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ABSTRACT

Reversible Data Hiding (RDH) has emerged as a vital research area within information

security, driven by the growing demand for secure communication that preserves data confiden-

tiality while ensuring perfect recovery of the original cover image. Recognizing its significance

across sensitive domains such as medical imaging, cloud storage, and digital forensics, this

thesis presents an extensive investigation into contemporary RDH techniques. Building upon

insights derived from a comprehensive review of state-of-the-art methods, the work identifies

key research gaps and proposes novel methodologies aimed at enhancing embedding efficiency,

prediction accuracy, and visual fidelity in reversible data hiding.

The thesis begins with an in-depth exploration of RDH by exploring major techniques and

advancements within the field in the last decade and so. It systematically analyzes the progres-

sion of RDH methodologies, highlighting key contributions, emerging trends, and research fron-

tiers identified through an extensive survey of scholarly works indexed in reputable databases

such as the Web of Science (WoS). This review not only consolidates the existing body of

knowledge but also identifies prevailing challenges, unresolved research issues, and potential

avenues for future investigation in the domain of RDH.

In the second part of the research, a high-capacity RDH method integrating contrast en-

hancement and brightness preservation is proposed for medical images. The method divides

the image into Region of Interest (ROI) and Non-Region of Interest (NROI), applying region-

specific embedding strategies that align with their distinct characteristics. A novel prepro-

cessing technique is further introduced for the ROI, efficiently handling areas with low Pixel

Concentration Ratio (PCR) to generate additional vacant bins for embedding. This approach

significantly enhances embedding capacity while improving contrast and visual quality without

compromising the inherent brightness of the medical image.

The third contribution introduces an advanced RDH method for color images employing a

Convolutional Neural Network Convolutional neural network (CNN)–based predictor. To ad-

dress the limited dependency range in conventional RDH methods, a Self-Attention CNN (SA-

CNN) predictor is designed to capture both local and global spatial dependencies. A novel error

adjustment mechanism further leverages the inter-channel correlation among RGB components,
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resulting in superior reconstruction quality and increased embedding performance.

The fourth part of the work presents a Two-Stage Interpolation-Based Reversible Data Hid-

ing Framework that integrates attention-driven prediction to enhance embedding efficiency. To

overcome the limitations of conventional interpolation techniques, the proposed approach com-

bines bicubic interpolation with a highly accurate deep-learning predictor. A novel multi-head

attention–based U-Net model, termed UMANet, is introduced to capture a broader spatial con-

text, yielding improved interpolation accuracy and embedding performance.

The fifth contribution focuses on Reversible Data Hiding in Encrypted Images (RDHEI),

adding an additional layer of security over traditional RDH. A novel SCAM-Net predictor is

proposed, equipped with a multiscale extraction module for capturing both fine and coarse

feature details. The extracted features are refined using a Convolutional Block Attention Module

(CBAM) that leverages channel and spatial attention mechanisms. This architecture achieves

highly precise image prediction and outperforms existing state-of-the-art methods, leading to

superior embedding performance and robust data concealment in encrypted environments.

Collectively, the research contributes a comprehensive suite of RDH methodologies that

advance the state of the art in prediction accuracy, embedding efficiency, and visual fidelity,

reinforcing the role of intelligent predictive modeling in secure image-based communication

and storage.
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CHAPTER 1

INTRODUCTION

Over the past few decades, increased social media usage, advancements in digital technology,
and the popularity of cloud applications have led to an exponential increase in the transmission
of valuable information and multimedia content over networks. This has increased the require-
ment of safeguarding sensitive information from intruders, especially in the field of medical
and military applications, where privacy and security are paramount. Cryptography and Data
Hiding (DH) [5, 6] have evolved as two primary ways to achieve information security; where
cryptography converts the information from one form to another form that is unrecognizable by
unintended users, and DH solves the issue by hiding the sensitive information into a cover me-
dia, keeping the intruders unaware of the information. However, traditional data-hiding methods
are irreversible in nature, as these techniques introduce permanent changes to the cover media,
and recovering the cover media from the marked image is not feasible.

To overcome the aforementioned challenge, RDH [7] has emerged as a promising technique
that enables cover media to be recovered along with the hidden data [8].This dual capability,
image reversibility as well as data concealment, enables the RDH to become the optimum choice
to address the critical needs of various applications where, along with information security,
image preservation is also crucial.

1.1 Necessity of RDH in Medical Images

The healthcare sector has witnessed a remarkable digital transformation over the last decade,
fueled by the widespread adoption of Electronic health records (EHRs), telemedicine, and ad-
vanced medical imaging technologies. Medical images such as X-rays, CT scans, MRIs, and
ultrasounds play a vital role in diagnosis, treatment planning, and patient monitoring. Accord-
ing to a 2023 report by Statista, the global medical imaging market is projected to reach over
USD 45 billion by 2030, underscoring the humongous growth in the production, transmission,
and storage of digital medical data.
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Medical images often contain not only visual data but also embedded metadata, such as
patient identity, diagnosis details, and hospital information. With the rise of the worldwide In-
ternet and cloud-based healthcare solutions, medical images are now routinely transmitted over
public networks for diagnosis, consultation, and remote analysis. However, this digitization
has introduced serious security and privacy challenges. The medical domain faces increasing
threats such as data tampering, unauthorized access, identity theft, and ransomware attacks. In
2023, the average cost of a data breach hit USD 4.45 million. One of the recent cyberattacks
at UnitedHealth Group revealed that 192.7 million people in the US were affected by this data
breach. The information that was hacked includes health insurance details, patient diagnosis,
social security numbers, and treatment details. Another report in 2024 by IBM’s “Cost of a Data
Breach” study revealed that the healthcare industry suffers the highest average data breach cost,
approximately USD 10.93 million per incident, emphasizing the vulnerability and sensitivity of
medical information.

Any unauthorized modification or leakage of this data could lead to diagnostic errors, patient
privacy violations, and even legal consequences. Ensuring data security while preserving image
quality is therefore a critical concern. RDH offers a practical solution by enabling confidential
information to be embedded within medical images, with the assurance that both the embedded
data and the original image can be fully recovered [9].

1.2 RDH Architecture

Fig. 1.1: General Framework of RDH

The general framework of RDH [10] is illustrated in Fig. 1.1. In RDH, the cover media,
which may be an image, video, or audio file, acts as the carrier for the hidden secret information.
The process begins with pre-processing the cover media to generate a location map and auxiliary
information required for accurate data extraction. These elements, together with the secret data,
are embedded into the cover media in a manner that allows them to be separated during the
extraction phase, as shown in the framework. The cover image containing the embedded data is
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referred to as the marked image or stego image [9,11]. Using auxiliary information, the receiver
can reverse the embedding operation performed by the sender to recover both the original cover
media and the concealed secret data.

1.3 Classification of RDH Techniques

Over the past two decades, RDH techniques have been extensively researched, leading to nu-
merous approaches aimed at achieving lossless recovery of both the secret message and the
cover media. These approaches can be broadly categorized into four main domains: frequency
domain, spatial domain, compressed domain, and Robust RDH (RRDH) techniques. A detailed
classification of these domains is illustrated in Fig.1.2. Spatial-domain RDH techniques are
preferred for applications requiring high embedding capacity and strict reversibility, such as
Medical and forensic areas. Frequency-domain RDH techniques are preferred for applications
that require robust data embedding during transmission and processing, such as watermarking.
Compression-domain RDH is ideal for storage- and bandwidth-constrained systems, such as
cloud and streaming services.

In the Frequency domain, RDH techniques utilize well-known transform techniques to
first transform the cover image into the frequency domain [12–19]. The frequency coefficients
obtained after the transformation step are prudently selected to conceal secret data within them
while ensuring the reversibility of the cover image. Based on the technique used for trans-
formation, the RDH techniques can be sub-categorized into multiple categories, such as Dis-
crete Cosine Transform [12, 13], Discrete Wavelet Transform [14, 15], Integer Wavelet Trans-
form [16, 17], and other transforms [18, 19]. Frequency domain RDH techniques are often
considered robust and play a crucial role where content security is of utmost importance. How-
ever, the transformation step introduces additional complexity and transmission overhead. Also,
the Embedding Capacity (EC) of frequency domain RDH techniques is generally limited.

In the Compression domain, RDH techniques involve the use of various compression
[20–25] methods to generate compressed codes from the cover image, thereby reducing its
size. The secret data is embedded within these compressed codes in a manner that minimally
affects the original content. Depending on the compression technique applied, RDH methods
are classified into lossless and lossy compression techniques. Lempel-Ziv-Welch [20], one of
the most widely explored lossless compression algorithms, substitutes recurring data sequences
with compact codes to effectively minimize redundancy and achieve efficient compression with-
out data loss. Within the lossy compression RDH techniques, Vector Quantization (VQ) [21,22]
and Absolute Moment Block Truncation Coding (AMBTC) [24, 25] are the two most widely
used compression techniques explored by the researchers. VQ operates by segmenting each
image into blocks and utilizing a pre-designed codebook to index each block, thus compress-
ing the entire image. Thereafter, indexes are utilized to conceal data within them. AMBTC is
another popular lossy compression technique that first divides the image into blocks, calculates
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Fig. 1.2: Classification of RDH methods

their statistical moments, and then quantizes the blocks into a reduced number of levels based
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on the statistical moments, providing effective compression. Lossy compression techniques in-
troduce some distortion in the images; however, provide enhanced data-hiding capacity while
maintaining acceptable image quality.

The spatial domain RDH techniques focus on directly modifying the pixel intensities of
the cover image. This direct approach makes them relatively simple and user-friendly. Spatial
domain techniques [26, 27] are generally divided into two main categories: plain-text RDH
[10, 26–34] and RDHEI [35, 36]. The plain-text RDH techniques are designed to maximize
the EC while maintaining minimal distortion in the marked images. Low distortion in the
marked image is crucial in RDH, as the aim is to ensure that the embedding changes made
to the cover image are imperceptible to unauthorized users. However, a trade-off often exists
between EC and distortion. Plain-text RDH techniques can be further categorized based on
their design into several methods: code division multiplexing [28, 29], histogram modification
[26, 27], error expansion [10, 30–32], interpolation [37, 38], contrast enhancement [33] and
reversible adversarial example [34, 39].

In code division multiplexing based RDH techniques [28, 29], similar to telecommunica-
tion, the secret data is represented by spread sequences that are orthogonal to each other and
are generated by Walsh Hadamard matrix. As these sequences are orthogonal to each other, the
data embedded in the cover image does not interfere with each other, providing adequate EC
and low distortion.

In histogram modification based RDH techniques, the histogram of the pixels is plotted
based on their intensities. Then, different strategies are employed to modify the histogram to
conceal the secret data in the respective pixels [8]. In general, peak bins, acting as expansion
bins, are effectively selected to hide the data. Depending on the direction of the modification,
other bins are shifted to accommodate the shift of expansion bins. These techniques generally
require auxiliary information to be embedded along with the secret data so as to reverse the
Histogram Shifting (HS) operation during data extraction.

Error Expansion is a high-fidelity RDH approach that utilizes redundancies and corre-
lations within cover media to conceal information. It is broadly categorized into three main
techniques: Difference Expansion (DE) [30], Pixel Value Ordering (PVO) [40], and Prediction
Error Expansion (PEE) [26]. DE techniques exploit the correlation between adjacent pixels by
calculating their difference and expanding it for embedding. PVO techniques [41–44] involve
ordering pixels by their intensity values before embedding data, ensuring lossless recovery. PEE
techniques use a predictor to leverage correlations among multiple neighboring pixels. The ef-
fectiveness of PEE in RDH heavily depends on the quality of the predictor: higher prediction
accuracy leads to better EC and improved image quality. Thus, accurate predictions enhance
embedding efficiency by ensuring that the data is concealed with minimal distortion.

In recent years, various predictors have been developed to enhance the performance of PEE-
RDH. Some notable examples include the Difference predictor (DP) [30], Median Edge De-
tector (MED) [31], Gradient Adaptive Predictor (GAP) [32], Rhombus predictor (RP) [26] and
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Comprehensive RP [40], all aimed at improving prediction accuracy. Despite these advance-
ments, traditional predictors often rely on a limited number of context pixels and may struggle
with capturing non-linear relationships, which can limit their effectiveness. To address these is-
sues, recent developments have integrated RDH with deep learning networks, leveraging larger
context pixels and complex non-linear relationships to enhance prediction performance. To
further boost PEE-RDH performance, a notable advancement is the Prediction Error Order-
ing (PEO) method [45, 46], which draws inspiration from PVO techniques. This approach en-
hances PEE performance by sorting Prediction Errors (PEs) by magnitude before embedding,
thereby prioritizing those errors that minimize distortions in the final embedded image.

Interpolation-based RDH [37, 38] is an important technique in digital image processing,
particularly relevant in the healthcare domain, where it enables the upsampling of the cover
image while embedding secret information, all while preserving the ability to recover the orig-
inal image. In RDH, various interpolation techniques are utilized to up-sample the image,
preserving image quality while creating space for data insertion. Common methods include
Nearest Neighbor Interpolation (NNI) [37], Neighbor Mean Interpolation (NMI) [38], Bilinear
Interpolation, and Bicubic Interpolation. Each method offers different trade-offs in terms of
computational complexity, processing time, and image quality, providing flexible options for
RDH applications.

Fig. 1.3: Example Framework of RDHCE in medical images

RDHCE [47–49]techniques aim to enhance the contrast of the marked images while em-
bedding data, which is particularly valuable in scenarios where the original cover images suffer
from poor contrast due to limitations in sensing systems or environmental conditions. This tech-
nique is especially beneficial in medical imaging, where improved contrast can aid diagnostic
analysis. RDHCE methods primarily employ two techniques to achieve contrast enhancement:
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Histogram equalization (HE) [47] and histogram stretching [33]. HE adjusts pixel values to
distribute them across the entire range of gray scales, thus enhancing global contrast but poten-
tially introducing distortions. Histogram stretching, on the other hand, focuses on modifying
the histogram distribution to cover the full gray-scale range and splits large bins to embed
data, providing a more localized contrast enhancement with reduced distortion. Fig. 1.3 il-
lustrates a basic framework for applying RDHCE techniques in medical images. Typically,
medical images are divided into two regions: Region of Interest (ROI) and Non-Region of In-
terest NROI (NROI). The ROI contains critical information necessary for diagnosis, while the
NROI comprises background information not crucial for diagnostic purposes. Processing these
regions differently allows for efficient embedding with high capacity and improved contrast.
Despite their benefits, RDHCE techniques often face challenges in achieving high EC and are
vulnerable to steganalysis attacks due to the inherent nature of HS.

(a) VRAE

(b) RRBE

Fig. 1.4: Two different frameworks of RDHEI methods (a) VRAE and (b) RRBE

An emerging application of RDH involves adversarial examples [34, 50], which are par-
ticularly relevant in the context of privacy concerns raised by technologies such as gender iden-
tification and facial recognition. RDH techniques are used to embed adversarial perturbations
into images, making them appear unchanged to the human eye while confusing AI classifica-
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tion models. This approach helps protect personal data from unauthorized AI scrutiny while
ensuring that the original image can still be accurately recovered by authorized users. Recent
studies [34,39,50,51] demonstrate how RDH can be effectively used to create reversible adver-
sarial images that safeguard privacy in AI-driven environments.

RDHEI techniques offer enhanced security by encrypting the cover image before em-
bedding data. As depicted in Fig. 1.4, RDHEI techniques fall into two primary categories:
VRAE (Vacating Room After Encryption) and RRBE. VRAE techniques, illustrated in Fig.
1.4a [52, 53], involve encrypting the image first and then creating space within the encrypted
image to hide the secret data. Conversely, RRBE techniques, shown in Fig. 1.4b [35,36,54], re-
serve space for embedding by exploring pixel correlations before encryption. These techniques
can be designed as joint or separable, allowing for flexible security configurations based on who
should access the data and image. RDHEI techniques not only provide robust security for both
the cover media and the secret data but also offer high EC, making them effective for secure
and efficient DH.

The RRDH techniques aim to provide resilience against distortions or attacks, both in-
tentional and unintentional, such as compression, filtering, or noise addition. These tech-
niques can be broadly categorized into five types: transform-based RRDH [55, 56], (HSB)-
based RRDH [57,58], geometric invariant moments-based RRDH [59–61], secret sharing-based
RRDH [62–64], and statistical distribution-based RRDH [65, 66].

Transform-based techniques leverage transform coefficients, such as those derived from the
Krawtchouk [55] or Haar wavelet [56] transforms, for embedding secret data. These coef-
ficients are less susceptible to environmental changes or compression, ensuring robustness.
HSB-RRDH techniques [57] embed data in higher significant bits of pixels, which are less
prone to alterations compared to lower significant bits, further enhancing resilience. Geometric
invariant RRDH approaches achieve robustness against geometric deformations by utilizing in-
variant moments, such as Zernike moments [61], for embedding. Secret sharing-based RRDH
techniques enhance robustness by dividing content into multiple shares (n), distributed across
different locations. With a threshold (t < n), the original content can be fully reconstructed
from just t shares, ensuring lossless recovery even if some shares are lost or damaged [64].
Lastly, statistical distribution-based RRDH techniques explore statistical properties of the im-
age, such as histogram and PEs, and embed the data in a way that the content remains robust
against compression and other processing operations on the image.

1.4 Applications of RDH

RDH is significant across various fields due to its capability to securely embed and later recover
data without altering the original content. Key application areas include watermarking [10],
medical imaging [49], cloud storage [52, 54], adversarial examples [39], and covert communi-
cation [67].
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• Copyright Protection: One of the primary uses of RDH in watermarking is copyright
protection. By embedding watermarks into digital media, such as images, videos, or doc-
uments, creators can assert ownership and protect their intellectual property from unau-
thorized use. RDH ensures that these watermarks can be extracted and the original media
fully restored, maintaining the integrity of the content. Multiple industries are focusing
on implementing copyright protection, for example, Digimarc Corporation in its patent
has studied embedding of auxiliary data in multimedia content.

• Medical Imaging: With the rise in digital medical imaging, securing patient data has be-
come crucial. RDH allows for the embedding of confidential patient information within
medical images [68] while preserving their diagnostic integrity. This ensures that sen-
sitive data remains protected without compromising the quality of the images. Some of
the famous hospitals are currently supporting studies for RDH to embed patient metadata
into CT and MRI images, during telemedicine communication. This will help to achieve
dual purpose, keep the patient’s confidentiality and avoid the patient mismatches during
the online consultations.

• Cloud Storage: In the digital age, the demand for cloud storage has significantly in-
creased, driven by the need for widespread access and real-time data retrieval.RDH is
particularly useful in this context, as it allows essential management data—such as file
names and user details—to be embedded into encrypted content without increasing stor-
age costs. This approach ensures that both the original data and the embedded manage-
ment information can be fully recovered, preserving data integrity and optimizing storage
efficiency. RDHEI techniques, an advancement of RDH, are specifically designed for
encrypted data, providing a robust solution for secure and efficient cloud storage man-
agement. Cloud services providers, such as Aliyun have conducted several case studies
to investigate the performance of RDH to ensure integrity and authenticity of the im-
ages and content on the cloud storage. The study observed that the RDH preserves the
embedded information as well as the cover image even after using recompression.

• Adversarial Examples: In the digital age, online services often use artificial intelligence
for tasks like facial recognition, which can raise privacy concerns. RDH offers a solu-
tion by embedding adversarial perturbations into images, making them appear unchanged
while misleading unauthorized artificial intelligence systems. RDH ensures that autho-
rized users can still recover the original image, thus balancing privacy protection with
usability.

• Covert Communication: RDH is widely used in covert communication, particularly in
military applications. By embedding secret data within cover media, RDH makes the
hidden information virtually undetectable through visual inspection. Additionally, RDH
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can authenticate cover media to ensure it has not been tampered with, further enhancing
the security of confidential communications.

1.5 Performance Evaluation Metrics

Evaluation metrics play a crucial role in assessing the effectiveness of a method and validating
its performance against other techniques. In the context of RDH, the evaluation is primarily
based on two key parameters: EC and visual quality. Each of these parameters is measured
using distinct quantitative metrics, as described below:

1.5.1 Embedding Capacity

EC refers to the maximum amount of secret data that can be embedded into a cover image
without violating the reversibility constraint. It is typically expressed in bpp and is calculated
using the following formula:

Embedding Capacity (bpp) =
Total number of embedded bits

Total number of pixels in the cover image
(1.1)

1.5.2 Visual Quality

Visual quality evaluates the level of distortion introduced in the cover image due to the embed-
ding and extraction processes. An effective RDH technique should minimize this distortion,
ensuring that the visual or diagnostic utility of the image is preserved. Common metrics used
to assess visual quality include:

1.5.2.1 Peak Signal-to-Noise Ratio (PSNR): PSNR is widely used to quantify the distor-
tion between the original and the marked image. For an 8-bit grayscale image, it is computed
using the following equation:

PSNR = 10 log10

(
2552

MSE

)
(1.2)

where Mean Squared Error (MSE) is the Mean Squared Error between the original and the
marked images. PSNR is measured in decibels (dB), and higher values indicate better image
quality with less distortion.

1.5.2.2 (SSIM): The Structural Similarity Index (SSIM) metric is used to measure the sim-
ilarity between the cover image and the stego image. The range of SSIM is [0,1]. For better
performance, its value should be closer to 1. It can be calculated as follows:

SSIM =

(
2µIµI′ + C1

µ2
I + µ2

I′ + C1

)(
2σII′ + C2

σ2
I + σ2

I′ + C2

)
(1.3)
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where µI is the average of cover image I, µ′
I is the average of marked image I’,σII′ is the

covariance of cover image and marked image, σ2
I and σ2

I are the variances of cover image and
marked image, respectively, C1 and C2 are the regularization constants.

1.5.2.3 Relative Contrast Error(RCE): Relative contrast error (RCE) is a metric used to
evaluate contrast effectiveness. If the value of RCE is less than 0.5, it means there is no enhance-
ment. If the value is more than 0.5, it means the contrast of an image is significantly improved
in comparison to the original image. The RCE indicates the degree of contrast enhancement.

RCE =
σnew − σoriginal

255
+ 0.5 (1.4)

where σnew and σoriginal represent the standard deviations of the enhanced/resultant and original
images, respectively.

1.6 Benchmark Datasets

The evolution of RDH highlights the need of a comprehensive and standardized test environ-
ment to evaluate the effectiveness and robustness of the various proposed techniques. To accom-
plish this need, USC-SIPI [69], UCID [70], BOSSBase [71], and BOWS-2 [72] have emerged as
some of the popular databases often utilized by researchers. These databases, with huge amount
of images, possessing diverse characteristics along with widely used standard sizes, offer an ex-
haustive testbed for examining the performance of the proposed methods, while ensuring the
methods are universal, robust, and widely accepted.

1.6.1 BOSSBase

One of the most popular databases is BOSSBase (Break Our Steganographic System), which
is specifically used for evaluation in most of the steganography and steganalysis research. The
database consists of a whopping set of 10000 grayscale images, each having a standard size of
512 × 512 pixels. These images are captured using seven different digital cameras, covering
different scenarios, leading to a diverse dataset of images with varying characteristics. This
diversity and the absence of compression make BOSSBase an ideal database for evaluating
both performance and robustness of RDH methods.

1.6.2 BOWS-2

The BOWS-2 database, best known for its real-life images, is a version-2 collection of 10,000
images, captured by professional photographers with different level of complexity and de-
tails, ensuring a diverse collection best suited for research. It is one of the most widely used
databases used in research related to digital watermarking and image processing. The images
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size 512 × 512 grayscale images, available in the JPEG format. The dataset is a wide col-
lection of landscapes, portraits, architecture, and still-life scenes, helping researchers test the
robustness of RDH algorithms for most of the real-life applications.

1.6.3 UCID

The UCID dataset is another popular dataset, organized into several categories, such as animals,
nature, buildings, and textures, enabling the researchers to evaluate the RDH algorithms into
desired application areas. The dataset consists of 1338 images, with two set of resolutions, 512×
384 to 3264× 2448 pixels. In addition to providing diverse characteristic and varied resolution
images, the UCID dataset also provides metadata that help the researchers in designing and
examining context-aware algorithms, resulting into development of robust and high performing
algorithms.

1.6.4 SIPI

USC-SIPI is a comprehensive database of digital images provided by the University of Southern
California – Signal and Image Processing Institute (USC-SIPI), known for its diverse range
of standard test images used in the field of steganography, compression algorithms, and other
digital image processing. It is a database of grayscale and color images categorized into multiple
cateogies such as classical, miscellaneous, aerial, textures and sequence. Baboon, Boat are
categorized as highly textured images, providing researchers with common ground to test their
algorithms on complex images. Images such as Lena, Pepper, and Man are part of classical
image set and are most widely used in image processing literature. Sequence category images
are popular in research related to motion sensing and aerial images are widely used in research
related to remote sensing, and feature extraction. Thus USC-SIPI provides a rich dataset for
evaluating and benchmarking performance of RDH, watermarking, and cryptography related
algorithms.

