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Design and Development of Time Series Forecasting
Models for COVID-19 Prediction

Naresh Kumar

ABSTRACT

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) trig-
gered the COVID-19 pandemic, which became a global health crisis with severe
impacts on humanity. The first wave of COVID-19 was reported in most countries
at the beginning of 2020, and the World Health Organization (WHO) declared
it a pandemic on March 11, 2020. During the early phase of the pandemic,
most countries relied on non-pharmaceutical interventions, such as bans on in-
ternational travel, mandatory face masks, quarantine protocols, contact tracing,
and complete lockdowns, to curb the spread of the virus. Governments faced
numerous challenges, including educating the public about the pandemic, man-
aging resources, ensuring medical facilities, and addressing economic impacts.
Therefore, identifying future cases and predicting the spread of the virus became
critical for healthcare systems to take proactive measures and minimize casual-
ties. Consequently, predictive analysis of pandemics emerged as a vital research
area, aiding healthcare services and governments in planning and controlling the
spread of COVID-19. The highly contagious SARS-CoV-2 virus spread rapidly
and evolved into numerous mutants and variants, leading to second and third
waves of infections across many countries. Over time, vaccines were developed to
mitigate the impact of COVID-19, adding further complexity to the dynamics of
COVID-19 time series data. This has underscored the importance of developing
models capable of handling highly dynamic and non-stationary data for accurate
time series forecasting associated with multiple waves of the pandemic driven by
successive mutations of the virus.

In this thesis various aspects of the COVID-19 pandemic related to time
series forecasting and modeling are analyzed using state-of-the-art methods and
novel forecasting models. Initially, the well-known forecasting models namely,
Autoregressive Integrated Moving Average (ARIMA), Facebook Prophet (FB-
Prophet), Exponential smoothing models (ETS), Artificial Neural Network (ANN),
and Long Short-Term Memory (LSTM) are evaluated and compared using diverse
datasets spanning different timelines of the pandemic. LSTM outperformed all
the other compared models for the time series forecasting of the COVID-19 cases.
Fuzzy time series (FTS) models are particularly effective at handling uncertain
and imprecise time series data, particularly when the underlying patterns are
nonlinear. Evolutionary optimization has proven to be a powerful approach
for hyperparameter tuning, achieving strong results in complex problem-solving
with minimal computational expense. There are three main hyperparameters
of a FTS model:- i) number of intervals, ii) length of intervals, iii) fuzzy order.
Therefore, two new algorithms based on F'TS with hyperparameter optimization
using PSO are proposed, namely, nested-FTS-PSO, and exhaustive-search-FTS-
PSO. The forecasting results of the algorithms are compared with ARIMA,

1
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FB-Prophet, FTS, and FTS-PSO models using COVID-19 cases from 10 highly
affected countries. Exhaustive-search-FTS-PSO algorithm outperformed all the
other compared models. The integration of fuzzy techniques with deep learning
has emerged as a promising research area, as it enhances both interpretability and
explainability of deep learning based systems. Consequently, the development of a
hybrid fuzzy time series forecasting model that combines FTS, deep learning, and
swarm intelligence is envisioned to achieve more accurate time series forecasting of
dynamic, non-stationary data pertaining to multiple waves of the pandemic caused
by successive mutations of the virus. Deep learning models, specifically, stacked-
LSTM, bidirectional-LSTM, convolution-LSTM, attention-LSTM, attention-bi-
LSTM are integrated with FTS and PSO. The hybrid models are compared with
the ETS, ARIMA, ANN, LSTM, and FTSF-PSO models. Hybrid of FTS, PSO,
and attention-bi-LSTM outperformed all the other compared models on the USA
and India COVID-19 datasets.

Compartmental epidemiological models are among the most traditional and
widely used approaches to represent the progression of an epidemic. Advance-
ments in Artificial Intelligence (AI) hold significant potential to aid in combating
pandemics. Fully leveraging the capabilities of Al, epidemiological modeling,
and optimization techniques in an integrated forecasting solution is crucial for
predicting the impact of a pandemic. Therefore, Susceptible-Infected-Recovered-
Deceased (SIRD) epidemiological model integrating with PSO and deep learning
(stacked-LSTM) is proposed to model the evolution of the COVID-19 pandemic
in India, UK and the USA. Time-varying model parameters are used to deal with
multiple waves of the COVID-19. The proposed hybrid model outperformed the
stacked-LSTM and hybrid of SIRD and PSO. Further, a novel epidemiological
compartmental model, which provides realistic projections of epidemic spread
based on viral characteristics, is proposed, that incorporates time-varying hyper-
parameters and deep learning models. The COVID-19 time series data is highly
dynamic in nature due to rapidly changing transmission rates and government
policy measures such as lockdowns and vaccination campaigns. Recognizing the
numerous factors influencing epidemic spread, a 10-compartmental epidemiological
model is presented, incorporating restriction policies, multi-dose vaccinations, and
vaccine efficacy. COVID-19 case studies of the USA and India are carried out
for demonstrating the efficacy of the proposed approach. The proposed approach
outperformed ETS, ARIMA, ANN, LSTM, and SEIRD models in the performance
evaluation.

Future work may enhance the forecasting accuracy of the proposed models
by integrating advanced optimization algorithms and deep learning techniques.
Time series forecasting models have the potential to drive changes in the society
by enhancing decision-making processes and optimizing resource allocation across
various industries. From this perspective, the models introduced in this thesis
can be utilized across various fields, including economics, healthcare, and public
policy, which can lead to significant positive societal outcomes.
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CHAPTER 1
INTRODUCTION

1.1 COVID-19 Pandemic

Humanity has encountered numerous epidemics and pandemics in the history
[78]. The COVID-19 is a recent pandemic that emerged in December 2019, and
quickly escalated into a global health crisis [239]. Coronaviruses (CoV), known for
causing high-mortality diseases in humans, were first identified in 2002, with bats
recognized as their ecological origin [163]. The Severe Acute Respiratory Syndrome
coronavirus 2 (77) belongs to the coronavirus family which is responsible for the
COVID-19 pandemic. The common symptoms of the virus are respiratory issues,
fever, dry cough, fatigue, sore throat, body aches, headaches, and, in some cases,
diarrhea, nausea, and loss of taste or smell. In severe instances, it can lead to
death [177]. The World Health Organization (77) officially declared COVID-19
a pandemic on March 11, 2020 [96]. The disease, caused by SARS-CoV-2, is
characterized by a highly replicative genome in human cells, enabling rapid spread
[248, 225]. Since its emergence in December 2019, the novel coronavirus has
infected billions of people globally, and claiming the lives of millions of people
[207]. The transmission of COVID-19 occurs in three primary stages which is
described below.

e Local outbreak: During this stage, the chain of virus transmission is
traceable, and the source of infection can be identified. Most cases are
confined to close contacts, such as family or friends, or result from local
exposure.

o Community transmission: At this stage, the source of infection becomes
untraceable, and cases multiply through clusters within communities.

o Large-scale transmission: This stage is marked by the rapid spread of
the virus to different regions, driven by widespread and uncontrolled human
mobility.

COVID-19 exhibits a high mutation rate and spreads rapidly. Infected people
from this virus experience severe respiratory problems. Specifically, people who is
suffering from chronic diseases like diabetes or cardiovascular disease or having
weakened immune system [207]. Controlling the disease poses significant challenges,
as infected individuals may remain asymptomatic or show symptoms only after a
long time period. Measures such as social distancing, widespread testing to identify
positive cases, and isolating infected individuals are crucial to prevent the spreading
of the virus [80]. The first wave of COVID-19 was reported in most countries at
the beginning of the year 2020 [3]. Initially, limited knowledge about the virus
posed challenges in combating its spread. Therefore, governments implemented
preventive measures such as ban on international flights, mandatory face masking,
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isolation, quarantine, contact tracing, thermal scanning, and complete lockdowns.
During the early phase of the pandemic, non-pharmaceutical interventions were the
primary strategies to prevent the spread, including social distancing, quarantine
protocols, market closures, and restrictions on public gatherings [170].

Governments faced numerous challenges, including educating the public, man-
aging resources, sustaining the economy, and providing adequate medical facilities.
Medical centers were overwhelmed during the peak of the pandemic, necessitat-
ing the expansion of emergency and intensive care units to accommodate the
growing number of patients. Various restriction policies were enforced to control
the spread. Extensive research was accelerated to develop vaccines against the
SARS-CoV-2. As vaccines were developed, vaccination programs were rolled
out in phased manner based on priority and availability. Over the course of the
pandemic, SARS-CoV-2 mutated into several variants, leading to multiple waves
[79, 74]. These variants raised concerns due to their higher transmission rates
[164]. Increased infectiousness or resistance to immunity by an variant further
complicated efforts to control the virus. Further, the spread of COVID-19 was
influenced by government-imposed restrictions, vaccination programs, healthcare
infrastructure, and other related factors. WHO declared on May 4, 2023, that
COVID-19 was no longer a global health emergency [126].

1.2 Time series forecasting

Time series forecasting (77) is used to predict future outcome in a sequence of
data points based on past observed values. It involves analysis of seasonality, past
trends, and patterns in the data to make predictions. TSF is widely used in finance,
weather forecasting, energy demand prediction, sales and demand forecasting,
healthcare, operational planning, and many more [34, 137]. Key challenges in TSF
includes dealing with temporal dependency, stationarity, data noise, outliers, data
sparsity, missing values, multivariate data, trend and seasonality [128, 144, 101].
TSF problems have been studied widely in the literature in which COVID-19
forecasting had emerged as one of the complex problem [14]. Time series data of
the COVID-19 cases is highly dynamic in nature due to involvement of the multiple
factors [81]. The data can be utilized to analyze the spread pattern, and perform
the predictive analysis. Such predictions are very useful for shaping policies to
control the outbreak of a pandemic. In this direction, numerous studies have been
conducted to forecast the spread of COVID-19 using various predictive models
[81]. A number of researchers have investigated the baseline prediction models
using different datasets from different data sources. There are many aspects of the
COVID-19 which have been explored by the researchers such as different training,
testing, and forecasting samples in each study. Forecasting models can predict
likely impacts of the disease on communities, aiding in epidemic control efforts.
In recent years, fuzzy time series (?77) modeling has been adopted in many
forecasting studies [244]. FTS offers greater descriptiveness than traditional time
series by providing semantic insights into uncertain and fluctuating data. The
accuracy of any forecasting model is critical for effective decision making and
planning. Existing studies have primarily focused on optimizing one or two
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hyperparameters of FTS to enhance forecasting accuracy [195, 42, 167]. FTS
techniques have demonstrated improved prediction results in various applications
due to use of the optimization techniques. Leveraging these techniques, it is
possible to develop hybrid approaches which can improve forecasting results.
After facing the global spread of infectious COVID-19, studying FTS forecasting
techniques for a pandemic predictions is crucial. In some of the studies, F'TS has
been explored for forecasting COVID-19 cases [222, 62]. Further, experimentation
with additional FTS hyperparameters could yield improved forecasting outcomes.
Developing a prediction model with optimized hyperparameters can significantly
aid in policy formulation and controlling the spread of the virus in the scenarios
similar to the COVID-19.

1.3 Epidemiological compartmental modeling

Epidemiological compartmental models are the most common models that are
usually used for modeling the spread of an epidemic or a pandemic [75]. Epi-
demiological modeling involves dividing a population into distinct compartments
to study the progression and spread of an epidemic [145]. In these models, the
population is assigned to specific labels, such as susceptible, exposed, infected,
suspected, asymptomatic, hospitalized, recovered, dead, etc. [51, 240]. Compart-
mental models are widely used to analyze the flow and spread patterns of out-
breaks. Common baseline models include Susceptible-Infected-Removed (77)[98],
Susceptible-Infected-Recovered-Deceased (77) [65], Susceptible-Exposed-Infected-
Recovered (77) [215], and Susceptible-Exposed-Infected-Recovered-Deceased (77)
[77]. These models use stochastic frameworks to forecast specific measures. These
models describe how susceptible (S) individuals may be exposed (E) to a virus,
become infected (I), and eventually either recover (R) or succumb (D) to the
disease. The likelihood of exposure to infection depends on the contact rate
among susceptible individuals. Most compartmental models focus on disease
spread within a single population confined to a specific region. These models
are unidirectional, as they assume that recovered individuals gain permanent
immunity and cannot re-enter the susceptible population.

Numerous studies have utilized compartmental models to analyze the evolution
of COVID-19 [160, 198]. Extensions of baseline epidemic models have been
developed to more accurately represent the dynamics of the pandemic. However,
most of these models assume time-invariant parameters such as infection and
recovery rates [194]. Various techniques have been introduced to calibrate these
models using COVID-19 time series data [71]. The spread of COVID-19 was
influenced by numerous factors, resulting in diverse data types and information.
The emergence of new variants and changes in governmental policies led to multiple
waves of infection, necessitating the exploration of time-fused and time-variant
models to address the dynamic nature of the pandemic. Following significant efforts
by virologists worldwide, vaccines were developed in an unprecedentedly short time
frame, providing a new avenue for research into the impact of vaccination programs
in combating a pandemic. Designing and developing effective epidemiological
models have become crucial for generating actionable insights and outcomes to
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manage pandemics like COVID-19 effectively.

1.4 Artificial intelligence and optimization tech-
niques

Artificial intelligence (77) assisted forecasting techniques play a vital role in
alerting governments to potential health crises by leveraging available data. In
the case of COVID-19, numerous factors influenced the spread of SARS-CoV-
2, including environmental conditions (temperature, humidity, wind), mobility,
lockdown measures, government policies, social distancing, isolation, age, gender,
incubation period, mask usage, medical facilities, testing, and vaccination. Given
these complexities, it has become increasingly important to address the dynamic
nature of pandemics and provide precise, accurate, and timely risk predictions
to mitigate casualties in crises like COVID-19. To this end, researchers have
explored the potential of Al-integrated forecasting models [5]. Key parameters
analyzed to assess the pandemic’s impact include daily confirmed cases, daily
deaths, daily recoveries, hospitalizations, transmission rates, impact of lockdowns,
government policies, population density, and mobility [108, 28]. Researchers have
157 employed predictive models to analyze the spread of COVID-19 during the early
stages of the pandemic. These studies focused on modeling COVID-19 cases at
various scales, including country, state, city, regional, and global levels, utilizing
publicly available databases for model evaluation. Due to the dynamic nature
of COVID-19, most research concentrated on short-term forecasting. Numerous
machine learning techniques have been proposed, incorporating these factors to
enhance prediction accuracy and align with real-world scenarios.

()

The literature presents a diverse range of Deep Learning (77), Machine Learning
(7?7), and optimization techniques designed to analyze and forecast COVID-19
time series data. Researchers have leveraged ML techniques to study the spread
patterns of the COVID-19 pandemic [246, 140]. Several models have been proposed
for COVID-19 epidemic modeling using computational and machine learning
techniques. For instance, [7] conducted forecasting of confirmed cases, deaths,
and recoveries using Artificial Neural Networks (77) alongside five univariate
time series models. Machine learning models excel at identifying patterns in data,
enabling them to learn from known datasets and generalize to predict future,
unseen scenarios. These capabilities support decision-making through predictive
analysis of time series data and patterns. The ML modeling process typically

(160 involves several steps: data collection, preprocessing, model selection, training,
evaluation with performance metrics, tuning, validation, and final prediction
or output [56, 84]. Traditional optimization methods often require significant
computational resources. Meta-heuristic and evolutionary algorithms, however,
offer efficient alternatives for obtaining optimized solutions [119, 220, 191, 150].

Machine learning models were extensively explored to study the effects of
lockdowns and restriction policies. Many of these studies combined machine
learning or deep learning techniques with epidemiological models to assess the
impact of governmental interventions. In the fight against COVID-19 and its
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variants, several vaccines with varying efficacies were developed. Vaccination
programs were implemented based on priorities and applicability, considering
factors such as the number of doses, population coverage, vaccine availability,
and medical infrastructure. These factors significantly influenced the forecasting
performance of Al models. By integrating data from multiple domains and
leveraging Al and optimization techniques, researchers can address the challenges
posed by pandemics.

1.5 Hybrid time series forecasting models

Forecasting COVID-19 cases is a complex challenge that cannot be effectively
addressed with a single model. AI has demonstrated significant potential in
combating the pandemic through various impactful applications. Al offers viable
solutions for tackling the spread of COVID-19 by enabling predictive analysis,
which has become a critical research focus to support health services and govern-
ments in planning and mitigating the spread of the virus. However, numerous
challenges in COVID-19 forecasting still require attention. Accurately modeling
and predicting the daily spread patterns of the virus can equip healthcare systems
to prepare for and manage the anticipated influx of patients effectively.

Hybrid models that integrate machine learning (ML) and computational
intelligence (7?7) with epidemiological modeling are more powerful and efficient
than standalone techniques. By combining the strengths of individual approaches,
hybrid models address their limitations, enhancing robustness, accuracy, and
overall performance [235, 127]. Researchers have explored various models for
COVID-19 epidemic modeling using ML and computational methods [200, 111, 82].
These models have been tested on diverse datasets, yielding valuable insights to
combat the pandemic. Outcomes include predictions of pandemic spread patterns,
peak times, medical resource requirements, and the effects of restriction policies
and vaccination efforts. Additionally, ensemble models utilizing techniques such
as stacking, bagging, and boosting have been developed to further refine results
and improve accuracy [70, 212].

Combining epidemiological models, ML, and computational intelligence can
result in highly effective prediction models for pandemics akin to COVID-19.
Forecasting infection cases is a critical research area, as it enables healthcare
systems, governments, and societies to prepare for combating the virus. Modeling
disease spread patterns and predicting their impacts are vital for optimizing
planning and managing various services and resources, making this a key focus in
pandemic research.

1.6 COVID-19 Variants and Data Sources

Throughout the course of the COVID-19 pandemic, the SARS-CoV-2 virus under-
went multiple mutations, resulting in the emergence of several variants [79, 74].
Some variants exhibited increased transmissibility or the ability to evade vaccine-
induced immunity [164, 32]. The continuous appearance of new variants has
heightened the risk of a renewed public health crisis. These variants are primarily
classified into three categories: variants of concern (VOC), variants of interest
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(VOI), and variants being monitored (VBM). Details about these variants are
available at online link !, and an overview of SARS-CoV-2 variants of interest can
be found at online link 2. A summary of the well-known SARS-CoV-2 variants is
provided in Table 1.1.

Table 1.1: Widely recognized variants of SARS-CoV-2.

WHO Lineage Status | Reported| Title Date Description

Label Country

Alpha B.1.1.7 and | VBM | United VOC:Dec 29, | It was the first variant
Q lineages Kingdom | 2020; VBM:Sep | which spread quickly

21, 2021 around the world.

Beta B.1.351 and | VBM | South VOC:Dec 29, | It was about 50% more
descendant Africa 2020; VBM:Sep | contagious than the Al-
lineages 21, 2021 pha variant according

to the CDC.

Gamma | P.1 and | VBM | Brazil VOC:Dec 29, | It was indicated that
descendant 2020; VBM:Sep | Gamma variant was
lineages 21, 2021 1.4 to 2.2 times more

transmissible than Al-
pha variant.

Delta B.1.617.2 VBM | India VOC:Jun 15, | It was 85% more trans-
and de- 2021; VBM:Apr | missible than the Al-
scendant 14, 2022 pha variant.
lineages

Omicron | B.1.1.529 VOC South VOC:Nov 26, | It was less severe but
and de- Africa 2021 more transmissible
scendant than the Delta variant.
lineages

‘VOC’: variant of concern, ‘VBM’: variant being monitored

The SARS-CoV-2 virus has undergone numerous mutations resulting from
genetic changes, giving rise to various variants. These variants have had profound
impacts on vaccine efficacy, public health, and the spread patterns of COVID-19.
They have demonstrated differences in transmissibility, virulence, and resistance
to immune responses. Notably, the Delta and Omicron variants exhibited higher
transmissibility, leading to significant surges in infection rates and contributing to
increased mortality and morbidity.

