developing an image classification model. To address this, 

we employed an image dataset of autistic children from the Kaggle repository, as it is freely accessible 

[177]. Fig 6.1 provides a diagrammatic representation of the dataset, consisting of images of 2,940 

subjects. This dataset includes 2D-RGB face images of both autistic and typically developing children 

aged 2-14 years, with the majority aged between 2-8 years.  

                                     

(a)                                  (b) 

                                   Fig 6.1 (a) Autistic, and (b) Non-Autistic sample from the image dataset 

 

The gender ratio (male to female) in the dataset is approximately 3:1, and the ratio of autistic to non-

autistic subjects is 1:1. It is crucial to note that the dataset lacks meta-information such as the clinical 

history of participants, the severity level of ASD among individuals, socio-economic background, and 
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ethnicity. Many of the facial images were of suboptimal quality concerning brightness, image size, and 

face alignment. Table 6.2 shows the data distribution of the employed image dataset. 

 

Table 6.1 Distribution of Autism Facial Image Dataset 

Type Class Total 

Autistic Non-Autistic 

Train 1176 1176 2352 

Test 294 294 588 

Subjects (Total) 1470 1470 2940 

 

6.4. Transformers 

 

Convolutional Neural Networks (CNNs) exhibit limited capability in capturing localized relationships of 

foci in medical domain. In this paper, we employ a transformer-based attention strategy to identify long-

term relationships. When applied directly to patch sequences, transformers prove to be highly effective in 

image classification tasks. Compared to the most advanced CNNs, the ViT achieves enhanced diagnostic 

performance with significantly fewer computational resources during training. 

Fig 6.2 illustrates the ViT architecture, incorporating three primary components: (a) patch embedding; (b) 

positional embedding; and (c) transformer module. 

Patch embedding: Within this, data is handled sequentially. Initially, a high-dimensional image is 

converted into a sequence format. The facial images are first uniformly resized to 224 × 224, passed 

through a convolutional layer, and then flattened into 𝑥𝑃 ∈ ℝ𝑁×(𝑃2.𝐶) , where 𝑃 signifies the resolution of 

each image patch. The number of patches is determined by 𝑁 = 𝐻𝑊/𝑃2. Each patch is linearly projected 

into a 𝐷-dimensional vector space, with 𝐷 = 𝑃2𝐶 . 

Position embedding: In our work, this layer enhances patch embedding with positional information. A 

learnable 1𝐷 -positional embedding 𝐿𝑃𝐸 ∈  𝑅(𝑁+1)×𝐷 is typically used in traditional ViT’s.  

Transformer module: This block consists of layer normalization (𝑙𝑎𝑦ⅇ𝑟𝑛𝑜𝑟𝑚), multi-head self-attention 

(𝑀𝑆𝐴), and a multi-layer perceptron (𝑀𝐿𝑃). Input images 𝑋 ∈  𝑅𝐻×𝑊×𝐶 out of the patch embedding 

layer are converted into a sequence of patches, concatenated with a class token for classification. This 

process parallels the transformer architecture used in natural language processing (NLP). The resultant 

patches are concatenated to the 𝐿𝑃𝐸  positional embedding  and fed into the transformer encoder for 

computation. The class token outputted from this process is then inputted into the MLP module for 

classification. Formulas for these computations are detailed as follows: 
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𝐴0 = [𝑥𝑐𝑙𝑠 : 𝑥𝑝
1𝐿𝑃;  𝑥𝑝

2𝐿𝑃; , … ,  𝑥𝑝
𝑁𝐿𝑃] + 𝐿𝑃𝐸 , 𝐿𝑃 ∈ ℝ(𝑃2.𝐶)× 𝐷                                                                 (1) 

𝐴𝑙 = 𝑀𝑆𝐴( 𝑙𝑎𝑦ⅇ𝑟𝑛𝑜𝑟𝑚(𝐴𝑙−1)) + 𝐴𝑙−1 , 𝑙 = 1, 2, … , 𝐿                                                                               (2)   

 𝐴𝑙 = 𝑀𝐿𝑃 (𝑙𝑎𝑦ⅇ𝑟𝑛𝑜𝑟𝑚(𝐴̇𝑙)) + 𝐴̇𝑙                                                                                                              (3) 

 𝑦 = 𝑀𝐿𝑃(𝐴𝐿
0)                                                                                                                                             (4) 

