
DESIGN AND DEVELOPMENT OF HEALTHCARE 

FRAMEWORK USING DIGITAL TWIN 

Thesis submitted to Delhi Technological University in partial fulfillment 

of the requirements for the award of the degree of 

DOCTOR OF PHILOSOPHY  

In  

INFORMATION TECHNOLOGY 

By 

VIKAS SHARMA 

(2K21/PHDIT/501) 

Under the Joint Supervision of 

Supervisor:                   Co- Supervisor: 

Prof. Kapil Sharma             Dr. Akshi Kumar 

Professor,              Senior Lecturer         

Department of Information Technology,                               Department of Computing, 

Delhi Technological University,             Goldsmiths, University of London, 

Delhi, India -110042           United Kingdom 

    

DEPARTMENT OF INFORMATION TECHNOLOGY  

DELHI TECHNOLOGICAL UNIVERSITY  

(Formerly Delhi College of Engineering)  

DELHI-110042, INDIA  

MARCH 2025 









v 

 

 

 

 

 

 

 

 

 

Dedicated 

To 

My Family…… 

 
  



vi 

 

Abstract 

The integration of Digital Twin (DT) technology in healthcare has paved the way for 

significant advancements in patient care, security, and disease detection. This 

compilation of four research studies presents a holistic view of the evolving role of DT 

in healthcare, emphasizing its applications in security, artificial intelligence-driven 

diagnostics, and personalized treatment frameworks. The studies collectively highlight 

the importance of secure and efficient healthcare ecosystems leveraging machine 

learning, blockchain, and deep learning architectures. The first study explores the role 

of DT in healthcare security through a Metaverse-DT-based framework, addressing 

privacy concerns and data protection challenges. The study outlines how Internet of 

Things (IoT) sensors enable real-time data collection for personalized digital models, 

enhancing patient monitoring and decision-making. Blockchain integration within DT 

provides an additional layer of security, ensuring reliable simulation environments for 

healthcare applications. The second study presents an automated DT framework for 

cervical cancer detection using the CervixNet classifier model. The proposed model, 

employing machine learning and deep learning techniques, demonstrates exceptional 

performance in diagnosing cervical abnormalities. Utilizing the SIPaKMeD dataset, the 

model achieves a classification accuracy of 98.91% with support vector machines 

(SVM), underscoring the potential of DT in enhancing diagnostic precision and 

supporting clinical decision-making. The third study investigates the security of IoT 

networks in healthcare through a DT framework integrating Elliptic Curve 

Cryptography (ECC) and blockchain. By employing a Genetic Algorithm-Optimized 

Random Forest (GAO-RF) model for intrusion detection, the system enhances the 

safety of healthcare data while maintaining scalability and efficiency. The proposed 

model achieves high accuracy rates (98.4% detection accuracy, 97.3% F1-score), 

demonstrating its robustness in mitigating cybersecurity threats in healthcare IoT 

environments. The fourth study introduces the Monkeypox Skin Lesion Detector 

Network (MxSLDNet) within a DT framework for automated early detection of 

monkeypox. The model, tested on the "Monkeypox Skin Lesion Dataset," surpasses 

traditional pre-trained deep-learning architectures such as VGG-19, ResNet-101, and 

DenseNet-121 in terms of precision, recall, and accuracy. MxSLDNet achieves an 
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accuracy of 95.67%, addressing the critical need for a lightweight, storage-efficient, 

and scalable solution for infectious disease detection in resource-limited healthcare 

settings. By synthesizing insights from these studies, this research underscores the 

transformative potential of DT in various healthcare domains. The integration of AI-

driven models, blockchain security mechanisms, and digital simulation frameworks 

fosters a secure, intelligent, and scalable healthcare ecosystem. Future advancements in 

DT will likely focus on expanding real-time clinical decision support systems, 

enhancing interoperability with electronic health records (EHRs), and integrating 

federated learning for secure, large-scale data processing. The findings provide a strong 

foundation for the continued exploration of DT in revolutionizing digital healthcare. 
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CHAPTER – 1 

INTRODUCTION 

This chapter introduces the concept of Digital Twin (DT) technology in healthcare, focusing 

on its applications, challenges, and potential advancements. The objectives of the research 

work are highlighted. Chapter-wise thesis coverage is summarized at the end of the chapter. 

Digital Twin (DT) technology has revolutionized various industries by creating virtual replicas 

of physical systems, enabling real-time monitoring, simulation, and optimization. Originally 

developed by NASA for spacecraft diagnostics, DT has evolved with advancements in AI, IoT, 

cloud computing, and big data analytics, significantly impacting healthcare. Traditional 

healthcare models rely on reactive, symptom-based interventions, often leading to delays and 

inefficiencies. DT technology shifts this paradigm by enabling predictive analytics, 

personalized treatment, and real-time decision-making. By continuously integrating patient 

data, DTs facilitate early disease detection, optimize medical workflows, and enhance hospital 

resource allocation. In complex medical fields like oncology, cardiology, and neurology, DTs 

help simulate treatment outcomes, improving precision and risk assessment. Additionally, DT-

driven hospital management enhances operational efficiency by predicting equipment failures, 

managing patient flow, and optimizing staff deployment. The integration of AI, IoT, 

blockchain, and extended reality (XR) further strengthens DT applications. AI-powered models 

enable automated anomaly detection and predictive diagnostics, while IoT-connected devices 

provide continuous real-time health monitoring. Cloud computing enhances data storage and 

processing, whereas blockchain ensures secure medical records. XR technologies such as AR 

and VR improve medical training, surgical planning, and telemedicine. However, the 

increasing digitization of healthcare introduces cybersecurity challenges, including data 

breaches, ransomware attacks, and unauthorized access. Implementing encryption techniques, 

blockchain security, and regulatory compliance frameworks such as HIPAA and GDPR is 

essential for data protection. Beyond diagnostics and treatment, DT technology plays a crucial 

role in infectious disease detection and epidemic management by automating disease detection, 

improving diagnostic accuracy, and enabling remote monitoring. During the COVID-19 

pandemic, AI-powered DT models helped predict disease progression, optimize hospital 

resources, and improve patient outcomes. The convergence of DT technology with the 

metaverse offers additional possibilities for digital healthcare, including immersive 

telemedicine applications, real-time disease modeling, and interactive medical training. 
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Hospitals can leverage DT-metaverse frameworks for resource optimization, predictive 

maintenance, and enhanced patient management. However, security concerns necessitate 

blockchain-based secure transactions, zero-trust security models, and AI-driven intrusion 

detection. Strengthening IoT security through advanced encryption, secure device 

authentication, and periodic security audits is crucial, as the increasing use of smart medical 

devices like pacemakers and infusion pumps exposes healthcare networks to cyber threats. AI-

driven intrusion detection mechanisms further enhance DT-powered healthcare security by 

identifying and mitigating threats in real-time. Despite its transformative potential, DT 

technology faces challenges such as scalability, interoperability, computational complexity, and 

data security. Addressing these requires standardized data models, blockchain-based data 

integrity frameworks, and AI-driven security protocols. Establishing a unified and secure DT 

framework will enhance predictive diagnostics, automated healthcare interventions, and 

personalized treatment strategies, ultimately improving healthcare efficiency and accessibility. 

The rapid adoption of DT technology is bridging the gap between traditional healthcare models 

and next-generation intelligent systems, positioning DT as a transformative force in modern 

healthcare. By integrating AI, blockchain, and IoT, DT enables real-time disease monitoring, 

predictive diagnostics, and personalized treatment, driving the future of intelligent, data-driven 

healthcare systems. Continued interdisciplinary collaboration and technological advancements 

will be key to unlocking its full potential and shaping the future of digital healthcare with 

enhanced efficiency, security, and precision. 

1.1 Scope of the Thesis: Digital Twin in Healthcare 

This thesis investigates the role of Digital Twin (DT) technology in healthcare, focusing on its 

ability to enhance predictive analytics, personalized treatment, and real-time decision-making. 

While DT applications in industrial settings are well-established, their integration into 

complex, data-sensitive environments like healthcare remains an evolving field that requires 

further exploration. This study aims to bridge this gap by examining how DT frameworks can 

be designed, secured, and optimized to meet the demands of modern healthcare infrastructure. 

The primary scope of this research includes the development of a comprehensive DT 

framework incorporating key emerging technologies such as AI-driven predictive modeling, 

IoT-enabled data collection, blockchain-based security solutions, and edge computing for real-

time healthcare applications. This study focuses on how AI and machine learning (ML) can 

improve diagnostic accuracy, predict disease progression, and enhance clinical decision-

making. Furthermore, it investigates the role of blockchain technology in securing patient data, 
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ensuring interoperability, and establishing decentralized, tamper-proof medical records for 

improved data integrity and privacy. The feasibility of integrating DTs into existing hospital 

management systems, clinical workflows, and telemedicine platforms will also be explored. A 

significant aspect of this research is the evaluation of interoperability challenges in DT-based 

healthcare systems. Current medical infrastructures rely on fragmented data ecosystems, where 

electronic health records (EHRs), IoT medical devices, and AI-driven analytics operate in silos. 

This study examines methods to standardize data integration across diverse healthcare 

platforms, enabling seamless communication and collaboration between digital twins and 

traditional healthcare systems. Additionally, regulatory and ethical considerations surrounding 

the adoption of DTs will be analyzed, particularly in compliance with global healthcare data 

protection laws such as HIPAA, GDPR, and country-specific medical data governance policies. 

Beyond conventional medical applications, this thesis explores how DTs can be integrated with 

emerging digital environments such as the Metaverse. The potential of virtual healthcare 

ecosystems, immersive medical training, and AI-driven simulations for disease modeling and 

treatment planning will be assessed. This study will investigate how extended reality (XR) 

technologies—augmented reality (AR) and virtual reality (VR)—can improve surgical 

precision, physician training, and remote patient interactions. The feasibility of using digital 

twins as interactive healthcare avatars for real-time patient engagement will also be discussed. 

Another critical area within the scope of this thesis is cybersecurity and risk mitigation in DT-

powered healthcare systems. With the increasing reliance on IoT-enabled medical devices, 

cloud storage, and AI-driven automation, the risk of data breaches, cyberattacks, and system 

vulnerabilities is heightened. This research will propose advanced security models, including 

AI-powered intrusion detection systems, multi-factor authentication mechanisms, and 

blockchain-based access control frameworks to safeguard patient data and healthcare 

operations. The study will also analyze how genetic algorithms and federated learning can 

optimize threat detection and enhance system resilience against cyber threats. The economic 

and technical feasibility of large-scale DT implementation will also be a focus, with an analysis 

of infrastructure requirements, cost-benefit considerations, and potential barriers to adoption 

in different healthcare settings. The research will incorporate case studies from various medical 

disciplines, including cardiology, oncology, and intensive care, demonstrating how DTs can be 

leveraged for remote patient monitoring, early disease detection, and optimized treatment 

strategies. This thesis does not aim to develop a fully functional DT prototype but will instead 

propose a conceptual and technical framework based on empirical research, computational 
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modeling, and case study analysis. While the study explores DT applications in predictive 

diagnostics, personalized medicine, and hospital management, it does not delve into detailed 

hardware specifications or the financial modeling of DT adoption across different healthcare 

economies. Instead, the research prioritizes technical feasibility, system security, and 

integration challenges as key areas of exploration. By addressing these critical factors, this 

thesis contributes to the advancement of next-generation digital healthcare solutions, providing 

a structured, scalable, and secure DT framework. The findings aim to serve as a foundation for 

future research, policy development, and real-world DT implementations in healthcare, 

ultimately supporting data-driven decision-making, improved patient outcomes, and more 

efficient medical systems. 

1.2 Research Gaps and Motivation for Research Work 

Despite the transformative potential of Digital Twin (DT) technology in healthcare, several 

challenges hinder its widespread adoption and efficiency. The key research gaps include: 

1. Healthcare DTs require vast computational resources, while traditional infrastructures 

struggle with high-dimensional models and bandwidth limitations. The early adoption 

of edge computing and cloud-based DT solutions further impacts scalability. 

2. DT models rely on heterogeneous data sources, leading to inconsistencies in prediction 

accuracy. AI-driven DT models often exhibit biases due to limited training datasets, and 

the lack of standardization in data collection affects disease detection and treatment 

recommendations. 

3. DT systems store sensitive patient data, making them vulnerable to cyber threats. 

Existing encryption and access control measures are inadequate, while unclear 

regulatory frameworks complicate secure deployment in healthcare settings. 

4. Diverse healthcare providers use different EHR formats and imaging protocols, causing 

integration challenges. Standardized data models like FHIR and HL7 have been 

introduced but are inconsistently adopted, limiting seamless cross-platform 

communication. 

5. Many healthcare institutions rely on outdated IT systems that are incompatible with 

real-time DT applications. High-frequency data exchange limitations and vendor-

specific cloud-based DT solutions create inefficiencies in data transfer. 

To address these challenges, a unified DT framework incorporating AI-driven predictive 

modeling, blockchain security, real-time IoT integration, and edge computing must be 
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developed to enhance healthcare efficiency, secure data transmission, and improve patient 

outcomes. The increasing adoption of DT technology is driven by the urgent need for predictive 

and secure medical systems, enabling real-time data integration, outbreak detection, and 

decentralized healthcare. This study aims to advance DT as a cornerstone of modern, efficient, 

and data-driven healthcare systems. 

1.3 Problem Statement 

The integration of Digital Twin (DT) technology in healthcare can revolutionize patient 

monitoring, predictive diagnostics, and treatment planning. However, its widespread adoption 

is hindered by challenges related to scalability, data accuracy, security vulnerabilities, 

interoperability, and integration with existing healthcare infrastructure. Current healthcare DT 

models require high computational resources, face inconsistencies in data reliability, and lack 

standardized frameworks for secure and seamless data exchange. Furthermore, the absence of 

unified protocols limits cross-platform communication, reducing the effectiveness of real-time 

healthcare applications. To overcome these limitations, a comprehensive DT framework must 

be developed, incorporating AI-driven predictive modeling, blockchain-based security, real-

time IoT integration, and edge computing. This study aims to address these gaps by designing 

a scalable, secure, and interoperable DT system that enhances healthcare efficiency, ensures 

data integrity, and improves patient outcomes. 

1.3.1 Research Objectives 

OBJECTIVE 1: To develop a Digital Twin Healthcare (DTH) model.  

OBJECTIVE 2: To design a framework for data transmission between the physical system 

and the digital twin system.  

OBJECTIVE 3: To evaluate the performance of the existing and proposed digital twin model. 

1.4  Contributions in the Thesis 

In this thesis, we focus on the development of a Digital Twin Healthcare (DTH) framework 

that integrates AI, IoT, and blockchain for real-time patient monitoring, predictive disease 

diagnosis, and secure medical data transmission. This research addresses key limitations of 

traditional healthcare systems, including inaccurate diagnostics, lack of real-time monitoring, 

and cybersecurity threats. The contributions of this thesis are structured according to the three 

research objectives as discussed below. 
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(I) OBJECTIVE 1: To develop a Digital Twin Healthcare (DTH) model 

We proposed a novel AI-powered Digital Twin Healthcare (DTH) model that enables real-time 

patient monitoring and AI-driven diagnostics. The model integrates IoT sensors, deep learning-

based medical imaging analysis, and cloud-based Digital Twin simulations to enhance disease 

detection accuracy and personalized healthcare recommendations. To demonstrate the 

effectiveness of the proposed model, two AI-driven Digital Twin applications were developed: 

• CervixNet for Cervical Cancer Detection: A CNN-based deep learning model designed 

for early cervical cancer diagnosis using histopathological images. The model achieved 

98.91% accuracy, outperforming traditional CNN architectures. 

• MxSLDNet for Monkeypox Lesion Detection: A lightweight AI model optimized for 

monkeypox detection, reducing computational costs while maintaining high diagnostic 

accuracy compared to DenseNet-121 and ResNet-101. 

The proposed DTH framework significantly improves healthcare decision-making by enabling 

continuous patient monitoring, AI-powered disease progression analysis, and real-time 

treatment adjustments. 

(II) OBJECTIVE 2: To design a framework for data transmission between the physical system 

and the digital twin system 

To ensure secure, real-time data exchange in Digital Twin Healthcare, we developed a 

Blockchain-ECC Hybrid Security Model, providing high-level data integrity and 

confidentiality. The key components of this framework include: 

• Blockchain-Based Medical Data Storage: Patient health records are stored on a 

decentralized blockchain network, ensuring tamper-proof and immutable data storage. 

• Elliptic Curve Cryptography (ECC) for IoT Security: ECC provides lightweight 

encryption for medical IoT devices, reducing the risk of data breaches while 

maintaining high-speed processing. 

• Intrusion Detection System (IDS) using GAO-RF Algorithm: A Genetic Algorithm 

Optimized Random Forest (GAO-RF) model is proposed for detecting cyber threats in 

IoT healthcare networks. 



7 

 

By integrating blockchain security and AI-driven anomaly detection, the proposed secure 

Digital Twin framework prevents unauthorized access, data tampering, and cyberattacks, 

making real-time patient monitoring and healthcare data transmission more reliable. 

(III) OBJECTIVE 3: To evaluate the performance of the existing and proposed digital twin 

model 

The proposed AI-driven Digital Twin model was rigorously evaluated against state-of-the-art 

deep learning architectures to assess its diagnostic accuracy, computational efficiency, and 

security performance. The findings include: 

• Higher Diagnostic Accuracy: The CervixNet model achieved 98.91% accuracy, 

outperforming traditional CNN-based models in cervical cancer detection. 

• Computational Efficiency: The MxSLDNet model demonstrated higher accuracy with 

lower computational costs, reducing storage and processing requirements compared to 

DenseNet-121 and ResNet-101. 

• Enhanced Security Performance: The Blockchain-ECC security framework 

significantly improved data privacy and cyber resilience, outperforming conventional 

cloud-based healthcare systems in security assessments. 

These results confirm that the proposed Digital Twin Healthcare model is more scalable, 

accurate, and secure than existing AI-driven healthcare frameworks, making it suitable for real-

time clinical applications. 

1.5 Outline of the Thesis 

This thesis is divided into seven chapters. 

1 Chapter 1: Introduction 

This chapter provides an overview of Digital Twin (DT) applications in healthcare, the 

significance of AI and IoT integration, and the motivation behind the study. It also 

outlines the research objectives, problem statement, and scope of the thesis. 

2 Chapter 2: Literature Survey  

A comprehensive review of existing research on Digital Twin technology, AI-driven 

healthcare systems, IoT-based monitoring, and security challenges. This chapter 

identifies the research gaps and justifies the need for the proposed study. 

3 Chapter 3: Digital Twin and Metaverse for Secure Healthcare Transformation  
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This chapter explores the integration of Digital Twin and the Metaverse in healthcare, 

focusing on virtual healthcare ecosystems, patient engagement, and security frameworks 

to ensure secure and efficient digital transformation. 

4 Chapter 4: Digital Twin-Enabled Smart Healthcare Systems  

It discusses the implementation of AI-powered Digital Twins for real-time patient 

monitoring, predictive analytics, and personalized healthcare, highlighting the challenges 

and benefits of smart healthcare applications. 

5 Chapter 5: Securing Healthcare IoT with Digital Twin and AI-Driven Intrusion 

Detection  

This chapter focuses on cybersecurity threats in healthcare IoT systems, the role of 

blockchain and cryptographic techniques, and the implementation of AI-based intrusion 

detection models to secure patient data. 

6 Chapter 6: Digital Twin-Enabled AI for Monkeypox Detection  

This chapter details the development of MxSLDNet, a deep learning model for 

Monkeypox detection, including dataset preprocessing, model training, performance 

evaluation, and comparative analysis with pre-trained architectures. 

7 Chapter 7: Conclusion  

The final chapter summarizes the key findings of the research, highlighting its 

contributions to AI-driven healthcare systems. It also discusses limitations, potential 

improvements, and future research directions in Digital Twin-based medical applications. 
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CHAPTER - 2 

LITERATURE SURVEY 

This chapter explores the evolution, core components, and applications of Digital Twin (DT) 

technology in healthcare. It provides a comparative analysis of existing DT frameworks, 

highlighting their integration with AI, IoT, and blockchain while addressing challenges in 

security, interoperability, and real-time processing. The chapter concludes by identifying key 

research gaps and future directions for optimizing DT adoption in healthcare. 

2.1 Introduction 

Digital Twin (DT) is a virtual model of a physical object or system that enables the simulation 

of its behavior, performance, and characteristics. This technology has the potential to bring 

significant advancements across multiple industries, including manufacturing, logistics, 

healthcare, and urban development. Initially developed for the manufacturing sector, digital 

twins were primarily used to enhance the design and functionality of complex systems like 

aircraft engines and industrial equipment. However, their applications have expanded to 

include infrastructure, buildings, and even entire cities. A major advantage of digital twins is 

their ability to provide real-time data and insights into the operation and efficiency of a physical 

system. Continuously monitoring performance enables the early detection of issues and 

inefficiencies, allowing for proactive maintenance and optimization. In healthcare, digital 

twins play a crucial role in simulating and refining patient care pathways, reducing medical 

errors, and enhancing treatment outcomes. They also contribute to the design and management 

of healthcare facilities like hospitals and clinics. In urban planning, digital twins allow for the 

modeling and optimization of entire cities, including transportation networks, energy grids, and 

public services, leading to greater efficiency, sustainability, and improved quality of life. As a 

whole, digital twin technology has the potential to revolutionize various fields by offering real-

time insights that enhance the functionality and performance of physical objects and systems. 

With continuous technological advancements, digital twins are expected to become even more 

widespread across different sectors.  

2.1.1 Evolution of Digital Twin Technology 

A chronological representation of the evolution of digital twin technology is illustrated in 

Figure 2.1. In 2002, Professor Michael Grieve introduced the idea of a “virtual digital 

expression equivalent to physical products” during the “product life cycle management” course 
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at the University of Michigan. He defined it as “one or a group of digital copies of a specific 

device that can abstract the real device and can be tested under real or simulated conditions [1].  

 

Figure 2-1: Evolution of Digital Twin Technology 

From 2003 to 2005, this concept was termed the “mirrored spaced model,” and between 2006 

and 2010, it was referred to as the “information mirroring model.” Although it is not a “digital 

twin,” it shares fundamental components such as virtual space, physical space, and the interface 

connecting them. In 2011, Professor Michael Grieve mentioned in his book “Virtual Perfect 

Model of Intelligent Manufacturing, Driving Innovation and Lean Products” that the digital 

twin consists of three key elements: physical products in the physical world, virtual models in 

the virtual space, and a data interface linking the physical world and virtual space [2]. In 2012, 

the National Aeronautics and Space Administration introduced the road map for “modeling, 

simulation, information technology and processing,” bringing the concept of digital twin to 

public attention. In 2013, the U.S. Air Force’s science and technology planning document, 

Global Horizon, recognized digital twins as a “game-changing” technology. By 2014, Boeing, 

GE, and other companies initiated a series of application research projects on digital twin, 

establishing a theoretical and technological framework for it. They later transitioned this 

military technology to civilian applications, implementing a “digital twin supply system” in 

asset management and the development of the industrial Internet. At the 2016 Siemens Industry 

Forum, Siemens expanded the digital twin concept to include the digital twin of products, the 

digital twin of the production process, and the digital twin of equipment, enabling a 

comprehensive and precise reproduction of an entire enterprise. In [3], The authors described 
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the composition of digital twin from the perspective of the product, which primarily included 

product design data, product process data, product manufacturing data, product service data, 

and product retirement and scrap data. Meanwhile, some researchers proposed the composition 

of digital twin from the perspective of production, incorporating product design, process 

planning, production layout, process simulation, and output optimization [4], making it more 

comprehensive and better aligned with the needs of an intelligent factory. Additionally, the 

composition of digital twin was examined from the perspective of workshop structure, 

encompassing the physical workshop, virtual workshop, workshop service system, and 

workshop twin data. The physical workshop represents the actual workshop, which receives 

production tasks from the workshop service system and executes them based on the execution 

strategy optimized through virtual workshop simulation. The virtual workshop serves as the 

equivalent mapping of a logistics workshop, primarily handling simulation analysis and 

optimization of production activities, real-time monitoring, as well as prediction and 

adjustment of production activities within the physical workshop. The workshop service 

system refers to the collective software systems within the workshop, playing a key role in 

operating the digital twin, driving the physical workshop, and receiving production feedback 

from it [5], [6]. Since 2017, digital twin has developed from a new management paradigm for 

industrial production processes to a key technology of the industrial Internet. 

2.1.2 Core Components of DTs 

Elementary components  

The elementary components are those without which a DT cannot exist:  

• Physical Asset (could be either a product or a product lifecycle)  

• Digital Asset (the virtual component)  

• Information flow between the physical and digital asset (this could be 1-way or 2-

way/bijective)  

Imperative components 

The imperative components add to the properties of DT, to make it an all-encompassing tool 

for simulation, real-time monitoring, and analytics. Without these, the uniqueness of DT ceases 

to exist. The existence of each of these components depends majorly on the domain and 

application of DT.  
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1 IoT devices: to collect sensors’ information from different sub-components of the 

physical asset and edge devices. Requires: High-fidelity connection between IoT devices, 

for accurate and timely flow of information.  

2 Data: gathered from different IoT components and software; it is required to monitor the 

system, guarantee correct behavior, and provide input to the machine learning system. 

