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CHAPTER -1

INTRODUCTION

This chapter introduces the concept of Digital Twin (DT) technology in healthcare, focusing
on its applications, challenges, and potential advancements. The objectives of the research

work are highlighted. Chapter-wise thesis coverage is summarized at the end of the chapter.

Digital Twin (DT) technology has revolutionized various industries by creating virtual replicas
of physical systems, enabling real-time monitoring, simulation, and optimization. Originally
developed by NASA for spacecraft diagnostics, DT has evolved with advancements in Al IoT,
cloud computing, and big data analytics, significantly impacting healthcare. Traditional
healthcare models rely on reactive, symptom-based interventions, often leading to delays and
inefficiencies. DT technology shifts this paradigm by enabling predictive analytics,
personalized treatment, and real-time decision-making. By continuously integrating patient
data, DTs facilitate early disease detection, optimize medical workflows, and enhance hospital
resource allocation. In complex medical fields like oncology, cardiology, and neurology, DTs
help simulate treatment outcomes, improving precision and risk assessment. Additionally, DT-
driven hospital management enhances operational efficiency by predicting equipment failures,
managing patient flow, and optimizing staff deployment. The integration of Al, IoT,
blockchain, and extended reality (XR) further strengthens DT applications. Al-powered models
enable automated anomaly detection and predictive diagnostics, while IoT-connected devices
provide continuous real-time health monitoring. Cloud computing enhances data storage and
processing, whereas blockchain ensures secure medical records. XR technologies such as AR
and VR improve medical training, surgical planning, and telemedicine. However, the
increasing digitization of healthcare introduces cybersecurity challenges, including data
breaches, ransomware attacks, and unauthorized access. Implementing encryption techniques,
blockchain security, and regulatory compliance frameworks such as HIPAA and GDPR is
essential for data protection. Beyond diagnostics and treatment, DT technology plays a crucial
role in infectious disease detection and epidemic management by automating disease detection,
improving diagnostic accuracy, and enabling remote monitoring. During the COVID-19
pandemic, Al-powered DT models helped predict disease progression, optimize hospital
resources, and improve patient outcomes. The convergence of DT technology with the
metaverse offers additional possibilities for digital healthcare, including immersive

telemedicine applications, real-time disease modeling, and interactive medical training.

1
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Hospitals can leverage DT-metaverse frameworks for resource optimization, predictive
maintenance, and enhanced patient management. However, security concerns necessitate
blockchain-based secure transactions, zero-trust security models, and Al-driven intrusion
detection. Strengthening IoT security through advanced encryption, secure device
authentication, and periodic security audits is crucial, as the increasing use of smart medical
devices like pacemakers and infusion pumps exposes healthcare networks to cyber threats. Al-
driven intrusion detection mechanisms further enhance DT-powered healthcare security by
identifying and mitigating threats in real-time. Despite its transformative potential, DT
technology faces challenges such as scalability, interoperability, computational complexity, and
data security. Addressing these requires standardized data models, blockchain-based data
integrity frameworks, and Al-driven security protocols. Establishing a unified and secure DT
framework will enhance predictive diagnostics, automated healthcare interventions, and
personalized treatment strategies, ultimately improving healthcare efficiency and accessibility.
The rapid adoption of DT technology is bridging the gap between traditional healthcare models
and next-generation intelligent systems, positioning DT as a transformative force in modern
healthcare. By integrating Al, blockchain, and IoT, DT enables real-time disease monitoring,
predictive diagnostics, and personalized treatment, driving the future of intelligent, data-driven
healthcare systems. Continued interdisciplinary collaboration and technological advancements
will be key to unlocking its full potential and shaping the future of digital healthcare with

enhanced efficiency, security, and precision.
1.1 Scope of the Thesis: Digital Twin in Healthcare

This thesis investigates the role of Digital Twin (DT) technology in healthcare, focusing on its
ability to enhance predictive analytics, personalized treatment, and real-time decision-making.
While DT applications in industrial settings are well-established, their integration into
complex, data-sensitive environments like healthcare remains an evolving field that requires
further exploration. This study aims to bridge this gap by examining how DT frameworks can
be designed, secured, and optimized to meet the demands of modern healthcare infrastructure.
The primary scope of this research includes the development of a comprehensive DT
framework incorporating key emerging technologies such as Al-driven predictive modeling,
IoT-enabled data collection, blockchain-based security solutions, and edge computing for real-
time healthcare applications. This study focuses on how Al and machine learning (ML) can
improve diagnostic accuracy, predict disease progression, and enhance clinical decision-

making. Furthermore, it investigates the role of blockchain technology in securing patient data,

Z'l—.l turnltln Page 15 of 144 - Integrity Submission Submission ID trn:oid:::27535:87273600



Z'l_.l turnitin Page 16 of 144 - Integrity submission Submission ID trn:oid:::27535:87273600

ensuring interoperability, and establishing decentralized, tamper-proof medical records for
improved data integrity and privacy. The feasibility of integrating DTs into existing hospital
management systems, clinical workflows, and telemedicine platforms will also be explored. A
significant aspect of this research is the evaluation of interoperability challenges in DT-based
healthcare systems. Current medical infrastructures rely on fragmented data ecosystems, where
electronic health records (EHRs), IoT medical devices, and Al-driven analytics operate in silos.
This study examines methods to standardize data integration across diverse healthcare
platforms, enabling seamless communication and collaboration between digital twins and
traditional healthcare systems. Additionally, regulatory and ethical considerations surrounding
the adoption of DTs will be analyzed, particularly in compliance with global healthcare data

protection laws such as HIPAA, GDPR, and country-specific medical data governance policies.

Beyond conventional medical applications, this thesis explores how DTs can be integrated with
emerging digital environments such as the Metaverse. The potential of virtual healthcare
ecosystems, immersive medical training, and Al-driven simulations for disease modeling and
treatment planning will be assessed. This study will investigate how extended reality (XR)
technologies—augmented reality (AR) and virtual reality (VR)—can improve surgical
precision, physician training, and remote patient interactions. The feasibility of using digital
twins as interactive healthcare avatars for real-time patient engagement will also be discussed.
Another critical area within the scope of this thesis is cybersecurity and risk mitigation in DT-
powered healthcare systems. With the increasing reliance on IoT-enabled medical devices,
cloud storage, and Al-driven automation, the risk of data breaches, cyberattacks, and system
vulnerabilities is heightened. This research will propose advanced security models, including
Al-powered intrusion detection systems, multi-factor authentication mechanisms, and
blockchain-based access control frameworks to safeguard patient data and healthcare
operations. The study will also analyze how genetic algorithms and federated learning can
optimize threat detection and enhance system resilience against cyber threats. The economic
and technical feasibility of large-scale DT implementation will also be a focus, with an analysis
of infrastructure requirements, cost-benefit considerations, and potential barriers to adoption
in different healthcare settings. The research will incorporate case studies from various medical
disciplines, including cardiology, oncology, and intensive care, demonstrating how DTs can be
leveraged for remote patient monitoring, early disease detection, and optimized treatment
strategies. This thesis does not aim to develop a fully functional DT prototype but will instead

propose a conceptual and technical framework based on empirical research, computational
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modeling, and case study analysis. While the study explores DT applications in predictive
diagnostics, personalized medicine, and hospital management, it does not delve into detailed
hardware specifications or the financial modeling of DT adoption across different healthcare
economies. Instead, the research prioritizes technical feasibility, system security, and
integration challenges as key areas of exploration. By addressing these critical factors, this
thesis contributes to the advancement of next-generation digital healthcare solutions, providing
a structured, scalable, and secure DT framework. The findings aim to serve as a foundation for
future research, policy development, and real-world DT implementations in healthcare,
ultimately supporting data-driven decision-making, improved patient outcomes, and more

efficient medical systems.
1.2 Research Gaps and Motivation for Research Work

Despite the transformative potential of Digital Twin (DT) technology in healthcare, several

challenges hinder its widespread adoption and efficiency. The key research gaps include:

1. Healthcare DTs require vast computational resources, while traditional infrastructures
struggle with high-dimensional models and bandwidth limitations. The early adoption
of edge computing and cloud-based DT solutions further impacts scalability.

2. DT models rely on heterogeneous data sources, leading to inconsistencies in prediction
accuracy. Al-driven DT models often exhibit biases due to limited training datasets, and
the lack of standardization in data collection affects disease detection and treatment
recommendations.

3. DT systems store sensitive patient data, making them vulnerable to cyber threats.
Existing encryption and access control measures are inadequate, while unclear
regulatory frameworks complicate secure deployment in healthcare settings.

4. Diverse healthcare providers use different EHR formats and imaging protocols, causing
integration challenges. Standardized data models like FHIR and HL7 have been
introduced but are inconsistently adopted, limiting seamless cross-platform
communication.

5. Many healthcare institutions rely on outdated IT systems that are incompatible with
real-time DT applications. High-frequency data exchange limitations and vendor-

specific cloud-based DT solutions create inefficiencies in data transfer.

To address these challenges, a unified DT framework incorporating Al-driven predictive

modeling, blockchain security, real-time IoT integration, and edge computing must be
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developed to enhance healthcare efficiency, secure data transmission, and improve patient
outcomes. The increasing adoption of DT technology is driven by the urgent need for predictive
and secure medical systems, enabling real-time data integration, outbreak detection, and
decentralized healthcare. This study aims to advance DT as a cornerstone of modern, efficient,

and data-driven healthcare systems.
1.3 Problem Statement

The integration of Digital Twin (DT) technology in healthcare can revolutionize patient
monitoring, predictive diagnostics, and treatment planning. However, its widespread adoption
is hindered by challenges related to scalability, data accuracy, security vulnerabilities,
interoperability, and integration with existing healthcare infrastructure. Current healthcare DT
models require high computational resources, face inconsistencies in data reliability, and lack
standardized frameworks for secure and seamless data exchange. Furthermore, the absence of
unified protocols limits cross-platform communication, reducing the effectiveness of real-time
healthcare applications. To overcome these limitations, a comprehensive DT framework must
be developed, incorporating Al-driven predictive modeling, blockchain-based security, real-
time loT integration, and edge computing. This study aims to address these gaps by designing
a scalable, secure, and interoperable DT system that enhances healthcare efficiency, ensures

data integrity, and improves patient outcomes.
1.3.1 Research Objectives
OBJECTIVE 1: To develop a Digital Twin Healthcare (DTH) model.

OBJECTIVE 2: To design a framework for data transmission between the physical system

and the digital twin system.
OBJECTIVE 3: To evaluate the performance of the existing and proposed digital twin model.
1.4 Contributions in the Thesis

In this thesis, we focus on the development of a Digital Twin Healthcare (DTH) framework
that integrates Al, IoT, and blockchain for real-time patient monitoring, predictive disease
diagnosis, and secure medical data transmission. This research addresses key limitations of
traditional healthcare systems, including inaccurate diagnostics, lack of real-time monitoring,
and cybersecurity threats. The contributions of this thesis are structured according to the three

research objectives as discussed below.
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(I) OBJECTIVE 1: To develop a Digital Twin Healthcare (DTH) model

We proposed a novel Al-powered Digital Twin Healthcare (DTH) model that enables real-time
patient monitoring and Al-driven diagnostics. The model integrates IoT sensors, deep learning-
based medical imaging analysis, and cloud-based Digital Twin simulations to enhance disease
detection accuracy and personalized healthcare recommendations. To demonstrate the

effectiveness of the proposed model, two Al-driven Digital Twin applications were developed:

e CervixNet for Cervical Cancer Detection: A CNN-based deep learning model designed
for early cervical cancer diagnosis using histopathological images. The model achieved

98.91% accuracy, outperforming traditional CNN architectures.

o MxSLDNet for Monkeypox Lesion Detection: A lightweight Al model optimized for
monkeypox detection, reducing computational costs while maintaining high diagnostic

accuracy compared to DenseNet-121 and ResNet-101.

The proposed DTH framework significantly improves healthcare decision-making by enabling
continuous patient monitoring, Al-powered disease progression analysis, and real-time

treatment adjustments.

(IT) OBJECTIVE 2: To design a framework for data transmission between the physical system

and the digital twin system

To ensure secure, real-time data exchange in Digital Twin Healthcare, we developed a
Blockchain-ECC Hybrid Security Model, providing high-level data integrity and

confidentiality. The key components of this framework include:

e Blockchain-Based Medical Data Storage: Patient health records are stored on a

decentralized blockchain network, ensuring tamper-proof and immutable data storage.

o Elliptic Curve Cryptography (ECC) for IoT Security: ECC provides lightweight
encryption for medical IoT devices, reducing the risk of data breaches while

maintaining high-speed processing.

o Intrusion Detection System (IDS) using GAO-RF Algorithm: A Genetic Algorithm
Optimized Random Forest (GAO-RF) model is proposed for detecting cyber threats in

10T healthcare networks.
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By integrating blockchain security and Al-driven anomaly detection, the proposed secure
Digital Twin framework prevents unauthorized access, data tampering, and cyberattacks,

making real-time patient monitoring and healthcare data transmission more reliable.

(IIT) OBJECTIVE 3: To evaluate the performance of the existing and proposed digital twin

model

The proposed Al-driven Digital Twin model was rigorously evaluated against state-of-the-art
deep learning architectures to assess its diagnostic accuracy, computational efficiency, and

security performance. The findings include:

o Higher Diagnostic Accuracy: The CervixNet model achieved 98.91% accuracy,

outperforming traditional CNN-based models in cervical cancer detection.

o Computational Efficiency: The MxSLDNet model demonstrated higher accuracy with
lower computational costs, reducing storage and processing requirements compared to

DenseNet-121 and ResNet-101.

e Enhanced Security Performance: The Blockchain-ECC security framework
significantly improved data privacy and cyber resilience, outperforming conventional

cloud-based healthcare systems in security assessments.

These results confirm that the proposed Digital Twin Healthcare model is more scalable,
accurate, and secure than existing Al-driven healthcare frameworks, making it suitable for real-

time clinical applications.
1.5 Outline of the Thesis
This thesis is divided into seven chapters.

1 Chapter 1: Introduction
This chapter provides an overview of Digital Twin (DT) applications in healthcare, the
significance of Al and loT integration, and the motivation behind the study. It also
outlines the research objectives, problem statement, and scope of the thesis.

2 Chapter 2: Literature Survey
A comprehensive review of existing research on Digital Twin technology, Al-driven
healthcare systems, loT-based monitoring, and security challenges. This chapter
identifies the research gaps and justifies the need for the proposed study.

3 Chapter 3: Digital Twin and Metaverse for Secure Healthcare Transformation
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This chapter explores the integration of Digital Twin and the Metaverse in healthcare,
focusing on virtual healthcare ecosystems, patient engagement, and security frameworks
to ensure secure and efficient digital transformation.

4 Chapter 4: Digital Twin-Enabled Smart Healthcare Systems
It discusses the implementation of Al-powered Digital Twins for real-time patient
monitoring, predictive analytics, and personalized healthcare, highlighting the challenges
and benefits of smart healthcare applications.

5 Chapter 5: Securing Healthcare IoT with Digital Twin and AI-Driven Intrusion
Detection
This chapter focuses on cybersecurity threats in healthcare IoT systems, the role of
blockchain and cryptographic techniques, and the implementation of Al-based intrusion
detection models to secure patient data.

6 Chapter 6: Digital Twin-Enabled AI for Monkeypox Detection
This chapter details the development of MxSLDNet, a deep learning model for
Monkeypox detection, including dataset preprocessing, model training, performance
evaluation, and comparative analysis with pre-trained architectures.

7 Chapter 7: Conclusion
The final chapter summarizes the key findings of the research, highlighting its
contributions to Al-driven healthcare systems. It also discusses limitations, potential

improvements, and future research directions in Digital Twin-based medical applications.
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CHAPTER -2

LITERATURE SURVEY

This chapter explores the evolution, core components, and applications of Digital Twin (DT)
technology in healthcare. It provides a comparative analysis of existing DT frameworks,
highlighting their integration with Al, loT, and blockchain while addressing challenges in
security, interoperability, and real-time processing. The chapter concludes by identifying key

research gaps and future directions for optimizing DT adoption in healthcare.
2.1 Introduction

Digital Twin (DT) is a virtual model of a physical object or system that enables the simulation
of its behavior, performance, and characteristics. This technology has the potential to bring
significant advancements across multiple industries, including manufacturing, logistics,
healthcare, and urban development. Initially developed for the manufacturing sector, digital
twins were primarily used to enhance the design and functionality of complex systems like
aircraft engines and industrial equipment. However, their applications have expanded to
include infrastructure, buildings, and even entire cities. A major advantage of digital twins is
their ability to provide real-time data and insights into the operation and efficiency of a physical
system. Continuously monitoring performance enables the early detection of issues and
inefficiencies, allowing for proactive maintenance and optimization. In healthcare, digital
twins play a crucial role in simulating and refining patient care pathways, reducing medical
errors, and enhancing treatment outcomes. They also contribute to the design and management
of healthcare facilities like hospitals and clinics. In urban planning, digital twins allow for the
modeling and optimization of entire cities, including transportation networks, energy grids, and
public services, leading to greater efficiency, sustainability, and improved quality of life. As a
whole, digital twin technology has the potential to revolutionize various fields by offering real-
time insights that enhance the functionality and performance of physical objects and systems.
With continuous technological advancements, digital twins are expected to become even more

widespread across different sectors.
2.1.1 Evolution of Digital Twin Technology

A chronological representation of the evolution of digital twin technology is illustrated in
Figure 2.1. In 2002, Professor Michael Grieve introduced the idea of a “virtual digital
expression equivalent to physical products” during the “product life cycle management” course

9
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(2] at the University of Michigan. He defined it as “one or a group of digital copies of a specific

device that can abstract the real device and can be tested under real or simulated conditions [1].

2017 - now | Become the key technology
of industrial internet

2016 Promote related
products

Initial establishment of

2014 ’—)theory and technology system

2006 - 2010 Information
mirror model

2003 - 2005 The space model
of mirror image

Virtual digital
expression equivalent to
physical product

Digital
Twin

Figure 2-1: Evolution of Digital Twin Technology

From 2003 to 2005, this concept was termed the “mirrored spaced model,” and between 2006
and 2010, it was referred to as the “information mirroring model.” Although it is not a “digital
(2] twin,” it shares fundamental components such as virtual space, physical space, and the interface
connecting them. In 2011, Professor Michael Grieve mentioned in his book “Virtual Perfect
Model of Intelligent Manufacturing, Driving Innovation and Lean Products” that the digital
twin consists of three key elements: physical products in the physical world, virtual models in
the virtual space, and a data interface linking the physical world and virtual space [2]. In 2012,
the National Aeronautics and Space Administration introduced the road map for “modeling,
simulation, information technology and processing,” bringing the concept of digital twin to
public attention. In 2013, the U.S. Air Force’s science and technology planning document,
Global Horizon, recognized digital twins as a “game-changing” technology. By 2014, Boeing,
GE, and other companies initiated a series of application research projects on digital twin,
establishing a theoretical and technological framework for it. They later transitioned this
(2 military technology to civilian applications, implementing a “digital twin supply system” in
asset management and the development of the industrial Internet. At the 2016 Siemens Industry
Forum, Siemens expanded the digital twin concept to include the digital twin of products, the
digital twin of the production process, and the digital twin of equipment, enabling a

comprehensive and precise reproduction of an entire enterprise. In [3], The authors described

10
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the composition of digital twin from the perspective of the product, which primarily included
product design data, product process data, product manufacturing data, product service data,
and product retirement and scrap data. Meanwhile, some researchers proposed the composition
of digital twin from the perspective of production, incorporating product design, process
planning, production layout, process simulation, and output optimization [4], making it more
comprehensive and better aligned with the needs of an intelligent factory. Additionally, the
composition of digital twin was examined from the perspective of workshop structure,
encompassing the physical workshop, virtual workshop, workshop service system, and
workshop twin data. The physical workshop represents the actual workshop, which receives
production tasks from the workshop service system and executes them based on the execution
strategy optimized through virtual workshop simulation. The virtual workshop serves as the
equivalent mapping of a logistics workshop, primarily handling simulation analysis and
optimization of production activities, real-time monitoring, as well as prediction and
adjustment of production activities within the physical workshop. The workshop service
system refers to the collective software systems within the workshop, playing a key role in
operating the digital twin, driving the physical workshop, and receiving production feedback
from it [5], [6]. Since 2017, digital twin has developed from a new management paradigm for

industrial production processes to a key technology of the industrial Internet.

2.1.2 Core Components of DTs

Elementary components
The elementary components are those without which a DT cannot exist:

e Physical Asset (could be either a product or a product lifecycle)

e Digital Asset (the virtual component)

e Information flow between the physical and digital asset (this could be 1-way or 2-

way/bijective)

Imperative components
The imperative components add to the properties of DT, to make it an all-encompassing tool
for simulation, real-time monitoring, and analytics. Without these, the uniqueness of DT ceases
to exist. The existence of each of these components depends majorly on the domain and

application of DT.

11
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IoT devices: to collect sensors’ information from different sub-components of the
physical asset and edge devices. Requires: High-fidelity connection between IoT devices,
for accurate and timely flow of information.

Data: gathered from different [oT components and software; it is required to monitor the
system, guarantee correct behavior, and provide input to the machine learning system.
Requires: Big data analysis and storage tools for extracting useful information from data.
Machine learning: for predictions and feedback, as well as to identify effective
mitigation strategies, in exceptional circumstances. Requires: A joint optimization
feature for the subcomponents of the DT.

Security of data and information: Security protocols for information sharing and

authentication, and authorization mechanisms.

5 DT Performance evaluation: Evaluation metrics (e.g. accuracy, resilience, robustness,
costs), and evaluation methods and tests.
(5 ) 2.1.3 How Digital Twin Differs from Other Technologies

The diverse applications of DT such as simulation, real-time monitoring, testing, analytics,

prototyping, and end-to-end visibility, can be broadly classified as sub-systems of DT (for

example, a DT can be used for testing during prototyping, for real-time monitoring and

(5 ) evaluation, or for both). It is the presence of all the components discussed that makes a DT

different from these, as described in Table 2.1.

Table 2.1: How DT differs from existing technologies

Technology How the technology differ from DT
Simulation No real-time twinning
Machine Learning No twinning
Digital Prototype No IoT components necessarily
Optimization No simulation and real-time tests
Autonomous Systems No self-learning (learning from its past outcomes) necessarily
Agent-based modeling No real-time twinning
(1) The concept of digitizing and twinning is not new. Many similar concepts have preceded DT,

however, for the reasons briefly described below, they differ.

('TJ turnitin

Digital Shadow, Digital Model: A Digital Model has only a manual exchange of data
and it does not showcase the real-time state of the model. Digital Shadow is a saved

data copy of the physical state, with one-way data flow from the physical object to the

12
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digital object [7]. DT, on the other hand, has fully integrated data flow, so that it
properly and consistently reflects the actual state of the physical object.

Semantic Virtual Factory Data Models: (VFDM) are virtual representations of
factory entities [8]. These were used in manufacturing and industrial spaces [9]. DT
differs from VFDMs due to the real-time synchronization property. VF is a data model
only, whereas DT is real-time and synchronized.

Product Avatar: is a distributed and decentralized approach for product information
management with no feedback concept; it may capture information of only parts of the
product [10].

Digital Product Memory: DT is an extension of semantic/digital product memory,
where a digital product memory [11] senses and captures information related only to a
specific physical part, and thus it can be viewed as a DT instantiation.

Intelligent Product: A DT can be seen as an extension of an Intelligent Product that
uses new technologies such as [oT, big data, and machine learning [12].

Holons As an initial computer-integrated manufacturing tool, holons formed the basis
for all the technologies described above [13].

Product Lifecycle Management (PLM): [14] Discuss the difference between PLM
and DT, where PLM is focused more on ‘managing’ the components, products, and
systems of a company across its lifecycles, whereas a DT can be a set of models for

real-time data monitoring and processing.