 

 

Fig 6.2 Visual representation of the ViT module 

 

6.5. Image modeling using masks/Masked Autoencoder 

In this segment, we unraveled the masked auto-encoder (MAE) components utilized in the S/SD-ASD 

method: decoder, encoder, and loss function. Fig 6.4 illustrates the structure of MAE. The encoder branch 

of MAE utilizes the transformer block from the vision transformer (ViT). Following procedures akin to 

ViT, the input image is initially divided into disjoint/non-overlapping image patches 𝑋 ∈  𝑅𝐻×𝑊×𝐶, 

which are then linearly mapped to obtain 𝐿𝑃𝐸  patch embeddings. Subsequently, a random masking 

process occurs at a specified ratio. Visible patches are denoted as 𝑉ⅈ𝑠𝑃, while invisible patches are 

𝐼𝑛𝑣ⅈ𝑠𝑃. Upon receiving positional information from 𝑃𝑖𝑛𝑓𝑜, the encoder generates corresponding latent 

representations essential for subsequent image reconstruction. The encoder outputs an encoded vector 

along with a mask token, constituting the complete token set fed into the MAE decoder. Each token 

receives relevant positional embedding, whereas the mask token represents a shared, learnable vector 

symbolizing the anticipated missing pixel. Failure to include positional embedding can lead to suboptimal 
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image reconstruction, particularly from the mask token without associated patch position information. To 

optimize computational efficiency, the decoder is designed to be lightweight.  

 

 

 

Fig 6.2 Diagrammatic illustration of the proposed S/SD-ASD architecture 

The reconstruction entropy loss L in conjunction with MAE is computed by comparing the original region 

value 𝑦 with the masked image patch's predicted value 𝑦𝑃, using MSE. 

LMSE= MSE(𝑦𝑃 , 𝑦)                                                                                                                                     (5) 

𝑦 represents the pixel value of the original facial image and 𝑦𝑃 represents the pixel value of the predicted 

facial image patch. 
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Fig 6.4 Visual representation of the workflow of MAE 

 

6.6. Self-distillation 

Fig 6.5 illustrates a diagrammatic representation of the self-distillation module. The image is noted for 

containing a significant amount of spatial redundancy compared to the semantic framework of language. 

It emphasizes that even if a portion of the image is obscured, sufficient identification can often still be 

derived from the remaining visible areas. However, this principle should not be misconstrued to imply 

that high-definition results can be achieved from an imperfect image. In contrast to this perspective, Mean 

Absolute Error (MAE) training focuses on the visible but insufficiently global features rather than the 

entire image. This approach can be enhanced by incorporating supervised labels into the network, a 

straightforward and effective method ensuring the network comprehends the necessary concepts for 

reconstruction. Fig 6.3 demonstrates the integration of two separate supervised branches into the system: 

one following the encoder and another after the decoder, facilitating comprehensive processing of all 

patches (40% local) during training. A student mapping vector distills. The encoder outputs global 

information. The goal is to augment the encoder's capacity for feature extraction through the decoder 

based on the teacher mapping vector.  

𝑀𝑎 = 𝑀𝐿𝑃(𝑉ⅈ𝑠𝑃); 𝑀𝑏 = 𝑀𝐿𝑃(𝑉ⅈ𝑠𝑑)                                                                                           (6) 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =0.5𝐿𝑐𝑒(𝑀𝑎;   𝑦)+0.5𝐿𝑐𝑒(𝑀𝑎;  𝑀𝑏)                                                                                     (7) 

L=LMSE + 𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙                                                                                                                                      (8) 

The proposed distillation method employs a single MLP layer in each referenced student and teacher 

branch within the encoder and decoder. To minimize L in the MAE process, vector 𝑉ⅈ𝑠𝑃 from the encoder 



 

153 
 

and vector 𝑉ⅈ𝑠𝑑 from the decoder are branched from vectors 𝑀𝑎 and  𝑀𝑏, ensuring alignment between the 

two vector distributions and total loss formulation. 

 

                                                          Fig 6.5. Schematic representation of self-distillation 

6.7. Result Analysis and Discussion 

This section sub-divides into various sections explaining the experimental setup, and visual and statistical 

comparison of the proposed work with SOTA techniques. To validate the effectiveness of S/SD-ASD, an 

ablation study was also conducted. 