Requires: Big data analysis and storage tools for extracting useful information from data.  

3 Machine learning:  for predictions and feedback, as well as to identify effective 

mitigation strategies, in exceptional circumstances. Requires: A joint optimization 

feature for the subcomponents of the DT.  

4 Security of data and information: Security protocols for information sharing and 

authentication, and authorization mechanisms.  

5 DT Performance evaluation: Evaluation metrics (e.g. accuracy, resilience, robustness, 

costs), and evaluation methods and tests. 

 

2.1.3 How Digital Twin Differs from Other Technologies 

The diverse applications of DT such as simulation, real-time monitoring, testing, analytics, 

prototyping, and end-to-end visibility, can be broadly classified as sub-systems of DT (for 

example, a DT can be used for testing during prototyping, for real-time monitoring and 

evaluation, or for both). It is the presence of all the components discussed that makes a DT 

different from these, as described in Table 2.1. 

Table 2.1: How DT differs from existing technologies 

Technology How the technology differ from DT 

Simulation No real-time twinning 

Machine Learning No twinning 

Digital Prototype No IoT components necessarily 

Optimization No simulation and real-time tests 

Autonomous Systems No self-learning (learning from its past outcomes) necessarily 

Agent-based modeling No real-time twinning 

 

The concept of digitizing and twinning is not new. Many similar concepts have preceded DT, 

however, for the reasons briefly described below, they differ. 

• Digital Shadow, Digital Model: A Digital Model has only a manual exchange of data 

and it does not showcase the real-time state of the model. Digital Shadow is a saved 

data copy of the physical state, with one-way data flow from the physical object to the 
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digital object [7]. DT, on the other hand, has fully integrated data flow, so that it 

properly and consistently reflects the actual state of the physical object. 

• Semantic Virtual Factory Data Models: (VFDM) are virtual representations of 

factory entities [8]. These were used in manufacturing and industrial spaces [9]. DT 

differs from VFDMs due to the real-time synchronization property. VF is a data model 

only, whereas DT is real-time and synchronized. 

• Product Avatar: is a distributed and decentralized approach for product information 

management with no feedback concept; it may capture information of only parts of the 

product [10]. 

• Digital Product Memory: DT is an extension of semantic/digital product memory, 

where a digital product memory [11] senses and captures information related only to a 

specific physical part, and thus it can be viewed as a DT instantiation. 

• Intelligent Product: A DT can be seen as an extension of an Intelligent Product that 

uses new technologies such as IoT, big data, and machine learning [12]. 

• Holons As an initial computer-integrated manufacturing tool, holons formed the basis 

for all the technologies described above [13]. 

• Product Lifecycle Management (PLM): [14] Discuss the difference between PLM 

and DT, where PLM is focused more on ‘managing’ the components, products, and 

systems of a company across its lifecycles, whereas a DT can be a set of models for 

real-time data monitoring and processing.  

 

2.2 Digital Twin in Healthcare: An Overview 

To gain a comprehensive understanding of the applications of Digital Twin technology in 

healthcare, existing research studies have been categorized based on their focus areas. Table 

2.2 presents a classification of these studies, highlighting various domains such as virtual 

reality for training, cognitive assessment, health monitoring, mental health support, and remote 

healthcare delivery. This categorization helps in identifying key contributions and trends in the 

field. 

Table 2.2: Classification of Research Studies on Digital Twin in Healthcare 

Referenced Papers Category Description 

[15], [16], [17], [18], 

[19] 

VR for Training and Education  VR-based simulations for education and skills 

enhancement  
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[20], [21], [22], [23], 

[24] 

Cognitive Assessment and 

Rehabilitation  

Digital platforms for cognitive function 

assessment and improvement  

[25], [26], [27], [28], 

[29], [30], [31] 

Health and Well-being Monitoring  Continuous health monitoring using sensors 

and digital twins  

[32] Empathy and Understanding  Through Immersion Immersive experiences 

foster empathy and support  

[33], [34], [35], [36] Mental Health and Psychological  Support Digital interventions for mental 

health and stress relief  

[37], [38], [39] Remote Healthcare Delivery and 

Telemedicine  

Digital twins and technologies for remote 

health assessments and care  

[40] Interactive and Assistive 

Technologies for Disabilities  

Enhancing accessibility and support for 

individuals with disabilities  

[41], [42], [43], [44] Innovative Interfaces for Health 

Interaction  

New interfaces for health applications, 

including rehabilitation and education  

 

Virtual Reality (VR) for Training and Education: This category involves the use of VR to 

replicate real-world scenarios for educational purposes and skills training in healthcare. VR 

offers an immersive environment where users can engage with virtual patients or simulated 

situations, enhancing learning and skill development without real-world risks. A digital twin 

in this context would replicate user interactions within a virtual setting, providing personalized 

feedback and adjusting scenarios based on performance. Some digital twins in this category 

can track skill development, highlight areas for improvement, and customize training 

experiences. These technologies contribute to better intervention outcomes, improved patient 

care, and reduced medical errors by providing a realistic yet risk-free training platform, 

ultimately enhancing the expertise of healthcare professionals. 

Cognitive Assessment and Rehabilitation: Digital twins in this category focus on evaluating 

and rehabilitating cognitive functions. Often incorporating immersive technologies such as VR 

and AR, these systems provide engaging experiences to assess and enhance cognitive abilities. 

A digital twin for cognitive assessment and rehabilitation would digitally represent an 

individual's cognitive performance, identify deficits, and track progress over time. It could 

tailor rehabilitation exercises based on the user’s performance, offering a customized recovery 

plan. Personalized cognitive rehabilitation can improve cognitive function, aiding individuals 

in managing impairments more effectively. Enhanced cognitive capabilities contribute to better 

daily functioning and independence. 
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Health Monitoring and Management: This category involves continuous tracking and 

monitoring of health parameters and behaviors through sensor-based data collection, which is 

then analyzed by a digital twin to provide insights into an individual's health. These systems 

integrate data from wearable sensors and environmental inputs to create a comprehensive 

health profile. By identifying patterns and predicting potential health outcomes, digital twins 

can offer recommendations for maintaining or improving health. Continuous monitoring 

enables early detection of potential health issues, facilitating timely interventions and reducing 

the risk of complications. This proactive approach enhances overall healthcare management by 

preventing emergencies and optimizing long-term health outcomes. 

Enhancing Empathy and Understanding through Immersion: This category focuses on 

using immersive technologies to create experiences that promote empathy and a deeper 

understanding of specific conditions or challenges faced by individuals. A digital twin in this 

context would replicate a person’s perspective, allowing others to experience their challenges 

through an interactive simulation. By adapting scenarios based on user interactions, these 

digital twins can enhance awareness and foster empathy. Such experiences can lead to 

increased societal support and improved interpersonal understanding. For individuals 

experiencing these simulations, greater awareness can lead to better social support and 

improved psychological resilience. 

Psychological Support and Mental Health Interventions: Digital twins in this category 

focus on providing medical interventions, stress relief, and coping strategies for mental health 

concerns. Some systems may integrate VR to create immersive medical environments. A 

digital twin for mental health applications would offer personalized interventions based on an 

individual’s emotional state and mental health history. These digital twins can track progress 

and adjust therapies based on evolving needs. Personalized mental health support enhances 

accessibility and effectiveness, leading to better management of mental health conditions, 

symptom reduction, and an improved quality of life. 

Remote Healthcare Delivery and Telemedicine: Digital twins in this category facilitate 

remote healthcare services, including assessments, consultations, and interventions, ensuring 

broader access to healthcare regardless of geographical barriers. These systems enable remote 

monitoring and integrate health data from various sources to provide healthcare professionals 

with a comprehensive view of a patient’s condition. Additionally, they support decision-

making by predicting health outcomes based on data trends. Remote healthcare delivery 
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improves accessibility, particularly for underserved populations, reduces travel-related costs 

and time, enhances chronic disease management, and allows for timely interventions, leading 

to better overall healthcare outcomes. 

Assistive Technologies for Individuals with Disabilities: This category focuses on 

leveraging digital twins alongside assistive technologies to enhance accessibility and support 

for individuals with disabilities. These systems offer personalized support tailored to an 

individual's specific needs and capabilities by integrating assistive devices and adaptive 

technologies. By addressing unique challenges, digital twins significantly improve 

independence and daily functionality, empowering individuals to participate more actively in 

society. Improved accessibility and personalized support contribute to enhanced healthcare 

outcomes. 

Innovative Interfaces for Healthcare Applications: This category explores novel interfaces 

such as Brain-Computer Interfaces (BCI), Augmented Reality (AR), and Virtual Reality (VR) 

to facilitate healthcare applications, including rehabilitation, patient education, and interaction 

with healthcare systems. Digital twins using these advanced interfaces create intuitive and 

accessible ways for individuals to engage with healthcare information and services. These 

systems can adapt to user preferences and abilities, offering personalized experiences that 

improve engagement and effectiveness. The integration of innovative interfaces enhances the 

accessibility of healthcare services, increases adherence to treatment plans, and fosters better 

patient education, ultimately leading to improved health outcomes. 

2.3 Comparative Analysis of Existing DT Frameworks in Healthcare 

The development of Digital Twin (DT) frameworks in healthcare has gained momentum, with 

researchers exploring various approaches to enhance patient monitoring, diagnosis, surgery 

simulations, and personalized treatment. However, despite significant advancements, several 

limitations persist, particularly in security, data synchronization, and interoperability. To 

systematically analyze existing research, the table below compares different DT frameworks 

based on their applications, security measures, and limitations. 
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Table 2.3: Comparative Table of Existing DT Frameworks in Healthcare 

Ref.  Application Technology Used Security Features Limitations 

Liu et al. 

[28] 

Cloud-based DT 

framework for 

elderly healthcare 

Cloud Computing, 

IoT, Big Data 

Secure cloud storage, 

real-time patient 

monitoring 

Data privacy concerns, 

potential latency in cloud-

based services 

Chakshu et 

al. [45] 

Carotid stenosis 

detection 

Digital Twin, AI Secure data analysis Data accuracy: potential 

false positives in AI-driven 

diagnostics, limited dataset 

availability for model 

training 

Majdoubi 

et al. [46] 

Smart healthcare 

framework 

Blockchain Privacy-preserving 

mechanisms 

Scalability issues, 

processing overhead due to 

privacy-preserving 

cryptographic operations, 

risk of slow transaction 

speeds in peak demand 

scenarios 

Dietz et al. 

[47] 

Secure DT 

information 

management 

Blockchain-based 

Decentralized 

Application 

(DApp) 

Fine-grained access 

control 

Implementation 

complexity:  integration 

challenges with legacy 

healthcare systems, high 

transaction costs on 

blockchain networks 

Raj et al. 

[48] 

Enhancing DTs 

with blockchain 

Blockchain, IoT, 

AI 

Decentralized 

security 

Integration challenges:  

interoperability issues 

between different 

blockchain protocols, 

potential vulnerabilities in 

smart contracts 

Akash et 

al. [49] 

Healthcare DT 

system design 

Blockchain Structured data 

management 

Data collection challenges: 

requires standardized data 

formats across different 

healthcare institutions, 

high storage demands 

Elyan et al. 

[50] 

DT for intelligent, 

context-aware IoT 

healthcare 

IoT, Machine 

Learning, AI 

Secure patient 

monitoring using 

ECG-based heart 

rhythm analysis 

Requires large-scale real-

time data processing, 

potential biases in AI-

based diagnostics 
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Meijer et 

al. [51] 

Methodological 

challenges in 

healthcare DTs 

Narrative review Real-time Scenario Data standardization and 

integration issues; 

computational complexity 

Amofa et 

al. [52] 

Remote patient 

monitoring 

IoT-enabled DTs Blockchain-based 

encryption 

High computational cost: 

requires significant 

computational resources 

for encryption, scalability 

issues in large healthcare 

networks 

Okegbile 

et al. [53] 

Human Digital 

Twin (HDT) for 

personalized 

healthcare 

AI, Blockchain, 

Cloud-Edge 

Computing 

Secure and real-time 

data synchronization 

between physical and 

virtual entities 

Complexity in modeling 

human physiological 

changes, lack of 

standardization for HDT 

implementation 

Morrone et 

al. [54] 

Women's health 

monitoring 

AI, Digital Twin Real-time data 

tracking 

Uncertainty in AI 

effectiveness; challenges in 

inducing behavioral change 

among patients 

Pellegrino 

et al. [55] 

Conceptual 

framework for DT 

in healthcare 

Systematic meta-

review 

Real-time Scenario Integration challenges 

across diverse healthcare 

systems; need for 

standardization 

Vijay et al. 

[56] 

Secure blockchain 

transactions 

Federated 

Learning, LSTM 

Secure data 

transactions 

Model complexity: 

requires substantial 

computational power for 

LSTM autoencoders, and 

training time increases with 

large datasets 

Mishra et 

al. [57] 

DT-based diabetes 

prediction using 

federated learning 

IoT, Medical Fog 

Computing, AI, 

Federated Learning 

(FL) 

Privacy-preserving 

AI model, secure 

decentralized data 

handling 

High dependency on IoT 

infrastructure, requires 

large-scale dataset for 

training 

Bera et al. 

[58] 

Secure 

communication in 

DT-enabled IoT 

healthcare 

Quantum-resistant 

cryptography 

(RLWE), Scyther 

tool for security 

verification 

Protection against 

quantum attacks, 

secure transmission 

in DT-enabled IoT 

systems 

High computational 

overhead due to lattice-

based cryptographic 

techniques, scalability 

issues 
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Digital Twin (DT) frameworks in healthcare face several key challenges related to security, 

data synchronization, and interoperability. Security strategies often rely on blockchain for data 

integrity and secure transactions; however, scalability remains a significant issue. Emerging 

techniques like Federated Learning and Homomorphic Encryption enhance privacy-preserving 

AI models, but they introduce high computational overhead. Additionally, the Zero-Trust 

Architecture improves security by enforcing strict access controls, yet it adds operational 

complexity in large-scale healthcare systems. In terms of data synchronization and processing, 

many DT frameworks struggle with real-time data processing, particularly in ICU monitoring 

and emergency medical applications. While cloud-based DTs offer scalability, they also 

introduce latency issues and dependency on external cloud providers. On the other hand, Edge 

Computing and IoT-based DTs provide low-latency solutions, but they face constraints related 

to power consumption and computational resources. Interoperability and regulatory challenges 

further hinder widespread adoption, as integration with Electronic Health Records (EHRs) 

remains difficult due to standardization issues across different healthcare systems. 

Furthermore, regulatory compliance with laws such as GDPR and HIPAA is not consistently 

addressed across all DT implementations. The Metaverse-DT framework shows promise for 

medical training and simulation, but its ethical and legal guidelines are still underdeveloped, 

raising concerns about its real-world application in healthcare. 

2.4 Major Findings 

1 Enhanced Personalized Healthcare: Digital Twin (DT) technology enables real-time 

patient monitoring, predictive diagnostics, and tailored treatment plans, leading to 

improved precision medicine and individualized healthcare solutions. 

2 Smart Hospital Management and Optimization: DT-driven simulations assist in 

optimizing hospital workflows, resource allocation, and predictive maintenance, 

ultimately improving healthcare efficiency and patient outcomes. 

3 AI and IoT Integration for Data-Driven Healthcare: The fusion of AI, IoT, and DT 

provides advanced analytics in medical imaging, wearable health monitoring, and 

patient-specific simulations, enhancing diagnostics and early disease detection. 

4 Remote Patient Monitoring and Telemedicine: DT facilitates real-time remote 

healthcare services, reducing hospital visits while ensuring effective chronic disease 

management, elderly care, and emergency response. 
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5 Epidemiological Modeling and Public Health: DT supports disease forecasting, 

pandemic simulations, and vaccination strategy development, enabling better 

preparedness and response to public health crises. 

6 Revolutionizing Surgical Planning and Training: Virtual anatomical DT models 

improve preoperative planning, medical training, and robotic-assisted surgeries, 

reducing procedural risks and enhancing precision. 

7 Biomedical Engineering and Regenerative Medicine: DT plays a crucial role in bio-

fabrication, 3D bioprinting, prosthetics, and organ simulation, accelerating innovation 

in regenerative medicine and personalized medical implants. 

8 Accelerated Drug and Medical Device Development: DT enables virtual clinical 

trials, reducing the time, cost, and risk associated with drug development and medical 

device testing, thereby streamlining regulatory processes and safety evaluations. 

 

2.5 Challenges and Ethical Considerations 

Despite the numerous benefits of Digital Twin technology in healthcare, several challenges 

remain: 

1 Data Privacy and Security Concerns: The integration of real-time patient data in DT 

raises significant concerns about data breaches, unauthorized access, and compliance 

with healthcare regulations such as HIPAA and GDPR. 

2 High Computational and Infrastructure Requirements: DT models require 

substantial computational power, cloud storage, and advanced imaging technologies, 

making implementation costly and resource-intensive for many healthcare institutions. 

3 Interoperability and Standardization Challenges: Lack of universally accepted 

standards for DT integration across various healthcare systems and devices limits 

seamless data exchange and cross-platform compatibility. 

4 Limited Availability of High-Quality Data: The accuracy of DT models relies on 

large, high-quality datasets, which may be unavailable, incomplete, or inconsistent, 

affecting the reliability of medical simulations and predictions. 

5 Regulatory and Ethical Considerations: The widespread adoption of DTs in 

healthcare is hindered by unclear regulatory frameworks and ethical concerns related to 

digital simulations of human bodies and disease progression modeling. 
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6 Integration with Existing Healthcare Systems: Many healthcare institutions use 

legacy systems that are not easily adaptable to DT technology, leading to operational 

disruptions and resistance to digital transformation. 

7 Validation and Clinical Acceptance: DT applications in healthcare require extensive 

clinical validation to ensure accuracy and safety, yet the lack of standardized evaluation 

methods and limited real-world case studies hinder widespread clinical acceptance. 

 

2.6 Conclusion 

The historical development of Digital Twin technology, from its early applications in aerospace 

to its transformative role in healthcare, underscores its potential to shape the future of medicine. 

By integrating AI, big data, and IoT, DT is revolutionizing patient care, disease prediction, and 

medical research. However, addressing challenges related to data privacy, interoperability, and 

ethical considerations will be essential for its widespread adoption in healthcare systems 

worldwide. 
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CHAPTER – 3 

DIGITAL TWIN AND METAVERSE FOR SECURE HEALTHCARE 

TRANSFORMATION 

This chapter explores the integration of Digital Twin (DT) and Metaverse technologies in 

healthcare, focusing on their role in secure healthcare transformation. Key advancements, 

applications, and challenges are discussed, along with a conceptual framework for DT 

implementation. The chapter concludes with an analysis of future trends and security 

considerations in DT-enabled healthcare. 

3.1 Introduction 

Digital healthcare technology has undergone a transformative shift, integrating advanced 

digital tools to enhance patient care, streamline medical operations, and improve healthcare 

outcomes. Key innovations such as electronic health records (EHRs), telemedicine, wearable 

devices, and AI-driven solutions aim to make healthcare more accessible, efficient, and patient-

centered. These advancements address challenges like rising costs, limited medical access, and 

the increasing demand for personalized and preventive care. Among these innovations, Digital 

Twin (DT) technology stands out, creating virtual replicas of patients to simulate and analyze 

physiological conditions and treatment responses. By leveraging real-time data, AI, and 

machine learning, DT enables predictive analytics, remote monitoring, and precision medicine, 

leading to more accurate diagnoses, optimized treatment plans, and personalized healthcare 

recommendations. Integrating DT with IoT, AI, and cloud computing further enhances its 

capabilities, allowing real-time simulations, improved medical training, and comprehensive 

patient insights. Technologies like augmented reality (AR) and virtual reality (VR) amplify 

DT’s potential in surgical planning and medical simulations, transforming healthcare into a 

more precise and patient-focused system. DT technology is increasingly recognized for 

addressing challenges such as inefficient data management, delayed interventions, and limited 

treatment personalization. The COVID-19 pandemic highlighted the need for real-time patient 

monitoring, predictive analytics, and data-driven decision-making, where DT played a crucial 

role in enabling early disease detection and proactive interventions. Additionally, DT facilitates 

the creation of digital models for hospital operations and medical devices, enhancing resource 

utilization and reducing medical errors. Despite its benefits, DT adoption in healthcare raises 

security and privacy concerns. Given the sensitivity of medical data, robust cybersecurity 
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measures—such as encryption, blockchain, and advanced authentication—are essential to 

safeguarding patient information and maintaining healthcare system integrity. Addressing these 

concerns is crucial for fostering trust and ensuring seamless DT integration. 

Real-world applications of DT technology illustrate its transformative impact. Institutions like 

the Cleveland Clinic use DT for surgical planning, while GE Healthcare employs it for 

predictive maintenance of medical imaging equipment. The Mayo Clinic leverages DT to 

optimize treatment plans for critical illnesses, and Philips integrates DT with smart devices for 

real-time patient monitoring. Siemens Healthineers applies DT to hospital design, improving 

workflows and operational efficiency. The emergence of the Metaverse, combining AR, VR, 

AI, and blockchain, further expands DT’s potential in healthcare. It enables remote 

consultations, interactive medical training, and virtual simulations, fostering collaborative 

medical research and improving diagnostics and treatment methodologies.  

This study explores DT’s role in healthcare security and privacy within the Metaverse 

framework. It contributes by designing a secure DT integration framework, proposing a six-

axis Metaverse-based model for healthcare challenges, and reviewing DT applications from 

2000 to 2024. The study also examines distributed trust mechanisms, emphasizing the need for 

strong security measures to ensure data integrity and patient safety. As technology advances, 

DT is set to revolutionize healthcare by enhancing diagnostic accuracy, optimizing treatment 

planning, and improving medical training. The integration of DT with blockchain, 5G, and 

quantum computing could further enhance security, interoperability, and scalability. Embracing 

DT technology will drive unprecedented efficiency, accuracy, and patient-centered care, 

shaping the future of digital healthcare in the Metaverse era. 

3.2 Data Selection for Digital Twin in Healthcare 

To provide a comprehensive review of Digital Twin (DT) and Metaverse applications in 

healthcare, we conducted a systematic literature review (SLR) following the Preferred 

Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines [59], [60]. 

This approach ensures a structured, transparent, and reproducible methodology for identifying, 

selecting, and analyzing relevant studies. 

3.2.1 Search Strategy & Data Sources 

We searched five major academic databases to collect relevant research papers: 
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• IEEE Xplore (for technology-driven DT research) 

• PubMed (for biomedical and healthcare applications) 

• Scopus (for interdisciplinary studies) 

• Web of Science (for high-impact research papers) 

• Google Scholar (for additional gray literature and preprints) 

To maximize coverage, we used a combination of Boolean operators (AND, OR) and keyword 

variations: 

• ("Digital Twin" OR "Healthcare Digital Twin") AND ("Security" OR "Privacy") 

• ("Metaverse" OR "Augmented Reality" OR "Virtual Reality") AND ("Healthcare 

Applications") 

• ("Blockchain" OR "AI") AND ("Healthcare Data Security" OR "Digital Twin 

Cybersecurity") 

Studies published between 2000 and 2024 were considered, with a focus on recent 

developments (2018-2024). 

3.2.2 Inclusion & Exclusion Criteria 

To ensure the relevance and quality of the selected papers, we applied the following inclusion 

and exclusion criteria: 

Inclusion Criteria: 

• Studies written in English. 

• Research papers that explicitly discuss Digital Twin or Metaverse applications in 

healthcare. 

• Studies that address security, privacy, or interoperability challenges in DT-based 

healthcare systems. 

• Peer-reviewed journal articles, conference papers, and high-impact white papers. 

Exclusion Criteria: 

• Duplicate studies. 

• Papers focusing on non-healthcare applications of DT and Metaverse (e.g., 

manufacturing, aerospace). 
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• Opinion articles, editorials, or commentaries without empirical data. 

• Studies with incomplete methodologies or insufficient technical details. 

 

3.2.3 Study Selection & Evaluation Process 

To ensure reliability and validity, we implemented the following three-stage selection process: 

a) Title & Abstract Screening 

• Two independent reviewers scanned titles and abstracts to exclude irrelevant 

papers. 

• Discrepancies were resolved through discussion and consensus. 

b) Full-Text Review 

• Studies that passed the initial screening were read in full and evaluated for 

relevance. 

• Papers were excluded if they lacked concrete technical discussions. 

c) Quality Assessment 

• Selected studies were evaluated using the CASP (Critical Appraisal Skills 

Programme) checklist. 

• Each paper was scored on: 

i. Methodological rigor (was the study well-designed?) 

ii. Relevance to DT-Metaverse healthcare 

iii. Depth of security/privacy discussion 

 

3.2.4 Data Extraction & Analysis 

From each selected study, we extracted the following key information as shown in Table 3.1: 

Table 3.1: Data Extraction and Analysis 

Category Details Extracted 

Study Type Survey, Experimental, Conceptual Framework 

Domain Digital Twin, Metaverse, AI, Blockchain in Healthcare 

Use Cases Patient Monitoring, Surgery, Medical Training, Drug Development 

Security Measures Blockchain, AI-driven Privacy, Homomorphic Encryption 

Key Findings Contributions & Limitations of Each Study 
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3.2.5 Scalability Challenges and Solutions in Digital Twin Healthcare Systems 

Although Digital Twin technology presents numerous advantages in healthcare, scalability 

remains a critical challenge. To address this, the following solutions and methodologies have 

been identified: 

1. AI and Machine Learning Integration 

• AI-driven models can optimize resource allocation, improve predictive analytics, 

and enhance the real-time processing capabilities of Digital Twins. 