2.2 Digital Twin in Healthcare: An Overview

To gain a comprehensive understanding of the applications of Digital Twin technology in

healthcare, existing research studies have been categorized based on their focus areas. Table

2.2 presents a classification of these studies, highlighting various domains such as virtual

reality for training, cognitive assessment, health monitoring, mental health support, and remote

healthcare delivery. This categorization helps in identifying key contributions and trends in the

field.
Table 2.2: Classification of Research Studies on Digital Twin in Healthcare
Referenced Papers Category Description
[15], [16], [17], [18], | VR for Training and Education VR-based simulations for education and skills
[19] enhancement
13
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[20], [21], [22], [23], | Cognitive Assessment and | Digital platforms for cognitive function

[24] Rehabilitation assessment and improvement

[25], [26], [27], [28], | Health and Well-being Monitoring | Continuous health monitoring using sensors
[29], [30], [31] and digital twins

[32] Empathy and Understanding Through Immersion Immersive experiences

foster empathy and support

[33], [34], [35], [36] Mental Health and Psychological | Support Digital interventions for mental
health and stress relief

[37], [38], [39] Remote Healthcare Delivery and | Digital twins and technologies for remote
Telemedicine health assessments and care

[40] Interactive and Assistive | Enhancing accessibility and support for
Technologies for Disabilities individuals with disabilities

[41], [42], [43], [44] Innovative Interfaces for Health | New interfaces for health applications,
Interaction including rehabilitation and education

Virtual Reality (VR) for Training and Education: This category involves the use of VR to
replicate real-world scenarios for educational purposes and skills training in healthcare. VR
offers an immersive environment where users can engage with virtual patients or simulated
situations, enhancing learning and skill development without real-world risks. A digital twin
in this context would replicate user interactions within a virtual setting, providing personalized
feedback and adjusting scenarios based on performance. Some digital twins in this category
can track skill development, highlight areas for improvement, and customize training
experiences. These technologies contribute to better intervention outcomes, improved patient
care, and reduced medical errors by providing a realistic yet risk-free training platform,

ultimately enhancing the expertise of healthcare professionals.

Cognitive Assessment and Rehabilitation: Digital twins in this category focus on evaluating
and rehabilitating cognitive functions. Often incorporating immersive technologies such as VR
and AR, these systems provide engaging experiences to assess and enhance cognitive abilities.
A digital twin for cognitive assessment and rehabilitation would digitally represent an
individual's cognitive performance, identify deficits, and track progress over time. It could
tailor rehabilitation exercises based on the user’s performance, offering a customized recovery
plan. Personalized cognitive rehabilitation can improve cognitive function, aiding individuals
in managing impairments more effectively. Enhanced cognitive capabilities contribute to better

daily functioning and independence.
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Health Monitoring and Management: This category involves continuous tracking and
monitoring of health parameters and behaviors through sensor-based data collection, which is
then analyzed by a digital twin to provide insights into an individual's health. These systems
integrate data from wearable sensors and environmental inputs to create a comprehensive
health profile. By identifying patterns and predicting potential health outcomes, digital twins
can offer recommendations for maintaining or improving health. Continuous monitoring
enables early detection of potential health issues, facilitating timely interventions and reducing
the risk of complications. This proactive approach enhances overall healthcare management by

preventing emergencies and optimizing long-term health outcomes.

Enhancing Empathy and Understanding through Immersion: This category focuses on
using immersive technologies to create experiences that promote empathy and a deeper
understanding of specific conditions or challenges faced by individuals. A digital twin in this
context would replicate a person’s perspective, allowing others to experience their challenges
through an interactive simulation. By adapting scenarios based on user interactions, these
digital twins can enhance awareness and foster empathy. Such experiences can lead to
increased societal support and improved interpersonal understanding. For individuals
experiencing these simulations, greater awareness can lead to better social support and

improved psychological resilience.

Psychological Support and Mental Health Interventions: Digital twins in this category
focus on providing therapeutic interventions, stress relief, and coping strategies for mental
health concerns. Some systems may integrate VR to create immersive therapeutic
environments. A digital twin for mental health applications would offer personalized
interventions based on an individual’s emotional state and mental health history. These digital
twins can track progress and adjust therapies based on evolving needs. Personalized mental
health support enhances accessibility and effectiveness, leading to better management of

mental health conditions, symptom reduction, and an improved quality of life.

Remote Healthcare Delivery and Telemedicine: Digital twins in this category facilitate
remote healthcare services, including assessments, consultations, and interventions, ensuring
broader access to healthcare regardless of geographical barriers. These systems enable remote
monitoring and integrate health data from various sources to provide healthcare professionals
with a comprehensive view of a patient’s condition. Additionally, they support decision-

making by predicting health outcomes based on data trends. Remote healthcare delivery
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improves accessibility, particularly for underserved populations, reduces travel-related costs
and time, enhances chronic disease management, and allows for timely interventions, leading

to better overall healthcare outcomes.

Assistive Technologies for Individuals with Disabilities: This category focuses on
leveraging digital twins alongside assistive technologies to enhance accessibility and support
for individuals with disabilities. These systems offer personalized support tailored to an
individual's specific needs and capabilities by integrating assistive devices and adaptive
technologies. By addressing unique challenges, digital twins significantly improve
independence and daily functionality, empowering individuals to participate more actively in
society. Improved accessibility and personalized support contribute to enhanced healthcare

outcomes.

Innovative Interfaces for Healthcare Applications: This category explores novel interfaces
such as Brain-Computer Interfaces (BCI), Augmented Reality (AR), and Virtual Reality (VR)
to facilitate healthcare applications, including rehabilitation, patient education, and interaction
with healthcare systems. Digital twins using these advanced interfaces create intuitive and
accessible ways for individuals to engage with healthcare information and services. These
systems can adapt to user preferences and abilities, offering personalized experiences that
improve engagement and effectiveness. The integration of innovative interfaces enhances the
accessibility of healthcare services, increases adherence to treatment plans, and fosters better

patient education, ultimately leading to improved health outcomes.
2.3 Comparative Analysis of Existing DT Frameworks in Healthcare

The development of Digital Twin (DT) frameworks in healthcare has gained momentum, with
researchers exploring various approaches to enhance patient monitoring, diagnosis, surgery
simulations, and personalized treatment. However, despite significant advancements, several
limitations persist, particularly in security, data synchronization, and interoperability. To
systematically analyze existing research, the table below compares different DT frameworks

based on their applications, security measures, and limitations.
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Ref. Application Technology Used | Security Features Limitations
Liu et al. | Cloud-based DT | Cloud Computing, | Secure cloud storage, | Data privacy concerns,
[28] framework for | 10T, Big Data real-time patient | potential latency in cloud-
elderly healthcare monitoring based services
Chakshu et | Carotid  stenosis | Digital Twin, Al Secure data analysis | Data accuracy: potential
al. [45] detection false positives in Al-driven
diagnostics, limited dataset
availability for model
training
Majdoubi | Smart healthcare | Blockchain Privacy-preserving Scalability issues,
etal. [46] | framework mechanisms processing overhead due to
privacy-preserving
cryptographic operations,
risk of slow transaction
speeds in peak demand
scenarios
Dietz et al. | Secure DT | Blockchain-based | Fine-grained access | Implementation
[47] information Decentralized control complexity: integration
management Application challenges with legacy
(DApP) healthcare systems, high
transaction  costs  on
blockchain networks
Raj et al. | Enhancing  DTs | Blockchain, 10T, | Decentralized Integration challenges:
[48] with blockchain Al security interoperability issues
between different
blockchain protocols,
potential vulnerabilities in
smart contracts
Akash et | Healthcare DT | Blockchain Structured data | Data collection challenges:
al. [49] system design management requires standardized data
formats across different
healthcare institutions,
high storage demands
Elyanetal. | DT for intelligent, | 10T, Machine | Secure patient | Requires large-scale real-
[50] context-aware loT | Learning, Al monitoring using | time data  processing,
healthcare ECG-based heart | potential biases in Al-
rhythm analysis based diagnostics
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Meijer et | Methodological Narrative review Real-time Scenario Data standardization and
al. [51] challenges in integration issues;
healthcare DTs computational complexity
Amofa et | Remote patient | loT-enabled DTs Blockchain-based High computational cost:
al. [52] monitoring encryption requires significant
computational  resources
for encryption, scalability
issues in large healthcare
networks
Okegbile Human Digital | Al,  Blockchain, | Secure and real-time | Complexity in modeling
etal. [53] | Twin (HDT) for | Cloud-Edge data synchronization | human physiological
personalized Computing between physical and | changes, lack of
healthcare virtual entities standardization for HDT
implementation
Morrone et | Women's  health | Al, Digital Twin Real-time data | Uncertainty in Al
al. [54] monitoring tracking effectiveness; challenges in
inducing behavioral change
among patients
Pellegrino | Conceptual Systematic meta- | Real-time Scenario Integration challenges
etal. [55] | framework for DT | review across diverse healthcare
in healthcare systems; need for
standardization
Vijay et al. | Secure blockchain | Federated Secure data | Model complexity:
[56] transactions Learning, LSTM transactions requires substantial
computational power for
LSTM autoencoders, and
training time increases with
large datasets
Mishra et | DT-based diabetes | 10T, Medical Fog | Privacy-preserving High dependency on loT
al. [57] prediction  using | Computing,  Al, | Al model, secure | infrastructure, requires
federated learning | Federated Learning | decentralized  data | large-scale dataset for
(FL) handling training
Bera et al. | Secure Quantum-resistant | Protection  against | High computational
[58] communication in | cryptography guantum attacks, | overhead due to lattice-
DT-enabled 10T | (RLWE), Scyther | secure transmission | based cryptographic
healthcare tool for security | in DT-enabled 10T | techniques, scalability
verification systems issues
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Digital Twin (DT) frameworks in healthcare face several key challenges related to security,
data synchronization, and interoperability. Security strategies often rely on blockchain for data
integrity and secure transactions; however, scalability remains a significant issue. Emerging
techniques like Federated Learning and Homomorphic Encryption enhance privacy-preserving
Al models, but they introduce high computational overhead. Additionally, the Zero-Trust
Architecture improves security by enforcing strict access controls, yet it adds operational
complexity in large-scale healthcare systems. In terms of data synchronization and processing,
many DT frameworks struggle with real-time data processing, particularly in ICU monitoring
and emergency medical applications. While cloud-based DTs offer scalability, they also
introduce latency issues and dependency on external cloud providers. On the other hand, Edge
Computing and IoT-based DTs provide low-latency solutions, but they face constraints related
to power consumption and computational resources. Interoperability and regulatory challenges
further hinder widespread adoption, as integration with Electronic Health Records (EHRs)
remains difficult due to standardization issues across different healthcare systems.
Furthermore, regulatory compliance with laws such as GDPR and HIPAA is not consistently
addressed across all DT implementations. The Metaverse-DT framework shows promise for
medical training and simulation, but its ethical and legal guidelines are still underdeveloped,

raising concerns about its real-world application in healthcare.

2.4 Major Findings

1 Enhanced Personalized Healthcare: Digital Twin (DT) technology enables real-time
patient monitoring, predictive diagnostics, and tailored treatment plans, leading to
improved precision medicine and individualized healthcare solutions.

2 Smart Hospital Management and Optimization: DT-driven simulations assist in
optimizing hospital workflows, resource allocation, and predictive maintenance,
ultimately improving healthcare efficiency and patient outcomes.

3 Al and IoT Integration for Data-Driven Healthcare: The fusion of Al IoT, and DT
provides advanced analytics in medical imaging, wearable health monitoring, and
patient-specific simulations, enhancing diagnostics and early disease detection.

4 Remote Patient Monitoring and Telemedicine: DT facilitates real-time remote
healthcare services, reducing hospital visits while ensuring effective chronic disease

management, elderly care, and emergency response.
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5 Epidemiological Modeling and Public Health: DT supports disease forecasting,
pandemic simulations, and vaccination strategy development, enabling better
preparedness and response to public health crises.

6 Revolutionizing Surgical Planning and Training: Virtual anatomical DT models
improve preoperative planning, medical training, and robotic-assisted surgeries,
reducing procedural risks and enhancing precision.

7 Biomedical Engineering and Regenerative Medicine: DT plays a crucial role in bio-
fabrication, 3D bioprinting, prosthetics, and organ simulation, accelerating innovation
in regenerative medicine and personalized medical implants.

8 Accelerated Drug and Medical Device Development: DT enables virtual clinical
trials, reducing the time, cost, and risk associated with drug development and medical

device testing, thereby streamlining regulatory processes and safety evaluations.

(111 2.5 Challenges and Ethical Considerations

Despite the numerous benefits of Digital Twin technology in healthcare, several challenges

remain:

1 Data Privacy and Security Concerns: The integration of real-time patient data in DT
& raises significant concerns about data breaches, unauthorized access, and compliance
with healthcare regulations such as HIPAA and GDPR.

2 High Computational and Infrastructure Requirements: DT models require
substantial computational power, cloud storage, and advanced imaging technologies,
making implementation costly and resource-intensive for many healthcare institutions.

3 Interoperability and Standardization Challenges: Lack of universally accepted
standards for DT integration across various healthcare systems and devices limits
seamless data exchange and cross-platform compatibility.

4 Limited Availability of High-Quality Data: The accuracy of DT models relies on
large, high-quality datasets, which may be unavailable, incomplete, or inconsistent,
affecting the reliability of medical simulations and predictions.

5 Regulatory and Ethical Considerations: The widespread adoption of DTs in
healthcare is hindered by unclear regulatory frameworks and ethical concerns related to

digital simulations of human bodies and disease progression modeling.
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6 Integration with Existing Healthcare Systems: Many healthcare institutions use
legacy systems that are not easily adaptable to DT technology, leading to operational
disruptions and resistance to digital transformation.

7 Validation and Clinical Acceptance: DT applications in healthcare require extensive
clinical validation to ensure accuracy and safety, yet the lack of standardized evaluation

methods and limited real-world case studies hinder widespread clinical acceptance.

2.6 Conclusion

The historical development of Digital Twin technology, from its early applications in aerospace
to its transformative role in healthcare, underscores its potential to shape the future of medicine.
By integrating Al big data, and IoT, DT is revolutionizing patient care, disease prediction, and
medical research. However, addressing challenges related to data privacy, interoperability, and
ethical considerations will be essential for its widespread adoption in healthcare systems

worldwide.
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CHAPTER -3

DIGITAL TWIN AND METAVERSE FOR SECURE HEALTHCARE
TRANSFORMATION

This chapter explores the integration of Digital Twin (DT) and Metaverse technologies in
healthcare, focusing on their role in secure healthcare transformation. Key advancements,
applications, and challenges are discussed, along with a conceptual framework for DT
implementation. The chapter concludes with an analysis of future trends and security

considerations in DT-enabled healthcare.
3.1 Introduction

Digital healthcare technology has undergone a transformative shift, integrating advanced
digital tools to enhance patient care, streamline medical operations, and improve healthcare
outcomes. Key innovations such as electronic health records (EHRs), telemedicine, wearable
devices, and Al-driven solutions aim to make healthcare more accessible, efficient, and patient-
centered. These advancements address challenges like rising costs, limited medical access, and
the increasing demand for personalized and preventive care. Among these innovations, Digital
Twin (DT) technology stands out, creating virtual replicas of patients to simulate and analyze
physiological conditions and treatment responses. By leveraging real-time data, Al, and
machine learning, DT enables predictive analytics, remote monitoring, and precision medicine,
leading to more accurate diagnoses, optimized treatment plans, and personalized healthcare
recommendations. Integrating DT with IoT, Al, and cloud computing further enhances its
capabilities, allowing real-time simulations, improved medical training, and comprehensive
patient insights. Technologies like augmented reality (AR) and virtual reality (VR) amplify
DT’s potential in surgical planning and medical simulations, transforming healthcare into a
more precise and patient-focused system. DT technology is increasingly recognized for
addressing challenges such as inefficient data management, delayed interventions, and limited
treatment personalization. The COVID-19 pandemic highlighted the need for real-time patient
monitoring, predictive analytics, and data-driven decision-making, where DT played a crucial
role in enabling early disease detection and proactive interventions. Additionally, DT facilitates
the creation of digital models for hospital operations and medical devices, enhancing resource
utilization and reducing medical errors. Despite its benefits, DT adoption in healthcare raises

security and privacy concerns. Given the sensitivity of medical data, robust cybersecurity
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measures—such as encryption, blockchain, and advanced authentication—are essential to
safeguarding patient information and maintaining healthcare system integrity. Addressing these

concerns is crucial for fostering trust and ensuring seamless DT integration.

Real-world applications of DT technology illustrate its transformative impact. Institutions like
the Cleveland Clinic use DT for surgical planning, while GE Healthcare employs it for
predictive maintenance of medical imaging equipment. The Mayo Clinic leverages DT to
optimize treatment plans for critical illnesses, and Philips integrates DT with smart devices for
real-time patient monitoring. Siemens Healthineers applies DT to hospital design, improving
workflows and operational efficiency. The emergence of the Metaverse, combining AR, VR,
Al, and blockchain, further expands DT’s potential in healthcare. It enables remote
consultations, interactive medical training, and virtual simulations, fostering collaborative

medical research and improving diagnostics and treatment methodologies.

This study explores DT’s role in healthcare security and privacy within the Metaverse
framework. It contributes by designing a secure DT integration framework, proposing a six-
axis Metaverse-based model for healthcare challenges, and reviewing DT applications from
2000 to 2024. The study also examines distributed trust mechanisms, emphasizing the need for
strong security measures to ensure data integrity and patient safety. As technology advances,
DT is set to revolutionize healthcare by enhancing diagnostic accuracy, optimizing treatment
planning, and improving medical training. The integration of DT with blockchain, 5G, and
quantum computing could further enhance security, interoperability, and scalability. Embracing
DT technology will drive unprecedented efficiency, accuracy, and patient-centered care,

shaping the future of digital healthcare in the Metaverse era.
3.2 Data Selection for Digital Twin in Healthcare

To provide a comprehensive review of Digital Twin (DT) and Metaverse applications in
healthcare, we conducted a systematic literature review (SLR) following the Preferred
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [59], [60].
This approach ensures a structured, transparent, and reproducible methodology for identifying,

selecting, and analyzing relevant studies.
3.2.1 Search Strategy & Data Sources
We searched five major academic databases to collect relevant research papers:
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e [EEE Xplore (for technology-driven DT research)
e PubMed (for biomedical and healthcare applications)
e Scopus (for interdisciplinary studies)
e Web of Science (for high-impact research papers)
e Google Scholar (for additional gray literature and preprints)
To maximize coverage, we used a combination of Boolean operators (AND, OR) and keyword

variations:

e ("Digital Twin" OR "Healthcare Digital Twin") AND ("Security" OR "Privacy")

e ("Metaverse" OR "Augmented Reality" OR "Virtual Reality") AND ("Healthcare
Applications")

e ("Blockchain" OR "AI") AND ("Healthcare Data Security" OR "Digital Twin
Cybersecurity")

Studies published between 2000 and 2024 were considered, with a focus on recent

developments (2018-2024).
3.2.2 Inclusion & Exclusion Criteria

To ensure the relevance and quality of the selected papers, we applied the following inclusion

and exclusion criteria:
Inclusion Criteria:

e Studies written in English.

e Research papers that explicitly discuss Digital Twin or Metaverse applications in
healthcare.

e Studies that address security, privacy, or interoperability challenges in DT-based
healthcare systems.

e Peer-reviewed journal articles, conference papers, and high-impact white papers.
Exclusion Criteria:

e Duplicate studies.
e Papers focusing on non-healthcare applications of DT and Metaverse (e.g.,

manufacturing, aerospace).
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e Opinion articles, editorials, or commentaries without empirical data.

e Studies with incomplete methodologies or insufficient technical details.

3.2.3 Study Selection & Evaluation Process
To ensure reliability and validity, we implemented the following three-stage selection process:

a) Title & Abstract Screening
e Two independent reviewers scanned titles and abstracts to exclude irrelevant
papers.
e Discrepancies were resolved through discussion and consensus.
b) Full-Text Review
e Studies that passed the initial screening were read in full and evaluated for
relevance.
e Papers were excluded if they lacked concrete technical discussions.
¢) Quality Assessment
e Selected studies were evaluated using the CASP (Critical Appraisal Skills
Programme) checklist.
e Each paper was scored on:
i.  Methodological rigor (was the study well-designed?)
ii.  Relevance to DT-Metaverse healthcare

1ii.  Depth of security/privacy discussion

3.2.4 Data Extraction & Analysis
From each selected study, we extracted the following key information as shown in Table 3.1:

Table 3.1: Data Extraction and Analysis

Category Details Extracted

Study Type Survey, Experimental, Conceptual Framework

Domain Digital Twin, Metaverse, Al, Blockchain in Healthcare

Use Cases Patient Monitoring, Surgery, Medical Training, Drug Development
Security Measures Blockchain, Al-driven Privacy, Homomorphic Encryption

Key Findings Contributions & Limitations of Each Study
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3.2.5 Scalability Challenges and Solutions in Digital Twin Healthcare Systems

Although Digital Twin technology presents numerous advantages in healthcare, scalability
remains a critical challenge. To address this, the following solutions and methodologies have

been identified:

1. AI and Machine Learning Integration
e Al-driven models can optimize resource allocation, improve predictive analytics,
and enhance the real-time processing capabilities of Digital Twins.
e Federated Learning can ensure distributed Al training across multiple healthcare
facilities without compromising patient data privacy.
2. Interoperability Standards
e Adoption of FHIR (Fast Healthcare Interoperability Resources) and HL7 (Health
Level Seven) standards can enhance seamless data exchange between different DT
healthcare systems.
e Implementing standardized APIs for cross-platform DT integration will improve
scalability and system-wide connectivity.
3. Robust Security and Privacy Frameworks
e Blockchain-based decentralized identity management can provide secure access
control without relying on centralized databases.
e Homomorphic encryption allows secure computation on encrypted patient data,
reducing risks associated with data breaches.
e Zero-trust architecture (ZTA) ensures that only authenticated users and devices
access Digital Twin systems, mitigating potential cyber threats.
4. Cloud-Edge Hybrid Infrastructure
e A combination of cloud computing for large-scale data processing and edge
computing for real-time analytics can enhance scalability.
e Deploying edge Al models can reduce latency and enable localized decision-
making without burdening centralized cloud servers.
5. Dynamic Resource Allocation & Load Balancing
e Al-powered dynamic workload distribution algorithms can prevent system
overloads in high-demand healthcare environments.
e Software-defined networking (SDN) and network function virtualization (NFV)

can improve scalability by dynamically managing healthcare data traffic.
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By incorporating these methodologies, Digital Twin systems can achieve greater scalability,
efficiency, and security, making them more viable for large-scale healthcare applications. The
publications on DTs published annually from 2003 to 2024, as reported by the Web of Science
Core Database, are displayed in Figure 3-1. According to the figure, the quantity of published
literature on DT has gradually increased after 2016. Furthermore, using information from many
research papers cited in this study and their respective references, Figure 3-3 illustrates a

percentage analysis of healthcare diseases in the digital twin (DT) system.
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Figure 3-1: Number of publications per year on digital twins in healthcare

This review examines a diverse range of 25 articles across various medical domains, as shown
in Figure 3-2. These encompassed 3 papers in surgery, 7 in cardiovascular, 3 in the context of
COVID-19, 3 related to pharmacy, 4 in orthopedics, 2 in cancer research, and 3 exploring
digital technologies in other disease areas. Our inclusive approach ensures articles are written
in English and focused on integrating digital technologies (DT) to construct patient models, aid
in diagnosis, or personalize therapy. The work excludes duplicated or irrelevant articles, those
lacking DT integration, and those limited to conference abstracts, proposals, or viewpoints.
This review provides insights into the evolving landscape of utilizing DT to advance medical

practices and improve patient outcomes across multiple disciplines.
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Figure 3-2: Flowchart for illustrating Digital Twin in Healthcare
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3.3 Digital Twin in Healthcare: State-of-the-Art

In the future, with artificial intelligence (Al), 6G, and intelligent sensors, the healthcare system
will be able to seamlessly connect the real-world patient and digital replica via the healthcare
digital twin (HDT) to accomplish secure healthcare [61], [62]. Future doctors, for example, can
remotely study and monitor patients and detect and predict health concerns. This digital twin
then gets this information ready for analysis by powerful computers. By constantly checking a
patient's health and looking for anything unusual, this system can help doctors in many ways,
from suggesting treatments to figuring out how medications will work and even planning

healthy lifestyles for patients to follow as shown in Figure 3-4.
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Figure 3-4: Conceptual Framework of Secure Digital Twin for Healthcare

3.3.1 Three-Axis of the Digital Twin
1. Data Prediction: In this part, the system uses wearable sensors to collect real-time
information about a patient's health to see if anything is wrong. This information is then
stored in a safe and big online storage space (cloud database) for a short time. Here, the
information is cleaned up and made ready for super smart computers (machine learning)
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to analyze it and predict future health problems. Both patients and other parts of the
system can see this information in another safe online storage space (Result Database)

so they can add comments, updates, or corrections if needed.