6.7.1. Experimental setup  

The picture samples used in the renal datasets were resized to 224 × 224 in size. The training was finished 

after 200 epochs of pre-training and 60 epochs of fine-tuning. Every patch was split into sixteen-by-

sixteen-inch pieces. The parameters used in this paper were changed to match those in the MAE. 

                                                  

6.7.2. Result Discussion and Visualization 

The section provides a comprehensive evaluation of the results obtained by using modern computational 

approaches to autism spectrum disorder (ASD) diagnosis. This section digs into the insights acquired 

from applying S/SD-ASD to facial imaging data, intending to improve diagnostic accuracy and better 

understand the underlying visual indicators of ASD. This article explains how AI-driven methodologies 

contribute to interpreting and diagnosing ASD from medical pictures by analyzing model-generated 

visualizations in detail, such as patch segmentation, masked regions, token extraction, saliency maps, and 

essential feature identification.  
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Fig 6.6 Visualization of the original patched image and the masked patch image obtained after inputting 

the original image 

Upon inputting an image into the vision transformer (ViT) model for autism spectrum disorder (ASD) 

diagnosis, a series of visualizations are generated to elucidate the model's processing and interpretation: 

The initial step involves dividing the original medical image into smaller patches. This segmentation 

allows the ViT model to efficiently process spatially localized information, enhancing its ability to 

capture fine-grained details crucial for diagnosis. As part of the self-supervised learning (SSL) strategy, 

specific patches of the image are masked during training and replaced with visible patches (as shown in 

Fig 6.6). This technique encourages the model to learn robust features invariant to variations in localized 

image regions, thus improving its generalization capability. 

After processing each patch, the model takes out tokens corresponding to abstract features. These tokens 

all capture essential visual details including texture, color, and spatial connections within the image, 

mentioned in Fig 6.7. These characteristics are essential for later classification steps or diagnostic 

decision-making. 

 

 

Fig 6.7 Embedding vectors obtained after masking the image 

The portions of the input image that contribute most significantly to the model's decision-making process 

are highlighted in a saliency map that is created. This map provides insights into the particular visual cues 

suggestive of ASD by graphically indicating the areas that are critical for the model's categorization 

output. Certain areas or elements inside the image are recognized as crucial for the diagnosis of ASD 

based on the saliency map. The areas that are highlighted indicate the locations where the model has 

identified relevant patterns or irregularities in visual cues related to autism spectrum disorder. For the 
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facial features, eyes and lower part of the face i.e. lips and jawline are the main biomarkers which 

categorizes autistic and non-autistic individuals. Same phenomenon is learned by our model and it 

highlighted the significant areas of the face as seen in Fig 6.8. 

  

Fig 6.8 Visual comparison of the original image, saliency map, and the important regions highlighted by 

the model 

 

These visualizations not only validate the model's decision-making processes but also provide vital 

insights into the complex visual signals associated with ASD, allowing for more informed clinical 

decisions and furthering the field of computer-assisted autism diagnosis. 

 

Table 6.2 Fine-tuning (%) accuracy outcomes with various mask ratios for S/SD-ASD  

Ratiomask 0.1 0.2 0.3 0.4 0.5 0.6 0.75 0.8 0.9 

Fine-tune accuracy 

(%) 

96.32 96.98 97.21 97.43 97.5 96.32 97.42 94.06 91.08 

 

Table 6.3 shows the performance metrics attained by the model during the downstream fine-tuning task at 

various mask ratios (ranging from 0.1 to 0.9). The results show that our model performs optimally at a 

mask ratio of 50% i.e., 0.5, exceeding the MAE ideal mask ratio of 75%. This highlights the different 

qualities of ASD facial images as opposed to natural images. ASD facial images have richer features and 

better information density, requiring more advanced reconstruction guiding algorithms. Distillation 

processes can further improve the encoder's feature extraction capabilities, allowing for the creation of 

more informative features in later decoding phases. Notably, our model performs well even at a high 
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mask ratio of 90% (0.90), demonstrating its capacity to extract useful insights from the few visible 

patches used during pre-training, which are critical for downstream fine-tuning tasks. 