The collective use of BOSSBase, UCID, BOWS-2, and USC-SIPI databases ensure compre-
hensive evaluation of RDH algorithms on diverse characteristics images. The wide popularity
of these images provides common ground for benchmarking various algorithms against each
other. From the widespread use of these databases, it is evident that these databases play crucial
roles in the development of RDH while ensuring their robustness.

1.7 Research Gaps and Problem Statement

The primary objective of the RDH techniques is to achieve a higher EC and low distortion in
the image with high security of data. However, there exists a trade-off between the EC and
image quality. Larger the data embedded into cover image, there will be high distortion. Over
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the past few years, various RDH techniques have been proposed by researchers to improve the
performance in terms of EC, image quality and other image properties (such as contrast and
brightness). Based on the literature review, following research gaps have been identified:

• It has been observed that in RDHCE methods, the pre-processing of the cover images has
not been performed considering the properties of Medical Images.

• In case of high-fidelity RDH methods, the EC has been limited as the image correlation
has not been efficiently used.

• Most of the RDH methods are unable to hide significant amount of data in encrypted
images as these methods make use of redundancy among neighboring pixels which limits
the scope of RDH in privacy-preserving applications.

Problem statement: Considering the research gaps, the major challenge being faced by secu-
rity researchers is the optimal management of classical trade-off between EC and image quality
with newly added dimensions such as image enhancement and security.

1.8 Objectives

The objectives to be achieved in this work are summarized as follows:

• Objective 1: To study the existing reversible data hiding techniques with contrast en-
hancement and develop a novel RDHCE for enhancing the EC.

• Objective 2: To develop a new high-fidelity reversible data hiding scheme(s) with optimal
utilization of spatial correlation in order to achieve enlarged EC.

• Objective 3: To propose a new Prediction Error (PE)-based data hiding scheme for pri-
vacy preservation while ensuring lossless restoration of the cover media at the receiving
end.

1.9 Contributions of Thesis

The research presented in this thesis makes noteworthy contributions to the field of Reversible
Data Hiding RDH by addressing several key gaps and challenges identified in existing literature.
Through extensive qualitative evaluation and experimental analysis, this work offers a compre-
hensive assessment of current RDH techniques, emphasizing their strengths, limitations, and
potential areas for enhancement. Such an evaluation provides a worthwhile reference point
for researchers, presenting deeper insights into the significance and applicability of various ap-
proaches. In addition, the thesis includes a quantitative analysis that explores publication trends,
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technology landscape, influential contributors, and collaborative patterns within the RDH do-
main. The integration of both qualitative and quantitative perspectives offers a multidimensional
understanding of the field, helping researchers to explore promising directions for future work.

One of the primary contributions of the thesis is the development of the RDHCE method
that focuses on improving the contrast of the stego image obtained during embedding, while
preserving the image brightness. The method offers unprecedented improvements in EC, im-
age contrast and brightness, marking a significant advancement in RDH research. In some
of the other key contributions of the thesis, the prediction performance of the predictor has
been improved by designing deep learning based predictors that involve utilizing a Novel Self-
attention-based CNN predictor, Multi-head attention based U-Net (UMANet) Predictor, and
a SCAM-Net architecture. By utilizing these novel predictors, the thesis effectively bridges
several critical research gaps, notably the ineffective utilization of spatial correlations. By pre-
senting these innovative contributions that mitigate the key challenges, the research contributes
to the enhancement and progression of RDH methodologies.

Overall, the thesis introduces multiple RDH techniques involving, RDHCE, RDH for color
images, interpolation-based RDH, and RDHEI, typically involving different methodologies.
Despite contributing to different methodologies, they collectively contribute to a unified re-
search objective: the development of secure, reversible, and robust data-hiding method, specifi-
cally tailored for content protection in medical images. RDHCE focuses on improving contrast
of grayscale medical images; another research work extends data hiding in multi-channel color
image environment, interpolation-based RDH helps in efficient data hiding in medical images
where resolution of original images is low, and finally, RDHEI schemes add additional layer
of security making cloud-bases telemedicine networks more secure. Collectively, these tech-
niques constitute a comprehensive framework that support visual enhancement, secure storage
and transmission of medical content.

The proposed RDH methods have significant implications for practical applications such
as Healthcare and the military. By improving the security, contrast, EC, and robustness of the
RDH techniques, this research fosters the advancement of more robust systems for protecting
sensitive data. Along with proposing significant advancements, this thesis also highlights the
future directions and potential areas for further investigation within RDH. Overall, these con-
tributions mark a significant advancement in the era of RDH, introducing novel techniques that
diminish the tradeoff between EC and image quality.

1.10 Thesis Organization

• Chapter 1. Introduction: Serving as a foundation, the introductory chapter establishes
the groundwork of the research conducted in the thesis. It begins with highlighting the
need of security and protection in the era of digital evolution within the healthcare indus-
try. The chapter discusses DH as possible solution addressing the growing need of privacy
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and security in various applications. The chapter next discusses conceptual framework of
RDH along with its dual capability of content protection and storage saving through loss-
less recovery of original cover media post data extraction. Subsequently, the chapter
delves into the motivation for adopting the RDH as prominent solution for safeguard-
ing the patient data in the healthcare industry, The chapter then briefly touches different
application areas of RDH, such as coyright protection, adversarial examples, and covert
communication, showcasing its widespread applicability and adaptability. By offering
a comprehensive introduction, this chapter lays the foundations stone for forthcoming
sections, underscoring the context and value of the research work.

• Chapter 2. Literature Review: Literature review is a crucial and integrated part of re-
search highlighting the research area’s evolution, research gaps, and unsolved mysteries.
This chapter offers a comprehensive overview of RDH by exploring major techniques
and advancements within the field. The chapter includes a detailed analysis of existing
research trends, key contributions, and emerging hot topics, derived from an extensive
review of literature from popular sources such as WoS. Through the extensive literature
study, we aimed to provide insights into prevalent research areas, significant achieve-
ments, and future directions in RDH.

• Chapter 3. A high-capacity reversible data hiding with contrast enhancement and
brightness preservation for medical images: Chapter 3 introduces a novel and inno-
vative approach to RDHCE with the aim of improving contrast of medical image while
embedding data into it. Addressing the literature gap of state-of-the-art techniques, this
chapter presents a method that leverages unique properties of medical images to design
effective pre-processing technique. The method segments the medical image into ROI
and NROI, and then utilize different embedding technique for the two regions. The pro-
posed method introduces a novel pre-processing technique for ROI region optimally uti-
lizing empty bins. The method further processes the region with low Pixel concentration
ratio (PCR) to create additional empty bins required for embedding. The experimental re-
sults showcase that the balanced and optimal approach proposed by the method not only
results into contrast enhancement but also preserves brightness of the marked images.

• Chapter 4. Reversible Data Hiding for Color Images using a Novel Self-attention-
based CNN predictor and Error Adjustment: This chapter presents a novel RDH
method for color images utilizing a CNN-based predictor. The proposed method intro-
duces a novel self-attention based CNN (SA-CNN) predictor, which enhances the multi-
receptive features of CNN to effectively capture long-range dependencies among pixels.
Self-attention mechanism allows the model to attend to different spatial locations across
the entire input image when making predictions for a particular pixel, improving the pre-
diction accuracy significantly, achieving a large peak of zero PE. The proposed RDH
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method is specifically tailored for color images leveraging inter-channel correlations of
the color image to improvise the prediction of color channels.

• Chapter 5. UMANeT: A Two-Stage Interpolation-Based Reversible Data Hiding
Framework with Attention-Enhanced Prediction: This chapter presents a novel Two-
Stage Interpolation-Based RDH Technique that integrates bicubic interpolation with a
deep learning-based predictor. This two-stage framework improves the quality of the in-
terpolated cover image, leading to more effective DH. The proposed method introduces
a novel UMANeT: A Multi-Head Attention-Enhanced Predictor for the second stage of
the interpolation. UMANeT is a novel U-Net-inspired architecture that leverages multi-
head attention to capture a wider spatial context, resulting in more accurate pixel predic-
tion. Experimental results highlighted in the chapter showcase that the proposed method
achieves a higher EC compared to existing state-of-the-art methods, while also preserving
high visual quality in both cover and stego images.

• Chapter 6. SCAM-Net: Spatial-Channel Attention Multi-Scale Network for Re-
versible Data Hiding in Encrypted Images : Underscoring the need for stronger pro-
tective measures, this chapter introduces a novel RDHEI scheme that utilizes SCAM-Net
predictor for generating highly accurate predicted images. The SCAM-Net predictor fea-
tures a multiscale extraction module that captures both fine and broad details effectively.
Additionally, an integrated CBAM module enhances feature refinement by leveraging
spatial and channel attention mechanisms. Experimental results reveal that this predictor
outperforms existing state-of-the-art alternatives. For the majority of USC-SIPI test im-
ages, the proposed RDHEI method achieves markedly improved embedding performance.

• Chapter 7. Conclusion, Future Scope and Societal Applications: The chapter dis-
cusses the findings and outcome of the research and study performed in RDH. In sum-
mary, the proposed research seeks to address the traditional tradeoff between EC and
image quality through a comprehensive investigation of prediction techniques. By inte-
grating deep learning based techniques, the study aims to enhance the prediction accu-
racy, hence resulting in improved embedding performance. The future work will focus
on further enhancing the prediction performance by predicting PEs and complexity using
deep learning techniques. The proposed RDH methods have societal relevance in secure
medical image sharing, forensic authentication, and digital content protection, ensuring
privacy and trust in sensitive data communication.

1.11 Research Objective Mapping with Publications

Research objective mapping Table 1.1 intents to demonstrate the mapping between research ob-
jectives and publications, highlighting the contribution of this thesis in addressing the research
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objectives.

Table 1.1: Research Objectives and Corresponding Publications

Research Objectives Publication(s)
RO1. To study the
existing reversible data
hiding techniques with
contrast enhancement
and develop a novel
RDHCE for enhanc-
ing the embedding
capacity.

✓ Sonal Gandhi and Rajeev Kumar. “Survey of reversible data
hiding: Statistics, current trends, and future outlook.” Computer

Standards and Interfaces, Elsevier. IF: 4.1. March 25, 2025.
(Published)

✓ Sonal Gandhi and Rajeev Kumar. “A high-capacity reversible
data hiding with contrast enhancement and brightness preserva-
tion for medical images.” Multimedia Tools and Applications,

Springer. IF: 3.0. April 02, 2024 (Published)
RO2. To develop a new
high-fidelity reversible
data hiding scheme(s)
with optimal utilization
of spatial correlation in
order to achieve en-
larged embedding ca-
pacity.

✓ Sonal Gandhi and Rajeev Kumar. “High Fidelity Reversible
Data Hiding For Color Images using CNN Predictor and Refer-
ence Error.” 15th International Conference on Computing, Com-

munication and Networking Technologies (ICCCNT), 2024, IIT
Mandi, IEEE, SCOPUS. November 4, 2024. (Published)

✓ Sonal Gandhi and Rajeev Kumar. “UMANeT: A Two-Stage
Interpolation-Based Reversible Data Hiding Framework with
Attention-Enhanced Prediction.” Journal of Information Security

and Applications, Elsevier, IF: 3.8. April 2, 2025 (Published)
✓Sonal Gandhi and Rajeev Kumar. “ Reversible Data Hiding for
Color Images using a Novel Self-attention based CNN predictor
and Error Adjustment.” Submitted to Signal, Image and Video

Processing, Springer, IF: 2.0. December 2, 2024. (Minor Re-
visions Submitted)

17



Table 1.1 (Continued): Research Objective Mapping with Publications
Research Objectives Publication(s)
RO3. To propose a new
prediction error-based
data hiding scheme for
privacy preservation
while ensuring lossless
restoration of the cover
media at the receiving
end.

✓ Sonal Gandhi and Rajeev Kumar. “SCAM-Net: Spatial-
Channel Attention Multi-Scale Network for Reversible Data
Hiding in Encrypted Images.” 3rd International Conference on

Women Researchers in Electronics and Computing (WREC),
MIET Jalandhar, Springer, SCOPUS. (Accepted & Presented)
April 10, 2025.
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CHAPTER 2

LITERATURE REVIEW

In the era of increasing digital media storage and transmission over networks, data hiding (more
specifically RDH) has evolved as a prominent area of research, mitigating information security
risk. To study the evolution of research, highlight its achievements over the years, and provide
future prospects, this chapter presents an extensive review of RDH utilizing the dataset extracted
from one of the most popular and exhaustive databases, Web of Science. The study aims to first
perform quantitative analysis that includes trend analysis, citation analysis, prominent authors
and organizations, and geographical coverage, along with qualitative analysis focusing on key
research areas and future prospects within RDH. The study further provides a structured view
of sub-technologies within RDH, along with the key contributors and their proposed techniques
that have led to the evolution of RDH over the years. Next, we provide a comprehensive review
of some of the prominent works in each of the sub-technologies of RDH. Finally, several key
research directions, identified based on current research trends and early-stage problems and
motivations, are discussed. Overall, the proposed study provides valuable insights into the
evolution, key milestones, current state, and future prospects of RDH, serving as a guide for the
research community

The methodology utilized to perform the survey analysis of RDH research is organized into
three key parts: Data Sources and Retrieval, detailing the use of the Web of Science database
and search strategy; Data Collection and Pre-Processing, which covers the refinement and
validation of the dataset; and Analysis Tools and Visualization, explaining the software tools
used, including VOSViewer, CiteSpace, and Rawgraphs, for in-depth analysis and visualization.

A. Data Sources and Retrieval

In this analysis, we have employed WoS, the most popular database comprising a vast range of
high-impact research articles published in prominent worldwide journals and conferences, pro-
viding comprehensive information about scientific research. The database includes several key
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indices, such as Science Citation Index Expanded (SCI-EXPANDED), Social Sciences Citation
Index (SSCI), Conference Proceedings Citation Index-Science (CPCI-S), and Conference Pro-
ceedings Citation Index-Social Science and Humanities (CPCI-SSH). All of these indices are
highly relevant to our analysis of RDH. On May 7, 2025, we performed a specific search query
that encompassed the period from 2004 to 2025. The search string chosen to retrieve the ex-
tensive dataset is: (reversib* OR lossless) NEAR/3 (hiding OR steganography OR watermark*
OR embed*). Upon conducting this search, a whopping total of 2462 research documents were
obtained.

B. Data collection and pre-processing

For an efficient and accurate analysis, it is important to sanitize and validate the data before
processing. Hence, the pre-processing step was performed by filtering and refining the data to
eliminate documents that are irrelevant or unreliable, which includes the removal of 5 retracted
articles. Along with the statistical refinement, manual analysis was also performed to ensure
all the documents retrieved were in the domain of RDH. Post performing screening and manual
analysis steps, a dataset comprising 2370 documents was obtained, ensuring that the proposed
study is conducted only using relevant publications.

C. Analysis Tools and Visualization

To obtain in-depth insights from the retrieved data, a set of cultivated tools such as VOSViewer,
Rawgraphs, and CiteSpace, along with basic tools, such as MS Excel, were utilized. All the
visuals were meticulously elected after performing a substantial number of trials. The details of
the primary tools used in the proposed study are as follows:

• Citespace [73] is a powerful automated tool that has the capability to analyse the raw data
and produce interactive visual charts. Along with the publication trend analysis, it also
helps to analyse the co-citation network.

• VOSViewer [74] is another powerful visualisation tool that generates a variety of visu-
als for co-authorship networks, citation analysis, keyword analysis, and co-occurrence
networks.

• Rawgraphs [75] is an open-source data visualisation tool to simplify the visual coherence
of complex data.

We collected a comprehensive dataset of articles related to RDH using this approach, re-
flecting the development and patterns in this field during the specified period. These findings
are detailed in the following sections of this study.
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2.1 Trend Analysis

In this section, we analyze the publication structure from various perspectives, such as an-
nual publication trends, year-on-year citation progression, leading research domains, productive
countries, and top-notch journals. The analysis is further detailed by highlighting key break-
throughs and influential papers in the field.

2.1.1 Publication Trends and Distribution Patterns

To present the evolution of research in RDH, we have presented the yearly publication count
along with percentage distribution across the years 2004–2025 in Fig.2.1. The research in RDH
commenced in 2004 [76] with some of the early publications but the growth remained stagnant
until 2009. A major breakthrough occurred in 2009 with the work of Sachnev et al. [26], who
introduced an efficient RDH technique utilizing rhombus prediction and HStechniques. Post
2009, the RDH saw a gradual increase in interest and research output. 2011 witnessed research
advancement in another dimension within the RDH, that enhanced the security by introducing
RDH in encrypted images [40, 77]. This new dimension catalyzed two-fold research in RDH
leading to a steady rise in publication counts In 2014, Wu et al. [47] introduced another aspect
within RDH, RDHCE [78, 79] that focuses on improving the contrast of the image while per-
forming embedding. A significant increase in publications is evident from 2015 onwards, with
the number of publications exceeding 100 for the first time. This period highlights the growing
interest and rapid development within the RDH field. One of the most important breakthroughs
occurred in 2021 with the integration of RDH with emerging technology, deep learning. The
use of multi-receptive field capability of CNN [80, 81] significantly increased prediction ac-
curacy, improving embedding performance at large. With 236 publications, the peak of RDH
research activity occurred in 2022, indicating increasing interest and widespread recognition
of its importance. The year 2025 is still in progress and seems to be on track with the trend
observed in 2024. Overall, the graph reflects the evolution of RDH research, punctuated by key
breakthroughs and innovations that have shaped the field over the past two decades. Fig. 2.2
depicts the citation trend in RDH from 2004 to 2024. Each data label represents the number of
papers cited in a particular year. A substantial rise in citations was witnessed across the span of
20 years (2004-2024), reaching the top of its trajectory in 2022. The total number of citations
retrieved by the refined dataset (2013 documents) is 50665. So the average number of citations
per document is 25. The consistent upward trend in citations represents the increasing interest
of researchers in RDH and proves that the earlier research is being found useful in subsequent
studies.
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Fig. 2.1: Year wise publication count Fig. 2.2: Year-wise total citations received

2.1.2 Geographical Trends

The structure of the graph in Fig.2.3 illustrates the collaborative relationships among the leading
24 countries that contribute to research on RDH through co-authored articles. The size of each

Fig. 2.3: Collaboration network of top countries

node corresponds to the volume of papers produced by each country, with China, the United
States, and Canada being the most prominent contributors. The edges represent connections be-
tween co-authors, whereas the colors of the nodes reflect different groups of researchers. Based
on collaborations, clustering has been performed using the VOSviewer tool. Several groups can
be partially explained by the geographical distribution and patterns of research collaboration.
Cluster one (green) comprises the People’s Republic of China, the United States, Canada, Ger-
many, and Italy, indicating robust collaborative connections among these prominent academic
centers. Cluster two, represented by the color red, consists of India and South Korea, demon-
strating substantial coordination between both nations. Cluster three, demonstrated through the
color purple, consists of Taiwan and Vietnam, indicating the presence of regional cooperation in
East Asia. Cluster four, represented by the color light green, includes Australia and Turkey, in-
dicating significant connections between two physically remote nations. Cluster five, reflected
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in the color light blue, includes Iran and Malaysia, emphasizing relationships and coopera-
tion within these geographical areas. Cluster six, referred to by the color yellow, comprises
Pakistan, Saudi Arabia, and Egypt, suggesting a notable level of scientific collaboration among
these nations. Within this group are six distinct clusters, which are partly driven by geographical
proximity, although some clusters demonstrate collaboration across continents. Significantly,
the United States plays a vital role as a vital bridge connecting China and European nations in
this network. The graph highlights the geographical trends and collaboration networks, offering
significant insights into the global research collaborations in this specific field.

2.1.3 Co-occurrence Analysis

This section explores the co-occurrences of keywords within published RDH research articles.
For the comprehensive analysis, a large number of keywords were collected from WoS and sub-
sequently, the analysis was performed using fractional counting functionality within VosViewer,
with a minimum occurrence threshold applied.

Fig. 2.4: Co-occurrence network of keywords

Fig. 2.4 represents the keyword cloud where the size of a keyword node represents the fre-
quency of its occurrence. “Reversible data hiding” emerges as the dominant keyword, forming
the largest node in the network. This is closely followed by “watermarking” and, “steganogra-
phy”, indicating the core focus areas of the field. Keywords like “image segmentation”, “en-
crypted images”, “medical images”, and “color images” suggest a strong focus on the use of
the image as cover media in majority of the RDH methods. “Prediction”, “encryption”, and
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“expansion” form a distinct cluster, highlighting key technical approaches. Keywords like “ex-
pansion”, “ contrast enhancement”, and “encryption” suggest the popularity of these techniques
contributing to the evolving research focus within RDH. The high density of links between
keywords demonstrates that the concepts within RDH are tightly integrated.

Based on the keyword clustering and their occurrence, we have identified hot topics and the
recent trends in research. These are discussed in detail in subsequent sections.

2.2 Detailed Review of Prominent RDH Methods

This sub-section highlights some of the key areas identified from the keyword cluster, that
represent the primary area of research within RDH evolved during the years.

2.2.1 Evolution of Contrast Enhancement:

RDHCE remains a mention-worthy area of research, specifically in the field of medical im-
ages where improving the contrast of the images helps in better diagnosis. Table 2.1 highlights
some of the prominent RDHCE techniques along with their comparison. The concept was ini-
tially introduced by Wu et al. [47], who utilized histogram equalization to perform embedding
while enhancing the contrast of the marked image simultaneously. Building on this foundation,
Gao et al. [33] (2021) utilized an Adaptive Threshold Detector (ATD) method for accurate ROI
segmentation and proposed a contrast stretching technique to improve both contrast and embed-
ding capacity. Gao et al. [68] utilized a deep learning model for ROI segmentation along with
a novel multi-group stretching method. These developments showcase the ongoing evolution
and importance of contrast enhancement techniques in RDH, particularly in medical imaging
applications.

Table 2.1: Prominent contributions within contrast enhancement

Author Year Methodology Advantage Limitation

Wu et

al. [47]

2014 Histogram

equalization

Known to be the first RDHCE

method. Utilizes the

histogram bin expansion to

achieve contrast enhancement.

Pre-processing is performed

to avoid overflow or

underflow of pixel values but

artificial distortions are

introduced, especially when a

large number of histogram

bins are expanded for data

hiding.
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Table 2.1: Prominent contributions within contrast enhancement (continued)

Author Year Methodology Advantage Limitation

Wu et

al. [48]

2015 Adaptive

histogram

equalization

Adaptively selects the

minimum pixel interval on

both sides of the histogram

and then performs overlapping

with the neighboring pixels.

Reduces the distortion, but

does not preserve the order of

pixel values impacting visual

quality. Increase in

complexity due to adaptive

interval selection.

Wu et

al. [49]

2018 Histogram

equalization

Leveraging an

order-preserving histogram

bin expansion approach to

improve the visual quality by

retaining the order of pixel

values.

Limited EC due to the

limitation of adjacent bin

merging. Over-enhancement

of the image at high EC.

Kim et

al. [82]

2018 Histogram

equalization

Adaptively select bins for

embedding based on the

original brightness of the

image. It preserves the

brightness and limits the

over-enhancement effect.

Computing the mean

brightness in each iteration in

this method results in extra

calculation for the embedding

system. EC is limited.

Yang et

al. [83]

2018 Histogram

stretching

ROI based high-capacity

reversible data hiding that

utilizes contrast stretching for

embedding and contrast

enhancement. Improves

contrast even at a low

embedding rate.

Limited EC.

Gao et

al. [33]

2021 Histogram

stretching

Intelligently exploits available

empty bins in the histogram,

and performs histogram

stretching to increase the EC

while providing stable

contrast enhancement for a

range of embedding rates.

EC and contrast enhancement

is limited when the number of

empty bins in the image is

small.
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Table 2.1: Prominent contributions within contrast enhancement (continued)

Author Year Methodology Advantage Limitation

Shi et

al. [84]

2022 Histogram

Stretching &

Brightness

Preservation

Pre-processes the ROI of the

image utilizing histogram

stretching and controls the

direction of embedding with

brightness calculation at each

step.

Overall EC is limited,

especially in images with few

empty bins.

David

et

al. [85]

2022 Histogram

equalization

Checks the pixel

concentration on both half

sides of the histogram. If the

pixel concentration is less in

the right half (128-255), then

all the pixels on the right side

(128-255) are overlapped on

the left side pixels (0-127) or

vice versa, thus creating 128

empty bins available for

embedding on one side and

vice versa.

Generates significantly high

distortion.

Chen et

al. [86]

2016 PVO,

Adaptive HS

Utilizes three techniques:

adaptive histogram shifting to

improve the contrast, limiting

the pixel modification to

reduce distortion, and using

PVO to increase the EC.

Computational complexity

increased

Gao et

al. [68]

2023 UNET3+

segmenta-

tion model,

Multigroup

Histogram

stretching

Improved RDHCE method

based on deep learning-based

segmentation and utilizes

multi-group stretching to

improve contrast and EC.

Cannot be applied directly to

color medical images.