2. Supervision: Doctors use the information from the prediction models in the Result
Database to recommend treatments for patients. This information, along with the
doctor's knowledge and keeping track of the patient, helps doctors make better
healthcare decisions. Because the information is updated constantly, doctors can find
and track problems with a patient's health more easily and take the right steps to fix
them. This way, doctors can give patients the right medicine and help them live healthier
lives. Doctors can also check the findings from the system and suggest ways to make it

work even better.

3. Comparison: The DT system also makes its predictions more realistic by comparing a
patient's information with information from similar patients. This comparison helps the
system make more accurate predictions, which in turn helps doctors make better
decisions about patient care. These decisions can involve copying, changing, or
stopping treatments altogether based on real-time information and the patient's past,

present, and predicted future health.

The DT framework is demonstrated in this Figure 3-4, which also suggests possible application
scenarios and an DT architecture enabled by blockchain and cloud edges. Digital twin (DT)
technology offers a novel approach to medical simulation by combining it with
multidisciplinary, multiphysics, and multiscale models. This improves the current healthcare
system by providing proactive, accurate, and effective personalized health services (PHS). The
physical twin (PT), virtual twin (VT), and healthcare data are the three main components of
DT. Figure 3-4 illustrates these elements visually: VT in the virtual world, PT in the physical
world, and an interlinkage that links PT and VT through reliable data links so that they can
develop simultaneously in the virtual and physical worlds. Through real-time data analysis and
ongoing health status monitoring, this synchronization facilitates efficient risk management,
cost savings, and future forecasting by anticipating possible health issues before they arise.
HDT can provide accurate, timely, and efficient PHS by integrating the patient, the virtual
object, and the healthcare data. HDT can, therefore, contribute to developing innovative drugs
and vaccines without endangering human health. It will also improve disease prevention and

surgical procedures, recommend lifestyle modifications, maximize the efficacy of treatment
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plans tailored to each patient, and reduce the time it takes for innovative, cutting-edge
medications to be introduced to the market. All of these advantages will reduce the total cost
of healthcare. Healthcare Digital Twins (HDT) can anticipate an individual's health status in
the future, enabling proactive steps for preventive healthcare. By using DT, healthcare can be
highly personalized, providing tailored diagnoses and treatment recommendations, making it a
game-changer for the healthcare industry. Despite the enormous potential impact of DT on
healthcare, there are important issues to resolve. These challenges include verifying that
Personalised Health Services (PHS) are efficiently provided by DT, maximizing the application
of Al and ML techniques to offer these services, and guaranteeing accurate medical data
collection. The work emphasizes the transformative potential of creating individualized DT for
achieving PHS. However, it's crucial to document the entire process of conceiving,
representing, and implementing DT models before deployment. A comprehensive
understanding of human molecular systems is necessary to ensure accurate medical data
collection. We have made significant progress in understanding human molecular systems
because of several ongoing projects like the Human Cell Atlas, the Whole-cell computational
model project, and the Genome project. Leveraging extensive molecular insights allows for

precise medical data collection using various advanced sensing devices.
3.3.2 Key Technologies for Digital Twin Implementation

DTs: information modeling that can abstract human specifications, communication that
facilitates bi-directional data transmissions between devices, and data processing that can
extract meaningful information from heterogeneous multi-source data [63]. Similarly, there are
two ways in which DTs differ from traditional DTs in other contexts: First, because intra-body
and inter-body interactions differ, DTs rely on sophisticated communication techniques.
Second, a flawless human-twin link may only sometimes be possible because people are not
(and may not want to be) born with embedded sensors. Individual medical data are typically
acquired through medical examinations [64]. Thus, Figure 3-5 summarises the essential

technologies, which are then explored as follows.

a) Connectivity: Two-way communication between PT-VT pairs, typical VTs, neighboring
VTs, and VTs and domain experts is made possible by connectivity. To ensure VT and PT
coexist, HDT modeling requires perfect data flow, high-speed connectivity, minimal
latency, real-time synchronization, and edge intelligence. LoORaWAN, 6G, and tactile

internet can be used to construct HDTs that ensure Ultra-Reliable and Low Latency
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Communications (URLLC) connectivity and secure private data/information exchanges
[65]. The requirements encompassing communication delay involve upload and download
latency, data processing time, computing duration, and network reliability. Prioritized
scheduling greatly aids PT-VT communications by factoring in the criticality-based
classification of PT data. Adjusting dynamic priority levels becomes essential to minimize
weighted latency, especially addressing concerns where low-priority class levels might
experience communication capacity limitations.

b) Data Collection: Efficient safeguarding and translation of data formats are essential for
gathering data from IoT devices, mobile devices, wearables, medical records, and
embedded sensors. Intelligent sensing devices and equipment are necessary for accurately
detecting attributes, metrics, and alterations in the physical environment of the patient twin
(PT). Users and experts regularly update the Healthcare Digital Twin (HDT) with digital
health data to monitor the PTs' health conditions. Biosignal sensing is a critical tool for
data collection, allowing the recording of biological events in specific locations and times.
This approach yields valuable insights into physiological factors that enhance Personalized
Health Services (PHS) and supports lifetime health management by monitoring organ and
physical environment changes in all PTs.

c) Data Processing: Most data preprocessing involves conversion, filtering, and cleaning.
Data must be transformed into valuable formats. Missing data, inconsistent data, human
input mistakes, improper data type, regional structures, numerical units, file change, and
missing anonymization issues may be present. The KNN-imputation algorithm estimates
missing values [66]. High-quality data is another danger to HDT. Data fusion, feature
tuning, feature selection, and building require substantial computational infrastructure and
take time to ensure accurate representation. Three processes are needed for data fusion:
mining, optimization, and processing. Data processing methods include distributed
processing and multiple programming.

d) Modeling Framework: In complicated systems, humans function in intricate settings.
Because of this, HDT modeling is complex. Even though an augmented DT model and a
reference model were used to represent the cyber-physical interaction, we still need to
understand the modeling framework for HDT fully. While one study used a convolution
neural network-based framework [67], another provided a computational cell-to-cell
network [68]. Real-time, ultra-fast connectivity between PTs and VTs; rapid simulation

framework validation execution and calibration; ongoing HDT model optimization; and
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HDT virtualization through sophisticated modeling techniques like Modelica, 3DMax, and

SolidWorks are all included in HDT modeling [69].
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Figure 3-5: Key Technologies for Digital Twin Implementation in Healthcare

Applied AI: Applied Al [70] Will bridge real-world and virtual environments for rapid
decision-making. Optimizing numerous machine learning algorithms will speed up HDT
development and improve Al-based communication. Machine-learning methods can be
modified and optimized to improve HDT development. HDT requires learning anything
accurately and continuously, producing reliable facts, recommendations, and precise future
projections that provide meaningful insights into the issue and potential remedies. Applied
Al will accurately portray VTs, giving medical practitioners and specialists valuable
information for preventive and maintenance care.

Cloud Computing: Cloud-edge computing helps shift complex computing and storage
tasks to the cloud, enabling faster processing of time-sensitive functions at the network's
edge. Edge intelligence is vital for deploying healthcare digital twins (HDT), ensuring
innovative task processing at edge nodes by collecting and analyzing medical data to offer

real-time insights and recommendations [71].

Digital Twins, which are virtual copies of real things or processes, open up new possibilities in

healthcare by making personalized medicine, predictive analytics, and remote tracking

7 turnitin
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possible. Even though Digital Twins could be helpful, they still need to be easier to use on a

large scale in healthcare for several reasons.

1. Technological Hurdles:

a. Data Integration and Quality: Healthcare data is often inconsistent and spread across
many systems, making it hard to combine and guarantee their quality for Digital Twin
models.

b. Real-time Data Processing: To make quick decisions based on real-time patient data,
you need a strong computer network and programs to quickly handle large amounts of
data.

c. Security and Privacy: Protecting private patient data from cyber threats and ensuring

privacy laws are significant issues in implementing the Digital Twin.

2. Interoperability Issues:
a. Standardization: Different healthcare systems and devices can only talk to each other
slowly because they use different standard protocols and formats for data exchange.
This makes it harder to add Digital Twins to current workflows.
b. Integration with Electronic Health Records (EHR): Digital Twins need to seamlessly
connect to EHR systems to use all of a patient's data successfully. However, this
integration is still hard to achieve because of the different EHR platforms and data

formats.

3. Scalability Challenges:

a. Resource Allocation: To make Digital Twin systems bigger to handle more data and
users, much money must be spent on computing power, which may be too much for
many healthcare organizations.

b. Model Complexity and Maintenance: As Digital Twin models get more complicated,
keeping them accurate and valuable over time gets more brutal. This means that they

need to be updated and checked all the time.

To make it easier for Digital Twins to fit into healthcare ecosystems, frameworks for sharing
data and security procedures are being developed for all of them, and money is being put into
scalable computer systems and advanced analytics tools to help process ample healthcare
information in real-time and getting everyone involved to work together to come up with the
best ways to create, test, and use Digital Twins in healthcare settings.
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The following Figure 3-6 demonstrates the Six-Axis of the Metaverse Implementation in

Healthcare.
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Figure 3-6: Six-Axis of the Metaverse Implementation in Healthcare

a) Personalization: This axis tailors healthcare experiences and interventions to individual

needs, preferences, and characteristics. Personalization involves leveraging data, Al

algorithms, and other technologies to deliver targeted treatments and recommendations for

each patient.

b) Interconnectivity: This axis emphasizes the interconnectedness of various elements

within the healthcare metaverse. Integrating different platforms, devices, and systems

enables seamless communication, data sharing, and collaboration among healthcare

providers, patients, caregivers, and other stakeholders.

c) Accessibility: This axis addresses the accessibility of healthcare services, information, and

resources within the metaverse. It involves removing barriers to access by ensuring that
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healthcare solutions are available to all individuals, regardless of their location,

socioeconomic status, or physical abilities.

d) Empowerment: This axis actively empowers individuals to participate in their healthcare
journey. It involves providing patients with the knowledge, tools, and support they need to
make informed decisions, manage their health effectively, and engage in shared decision-

making with healthcare providers.

e) Ethical and Regulatory Compliance: This axis highlights the importance of upholding
ethical principles and regulatory standards within the healthcare metaverse. It involves
ensuring the responsible use of technology, protecting patient privacy and confidentiality,

and adhering to relevant laws and guidelines governing healthcare practices.

f) Sustainability: This axis addresses the long-term sustainability and resilience of
healthcare systems and interventions within the metaverse. It involves considering
environmental, economic, and social factors to minimize waste, optimize resource

utilization, and promote equity and inclusivity in healthcare delivery.
3.4.2 Security & Privacy challenges in DT-Metaverse Healthcare

It has attracted much interest since Neal Stephenson introduced the concept of a computer-
generated universe with actual economic systems in his well-known science fiction book Snow
Crash [72]. Stephenson was the first to introduce the metaverse concept, which provided the
foundation for a computer-generated universe. It includes immersive public areas that combine
aspects from the actual and virtual worlds [73]. As a result of the recent development of a wide
range of technologies, the metaverse is progressively transforming from an abstract ideal into
a practical reality. Wearable sensors [74], non-fungible tokens (NFTs) [75], Augmented reality
(AR) [76], 5G connectivity [77], Blockchain [78], [79], [80], Virtual reality (VR) [81], [82],
Brain-computer interfaces (BCI) [83] and Artificial intelligence (Al) [84] are some examples
of these technologies. Global interest in this innovation has grown, leading major tech
companies like Microsoft, Tencent, NVIDIA, and "Meta" (formerly Facebook) to invest in its
continued development [85]. The development of the metaverse [86] can be distinguished into
three distinct phases, which are referred to respectively as DTs [87], digital natives [88], [89],
and surreality. Figure 3-7 depicts the basic framework for analyzing security and privacy in
DT-Metaverse. Collecting and analyzing vast amounts of data to produce DT of physical items

1s necessary to build a usable metaverse in the real world. Quality of user experience (QoE)
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relies heavily on the availability and accuracy of such data. The DT-based metaverse benefits
significantly from adding blockchain technology to this framework. To begin, security &
privacy permits verification of the integrity of each DT with its physical counterpart. This
procedure aids in guaranteeing the accuracy of the collected and processed data. As a result,
information can be accessed more quickly and openly than ever before. Incorporating
numerous DTs into the building of the 3D virtual environment is another way in which
blockchain facilitates cross-location interaction among users of the same virtual space.
Metaverse service transactions and related data are likewise recorded on the blockchain and
made available to the DT layer, providing audibility and facilitating iterative improvements to

the developed digital models. [87].
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Figure 3-7: Security and Privacy in DT-Metaverse

The metaverse allows users to embody themselves through avatars by fusing in cyberspace the
virtual and the physical aspects of their lives. In addition, the incorporation of methods and
technologies such as artificial intelligence (AI) [90], [91], Machine learning (ML) [92], [93],
Deep learning (DL) [94], internet of things (IoT), [95], [96], edge computing [97], [98] and
cloud computing [99] further enhances this transformational technology [100], [101]. Even
though the metaverse has seen significant progress in areas such as social media [102],
diagnosis [103], [104], and treatment planning [105], its application in the medical field,
particularly in cancer diagnosis, treatment, and examination, requires additional enterprise,
deliberation and research [106]. The metaverse has witnessed significant developments in
social media, diagnosis, and treatment planning. The proposed Digital Twin (DT)-Metaverse

framework consists of several integrated components, aimed at enhancing healthcare
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operations, improving patient care, and ensuring data security. The framework includes the

following layers:

1. Digital Twin Layer
e C(Creates virtual replicas of patients, medical devices, and hospital workflows.
e Integrates real-time physiological data from IoT sensors and medical imaging.

e Supports predictive analytics for disease prevention and treatment planning.

2. Security and Privacy Layer
e Implements blockchain-based access control to protect sensitive health data.
e Uses homomorphic encryption, federated learning, and multi-party computation
(MPC) for secure Al-driven medical analysis.
e Prevents cyberattacks on healthcare DT models through intrusion detection
systems.
e Enforces loT-driven data encryption and anomaly detection to prevent malicious

tampering.

3. Al-Driven Decision Support System
e Employs machine learning models to analyze patient data and predict disease
progression.
e Assists in diagnosing conditions, optimizing treatment plans, and recommending
personalized therapies based on real-time DT insights.
e Implements Al-based disease prediction models and precision medicine for patient-

specific treatment.

4. Dynamic Resource Allocation & Scheduling
e Uses a priority-based scheduling system for efficient healthcare resource
allocation.
e Reduces waiting times by dynamically prioritizing critical patients in the digital

twin system.

5. Interoperability & Data Exchange Layer
e Ensures seamless integration between hospital information systems (HIS),

electronic health records (EHRs), and cloud-based healthcare DTs.
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e Facilitates real-time data exchange for continuous patient care across different

healthcare providers.

6. Perception Layer (Data Acquisition)
e Real-time collection of patient vitals, medical records, and wearable sensor data.
e Al-powered anomaly detection to ensure secure transmission from medical

devices.

7. Communication Layer (Edge & Cloud Processing)
e Secure 5G/6G communication for DT updates and remote healthcare monitoring.
e Blockchain and federated learning enable decentralized, privacy-preserving
medical Al models.

e Implements a zero-trust security architecture for healthcare networks.

8. Processing Layer (Al & DT Simulations)
e Uses Al to analyze patient-specific data and generate secure, predictive models.
e Homomorphic encryption is used for secure Al model training on encrypted health

data.

9. Application Layer (Metaverse Integration)
e Includes AR/VR-based immersive training simulations for doctors and students.
e Enables real-time digital avatars for virtual healthcare consultations.
e Facilitates remote surgeries through a secure multi-user collaboration framework

using DT models.

This multi-layered framework ensures a secure, interoperable, and efficient healthcare system
that integrates DT models, Metaverse technologies, and robust security mechanisms to protect

patient data and healthcare operations.
3.4.3 Metaverse Applications and Their Limitations in Healthcare

The metaverse application is solely related to healthcare, so establishing a "niche theme" for
academics includes teaching, research, training, and the prevention and management of
diseases. In recent years, it has developed into a dynamic technology that augments the

capabilities of medical students. In addition, patients' health conditions can be immediately
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monitored at their homes, and the actual world can also be connected with the virtual world

through digital twins, a diversified technology [107], [108].

The Metaverse has the potential to completely change healthcare by providing realistic
consultations, personalized care, and new ways to use technology in the office. But there are
many problems with putting it into action. Some traditional healthcare systems might hesitate
to adopt these game-changing technologies because they must believe in their vague benefits
and know how to achieve them. Also, there are significant cybersecurity risks. Metaverse apps
can be hacked, and private patient data could be made public. Even though new technologies
like network slicing and blockchain are being used to reduce these risks, people still need to be
reassured about how hard it will be to integrate new hardware and ensure robust data security

methods are in place [109], [110].

Another big problem is that few have internet access, especially in rural areas. This could
make it harder for Metaverse options to be widely used. Immersive experiences in 3D or even
2D environments may strain current infrastructure, making it harder for people to use these
new medical tools. While improvements in 5G telecommunications could be answers, setting
up infrastructure like small cells as base stations takes much work, especially in places with
few people. Getting past these connectivity problems is essential to ensure everyone has equal
access to healthcare innovations driven by the Metaverse, especially areas that need more care.
The metaverse app is only used for healthcare, giving academics a "niche theme" for education,
study, training, and preventing and managing disease. It has become a popular way to help
medical students improve their work. Also, patients' health conditions can be directly watched
from home, and digital twins, a flexible technology, can connect real life to the virtual world
[111], [112]. The global healthcare market in the Metaverse is estimated to be valued at $5.06
billion in 2021. It is expected to reach $71.97 billion by 2030, growing at a compound annual
growth rate (CAGR) of 34.8% between 2022 and 2030, based on data spanning the entire
Metaverse [113]. Due to the concentration of Metaverse-centric businesses in North America,
this region is predicted to outperform others within the above frame. Their robust infrastructure,
integration of AR-VR devices, and platforms in the healthcare industry have resulted in
increased investment in AR-based goods, applications, and comparable changes to their

software and hardware infrastructure [114], [115].
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3.5 Dynamic priority scheduling for healthcare digital twin: Case Study

The case study examines a technique for ranking the data transmission order in a healthcare
digital twin (HDT) network. The significance of this lies in the fact that data within the network
can possess different levels of urgency. This section illustrates that employing a dynamic
priority scheduling technique can considerably diminish the average weighted latency (AWL)
in the network when compared to conventional scheduling methods such as FCFS (first come,
first served). Dynamic priority scheduling ensures the faster delivery of critical data packets,

which is particularly important in healthcare situations.

The proposed work analysis is a healthcare digital twin (HDT) network case study focusing on
how a dynamic priority-based scheduling technique enhances communication between the
physical twin (PT) and virtual twin (VT). Based on the IEEE 802.15.6 Standard, this study
categorized data from multiple sources into classes (L = {0, 1,..., 7}), each of which was given
a criticality coefficient. Each data packet's transmission priority was calculated by multiplying
its criticality coefficient by the waiting time it had experienced. Different data sizes were
considered (ranging from 50 to 100 Kb), and transmission rates for the channels (K = 10)
between PT and VT were assumed to be evenly distributed. In milliseconds, average weighted
latency (AWL) was used to measure performance, with weights allocated to each class. The
simulation involved varying the average arrival rate of data packets while comparing first come
first served (FCFS) and absolute priority scheduling systems. Priority scheduling dramatically
decreased AWL, as Figure 3-8 illustrates. This highlights the significance of a thoughtful
scheduling strategy for effective and low-latency PT-VT communications in HDT networks.

This strategy ensures timely transmission services while considering packet criticality.

The tactile internet comes into play to enable instant communication between components like
VT-to-VT, PT-to-PT, VT-to-PT, and PT-to-VT. It ensures haptic interactions between PT and
VT through extremely low delay, robust security, and reliability. Achieving a latency of 1
millisecond is crucial for systems using tactile internet. Cognitive mixed cellular networks can
be applied to enhance communication between the physical and virtual realms, meeting this
critical low-latency requirement. However, low throughput and underutilization of resources
may result from this. Another intriguing avenue is how different technologies, like 5G or 6G
cellular networks and distributed machine learning, can be combined to enable tactile internet
for HDT modeling. Though it needs to be clarified if 5G/6G can be implemented for HDT,

research is now being done on DT solutions for 6G deployment.
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Figure 3-8: PT-VT communications latency network in the HDT
3.6 Conclusion

This research investigates the convergence of Digital Twin (DT) and Metaverse technologies
in healthcare, with a focus on their ability to transform medical care, treatment, and research.
It suggests a secure DT framework to counter the increasing security threats in healthcare and
underscores the need for large-scale IoT data gathering for precise simulations. Through an
examination of more than 130 related publications, the research identifies security solutions,
technological facilitators, and limitations in DT applications, calling for increased patient
privacy and applications in the real world. Applications in DT like virtual organs, genomic
medicine, and personalized therapies exhibit its revolutionary influence on healthcare.
Nevertheless, effective DT adoption hinges upon policy, regulation, and user support. Good
governance will guarantee data privacy, ownership rights, and interoperability, while tough
security protocols and clinician education will advance trust and usability. These issues,
addressed, will facilitate the adoption of DT on a large scale to ensure ethical implementation,

secure cross-border data, and better healthcare delivery.
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CHAPTER -4

DIGITAL TWIN-ENABLED SMART HEALTHCARE SYSTEMS

This chapter explores the integration of Digital Twin (DT) technology in smart healthcare
systems, highlighting its role in patient monitoring, disease diagnosis, and treatment
optimization. The chapter also presents an Al-driven DT framework for cervical cancer
detection, discusses research challenges, and evaluates various machine learning models for

improving diagnostic accuracy.

4.1 Introduction

The advancement of digital technologies has significantly transformed the healthcare sector,
fostering new possibilities in patient monitoring, diagnostics, and treatment planning. Digital
healthcare advancements have led to the development of Digital Twin (DT) technology, which
replicates physical entities in virtual space to optimize healthcare operations. The integration
of DT in healthcare represents a paradigm shift in how diseases are detected, monitored, and
treated, enhancing patient care and medical decision-making. The role of DT in healthcare
transformation is profound, as it enables a real-time, data-driven approach to medical
treatments. It incorporates artificial intelligence (AI), Internet of Things (IoT), machine
learning (ML), and cloud computing to develop a smart healthcare ecosystem. With the
increasing prevalence of chronic diseases such as cancer, cardiovascular diseases, and
neurological disorders, early diagnosis and intervention are critical to improving survival rates.
The integration of DT with Al and deep learning models enhances the accuracy of diagnostics

and facilitates personalized treatment.