• Federated Learning can ensure distributed AI training across multiple healthcare 

facilities without compromising patient data privacy. 

2. Interoperability Standards 

• Adoption of FHIR (Fast Healthcare Interoperability Resources) and HL7 (Health 

Level Seven) standards can enhance seamless data exchange between different DT 

healthcare systems. 

• Implementing standardized APIs for cross-platform DT integration will improve 

scalability and system-wide connectivity. 

3. Robust Security and Privacy Frameworks 

• Blockchain-based decentralized identity management can provide secure access 

control without relying on centralized databases. 

• Homomorphic encryption allows secure computation on encrypted patient data, 

reducing risks associated with data breaches. 

• Zero-trust architecture (ZTA) ensures that only authenticated users and devices 

access Digital Twin systems, mitigating potential cyber threats. 

4. Cloud-Edge Hybrid Infrastructure 

• A combination of cloud computing for large-scale data processing and edge 

computing for real-time analytics can enhance scalability. 

• Deploying edge AI models can reduce latency and enable localized decision-

making without burdening centralized cloud servers. 

5. Dynamic Resource Allocation & Load Balancing 

• AI-powered dynamic workload distribution algorithms can prevent system 

overloads in high-demand healthcare environments. 

• Software-defined networking (SDN) and network function virtualization (NFV) 

can improve scalability by dynamically managing healthcare data traffic. 
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By incorporating these methodologies, Digital Twin systems can achieve greater scalability, 

efficiency, and security, making them more viable for large-scale healthcare applications. The 

publications on DTs published annually from 2003 to 2024, as reported by the Web of Science 

Core Database, are displayed in Figure 3-1. According to the figure, the quantity of published 

literature on DT has gradually increased after 2016. Furthermore, using information from many 

research papers cited in this study and their respective references, Figure 3-3 illustrates a 

percentage analysis of healthcare diseases in the digital twin (DT) system. 

 

Figure 3-1: Number of publications per year on digital twins in healthcare 

This review examines a diverse range of 25 articles across various medical domains, as shown 

in Figure 3-2. These encompassed 3 papers in surgery, 7 in cardiovascular, 3 in the context of 

COVID-19, 3 related to pharmacy, 4 in orthopedics, 2 in cancer research, and 3 exploring 

digital technologies in other disease areas. Our inclusive approach ensures articles are written 

in English and focused on integrating digital technologies (DT) to construct patient models, aid 

in diagnosis, or personalize therapy. The work excludes duplicated or irrelevant articles, those 

lacking DT integration, and those limited to conference abstracts, proposals, or viewpoints. 

This review provides insights into the evolving landscape of utilizing DT to advance medical 

practices and improve patient outcomes across multiple disciplines. 
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Figure 3-2:  Flowchart for illustrating Digital Twin in Healthcare 

 

Figure 3-3: Distribution of articles on digital twins among different healthcare diseases & 

Countries
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3.3 Digital Twin in Healthcare: State-of-the-Art 

In the future, with artificial intelligence (AI), 6G, and intelligent sensors, the healthcare system 

will be able to seamlessly connect the real-world patient and digital replica via the healthcare 

digital twin (HDT) to accomplish secure healthcare [61], [62]. Future doctors, for example, can 

remotely study and monitor patients and detect and predict health concerns. This digital twin 

then gets this information ready for analysis by powerful computers. By constantly checking a 

patient's health and looking for anything unusual, this system can help doctors in many ways, 

from suggesting treatments to figuring out how medications will work and even planning 

healthy lifestyles for patients to follow as shown in Figure 3-4.  

 

Figure 3-4: Conceptual Framework of Secure Digital Twin for Healthcare 

3.3.1 Three-Axis of the Digital Twin 

1. Data Prediction: In this part, the system uses wearable sensors to collect real-time 

information about a patient's health to see if anything is wrong. This information is then 

stored in a safe and big online storage space (cloud database) for a short time. Here, the 

information is cleaned up and made ready for super smart computers (machine learning) 
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to analyze it and predict future health problems. Both patients and other parts of the 

system can see this information in another safe online storage space (Result Database) 

so they can add comments, updates, or corrections if needed. 

2. Supervision: Doctors use the information from the prediction models in the Result 

Database to recommend treatments for patients. This information, along with the 

doctor's knowledge and keeping track of the patient, helps doctors make better 

healthcare decisions. Because the information is updated constantly, doctors can find 

and track problems with a patient's health more easily and take the right steps to fix 

them. This way, doctors can give patients the right medicine and help them live healthier 

lives. Doctors can also check the findings from the system and suggest ways to make it 

work even better. 

3. Comparison: The DT system also makes its predictions more realistic by comparing a 

patient's information with information from similar patients. This comparison helps the 

system make more accurate predictions, which in turn helps doctors make better 

decisions about patient care. These decisions can involve copying, changing, or 

stopping treatments altogether based on real-time information and the patient's past, 

present, and predicted future health. 

The DT framework is demonstrated in this Figure 3-4, which also suggests possible application 

scenarios and an DT architecture enabled by blockchain and cloud edges. Digital twin (DT) 

technology offers a novel approach to medical simulation by combining it with 

multidisciplinary, multiphysics, and multiscale models. This improves the current healthcare 

system by providing proactive, accurate, and effective personalized health services (PHS). The 

physical twin (PT), virtual twin (VT), and healthcare data are the three main components of 

DT. Figure 3-4 illustrates these elements visually: VT in the virtual world, PT in the physical 

world, and an interlinkage that links PT and VT through reliable data links so that they can 

develop simultaneously in the virtual and physical worlds. Through real-time data analysis and 

ongoing health status monitoring, this synchronization facilitates efficient risk management, 

cost savings, and future forecasting by anticipating possible health issues before they arise. 

HDT can provide accurate, timely, and efficient PHS by integrating the patient, the virtual 

object, and the healthcare data. HDT can, therefore, contribute to developing innovative drugs 

and vaccines without endangering human health. It will also improve disease prevention and 

surgical procedures, recommend lifestyle modifications, maximize the efficacy of treatment 
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plans tailored to each patient, and reduce the time it takes for innovative, cutting-edge 

medications to be introduced to the market. All of these advantages will reduce the total cost 

of healthcare. Healthcare Digital Twins (HDT) can anticipate an individual's health status in 

the future, enabling proactive steps for preventive healthcare. By using DT, healthcare can be 

highly personalized, providing tailored diagnoses and treatment recommendations, making it a 

game-changer for the healthcare industry. Despite the enormous potential impact of DT on 

healthcare, there are important issues to resolve. These challenges include verifying that 

Personalised Health Services (PHS) are efficiently provided by DT, maximizing the application 

of AI and ML techniques to offer these services, and guaranteeing accurate medical data 

collection. The work emphasizes the transformative potential of creating individualized DT for 

achieving PHS. However, it's crucial to document the entire process of conceiving, 

representing, and implementing DT models before deployment. A comprehensive 

understanding of human molecular systems is necessary to ensure accurate medical data 

collection. We have made significant progress in understanding human molecular systems 

because of several ongoing projects like the Human Cell Atlas, the Whole-cell computational 

model project, and the Genome project. Leveraging extensive molecular insights allows for 

precise medical data collection using various advanced sensing devices. 

3.3.2 Key Technologies for Digital Twin Implementation  

DTs: information modeling that can abstract human specifications, communication that 

facilitates bi-directional data transmissions between devices, and data processing that can 

extract meaningful information from heterogeneous multi-source data [63]. Similarly, there are 

two ways in which DTs differ from traditional DTs in other contexts: First, because intra-body 

and inter-body interactions differ, DTs rely on sophisticated communication techniques. 

Second, a flawless human-twin link may only sometimes be possible because people are not 

(and may not want to be) born with embedded sensors. Individual medical data are typically 

acquired through medical examinations [64]. Thus, Figure 3-5 summarises the essential 

technologies, which are then explored as follows. 

a) Connectivity: Two-way communication between PT-VT pairs, typical VTs, neighboring 

VTs, and VTs and domain experts is made possible by connectivity. To ensure VT and PT 

coexist, HDT modeling requires perfect data flow, high-speed connectivity, minimal 

latency, real-time synchronization, and edge intelligence. LoRaWAN, 6G, and tactile 

internet can be used to construct HDTs that ensure Ultra-Reliable and Low Latency 
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Communications (URLLC) connectivity and secure private data/information exchanges 

[65]. The requirements encompassing communication delay involve upload and download 

latency, data processing time, computing duration, and network reliability. Prioritized 

scheduling greatly aids PT-VT communications by factoring in the criticality-based 

classification of PT data. Adjusting dynamic priority levels becomes essential to minimize 

weighted latency, especially addressing concerns where low-priority class levels might 

experience communication capacity limitations. 

b) Data Collection: Efficient safeguarding and translation of data formats are essential for 

gathering data from IoT devices, mobile devices, wearables, medical records, and 

embedded sensors. Intelligent sensing devices and equipment are necessary for accurately 

detecting attributes, metrics, and alterations in the physical environment of the patient twin 

(PT). Users and experts regularly update the Healthcare Digital Twin (HDT) with digital 

health data to monitor the PTs' health conditions. Biosignal sensing is a critical tool for 

data collection, allowing the recording of biological events in specific locations and times. 

This approach yields valuable insights into physiological factors that enhance Personalized 

Health Services (PHS) and supports lifetime health management by monitoring organ and 

physical environment changes in all PTs.  

c) Data Processing: Most data preprocessing involves conversion, filtering, and cleaning. 

Data must be transformed into valuable formats. Missing data, inconsistent data, human 

input mistakes, improper data type, regional structures, numerical units, file change, and 

missing anonymization issues may be present. The KNN-imputation algorithm estimates 

missing values [66]. High-quality data is another danger to HDT. Data fusion, feature 

tuning, feature selection, and building require substantial computational infrastructure and 

take time to ensure accurate representation. Three processes are needed for data fusion: 

mining, optimization, and processing. Data processing methods include distributed 

processing and multiple programming. 

d) Modeling Framework: In complicated systems, humans function in intricate settings. 

Because of this, HDT modeling is complex. Even though an augmented DT model and a 

reference model were used to represent the cyber-physical interaction, we still need to 

understand the modeling framework for HDT fully. While one study used a convolution 

neural network-based framework [67], another provided a computational cell-to-cell 

network [68]. Real-time, ultra-fast connectivity between PTs and VTs; rapid simulation 

framework validation execution and calibration; ongoing HDT model optimization; and 
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HDT virtualization through sophisticated modeling techniques like Modelica, 3DMax, and 

SolidWorks are all included in HDT modeling [69]. 

 

Figure 3-5: Key Technologies for Digital Twin Implementation in Healthcare 

 

e) Applied AI: Applied AI [70] Will bridge real-world and virtual environments for rapid 

decision-making. Optimizing numerous machine learning algorithms will speed up HDT 

development and improve AI-based communication. Machine-learning methods can be 

modified and optimized to improve HDT development. HDT requires learning anything 

accurately and continuously, producing reliable facts, recommendations, and precise future 

projections that provide meaningful insights into the issue and potential remedies. Applied 

AI will accurately portray VTs, giving medical practitioners and specialists valuable 

information for preventive and maintenance care. 

f) Cloud Computing: Cloud-edge computing helps shift complex computing and storage 

tasks to the cloud, enabling faster processing of time-sensitive functions at the network's 

edge. Edge intelligence is vital for deploying healthcare digital twins (HDT), ensuring 

innovative task processing at edge nodes by collecting and analyzing medical data to offer 

real-time insights and recommendations [71]. 

Digital Twins, which are virtual copies of real things or processes, open up new possibilities in 

healthcare by making personalized medicine, predictive analytics, and remote tracking 
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possible. Even though Digital Twins could be helpful, they still need to be easier to use on a 

large scale in healthcare for several reasons. 

1. Technological Hurdles: 

a. Data Integration and Quality: Healthcare data is often inconsistent and spread across 

many systems, making it hard to combine and guarantee their quality for Digital Twin 

models. 

b. Real-time Data Processing: To make quick decisions based on real-time patient data, 

you need a strong computer network and programs to quickly handle large amounts of 

data. 

c. Security and Privacy: Protecting private patient data from cyber threats and ensuring 

privacy laws are significant issues in implementing the Digital Twin. 

 

2. Interoperability Issues: 

a. Standardization: Different healthcare systems and devices can only talk to each other 

slowly because they use different standard protocols and formats for data exchange. 

This makes it harder to add Digital Twins to current workflows. 

b. Integration with Electronic Health Records (EHR): Digital Twins need to seamlessly 

connect to EHR systems to use all of a patient's data successfully. However, this 

integration is still hard to achieve because of the different EHR platforms and data 

formats. 

 

3. Scalability Challenges: 

a. Resource Allocation: To make Digital Twin systems bigger to handle more data and 

users, much money must be spent on computing power, which may be too much for 

many healthcare organizations. 

b. Model Complexity and Maintenance: As Digital Twin models get more complicated, 

keeping them accurate and valuable over time gets more brutal. This means that they 

need to be updated and checked all the time. 

To make it easier for Digital Twins to fit into healthcare ecosystems, frameworks for sharing 

data and security procedures are being developed for all of them, and money is being put into 

scalable computer systems and advanced analytics tools to help process ample healthcare 

information in real-time and getting everyone involved to work together to come up with the 

best ways to create, test, and use Digital Twins in healthcare settings. 
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3.4 Metaverse in Healthcare: State-of-the-Art 

3.4.1 Six-Axis of the Metaverse Implementation in Healthcare 

The following Figure 3-6 demonstrates the Six-Axis of the Metaverse Implementation in 

Healthcare. 

 

 

Figure 3-6: Six-Axis of the Metaverse Implementation in Healthcare 

 

a) Personalization: This axis tailors healthcare experiences and interventions to individual 

needs, preferences, and characteristics. Personalization involves leveraging data, AI 

algorithms, and other technologies to deliver targeted treatments and recommendations for 

each patient. 

b) Interconnectivity: This axis emphasizes the interconnectedness of various elements 

within the healthcare metaverse. Integrating different platforms, devices, and systems 

enables seamless communication, data sharing, and collaboration among healthcare 

providers, patients, caregivers, and other stakeholders. 

c) Accessibility: This axis addresses the accessibility of healthcare services, information, and 

resources within the metaverse. It involves removing barriers to access by ensuring that 
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healthcare solutions are available to all individuals, regardless of their location, 

socioeconomic status, or physical abilities. 

d) Empowerment: This axis actively empowers individuals to participate in their healthcare 

journey. It involves providing patients with the knowledge, tools, and support they need to 

make informed decisions, manage their health effectively, and engage in shared decision-

making with healthcare providers. 

e) Ethical and Regulatory Compliance: This axis highlights the importance of upholding 

ethical principles and regulatory standards within the healthcare metaverse. It involves 

ensuring the responsible use of technology, protecting patient privacy and confidentiality, 

and adhering to relevant laws and guidelines governing healthcare practices. 

f) Sustainability: This axis addresses the long-term sustainability and resilience of 

healthcare systems and interventions within the metaverse. It involves considering 

environmental, economic, and social factors to minimize waste, optimize resource 

utilization, and promote equity and inclusivity in healthcare delivery. 

3.4.2 Security & Privacy challenges in DT-Metaverse Healthcare 

It has attracted much interest since Neal Stephenson introduced the concept of a computer-

generated universe with actual economic systems in his well-known science fiction book Snow 

Crash [72]. Stephenson was the first to introduce the metaverse concept, which provided the 

foundation for a computer-generated universe. It includes immersive public areas that combine 

aspects from the actual and virtual worlds [73]. As a result of the recent development of a wide 

range of technologies, the metaverse is progressively transforming from an abstract ideal into 

a practical reality. Wearable sensors [74], non-fungible tokens (NFTs) [75], Augmented reality 

(AR) [76], 5G connectivity [77], Blockchain [78], [79], [80], Virtual reality (VR) [81], [82], 

Brain-computer interfaces (BCI) [83] and Artificial intelligence (AI) [84] are some examples 

of these technologies. Global interest in this innovation has grown, leading major tech 

companies like Microsoft, Tencent, NVIDIA, and "Meta" (formerly Facebook) to invest in its 

continued development [85]. The development of the metaverse [86] can be distinguished into 

three distinct phases, which are referred to respectively as DTs [87], digital natives [88], [89], 

and surreality. Figure 3-7 depicts the basic framework for analyzing security and privacy in 

DT-Metaverse. Collecting and analyzing vast amounts of data to produce DT of physical items 

is necessary to build a usable metaverse in the real world. Quality of user experience (QoE) 
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relies heavily on the availability and accuracy of such data. The DT-based metaverse benefits 

significantly from adding blockchain technology to this framework. To begin, security & 

privacy permits verification of the integrity of each DT with its physical counterpart. This 

procedure aids in guaranteeing the accuracy of the collected and processed data. As a result, 

information can be accessed more quickly and openly than ever before. Incorporating 

numerous DTs into the building of the 3D virtual environment is another way in which 

blockchain facilitates cross-location interaction among users of the same virtual space. 

Metaverse service transactions and related data are likewise recorded on the blockchain and 

made available to the DT layer, providing audibility and facilitating iterative improvements to 

the developed digital models. [87].  

 

Figure 3-7: Security and Privacy in DT-Metaverse 

The metaverse allows users to embody themselves through avatars by fusing in cyberspace the 

virtual and the physical aspects of their lives. In addition, the incorporation of methods and 

technologies such as artificial intelligence (AI) [90], [91], Machine learning (ML) [92], [93], 

Deep learning (DL) [94], internet of things (IoT), [95], [96], edge computing [97], [98] and 

cloud computing [99] further enhances this transformational technology [100], [101]. Even 

though the metaverse has seen significant progress in areas such as social media [102], 

diagnosis [103], [104], and treatment planning [105], its application in the medical field, 

particularly in cancer diagnosis, treatment, and examination, requires additional enterprise, 

deliberation and research [106].  The metaverse has witnessed significant developments in 

social media, diagnosis, and treatment planning. The proposed Digital Twin (DT)-Metaverse 

framework consists of several integrated components, aimed at enhancing healthcare 
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operations, improving patient care, and ensuring data security. The framework includes the 

following layers: 

1. Digital Twin Layer 

• Creates virtual replicas of patients, medical devices, and hospital workflows. 

• Integrates real-time physiological data from IoT sensors and medical imaging. 

• Supports predictive analytics for disease prevention and treatment planning. 

2. Security and Privacy Layer 

• Implements blockchain-based access control to protect sensitive health data. 

• Uses homomorphic encryption, federated learning, and multi-party computation 

(MPC) for secure AI-driven medical analysis. 

• Prevents cyberattacks on healthcare DT models through intrusion detection 

systems. 

• Enforces IoT-driven data encryption and anomaly detection to prevent malicious 

tampering. 

3. AI-Driven Decision Support System 

• Employs machine learning models to analyze patient data and predict disease 

progression. 

• Assists in diagnosing conditions, optimizing treatment plans, and recommending 

personalized therapies based on real-time DT insights. 

• Implements AI-based disease prediction models and precision medicine for patient-

specific treatment. 

4. Dynamic Resource Allocation & Scheduling 

• Uses a priority-based scheduling system for efficient healthcare resource 

allocation. 

• Reduces waiting times by dynamically prioritizing critical patients in the digital 

twin system. 

5. Interoperability & Data Exchange Layer 

• Ensures seamless integration between hospital information systems (HIS), 

electronic health records (EHRs), and cloud-based healthcare DTs. 
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• Facilitates real-time data exchange for continuous patient care across different 

healthcare providers. 

6. Perception Layer (Data Acquisition) 

• Real-time collection of patient vitals, medical records, and wearable sensor data. 

• AI-powered anomaly detection to ensure secure transmission from medical 

devices. 

7. Communication Layer (Edge & Cloud Processing) 

• Secure 5G/6G communication for DT updates and remote healthcare monitoring. 

• Blockchain and federated learning enable decentralized, privacy-preserving 

medical AI models. 

• Implements a zero-trust security architecture for healthcare networks. 

8. Processing Layer (AI & DT Simulations) 

• Uses AI to analyze patient-specific data and generate secure, predictive models. 

• Homomorphic encryption is used for secure AI model training on encrypted health 

data. 

9. Application Layer (Metaverse Integration) 

• Includes AR/VR-based immersive training simulations for doctors and students. 

• Enables real-time digital avatars for virtual healthcare consultations. 

• Facilitates remote surgeries through a secure multi-user collaboration framework 

using DT models. 

This multi-layered framework ensures a secure, interoperable, and efficient healthcare system 

that integrates DT models, Metaverse technologies, and robust security mechanisms to protect 

patient data and healthcare operations. 

3.4.3 Metaverse Applications and Their Limitations in Healthcare 

The metaverse application is solely related to healthcare, so establishing a "niche theme" for 

academics includes teaching, research, training, and the prevention and management of 

diseases. In recent years, it has developed into a dynamic technology that augments the 

capabilities of medical students. In addition, patients' health conditions can be immediately 
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monitored at their homes, and the actual world can also be connected with the virtual world 

through digital twins, a diversified technology [107], [108]. 

The Metaverse has the potential to completely change healthcare by providing realistic 

consultations, personalized care, and new ways to use technology in the office. But there are 

many problems with putting it into action. Some traditional healthcare systems might hesitate 

to adopt these game-changing technologies because they must believe in their vague benefits 

and know how to achieve them. Also, there are significant cybersecurity risks. Metaverse apps 

can be hacked, and private patient data could be made public. Even though new technologies 

like network slicing and blockchain are being used to reduce these risks, people still need to be 

reassured about how hard it will be to integrate new hardware and ensure robust data security 

methods are in place [109], [110].  

Another big problem is that few have internet access, especially in rural areas. This could 

make it harder for Metaverse options to be widely used. Immersive experiences in 3D or even 

2D environments may strain current infrastructure, making it harder for people to use these 

new medical tools. While improvements in 5G telecommunications could be answers, setting 

up infrastructure like small cells as base stations takes much work, especially in places with 

few people. Getting past these connectivity problems is essential to ensure everyone has equal 

access to healthcare innovations driven by the Metaverse, especially areas that need more care. 

The metaverse app is only used for healthcare, giving academics a "niche theme" for education, 

study, training, and preventing and managing disease. It has become a popular way to help 

medical students improve their work. Also, patients' health conditions can be directly watched 

from home, and digital twins, a flexible technology, can connect real life to the virtual world 

[111], [112]. The global healthcare market in the Metaverse is estimated to be valued at $5.06 

billion in 2021. It is expected to reach $71.97 billion by 2030, growing at a compound annual 

growth rate (CAGR) of 34.8% between 2022 and 2030, based on data spanning the entire 

Metaverse [113]. Due to the concentration of Metaverse-centric businesses in North America, 

this region is predicted to outperform others within the above frame. Their robust infrastructure, 

integration of AR-VR devices, and platforms in the healthcare industry have resulted in 

increased investment in AR-based goods, applications, and comparable changes to their 

software and hardware infrastructure [114], [115].    
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3.5 Dynamic priority scheduling for healthcare digital twin: Case Study 

The case study examines a technique for ranking the data transmission order in a healthcare 

digital twin (HDT) network. The significance of this lies in the fact that data within the network 

can possess different levels of urgency.  This section illustrates that employing a dynamic 

priority scheduling technique can considerably diminish the average weighted latency (AWL) 

in the network when compared to conventional scheduling methods such as FCFS (first come, 

first served). Dynamic priority scheduling ensures the faster delivery of critical data packets, 

which is particularly important in healthcare situations. 

The proposed work analysis is a healthcare digital twin (HDT) network case study focusing on 

how a dynamic priority-based scheduling technique enhances communication between the 

physical twin (PT) and virtual twin (VT). Based on the IEEE 802.15.6 Standard, this study 

categorized data from multiple sources into classes (L = {0, 1,..., 7}), each of which was given 

a criticality coefficient. Each data packet's transmission priority was calculated by multiplying 

its criticality coefficient by the waiting time it had experienced. Different data sizes were 

considered (ranging from 50 to 100 Kb), and transmission rates for the channels (K = 10) 

between PT and VT were assumed to be evenly distributed. In milliseconds, average weighted 

latency (AWL) was used to measure performance, with weights allocated to each class. The 

simulation involved varying the average arrival rate of data packets while comparing first come 

first served (FCFS) and absolute priority scheduling systems. Priority scheduling dramatically 

decreased AWL, as Figure 3-8 illustrates. This highlights the significance of a thoughtful 

scheduling strategy for effective and low-latency PT-VT communications in HDT networks. 

This strategy ensures timely transmission services while considering packet criticality. 

The tactile internet comes into play to enable instant communication between components like 

VT-to-VT, PT-to-PT, VT-to-PT, and PT-to-VT. It ensures haptic interactions between PT and 

VT through extremely low delay, robust security, and reliability. Achieving a latency of 1 

millisecond is crucial for systems using tactile internet. Cognitive mixed cellular networks can 

be applied to enhance communication between the physical and virtual realms, meeting this 

critical low-latency requirement. However, low throughput and underutilization of resources 

may result from this. Another intriguing avenue is how different technologies, like 5G or 6G 

cellular networks and distributed machine learning, can be combined to enable tactile internet 

for HDT modeling. Though it needs to be clarified if 5G/6G can be implemented for HDT, 

research is now being done on DT solutions for 6G deployment. 
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Figure 3-8: PT-VT communications latency network in the HDT 

3.6 Conclusion 

This research investigates the convergence of Digital Twin (DT) and Metaverse technologies 

in healthcare, with a focus on their ability to transform medical care, treatment, and research. 