2.2.2 Evolution of RDH in Encrypted Domain

With its capability of adding an additional layer of security, RDHEI has emerged as a crucial
area of interest among the research community, combining the challenges of data hiding and
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Table 2.2: Prominent contributions on RDHEI

Author Year Encoding
Type

Decoding
Type

Methodology Summary Limitation

Puteaux
et
al. [87]

2018 RRBE Separable MSB
prediction-
based

First PE-based RDHEI
method utilising MED.
Embeds one bit per em-
beddable pixel.

Limited EC.

Yin et al.
[88]

2018 VRAE Joint Parametric bi-
nary tree la-
beling (PBTL)

Provides separability and
exploits local spatial corre-
lation using small blocks.

Does not
leverage spa-
tial correlation
fully

Yin et al.
[35]

2019 RRBE Separable Multi-MSB
prediction
and Huffman
coding

Utilizes overall spatial cor-
relation. Significantly im-
proves EC.

Doesn’t per-
form well in
cases where
PE is small.

Wu et al.
[89]

2019 RRBE Separable Improved
PBTL

Exploits spatial correlation
of the entire image, which
enables it to achieve better
EC.

Embedding
performance
is limited.

Mohammadi
et
al. [90]

2020 RRBE Separable Local differ-
ence predictor

Utilises block label predic-
tion which enables EC of
up to 2 bits per pixel

Fails to fully
utilize larger
block correla-
tions.

Yu et al.
[91]

2021 RRBE Separable Hierarchical
bitplane la-
beling and
Arithmetic
encoding

Provides higher EC with
hierarchical labels

Does not fully
exploit small
region-image
correlation

Chen et
al. [92]

2019 RRBE Separable Block-based
MSB bit-plane
rearrangement
and uses Run
length encod-
ing

Achieves high EC. Computational
complexity
increases by
combining
multiple tech-
niques.

Xu et al.
[93]

2022 RRBE Separable Hierarchical
block variable
length coding

Adaptive block sizing en-
ables efficient compres-
sion of bit-planes with
varying ’1’ bit distribu-
tions

Computationally
intensive due
to multiple
levels of
partitioning
and threshold
checks

Wang et
al. [52]

2023 VRAE Separable PVO, his-
togram shift-
ing

Achieves high EC. Complex
implementa-
tion due to
scrambling-
based encryp-
tion
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encrypted image processing. Table 2.2 highlights some of the prominent RDHEI techniques
along with their comparison. In one of the recent researches, a groundbreaking contribution by
Ping et al. [94] proposed a method involving a two-stage RDHEI approach using asymmetric
CNN-based and adaptive mean predictors. In another contribution, Zhang et al. [95] eliminated
the need for a sign bit-plane and concentrated the zeros within high-bit planes by utilising
asymmetric coding. Further, the method enhanced the overall embedding capacity by utilising
bit-plane compression to compress redundant data in low-bit planes.

2.2.3 Evolution of PEE

Prediction plays an important role within the RDH framework, as prediction accuracy di-
rectly correlates to embedding performance. Among the various predictors proposed by the
researchers, PEE has evolved as a key technique that utilizes correlation among pixels to per-
form prediction. The primary goal of these techniques is to select pixels that are highly corre-
lated and derive computational models to accurately predict the target pixels. Table 2.3 high-
lights some of the notable methods representing the evolution of PEE techniques throughout the
years. MED [96] is one of the earliest and computationally efficient predictors in this category.
MED utilizes 3 neighbour pixels and considers horizontal and vertical edges to predict target
pixels. However, due to its static nature, it does not perform well in complex regions. One
of the other predictors, GAP [97], proposed the calculation of vertical and horizontal gradients
to detect edges and smooth regions of an image. GAP provides an adaptive approach but has
higher computational complexity in comparison to MED. One of the most popular and widely
used predictors is the Rhombus predictor, which was proposed by Sachnev et al. [26] in 2009.
The Rhombus predictor, also known as full-context predictor, takes into account the four pixels
located at left, right, top, and bottom of the target pixel location to predict it. It provides highly
accurate prediction in smooth areas; however, has limited accuracy in non-smooth regions. The
traditional methods lack in devising non-linear relationships between pixels, hence having lim-
ited accuracy. To resolve this issue, Hu et. al. proposed a CNN-based predictor that, with its
multi-receptive field capability, is able to capture non-linear relationships and predict complex
patterns of the image. However, the predictor accuracy is dependent on the type and size of
the training dataset. The latest work by Chang et al. [98] introduces a novel reversible data
hiding method for color images based on adaptive mapping selection that leverages high inter-
channel correlation by generating a three-dimensional (3D) prediction-error histogram (PEH)
and adjusting 3D mappings in an ordered iterative manner to optimize embedding performance.
Another eye-catching paper by Kumar et al. [9] discusses PEE-RDH and provides a thorough
examination of multiple predictors. The paper also presented a new ensemble learning-based
XGBoost predictor for RDH, which utilizes the rhombus context for prediction, aiming to en-
hance prediction accuracy in data-hiding processes.
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Table 2.3: Prominent contributions within prediction error expansion

Author Year Methodology Context

of pixel

Advantage Limitation Complexity

Hong

et

al. [96]

2009 Median

Edge

Detection

(MED)

3 Simple and

computationally

efficient.

Limited to vertical

and horizontal

edges; does not

perform well in

highly complex

regions due to

non-adaptiveness.

O(n)

Conetter

et

al. [97]

2010 Gradient

Adjusted

Predictor

(GAP)

7 Highly adaptable;

recognizes various

edge types.

Computationally

intensive.

O(n)

Avramovic

et

al. [99]

2011 Gradient

Edge

Detection

(GED)

5 Combines

simplicity of MED

with efficiency of

GAP; simpler than

GAP, more

effective than

MED.

Requires threshold

adjustment for

gradient.

O(n)

Sachnev

et

al. [26]

2009 Rhombus

Mean (Full

Context)

4 Good prediction

accuracy in smooth

regions.

Limited accuracy;

may not capture

complex patterns.

Performance may

decrease in

non-smooth regions.

O(n)

Dragoi

et al.

[100]

2012 Dragoi and

Coltuc

(D&C)

4 Effective in

capturing

directional

information;

improves

performance in

some non-smooth

regions.

May not always

outperform

Rhombus Mean.

O(1)
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Table 2.3: Prominent contributions within prediction error expansion (continued)

Author Year Methodology Context

of pixel

Advantage Limitation Complexity

Ma et

al.

[101]

2019 Least Square

(LS)

Adaptive Uses a linear

combination of

prediction

coefficients.

Computationally

intensive.

O(n3)

Hwang

et al.

[102]

2016 Least

Absolute

Shrinkage

and

Selection

Operator

(LASSO)

Adaptive Reduces overfitting

and provides

feature selection;

performs both

variable selection

and regularization.

Computationally

intensive.

O(np),

where p

is the

number

of

features.

Wang

et al.

[103]

2021 Ridge

Regression

10 Solves the

overfitting problem

of LS method;

addresses

multicollinearity

and improves

prediction

accuracy.

May not perform

well with many

irrelevant features.

O(np2 +

p3)

Hu et

al. [80]

2021 CNN

Predictor

(CNNP)

Adaptive Can capture

complex patterns

and non-linear

relationships;

potentially more

accurate.

Requires significant

training data;

computationally

intensive.

O(n)

Kumar

et

al. [9]

2023 XGBoost 11 Often outperforms

other methods;

handles complex

datasets effectively.

Can be

computationally

intensive and may

overfit if not

properly tuned.

O(n·d·t),
where d

is max

depth

and t is

number

of trees.
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2.2.4 Evolution of Robust RDH

RDH has gained widespread popularity due to its unique ability to recover the original cover
image while extracting hidden secret data. However, traditional RDH techniques often lack
robustness against attacks or image processing operations such as compression, geometric de-
formation, and noise addition. These vulnerabilities hinder their ability to reliably extract em-
bedded data, posing significant challenges in applications like watermarking, where accurate
watermark retrieval is crucial for copyright protection. To address these limitations, researchers
have developed RRDH techniques that focus on enhancing the resilience of embedding pro-
cesses against such distortions. The primary goal of RRDH is to ensure the lossless recovery of
embedded data, even under adverse conditions. Table 2.4 summarizes notable advancements in
RRDH, highlighting their robustness techniques, performance characteristics, and limitations.

Table 2.4: Prominent contributions within Robust RDH

Author Year Category Robustness Technique Performance

Characteristics

Limitation

Ni et

al. [65]

2008 Statistical

Distribu-

tion based

Difference between

pixel pairs of a block is

used as a statistical

parameter

Robust against

salt-n-pepper noise.

Robust to JPEG

compression. Avg.

PSNR > 38 dB. EC:

512–1024 bits.

Very limited

embedding capacity;

cannot handle

geometric deformation

attacks effectively.

Zeng et

al. [66]

2010 Statistical

Distribu-

tion based

Arithmetic

difference-based

block-level embedding;

robustness achieved via

threshold gap

maintenance.

Robust against JPEG

compression. Avg.

PSNR ∼38 dB. EC:

2048 bits (double of Ni

et al.).

Moderate robustness

against geometric

attacks.

Zong et

al.

[104]

2015 Statistical

Distribu-

tion based

Gaussian low-pass filter

preprocessing; safe

band between

embedding and

non-embedding pixels.

Robust against

cropping and bending;

improved compression

robustness.

Ineffective against

geometric deformation

due to feature

sensitivity.

Coltuc

et al.

[105]

2007 Statistical

Distribu-

tion based

Two-stage embedding

with compensation data

embedding for robust

extraction.

Improved robustness to

JPEG compression;

high imperceptibility

and reversibility.

Weak robustness due

to reuse of embedding

regions; geometric

instability.
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Table 2.4: Prominent contributions within Robust RDH (continued)

Author Year Category Robustness Technique Performance

Characteristics

Limitation

Liu et

al. [55]

2017 Transform-

based

Fractional Krawtchouk

transform; fractional

orders as secret keys

enhance robustness.

High robustness and

imperceptibility. Avg.

PSNR ∼38.35 dB.

Limited effectiveness

against geometric

deformations.

Wang

et al.

[106]

2017 HSB-

based

Significant-bit-

difference expansion.

Robust against noise

and compression; EC:

50K bits.

Lacks robustness

against geometric

attacks.

Wang

et

al. [56]

2020 Transform-

based

Haar wavelet transform

decomposing image

into low and high

frequency components.

Low-frequency

embedding achieves

robustness; Avg.

PSNR ∼39.5 dB.

Wavelet-based features

distort under geometric

transformations.

Hu et

al. [59]

2020 Geometric

Invariant

Moments

Two-stage embedding:

low-order Zernike

moments + distortion

compensation.

Robust against

geometric

deformation; Avg.

PSNR ∼39.2 dB.

Sensitive to numerical

instability in Zernike

moments.

Hu et

al. [60]

2021 Geometric

Invariant

Moments

Polar harmonic

transform with

quantization

watermarking.

Robust to JPEG

compression (QF 10)

and geometric

deformations. Avg.

PSNR ∼38.55 dB.

Sensitive to small

variations, leading to

inaccuracies.

Tang et

al. [61]

2023 Geometric

Invariant

Moments

Two-stage optimization

and rounded error

compensation in

selected

Pseudo-Zernike

moments (PZMs).

Outperforms other

moment-based

methods; robust to

multiple distortions.

Avg. PSNR ∼40 dB,

EC: 34K bits.

Orthogonal moments

prone to numerical

instability in noisy

data.

Ma et

al.

[107]

2024 Geometric

Invariant

Moments

Polar Harmonic Fourier

Moments (PHFMs)

with Quantization

Index Modulation.

High robustness to

rotation, scaling, and

compression. Avg.

PSNR: 40.4 dB.

Effective only within

tested geometric

distortion range.
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Xiong

et

al. [64]

2023 Secret-

sharing

based

Chinese Remainder

Theorem-based secret

sharing.

Lightweight

encryption and high

visual quality; robust

multi-party

embedding.

Multi-layer PEE

increases

computational

complexity.

Early approaches like Ni et al. [65] utilized pixel-pair differences for HS, offering robust-
ness against JPEG compression but limited embedding capacity. Zeng et al. [66] introduced
arithmetic difference-based block embedding, achieving a significant increase in capacity while
maintaining robustness. Zong et al. [104] improved resilience against cropping and random
bending attacks by employing Gaussian low-pass filtering and safe embedding bands.

Two-stage embedding methods also gained traction. Coltuc et al. [105] ensured robust data
extraction with compensation embedding, and Wang et al. [106] used HSBs for robustness
against compression and random noise. Transform-based approaches, such as Wang et al. [56],
leveraged Haar wavelet transforms to enhance robustness but faced challenges with geometric
transformations. Geometric invariant moment-based techniques addressed geometric instabil-
ity. Hu et al. [59] utilized Zernike moments for embedding, achieving robustness against ro-
tation and scaling, albeit with numerical instability. Tang et al. [61] advanced this approach
using adaptive normalization with Pseudo-Zernike moments, offering strong resistance against
attacks and achieving high image quality. Ma et al. [107] further enhanced robustness using
Polar Harmonic Fourier Moments and quantization index modulation, demonstrating superior
performance against geometric deformations with a PSNR of 40.4 dB.

In a distinct approach, Xiong et al. [64] introduced a secret-sharing-based RDH technique
leveraging the Chinese Remainder Theorem. This method achieved lightweight encryption,
high visual quality, and robust multi-party embedding. Despite its robustness, the multi-layer
PEE increased computational complexity, which may limit scalability. These advancements
illustrate the progression of RRDH techniques, with each addressing specific challenges and
contributing to the broader goal of achieving robust RDH.

2.3 Summary

In summary, the domain of RDH has experienced significant growth and innovation, largely
driven by the contributions of RDHCE, RDHEI, and prediction methods. These methods have
notably enriched the content security and visual quality of the embedded images. Despite sig-
nificant progress in enhancing EC, PSNR, reversibility, and prediction performance, achiev-
ing an optimal balance among these factors remains an open challenge. While some methods
demonstrate strong performance in one dimension but at the expense of another, this under-
scores the need for further research and innovation. For example, a number of deep learning
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based studies have emerged focusing on prediction performance enhancement leveraging the
multi-receptive field capabilities of deep neural networks. However, there remains a huge scope
to explore other deep learning techniques, such as attention mechanisms, transformers, etc., that
have proven themselves to be more efficient in other applications.
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CHAPTER 3

A HIGH-CAPACITY REVERSIBLE DATA HIDING WITH

CONTRAST ENHANCEMENT AND BRIGHTNESS

PRESERVATION FOR MEDICAL IMAGES

The healthcare industry has witnessed an increase in the use of cloud storage, resulting in a
significant demand for safeguarding medical records from potential attackers. In response to
this challenge, the RDH ensures the concealment of private and confidential data with minimal
loss to the cover image while offering opportunities for image enhancement. In some scenar-
ios, particularly with inadequate illumination and substandard capability imaging systems, the
captured images suffer from low contrast, hindering their interpretability in medical diagnosis.
However, the traditional RDH techniques primarily focus on achieving high PSNR and embed-
ding rate while ignoring the visual enhancement. This Chapter introduces a new RDH method
with contrast enhancement for medical images. The method aims to provide high EC while
improving the contrast and also preserving brightness. To achieve this, the proposed method
initially segments cover images into regions of interest ROI and NROI and employs different
embedding strategies based on the characteristics of each region, thereby enhancing embedding
performance. A novel pre-processing technique is introduced for pre-processing ROI pixels,
which capitalizes on the unique properties of medical images, reorganizing and creating empty
bins to provide an enlarged EC with less distortion.

3.1 Introduction

As the healthcare industry progresses towards digitization, cloud storage has become a popular
and convenient choice to store and analyze medical data. Electronic Patient Records [108,
109] contain sensitive information, making it crucial to protect them from potential threats.
However, due to the semi-trusted nature of cloud applications, medical data breaches occur
occasionally. To address this issue, RDH in medical images has gained popularity. RDH allows
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for embedding confidential information within a cover media, which can be later extracted as
needed, all while also ensuring the lossless restoration of the cover. [110–112].

However, recent studies have shown that maximizing PSNR alone does not ensure satis-
factory visual quality, especially for low-contrast images. Improving the visual quality of low-
contrast images is a challenge for RDH methods. Enhancing image visibility is a fundamental
objective, and one effective means to achieve this is through contrast enhancement. The assess-
ment of image contrast enhancement is typically based on the RCE, which measures the extent
of contrast improvement between the original and enhanced images, with values ranging from
0 to 1. In applications such as medical diagnosis [113], enhancing image quality through con-
trast enhancement is crucial for providing a more detailed and visually comprehensible content
representation. As a result, researchers have started exploring techniques combining RDH with
contrast enhancement, often called RDHCE. The goal of RDHCE is to enhance visual quality
while performing data embedding.

Medical images consist of an ROI containing valuable information and an NROI less rel-
evant to the observer. Therefore, RDHCE techniques are designed to use histogram shifting
to enhance ROI contrast, while NROI can be used for extensive data embedding. Repeated
histogram shifting redistributes the higher histogram bins toward their outer bins, effectively
achieving the effects of histogram equalization. The outcome expands the dynamic range of the
image histogram, resulting in enhanced image contrast and an overall improvement in visual
quality. Some popular contrast enhancement methods coupled with RDH for medical images
have been proposed in [1, 114–122]. This chapter proposes a novel high-capacity RDHCE
method for medical images. The main contribution of the proposed method can be summarized
using the following points:

• The proposed method initially partitions the image into ROI and NROI regions, taking
into account their relevance to the medical practitioners. It then employs distinct embed-
ding strategies for hiding the secret data based on their sensitivity to modifications. This
approach enhances EC without compromising image quality for medical practitioners.

• Furthermore, the proposed method addresses the shortcomings of existing embedding
methods through a novel pre-processing technique that fully leverages the characteris-
tics of medical images. The selection of bins for shifting and overlapping is performed
carefully based on pixel concentration ratio (PCR), effectively reducing overall distortion.

• As a result, the proposed method achieves a superior embedding rate. It produces signifi-
cantly improved stego-images with higher PSNR, SSIM, and contrast, all while preserv-
ing brightness for all the test images.
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3.2 Literature Review

This section discusses the SOTA RDHCE methods and is divided into two subsections. The first
subsection (3.2.1) provides a brief overview of the SOTA RDHCE methods and their strengths
and limitations. These methods assist in highlighting the core principle utilized in the proposed
technique. In the second subsection (3.2.2), we conduct a detailed review of Gao et al.’s scheme.
We provide an in-depth analysis of its operation and examine its shortcomings and advantages.

3.2.1 Related Work

Most of the RDH techniques aim to achieve high EC while reducing structural distortions in
the resulting stego images. However, due to certain limitations of the image-capturing sys-
tems, such as degraded imaging sensors, inadequate illumination, and inappropriate system
settings, the images possess low contrast. This is not desirable in medical applications, as the
images contain critical information to be analyzed by practitioners. To address this concern, in
2014, [114] introduced the first RDH method that enhances the contrast of stego-images while
embedding secret data. This method achieves histogram equalization by performing histogram
shifting, resulting in contrast enhancement and data embedding simultaneously. However, the
method can lead to pixel intensity mismatches after a large number of repetitions in the em-
bedding process. This occurs because the approach involves a pre-processing step that disrupts
pixel values, leading to intensity-mismatched artifacts.

To address the issue present in [114], a new RDHCE method was introduced in 2015 by
Wu et al. [115]. The method adaptively selects the minimum pixel interval on both sides of the
histogram and performs overlapping with neighboring pixels. While this approach results in
low distortion, it does not preserve the order of pixel values. Additionally, the adaptive interval
selection also increases the computational complexity. In 2018, Wu et al. [116] discussed a
new RDH method based on order-preserving histogram bin expansion (OPHBE) to enhance
visual quality by retaining the order of pixel values. However, with the increase in capacity, the
method over-enhances the image and introduces distortion.

In 2015, Kim et al. [117] introduced the first Automatic contrast enhancement method with
reversible data hiding (ACERDH). This method effectively eliminates the intensity mismatch
artifacts caused by discrepancies in intensity levels. It achieves increased contrast while ensur-
ing that overflow/underflow does not occur during the embedding process, eliminating the need
for pre-processing. However, the ACERDH method sometimes results in over-enhancement of
contrast due to the lack of consideration of the original image’s mean brightness. To overcome
the aforementioned drawback of [117], Kim et al. [118] discussed a new RDHCE method in
2018. This method adaptively selects the histogram bins based on the cover image’s original
brightness, enhancing contrast while preserving image brightness. However, this modification
necessitates additional calculation at each embedding iteration, which increases the processing
time. Nevertheless, the method successfully preserves image brightness while avoiding over-
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enhancement, resulting in a less susceptible image. However, one of the drawbacks of this
method is its relatively weaker contrast enhancement.

In 2019, Wu et al. [123] proposed a novel RDH scheme based on 2D histogram modi-
fication. The method discusses a new pre-processing approach to avoid overflow/underflow
conditions and is able to achieve higher contrast in comparison to 1D histogram modification
techniques. However, the overall embedding capacity of the scheme is limited. In 2020, Chen
et al. [124] introduced a novel pre-processing technique to calculate an upper bound for embed-
ding. Using the calculated upper bounds, the method achieved high embedding capacity with
minimal distortion in image quality. However, the method only focuses on preserving structural
characteristics and does not focus on enhancing visual characteristics such as contrast. In 2021,
Mansouri et al. [125] proposed an RDHCE technique that includes a bidirectional shifting of the
histogram to embed the secret data. Along with achieving high contrast and brightness preser-
vation, the method achieves low complexity by avoiding the additional calculations required to
calculate the shifting direction. However, the method has limited embedding capacity and also
lacks security analysis.

In another pre-processing technique proposed by Nunez et al. [120], the method assesses the
pixel concentration on both halves of the histogram. If the pixel concentration is lower on the
right half (pixel values 128-255), then all the pixels on the right side are overlapped over the left
side pixels (pixel values 0-127). This action creates 128 empty bins available for embedding on
one side and vice versa. However, it’s worth noting that this method introduces a significantly
high overall distortion level.

In 2016, Liu et al. [121] noted that medical practitioners often focus more on the foreground
part of medical images, known as the ROI, rather than the background, referred to as the NROI,
as the NROI typically lacks essential information. In response to this observation, Yang et
al. [122] introduced an ROI-based RDH method that utilizes contrast stretching for contrast
enhancement. This approach strategically distributes empty bins to create space for embedding
while preventing overflow and underflow, thus reducing the size of side information. While this
method can enhance contrast even at lower embedding rates, its overall embedding capacity is
limited.

In 2022, Shi et al. [126] proposed a hybrid approach that combined the concepts used in
[118] and [1]. The method pre-processes the ROI of the image using contrast stretching and
controls the embedding direction with brightness calculation at each step. The resulting stego-
image possesses improved brightness preservation and standard deviation. However, the overall
embedding capacity remains limited, especially in images with few empty bins.

3.2.2 Review of Gao et al. [1]

In 2021, Gao et al. [1] introduced a novel RDH method with automatic contrast enhancement
for medical images, often abbreviated as “RDHACEM” in this work. RDHACEM divides the
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original medical image into two distinct regions: the foreground region and the background
region. The foreground region, referred to as the ROI, typically contains crucial information
necessary for medical diagnosis. On the other hand, the background region, known as the
NROI, is generally monochromatic and lacks any vital diagnostic information. This division
is implemented to apply different RDH techniques based on the region’s sensitivity. More
specifically, since the NROI region lacks valuable information, it can accommodate a more
significant number of bits for data embedding without adversely affecting medical diagnosis.
However, extra attention is required for the sensitive ROI region. To address this, Gao et al.’s
RDHACEM initially calculates the PCR. PCR represents the ratio of pixels with values between
[0, 127] or [128, 255] to the total number of pixels on both sides of the histogram. Subsequently,
the method performs histogram shifting in the region with a low PCR, using Eq. (3.1), to ensure
the production of high-quality resultant images. In medical images, pixels primarily fall within
the ranges of [0, 127] or [128, 255], and expanding the entire histogram of the images often
leads to a decrease in visual quality.

Rs(p, q) =


R(p, q) + Ts if PCR[0, 127] > r,R(p, q) ∈ [128, 255]

R(p, q)− Ts if PCR[128, 255] > r,R(p, q) ∈ [0, 127]

R(p, q)Y otherwise

(3.1)

where Rs(p, q) represents the pixel value obtained after shifting the corresponding R(p, q) from
the original image. Ts denotes the distance over which a pixel can be shifted. Shifting is
employed to create additional space within the region with high PCR, facilitating efficient his-
togram stretching. Subsequently, stretching is performed using Eq. (3.2) to redistribute empty
bins to locations where more embedding is feasible.

Rc(p, q) = round

[
(Lx − Ln) ∗

Rs(p, q)−R′n
R′x −R′n

+ Ln

]
(3.2)

where Rc(p, q) represents the pixels after the stretching operations, R′
x and R′

n denote the max-
imum and minimum pixel values in the ROI, excluding the shifted pixels, while Lx and Ln are
the upper and lower boundaries of the stretched pixels. Following the aforementioned automatic
stretching, embedding occurs within the ROI, resulting in improved visual perception compared
to the erstwhile SOTA methods. Additionally, embedding occurs in non-ROI (NROI) regions to
incorporate the secret data, expanding the EC. In this process, the least significant bits (LSBs)
of pixels are replaced with the secret data bits, resulting in increased EC with minimal distor-
tion. However, the method’s performance diminishes when there are very few or zero empty
bins, resulting in low EC and no contrast enhancement.