This study primarily focuses on automated cervical cancer detection using Digital Twin
technology. Cervical cancer is one of the most common causes of mortality in women, and
early detection remains crucial for its successful treatment. Conventional screening methods,
including Pap smears and human papillomavirus (HPV) testing, often suffer from limitations
such as subjective interpretation, false negatives, and time-consuming analysis. To address
these challenges, this study proposes a Digital Twin-based framework, integrated with Al-
driven deep learning models for improved accuracy in cervical cancer diagnosis. This
framework merges loT, data analysis, and deep learning to create a digital copy of patients.
This approach gives healthcare experts better tools to manage and improve a patient's health.

The research significance and objectives revolve around leveraging DT and Al to enhance the
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efficiency of cervical cancer detection. This framework aims to reduce misdiagnosis, optimize
clinical workflows, and improve patient outcomes by providing an automated, real-time
classification system. The study introduces CervixNet, an advanced deep-learning-based

classifier that enhances the detection and classification of cervical cancer cells.

Despite significant advancements in cervical cancer prevention and treatment, several research
gaps remain. Here are some key areas where research gaps exist and where DT could make a

substantial impact:

o Early Detection and Diagnosis: While Pap smears and human papillomavirus (HPV) tests
have improved early detection, there is still room for improvement in accuracy,
accessibility, and affordability with intelligent technologies.

o Wearable Devices and Biomarkers: Exploring the use of wearable devices and sensors for
continuous monitoring of biomarkers related to cervical cancer risk. This could provide
real-time data for early detection and personalized risk assessment.

o Telemedicine and Remote Monitoring: Investigating the effectiveness of telemedicine for
remote consultations, follow-ups, and patient education. Smart technologies can facilitate
virtual interactions between healthcare providers and patients, especially in regions with
limited access to healthcare facilities.

o Treatment Personalization: Research is needed to explore how smart technologies,
including genomics and molecular profiling, can contribute to personalized treatment
plans for cervical cancer patients. Tailoring treatment based on individual characteristics
and tumor profiles can improve outcomes.

o Secure Health Data Sharing: Addressing the challenges of securely sharing health data
among stakeholders. Developing frameworks for ethical and privacy-preserving data
sharing is crucial for collaborative research and improved patient outcomes.

Addressing these research gaps and motivation will require interdisciplinary collaboration
between healthcare professionals, researchers, and technologists to harness the full potential of

smart technologies in cervical cancer care.

4.2 Literature Survey

DT has been recognized as a practical and sustainable technology, particularly
in healthcare, since its inception, with the remarkable interest shown by the research
community and industry in integrating DTs with healthcare in recent years. This section

provides the most relevant research in this domain.
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4.2.1 Recent research studies related to cervical cancer cells’ segmentation and

classification

Plissiti et al. [116] used the STPaKMeD Pap smear dataset to identify distinct cell features.
They employed intensity, texture, and shape-based features to extract these features.
Subsequently, they employed the support vector machine (SVM) classifier and achieved an
accuracy of 95.35%. A unique technique that uses many pre-trained models to extract deep
features was presented by Basak et al. [117]. Principal Component Analysis (PCA) and Grey
Wolf Optimizer (GWO) approaches efficiently decrease the feature space's dimensionality.
Ramakrishnan et al. [118] presented a two-stage design with a classifier and extracted textural
information. Additionally, researchers used DL-based techniques to categorize cervical images.
For example, Orhan Yaman et al. [119] suggested a unique pyramid-deep architecture with two
stages and used SVM and DarkNet19. DeepCELL, created especially to classify cervical
cytology images via several kernels of varying sizes, was presented by the authors in [120],
which added to its effective image classification capabilities. In [121] study, cervical cytology
images were with 68% accuracy using ViT and DenseNetl61. Pascal et al. [122] use many
advanced deep-learning algorithms to tackle the problems of data quality and image
fluctuation. Using the SIPaKMeD pap-smear dataset, they used over 40 convolutional neural
networks (CNN) and 20 ViT-based models. The ViT models performed better with data
augmentation and ensemble learning. A unique Conjugated Attention Mechanism and Visual
Transformer (CAM-VT) framework is presented in this research [123] for identifying cervical
cancer nest images with inadequate supervision. Visual Transformer (VT) integrates
Conjugated Attention Mechanism modules, combining global and local feature extraction and
ensemble learning to improve identification performance. They reported an accuracy of
88.92% on average using one private dataset. In [124] study, numerous online and offline
methods for finding cervical cancer were tested using various data sets. Hybrid methods dealt
with segmentation problems and improved feature selection by adding more machine-learning
classifiers. Different training methods can obtain the best efficiency, accuracy, memory, and F1
scores. For example, using L1 normalization in regression analysis can lead to 100% accuracy,
but it requires a lot of computer power. Medical researchers are investigating computer vision
and machine learning to improve [125] cervical cancer screening. Although most infections
may not progress to cancer, a negative test result indicates a decreased risk of cervical cancer
in the ensuing ten years. It can be challenging to distinguish between high-risk HPV-positive

cases requiring urgent care and suitable candidates for colposcopy screening. As a result,
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scientists have developed an accurate deep-learning algorithm to forecast cancer risk. The
author [126] used deep learning and Pap smear images to enhance cancer cell prediction.
ResNet50 is a pre-trained CNN model that accurately predicts cancer cells. The goal of this
effort is to classify cellular types using incoming photos. Identifying abnormal cellular
structures is crucial for early detection and treatment of cervical cancer. The proposed method

accurately predicts outcomes across cell types with a success rate of 74.04% over a long period.
4.2.2 Recent research studies related to DT in healthcare

In [127] authors developed DT technology to replicate patient characteristics and behavior in
particular environments. DT solutions are becoming more affordable and transforming how
healthcare improves lives. For example, DT Solutions can provide global personalized
medication. The technology lets doctors cognitively model a patient's optimum treatment using
thousands of variables and digital care-backed clinical decision-support tools. DT solutions
also assist in investigating diseases like Multiple Sclerosis to improve therapy options and
speed up trials. Finally, DT technology can simulate new treatments and speed up vital
advances. During the pandemic, medical staff shortages have necessitated faster vaccinations.
In [128], authors examined a DT vaccination system in a clinic. The system simulates patients
in real-time and generates a dynamic vaccination center. Using the virtual model to identify
and fix issues in the natural system improves vaccination efficiency. In [129], authors suggested
utilizing generative adversarial networks (GANs) to generate fake photos to anonymize patient
data in the health sector and prevent data leaks. GAN systems have been trained to create fake
data. According to the study, convolutional neural networks (CNN) may help with dynamic
data that requires advanced GAN design. In [25], authors offered relevant studies in this area.
The authors' reference model for DT healthcare (DTH) systems uses self-adaptation and
autonomic computing to continuously monitor and forecast patient states. They used a
motivational scenario for diabetes and chronic disease to support their strategy. No process
implementation support was provided. They propose a cloud-based DT system for elderly
healthcare. Cloud-DTH [28] It was created by merging the cloud architecture with the first
DTH paradigm. This combination aids healthcare system computation and administration. Two
case studies demonstrate how the cloud-DTH model enables personalized healthcare.
Unfortunately, the case studies lacked performance and result evaluation. Whether Al or
machine learning methods were applied in prediction was also yet to be discovered. DT in

innovative healthcare systems fails because autonomous machine learning algorithms manage
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it. Authors [130] Suggest a hospital service management app. IoT devices and discrete-event
simulation systems created a hospital DT framework. A predictive decision support model
optimized the hospital's services process using real-time data without disrupting everyday
operations. Different scenarios were tested using FlexSimHC to determine the methodology's
practicality. The proposed model needs to be clarified about DT. The author [50] Presented a
DT framework-based intelligent context-aware healthcare system. The applied models are said
to forecast cardiac disease accurately. Al and ML are crucial while implementing an
electrocardiogram (ECG) classifier to detect heart problems based on different variables.
Cardiovascular disease [131] Requires optimal use of preventative drugs, technologies, and
therapies. DT can simulate patients to forecast disease and optimize treatment. However, DT
development has ethical and implementation issues. Personal DT with actionable insight is
explored in [132], and personal digital twin bring IoT, machine learning, and Al closer. Table

4.1 explains all the domains and technologies implemented and researched in cervical cancer

and DT.
Table 4.1: Limitations observed from previous research works
Technology
Ref. Year Domain Limitations
Used
Real-time data link between virtual
Karakra et al. 2018 Integrate DES for a hospital | DSS, DES, DT, | and real-life space raises privacy and
[130] DT IoT security concerns about data and
creating a realistic virtual world.
Adoption of the Technology as well
) Cloud-based DT system for | DT, IoT, Cloud ) ) o
Liuetal. [28] | 2019 ) as interaction and collaboration issues
elderly healthcare Computing ) )
between machines and services
) Lack of Specific Algorithm and
Goyal et al. Performance Analysis for o ) )
2020 ) Pap smear, ML | limited explanation of Hybrid
[124] Cervical Cancer
Approaches
o ) Data organization, especially images.
. . Anonymization of patient . .
Piacentino et CNN, DT, Losses details according to the
2020 | information in the health .
al. [129] GAN databases as well as discriminator and
sector o
generator training time.
Pilati et al. DT for the wvaccination Data safety, problems in real-time and
2020 DT, IoT, DES
[128] process adoption of the Technology.
Mugad et al. AUROC values were considered low
2021 | Cervical Cancer Prediction Al CNN, DL
[133] Small dataset
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(PDT)

Mehmood et ) o ML, Decision | Absence of Information on Dataset
2021 | Cervical Cancer Prediction ) )
al. [134] Tree, k-NN and lack of Specific Algorithm
Framework for Predicting Insufficient Context on Medical
Kaushik et
L [125] 2022 | Cervical Cancer Risk in Al, ML, DL Terms and limited context on HPV
al.
Women. and Cervical Infections
Inadequate Discussion on Potential
Subarna et Detecting and classifying Limitations of Wavelet
2022 ) CNN, DL )
al. [135] cervical cancer photos Transformations and absence of
Performance Metrics
Benedictis et o ) DT, 3D Patient security and securing medical
2022 | DT for social distancing
al. [127] Sensors, Al data
o Data quality, connectivity issue
Revolutionizing Healthcare ) . .
Sahal et al. DT, between physical and virtual twin as
2022 | with Personal Digital Twins ] ) )
[25] Blockchain, AT | well as technological and privacy

challenges

4.3 Proposed Framework

A smart and adaptive DT framework in healthcare is shown in Figure 4-1. Improving patient

care and healthcare operations are the main goals for DT applications in healthcare. The

suggested DT framework creates a virtual patient replica in three stages by combining data

analytics, Al, and IoT devices.
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Figure 4-1: Digital Twin Framework
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Real-time bodily data is collected from patients via IoT wearable devices equipped with
sensors. This data is managed and ready for analysis, as well as different machine learning
models by the DT replica. This configuration enables continuous health monitoring, identifying
any anomalies early. At that point, medical experts can improve several aspects of healthcare,
including treatment recommendations, safe experimentation settings, response tracking,
lifestyle designs, and patient-provider communication. This framework has been divided into

three stages: (a) data prediction, (b) supervision, and (c) comparison.

Data Prediction- Internet of Things (IoT) wearable sensors collect patient data at this stage.
These sensors deliver real-time body data to monitor health and detect abnormalities. Raw data
is briefly saved in a cloud database. After cleaning, preprocessing, and representation, the
machine learning classifier trains and forecasts models using given data. These models' results
are safely saved in the Result Database, a scalable cloud database. Patients and other system

components can use this database for feedback, corrections, and model upgrades.

Supervision- Healthcare professionals, with their knowledge and experience, use result
database predictive model outcomes to advise treatments and suggestions. This information
improves healthcare when combined with clinical diagnosis and patient monitoring. Regularly
updating prediction models with real-time data helps spot body metrics irregularities, monitor
them, and intervene. This allows doctors to prescribe the right medicine and improve patients'

lifestyles. Professionals can validate results and provide input to optimize the model.

Comparison- DT framework findings from comparable patients can be used to compare the
current patient's results to theirs, expanding predictive models with reliable real-life scenarios.
This comparison improves model accuracy and helps healthcare practitioners make better
decisions. These judgments use real-time data and other patients' past, present, and expected

future experiences to simulate, modify, or prevent comparable patient outcomes.
4.4 Materials and Methods

The system flow diagram for the suggested cervical cancer screening program is shown in
Figure 4-2. Our proposed system has six steps: image acquisition, image enhancement, cell
segmentation, feature extraction, feature selection, and classification. For multi-cells, the
SIPaKMeD dataset was used during the image acquisition. In the image enhancement process,
input Pap smear images were improved to increase the image quality. The next phase was cell

segmentation. Feature extraction came next, after segmentation. Distinctive interest points or
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features were retrieved throughout the feature extraction process. The CervixNet algorithm was
used as a selection technique during the features selection phase. Classification was the last

stage. The details of every step have been explained in each subsection.

Image Acquisition » Image Enhancement ————> Data Segmentation
Ensemble Classification « Feature Selection <« Feature Extraction

Figure 4-2: Methodology of cervical cancer detection and classification system
4.4.1 Image Acquisition

The SIPaKMeD [116] dataset was used for image acquisition. The SIPaKMeD dataset was
used for multi-cell classification. There were 1013 images in the collection, from which 4103
cells could be extracted. The cells were divided into five groups: koilocytotic cells, parabasal
cells, metaplastic cells, dyskeratotic cells, and superficial intermediate cells. Table 4.2 contains
comprehensive information for each dataset. Figure 4-3 displays the sample pap smear pictures

from the SIPaKMeD dataset. Five different types of cells:

e M: parabasal cells

N: koilocytotic cells

O: superficial intermediate cells

S: dyskeratotic cells

V: metaplastic cells

Table 4.2: Dataset SIPaKMeD

Types Number of images Total number of cells
Parabasal cells 116 792
Koilocytotic cells 246 836
Superficial intermediate cells 136 848
Dyskeratotic cells 233 824
Metaplastic cells 282 803
Total images 1013 4103
50
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Parabasal cells Koilocytotic cells . Superﬁcial Metaplastic cells
intermediate cells

Dyskeratotic cells

Figure 4-3: Multi-cell images of five classes
4.4.2 Image Enhancement

Sounds or other artifacts may be present in the pap smear images. Noise or contrast may cause
pap smear picture quality to decrease. Therefore, we must eliminate noise and artifacts and
enhance the image's quality regarding cell contrast. We applied a median filter to the pap smear
images to eliminate the noise. Contrast-limited adaptive histogram equalization (CLAHE)
[136]. It was used to improve the cell contrast, as shown in Figure 4-4. Compared to low-

contrast pictures, high-contrast images made cell segmentation simpler and more accurate.

Original image noise removal by the contrast enhancement
medial filter by CLAHE

Figure 4-4: Image Enhancement
4.4.3 Data Segmentation

This step aimed to segment the cell's regions from the input images. The cytoplasm and nuclei
are crucial elements in the cell area [137]. Cytologists analyze microscope images of cells in a
Pap smear screening process, classifying the cells as normal or abnormal depending on their
constituent parts' appearance [138]. It follows the same procedure as the automated screening
system [139]. The automatic detection method relies heavily on the segmentation of cell
components. Segmenting several cells may be challenging due to various issues, such
as overlapping or harmful artifacts. For segmentation, we used the marker-controlled
watershed technique [140]. To resolve the problem of overlapping border detection and

touching cells splitting into individual cells. Over-segmentation is the primary issue with the
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standard watershed transform. To solve this issue, we used markers [141]. The flowchart of the

suggested improved watershed transform method is shown in Figure 4-5.

Noise removal and
Grey scale conversion

l

Markers calculation for
foreground and
background

|

Watershed
Transformation

Input Image
Reading

Image of
Segmented Cell

Observing the

outcome

Figure 4-5: Flowchart of watershed transform method

Ten steps were included in our suggested overlapping cells segmentation approach to separate

the multi-cell pictures into individual cells, which were then used to extract the cytoplasm and

nuclei. Table 4.3 displays a synopsis of each phase.

Table 4.3: Overlapping cells segmentation approach

Step: 1 Read the color image and convert the grey image

Step: 2 Mark the foreground objects

Step: 3 Compute background objects

Step: 4 Use markers’ image that is roughly in the middle of the cells to be segmented

Step: 5 Compute the watershed transform of makers’ image

Step: 6 Show the result of detected overlapping cells’ regions

Step: 7 Calculate the boundaries of detected regions in the image

Step: 8 Detect areas between the minimum and maximum values for cell regions

Step: 9 Cropping the regions

Step: 10 Classify the regions of the cell into isolated, touching, or overlapped cells
4.4.4 Feature Extraction

The process of extracting features came after the segmentation of the cells. The texture, form,

and color characteristics, which were the crucial features, were retrieved at this point. The

present study successfully extracted features from the model's global average pooling layer

g'r—.| turnitin
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using CervixNet. In this study, a deep learning-based architecture named CervixNet was

implemented to extract significant features. Figure 4-6 shows distinct group convolutional

layers within the structure's layers.

Q
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Figure 4-6: Proposed Architecture of CervixNet for feature extraction

The structure starts with a single input node, demonstrated by an image possessing dimensions

of 224x224x3. Consequently, the colored image is subjected to a convolutional layer of 64
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filters, each possessing a kernel size of 7x7 and a stride of 2x2. The subsequent output is
directed to the Rectified Linear Unit (ReLU) layer, which transforms the output from the
convolutional layer into either a positive value of +1 or a negative value of —1. To reduce the
resolution of the picture features, a 3x3 average pooling layer with 2x2 strides is applied. The
resultant output is subsequently put into a two-dimensional grouped convolutional layer. The
initial stage of this procedure is to divide the input into separate clusters, which are

subsequently tested by applying sliding convolutional filters.

The convolution process is performed in both the horizontal and vertical directions, where the
layers of each cluster are merged independently. The present layer utilizes a combination of
two separate groups and 94 filters, each having a dimension of 5x5. The padding dimensions
for all groups consist of 2 units in each of the four dimensions. The resulting grouping is passed
through the ReLU layer and the average pooling layer to achieve down sampling. To obtain
additional detailed information, the output is forwarded to an additional convolutional neural
network including 128 filters and a kernel size of 3x3, and the padding size is Ix1x1x1x1. After
this, the resultant output is directed into the ReLU layer, where it undergoes a mapping
procedure to be assigned a value of either +1 or -1. The finding is further processed by the
grouped convolutional network, comprising 196 filters and two sets of convolutions. Each set
of convolutions employs a kernel size of 3x3. The aggregated outputs of the depth-wise
independent channels are transformed using a supplemental ReLLU function, resulting in values
that range from -1 to +1. The mapping procedure uses two more sets of convolutional layers to
enhance accuracy. The layers comprise a collective sum of 128 filters with a kernel size of 3x3.
The sampling process is made more accessible by including the global average pooling layer.
In conclusion, a fully connected layer with five neurons is added to the output by the number

of categories. The Softmax layer subsequently completes the ultimately linked layer.
4.4.5 Feature Selection

The main objectives of using a feature selection approach were to increase the classifier's
accuracy and identify the most significant features. The feature selection technique may shorten
machine learning algorithms' training times and simplify the classification model. This feature
selection technique may improve the effectiveness of training machine learning models by
streamlining the underlying classification model. The method known as Independent Principal
Component (IPC) Analysis [142] is frequently employed in feature selection. By using linear

dimensionality reduction methods, this algorithm efficiently reduces the dimensionality of
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data, converting it from a higher-dimensional space to a lower-dimensional one. The number
of extracted features from CervixNet model was decreased successfully in this work by using

IPC, going from 1172 features to the 792 most essential features, as shown in Figure 4-7.

Image pre-processing
(Median Filter & CLAHE)

Support vector machine, K-nearest

- CervixNet neighbor, Random forest, Artificial
‘ (Feature Extraction) neural network, CANFES, Naive
—> 1172 features Bayes
U Independent Principal
Component Analysis
(Feature Selection)

Result Database
(SIPaKMeD)

792
features

L

[ Different Classifiers H Classifiers Qutcome

Figure 4-7: Feature extraction and selection
4.4.6 Different Classifiers

To find out which machine learning classifier is the most accurate, the deep learning features
of CervixNet are extracted and then sent to several classifiers. The authors employed six
machine learning algorithms to determine which works best for cervical cancer detection.
These include Artificial Neural Networks (ANN), Support Vector Classification (SVM),
Random Forest (RF), k-nearest Neighbor (k-NN), CANFES, and Naive Bayes (NB).

a) ANN: The artificial neural network (ANN) is a well-known machine-learning
technique [143] that is meant to look like the real neural networks in the brain. ANNs
come in many shapes and sizes, and the feedforward neural network is one of the most
common types. In this network design, inputs from neurons in the previous layer are
processed, and then the weighting factors for each input neuron are sent to the next
layer. It is essential to know that the backpropagation method is the most popular way
to teach an MLP. They are changing the weights between neurons to improve accuracy.
These results show that this model does very well in pattern recognition. The algorithm
can quickly adapt to new data sets but may converge slowly to find a locally optimal

answer.
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b) SVM: The support vector machine (SVM) is a supervised learning method [144]. That
uses training data sets to put things into different groups accurately. Plotting the feature
plane provides a visual representation of the training data in the SVM model. This story
strongly links important events that stand in for different socioeconomic classes. A
curve that occupies the space between the two classes and preserves the maximum

distances between each class point and the Support Vector Machine (SVM) can be seen.

¢) RF: The random forest (RF) classifier [145] comprises several decision trees with a
training example set and predictors. The bagging approach selects features at random
at each split in the attributes. The trees will continue to develop until they reach a certain
depth; at that time, a voting mechanism for the class will be implemented due to the

large number of trees produced by the Artificial Neural Networks Classifier.

d) Kk-NN: Supervised k-nearest neighbor (k-NN) [146] Categorization began in 1951. The
class of nearby data points determines a category in the above approach. Additionally,
the classification results depend on the closest neighbor's pre-determined k-value of 1.
At this stage, the k-training samples with the highest similarity to the new sample are
picked to determine their category assignment based on their feature vector. Thus,
examining the candidate's data's classified classes aligns with the newly calculated

vector.

e) CANFES: Neural networks (NN) and reduced fuzzy rules were combined to make the
CANFES classification method [147]. This also leads to fewer mistakes when the
source images are classified. There is one input layer, three or more hidden levels, and
one output layer in the CANFES classification design. It is the input layer's job to track
how many extracted traits are sent to the hidden layer of the next level. The number of
neurons that can be used to build this secret layer is 15. The weights of neurons in the
hidden layers of an adaptive neural network are changed based on the traits that were
learned from the input. One of the neurons in the output layer makes the output pattern

by adding up all the index values from the hidden layer before it.

f) NB: A probabilistic model called the Naive Bayes (NB) classifier [148]. Uses a given
dataset's frequency and value distribution to forecast probabilities. The approach is
based on the idea that the value of the class variable has no bearing on the other

variables and emphasizes the application of Bayes' theorem. Since this assumption of
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independence is rarely valid in practical settings, it is called naive. Nevertheless, the
algorithm can rapidly enhance its effectiveness in various regulated classification

scenarios.

4.5 Experimental Analysis

This section presents the confusion matrix for each model used. Python, Sklearn package,

Tensorflow, and Keras were used in the experiment. Other libraries, such as Pandas and Numpy,

were also used to help preprocess data. A total of 1013 images from the SIPaKMeD (multi-

cell) dataset are utilized to evaluate the efficacy of the proposed technique. From selected

images, 4103 cells were chosen and categorized into five categories.

O: superficial intermediate cells
M: consistent parabasal cells

V: metaplastic cells

S: Dyskeratotic cells were present

N: koilocytotic cells

To identify the most effective classification model for cervical cancer detection, six machine

learning algorithms were implemented: Support Vector Machine (SVM), Random Forest (RF),
k-Nearest Neighbor (k-NN), Artificial Neural Networks (ANN), Naive Bayes (NB), and
CANFES.