A dataset is essential for evaluating the performance of a model. COVID-19
related data sources have played a major role in assessing models using real-world
data. Most of the forecasting studies have used these data sources to analyze
the spread patterns of COVID-19. The WHO maintained a dashboard to show
real-time COVID-19 cases worldwide. It issued public advisories on symptoms,
precautions, and updates of the COVID-19 regularly. It has played a major role to

thttps://www.who.int /activities/tracking-SARS- Cov-2-variants
2https://covariants.org/
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raising awareness among people. It has helped to contain the spread of the virus.
Various organizations maintained publicly accessible data sources to support the
research community. These data sources were updated regularly using various
techniques ensuring high accuracy. Various statistical and graphical representation
have been provided in the dashboard. Different datasets were created segregating
the available data based on classifications such as COVID-19 cases of a country
or state or region, SARS-Cov-2 variants, and vaccinations data. Researchers have
used different datasets from these data sources to train and test their developed
models. The proposed models in this research are evaluated using datasets from
these data sources. The well-known COVID-19 data sources are included in Table
1.2. The table contains label, description, and publicly accessible url link of a

7 turnitin

data source.

Table 1.2: Publicly available well-known COVID-19 data sources.

Data Label Description Online Link

WHO- WHO dashboard offers latest infor- https://data.who.int/dashboards

Dashboard mation on reported COVID-19 cases
globally.

JHU-CSSE It is a publicly accessible repository  https://github.com/

Repository of COVID-19 cases managed by the CSSEGISandData/COVID-19
CSSE at JHU, USA.

Worldometer It provides latest information on https://www.worldometers.info/

COVID-19 cases globally.

coronavirus/

OurWorld-In-
Data

It offers datasets related to COVID-
19 in various file formats.

https://ourworldindata.org/
coronavirus, https://github.com/
owid/covid-19-data

Harvard- It is a health service provided by Har- https://huhs.harvard.edu/

database vard University that offers COVID- covid-19-information#gsc.tab=0
19 related data.

DataWorld It offers COVID-19-related datasets https://data.world/datasets/
contributed by organizations and covid-19
users worldwide.

CDC It is a data-driven service organiza- https://www.cdc.gov/index.htm
tion that provides public health re-
lated data

ECDC It is a European Union agency that https://www.ecdc.europa.eu/en
manages datasets on COVID-19 and
other diseases.

HealthGoogle It is a public repository by Google https://health.google.com/
that includes raw data and visualiza- covid-19/open-data
tions related to COVID-19.

Statista This website offers free access to https://www.statista.com/page/
global COVID-19 facts and figures.  covid-19-coronavirus

Flevy- It provides COVID-19 trends and https://flevy.com/coronavirus

Dashboard news up to the territorial level.

Oxford- It offers information on COVID-19 https://www.bsg.

database policy measures. ox.ac.uk/research/

covid-19-government-response-tracker

Continued on next page
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Table 1.2 — continued from previous page

Data Label Description Online Link

COVID- It gathers, verifies, and publishes https://covidtracking.com
Tracking- COVID-19 related data.

Project

1.7 Performance Evaluation Metrics

The effectiveness and accuracy of a model in solving a problem are assessed using
performance metrics. These metrics help assess how well a model performs on
a given dataset. They are generally used for comparing different models and
selecting the best one for deployment. Performance metrics provide insights into
the weaknesses and strengths of a model in machine learning, predictive modeling,
and statistical analysis. The following metrics are used to assess the prediction
accuracy of the proposed and compared models in this thesis.

Mean Absolute Error (MAE):

1 N
MAE = =Y |z — % (1.7.1)
N

Root Mean Square Error (RMSE):

1 N
RMSE = J =3 (z— A)? (1.7.2)
=1

Mean Absolute Percentage Error (MAPE):

100 & 3
MAPE = — Z — A (1.7.3)
i=1 <i
Symmetric Mean Absolute Percentage Error (sMAPE):
1 N (2 7
smaApE = 0 Z ’Zzﬁzl (1.7.4)
Root Relative Squared Error (RRSE):
N /- 2 N
—1 (Zi — Zi _ 1
RRSE = J ll;l <Z_ & )2 , where z= =Yz (1.7.5)
Y (F— ) Ni=
Mean Absolute Scaled Error (MASE):
MASE = MAE e MAB e — ——— S A A4 (176)
- MAEnaive7 where naive — N —1 P 2 Zi—1 <.
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where 7; denotes forecasted value and z; denotes actual value for the i** sample,
and N is the sample size.

Providing a controlled environment where modeling results can be observed
and analyzed is an essential aspect of any scientific study. The experimental setup
ensures that the computing resource is same for all the compared studies, results
obtained are reliable, reproducible, and relevant to the research objectives. In this
view, the experimental results are obtained using a system equipped with an Intel
Core i5 processor running at 2.40 GHz, 4 GB NVIDIA GTX-1650 GPU, and 8
GB of RAM. The proposed and compared models are implemented in Python 3.8
or 3.9 in this thesis. Jupyter notebook editor is used to implement the models
and visualize the results.

1.8 Research gaps and research objectives

From an analysis of the literature, the following research gaps which need to be
addressed for time series forecasting of the COVID-19.

1. Comparative evaluation of state-of-the-art time series forecasting models
tailored for COVID-19 prediction is limited. Empirical Analysis of the
models on geospatial separated datasets is necessary to identify an effective
and robust model.

2. COVID-19 time series data is highly dynamic in nature due to rapidly chang-
ing transmission rates and government policy measures such as lockdowns
and vaccination campaigns. There is a need of development of a forecasting
model which can handle the dynamism in non-stationary time series data
effectively.

3. There is a need to design a model which can incorporate COVID-19 mutant
affected population dynamics and produce better prediction results.

4. There is a need to address impact analysis of lockdowns, restrictions policies,
and vaccinations on spread of the COVID-19.

The identified research gaps are framed into four research objectives. The
framed research objectives are listed below.

1. Comparative analysis of state-of-the-art time series forecasting models for
COVID-19 prediction.

2. Development of novel time series forecasting model for COVID-19 prediction.

3. Design of time series forecasting model for predicting COVID-19 for mutant
affected population.

4. Design of novel epidemiological model incorporating lockdowns, mobility
restrictions, and vaccination for COVID-19 prediction.

9
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1.9 Motivation behind the problems addressed
in this thesis

Predictive analysis of spread of an epidemic is become a prominent research area
to support health services and governments in planning and mitigating the spread
of an infectious disease. COVID-19 is one of a pandemics which has shown drastic
dynamics impacting humanity badly. Early studies on COVID-19 were conducted
with limited data available during the initial stages of the outbreak. As the
virus spreaded globally, more comprehensive information became accessible for
analysis. Extensive research was required to understand spread behavior of the
SARS-CoV-2 virus. Artificial intelligence can support in shaping policies and
controlling the outbreak by identifying spread patterns and providing predictive
insights. The datasets of COVID-19 cases from states, countries, and continents
can be utilized in the forecasting studies. The studies can incorporate factors
such as healthcare infrastructure, government policies, vaccination programs,
population demographics, topography, and other conditions into the models for
better prediction results.

Prediction techniques are able to provide viable solutions for fighting against
a pandemic in several ways such as.

o Design and development of effective and efficient prediction techniques to
forecast the outbreak of a pandemic.

o Integration of optimizations and machine learning techniques for the predic-
tions that can help governments in fighting against pandemics such as the

COVID-19.

e Design and development of novel epidemiological compartmental models
incorporating novel aspects of a pandemic.

o Optimal resource planning based on the prediction results.

o Impact analysis of vaccination programs to know the effectiveness of a
vaccine.

1.10 Issues addressed in this thesis and their so-
lutions

o Problem 1: Empirical Analysis of the state-of-the-art time series forecasting
models on geospatial separated datasets is necessary to identify an effective
and robust model.

Chapter 3 presents empirical analysis of well-known statistical and machine
learning models using time series of COVID-19 cases. The study has
incorporated different datasets to evaluate the models. Variety of metrics
are used to check the performance of the models. Firstly, ARIMA and
FB-Prophet models are compared based on forecasting accuracy for infected,
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active, recovered and fatality cases of COVID-19 from 10-highly affected
countries. ARIMA model outperformed the FB-Prophet for all the datasets.
In next experiment, the ARIMA is compared with the LSTM model for the
prediction of COVID-19 cases of the USA, where the LSTM outperformed
the ARIMA models. Lastly, ETS, ARIMA, LSTM, and ANN models are
compared using COVID-19 time series datasets from five countries namely,
the USA, India, Italy, Russia, and the UK. The forecasting accuracy is
evaluated using MAE, RMSE, RRSE, sMAPE, and MASE performance
measures. The Results have shown that the ETS and ARIMA models are
not able to handle the dynamic scenarios whereas, the ANN and LSTM
models effectively captured temporal dependencies in dynamic situations.
The LSTM outperformed the other compared models.

e Problem 2: Design and development of a novel forecasting model is needed
which can handle dynamic time series data effectively.

Chapter 4 focuses on developing a COVID-19 forecasting model based on
Fuzzy Time Series (FTS) with optimized hyperparameters. The FTS offers
semantic interpretation unlike traditional time series models, making it
better suited for handling uncertain and fluctuating data. Particle Swarm
Optimization (PSO) has attracted significant attention among various opti-
mization methods discussed in the literature in recent years. Consequently,
PSO is employed in this chapter to determine optimal solutions for COVID-
19 forecasting. In this chapter, two integrated algorithms combining F'T'S
and PSO are proposed namely, Nested-FTS-PSO and Exhaustive-Search-
FTS-PSO. These algorithms aim to optimize the number of partitions, the
length of partition intervals within the Universe of Discourse (UOD), and
the fuzzy order. The predictive analysis covers two distinct phases of the
COVID-19 pandemic. The first phase (2020), characterized as limited un-
derstanding and the absence of effective containment measures. The second
phase (2021), characterized by increased knowledge and the introduction of
vaccines in many regions. The proposed models are benchmarked against
several state-of-the-art forecasting approaches, including the classic FTS
model, FTS-PSO, FB-Prophet, and ARIMA, using daily confirmed COVID-
19 case data from both phases. The proposed exhaustive-search-FTS-PSO
algorithm demonstrated superior performance in forecasting accuracy among
the evaluated methods.

e Problem 3: Development of a novel model which can incorporate COVID-
19 mutant affected population dynamics to produce better prediction results.

Chapter 5 explores a range of hybrid forecasting models for predicting
COVID-19 cases by integrating the strengths of Fuzzy Time Series (FTS),
contextual deep learning, and PSO for hyperparameter tuning. Classical
time series models often perform poorly on non-stationary data. A prime
example of a non-stationary characteristic is the COVID-19 time series. In
case of COVID-19, the forecasting task becomes even more complex due
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to the influence of diverse factors such as lockdown measures, population
density, SARS-CoV-2 variants, vaccination campaigns, and governmental
policies, making it difficult for a single model to deliver accurate predictions.
To address this challenge, a comprehensive forecasting framework is pro-
posed, comprising four main components: 1) Data preprocessing, 2) FTS
modeling with PSO-based optimization, 3) Deep learning-based forecasting,
and 4) Defuzzification and performance evaluation. The data preprocessing
stage applies three techniques: i) Differencing, ii) Weekly averaging, and
iii) Outlier removal in both training and testing datasets. The number
of intervals is determined using an average-based method, while PSO is
employed to optimize the fuzzy order and define unequal interval lengths.
Fuzzy Logical Relationships (FLRs) are constructed based on the optimal
fuzzy order. A deep learning model is then used to learn patterns from the
fuzzified data and FLRs, enhancing ability of the model to capture complex
dynamics. Specifically, the model incorporates an attention-based Bidirec-
tional LSTM (Bi-LSTM) trained on fuzzified inputs. The proposed hybrid
model is evaluated using COVID-19 confirmed case data from the USA,
India, the UK, Russia, and Italy. Benchmarking against state-of-the-art
forecasting methods shows that the FTS-PSO-attention-Bi-LSTM model
achieves superior performance across multiple error metrics, including MAE,
RMSE, RRSE, sMAPE, and MASE.

Further, an epidemiological compartmental model is employed to analyze the
progression of COVID-19, integrating the SIRD model, PSO, and a stacked-
LSTM network. The model dynamically updates its parameters on a weekly
basis to account for changes brought about by new infection waves or shifts
in government policies. PSO is used to optimize the parameters of the SIRD
model. The stacked-LSTM is trained on the optimized SIRD parameters
derived from the training data. It then forecasts future parameters for the
testing phase. These predicted parameters are subsequently input into the
SIRD model to generate time series forecasts. The proposed hybrid frame-
work is evaluated using COVID-19 case data from three countries namely,
the USA, the UK, and India. Experimental results demonstrate that hybrid
of SIRD, PSO, and stacked-LSTM combined consistently outperforms all
baseline models across all datasets, delivering superior forecasting accuracy.

e Problem 4: Design and development of an epidemiological compartment
model which can address impact analysis of lockdowns, restrictions policies,
and vaccinations for COVID-19.

Chapter 6 presents a novel epidemiological compartmental model that ac-
counts for multi-dose vaccinations, protected individuals, and immunized
susceptibles. The proposed model, referred to as the Susceptible-Exposed-
Infected-Recovered-Deceased-Protected-Vaccinated (SEIRDPV) model, com-
prising ten compartments: Susceptible, Exposed, Infected, Recovered, De-
ceased, Not-fully-vaccinated, Fully-vaccinated, Booster, Protected, and
Immunized susceptible. The model introduces a restriction parameter to
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capture the influence of government interventions, which reflects the effects
of public health measures. This parameter is estimated based on real-world
factors such as the emergence of new variants and the implementation of
restrictions or advisories during specific time periods. The proposed model
parameters are optimized using the PSO algorithm to improve forecasting
accuracy. The SEIRDPV model is applied to two case studies involving India
and the USA, and its performance is benchmarked against five state-of-the-
art models: 1) ETS, 2) ARIMA, 3) ANN, 4) LSTM, and 5) SEIRD. Forecast
accuracy is evaluated using standard error metrics namely, MAE, RMSE,
RRSE, sMAPE, and MASE. The results indicate that machine learning mod-
els tend to perform better in capturing the complex dynamics of pandemic
data characterized by multiple waves. Traditional epidemiological models
like SEIRD, in contrast, rely on fixed hyperparameters and struggle to adapt
to evolving scenarios. However, the proposed SEIRDPV model demonstrates
that when hyperparameters are periodically re-estimated based on real-time
events, epidemiological models can effectively reflect the dynamic nature of
disease spread.

Further, an experimental study is conducted to estimate a resource-optimized
restriction parameter. In this work, the traditional SEIRD model is extended
by introducing an additional compartment representing hospital admission
capacity, resulting in the SEIHRD model. This enhanced model consists of
six compartments: Susceptible (S), Exposed (E), Infected (I), Hospitalized
(H), Recovered (R), and Deceased (D). The study focuses on optimizing the
use of hospital resources by estimating a restriction parameter that ensures
the number of infections remains within the limits of available hospital
beds. Time-varying model parameters are incorporated to reflect changing
pandemic conditions and optimized using the PSO algorithm. Additionally, a
multi-variable LSTM-based deep learning model is used to learn and forecast
the time-dependent parameters of the SEIHRD model. The framework is
evaluated using COVID-19 case data from the USA and India. Results
from the study reveal patterns of both over-utilization and under-utilization
of hospital resources, demonstrating potential of the proposed model for
informing data-driven healthcare policy and capacity planning.

1.11 Organization of the thesis
This thesis is organized into the following chapters:
o Chapter 2: Provides a comprehensive literature review.

« Chapter 3: Focuses on the forecasting framework and evaluation of time series
forecasting models.

o Chapter 4: Proposed hybrid FTS forecasting model with optimizations for
handling the highly dynamic time series data of COVID-19.
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e Chapter 5: Introduces the integration of deep learning and optimization with
F'TS to enhance forecasting accuracy, presenting the proposed methodology. It
also describes a hybrid epidemiological compartmental model integrating with
deep learning techniques.

o Chapter 6: Presents multi-factor epidemiological compartmental model, in-
corporating restriction policies, multi-dose vaccinations, vaccine efficacy, and
time-varying parameters.

o Chapter 7: Summarizes the research findings, social impacts, and outlines
future research directions.
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CHAPTER 2
LITERATURE REVIEW

The COVID-19 forecasting problem has emerged as one of the most complex due
to its highly dynamic spread pattern. FTS modeling offers another approach
to address these dynamics. Additionally, epidemiological models are well-suited
for capturing the evolution of such pandemics. A wide range of time series
forecasting problems have been successfully addressed in the literature using
artificial intelligence (AI). As a result, Al holds significant potential for predicting
the dynamics of the COVID-19 pandemic. In this chapter, COVID-19 prediction
related studied are reviewed. Discussion on the related studies is given in the
following sections.

2.1 Time series forecasting models for COVID-
19

Initially, some of the studies have focused on impact analysis of the governmental
policies which were imposed to control the spread of the COVID-19. Ashcroft
et al. [16] examined the impact of quarantine duration on the COVID-19 out-
break. Their study empirically determined the distributions of the incubation
period, and infectivity. They have evaluated impact of quarantine length on the
onward transmission of SARS-CoV-2 from traced contacts of confirmed cases
and returning travelers from other countries. Researchers have assessed various
forecasting models for predicting COVID-19 trends. In Study [182], the authors
evaluated several models using daily COVID-19 case data from the 10 most af-
fected states in Brazil. They found that the stacking ensemble and Support Vector
Regression (77) models outperformed Autoregressive Integrated Moving Aver-
age (77), Combination-of-Uniform-and-Bias-adjusted-Incremental-Splitting-Trees
(CUBIST), Regression-with-Interaction-terms-and-Dummy-variables-for-Group-
Effects (RIDGE), and Random Forest (??) models. In study [61], the author
developed an ARIMA(p,d,q) model to analyze the epidemiological trends of
COVID-19 in the three most affected European countries namely, Spain, Italy,
and France. The time series data was used from February 21 to April 15, 2020.
The study compared the ARIMA model using different orders (p, d, q), and
identified the optimal orders based on the lowest Mean-Absolute-Percentage-Error
(7?) value. The study concluded that ARIMA model is effective for forecasting
COVID-19 trends. Chintalapudi et al. [46] used a seasonal ARIMA model to
forecast COVID-19 cases in Italy, analyzing data up to March 31, 2020. They
studied the impact of a two-month lockdown, observing a decline in confirmed
cases and an increase in recovered cases. Alabi et al. [4] employed the Facebook
Prophet model to predict COVID-19 spread, including confirmed and death cases.
Arun Kumar et al. [14] examined the forecasting dynamics of cumulative con-
firmed, recovered, and death cases using ARIMA and seasonal ARIMA models,
performing a 60-day forecast for the top 16 affected countries and identifying those
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with exponential case growth. Alasafi et al. [6] used Recurrent Neural Network
(?7?7) and Long Short-Term Memory (7?) models to forecast confirmed and death
cases in Morocco, Malaysia, and Saudi Arabia (up to December 3, 2020). These
models achieved a precision accuracy of 98.58% and 93.45%, respectively. Lyu et al.
[134] analyzed infection doubling times and effective lockdown dates in Victoria,
Australia, using COVID-19 data, restriction policies, and mobility data. They
proposed a simulation model based on Gradient-Boosted-Regression (GBR), RF,
Extreme-Gradient-Boosting (XGBoost) Regression, Decision Tree, SVR, Kernel
Ridge, Elastic Net, Linear Regression (LR), Ridge Regression (RR), Bayesian
Ridge, and LR models, with the GBR model achieving the best performance.
Policies of Indonesian government against COVID-19 were analyzed in [183] using
a systematic review approach. The systematic review has served as a vital tool
for summarizing the evidences.