After reviewing the existing methods of RDHCE [123–129], it becomes apparent that these
methods lack an optimal solution that can simultaneously achieve contrast enhancement with
a high embedding rate while minimizing image artifacts. These methods often do not fully
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leverage the unique characteristics of medical images, especially when the number of available
empty bins is limited. Additionally, many of these methods focus on enhancing only one aspect,
such as contrast, brightness, or embedding capacity. Therefore, there is a growing need for
a universal approach capable of effectively enhancing all types of medical images. Such an
approach should not only improve contrast and embedding capacity but also preserve image
brightness.

To overcome the aforementioned limitations of the approach presented by [1] and other
SOTA methods, this chapter introduces a novel RDH for medical images tailored to their unique
characteristics. The proposed method strives to achieve a high EC while simultaneously enhanc-
ing contrast and preserving image brightness. Further details regarding the proposed method
are elaborated in the following section.

3.3 Proposed Method

The proposed method for embedding data in medical images comprises several stages, as il-
lustrated in Fig. 3.1. The first stage is partitioning the original image into the ROI and NROI

Fig. 3.1: Framework of the proposed method.

regions. Then, pre-processing is performed to make sure there are enough empty bins for em-
bedding without the risk of underflow or overflow. The third stage is to embed data in both the
Region of Interest (ROI) and Non-Region of Interest (NROI). Finally, an almost inverse pro-
cess to the embedding is used to recover the original image from the stego-image. Each of the
aforementioned stages is detailed in separate subsections as follows:
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3.3.1 ROI and NROI Segmentation

As a medical image usually comprises two regions, ROI and NROI, different data-hiding ap-
proaches with varying levels of tolerance can be used to embed the secret data to achieve opti-
mal performance. However, before this, accurate image segmentation into the ROI and NROI
is required. To accomplish this, two well-known segmentation approaches, namely Adap-
tive Threshold Detector (ATD) and Otsu Thresholding Method (OTM) introduced by [130]
and [131], have been utilized in SOTA methods. Among the two, ATD has gained more pop-
ularity within the research community due to its precise segmentation of images, which has
been validated by elaborative experimentation done in [126], [130]. Notably, [130] designed
ATD to enhance image classification accuracy by minimizing within-class variance. In con-
trast, OTM performs classification using within-class variances and combines these variances
across classes into a single overall variance for thresholding. Pai et al. emphasized that their
standard deviations cannot be directly compared when the mean difference between two classes
is substantial.

(a) Original image (b) ROI

Fig. 3.2: Segmentation of ROI and NROI

Building upon ATD’s demonstrated adaptability, the proposed work also utilizes it for image
segmentation. Once the optimal threshold (T ) is determined, the threshold image is calculated
using Eq. (3.3).

g(x, y) =

255 if f(x, y) > T

0 if f(x, y) < T
(3.3)

where f(x, y) denotes the grey-level pixel intensity at position x, y, and g(x, y) denotes the
updated grey-level pixel intensity. Pixels with values lower than the T are marked as 0, while
others are marked as 255. To visualize the resultant threshold image after applying ATD to the
original image, both images are presented in Fig. 3.2. In this context, all pixels in the original
image corresponding to the value 255 in the threshold image are referred to as the ROI region.
In contrast, the pixels corresponding to the value 0 are referred to as the NROI region for further
reference in this chapter.
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3.3.2 Pre-processing

It has been observed that RDHCE methods often introduce some artificial distortion while per-
forming embedding in an image, which can sometimes result in overflow and/or underflow
issues. In SOTA methods, different pre-processing approaches have been proposed to create
the required number of empty bins that help in avoiding overflow/underflow during embed-
ding. However, these approaches do not consider image characteristics and tend to introduce
artificial artifacts in the images. To address these concerns, this chapter introduces a novel pre-
processing approach for the ROI segment based on the image properties to adaptively create
and position the empty bins in the image histogram to ensure minimal distortion. The proposed
pre-processing stage not only enhances the quality of the resultant image but also improves the
EC and image brightness.

(a) Initial histogram (b) Initial Shifting (c) Bin Overlapping

(d) Bins Equalization (e) Embed 32 bits, S=1 (f) Embed 114 bits, S=6

Fig. 3.3: Example histograms generated during embedding by the proposed method

The proposed pre-processing algorithm is presented in Algorithm 1, consisting of three main
steps: Initial Shifting, Overlapping, and bin equalization. To facilitate understanding, we have
provided a visual illustration of these steps using an example in Fig. 3.3. For simplicity, the
example employs a pixel value range of [1, 10] instead of the standard range [0, 255] for digital
grayscale images.

In Step 1, given an ROI image (R) and the number of iterations (S), the algorithm first calcu-
lates the pixel frequency distribution through histogram analysis. The proposed pre-processing
algorithm computes the pixel frequency distribution via histogram analysis, as shown in Fig.
3.3a, enabling the calculation of the total number of empty bins (Ebins[0,255]), empty bins on
the left side Ebins[0,127] and empty bins on the right side Ebins[128,255]. It can be clearly ob-
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Algorithm 1 Proposed Pre-processing
Input: ROI image (R), Number of iterations (S)
Output: Pre-Processed Image (RP )
Step-1: Calculate the frequency distribution of image R using histogram analysis.
Step-2: Initial Shifting- Shift the existing empty bins on both sides of the histogram to
extreme left and right, respectively.

• Count the number of empty bins Ebins[0,127], Ebins[128,255] and Ebins[0,255].

• Determine EP , which denotes the position of the empty bin Pth, where EP ∈ [0, 255]
and P ∈ [1, Ebins[0,255]].

• For all the empty bins Ebins[0,255], repeat below shifting steps:

if (Ebins[0,127] > 0) & (EP <= 127) then
if R(i, j) < EP then

RP (i, j) = R(i, j) + 1;
end if

end if
if (Ebins[128,255] > 0) & (EP >= 128) then

if R(i, j) > EP then
RP (i, j) = R(i, j)− 1;

end if
end if

RP describes the modified pixels after performing initial shift.
Step 3: Bin Overlapping-
if S > Ebins[0,255] then

perform overlapping for (S - Ebins[0,255])
if PCR[0,127] > PCR[128,255] then

Perform overlapping of (S-Ebins[0,255]) on right
else if PCR[0,127] < PCR[128,255] then

Perform overlapping of (S-Ebins[0,255]) on left
end if

end if
Total empty bins after overlapping = S
Step 4: Bins Equalization-
if Ebins[0,127] > Ebins[128,255] then

toshift = (S
2
− Ebins[128,255])

else if Ebins[0,127] < Ebins[128,255] then
toshift = −(S

2
− Ebins[0,127])

else if Ebins[128,255] = Ebins[0,127] then
toshift = 0

end if
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served that there are a total of 5 empty bins at the position EP (E1, E2, .. E5 = 3, 7, 8, 9, and
10) in Fig. 3.3a

In Step 2, Initial shifting is performed to move the existing empty bins to the far left and far
right. Initial shifting enlarges the contiguous space for embedding and facilitates the efficient
design of the embedding algorithm. As illustrated in Fig. 3.3b, there is one empty bin (EP = 3)
in the left half of the histogram, which is shifted to the far left. There are four empty bins
already located on the far right, and they do not require further shifting.

In Step 3, Bin overlapping is performed. However, it is important to note that bin overlap-
ping is executed only if the total number of empty bins present in the histogram is less than
the required number of iterations (S). The proposed method adaptively designs the overlapping
process by evaluating the PCR on both sides of the histogram and selecting empty bins for over-
lapping on the side with a lower PCR. Furthermore, the overlapping is limited to S−Ebins[0,255]

bins, ensuring minimal distortion. The number of iterations (S) is set to 6 in the example pro-
vided. As seen in Fig. 3.3a, the PCR for the left side of the histogram, covering bins from 1 to
5, is 0.95, which is higher than the PCR for the right side (bins from 6 to 10), which is 0.05.
Consequently, the method performs overlapping of S(6) − Ebins[0,255](5)=1 bin in the region
with a low PCR, which is the right side. Fig. 3.3c illustrates the histogram obtained after over-
lapping bin 6 over bin 5. Following this overlapping step, the number of empty bins matches
the required number of iterations (S).

In Step 4, Bin equalization (Final Shifting) is executed to ensure that the empty bins ob-
tained after Step 3 are evenly distributed on both sides of the histogram. This equalization
process enhances contrast and preserves brightness during the secret data embedding. Fig. 3.3d
displays the histogram of the pre-processed image after bin equalization, revealing an equal
number of bins (3) on both sides of the histogram. The embedding method for the ROI region
is discussed in the following sub-section.

3.3.3 Embedding in ROI

The embedding in the ROI region is done to enhance the contrast of the ROI region while hiding
some bits of the secret data. To achieve this, we first identify the peak bin (h(pmax)) represent-
ing the most frequent pixel value (pmax) in the image RP . Subsequently, the embedding is
performed using the following Eq. (3.4).

RE(i, j) =



RP (i, j) +Ds ∗ bi if RP (i, j) = pmax

RP (i, j)− 1 if RP (i, j) < pmax, Ds = −1

RP (i, j) + 1 if RP (i, j) > pmax, Ds = 1

RP (i, j) otherwise

(3.4)

Where bi ∈ [0, 1] represents a bit of the secret data with a length of len, RE(i, j) denotes a
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pixel in the stego-ROI image RE , and Ds = [−1, 1] defines the direction of shift. The direction
depends on the number of available empty bins on either side. Ds can be alternated to shift the
histogram on both sides.

Ds =

−1 if Ebins[0,127] > 0

1 if Ebins[128,255] > 0
(3.5)

As mentioned in Eq. (3.4), the embedding step is repeated for S iterations. Figures from
3.3e to 3.3f demonstrate the steps taken in embedding using the proposed method. At the first
iteration, S=1, the peak bin (pmax)= 6 is identified, which contains 32 pixels. With empty bins
available on both sides, the shifting direction Ds can be chosen as either of the sides. In the
illustrated example, for the first iteration, Ds=1 is selected, and data is embedded according to
Eq. 3.4. Let bi=1010..10 be the 32 bits, with an equal number of 1s and 0s, to be embedded in
bin (pmax). As Ds=1, all the pixels with values greater than 6 are shifted in the right direction
by 1, and the pixels to its left remain unchanged. Pixels with value 6 are modified based on the
bits to be stored. If bi=1, the pixel is updated to value 7; otherwise, if bi=0, the pixel remains
unchanged with value 6. The modified histogram after iteration 1 is illustrated in Fig. 3.3e.
As S=6, embedding is performed for 6 iterations, and Fig. 3.3f shows the histogram obtained
after the final iteration. As indicated in the illustrated example, the proposed method allows
for embedding 114 bits, whereas RDHACEM [1] can only embed 88 bits. This shows that the
proposed method has a higher EC in the ROI. Experimental results are presented in section 3.4
to validate this.

3.3.4 Embedding in NROI

As discussed above, the NROI region is usually less important to the observer, as it generally
contains no useful information. Hence, it provides an opportunity to embed a large amount
of data in this region. As per the embedding requirement, we can embed up to 3 bits per
pixel in this region. The proposed method simply replaces the required number of LSBs with
the payload bits. The required number of embedding bits per pixel is calculated by the total
number of NROI pixels and the total number of bits to be embedded.

3.3.5 Details of Auxiliary Information

To completely recover the secret data and the cover image from the stego-image RE , it is im-
portant to record the side information along with the secret data. The side information mainly
includes:

• Location map denoting ROI and NROI segmentation [1]

• Length of secret data for ROI and NROI, respectively

• Peak bin pixel at each iteration (pmax)
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• Direction of shift at each iteration (Ds)

• Number of bits embedded into each NROI pixel (NB)

• Number of iterations (S)

To reduce the size of the side information, it is compressed by Arithmetic coding, and then the
length of the condensed side information, which is denoted by LSI , is calculated. The parameter
NB is embedded into LSBs of 2 pixels, and the parameter LSI is embedded into LSBs of the next
18 pixels reserved for side information. The rest of the side information (i.e., Location map,
secret data length, last iteration Ds, last iteration pmax, iterations S) is embedded next. Further,
during each iteration of ROI embedding, the previous iteration’s pmax and Ds are embedded
along with the secret data. It is to be noted that we also need to record the additional auxiliary
information generated during the pre-processing stage, which includes the following

• Total number of empty bins (Ebins[0,255)]) available in cover image

• Positions of all empty bins (EP )

• Bin value of overlapped bin n, if overlapping is performed.

• Direction of overlapping (OD). OD = −1, if (n+1) bins are overlapped onto n. OD = 1,
if (n-1) bins are overlapped onto n.

• Bit-stream (BS): A bit-stream is generated by performing a raster scan on the image to
record the order of pixels of two overlapping bins. Record bit 0 for all the pixels having
value n-1/n+1 and value 1 for all the pixels having value n.

• Final Shifting value (toshift) of the pre-processing and its direction

To clearly understand the requirement of recording the above-mentioned information, let us
elaborate on this by using an example as depicted in Fig. 3.3. As we note that the number
of empty bins available (5) is lower than the number of required iterations (6), we perform
overlapping of 1 bin. Further, as the PCR is lower on the right side of the histogram, overlapping
on the right side is performed. Consequently, bin 6 overlaps with bin 5. We record the bin
value 5 and a bit stream of 20 bits, with 1s at the place of pixel 5 and 0s at the place of pixel
6. This is repeated for all the bins on which overlapping is performed. The additional side
information is recorded by concatenating all the recorded information. If there are a large
number of overlapping bins, the side information size will be significant and is compressed
using Arithmetic coding.
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3.3.6 Extraction and Recovery

As discussed above, the RDH technique relies on its ability to ensure lossless extraction of the
secret message and recovery of the original image. For this, the proposed method embeds all
the required side information inside the image itself. At the receiving end, the receiver, first of
all, reads the LSBs of the first 2 pixels to get the value of NB and then reads the LSBs of the
next 18 pixels to get the length of side information (LSI). Afterward, all the side information,
which includes location map, secret data length, Ds and pmax obtained in the last iteration, and
the number of iterations (S), are extracted. Following this, the extraction of secret data and
recovery of the original cover image is performed using the following steps:

Step 1: The stego-image is partitioned into regions of interest (ROI) and non-regions of
interest (NROI) with the help of the location map.

Step 2: To obtain the hidden secret data from the NROI region, the NB least significant bits
(LSBs) of the pixels in the NROI region are extracted.

Step 3: The secret data is extracted from the ROI region, and the pixels are recovered to
their original value using the following Eqs. (3.6) and (3.7), respectively.

bi =

0 if RE(i, j) = pmax

1 if RE(i, j) = pmax +Ds

(3.6)

RP (i, j) =



RE(i, j) + 1 if RE(i, j) < pmax, Ds = −1

RE(i, j)− 1 if RE(i, j) > pmax, Ds = 1

RE(i, j) if RE(i, j) > pmax, Ds = −1

RE(i, j) if RE(i, j) < pmax, Ds = 1

RE(i, j) if RE(i, j) = pmax

(3.7)

Step 4: Step 3 is repeated for the S number of iterations to get the pre-processed image RP

and the complete secret data is recovered simultaneously.
Step 5: Recover the final shifting value (toshift) and its direction from the auxiliary infor-

mation. Perform shifting by value (toshift) in the opposite direction using Eq. (3.8).

RP (i, j) = RP (i, j) + toshift (3.8)

Step 6: Recover the bin value n, Direction of overlapping (OD), and the bit stream(BS)
from the auxiliary information. Raster scan the image, obtained using step 5, and de-overlap
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(a) Stego Image (RE) (b) Intermediate Image, S=1 (c) Intermediate Image, S=6

(d) Shifting (toshift=-2) (e) De-overlapping, n=5 (f) Shifting (Extracted Image)

Fig. 3.4: Example histograms generated during extraction and recovery of ROI

the bins n and n-1/n+1 by using Eq. (3.9)

RP (i, j) =



RP (i, j) if BS(K) = 1, RP (i, j) = n

RP (i, j) + 1 if BS(K) = 0, RP (i, j) = n,OD = −1

RP (i, j)− 1 if BS(K) = 0, RP (i, j) = n,OD = 1

RP (i, j) otherwise

(3.9)

Step 6 is repeated for S − Ebins[0,255] number of times.
Step 7: Shift the empty bins to their original positions with the help of EP using Eq. (3.10).

R(i, j) =


RP (i, j) + 1 if RP (i, j) >= EP , EP >= 127

RP (i, j)− 1 if RP (i, j) <= EP , EP <= 127

RP (i, j) otherwise

(3.10)

Step 7 is repeated for all empty bins EP , and the resultant image replicates the original
image.

To ease the understanding of the image recovery steps, the same example histogram (illus-
trated in Fig. 3.3) is extended for the extraction and recovery analysis and is illustrated in Fig.
3.4. Fig. 3.4a represents the received stego image. From the retrieved auxiliary information,
S = 6, pmax = 2, and Ds = -1 are obtained. For the first iteration, raster scanning of the entire
image is performed, and the secret data is recovered using Eq. 3.6. Accordingly, if RE = 2,
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then bi = 0 and if RE = 1, then bi = 1. Simultaneously, an intermediate pre-processed image is
obtained for S = 1 using Eq. 3.7. As Ds = -1, RP = RE , for pixels RE ≥ 2; and RP = 1 - Ds,
for pixels RE < 2. The resultant intermediate image histogram is illustrated in Fig. 3.4b. As
S=6, Step 3 is repeated for 6 iterations, and the resultant histogram is presented in Fig. 3.4c.

Once the secret data is completely recovered from the stego image RE , and the pre-processed
image RP is obtained after completing 6 iterations, the next step is to reverse the pre-processing
to fully recover the original image.

In the illustrated example, at Step 5, the value of (toshift) is -2. The updated histogram
obtained after modifying the pixels RP as per Eq. (3.8) is illustrated in Fig. 3.4d. In Step 6,
the recovered overlapped bin, n = 5, and overlapping direction, OD = −1. Thus, with the help
of the stored bit stream BS , de-overlapping is performed using Eq. (3.9). The resulting image
histogram is presented in Fig. 3.4e, wherein bin 6 is de-overlapped from bin 5.

In Step 7, positions EP of 5 empty bins are extracted as (3, 7, 8, 9, 10) from the auxiliary
information. According to the shifting procedure defined in Eq. (3.10), pixels with values 2 and
3 are shifted to 1 and 2, respectively, creating an empty bin at 3. As empty bins 7, 8, 9, and
10 are already at the extreme right, these bins have no change concerning Eq.3.10. From the
resultant example histogram (Fig. 3.4f) and original example histogram (Fig. 3.3a), it is evident
that the original image is completely recovered from the stego image.

3.4 Experimental Evaluation

This section discusses the experimental results of the proposed method and their comparison
with the SOTA methods on six different medical images, namely Brain01, Brain02, Brain03,
Brain04, Brain05, and Chest1, as shown in Fig. 3.5. The images are taken from Medpix [2]
and NBIA [3], which are free online medical image databases. The testing environment for
conducting the experiments is MATLAB 2021, running on Windows 10, Intel(R) Core (TM) i5
2.60 GHz CPU, and 8.0 GB RAM.

For the performance evaluation and comparisons, popular and widely used metrics such
as peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), relative contrast error
(RCE), and relative mean brightness error (RMBE) [1] have been considered. In the aforemen-
tioned metrics, PSNR and SSIM are used to evaluate the resultant image quality against the
original image, where the higher the value of PSNR, the lower the objective difference between
the original and the resultant image. Similarly, the value of SSIM closer to 1 indicates more
structural similarity between the original and the resultant image. To measure the brightness,
the Relative mean brightness error (RMBE) is used, which varies between 0 and 1. The RMBE
calculates the difference between the mean brightness of the original image and the enhanced
image. It is to be noted that the RMBE closer to 1 indicates an insignificant difference between
the mean brightness of the original image and the enhanced image.

During the analysis of the SOTA methods, it has been observed that for some of the images,
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(a) Brain01 (b) Brain02 (c) Brain03

(d) Brain04 (e) Brain05 (f) chest1

Fig. 3.5: Six medical test images from Medpix [2] and NBIA [3]

the data embedded in the ROI region is negligible in comparison to the data embedded in the
NROI region. Accordingly, the quality parameters for these images, when calculated for the
entire image, will be misleading, as the impact of the embedding on the ROI region remains
insignificant due to low embedding in ROI. Hence, we have performed the comparative analysis
in two separate sub-sections. In the Sub-section 3.4.1, the embedding performance in the entire
image is discussed, whereas the embedding performance in ROI is separately evaluated in Sub-
section 3.4.2. Furthermore, we have also evaluated the robustness of the proposed method using
RS steganalysis in Sub-section 3.4.3. We then conducted a computational complexity analysis
of the proposed approach compared to the SOTA methods in Subsection 3.4.4.

3.4.1 Performance Analysis when Embedding is Performed in Entire Im-
age

In this sub-section, we first assess the contrast of the stego-images obtained after embedding by
the proposed method and the SOTA methods, such as PH1 [120], RHCRDH [122], RDHACEM
[1], and OPHBE [116]. For this, the test image ‘Brain01’ has been considered, and results have
been taken at an ER of 1.5 bpp. The resultant stego-images are shown in Fig. 3.6. From
visual inspection, it is evident that the stego-images of three methods, namely RDHACEM [1],
RHCRDH [122], and the proposed method, have achieved contrast enhancement, while PH1
[120] has the poorest contrast. Furthermore, it can also be observed that PH1 and OPHBE also
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lack brightness preservation.

(a) PH1 (b) RDHACEM (c) RHCRDH (d) OPHBE (e) Proposed

Fig. 3.6: Stego-images of Brain01 at 1.5 bpp.

To showcase the performance of the proposed method on other evaluation parameters such
as PSNR, SSIM, RCE, and RMBE, the analysis is performed on test images Fig. 3.5a to 3.5d,
and experimental results are provided in Fig. 3.7 to Fig. 3.10. A comprehensive analysis and
individual assessment for each image is provided below.

(a) PSNR (b) RMBE

(c) RCE (d) SSIM

Fig. 3.7: Performance comparison for ‘Brain01’

For the test image ‘Brain01’, it is evident from Fig. 3.7 that the proposed method achieves
the highest PSNR in comparison to the aforementioned SOTA methods. Further, the maxi-
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Table 3.1: Experimental Results for the test image ‘Brain01’

Method bpp PSNR SSIM RCE RMBE Time(s) Average time(s/bit)

PH1 0.1 32.2 0.92 0.5 0.98 0.38

8.49× 10−70.5 27.7 0.80 0.49 0.96 0.49

1.0 21.9 0.76 0.49 0.92 0.63

1.5 18.4 0.72 0.48 0.88 0.70

RDHACEM 0.1 26.8 0.94 0.50 0.97 4.14

7.39× 10−60.5 26.7 0.93 0.50 0.97 4.11

1.0 26.7 0.90 0.50 0.97 4.19

1.5 26.7 0.84 0.50 0.97 5.11

RHCRDH 0.1 29.0 0.99 0.52 0.97 5.75

1.06× 10−50.5 29.0 0.98 0.52 0.97 6.00

1.0 29.0 0.95 0.52 0.97 6.16

1.5 28.9 0.89 0.52 0.97 6.38

OPHBE 0.1 30.0 0.99 0.50 0.99 1.26

2.47× 10−60.5 29.0 0.90 0.50 0.98 1.61

1.0 26.6 0.79 0.50 0.95 1.62

1.5 20.0 0.70 0.51 0.91 1.92

1.6 17.24 0.64 0.47 0.87 1.99

Proposed 0.1 30.2 0.97 0.50 0.98 0.76

1.22× 10−6

0.5 30.2 0.96 0.50 0.98 0.83

1.0 29.1 0.93 0.50 0.98 0.80

1.5 29.0 0.87 0.50 0.98 1.00

1.8 28.0 0.87 0.52 0.99 1.50
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Table 3.2: Experimental Results for the test image ‘Brain02’

Method Capacity PSNR SSIM RCE RMBE Time(s) Average time(s/bit)

PH1 0.1 36.4 0.98 0.50 0.98 0.33
2.23× 10−60.2 32.8 0.97 0.50 0.97 0.42

0.3 31.4 0.96 0.50 0.97 0.41

RDHACEM 0.1 25.3 0.99 0.53 0.95 10.2
5.57× 10−50.2 25.3 0.99 0.53 0.95 9.72

0.3 25.3 0.99 0.53 0.95 9.68

RHCRDH 0.1 25.3 0.99 0.53 0.95 8.83
7.53× 10−50.2 25.3 0.99 0.53 0.95 9.00

0.3 25.3 0.97 0.53 0.95 9.00

OPHBE 0.1 31.2 0.98 0.49 0.98 1.68
8.59× 10−60.2 30.0 0.97 0.49 0.98 1.58

0.3 29.0 0.96 0.49 0.97 1.98

Proposed 0.1 32.4 0.99 0.51 0.98 0.60

3.13× 10−60.2 31.0 0.99 0.51 0.97 0.63

0.3 31.0 0.99 0.51 0.97 0.63

0.4 26.9 0.98 0.52 0.96 0.78

0.8 21.6 0.94 0.54 0.95 0.90
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mum achievable ER with the proposed method is 1.82 bpp while maintaining good contrast and
PSNR, whereas, for the other existing methods, the maximum achievable ER is only up to 1.5
bpp.