4.5.1

Confusion Matrix

The confusion matrix is a crucial tool for evaluating the performance of classification models

by providing detailed insights into their true positive (TP), false positive (FP), true negative

(TN), and false negative (FN) rates. The confusion matrices for each classifier are presented in

Figures 4-8 to 4-13, corresponding to SVM, RF, k-NN, ANN, NB, and CANFES respectively.

A confusion matrix provides a detailed breakdown of how well a model classifies each category

of cervical cells:

g'r—.| turnitin

True Positives (TP): Correctly classified instances of a specific class.

False Positives (FP): Instances wrongly classified as belonging to a class when they do
not.

True Negatives (TN): Correctly identified instances that do not belong to a specific
class.

False Negatives (FN): Instances that belong to a class but are misclassified.

57

Page 70 of 144 - Integrity Submission Submission ID trn:oid:::27535:87273600



z'l_.l turnitin Page 71 of 144 - Integrity submission Submission ID trn:oid:::27535:87273600

Each confusion matrix provides a percentage-based representation of the classifier’s accuracy

across all five cervical cell classes.

4.5.2 Performance of Models
The classification accuracy of the six models was computed, with the following results:
e  Support Vector Machine (SVM): 98.9%
o Artificial Neural Networks (ANN): 98.2%
e Random Forest (RF): 91.8%
e k-Nearest Neighbor (k-NN): 97.8%
e Naive Bayes (NB): 97.5%
e CANFES: 95.9%

The proposed model provides a multi-label classification of input images and uses supervised
learning with more training examples via five-fold cross-validation. Testing demonstrates that
the suggested classifier outperforms other models in terms of classification accuracy. SVM
outperformed all other classifiers, achieving the highest classification accuracy of 98.9%. It
demonstrated strong predictive performance across all five classes with minimal
misclassification. ANN followed closely with an accuracy of 98.2%, proving effective in
distinguishing between normal and abnormal cervical cells. k-NN and NB performed
comparably, with accuracies of 97.8% and 97.5% respectively. These classifiers exhibited high
classification precision, particularly in detecting metaplastic cells. RF recorded a relatively
lower accuracy of 91.8%, indicating that it struggled in correctly identifying certain abnormal

cell types. CANFES achieved 95.9% accuracy, but misclassification rates were higher than

those of SVM and ANN.
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Figure 4-8: Confusion Matrix SVM Figure 4-9: Confusion Matrix RF
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Figure 4-14: Models Accuracy
4.5.3 Comparison of Proposed Method with State-of-the-Art Methods

Compared to previous research, the suggested approach produced significant results, obtaining
an accuracy level of 98.91% with the same dataset. The current research used an innovative

DT framework and CervixNet to improve accuracy, unlike previous studies that relied on
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traditional methodologies. Furthermore, the model that has been designed is very efficient and
reliable. The system's structure is distinguished by its simplicity, uniqueness, and
accuracy since it can analyze a new image in milliseconds. The proposed model makes it
especially well-suited for medical applications. Table 4.4 compares the proposed model's

accuracy to other cutting-edge approaches.

Table 4.4: Accuracy comparison of the proposed method with previously published work

with the SIPaKMeD dataset

Ref. Year | Methods Accuracy
Lu et al. [149] 2017 | DeepPap 93.58%
Plissiti et al. [116] 2018 | SVM, CNN 95.35%
Asadi et al. [150] 2020 | SVM, QUEST, C&R tree, MLP and RBF 96.60%
Win et al. [151] 2020 | Digital Image Processing 94.09%
Chen et al. [152] 2021 | CompactVGG 97.80%
Priyanka et al. [153] 2021 | CNN, ResNet50 84.40%
Munirathinam et al. [154] 2021 | SVM, k-NN 87.30%
Qinetal. [155] 2022 | Multi-Task feature fusion model 98.14%
Shinde et al. [156] 2022 | DeepCyto 96.81%
Sahoo et al. [157] 2023 | Fuzzy rank-based ensemble approach 97.18%
CervixNet with ML classifier 98.91%
Proposed model

The proposed method significantly improves cervical cancer classification accuracy, setting a
new benchmark in the field. The results demonstrate that integrating deep learning with a
Digital Twin-based healthcare system leads to superior diagnostic capabilities compared to
previous approaches. The accuracy gain of over 5% compared to earlier models highlights the
effectiveness of the proposed model, making it a promising solution for automated cervical
cancer detection and screening. Future studies can build upon this framework by incorporating

more extensive datasets and hybrid Al techniques to further refine diagnostic accuracy.

4.5.4 Challenges

A. Security and Privacy: DT system security presents many difficulties. Unauthorized
access, abuse, change, or data sharing are inherent risks like any information system.
Hackers and other malicious people efficiently target them because of the vast amount of
private and sensitive data they maintain. Internet of Things (IoT) devices and sensors add

to this complexity since standard security methods often fall short when dealing with these
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unusual components. The processing of personal user data also raises regulations.
Following privacy rules such as the General Data Protection Regulation (GDPR) in Europe
or other applicable national requirements is not only required but also significantly

complicates the design of DT systems.

B. Lack of Standardization: The need for global guidelines for DT causes many problems
for the system. Security, privacy, data interchange, interaction protocols, responsibilities,
and even physical and virtual world synchronization are all affected. Global
standardization would serve as an essential lubricant, promoting DT acceptance and

opening the door for quick and extensive deployment.

C. Handling Multi-sourced and Heterogeneous Data: DT often ingests data from diverse
sources, leading to various data types (structured, unstructured, semi-structured). This data
heterogeneity poses challenges for data processing, model evaluation, and training. These

challenges directly impact the effectiveness of machine learning models.
4.6 Conclusion

Early diagnosis of cervical cancer greatly enhances prognosis, thereby earning the status of one
of the most curable cancers. The current research suggests a Digital Twin (DT)-based
automated cervical cancer framework, combining the CervixNet classifier model with machine
learning for precise diagnosis. Six machine learning models—ANN, SVM, RF, k-NN,
CANFES, and NB—were compared and SVM demonstrated the best accuracy (98.91%).
Independent PCA for feature selection decreased 1172 features to 792 for efficient
classification. Though computational-intensive, integration of DT promotes enhanced
automated diagnostics and screening for better patient outcomes. The focus in future research
should be to optimize model effectiveness, real-time processing, and Al innovations for greater

scalability and availability in digital health.
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CHAPTER -5

SECURING HEALTHCARE 10T WITH DIGITAL TWIN AND AlI-
DRIVEN INTRUSION DETECTION

This chapter presents a Digital Twin (DT)-enabled security framework for healthcare loT
networks, integrating Al-driven intrusion detection and cryptographic techniques. The study
explores the role of DT in cybersecurity, addresses challenges in securing medical IoT devices,
and evaluates the effectiveness of blockchain and encryption methods in safeguarding patient

data.
5.1 Introduction

The emergence of Digital Twin (DT) technology has revolutionized healthcare by enabling
real-time monitoring, predictive analytics, and personalized treatment. A DT is a virtual replica
of a physical entity that continuously updates based on real-world data, allowing for real-time
simulations, predictions, and optimizations. The healthcare sector increasingly leverages DT
models to enhance patient care, operational efficiency, and clinical decision-making. One of
its key applications is in personalized medicine, where patient-specific models allow
physicians to simulate treatment plans and predict health outcomes. DTs also facilitate remote
patient monitoring by integrating loT-enabled medical devices and wearable sensors, ensuring
continuous health tracking and early detection of abnormalities. Additionally, DTs enhance
surgical planning and medical training by providing detailed virtual models for risk-free
experimentation and skill development. In medical imaging and diagnostics, DTs augment
radiology and pathology by creating interactive 3D models that improve disease detection and
diagnostic accuracy. Similarly, in hospital management, DTs optimize resource allocation,
workflow automation, and predictive maintenance of medical equipment. However, the
integration of DT with loT-based medical devices has also introduced significant cybersecurity
challenges, making data integrity, confidentiality, and system security crucial concerns. Since
DT systems rely on continuous data exchange between physical and virtual entities, they are
vulnerable to cyber threats such as unauthorized access, data breaches, ransomware attacks,
and IoT device exploitation. A secure DT-I0oT framework is essential to prevent malicious
entities from exploiting vulnerabilities in connected medical devices. Security measures such
as authentication mechanisms, secure communication protocols, and encryption techniques can
protect DT-enabled 1oT networks from data compromise. Additionally, intrusion detection
systems (IDS) and anomaly detection models can proactively monitor network traffic to
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identify potential cyber threats in real time. Al-powered DT models further strengthen security
by simulating cyberattack scenarios, predicting vulnerabilities, and enabling proactive risk
mitigation strategies. By analyzing historical attack data and network behavior, DT-based
cybersecurity frameworks improve incident response and enhance overall security. Multi-
layered security architectures incorporating firewalls, secure access controls, and zero-trust
security models provide additional protection for healthcare 10T networks. To further address
these security challenges, blockchain and cryptographic techniques have emerged as robust
solutions. Blockchain’s decentralized and tamper-proof ledger ensures data immutability,
transparency, and secure access control, mitigating risks associated with centralized data
storage. It eliminates single points of failure, reducing the risk of data breaches and
unauthorized modifications while maintaining data integrity through cryptographic hashing.
Smart contracts enhance security by automating transactions and enforcing regulatory
compliance, such as GDPR and HIPAA. Role-based access control ensures that only authorized
stakeholders, including patients, doctors, and administrators, can access specific data.
Cryptographic techniques further strengthen security by safeguarding data confidentiality,
authentication, and secure communications. Elliptic Curve Cryptography (ECC) offers
lightweight encryption ideal for resource-constrained loT devices, while homomorphic
encryption allows computations on encrypted data without decryption, enabling privacy-
preserving analytics in DT healthcare applications. Zero-knowledge proofs ensure secure
authentication without exposing sensitive information, strengthening patient identity
verification. As quantum computing advances, post-quantum cryptographic algorithms are
being developed to counter emerging cyber threats. By integrating blockchain with advanced
cryptographic mechanisms, healthcare systems can establish a secure, decentralized, and
privacy-preserving framework for DT-enabled loT networks, ensuring safe patient data

exchange and a resilient healthcare ecosystem.

By combining blockchain and cryptographic mechanisms, a trustworthy, decentralized, and
privacy-preserving framework for DT-enabled loT healthcare networks can be established,
ensuring secure patient data exchange and cyber-resilient healthcare ecosystems. The primary

objectives of this study include:

1. Developing a Secure Digital Twin (DT) Framework for Healthcare IoT Networks
e Establishing a trustworthy DT-IoT model that ensures real-time monitoring,
predictive analysis, and cyber resilience.

e Addressing data security and privacy challenges in healthcare DT applications.
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2. Integrating Blockchain and Cryptographic Techniques for Enhanced Security
e Utilizing blockchain technology for secure patient data management and
decentralized access control.
e Implementing cryptographic techniques such as ECC, homomorphic encryption, and
quantum-resistant algorithms to ensure confidentiality and integrity of medical data.
3. Developing an Al-Powered Intrusion Detection System for DT-Enabled IoT Networks
e Leveraging machine learning-based intrusion detection models to identify and
mitigate cyber threats in real-time.
e Evaluating the effectiveness of anomaly detection, threat intelligence, and automated
cybersecurity responses.
4. Validating the Proposed Framework Through Experimental Analysis
¢ Implementing proof-of-concept experiments to assess the efficacy of the proposed
security model.
e Comparing results with existing security solutions to demonstrate improvements in

accuracy, efficiency, and scalability.

This research aims to bridge the security gap by developing a robust, Al-driven Digital Twin
security model, incorporating blockchain for decentralized trust, cryptographic encryption for
data confidentiality, and machine learning-based intrusion detection for cyber resilience. The
proposed solution will address real-world challenges faced by healthcare organizations,

ensuring scalable, secure, and intelligent DT-IoT system:s.
5.2 Literature Survey

The authors noticed various studies focused on identifying cyberattacks on the Internet of
Things (IoT) and Industrial Internet of Things (IloT) networks as authors investigated recent
research. When developing intrusion detection systems for these diverse networks, each
research takes a different approach despite having the same objective. A digital-twin method
and an open-source UAV ambush dataset were utilized by Benjamin et al. [158] to explore the
security of uncrewed ethereal vehicles (UAVs) within the year 2021. Their centralized
demonstration, which makes utilization of Machine Learning (ML) and Deep Learning (DL),
explores the modern cyber dangers that uncrewed airborne vehicles (UAVs) are up against.
Khan et al. [159] describe a new video streaming compression model for [oT settings that uses
GANSs and fuzzy logic to improve the efficiency of sending multimedia. Their study includes

using blockchain to improve security for serverless computing in fog and edge settings, which
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gives us strong options for protecting infrastructure [160]. The group also works on managing
data from drones using metaheuristic algorithms and blockchain for safe fog settings [161] and
looks at the latest developments in [oT security made stronger by blockchain technology [162].
In addition, they suggest a design that uses machine learning to make next-generation radio
access networks work better in factories [163] and a way to keep remote sensing data safe in

smart towns [164]. These additions make it much easier to use safe and effective technologies

g'r—.| turnitin

in [oT and network systems.

Table 5.1: Literature Review of the most recent studies on Cybersecurity Techniques and

Page 78 of 144 - Integrity Submission

Submission ID trn:oid:::27535:87273600

Datasets
Ref. Year | Dataset Techniques Focus Security | Scalability
&
Privacy
Khraisat et | 2019 | BoT-loT SVM, SIDS, and | Detecting Attacks NO NO
al. [165] AIDS in loT
Environment,
Alzahrani 2021 | NSL-KDD Decision tree, | Anomaly NO NO
et al. [166] Random  Forest, | Detection,  SDN
and Xgboost Security
Benjamin 2021 | open-source ML and DL UAV modern- YES NO
etal. [167] UAV attack cyber threats are
dataset explored
Qinghua et | 2021 | SwaT, WADI, | GAN Anomaly Detection YES NO
al. [168] BATADAL for Cyber-Physical
Systems
He et. al | 2022 | CIC-IDS LSTM Data Security, YES YES
[169] Privacy
Ashraf et | 2022 | BoT-loT ANN, Federated | Data Privacy YES NO
al. [170] Learning
Kumar et | 2022 | BoT-loT Blockchain, IDS to detect DDoS YES NO
al. [171] Xgboost, RF attack
Imran et al. | 2022 | KDD-CUP-99 Deep NIDS NO NO
[172] Autoencoder, Effectiveness and
SVM Robustness
Seba et al. | 2022 | Real-Time Supervised Enhancing ICS YES NO
[173] Machine Learning | Security
Algorithms
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Bowen et | 2023 | CIC-IDS, NSL- | Deep  Learning | Handling NO YES
al. [174] KDD, I0T-23 Techniques Imbalanced

Datasets
Thakkar et | 2023 | CIC-IDS, NSL- | Deep Learning, | Performance NO NO
al. [175] KDD, UNSW- | Statistical Feature | Improvement  of

NB-15 Selection DNN-based IDS

Swati et al. | 2023 | BoT-loT DL-RF Securing  Digital YES NO
[176] Twin systems

against cyber

threats
Huan et al. | 2023 | UNSW-NB15, CNN, BIiLSTM, | Cyber-attack YES NO
[177] CICIDS2017 DNN behavior

identification

Many researchers have found ways to find attacks and strange things happening in networks.
One exciting method combines centrality measures with deep learning algorithms, feature
extraction, classification strategies, and hierarchical grouping. Every study adds to what we
know about Intrusion Detection Systems. The study aims to add to what has already been done
by finding the most critical problems from previous research. Table 5.1 shows the issues and
restrictions when finding network threats and strange behavior in IoT and IIoT settings. Some
of these problems are not enough scalability analysis, not enough work on integrating deep
learning models, not having a decentralized storage module, not being able to compare well
enough with the latest methods, and not doing enough experiments. The study aims to solve
these problems by checking for scalability, comparing with the most up-to-date techniques,

using thorough evaluation metrics, and carefully analyzing the results.
5.3 Digital Twin Framework for Secure IoT Networks

Blockchain and artificial intelligence (AI) in intrusion detection systems have received
attention in healthcare digital twin technologies. There is still a knowledge vacuum on
effectively combining blockchain technology with artificial intelligence (Al) to identify
network breaches in the healthcare industry, despite individual studies into Al-driven intrusion
detection systems and security protocols. A thorough investigation of their integration is
required to design a state-of-the-art framework that can detect and mitigate attacks while

protecting data privacy, guaranteeing scalability, and maintaining real-time performance. The
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literature currently in publication only offers a partial understanding of frameworks that

combine blockchain with Al to create effective and dependable intrusion detection systems.

| Digital Twin |
‘ Storage System Intrusion Detection System (IDS) ‘
1 Data Normalization 2 Analytics and Prediction
Cleaning/ Pre-processin, . .
g Iep >HIIg GAO-RF using for Optimal
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Figure 5-1: System Architecture

Blockchain approaches and optimization techniques are used in constructing Internet of Things
(IoT)-based intrusion detection systems in the healthcare industry. Identifying network threats
inside healthcare infrastructures is made possible by continuously monitoring IoT devices. The
Digital Twin framework for securing IoT transmission using ECC and blockchain is shown in
Figure 5-1 and is used in healthcare systems to ensure patient information and streamline
workflows. With IoT devices, data analytics, blockchain, and ECC, the proposed DT
framework may improve healthcare centers and facilitate efficient collaboration between
healthcare authorities. As seen in Figure 5-1, IoT wearable sensors collect and transmit real-
time data from patients or healthcare centers. The transmitted data will be cleaned, pre-
processed, and converted to utilize for data analytics and prediction. This framework allows
for the constant monitoring of data transmission status and the early detection of anomalies.
Beginning with a reasonable dataset obtained from IoT devices/sensors separated into bunches,
the pre-processing arrangement included normalization, name encoding, and information
cleaning. The dataset is at that point isolated into prepare and test sets. The examination and
expectation module employments labeled information for patterns indicating interruptions or

noxious action. This module employments a wellness function-based developmental
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calculation to progress highlights, coming about in information visualization and execution
assessment measurements expectation. To ensure IoT gadgets and their associations, the
information reaction and basic era stage employments Elliptic Curve Cryptography to scramble
information and create and trade mystery keys. At long last, despite issues with adaptability,
keenness, and assault rates, the blockchain module stores therapeutic information on a cloud-

distributed record to protect it from any assaults.

5.4 Materials and Methods

The proposed e-healthcare framework depends on a combination of Elliptic Curve
Cryptography (ECC) and blockchain innovation to keep private well-being information secure.
Each innovation has its possess qualities that make it valuable for information assurance. ECC
is utilized to keep discussions between [oT gadgets in a clinic arranged and secure. Since it can
give taller levels of security with smaller key sizes than standard cryptographic strategies, ECC
works particularly well in places with constrained assets, like IoT gadgets. ECC makes beyond
any doubt that private understanding information remains private whereas it's being sent
between gadgets and the Advanced Twin framework by scrambling the information. The
independent and unchangeable record in blockchain innovation makes information indeed
more secure. A blockchain keeps track of all exchanges that happen with information, such as
changes to information, getting to logs, and sharing of understanding data. This makes beyond
any doubt that all information trades are clear and can be followed. Once information is
recorded on the blockchain, it can't be changed without arranged endorsement. This makes it
much less likely that information will be altered. You'll be able to entirely control who can get
to and alter blockchain information with savvy contracts. These contracts set strict rules around
who can get to and alter information and under what circumstances.

Even with these strong security steps, there are a few things that could go wrong and make data
less private:

o Key Management Vulnerabilities: It is very important to handle keys well. A breach can
happen when bad habits are used, like sending or storing secret keys without proper
security. This risk can be reduced by using safe key management tools and conducting
regular checks.

e Smart Contract Vulnerabilities: Smart contracts are used to enforce security rules on
the blockchain. It can be broken if it is poorly designed or implemented. It is very

important that these contracts are tested thoroughly and have security checks done.
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e Endpoint Security: There must be strong physical or virtual security for [oT devices
because they can be attacked directly. Endpoint security needs to be improved by using
strong login, regular updates, and physical safeguards.

e Scalability and efficiency Problems: As the size of a network grows, it can be hard to
find a good balance between security and system efficiency. These problems can be
fixed by making the blockchain design better and using strong encryption methods like
ECC.

e Quantum Computing Threats: As quantum computing gets better, ECC and other
encryption systems may be broken. It is very important to keep up with changes in
quantum-resistant security and get ready for future changes.

5.4.1 GAO-RF Proposed Model

To secure 10T and IIoT systems, a new method uses blockchain, genetic algorithms (GA), and
the random forest model. Figure 5-2 illustrates the GAO-RF proposed model. Data is encrypted
with elliptic curve cryptography (ECC) and stored in blockchain blocks. GA monitors network
activity, while real-time datasets help keep the system updated. Data is encrypted with ECC
and added to the blockchain for protection against threats. This method strengthens security

and helps detect intrusions by combining encryption and machine learning.

Data Pre-processing > Fitness Score

and Splitting | | —l
Edge-IToT Dataset Genetic Algorithms

Optimization based Random

Forest Model (GAO-RF) E\k @
Elliptic Curve Q (k

Cryptography (ECC)

Train set — Detection System

Test set Non-Malicious

Malicious

Train GAO-RF

Trained GAO-RF
Test GAOQ-RF
Normal and Anomalous

class

Blockchain Blocks

Figure 5-2: GAO-RF Proposed Model
Step 1: Initialization
Initialize a population of genetic algorithms (GA) with random feature subsets:
P(t) = {FL 2, . T o (5.1)
where P(t) represents the population at generation t, and Fi are the individual feature subsets.

Step 2: Fitness Evaluation
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Evaluate each subset using the Random Forest (RF) classifier to determine its fitness based on

prediction accuracy:

1

Fitness(Fi) = (1 + Error(RF(Fi)))

where Error(RF (Fi)) is the classification error of the RF model trained with features Fi.
Step 3: Selection

Select feature sets with higher fitness scores for reproduction using tournament selection:
Fsetectea = TOUrNAmMENt(P(£)) «.oeoveiiiiiiiiiieeee e, (5.3)

where the tournament function selects the best feature set from a randomly sampled subset of

the population.
Step 4: Crossover and Mutation

Selected feature sets undergo crossover and mutation to generate new feature sets for the next

generation:
Erow = CTOSSOVCT (Foplocted) «-evevverrerereneeneaneae ettt e e e et et e (5.4)
Frutated = MUtQtion(Fuep, U .oooneini e e (5.5)

where mu is the mutation rate, affecting the probability of altering each feature in the feature

set.
Step 5: Model Update and Termination

Update the population with new feature sets, and iterate the process until a termination criterion

is met (often a fixed number of generations or a convergence threshold):

P(t+1) = { Fputatea U {BeSt of P()} oo (5.6)

Terminate if max (Fitness(P(t + 1))) > Threshold ...........................ocooeu.l. (5.7)

This formulation allows the GAO-RF model to systematically optimize the feature selection

process, enhancing the effectiveness and reliability of the intrusion detection system.
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5.4.2 Dataset (Edge-11oT)

Internet of Things (IoT) and Industrial Internet of Things (IIoT) applications are the focus of
the Edge-11oT [178]. The dataset was developed to train machine learning-based intrusion
detection systems in cybersecurity. This dataset contains information from more than ten
sensors, including but not limited to temperature and humidity sensors, pH meters, ultrasonic
sensors, heart rate sensors, water level detectors, soil moisture sensors, and flame sensors.
Edge-110T-2022 authors simulated 14 attacks, classifying them into five categories: (i)
DoS/DDoS, (i1) Information Gathering, (iii) Man in the Middle (MITM), (iv) Injection, and (v)
Malware. We create multi-class intrusion detection systems (IDSs) using the Edge-110T-2022
dataset. In this case, there are fifteen classes: 14 classes that represent each attack and one
normal class, as shown in Table 5.2. The Edge-110T-2022 dataset specifies the data points as
vectors of 61 features, of which 43 are numeric, and the other features are nominal and string.
Attack label and Attack type are two extra-label features. In the multi-class setup, Attack type
1s used as the class label. There are a total of 1,176 variables that are included in the dataset,
and out of them, 61 features and characteristics indicate significant association. The dataset has
a total of 1,909,671 records, consisting of 1,363,998 normal instances and 545,673 instances
of attacks. It has been separated into an 80% training set (1,527,736 samples) and a 20% testing

set (381,935 samples) for consistent evaluation across 15 distinct classes.