A range of forecasting models for Fuzzy Time Series (FTS) have been proposed
in the literature, each incorporating different features. A review of these FTS
forecasting techniques is presented in [24]. The authors categorized existing studies
by classifying the stages of FTS forecasting into five main steps: (1) Defining
the universe of discourse (UOD), (2) Partitioning the UOD, (3) Fuzzification, (4)
Establishing fuzzy logical relations, and (5) Defuzzification (if necessary). These
stages are grouped into two main phases: (a) Data partitioning and (b) Prediction
phase. The review discusses data partitioning methods, organizing them in a
hierarchical tree structure with clustering algorithms and optimization techniques
at the leaf level. Panigrahi and Behera [167] addressed two key challenges in
higher-order F'T'S forecasting: determining the optimal interval length within the
UOD and modeling fuzzy logical relationships (77). To determine the optimal
interval length, a modified average-based method is employed, while machine
learning techniques, specifically LSTM, deep belief network (DBN), and support
vector machine (7?) are used for modeling FLRs. Tinh [222] proposed a combined
FTS and Particle Swarm Optimization (?7) model to forecast confirmed COVID-
19 cases in Vietnam. The study demonstrated that the FTS-PSO model achieved
the best performance with 16 partitions and 5th-order FTS when applied to a
one-month COVID-19 dataset from March 4, 2020, to April 7, 2020. Several
researchers have applied the F'T'S optimization concept for COVID-19 forecasting
[33]. Melin et al. [146] introduced an ensemble model using neural networks
and a type-3 fuzzy system for forecasting COVID-19 confirmed cases, enhancing
prediction accuracy with firefly optimization. Xion et al. [231] proposed an
improved seagull optimization algorithm (ISOA) combined with XGBoost for
FTS forecasting of COVID-19 confirmed cases. They used ISOA to optimize
the domain partition and XGBoost for forecasting instead of relying on fuzzy
relations. High-order F'TS models have been shown to offer better forecasting
accuracy compared to first-order F'T'S models. Consequently, most recent studies
have focused on high-order FTS models, as noted in review studies [24, 48].
Furthermore, integrating fuzzy techniques with deep learning has become an
emerging area of research to further improve prediction accuracy.
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2.2 Epidemiological compartmental modeling for
COVID-19

Numerous studies employing epidemiological compartmental models have been
conducted to analyze the spread of the COVID-19. These studies have been
instrumental in shedding light on how diseases like COVID-19 spread. These
studies typically divide populations into compartments and analyze the dynamics
using available data. Researchers have used these models to predict the outcomes
of infectious diseases and trace their evolutionary trajectories. Both standard
epidemic models and their extensions with additional compartments have been
extensively evaluated. The SIR model, introduced by Kermack and McKendrick
[104], is a foundational epidemic model that has been widely applied to study
the COVID-19 pandemic [174, 98, 106]. Similarly, the standard Susceptible-
Exposed-Infectious-Removed (SEIR) model has been analyzed using COVID-19
data in numerous studies [99, 105, 136]. To address the limitations of baseline
models, researchers have proposed extensions. Sarkar et al. [192] introduced a six-
compartment model including susceptible, quarantined susceptible, asymptomatic,
infected, isolated infected, and recovered individuals to better capture the dynamics
of COVID-19. Another model incorporating governmental interventions and
quarantine compartments was proposed by Mandal et al. [141] to study mitigation
strategies for COVID-19 transmission. The outcomes and challenges of various
epidemic models for COVID-19 predictions have also been explored in [9]. However,
most of these models assume time-invariant parameters, limiting their ability to
adapt to dynamic changes such as the emergence of new variants, multiple waves,
government policies, and vaccination programs. As COVID-19 exhibited multiple
waves in its spread, researchers began investigating time-variant parameters to
model these fluctuations [237]. Studies such as [66, 13, 240] explored models with
time-varying parameters, accounting for factors like restriction policies, SARS-
CoV-2 variants, lockdown relaxations, demographics, and vaccination efforts. To
enhance prediction accuracy, researchers also experimented with ensemble and
hybrid models, combining compartmental frameworks, evolutionary algorithms,
fuzzy logic, and machine learning approaches [160, 244, 178, 115]. Following
the development of vaccines, governments initiated phased vaccination programs,
prompting researchers to analyze the impact of programs and evaluate vaccine
efficacy.

Numerous studies examined the effects of vaccination campaigns on controlling
the COVID-19 disease [30, 35, 69, 180, 91]. Olivares et al. [162] employed a
compartmental epidemic model to study the effects of vaccination, social distancing,
and testing on susceptible individuals. Their research quantified the uncertainties
related to these mitigation measures and their influence on disease transmission.
Similarly, [203] proposed a hybrid model that integrates a nonlinear autoregressive
method with radial basis function (NAR-RBF) neural networks, applied within
the Susceptible, Infectious, Treated, Recovered (SITR) framework to examine the
bi-modal transmission pattern of COVID-19. To improve convergence speed and
prediction accuracy, they introduced a novel class of transformations for systems
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of ordinary differential equations. These studies provide valuable insights for
planning, monitoring, and mitigating the spread of COVID-19.

Furthermore, numerous research efforts have leveraged compartmental and
epidemic models to analyze the dynamics of the COVID-19 outbreak [142, 100].
Kong et al. [112] reviewed compartmental structures used in COVID-19 modeling,
analyzing three types of models: meta-population models, SEIR-based expanded
compartment models, and agent-based models. They observed that SEIR models
were adopted to include COVID-19 dynamics, non-pharmaceutical interventions,
and age structures but emphasized the need for further research to address
mutant strains and vaccination impacts. Saldana and Hernandez [189] provided
an overview of mathematical epidemiological models, revisiting deterministic
compartmental frameworks inspired by the work of Kermack and McKendrick,
along with concepts such as effective reproduction numbers, herd immunity, and
vaccination policies. Cangiotti et al. [31] conducted a survey of key Lyapunov
functions for epidemic compartmental models, offering readers tools to apply these
functions to models of their choice. Xiang et al. [233] reviewed 55 studies on
epidemic prediction models and the impact of contact tracing and social isolation
strategies on COVID-19. Their findings highlighted the importance of protective
measures such as face masks, enhanced quarantine, improved reporting rates, and
travel restrictions as the most effective control strategy. They cautioned against
over-reliance on mathematical models for formulating control strategies, stressing
the need for careful interpretation of prediction results. Lee et al. [123] reviewed
42 articles discussing methods, structures, and the roles of mathematical models
in understanding COVID-19 dynamics in Korea. They emphasized the utility of
these models in designing control strategies, evaluating epidemic progression, and
assessing the effectiveness of containment measures. Chen et al. [44] employed
the SEIHRD model to evaluate the risk of a COVID-19 outbreak in Japan. They
divided the period from January 6, 2020, to March 31, 2020, into four phases and
estimated key parameters based on imported cases. Borri et al. [23] introduced
a time-varying Susceptible-Infected-Recovered-Dead (SIRD) model for real-time
optimization of epidemic restrictions. Their framework determines a sequence
of optimized infection rates to balance health and economic costs. Simulation
results using COVID-19 data from Italy suggest that ideal implementation of this
approach could reduce deaths by 76.71% compared to actual reported figures.

Zhou et al. [247] analyzed the relationship between mobility patterns, inter-
vention policies, and SARS-CoV-2 transmission in the USA using VAR models
and the Toda-Yamamoto Granger causality test. Their study examined spatial
and temporal variations across different states and phases, utilizing mobility and
COVID-19 policy datasets. Results indicate that face mask mandates and emer-
gency declarations were the most effective NPIs in controlling the spread in the top
ten states. Miikkulainen et al. [147] proposed an evolutionary Al-driven model to
automatically determine the most effective NPIs. They trained an LSTM-based
model on infection data to generate optimal NPI recommendations for mitigat-
ing the spread of COVID-19. Martins et al. [143] have proposed N-step-ahead
optimal control strategies against an epidemic using a SETHRD epidemiological
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model. The authors have experimented five type of strategies based on isolation
of cases, tracking of new cases, interrupt the transmission by restrictions and
lockdown, social distancing, vaccination, and omniscient control. The authors
have claimed that the control strategies worked well in case of constant model
parameters to maintain the level of hospitalizations. Niu et al. [161] have proposed
a stochastic SEIHR model to deal with the fluctuations in the number of infections
and hospitalizations. The authors have checked disease-free equilibrium using
stochastic stability of the model based on the basic reproduction number (RO).
The disease-free equilibrium was stochastically stable for less than one value of
the RO. Gémez-Corral et al. [73] have proposed a markovian epidemic model
to study infectious disease outbreaks under limited medical facilities, specifically
accommodation capacity for infected individuals in the hospitals. Ma et al. [135]
have considered three types of patients, emergency, COVID-19, and elective for
dynamic bed allocation in a health care system during the COVID-19 outbreak.
The authors have considered two control mechanisms to maximize the utilization
of the public hospital beds. One is the dynamic allocation of beds and second is
the moving of elective patients to private hospitals based on a subsidized scheme.

2.3 Al techniques and optimizations for COVID-
19 forecasting

Advancements in artificial intelligence have been pivotal in the fight against the
COVID-19 pandemic. Nabi et al. [155] conducted forecasting for confirmed
and death cases using LSTM, Gated-Recurrent-Unit (?7), Convolutional-Neural-
Network (?77), and Multivariate-CNN models for Brazil, Russia, and the UK,
with the CNN model outperforming others. Zeroual et al. [241] conducted a
comparative study of five deep learning models: simple RNN, LSTM, Bi-LSTM,
GRUs, and Variational AutoEncoder (VAE), to forecast the number of recovered
and confirmed COVID-19 cases. The study focused on six countries affected by
the virus namely, Australia, China, France, Italy, Spain, and the USA, using
historical data spanning 148 days from January 22, 2020, to predict cases 17 days
ahead. The results showed that the VAE model outperformed all other models.
In another study [197], deep learning models including Stacked LSTM, Bi-LSTM,
and Conv-LSTM were employed to conduct a comparative analysis of COVID-19
spread in India and the USA. The authors conducted a one-month ahead forecast
and found that the Conv-LSTM model delivered superior performance compared
to the other two models.

Several machine learning models have been proposed for COVID-19 time
series forecasting, with Long Short-Term Memory (LSTM) [87] emerging as a
popular deep learning approach. LSTM and its variants have been explored
in various studies to predict COVID-19 trends. Chimmula et al. [45] utilized
an LSTM-based deep learning approach to forecast COVID-19 cases in Canada,
providing predictions for successive days (e.g., 2nd, 4th, 6th, 8th, 10th, 12th, and
14th days). Their findings indicated that provinces enforcing social distancing
guidelines reported fewer infections compared to others. Similarly, Arora et al.
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[11] proposed LSTM-based models to forecast COVID-19 cases across Indian
states for one-week and one-day intervals. They observed that advanced variants
such as convolutional LSTM (Conv-LSTM), stacked LSTM, and bidirectional
LSTM (bi-LSTM) demonstrated greater accuracy compared to the standard LSTM
model. Xu et al. [234] predicted COVID-19 case numbers in Brazil, India, and
Russia using CNN, LSTM, and a hybrid CNN-LSTM model. Numerous studies
have explored prediction techniques, with some proposing novel methods to train
algorithms on COVID-19 data [246, 148]. Paul et al. [169] reviewed Al-based
approaches related to the pandemic, categorizing them into machine learning (ML),
deep learning (DL), and hybrid ML-DL techniques. Kalinowska and Orhan [184]
reviewed ML and Al-based methods, addressing their adaptability to healthcare
systems, strategies for controlling virus spread, vaccine development, and the
diagnosis and treatment of infected individuals. In another study, Arun et al.
[15] compared forecasting and statistical models using COVID-19 time series
data. They employed ARIMA and seasonal-ARIMA (SARIMA) as statistical
methods and LSTM and GRU as deep learning techniques, demonstrating that
deep learning methods outperformed statistical approaches.

Evolutionary optimization techniques are generally based on nature inspired
processes [113, 216]. A number of evolutionary algorithms have been published in
the literature. The well-known algorithms are particle swarm optimization (PSO)
[103], genetic algorithm (GA) [124], grey wolf optimizer (GWO) [152], dragonfly
algorithm [150], firefly algorithm (FA) [236], Bayesian learning [17], simulated
annealing (SA) [125], ant-colony optimization (ACO) [29], chaos-enhanced cuckoo
search algorithm [89], ant lion optimizer [149], and whale optimization [151].
These algorithms are very effective in handling ambiguous and uncertain scenarios.
They can learn and adapt to the dynamic conditions. They can provide optimal or
nearly optimal solutions to complex problems with minimal computational effort.
Tseng et al. [219] conducted a survey on computational intelligence techniques for
combating COVID-19. Their study categorizes existing work in computational
intelligence related to the pandemic, focusing on approaches such as evolutionary

computation, machine learning, soft computing, and big data analytics in the
context of COVID-19.

2.4 Hybrid models for COVID-19 forecasting

Hybrid model using two or more than two techniques is more powerful and efficient
than the individual technique. Hybrid models leverage the strengths of more
than one techniques in one model. Thus, it improves accuracy, robustness, and
performance of the model [235, 127]. From this perspective, researchers have
proposed various hybrid models for epidemiological compartmental modeling
of the COVID-19 outbreak [116]. Abbasimehr and Paki [1] proposed a hybrid
approach combining three deep learning models, namely, LSTM, CNN, and
Bayesian Optimization (BO). Among the three models, the LSTM-BO model
achieved the lowest SMAPE in six out of ten countries. In [196], a novel hybrid
diagnostic strategy integrating fuzzy logic and a deep neural network was proposed
to detect COVID-19 patients. The strategy, validated using 10-fold cross-validation,
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achieved a detection accuracy of 97.66%. Chang et al. [38] developed a model
that integrates feature selection (using LR, DT, RF), instance clustering (using k-
means and Expectation-Maximization), and DNN techniques to predict mortality
risk in COVID-19 patients. The proposed model outperformed standard neural
networks in prediction accuracy. Similarly, Anil Utku [221] employed a hybrid
CNN-GRU model to forecast COVID-19 cases in the ten most populous countries
and compared its performance against LR, RF, SVM, MLP, CNN, GRU, LSTM,
and the base CNN-GRU model. Zhang et al. [243] proposed an interpretable
hybrid model combining AR and LSTM, and evaluated it against AR, LSTM,
SVM, XGBoost, and RF. The model was applied to forecast COVID-19 cases in
Japan, Canada, Brazil, the UK, Italy, Argentina, and Singapore. By integrating
AR with predictive power of LSTM, the hybrid model achieved high forecasting
accuracy.

Zelenkov and Reshettsov [240] proposed a hybrid model using time-varying
SEIRV optimized with genetic algorithm. They analysed different control strategies
of the COVID-19 pandemic in Sweden, Germany, UK, and the USA. The model
achieved the MAPE values of 2.096%, 2.168%, 1.208% and 1.703% for Sweden,
Germany, the UK, and the USA, respectively. Combination of edge RNN and
SIRD models has been investigated in [111] for predictive analysis of the COVID-19
infected cases in Italy. The hybrid model outperformed the other compared spatio-
temporal models in 3-day ahead forecasting. In this direction, shringi et al. [204]
also proposed an hybrid model integrating grey wolf optimization with the SIRD
model. Forecasting results using the model are closely aligned with the actual cases
of the COVID-19 in India. Janko et al. [95] developed a hybrid epidemiological
model combining SEIRD and machine learning techniques to forecast COVID-19
cases. The model consists of three components: socio-economic cost analysis of 12
types of NPIs, case prediction using the SEIRD model, and an NPI optimization
prescriptor. SEIRD parameters were dynamically adjusted based on NPIs using
various ML models, including linear regression, decision trees, and random forests.

Some of the researchers have investigated ensemble models for the COVID-
19 predictions. Qu et al. [175] developed a novel ensemble model combining
multiple neural networks with a whale optimization algorithm for modeling the
COVID-19 outbreak. The authors highlight the limitations of relying solely
on a single forecasting model, arguing that it overlooks the strengths of other
approaches. To address this, they integrated four neural networks for predictions,
assigning weights to each model and optimizing them using a heuristic optimization
algorithm. Saadatmand et al. [186] also investigated ensemble of XGBoost, KNN;,
RF, bagged-CART, and LogitBoost for the prediction of ICU admission, hospital
stay length, and mortality of the COVID-19 patients. The model outperformed
with an accuracy over 95% in comparison with the baseline models. Another
ensemble model using ANN, CNN and LSTM, with whale optimization is proposed
in [212]. The model is used for the prediction of COVID-19 patients. It achieved
prediction accuracy more than 90%.
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CHAPTER 3

COMPARATIVE ANALYSIS OF
STATE-OF-THE-ART TIME SERIES
FORECASTING MODELS FOR COVID-19
PREDICTION

! Time Series Forecasting (TSF) models are employed to predict future outcomes
using historical data. Numerous forecasting models have been proposed in the
literature, demonstrating their effectiveness across various datasets and scenarios.
The emergence of COVID-19 introduced a complex problem in time series forecast-
ing, highlighting the necessity to evaluate state-of-the-art models on COVID-19
datasets and fine-tune them to adapt to the unique characteristics of the pandemic.
In the initial phase of the COVID-19 pandemic, vaccines were not available against
the SARS-CoV-2 virus. The primary motivation of this chapter is to model the
spread pattern of the SARS-CoV-2 virus and predict its impact. It can help the
governments to optimize the planning of public services and resource allocation in
the pandemics similar to the COVID-19. By modeling and forecasting the daily
spread of the virus, healthcare systems can better prepare to accommodate the
anticipated number of patients.

Forecasting models typically follow a series of steps to generate prediction
results. The forecasting process consists of three main stages: 1) data prepro-
cessing, 2) modeling, and 3) performance evaluation. During data preprocessing,
the dataset is cleaned by eliminating outliers, addressing missing values, and
smoothing irregularities. It is then divided into training and testing subsets for
model development and evaluation. In the modeling phase, the training data is
used to build the model, which is subsequently applied to the testing subset to
generate predictions. Finally, various performance metrics can be used to evaluate
the forecasting capability and robustness of the model. Accurate forecasting of
disease spread is essential as it directly impacts government policies, containment
strategies, healthcare systems, and societal interactions. A forecasting model
can be selected from various available options, datasets can be sourced from a
data repository, and either short-term or long-term forecasting can be conducted
based on the requirements. Various measures can be used to evaluate accuracy
of the model. A forecasting model generates potential outcomes accordingly. To
compare the effectiveness of different models on COVID-19 datasets, this chapter
performs a detailed analysis of popular time series forecasting models.

IThe contents of this chapter are published in a research paper entitled “COVID-19 pandemic
prediction using time series forecasting models” in international conference on computing,
communication and networking technologies (ICCCNT), pp. 1-7. IEEE, 2020.
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3.1 COVID-19 spread trends

This section visualizes the spread pattern of the COVID-19 outbreak in two
scenarios: 1) the early stage, and 2) the evolved lifespan of the pandemic. For the
early stage, time series data of COVID-19 cases was collected from the GitHub
repository [94]. This repository is managed by the Center for Systems Science and
Engineering (7?) at Johns Hopkins University (?7), USA. It contains cumulative
day-to-day reported COVID-19 cases starting from January 22, 2020.
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Figure 3.1: Pattern of COVID-19 confirmed, active, recovered, and fatality cases
in adopted countries.