As evident from Table 3.1, for the ‘Brain01’ image, RDHACEM and RHCRDH methods
provide constant PSNR and RCE irrespective of ER. OPHBE achieves higher PSNR at lower
ER and SSIM, however, the image quality significantly deteriorates at higher ER. Further, it
should be noted that though OPHBE [116] improves the contrast at lower ER, it usually results
with over-enhanced stego-images at higher ERs and also introduces additional distortion. The
proposed method achieves comparable RCE at lower ER; however, it significantly improves at
high ER. From Fig. 3.7b, it is discernible that, with the highest RMBE, the proposed method
performs better than RDHACEM and RHCRDH methods in preserving the image brightness,
which further improves with the increase in ER.

(a) PSNR (b) RCE

(c) RMBE (d) SSIM

Fig. 3.8: Performance comparison for ‘Brain02’

For image ‘Brain02’, as evident from Table 3.2, the proposed method, OPHBE, and PH1
achieve the highest RMBE. Moreover, RDHACEM and the proposed method achieve the high-
est SSIM that remains stable even with the change in ER. At lower embedding rates, RD-
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HACEM and RHCRDH achieve the highest RCE. However, the maximum achievable ER is
limited to 0.4 bpp only. PH1 and OPHBE methods provide the lowest contrast enhancement,
wherein the OPHBE method provides negative contrast enhancement. In contrast, the proposed
method not only achieves an ER of 0.9 bpp, but the image contrast also improves with the in-
crease in ER with an excellent RCE of 0.54 at 0.8 bpp.

(a) PSNR (b) RCE

(c) RMBE (d) SSIM

Fig. 3.9: Performance comparison for ‘Brain03’

Further extending our analysis to the ‘Brain03’ image, it can be observed from Fig. 3.9. that
the proposed method achieves the best RCE and RMBE among all the compared methods. The
RCE value obtained by RDHACEM and RHCRDH is only 0.49, which means the image is
negatively enhanced. The OPHBE method improves the contrast enhancement at higher em-
bedding rates but at the cost of poor PSNR, RMBE, and SSIM. It shows that the aforementioned
SOTA methods do not analyze the characteristics of the histogram distribution well and, hence,
do not improve the contrast. Additionally, the SOTA methods have limited ER, i.e., up to 1.5
bpp, whereas the proposed method can achieve a high ER of 2 bpp with high contrast enhance-
ment at an RCE of 0.55. Similarly, for the ‘Brain04’ image, the proposed method achieves
the highest RMBE and SSIM at all the embedding rates. Though RDHACEM and RHCRDH
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(a) PSNR (b) RCE

(c) RMBE (d) SSIM

Fig. 3.10: Performance comparison for ‘Brain04’

methods achieve good contrast at lower embedding rates, it is still comparable with the pro-
posed method at the ER of 0.7 bpp and further improves at higher ER. Thus, it can be concluded
that the proposed method’s performance is superior to all the aforementioned SOTA methods.
More specifically, the proposed method can achieve the highest EC and contrast enhancement
for all the studied medical images of varying image characteristics in nature. Additionally, the
proposed method preserves the brightness for all the images while achieving comparable PSNR.
The SOTA methods, RDHACEM and RHCRDH, appear to perform well at lower embedding
rates, but these methods have limited EC overall. Moreover, in some scenarios, the SOTA meth-
ods negatively impact the contrast. In the next sub-section, an analysis of performance when
embedding is done only in the ROI is provided.
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3.4.2 Performance Analysis when Embedding is Performed only in the
ROI

In this section, we evaluate the performance of the proposed method against the SOTA methods
when the embedding is done only in the ROI region of the images. For this, two test images,
namely ‘Chest1’ and ‘Brain05’ as shown in Fig. 3.11a and Fig. 3.12a, have been considered.
Firstly, the images are partitioned into ROI and NROI regions using the ATD [130] to get the
threshold images as shown in Fig. 3.11b and Fig. 3.12b, where the white region represents the
ROI and the black region represents the NROI.

(a) Orignal (b) Threshold (c) RDHACEM (d) Proposed

Fig. 3.11: Experimentation with the test image ‘Chest1’

Table 3.3: Experimental Results for the test image ‘Brain05’

Method BPP RMBE PSNR SSIM RCE

RDHACEM 0.1 0.95 17.5 0.83 0.56

0.2 0.95 17.5 0.83 0.56

0.3 0.95 17.5 0.83 0.56

0.4 0.95 17.5 0.83 0.56

RHCRDH 0.0001 1.00 ∞ 1.00 0.50

Proposed 0.1 0.92 18.5 0.86 0.57

0.2 0.92 18.6 0.86 0.57

0.3 0.92 18.6 0.86 0.57

0.4 0.92 18.2 0.86 0.57

0.5 0.92 18.4 0.86 0.57

0.6 0.92 18.5 0.86 0.57

0.7 0.93 18.7 0.87 0.57

0.8 0.93 18.7 0.87 0.54

PH1 - - - - -
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(a) Orignal (b) Threshold (c) RDHACEM (d) Proposed

Fig. 3.12: Experimentation with the test image ‘Brain05’

Afterward, embedding is performed in the ROI regions of the image. The resultant im-
ages after embedding the maximum possible bits of the secret data by RDHACEM [1] and the
proposed method are shown in Fig. 3.11c, 3.12c, and Fig. 3.11d, 3.12d, respectively, for the
‘Chest1’ and ‘Brain05’. The experimental results show that the proposed method can embed
1,52,357 and 1,67,918 bits into the ROI of ’Chest1’ and ’Brain05’. In comparison, RDHACEM
can embed only 1 and 55,513 bits in the images ’Chest1’ and ’Brain05’, respectively, as there
are no or very minimal empty bins. However, this minimal embedding capacity of the RD-
HACEM in the ROI helps in keeping very low distortion but also results in negative RCE. In
contrast, regardless of the number of empty bins, the proposed method has the ability to em-
bed a large number of secret data bits in the region of interest (ROI). Additionally, as can be
observed in Figures 3.11d and 3.12d, it significantly improves the contrast of the images.

Table 3.4: Experimental Results Comparison for the Test Image ‘Chest1’

Method BPP RMBE PSNR SSIM RCE

RDHACEM 0.0001 1 ∞ 1 0.49

RHCRDH 0.0001 1 ∞ 1 0.49

Proposed 0.6 0.95 23.9 0.93 0.53

PH1 - - - - -

To perform a detailed analysis of the performance, we have included the experimental results
for various metrics such as ER (in bpp), RMBE, PSNR, SSIM, and RCE in Table 3.3 and Table
3.4 for the test images ‘Brain05’ and ’Chest1’, respectively. The proposed method achieved an
RCE of 0.57 and 0.54 for the two images, whereas RDHACEM achieved an RCE of 0.56 and
0.49, respectively. Based on the results, it can be concluded that the proposed method offers
better embedding capacity while providing better contrast.
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3.4.3 Security Analysis

In this sub-section, we evaluate the robustness of the proposed method by employing steganal-
ysis attacks that can detect if there is any hidden data within a stego-media (image, video, or
audio) or not. For this, RS steganalysis [132, 133]has been chosen as it is the most widely
used for security analysis in the RDH domain. RS steganalysis involves classifying pixels of
an image into three categories: Regular pixels (R+ and R-), Singular pixels (S- and S+), and
unusable pixels. If the pixels R+ are closer to pixels R- and pixels S+ are closer to pixels S-,
the method concludes with no hidden data within the image. In another way, the farther the
distance between R+ and R-, and S+ and S-, the method concludes with identifying hidden data
within the image.

(a) Brain02 (b) Brain03

Fig. 3.13: RS-Analysis Results for the Proposed Method

The resistance against statistical RS-analysis is evident in the results depicted in Fig. 3.13
for the two test images, namely Brain02 and Brain03. In Fig.3.13a-3.13b, the x-axis shows
ER in terms of bpp within the stego-image, while the y-axis displays the relative percentage of
regular (R+, R-) and singular (S+, S-) groups. The figures show that the stego-images generated
by the proposed method possess comparable values for both singular and regular parameters,
even when the ER is increased from 0.1 to 1.5 bpp. This indicates that the proposed method has
excellent protection against RS steganalysis.

Therefore, it can be concluded that the findings from this study underscore the robustness
and effectiveness of the proposed RDH approach against the prominent RS steganalysis.

3.4.4 Computational Complexity

As explained in Section 3.3, the proposed method broadly comprises two stages: pre-processing
and data embedding, where embedding is first done in ROI and then NROI. The ROI embed-
ding is performed in peak bins iteratively, while the NROI embedding is done by replacing
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pre-defined LSBs with the secret data bits. Let us assume that the cover image contains p pix-
els, ROI contains r pixels, and the NROI contains (p−r) pixels. Assuming S is the total number
of iterations performed to embed the data in ROI, the computational complexity for data em-
bedding in ROI will be O(r × S), as all the pixels of ROI are scanned for data embedding and
histogram shifting. However, since the NROI embedding does not involve multiple iterations,
the computational complexity for data embedding in NROI is O(p− r).

Furthermore, we have evaluated the performance of the proposed method in terms of the
overall running time (seconds) and average running time per embedded bit (seconds) with the
SOTA methods. For this, the results are provided in Table 3.1 and Table 3.2 for multiple test
images. It is evident from the tables that the proposed method exhibits a shorter running time
compared to the method discussed in [120] [122] [1], indicating that it boasts a lower imple-
mentation complexity and is well-suited for real-world applications. However, its performance
is a bit slower in comparison to the PH1 [120]
Therefore, it can be clearly stated that the proposed method outperforms the aforementioned
SOTA methods on almost all the performance metrics. However, its performance is somehow
interlinked with the segmentation approach, i.e., ATD. Moreover, the proposed method needs
to find the optimal number of iterations as a large number may introduce big distortion, while a
low number may not provide sufficient embedding capacity.

3.5 Summary

This chapter presents a novel RDH method with high-embedding capacity, contrast enhance-
ment, and brightness preservation for medical images. The proposed method first partitions the
original images into ROI and NROI, embedding secret data based on their sensitivity. Prior to
embedding in ROI, a novel pre-processing technique is employed to adaptively create and shift
empty bins, providing high EC while reducing distortion and avoiding issues like overflow and
underflow. Consequently, the proposed method achieves less overall distortion and produces
higher-quality images compared to the SOTA methods. Experimental results also confirm its
superiority, demonstrating higher PSNR, RCE, RMBE, and EC compared to existing methods.
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CHAPTER 4

REVERSIBLE DATA HIDING FOR COLOR IMAGES USING

A NOVEL SELF-ATTENTION BASED CNN PREDICTOR

AND ERROR ADJUSTMENT

In prediction-based reversible data hiding (RDH), achieving high prediction accuracy is essen-
tial for obtaining high-fidelity marked images with increased embedding capacity. To achieve
it, this chapter proposes two novel techniques: a self-attention-based convolutional neural net-
work predictor (SA-CNNP) and an error adjustment strategy for color images. The SA-CNNP
effectively captures both local characteristics and global pixel dependencies, resulting in com-
prehensive coverage and improved prediction accuracy. The error adjustment strategy further
enhances accuracy by refining the prediction errors of two color channels using the error dis-
tribution of a reference channel, thereby promoting inter-channel consistency. Experimental
results demonstrate that these innovations lead to significant improvements. More specifically,
the proposed SA-CNNP achieves a sharper prediction error histogram with approximately 8%
improvement in MSE over the best known state-of-the-art predictor. Additionally, the error
adjustment strategy increases prediction accuracy for ’Kodim09’ color image by 58%. Conse-
quently, the proposed RDH approach achieves an average PSNR gain of around 1.2 dB com-
pared to existing methods for color images.

4.1 Introduction

In the realm of RDH for color images [134–138], there has been surprisingly limited scholarly
interest despite the widespread use of color images on digital platforms. This lack of focus has
led to minimal research on inter-channel correlation in color images. Notably, Li et al. [139]
proposed a method leveraging similar edge information across channels to enhance embedding
performance. Ou et al. [140] introduced an adaptive embedding scheme that assigns variable
payload sizes to different channels based on their PEH, and then utilizes the other channels to
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Fig. 4.1: Illustration of image partitioning into cross and dot sub-images

calculate pixel smoothness, thereby reducing embedding distortion. Yao et al. [141] developed
a guided filtering-based RDH that exploits inter-channel correlation for more precise prediction,
thereby improving embedding performance. Tang et al. [142] proposed a two-layer embedding
scheme using image interpolation to generate prediction errors for the first level, followed by lo-
cal complexity for the second level of embedding. Xu et al. [143] discussed a three-dimensional
(3D) prediction error expansion-based RDH scheme that calculates error triplets for the three
channels and modifies them for embedding. Recently, Mao et al. [144] introduced an RDH
scheme that utilizes channel correlation to improve performance at three stages: prediction,
block selection, and capacity allocation. Chang et al. [98] proposed an adaptive 3D histogram
modification technique that uses PEH frequency ranking to iteratively adjust the reversible map-
ping, though the required optimization introduces high computational complexity.

Due to the limitations of traditional predictors, deep learning based predictors have gathered
due attention in recent days. Hu et al. [80] introduced a convolutional neural network-based
predictor (CNNP) that leverages the multi-receptive field and complex computation capabilities
of CNN. The CNNP first partitions the original image into two independent sets as shown in
Fig. 4.1 and then predicts one from the other, thus exploiting a larger set of context pixels along
with the nonlinear relationship among them.

To enhance performance, Hu et al. [81] modified the image-division strategy used in CNNP
training and implemented prediction error ordering (PEO) for embedding, resulting in a method
known as CNNPEO. More specifically, CNNPEO divides the image into four independent sub-
images, ensuring that context pixels from the other three sub-images are available to predict
the target sub-image. This increased the availability of context pixels, leading to improved
prediction accuracy. However, this resulted in a twofold increase in training and computation
time. To further enhance performance, the image division strategy was revised to produce four
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independent images, which undergo pre-processing before being input into a newly designed
convolutional neural network (NCNN) model [145]. This approach provides a larger pixel
context during prediction, resulting in improved prediction accuracy. Building on this idea, Wu
et al. [146] introduced a novel image division pattern that increases the number of context pixels
within a 5 × 5 block to 18, further boosting prediction performance. Continuing this trend,
Luo et al. [147] enhanced the CNNP [80] model by incorporating an optimizer that refines
the predicted pixel using the average of four diagonal neighbors, subsequently combining it
with the original prediction to form OCNNP, which yields improved accuracy. To achieve
even greater precision, Ma et al. [148] proposed a multi-scale fusion network that adaptively
adjusts prediction through texture-based analysis, complemented by a multi-scale interpolation
network. While these methods significantly enhance performance, they remain limited by the
lack of global contextual information.

In summary, while existing predictors [149, 150] have achieved good prediction accuracy,
this often comes at the expense of higher computational complexity due to added pre-processing
steps. Moreover, most efforts to enhance context information have predominantly concentrated
on local regions, thereby restricting the full potential of prediction accuracy. To overcome
these limitations, this chapter proposes a novel self-attention-based CNN predictor (SA-CNNP),
which incorporates self-attention mechanisms [151] into the CNN framework to effectively
capture long-range dependencies and global contextual information.

Additionally, despite recent progress in RDH method targeting color images, the utilization
of inter-channel correlation remains limited. Moreover, deep learning approaches for predict-
ing color images have received minimal attention in this domain. To address this gap, this
chapter introduces a new RDH method for color images by efficiently utilizing inter-channel
correlation and integrating the SA-CNNP for improved embedding performance. The primary
contributions of this chapter are outlined below:

• Introduction of SA-CNNP: A self-attention-based CNN predictor (SA-CNNP) is intro-
duced, which integrates self-attention mechanisms into the CNN framework. This allows
the model to capture both local and global contextual information by attending to long-
range pixel dependencies across the image, thereby significantly improving prediction
accuracy.

• Error Adjustment Strategy: A novel error adjustment strategy is proposed that refines
the prediction errors of two color channels by utilizing the error distribution of a refer-
ence channel. This leads to a even sharper prediction error histogram (PEH), resulting in
improved embedding capacity and reduced distortion.

• Performance Validation: Experimental results demonstrate that the combination of SA-
CNNP and error adjustment significantly outperforms existing state-of-the-art methods in
both prediction accuracy and embedding performance.
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(a) Overview of SA-CNNP

(b) Feature block (c) Structure of the Self-attention block

Fig. 4.2: Overview of the proposed architecture (a) SA-CNNP; (b) Feature block; (c) Self-Attention
block.

4.2 Proposed Method

This section is organized into three subsections. Subsection 4.2.1 discusses the proposed SA-
CNNP in detail. Subsection 4.2.2 presents the newly developed RDH method for color images.
Finally, Subsection 4.2.3 explains the extraction and recovery process associated with the pro-
posed RDH method.

4.2.1 The Proposed SA-CNNP

Initially, original image (I) is pre-processed using a checkerboard pattern to generate two com-
plementary sub-images: Cross (IC) and Dot (ID), as shown in Fig. 4.1. In IC , pixels at the
Cross positions retain their original values while the remaining are set to zero; conversely, in
ID, only the Dot-position pixels retain their values and the rest are set to zero. Thus, two mu-
tually exclusive sub-images (IC , ID), that can be used to predict each other as the input-output
training pair, are obtained.

SA-CNNP Architecture

The proposed SA-CNNP model is introduced to improve prediction quality by integrating multi-
scale feature extraction with spatially adaptive attention. The architecture of the proposed SA-
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CNNP is presented in Fig. 4.2a, which contains two primary units: a feature extraction unit and
a prediction unit. The feature extraction unit, which is responsible for capturing features from
an image, consists of three feature blocks, with kernel sizes of 3×3, 5×5, and 7×7, connected
in parallel to leverage multi-receptive features. Each of the feature blocks is followed by an
average pooling layer and a self-attention block. The detailed structure of the feature block is
presented in Fig. 4.2b. On the other hand, the prediction unit comprises seven blocks connected
in series, wherein each block consists of two convolution layers, each of kernel size 3× 3, and
a LeakyRelu activation function in between.

Unlike existing deep learning-based predictors [80,81,145,146], the SA-CNNP incorporates
an average pooling layer along with a self-attention module, effectively capturing both local
characteristics and global dependencies of pixels within an image. The detailed framework of
the self-attention module is illustrated in Fig. 4.2c. The input to the self-attention block is
the feature maps X , which are first passed through an average pooling layer, which helps in
reducing the size of the feature maps X so that the self-attention block can effectively focus
on the most relevant features with reduced computational load. The resultant feature map X

′

is then linearly transformed into three vectors: Query (Q), Key (K), and Value (V ), using the
following Eq. 4.1.

Q = X
′
WQ, K = X

′
WK , V = X

′
WV (4.1)

Here, WQ, WK , and WV are learnable weight matrices. The dot product of Q and K is
passed through the softmax function to normalize the values, resulting in attention weights (Aw).
These weights determine the extent to which each pixel’s value contributes to the prediction of
the current pixel. Finally, the Value (V ) and attention weights (Aw) are multiplied to obtain the
self-attention feature vector (XS), which provides enhanced contextual understanding of the
pixels while capturing the dependencies between distant pixels.

Training details

In order to train the proposed SA-CNN predictor, a dataset containing 3000 images is selected
from the extensive ImageNet [152]. The dataset was divided into training and validation subsets
using an 80:20 ratio, where 80% of the images were used for training and 20% for testing the
model’s performance. Before training, all the images are first transformed into grayscale images
of 512× 512 pixels. During the training process, the following loss function is used.

loss =
1

t

t∑
i=1

(Îi − Ii)
2 + λ∥ω∥2 (4.2)

where t is the number of training images, Ii is the original image, Îi is the predicted image
and ω represents the weights in the network. In order to mitigate over-fitting and speed up the
network convergence, the weight decay (λ) is set to 10−3. To optimize the proposed predictor,
back-propagation and Adam optimizer are used with a batch size of 4. The proposed SA-CNNP
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is trained on an Intel Core i5 CPU (2.40GHz) with 8 GB of RAM using an NVIDIA Tesla V100
GPU on Colab Pro.

4.2.2 Proposed RDH Method

Chang et al. [98] demonstrated that the channels, Red (R), Green (G), and Blue (B), of a color
image are typically correlated. To leverage this correlation for improved embedding perfor-
mance, the proposed RDH method exploits reference errors obtained from the highly accurate
SA-CNNP. The complete workflow of the proposed RDH method for color images, illustrated
in Fig. 4.3, entails three key steps: a Reference Channel Selection, Reference Channel Embed-
ding, and Reference Error Adjustment. Each of these steps is discussed in subsequent sections.

Reference Channel Selection

The original color image (I) is initially decomposed into three separate images (IR, IG, and IB),
each representing one color component. Then, joint entropy, which quantifies the correlation
between channels, is calculated using Eq. 4.3 across channel pairs (R-G, R-B, and G-B).

H(X,Y ) = −
n∑

i=1

m∑
j=1

p(xi, yj) log2(p(xi, yj)) (4.3)

where H(X, Y ) denotes the joint entropy between two channels X and Y , n and m denote the
number of unique intensity levels in X and Y , respectively, and p(xi, yj) represents the joint
probability mass function of X and Y , giving the probability that X = xi and Y = yi. It is to
be noted that a lower joint entropy H(X, Y ) between two channels signifies a higher degree of
correlation. Therefore, the channel exhibiting the lowest joint entropy with the other two chan-
nels is chosen as the reference channel. This will significantly help in reducing the magnitude
of prediction errors of the other two channels based on the learning of the reference channel
prediction and its accuracy. To avoid redundant information and streamline the representation,
the reference channel is denoted as Ir, and the other two channels are commonly denoted as Ix

throughout this study.

Reference Channel Embedding

Now, the reference channel Ir is pre-processed and transformed to get the cross IrC and dot IrD
sub-images as in Fig. 4.1. Next, the proposed SA-CNNP is employed on IrC to get the predicted
sub-image ÎrD and the PE between the original and predicted sub-images are calculated as
erD = IrD−ÎrD. Finally, the embedding of secret data is performed in the IrD using the embedding
strategy of the classical RDH method [26] as detailed in Eq. 4.4 to get the marked sub-image
I

′r
D .
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I
′

i,j = Îi,j + Ei,j (4.4)

where Ei,j is the expanded error for I(i, j), obtained using Eq. 4.5, which is defined as
follows:

Ei,j =



ei,j + b, if ei,j = Tp

ei,j − b, if ei,j = Tn

ei,j, if ei,j < Tp and ei,j > Tn

ei,j + 1, if ei,j > Tp

ei,j − 1, if ei,j < Tn

(4.5)

where Tp and Tn are the two most frequent errors, and b is the secret data bit to be embedded.
Next, the same process is repeated for IrC by employing the SA-CNNP model on the marked

sub-image I
′r
D and calculating the PE between the predicted cross and the original cross sub-

images as erC = IrC − ÎrC . Subsequently, the marked cross sub-image I ′r
C is obtained by employ-

ing Eq. 4.4. Thus, a marked reference image I
′r, which is synthesis of I ′r

D and I
′r
C , along with

two error matrices (erD, e
r
C) are obtained.

Reference Error Adjustment

Once the embedding for cross and dot sub-images for the reference channel is complete, the
embedding for the remaining two channels is performed using the same steps, except for the
reference error adjustment. It is to be noted that erD and erC serve as reference errors for the
remaining two channels’ dot and cross sub-images, respectively. In other words, the obtained
PEs (during the secret data embedding process) of the remaining channels are corrected to
adjust the probable prediction errors made by the SA-CNNP based on the corresponding PE

of the reference channel. Therefore, the PEs for the dot and cross sub-images of the remaining
channels (represented as Ix) are modified using the following Eqs. 4.6 and 4.7, respectively:

e
′x
D = exD − erD (4.6)

e
′x
C = exC − erC (4.7)

To theoretically validate that the prediction error from one channel supports the enhance-
ment of prediction error for other channels, we have calculated Pearson correlation between two
error matrices, as represented in Eq. 4.8. Here, ρer,ex represents Pearson correlation coeeficient
between PEs of reference channel r and the other channel x. Cov(er, ex) is the covariance be-
tween er and ex, σer and σex are the standard deviation of er and ex, respectively. In general, ρ
ranges between -1 and 1, wherein, ρer,ex > 0 represents positive correlation between the PEs of
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Fig. 4.3: Workflow of the proposed RDH embedding method for color images

two error channels.

ρer,ex =
Cov(er, ex)

σer σex
(4.8)

Next, the secret data is embedded into the remaining channels’ sub-images using Eq. 4.4,
and the final marked image (I ′) after synthesis of the cross set and dot set images in a channel-
wise manner is obtained. The detailed algorithm demonstrating step-by-step approach of the
proposed method is provided as Algorithm 1. It should be noted that, in order to focus primarily
on our novel contributions, we have omitted details about auxiliary information and the location
map, which are largely similar to those in [26].