Table 5.2: Types of Cyberattacks in Edge-11oT

Attacks Data Record
Normal 1,091,198
DDoS_ICMP 54,351
DDoS_UDP 97,253
DDoS_TCP 40,050
DDoS_HTTP 38,835
SQL_Injection 40,661
XSS 12,058
Uploading 29,446
Password 39,946
Backdoor 19,221
Ransomware 7751
Fingerprinting 682
Vulnerable_Scanner 40,021
Port_Scanning 15,982
MITM 286
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(79) 5.4.3 Elliptic Curve Cryptography (ECC)

Elliptic curve cryptography (ECC) is an exciting and powerful way to protect privacy in a
world where digital security constantly changes. This incredible cryptography offers vigorous
security, doing so rapidly and efficiently, making it pivotal for keeping advanced
communications and exchanges secure. Investigate the world of ECC with us, where the
magnificence of elliptic curves meets the necessity for security, marking a paradigm shift in
protecting digital spaces. Before information is stored on the blockchain or any other secure
storage system, it is encrypted using ECC, ensuring that the data remains secure and
confidential, even in the event of unauthorized access. Figure 5-3 illustrates the implementation
of ECC in the proposed model. Within blockchain blocks, encrypted data is securely stored.
Each block includes a timestamp, cryptographic key, and the data’s cryptographic hash. The
data is tamper-proof, with access restricted by the cryptographic key, thanks to the blockchain’s
distributed ledger technology. Since ECC can provide robust security with very small key sizes,
(90) it is highly efficient and ideally suited for resource-constrained environments, such as those
encountered in Internet of Things (IoT) devices. ECC strength is typically expressed in bits.
For example, a 3072-bit RSA key is almost break even in quality to a 256-bit ECC key. This

illustrates how compelling ECC is at giving vigorous security with shorter keys.

Healthcare .
Center A Secure Hash Algorithm Jii?
Message Hash Value Has!i Hashed _ Plgltﬂl
Source Function Message Private Signature
t Key )
Network %
v _ v
Plgltal | Hashed Has!l Hash Value Message
Signature Message Function Source
/’" Secure Hash Algorithm
“Public Key
Healthcare
Center B

Figure 5-3: Implementation of ECC in the proposed model

Elliptic Curve Cryptography (ECC) is a widely used public-key cryptography algorithm that
(61) provides strong security with relatively shorter key lengths compared to other public-key
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algorithms like RSA. ECC is particularly well-suited for resource-constrained environments,
making it popular for securing communications in various applications, including security and

privacy.
Step 1: Initialization

e Choose an elliptic curve E defined over a finite field Fp.
e Select a base point G on the curve with prime order n.

e Choose cryptographic parameters for ECC operations.
Choose E(Fp),G,n
Choose cryptographic parameters
Step 2: Key Generation

e [Each IoT device generates a unique key pair.
e Generate a private key d; as a cryptographically secure random number.

e Compute the corresponding public key @Q; using scalar multiplication: Q; = d; X G.

$
di — [1,71- 1]
Qi =y X G oo (5.8)

Step 3: Secure Communication

e Devices exchange public keys (Q; and Q;) Openly.

e (alculate shared secrets (Sij) using private keys and public keys as follows:
Sender: S;; = d; X Q) woooviiniii (5.9
Receiver: §;; = dj X Q «ovovviiniii (5.10)

e Derive a symmetric encryption key from the shared secret for secure data exchange.
Step 4: Data Encryption and Blockchain Integration

e Encrypt the [oT data using the derived symmetric encryption key.

e Prepare data for blockchain storage:

e C(Create a block with data, a timestamp, and a cryptographic hash of the data.

¢ Include the public key (K) and digital signature (Sig) for data integrity and authenticity.
e Encrypt the block using ECC, producing the encrypted block (EncBlock).

C = AES(Sij , 10T DAL@) ..o (5.11)
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Block = {C,Timestamp, Hash(Data),K,Sig}........c.ccceviiiiiiiin.n. (5.12)
EncBlock = ECC_Encrypt(Block) ..........ccoviiiiiiiiiiiiiiiin, (5.13)
5.4.4 Intrusion Detection System (IDS)

Calculation 1 gives more points of interest approximately the usage of RF within the GA. This
handle separates datasets A and B into preparing (Atrain, Btrain) and testing (Atest, Btest) sets.
A irregular woodland show is initialized and prepared utilizing Atrain and Btrain and learning
designs and connections inside the information. The model's execution is at that point assessed
on Atest, and in this way, expectations are produced for Btest. At last, a wellness score is
computed based on the model's execution on the Btest, giving a quantitative degree of how
well the Irregular Woodland show performs on the given assignment. This approach makes a
difference survey the model's capacity to generalize to unused information and make precise

expectations. The foremost ideal show is one that yields the most elevated precision score.
Algorithm 1: Fitness Function Computation

Input: A, B; the input data frame and output series

Output: Fitness score obtained by the Random Forest model

Step 1: Data Splitting

Split data into training and testing sets using a complex stratified split to ensure uniform

distribution of classes:
Atrains Atests Btrains Brest = SPlit(4, B, tests;ze = 0.3,stratify =B) .................. (5.14)

This function partitions the dataset into training and testing subsets, maintaining the proportion

of classes across them.
Step 2: Model Initialization

Initialize the Random Forest model with a high number of trees and depth to enhance the

learning capability:

RF = RandomForestClassifier(n_estimators = 100, max _depth =

None, 7andom_StAte = 42)......cui i e (5.15)

Here, 'n_estimators’ represents the number of trees in the forest, 'max_depth' allows the

trees to grow until all leaves are pure, and 'random_state’ ensures reproducibility.
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Step 3: Model Fitting
Fit the Random Forest model using the training data with bootstrapping and feature selection:

RE. FIEQA train Berain) -« v veeeereeeneeeeee e, (5.16)

This step involves building trees where each tree is trained on a bootstrapped sample of the

data, and at each node, a subset of features is randomly selected to determine the split.
Step 4: Model Evaluation and Fitness Computation

Evaluate the model on the testing set and compute the prediction accuracy with a detailed

error matrix:
predictions = RF.prediCt(A_teSt) ..o (5.17)

1

1+ Sum(abs(predictions — Btest))
len(Btest)

Fitness Score =

This complex equation for the Fitness Score is an adaptation of the Mean Absolute Error,
inversely transformed to reflect higher scores for better performance, normalized to a

percentage scale.

The Genetic Algorithm 2 for Feature Selection on the Edge-I1oT dataset begins by initializing
a binary-encoded population, each representing a feature subset. The algorithm iteratively
evolves the population through crossover and mutation, aiming to improve the fitness of
individuals based on a predefined fitness function. The best individual, denoted as Gbest, is
updated throughout the process. The evolution loop continues for a specified number of
iterations (Mbest), and the selected feature subset is recorded in Elist. The algorithm terminates
when reaching a predefined convergence criterion or the maximum number of iterations. The
ultimate objective is to identify a subset of features that optimally contribute to the model's

performance on the Edge-IloT dataset.
Algorithm 2: Genetic Algorithm for Feature Selection on Edge-I1oT Dataset
Pre-requisites:

Dataset: D, Edge-IloT Dataset
Feature Names Array: F/

Target Domain Value: T
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Empty Feature Subset List: Ejist

Maximum Iterations (Best Features): Mpest

Step 1: Initialization

Initialize a population of individuals, where each individual represents a potential solution (i.e.,
a subset of features):

PO = g, Xy ey X oo (5.19)
where P(t) is the population at generation t, and x; are binary strings where each bit represents
the presence (1) or absence (0) of a feature in the dataset.

Step 2: Fitness Evaluation

Evaluate the fitness of each individual using an integral over the data distribution to assess
predictive performance:

flx) = [Accuracy(M(x; D))AD ..o (5.20)

where M (x;, D) represents the model trained with features xi on dataset D, and Accuracy is the
performance metric.

Step 3: Selection

Select individuals for reproduction using tournament selection:

Xselected = TOUTNAMENE(P (L), f) crorinii i e (5.21)
where Tournament is a function that selects the individual with the highest fitness from random
subsets of the population.

Step 4: Crossover

Apply a crossover operation to generate new offspring from selected individuals:

Xoffspring = CTOSSOVET (Xseiocted) «--v rvvnrrnrernnneineeieiie e (5.22)
This function swaps features between pairs of individuals at randomly chosen crossover points.
Step 5: Mutation

Introduce mutations with a small probability to maintain genetic diversity:

Xmutated = Mutation(xo Ffsprings mu) ......................................................... (5.23)
where mu represents the mutation rate, determining the probability of a feature being toggled.
Step 6: Update and Termination

Update the population with the new generation and check for termination conditions:

P(t+1) = Xputatea U BeSLOF P(t) oo (5.24)

if max (f(P(t + 1))) > threshold ort = tpg,:Terminate .......................... (5.25)
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This model outlines a comprehensive genetic algorithm process tailored for optimizing feature
selection in an Edge-11oT dataset, considering the computational and data complexities typical

in industrial IoT applications. The GA modified for case study's main stages is shown in Figure

5-4.

e Initial Compute fitness
AR ) ) .
AN ST T Population Size f“nml:lll? usmg

Yes
Desired fitness .
function >—> Optimal attack

Convergence . . ( End
Critoria 4—[ Mutation ]‘—[ Crossover ]*—[ Selection ] "

Figure 5-4: Flowchart of GA-fitness function in RF

Combining different methods to improve detection is what hybrid models for better [oT breach
detection are all about. A mixed model could combine rule-based systems with machine
learning techniques to make a stronger framework. Here is a step-by-step mathematical

example of how this kind of mixed model could be set up:

Hybrid Model for IoT Intrusion Detection:

Step 1: Data Collection

Collect data from various IoT devices and sensors:

D = {d1, g, e @ e, (5.26)
where D represents the dataset collected, and di represents data points from IoT devices.

Step 2: Data Preprocessing

Normalize and feature-engineer the data to prepare for analysis:

Dprocessed = foreprocess(D) -+« s«rrsersersersemmsnsssssssssssesese e (5.27)

where f_preprocess is a function that includes normalization, handling missing values, and

feature extraction.
Step 3: Rule-Based Filtering

Apply rule-based filters to quickly eliminate known benign behaviors:
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Dtitterea = {d i Dprocessea | TUles(d) = true} ..........o.cooviiiiiiiiiii (5.28)

where rules(d) are predefined conditions that data points must satisfy to be considered for

further analysis.
Step 4: Feature Selection Using Genetic Algorithm

Optimize feature selection using a genetic algorithm to reduce dimensionality and enhance

model performance:
S = GA(Dfittereds FIETESS) woeeiuiiiiiiiii e, (5.29)

where S is the subset of selected features, GA represents the genetic algorithm, and fitness is a

function evaluating the effectiveness of the feature subset.

Step 5: Machine Learning Model Training

Train a machine learning model using the selected features:

M = BT QEN(S, Dipin) - veveveneneneneet et et et e et e e e e (5.30)
where M is the trained model, and Dyy.q;y, 1s the training subset of D jjrereq-

Step 6: Anomaly Detection

Deploy the model to detect anomalies in new data:

Vopred = MHnowsS) «ovvereeeeeeeee e (5.31)

where ¥4 1s the predicted outcome (anomalous or not), x,,,, is new incoming data, and S is

the set of optimized features used by model M.

This six-step approach integrates rule-based filtering and advanced machine learning
techniques, optimized by genetic algorithms, to develop a robust system for detecting
intrusions in [oT networks. Each step is designed to refine the data and model progressively,

focusing on enhancing detection capabilities with accuracy and efficiency.
5.5 Experimental Analysis

This study considered the proficiency of the proposed show for producing Intrusion Detection
Systems (IDSs) in IoT gadgets, utilizing the Edge-IloT dataset. A multi-class test was
conducted to classify activity into different assault sorts. For the binary-class situation, the

Attack label highlight was utilized, whereas the Attack type highlight was utilized for the
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multi-class situation. The tests were carried out on a portable workstation prepared with an
Intel 11th Gen Center 17-4510U CPU processor (2.0 GHz, 4 centers, 8 coherent processors),
16 GB of Smash, and a 64-bit Windows 11 working framework. Python, alongside libraries
such as Sklearn, Tensorflow, Keras, Pandas, and Numpy, was utilized for the tests to help in
information preprocessing. The proposed show was prepared utilizing 80% of the dataset, with
a encourage division to refine the model's hyperparameters. This part come about in a preparing
set comprising 80% of the first information and an approval set of 20%. The choice to partition
the dataset this way was based on the direction from [179], pointing to adjust the preparing
handle and avoid overfitting, as proposed in [180]. This information division procedure was
significant for assessing the model's execution dependably and heartily. Six diverse models
were created to realize the most noteworthy classification exactness. This segment presents the
parameters, execution measurements, and assessment comes about for each show. The utilize
of these numerous models was basic to distinguish the best-performing one, guaranteeing a
comprehensive evaluation of the proposed IDS's adequacy in identifying different assault sorts

in [oT situations.
5.5.1 Confusion Matrix

The disarray lattice may be a visual tool with different assessment parameters. To disentangle,
we'll center on the binary-class perplexity network, overlooking the multi-class adaptation,
which is an expansion of the same concept. The four assessment measurements are Genuine
Positives (TP), Genuine Negatives (TN), Wrong Positives (FP), and Untrue Negatives (FN),
outlined in Figure 5-5. The cleared-out inclining speaks to accurately classified information
focuses (genuine), whereas the correct inclining appears type-1 (FP) and type-2 (FN) mistakes.

This clear portrayal helps in understanding the model's classification execution.

Predicted Class
Normal
Normal Anomalous
Actual Class
N FP
Anomalous
FN TP

Figure 5-5: Binary-class confusion matrix
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5.5.2 Performance Evaluation
Accuracy: The concept of accuracy in intrusion detection refers to the efficacy of a model in
properly recognizing both positive (intrusion) and negative (non-malicious) occurrences.

TP+TN

Accuracy = —————=X 100 ... .o (5.32)
TP+FP+TN+FN

Table 5.3: Accuracy (%): proposed vs. ML/DL model with different epochs

Epochs CNN k-NN SVM MLPNN PNN GAO-RF

10 95.6 88.3 83.5 97.3 92.4 98.1

20 95.3 87.5 83.4 97.1 92.5 98.1

30 95.4 88.4 84.3 97.8 92.2 98.2

40 95.2 87.9 84.7 97.5 91.9 98.3

50 95.3 88.5 84.5 97.4 92.7 98.4
100
95
3 90
< 85
80
75

10 20 30 40 50
Epochs
I CNN k-NN SVM B VMLPNN I PNN Il GAO-RF

Figure 5-6: Accuracy (%): proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved accuracy values of 98.4% for ten epochs, 98.1% for
twenty epochs, 98.3% for thirty epochs, 98.2% for forty epochs, and 98.4% for fifty epochs, as
shown in Table 5.3 and Figure 5-6. These values were achieved during a short period. In
contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.
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Precision: Precision in intrusion detection measures a model's consistency and repeatability in

properly recognizing positive incursions, calculating the percentage of correctly labeled

positive events among all positive predictions produced by the model.

.. TP
Precision = 100 o (5.33)
TP+FP
Table 5.4: Precision (%): proposed vs. ML/DL model with different epochs
Epochs CNN k-NN SVM MLPNN PNN GAO-RF
10 92.7 87.5 83.4 95.4 91.7 97.5
20 93.4 87.3 83.2 95.4 91.8 97.3
30 92.3 87.1 82.7 95.3 91.6 96.8
40 92.4 87.1 83.2 95.4 92.3 97.4
50 92.1 87.8 82.7 95.1 91.6 97.3

Precision (%)

100

95

10

I CNN

K-NN SVM

20 30

Epochs

I VLPNN

I PNN

40 50

Il GAO-RF

Figure 5-7: Precision (%) proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved precision values of 97.5% for ten epochs, 97.3% for

twenty epochs, 96.8% for thirty epochs, 97.4% for forty epochs, and 97.3% for fifty epochs, as

shown in Table 5.4 and Figure 5-7. These values were achieved during a short period. In

contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.

Recall: The model's capacity to accurately identify and detect positive network intrusion is

evaluated via a recall function. This function computes the proportion of true positives that

were accurately expected.
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RECll = —2— X 100 ..ee oo (5.34)

Table 5.5: Recall (%): proposed vs. ML/DL model with different epochs

Epochs CNN k-NN SVM MLPNN PNN GAO-RF
10 92.4 86.7 83.4 96.3 89.7 97.5
20 92.5 86.4 83.2 95.2 89.8 97.8
30 92.2 86.5 83.5 96.5 89.5 97.4
40 91.9 86.3 82.7 96.1 89.7 97.3
50 92.7 85.7 83.4 95.9 89.3 97.4

100

a5

_ 90
& 85
80

75

10 20 30 40 50
Epochs
I CNN k-NN svM [ MLPNN [l PNN [l GAO-RF

Figure 5-8: Recall (%): proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved recall values of 97.5% for ten epochs, 97.8% for
twenty epochs, 97.4% for thirty epochs, 97.3% for forty epochs, and 97.4% for fifty epochs, as
shown in Table 5.5 and Figure 5-8. These values were achieved during a short period. In
contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.

F1-Score: The definition of this term is the weight of the harmonic mean of the recall and
precision test measures. The calculation is based on recall and precision of measurement to

determine how effective intrusion detection is.

F1Score = 2 + Dl 0 R (5.35)

Precision+Recall
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Table 5.6: F1-Score (%): proposed vs. ML/DL model with different epochs

Epochs CNN k-NN SVM MLPNN PNN GAO-RF
10 92.54 87.09 83.4 95.84 90.68 97.5
20 92.94 86.84 83.2 95.29 90.78 97.54
30 92.24 86.79 83.09 95.89 90.53 97.09
40 92.14 86.69 82.94 95.74 90.98 97.3
50 92.39 86.78 83.04 95.49 90.43 97.3

100

95

g 90
i 85
80

75

10 20 30 40 50
Epochs
I CNN K-NN SVM I MLPNN I PNN Il GAO-RF

Figure 5-9: F1-Score (%): proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved f1-score values of 97.5% for ten epochs, 97.54% for
twenty epochs, 97.09% for thirty epochs, 97.3% for forty epochs, and 97.3% for fifty epochs,
as shown in Table 5.6 and Figure 5-9. These values were achieved during a short period. In
contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.

Matthews correlation coefficient (MCC): Pearson's correlation coefficient has a discrete case
known as the MCC. MCC is a valuable metric for evaluating the reliability of binary
classification. The formula determines the worst possible prediction, MCC = -1, while MCC =

+1 indicates the best prediction.

TPXTN—FPXFN (536)

MCC = N L T R e e
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Table 5.7: MCC (%): proposed vs. ML/DL model with different epochs

Epochs CNN k-NN SVM MLPNN PNN GAO-RF
10 91.43 86.39 82.34 95.14 91.59 97.27
20 91.84 87.74 83.57 94.29 91.69 97.54
30 91.34 87.69 83.79 95.39 91.67 97.37
40 91.24 87.59 83.64 94.54 91.76 97.57
50 91.29 87.68 83.94 95.39 91.52 97.69
100
95
90
=
g
=
85
80
75
10 20 30 40 50
Epochs
B ChN K-NN svM [l vLPNN [l PNN Il GAO-RF

Figure 5-10: MCC (%): proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved MCC values of 97.27% for ten epochs, 97.54% for
twenty epochs, 97.37% for thirty epochs, 97.57% for forty epochs, and 97.69% for fifty epochs,
as shown in Table 5.7 and Figure 5-10. These values were achieved during a short period. In
contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.

Cohen's kappa statistics (KS): Cohen's kappa statistics (KS) is a performance analysis
indicator used in classifier performance analysis. The Kappa statistic determines the agreement

between a dataset's expected and actual values.

ks = B P e (5.37)

1-pc
where p, is the total agreement probability, and p. is the hypothetical probability of chance

agreement.
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Table 5.8: KS value (%): proposed vs. ML/DL model with different epochs

Epochs CNN k-NN SVM MLPNN PNN GAO-RF

10 91.54 87.09 88.45 94.84 93.38 96.57

20 91.94 85.84 89.84 94.29 94.58 97.35

30 91.24 88.79 87.69 94.89 94.73 97.67

40 91.14 89.69 88.74 94.74 93.98 96.87

50 91.39 89.78 89.94 94.49 94.83 97.31
100
95
3 a0
g 85
80
75

10 20 30 40 50
Epochs
B ChNN k-NN B svMm [l MLPNN Il PNN O [l GAO-RF

Figure 5-11: KS (%): proposed vs. ML/DL model with different epochs

The proposed GAO-RF model achieved KS values of 96.57% for ten epochs, 97.35% for
twenty epochs, 97.67% for thirty epochs, 96.87% for forty epochs, and 97.31% for fifty epochs,
as shown in Table 5.8 and Figure 5-11. These values were achieved during a short period. In
contrast to other models or methods, the model that was presented constantly outperformed

them, highlighting the usefulness of the model as well as the solid security that it provides.