 

6.7.2.1. Comparison with classification methods 

This section discusses the outcomes obtained on MAE, BEiT, ViT, VGG16, VGG19, MobileNetV2, and 

ResNet50 with respect to our proposed S/SD-ASD. As seen from Table 6.4, we compare several model’s 

performance on the ASD diagnosis problem by employing supervised and self-supervised learning 

strategies. In comparison to other models, the suggested approach, S/SD-ASD, exhibits substantial 

superiority across several criteria. In particular, S/SD-ASD exhibits a 97.5% accuracy rate, surpassing 

both MAE and BEiT by 6.54% and 6.66%, respectively. S/SD-ASD outperforms supervised models ViT 

by 9.84%, VGG19 by 27.35%, MobileNetV2 by 6.40%, and ResNet50 by 9.31% in accuracy. 

Furthermore, S/SD-ASD consistently outperforms other models in measures such as precision, recall, and 

F1 score, demonstrating its effectiveness in identifying distinguishing characteristics that are pertinent to 

the diagnosis of ASD. Compared to current state-of-the-art techniques, these results demonstrate the 

promise of S/SD-ASD as a reliable technique for improving diagnostic accuracy in autism. 

        Table 6.3 Comparison of models performance on various measures 

Model Accuracy Precision Recall F1 

Self-Supervised 

MAE 91.53 93.10 88.80 90.31 

BEiT 91.42 95.49 88.76 91.04 

Supervised  

ViT 88.77 96.53 80.68 87.98 

VGG19 70.15 68.54 66.55 67.53 

MobileNetV2 91.10 93.27 88.79 90.97 

ResNet50 88.19 93.13 82.79 87.60 

Proposed: S/SD-ASD 97.5 97.31 97.89 97.60 

 

During the fine-tuning stage, we finished all of the verifications for the epochs used into the S/SD-ASD 

technique. To ensure a fair comparison, the S/SD-ASD and MAE algorithms were pre-trained for 200 

epochs and both use the ViT-B/16 backbone network structure. Evaluations were carried out across 60 

epochs after the pre-trained weights were transferred to the fine-tuning system. Fig 6.9, illustrates the 

fine-tuning performance of these strategies graphically. It can be seen from Fig 6.9., that the S/SD-ASD 
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approach continuously produced great accuracy right from the beginning of the epochs. MAE, on the 

other hand, started out with inferior accuracy. This discrepancy can be explained by the S/SD-ASD 

method’s pre-training reconstruction, which enables it to learn features with more detailed information on 

facial features. 

 

Fig 6.9 Fine-tuning (%) accuracy of MAE with the proposed S/SD-ASD  

6.7.2.2. Ablation Study 

In this segment, we conducted ablation experiments of our S/SD-ASD model on autism facial image 

dataset to validate the effectiveness of the proposed approach. We examine the effects of various pre-

training objectives on the experimental outcomes in Table 6.5(a). Here, FT denotes fine-tuning in the 

downstream task, KD stands for self-distillation, and IREC stands for masked image reconstruction. As a 

single pre-training target, the results suggest that masked picture reconstruction has a modest advantage 

over self-distillation. This benefit is probably caused by the encoder only trains 50% of the visible picture 

patches, which helps the model reach its full potential by enabling it to extract as many useful features as 

possible. Furthermore, this procedure might lessen superfluous information in the facial images, which 

would minimize interference and improve the functionality of the model. The advantages of each strategy 

are combined when IREC and KD are used, leading to a more successful overall performance. We present 

experimental investigations of the count of MLP layers on the decoder and encoder sides in Table 6.5(b). 

Using two linear layers reduces the accuracy of the model for the encoder. Our hypothesis is that the 

encoded vector will include comparatively more important information if just 50% (0.5) of the viewable 
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(unmasked) image is fed into the encoder. As a result, adding two linear layers to this vector causes more 

information to be lost, which reduces the encoder's capacity to extract features. By processing the entire 

image encoding, on the other hand, the decoder preserves more global information. With just one linear 

layer, it can successfully generate a vector that is linearly separable. However, some information is lost 

during transmission and transformation when two linear layers are used. 

Table 6.4 S/SD-ASD ablation cases on the facial image data 

(a) Pre-training (b) MLP layers 

IREC ✓  ✓ Encoder 1 1 2 2 

KD  ✓ ✓ Decoder 1 2 1 2 

FT (%) 91.37 90.56 97.5 FT (%) 97.5 92.13 95.81 95.46 

 

6.7.2.3. Comparison with existing ASD architectures 

Table 6.6 showcases the comparison of various previous architectures with the proposed S/SD-ASD. As 

seen from the table below, our proposed model, S/SD-ASD, demonstrates the effectiveness of integrating 

knowledge distillation (KD), vision transformer (ViT), and masked autoencoder (MAE), achieving an 

unprecedented accuracy of 97.5%. This achievement marks a significant advancement over previous 

models. The highest prior accuracy reported in the literature was 96%, achieved by Khan et al. (2024). 