Fig. 4.4: Workflow of the proposed extraction and recovery method for color images

4.2.3 Extraction and Recovery

The extraction of secret data and recovery of the original image from the marked image (I ′)
is the inverse of the embedding procedure and is depicted in Fig. 4.4. At first, similar to the
embedding procedure, the reference channel I ′r is pre-processed and transformed to get the
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Algorithm 1: Embedding ALgorithm

Input: IR, IG, IB (RGB channels), b (Secret data) Output: Embedded color image I ′

Steps:

1. Compute joint entropy H(IR, IG), H(IR, IB), and H(IG, IB) between channels using
Eq. 4.3.

2. Select Reference channel Ir such that H(Ir, Ix1) and H(Ir, Ix2) < H(Ix1 , Ix2).

3. Partition Ir into IrD and IrC as shown in Fig. 4.1

4. Predict ÎrD ← SACNNP (IrC)

5. Calculate PE: erD = IrD − ÎrD.

6. Obtain Expanded error Er
D using Eq. 4.5

7. Embedding: I ′D
r = ÎrD + Er

D

8. Repeat steps 3–7 with I ′D
r as input and embedded cross I ′C

r as output

9. Obtain final Embedded Reference channel: I ′r = I ′D
r + I ′C

r

10. For the two non-reference channels x1 and x2, repeat steps 3–9 to obtain I ′x1 and I ′x2 ,
with adjustment of prediction errors exi

c and exi
D in step 5 using Eqs. 4.6 and 4.7

11. Finally, the marked color image is obtained as I ′ = I ′r + I ′x1 + I ′x2 .

cross I ′r
C and dot I ′r

D sub-images as in Fig. 4.1. Next, the proposed SA-CNNP is employed on
I

′r
D to get the predicted sub-image ÎrC and the errors between the original and predicted sub-

images are calculated as Er
C = I

′r
C − ÎrC . Subsequently, to reverse the expansion effect produced

during the embedding procedure, the errors Er
C are modified to generate erC and extract the

secret data (b) using Eq. 4.9.As given in Eq. 4.9, the conditions Ei,j = Tp and Ei,j = Tn

correspond to the embedding rule (ei,j ± b) described in Eq. 4.9, where no change in the pixel
value indicates that b = 0. In contrast, if Ei,j = Tp+1 or Ei,j = Tn−1, it implies that b = 1, as
Tp and Tn were shifted by one during the embedding process in accordance with Equation (5).
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(b, ei,j) =



(–, Ei,j + 1) if Ei,j < Tn − 1

(1, Ei,j + 1) if Ei,j = Tn − 1

(0, Ei,j) if Ei,j = Tn

(–, Ei,j) if Tn < Ei,j < Tp

(0, Ei,j) if Ei,j = Tp

(1, Ei,j − 1) if Ei,j = Tp + 1

(–, Ei,j − 1) if Ei,j > Tp + 1

(4.9)

Finally, the original image IrC is recovered from the marked sub-image using Eq. 4.10. Next,
the same process is repeated for I ′r

D to extract the secret data and recover the sub-image IrD.

Ii,j = Îi,j + ei,j (4.10)

Thus, a recovered reference image Ir which is synthesis of IrD and IrC , along with two error
matrices (erD, e

r
C) are obtained.

The extraction and recovery procedure for the remaining channels (Ix) is similar to that
of Ir except for the reference error adjustment introduced during the embedding. Similar to
the embedding procedure, the error matrices erD and erC , obtained during Ir recovery, serve as
reference errors for the remaining two channels’ extraction, and the probable PE at these two
channels are corrected using Eqs. 4.11 and 4.12, respectively.

exD = e
′x
D + erD (4.11)

exC = e
′x
C + erC (4.12)

Once the extraction for the two remaining channels is complete, the final recovered image (I)
is obtained by concatenation of the recovered images for the three channels R, G, and B.

4.3 Experimental Evaluation

This section empirically analyses the performance of the proposed predictor and our RDH
method for color images. First, we evaluate the prediction accuracy of the proposed SA-CNNP.
Next, the performance of the proposed RDH method is evaluated and compared with the state-
of-the-art methods. For this, two well-known data sets, SIPI [69] and Kodak [153], have been
considered as test images. At last, the security of the proposed method is evaluated.
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4.3.1 Performance Evaluation of the SA-CNNP

To gauge the prediction accuracy of the SA-CNNP, an average PEH is plotted as shown in
Fig.4.5 over a test set consisting of 32 gray-scale standard images, including 8 from the USC
SIPI dataset [69] and 24 from the Kodak dataset [153]. The SIPI images are standard grayscale
images with a resolution of 512 × 512 pixels. The Kodak images are color images with di-
mensions of either 512× 768 or 768× 512 pixels. For consistency in grayscale prediction error
analysis, the color images were converted to grayscale while retaining their original dimensions.

The PEH clearly shows that the proposed predictor, with 68533 occurrences, achieves the
highest peak at zero among all the existing predictors, such as CNNPEO [81], CNNP [80], DP
[30], and MEDP [31]. Additionally, the counts in adjacent bins such as -1 (58377), +1 (55150),
indicate highly accurate predictions. Moreover, 98% of the pixels are concentrated within the
range of [-2, 2]. In other words, the SA-CNNP increases the pixel concentration within the
range of [-2,2] by 13% and 20% compared to the best-performing existing predictors, CNNPEO
and CNNP, respectively. The overall PEH distribution shows that the majority of prediction
errors are tightly clustered around zero, highlighting the strong predictive performance and
generalization capability of the proposed method across both datasets.

Fig. 4.5: Average PEH comparison over gray-scale images from USC-SIPI and Kodak datasets

To further augment the analysis, a color image (Airplane) from the MS COCO dataset has
been used, and the prediction error histogram (PEH) comparison is presented in Fig. 4.6. The
proposed SA-CNNP, combined with the reference error adjustment strategy, achieves the high-
est frequency at zero prediction error, showing an improvement of approximately 110% over
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Fig. 4.6: PEH comparison for color image (Airplane) from MS-COCO dataset

Table 4.1: Comparison of Average
Mean, Variance, and MSE on USC-
SIPI dataset

Metric Methods
[145] [81] [80] Proposed

Mean 3.29 3.31 4.21 2.99
Variance 27.56 20.29 32.63 19.27

MSE 31.86 34.24 52.47 29.44

the best-performing existing method. The error distribution remains tightly concentrated around
zero, indicating more accurate and stable predictions.

To further evaluate the effectiveness of the proposed SA-CNNP, we analyzed quality pa-
rameters such as mean, variance, and mean square error (MSE) of the absolute prediction errors
(PEs) and compared them with state-of-the-art (SOTA) predictors for the standard SIPI test im-
ages [69]. As shown in Table 4.1, the proposed SA-CNNP achieves the lowest average mean of
2.99, indicating that the PEs generated by the SA-CNNP are significantly smaller compared to
those produced by SOTA methods. Additionally, the average variance of 19.27 suggests that the
PEs are tightly clustered, reflecting minimal volatility in prediction performance. Furthermore,
the MSE, which measures the squared difference between actual and predicted values, confirms
the high prediction accuracy of the proposed predictor. These results underscore the superior
performance of the SA-CNNP in comparison to existing SOTA methods.
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Table 4.2: Average PSNR (dB) comparison over 32 test images at different payloads, highlighting the
performance of the proposed method and its ablation setups in relation to existing approaches.

Methods Payload (bits)
10,000 20,000 30,000 40,000 50,000

RP [26] 57.0 54.1 51.1 50.9 48.6
CNNP [80] 58.4 55.1 52.9 51.2 49.8

CNNPEO [81] 61.17 57.56 55.43 53.84 52.24
NCNN [145] 61.48 57.86 55.79 54.13 52.73

UCANet [149] 58.25 55.75 54.02 52.07 50.21
Ablation Setup-1 60.27 56.42 55.27 54.07 52.58
Ablation Setup-2 61.95 57.69 55.86 54.14 52.90

Proposed 62.68 58.72 56.18 54.66 53.84

Furthermore, the embedding performance of the classical prediction-based RDH method
[26] was evaluated by integrating it with the SA-CNNP and comparing against existing pre-
dictors, such as RP [26], CNNP [80], CNNPEO [81], NCNN [145], and UCANet [149]. Us-
ing a comprehensive test set of 32 images comprising 8 SIPI [69] images and 24 Kodak im-
ages [153], Table 4.2 presents the average PSNR values at various payloads. The results in-
dicate that the classical RDH method, when combined with the proposed SA-CNNP, achieves
an average PSNR value of approximately 1.2 dB higher than when combined with the SOTA
predictors. This demonstrates the superior embedding performance of the SA-CNNP-enhanced
RDH method.

Table 4.3: Count of prediction errors before and after error adjustment with % change for Kodim09

Prediction Er(ReferenceE (Before Adjustment) E
′ (After Adjustment) Change (%)

Error (E) Channel) G R B R B R B
-2 11788 11807 12667 4165 6131 -64.72 -51.60
-1 34151 34733 38589 30888 38862 -11.07 0.71
0 119624 117187 114153 188519 177413 60.87 55.42
1 33817 35331 33186 32321 30696 -8.52 -7.50
2 11874 12103 12179 4144 5403 -65.76 -55.64

(a) Airplane (b) House (c) Splash

Fig. 4.7: PSNR comparison on SIPI color images (512× 512) across existing methods and the proposed
approach.

To study the impact of the average pooling layer and self-attention in the CNN predictor,
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an ablation study has been performed with two additional experimental setups in addition to
the proposed model architecture. The ablation study set-up 1 includes a CNN predictor, with
an average pooling layer added to it but without self-attention. Whereas, the ablation study
set-up 2 includes a self-attention-based CNN model, without an average pooling layer. The
results of the ablation study have been added in Table 4.2. The experimental results show that
the proposed SA-CNNP model outperforms the ablation study set-ups 1 and 2, as well as the
SOTA methods. Thus, it can be concluded that the proposed architecture effectively captures
a comprehensive feature set, encompassing both local and global features, which significantly
enhances prediction accuracy.

4.3.2 Performance Evaluation of the Proposed RDH Method

In this sub-section, we evaluate the efficacy of the proposed RDH scheme for color images. For
this, we first assess the performance of our error adjustment strategy using the ‘Kodim09’ color
image of size 512 × 512. As outlined in the proposed RDH method, the image is decomposed
into three separate channels (R, G, and B). The joint entropy values, calculated using Eq. 4.3,
are 10.88 for R-G, 11.50 for R-B, and 11.01 for G-B. Channel G, being common to the two
pairs with the lowest joint entropy values, is selected as the reference channel for subsequent
error adjustment.

The experimental results, presented in Table 4.3, show the count of PEs within the range
[-2, 2] for the three channels (R, G, and B) before and after performing the error adjustment as
per Eqs. 4.6 and 4.7. Before adjustment, the count of ‘0’ PEs is 1,17,187 for R, 119624 for G,
and 114153 for B. After performing the error adjustment, the count of ‘0’ PEs for channels R
and B increases to 188519 and 177,413, respectively, representing an enhancement of 61% and
55%.

To evaluate the embedding performance of the proposed RDH method for color images,
the PSNR achieved by the proposed RDH method is compared against the SOTA methods by
considering both SIPI and Kodak image datasets. For the wide range of embedding capacities,
Fig. 4.7 represents the PSNR comparison for the three standard SIPI images. Across all three
images, the proposed method consistently shows superior performance by maintaining higher
PSNR values at varying embedding capacity. Specifically, for the Airplane image, the proposed
method showcase remarkable improvement in embedding performance at low embedding ca-
pacity, while for the House image the proposed method demonstrate notable enhancment at
higher embedding capacity, indicating better image quality preservation across entire range of
embedding capacity.

Similarly, Fig. 4.8 illustrates the PSNR comparison for 24 Kodak images at an EC of
50,000 bits. The proposed method achieves higher PSNR values (except few cases having
low inter-channel correlation) compared to the best-known SOTA methods for most images,
demonstrating its generalizability. Security Analysis This sub-section evaluates the robustness
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Fig. 4.8: PSNR comparison for Kodak color images at EC of 50,000 bits

Fig. 4.9: RS steganalysis for kodim11

of the proposed method by employing RS steganalysis that classifies pixels of an image into
three categories: Regular (R+ and R-), Singular (S- and S+), and unusable pixel groups. Fig.
4.9 illustrates the steganalysis for the embedded green channel that utilizes error adjustment
while embedding. It is evident from the overlapping R+ and R- components, and S+ and S-
components that the proposed method is highly robust against the RS steganalysis attacks.

4.4 Summary

In this chapter, new RDH method for color images has been proposed, emphasizing substan-
tial innovation in the prediction component. The prediction employs a novel SA-CNNP, which
effectively captures both local characteristics and global context for enhanced prediction accu-
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racy. In addition, an error adjustment strategy is introduced to refine the PEH by leveraging
inter-channel dependencies. Experimental results show that the proposed predictor outperforms
existing SOTA predictors in terms of accuracy. When integrated with a classical RDH frame-
work, the proposed SA-CNNP achieves an average PSNR improvement of approximately 1.2
dB over leading predictors. The overall RDH method for color images consistently surpasses
SOTA techniques, highlighting its efficacy. While the proposed SA-CNNP achieves high pre-
diction accuracy, the embedding performance is limited by the traditional data hiding approach
utilising the traditional complexity calculation technique. The future research will focus on im-
proving the embedding performance by utilising deep learning predictors for local complexity
classification.
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CHAPTER 5

UMANET: A TWO-STAGE INTERPOLATION-BASED

REVERSIBLE DATA HIDING FRAMEWORK WITH

ATTENTION-ENHANCED PREDICTION

Interpolation-based reversible data hiding (RDH) techniques have recently attracted significant
attention due to their ability to enhance image resolution while ensuring secure data embedding.
However, the effectiveness of these methods heavily depends on the quality of the interpolated
cover images. Conventional interpolation techniques, typically based on linear models and lim-
ited local pixel contexts, often fail to generate high-quality cover images, thereby compromis-
ing the visual quality of the resulting stego images and limiting embedding capacity. To address
these limitations, this chapter introduces a novel hybrid interpolation framework that combines
bicubic interpolation with a deep learning-based predictor to construct a high-fidelity two-stage
interpolation mechanism. Central to this framework is a newly proposed predictor, termed
UMANeT, which leverages a broader contextual region for improved pixel prediction accu-
racy. By effectively capturing non-linear and long-range dependencies, UMANeT enhances
the overall image quality used for data embedding. Experimental results demonstrate that the
proposed method not only achieves superior embedding capacity but also generates cover and
stego images of significantly higher visual quality compared to existing interpolation-based
RDH techniques.

5.1 Introduction

Recently, interpolation-based RDH techniques [154–156] have gained significant attention as a
promising approach for enhancing both embedding capacity and visual quality in data hiding
applications. By leveraging interpolation, a low-resolution image is transformed into a high-
resolution version by estimating intermediate pixel values based on surrounding data. This
process not only improves image clarity but also provides additional embedding space without
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distorting the original content. Unlike conventional RDH methods that directly modify original
pixels, interpolation-based RDH selectively embeds SD in newly generated (non-reference)
pixels while preserving the original (reference) pixels sampled from the input image. This
strategy effectively mitigates visual distortions, significantly enhances embedding capacity, and
ensures the full reversibility of the cover image upon data extraction. As a result, the field has
witnessed significant advancements in recent years.

One of the earliest methods, Neighbor Mean Interpolation (NMI), introduced by Jung et
al. [37], partitions the image into 2 × 2 blocks, designating the first pixel as a reference and
predicting the remaining three. While simple and computationally efficient, NMI struggles to
capture complex image structures due to its limited contextual awareness. To address this limita-
tion, the Modified Neighbor Mean Interpolation (MNMI) method [156] extended the reference
area to four surrounding pixels and incorporated a more refined weighting scheme. In a sepa-
rate development, C.A. Hall [157] independently proposed Bicubic Interpolation [158], which
focuses on expanding the contextual neighborhood rather than relying on predefined reference
pixels. The Bicubic interpolation (BI) is an advanced version of bilinear interpolation [159]
that expands the calculation to 16 neighboring pixels captured by a 4 × 4 grid surrounding the
target pixel position. This modification improved prediction accuracy but remained constrained
by its reliance on linear interpolation, which is inadequate for handling intricate image details.
To overcome these shortcomings, Zhang et al. [160] introduced the Parabolic Interpolation (PI)
method, employing a non-linear approach by fitting a parabolic curve through three reference
points to predict two additional pixels. While PI enhanced adaptability to complex structures,
it also introduced higher computational costs. More recently, Quadratic Bezier Interpolation
(QBI), proposed by Hassan et al. [161], sought to balance accuracy and efficiency by trans-
forming the three-parameter PI model into a single-parameter system using Bezier curves. This
adaptation retained the benefits of non-linearity while reducing computational overhead.

Fig. 5.1: Framework of the proposed two-stage interpolation-based RDH scheme.

However, researchers have not explored the bicubic interpolation technique for implement-
ing RDH. We discovered that the bicubic Interpolation technique produces good-quality in-
terpolated images. However, it alone struggles in producing high-quality stego images as the
coverage of neighboring pixels captured by the method is still limited. On the other hand, with
its capability of calculating non-linear relationships between neighboring pixels, deep learning
techniques have proved themselves to be of wide use in various image processing tasks such
as image classification. Building upon the foundation of traditional prediction methods, re-
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cent research [80, 145, 149, 162, 163] has explored the integration of deep learning techniques
within RDH to further enhance image prediction and reconstruction. Hu et al. [80] introduced a
CNN-based predictor (CNNP) where the cover image is partitioned into two sub-images: cross
sub-image and dot sub-image, wherein each sub-image comprises half of the pixels available
at alternate locations with zero at the remaining positions. CNNP is then trained to predict
one sub-image from another. With the capabilities of calculating non-linear relationships be-
tween neighboring pixels, CNNP achieves higher prediction accuracy than the traditional SOTA
methods. Yang et al. [145] further improve the prediction accuracy of CNNP by partitioning
the image into four sub-images. With this partitioning scheme, for predicting the pixels of
one sub-image, pixels from the other three sub-images are available as neighboring pixels, thus
providing more context for prediction and hence improving prediction accuracy.

To summarize, the existing interpolation-based data hiding methods typically employ tra-
ditional interpolation techniques, such as NMI and MNMI, that do not provide a promising
resultant image as they lack adaptability. Similarly, the conventional deep learning based pre-
dictors being used in RDH cannot be directly applied to downsampled images, as the reduced
number of pixels provides insufficient contextual information, leading to degraded reconstruc-
tion quality. To address these limitations, this chapter presents two main innovations. First, a
two-stage framework is introduced in which bicubic interpolation is used to predict the center
pixel in each block, providing an initial yet consistent estimation for reconstruction. Bicubic
interpolation was particularly chosen over other techniques such as advanced edge-aware inter-
polation methods as it offers a controlled input that avoids introducing high-frequency artifacts.
Second, building on this initial prediction, a novel deep learning model integrating channel at-
tention (CA) and multi-head attention (MHA) in parallel [151] is proposed to simultaneously
capture local and global dependencies. This enables the model to adaptively focus on the most
relevant regions, refining the interpolation output and thereby enhancing reconstruction quality,
robustness, and generalization. The key contributions of this work are as follows:

• Two-Stage Interpolation-Based RDH Technique : A sequential framework integrating
bicubic interpolation with a novel deep learning–based predictor. The first stage applies
bicubic interpolation to specific target pixels, forming an intermediate image that encodes
crucial structural details. This intermediate output provides enhanced contextual cues for
the second stage, where the predictor refines the interpolated result to produce a high-
quality reconstruction.

• UMANeT: A Multi-Head Attention-Enhanced Predictor: The proposed UMANeT
is a U-Net inspired architecture that integrates channel attention (CA) and multi-head
attention (MHA) in parallel. Unlike conventional deep learning based predictors that
either limit global spatial context or assign equal importance to all feature maps, CA
prioritizes the most informative ones while suppressing less relevant features, and MHA
captures long-range spatial relationships across the entire feature map. Combining these
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complementary dependencies yields refined features that improve prediction accuracy for
reconstructing the complete interpolated image.

• Improved Image Quality and Embedding Capacity: The proposed two-stage strategy
with UMANeT significantly improves the quality of interpolated images, enabling high
embedding capacity while maintaining superior visual quality. Extensive experiments on
diverse datasets (USC-SIPI, Bossbase, and BOWS-2) validate the method’s superiority
and broad applicability across varied image characteristics. In particular, the proposed
method achieves an average PSNR of 33.51 dB across BossBase and BOWS-2 datasets,
representing a 4.29% gain over the best-performing state-of-the-art method.

Fig. 5.2: Illustrative example to showcase the working of the proposed interpolation technique
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5.2 Proposed Method

In this section, we present a novel interpolation-based RDH technique that introduces an inno-
vative two-stage interpolation approach. This method effectively integrates bicubic interpola-
tion with a newly developed deep learning-based predictor. The proposed RDH technique is
designed to achieve a high embedding capacity while maintaining superior image quality, en-
suring that the original image can be perfectly restored, thus preserving its reversibility. Fig.
5.1 outlines the basic structure of the proposed RDH technique, where the first stage utilizes
bicubic interpolation to create baseline input for the second stage. The second stage utilizes
a novel multi-head attention-based U-Net predictor that, when combined with bicubic interpo-
lation, produces a high-quality interpolated image. Fig. 5.2 illustrates an example framework
of the proposed RDH technique that comprises three primary components: 1. Interpolation, 2.
Data embedding, and 3. Data extraction, that are discussed in detail in section 5.2.1, section
5.2.2, and section 5.2.3, respectively.

5.2.1 Two-Stage Interpolation

In interpolation-based RDH techniques, the high quality of the interpolated image is imperative
to achieve high embedding performance. For this, a novel two-stage image interpolation method
is introduced, which uses Bicubic interpolation [158] at the first stage and a deep learning pre-
dictor, namely UMANET, for the second stage. A schematic representation of the proposed
interpolation-based RDH technique is illustrated in Fig. 5.2. The process begins with an origi-
nal image (OI) of size m × n, composed of pixels denoted as Pi. This image is downsampled
to produce a reduced image (DS) of size m

2
× n

2
. In Fig. 5.2, the pixels P1, P3, P9, and P11

are shown in green. These pixels are retained from the original image and serve as reference
pixels, while the remaining positions are designated as non-reference pixels. The data is em-
bedded in the cover image (CI) at non-reference pixel positions only, leaving the reference
pixels unaltered. This is important to losslessly recover the OI during the extraction procedure.
The proposed two-stage approach of the interpolation and the training details of the proposed
predictor are discussed in the following subsections.

Fig. 5.3: Architectural design of UMANet: Conv block indicates a convolutional block with c output
channels, a specified kernel size, stride s, and a ReLU activation layer.
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Fig. 5.4: Schematic representation of MHCA architecture featuring channel attention and multi-head
attention mechanism.

Fig. 5.5: Illustration of image division into cross and dot sub-images.

Bicubic Interpolation

In the first stage of the proposed framework, Bicubic Interpolation [158] is applied to the down-
sampled image DS to estimate the pixels intensities at selective positions only, such as P6,
P8, P14, P16 etc. (highlighted in blue in Fig. 5.2). This strategic estimation ensures that the
image transforms into a checkerboard pattern, where empty positions correspond to white pix-
els, while reference and interpolated pixels (via Bicubic Interpolation) are represented as black
pixels. This structured arrangement serves as a crucial pre-processing step, enabling the subse-
quent UMANeT predictor to accurately infer the intensities of white pixels in the checkerboard
layout.

The Bicubic interpolation operates by performing cubic interpolation along both horizontal
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and vertical axes within a 4× 4 neighborhood of reference pixels, as defined by Eq. 5.1

f(x, y) =
2∑

i=−1

2∑
j=−1

pi,j · w(x− i) · w(y − j) (5.1)

where f(x, y) represents the interpolated intensity at location (x, y). pi,j represents pixels
intensity of the reference pixel at position (i, j) within the 4×4 grid. w(x− i) and w(y− j) are
the weighting factors that are dependent on the distance of pixel pi,j from the location (x, y).

Following this interpolation step, the resultant black sub-image, containing all alternate
pixels, is obtained. This sub-image subsequently serves as the input to the UMANet predictor,
which further refines the pixel estimations and enhances reconstruction accuracy.