In the early stage of the pandemic, the impact of COVID-19 in 10 selected
countries from March 1, 2020, to May 20, 2020, is illustrated in Fig. 3.1. These
countries were among the most affected by COVID-19 as of May 20, 2020. The
pattern of confirmed cases is shown in Fig. 3.1 (a), active cases in Fig. 3.1 (b),
recovered cases in Fig. 3.1 (c), deaths cases in Fig. 3.1 (d). Countries ranking
from highest to lowest affected, follows the labeling order in the figure. It can be
observed that the USA was the most affected, recording the highest number of
confirmed and death cases. The USA and Russia continued to show rising trends
while the other countries managed to flatten their curves after a certain period.

Figure 3.2 shows the spread pattern of daily confirmed COVID-19 cases over
the period, from January 1, 2020, to December 31, 2022, across ten affected
countries. Weekly averaging is applied to smooth the time series data. The figure

24

z'l—.l turnitin‘“ Page 48 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



(5]

z'l_.l turnitin Page 49 of 175 - Integrity submission Submission ID trn:oid::27535:98713186

3.1. COVID-19 spread trends

us

India

France
Germany
Brazil
South Korea
Japan

Italy

UK

Russia

ul [=)] ~ o3}
o o o o
o o o o

Daily Confirmed Cases (x 10%)
[FEEN
o o
s o

N
o
o

Figure 3.2: Spread pattern of the disease during COVID-19 discourse in highly
affected 10 countries.

highlights that the USA was significantly impacted by the pandemic. During
the COVID-19 pandemic, the SARS-CoV-2 virus underwent multiple mutations,
leading to several waves of infections. The spread pattern was influenced by
restrictions imposed by the governments, emergence of virus variants, vaccination
campaigns, healthcare infrastructure, and people behavior.
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(a) Recovery rate of COVID-19 cases. (b) Fatality rate of COVID-19 cases.

Figure 3.3: Forecasting of infected cases using experimented models and com-
parison with test data of the adopted country

Figure 3.3a illustrates the recovery rate, and Figure 3.3b depicts the fatality
rate of COVID-19 patients worldwide and in the selected countries during the
early stage of the pandemic. Figure 3.3a shows that Iran had the highest recovery
rate, while Turkey shown exponential growth in recovered cases. Other countries
exhibited recovery trends that mirrored the growth patterns of confirmed cases.
Studies [207, 242, 80| have reported that COVID-19 often resolves naturally over
time but can cause severe health complications that may lead to death. Figure 3.3b
shows that Iran initially had the highest death rate, which was later overtaken
by the USA and France. Spain also experienced a notably high fatality rate
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during this time. Other countries managed to control fatalities to some extent by
implementing restriction policies and enforcing social distancing measures.
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Figure 3.4: COVID-19 deaths, hospitalizations, and ICU patients against the
infected cases in the USA.

The number of infections and fatalities over time provides insight into the
severity of a disease. In this context, Figure 3.4 presents time series trends of
daily death cases, hospitalizations, and ICU admissions relative to COVID-19
infections in the USA. The time series data of the figure 3.4 is sourced from the
GitHub repository maintained by Our World in Data (OWID) [93]. The time
series spans from March 1, 2020, to May 4, 2023, covering the effective lifespan of
the COVID-19 pandemic. A transformation of log10 scale is applied on the data
for improved visualization, as daily infection cases far exceed hospitalizations,
ICU admissions, and death cases. A value of one is added to all the data points to
address zero values in the log scale. From the figure, it can be seen that a rise in
hospitalizations and ICU admissions are observed due to the lifting of lockdown
restrictions. The USA successfully managed the surge in cases due to its robust
medical infrastructure.

3.2 Forecasting using ARIMA and FB-Prophet

In this section, ARIMA [230] and Facebook Prophet (7?) [217] models are
evaluated using COVID-19 forecasting. The ARIMA(p, d, q) is a model formed
by integrating the Autoregressive (AR) component and the Moving Average (MA)
component. Here, p denotes the order of autoregression, d represents the order
of differencing, and q indicates the order of the moving average. The ARIMA
can effectively model time series data if the data is stationary, meaning its mean
and standard deviation remain constant over time. The differencing parameter
d specifies the number of transformations needed to achieve stationarity. The
FB-Prophet combines linear and non-linear methods with time as a regressor. The
model was developed and made available as open-source software by data science
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team at Facebook. FB-Prophet treats training as a curve-fitting exercise. It ignores
the temporal dependence of the data. The model supports irregularly spaced
observations in the dataset. Key advantages include handling multiple seasonal
periods, incorporating custom and predefined holidays, and flexible trend options
such as a piecewise linear model or a saturating growth model. Additionally,
FB-Prophet takes very less computation time in the data fitting process.

3.2.1 Modeling Dataset

To evaluate the ARIMA and the FB-Prophet models, aggregated day level COVID-
19 time series data of 10 countries is adopted in the experiments. Start date of the
time series and other detail of the samples are given in Table 3.1. The end date
of the COVID-19 time series samples is May 20, 2020. In this experiment, the
dataset is split into 80% for training and 20% for testing. Model performance is
assessed using COVID-19 data, including confirmed, recovered, death, and active
cases.

Table 3.1: COVID-19 cases aggregated samples from each adopted country and
worldwide as on May 20, 2020.

Region | Sample Start Date | Confirmed | Recovered | Deaths | Active
size (Days)

Worldwide | 120 2020-01-22 4996472 1897466 328115 | 2770891

US 115 2020-01-27 1551853 294312 93439 | 1164102
Spain 105 2020-02-06 232555 150376 27888 54291
Ttaly 106 2020-02-05 227364 132282 32330 62752
France 113 2020-01-29 181700 63472 28135 90093
Germany | 110 2020-02-01 178473 156966 8144 13363
Russia 106 2020-02-05 308705 85392 2972 220341
Iran 87 2020-02-24 126949 98808 7183 20958
UK 106 2020-02-05 249619 1116 35786 | 212717
Turkey 66 2020-03-16 152587 113987 4222 34378
India 107 2020-02-04 112028 45422 3434 63172

3.2.2 Forecasting Results of ARIMA and FB-Prophet

This section presents forecasting performance of the ARIMA and the FB-Prophet
models for active, recovered, deceased, and confirmed COVID-19 cases. The
models are implemented in Python 3.8. The models were evaluated using standard
metrics including MAE, MAPE, RMSE, and RRSE. The analysis incorporated
datasets from ten countries: the USA, Spain, Italy, France, Germany, Russia, Iran,
the UK, Turkey, and India.
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Forecasting of active cases

Active cases represent the number of infected individuals currently under medical
supervision. The ARIMA and FB-Prophet models are evaluated on the active
cases of COVID-19. As observed in section 3.1 that time series data of active
cases is non-stationary. Since the ARIMA requires stationary data, preprocessing
techniques are applied to transform the non-stationary active cases data,. First,
one-lag differencing is carried out, followed by square root scaling, to achieve
stationarity. The stationarity of the transformed data series was verified using
the Dickey-Fuller test. Additionally, Partial Autocorrelation Function (PACF)
and Autocorrelation Function (ACF) plots are analyzed to determine appropriate
values for order p and q of the ARIMA. In contrast, FB-Prophet does not require
data preprocessing and is applied directly to the raw data.

Table 3.2: Forecasting results of the models for the COVID-19 active cases.

Region Model MAE RMSE | RRSE MAPE
. ARIMA(9,1,2) 19141.89 21377.14 0.086 0.816
Worldwide

FB-Prophet 168452.05 | 182230.63 | 0.706 6.943

US ARIMA(10,1,3) | 5732.16 8050.31 0.079 0.586

FB-Prophet 95766.22 | 108424.76 1.07 9.12

Spain ARIMA(8,1,4) 2191.68 2603.02 0.346 3.293
FB-Prophet 67132.86 | 69748.42 9.274 109.40

Ttaly ARIMA(9,1,3) 3197.25 4266.60 0.320 3.411
FB-Prophet 26934.34 | 30963.76 2.325 35.55

France ARIMA(5,1,4) | 10974.15 | 11489.85 6.166 11.75
FB-Prophet 44596.16 | 48195.48 | 25.864 | 48.340
ARIMA(11,1,4) | 2114.09 2597.193 0.407 9.052

Germany

FB-Prophet 50902.42 52259.90 8.197 277.26

Russia ARIMA(10,1,2) | 6456.26 6786.96 0.158 4.238
FB-Prophet 36430.36 | 40232.57 | 0.936 20.748

Iran ARIMA(4,1,2) 328.28 379.79 0.147 2.202
FB-Prophet 12856.19 | 12902.11 5.009 82.503

UK ARIMA(4,1,2) 8090.84 8637.25 0.375 4.66
FB-Prophet 2954.65 4649.43 0.202 1.481

Turkey ARIMA(8,1,2) 3631.37 3655.74 0.884 9.485
FB-Prophet 59801.55 | 60725.11 | 14.678 | 158.59

India ARIMA(11,1,5) | 7007.09 7330.06 0.61 16.74
FB-Prophet 10245.17 | 12085.37 1.005 21.429

Table 3.2 presents the forecasting accuracy results for active cases across 10
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3.2. Forecasting using ARIMA and FB-Prophet

selected countries and worldwide. Results are shown with the optimal order
(p,d,q) values calibrated for the ARIMA model. The ARIMA has shown superior
performance using the specified (p,d,q) values in comparison with the FB-Prophet,
as shown in the table.

Forecasting of recovered cases

Forecasting performance evaluation study is conducted of the adopted models
using the recovered COVID-19 cases data from 10 selected countries and worldwide.
Stationarity techniques are applied to prepare the stationary time series to perform
the forecasting study using the ARIMA. Conversely, FB-Prophet was directly
applied to the raw data without preprocessing to fit the model and generate

forecasts.

Table 3.3: Forecasting results of the models for COVID-19 recovered cases.

Region Model MAE RMSE | RRSE MAPE
. ARIMA(9,1,2) | 34932.99 | 36992.53 | 0.128 2.523
Worldwide

FB-Prophet | 185584.71 | 214741.61 | 0.712 12.49
Us ARIMA(5,1,2) | 31899.89 | 33109.68 | 0.667 15.635
FB-Prophet 53970.19 57816.45 1.165 24.174

Spain ARIMA(8,1,4) | 9683.45 9774.06 0.786 7.361

FB-Prophet 3021.53 3766.69 0.303 2.22

Ttaly ARIMA(9,1,3) | 12910.06 | 13078.23 | 0.693 12.78
FB-Prophet 8721.87 10057.88 | 0.533 7.881
France ARIMA(3,1,1) | 5780.87 5853.29 1.21 10.574
FB-Prophet 7323.90 8362.88 1.729 12.613
ARIMA(5,1,3) | 13702.61 | 13901.04 1.287 9.808

Germany

FB-Prophet 25017.26 | 28763.20 2.664 16.969

Russia ARIMA(4,1,0) 2376.69 3212.50 0.141 5.103
FB-Prophet 26988.80 | 33858.56 1.484 60.964

Iran ARIMA(1,1,1) | 4213.14 4496.75 0.736 4.933
FB-Prophet 5638.72 6037.87 0.988 6.267

UK ARIMA(4,1,2) 78.19 91.12 1.177 8.311
FB-Prophet 69.11 79.44 1.026 7.326

Turkey ARIMA(8,1,2) 4242.09 4333.57 0.44 4.321
FB-Prophet 45986.27 | 46211.42 4.688 45.536

India ARIMA(2,1,0) 721.17 1066.65 0.096 2911
FB-Prophet 11395.90 14381.55 1.295 42.882

Table 3.3 presents the forecasting performance results for the recovered cases.
The prediction results indicate that ARIMA prediction closely matched the actual
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values. The ARIMA achieved acceptable MAPE values, with a maximum of 15.6
and a minimum of 2.5 on all the datasets, whereas, FB-Prophet achieved MAPE
values with a maximum of 31.822 and a minimum of 3.759 on all the datasets.

Forecasting of death cases

The COVID-19 pandemic has claimed many lives, making it essential to analyze
the fatality rate and forecast future cases to help governments take proactive
measures. In this section, the forecasting models have been evaluated using death
cases across the selected countries and worldwide. Time series data of death cases
is transformed into a stationary form for the ARIMA modeling using preprocessing
techniques. The FB-Prophet model is applied directly to the raw data to generate
predictions.

Table 3.4: Forecasting results of the models for COVID-19 fatality cases.

Region Model MAE RMSE | RRSE MAPE
Worldwide ARIMA(9,1,2) | 661.98 821.20 0.026 0.257
FB-Prophet | 21666.12 | 24874.45 | 0.735 7.465
Us ARIMA(2,1,0) | 1924.08 1988.71 0.19 2.571
FB-Prophet 4799.16 | 5856.54 0.56 5.751
Spain ARIMA(2,1,0) | 940.85 953.08 0.907 3.577
FB-Prophet 2573.67 | 2961.76 2.818 9.525
Ttaly ARIMA(2,1,0) | 1240.10 1254.32 0.892 4.128
FB-Prophet 3008.94 | 3433.46 2.443 9.703
France ARIMA(3,1,1) | 1335.79 | 1355.02 0.983 5.139
FB-Prophet 6545.93 | 7270.98 5.274 24.382
ARIMA(1,1,0) | 318.04 341.57 0.668 4.382
Germany

FB-Prophet 1446.64 | 1668.89 | 3.262 18.761
Russia ARIMA(2,1,0) 43.31 48.98 0.082 2.252
FB-Prophet 628.39 709.50 1.184 30.597
Iran ARIMA(1,1,1) | 836.66 836.86 2.929 12.487
FB-Prophet 257.44 291.70 1.021 3.759
UK ARIMA(2,1,0) | 959.53 984.02 0.343 3.119
FB-Prophet 4171.84 | 4867.84 1.699 12.639
ARIMA(8,1,2) | 113.54 117.61 0.619 2.909

Turkey
FB-Prophet 280.83 312.96 1.647 6.945
India ARIMA(2,1,0) 48.94 60.75 0.085 2.704
FB-Prophet 771.35 897.58 1.26 31.822

Table 3.4 presents the prediction accuracy for the death cases due to COVID-
19. The results show that ARIMA consistently achieves low prediction errors
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in comparison with the FB-Prophet. These findings indicate that ARIMA is
more suitable for accurate forecasting of death cases, enabling better planning of
necessary services by the governments.

Forecasting of confirmed cases

Forecasting accuracy of ARIMA and FB-Prophet models using COVID-19 con-
firmed cases data is visualized in this section. To achieve this, COVID-19 confirmed
cases of two countries, namely, the USA and India are used for the analysis. Pre-
diction results for both ARIMA and FB-Prophet models are illustrated in Figure
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Figure 3.5: Visualization of prediction results of ARIMA and FB-Prophet for
COVID-19 confirmed cases of India and the USA.

In Figure 3.5a, forecasting of confirmed cases of the USA is shown with 95%
confidence interval using ARIMA model. The FB-Prophet model also demonstrates
a good fit for the USA data, as shown in Figure 3.5b. Similarly, forecasting
performance of the ARIMA and FB-prophet on India dataset is depicted in Figure
3.5¢ and 3.5d, respectively. FB-Prophet is based on progressive modeling, making
it suitable for datasets with limited data points. In contrast, ARIMA requires a
sufficient amount of data to effectively model and generate accurate predictions.
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3.3 Forecasting using ARIMA and LSTM

The ARIMA and LSTM are the highly utilized models for COVID-19 forecasting
and modeling. Therefore, in this section, comparative study of ARIMA and LSTM
is carried out.

In the experimental setup, ARIMA(p, d, q) parameters are set as; p = 3,
d = 0, and q = 1. The stationarity of the time series was examined using the
Dickey-Fuller test [54]. The appropriate p and q orders for the ARIMA model
were identified through analysis of ACF and PACF plots.

Following [87], the LSTM architecture incorporates a memory cell with three
regulatory gates: input, forget, and output. These gates collectively control
information flow through the network, while the memory cell maintains temporal
state information. LSTM is widely used for long-term forecasting studies due to
its robust performance and efficiency. Therefore, LSTM modeling is carried out
to check accuracy, flexibility, and robustness on COVID-19 time series data.

The hyperparameter values for the LSTM model are configured as follows:
optimizer = Adam, hidden units = 50, dropout rate = 0.2, dense units = 1,
activation function = linear, epochs = 500, and MSE as the evaluation metric.

3.3.1 Modeling Dataset

The initial distribution of daily COVID-19 infected cases during the early stages of
the pandemic was highly dynamic and non-linear. Therefore, it is an ideal dataset
for evaluating the forecasting performance of time series forecasting models. In
this view, ARIMA and LSTM models are assessed using one year of daily reported
COVID-19 cases data from the USA. The adopted time series period is from April
1, 2020, to March 31, 2021. Smoothing of the data is performed using weekly
averaging. The dataset is divided into training and testing samples in the ratio of
80:20.

3.3.2 Forecasting Results of ARIMA and LSTM

In this section, the LSTM is investigated in comparison with the ARIMA model
for the COVID-19 forecasting. Forecasting result of ARIMA and LSTM for the
USA dataset is shown in Figure 3.6. The figure demonstrates that both ARIMA
and LSTM effectively adapt to multi-wave scenario of the pandemic spread. LSTM
outperformed ARIMA in case of forecasting the unseen samples during the testing
phase. It can be concluded that LSTM is more adaptable to non-stationary time
series distributions in comparison with the ARIMA.

Table 3.5: Forecast accuracy results of ARIMA and LSTM for the COVID-19
time series data pertaining to the USA.

Model MAE RMSE Correlation MAPE

ARIMA(3,0,1) 76577 83352 0.959 1.570

LSTM 3105 4059 0.999 0.040
32
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Figure 3.6: Forecasting of daily new cases of the USA using ARIMA and LSTM.

To delve deeper into the analysis, the forecasting results are evaluated using
the metrics presented in Table 3.5. Each metric plays a crucial role in assessing

the performance dynamics of a model. The table reveals that LSTM outperformed
the ARIMA model.

3.4 Time complexity of ARIMA and LSTM

The experimental results in section 3.3 show that the LSTM has outperformed
the ARIMA model. Further, we can compare these models on the measure of time
complexity which can play a significant role in the model selection for a particular
problem. The time complexity of a model depends on several factors, including
the length of the time series data, model parameters, and the algorithm used for
parameter optimization [205].

3.4.1 ARIMA time complexity

ARIMA(p,d,q) model training time complexity is generalized by O(n.k?) [131, 26].
where,

e n is the length of the time series,

e k = max(p,q), the maximum of the autoregressive and moving average
orders.

Libraries like statsmodels use parameter optimizations which can reduce compu-
tational cost. If automatic model selection using grid search over the parameters
(p, d, q) is applied, then the training complexity of the ARIMA is given by
O(n.k%.g).

where,

g is the number of (p,d,q) combinations evaluated to find optimal values.
33
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Generally the optimizers take 50 to 200 iterations. We will assume worst case
iterations in the computational cost of the models which is 200.

3.4.2 LSTM time complexity

Assuming that training of a LSTM with a batch size of 1, sequence length n, and
input and output vectors of constant size, then training time complexity of a
multi-layer LSTM is given by O(e.n.h?.L) [76].

where,

e e = number of training epochs,
e n = sequence length,
e h = number of hidden units,

e L = number of layers

3.4.3 Training time complexity comparison of ARIMA and
LSTM

Table 3.6 includes training time complexities of ARIMA and LSTM models carried
out in section 3.3.

Table 3.6: Comparative analysis of training time complexity of ARIMA and

LSTM.
Model Training  time | Parameters value Computational
complexity cost
ARIMA O(n.k%g) n=287, k=3, g=200 172200
LSTM O(e.n.h?.L) n=287, e=500, h=50, L=3 | 21525000

It can be observed from the outcomes in Table 3.6 that the ARIMA is faster
then LSTM, and best suited for linear and stationary data. The LSTM has
much higher computational cost but it can handle non-linear, non-stationary, and
multi-variate sequences better than ARIMA. The LSTM is more suitable for large
datasets or complex problems.