Our model surpasses this by 1.56%, indicating a notable improvement. Hosseini et al. (2022) achieved an 

accuracy of 94.6%, and our model improves upon this by 2.9%. Lu and Perkowski (2021) attained an 

accuracy of 95%, which our model exceeds by 2.5%. Additionally, Ahmad et al. (2023) reported an 

accuracy of 92%, and our model demonstrates a substantial enhancement of 5.5% over this result. These 

improvements underscore the superior performance and effectiveness of our proposed approach. By 

integrating KD, ViT, and MAE, we have developed a model that not only outperforms existing 

methodologies but also sets a new benchmark for accuracy in this domain. The incremental improvements 

over the best prior results highlight the robustness and innovation inherent in our approach, making a 

significant contribution to advancing the state of the art. 

Table 6.5 Comparative evaluation of ASD classification methods using facial image dataset 

Reference  Year  Methods Maximum Accuracy  

Dodia et al. [178] 2024 MobileNet 89.58% 

Anjum et al. [179] 2024 MobileNet; EfficientNet; 

Xception; VGG19; VGG16 

88.33% 

Kurniawan and 2024 VGG19 75.85% 
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Gunawan [180] 

Khan et al. [181] 2024 MobileNetV2; ResNet50; 

Xception; DenseNet121; VGG16 

96% 

Ahmad et al. [182] 2023 ResNet50; ResNet34; 

MobileNetV2; AlexNet; VGG19; 

VGG16 

92% 

Gaddala et al. [183] 2023 VGG19; VGG16 84% 

Hosseini et al. [184] 2022 MobileNet 94.6% 

Lu and Perkoswki [185] 2021 VGG16 95% 

Proposed: S/SD-ASD 2024 KD; ViT; MAE 97.5% 

 

6.8. Discussion 

The neurological illness known as autism spectrum disorder (ASD) is typified by difficulties with 

communication, social interaction, and repetitive activities. It is essential to recognize and diagnose ASD 

since early intervention can greatly enhance the lives of those who are impacted. ASD symptoms are 

influenced by several factors, including brain development, environmental circumstances, and genetic 

susceptibility. The frequency of ASD has increased noticeably in recent decades, underscoring the critical 

need for precise and effective diagnostic instruments. In contrast to medical illnesses, the diagnosis of 

ASD is largely based on clinical evaluations and behavioral observations, which leaves it vulnerable to 

subjectivity and variation amongst physicians. ASD is a challenge in terms of early detection because of 

its diverse presentation and lack of conclusive biological indicators. Unfortunately, the lack of complete 

and labeled datasets required for training robust models causes many current techniques to suffer. This 

restriction highlights the significance of creating techniques that can use self-supervised learning (SSL) to 

utilize tiny datasets efficiently. To improve the classification accuracy of ASD, we present in this paper a 

strategy we call S/SD-ASD, which combines SSL and self-distillation (SD) techniques. To maximize 

feature extraction capabilities essential for precise classification, S/SD-ASD first masks portions of the 

input data and then reconstructs the masked regions using visible patches. The approach successfully 

directs the model toward learning discriminative features pertinent to ASD diagnosis by integrating label 

information into the reconstruction job. A significant obstacle in ASD research is addressed by the S/SD-

ASD methodology, which shows encouraging results in obtaining high classification accuracy even with 

little labeled data. It reduces the effect of data shortage and improves diagnostic accuracy by enhancing 

the encoder's feature extraction capabilities through SD loss. Furthermore, the method can be applied 

practically in clinical situations where data availability is sometimes limited due to its flexibility to small 
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training datasets. Although S/SD-ASD works well, it has several drawbacks, especially during the 

reconstruction and labeling stages. Reconstruction with random masking may limit the quality of feature 

extraction, requiring attention techniques to be used for refining. Furthermore, the reliance on labeled 

datasets presents difficulties in situations where there are few complete labeled datasets. Further 

investigations could focus on ways to reduce labeling dependencies by employing contrastive learning 

and enhancing feature quality by using unlabeled datasets. 