UMANet predictor

In this sub-section, the proposed U-Net-like network with multi-head attention, namely UMANeT,
is discussed. The UMANet is a predictor that is employed by the proposed method at the second
stage of interpolation to estimate the remaining (white location) values of the image. As shown
in Fig. 5.3, the UMANet consists of a 3-layer architecture that comprises a feature extraction
module, a feature fusion module, and an image reconstruction module. Convolution layers in
each block are represented in conv k − s − p − c format, where k represents Kernel size, s
represents Stride, p represents the amount of padding, and c represents the number of output
channels. The feature extraction module consists of a 3-stage encoder (E1 − E3) and a 2-stage
decoder (D1, D2). Each encoder consists of standard convolution layers with the depth of fea-
ture maps controlled by the number of output channels as 64 in E1, and 128 in E2 as well as E3.
A convolution layer with stride 2 is used in E2 and E3 to reduce the size of feature maps without
discarding any information. In the proposed architecture, instead of the commonly used chan-
nel adaptive attention module, a multi-head attention-based channel adaptive module (MHCA)
is utilized to concatenate the output of encoders with the output of respective decoders. While
the role of channel attention is to emphasize selective feature channels based on their relevance,
integrating multi-head attention into channel attention improves the model’s performance by in-
troducing pixel-level spatial attention within each channel, enabling the model to capture finer
details.

Fig. 5.4 presents the architecture of the proposed MHCA that integrates channel attention
(CA) with multi-head attention (MH). At first, the input features are processed and concate-
nated along the channel dimensions for parallel processing in the MH and CA blocks. In the
CA block, a pooling layer is applied to the features to obtain a feature vector that captures global
context. The feature vector is passed through convolutional layers to introduce non-linearity and
learn channel dependencies, and then element-wise multiplication is performed to compute re-
fined weights. The refined weights are then passed through the Sigmoid function to normalize
the weights in the range of 0 to 1, which represents the importance of each channel. The output
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of the Sigmoid function is then combined with input features via skip connection to refine the
features while balancing the impact of channel attention. The final feature map output of the
CA is of the same shape as that of the input feature maps but represents enhanced channel-wise
focus. The MHCA leverages the parallel operation of CA and MH operations, wherein CA
focuses on channel dependencies and MH focuses on spatial dependencies. As shown in Fig.
5.4, the MH attention consists of 8 parallelly connected attention blocks, each focusing on the
different regions of the input feature map. Using query (Q), key (K), and Value (V ) vectors,
attention weights of the feature map are calculated that signify which spatial regions are more
crucial for the prediction. Diverse spatial patterns learned by each head are concatenated to
create a refined, richer spatial pattern. Finally, concatenating the learned channel-level depen-
dencies (from CA) and spatial-level dependencies (from MH) enables the model to calculate a
more robust refined feature map.

The UMANet predictor is trained to predict the dot sub-image (the remaining half of the
image) from the cross sub-image. The pixels corresponding to the dot sub-image are represented
with pink colour in the figure. 5.2. The two sub-images, cross and dot, are combined to generate
a complete interpolated image, also known as the cover image (CI).

UMANet training details

After constructing the network structure of the UMANet predictor, the network is trained as
follows. The training methodology encompasses several key components:

• Runtime Environment: The UMANet predictor was implemented on an Intel Core i5 CPU
(2.40GHz) alongside 16 GB of RAM with the help of the NVIDIA Tesla A100 GPU on
Colab Pro.

• Dataset preparation and Pre-processing: A total of 3000 images are randomly selected
from the BOWS2 dataset to construct the training set, complemented by a validation set
of 600 images. To ensure consistency, all images underwent pre-processing to convert
them to grayscale images and were standardized to dimensions of 512× 512 pixels. Each
image is then divided into cross and dot sub-images as presented in Fig. 5.5.

• Training Implementation: The model is trained to predict the dot sub-image from the
cross sub-image. The training strategy utilizes the back-propagation algorithm to opti-
mize the network parameters. The optimization process leverages the Adam optimizer
[164] with a weight decay (λ) set to 10−3. During the training process, the following loss
function is used.

loss =
1

N

N∑
i=1

(ŷi − yi)
2 + λ∥ω∥2 (5.2)

where N is the batch size, set to 4, and yi is the ith original image, ŷi is the corresponding
predicted image, and ω represents the weights in the network.
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5.2.2 Data Embedding

The cover image (CI) obtained after performing the proposed integrated interpolation steps
comprises (m× n)/4 reference pixels and (3×m× n)/4 non-reference pixels. To ensure the
reversibility of the image during data extraction, the reference pixels are kept unaltered while
performing data embedding in the non-reference pixels. For data embedding, the embedding
strategy proposed in [165] has been employed to ensure high-fidelity. As a first step, non-
reference pixels are sorted based on increasing local complexity. This complexity is quantified
by computing the variance of neighboring reference pixels located within a defined circular
radius, as outlined in [165]. The variance is calculated using the mean square error function, as
shown in Eq.5.3.

V ar(i, j) = 1
N

∑(
DS(x, y)− 1

N

∑
DS(x, y)

)2 (5.3)

where DS(x, y) denotes the set of reference pixels derived from the downsampled image
that fall within the radius r from the target pixel at location (i, j), and N is the number of such
pixels. Next, the deviation dr of each non-reference pixel is calculated from its neighbouring
reference pixels as defined in Eq.5.4,

dr(i, j) =



max (|DS(i+1, j)−D|, |DS(i−1, j)−D|)

; if i=2:2:m-3, j=3:2:n-3

max (|DS(i, j−1)−D|, |DS(i, j+1)−D|)

; if i=3:2:m-3, j=2:2:n-2

max

 |DS(i−1, j−1)−D|, |DS(i−1, j+1)−D|,

|DS(i+1, j−1)−D|, |DS(i+1, j+1)−D|


; if i=2:2:m-2, j=2:2:n-2

(5.4)

Here, D = DS(i, j) denotes the non-reference pixel located at index (i, j). The format
a : s : b denotes a range where the index starts at a, increments by a step size s, and continues
up to b. Based on the deviation value dr, the number of bits (Cnr) that can be embedded in each
non-reference pixel is calculated using Eq. 5.5.

Cnr(i, j) =

⌈log2(T )⌉ if dr ≤ T,

⌈log2(dr)⌉ otherwise
(5.5)

where, T is the minimum threshold that defines the minimum number of bits to be embedded
in a pixel.

Post sorting the non-reference pixels in the order of their increasing complexity, (Cnr(i, j))
bits are embedded in each non-reference pixel at location (i, j) to obtain stego image (SI).
To ensure the minimum distortion due to embedding, the direction of pixel modification is
dynamically chosen depending on the direction difference between the original pixel in OI and
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the interpolated pixel in CI. An exemplary illustration of the data embedding process for the
pixel at position (2, 2) is depicted in Fig. 5.2. For the target pixel P6 in the cover image, and
with a circular radius of r = 2, the reference pixels P1, P3, P9, and P11 are located within the
defined neighborhood. Based on a threshold value of T = 8, the number of bits to be embedded
is determined using Eq. 5.5, resulting in Cnr = 3. Subsequently, three bits from the secret data
sequence (010)2 are embedded into P6, producing the modified stego pixel value P ′

6 = 162.

(a) Baboon (b) Couple (c) Lena (d) Boat (e) Elaine (f) Pepper

Fig. 5.6: Six standard images from the USC-SIPI dataset.

5.2.3 Data Extraction and Recovery

The Steps for data extraction as well as recovery of the cover image are similar to the steps
performed during interpolation and data embedding. As shown in Fig.5.2, downsampling is
performed on the SI received at the receiver end. The downsampling is similar to what was
performed at the transmitter where the CI of size m × n, which is again represented by pixels
Pi, is downsampled into an image (DS) of size m

2
× n

2
. Similar to the transmitter end, the

reference pixels (represented in green) are retained in the DS image. Next, Bicubic interpolation
is applied to the DS image to obtain the cross image. The cross image is provided as an input
to the proposed UMANet predictor, which provides a predicted Dot image at the output. After
combining the cross and dot images, the CI, which is identical to the CI at the transmitter
end, is obtained at the receiver. Next, the complexity of the non-reference pixels is calculated
using Eq.5.3 and the pixels are sorted in increasing order of their complexity. Subsequently,
the number of bits (Cnr) embedded in each non-reference pixel is determined using Eq. 5.5.
Based on the computed Cnr values, the difference between the corresponding non-reference
pixels of the CI and the SI is calculated. This difference is then represented using ‘Cnr’ binary
bits, which are used to extract the embedded secret data (SD) An illustrative example of the
extraction procedure for a pixel located at position (2, 2) is shown in Fig. 5.2. In this example,
the received stego pixel is P ′

6 = 162. Following the same interpolation strategy used at the
embedding end, the corresponding interpolated pixel value is determined as P6 = 160, and the
number of embedded bits is calculated to be Cnr = 3. Consequently, the three-bit secret data
can be extracted by computing the difference between the stego and interpolated pixel values,
yielding SD = (P ′

6 − P6) = (2)10 = (010)2.
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5.3 Experimental Evaluation

This section empirically analyses the performance of the proposed UMANet-driven interpola-
tion against distinct interpolation approaches [37, 155, 156, 165, 166] and Interpolation-based
RDH methods [154, 165, 167–169]. The UMANet predictor was implemented on an Intel Core
i5 CPU (2.40GHz) alongside 16 GB of RAM with the help of the NVIDIA Tesla A100 GPU on
Colab Pro. To ensure the comprehensive performance evaluation of the proposed predictor, a
diverse dataset comprising six images namely ‘Lena’, ‘Baboon’, ‘Couple’, ‘Boat’, ‘Elaine’, and
‘Pepper’, as illustrated in Fig.5.6, exhibiting distinct textural complexity and complex patterns,
is selected from the SIPI database [69]. To validate the superiority of the UMANet predic-
tor, the performance comparison is performed against five distinct SOTA methods: NMI [37],
INP [155], ENMI [166], MNMI [156], and CPI [165]. The experimental analysis has been
divided into two sections. Section 5.3.1 evaluates the performance of the proposed UMANet
predictor by evaluating the quality of interpolated images (CI) against known SOTA methods.
However, Section 5.3.2 evaluates the efficacy of the UMANet predictor by comparing its em-
bedding performance against that of the SOTA methods. .

Table 5.1: PSNR comparison between original and cover images across various interpolation techniques
on the USC-SIPI dataset, including % gain achieved by the proposed method over the best-performing
SOTA method.

Image NMI [37] INP [155] ENMI [166] MNMI [156] CPI [165] Proposed % Gain over the Best SOTA method
Lena 31.80 30.70 33.44 31.97 32.83 35.23 5.37

Peppers 29.88 28.81 31.47 30.48 31.31 32.19 2.28
Baboon 22.22 21.71 22.67 22.43 22.95 23.41 3.15
Elaine 30.99 30.33 31.80 31.61 31.75 31.89 0.28
Couple 25.67 25.02 26.55 26.05 26.93 27.96 5.32
Average 28.12 27.32 29.18 28.46 29.09 29.97 2.71

5.3.1 Effectiveness of UMANet Predictor based two-stage Interpolation
Method

To achieve efficient embedding performance in an Interpolation-based RDH method, it is imper-
ative to achieve a high-quality cover image during the interpolation stage. Peak Signal-to-Noise
Ratio (PSNR), which serves as the primary metric for measuring the quality of an output image
against a target image, is utilized to gauge the performance of the proposed UMANet predic-
tor as an interpolation method. Table 5.1 represents the PSNR comparison of the obtained CI
against the OI, achieved by the proposed method against the SOTA methods for the six standard
images. It is evident from Table 5.1 that, among all the SOTA methods, the proposed UMANet
predictor achieves the highest PSNR consistently for all six standard images [69].

Empirical results show that, for ‘Lena’ and ‘Couple’ images, the proposed method achieves
approximately 2 dB improvement in PSNR compared to best-performing SOTA methods, which
is equivalent to % gain of more than 5% for both the images against the best-performing SOTA
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Table 5.2: PSNR comparison of various interpolation methods across BOSSBase and BOWS-2 image
datasets, including % gain achieved by the proposed method over the best-performing SOTA method.

Image Mandal et al. Jung et al. Lee et al. Chang et al. Malik et al. Zhong et al. Proposed % Gain over Best
[170] [37] [155] [166] [171] [172] – SOTA Method

BossBase [71] 26.95 30.58 29.73 31.65 30.65 32.72 33.13 1.25
BOWS-2 [173] 27.54 31.17 30.36 32.20 31.24 31.55 33.92 6.90

Average 27.25 30.88 30.04 31.92 30.95 32.13 33.51 4.29

Table 5.3: Performance comparison of maximum EC, bits-per-pixel (bpp), and PSNR for the proposed
method and various SOTA methods across standard test images from the USC-SIPI dataset.

Images Metrics Jung et al. [37] Lee et al. [155] Xiong et al. [167] Hassan et al. [154] Chen et al. [168] Bai et al. [169] Zhang et al. [165] Proposed
Lena EC (bits) 1,99,091 3,45,446 3,19,712 3,85,680 3,05,644 5,85,225 6,22,812 6,51,113

ER (bpp) 0.759 1.317 1.219 1.471 1.165 2.232 2.375 2.483
PSNR (dB) 31.14 29.53 32.99 29.68 34.87 29.94 34.36 35.88

Baboon EC(bits) 4,37,311 6,16,981 5,14,112 6,79,982 5,61,306 5,85,225 7,21,443 8,38,394
ER (bpp) 1.668 2.353 1.961 2.593 2.141 2.232 2.752 3.198
PSNR (dB) 21.91 21.18 22.53 21.27 24.08 22.02 24.84 31.52

Boat EC(bits) 2,57,201 4,12,668 3,68,284 4,74,606 3,77,764 5,85,225 6,43,888 7,00,655
ER (bpp) 0.981 1.574 1.404 1.810 1.441 2.232 2.456 2.672
PSNR (dB) 27.71 26.49 28.86 26.39 32.24 26.88 30.92 34.08

Elaine EC(bits) 2,34,020 3,83,043 3,38,430 4,43,813 3,55,971 5,85,225 6,12,120 6,61,582
ER (bpp) 0.892 1.461 1.291 1.693 1.357 2.232 2.335 2.523
PSNR (dB) 30.66 29.75 31.58 29.88 32.88 29.99 33.69 34.02

Peppers EC(bits) 1,96,094 3,47,610 3,13,117 3,90,295 3,07,957 5,85,225 6,21,170 6,52,981
ER (bpp) 0.748 1.326 1.194 1.488 1.174 2.232 2.369 2.490
PSNR (dB) 29.76 28.63 31.14 28.78 33.35 28.55 33.40 35.44

Couple EC(bits) 2,25,338 3,75,348 3,47,097 4,32,475 3,38,031 5,85,225 6,35,743 6,84,869
ER (bpp) 0.859 1.431 1.324 1.649 1.289 2.232 2.425 2.612
PSNR (dB) 25.87 25.46 26.42 25.04 28.04 25.34 28.57 34.71

method. Overall, when evaluating the performance over six images, the average gain achieved
by the proposed method, in terms of PSNR, is 2% more than the average of the PSNR achieved
by the best-performing SOTA method.

To assess the robustness of the proposed predictor and demonstrate the effectiveness of
the interpolation scheme across diverse scenarios, performance has been evaluated on multiple
benchmark datasets. Table 5.2 presents the PSNR comparison between the proposed interpo-
lation approach and various SOTA methods on two widely used datasets: BossBase [71] and
BOWS-2 [173], both of which consist of a large and diverse collection of images. The results
clearly indicate that the proposed method consistently outperforms existing techniques, achiev-
ing an average PSNR improvement exceeding 4% compared to the best-performing SOTA al-
ternatives.

5.3.2 Analyzing the Embedding Performance of two-stage Interpolation
Method

To demonstrate the superiority of the proposed UMANet predictor-based two-stage Interpo-
lation methodology, we performed a comprehensive comparative analysis against six SOTA
methods. The performance metrics primarily focused on EC as a quantitative measure of secret
data concealment efficiency, and PSNR as a measure of visual quality. This performance differ-
ential tested across six standard benchmark images [69] is visualized through the EC trajectory
illustrated in Fig. 5.7. As evident from Fig. 5.7, the proposed method demonstrates remarkable
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Fig. 5.7: Comparative analysis of maximum EC on the USC-SIPI image dataset, including the proposed
method and SOTA methods.

embedding performance across all test images. Further, Table 5.3 represents the maximum EC
and corresponding PSNR achieved by the proposed as well as the SOTA Interpolation-based
RDH methods. For the Lena image, the method achieves an embedding capacity of 651,113
bits, representing a significant improvement of 4.54% compared to [165]. Similarly, for the
Baboon image, our method reaches an exceptional capacity of 838, 394 bits, marking a 16.21%

increase over [165]. The visual quality metrics, measured through PSNR, show equally impres-
sive results. The proposed method consistently maintains superior image fidelity across all test
images. For the Lena image, achieving a PSNR of 35.88 dB, representing a 4.4% improvement
over [165]. The Couple image achieves a PSNR of 34.71 dB, marking a substantial 21.48% im-
provement compared to [165]. As evident from the Table 5.3, the empirical results demonstrate
that the proposed methodology consistently outperforms SOTA methods [154, 165, 167–169]
across all test images. On average, our method achieves an 8.42% improvement in EC and an
11.67% enhancement in PSNR values. The most notable improvements are observed in the
Baboon image, with a 16.21% increase in capacity and a 26.87% enhancement in visual qual-
ity, highlighting the robust performance of our approach across varying image characteristics.
These quantitative metrics definitively establish that our method achieves superior performance
in both aspects of RDH schemes - maintaining exceptional visual quality while achieving sig-
nificantly higher EC compared to contemporary approaches.

Fig. 5.8 represents the PSNR comparison of stego images obtained by the SOTA meth-
ods and the proposed method for the six SIPI images, at the distinct level of EC ranging from
0.1 × 105 bits to 6 × 105 bits. As evident from fig. 5.8, in comparison to the well-known
SOTA methods, the proposed method showcases superior performance at all embedding capac-
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(a) Baboon (b) Couple

(c) Lena (d) Boat

(e) Elaine (f) Pepper

Fig. 5.8: Evaluation of PSNR performance across varying EC for the proposed method and SOTA meth-
ods on USC-SIPI standard images.

ities across all six images. For the Baboon image, the proposed method achieves a PSNR of
54.17 dB at the EC of 104 bits, which is a 2.2% improvement over the best-performing SOTA
method [165]. The widening of the gap with the increase of EC represents that the embed-
ding performance is sustainable at all EC and even improves at higher EC in comparison to
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Fig. 5.9: Comparative analysis of PSNR versus embedding rate (bpp) on BOWS-2, contrasting the
proposed method with SOTA methods.

the SOTA methods. For the ‘Couple’ image, the proposed method witnesses drastic improve-
ment over SOTA methods, especially at the lower ECs. The PSNR (54.4 dB) achieved by the
proposed method at EC of 104 bits is 47% higher than the best-performing SOTA method and
67.4% higher than the average PSNR obtained by the 5 SOTA methods. For most of the images,
the embedding performance achieved by the proposed method at lower EC is superior to the
SOTA methods, with performance enhancing progressively with increasing EC. These results
indicate that the proposed approach not only achieves high EC but also effectively optimizes
the trade-off between embedding capacity and visual quality.

To evaluate the embedding performance of the UMANet predictor over diverse character-
istic images, the chapter studies its performance over another popular database, Bows-2 [173],
with 50 images randomly selected for the analysis. Fig. 5.9 represents the comparative analysis
of average PSNR achieved by various interpolation-based techniques at different embedding
rates. It is evident from the Fig. 5.9 that the proposed method achieves superior PSNR in com-
parison to all the SOTA methods, which further improves at higher embedding rates (ER). The
maximum average EC achieved by the proposed method over the Bows-2 database is 2.47 bpp,
which is the highest among all the well-known interpolation-based SOTA methods. These re-
sults highlight the superiority of the proposed UMANet predictor-based two-stage interpolation
methodology.

5.4 Summary

In this chapter, we proposed a novel predictor, UMANeT, which integrates the global con-
text modeling capabilities of multi-head attention into a U-Net-like deep learning architec-
ture. Building on this, we introduced a two-stage interpolation-based reversible data hiding
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framework that combines traditional bicubic interpolation with the UMANeT predictor. This
integrated approach enhances the quality of the interpolated cover images, which directly con-
tributes to improved data embedding performance. Experimental evaluations demonstrate that
the proposed method outperforms existing state-of-the-art techniques, achieving both higher
embedding capacity and superior visual quality of the stego images.
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CHAPTER 6

SCAM-NET: SPATIAL-CHANNEL ATTENTION

MULTI-SCALE NETWORK FOR REVERSIBLE DATA

HIDING IN ENCRYPTED IMAGES

The rapid pace of digitization, coupled with the widespread use of cloud storage, has signifi-
cantly increased data transmission over networks, raising serious concerns about security and
confidentiality. This is mainly because digitization converts records into formats that can be
easily accessed or stolen if unprotected, while cloud storage keeps data online, exposing it to
potential cyber-attacks from anywhere. These combined factors amplify the risk of unautho-
rized access, underscoring the need for stronger protective measures. To address this, this chap-
ter introduces SCAM-Net, a Spatial-Channel Attention Multi-Scale Network, within a RDHEI
method. SCAM-Net strengthens security by using spatial attention to highlight key image re-
gions and channel attention to refine features across multiple scales, boosting the prediction
precision. This heightened accuracy, in turn, improves data embedding effectiveness, ensur-
ing robust concealment within encrypted images. Experimental results show that the proposed
method achieves the highest embedding capacity for most of the USC-SIPI images, surpassing
the best-performing SOTA method by 7.4%. Our proposed method not only exhibits supe-
rior performance across diverse datasets (USC-SIPI and BOWS-2) but also achieves a notable
enhancement in embedding performance (approximately 66%) over medical images randomly
chosen from The Cancer Imaging Archive TCIA dataset.

6.1 Introduction

The traditional RDH techniques struggle with a critical challenge in preserving the confidential-
ity of the cover image, which often remains exposed in its plain form. This becomes crucial in
applications, such as military and healthcare, where the images themselves are of primary con-
cern and need to be protected from unauthorized access. To overcome this vulnerability,RDHEI
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was introduced to enhance confidentiality and privacy by first encrypting the cover images and
then allowing embedding in these encrypted images. This not only protects the secret data but
also keeps the cover media confidential. In recent years, RDHEI has gained significant traction
due to its widespread applicability, particularly in cloud security [174, 175].

Primarily, RDHEI methods are distinguished into two key divisions based on their em-
bedding approach: VRAE [176] and RRBE [177]. VRAE methods entail initially encrypting
the original image and subsequently assigning aside space for embedding. In contrast, RRBE
techniques employ an alternative strategy by initially exploiting the natural image correlations
through pre-processing, thereby reserving space for embedding before the image undergoes en-
cryption. Consequently, spatial dependencies within natural images are efficiently exploited,
allowing these methods to achieve high-capacity data embedding.

Ma et al. [178] introduced one of the earliest RRBE-based RDHEI methods, pre-processing
the image usingHS to create room for embedding, where the first three Least Significant Bits
(LSBs) are shifted between regions, achieving an Embedding Rate (ER) of up to 0.5 bpp. How-
ever, this method does not ensure perfect reconstruction of the original image. Puteaux et
al. [87] pioneered the first PE driven RDHEI method, utilizing the MED to calculate PEs and
embed data in the MSBs of image pixels. While this approach achieves an average ER of ap-
proximately 1 bpp, reconstructing the original image necessitates identifying non-embeddable
Most Significant Bits (MSBs) through an 8-bit flag, potentially compromising data restoration.
Building upon the work of [87],

Yin et al. [34] introduced an innovative methodology that first utilizes the MED to approxi-
mate pixel values and subsequently performs bit-level evaluations to derive PEs, which are then
compressed via Huffman encoding to allocate additional embedding space. Gao et al. [179]
employed multilinear regression for pixel prediction and managed the absolute PEs via a dual-
level label-map approach. Although accurate PEs can enhance EC, the regression technique
substantially extends the computation time.

Most of these method target to improve embedding performance by improving the predic-
tion performance, however, the prediction accuracy remains limited due to limitation of linear
calculation. To improve upon this, leveraging the non-linear capability of CNN, Ping et al. [94]
presented an asymmetric CNN-based predictor with a two-stage embedding model that lever-
ages neighboring pixel correlations, enabling flexible and independent data embedding and
image recovery through an innovative prediction technique. However, the overall prediction
performance remains limited as the number of neighbouring pixels considered for prediction
remains limited. In this chapter, we propose a novel predictor that leverages multi-scale feature
extraction, focusing on larger feature set and further utilizing attention mechanism to refine the
feature maps.

The key contributions of the chapter include the followings:

• A novel SCAM-Net predictor has been designed, incorporating channel attention and
spatial attention to initially emphasize important regions for feature selection out of the
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Fig. 6.1: Overall framework of the proposed method.

multi-scale feature extraction, and subsequently refine feature maps adaptively, enhancing
prediction performance.

• Experimental results demonstrate that the proposed predictor attains high prediction ac-
curacy, resulting in increased embedding capacity.

The subsequent sections are structured as follows. Section 6.2 delves into the details of our pro-
posed methodology. In Section 6.3, we present a comprehensive analysis of our experimental
results. Lastly, Section 6.4 concludes the chapter.