3.5 Forecasting using ETS, ANN, ARIMA and
LSTM

In this section, four state-of-the-art models, namely, Error-Trend-Seasonality (ETS)
[232], ANN [157], ARIMA, and LSTM are compared using COVID-19 forecasting.
Five different datasets containing more than one wave of the COVID-19 outbreak
are used for the forecasting performance evaluation.

The 77 is a statistical model for time series forecasting. It employs exponential
smoothing techniques for forecasting. It works by decomposing a time series into

34

Z"—.I turnitin Page 58 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



z'l_.l turnitin Page 59 of 175 - Integrity submission Submission ID trn:oid::27535:98713186

3.5. Forecasting using ETS, ANN, ARIMA and LSTM

three main components, namely, 1) Error (E), 2) Trend (T), and 3) Seasonality
(S). It is able to effectively handle seasonality and trends in a time series data.

ANNs are computationally modeled after the biological neural architecture
of the human brain. This design enables ANNs to perform pattern recognition
and predictive modeling tasks. It consists of mainly three layers, namely, 1) Input
layer which processes the initial data, 2) Hidden layer(s) which processes inputs
through weighted connections and applies activation functions, 3) Output layer
which provides the final result.

3.5.1 Modeling Dataset

Five countries significantly impacted by COVID-19, namely, the USA, India, the
UK, Russia, and Italy are selected to compare the performance of ETS, ANN,
ARIMA, and LSTM models. The time series data of confirmed COVID-19 cases
is taken from the GitHub repository [94], maintained by CSSE-JHU, USA. The
datasets consist of cumulative COVID-19 confirmed cases covering multiple waves
of the pandemic. The Time series data from June 1, 2020, to April 15, 2022
is utilized for the modeling. Data preprocessing is performed using three key
techniques: 1) Differencing to eliminate trends, 2) Outlier detection and removal
using the Interquartile Range (IQR) method [224], and 3) Weekly averaging to
smooth fluctuations in the time series. The datasets are partitioned into training
(70%), validation (15%), and testing (15%) subsets for experimental evaluation.

3.5.2 Comparative analysis of ETS, ANN, ARIMA and
LSTM

Performance comparison of ETS [232], ARIMA|[230], ANN [157], and LSTM [6]
models is carried out in this section. ETS model focuses on trend, seasonality,
and error. It is best suited for time series with consistent patterns. ARIMA is best
on linear relationships and trends. It requires stationarity to perform forecasting.
ANN is a non-linear model that uses interconnected neurons to learn patterns
from data. LSTM networks, a specialized variant of recurrent neural networks, are
specifically designed to model long-range temporal dependencies in sequential data.
In this section, these models are trained using training samples and validated
using the validation samples. Comparison is performed using testing samples.
The hyperparameter values for the LSTM and ANN are configured as follows:
optimizer = Adam, learning rate = 0.005, loss function = Huber, hidden units
= 10, dropout rate = 0.2, dense units = 1, activation function = linear, epochs

= 500, and MSE as the evaluation metric. Forecasting performance is compared
using five type of metrics namely, MAE, RMSE, RRSE, sMAPE, and MASE.

Comparison on India dataset

Table 3.7 presents the forecasting performance of the evaluated models on the test
set of the India dataset, with the best-performing metrics highlighted in bold. The
results indicate that the ANN model demonstrated superior performance across
three of the five evaluation metrics. Meanwhile, the ARIMA model achieved the
lowest RMSE, and the LSTM model performed best in terms of RRSE.
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Table 3.7: Forecasting accuracy of the models on India dataset (best values are
shown in bold)

Model India
MAE RMSE RRSE sMAPE MASE
ETS(MAAM) 60731 £0 69662 £0 1.249 £0 113.66 + 4241+ 0
0
ARIMA(6,1,0) 61255+ 0 695224+ 0 1.217+0 12225 + 11533 =+
0 0
ANN 59067 + 65644 + 1.215 + 104.05 £ 1.48 +
367 423 0.41 4 0.14
LSTM 8280 + 64319 + 1222 + 10692 + 1.34 =+
349 439 0.36 5) 0.15

Comparison on UK dataset

The forecasting performance of the models is assessed using time series data
of COVID-19 confirmed cases from the UK. The dataset encompasses multiple
waves of COVID-19 within the chosen time period. The results of the forecasting
performance on testing samples are presented in Table 3.8.

Table 3.8: Forecasting accuracy of the models on the UK dataset (best values
are shown in bold)

UK
MAE RMSE RRSE sMAPE MASE
ETS(AAdA) 30953 £0 37424 +0 2835 +£0 90070 26.92=+0
ARIMA(4,1,30) 25802 +£0 35344 £0 2742+ 0 9277+ 0 13.74+0

Model

ANN 24588 £ 32149 £ 2623 £ 8220 £ 1.53 +
297 368 0.14 13 0.12

LSTM 24374 £ 31263 £ 242 + 81.92 £+ 1.49 =
285 345 0.15 14 0.15

From the results, it is evident that the LSTM model outperformed the others
on three out of five metrics, namely, MAE, sMAPE, and MASE. ARIMA achieved
the best performance on the RMSE metric, while ETS excelled on the RRSE
metric. These findings suggest that LSTM is better equipped to handle multi-wave
time series data compared to the other models.

Comparison on Russia dataset

The forecasting performance results of the models on the testing samples of the
Russia dataset are presented in Table 3.9. The table reveals that ARIMA outper-
formed the other models on three out of five metrics, while LSTM demonstrated
superior performance on the MAE and MASE metrics.
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3.5. Forecasting using ETS, ANN, ARIMA and LSTM

Table 3.9: Forecasting accuracy of the models on the Russia dataset (best values
are shown in bold)

Russia
MAE RMSE RRSE sMAPE MASE
ETS(AAdA) 20935 +0 26398 0 2797 +0 8245+ 0 273940
ARIMA(5,1,10) 23236 £0 25352 +0 3.171+0 79.86 +0 110.61 =+

Model

0
ANN 20356 £+ 24443 £ 1802 £ 76.89 +3 1.82 +
158 185 0.29 0.14
LSTM 20267 + 23831 £ 1.766 + 75.45 + 1.67 =L
169 193 0.24 2 0.11

Comparison on Italy dataset

The forecasting performance results of the models on the testing samples of
the Italy dataset are presented in Table 3.10. The table indicates that LSTM
outperformed the other models on four out of five metrics, while ANN achieved
the best performance on the MASE metric.

Table 3.10: Forecasting accuracy of the models on the Italy dataset (best values
are shown in bold)

Italy
Model MAE RMSE RRSE SMAPE  MASE
ETS(AAdA) 36716 £0 38917+0 9436+0 13083 £ 75.06 % 0
0
ARIMA(1, 1, 35073 +£0 3780540 7.832+0 972140 5277 +0
0)
ANN 34352 + 37518 + 6.67 + 84.62 + 239 +
348 397 1.09 6 0.16
LSTM 34012 + 37114 + 6.51 <+ 89.134+8 2.27 &
334 389 1.12 0.15

Comparison on USA dataset

The forecasting performance results of the models on the testing samples of the
USA dataset are presented in Table 3.11. The table shows that ANN outperformed
the other models on three out of five metrics, while LSTM achieved the best
performance on the RMSE and RRSE metrics.

Forecasting trend of the compared models

The forecasting results of the models are depicted in Fig. 3.7 to visualize the
forecasting performance on the USA dataset of COVID-19 confirmed cases. The
performance of ETS, ARIMA, ANN, and LSTM is illustrated in Figures 6.5a,
6.5b, 6.5¢, and 6.5d, respectively. From Figures 6.5a and 6.5b, it is evident that
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Table 3.11: Forecasting accuracy of the models on the USA dataset (best values
are shown in bold)

Model USA
MAE RMSE RRSE sMAPE MASE

ETS(AAdA) 123115 &= 145967 &= 1261 £0 9474+ 0 3024 +0
0 0

ARIMA(2,1,0) 157951 + 143898 + 1.735+0 90.55 £0 140.63 =+
0 0 0

ANN 113179 141847 &+ 1.273 =+ 90.37 =8 1.52 +
+ 364 396 0.19 0.28

LSTM 128375 &= 138425 1.252 + 88.12 + 1.62 +
328 + 384 0.17 6 0.29

the ETS and ARIMA models are not able to handle the multiple waves of the
pandemic. In contrast, the ANN and LSTM models effectively capture temporal
dependencies, demonstrating robustness in dynamic situations.

3.6 Statistical significance test

Statistical significance tests are the methods to reach a conclusion to support or
reject a claim (also called a hypothesis) based on sample data. A claim can be
accepted if it is statistically significant at some significance level. A threshold
value termed as p-value is to be selected before the test is performed. Traditionally,
p-value is kept 1% or 5%. In our analysis, we kept p-value at 5%.
In this section, Friedman test [68, 52| is used followed by Nemenyi post-hoc test
[158] for the statistical significance testing of the performance of the experimented
(32) models in section 3.5.2. The Friedman test determines whether or not there is a
statistically significant difference between the performance mean of the compared
models on the evaluation datasets. Null hypothesis (Hy) and alternative hypothesis
(H,) for the test are defined as follows.

e Hj: The compared models are equivalent, and the mean performance of
each model is same.

e H,: The mean performance of at least one model is different from the rest.

Equations 3.6.1 and 3.6.2 are used for test statistics of the Friedman test.

12d m m(m + 1)?
2 2
= — - 3.6.1
X m + 1) jer] 1 (3.6.1)
(d—1)x%
Fr = 3.6.2
r d(m+1) — x% ( )
(g where m is number of models, d is number of datasets, and r; is the average rank
of each model.
38

Z"—.I turnitin Page 62 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



zﬂ turnitin Page 63 of 175 - Integrity Submission

7 turnitin

Page 63 of 175 - Integrity Submission

3.6. Statistical significance test

[

[S]
©
[S)

—— Confirmed cases

—— ETS a
o 28 “ 25
LS X
% 20 ﬁ 20
8 E —— Confirmed cases
E 15 E 15 — ARIMA
g E
10 _t_; 10
3 a
05 05
0 20 40 60 80 100 0 20 40 60 80 100
Days Days
(a) USA forecast using ETS (b) USA forecast using ARIMA
30 _[— —— Confirmed cases 3.0 —— Confirmed cases
—— ANN —— LSTM
mg 25 mg . x
x %
8 20 8 20
(72} 0w
8 8
é 15 E 15
= =
S 10 810
@ ©
O os O os , I]‘
0.0
0 20 40 60 80 100 0 20 40 60 80 100
Days Days
(c) USA forecast using ANN (d) USA forecast using LSTM

Figure 3.7: Comparative forecasting results of the proposed model for the
COVID-19 confirmed cases of the USA

The RMSE results included in Table 3.12 are taken from section 3.5.2 for
statistical significance testing of the four compared models on five datasets.
Therefore, m = 4, and d = 5. Value of average rank r; of each j”* model is
identified from Table 3.12. For example average rank of ARIMA model from the
table is M;H = 3. Chi-square statistics result using the values is given below.

X% = 13;55 % {(42 +32422412) - %]

Xp =15

The x% follows a chi-square distribution with m — 1 degrees of freedom.

_ _(6-1)x15 _
Ip = 5><(4+1>)<715 =6

Now, check the critical value q,(df1,df2) from the F-distribution ? statistics.
Where, « is confidence level, df1 is the degree of freedom across columns calculated
as (m — 1) = 3, and df2 is the degree of freedom across rows calculated as
(m—1) x (d—1) =3 x4 =12. The critical value at go—005(3,12) is 3.49. The
critical value is below the statistics obtained from % and Fr. Therefore, we
reject Hy with 95% confidence. In simple words, we have enough proof to say

Zhttps://datatab.net /tutorial /f-distribution
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Table 3.12: Forecasting accuracy (RMSE) of the models on five different datasets.

Dataset RMSE (Relative Rank)

ETS ARIMA ANN LSTM
USA 145067 (4) | 143808 (3) | 141847 (2) | 138425 (1)
India 69662 (4) | 69522 (3) | 65644 (2) | 64319 (1)
UK 37424 (4) | 35344 (3) | 32149 (2) | 31263 (1)
Russia 26398 (4) | 25352 (3) | 24443 (2) | 23831 (1)
Ttaly 38017 (4) | 37805 (3) | 37518 (2) | 37114 (1)

that the compared models have statistically significant differences in the mean
performance.

The same experiment can be carried out using available libraries in Python
language. In this view, we conducted Friedman test using stats.friedmanchisquare()
function of scipy library in python 3.9. Test result of stats.friedmanchisquare(USA,
India, UK, Russia, Turkey) is FriedmanchisquareResult(Friedman Statistic: 15,

(72) p-value: 0.0018). Since the p-value in the output is less than 0.05, we can reject
the null hypothesis that the compared models perform equally.

Nemenyi test is a post-hoc test that compares the models after the null
hypothesis from Friedman test is rejected. Nemenyi test identifies exactly which
model differs from each other. The test makes pair-wise tests of performance.
Hypothesis for Nemenyi post-hoc test is given below.

e Hy: All models perform equally.

e H,: At least one pair of models is different.

The formula of critical difference (CD )for Nemenyi test is given in equation

3.6.3.
m(m + 1)
CD = qu\| ——— 3.6.3
q o (3.6.3)
& where g, is the critical difference value from the Studentized range distribution

at the significance level a divided by v/2, and m is the number of groups. The
value of ¢u—0.05 = 2.569. The ga—o.05 value is taken from the online link 3. Critical
difference (CD) is calculated using the values as given below.

C'Domo05 = 2569 x /322 = 2.098

Difference of highest and lowest average ranks from Table 3.12is (4 — 1) =3
which is greater than CD = 2.098. Hence, we can reject the null hypothesis
Hy of the Nemenyi test with 95% confidence. In simple words, we have enough
proof to say that at least one pair of models is different. Pairwise difference of
p-values are identified using scikit-posthocs library in python 3.9 which provides
the posthoc_nemenyi_friedman() function for the Nemenyi test. The results

3https://www.ncbi.nlm.nih.gov/pme/articles/PMC6218068 /table/pone.0206798.t009/
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3.7. Analysis and Discussion

using Python library scikit _posthocs.posthoc_nemenyi_friedman(dataframe) is
shown in Table 3.13.

Table 3.13: Nemenyi test p-values pairwise comparison.

Nemenyi test p-values
Model ETS ARIMA | ANN LSTM
ETS 1.000000 | 0.597695 | 0.068212 | 0.001363
ARIMA | 0.597695 | 1.000000 | 0.597695 | 0.068212
ANN 0.068212 | 0.597695 | 1.000000 | 0.597695
LSTM 0.001363 | 0.068212 | 0.597695 | 1.000000

The Table 3.13 highlights the statistical differences between the compared
models. We can observe that LSTM is statistically significantly performed better
than other compared models with the 95% confidence.

3.7 Analysis and Discussion

This chapter presents a comprehensive evaluation and comparative analysis of
state-of-the-art forecasting models for COVID-19 prediction. Multiple datasets
and diverse performance metrics were employed to assess model efficacy. Numerous
aspects of the COVID-19 pandemic are analyzed using state-of-the-art methods
and compared using diverse datasets spanning different timelines of the pandemic.
In this chapter, it can be observed that LSTM model has outperformed the other
models in most of the cases. It indicates that machine learning models are more
adaptive to dynamic situations in comparison with the statistical models. Other
than performance, time complexity analysis is also an importance area to discuss
for comparative analysis of the models. In this view, time complexities of ARIMA
and LSTM are analysed using an experimental study where ARIMA win the race
but with lower performance. There are multiple factors which can impact the
performance of a model. Therefore, it cannot be concluded that a model always
perform best on all datasets and all metrics. The statistical significance test can
help to reach a conclusion in such scenarios. In this view, statistical significance
test is carried out for the compared models in this chapter.

41

Z"—.I turnitin Page 65 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



z'l_.l turnitin Page 66 of 175 - Integrity Submission Submission ID trn:oid::27535:98713186

zl'—.l turnitin‘“ Page 66 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



®© e

z'l-_l turnitin Page 67 of 175 - Integrity Submission

7) turnitin

Page 67 of 175 - Integrity Submission

CHAPTER 4

DEVELOPMENT OF NOVEL TIME SERIES
FORECASTING MODEL FOR COVID-19
PREDICTION

! Fluctuations are an inherent characteristic of time series data, which can be
analyzed to identify patterns and make predictions. Fuzzy time series (FTS) is
more descriptive than traditional time series as it provides semantic interpretations
for uncertain and fluctuating data. The forecasting efficiency of FTS models
is primarily governed by three critical hyperparameters: (1) the cardinality of
partitions in the universe of discourse (77), (2) the interval length of these partitions,
and (3) the selected fuzzy order of the FTS model. Predicting COVID-19 cases
is highly challenging due to involvement of multiple factors leading to dynamic
time series data. In this context, studies such as [222, 62] have utilized FTS
for COVID-19 prediction. However, there remains a need to explore additional
hyperparameters of FTS to further improve forecasting accuracy for COVID-19
data.

The accuracy of a forecasting model is crucial for effective decision-making and
planning. Developing a prediction model with optimized F'TS hyperparameters
for pandemic forecasting can significantly aid in policy formulation and controlling
the spread of the disease. This chapter is motivated by the goal of designing an
FTS-based COVID-19 forecasting model with optimized hyperparameters. Among
the various optimization techniques proposed in the literature, the particle swarm
optimization (PSO) algorithm [103] has emerged as a prominent focus of research
in recent years, demonstrating significant potential across various optimization
domains. Therefore, the PSO algorithm is utilized to identify optimal solutions
for COVID-19 forecasting based on FTS.

This chapter presents two algorithms that integrate FTS and PSO:- 1) nested-
FTS-PSO and 2) exhaustive-search-FTS-PSO. These algorithms aim to find the
optimal combination of the number of partitions, the length of partition intervals
in the UOD, and the fuzzy order. Two phases of the COVID-19 pandemic are
considered for predictive analysis. The first phase, during 2020, was characterized
by limited knowledge and lack of containment solutions. The second phase, during
2021, saw the availability of more information and the rollouts of vaccinations
in many countries. The proposed forecasting approaches are evaluated against
state-of-the-art models, including the classic FTS forecasting model [40], FTS-PSO
[222], FB-Prophet [217], and ARIMA [230], using daily confirmed COVID-19 cases
for both phases. This chapter includes the steps of FTS forecasting, an overview
of the PSO algorithm, detailed descriptions of the proposed nested-FTS-PSO and

IThe contents of this chapter are published in a research paper entitled “Particle swarm
optimization of partitions and fuzzy order for fuzzy time series forecasting of COVID-197.
Applied Soft Computing 110 (2021): 107611.
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Chapter 4. Development of Novel Time Series Forecasting Model for COVID-19
Prediction

exhaustive-search-FTS-PSO algorithms, proposed forecasting framework, and the
experimental results.

4.1 FTS and FLRG

Fuzzy time series (FTS) is framed using fuzzy sets. The concept of FTS was
introduced in [208, 209, 238] studies.

To define a FTS, let the UOD be U = {uy,us, ..., u, }, where a fuzzy set A,
specified on U is defined as given below.

A= fa(ur)/uy + falug)/ug + ... + fa(un)/un

where, fa represents the membership function (MF) of A, denoted as given
below.

fAZU—)[O,l]

The membership degree of the element u; in the fuzzy set A is denoted by
fa(u;), where, 1 <i < mn.

Let crisp time series Y (¢), (t = ...,0,1,2,...), be a subset of R. The fuzzy sets
fi(t), (i = 1,2,...) are defined on the UOD U. Let F(t) consists of f1(t), fa(t), f3(t), ...,
then, F(t) is called a fuzzy time series defined on crisp time series Y (¢). Here,
F(t) is represented as a linguistic variable and f;(t) represents possible linguistic
values of F(t).