 

6.9. Chapter Summary 

This chapter presents a novel, innovative methodology for ASD classification using facial images, 

combining self-supervised learning with self-distillation. The S/SD-ASD framework effectively tackles 

challenges such as data scarcity, enhances feature extraction, and achieves superior diagnostic accuracy. It 

represents a valuable contribution to the fields of autism research and healthcare technology, advancing 

the development of automated systems for early ASD detection. To ensure the robustness of the proposed 

approach, an ablation study is conducted, where different components of the model are individually 

analyzed to confirm their contribution to the overall performance. Additionally, the chapter highlights the 

significance of this research in the broader context of computer-aided diagnostic systems, particularly in 

the field of autism. By leveraging deep learning and self-supervised learning, the proposed method 

provides a promising direction for developing automated, scalable tools to assist healthcare professionals 

in the timely diagnosis of ASD. This work not only contributes to the academic literature on ASD 

diagnosis but also has potential implications for clinical applications, offering a reliable and efficient tool 

to support clinicians in their decision-making processes. 
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Chapter 7 CONCLUSION AND FUTURE SCOPE 
 

This chapter provides a comprehensive overview of the various approaches employed for Autism 

Spectrum Disorder detection using artificial intelligence-based frameworks. Section 7.1 outlines the key 

research contributions of this study. Section 7.2 highlights the limitations of the proposed framework, and 

Section 7.3 explores potential directions for future work. 

7.1. Research Summary 

 

This thesis tackles the pressing challenge of Autism Spectrum Disorder (ASD) diagnosis by introducing 

an artificial intelligence-based framework that combines computational intelligence and multimodal data 

integration. ASD diagnosis remains hindered by subjective assessment techniques, limited data 

interpretability, and insufficient generalizability. The work spans a systematic literature review, the 

development of advanced diagnosis models, multimodal framework design, and detailed comparative 

analysis to advance the field of ASD detection and diagnosis.   

To achieve Research Objective 1 (RO1), a comprehensive systematic literature review was conducted to 

explore the landscape of ASD diagnostic methods. The review synthesizes information on traditional 

diagnostic techniques, machine learning (ML), and deep learning (DL) applications in ASD research, 

highlighting their limitations such as the lack of multimodal data utilization, overfitting issues, and 

restricted scalability. By identifying these gaps, this objective lays the groundwork for the development of 

more robust, accurate, and interpretable models.   

For Research Objective 2 (RO2), two advanced ASD diagnosis models were developed to address key 

challenges in computational intelligence. The first model, AFF-BPL (Adaptive Feature Fusion Technique 

for the Diagnosis of Autism Spectrum Disorder using Bat-PSO-LSTM-based Framework), introduces a 

novel feature fusion method. This model employs a hybrid optimization approach combining Bat 

Algorithm and Particle Swarm Optimization (PSO) to select optimal features, followed by an LSTM-

based classifier for precise diagnosis. The adaptive feature fusion enhances the model’s ability to process 

diverse data types while improving classification accuracy and computational efficiency.   

The second model, WS-BiTM (Integrating White Shark Optimization with Bi-LSTM for Enhanced 

Autism Spectrum Disorder Diagnosis), focuses on leveraging White Shark Optimization (WSO) for 

optimal feature selection. This model integrates WSO with a Bidirectional Long Short-Term Memory (Bi-

LSTM) network to improve the model’s generalization and mitigate overfitting. Experimental results 

demonstrate that WS-BiTM outperforms conventional models, particularly in datasets with high-
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dimensional and complex features. Both models are validated using paired t-tests, ablation studies, and 

extensive performance metrics, including accuracy, precision, sensitivity, and specificity.   

To address Research Objective 3 (RO3), a multimodal ASD detection framework was designed, 

incorporating diverse data modalities such as clinical records, brain MRI images, and facial features. This 

framework employs Channel-Based Attention Combination (CBAC) for effective feature fusion and 

integrates Vision Transformers with LSTM networks for robust analysis of multimodal inputs. The 

proposed framework bridges the gaps of single-modality models by leveraging the complementary 

strengths of different data types, leading to significant improvements in diagnostic accuracy. Evaluations 

on the ABIDE dataset using leave-one-site-out cross-validation further affirm the efficacy of the proposed 

framework.   