It suggests a secure DT framework to counter the increasing security threats in healthcare and 

underscores the need for large-scale IoT data gathering for precise simulations. Through an 

examination of more than 130 related publications, the research identifies security solutions, 

technological facilitators, and limitations in DT applications, calling for increased patient 

privacy and applications in the real world. Applications in DT like virtual organs, genomic 

medicine, and personalized therapies exhibit its revolutionary influence on healthcare. 

Nevertheless, effective DT adoption hinges upon policy, regulation, and user support. Good 

governance will guarantee data privacy, ownership rights, and interoperability, while tough 

security protocols and clinician education will advance trust and usability. These issues, 

addressed, will facilitate the adoption of DT on a large scale to ensure ethical implementation, 

secure cross-border data, and better healthcare delivery. 
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CHAPTER – 4 

DIGITAL TWIN-ENABLED SMART HEALTHCARE SYSTEMS 

This chapter explores the integration of Digital Twin (DT) technology in smart healthcare 

systems, highlighting its role in patient monitoring, disease diagnosis, and treatment 

optimization. The chapter also presents an AI-driven DT framework for cervical cancer 

detection, discusses research challenges, and evaluates various machine learning models for 

improving diagnostic accuracy. 

4.1 Introduction 

The advancement of digital technologies has significantly transformed the healthcare sector, 

fostering new possibilities in patient monitoring, diagnostics, and treatment planning. Digital 

healthcare advancements have led to the development of Digital Twin (DT) technology, which 

replicates physical entities in virtual space to optimize healthcare operations. The integration 

of DT in healthcare represents a paradigm shift in how diseases are detected, monitored, and 

treated, enhancing patient care and medical decision-making. The role of DT in healthcare 

transformation is profound, as it enables a real-time, data-driven approach to medical 

treatments. It incorporates artificial intelligence (AI), Internet of Things (IoT), machine 

learning (ML), and cloud computing to develop a smart healthcare ecosystem. With the 

increasing prevalence of chronic diseases such as cancer, cardiovascular diseases, and 

neurological disorders, early diagnosis and intervention are critical to improving survival rates. 

The integration of DT with AI and deep learning models enhances the accuracy of diagnostics 

and facilitates personalized treatment. 

This study primarily focuses on automated cervical cancer detection using Digital Twin 

technology. Cervical cancer is one of the most common causes of mortality in women, and 

early detection remains crucial for its successful treatment. Conventional screening methods, 

including Pap smears and human papillomavirus (HPV) testing, often suffer from limitations 

such as subjective interpretation, false negatives, and time-consuming analysis. To address 

these challenges, this study proposes a Digital Twin-based framework, integrated with AI-

driven deep learning models for improved accuracy in cervical cancer diagnosis. This 

framework merges IoT, data analysis, and deep learning to create a digital copy of patients. 

This approach gives healthcare experts better tools to manage and improve a patient's health. 

The research significance and objectives revolve around leveraging DT and AI to enhance the 
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efficiency of cervical cancer detection. This framework aims to reduce misdiagnosis, optimize 

clinical workflows, and improve patient outcomes by providing an automated, real-time 

classification system. The study introduces CervixNet, an advanced deep-learning-based 

classifier that enhances the detection and classification of cervical cancer cells. 

Despite significant advancements in cervical cancer prevention and treatment, several research 

gaps remain. Here are some key areas where research gaps exist and where DT could make a 

substantial impact: 

• Early Detection and Diagnosis: While Pap smears and human papillomavirus (HPV) tests 

have improved early detection, there is still room for improvement in accuracy, 

accessibility, and affordability with intelligent technologies. 

• Wearable Devices and Biomarkers: Exploring the use of wearable devices and sensors for 

continuous monitoring of biomarkers related to cervical cancer risk. This could provide 

real-time data for early detection and personalized risk assessment. 

• Telemedicine and Remote Monitoring: Investigating the effectiveness of telemedicine for 

remote consultations, follow-ups, and patient education. Smart technologies can facilitate 

virtual interactions between healthcare providers and patients, especially in regions with 

limited access to healthcare facilities. 

• Treatment Personalization: Research is needed to explore how smart technologies, 

including genomics and molecular profiling, can contribute to personalized treatment 

plans for cervical cancer patients. Tailoring treatment based on individual characteristics 

and tumor profiles can improve outcomes. 

• Secure Health Data Sharing: Addressing the challenges of securely sharing health data 

among stakeholders. Developing frameworks for ethical and privacy-preserving data 

sharing is crucial for collaborative research and improved patient outcomes. 

Addressing these research gaps and motivation will require interdisciplinary collaboration 

between healthcare professionals, researchers, and technologists to harness the full potential of 

smart technologies in cervical cancer care. 

4.2 Literature Survey 

DT has been recognized as a practical and sustainable technology, particularly 

in healthcare, since its inception, with the remarkable interest shown by the research 

community and industry in integrating DTs with healthcare in recent years. This section 

provides the most relevant research in this domain. 
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4.2.1 Recent research studies related to cervical cancer cells’ segmentation and 

classification 

Plissiti et al. [116] used the SIPaKMeD Pap smear dataset to identify distinct cell features. 

They employed intensity, texture, and shape-based features to extract these features. 

Subsequently, they employed the support vector machine (SVM) classifier and achieved an 

accuracy of 95.35%. A unique technique that uses many pre-trained models to extract deep 

features was presented by Basak et al. [117]. Principal Component Analysis (PCA) and Grey 

Wolf Optimizer (GWO) approaches efficiently decrease the feature space's dimensionality. 

Ramakrishnan et al.  [118] presented a two-stage design with a classifier and extracted textural 

information. Additionally, researchers used DL-based techniques to categorize cervical images. 

For example, Orhan Yaman et al. [119] suggested a unique pyramid-deep architecture with two 

stages and used SVM and DarkNet19. DeepCELL, created especially to classify cervical 

cytology images via several kernels of varying sizes, was presented by the authors in [120], 

which added to its effective image classification capabilities. In [121] study, cervical cytology 

images were with 68% accuracy using ViT and DenseNet161. Pascal et al. [122] use many 

advanced deep-learning algorithms to tackle the problems of data quality and image 

fluctuation. Using the SIPaKMeD pap-smear dataset, they used over 40 convolutional neural 

networks (CNN) and 20 ViT-based models. The ViT models performed better with data 

augmentation and ensemble learning. A unique Conjugated Attention Mechanism and Visual 

Transformer (CAM-VT) framework is presented in this research [123] for identifying cervical 

cancer nest images with inadequate supervision. Visual Transformer (VT) integrates 

Conjugated Attention Mechanism modules, combining global and local feature extraction and 

ensemble learning to improve identification performance. They reported an accuracy of 

88.92% on average using one private dataset. In [124] study, numerous online and offline 

methods for finding cervical cancer were tested using various data sets. Hybrid methods dealt 

with segmentation problems and improved feature selection by adding more machine-learning 

classifiers. Different training methods can obtain the best efficiency, accuracy, memory, and F1 

scores. For example, using L1 normalization in regression analysis can lead to 100% accuracy, 

but it requires a lot of computer power. Medical researchers are investigating computer vision 

and machine learning to improve [125] cervical cancer screening. Although most infections 

may not progress to cancer, a negative test result indicates a decreased risk of cervical cancer 

in the ensuing ten years. It can be challenging to distinguish between high-risk HPV-positive 

cases requiring urgent care and suitable candidates for colposcopy screening. As a result, 
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scientists have developed an accurate deep-learning algorithm to forecast cancer risk. The 

author [126] used deep learning and Pap smear images to enhance cancer cell prediction. 

ResNet50 is a pre-trained CNN model that accurately predicts cancer cells. The goal of this 

effort is to classify cellular types using incoming photos. Identifying abnormal cellular 

structures is crucial for early detection and treatment of cervical cancer. The proposed method 

accurately predicts outcomes across cell types with a success rate of 74.04% over a long period.  

4.2.2 Recent research studies related to DT in healthcare 

In [127] authors developed DT technology to replicate patient characteristics and behavior in 

particular environments. DT solutions are becoming more affordable and transforming how 

healthcare improves lives. For example, DT Solutions can provide global personalized 

medication. The technology lets doctors cognitively model a patient's optimum treatment using 

thousands of variables and digital care-backed clinical decision-support tools. DT solutions 

also assist in investigating diseases like Multiple Sclerosis to improve therapy options and 

speed up trials. Finally, DT technology can simulate new treatments and speed up vital 

advances. During the pandemic, medical staff shortages have necessitated faster vaccinations. 

In [128], authors examined a DT vaccination system in a clinic. The system simulates patients 

in real-time and generates a dynamic vaccination center. Using the virtual model to identify 

and fix issues in the natural system improves vaccination efficiency. In [129], authors suggested 

utilizing generative adversarial networks (GANs) to generate fake photos to anonymize patient 

data in the health sector and prevent data leaks. GAN systems have been trained to create fake 

data. According to the study, convolutional neural networks (CNN) may help with dynamic 

data that requires advanced GAN design. In [25], authors offered relevant studies in this area. 

The authors' reference model for DT healthcare (DTH) systems uses self-adaptation and 

autonomic computing to continuously monitor and forecast patient states. They used a 

motivational scenario for diabetes and chronic disease to support their strategy. No process 

implementation support was provided. They propose a cloud-based DT system for elderly 

healthcare. Cloud-DTH [28] It was created by merging the cloud architecture with the first 

DTH paradigm. This combination aids healthcare system computation and administration. Two 

case studies demonstrate how the cloud-DTH model enables personalized healthcare. 

Unfortunately, the case studies lacked performance and result evaluation. Whether AI or 

machine learning methods were applied in prediction was also yet to be discovered. DT in 

innovative healthcare systems fails because autonomous machine learning algorithms manage 
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it. Authors [130] Suggest a hospital service management app. IoT devices and discrete-event 

simulation systems created a hospital DT framework. A predictive decision support model 

optimized the hospital's services process using real-time data without disrupting everyday 

operations. Different scenarios were tested using FlexSimHC to determine the methodology's 

practicality. The proposed model needs to be clarified about DT. The author [50] Presented a 

DT framework-based intelligent context-aware healthcare system. The applied models are said 

to forecast cardiac disease accurately. AI and ML are crucial while implementing an 

electrocardiogram (ECG) classifier to detect heart problems based on different variables. 

Cardiovascular disease [131] Requires optimal use of preventative drugs, technologies, and 

therapies. DT can simulate patients to forecast disease and optimize treatment. However, DT 

development has ethical and implementation issues. Personal DT with actionable insight is 

explored in [132], and personal digital twin bring IoT, machine learning, and AI closer. Table 

4.1 explains all the domains and technologies implemented and researched in cervical cancer 

and DT. 

Table 4.1: Limitations observed from previous research works 

Ref. Year Domain 
Technology 

Used 
Limitations 

Karakra et al. 

[130] 
2018 

Integrate DES for a hospital 

DT 

DSS, DES, DT, 

IoT 

Real-time data link between virtual 

and real-life space raises privacy and 

security concerns about data and 

creating a realistic virtual world. 

Liu et al. [28] 2019 
Cloud-based DT system for 

elderly healthcare 

DT, IoT, Cloud 

Computing 

Adoption of the Technology as well 

as interaction and collaboration issues 

between machines and services  

Goyal et al. 

[124] 
2020 

Performance Analysis for 

Cervical Cancer 
Pap smear, ML 

Lack of Specific Algorithm and 

limited explanation of Hybrid 

Approaches 

Piacentino et 

al. [129] 
2020 

Anonymization of patient 

information in the health 

sector 

CNN, DT, 

GAN 

Data organization, especially images. 

Losses details according to the 

databases as well as discriminator and 

generator training time. 

Pilati et al. 

[128] 
2020 

DT for the vaccination 

process 
DT, IoT, DES 

Data safety, problems in real-time and 

adoption of the Technology. 

Mugad et al. 

[133] 
2021 Cervical Cancer Prediction AI, CNN, DL 

AUROC values were considered low 

Small dataset  
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Mehmood et 

al. [134] 
2021 Cervical Cancer Prediction 

ML, Decision 

Tree, k-NN 

Absence of Information on Dataset 

and lack of Specific Algorithm  

Kaushik et 

al. [125] 
2022 

Framework for Predicting 

Cervical Cancer Risk in 

Women. 

AI, ML, DL 

Insufficient Context on Medical 

Terms and limited context on HPV 

and Cervical Infections 

Subarna et 

al. [135] 
2022 

Detecting and classifying 

cervical cancer photos 
CNN, DL 

Inadequate Discussion on Potential 

Limitations of Wavelet 

Transformations and absence of 

Performance Metrics 

Benedictis et 

al. [127] 
2022 DT for social distancing 

DT, 3D 

Sensors, AI 

Patient security and securing medical 

data 

Sahal et al. 

[25] 
2022 

Revolutionizing Healthcare 

with Personal Digital Twins 

(PDT) 

DT, 

Blockchain, AI 

Data quality, connectivity issue 

between physical and virtual twin as 

well as technological and privacy 

challenges 

 

4.3 Proposed Framework 

A smart and adaptive DT framework in healthcare is shown in Figure 4-1. Improving patient 

care and healthcare operations are the main goals for DT applications in healthcare. The 

suggested DT framework creates a virtual patient replica in three stages by combining data 

analytics, AI, and IoT devices.  

 

Figure 4-1: Digital Twin Framework 
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Real-time bodily data is collected from patients via IoT wearable devices equipped with 

sensors. This data is managed and ready for analysis, as well as different machine learning 

models by the DT replica. This configuration enables continuous health monitoring, identifying 

any anomalies early. At that point, medical experts can improve several aspects of healthcare, 

including treatment recommendations, safe experimentation settings, response tracking, 

lifestyle designs, and patient-provider communication. This framework has been divided into 

three stages: (a) data prediction, (b) supervision, and (c) comparison.  

Data Prediction- Internet of Things (IoT) wearable sensors collect patient data at this stage. 

These sensors deliver real-time body data to monitor health and detect abnormalities. Raw data 

is briefly saved in a cloud database. After cleaning, preprocessing, and representation, the 

machine learning classifier trains and forecasts models using given data. These models' results 

are safely saved in the Result Database, a scalable cloud database. Patients and other system 

components can use this database for feedback, corrections, and model upgrades. 

Supervision- Healthcare professionals, with their knowledge and experience, use result 

database predictive model outcomes to advise treatments and suggestions. This information 

improves healthcare when combined with clinical diagnosis and patient monitoring. Regularly 

updating prediction models with real-time data helps spot body metrics irregularities, monitor 

them, and intervene. This allows doctors to prescribe the right medicine and improve patients' 

lifestyles. Professionals can validate results and provide input to optimize the model. 

Comparison- DT framework findings from comparable patients can be used to compare the 

current patient's results to theirs, expanding predictive models with reliable real-life scenarios. 

This comparison improves model accuracy and helps healthcare practitioners make better 

decisions. These judgments use real-time data and other patients' past, present, and expected 

future experiences to simulate, modify, or prevent comparable patient outcomes. 

4.4 Materials and Methods 

The system flow diagram for the suggested cervical cancer screening program is shown in 

Figure 4-2. Our proposed system has six steps: image acquisition, image enhancement, cell 

segmentation, feature extraction, feature selection, and classification. For multi-cells, the 

SIPaKMeD dataset was used during the image acquisition. In the image enhancement process, 

input Pap smear images were improved to increase the image quality. The next phase was cell 

segmentation. Feature extraction came next, after segmentation. Distinctive interest points or 
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features were retrieved throughout the feature extraction process. The CervixNet algorithm was 

used as a selection technique during the features selection phase. Classification was the last 

stage. The details of every step have been explained in each subsection.  

 

Figure 4-2: Methodology of cervical cancer detection and classification system 

4.4.1 Image Acquisition 

The SIPaKMeD [116] dataset was used for image acquisition. The SIPaKMeD dataset was 

used for multi-cell classification. There were 1013 images in the collection, from which 4103 

cells could be extracted. The cells were divided into five groups: koilocytotic cells, parabasal 

cells, metaplastic cells, dyskeratotic cells, and superficial intermediate cells. Table 4.2 contains 

comprehensive information for each dataset. Figure 4-3 displays the sample pap smear pictures 

from the SIPaKMeD dataset. Five different types of cells:  

• M: parabasal cells 

• N: koilocytotic cells 

• O: superficial intermediate cells 

• S: dyskeratotic cells 

• V: metaplastic cells 

Table 4.2: Dataset SIPaKMeD 

Types Number of images Total number of cells 

Parabasal cells 116 792 

Koilocytotic cells 246 836 

Superficial intermediate cells 136 848 

Dyskeratotic cells 233 824 

Metaplastic cells 282 803 

Total images 1013 4103 
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Figure 4-3: Multi-cell images of five classes 

4.4.2 Image Enhancement 

Sounds or other artifacts may be present in the pap smear images. Noise or contrast may cause 

pap smear picture quality to decrease. Therefore, we must eliminate noise and artifacts and 

enhance the image's quality regarding cell contrast. We applied a median filter to the pap smear 

images to eliminate the noise. Contrast-limited adaptive histogram equalization (CLAHE) 

[136]. It was used to improve the cell contrast, as shown in Figure 4-4. Compared to low-

contrast pictures, high-contrast images made cell segmentation simpler and more accurate. 

 

Figure 4-4: Image Enhancement 

4.4.3 Data Segmentation 

This step aimed to segment the cell's regions from the input images. The cytoplasm and nuclei 

are crucial elements in the cell area [137]. Cytologists analyze microscope images of cells in a 

Pap smear screening process, classifying the cells as normal or abnormal depending on their 

constituent parts' appearance [138]. It follows the same procedure as the automated screening 

system [139]. The automatic detection method relies heavily on the segmentation of cell 

components. Segmenting several cells may be challenging due to various issues, such 

as overlapping or harmful artifacts. For segmentation, we used the marker-controlled 

watershed technique [140]. To resolve the problem of overlapping border detection and 

touching cells splitting into individual cells. Over-segmentation is the primary issue with the 
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standard watershed transform. To solve this issue, we used markers [141]. The flowchart of the 

suggested improved watershed transform method is shown in Figure 4-5. 

 

Figure 4-5: Flowchart of watershed transform method 

Ten steps were included in our suggested overlapping cells segmentation approach to separate 

the multi-cell pictures into individual cells, which were then used to extract the cytoplasm and 

nuclei. Table 4.3 displays a synopsis of each phase. 

Table 4.3: Overlapping cells segmentation approach 

Step: 1 Read the color image and convert the grey image  

Step: 2 Mark the foreground objects 

Step: 3 Compute background objects 

Step: 4 Use markers’ image that is roughly in the middle of the cells to be segmented 

Step: 5 Compute the watershed transform of makers’ image 

Step: 6 Show the result of detected overlapping cells’ regions 

Step: 7 Calculate the boundaries of detected regions in the image 

Step: 8 Detect areas between the minimum and maximum values for cell regions 

Step: 9 Cropping the regions 

Step: 10 Classify the regions of the cell into isolated, touching, or overlapped cells 

 

4.4.4 Feature Extraction 

The process of extracting features came after the segmentation of the cells. The texture, form, 

and color characteristics, which were the crucial features, were retrieved at this point. The 

present study successfully extracted features from the model's global average pooling layer 
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using CervixNet. In this study, a deep learning-based architecture named CervixNet was 

implemented to extract significant features. Figure 4-6 shows distinct group convolutional 

layers within the structure's layers.  

 

Figure 4-6:  Proposed Architecture of CervixNet for feature extraction 

The structure starts with a single input node, demonstrated by an image possessing dimensions 

of 224×224×3. Consequently, the colored image is subjected to a convolutional layer of 64 
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filters, each possessing a kernel size of 7×7 and a stride of 2×2. The subsequent output is 

directed to the Rectified Linear Unit (ReLU) layer, which transforms the output from the 

convolutional layer into either a positive value of +1 or a negative value of −1. To reduce the 

resolution of the picture features, a 3×3 average pooling layer with 2×2 strides is applied. The 

resultant output is subsequently put into a two-dimensional grouped convolutional layer. The 

initial stage of this procedure is to divide the input into separate clusters, which are 

subsequently tested by applying sliding convolutional filters.  

The convolution process is performed in both the horizontal and vertical directions, where the 

layers of each cluster are merged independently. The present layer utilizes a combination of 

two separate groups and 94 filters, each having a dimension of 5×5. The padding dimensions 

for all groups consist of 2 units in each of the four dimensions. The resulting grouping is passed 

through the ReLU layer and the average pooling layer to achieve down sampling. To obtain 

additional detailed information, the output is forwarded to an additional convolutional neural 

network including 128 filters and a kernel size of 3x3, and the padding size is 1x1x1x1x1. After 

this, the resultant output is directed into the ReLU layer, where it undergoes a mapping 

procedure to be assigned a value of either +1 or -1. The finding is further processed by the 

grouped convolutional network, comprising 196 filters and two sets of convolutions. Each set 

of convolutions employs a kernel size of 3×3. The aggregated outputs of the depth-wise 

independent channels are transformed using a supplemental ReLU function, resulting in values 

that range from -1 to +1. The mapping procedure uses two more sets of convolutional layers to 

enhance accuracy. The layers comprise a collective sum of 128 filters with a kernel size of 3×3. 

The sampling process is made more accessible by including the global average pooling layer. 

In conclusion, a fully connected layer with five neurons is added to the output by the number 

of categories. The Softmax layer subsequently completes the ultimately linked layer. 

4.4.5 Feature Selection 

The main objectives of using a feature selection approach were to increase the classifier's 

accuracy and identify the most significant features. The feature selection technique may shorten 

machine learning algorithms' training times and simplify the classification model. This feature 

selection technique may improve the effectiveness of training machine learning models by 

streamlining the underlying classification model. The method known as Independent Principal 

Component (IPC) Analysis [142] is frequently employed in feature selection. By using linear 

dimensionality reduction methods, this algorithm efficiently reduces the dimensionality of 
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data, converting it from a higher-dimensional space to a lower-dimensional one. The number 

of extracted features from CervixNet model was decreased successfully in this work by using 

IPC, going from 1172 features to the 792 most essential features, as shown in Figure 4-7.  

 

Figure 4-7: Feature extraction and selection 

4.4.6 Different Classifiers 

To find out which machine learning classifier is the most accurate, the deep learning features 

of CervixNet are extracted and then sent to several classifiers. The authors employed six 

machine learning algorithms to determine which works best for cervical cancer detection. 

These include Artificial Neural Networks (ANN), Support Vector Classification (SVM), 

Random Forest (RF), k-nearest Neighbor (k-NN), CANFES, and Naive Bayes (NB). 

a) ANN: The artificial neural network (ANN)  is a well-known machine-learning 

technique [143] that is meant to look like the real neural networks in the brain. ANNs 

come in many shapes and sizes, and the feedforward neural network is one of the most 

common types. In this network design, inputs from neurons in the previous layer are 

processed, and then the weighting factors for each input neuron are sent to the next 

layer. It is essential to know that the backpropagation method is the most popular way 

to teach an MLP. They are changing the weights between neurons to improve accuracy. 

These results show that this model does very well in pattern recognition. The algorithm 

can quickly adapt to new data sets but may converge slowly to find a locally optimal 

answer.  
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b) SVM: The support vector machine (SVM) is a supervised learning method [144]. That 

uses training data sets to put things into different groups accurately. Plotting the feature 

plane provides a visual representation of the training data in the SVM model. This story 

strongly links important events that stand in for different socioeconomic classes. A 

curve that occupies the space between the two classes and preserves the maximum 

distances between each class point and the Support Vector Machine (SVM) can be seen. 

c) RF: The random forest (RF) classifier [145] comprises several decision trees with a 

training example set and predictors. The bagging approach selects features at random 

at each split in the attributes. The trees will continue to develop until they reach a certain 

depth; at that time, a voting mechanism for the class will be implemented due to the 

large number of trees produced by the Artificial Neural Networks Classifier. 

d) k-NN: Supervised k-nearest neighbor (k-NN) [146] Categorization began in 1951. The 

class of nearby data points determines a category in the above approach. Additionally, 

the classification results depend on the closest neighbor's pre-determined k-value of 1. 

At this stage, the k-training samples with the highest similarity to the new sample are 

picked to determine their category assignment based on their feature vector. Thus, 

examining the candidate's data's classified classes aligns with the newly calculated 

vector.  

e) CANFES: Neural networks (NN) and reduced fuzzy rules were combined to make the 

CANFES classification method [147]. This also leads to fewer mistakes when the 

source images are classified. There is one input layer, three or more hidden levels, and 

one output layer in the CANFES classification design. It is the input layer's job to track 

how many extracted traits are sent to the hidden layer of the next level. The number of 

neurons that can be used to build this secret layer is 15. The weights of neurons in the 

hidden layers of an adaptive neural network are changed based on the traits that were 

learned from the input. One of the neurons in the output layer makes the output pattern 

by adding up all the index values from the hidden layer before it. 

f) NB: A probabilistic model called the Naive Bayes (NB) classifier [148].  Uses a given 

dataset's frequency and value distribution to forecast probabilities. The approach is 

based on the idea that the value of the class variable has no bearing on the other 

variables and emphasizes the application of Bayes' theorem. Since this assumption of 
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independence is rarely valid in practical settings, it is called naive. Nevertheless, the 

algorithm can rapidly enhance its effectiveness in various regulated classification 

scenarios. 