The proposed model performed well in accuracy, precision, recall, and F1 score for detection.
To check how effective and efficient model is, we compared it with popular Machine Learning
(ML) and Deep Learning (DL) algorithms using the Edge-IloT dataset. We simulated these
algorithms in a Python environment. Table 5.9 and Figure 5-12 show that model outperforms
the other algorithms, showing better intrusion detection abilities and proving its effectiveness

in spotting intrusions.
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Table 5.9: Overall performance evaluation

Models Accuracy Precision Recall F1-Score MCC KS
CNN 95.3 92.1 92.7 92.39 91.29 91.39
k-NN 88.5 87.8 85.7 86.78 87.68 89.78
SVM 84.5 82.7 83.4 83.04 83.94 89.94

MLPNN 97.4 95.1 95.9 95.49 95.39 94.49
PNN 92.7 91.6 89.3 90.43 91.52 94.83
GAO-RF 98.4 97.3 97.4 97.3 97.69 97.31
100
920
§
80 |
70
CNN k-NN SVM MLPNN PNN GAO-RF
I Accuracy Precision B Recall F1-Score MCC B s

Figure 5-12: Overall Performance of the proposed model

5.5.3 Comparison of Proposed Method with State-of-the-Art Methods

Compared to previous research, the suggested approach produced significant results, obtaining

an accuracy level of 98.4% with the Edge-I1oT dataset. The current study used an innovative

Digital Twin (DT) framework and GAO-RF model to improve accuracy, unlike previous

studies that relied on traditional methodologies. This part compares accuracy with some of the

most advanced IDSs for [1oT and [oT systems. We focus closely on the datasets used, accuracy

metrics, number of classes in the classification task, and models employed, as shown in Table

5.10.
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Table 5.10: Comparison of the proposed method with previously published work

Ref. Year | Domain Dataset Learning Features | Model Accuracy
Approach (%)
Zolanvari etal. | 2019 | loT/IloT | WUSTL- Centralized 41 RF 99.99
[181] loT DT 99.98
k-NN 99.98
LR 99.90
SVM 99.64
ANN 99.64
NB 97.48
Koroniotiset | 2019 loT BoT-loT Centralized 46 SVM 99.98
al. [182] RNN 97.70
LSTM 98.05
Vaccari etal. | 2020 loT MQTTset Centralized 33 RF 99.43
[183] NN 99.32
Al-Hawawreh | 2021 | loT/ lloT | X-lloTID Centralized 59 DT 99.45
etal. [184] NB 47.08
k-NN 98.21
SVM 98.14
LR 96.61
DNN 98.39
GRU 99.46
Ferrag et al. 2022 | 10T/ loT | Edge-lloT Centralized & 61 DT 67.11
[178] Federated Learning RF 80.83
SVM 77.61
k-NN 79.18
DNN 94.67
DT 97.80
NB 98.29
Badawi etal. | 2023 | 10T/ 10T | Edge-lloT Centralized and 61 J4a8 92.92
[185] Federated Learning PART 92.80
BN 90.86
AB 86.29
LB 85.40
ASC 90.43
Rashid etal. | 2023 | loT/ lloT | Edge-lloT Centralized and 61 CNN 93
[186] Federated Learning RNN 94
Proposed 2025 | 10T/1loT | Edge-lloT Centralized & 61 CNN 95.3
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Model Federated k-NN 88.5
Learning SVM 84.5
MLPNN 97.4
PNN 92.7
GAO- 98.4
RF

Scalability is very important for the suggested e-healthcare system, especially as more people
use it and more IoT devices are included. Combining blockchain and Elliptic Curve
Cryptography (ECC), two naturally scalable technologies, this system uses a Digital Twin
design. As the network grows, Blockchain's speed stays high because it is not controlled and
can handle more transactions without a single point of failure. For example, ECC helps because
it offers strong security with smaller key sizes than standard methods. This requires less
computing power and works well for expansive networks. The system can also automatically
adjust to changes in data trends as more devices connect because it uses a Genetic Algorithm-
Optimized Random Forest (GAO-RF) model for intruder detection. Depending on the current
network load and user behavior, this model chooses the best features. It can handle a lot of
login requests without slowing down or compromising security. It can support a growing
network of devices and users easily because it uses advanced cryptography and machine

learning methods.
5.6 Conclusion

This chapter assessed a Digital Twin (DT)-based intrusion detection system to improve IoT
security in healthcare by combining machine learning (ML), deep learning (DL), and
cryptographic methods to protect patient data. The suggested GAO-RF model, which was
optimized using a genetic algorithm, exhibited excellent performance by efficiently identifying
and countering cyber-attacks. Feature selection minimized computational complexity while
preserving accuracy, and training for more than 30 epochs had little improvement. A
comparative study indicated that although deep learning models performed better than
conventional ML methods, the hybrid GAO-RF model provided a more efficient and scalable
solution. In addition to intrusion detection, DT technology provides proactive threat analysis
and real-time network monitoring. This study highlights the revolutionary power of DT in

cybersecurity and healthcare to provide strong protection against advanced cyber threats.
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CHAPTER -6

DIGITAL TWIN-ENABLED AI FOR MONKEYPOX DETECTION

This chapter presents a Digital Twin (DT)-enabled Al framework for automated monkeypox
detection. The study explores the integration of deep learning, loT, and data analytics to
improve diagnostic accuracy and early disease detection. The proposed model, MxSLDNet, is
designed to enhance real-time monitoring, optimize healthcare workflows, and support clinical

decision-making.
6.1 Introduction

The advancement of Digital Twin (DT) technology has significantly transformed modern
healthcare by enabling real-time patient monitoring, predictive diagnostics, and Al-driven
decision-making. A Digital Twin is a virtual replica of a physical system that continuously
synchronizes with real-world data. In healthcare, it is widely used for disease detection,
treatment planning, and personalized monitoring. The integration of Artificial Intelligence (Al)
and deep learning into Digital Twin models has greatly improved medical image analysis,
especially for detecting infectious diseases such as monkeypox. Monkeypox, a viral zoonotic
disease, has raised global concerns due to its outbreak potential, making early and accurate
lesion detection crucial for timely diagnosis and prevention. Traditional diagnostic methods
struggle to differentiate monkeypox lesions from other skin conditions due to variations in
shape, size, and 1imaging conditions, necessitating automated Al-based solutions.
Convolutional Neural Networks (CNNs) have been widely used for medical image
classification, offering faster and more objective results than traditional methods. However,
existing CNN models demand extensive datasets, high computational power, and lengthy
training, making real-time clinical applications impractical. To overcome these limitations, this
research introduces the Monkeypox Skin Lesion Detector Network (MxSLDNet), an Al-
powered Digital Twin model designed for efficient and accurate lesion detection. Unlike
conventional CNN architectures requiring manual preprocessing, MxSLDNet automates
classification while maintaining high accuracy, reducing computational demands and making
it suitable for real-time diagnosis in clinical and remote healthcare settings. It applies advanced
CNN-based feature extraction to distinguish monkeypox lesions from other skin conditions,
outperforming models like DenseNet-121 and ResNet-101 while operating efficiently with
minimal data and lower processing overhead. Integrating Digital Twin technology with Al-

based lesion detection enhances real-time patient monitoring and predictive analytics, creating
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virtual patient representations that allow healthcare providers to track disease progression and
assess treatment effectiveness over time. This data-driven approach supports early intervention
and personalized treatment planning, improving patient outcomes. The Al-powered Digital
Twin approach also optimizes disease tracking and clinical decision-making, reducing reliance
on manual interpretation, which is often time-consuming and subjective. A key challenge in
Al-driven medical imaging is acquiring high-quality annotated datasets, particularly for
emerging diseases like monkeypox. MxSLDNet addresses this by incorporating data
augmentation techniques and specialized transfer learning strategies, enabling effective
generalization across different imaging conditions. This enhances its adaptability in real-world
clinical scenarios, where variations in lighting, camera quality, and patient skin tone can affect
image quality. Additionally, MxSLDNet contributes to advancing Al-driven Digital Twin
applications in healthcare by integrating real-time patient data with Al-based lesion
classification, facilitating faster, data-driven medical decisions. This is particularly valuable in
outbreak situations, where early detection plays a crucial role in public health management.
The role of Digital Twin technology in healthcare extends beyond monkeypox detection to
applications in chronic disease management, personalized treatment, and intelligent healthcare
monitoring systems. By combining deep learning with Digital Twin simulations, this research
advances intelligent healthcare models capable of providing automated, real-time diagnostic
insights. The proposed MxSLDNet framework bridges the gap between traditional clinical
diagnostics and modern Al-powered healthcare solutions, addressing challenges in medical
image classification and contributing to more accurate, scalable, and resource-efficient Al-
driven healthcare models. As Al-powered healthcare technologies continue to grow in demand,
the integration of Digital Twin models with deep learning-based diagnostics is expected to
redefine the future of disease detection, patient monitoring, and clinical decision-making. This
research lays the foundation for next-generation Al-powered Digital Twin applications,
enhancing the efficiency and accessibility of real-time medical diagnostics worldwide. The

contributions of this study are as follows:

e Development of the lightweight and storage-efficient MxSLDNet model, specifically
designed for detecting monkeypox lesions with high accuracy.

e Integration of MxSLDNet into a Digital Twin framework to facilitate real-time
monitoring and improve patient outcomes in resource-limited settings.

e Rigorous comparison with state-of-the-art models, showcasing the superior

performance of MxSLDNet in precision, recall, F1-score, and storage requirements.
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e Use of the publicly available "Monkeypox Skin Lesion Dataset" to ensure
reproducibility and transparency.
e Introduction of a detailed workflow incorporating IoT, machine learning, and cloud

storage, enabling efficient health data management.

The integration of Digital Twin, Al, and IoT in Monkeypox detection has the potential to
revolutionize infectious disease management. The proposed framework ensures real-time, data-
driven diagnostics, early detection, and predictive monitoring, allowing for personalized
treatment strategies. The following sections will delve into literature survey, experimental

setup, performance evaluation, and real-world applicability of the proposed model.
6.2 Literature Survey

DT has been around for a while now, and it's like a super useful tool, especially in healthcare.
Lots of researchers and companies are excited about using DTs in healthcare, and this section

will look at the most important research on the topic.
6.2.1 Recent studies of monkeypox lesion detection

Monkeypox is a rare but dangerous virus that has the potential to impact national health
significantly. Effective monkeypox treatment and epidemic prevention depend on lesion
identification. Recently, deep learning-based algorithms have gained popularity for automating
monkeypox lesion detection. A collection of studies has contributed valuable insights into
monkeypox lesion detection. This study [187] delved into the realm of CNN-based models,
particularly their application in detecting monkeypox lesions, highlighting the potential of deep
learning in this context. The authors [188] focused on machine learning, presenting an
automated diagnosis model for monkeypox skin lesions and discussing its accuracy and
limitations. Authors [189] explored the use of deep neural networks for the early detection of
monkeypox outbreaks, emphasizing their efficiency in this critical task. This study [190]
surveyed transfer learning, assessing its effectiveness in enhancing monkeypox lesion detection
accuracy and comparing it with traditional methods. They [191] offered a review paper,
providing an overview of challenges and opportunities associated with monkeypox detection
using deep learning methods. This [192] proposed a CNN model for early identification of the
monkeypox virus, discussing its potential impact on public health. Authors [193] investigated
different machine-learning approaches for classifying monkeypox lesions and assessing their
accuracy and robustness. The authors [194] explored the application of transfer learning in

monkeypox lesion recognition, highlighting its practicality. This [195] conducted a systematic
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review, comparing various models for monkeypox detection and summarizing their strengths
and weaknesses. This study [196] explored various artificial intelligence techniques for
monkeypox virus detection, evaluating their practicality and accuracy. Authors [197]
investigated the application of deep learning for monkeypox lesion segmentation, assessing its
effectiveness in delineating lesions. This [198] proposed an ensemble learning approach for
monkeypox lesion detection, combining multiple models for improved accuracy. This study
[199] discussed the challenges and opportunities in monkeypox lesion detection, providing

insights into potential future research directions.
6.2.2 Recent research studies related to DT in healthcare

Scientists created something called a Digital Twin (DT), which acts like a computer copy of a
real patient [127]. This lets doctors see how a patient would react to different treatments, almost
like a test run. It's kind of expensive now, but it's getting cheaper and helping doctors improve
people's health in amazing ways. For instance, doctors can use DT to create personalized
medication plans [189]. Imagine having medicine designed just for you! This technology is
even being used to study diseases like Multiple Sclerosis, which could lead to better treatments
and faster research [200]. DT can also be used to try out new treatments virtually, speeding up
medical advancements. Remember the staff shortages during the pandemic? DT can help with
that too [201]. Researchers studied a system that uses DT to create virtual patients in a clinic,
making vaccinations much more efficient [50]. It's like a practice round to find problems before
they happen in the real world. Another study looked into a way to protect patient privacy using
something called a generative adversarial network (GAN) [129]. This is a system that can
create fake data that looks real. They are working on a new system to protect patient privacy
[202]. They use fake information instead of real patient data. This way, even if there's a data
leak, no one's details get stolen. This system works with a special kind of technology called a
convolutional neural network, which helps handle complicated information. The author is also
trying to make these systems even smarter. One idea is to make them self-adapting, meaning
they can learn and adjust by themselves [28]. This could help monitor patients with long-term
illnesses like diabetes. However, figuring out how to make this work in real life needs more
research [203]. Another interesting development is a cloud-based system designed especially
for taking care of elderly people [130]. This system combines the strengths of both DT
(decision tree) and cloud computing, making it easier to handle healthcare information. Studies
show this system can create personalized care plans, but more research is needed to see how

well it works overall. Using DT in healthcare can be tricky, especially when it comes to
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managing the complex programs involved [204]. One approach is to create a hospital app that
uses real-time information to improve hospital services. This idea has been tested using
computer simulations, but researchers need to explain more clearly how DT fits into this
system[205]. Overall, DT has the potential to completely change healthcare by allowing
doctors to personalize treatments, predict illnesses, and develop new therapies. However, there
are still ethical issues and technical challenges to solve before DT can be widely used [206],
[207]. In the future, researchers might even create personal DT systems that use artificial

intelligence to give you information about your health [208].

Table 6.1: Comparative analyses of existing studies

Training Testing Training | Testing o F1-
Ref. Precision | Recall Accuracy
Accuracy | Accuracy Loss Loss Score
Gulmez
No No No No Yes No Yes Yes
[209]
Ali et al.
No No No No Yes Yes Yes Yes
[191]
Jaradat et al.
No No No No Yes Yes Yes Yes
[197]
Haque et al.
No No No No Yes Yes Yes Yes
[210]
MxSLDNet
(Proposed Yes Yes Yes Yes Yes Yes Yes Yes
Model)

A detailed comparison of the numerous parameters used in prior research is presented in
Table 6.1. Our study concentrated on the detection of monkeypox lesions, and that comparison
is presented in Table 6.1. While each row refers to a particular study, the columns each reflect
a distinct assessment statistic. These metrics include accuracy, precision, recall, F1-score, and
others. Table 6.1 summarizes the evaluation metrics provided in each of the studies, enabling
a complete comparison of the methods applied for performance evaluation. This analysis aims
to provide significant insights into the existing literature and emphasize the unique addition
that our study has made by combining all of the critical assessment metrics for a complete

evaluation of monkeypox lesion detection.

Table 6.2 literature review explores advancements in digital twin technology, Al-based

diagnostic models, and innovative approaches for healthcare applications, particularly focusing
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on monkeypox detection. By analyzing diverse methodologies, datasets, and outcomes, the

review highlights significant contributions toward enhancing disease detection, interpretability,

and healthcare efficiency.

Table 6.2: Literature Review of the most recent studies

Ref. Methodology Dataset Result Outcome
Explores enabling Identifies key
Fuller et al. ) General Framework for future
technologies, and ) challenges and
[211] ) review . DT research.
challenges in DT. opportunities.
Deebak et al. Privacy protocol for Simulation- ) Secure smart e-
] Improved privacy.
[212] 10T in healthcare. based healthcare systems.
Sharma et al. Digital Twins in General DT aids in precision Optimized healthcare
[213] Healthcare 10T, Exploration and monitoring. operations.
Wenham et | Public health analysis Insights into Policy recommendations
WHO data
al. [214] of monkeypox. governance. for outbreak control.
Ahsan et al. Deep learning for Monkeypox . . .
) High accuracy. Al-enabled diagnostics.
[215] monkeypox detection. dataset
Glock et al. Transfer learning for Measles Effective lesion Improved clinical
[216] rash detection. dataset identification. workflows.
) o Applications in
Agarwal et o Tomato High classification ) )
Efficient CNN model. ) agricultural disease
al. [217] disease dataset accuracy. .
detection.
Alharbi etal. | Transfer learning with Monkeypox Enhanced precision Reliable diagnostic
[195] optimization. dataset and recall. system.
Attallah Hybrid CNNs with Monkeypox Efficient detection
) Improved accuracy.
[198] feature selection. dataset framework.
Attention mechanism Improved ) )
Raha et al. Monkeypox ) . Explainable detection
for monkeypox interpretability and
[218] ) dataset framework.
detection. accuracy.
Yasmin et al. | Transfer learning using | Monkeypox High classification Effective disease
[219] PoxNet22. dataset performance. classification tool.
Ahsan et al. Interpretable deep Monkeypox High accuracy with Al-enabled diagnostic
[187] learning model. dataset explainability. assistance.

This review highlights the potential of integrating attention mechanisms, transfer learning,
and interpretable Al models in addressing diagnostic challenges. The findings pave the way for
scalable and explainable healthcare solutions, offering robust frameworks for improving
disease management and public health outcomes.
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6.3 Proposed Framework

This study aims to optimize healthcare operations and improve patient care by implementing
an innovative and adaptive DT architecture for the healthcare industry. The proposed DT
framework integrates data analytics, artificial intelligence (Al), and Internet of Things (IoT)
devices to generate a virtual replica of a patient in three stages. IoT wearable devices with
sensors are used to gather real-time physiological data from patients, as shown in Figure 6-1.
This digital twin then gets this information ready for analysis by powerful computers. By
constantly checking a patient's health and looking for anything unusual, this system can help
doctors in many ways, from suggesting treatments to figuring out how medications will work
and even planning healthy lifestyles for patients to follow. This whole system works in three

parts: (a) Data Prediction, (b) Supervision, and (c) Comparison.

Digital Twin

Data Storage ‘ Smart Healthcare Systems

Data Pre-processing AT & Analytics

Cleaning & Data Splitting
Integratmn — *|  (Train/Test)

l
Ll

Transformatlon &
Database Reduction

> Model Evaluation

= Result/ Feedback T
5 Result
2| 2
S| =
[=- = Result/ Feedback
%)
= Result/ Feedback
S
% l
~ O
A A
=T 7 ‘ I .
ToT sensors “@ o '. m

| Physical Twin Patient ‘ ‘ Virtual Twin Patients ‘ ‘ Healthcare Professional ‘

Figure 6-1: Digital Twin Framework for Smart Healthcare Systems

Data Prediction: In this part, the system uses wearable sensors to collect real-time information
about a patient's health to see if anything is wrong. This information is then stored in a safe and
big online storage space (cloud database) for a short time. Here, the information is cleaned up

and made ready for super smart computers (machine learning) to analyze it and predict future
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health problems. Both patients and other parts of the system can see this information in another

safe online storage space (Result Database) so they can add comments, updates, or corrections

if needed.

Supervision: Doctors use the information from the prediction models in the Result Database
to recommend treatments for patients. This information, along with the doctor's knowledge and
keeping track of the patient, helps doctors make better healthcare decisions. Because the
information is updated constantly, doctors can find and track problems with a patient's health
more easily and take the right steps to fix them. This way, doctors can give patients the right
medicine and help them live healthier lives. Doctors can also check the findings from the

system and suggest ways to make it work even better.

Comparison: The DT system also makes its predictions more realistic by comparing a patient's
information with information from similar patients. This comparison helps the system make
more accurate predictions, which in turn helps doctors make better decisions about patient care.
These decisions can involve copying, changing, or stopping treatments altogether based on

real-time information and the patient's past, present, and predicted future health.
6.4 Materials and Methods

To compare the performance of MxSLDNet to four other models—VGG-19, ResNet-101,
DenseNet-121, and EfficientNet-B4—the methodology section of this study talks about how
the data was collected, prepared, and pre-processed. It also talks about the architecture of the
suggested MxSLDNet model and the evaluation standards that were used. The goals were
followed when collecting and processing images of monkeypox skin lesions to make sure
quality and consistency. Next, four models that had already been trained—VGG-19, ResNet-
101, DenseNet-121, and EfficientNet-B4—were used with transfer learning to make the
MxSLDNet convolutional neural network (CNN) model. The next step in finding out how well
MxSLDNet worked was to compare its results to models that had already been trained using
standard evaluation methods such as F1-Score, accuracy, precision, and recall. Figure 6-2

shows the general steps that were taken to do the study.
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Figure 6-2: Overall Work-flow Diagram

The Digital Twin (DT) framework was implemented to create a virtual replica of patient health
parameters using [oT sensors and real-time data streams. The process begins with wearable
devices capturing physiological data, such as lesion characteristics and vital signs, which are
transmitted to a cloud storage system for preprocessing. Data preprocessing includes
normalization, anomaly detection, and noise reduction. The processed data is then fed into the
DT, which performs predictive analysis using MxSLDNet. The outputs are stored in a result
database accessible to clinicians for diagnostic and treatment planning. A step-by-step

breakdown of the framework includes:

e Data Collection: IoT-enabled wearables gather real-time health data.

e Data Preprocessing: Raw data is normalized and cleaned for analysis.

¢ Digital Twin Modeling: Patient-specific virtual models are updated with incoming data.

e Prediction and Analysis: MxSLDNet classifies lesion images into monkeypox or non-
monkeypox categories.

e Clinical Integration: Predictions are visualized for healthcare professionals to support

decision-making.
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MxSLDNet was selected for its lightweight architecture, optimized specifically for the
Monkeypox Skin Lesion Dataset, ensuring superior feature extraction tailored to lesion-
specific characteristics. It outperforms models like ResNet-50 and MobileNet-V2 in precision,
recall, and F1-score while requiring less computational and storage resources. This makes it

ideal for resource-constrained environments and real-time healthcare applications.
6.4.1 Dataset

This study uses the public "Monkeypox Skin Lesion Dataset" [220]. For binary classification,
the dataset has the Monkeypox and Non-Monkeypox classes. The Monkeypox class has 1428
skin images. The non-Monkeypox class has 1764 skin images. The detailed data description is

shown in Table 6.3.

Table 6.3: Distribution of the monkeypox skin lesion dataset

Class Augmented Images Unique Patients Original Images
Monkeypox 1428 55 102
Non-Monkeypox 1764 107 126
Total 3192 162 228

6.4.2 Data Mounting

This stage mounts a Google Drive Account (GDA) as a virtual drive, similar to a Universal
Serial Bus (USB) drive on Windows OS, allowing you to view and access your Drive from
Google Co-laboratory. As a result, we uploaded our dataset to Google Drive. Then we imported
it into Co-Lab using the Python/glop library, which allows you to read datasets from external
folders, and the Python/pandas library, which will enable you to manipulate data in a variety

of ways, including data framing, reading, and writing between in-memory data structures.
6.4.3 Data Pre-processing

This phase is essential for the deep learning model since it guarantees that the input data is
formatted suitably for training the model, resulting in improved accuracy. During this stage,
the data that have been collected are put through a total of six preprocessing activities before
being incorporated into the model. The resizing of photos to uniform sizes, the scaling of the
pixel value, data format setting, label encoding, data augmentation, and data visualization are

all preprocessing processes. Figure 6-4 shows the visualization of the sample image of our
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dataset. Figure 6-3 shows the in-place augmentation process, and Table 6.4 represents the

augmentation parameter [221].

The Monkeypox Skin Lesion Dataset was preprocessed through normalization, data
augmentation, and techniques to address class imbalances, ensuring a balanced and high-
quality input for model training. Feature selection in MxSLDNet focused on extracting lesion-
specific patterns, leveraging convolutional layers for automated feature learning. The choice
of features is justified by their relevance to distinguishing monkeypox from other skin
conditions. Potential dataset limitations, such as biases in lesion diversity, are acknowledged,

with suggestions for expanding the dataset to improve robustness and generalizability.

- Original Image Kkl
Augmentation | B ‘gh ¢ > A gl ’ | Transformed | Train the Model
Image Parameter 4 Al 0 7| Augmentation Batch of " onBatch
Dataset Images Object e
Figure 6-3. Data Augmentation Process
Table 6.4: Augmentation Parameter

S. No. Type Value

1. Zoom Range 0.99-1.01

2. Brightness Range 08-1.2

3. Fill Mode Constant

4. Horizontal Flip True

Monkeypox Non - Monkeypox

Figure 6-4. Random Image Samples from Dataset
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6.4.4 Splitting Dataset

To ensure that the model is trained on a section of the data and evaluated on a different
portion, the dataset is divided into two sets for training and testing the model.

e Data for training

e Data for testing
We used 80% of the data to train the model, whereas we utilized 20% for testing and validating
the model [180]. After analyzing various splitting ratios, we found that 80% and 20% produced

higher training and validation accuracy and satisfactory performance metrics.

6.4.5 Model Building

Classifying monkeypox and non-monkeypox lesions is possible using pre-trained models
developed to recognize one thousand classes in ImageNet. This study used four pre-trained
models: DenseNet-121, Resnet-101, VGG-19, and EfficientNet-B4. Pre-trained architectures
require a significant amount of computing time and storage space because of their high number
of convolutional layers. To overcome these issues, we suggested a lightweight convolutional
network model termed 'MxSLDNet." The DL network MxSLDNet utilizes a classification-
based detection method to retrieve significant information from an input picture and enhances
it using layers (convolution, pooling, and dense). Table 6.5 summarizes the models employed

in this investigation. Figure 6-5 represents the pipeline of pre-trained and MxSLDNet models.