6.2 Proposed Work

This section discusses the proposed RDHEI method in detail. Fig. 6.1 represents the overall
framework of the proposed method that involves three key entities: content owner, data hider,
and recipient. The content owner is the one who possesses the original image and performs
encryption to ensure that the content remains private. Data hider hides the data in the encrypted
image while ensuring reversibility. The recipient receives the marked image and performs data
extraction and content recovery depending upon the access to the data and content keys. The
proposed method allows the separation of two roles at the recipient so that two different users,
data recipient and content recipient, can retrieve the data and content, respectively. The work-
flow includes three principal components: Prediction, Data embedding, and recovery. These
components are discussed in detail in subsequent sub-sections.

6.2.1 Prediction

For achieving high-embedding capacity in RDHEI methods, pixel prediction is one of the most
crucial steps, as the prediction accuracy directly correlates to the embedding efficiency. For this,
the original image I is divided into two sub-images, cross IC and dot ID. As illustrated in Fig.
6.1, the cross-set image contains half of the pixels located at alternate positions, and the dot-set
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Fig. 6.2: Schematic representation of SCAM-Net predictor

image contains the other half of the pixels with zeros at the position of cross pixels. The two
sub-images are independent of each other but are highly correlated and can be used to predict
each other. Next, the prediction is done in two stages as shown in the proposed framework.
At first, we utilize the novel SCAM-Net predictor to predict the dot-set image ÎD from the
cross-set image. Subsequently, the adaptive mean predictor [94] is employed to predict the
cross-set image ÎC from itself. In the following sub-section, the proposed SCAM-Net predictor
is discussed in detail.

SCAM-Net Predictor

As shown in Fig. 6.2, the SCAM-Net (Spatial-Channel Attention Multi-Scale Network) predic-
tor consists of a feature extraction module, a feature refinement module, and a reconstruction
module. Each convolution block within the model is represented in a k−s−p−cin−cout format
that represents kernel size, stride, padding, input channels, and output channels, respectively.
The feature extraction module comprises multi-scale feature extraction with three parallel con-
volutional blocks, each with a different kernel size (3× 3, 5× 5, and 7× 7), capturing granular
details as well as broader details. The obtained feature-set is then downsampled to create a hi-
erarchical structure capturing multi-scale features. The proposed model utilizes Convolutional
Block Attention Module (CBAM) illustrated in Fig. 6.3 for feature refinement. The CBAM
module leverages a combination of channel attention and spatial attention, leading to improved
feature refinement. The reconstruction module uses concatenation to fuse the refined features
and perform upsampling to recover the original dimensions. The module further utilizes skip
connections to ensure the high-resolution details are utilized for the final prediction output.
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Fig. 6.3: Structural illustration of CBAM

To train the proposed SCAM-Net predictor, the training and validation datasets are con-
structed by randomly extracting 3, 000 images and 750 images from the BOWS2 [173] dataset,
respectively. Prior to training, the color images in the train and validation sets underwent prepro-
cessing to convert them to grayscale images and were standardized to dimensions of 512× 512

pixels. The loss function L for the proposed predictor is depicted as follows:

loss =
1

N

N∑
i=1

(ôi − oi)
2 + λ∥ω∥2 (6.1)

where N is the batch size, set to 4, and oi is the ith original image, ôi is the corresponding
predicted image, and ω encapsulates all the weights in the network. The proposed predictor
is trained on an Intel Core i5 CPU (2.40GHz) alongside 16 GB of RAM with the help of the
NVIDIA Tesla A100 GPU on Colab Pro, optimized via backpropagation and the Adam opti-
mization algorithm.

Adaptive mean predictor (AMP)

The proposed method employs the AMP for predicting cross-set image from itself as done
in [94]. For this, the first row and first column are reserved as the reference pixels. The predictor
calculates the mean of the two neighboring pixels in four directions (top, left, right, and bottom)
of each target pixel location. Subsequently, the predicted image with minimum mean square
error (MSE) out of the four directions is selected as the predicted cross-set image.

6.2.2 Encryption and Data Hiding

In the proposed method, content encryption and data hiding are performed independently in the
two sub-images. The entire process is discussed in the following subsections. More compre-
hensive analysis of encryption and data hiding procedure can be found in [34].
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Fig. 6.4: An instance of pixel labeling

Image Encryption

The proposed method ensures privacy by encrypting the image before hiding data in it. The
content owner uses two keys, KC and KD, to encrypt the cross-set and dot-set images and obtain
IEC and IED, respectively. Each key (Ks) is used to generate a matrix of random numbers of
the same size as that of the sub-images, and then the sub-images are encrypted as per Eq. 6.2.

E(i, j) = Is(i, j)⊕Ks(i, j) (6.2)

where s = D for the dot-set image, and s = C for the cross-set image.

Label map generation

To calculate the number of bits that can be losslessly embedded into the cover image, labels are
generated for each pixel in the two sub-images. For this, a bit-by-bit comparison of the original
and predicted pixels of the sub-images is performed, as shown in Fig. 6.4, where the count of
bits that are the same from the Most Significant Bit (MSB) to the Least Significant Bit (LSB) is
noted as the label for that pixel. A label with value n, where 0 ≤ n ≤ 8, represents that n + 1

bits, where n+ 1 ≤ 8, can be embedded in the pixel.

Label map embedding

To recover the secret data at the recipient, the label map needs to be embedded into the sub-
images. The proposed method utilizes Huffman codes to compress the labels. Once the Huff-
man coding rule is generated for the two sub-images, the sub-images are raster scanned, and a
binary sequence is generated, replacing the labels with their respective codes. The binary-coded
sequence represents the compressed labels and is embedded into the sub-images along with the
secret data. IEDL and IECL represent the sub-images obtained after embedding the labels into
the respective encrypted sub-images.

Data hiding

Once the two sub-images are encrypted and label maps are embedded into the reference pixels
by the content owner, the data hider hides the secret data in the encrypted images. First, the
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secret data is split into two sequences based on the available embedding capacity of each sub-
image, calculated from the labels. Then, the data hider encrypts the secret data using two
encryption keys (K1 and K2), known to the data hider only. The data hider then reads the label
(n) for each pixel and hides n + 1 bits in the MSB of each pixel. Combining the two marked
sub-images provides a final marked encrypted image IEM . It is important to note that in the
dot-set image, the pixels designated for storing the Huffman coding rule remain unmodified,
and, in the cross-set image, the reference pixels (depending on the direction of prediction) are
preserved without alteration.

(a) Baboon (b) Jetplane (c) Lena (d) Pepper

Fig. 6.5: Benchmark images from the USC-SIPI dataset

6.2.3 Data Extraction and Image Recovery

The proposed RDHEI method enables the recipient to perform data extraction and image re-
covery separately. To extract the data, the recipient splits the received marked image IEM into
cross and dot sub-images. The recipient reads the reference pixels to extract the length of the
secret data, the coding rules, and the label maps for the two sub-images. Next, the pixels in the
two sub-images are raster-scanned to read the n+1 bits of each pixel according to their respec-
tive label value n recovered from the label map. The recovered binary sequences, one each for
cross-set and dot-set images, represent the encrypted secret data, which is then decrypted with
the corresponding data keys (K1 and K2) to recover the secret data.

For image recovery, the recipient follows the same steps as the transmitter but in reverse
order. First, the cross-set image is predicted by applying the adaptive mean predictor on the
reference pixels. For each pixel, replace the n MSB bits with the corresponding bits of the
predicted pixels and (n + 1)th bit by the inverse of the (n + 1)th bit of the predicted value.
Decrypt the remaining bits using the key KC . Once the cross-set image is fully recovered,
predict the dot-set image from it using SCAM-Net predictor. Replace the n + 1 MSB bits of
the pixels according to the respective labels. Decrypt the remaining bits using the key KD.
Combining the recovered cross-set image and the dot-set image gives the fully recovered cover
image.
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Fig. 6.6: Quantitative assessment of various SOTA methods on test images

6.3 Experimental Evaluation

This section entails the experimental findings of the proposed RDHEI scheme and compares
its performance with the well-known SOTA methods. We first, assess the performance of the
proposed SCAM-Net predictor. Subsequently, we conduct an embedding capacity analysis of
our proposed RDHEI approach. To ensure the analysis of images having diverse characteristics,
we have utilized the widely used three datasets, BOWS2 [173], USC- SIPI [69], and TCIA
dataset [4] for the experimental analysis.

Table 6.1: Statistical measures (Mean, VAR, MSE) across different predictors using the test set

Method Mean VAR MSE

GAP [32] 7.71 174.23 247.73
MEDP [180] 6.12 84.29 129.66
RP [26] 5.14 52.59 84.59
CNNP [80] 4.16 53.52 81.05
CNNPEO [81] 3.31 20.29 34.20
Proposed 2.97 19.40 30.54

Table 6.2: Statistical assessment of embedding capacity and payloadbpp for USC-SIPI test images.

Test images Total EC (bits) Label maps (bits) Auxillary info (bits) Pure EC (bits) Payload (bpp)

Lena 15,64,683 7,70,151 256 7,94,276 3.029
Baboon 10,85,614 7,93,112 256 2,92,246 1.114
Jetplane 16,47,532 7,48,332 256 8,98,944 3.429
Lakeboat 13,81,254 7,97,050 256 5,83,948 2.227
Peppers 14,38,241 7,82,175 256 6,55,810 2.500
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(a) Med1 (b) Med2 (c) Med3 (d) Med4

Fig. 6.7: Medical images from the TCIA dataset [4]

Table 6.3: Performance evaluation on medical images [4]

Method
Medical image

Average
med1 med2 med3 med4

Bhardwaj et al. [181] 2.24 2.24 2.24 2.24 2.24
Xiuli et al. [182] 2.49 2.24 2.63 2.24 2.39
Proposed 5.10 4.19 2.66 3.99 3.98

6.3.1 Prediction Performance

Table 6.1 presents a performance comparison of the proposed SCAM-Net predictor against the
various state-of-the-art (SOTA) predictors [26, 32, 80, 81, 180], evaluated on a test dataset com-
prising 8 standard images from the USC-SIPI dataset and 24 images from the Kodak dataset, us-
ing metrics such as Mean, Variance (VAR), and MSE. Among all the predictors, the SCAM-Net
predictor achieves the most notable results, recording the lowest values for Mean (2.97), Vari-
ance (19.40), and MSE (30.54). It is evident from the superior results that the multi-scale feature
extraction helps the proposed predictor to capture a larger feature set comprising both finer de-
tails and global details. Additionally, the CBAM module first helps in identifying the relevant
feature maps using channel attention and then adaptively refines the filtered feature maps using
spatial attention. Thus, capturing the rich hierarchical features and then adaptively refining the
most critical features helps the proposed SCAM-Net predictor achieve remarkable prediction
accuracy.

6.3.2 Embedding Performance Evaluation

To illustrate the effectiveness of our method, we assess its embedding capacity, measured in
bpp, against nine SOTA methods [34,89,94,103,183–187]. Table 6.2 summarizes the total EC,
the length of label maps, and the pure EC for the six test images. It is evident from the results
that the higher prediction accuracy leads to a smaller length of label map, resulting in improved
payload embedding. Fig. 6.6 demonstrates a comparative analysis for different methods on five
standard test images from the USC-SIPI dataset, illustrated in Fig. 6.5. The results demonstrate
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the superior performance of our approach. Notably, our method achieved the highest ERs on
four out of five test images, with particularly impressive results on the ‘Lena’ image (3.0299
bpp) and ‘Jetplane’ image (3.42 bpp), surpassing the best performing SOTA method by 7.4%.

6.3.3 Robust Embedding Performance in Medical Images

Table 6.3 presents a comparison of the ER for various methods applied to medical images from
the TCIA dataset, as shown in Fig. 6.7. The proposed approach surpasses all SOTA methods,
delivering notably higher ER values, especially for med1 (5.10) and med2 (4.19), and achieving
the highest overall average of 3.985.

Therefore, the experimental findings show that the proposed method exceeds SOTA methods
by delivering the highest ER across all test images. This steady enhancement highlights its
promise for real-world uses, such as secure image transmission, medical imaging, and digital
watermarking, where maintaining high EC with minimal distortion is crucial.

6.4 Summary

This chapter introduces a novel RDHEI scheme that utilizes SCAM-Net predictor for generating
highly accurate predicted images. The SCAM-Net predictor features a multi-scale extraction
module that captures both fine and broad details effectively. Additionally, an integrated CBAM
module enhances feature refinement by leveraging spatial and channel attention mechanisms.
Experimental results reveal that this predictor outperforms existing state-of-the-art alternatives
with approximately 11% improvement in MSE over best known SOTA method. The improved
prediction performance led to improved embedding performance which is evident from the en-
hanced embedding capacity achieved by the proposed method (approximately 7.4%) for the
majority of USC-SIPI test images. Furthermore, it shows substantial gains in embedding ca-
pacity across a diverse collection of medical images, underscoring its broad practical value.
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CHAPTER 7

CONCLUSION, FUTURE SCOPE AND SOCIETAL

APPLICATIONS

With the increase of digitization in the Healthcare industry, the importance of content pro-
tection and information security has increased. RDH entails an important role in the realm
of information security, especially in content authentication and copyright protection. It in-
volves concealing confidential/secret information within a cover medium in such a manner that
it remains imperceptible to the human eye. Its dual capability, enhanced security and lossless
recovery, has made RDH methods highly popular among security researchers, particularly for
applications like medical and military fields, where preserving content accuracy and integrity is
paramount.

Recent breakthroughs in RDH have led to promising techniques such as DE, HS, and
prediction-error expansion (PEE) for minimizing distortion. Some of techniques rely on de-
signing accurate predictors to predict pixel values, such as the DP, MED, GAP, and Bilinear
interpolation (BIP). Other popular areas within RDH involve RDHCE and RDHEI that focus
on improving contrast of the stego images or data hiding in encrypted images respectively.

It was observed that traditional RDH methods achieve low EC or result in poor quality
stego images, in other words, exhibiting a trade-off between EC and image quality. To mitigate
this trade-off, this thesis has presented several novel RDH methods that significantly advance
the SOTA by achieving higher EC, improved visual quality, optimum contrast enhancement,
brightness preservation and enhanced security. The contributions of the thesis are outlined in
the subsequent subsections.

7.1 Research Contributions

• Survey of reversible data hiding: Statistics, current trends, and future outlook: The
evolving area of RDH warrants a comprehensive review and analysis to map out the in-
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tellectual development of the field, identify emerging trends, and highlight promising
research directions. As a result, this study offers an extensive review of state-of-the-art
RDH techniques along with their trend analysis, key contributions, and evolution. The
study presented a thorough quantitative analysis of research patterns through visualiza-
tions of publication timelines, citation trends, and statistical modeling across years. The
study incorporated modern tools such as co-occurrence analysis and keyword clustering
to identify hot topics and recent trends, where researchers have contributed more fre-
quently.

Along with the quantitative analysis, an in-depth qualitative analysis of various techniques
has been conducted to present a systematic, highlighting major research contributions for
each category. The study presented a taxonomy tree of different categories of RDH show-
ing the domain evolution till date. Additionally, a comparative overview of different tech-
niques within different domains has been presented while highlighting their originators,
advantages, and limitations. Overall, the study presents a comprehensive guide for the
researchers embarking on the evolution of RDH since its very inception. It presented an
in-depth analysis of the existing literature’s strengths and weaknesses, offering insights
into the various approaches categorized by their operational strategies, such as RDHCE,
RDHEI, prediction methods, interpolation, and robustness, their application areas, and
future directions.

• A high-capacity reversible data hiding with contrast enhancement and brightness
preservation for medical images: In the era of RDHCE, which is primarily popular
in healthcare industry, the SOTA methods lag in managing the trade-off between image
quality and EC. This work proposed a novel pre-processing technique for the ROI of a
medical image that focuses on intelligently creating and managing the empty bins, result-
ing in low distortion. The study focused on not only enhancing the contrast of the image
but also preserving the image brightness. The method followed an adaptive approach
to allow different ER to be chosen for ROI and NROI regions, further minimizing the
tradeoff between image quality and EC.

Experimental results show that the proposed method effectively preserves brightness with
0.99 RMBE while providing higher EC, exceeding the best known SOTA methods by
20%. Furthermore, the method enhances contrast with minimal distortion in the output
stego images. The experimental analysis further underscored the robustness and effec-
tiveness of the proposed RDH approach against the prominent RS steganalysis.

• Reversible Data Hiding for Color Images using a Novel Self-attention-based CNN
predictor and Error Adjustment: This study introduced a new RDH method for color
images by efficiently utilizing inter-channel correlation of the three channels for improved
embedding performance. Self attention based CNN (SA-CNN) predictor is introduced,
which integrates self-attention mechanisms into the CNN framework. This integration
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allowed the predictor to capture both local and global contextual information by attend-
ing to long-range pixel dependencies across the image, thereby significantly improving
prediction accuracy and thus achieving improved Prediction error histogram (PEH). In
addition to the novel predictor, an error adjustment strategy is proposed that refines the
prediction errors of two color channels by utilizing the error distribution of a reference
channel. This lead to a even sharper PEH, representing further enhanced prediction per-
formance.

The experimental analysis showcased that the PEH obtained using the proposed SA-CNN
achieves the highest peak at zero among all the existing predictors. In other words,
the SA-CNN increased the pixel concentration within the range of [-2,2] by 13% and
20% compared to the best-performing SOTA predictors. A further experimentation stud-
ied that the proposed SA-CNN, combined with the reference error adjustment strategy,
achieves the highest frequency at zero prediction error, showing an improvement of ap-
proximately 110% over the best-performing existing method. Experimentation around
the quality parameters highlighted that the proposed SA-CNNP achieves the lowest av-
erage mean of 2.99, indicating that the PEs generated by the SA-CNN are significantly
smaller compared to those produced by SOTA methods. Furthermore, with an achieve-
ment of an average PSNR value of approximately 1.2 dB higher than the SOTA method,
the SA-CNN-enhanced RDH method demonstrated superior embedding performance.

• UMANeT: A Two-Stage Interpolation-Based Reversible Data Hiding Framework
with Attention-Enhanced Prediction: Interpolation-Based RDH methods have gained
popularity in applications where size of the original cover images is relatively small,
limiting their embedding capacity. In the realm RDH, the interpolation techniques play
crucial role in enhancing the resolution of the cover image, providing more space for
data hiding, without causing distortion to the original image. However, the performance
of the SOTA methods is limited due to their limitation of using traditional interpolation
techniques that do not provide promising results. To improve upon these limitations,
this work introduced a two-stage approach that utilized bicubic interpolation in first stage
followed by a deep learning based interpolation in second stage. The study introduced a
novel predictor UMANet, which is a U-Net-inspired architecture that integrates Channel
Attention (CA) and multi-head attention (MHA) in parallel.

Experimental results demonstrated that the proposed UMANet predictor achieves the
highest PSNR consistently for all test images, with approximately 2dB improvement
in PSNR for popular images, such as Lena and Couple. The proposed method fur-
ther demonstrated remarkable embedding performance across all standard test images,
demonstrating the superiority of the proposed UMANet predictor-based two-stage Inter-
polation methodology.

• SCAM-Net: Spatial-Channel Attention Multi-Scale Network for Reversible Data
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Hiding in Encrypted Images: In RDHEI techniques, the prediction accuracy directly
translates into embedding performance as the pixels with more accurate predictions can
be compressed into smaller number of bits. However, the traditional techniques lack the
prediction accuracy due to their limitation of using linear calculations for prediction. The
proposed study mitigated this limitation by proposing a novel predictor that utilizes deep
learning based predictor. The proposed SCAM-Net predictor incorporates channel atten-
tion and spatial attention to initially emphasize important regions for feature selection,
and subsequently refining feature maps adaptively, enhancing prediction performance.

Experimental results demonstrated that, among all the best-known predictors, the SCAM-Net
predictor achieved superior performance by recording the lowest values for Mean, Vari-
ance, and MSE. The higher embedding capacity along with high PSNR achieved by the
proposed RDHEI technique demonstrated that the higher prediction accuracy lead to a
smaller length of label map, resulting in improved payload embedding.

7.2 Rationale for multiple Deep Learning Architectures

The thesis introduces three deep learning architectures: SA-CNNP, UMANet, and SCAM-Net,
each designed to address a different category of prediction challenges encountered within the
RDH. While the universal applicability of the three predictors is validated by extensive ex-
perimental analysis over diverse characteristic test images, each predictor is designed to cater
varying need of different application areas. SA-CNNP, a self-attention-based CNN predictor,
is suitable for tasks requiring a balance of local convolutional processing and spatially distant
context, which is typically important in medical images that contain repetitive texture. UMA-
Net, a multi-head attention-based U-Net type architecture that helps the predictor to capture
long range dependencies, is particularly beneficial for images that preserve structural continu-
ity. SCAM-Net, that utilizes multi-scale network combined with spatial and channel attention,
providing deeper feature refinement, thus focusing on the tasks demanding fine-grained feature
refinement. Using specialized architectures ensures the adaptability of the proposed methods to
medical and other critical application areas.

7.3 Future Scope

The domain of RDH continues to expand with promising directions emerging through the in-
tegration of advanced deep learning models, improved prediction mechanisms, and adaptive
embedding strategies. While substantial progress has been achieved, several avenues remain
open for further research and innovation.

• Enhancing Prediction Accuracy through Advanced Deep Learning Models- Recent
studies employing convolutional neural networks have shown remarkable improvement
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in prediction-based embedding performance. However, advanced architectures such as
attention mechanisms, transformers, and causal predictors remain underexplored for RDH
tasks. Future research can focus on integrating these models to capture complex spatial
dependencies, enabling more precise prediction and higher embedding efficiency.

• Leveraging Inter-Channel Correlation for Color Image RDH- With the dominance
of color imagery in digital platforms, exploiting inter-channel dependencies among RGB
components offers significant potential. Future work may develop deep learning–driven
frameworks that jointly analyze and embed data across channels, instead of treating them
independently. Such approaches could substantially improve embedding capacity and
maintain visual fidelity, particularly in color image authentication and secure sharing sce-
narios.

• Deep Learning–Based Image Segmentation for Medical Applications- In medical
imaging, separating regions of interest (ROI) from non-regions of interest (NROI) is cru-
cial for adaptive data hiding. Conventional segmentation techniques, such as Otsu [188]
and ATD [189], often struggle with heterogeneous image characteristics. Deep neural
networks, especially encoder–decoder or transformer-based segmentation models, can be
utilized to achieve precise region delineation, allowing customized embedding strategies
and enhanced reversibility in RDH for medical images.

• Advancing RDH in Encrypted Images (RDHEI)- In RDHEI, efficient space reserva-
tion before or after encryption remains a key challenge. Deep learning can play a pivotal
role in learning optimal embedding locations and improving space vacating strategies
without compromising encryption integrity. Future research can focus on intelligent RD-
HEI frameworks that adaptively balance data hiding capacity, security, and reconstruction
quality.

• RDH for Adversarial and Secure AI Applications- A growing application of RDH
lies in generating reversible adversarial examples, which embed perturbations that mis-
lead classification models while allowing perfect image recovery [34]. Future studies
can explore adaptive adversarial embedding guided by deep generative or reinforcement
learning models, aiming to maintain both strong adversarial effectiveness and high visual
quality. Moreover, RDH can be further extended to support secure model training and
watermarking in adversarial environments.

• Deep Learning–Assisted RDH for Embedding Optimization and Overhead Reduction-
In most RDH frameworks, auxiliary information such as location maps introduces redun-
dancy and limits embedding capacity [190]. Future directions include designing neural
predictors that automatically infer embeddable regions, reducing or eliminating the need
for explicit location maps. Additionally, learning-based adaptive embedding strategies
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can be developed to dynamically adjust payload and distortion trade-offs, minimizing
overhead while maintaining reversibility [191].

• Security Validation against Deep-Learning-based Steganalysis- The security valida-
tion conducted in this work primarily relies on the traditional steganalysis techniques,
such as, RS (Regular–Singular) analysis method. Historically, RS steganalysis has been
a highly effective technique to validate the robustness, it is now considered limited when
compared to modern steganalysis approaches, particularly utilising deep learning–based
CNN detectors. Off-lately, CNN and transformer-based steganalysis techniques have ex-
hibited strong performance in identifying subtle embedding artifacts that traditional statis-
tical methods such as RS analysis may miss. The future work should extend the security
validation by incorporating advanced deep-learning-based steganalysis techniques.

• Security Analysis of underlying Encryption Technique- The proposed RDHEI method
utilizes multi-scale attention based predictor, where prediction is applied before encryp-
tion. This ensures the effective utilization of pixel correlations, leading to improved em-
bedding performance. The method utilizes traditional pixel-wise XOR encryption that
secures the data against potential attacks. However, the future work could investigate
whether the predictor-induced embedding pattern introduces any detectable statistical pat-
terns prior to encryption, evaluating its robustness against plain-text attacks.

7.4 Societal Applications

The wider societal implication of this research lies in strengthening reliability in digitization of
healthcare industry as well as promoting assurance in the integrity of sensitive data storage.

• Safeguarding patient confidentiality- Strengthening the confidentiality of patient records,
nurturing confidence in digital healthcare systems.

• National Security and Defense- Strengthens covert exchange of sensitive information
and reinforcing resilience against data tampering.

• Digital Rights Management- Combat plagiarism and digital forgery while ensuring orig-
inal media reversibility.

• Cloud Security- Securing public trust in cloud-based services, e-governance, and content
sharing platforms.
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