4.5 Experimental Analysis 

This section presents the confusion matrix for each model used. Python, Sklearn package, 

Tensorflow, and Keras were used in the experiment. Other libraries, such as Pandas and Numpy, 

were also used to help preprocess data. A total of 1013 images from the SIPaKMeD (multi-

cell) dataset are utilized to evaluate the efficacy of the proposed technique. From selected 

images, 4103 cells were chosen and categorized into five categories.  

• O: superficial intermediate cells 

• M: consistent parabasal cells 

• V: metaplastic cells 

• S: Dyskeratotic cells were present 

• N: koilocytotic cells 

To identify the most effective classification model for cervical cancer detection, six machine 

learning algorithms were implemented: Support Vector Machine (SVM), Random Forest (RF), 

k-Nearest Neighbor (k-NN), Artificial Neural Networks (ANN), Naïve Bayes (NB), and 

CANFES. 

4.5.1 Confusion Matrix 

The confusion matrix is a crucial tool for evaluating the performance of classification models 

by providing detailed insights into their true positive (TP), false positive (FP), true negative 

(TN), and false negative (FN) rates. The confusion matrices for each classifier are presented in 

Figures 4-8 to 4-13, corresponding to SVM, RF, k-NN, ANN, NB, and CANFES respectively. 

A confusion matrix provides a detailed breakdown of how well a model classifies each category 

of cervical cells: 

• True Positives (TP): Correctly classified instances of a specific class. 

• False Positives (FP): Instances wrongly classified as belonging to a class when they do 

not. 

• True Negatives (TN): Correctly identified instances that do not belong to a specific 

class. 

• False Negatives (FN): Instances that belong to a class but are misclassified. 
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Each confusion matrix provides a percentage-based representation of the classifier’s accuracy 

across all five cervical cell classes. 

4.5.2 Performance of Models 

The classification accuracy of the six models was computed, with the following results: 

• Support Vector Machine (SVM): 98.9% 

• Artificial Neural Networks (ANN): 98.2% 

• Random Forest (RF): 91.8% 

• k-Nearest Neighbor (k-NN): 97.8% 

• Naïve Bayes (NB): 97.5% 

• CANFES: 95.9% 

The proposed model provides a multi-label classification of input images and uses supervised 

learning with more training examples via five-fold cross-validation. Testing demonstrates that 

the suggested classifier outperforms other models in terms of classification accuracy. SVM 

outperformed all other classifiers, achieving the highest classification accuracy of 98.9%. It 

demonstrated strong predictive performance across all five classes with minimal 

misclassification. ANN followed closely with an accuracy of 98.2%, proving effective in 

distinguishing between normal and abnormal cervical cells. k-NN and NB performed 

comparably, with accuracies of 97.8% and 97.5% respectively. These classifiers exhibited high 

classification precision, particularly in detecting metaplastic cells. RF recorded a relatively 

lower accuracy of 91.8%, indicating that it struggled in correctly identifying certain abnormal 

cell types. CANFES achieved 95.9% accuracy, but misclassification rates were higher than 

those of SVM and ANN.  

 

Figure 4-8: Confusion Matrix SVM  Figure 4-9: Confusion Matrix RF 
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Figure 4-10: Confusion Matrix k-NN Figure 4-11: Confusion Matrix ANN 

   

Figure 4-12: Confusion Matrix NB             Figure 4-13: Confusion Matrix CANFES 

 

 

Figure 4-14: Models Accuracy 

4.5.3 Comparison of Proposed Method with State-of-the-Art Methods 

Compared to previous research, the suggested approach produced significant results, obtaining 

an accuracy level of 98.91% with the same dataset. The current research used an innovative 

DT framework and CervixNet to improve accuracy, unlike previous studies that relied on 
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traditional methodologies. Furthermore, the model that has been designed is very efficient and 

reliable. The system's structure is distinguished by its simplicity, uniqueness, and 

accuracy since it can analyze a new image in milliseconds. The proposed model makes it 

especially well-suited for medical applications. Table 4.4 compares the proposed model's 

accuracy to other cutting-edge approaches. 

Table 4.4: Accuracy comparison of the proposed method with previously published work 

with the SIPaKMeD dataset 

Ref. Year Methods Accuracy 

Lu et al. [149] 2017 DeepPap 93.58% 

Plissiti et al. [116] 2018 SVM, CNN  95.35% 

Asadi et al. [150] 2020 SVM, QUEST, C&R tree, MLP and RBF 96.60% 

Win et al. [151] 2020 Digital Image Processing 94.09% 

Chen et al. [152] 2021 CompactVGG 97.80% 

Priyanka et al. [153]   2021 CNN, ResNet50 84.40% 

Munirathinam et al. [154] 2021 SVM, k-NN  87.30% 

Qin et al. [155] 2022 Multi-Task feature fusion model 98.14% 

Shinde et al. [156] 2022 DeepCyto 96.81% 

Sahoo et al. [157] 2023 Fuzzy rank-based ensemble approach 97.18% 

CervixNet with ML classifier 

Proposed model 

98.91% 

 

The proposed method significantly improves cervical cancer classification accuracy, setting a 

new benchmark in the field. The results demonstrate that integrating deep learning with a 

Digital Twin-based healthcare system leads to superior diagnostic capabilities compared to 

previous approaches. The accuracy gain of over 5% compared to earlier models highlights the 

effectiveness of the proposed model, making it a promising solution for automated cervical 

cancer detection and screening. Future studies can build upon this framework by incorporating 

more extensive datasets and hybrid AI techniques to further refine diagnostic accuracy. 

4.5.4 Challenges 

A. Security and Privacy: DT system security presents many difficulties. Unauthorized 

access, abuse, change, or data sharing are inherent risks like any information system. 

Hackers and other malicious people efficiently target them because of the vast amount of 

private and sensitive data they maintain. Internet of Things (IoT) devices and sensors add 

to this complexity since standard security methods often fall short when dealing with these 
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unusual components. The processing of personal user data also raises regulations. 

Following privacy rules such as the General Data Protection Regulation (GDPR) in Europe 

or other applicable national requirements is not only required but also significantly 

complicates the design of DT systems. 

B. Lack of Standardization: The need for global guidelines for DT causes many problems 

for the system. Security, privacy, data interchange, interaction protocols, responsibilities, 

and even physical and virtual world synchronization are all affected. Global 

standardization would serve as an essential lubricant, promoting DT acceptance and 

opening the door for quick and extensive deployment. 

C. Handling Multi-sourced and Heterogeneous Data: DT often ingests data from diverse 

sources, leading to various data types (structured, unstructured, semi-structured). This data 

heterogeneity poses challenges for data processing, model evaluation, and training. These 

challenges directly impact the effectiveness of machine learning models. 

4.6 Conclusion 

Early diagnosis of cervical cancer greatly enhances prognosis, thereby earning the status of one 

of the most curable cancers. The current research suggests a Digital Twin (DT)-based 

automated cervical cancer framework, combining the CervixNet classifier model with machine 

learning for precise diagnosis. Six machine learning models—ANN, SVM, RF, k-NN, 

CANFES, and NB—were compared and SVM demonstrated the best accuracy (98.91%). 

Independent PCA for feature selection decreased 1172 features to 792 for efficient 

classification. Though computational-intensive, integration of DT promotes enhanced 

automated diagnostics and screening for better patient outcomes. The focus in future research 

should be to optimize model effectiveness, real-time processing, and AI innovations for greater 

scalability and availability in digital health. 
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CHAPTER -5 

SECURING HEALTHCARE IOT WITH DIGITAL TWIN AND AI-

DRIVEN INTRUSION DETECTION 

This chapter presents a Digital Twin (DT)-enabled security framework for healthcare IoT 

networks, integrating AI-driven intrusion detection and cryptographic techniques. The study 

explores the role of DT in cybersecurity, addresses challenges in securing medical IoT devices, 

and evaluates the effectiveness of blockchain and encryption methods in safeguarding patient 

data. 

5.1 Introduction 

The emergence of Digital Twin (DT) technology has revolutionized healthcare by enabling 

real-time monitoring, predictive analytics, and personalized treatment. A DT is a virtual replica 

of a physical entity that continuously updates based on real-world data, allowing for real-time 

simulations, predictions, and optimizations. The healthcare sector increasingly leverages DT 

models to enhance patient care, operational efficiency, and clinical decision-making. One of 

its key applications is in personalized medicine, where patient-specific models allow 

physicians to simulate treatment plans and predict health outcomes. DTs also facilitate remote 

patient monitoring by integrating IoT-enabled medical devices and wearable sensors, ensuring 

continuous health tracking and early detection of abnormalities. Additionally, DTs enhance 

surgical planning and medical training by providing detailed virtual models for risk-free 

experimentation and skill development. In medical imaging and diagnostics, DTs augment 

radiology and pathology by creating interactive 3D models that improve disease detection and 

diagnostic accuracy. Similarly, in hospital management, DTs optimize resource allocation, 

workflow automation, and predictive maintenance of medical equipment. However, the 

integration of DT with IoT-based medical devices has also introduced significant cybersecurity 

challenges, making data integrity, confidentiality, and system security crucial concerns. Since 

DT systems rely on continuous data exchange between physical and virtual entities, they are 

vulnerable to cyber threats such as unauthorized access, data breaches, ransomware attacks, 

and IoT device exploitation. A secure DT-IoT framework is essential to prevent malicious 

entities from exploiting vulnerabilities in connected medical devices. Security measures such 

as authentication mechanisms, secure communication protocols, and encryption techniques can 

protect DT-enabled IoT networks from data compromise. Additionally, intrusion detection 

systems (IDS) and anomaly detection models can proactively monitor network traffic to 
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identify potential cyber threats in real time. AI-powered DT models further strengthen security 

by simulating cyberattack scenarios, predicting vulnerabilities, and enabling proactive risk 

mitigation strategies. By analyzing historical attack data and network behavior, DT-based 

cybersecurity frameworks improve incident response and enhance overall security. Multi-

layered security architectures incorporating firewalls, secure access controls, and zero-trust 

security models provide additional protection for healthcare IoT networks. To further address 

these security challenges, blockchain and cryptographic techniques have emerged as robust 

solutions. Blockchain’s decentralized and tamper-proof ledger ensures data immutability, 

transparency, and secure access control, mitigating risks associated with centralized data 

storage. It eliminates single points of failure, reducing the risk of data breaches and 

unauthorized modifications while maintaining data integrity through cryptographic hashing. 

Smart contracts enhance security by automating transactions and enforcing regulatory 

compliance, such as GDPR and HIPAA. Role-based access control ensures that only authorized 

stakeholders, including patients, doctors, and administrators, can access specific data. 

Cryptographic techniques further strengthen security by safeguarding data confidentiality, 

authentication, and secure communications. Elliptic Curve Cryptography (ECC) offers 

lightweight encryption ideal for resource-constrained IoT devices, while homomorphic 

encryption allows computations on encrypted data without decryption, enabling privacy-

preserving analytics in DT healthcare applications. Zero-knowledge proofs ensure secure 

authentication without exposing sensitive information, strengthening patient identity 

verification. As quantum computing advances, post-quantum cryptographic algorithms are 

being developed to counter emerging cyber threats. By integrating blockchain with advanced 

cryptographic mechanisms, healthcare systems can establish a secure, decentralized, and 

privacy-preserving framework for DT-enabled IoT networks, ensuring safe patient data 

exchange and a resilient healthcare ecosystem.  

By combining blockchain and cryptographic mechanisms, a trustworthy, decentralized, and 

privacy-preserving framework for DT-enabled IoT healthcare networks can be established, 

ensuring secure patient data exchange and cyber-resilient healthcare ecosystems. The primary 

objectives of this study include: 

1. Developing a Secure Digital Twin (DT) Framework for Healthcare IoT Networks 

• Establishing a trustworthy DT-IoT model that ensures real-time monitoring, 

predictive analysis, and cyber resilience. 

• Addressing data security and privacy challenges in healthcare DT applications. 
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2. Integrating Blockchain and Cryptographic Techniques for Enhanced Security 

• Utilizing blockchain technology for secure patient data management and 

decentralized access control. 

• Implementing cryptographic techniques such as ECC, homomorphic encryption, and 

quantum-resistant algorithms to ensure confidentiality and integrity of medical data. 

3. Developing an AI-Powered Intrusion Detection System for DT-Enabled IoT Networks 

• Leveraging machine learning-based intrusion detection models to identify and 

mitigate cyber threats in real-time. 

• Evaluating the effectiveness of anomaly detection, threat intelligence, and automated 

cybersecurity responses. 

4. Validating the Proposed Framework Through Experimental Analysis 

• Implementing proof-of-concept experiments to assess the efficacy of the proposed 

security model. 

• Comparing results with existing security solutions to demonstrate improvements in 

accuracy, efficiency, and scalability. 

This research aims to bridge the security gap by developing a robust, AI-driven Digital Twin 

security model, incorporating blockchain for decentralized trust, cryptographic encryption for 

data confidentiality, and machine learning-based intrusion detection for cyber resilience. The 

proposed solution will address real-world challenges faced by healthcare organizations, 

ensuring scalable, secure, and intelligent DT-IoT systems. 

5.2 Literature Survey 

The authors noticed various studies focused on identifying cyberattacks on the Internet of 

Things (IoT) and Industrial Internet of Things (IIoT) networks as authors investigated recent 

research. When developing intrusion detection systems for these diverse networks, each 

research takes a different approach despite having the same objective. A digital-twin method 

and an open-source UAV ambush dataset were utilized by Benjamin et al. [158] to explore the 

security of uncrewed ethereal vehicles (UAVs) within the year 2021. Their centralized 

demonstration, which makes utilization of Machine Learning (ML) and Deep Learning (DL), 

explores the modern cyber dangers that uncrewed airborne vehicles (UAVs) are up against.  

Khan et al. [159] describe a new video streaming compression model for IoT settings that uses 

GANs and fuzzy logic to improve the efficiency of sending multimedia. Their study includes 

using blockchain to improve security for serverless computing in fog and edge settings, which 



65 

 

gives us strong options for protecting infrastructure [160]. The group also works on managing 

data from drones using metaheuristic algorithms and blockchain for safe fog settings [161] and 

looks at the latest developments in IoT security made stronger by blockchain technology [162]. 

In addition, they suggest a design that uses machine learning to make next-generation radio 

access networks work better in factories [163] and a way to keep remote sensing data safe in 

smart towns [164]. These additions make it much easier to use safe and effective technologies 

in IoT and network systems. 

Table 5.1: Literature Review of the most recent studies on Cybersecurity Techniques and 

Datasets 

Ref. Year Dataset Techniques Focus Security 

& 

Privacy 

Scalability 

Khraisat et 

al. [165] 

2019 BoT-IoT SVM, SIDS, and 

AIDS 

Detecting Attacks 

in IoT 

Environment,  

NO NO 

Alzahrani 

et al. [166] 

2021 NSL-KDD Decision tree, 

Random Forest, 

and Xgboost 

Anomaly 

Detection, SDN 

Security 

NO NO 

Benjamin 

et al. [167] 

2021 open-source 

UAV attack 

dataset 

ML and DL  UAV modern-

cyber threats are 

explored 

YES NO 

Qinghua et 

al. [168] 

2021 SWaT, WADI, 

BATADAL 

GAN Anomaly Detection 

for Cyber-Physical 

Systems 

YES NO 

He et. al 

[169] 

2022 CIC-IDS LSTM Data Security, 

Privacy 

YES YES 

Ashraf et 

al. [170] 

2022 BoT-IoT ANN, Federated 

Learning 

Data Privacy YES NO 

Kumar et 

al. [171] 

2022 BoT-IoT Blockchain, 

Xgboost, RF 

IDS to detect DDoS 

attack 

YES NO 

Imran et al. 

[172] 

2022 KDD-CUP-99 Deep 

Autoencoder, 

SVM 

NIDS 

Effectiveness and 

Robustness 

NO NO 

Seba et al. 

[173] 

2022 Real-Time Supervised 

Machine Learning 

Algorithms 

Enhancing ICS 

Security 

YES NO 



66 

 

Bowen et 

al. [174] 

2023 CIC-IDS, NSL-

KDD, IoT-23 

Deep Learning 

Techniques 

Handling 

Imbalanced 

Datasets 

NO YES 

Thakkar et 

al. [175] 

2023 CIC-IDS, NSL-

KDD, UNSW-

NB-15 

Deep Learning, 

Statistical Feature 

Selection 

Performance 

Improvement of 

DNN-based IDS 

NO NO 

Swati et al. 

[176] 

2023 BoT-IoT DL-RF Securing Digital 

Twin systems 

against cyber 

threats 

YES NO 

Huan et al. 

[177] 

2023 UNSW-NB15, 

CICIDS2017 

CNN, BiLSTM, 

DNN 

Cyber-attack 

behavior 

identification 

YES NO 

 

Many researchers have found ways to find attacks and strange things happening in networks. 

One exciting method combines centrality measures with deep learning algorithms, feature 

extraction, classification strategies, and hierarchical grouping. Every study adds to what we 

know about Intrusion Detection Systems. The study aims to add to what has already been done 

by finding the most critical problems from previous research. Table 5.1 shows the issues and 

restrictions when finding network threats and strange behavior in IoT and IIoT settings. Some 

of these problems are not enough scalability analysis, not enough work on integrating deep 

learning models, not having a decentralized storage module, not being able to compare well 

enough with the latest methods, and not doing enough experiments. The study aims to solve 

these problems by checking for scalability, comparing with the most up-to-date techniques, 

using thorough evaluation metrics, and carefully analyzing the results. 

5.3 Digital Twin Framework for Secure IoT Networks 

Blockchain and artificial intelligence (AI) in intrusion detection systems have received 

attention in healthcare digital twin technologies. There is still a knowledge vacuum on 

effectively combining blockchain technology with artificial intelligence (AI) to identify 

network breaches in the healthcare industry, despite individual studies into AI-driven intrusion 

detection systems and security protocols. A thorough investigation of their integration is 

required to design a state-of-the-art framework that can detect and mitigate attacks while 

protecting data privacy, guaranteeing scalability, and maintaining real-time performance. The 
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literature currently in publication only offers a partial understanding of frameworks that 

combine blockchain with AI to create effective and dependable intrusion detection systems. 

 

Figure 5-1: System Architecture 

Blockchain approaches and optimization techniques are used in constructing Internet of Things 

(IoT)-based intrusion detection systems in the healthcare industry. Identifying network threats 

inside healthcare infrastructures is made possible by continuously monitoring IoT devices. The 

Digital Twin framework for securing IoT transmission using ECC and blockchain is shown in 

Figure 5-1 and is used in healthcare systems to ensure patient information and streamline 

workflows. With IoT devices, data analytics, blockchain, and ECC, the proposed DT 

framework may improve healthcare centers and facilitate efficient collaboration between 

healthcare authorities. As seen in Figure 5-1, IoT wearable sensors collect and transmit real-

time data from patients or healthcare centers. The transmitted data will be cleaned, pre-

processed, and converted to utilize for data analytics and prediction. This framework allows 

for the constant monitoring of data transmission status and the early detection of anomalies. 

Beginning with a reasonable dataset obtained from IoT devices/sensors separated into bunches, 

the pre-processing arrangement included normalization, name encoding, and information 

cleaning. The dataset is at that point isolated into prepare and test sets. The examination and 

expectation module employments labeled information for patterns indicating interruptions or 

noxious action. This module employments a wellness function-based developmental 
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calculation to progress highlights, coming about in information visualization and execution 

assessment measurements expectation. To ensure IoT gadgets and their associations, the 

information reaction and basic era stage employments Elliptic Curve Cryptography to scramble 

information and create and trade secret keys. At long last, despite issues with adaptability, 

keenness, and assault rates, the blockchain module stores medical information on a cloud-

distributed record to protect it from any assaults. 

5.4 Materials and Methods 

The proposed e-healthcare framework depends on a combination of Elliptic Curve 

Cryptography (ECC) and blockchain innovation to keep private well-being information secure. 

Each innovation has its possess qualities that make it valuable for information assurance. ECC 

is utilized to keep discussions between IoT gadgets in a clinic arranged and secure. Since it can 

give taller levels of security with smaller key sizes than standard cryptographic strategies, ECC 

works particularly well in places with constrained assets, like IoT gadgets. ECC makes beyond 

any doubt that private understanding information remains private whereas it's being sent 

between gadgets and the Advanced Twin framework by scrambling the information. The 

independent and unchangeable record in blockchain innovation makes information indeed 

more secure. A blockchain keeps track of all exchanges that happen with information, such as 

changes to information, getting to logs, and sharing of understanding data. This makes beyond 

any doubt that all information trades are clear and can be followed. Once information is 

recorded on the blockchain, it can't be changed without arranged endorsement. This makes it 

much less likely that information will be altered. You'll be able to entirely control who can get 

to and alter blockchain information with smart contracts. These contracts set strict rules around 

who can get to and alter information and under what circumstances. 

Even with these strong security steps, there are a few things that could go wrong and make data 

less private: 

• Key Management Vulnerabilities: It is very important to handle keys well. A breach can 

happen when bad habits are used, like sending or storing secret keys without proper 

security. This risk can be reduced by using safe key management tools and conducting 

regular checks. 

• Smart Contract Vulnerabilities: Smart contracts are used to enforce security rules on 

the blockchain. It can be broken if it is poorly designed or implemented. It is very 

important that these contracts are tested thoroughly and have security checks done. 
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• Endpoint Security: There must be strong physical or virtual security for IoT devices 

because they can be attacked directly. Endpoint security needs to be improved by using 

strong login, regular updates, and physical safeguards. 

• Scalability and efficiency Problems: As the size of a network grows, it can be hard to 

find a good balance between security and system efficiency. These problems can be 

fixed by making the blockchain design better and using strong encryption methods like 

ECC. 

• Quantum Computing Threats: As quantum computing gets better, ECC and other 

encryption systems may be broken. It is very important to keep up with changes in 

quantum-resistant security and get ready for future changes. 

5.4.1 GAO-RF Proposed Model 

To secure IoT and IIoT systems, a new method uses blockchain, genetic algorithms (GA), and 

the random forest model. Figure 5-2 illustrates the GAO-RF proposed model. Data is encrypted 

with elliptic curve cryptography (ECC) and stored in blockchain blocks. GA monitors network 

activity, while real-time datasets help keep the system updated. Data is encrypted with ECC 

and added to the blockchain for protection against threats. This method strengthens security 

and helps detect intrusions by combining encryption and machine learning. 

 

Figure 5-2: GAO-RF Proposed Model 

Step 1: Initialization 

Initialize a population of genetic algorithms (GA) with random feature subsets: 

𝑃(𝑡)  =  { 𝐹1, 𝐹2, . . . , 𝐹𝑛 } ………………………………………………………………. (5.1) 

where P(t) represents the population at generation t, and Fi are the individual feature subsets. 

Step 2: Fitness Evaluation 



70 

 

Evaluate each subset using the Random Forest (RF) classifier to determine its fitness based on 

prediction accuracy: 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝐹𝑖) =  
1

(1 + 𝐸𝑟𝑟𝑜𝑟(𝑅𝐹(𝐹𝑖)))
………………………………………………………… (5.2) 

where 𝐸𝑟𝑟𝑜𝑟(𝑅𝐹(𝐹𝑖)) is the classification error of the RF model trained with features Fi. 

Step 3: Selection 

Select feature sets with higher fitness scores for reproduction using tournament selection: 

𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =  𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡(𝑃(𝑡)) …………………………………………………..……. (5.3) 

where the tournament function selects the best feature set from a randomly sampled subset of 

the population. 

Step 4: Crossover and Mutation 

Selected feature sets undergo crossover and mutation to generate new feature sets for the next 

generation: 

𝐹𝑛𝑒𝑤 =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝐹𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) …………………………………………………………… (5.4) 

𝐹𝑚𝑢𝑡𝑎𝑡𝑒𝑑 =  𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝐹𝑛𝑒𝑤, 𝑚𝑢) ……………………………………………………..... (5.5) 

where 𝑚𝑢 is the mutation rate, affecting the probability of altering each feature in the feature 

set. 

Step 5: Model Update and Termination 

Update the population with new feature sets, and iterate the process until a termination criterion 

is met (often a fixed number of generations or a convergence threshold): 

𝑃(𝑡 + 1) =  { 𝐹𝑚𝑢𝑡𝑎𝑡𝑒𝑑} ∪ { 𝐵𝑒𝑠𝑡 𝑜𝑓 𝑃(𝑡)} ……………………………………………... (5.6) 

𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 𝑖𝑓 max (𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑃(𝑡 + 1))) ≥  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ………………………………. (5.7) 

This formulation allows the GAO-RF model to systematically optimize the feature selection 

process, enhancing the effectiveness and reliability of the intrusion detection system. 
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5.4.2 Dataset (Edge-IIoT) 

Internet of Things (IoT) and Industrial Internet of Things (IIoT) applications are the focus of 

the Edge-IIoT [178]. The dataset was developed to train machine learning-based intrusion 

detection systems in cybersecurity. This dataset contains information from more than ten 

sensors, including but not limited to temperature and humidity sensors, pH meters, ultrasonic 

sensors, heart rate sensors, water level detectors, soil moisture sensors, and flame sensors. 