Finally, to fulfill Research Objective 4 (RO4), an extensive comparative analysis was conducted between 

the proposed models and state-of-the-art ASD diagnosis techniques. The analysis underscores the 

advantages of the proposed models in terms of accuracy, computational efficiency, and robustness. The 

study also provides critical insights into the limitations of existing approaches, reinforcing the 

significance of multimodal data and hybrid optimization techniques for advancing ASD diagnosis 

research.   

The contributions of this thesis lie at the intersection of artificial intelligence, computational intelligence, 

and healthcare, offering new possibilities for the timely and accurate diagnosis of ASD. The proposed 

frameworks demonstrate substantial potential for integration into clinical practice, providing valuable 

tools for early detection and personalized intervention strategies. This research not only enhances 

diagnostic accuracy but also establishes a foundation for future advancements in artificial intelligence 

applications for healthcare challenges.   

 

7.2. Limitations of the Work 

No one is perfect in the world, and every study has certain limits and constraints. This work is also 

subject to the following limitations: 

• Dataset Diversity:  The datasets used in this study are limited in terms of demographic and 

geographical diversity, which may impact the generalizability of the proposed framework across 

different populations. 

 

• Sample Size:  Despite employing multiple datasets, the relatively small sample size, especially in 

specific age groups or demographic categories, may influence the robustness and statistical 

reliability of the findings. 
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• Feature Scope:  The study primarily focuses on features derived from clinical data, MRI scans, 

and facial images. However, it does not incorporate other potentially impactful modalities such as 

genetic data or behavioral assessments. The data for non-medical health determinants risk factors 

for some regions of the study area are not accessible.  

 

• Focus on Binary Classification:  The framework is tailored for binary classification (ASD vs. 

non-ASD) and does not explore multi-class problems, such as predicting ASD severity or 

comorbidities.   

 

• Dependency on High-Quality Data:  The framework's performance depends on the availability 

of high-quality and preprocessed data, which may not always be accessible in practical scenarios.  

 

7.3. Future Aspects 

Following are the future perspectives of the work: 

• Hybrid Networks for MRI Analysis: Develop hybrid networks combining deep learning and 

traditional techniques to analyze MRI scans, enhancing early ASD detection through 

neuroimaging.   

• Integration of more nature-inspired algorithms (e.g., Grey Wolf Optimizer, Ant Colony 

Optimization) with deep learning models to improve feature selection and model efficiency.   

• Analyze functional MRI data, incorporating multimodal neuroimaging techniques (e.g., fMRI, 

DTI) to study neural mechanisms underlying ASD.   

• Facial Image Data Across Age Groups: Extend analysis to datasets containing facial images from 

diverse age groups to identify phenotypic markers of ASD for early detection.   

• Scalable Algorithms for Diverse Datasets: Develop scalable models to handle large, diverse 

datasets, ensuring better generalization and clinical applicability.   

• Longitudinal ASD Studies: Conduct longitudinal studies to understand ASD progression and 

predict outcomes using time-series analysis and recurrent neural networks.   

 

• Global Dataset Creation: Develop globally diverse datasets with demographic variations to 

enhance model generalization and inclusivity.  

• Integration of Genomic Data: Explore the inclusion of genomic data to identify potential genetic 

markers and their correlation with neuroimaging findings.   

• Clinical Validation and Trials: Collaborate with clinicians to validate AI-based frameworks in 

real-world settings through clinical trials.   
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• Personalized Treatment Insights: Use AI models to predict individual responses to therapies, 

aiding in the development of precision medicine strategies for ASD treatment.   

• Cross-Cultural ASD Studies: Conduct cross-cultural analyses to identify region-specific ASD 

markers, improving diagnostic models for diverse populations.   

• Synthetic Data Generation: Employ generative models, such as GANs, to synthesize realistic 

neuroimaging or facial datasets for augmenting training data and overcoming data scarcity.   

• Collaborative Learning Models: Explore federated or collaborative learning approaches to train 

models across decentralized, privacy-preserving datasets from multiple institutions.   

• Multi-View Learning: Implement multi-view learning techniques to combine information from 

different sources, such as 2D images, 3D MRI scans, and clinical data, for comprehensive 

analysis.   

• Ethical and Societal Implications: Address ethical considerations in ASD diagnosis using AI, 

focusing on bias mitigation, transparency, and the societal impact of automated decision-making.   
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