Relationship between linguistic variables is defined using right arrow as shown
below.

If, F(t — 1) — F(t), then, F(t) is called derived from F(t — 1).

If the maximum degree of membership of F'(t) corresponds to the fuzzy set A,;
and F(t — 1) corresponds to the fuzzy set A; then the fuzzy logical relationship
(FLR) between F'(t — 1) and F(t) can be represented as given below.

where A; and A; are called current state and next state of the FLR respectively,
and it is a first order FLR.
Similarly, if

F(t—m),...F(t—2),F(t—1) — F(t)

then the FLR is called m-order.
FLRs sharing the same left-hand side can be combined into a group, referred
to as a fuzzy logical relationship group (FLRG).
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4.2. FTS Forecasting Steps

4.2 FTS Forecasting Steps

FTS forecasting steps follows a set of steps as described in the article [40]. The
steps are explained below.

o Step-1 Defining UOD: Consider Y (¢) as the given historical time series
dataset. Let Dy, and Dy, represent the minimum and maximum values
of Y(t), respectively. The universe of discourse, U, can then be defined as
[Drin — D1, Diax + D3], where Dy and D are chosen as appropriate positive
values.

o Step-2 Partitioning of UOD: In this step, the universe of discourse, U, is
partitioned into n intervals of equal length, denoted as wuy, us, ..., u,. These
intervals are defined as given below.

w; = (Umin+ (i — 1)« L,Umin + i x L]

where, 1 <14 < n, and the length of each interval L = (Umax — Umin)/n

o Step-3 Defining fuzzy sets: Each interval determined in Step 2 is associated
with a linguistic variable to represent different regions within the universe
of discourse (UOD). For n intervals, there will be n corresponding linguistic
variables. A fuzzy set A; is defined for each linguistic variable, as given
below.

o= Qi1 Qi2 Qin
A =%y f gy | 4 i

1 j=1
a;; =05 j=i—lorj=1i+1

0 otherwise

Here, a;; € [0,1] and (1 <i <n,1 <j <n), and the + symbol represents
the set union operator. The value a;; denotes the membership grade of u; in
the fuzzy set A;. The membership values of the fuzzy set A; are determined
based on a;;.

o Step-4 Fuzzification: In this step, each historical data point is mapped to an
interval represented by a linguistic value. The primary rule for assigning a
linguistic value, based on the corresponding fuzzy set, is that the interval with
the highest membership grade is selected. Let Y'(¢) denote the actual time
series and F'(t) the fuzzy time series corresponding to Y (¢). According to the
maximum membership rule, the fuzzy set A; has the highest membership
grade within the interval u;.
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e Step-b Fuzzy relationships and grouping: Using the definitions from Section
4.1, a relationship is formed such that F(t—m),..., F(t—2), F(t—1) — F(t),
which is referred to as an m-order fuzzy logical relationship (FLR). Here,
F(t—m),...,F(t —2),F(t — 1) represent the current state, while F(t)
represents the next state. In these relationships, the right-hand side is unique,
meaning a linguistic value cannot appear more than once on the right-hand
side. Relationships with the same current state can be grouped together,
forming what is known as a fuzzy logical relationship group (FLRG).

o Step-6 Defuzzification: In this step, forecasted values are computed using
FLRGs. The defuzzification process can be carried out following the rules
given in [40], outlined below.

(i) If there is only one fuzzy relation in the FLRGs, such as A; — A,,
where the maximum membership of A, corresponds to the interval wu,,
and the midpoint of u, is m,., then the forecasted value is m,.

(ii) If there are multiple fuzzy relations in the FLRGs, such as A; — A1,
A; = A, .y A; = A,,, where the maximum membership of A,1, A2,
.., A, corresponds to intervals u,1, U2, ..., Uy, with the midpoints
of the intervals being m,q, ms, ..., m,,, then the forecasted value is

calculated as MeiltMeat-tmen
n .

(iii) If there is no fuzzy relation in the FLRGs defined as A; — #, where
the maximum membership degree of A; corresponds to the interval wu;,
and the midpoint of u; is m;, then the forecasted value is m;.

4.3 PSO Algorithm

Particle Swarm Optimization (PSO) has been widely used for optimizing the
parameters of various learning models. PSO is swarm based evolutionary algorithm
introduced by Kennedy and Eberhart [103, 102]. It is inspired by the behavior of
fish schooling or bird flocking, enabling it to search for optimal or near-optimal
solutions to complex problems without getting trapped in local minima. In PSO,
a swarm of particles explores the n-dimensional search space of an optimization
problem, with each particle representing a potential solution.

The position of i particle (i = 1,2, ..., K) is denoted as X; = [z}, ,22,...,27],
and its velocity as V; = [v},v2,...,0"]. Here, K is the number of particles in the
swarm. Each particle moves through the search space in search of the optimal
solution. Each particle retains its personal best position, Pys: ;, which is the
best position it has encountered so far. The best position in the entire swarm
is recorded as the global best position, Py.s. Initially, all particles are assigned
random positions in the search space. The personal best Py ; of the ith particle
and the global best Py are updated until the predefined maximum number of
iterations, t,,.., is reached.

The velocity and position of i** particle are updated using the following
equations.
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VI = w'« Vi + Clx Rand() # (Ppest_i — X[)+ C2x Rand() # (Pypest — X}) (4.3.1)

XAt = x4yttt (4.3.2)

t* (wmax - wmzn)

(4.3.3)

w' = Wmaz —

tmaw

Where w,,qe and w,,;, are predefined values for the inertia weight, and w?’ is

the inertia weight at the ' iteration. V! and X! represent the current velocity

and position, respectively, of i'® particle in the ¢ iteration. The velocity V!

is constrained within the predefined range [—Vmax,Vmaz]. C1 and C2 are

the cognitive and social coefficients, respectively, also known as the acceleration

coefficients. The function Rand() generates a random value between 0 and 1,

based on a uniform distribution. PSO algorithm can be used to find the optimum
interval lengths in UOD for a given number of partitions [120, 222].

4.4 Proposed Methodology

Integration of PSO with F'TS denoted as FTS-PSO substantially enhances fore-
casting accuracy. In this context, the PSO algorithm is employed to optimize
key hyperparameters of FTS, including the number of intervals, the length of
the intervals, and the fuzzy order. In F'TS forecasting problems, it is required to
determine the optimum number of partitions along with the optimum length of
partitions, to generate better forecasting results. Length of partitions and the
number of partitions are dependent variables in a F'TS forecasting problem. In
such a scenario, nested operations can be used to optimize the dependent variables.
It can be said that finding an optimum combination of number of partitions,
length of partitions, and fuzzy-order is an integrated optimization problem. To
address this, we propose two novel approaches for tackling this optimization
problem. The two optimization approaches for FTS hyperparameters are, namely
nested-PSO and exhaustive-search-PSO. These approaches are described in the
following sections.

4.4.1 Nested-FTS-PSO
The Nested-PSO approach involves two PSO loops as described below.

(i) The inner PSO layer optimizes the fuzzy order and partition interval param-
eters while maintaining the fixed partition count determined by the outer
PSO layer, subsequently returning the computed cost metric to the outer
optimization loop.

(ii) The outer PSO layer determines the optimal number of partitions by mini-
mizing the objective function value while adhering to predefined constraints.
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Algorithm 1 : Nested FTS-PSO

1: initialize random number of partitions n from [N, Nmaes| and velocity of all
particles’ of outer PSO which is denoted as PSO-1.
2: while the maximum iterations of PSO-1 is not reached do
3:  for particle ¢, (1 < ¢ < mazParticlesO fOuter PSO) do
4: set number of partitions equal to n which is passed by PSO-1, and
initialize position and velocity of all particles’ of inner PSO which is
denoted as PSO-2.

5: sort particles’ position vector into ascending order.
6: while the maximum iterations of PSO-2 is not reached do
7 for particle i, (1 < i < mazParticlesO fInner PSO) do
8: create intervals by using current position of #;, particle.
9: define linguistic values according to all intervals.
10: fuzzify time series data.
11: for fuzzy-order m, (1 < m < maxFuzzyOrder) do
12: create m order fuzzy relationships and fuzzy groups.
13: calculate forecasting using defuzzification.
14: calculate the MSE for fuzzy order m for the iy, particle.
15: end for
16: update the personal best myest ; fuzzy order and Py ; position of
145, particle according to the calculated MSE for PSO-2.
17: end for
18: update the global best mgpes order and Pyes position among all the
particles according to the calculated M SEg.q for PSO-2.
19: update PSO-2 inertia weight w,.2 according to equation-4.3.3
20: for particle i, (1 <i < mazParticlesO fInner PSO) do
21: update particle ¢ position according to equations 4.3.1 and 4.3.2
292: limit position of iy, particle within [nmin, Tmaz)-
23: end for
24: end while
25: return global best combination (mgpest, M S Egpest, Pypest) to PSO-1
26: update the personal best ny.s: , number of partitions of particle ¢ in

PSO-1 according to the received MSE from PSO-2.
27:  end for
28:  update the global best ng.es; number of partitions among all the particles
in PSO-1.
29:  update PSO-1 inertia weight w1 according to equation-4.3.3
30:  for particle ¢, (1 < g < maxParticlesO fOuter PSO) do

31: update particle ¢ number of partitions according to equations 4.3.1 and
4.3.2
32: limit number of partitions n for a particle ¢ within [, Mmaz]-

33:  end for
34: end while
35: return global best combination (Ngpest, Mgpest; Pypest)
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The procedure for optimizing FTS hyperparameters using the nested-PSO
approach is outlined in Algorithm-1, with the steps described as follows.

e Step 1: Initialize the parameters for the outer PSO, including a random
selection of the number of partitions within a specified range.

e Step 2: Begin the iteration loop for the outer PSO, which is tasked with
optimizing the number of partitions.

e Step 3: Within the outer loop, iterate over the particles. The number of
partitions for each particle is passed to the inner PSO.

 Step 4: Divide the Universe of Discourse (UOD) into unequal intervals based
on the received number of partitions.

o Steps 5-7: The inner PSO optimizes the lengths of the partition intervals
using the position equation-4.3.2 during each iteration and for each particle.

o Steps 8-14: Perform FTS forecasting to identify the optimal combination of
partition intervals and fuzzy order.

o In further steps, the optimal result from the inner PSO, comprising the
best intervals, best fuzzy order, and best MSE, is then passed back to the
outer PSO. The outer PSO updates the number of partitions based on the
received MSE using the position equation-4.3.2.

e Repeat the procedure until convergence or until the maximum iteration
threshold is met..

The final output includes the optimal combination of the number of partitions,
partition interval lengths, and fuzzy order.

The use of nested loops in the proposed integration of FTS-PSO results in a
non-linear increase in time complexity [199]. However, by analyzing all parameters
in a single run and carefully selecting an optimal range for the loop parameters,
the time complexity can be reduced. To address this, a new variant referred as
exhaustive-search-PSO, is proposed which offers reduced time complexity. Detail
of the exhaustive-search-PSO algorithm to optimize FTS hyperparameters is
provided in next section.

4.4.2 Exhaustive-Search-FTS-PSO

The proposed exhaustive-search-PSO identifies the optimal combination of three
FTS hyperparameters: (1) the number of intervals, (2) the length of the intervals,
and (3) the fuzzy order. This method also employs two loops, where the inner
loop functions similarly to that in the nested-PSO. However, the outer loop
systematically iterates over a predefined search space for the number of partitions
and retains the optimal result from all iterations. Compared to nested-PSO,
this approach is more time-efficient, as it explores a fixed search space rather
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than relying on a swarm of particles to explore all ranges. The steps for the
exhaustive-search-PSO are outlined in Algorithm-2.

In Steps 1 and 2 of Algorithm 2, the search space for the number of partitions
is initialized, and the iterations are set to determine the optimal value. For each
specified number of partitions, PSO is applied to optimize the length of partition
intervals and the fuzzy order, using the predefined number of iterations and parti-
cles as outlined in Steps 5 and 6 of the algorithm. During each iteration, particle
positions are updated using Equation-4.3.2, and FTS forecasting is performed on
the training data following Steps 7 to 11. The best result from PSO is recorded
for each iteration across the search space of partition numbers. The final optimal
result is obtained as the combination of the optimal number of partitions, partition
interval lengths, and fuzzy order.

Algorithm 2 : Exhaustive search FTS-PSO

1: initialize search space of number of partitions [nmin, Tmin + 1, -, Nmaz]
2: for partitions n, (N < N < Nypgs) do

3:  initialize all particles’ positions Xj;, velocity V;, and PSO parameters
4:  sort particles’ position vector into ascending order.

5:  while the maximum iterations is not reached do

6 for particle 4, (1 < i < maxParticles) do

7: create intervals of UOD by using particle current position.

8

9

define linguistic values for the intervals.
fuzzify time series data.

10: for fuzzy-order m, (1 < m < mazFuzzyOrder) do

11: create m-order fuzzy relationships and grouping.

12: calculate forecasting values using defuzzification.

13: calculate MSE for fuzzy order m for the iy, particle.

14: end for

15: update the personal best Py ; position and my.s ; fuzzy order of the

14, particle based on MSE.

16: end for

17: update the global best mg.s: fuzzy order, and P, position among all
the particles according to the calculated MSE.

18: update inertia weight w according to equation-4.3.3.

19: for particle 4, (1 < i < maxParticles) do

20: update position of 7;;, particle according to equations 4.3.1 and 4.3.2.

21: end for

22: end while

23:  update global best ng. number of partitions

24: end for

25: return global best combination (ngpest, Mgbests Pypest)
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4.5 Experimental Setup and Evaluation

Modeling datasets, experimented setup and parameters, and evaluation results
are presented in following sections.

4.5.1 Modeling Datasets

In this study, 10 countries are selected, namely, France, India, Germany, Iran, Italy,
Spain, Russia, Turkey, the UK, and the USA for predicting COVID-19 confirmed
cases. These countries were among the most severely impacted by the pandemic
globally. The COVID-19 datasets were sourced from a GitHub repository [94]
maintained by CSSE, USA. Evaluation study is carried out in two phases:- (i)
initial phase (COVID-19 Phase-1) (ii) evolved phase (COVID-19 Phase-2).

e In Phase-1, cumulative daily infected case data from April 1, 2020, to
October 30, 2020, is used for each country.

e In Phase-2, cumulative daily infected case data from January 1, 2021, to
May 15, 2021 is used for India and the USA. It has been focused on the
USA and India in Phase-2 because they were among the most significantly
impacted countries during this period.

4.5.2 Demonstration of optimization problem

In this section, impact of number of partition and fuzzy order parameters in FTS
modeling is shown using experimental studies. Identifying optimal values of these
parameters combinedly is an optimization problem which needs to be addressed
effectively. In this view, an experiment is carried out to show the impact of
number of partition on the FTS forecasting accuracy. Table 4.1 presents the MSE
results for varying numbers of partitions in the UOD. The table includes MSE
values for predictions using first-order FT'S of COVID-19 confirmed cases in the
USA during the first phase, with the number of partitions ranging from 46 to 55.
It is evident that increasing the number of partitions improves the accuracy of
FTS predictions. However, adopting large value of partitions will be diminish the
concept of F'TS modeling. Therefore, identifying the optimal number of partitions
remains a complex challenge. Optimization algorithms, such as PSO, can be
employed to determine the optimal value of number of partitions in the UOD.

Table 4.1: FTS prediction accuracy with increasing number of partitions for the

USA data

FTS Partitions 46 47 48 49 50 51 52 53 54 55
in UOD
MSE 23.476 | 24.330 | 23.108 | 21.903 | 21.964 | 23.143 | 22.007 | 21.973 | 22.889 | 22.005
(x10%)

An additional experiment was conducted to examine the impact of fuzzy order
on FTS forecasting accuracy. This experiment focused on predicting day-level
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COVID-19 confirmed cases in the USA during Phase 1. The prediction accuracy,
measured by MSE, is presented in Table 4.2 for a fixed number of partitions set
to 50 and fuzzy order values ranging from 1 to 5. The range of fuzzy orders
aligns with that used in the study by Chen et al. [41]. As shown in the table,
the prediction accuracy improves with increasing fuzzy order, consistent with the
findings reported in [222].

Table 4.2: FTS accuracy pattern with increasing number of partitions in the
UuoOD

Fuzzy Order 1 2 3 4 )

FTS ,
MSE (x10°) |21.964 | 5.028 | 1.273 | 0.351 | 0.299

Next, an experiment was conducted to assess the combination of the number
of partitions and fuzzy orders of F'TS using confirmed cases data from Phase 1
of COVID-19 in the USA. The PSO algorithm was employed to optimize the
length of the partition intervals in the UOD. The prediction accuracy results are
measured in terms of MSE for various combinations. The obtained results for the
experiment are presented in Table 4.3. From the results, it can be observed that
forecasting accuracy initially improves with an increasing number of partitions
but begins to fluctuate after a certain point. A similar trend is observed as the
fuzzy order increases. This suggests that the optimal combination likely exists
within the given ranges.

Table 4.3: Prediction accuracy with number of partitions and fuzzy order

Approach UOD Fuzzy Order (MSEx10%)
Partitions 1 2 3 4 5
46 18.680 | 4.956 | 0.637 | 0.511 | 0.270
47 18.688 | 3.831 | 0.573 | 0.321 | 0.382
48 18.393 | 4.976 | 0.700 | 0.339 | 0.328
49 20.744 | 3.833 | 1.140 | 0.294 | 0.366

FTS-PSO 50 20.996 | 3.423 | 0.443 | 0.392 | 0.285
51 19.322 | 3.907 | 0.800 | 0.326 | 0.334
52 19.555 | 3.130 | 0.677 | 0.278 | 0.287
53 18.746 | 5.442 | 0.481 | 0.283 | 0.263
54 18.221 | 3.592 | 0.454 | 0.318 | 0.246
55 17.745 | 4.333 | 0.567 | 0.394 | 0.249

The experimental analysis suggests that the optimal values of hyperparameters
can be identified by experimenting with various combinations using optimization
techniques. However, determining all hyperparameters in an integrated manner is
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a complex and computationally intensive task, making it an integrated optimiza-
tion problem. To tackle these challenges, two approaches, namely, nested-PSO
and exhaustive-search-PSO, are proposed to optimize the F'TS hyperparameters
effectively.

4.5.3 Evaluation of the proposed approaches

The proposed approaches are implemented using python 3.8. Performance metrics,
MSE and MAPE;, are used to measures the forecasting accuracy. Numerous ranges
of the number of partitions, length of the partition intervals, and fuzzy orders are
experimented to identify the optimal values.

The datasets of COVID-19 confirmed cases was used to evaluate the perfor-
mance of the proposed and compared models. Experiments were conducted with
the number of UOD partitions ranging from 30 to 90 in Phase 1 and from 20 to
60 in Phase 2, and the fuzzy order ranging from 1 to 5 for F'T'S. These parameters,
along with the PSO parameters, are detailed in Table 4.4. The range for the
number of UOD partitions was chosen such that its maximum value remains less
than half the total data points in the UOD. These parameters were applied in
FTS-PSO, nested-FTS-PSO, and exhaustive-search-F'TS-PSO models to perform
COVID-19 forecasting.

Table 4.4: Values of hyperparameters used in the experiments.

Method | Parameter Value
Number  of  Partitions | {30, 35, 40, 45, 50, 55, 60, 65, 70,
FTS (COVID-19 phase-1) 75, 80, 85, 90}

Number  of  Partitions | {20, 25, 30, 35, 40, 45, 50, 55, 60}
(COVID-19 phase-2)

Fuzzy order range {1, 2, 3,4, 5}
Number of particles 30
PSO Maximum number of itera- | 50
tions
Inertia weight [Winin, Wmaz| | [0.4, 0.9]
C1, C2 2

The maximum number of iterations in PSO for the experiments was determined
by analyzing various MSE convergence patterns relative to iteration counts. The
convergence graph of accuracy (MSE) with iteration counts, using the training
data for confirmed cases in the US, is presented in Figure 4.1. As shown, accuracy
improves as the number of iterations increases. In this example, the MSE value
converges to an acceptable low value at an iteration count of 50.