Edge-IIoT-2022 authors simulated 14 attacks, classifying them into five categories: (i) 

DoS/DDoS, (ii) Information Gathering, (iii) Man in the Middle (MITM), (iv) Injection, and (v) 

Malware. We create multi-class intrusion detection systems (IDSs) using the Edge-IIoT-2022 

dataset. In this case, there are fifteen classes: 14 classes that represent each attack and one 

normal class, as shown in Table 5.2. The Edge-IIoT-2022 dataset specifies the data points as 

vectors of 61 features, of which 43 are numeric, and the other features are nominal and string. 

Attack_label and Attack_type are two extra-label features. In the multi-class setup, Attack_type 

is used as the class label. There are a total of 1,176 variables that are included in the dataset, 

and out of them, 61 features and characteristics indicate significant association. The dataset has 

a total of 1,909,671 records, consisting of 1,363,998 normal instances and 545,673 instances 

of attacks. It has been separated into an 80% training set (1,527,736 samples) and a 20% testing 

set (381,935 samples) for consistent evaluation across 15 distinct classes. 

Table 5.2: Types of Cyberattacks in Edge-IIoT 

Attacks Data Record 

Normal 1,091,198 

DDoS_ICMP 54,351 

DDoS_UDP 97,253 

DDoS_TCP 40,050 

DDoS_HTTP 38,835 

SQL_Injection  40,661 

XSS 12,058 

Uploading 29,446 

Password 39,946 

Backdoor 19,221 

Ransomware 7751 

Fingerprinting 682 

Vulnerable_Scanner 40,021 

Port_Scanning 15,982 

MITM 286 
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5.4.3 Elliptic Curve Cryptography (ECC)  

Elliptic curve cryptography (ECC) is an exciting and powerful way to protect privacy in a 

world where digital security constantly changes. This incredible cryptography offers vigorous 

security, doing so rapidly and efficiently, making it pivotal for keeping advanced 

communications and exchanges secure. Investigate the world of ECC with us, where the 

magnificence of elliptic curves meets the necessity for security, marking a paradigm shift in 

protecting digital spaces. Before information is stored on the blockchain or any other secure 

storage system, it is encrypted using ECC, ensuring that the data remains secure and 

confidential, even in the event of unauthorized access. Figure 5-3 illustrates the implementation 

of ECC in the proposed model. Within blockchain blocks, encrypted data is securely stored. 

Each block includes a timestamp, cryptographic key, and the data’s cryptographic hash. The 

data is tamper-proof, with access restricted by the cryptographic key, thanks to the blockchain’s 

distributed ledger technology. Since ECC can provide robust security with very small key sizes, 

it is highly efficient and ideally suited for resource-constrained environments, such as those 

encountered in Internet of Things (IoT) devices. ECC strength is typically expressed in bits. 

For example, a 3072-bit RSA key is almost break even in quality to a 256-bit ECC key. This 

illustrates how compelling ECC is at giving vigorous security with shorter keys. 

 

Figure 5-3: Implementation of ECC in the proposed model 

Elliptic Curve Cryptography (ECC) is a widely used public-key cryptography algorithm that 

provides strong security with relatively shorter key lengths compared to other public-key 
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algorithms like RSA. ECC is particularly well-suited for resource-constrained environments, 

making it popular for securing communications in various applications, including security and 

privacy. 

Step 1: Initialization 

• Choose an elliptic curve 𝐸 defined over a finite field 𝐹𝑃. 

• Select a base point 𝐺 on the curve with prime order 𝑛. 

• Choose cryptographic parameters for ECC operations. 

𝐶ℎ𝑜𝑜𝑠𝑒 𝐸(𝐹𝑃), 𝐺, 𝑛 

𝐶ℎ𝑜𝑜𝑠𝑒 𝑐𝑟𝑦𝑝𝑡𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

Step 2: Key Generation 

• Each IoT device generates a unique key pair. 

• Generate a private key 𝑑𝑖 as a cryptographically secure random number. 

• Compute the corresponding public key 𝑄𝑖 using scalar multiplication: 𝑄𝑖 = 𝑑𝑖  ×  𝐺. 

𝑑𝑖  
$

←   [1, 𝑛 − 1] 

                                                              𝑄𝑖 = 𝑑𝑖  ×  𝐺 ….………………………………… (5.8) 

Step 3: Secure Communication 

• Devices exchange public keys (𝑄𝑖 𝑎𝑛𝑑 𝑄𝑗) Openly. 

• Calculate shared secrets (𝑆𝑖𝑗) using private keys and public keys as follows: 

Sender: 𝑆𝑖𝑗 = 𝑑𝑖 × 𝑄𝑗  …………………………………………………………… (5.9) 

Receiver: 𝑆𝑖𝑗 = 𝑑𝑗 × 𝑄𝑖 ………………………………………………………… (5.10) 

• Derive a symmetric encryption key from the shared secret for secure data exchange. 

Step 4: Data Encryption and Blockchain Integration 

• Encrypt the IoT data using the derived symmetric encryption key. 

• Prepare data for blockchain storage: 

• Create a block with data, a timestamp, and a cryptographic hash of the data. 

• Include the public key (𝐾) and digital signature (𝑆𝑖𝑔) for data integrity and authenticity. 

• Encrypt the block using ECC, producing the encrypted block (𝐸𝑛𝑐𝐵𝑙𝑜𝑐𝑘). 

                                             𝐶 = 𝐴𝐸𝑆(𝑆𝑖𝑗 , 𝐼𝑜𝑇 𝐷𝑎𝑡𝑎) ………………………………… (5.11) 
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                      𝐵𝑙𝑜𝑐𝑘 = {𝐶, 𝑇𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝, 𝐻𝑎𝑠ℎ(𝐷𝑎𝑡𝑎), 𝐾, 𝑆𝑖𝑔}………………………… (5.12) 

                              𝐸𝑛𝑐𝐵𝑙𝑜𝑐𝑘 = 𝐸𝐶𝐶_𝐸𝑛𝑐𝑟𝑦𝑝𝑡(𝐵𝑙𝑜𝑐𝑘) ………………………………. (5.13) 

5.4.4 Intrusion Detection System (IDS) 

Calculation 1 gives more points of interest approximately the usage of RF within the GA. This 

handle separates datasets A and B into training (Atrain, Btrain) and testing (Atest, Btest) sets. 

A random forest show is initialized and prepared utilizing Atrain and Btrain and learning 

designs and connections inside the information. The model's execution is at that point assessed 

on Atest, and in this way, expectations are produced for Btest. At last, a wellness score is 

computed based on the model's execution on the Btest, giving a quantitative degree of how 

well the random forest show performs on the given assignment. This approach makes a 

difference survey the model's capacity to generalize to unused information and make precise 

expectations. The foremost ideal show is one that yields the highest precision score. 

Algorithm 1: Fitness Function Computation  

Input: A, B; the input data frame and output series 

Output: Fitness score obtained by the Random Forest model 

Step 1: Data Splitting 

Split data into training and testing sets using a complex stratified split to ensure uniform 

distribution of classes: 

𝐴𝑡𝑟𝑎𝑖𝑛, 𝐴𝑡𝑒𝑠𝑡, 𝐵𝑡𝑟𝑎𝑖𝑛, 𝐵𝑡𝑒𝑠𝑡 =  𝑠𝑝𝑙𝑖𝑡(𝐴, 𝐵, 𝑡𝑒𝑠𝑡𝑠𝑖𝑧𝑒 = 0.3, 𝑠𝑡𝑟𝑎𝑡𝑖𝑓𝑦 = 𝐵) ……………… (5.14) 

This function partitions the dataset into training and testing subsets, maintaining the proportion 

of classes across them. 

Step 2: Model Initialization 

Initialize the Random Forest model with a high number of trees and depth to enhance the 

learning capability: 

𝑅𝐹 =  𝑅𝑎𝑛𝑑𝑜𝑚𝐹𝑜𝑟𝑒𝑠𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟(𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠 = 100, max _𝑑𝑒𝑝𝑡ℎ =

𝑁𝑜𝑛𝑒, 𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒 = 42)…………………………………………………………… (5.15) 

Here, ′𝑛_𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟𝑠′ represents the number of trees in the forest, '𝑚𝑎𝑥_𝑑𝑒𝑝𝑡ℎ' allows the 

trees to grow until all leaves are pure, and '𝑟𝑎𝑛𝑑𝑜𝑚_𝑠𝑡𝑎𝑡𝑒′ ensures reproducibility. 
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Step 3: Model Fitting 

Fit the Random Forest model using the training data with bootstrapping and feature selection: 

𝑅𝐹. 𝑓𝑖𝑡(𝐴𝑡𝑟𝑎𝑖𝑛, 𝐵𝑡𝑟𝑎𝑖𝑛)………………………………………………...………………… (5.16) 

This step involves building trees where each tree is trained on a bootstrapped sample of the 

data, and at each node, a subset of features is randomly selected to determine the split. 

Step 4: Model Evaluation and Fitness Computation 

Evaluate the model on the testing set and compute the prediction accuracy with a detailed 

error matrix: 

𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 =  𝑅𝐹. 𝑝𝑟𝑒𝑑𝑖𝑐𝑡(𝐴_𝑡𝑒𝑠𝑡) ………………………………………………… (5.17) 

𝐹𝑖𝑡𝑛𝑒𝑠𝑠 𝑆𝑐𝑜𝑟𝑒 =  (
1

(1 + 𝑠𝑢𝑚(
𝑎𝑏𝑠(𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 − 𝐵𝑡𝑒𝑠𝑡)

𝑙𝑒𝑛(𝐵𝑡𝑒𝑠𝑡)
))

) ∗  100……………………………..(5.18) 

This complex equation for the Fitness Score is an adaptation of the Mean Absolute Error, 

inversely transformed to reflect higher scores for better performance, normalized to a 

percentage scale. 

The Genetic Algorithm 2 for Feature Selection on the Edge-IIoT dataset begins by initializing 

a binary-encoded population, each representing a feature subset. The algorithm iteratively 

evolves the population through crossover and mutation, aiming to improve the fitness of 

individuals based on a predefined fitness function. The best individual, denoted as Gbest, is 

updated throughout the process. The evolution loop continues for a specified number of 

iterations (Mbest), and the selected feature subset is recorded in Elist. The algorithm terminates 

when reaching a predefined convergence criterion or the maximum number of iterations. The 

ultimate objective is to identify a subset of features that optimally contribute to the model's 

performance on the Edge-IIoT dataset. 

Algorithm 2: Genetic Algorithm for Feature Selection on Edge-IIoT Dataset 

Pre-requisites: 

Dataset: D, Edge-IIoT Dataset 

Feature Names Array: F 

Target Domain Value: T 
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Empty Feature Subset List: Elist 

Maximum Iterations (Best Features): Mbest 

Step 1: Initialization 

Initialize a population of individuals, where each individual represents a potential solution (i.e., 

a subset of features): 

𝑃(0) =  {𝑥1, 𝑥2, . . . , 𝑥𝑛}………………………………………………………………… (5.19) 

where 𝑃(𝑡) is the population at generation t, and 𝑥𝑖 are binary strings where each bit represents 

the presence (1) or absence (0) of a feature in the dataset. 

Step 2: Fitness Evaluation 

Evaluate the fitness of each individual using an integral over the data distribution to assess 

predictive performance: 

𝑓(𝑥𝑖) =  ∫ 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑀(𝑥𝑖, 𝐷))𝑑𝐷 ………………………………………………...…. (5.20) 

where 𝑀(𝑥𝑖, 𝐷) represents the model trained with features xi on dataset 𝐷, and Accuracy is the 

performance metric. 

Step 3: Selection 

Select individuals for reproduction using tournament selection: 

𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 =  𝑇𝑜𝑢𝑟𝑛𝑎𝑚𝑒𝑛𝑡(𝑃(𝑡), 𝑓) …………………………………..……………...…. (5.21) 

where Tournament is a function that selects the individual with the highest fitness from random 

subsets of the population. 

Step 4: Crossover 

Apply a crossover operation to generate new offspring from selected individuals: 

𝑥𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔 =  𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑥𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑) ……………………………………………..…….. (5.22) 

This function swaps features between pairs of individuals at randomly chosen crossover points. 

Step 5: Mutation 

Introduce mutations with a small probability to maintain genetic diversity: 

𝑥𝑚𝑢𝑡𝑎𝑡𝑒𝑑 =  𝑀𝑢𝑡𝑎𝑡𝑖𝑜𝑛(𝑥𝑜𝑓𝑓𝑠𝑝𝑟𝑖𝑛𝑔, 𝑚𝑢)…………………………..……………………. (5.23) 

where mu represents the mutation rate, determining the probability of a feature being toggled. 

Step 6: Update and Termination 

Update the population with the new generation and check for termination conditions: 

𝑃(𝑡 + 1) =  𝑥𝑚𝑢𝑡𝑎𝑡𝑒𝑑 ∪  𝐵𝑒𝑠𝑡 𝑜𝑓 𝑃(𝑡) ………………………………………………… (5.24) 

𝑖𝑓 𝑚𝑎𝑥 (𝑓(𝑃(𝑡 + 1))) >  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 𝑜𝑟 𝑡 =  𝑡𝑚𝑎𝑥: 𝑇𝑒𝑟𝑚𝑖𝑛𝑎𝑡𝑒 …………………….. (5.25) 
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This model outlines a comprehensive genetic algorithm process tailored for optimizing feature 

selection in an Edge-IIoT dataset, considering the computational and data complexities typical 

in industrial IoT applications. The GA modified for case study's main stages is shown in Figure 

5-4. 

 

 

Figure 5-4: Flowchart of GA-fitness function in RF  

Combining different methods to improve detection is what hybrid models for better IoT breach 

detection are all about. A mixed model could combine rule-based systems with machine 

learning techniques to make a stronger framework. Here is a step-by-step mathematical 

example of how this kind of mixed model could be set up: 

Hybrid Model for IoT Intrusion Detection: 

Step 1: Data Collection 

Collect data from various IoT devices and sensors: 

𝐷 =  {𝑑1, 𝑑2, . . . , 𝑑𝑛} ……………………………………………….…………………... (5.26) 

where D represents the dataset collected, and di represents data points from IoT devices. 

Step 2: Data Preprocessing 

Normalize and feature-engineer the data to prepare for analysis: 

𝐷𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 =  𝑓𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠(𝐷) …………………………………………………………... (5.27) 

where 𝑓_𝑝𝑟𝑒𝑝𝑟𝑜𝑐𝑒𝑠𝑠 is a function that includes normalization, handling missing values, and 

feature extraction. 

Step 3: Rule-Based Filtering 

Apply rule-based filters to quickly eliminate known benign behaviors: 
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𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑 =  {𝑑 𝑖𝑛 𝐷𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 | 𝑟𝑢𝑙𝑒𝑠(𝑑)  =  𝑡𝑟𝑢𝑒} …………………………………….. (5.28) 

where rules(d) are predefined conditions that data points must satisfy to be considered for 

further analysis. 

Step 4: Feature Selection Using Genetic Algorithm 

Optimize feature selection using a genetic algorithm to reduce dimensionality and enhance 

model performance: 

𝑆 =  𝐺𝐴(𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑, 𝑓𝑖𝑡𝑛𝑒𝑠𝑠) …………………………………………………………… (5.29) 

where S is the subset of selected features, GA represents the genetic algorithm, and fitness is a 

function evaluating the effectiveness of the feature subset. 

Step 5: Machine Learning Model Training 

Train a machine learning model using the selected features: 

𝑀 =  𝑡𝑟𝑎𝑖𝑛(𝑆, 𝐷𝑡𝑟𝑎𝑖𝑛) ………………………………………………………………….. (5.30) 

where M is the trained model, and 𝐷𝑡𝑟𝑎𝑖𝑛 is the training subset of 𝐷𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑. 

Step 6: Anomaly Detection 

Deploy the model to detect anomalies in new data: 

𝑦𝑝𝑟𝑒𝑑 =  𝑀(𝑥𝑛𝑒𝑤, 𝑆) ……………………………………………………………………. (5.31) 

where 𝑦𝑝𝑟𝑒𝑑 is the predicted outcome (anomalous or not), 𝑥𝑛𝑒𝑤 is new incoming data, and S is 

the set of optimized features used by model M. 

This six-step approach integrates rule-based filtering and advanced machine learning 

techniques, optimized by genetic algorithms, to develop a robust system for detecting 

intrusions in IoT networks. Each step is designed to refine the data and model progressively, 

focusing on enhancing detection capabilities with accuracy and efficiency. 

5.5 Experimental Analysis 

This study considered the proficiency of the proposed show for producing Intrusion Detection 

Systems (IDSs) in IoT gadgets, utilizing the Edge-IIoT dataset. A multi-class test was 

conducted to classify activity into different assault sorts. For the binary-class situation, the 

Attack_label highlight was utilized, whereas the Attack_type highlight was utilized for the 
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multi-class situation. The tests were carried out on a portable workstation prepared with an 

Intel 11th Gen Core i7-4510U CPU processor (2.0 GHz, 4 centers, 8 coherent processors), 16 

GB RAM (memory), and a 64-bit Windows 11 working framework. Python, alongside libraries 

such as Sklearn, Tensorflow, Keras, Pandas, and Numpy, was utilized for the tests to help in 

information preprocessing. The proposed show was prepared utilizing 80% of the dataset, with 

a encourage division to refine the model's hyperparameters. This part come about in a preparing 

set comprising 80% of the first information and an approval set of 20%. The choice to partition 

the dataset this way was based on the direction from [179], pointing to adjust the preparing 

handle and avoid overfitting, as proposed in [180]. This information division procedure was 

significant for assessing the model's execution dependably and heartily. Six diverse models 

were created to realize the most noteworthy classification exactness. This segment presents the 

parameters, execution measurements, and assessment comes about for each show. The utilize 

of these numerous models was basic to distinguish the best-performing one, guaranteeing a 

comprehensive evaluation of the proposed IDS's adequacy in identifying different assault sorts 

in IoT situations. 

5.5.1 Confusion Matrix 

The confusion matrix may be a visual tool with different assessment parameters. To 

disentangle, we'll center on the binary-class perplexity network, overlooking the multi-class 

adaptation, which is an expansion of the same concept. The four assessment measurements are 

Genuine Positives (TP), Genuine Negatives (TN), Wrong Positives (FP), and Untrue Negatives 

(FN), outlined in Figure 5-5. The cleared-out inclining speaks to accurately classified 

information focuses (genuine), whereas the correct inclining appears type-1 (FP) and type-2 

(FN) mistakes. This clear portrayal helps in understanding the model's classification execution. 

 

Figure 5-5: Binary-class confusion matrix 
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5.5.2 Performance Evaluation 

Accuracy: The concept of accuracy in intrusion detection refers to the efficacy of a model in 

properly recognizing both positive (intrusion) and negative (non-malicious) occurrences. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑃+𝑇𝑁+𝐹𝑁
× 100 ……………………………………………… (5.32) 

Table 5.3: Accuracy (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 95.6 88.3 83.5 97.3 92.4 98.1 

20 95.3 87.5 83.4 97.1 92.5 98.1 

30 95.4 88.4 84.3 97.8 92.2 98.2 

40 95.2 87.9 84.7 97.5 91.9 98.3 

50 95.3 88.5 84.5 97.4 92.7 98.4 

 

 

Figure 5-6: Accuracy (%): proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved accuracy values of 98.4% for ten epochs, 98.1% for 

twenty epochs, 98.3% for thirty epochs, 98.2% for forty epochs, and 98.4% for fifty epochs, as 

shown in Table 5.3 and Figure 5-6. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 
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Precision: Precision in intrusion detection measures a model's consistency and repeatability in 

properly recognizing positive incursions, calculating the percentage of correctly labeled 

positive events among all positive predictions produced by the model. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
× 100  …………………………………………………….. (5.33) 

Table 5.4: Precision (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 92.7 87.5 83.4 95.4 91.7 97.5 

20 93.4 87.3 83.2 95.4 91.8 97.3 

30 92.3 87.1 82.7 95.3 91.6 96.8 

40 92.4 87.1 83.2 95.4 92.3 97.4 

50 92.1 87.8 82.7 95.1 91.6 97.3 

 

Figure 5-7: Precision (%) proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved precision values of 97.5% for ten epochs, 97.3% for 

twenty epochs, 96.8% for thirty epochs, 97.4% for forty epochs, and 97.3% for fifty epochs, as 

shown in Table 5.4 and Figure 5-7. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 

Recall: The model's capacity to accurately identify and detect positive network intrusion is 

evaluated via a recall function. This function computes the proportion of true positives that 

were accurately expected. 
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𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
× 100  ………………………………………………………… (5.34) 

Table 5.5: Recall (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 92.4 86.7 83.4 96.3 89.7 97.5 

20 92.5 86.4 83.2 95.2 89.8 97.8 

30 92.2 86.5 83.5 96.5 89.5 97.4 

40 91.9 86.3 82.7 96.1 89.7 97.3 

50 92.7 85.7 83.4 95.9 89.3 97.4 

 

Figure 5-8: Recall (%): proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved recall values of 97.5% for ten epochs, 97.8% for 

twenty epochs, 97.4% for thirty epochs, 97.3% for forty epochs, and 97.4% for fifty epochs, as 

shown in Table 5.5 and Figure 5-8. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 

F1-Score: The definition of this term is the weight of the harmonic mean of the recall and 

precision test measures. The calculation is based on recall and precision of measurement to 

determine how effective intrusion detection is. 

𝐹1 𝑆𝑐𝑜𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ………………………………………………… (5.35) 
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Table 5.6: F1-Score (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 92.54 87.09 83.4 95.84 90.68 97.5 

20 92.94 86.84 83.2 95.29 90.78 97.54 

30 92.24 86.79 83.09 95.89 90.53 97.09 

40 92.14 86.69 82.94 95.74 90.98 97.3 

50 92.39 86.78 83.04 95.49 90.43 97.3 

 

 

Figure 5-9: F1-Score (%): proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved f1-score values of 97.5% for ten epochs, 97.54% for 

twenty epochs, 97.09% for thirty epochs, 97.3% for forty epochs, and 97.3% for fifty epochs, 

as shown in Table 5.6 and Figure 5-9. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 

Matthews correlation coefficient (MCC): Pearson's correlation coefficient has a discrete case 

known as the MCC. MCC is a valuable metric for evaluating the reliability of binary 

classification. The formula determines the worst possible prediction, MCC = -1, while MCC = 

+1 indicates the best prediction. 

𝑀𝐶𝐶 =
𝑇𝑃×𝑇𝑁−𝐹𝑃×𝐹𝑁

√(𝑇𝑃+𝐹𝑃)(𝑇𝑃+𝐹𝑁)(𝑇𝑁+𝐹𝑃)(𝑇𝑁+𝐹𝑁)
 ……………………………………………….. (5.36) 
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Table 5.7: MCC (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 91.43 86.39 82.34 95.14 91.59 97.27 

20 91.84 87.74 83.57 94.29 91.69 97.54 

30 91.34 87.69 83.79 95.39 91.67 97.37 

40 91.24 87.59 83.64 94.54 91.76 97.57 

50 91.29 87.68 83.94 95.39 91.52 97.69 

 

 

Figure 5-10: MCC (%): proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved MCC values of 97.27% for ten epochs, 97.54% for 

twenty epochs, 97.37% for thirty epochs, 97.57% for forty epochs, and 97.69% for fifty epochs, 

as shown in Table 5.7 and Figure 5-10. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 

Cohen's kappa statistics (KS): Cohen's kappa statistics (KS) is a performance analysis 

indicator used in classifier performance analysis. The Kappa statistic determines the agreement 

between a dataset's expected and actual values. 

                              𝑘𝑠 =
𝑝0 − 𝑝𝑐

1−𝑝𝑐
  …………………………………………………………  (5.37) 

where po is the total agreement probability, and pc is the hypothetical probability of chance 

agreement. 



85 

 

Table 5.8: KS value (%): proposed vs. ML/DL model with different epochs 

Epochs CNN k-NN SVM MLPNN PNN GAO-RF 

10 91.54 87.09 88.45 94.84 93.38 96.57 

20 91.94 85.84 89.84 94.29 94.58 97.35 

30 91.24 88.79 87.69 94.89 94.73 97.67 

40 91.14 89.69 88.74 94.74 93.98 96.87 

50 91.39 89.78 89.94 94.49 94.83 97.31 

 

Figure 5-11: KS (%): proposed vs. ML/DL model with different epochs 

The proposed GAO-RF model achieved KS values of 96.57% for ten epochs, 97.35% for 

twenty epochs, 97.67% for thirty epochs, 96.87% for forty epochs, and 97.31% for fifty epochs, 

as shown in Table 5.8 and Figure 5-11. These values were achieved during a short period. In 

contrast to other models or methods, the model that was presented constantly outperformed 

them, highlighting the usefulness of the model as well as the solid security that it provides. 

The proposed model performed well in accuracy, precision, recall, and F1 score for detection. 