Table 6.5: Models Summary

Model Batch | Epochs | Loss Function Details
Size

MxSLDNet 32 15 Binary Cross CNN model used for detection of Monkeypox
Entropy and Non-Monkeypox

VGG-19 32 15 Binary Cross CNN model (19 layers) is used for feature
Entropy extraction and classification.

DenseNet-121 32 15 Binary Cross CNN model (121 layers) is used for feature
Entropy extraction and classification

ResNet-101 32 15 Binary Cross CNN model (101 layers) is used for feature
Entropy extraction and classification

EfficientNet- 32 15 Binary Cross CNN model used for feature extraction and

B4 Entropy classification
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Figure 6-5: Pipeline of pre-trained and MxSLDNet Model
Hyperparameters for the proposed MxSLDNet model.

e No. Of Convolutional Layer - 5
e No. Of Max pooling Layer - 5
e Activation Function - ReLu

e Batch Size — 32

e Optimizer - Adam

e Loss Function - Binary Cross Entropy

A CNN architecture that is built for two-dimensional (2-D) image analysis is the model that
we have suggested. This architecture is comprised of five convolutional layers and five max-
pooling layers simultaneously. 224x224 input image dimensions are sent to the layer that will
receive them. The first convolutional layer has 32 feature kernel filters, all of which have a 3x3
dimension, and the padding function is in the "same™ mode. In particular, 64 feature kernel
filters make up the second convolutional layer. The padding is set to "same," and the filter size
is 3 x 3. The third convolutional layer uses 128 feature mappings with a 3x3 kernel size to
perform its functions. The fourth convolutional layer consists of three layers and uses 256
feature maps with a 3x3 kernel size. The neural network's fifth convolutional layer employs
512 feature mappings and a 3x3 kernel size. With a 3x3 kernel size, there are five convolutional
layers. These convolutional layers include 512 nodes altogether. Convolutional layers create
an output with dimensions of 7x7x512. After each convolutional layer, the ReLU activation
function incorporates non-linearity into the model. This is an essential step in learning
complicated features and patterns in the input data. Figure 6-6 shows the architecture of the
MxSLDNet model.
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: Architecture of MxSLDNet Model

102

Submission ID trn:oid:::27535:87273600

Submission ID trn:oid:::27535:87273600



z'l_.l turnitin Page 116 of 144 - Integrity Submission Submission ID trn:oid:::27535:87273600

6.4.6 Performance Evaluation

Four different evaluation metrics are employed to assess the performance of the proposed
method. To compute these metrics, the Confusion Matrix is analyzed. Below is a brief
explanation of the Confusion Matrix, Accuracy, Precision, F1-score, and Recall.

Confusion Matrix: The Matrix summarizes a classification model’s performance through a
tabular representation. It displays True Positive (TP), True Negative (TN), False Positive (FP),
and False Negative (FN) values, comparing predicted and actual target values. This matrix
highlights the counts of correctly and incorrectly classified instances, providing insights into
the model’s accuracy. TP and TN represent correctly classified instances, while FP and FN
represent misclassified instances. In the matrix, TP and TN are on the diagonal, while FP and
FN are on the off-diagonal cells. Table 6.6 shows the actual class labels in the rows and the
predicted class labels in the columns.

Table 6.6: Confusion Matrix of Monkeypox and Non-Monkeypox lesion

Predicted Class

Monkeypox | Non-Monkeypox

Actual Class Monkeypox TP FN

Non-Monkeypox FP TN

Accuracy: Accuracy measures how effectively a classification model correctly predicts class
labels. It is calculated by dividing the number of correctly predicted instances by the total
number of cases, then multiplying by 100 to get a percentage. High accuracy indicates that the
model correctly predicts all labels (Monkeypox and Non-Monkeypox). For example, a model

with 70% accuracy correctly predicts 70 out of 100 instances

Precision: Precision is the proportion of true positive predictions among all positive
predictions made by the model. It is calculated by dividing the number of true positives by the
sum of true positives and false positives, focusing on Type | errors. A high precision value

indicates few false positives.

Recall: Recall quantifies the number of true positive cases the model correctly identifies. With

an emphasis on Type Il errors, it is computed by dividing the number of true positives by the
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total of true positives and false negatives. A model with a high recall value effectively detects

most positive cases, reducing the number of false negatives.

F1-Score: The F1-score computes the harmonic mean of precision and recall to incorporate
both into a single metric. It ranges from 0 to 1, with a high F1-score signifying superior model
performance and a balance between precision and recall. The optimal performance is indicated

by an F1-score of 1.

These metrics collectively provide a comprehensive evaluation of the model's performance.
6.5 Experimental Analysis

This section presents the findings obtained from training and testing several different models
on a dataset used to detect monkeypox. Measures such as confusion matrix, classification

reports, precision, recall, and F1-scores were utilized to assess the performance of the models.
6.5.1 Accuracy and Loss Analysis

The author employed data augmentation techniques to avoid overfitting and increase the
dataset size during training. This was done to deal with the small quantity of photographs
available on Kaggle. We recorded the accuracy and loss metrics for every algorithm after 30
training epochs were finished. Table 6.7, which shows the training and validation accuracy
attained by running the suggested model four times for thirty epochs, offers a trustworthy
assessment of the model's performance. This provides a reliable evaluation mechanism and
lessens the effects of chance. When the MxSLDNet model was being trained, it achieved an
average training accuracy of 97.91% and an average validation accuracy of 94.35%. Because
this consistency holds across runs, it emphasizes the necessity of performing numerous
assessments to evaluate the model's performance precisely. A comparison of the training and
validation accuracies and losses for each model is presented in Table 6.8. With a training
accuracy of 96.77% and a loss of 0.0799, the model we suggested, MxSLDNet, demonstrated
exceptional performance. Its validation accuracy was obtained at 95.42%, with a loss of 0.1174.
Other models, such as VGG-19, DenseNet-121, ResNet-101, and EfficientNet-B4, exhibited
lower accuracy and loss levels during the training and validation phases as shown in Table 6.8.
Due to the complete nature of this comparison, it is possible to evaluate and pick the most

effective model for the correct detection of monkeypox lesions.
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Table 6.7: Multiple Training accuracy and Testing accuracy for the MxSLDNet Model

) Training Testing
Experiment Epoch Loss Loss
Accuracy Accuracy
1 30 98.72 0.0812 94.72 0.1267
2 30 96.54 0.0932 92.76 0.1245
3 30 98.53 0.0851 95.26 0.1853
4 30 97.87 0.0731 94.67 0.1327

Table 6.8: Evaluation of accuracy and loss for each model during training and validation

Training )
Model Name Loss Testing Accuracy Loss
Accuracy
VGG-19 85.65 0.3412 87.71 0.3364
DenseNet-121 87.46 0.4513 85.58 0.3177
ResNet-101 78.62 0.5227 72.12 0.5448
EfficientNet-B4 81.37 0.3027 80.47 0.3327
MxSLDNet
96.77 0.0799 95.42 0.1174
(Proposed Model)

6.5.2 Classification Report Analysis

The classification report provides detailed precision, recall, and F1 scores for each class, which
helps us evaluate the performance of the MxSLDNet model. Table 6.9 shows these scores for
all models used in this study, including VGG-19, DenseNet-121, ResNet-101, EfficientNet-B4,
and our proposed MxSLDNet model. For each class (Monkeypox and Non-Monkeypox), the

report includes:

e Precision: The percentage of correct positive predictions. For DenseNet121, the precision
for Monkeypox is 0.86, meaning 86% of samples classified as Monkeypox were correct.

e Recall: The percentage of actual positives correctly identified. DenseNet121 has a recall
of 0.82 for Monkeypox, meaning it correctly identified 82% of actual Monkeypox cases.

e Fl-score: A balanced measure of precision and recall. DenseNet121 has an Fl-score of

0.83 for Monkeypox.

Similar metrics for the non-Monkeypox class and other models like ResNet-101,
EfficientNet-B4, and VGG-19 are provided. Our MxSLDNet model shows superior
performance with high precision, recall, and Fl-score values of 0.96, 0.95, and 0.95,

respectively, indicating high accuracy in detecting monkeypox lesions. This classification
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report allows for a comprehensive comparison of model performance, helping us identify the

most effective model for accurate monkeypox lesion detection.

Table 6.9: Comparative classification performance analysis of our proposed model vs pre-

trained model

Model Name Patient Status Precision Recall F1-Score
Monkeypox (0 0.86 0.80 0.79
VGG-19 ypox (0)
Non-Monkeypox (1) 0.81 0.87 0.83
Monkeypox (0) 0.86 0.82 0.83
DenseNet-121
Non-Monkeypox (1) 0.67 0.76 0.71
Monkeypox (0) 0.86 0.78 0.81
ResNet-101
Non-Monkeypox (1) 0.81 0.85 0.82
Monkeypox (0) 0.83 0.82 0.82
EfficientNet-B4
Non-Monkeypox (1) 0.81 0.81 0.81
MxSLDNet Monkeypox (0) 0.96 0.95 0.95
(Proposed Model) | Non-Monkeypox (1) 0.96 0.95 0.95

6.5.3 Confusion Matrix of MxSLDNet Model

A practical method for assessing classification models is to use a confusion matrix. This
confusion matrix displays the number of samples correctly and incorrectly identified for every
class. The confusion matrix for our suggested MxSLDNet model is shown in Figure 6-7. A
total of 320 test photos are assessed here. True Positive indicates the frequency with which the
model classifies monkeypox correctly. Similarly, True Negative suggests that the model can
accurately identify non-monkeypox cases as non-monkeypox cases. Figure 6-7 shows that 148
photos are correctly classified as non-monkeypox (True Negative) and 157 photographs as
monkeypox (True positive) by the MxSLDNet model. Figure 6-7 shows that, out of 320 photos,
our model successfully identified 305. Conversely, false positives indicate that the model
mistakenly classified non-monkeypox cases as monkeypox. On the other hand, false negatives
show cases in which the model incorrectly diagnoses monkeypox as something else.
Additionally, we can see that 8 photos of monkeypox were mistakenly labeled as false
negatives, and 7 images of non-monkeypox were mistakenly classed as false positives. It
demonstrates that our method, with high true positives and true negatives, can successfully

identify patients with monkeypox.
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Figure 6-7: Confusion Matrix of MxSLDNet Model
6.5.4 Comparison of Proposed Method with State-of-the-Art Methods

Within this section, the authors provide a complete analysis comparing the performance of our
proposed MxSLDNet model with that of previously pre-trained models. Our evaluation of the

models utilized key parameters like accuracy, precision, recall, and F1-score.

Table 6.10 shows that MxSLDNet effectively recognizes positive cases correctly, with the
highest achievable precision score of 0.96. The MxSLDNet recall score of 0.95 indicates high
reliability when identifying monkeypox images. Additionally, it was demonstrated that the
model's F1-score—a measure of recall and precision—reached 0.95, indicating a better balance
between the two metrics than pre-trained models. Given that the MxSLDNet accuracy score
was 0.95, likely, most instances were correctly classified. MxSLDNet is the most accurate
model for identifying monkeypox lesions, consistently outperforming the other models on all
metrics. Higher values indicate better performance, and MxSLDNet consistently beats its
rivals. To enhance the explainability of the results, Grad-CAM (Gradient-weighted Class
Activation Mapping) was employed to visualize the regions of input images that significantly
influenced the model's predictions. These heatmaps highlight critical features in monkeypox
lesions, providing insights into the decision-making process of the MxSLDNet model. This
interpretability ensures clinicians and researchers can trust the model’s predictions, facilitating
its adoption in real-world healthcare applications by demonstrating a clear and transparent

rationale behind the results. k-fold cross-validation (with k=5) was conducted to validate the
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robustness of the proposed MxSLDNet model. The results showed consistent performance

across all folds, with an average accuracy of 95.42%, precision of 0.96, recall of 0.95, and F1-

score of 0.95. This approach ensured that the model's evaluation was not biased by a particular

data split, providing stronger evidence of its reliability and generalization capability for

monkeypox lesion detection. Table 6.11 and Table 6.12 compares our MxSLDNet model's

accuracy with other models that use the Monkeypox Skin Lesion Dataset (MSLD). MxSLDNet

outperformed other models, with an accuracy of 95.67%, compared to other models, with

accuracy ratings ranging from 63% to 94%. This illustrates the remarkable performance of

MxSLDNet in accurately identifying and categorizing monkeypox lesions.

Table 6.10: Overall Performance of our proposed Model vs. pre-trained model

Model Name Accuracy Precision Recall F1-Score
VGG-19 0.82 0.83 0.82 0.82
ResNet-101 0.84 0.85 0.84 0.84
DenseNet-121 0.81 0.86 0.85 0.85
EfficientNet-B4 0.78 0.79 0.78 0.78

MxSLDNet
0.95 0.96 0.95 0.95
(Proposed Model)

Table-6.11: Comparison of proposed work with existing work w.r.t. various evaluation

parameters
Ref. Accuracy Precision Recall F1-Score
MxSLDNet (Proposed) 95.67% 0.96 0.95 0.95
A.D. Rahaetal. [218] 93.45% 0.94 0.92 0.93
F. Yasmin et al. [222] 91.67% 0.92 0.9 0.91
M. M. Ahsan et al. [223] 92.78% 0.93 0.91 0.92

Table 6.12: Result Analysis of existing study with the proposed system

g'r—.| turnitin

Ref. Year Datasets Methods Accuracy
VGG-16 81.48
ResNet-50 82.96
Alietal. [191] 2022 MSLD Inception-V3 74.07
Ensemble 79.26
MobileNet-V2 91.13
MobileNet-V2 91.37
Irmak et al. [224] 2022 MSLD VGG-16 83.62
VGG-19 77.58
108

Page 121 of 144 - Integrity Submission

Submission ID trn:oid:::27535:87273600



Zl'-_l turnitin Page 122 of 144 - Integrity Submission

Submission ID trn:oid:::27535:87273600

EfficientNet-B3 63
VGG-19 91
MSLD
Jaradat et al. [197] 2023 VGG-16 89
ResNet-50 78
MobileNet-V2 94
ResNet-18 73.33
GoogleNet 77.78
) MSLD EfficientNet-BO 91.11
Sahin et al. [225] 2022 i
NasnetMobile 86.67
ShuffleNet 80.00
MobileNet-V2 91.11
Inception-V3 93.33
MSLD ResNet-50 88.89
Almufareh et al. [196] 2023 _
MobileNet-V2 88.89
EfficientNet-B4 88.89
ResNet-50 84
o MSLD _
Dwivedi et al. [226] 2022 EfficientNet-B3 87
EfficientNet-B7 77
DesNet-121 72
ResNet-50 75
MSLD
Aydin et al. [227] 2022 Xception 73
EfficientNet-B3 82
EfficientNet-B7 90
VGG-19 82
ResNet-101 84
MSLD DenseNet-121 81
Proposed Work 2024
EfficientNet-B4 78
MxSLDNet 95
(Proposed Model)

Based on the study's findings, it is clear that the development and evaluation of the MxSLDNet

model have resulted in significant advancements in the detection of monkeypox lesions. Our

findings consistently demonstrate that the MxSLDNet model is superior to other pre-trained

architectures that are commonly used, such as VGG-19, ResNet-101, DenseNet-121, and

EfficientNet-B4. This is shown by the fact that we place a strong emphasis on key performance

indicators such as accuracy, precision, recall, and F1-score. When distinguishing monkeypox

lesions from digitized skin lesion photographs, our model consistently obtains outstanding
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training and validation accuracies, demonstrating its robustness and reliability. This is shown
by rigorous validation and many runs of the model. Furthermore, confusion matrices indicate
that the model can effectively differentiate between positive and negative occurrences. Because
they give medical personnel a powerful instrument for early detection and intervention in cases
of monkeypox, these findings have substantial implications for managing diseases. As a result,
this makes it possible to promptly administer treatment and containment measures, which helps

reduce the spread of the disease.

The MxSLDNet model is a forward-thinking and innovative advancement in detecting
monkeypox lesions. It makes numerous applications that can potentially have a substantial
impact available. Initially, it makes it possible to detect and diagnose monkeypox lesions at an
earlier stage. This helps in the timely intervention and treatment of the disease, reducing the
danger of the disease progressing and being transmitted to other people. In healthcare settings,
this non-invasive element is especially advantageous because it decreases physical contact
between patients and healthcare personnel. As a result, the likelihood that a disease may be
transmitted from one individual to another is reduced. In addition to improving clinical
decision-making, the model enhances diagnostic accuracy and therapy outcomes. The
provision of automated lesion identification and classification fulfills this objective. In
addition, implementing this technology into public health surveillance systems offers the
potential to facilitate the early detection of epidemics, the monitoring of epidemiological
trends, and the creation of focused intervention approaches. The MxSLDNet model may affect
businesses involved in disease surveillance, pharmaceutical research, public health policy, and
the healthcare industry. Attempts to create cures and vaccines, as well as decisions regarding
policy for disease control and prevention, could be significantly aided by this information. In
summary, implementing the MxSLDNet concept can dramatically improve healthcare delivery,
the efforts to manage disease, and the outcomes of public health programs undertaken

worldwide.

6.6 Conclusion

This work presents MxSLDNet, a machine learning-based Digital Twin (DT) architecture for
reliable Monkeypox detection, with the help of loT-enabled real-time data harvesting and deep
learning for instant diagnosis. Experimental findings demonstrate MxSLDNet performs better
compared to pre-trained models such as VGG-19, ResNet-101, and EfficientNet-B4,

substantially decreasing false negatives and enhancing disease tracking. The robustness of the
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model was established by using classification reports and confusion matrix assessments.
Challenges like scalability, security, and interoperability still exist and need to be addressed
through additional research in blockchain-based security and edge Al for real-time processing.
This research validates the prospect of Al-driven DT applications for preventing infectious

diseases, with subsequent research directed toward scaling digital healthcare innovations.
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CHAPTER 7

CONCLUSION

This chapter summarizes the research contributions in Digital Twin Healthcare (DTH),
highlighting key achievements, model evaluations, and security frameworks. The study
demonstrates the potential of DTH in predictive diagnostics, real-time patient monitoring, and
cybersecurity. Future directions for scalability, Edge Al integration, and 6G-enabled

healthcare innovations are also discussed.
2.7 Introduction

The advancements in digital healthcare have paved the way for groundbreaking innovations,
with Digital Twin Healthcare (DTH) emerging as a transformative paradigm. This research has
systematically addressed the development, implementation, and evaluation of a DTH model by
integrating deep learning architectures, blockchain security mechanisms, and advanced data
transmission frameworks. The culmination of this work presents a robust, scalable, and
efficient model designed to enhance predictive healthcare, patient monitoring, and data
security. The objectives laid out at the beginning of this research have been comprehensively

achieved through the following key contributions.
2.8 Achievements of Research Objectives
Objective 1: Development of a Digital Twin Healthcare (DTH) Model

One of the core objectives of this study was to develop an innovative DTH model that integrates
real-time patient data, artificial intelligence, and secure communication channels. The research
successfully conceptualized and implemented a digital twin system that can replicate patient
health conditions, predict disease progression, and assist medical professionals in personalized
treatment planning. The developed DTH model utilizes machine learning algorithms and
convolutional neural networks (CNNs) to improve the accuracy of disease diagnosis. In
particular, the CervixNet model for cervical cancer detection and the Monkeypox Skin Lesion
Detector Network (MxSLDNet) exemplify the potential of DTH in predictive diagnostics. The
implementation of digital twins in healthcare ensures real-time monitoring of patients, thereby

improving treatment outcomes and reducing manual intervention errors.
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Furthermore, the research highlights the role of digital twins in bridging the gap between the
physical and digital healthcare environments. By simulating patient-specific conditions and
integrating real-time loT-based health monitoring, the proposed DTH model demonstrates its
capability to enhance remote patient management, early disease detection, and precision
medicine. These findings strongly validate the feasibility and effectiveness of digital twins in

modern healthcare applications.

Objective 2: Design of a Framework for Data Transmission between Physical and Digital

Systems

A critical challenge in DTH implementation is ensuring a seamless and secure data flow
between physical entities (patients, medical devices) and their digital counterparts. This
research introduced a novel framework that integrates blockchain technology with elliptic
curve cryptography (ECC) to safeguard healthcare data from cyber threats. The proposed
framework addresses key concerns related to data integrity, patient privacy, and real-time
accessibility. The integration of a blockchain-based encryption mechanism ensures that patient
data transmitted between physical sensors and digital twins remain tamper-proof and
confidential. The research findings demonstrate that the proposed approach outperforms
conventional security models by significantly reducing vulnerability to cyberattacks and
unauthorized access. Additionally, the Genetic Algorithm-Optimized Random Forest (GAO-
RF) model has been employed to enhance intrusion detection, further strengthening the security

infrastructure of the DTH system.

Moreover, the proposed framework provides an efficient data transmission mechanism that
minimizes latency while maintaining high accuracy in healthcare diagnostics. The use of 10T-
enabled healthcare sensors for real-time data collection and transmission ensures that digital
twin models are continuously updated with the latest patient information. This connectivity is
crucial for implementing proactive healthcare strategies, enabling early intervention in critical

medical conditions.
Objective 3: Evaluation of the Proposed Model Against Existing Deep Learning Architectures

To validate the efficiency and effectiveness of the proposed DTH model, rigorous comparative
analyses were conducted against existing deep learning architectures. The research compared
the performance of the developed models with well-established architectures such as VGG-19,
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DenseNet-121, EfficientNet-B4, and ResNet-101. The results indicated that the proposed
models consistently outperformed conventional deep learning networks in terms of

classification accuracy, precision, recall, and computational efficiency.

The CervixNet model for cervical cancer detection achieved an outstanding classification
accuracy of 98.91%, outperforming traditional approaches that rely on manual cytological
examination. Similarly, the MxSLDNet framework for monkeypox lesion detection
demonstrated superior predictive performance while requiring significantly less storage space
than other deep learning models. The success of these models underscores the potential of

digital twin technology in enhancing the accuracy and efficiency of disease detection.

Additionally, the research introduced an anomaly detection framework using digital twin
technology for cybersecurity in loT-enabled healthcare networks. The integration of
blockchain, ECC, and deep learning significantly enhanced intrusion detection rates, making
the DTH model more robust and resilient against cyber threats.

2.9 Future Directions
1. Scalability and Real-World Deployment

e The proposed model needs to be tested on larger, multi-center datasets to ensure its
effectiveness in diverse healthcare settings.
e Future research should explore cloud-based Digital Twin platforms for large-scale

implementation.
2. Integration with Edge Al and Federated Learning

e Implementing Edge Al will enable real-time, low-latency diagnosis without relying
on centralized servers.
e Federated Learning can enhance privacy preservation, allowing collaborative model

training without compromising sensitive patient data.
3. Optimization for 6G and Smart Healthcare Systems

e The adoption of 6G wireless networks could further enhance data transmission

speeds and expand connectivity for loT-enabled Digital Twin systems.
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e Future studies should explore intelligent healthcare systems integrating Al, Digital

Twins, and Extended Reality (XR) for immersive patient monitoring.

This research has successfully developed, implemented, and validated a Digital Twin
Healthcare model that integrates deep learning, blockchain security, and real-time data
transmission frameworks. The proposed models have demonstrated superior accuracy and
efficiency in disease detection, outperforming traditional architectures. By ensuring secure and
seamless data flow between physical and digital systems, the research has set a strong
foundation for the future of intelligent, predictive, and secure healthcare solutions.

Digital Twin Healthcare stands as a promising frontier in medical science, revolutionizing
patient care by offering precise diagnostics, real-time monitoring, and proactive treatment
strategies. As technology advances, the further refinement of DTH models will play a pivotal
role in shaping the future of healthcare, making it more accessible, personalized, and resilient.
The insights gained from this research pave the way for continued innovation, driving the

evolution of healthcare into a more intelligent, interconnected, and patient-centric ecosystem.
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