The time complexity of the proposed techniques is also analyzed. Since nested
loops are employed to optimize all hyperparameters in a single run, the time
complexity increases non-linearly [199]. The runtime of the techniques is recorded
on a system with the specifications outlined in Section 1.7. Measurements have
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Figure 4.1: Convergence graph of PSO for COVID-19 confirmed cases time
series of the USA.

Table 4.5: Measured runtime (seconds) for the proposed approaches.

Approach Single run-| Outer loop | Inner loop | Total run-
time (A) in | iterations iterations time (A x B
ms (B) (C) x C) in sec

Nested-PSO 37.869 ms 50 50 94.673 s

Exhaustive- 37.869 ms 13 50 24.615 s

search-PSO

been taken for a fixed number of partitions (50), fuzzy orders ranging from 1 to 5,
and a single particle for the Phase 1 COVID-19 data from the USA. The total
runtime is estimated based on the number of iterations used in the outer and
inner loops of the approaches. The results indicate that the runtime of exhaustive-
search-PSO is significantly lower, due to the reduced number of iterations in its
outer loop.

Predictions and comparative analysis of the proposed approaches are presented
in the next section.

4.5.4 Experimental Results

The proposed approaches are compared against FB-Prophet [217], ARIMA [230],
FTS [40], and FTS-PSO [120] using time series data from both phases of the
COVID-19 outbreak. The datasets are split into training and testing sets, with
the last 20 samples used as the testing set for Phase 1 and the last 15 samples for
Phase 2. Prediction results are generated for the day-level cumulative confirmed
COVID-19 cases across the 10 selected countries. Each experiment has been run
10 times, and the best result from these runs is selected as the final outcome.

COVID-19 forecasting for Phase-1 (Initial phase)

This section presents prediction results for the COVID-19 timeline spanning from
April 2020 to October 2020, referred to as Phase 1. The predictions have been
generated using the confirmed COVID-19 cases from the 10 selected countries,
as detailed in Table 4.6. The results have been obtained using the partition and
fuzzy order ranges specified in Table 4.4 for Phase 1. Prediction accuracy for the
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test set is evaluated using the MAPE function across all compared models. The
primary objective of this comparison is to assess the performance of the proposed
approaches on diverse datasets.

Table 4.6 presents the forecasting results, with FB-Prophet predictions gen-
erated using daily seasonality. Among the compared models, FB-Prophet has
shown the lowest performance. The ARIMA model, characterized by its three
primary parameters, namely, order of autoregression (p), order of differencing (d),
and order of moving average (q), has performed better than FB-Prophet. The
optimal (p, d, q) parameters and corresponding prediction accuracy (MAPE) for
ARIMA are listed in Table 4.6 for each country, aligning with findings from our
earlier work [114].

Table 4.6: Forecasting Performance of the models for COVID-19 confirmed cases
in Phase-1.

Optimal hyperparameters for all methods and MAPE
Country | FB- ARIMA FTS FTS-PSO | Nested- Exhaustive-
Prophet FTS-PSO | search-
FTS-PSO

pda | KO | KO0 |KO |(KoO0)

France (5,1, 1) (85, 4) (80, 3) (90, 5) (70, 5)
18.833 0.766 0.049970 | 0.045644 | 0.047976 0.033117

Germany (4,1, 1) (80, 4) (85, 5) (90, 4) (70, 5)
17.195 0.868 0.028425 | 0.016065 | 0.020281 0.014956

India (4,1, 1) (85, 3) (90, 2) (90, 5) (90, 5)
5.162 0.315 0.005724 | 0.003991 | 0.003837 0.003050

Iran (3,1, 1) (70, 3) (80, 5) (90, 5) (85, 5)
5.164 0.025 0.004722 | 0.004520 | 0.004662 0.004417

Ttaly (4,1, 1) (60, 5) (90, 4) (89, 5) (75, 5)
22.589 0.877 0.025832 | 0.022416 | 0.024141 0.021285

Russia (5,1, 1) (55, 2) (90, 4) (90, 5) (65, 5)
8.389 0.778 0.003989 | 0.003450 | 0.003731 0.003314

Spain (3,1, 1) (90, 5) (55, 4) (90, 5) (80, 5)
3.407 0.173 0.009503 | 0.008251 | 0.007637 0.006277

Turkey (5,1, 1) (75, 5) (80, 3) (90, 5) (75, 5)
0.631 0.043 0.005271 | 0.004107 | 0.008281 0.003275

UK (5,1, 1) (85, 3) (90, 4) (90, 5) (90, 5)
26.075 0.128 0.006306 | 0.005590 | 0.005791 0.005188

Us (5,1, 1) (50, 5) (75, 2) (90, 4) (85, 5)
3.236 0.213 0.003933 | 0.003726 | 0.003891 0.002699

For FTS forecasting, the two key parameters are the number of partitions
(K) and the fuzzy order (O). The table highlights the best-performing (K, O)
combinations that yielded optimal accuracy (MAPE) for FTS, FTS-PSO, nested
FTS-PSO, and exhaustive FTS-PSO. In the case of FTS-PSO and the proposed

techniques, PSO was employed to optimize the length of intervals for each param-
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eter pair. The impact of PSO is evident in the significant accuracy improvements
observed when comparing FTS with FTS-PSO in Table 4.6.

Nested FTS-PSO demonstrated moderate performance compared to the other
approaches, though it exhibited signs of overfitting during the training phase,
consistently following the same pattern across datasets. This suggests the need
for a stopping condition before making predictions with nested FTS-PSO. Despite
these limitations, the approach produced competitive results.

Exhaustive-search-FTS-PSO outperformed all other models for all the selected
countries. It adapted effectively to the scenarios, delivering the most accurate
forecasting results among the compared approaches.

COVID-19 forecasting for Phase-2 (Evolved phase)

Many countries experienced multiple waves of COVID-19 outbreaks. To account
for this, a comparative prediction analysis of the adopted and proposed approaches
are conducted for the later (evolved) phases of the pandemic. For this analysis,
datasets from India and the USA are selected, as these countries were among
the most severely affected during Phase-2 of COVID-19. Table 4.7 presents the
prediction accuracy results for all approaches applied to both countries. The table
shows that the exhaustive-search FTS-PSO consistently outperformed all other
approaches on the Phase-2 COVID-19 timeline data. The pattern of performance
is similar to the results in Table 4.6.

Table 4.7: Forecasting performance of the models for Phase-2 of COVID-19

Submission ID trn:o0id:::27535:98713186

Optimal hyperparameters for all methods and MAPE
Country | FB- ARIMA FTS FTS-PSO | Nested- Exhaustive-
Prophet FTS-PSO search-FTS-
PSO
(p: d, Q) (K7 O) (K7 O) (K7 O) (K’ O)
India (0,1,1) (60, 4) (60, 2) (60, 5) (50, 5)
7411 0.560 0.009233 | 0.008289 | 0.008137 0.005865
Us (5,1, 1) (50, 3) (60, 4) (60, 5) (60, 5)
0.698 0.022 0.003580 | 0.002961 | 0.003192 0.002410

7) turnitin

4.6 Analysis and Discussion

The hyperparameters of the FTS forecasting model include the number of partitions
in the UOD, partition intervals, and fuzzy order. The prediction accuracy of any
F'TS forecasting model relies heavily on the proper tuning of these hyperparameters.
Existing approaches in the literature have addressed F'T'S forecasting problems by
optimizing the interval lengths and fuzzy order while typically setting the number
of intervals to a fixed value.

In this chapter, the optimization of all three FTS hyperparameters is performed
using variations of the PSO algorithm. Specifically, the nested-FTS-PSO and
exhaustive-search-FTS-PSO algorithms are proposed to optimize the number
of partitions, the length of partition intervals, and the fuzzy order. COVID-19
datasets from 10 highly affected countries are used to evaluate the performance of
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the proposed models. These models are compared against ARIMA, FB-Prophet,
conventional-FTS, and FTS-PSO.

Prediction results are presented for two distinct timelines: the initial (starting)
phase and the evolved phase of COVID-19. The proposed approaches effectively
identified the optimal combination of hyperparameters, with the exhaustive-FTS-
PSO outperforming all other compared models across both timelines.

o7

Z'l—.l turnitin‘“ Page 81 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



z'l_.l turnitin Page 82 of 175 - Integrity Submission Submission ID trn:oid::27535:98713186

zl'—.l turnitin‘“ Page 82 of 175 - Integrity Submission Submission ID trn:oid:::27535:98713186



z'l_.l turnitin Page 83 of 175 - Integrity submission Submission ID trn:oid::27535:98713186

CHAPTER 5

DESIGN OF TIME SERIES FORECASTING
MODEL FOR PREDICTING COVID-19 FOR
MUTANT AFFECTED POPULATION

! The performance of classical time series forecasting models significantly declines
when the data is non-stationary in nature [58, 190]. Research has shown that
fuzzy time series (F'T'S) models are effective in handling highly uncertain data
[133, 97]. A prime example of a non-stationary time series is the COVID-19
pandemic [96]. Several factors, including lockdowns, quarantines, healthcare
facilities, population density, education, virus variants, vaccination efforts, and
government policies, have influenced the spread dynamics of the COVID-19. The
forecasting of COVID-19 cases is a challenging task for a single forecasting model
due to the complexity introduced by the multiple factors.

The combination of FTS with deep learning (DL) techniques is a rapidly
growing research area, as it enhances the interpretability and explainability of
the system. In this direction, wang et al. [226] leveraged the benefits of the
fuzzy concept in conjunction with LSTM for long-term forecasting. The study
suggested that the fuzzy integration is able to address the limitations of LSTM.
The hybrid model outperformed eight other state-of-the-art models, demonstrating
its superiority. In another study [20], the authors integrated FTS with DL methods
and proposed the use of butterfly optimization [12] to enhance the results. The
inclusion of the optimization algorithm led to a significant improvement in the
forecasting performance.

The LSTM has demonstrated its capability to handle nonlinear, time-varying
data [130]. Higher-order FTS models offer improved forecasting accuracy compared
to first-order FTS models. As a result, many recent studies focus on high-order
FTS models [246, 140]. The PSO algorithm is able to find nearly optimal solutions
without getting stuck in local minima [103]. A very few studies have explored the
combination of high-order F'T'S with deep learning for forecasting of a pandemic
spread. Therefore, this chapter investigates a hybrid model that integrates high-
order FTS, PSO, and deep learning to address the dynamics of COVID-19 and
enhance the forecasting accuracy.

5.1 FTS modeling

FTS forecasting models involve five distinct stages: (1) defining the universe of
discourse (UOD), (2) determining the intervals within the UOD, (3) fuzzifying

!The contents of this chapter are published in research papers entitled “Non-Stationary
Fuzzy Time Series Modeling and Forecasting using Deep Learning with Swarm Optimization.”
in International Journal of Machine learning and Cybernetics. pp. 1-19, 2025. and
another research paper entitled “Epidemic Modeling using Hybrid of Time-varying SIRD,
Particle Swarm Optimization, and Deep Learning” in International Conference on Computing
Communication and Networking Technologies (ICCCNT), pp. 1-7. IEEE, 2023
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historical data, (4) establishing fuzzy logical relationships (FLRs) and organizing
them into groups, and (5) optionally, defuzzification.

In stage-1, the lower (D) and upper (Dj,..) bounds of the time series
are identified. The minimum and maximum values of the UOD are defined as
[Dyin, — D1, Do + D2], where D1 and D2 are proper positive values. Stage-2
involves dividing the UOD into either equal or unequal intervals. Optimal length
of intervals is crucial for achieving higher prediction accuracy. Stage-3 assigns
linguistic variables to the intervals identified in Phase 2, and fuzzification of each
historical data point is carried out by mapping it to the corresponding interval.
For k intervals, there will be k linguistic variables. In stage-4, FLRs are established
between the linguistic variables. The left-hand side of a relationship represents
the present state, while the right-hand side represents the next state. These
relationships may be of first order or higher. A linguistic value can appear only
once on the right-hand side of a relationship. FLRs sharing identical present states
are aggregated to constitute a fuzzy logical relationship group (FLRG). The order
of FLRs is critical for efficient forecasting. Finally, stage-5 involves calculating the
forecasted values using FLRGs, it is known as defuzzification. The crisp values
can be computed using statistical methods or by a rule based conversion method.

Detailed overview of fuzzy concept and FLRs is provided in chapter 4.1. Steps
of FTS forecasting are described in chapter 4.2. In this chapter, F'TS is explored
with deep learning models (LSTM and its variants) and optimization techniques

(PSO).
5.2 LSTM and its variants for modeling FLRs

RNN contains loops between nodes which allows it to store temporal information,
and information feedback for decision making. RNNs use internal memory to
process the sequences of inputs but they suffer from gradient vanishing and
exploding problem when dealing with long sequences [19]. To address this problem,
LSTM network was developed [87]. LSTM units contain a memory cell and three
gates (input, forget, output) that regulate information propagation. The memory
cell preserves temporal state information throughout sequential processing. These
gates control the flow of information within the network. The memory cell is
responsible for retaining information over time. The input gate determines which
information is added to the memory cell, while the forget gate discards information
that is no longer relevant. The output gate regulates the information that is sent
from the memory cell as output. This selective information flow allows the LSTM
to retain important information and transmit only what is necessary through the
network, enabling it to learn long-term dependencies effectively. The structure of
LSTM network is shown in Figure 5.1.

Recurrent neural network (RNN) contains loops between nodes which allows it
to store temporal information, and information feedback for decision making [168].
RNNs use internal memory to process the sequences of inputs but they suffer
from gradient vanishing and exploding problem when dealing with long sequences
[19]. To address this problem, long Short-Term Memory (LSTM) network was
introduced in [87]. To address more complex tasks, several LSTM variants have
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Figure 5.1: LSTM structure.

been developed, including stacked LSTM, bidirectional LSTM, convolutional
LSTM, and attention-based LSTM

Researchers have developed stacked-LSTM model to improve accuracy of
the prediction results. A stacked-LSTM model contains multiple LSTMs in the
stacked form to process the input data one after another [64, 63]. To solve
various real-world problems, different variants of LSTM have been introduced
over time. Bi-directional LSTM (bi-LSTM) has been introduced to primarily deal
with challenges of natural language processing. Basically, bi-LSTM is created
by combining two LSTMs: one is used for forward direction, and the other
one is for backward direction data flow [193]. Therefore bi-LSTM is capable of
utilizing input flows in forward as well as backward directions. Convolutional
neural networks (CNNs) are prominently used for image processing and pattern
identification because it reduces frequency variation [214]. LSTM and CNN are
complementary in their capability to solve time series problems. Ensemble of
CNN and LSTM denoted as conv-LSTM which has been introduced to deal with
the problems related to processing of sequential patterns or images to improve
the results [49]. The addition of convolutional layers at the input helps to capture
contextual information in the time series data. In artificial intelligence, the
attention mechanism is a machine learning technique where the network focuses
only on important and related part of the data [18, 211]. So, many researchers have
experimented using LSTM with attention technique to improve the forecasting
results by capturing contextual patterns in the input data [245, 2]. In this
chapter, we investigate variants of LSTM model with convolutional and attention
mechanisms for modeling of FLRs in F'TS data.

5.3 PSO Variant

In this section, variant of PSO is described which is an improved version of the
PSO described in Chapter 4.3. PSO is an evolutionary algorithm which aims
to achieve an optimal or nearly optimal solution of a problem without getting
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trapped into a possible local minimum solution [103, 119]. Each particle in a
swarm represents a potential solution. A particle of a swarm swims through the
search space of the optimization problem to find an optimal solution.

Let K be the number of particles in the swarm, and there is d-dimensional
search space of an optimization problem, then the position of the i'"(i = 1,2, ..., K)
particle is represented by X; = [x},,2z?, ...,2¢] , and the velocity by V; =
[vl, 02, ..., v9]. Initially, all particles are initialized with random values of the
position vector in search space. Each particle swims through the search space, and
keeps the personal best position Py ; which has been recorded so far. Overall
best position among the particles in the swarm is recorded as global best position
Pypest. Position and velocity of a particle are updated till the pre-defined condition
is achieved or maximum iteration is reached. Following equation is used to update
the inertia weight.

t % (Wimaz — Winin)

(5.3.1)

w' = Wmaz —

tmax

where w! is the inertia weight in the ¢ iteration, wymee and Wy, are pre-
defined inertia weights. t,,,, is the maximum iteration count.

The acceleration coefficients C'1 and C2 are adaptively adjusted based on the

inertia weight w’. To enhance local search capabilities, a larger C'1 and a smaller

C2 are employed, whereas a smaller C'1 and a larger C2 are preferred for improved

global search. This adaptive strategy is implemented by updating the acceleration

coefficients according to the following equations.

t

C1t =

x (w' 4+ Vwt + 1) (5.3.2)

wmaz

ot
oot = Ymae T Wt 4 Vat + 1) (5.3.3)

wmaaz
where C'1! and C2! are the acceleration coefficients in the " iteration. Their
values are restricted within the range [0.5, 2.5]. Position and velocity of i*" particle

are updated using the following equations.

VI = w4 O Rand() (P, — X1)+ 025 Rand() s (Ppesi— X1) (5.3.4)

Xt = X4yt (5.3.5)
Vmax = xma; — Lmin (536)

where V' and X! are the current velocity and current position respectively of
a particle 7 in the t** iteration. Maximum speed of a particle is estimated using
equation 5.3.6 to ensure uniform speed of all dimensions. V' is restricted to the
range [—Viiae, Vinaz)- Rand() is a random function which is used to generate a
value in the range [0,1] under uniform distribution. The hyperparameters (fuzzy

order, length of intervals) associated with FTS models are determined using the
PSO algorithm.
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5.4 Proposed Methodology

Hybrid models using integration of F'T'S, PSO, and deep learning model are
explored to handle non-stationary time series data for forecasting of the COVID-
19 confirmed cases. FTS deals with uncertainties, and deep learning enhances
the forecasting capability by incorporating the long term changes in the non-
stationary data. PSO identifies the optimum parameters of FTS which results in
improvement in the forecasting accuracy. Block diagram of the proposed framework
is shown in Fig. 5.2. The framework consists of mainly four components; a.) data
preprocessing, b.) FTS modeling using PSO optimization, c.) deep learning and
forecasting, and d.) defuzzification and evaluation. As shown in Fig. 5.2, data
preprocessing is performed by applying three method; 1. differencing, 2. weekly
averaging, and 3. removal of outliers in training and testing samples.

The time series was split 70:15:15 for training, validation, and testing purposes
respectively. After preprocessing, the crisp time series Y (¢) is obtained, which
is then used for FTS modeling. The key hyperparameters for FTS include the
number of fuzzy intervals, the fuzzy order, and the optimal configuration of
unequal interval lengths. The effective number of intervals is determined using the
average-based method proposed by Huarng [90]. PSO is employed to identify the
optimal fuzzy order and the best configuration of unequal interval lengths. The
data is then fuzzified through a fuzzification process. Based on the optimized fuzzy
order, FLRs are constructed. Subsequently, a deep learning model is integrated
to further model the fuzzified data. This model is trained and validated using
the fuzzified data and the established fuzzy relationships. Forecasting is then
performed on the testing set using the trained model. Finally, the forecasted fuzzy
data points are converted back into crisp values through a defuzzification process.
Step-by-step explanation is given in the following.

Step-1: Identify universe of discourse (UOD).