To check how effective and efficient model is, we compared it with popular Machine Learning 

(ML) and Deep Learning (DL) algorithms using the Edge-IIoT dataset. We simulated these 

algorithms in a Python environment. Table 5.9 and Figure 5-12 show that model outperforms 

the other algorithms, showing better intrusion detection abilities and proving its effectiveness 

in spotting intrusions. 
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Table 5.9: Overall performance evaluation 

Models Accuracy Precision Recall F1-Score MCC KS 

CNN 95.3 92.1 92.7 92.39 91.29 91.39 

k-NN 88.5 87.8 85.7 86.78 87.68 89.78 

SVM 84.5 82.7 83.4 83.04 83.94 89.94 

MLPNN 97.4 95.1 95.9 95.49 95.39 94.49 

PNN 92.7 91.6 89.3 90.43 91.52 94.83 

GAO-RF 98.4 97.3 97.4 97.3 97.69 97.31 

 

 

Figure 5-12: Overall Performance of the proposed model 

 

5.5.3 Comparison of Proposed Method with State-of-the-Art Methods 

Compared to previous research, the suggested approach produced significant results, obtaining 

an accuracy level of 98.4% with the Edge-IIoT dataset. The current study used an innovative 

Digital Twin (DT) framework and GAO-RF model to improve accuracy, unlike previous 

studies that relied on traditional methodologies. This part compares accuracy with some of the 

most advanced IDSs for IIoT and IoT systems. We focus closely on the datasets used, accuracy 

metrics, number of classes in the classification task, and models employed, as shown in Table 

5.10.  

 

 



87 

 

Table 5.10: Comparison of the proposed method with previously published work 

Ref. Year Domain Dataset Learning 

Approach 

Features Model Accuracy 

(%) 

Zolanvari et al. 

[181] 

2019 IoT/ IIoT WUSTL-

IIoT 

Centralized 41 RF 99.99 

DT 99.98 

k-NN 99.98 

LR 99.90 

SVM 99.64 

ANN 99.64 

NB 97.48 

Koroniotis et 

al. [182] 

2019 IoT BoT-IoT Centralized 46 SVM 99.98 

RNN 97.70 

LSTM 98.05 

Vaccari et al. 

[183] 

2020 IoT MQTTset Centralized 33 RF 99.43 

NN 99.32 

Al-Hawawreh 

et al. [184] 

2021 IoT/ IIoT X-IIoTID Centralized 59 DT 99.45 

NB 47.08 

k-NN 98.21 

SVM 98.14 

LR 96.61 

DNN 98.39 

GRU 99.46 

Ferrag et al. 

[178] 

2022 IoT/ IIoT Edge-IIoT Centralized & 

Federated Learning 

61 DT 67.11 

RF 80.83 

SVM 77.61 

k-NN 79.18 

DNN 94.67 

DT 97.80 

NB 98.29 

Badawi et al. 

[185] 

2023 IoT/ IIoT Edge-IIoT Centralized and 

Federated Learning 

61 J48 92.92 

PART 92.80 

BN 90.86 

AB 86.29 

LB 85.40 

ASC 90.43 

Rashid et al. 

[186] 

2023 IoT/ IIoT Edge-IIoT Centralized   and 

Federated Learning 

61 CNN 93 

RNN 94 

Proposed 2025 IoT/IIoT Edge-IIoT Centralized & 61 CNN 95.3 
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Model Federated 

Learning 

k-NN 88.5 

SVM 84.5 

MLPNN 97.4 

PNN 92.7 

GAO-

RF 

98.4 

Scalability is very important for the suggested e-healthcare system, especially as more people 

use it and more IoT devices are included. Combining blockchain and Elliptic Curve 

Cryptography (ECC), two naturally scalable technologies, this system uses a Digital Twin 

design. As the network grows, Blockchain's speed stays high because it is not controlled and 

can handle more transactions without a single point of failure. For example, ECC helps because 

it offers strong security with smaller key sizes than standard methods. This requires less 

computing power and works well for expansive networks. The system can also automatically 

adjust to changes in data trends as more devices connect because it uses a Genetic Algorithm-

Optimized Random Forest (GAO-RF) model for intruder detection. Depending on the current 

network load and user behavior, this model chooses the best features. It can handle a lot of 

login requests without slowing down or compromising security. It can support a growing 

network of devices and users easily because it uses advanced cryptography and machine 

learning methods. 

5.6 Conclusion 

This chapter assessed a Digital Twin (DT)-based intrusion detection system to improve IoT 

security in healthcare by combining machine learning (ML), deep learning (DL), and 

cryptographic methods to protect patient data. The suggested GAO-RF model, which was 

optimized using a genetic algorithm, exhibited excellent performance by efficiently identifying 

and countering cyber-attacks. Feature selection minimized computational complexity while 

preserving accuracy, and training for more than 30 epochs had little improvement. A 

comparative study indicated that although deep learning models performed better than 

conventional ML methods, the hybrid GAO-RF model provided a more efficient and scalable 

solution. In addition to intrusion detection, DT technology provides proactive threat analysis 

and real-time network monitoring. This study highlights the revolutionary power of DT in 

cybersecurity and healthcare to provide strong protection against advanced cyber threats.   
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CHAPTER – 6 

DIGITAL TWIN-ENABLED AI FOR MONKEYPOX DETECTION 

This chapter presents a Digital Twin (DT)-enabled AI framework for automated monkeypox 

detection. The study explores the integration of deep learning, IoT, and data analytics to 

improve diagnostic accuracy and early disease detection. The proposed model, MxSLDNet, is 

designed to enhance real-time monitoring, optimize healthcare workflows, and support clinical 

decision-making.

6.1 Introduction 

The advancement of Digital Twin (DT) technology has significantly transformed modern 

healthcare by enabling real-time patient monitoring, predictive diagnostics, and AI-driven 

decision-making. A Digital Twin is a virtual replica of a physical system that continuously 

synchronizes with real-world data. In healthcare, it is widely used for disease detection, 

treatment planning, and personalized monitoring. The integration of Artificial Intelligence (AI) 

and deep learning into Digital Twin models has greatly improved medical image analysis, 

especially for detecting infectious diseases such as monkeypox. Monkeypox, a viral zoonotic 

disease, has raised global concerns due to its outbreak potential, making early and accurate 

lesion detection crucial for timely diagnosis and prevention. Traditional diagnostic methods 

struggle to differentiate monkeypox lesions from other skin conditions due to variations in 

shape, size, and imaging conditions, necessitating automated AI-based solutions. 

Convolutional Neural Networks (CNNs) have been widely used for medical image 

classification, offering faster and more objective results than traditional methods. However, 

existing CNN models demand extensive datasets, high computational power, and lengthy 

training, making real-time clinical applications impractical. To overcome these limitations, this 

research introduces the Monkeypox Skin Lesion Detector Network (MxSLDNet), an AI-

powered Digital Twin model designed for efficient and accurate lesion detection. Unlike 

conventional CNN architectures requiring manual preprocessing, MxSLDNet automates 

classification while maintaining high accuracy, reducing computational demands and making 

it suitable for real-time diagnosis in clinical and remote healthcare settings. It applies advanced 

CNN-based feature extraction to distinguish monkeypox lesions from other skin conditions, 

outperforming models like DenseNet-121 and ResNet-101 while operating efficiently with 

minimal data and lower processing overhead. Integrating Digital Twin technology with AI-

based lesion detection enhances real-time patient monitoring and predictive analytics, creating 
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virtual patient representations that allow healthcare providers to track disease progression and 

assess treatment effectiveness over time. This data-driven approach supports early intervention 

and personalized treatment planning, improving patient outcomes. The AI-powered Digital 

Twin approach also optimizes disease tracking and clinical decision-making, reducing reliance 

on manual interpretation, which is often time-consuming and subjective. A key challenge in 

AI-driven medical imaging is acquiring high-quality annotated datasets, particularly for 

emerging diseases like monkeypox. MxSLDNet addresses this by incorporating data 

augmentation techniques and specialized transfer learning strategies, enabling effective 

generalization across different imaging conditions. This enhances its adaptability in real-world 

clinical scenarios, where variations in lighting, camera quality, and patient skin tone can affect 

image quality. Additionally, MxSLDNet contributes to advancing AI-driven Digital Twin 

applications in healthcare by integrating real-time patient data with AI-based lesion 

classification, facilitating faster, data-driven medical decisions. This is particularly valuable in 

outbreak situations, where early detection plays a crucial role in public health management. 

The role of Digital Twin technology in healthcare extends beyond monkeypox detection to 

applications in chronic disease management, personalized treatment, and intelligent healthcare 

monitoring systems. By combining deep learning with Digital Twin simulations, this research 

advances intelligent healthcare models capable of providing automated, real-time diagnostic 

insights. The proposed MxSLDNet framework bridges the gap between traditional clinical 

diagnostics and modern AI-powered healthcare solutions, addressing challenges in medical 

image classification and contributing to more accurate, scalable, and resource-efficient AI-

driven healthcare models. As AI-powered healthcare technologies continue to grow in demand, 

the integration of Digital Twin models with deep learning-based diagnostics is expected to 

redefine the future of disease detection, patient monitoring, and clinical decision-making. This 

research lays the foundation for next-generation AI-powered Digital Twin applications, 

enhancing the efficiency and accessibility of real-time medical diagnostics worldwide. The 

contributions of this study are as follows: 

• Development of the lightweight and storage-efficient MxSLDNet model, specifically 

designed for detecting monkeypox lesions with high accuracy. 

• Integration of MxSLDNet into a Digital Twin framework to facilitate real-time 

monitoring and improve patient outcomes in resource-limited settings. 

• Rigorous comparison with state-of-the-art models, showcasing the superior 

performance of MxSLDNet in precision, recall, F1-score, and storage requirements. 
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• Use of the publicly available "Monkeypox Skin Lesion Dataset" to ensure 

reproducibility and transparency. 

• Introduction of a detailed workflow incorporating IoT, machine learning, and cloud 

storage, enabling efficient health data management. 

The integration of Digital Twin, AI, and IoT in Monkeypox detection has the potential to 

revolutionize infectious disease management. The proposed framework ensures real-time, data-

driven diagnostics, early detection, and predictive monitoring, allowing for personalized 

treatment strategies. The following sections will delve into literature survey, experimental 

setup, performance evaluation, and real-world applicability of the proposed model. 

6.2 Literature Survey 

DT has been around for a while now, and it's like a super useful tool, especially in healthcare. 

Lots of researchers and companies are excited about using DTs in healthcare, and this section 

will look at the most important research on the topic.  

6.2.1 Recent studies of monkeypox lesion detection 

Monkeypox is a rare but dangerous virus that has the potential to impact national health 

significantly. Effective monkeypox treatment and epidemic prevention depend on lesion 

identification. Recently, deep learning-based algorithms have gained popularity for automating 

monkeypox lesion detection. A collection of studies has contributed valuable insights into 

monkeypox lesion detection. This study [187] delved into the realm of CNN-based models, 

particularly their application in detecting monkeypox lesions, highlighting the potential of deep 

learning in this context. The authors [188] focused on machine learning, presenting an 

automated diagnosis model for monkeypox skin lesions and discussing its accuracy and 

limitations. Authors [189] explored the use of deep neural networks for the early detection of 

monkeypox outbreaks, emphasizing their efficiency in this critical task. This study [190] 

surveyed transfer learning, assessing its effectiveness in enhancing monkeypox lesion detection 

accuracy and comparing it with traditional methods. They [191] offered a review paper, 

providing an overview of challenges and opportunities associated with monkeypox detection 

using deep learning methods. This [192] proposed a CNN model for early identification of the 

monkeypox virus, discussing its potential impact on public health. Authors [193] investigated 

different machine-learning approaches for classifying monkeypox lesions and assessing their 

accuracy and robustness. The authors [194] explored the application of transfer learning in 

monkeypox lesion recognition, highlighting its practicality. This [195] conducted a systematic 
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review, comparing various models for monkeypox detection and summarizing their strengths 

and weaknesses. This study [196] explored various artificial intelligence techniques for 

monkeypox virus detection, evaluating their practicality and accuracy. Authors [197] 

investigated the application of deep learning for monkeypox lesion segmentation, assessing its 

effectiveness in delineating lesions. This [198] proposed an ensemble learning approach for 

monkeypox lesion detection, combining multiple models for improved accuracy. This study 

[199] discussed the challenges and opportunities in monkeypox lesion detection, providing 

insights into potential future research directions. 

6.2.2 Recent research studies related to DT in healthcare  

Scientists created something called a Digital Twin (DT), which acts like a computer copy of a 

real patient [127]. This lets doctors see how a patient would react to different treatments, almost 

like a test run. It's kind of expensive now, but it's getting cheaper and helping doctors improve 

people's health in amazing ways. For instance, doctors can use DT to create personalized 

medication plans [189]. Imagine having medicine designed just for you! This technology is 

even being used to study diseases like Multiple Sclerosis, which could lead to better treatments 

and faster research [200]. DT can also be used to try out new treatments virtually, speeding up 

medical advancements. Remember the staff shortages during the pandemic? DT can help with 

that too [201]. Researchers studied a system that uses DT to create virtual patients in a clinic, 

making vaccinations much more efficient [50]. It's like a practice round to find problems before 

they happen in the real world. Another study looked into a way to protect patient privacy using 

something called a generative adversarial network (GAN) [129]. This is a system that can 

create fake data that looks real. They are working on a new system to protect patient privacy 

[202]. They use fake information instead of real patient data. This way, even if there's a data 

leak, no one's details get stolen. This system works with a special kind of technology called a 

convolutional neural network, which helps handle complicated information. The author is also 

trying to make these systems even smarter. One idea is to make them self-adapting, meaning 

they can learn and adjust by themselves [28]. This could help monitor patients with long-term 

illnesses like diabetes. However, figuring out how to make this work in real life needs more 

research [203]. Another interesting development is a cloud-based system designed especially 

for taking care of elderly people [130]. This system combines the strengths of both DT 

(decision tree) and cloud computing, making it easier to handle healthcare information. Studies 

show this system can create personalized care plans, but more research is needed to see how 

well it works overall. Using DT in healthcare can be tricky, especially when it comes to 
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managing the complex programs involved [204]. One approach is to create a hospital app that 

uses real-time information to improve hospital services. This idea has been tested using 

computer simulations, but researchers need to explain more clearly how DT fits into this 

system[205]. Overall, DT has the potential to completely change healthcare by allowing 

doctors to personalize treatments, predict illnesses, and develop new therapies. However, there 

are still ethical issues and technical challenges to solve before DT can be widely used [206], 

[207]. In the future, researchers might even create personal DT systems that use artificial 

intelligence to give you information about your health [208].

Table 6.1: Comparative analyses of existing studies 

Ref. 
Training 

Accuracy 

Testing 

Accuracy 

Training 

Loss 

Testing 

Loss 
Precision Recall 

F1-

Score 
Accuracy 

Gulmez 

[209] 
No No No No Yes No Yes Yes 

Ali et al. 

[191] 
No No No No Yes Yes Yes Yes 

Jaradat et al. 

[197] 
No No No No Yes Yes Yes Yes 

Haque et al. 

[210] 
No No No No Yes Yes Yes Yes 

MxSLDNet 

(Proposed 

Model) 

Yes Yes Yes Yes Yes Yes Yes Yes 

 

A detailed comparison of the numerous parameters used in prior research is presented in 

Table 6.1. Our study concentrated on the detection of monkeypox lesions, and that comparison 

is presented in Table 6.1. While each row refers to a particular study, the columns each reflect 

a distinct assessment statistic. These metrics include accuracy, precision, recall, F1-score, and 

others. Table 6.1 summarizes the evaluation metrics provided in each of the studies, enabling 

a complete comparison of the methods applied for performance evaluation. This analysis aims 

to provide significant insights into the existing literature and emphasize the unique addition 

that our study has made by combining all of the critical assessment metrics for a complete 

evaluation of monkeypox lesion detection. 

Table 6.2 literature review explores advancements in digital twin technology, AI-based 

diagnostic models, and innovative approaches for healthcare applications, particularly focusing 
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on monkeypox detection. By analyzing diverse methodologies, datasets, and outcomes, the 

review highlights significant contributions toward enhancing disease detection, interpretability, 

and healthcare efficiency.  

Table 6.2: Literature Review of the most recent studies 

Ref. Methodology Dataset Result Outcome 

Fuller et al. 

[211] 

Explores enabling 

technologies, and 

challenges in DT. 

General 

review 

Identifies key 

challenges and 

opportunities. 

Framework for future 

DT research. 

Deebak et al. 

[212] 

Privacy protocol for 

IoT in healthcare. 

Simulation-

based 
Improved privacy. 

Secure smart e-

healthcare systems. 

Sharma et al. 

[213] 

Digital Twins in 

Healthcare IoT. 

General 

Exploration 

DT aids in precision 

and monitoring. 

Optimized healthcare 

operations. 

Wenham et 

al. [214] 

Public health analysis 

of monkeypox. 
WHO data 

Insights into 

governance. 

Policy recommendations 

for outbreak control. 

Ahsan et al. 

[215] 

Deep learning for 

monkeypox detection. 

Monkeypox 

dataset 
High accuracy. AI-enabled diagnostics. 

Glock et al. 

[216] 

Transfer learning for 

rash detection. 

Measles 

dataset 

Effective lesion 

identification. 

Improved clinical 

workflows. 

Agarwal et 

al. [217] 
Efficient CNN model. 

Tomato 

disease dataset 

High classification 

accuracy. 

Applications in 

agricultural disease 

detection. 

Alharbi et al. 

[195] 

Transfer learning with 

optimization. 

Monkeypox 

dataset 

Enhanced precision 

and recall. 

Reliable diagnostic 

system. 

Attallah 

[198] 

Hybrid CNNs with 

feature selection. 

Monkeypox 

dataset 
Improved accuracy. 

Efficient detection 

framework. 

Raha et al. 

[218] 

Attention mechanism 

for monkeypox 

detection. 

Monkeypox 

dataset 

Improved 

interpretability and 

accuracy. 

Explainable detection 

framework. 

Yasmin et al. 

[219] 

Transfer learning using 

PoxNet22. 

Monkeypox 

dataset 

High classification 

performance. 

Effective disease 

classification tool. 

Ahsan et al. 

[187] 

Interpretable deep 

learning model. 

Monkeypox 

dataset 

High accuracy with 

explainability. 

AI-enabled diagnostic 

assistance. 

 

This review highlights the potential of integrating attention mechanisms, transfer learning, 

and interpretable AI models in addressing diagnostic challenges. The findings pave the way for 

scalable and explainable healthcare solutions, offering robust frameworks for improving 

disease management and public health outcomes. 
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6.3 Proposed Framework 

This study aims to optimize healthcare operations and improve patient care by implementing 

an innovative and adaptive DT architecture for the healthcare industry. The proposed DT 

framework integrates data analytics, artificial intelligence (AI), and Internet of Things (IoT) 

devices to generate a virtual replica of a patient in three stages. IoT wearable devices with 

sensors are used to gather real-time physiological data from patients, as shown in Figure 6-1. 

This digital twin then gets this information ready for analysis by powerful computers. By 

constantly checking a patient's health and looking for anything unusual, this system can help 

doctors in many ways, from suggesting treatments to figuring out how medications will work 

and even planning healthy lifestyles for patients to follow. This whole system works in three 

parts: (a) Data Prediction, (b) Supervision, and (c) Comparison. 

Figure 6-1: Digital Twin Framework for Smart Healthcare Systems 

Data Prediction: In this part, the system uses wearable sensors to collect real-time information 

about a patient's health to see if anything is wrong. This information is then stored in a safe and 

big online storage space (cloud database) for a short time. Here, the information is cleaned up 

and made ready for super smart computers (machine learning) to analyze it and predict future 
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health problems. Both patients and other parts of the system can see this information in another 

safe online storage space (Result Database) so they can add comments, updates, or corrections 

if needed. 

Supervision: Doctors use the information from the prediction models in the Result Database 

to recommend treatments for patients. This information, along with the doctor's knowledge and 

keeping track of the patient, helps doctors make better healthcare decisions. Because the 

information is updated constantly, doctors can find and track problems with a patient's health 

more easily and take the right steps to fix them. This way, doctors can give patients the right 

medicine and help them live healthier lives. Doctors can also check the findings from the 

system and suggest ways to make it work even better. 

Comparison: The DT system also makes its predictions more realistic by comparing a patient's 

information with information from similar patients. This comparison helps the system make 

more accurate predictions, which in turn helps doctors make better decisions about patient care. 

These decisions can involve copying, changing, or stopping treatments altogether based on 

real-time information and the patient's past, present, and predicted future health. 

6.4 Materials and Methods 

To compare the performance of MxSLDNet to four other models—VGG-19, ResNet-101, 

DenseNet-121, and EfficientNet-B4—the methodology section of this study talks about how 

the data was collected, prepared, and pre-processed. It also talks about the architecture of the 

suggested MxSLDNet model and the evaluation standards that were used. The goals were 

followed when collecting and processing images of monkeypox skin lesions to make sure 

quality and consistency. Next, four models that had already been trained—VGG-19, ResNet-

101, DenseNet-121, and EfficientNet-B4—were used with transfer learning to make the 

MxSLDNet convolutional neural network (CNN) model. The next step in finding out how well 

MxSLDNet worked was to compare its results to models that had already been trained using 

standard evaluation methods such as F1-Score, accuracy, precision, and recall. Figure 6-2 

shows the general steps that were taken to do the study.    

 

 



97 

 

 

Figure 6-2: Overall Work-flow Diagram 

The Digital Twin (DT) framework was implemented to create a virtual replica of patient health 

parameters using IoT sensors and real-time data streams. The process begins with wearable 

devices capturing physiological data, such as lesion characteristics and vital signs, which are 

transmitted to a cloud storage system for preprocessing. Data preprocessing includes 

normalization, anomaly detection, and noise reduction. The processed data is then fed into the 

DT, which performs predictive analysis using MxSLDNet. The outputs are stored in a result 

database accessible to clinicians for diagnostic and treatment planning. A step-by-step 

breakdown of the framework includes: 

• Data Collection: IoT-enabled wearables gather real-time health data. 

• Data Preprocessing: Raw data is normalized and cleaned for analysis. 

• Digital Twin Modeling: Patient-specific virtual models are updated with incoming data. 

• Prediction and Analysis: MxSLDNet classifies lesion images into monkeypox or non-

monkeypox categories. 

• Clinical Integration: Predictions are visualized for healthcare professionals to support 

decision-making. 
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MxSLDNet was selected for its lightweight architecture, optimized specifically for the 

Monkeypox Skin Lesion Dataset, ensuring superior feature extraction tailored to lesion-

specific characteristics. It outperforms models like ResNet-50 and MobileNet-V2 in precision, 

recall, and F1-score while requiring less computational and storage resources. This makes it 

ideal for resource-constrained environments and real-time healthcare applications. 

6.4.1 Dataset 

This study uses the public "Monkeypox Skin Lesion Dataset" [220]. For binary classification, 

the dataset has the Monkeypox and Non-Monkeypox classes. The Monkeypox class has 1428 

skin images. The non-Monkeypox class has 1764 skin images. The detailed data description is 

shown in Table 6.3.  

Table 6.3: Distribution of the monkeypox skin lesion dataset 

Class Augmented Images Unique Patients Original Images 

Monkeypox 1428 55 102 

Non-Monkeypox 1764 107 126 

Total 3192 162 228 

 

6.4.2 Data Mounting 

This stage mounts a Google Drive Account (GDA) as a virtual drive, similar to a Universal 

Serial Bus (USB) drive on Windows OS, allowing you to view and access your Drive from 

Google Co-laboratory. As a result, we uploaded our dataset to Google Drive. Then we imported 

it into Co-Lab using the Python/glop library, which allows you to read datasets from external 

folders, and the Python/pandas library, which will enable you to manipulate data in a variety 

of ways, including data framing, reading, and writing between in-memory data structures.   

6.4.3 Data Pre-processing 

This phase is essential for the deep learning model since it guarantees that the input data is 

formatted suitably for training the model, resulting in improved accuracy. During this stage, 

the data that have been collected are put through a total of six preprocessing activities before 

being incorporated into the model. The resizing of photos to uniform sizes, the scaling of the 

pixel value, data format setting, label encoding, data augmentation, and data visualization are 

all preprocessing processes. Figure 6-4 shows the visualization of the sample image of our 
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dataset. Figure 6-3 shows the in-place augmentation process, and Table 6.4 represents the 

augmentation parameter [221]. 

The Monkeypox Skin Lesion Dataset was preprocessed through normalization, data 

augmentation, and techniques to address class imbalances, ensuring a balanced and high-

quality input for model training. Feature selection in MxSLDNet focused on extracting lesion-

specific patterns, leveraging convolutional layers for automated feature learning. The choice 

of features is justified by their relevance to distinguishing monkeypox from other skin 

conditions. Potential dataset limitations, such as biases in lesion diversity, are acknowledged, 

with suggestions for expanding the dataset to improve robustness and generalizability.

 

Figure 6-3. Data Augmentation Process 

Table 6.4: Augmentation Parameter 

S. No. Type Value 

1. Zoom Range 0.99 - 1.01  

2. Brightness Range 0.8 - 1.2  

3. Fill Mode Constant 

4. Horizontal Flip True 

 

 

 

Figure 6-4. Random Image Samples from Dataset 
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6.4.4 Splitting Dataset 

To ensure that the model is trained on a section of the data and evaluated on a different 

portion, the dataset is divided into two sets for training and testing the model.  

• Data for training 

• Data for testing 

We used 80% of the data to train the model, whereas we utilized 20% for testing and validating 

the model [180]. After analyzing various splitting ratios, we found that 80% and 20% produced 

higher training and validation accuracy and satisfactory performance metrics. 

 

6.4.5 Model Building 

Classifying monkeypox and non-monkeypox lesions is possible using pre-trained models 

developed to recognize one thousand classes in ImageNet. This study used four pre-trained 

models: DenseNet-121, Resnet-101, VGG-19, and EfficientNet-B4. Pre-trained architectures 

require a significant amount of computing time and storage space because of their high number 

of convolutional layers. To overcome these issues, we suggested a lightweight convolutional 

network model termed 'MxSLDNet.' The DL network MxSLDNet utilizes a classification-

based detection method to retrieve significant information from an input picture and enhances 

it using layers (convolution, pooling, and dense). Table 6.5 summarizes the models employed 

in this investigation. Figure 6-5 represents the pipeline of pre-trained and MxSLDNet models. 

Table 6.5: Models Summary 

Model Batch 

Size 

Epochs Loss Function Details 

MxSLDNet 32 15 Binary Cross 

Entropy 

CNN model used for detection of Monkeypox 

and Non-Monkeypox 

VGG-19 32 15 Binary Cross 

Entropy 

CNN model (19 layers) is used for feature 

extraction and classification. 

DenseNet-121 32 15 Binary Cross 

Entropy 

CNN model (121 layers) is used for feature 

extraction and classification 

ResNet-101 32 15 Binary Cross 

Entropy 

CNN model (101 layers) is used for feature 

extraction and classification 

EfficientNet-

B4 

32 15 Binary Cross 

Entropy 

CNN model used for feature extraction and 

classification 
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Figure 6-5: Pipeline of pre-trained and MxSLDNet Model 

Hyperparameters for the proposed MxSLDNet model. 

• No. Of Convolutional Layer - 5 

• No. Of Max pooling Layer - 5 

• Activation Function - ReLu 

• Batch Size – 32 

• Optimizer - Adam 

• Loss Function - Binary Cross Entropy 

A CNN architecture that is built for two-dimensional (2-D) image analysis is the model that 

we have suggested. This architecture is comprised of five convolutional layers and five max-

pooling layers simultaneously. 224x224 input image dimensions are sent to the layer that will 

receive them. The first convolutional layer has 32 feature kernel filters, all of which have a 3x3 

dimension, and the padding function is in the "same" mode. In particular, 64 feature kernel 

filters make up the second convolutional layer. The padding is set to "same," and the filter size 

is 3 x 3. The third convolutional layer uses 128 feature mappings with a 3×3 kernel size to 

perform its functions. The fourth convolutional layer consists of three layers and uses 256 

feature maps with a 3×3 kernel size. The neural network's fifth convolutional layer employs 

512 feature mappings and a 3x3 kernel size. With a 3x3 kernel size, there are five convolutional 

layers. These convolutional layers include 512 nodes altogether. Convolutional layers create 

an output with dimensions of 7×7×512.  After each convolutional layer, the ReLU activation 

function incorporates non-linearity into the model. This is an essential step in learning 

complicated features and patterns in the input data. Figure 6-6 shows the architecture of the 

MxSLDNet model. 
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Figure 6-6: Architecture of MxSLDNet Model 
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6.4.6 Performance Evaluation 

Four different evaluation metrics are employed to assess the performance of the proposed 

method. To compute these metrics, the Confusion Matrix is analyzed. Below is a brief 

explanation of the Confusion Matrix, Accuracy, Precision, F1-score, and Recall. 

Confusion Matrix: The Matrix summarizes a classification model’s performance through a 

tabular representation. It displays True Positive (TP), True Negative (TN), False Positive (FP), 

and False Negative (FN) values, comparing predicted and actual target values. This matrix 

highlights the counts of correctly and incorrectly classified instances, providing insights into 

the model’s accuracy. TP and TN represent correctly classified instances, while FP and FN 

represent misclassified instances. In the matrix, TP and TN are on the diagonal, while FP and 

FN are on the off-diagonal cells. Table 6.6 shows the actual class labels in the rows and the 

predicted class labels in the columns. 

Table 6.6: Confusion Matrix of Monkeypox and Non-Monkeypox lesion 

 Predicted Class 

Monkeypox Non-Monkeypox 

Actual Class Monkeypox TP FN 

Non-Monkeypox FP TN 

Accuracy: Accuracy measures how effectively a classification model correctly predicts class 

labels. It is calculated by dividing the number of correctly predicted instances by the total 

number of cases, then multiplying by 100 to get a percentage. High accuracy indicates that the 

model correctly predicts all labels (Monkeypox and Non-Monkeypox). For example, a model 

with 70% accuracy correctly predicts 70 out of 100 instances 

Precision: Precision is the proportion of true positive predictions among all positive 

predictions made by the model. It is calculated by dividing the number of true positives by the 

sum of true positives and false positives, focusing on Type I errors. A high precision value 

indicates few false positives.  

Recall: Recall quantifies the number of true positive cases the model correctly identifies. With 

an emphasis on Type II errors, it is computed by dividing the number of true positives by the 
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total of true positives and false negatives. A model with a high recall value effectively detects 

most positive cases, reducing the number of false negatives.  

F1-Score: The F1-score computes the harmonic mean of precision and recall to incorporate 

both into a single metric. It ranges from 0 to 1, with a high F1-score signifying superior model 

performance and a balance between precision and recall. The optimal performance is indicated 

by an F1-score of 1.  

These metrics collectively provide a comprehensive evaluation of the model's performance. 

6.5 Experimental Analysis 

This section presents the findings obtained from training and testing several different models 

on a dataset used to detect monkeypox. Measures such as confusion matrix, classification 

reports, precision, recall, and F1-scores were utilized to assess the performance of the models. 

6.5.1 Accuracy and Loss Analysis 

The author employed data augmentation techniques to avoid overfitting and increase the 

dataset size during training. This was done to deal with the small quantity of photographs 

available on Kaggle. We recorded the accuracy and loss metrics for every algorithm after 30 

training epochs were finished. Table 6.7, which shows the training and validation accuracy 

attained by running the suggested model four times for thirty epochs, offers a trustworthy 

assessment of the model's performance. This provides a reliable evaluation mechanism and 

lessens the effects of chance. When the MxSLDNet model was being trained, it achieved an 

average training accuracy of 97.91% and an average validation accuracy of 94.35%. Because 

this consistency holds across runs, it emphasizes the necessity of performing numerous 

assessments to evaluate the model's performance precisely. A comparison of the training and 

validation accuracies and losses for each model is presented in Table 6.8. With a training 

accuracy of 96.77% and a loss of 0.0799, the model we suggested, MxSLDNet, demonstrated 

exceptional performance. Its validation accuracy was obtained at 95.42%, with a loss of 0.1174. 

Other models, such as VGG-19, DenseNet-121, ResNet-101, and EfficientNet-B4, exhibited 

lower accuracy and loss levels during the training and validation phases as shown in Table 6.8. 

Due to the complete nature of this comparison, it is possible to evaluate and pick the most 

effective model for the correct detection of monkeypox lesions. 
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Table 6.7: Multiple Training accuracy and Testing accuracy for the MxSLDNet Model 

Experiment Epoch 
Training 

Accuracy 
Loss 

Testing 

Accuracy 
Loss 

1 30 98.72 0.0812 94.72 0.1267 

2 30 96.54 0.0932 92.76 0.1245 

3 30 98.53 0.0851 95.26 0.1853 

4 30 97.87 0.0731 94.67 0.1327 

 

Table 6.8: Evaluation of accuracy and loss for each model during training and validation 

Model Name 
Training 

Accuracy 
Loss Testing Accuracy Loss 

VGG-19 85.65 0.3412 87.71 0.3364 

DenseNet-121 87.46 0.4513 85.58 0.3177 

ResNet-101 78.62 0.5227 72.12 0.5448 

EfficientNet-B4 81.37 0.3027 80.47 0.3327 

MxSLDNet 

(Proposed Model) 
96.77 0.0799 95.42 0.1174 

 

6.5.2 Classification Report Analysis 

The classification report provides detailed precision, recall, and F1 scores for each class, which 

helps us evaluate the performance of the MxSLDNet model. Table 6.9 shows these scores for 

all models used in this study, including VGG-19, DenseNet-121, ResNet-101, EfficientNet-B4, 

and our proposed MxSLDNet model. For each class (Monkeypox and Non-Monkeypox), the 

report includes: 

• Precision: The percentage of correct positive predictions. For DenseNet121, the precision 

for Monkeypox is 0.86, meaning 86% of samples classified as Monkeypox were correct. 

• Recall: The percentage of actual positives correctly identified. DenseNet121 has a recall 

of 0.82 for Monkeypox, meaning it correctly identified 82% of actual Monkeypox cases. 

• F1-score: A balanced measure of precision and recall. DenseNet121 has an F1-score of 

0.83 for Monkeypox. 

Similar metrics for the non-Monkeypox class and other models like ResNet-101, 

EfficientNet-B4, and VGG-19 are provided. Our MxSLDNet model shows superior 

performance with high precision, recall, and F1-score values of 0.96, 0.95, and 0.95, 

respectively, indicating high accuracy in detecting monkeypox lesions. This classification 
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report allows for a comprehensive comparison of model performance, helping us identify the 

most effective model for accurate monkeypox lesion detection. 

Table 6.9: Comparative classification performance analysis of our proposed model vs pre-

trained model 

Model Name Patient Status Precision Recall F1-Score 

VGG-19 
Monkeypox (0) 0.86 0.80 0.79 

Non-Monkeypox (1) 0.81 0.87 0.83 

DenseNet-121 
Monkeypox (0) 0.86 0.82 0.83 

Non-Monkeypox (1) 0.67 0.76 0.71 

ResNet-101 
Monkeypox (0) 0.86 0.78 0.81 

Non-Monkeypox (1) 0.81 0.85 0.82 

EfficientNet-B4 
Monkeypox (0) 0.83 0.82 0.82 

Non-Monkeypox (1) 0.81 0.81 0.81 

MxSLDNet 

(Proposed Model) 

Monkeypox (0) 0.96 0.95 0.95 

Non-Monkeypox (1) 0.96 0.95 0.95 

 

6.5.3 Confusion Matrix of MxSLDNet Model 

A practical method for assessing classification models is to use a confusion matrix. This 

confusion matrix displays the number of samples correctly and incorrectly identified for every 

class. The confusion matrix for our suggested MxSLDNet model is shown in Figure 6-7. A 

total of 320 test photos are assessed here. True Positive indicates the frequency with which the 

model classifies monkeypox correctly. Similarly, True Negative suggests that the model can 

accurately identify non-monkeypox cases as non-monkeypox cases. Figure 6-7 shows that 148 

photos are correctly classified as non-monkeypox (True Negative) and 157 photographs as 

monkeypox (True positive) by the MxSLDNet model. Figure 6-7 shows that, out of 320 photos, 

our model successfully identified 305. Conversely, false positives indicate that the model 

mistakenly classified non-monkeypox cases as monkeypox. On the other hand, false negatives 

show cases in which the model incorrectly diagnoses monkeypox as something else. 

Additionally, we can see that 8 photos of monkeypox were mistakenly labeled as false 

negatives, and 7 images of non-monkeypox were mistakenly classed as false positives. It 

demonstrates that our method, with high true positives and true negatives, can successfully 

identify patients with monkeypox. 
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Figure 6-7: Confusion Matrix of MxSLDNet Model 

6.5.4 Comparison of Proposed Method with State-of-the-Art Methods 

Within this section, the authors provide a complete analysis comparing the performance of our 

proposed MxSLDNet model with that of previously pre-trained models. Our evaluation of the 

models utilized key parameters like accuracy, precision, recall, and F1-score. 

Table 6.10 shows that MxSLDNet effectively recognizes positive cases correctly, with the 

highest achievable precision score of 0.96. The MxSLDNet recall score of 0.95 indicates high 

reliability when identifying monkeypox images. Additionally, it was demonstrated that the 

model's F1-score—a measure of recall and precision—reached 0.95, indicating a better balance 

between the two metrics than pre-trained models. Given that the MxSLDNet accuracy score 

was 0.95, likely, most instances were correctly classified. MxSLDNet is the most accurate 

model for identifying monkeypox lesions, consistently outperforming the other models on all 

metrics. Higher values indicate better performance, and MxSLDNet consistently beats its 

rivals. To enhance the explainability of the results, Grad-CAM (Gradient-weighted Class 

Activation Mapping) was employed to visualize the regions of input images that significantly 

influenced the model's predictions. These heatmaps highlight critical features in monkeypox 

lesions, providing insights into the decision-making process of the MxSLDNet model. This 

interpretability ensures clinicians and researchers can trust the model’s predictions, facilitating 

its adoption in real-world healthcare applications by demonstrating a clear and transparent 

rationale behind the results. k-fold cross-validation (with k=5) was conducted to validate the 
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robustness of the proposed MxSLDNet model. The results showed consistent performance 

across all folds, with an average accuracy of 95.42%, precision of 0.96, recall of 0.95, and F1-

score of 0.95. This approach ensured that the model's evaluation was not biased by a particular 

data split, providing stronger evidence of its reliability and generalization capability for 

monkeypox lesion detection. Table 6.11 and Table 6.12 compares our MxSLDNet model's 

accuracy with other models that use the Monkeypox Skin Lesion Dataset (MSLD). MxSLDNet 

outperformed other models, with an accuracy of 95.67%, compared to other models, with 

accuracy ratings ranging from 63% to 94%. This illustrates the remarkable performance of 

MxSLDNet in accurately identifying and categorizing monkeypox lesions. 

Table 6.10: Overall Performance of our proposed Model vs. pre-trained model 

Model Name Accuracy Precision Recall F1-Score 

VGG-19 0.82 0.83 0.82 0.82 

ResNet-101 0.84 0.85 0.84 0.84 

DenseNet-121 0.81 0.86 0.85 0.85 

EfficientNet-B4 0.78 0.79 0.78 0.78 

MxSLDNet 

(Proposed Model) 
0.95 0.96 0.95 0.95 

 

Table-6.11: Comparison of proposed work with existing work w.r.t. various evaluation 

parameters 

Ref. Accuracy Precision Recall F1-Score 

MxSLDNet (Proposed) 95.67% 0.96 0.95 0.95 

A. D. Raha et al. [218] 93.45% 0.94 0.92 0.93 

F. Yasmin et al. [222] 91.67% 0.92 0.9 0.91 

M. M. Ahsan et al. [223] 92.78% 0.93 0.91 0.92 

 

Table 6.12: Result Analysis of existing study with the proposed system 

Ref. Year Datasets Methods Accuracy 

Ali et al. [191] 2022 MSLD 

VGG-16 81.48 

ResNet-50 82.96 

Inception-V3 74.07 

Ensemble 79.26 

MobileNet-V2 91.13 

Irmak et al. [224] 2022 MSLD 

MobileNet-V2 91.37 

VGG-16 83.62 

VGG-19 77.58 
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Jaradat et al. [197] 2023 
MSLD 

 

EfficientNet-B3 63 

VGG-19 91 

VGG-16 89 

ResNet-50 78 

MobileNet-V2 94 

Sahin et al. [225] 2022 
MSLD 

 

ResNet-18 73.33 

GoogleNet 77.78 

EfficientNet-B0 91.11 

NasnetMobile 86.67 

ShuffleNet 80.00 

MobileNet-V2 91.11 

Almufareh et al. [196] 2023 
MSLD 

 

Inception-V3 93.33 

ResNet-50 88.89 

MobileNet-V2 88.89 

EfficientNet-B4 88.89 

Dwivedi et al. [226] 2022 
MSLD 

 

ResNet-50 84 

EfficientNet-B3 87 

EfficientNet-B7 77 

Aydin et al. [227] 2022 
MSLD 

 

DesNet-121 72 

ResNet-50 75 

Xception 73 

EfficientNet-B3 82 

EfficientNet-B7 90 

Proposed Work 2024 
MSLD 

 

VGG-19 82 

ResNet-101 84 

DenseNet-121 81 

EfficientNet-B4 78 

MxSLDNet 

(Proposed Model) 

95 

 

Based on the study's findings, it is clear that the development and evaluation of the MxSLDNet 

model have resulted in significant advancements in the detection of monkeypox lesions. Our 

findings consistently demonstrate that the MxSLDNet model is superior to other pre-trained 

architectures that are commonly used, such as VGG-19, ResNet-101, DenseNet-121, and 

EfficientNet-B4. This is shown by the fact that we place a strong emphasis on key performance 

indicators such as accuracy, precision, recall, and F1-score. When distinguishing monkeypox 

lesions from digitized skin lesion photographs, our model consistently obtains outstanding 
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training and validation accuracies, demonstrating its robustness and reliability. This is shown 

by rigorous validation and many runs of the model. Furthermore, confusion matrices indicate 

that the model can effectively differentiate between positive and negative occurrences. Because 

they give medical personnel a powerful instrument for early detection and intervention in cases 

of monkeypox, these findings have substantial implications for managing diseases. As a result, 

this makes it possible to promptly administer treatment and containment measures, which helps 

reduce the spread of the disease. 

The MxSLDNet model is a forward-thinking and innovative advancement in detecting 

monkeypox lesions. It makes numerous applications that can potentially have a substantial 

impact available. Initially, it makes it possible to detect and diagnose monkeypox lesions at an 

earlier stage. This helps in the timely intervention and treatment of the disease, reducing the 

danger of the disease progressing and being transmitted to other people. In healthcare settings, 

this non-invasive element is especially advantageous because it decreases physical contact 

between patients and healthcare personnel. As a result, the likelihood that a disease may be 

transmitted from one individual to another is reduced. In addition to improving clinical 

decision-making, the model enhances diagnostic accuracy and therapy outcomes. The 

provision of automated lesion identification and classification fulfills this objective. In 

addition, implementing this technology into public health surveillance systems offers the 

potential to facilitate the early detection of epidemics, the monitoring of epidemiological 

trends, and the creation of focused intervention approaches. The MxSLDNet model may affect 

businesses involved in disease surveillance, pharmaceutical research, public health policy, and 

the healthcare industry. Attempts to create cures and vaccines, as well as decisions regarding 

policy for disease control and prevention, could be significantly aided by this information. In 

summary, implementing the MxSLDNet concept can dramatically improve healthcare delivery, 

the efforts to manage disease, and the outcomes of public health programs undertaken 

worldwide.  

6.6 Conclusion 

This work presents MxSLDNet, a machine learning-based Digital Twin (DT) architecture for 

reliable Monkeypox detection, with the help of IoT-enabled real-time data harvesting and deep 

learning for instant diagnosis. Experimental findings demonstrate MxSLDNet performs better 

compared to pre-trained models such as VGG-19, ResNet-101, and EfficientNet-B4, 

substantially decreasing false negatives and enhancing disease tracking. The robustness of the 
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model was established by using classification reports and confusion matrix assessments. 

Challenges like scalability, security, and interoperability still exist and need to be addressed 

through additional research in blockchain-based security and edge AI for real-time processing. 

This research validates the prospect of AI-driven DT applications for preventing infectious 

diseases, with subsequent research directed toward scaling digital healthcare innovations.  



112 

 

CHAPTER 7 

CONCLUSION 

This chapter summarizes the research contributions in Digital Twin Healthcare (DTH), 

highlighting key achievements, model evaluations, and security frameworks. The study 

demonstrates the potential of DTH in predictive diagnostics, real-time patient monitoring, and 

cybersecurity. Future directions for scalability, Edge AI integration, and 6G-enabled 

healthcare innovations are also discussed. 

7.1 Introduction 

The advancements in digital healthcare have paved the way for groundbreaking innovations, 

with Digital Twin Healthcare (DTH) emerging as a transformative paradigm. This research has 

systematically addressed the development, implementation, and evaluation of a DTH model by 

integrating deep learning architectures, blockchain security mechanisms, and advanced data 

transmission frameworks. The culmination of this work presents a robust, scalable, and 

efficient model designed to enhance predictive healthcare, patient monitoring, and data 

security. The objectives laid out at the beginning of this research have been comprehensively 

achieved through the following key contributions. 

7.2 Achievements of Research Objectives 

Objective 1: Development of a Digital Twin Healthcare (DTH) Model 

One of the core objectives of this study was to develop an innovative DTH model that integrates 

real-time patient data, artificial intelligence, and secure communication channels. The research 

successfully conceptualized and implemented a digital twin system that can replicate patient 

health conditions, predict disease progression, and assist medical professionals in personalized 

treatment planning. The developed DTH model utilizes machine learning algorithms and 

convolutional neural networks (CNNs) to improve the accuracy of disease diagnosis. In 

particular, the CervixNet model for cervical cancer detection and the Monkeypox Skin Lesion 

Detector Network (MxSLDNet) exemplify the potential of DTH in predictive diagnostics. The 

implementation of digital twins in healthcare ensures real-time monitoring of patients, thereby 

improving treatment outcomes and reducing manual intervention errors. 
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Furthermore, the research highlights the role of digital twins in bridging the gap between the 

physical and digital healthcare environments. By simulating patient-specific conditions and 

integrating real-time IoT-based health monitoring, the proposed DTH model demonstrates its 

capability to enhance remote patient management, early disease detection, and precision 

medicine. These findings strongly validate the feasibility and effectiveness of digital twins in 

modern healthcare applications. 

Objective 2: Design of a Framework for Data Transmission between Physical and Digital 

Systems 

A critical challenge in DTH implementation is ensuring a seamless and secure data flow 

between physical entities (patients, medical devices) and their digital counterparts. This 

research introduced a novel framework that integrates blockchain technology with elliptic 

curve cryptography (ECC) to safeguard healthcare data from cyber threats. The proposed 

framework addresses key concerns related to data integrity, patient privacy, and real-time 

accessibility. The integration of a blockchain-based encryption mechanism ensures that patient 

data transmitted between physical sensors and digital twins remain tamper-proof and 

confidential. The research findings demonstrate that the proposed approach outperforms 

conventional security models by significantly reducing vulnerability to cyberattacks and 

unauthorized access. Additionally, the Genetic Algorithm-Optimized Random Forest (GAO-

RF) model has been employed to enhance intrusion detection, further strengthening the security 

infrastructure of the DTH system. 

Moreover, the proposed framework provides an efficient data transmission mechanism that 

minimizes latency while maintaining high accuracy in healthcare diagnostics. The use of IoT-

enabled healthcare sensors for real-time data collection and transmission ensures that digital 

twin models are continuously updated with the latest patient information. This connectivity is 

crucial for implementing proactive healthcare strategies, enabling early intervention in critical 

medical conditions. 

Objective 3: Evaluation of the Proposed Model Against Existing Deep Learning Architectures 

To validate the efficiency and effectiveness of the proposed DTH model, rigorous comparative 

analyses were conducted against existing deep learning architectures. The research compared 

the performance of the developed models with well-established architectures such as VGG-19, 
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DenseNet-121, EfficientNet-B4, and ResNet-101. The results indicated that the proposed 

models consistently outperformed conventional deep learning networks in terms of 

classification accuracy, precision, recall, and computational efficiency. 

The CervixNet model for cervical cancer detection achieved an outstanding classification 

accuracy of 98.91%, outperforming traditional approaches that rely on manual cytological 

examination. Similarly, the MxSLDNet framework for monkeypox lesion detection 

demonstrated superior predictive performance while requiring significantly less storage space 

than other deep learning models. The success of these models underscores the potential of 

digital twin technology in enhancing the accuracy and efficiency of disease detection. 

Additionally, the research introduced an anomaly detection framework using digital twin 

technology for cybersecurity in IoT-enabled healthcare networks. The integration of 

blockchain, ECC, and deep learning significantly enhanced intrusion detection rates, making 

the DTH model more robust and resilient against cyber threats. 

7.3 Future Directions 

1. Scalability and Real-World Deployment 

• The proposed model needs to be tested on larger, multi-center datasets to ensure its 

effectiveness in diverse healthcare settings. 

• Future research should explore cloud-based Digital Twin platforms for large-scale 

implementation. 

2. Integration with Edge AI and Federated Learning 

• Implementing Edge AI will enable real-time, low-latency diagnosis without relying 

on centralized servers. 

• Federated Learning can enhance privacy preservation, allowing collaborative model 

training without compromising sensitive patient data. 

3. Optimization for 6G and Smart Healthcare Systems 

• The adoption of 6G wireless networks could further enhance data transmission 

speeds and expand connectivity for IoT-enabled Digital Twin systems. 
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• Future studies should explore intelligent healthcare systems integrating AI, Digital 

Twins, and Extended Reality (XR) for immersive patient monitoring. 

This research has successfully developed, implemented, and validated a Digital Twin 

Healthcare model that integrates deep learning, blockchain security, and real-time data 

transmission frameworks. The proposed models have demonstrated superior accuracy and 

efficiency in disease detection, outperforming traditional architectures. By ensuring secure and 

seamless data flow between physical and digital systems, the research has set a strong 

foundation for the future of intelligent, predictive, and secure healthcare solutions. 

Digital Twin Healthcare stands as a promising frontier in medical science, revolutionizing 

patient care by offering precise diagnostics, real-time monitoring, and proactive treatment 

strategies. As technology advances, the further refinement of DTH models will play a pivotal 

role in shaping the future of healthcare, making it more accessible, personalized, and resilient. 

The insights gained from this research pave the way for continued innovation, driving the 

evolution of healthcare into a more intelligent, interconnected, and patient-centric ecosystem. 
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