Let there be a crisp time series dataset Y (t), where y,;, and Y., are the
minimum and maximum values in the dataset, then UOD is defined as U =
[Unmins Unaz), where Unin = Ymin — D, Unaz = Ymaz + Dy D = 0.2 X (Ymaz — Ymin)-
In this study, confirmed cases of the COVID-19 are counted as proper positive.
So, value of U,,;, is set as 0 in the experiments whenever it is found negative.
For example, if maximum value in a dataset is D,,,, = 28, minimum value is
Diyin, = 1, then, identified proper positive value D = 0.2 x (28 — 1) = 6, then
U = (Ymin — D, Ymae + D) = (1 — 6,28 + 6) = (0, 34)

Step-2: Determine the number of intervals.

The selection of the number of intervals is crucial for the predictive accuracy
of a FTS model. An excessively large number of intervals can undermine the
fundamental principles of F'TS, while too few intervals may lead to reduced
forecasting accuracy. So, in this proposal, an average-based method is adopted to
determine the effective number of intervals [167]. In this method, the dataset Y'(¢)
is first sorted and duplicate values are removed to identify unique data points.
Subsequently, one-lag differencing is applied to the sorted series to obtain an
absolute difference series. The length of intervals is calculated using equation
5.4.1, and the number of intervals are find out using equation 5.4.2.
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Figure 5.2: Proposed model framework.

1N i
interval _len ==Y %J (5.4.1)
2 n

Umax - Umin

interval _len

1 (5.4.2)

#intervals = |

Submission ID trn:o0id:::27535:98713186

For example, suppose a time series dataset is Y (¢) = {1, 21, 3,23, 3, 27, 8, 28, 12, 28}.
After, the first lag differenced absolute series is Yy (t) = {20, 18, 20, 20, 24, 19, 20, 16, 16}.

Half of the average of Yy(t) is 9.61. By rounding Yy(¢) the effective length of

intervals is interval len = 9. Therefore, number of intervals will be #intervals =
o] = g
Step-3: Determine optimum length of intervals and fuzzy order.

In this step, intervals are generated based on the number determined in Step
2. The boundary points for these intervals are created within the UOD. To
obtain the optimal (unequal) interval lengths, the PSO algorithm is employed.
Initially, each particle is assigned a set of boundary points as its coordinates.
During each iteration, a particle’s velocity is updated using Eq. 5.3.4, and its
position (coordinates) is updated using Eq. 5.3.5. The resulting points are sorted
in ascending order, and consecutive pairs are used to form intervals, which are

then defined as fuzzy sets. Each fuzzy set is associated with a linguistic term
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represented by an index value. Fuzzification of the crisp time series Y (¢) is
performed by replacing each data point with the index of the fuzzy set to which
it belongs, resulting in a fuzzy time series F(t). Subsequently, fuzzy relations are
established based on the selected fuzzy order, following standard FTS definitions.
In this chapter, optimum fuzzy order is identified from the set of fuzzy orders
{1,2,3,4,5} using PSO. Each fuzzy order is experimented by integrating with
PSO, and the best performing fuzzy order is identified. Finally, combination of
optimum values of a fuzzy order and interval boundary points are returned.

Using example from step-2, 4 number of fuzzy intervals in the range of UOD
having length 10 can be created as {[0, 9), [9, 19), [19, 29), [29, 34)}. Index values
of the fuzzy intervals are {0, 1, 2, 3}. Assume that optimum fuzzy order for the
example sample is 1.

Step-4: Time series Fuzzification and establishment of FLRs.

Using the optimal fuzzy intervals obtained in Step 3, the crisp time series Y (¢) is
fuzzified to generate the fuzzy time series F(¢). In this context, a fuzzy forecast
corresponds to the right-hand side value of a fuzzy relation. Each data point in
Y'(t) is mapped to the index of its corresponding fuzzy set during fuzzification.
The resulting fuzzified data is then normalized using min-max normalization, a
common preprocessing step that enhances the performance and convergence speed
of LSTM models. Finally, FLRs are established on the normalized data using the
optimal fuzzy order identified in Step 3.

Using fuzzy intervals from the example in step-3, crisp time series Y (¢) is fuzzified
to fuzzy time series F(t) = {0,2,0,2,0,2,0,2,1,2}. We have applied min-max
normalization on F'(¢) in this study. But for the simplicity, here we are explaining
without normalization. Using fuzzy order 1, fuzzy relations are defined on F(t)
as0—2,2—-0,0—22—>0,0—>2,2—1,1— 2. After removing duplicates,
remaining FLRs are 0 — 2,2 — 0,2 — 1,1 — 2. After grouping final FLRs are
0—+21—=+22-—=0,1

Step-5: Forecasting using deep learning.
In this step, FLRs are divided into training, validation, and testing sets. In this
study, variants of LSTM deep learning model with attention and convolutional
mechanisms are experimented. The model is trained on the training samples,
results are validated on the validation set, and forecasting is performed on the
test samples.
Step-6: Defuzzification.
Defuzzification is the process of converting fuzzified data back into crisp values. In
Step-5, each fuzzy forecast is first denormalized and then rounded to the nearest
integer, which serves as the index of a corresponding fuzzy set. The midpoint of
the identified fuzzy set is taken as the final forecasted (crisp) value. If the rounded
index exceeds the total number of intervals, the forecast is assigned the midpoint
of the last fuzzy set. Conversely, if the index is less than zero, the forecast is set
to the midpoint of the first fuzzy set. This process results in the generation of the
defuzzified data series.
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5.5 Experimental setup

The performance of Particle Swarm Optimization (PSO) is significantly influenced
by its acceleration coefficients: the cognitive coefficient (C1) and the social
coefficient (C2). The cognitive component (C1) encourages local search by guiding
particles toward their own previously best-known positions, a process referred to
as exploitation. In contrast, the social component (C2) promotes global search
by steering particles toward the global best position, known as exploration. An
excessively high C1 combined with a low C2 may result in excessive exploitation,
potentially causing premature convergence to local optima. Conversely, a low
C1 and high C2 may lead to excessive exploration, resulting in slow convergence
and suboptimal solution refinement. Therefore, achieving an appropriate balance
between exploitation and exploration through careful tuning of C1 and C2 is
essential. In this chapter, these coefficients are dynamically adjusted during
runtime using the equations provided in Section5.3.

An experiment is carried out to identify the number of iterations required for
the PSO convergence on the adopted datasets. Fig. 5.3 illustrates the convergence
of the PSO algorithm for the adopted datasets. PSO convergence is carried out
with number of particles as 50, number of partitions for the datasets as 100,
and fuzzy order as 2. Inertia weight is updated using equation 5.3.1, velocity of
particles is updated using equation 5.3.4, and acceleration coefficients are updated
using the equations 5.3.2 and 5.3.3 in each iteration. We can observe that PSO is
able to converge in approximately 200 iterations for each country as shown in Fig.
5.3. Therefore, we set the maximum iterations for PSO as 200 in each experiment,
and the values of other parameters are restricted within the range as given in

Table 6.9.
6000
—— USA
India
5000 UK
—— Russia
4000 — ltaly
L
=
= 3000
2000
1000 b
0 100 200 300 400 500

lteration

Figure 5.3: Convergence graph of PSO for the adopted datasets.
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Table 5.1: PSO hyperparameters set in the experiments

PSO Parameter Value
Number of particles 50
Maximum number of itera- 200
tions

Inertia weight [Wpin, Wmaz| 0.4, 0.9]
C1, C2 [0.5, 2.5]

In FTS modeling of non-stationary data, the number of partitions plays a
critical role in how effectively the UOD is segmented. A higher number of partitions
can capture finer variations in the data, potentially enhancing forecast accuracy,
but at the cost of increased model complexity. Conversely, too few partitions may
oversimplify the data, leading to underfitting. Therefore, selecting an optimal
number of partitions is essential to balance model complexity, computational
efficiency, and forecasting performance. Likewise, the size of the fuzzy intervals
significantly influences the fuzzification process. Properly sized intervals contribute
to the model’s robustness by effectively managing uncertainty and imprecision
inherent in time series data. Thus, both the number of partitions and the size of
fuzzy intervals are crucial factors in developing an effective F'T'S model capable of
handling uncertainty. Therefore, in this study, the number of fuzzy intervals is
determined using the proven average-based methodology. Combination of unequal
length of intervals and fuzzy order of FTS are optimized using the PSO. Optimized
number of fuzzy intervals and optimized fuzzy order for each dataset is given in
Table 5.2. Further, the fuzzification of crisp time series is performed using the
identified optimum parameters to generate FTS as explained in Step-4 in Section
5.4. FLRs are established using the optimum fuzzy order for each dataset.

Table 5.2: Optimized values of fuzzy intervals and fuzzy order for each dataset

COVID-19 Dataset #Optimized Fuzzy Intervals Optimized value of Fuzzy Order

USA 36 5
India 17 4
UK 12 3
Russia 10 3
Italy y 9 4

DL modeling using LSTM can achieve higher accuracy, flexibility, and ro-
bustness in time series forecasting. In DL modeling, the choice of optimizer,
learning rate, and loss function significantly impacts the performance of the model,
convergence, and ability to generalize. Adam optimizer combines the advantages
of adaptive learning rate and momentum. It is widely used due to its robust
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performance and efficiency. Attention mechanisms have shown great promise in
time series forecasting. Instead of processing the entire input sequence as a whole,
attention mechanism indicates their relevance to the current step in the output
sequence.

Hyperparameters for the deep learning models are shown in Table 6.10. We
have experimented with activation functions, namely, relu, tanh, linear, and
sigmoid in LSTM model, out of which the linear activation function is found
appropriate for the adopted time series datasets. We kept the values of the model
parameters same for all the compared models. In stacked-LSTM model, one
more layer of LSTM is used with 20 hidden units. In conv-LSTM model, two 1D
convolutional layers are used. First layer with 60 filters, 4 kernels, single stride,
and relu activation function. Second layer with 60 filters, 4 kernels, single stride,
and tanh activation function. In attention-LSTM and attention-bi-LSTM model,
Bahdanau [18] attention mechanism has been used.

Table 5.3: Parameters set for LSTM and its variants

Parameter Value
Optimizer Adam
Learning rate 0.001
Loss function Huber
Evaluation metrics MSE
Hidden units 50
Dense units 1
Epochs 1000

The proposed method is evaluated against two statistical models, ETS [232]
and ARIMA [85], two machine learning models, ANN [157] and LSTM [6], and a
fuzzy-based hybrid model, Panigrahi-FTSF-LSTM [167]. The ARIMA and ETS
models are implemented using the open-source Statsmodels Python library, while
the ANN and LSTM models are built using the Keras library in TensorFlow. The
Panigrahi-FTSF-LSTM model is implemented in Python 3.9.

The ETS model comprises three key components: 1) trend (T), 2) seasonal
(S), and 3) an error term (E). These components influence how the model handles
errors, trends, and time. The error term determines how the nearest prior periods
are modeled, with statistical information criteria used to select the best fit among
auto, additive, or multiplicative error specifications. The trend term defines how
trends are addressed, allowing options for additive, multiplicative, or no-trend
corrections. When the damped_ trend option is enabled, it reduces the influence
of recent trends. For daily data with a monthly cycle, the seasonal periods
parameter is set to 12.

In this analysis, extensive experiments are conducted with the ETS model to
determine its optimal parameters for various datasets. An example of the model’s
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Figure 5.4: ETS(AAdA) model forecasting results on COVID-19 daily infections
in the USA.

training and testing with optimal parameters for the USA time series is shown in
Fig. 5.4, where the training and testing time series are separated by a vertical red
line. The identified optimal parameters are specified as: ETSModel(error="add’,
trend="add’, seasonal="add’, damped_ trend=True, seasonal periods=12). This
configuration is denoted as ETS(AAdA), where all components are additive, and
recent trend is dampened. The ETS model with these settings is compared against
the proposed methodology across different datasets and evaluation metrics in the
next section.

(95) The ARIMA(p, d, q) model integrates three components: auto-regressive (AR),
differencing (d), and moving average (MA). Differencing is applied to remove
trends or seasonality, ensuring the time series becomes stationary. In this analysis,

(19) Partial Autocorrelation Function (PACF) and Autocorrelation Function (ACF)
graphs are used to determine the AR parameter (p) and MA parameter (q) of the
model. Based on these analyses, the optimal ARIMA order for the COVID-19

(172 time series of the USA is identified as (2,1,0). The training and testing results of
this configuration are shown in Fig. 5.5. Optimal ARIMA orders are similarly
determined for other datasets and compared against the proposed methodology
using various metrics, as discussed in the next section.

The ANN and LSTM models are evaluated using the parameters listed in Table
6.10. Additionally, various activation functions, including ReLLU, tanh, linear, and
sigmoid, have been tested. Among these, the linear activation function is found
to be the most suitable for the adopted time series datasets.

5.5.1 Experimental Results

This study conducts a comprehensive performance comparison between the pro-
posed hybrid forecasting framework and five contemporary state-of-the-art bench-
(38) mark models. The training set is used for model training, the validation set
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Figure 5.5: ARIMA(2, 1, 0) model forecasting results on COVID-19 daily

infections in the USA.

for parameter tuning, and the testing set for forecasting. The primary focus
is to address the challenge of non-stationarity in time series data. To evaluate
adaptability to non-stationary dynamics, the models are first tested without
applying any preprocessing to the time series data, with the results presented in
Section 5.5.1. Since some forecasting models perform effectively only on stationary
time series, preprocessing techniques are applied to standardize the datasets and
provide a consistent baseline for all models. Following this, additional experiments
are conducted on the preprocessed datasets, and the corresponding results are
presented in Section 5.5.1. All models are evaluated on testing samples using the
performance metrics MAE, RMSE, RRSE, sMAPE, and MASE.

Models evaluation without data preprocessing

This section presents the forecasting results for COVID-19 confirmed cases in the
USA without applying preprocessing to the time series data. The performance
outcomes for the testing samples are summarized in Table 5.4. The reported
values represent the mean and standard deviation over three runs for each model
across all performance metrics. Statistical models show no variation in standard
deviation across multiple runs with fixed hyperparameters, whereas machine
learning models dynamically learn patterns and adjust hyperparameters during
runtime, resulting in noticeable variations in performance. The performance
ranking, from lowest to highest, follows the order of statistical models, machine
learning models, and hybrid fuzzy models. Notably, machine learning models
demonstrated performance comparable to the proposed hybrid models. Among all
the models, the hybrid approach combining FTS, PSO, and attention-Bi-LSTM

delivered the best overall performance.
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Table 5.4: Forecasting accuracy (mean + standard deviation) of the models
without preprocessing of the USA dataset (best values are shown in bold).

Model USA
MAE RMSE RRSE sMAPE | MASE
ETS(MAdA) 510612 | 474277 | 1.464 + | 123.34 132.88
+ 0 + 0 0 + 0 + 0
ARIMA(4,1,0) 322914 | 389853 | 1.238 + | 111.08 165.391
+ 0 + 0 0 + 0 + 0
ANN 226450 | 356206 | 1.152 =+ | 108.66 1.893 +
+ 424 + 410 0.18 + 8 0.64
LSTM 213629 | 351019 | 1.135 £ | 99.62 + | 1.646 =+
+ 412 + 384 0.15 8 0.52
Panigrahi- 212642 | 349544 | 1.153 = | 102.74 1.627 +
FTSF-LSTM + 374 + 292 0.16 +6 0.34
FTS+PSO 209206 | 343899 | 1.119 £ | 99.83 + | 1.625 +
+LSTM + 357 + 284 0.14 7 0.28
FTS+PSO 206641 | 342092 | 1.108 £ | 97.26 =+ | 1.615 =+
+stacked-LSTM | & 344 + 261 0.13 6 0.22
FTS+PSO +Bi-| 205772 | 341209 | 1.115 &+ | 96.14 £ | 1.591 =+
LSTM + 341 + 244 0.13 5 0.19
FTS+PSO 202588 | 341972 | 1.199 £ | 95.95 + | 1.593 +
+Conv-LSTM + 336 + 228 0.12 5 0.21
FTS+PSO 202673 | 341483 | 1.114 £ | 95.54 + | 1.589 &+
+Attention- + 322 + 214 0.11 4 0.18
LSTM
FTS+PSO 201567 | 340929 | 1.104 94.34 1.559
+Attention-Bi- + 302 + 144 +0.11 |+ 4 + 0.16
LSTM

The prediction results are visualized in Fig. 5.6. The models are trained
on the training samples, and the testing results are generated using the trained
hyperparameters. The forecasting results for the ETS(MAdA) model are shown
in Fig. 5.6a. The ETS(MAdA) model performed best with a multiplicative error
term, additive seasonal and trend components, and dampened recent trends.

Fig. 5.6b illustrates the forecasting results of the ARIMA model, which
achieved its best fit with an order of (4,1,0). Testing results are generated using
ARIMA(4,1,0), showing effectiveness of the model in handling non-stationary
data.

The ANN and LSTM machine learning models are trained on the training
samples and fine-tuned using the validation set to capture time series patterns.
These models have demonstrated significant improvements in forecasting accuracy,
as shown in Fig. 5.6c and Fig. 5.6d. Notably, LSTM has outperformed both ANN
and the statistical models on the USA dataset.

The forecasting results of the Panigrahi-FTSF-LSTM model are displayed in
Fig. 5.6e, while the results of the proposed hybrid models, integrating F'T'S, PSO,
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Figure 5.6: Testing results of forecasts using the proposed and compared models
for COVID-19 confirmed cases without preprocessing time series of the USA.
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and LSTM variants, are presented in Fig. 5.6f. The fuzzy-based machine learning
models demonstrated superior accuracy compared to traditional models.

Models evaluation on preprocessed data

This section assesses the forecasting performance of all models using preprocessed
time series datasets to establish a consistent baseline for comparison.

Evaluation on the USA dataset: The experiment detailed in Section 5.5.1
is repeated here using the preprocessed dataset for the USA. The improvement in
model performance after preprocessing is illustrated in Fig. 5.7 and summarized
in Table 5.5.

The forecasting results for all models on the testing samples of the USA dataset
are shown in Fig. 5.7. It is evident that statistical models struggle to handle
the multiple waves of COVID-19. In contrast, machine learning models exhibit
significant improvement, further enhanced by the integration of fuzzy logic and
optimization techniques.

Table 5.5 compares performance of the models using various metrics on the
preprocessed USA dataset. The results indicate that all models benefit from
data preprocessing, leading to improved forecasting accuracy. However, statistical
models, such as ETS(AAdA) and ARIMA(2,1,0), despite being well-fitted on the
training data, failed to handle dynamic changes in the time series. This limitation
causes them to converge toward the mean for the testing samples, as reflected in
Fig. 5.7.

The hybrid models, particularly those combining LSTM (augmented with
attention and convolutional layers), fuzzy logic, and PSO, demonstrate significant
performance improvements. While the impact of data preprocessing on hybrid
models is less pronounced, it still contributes to better results, underscoring the
importance of data preprocessing in enhancing model performance.

Table 5.5: Forecasting accuracy (mean + standard deviation) of models on
preprocessed dataset of the USA (best values are shown in bold).
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Model USA
MAE RMSE | RRSE sMAPE | MASE
ETS(AAdA) 123115 | 140967 | 1.261 4 | 94.74 £+ | 30.24 +
+0 +0 0 0 0
ARIMA(2,1,0) 157951 | 193898 | 1.735 £ | 90.55 + | 140.63
+0 +0 0 0 +0
ANN 113179 | 141847 | 1.273 £ | 90.37 £ | 1.52 =+
+ 364 + 396 0.19 8 0.28
LSTM 128375 | 138425 | 1.252 4+ | 88.12 £ | 1.62 =+
+ 328 + 384 0.17 6 0.29
Panigrahi- 115439 | 134054 | 1.263 4+ | 86.13 £ | 1.48 +
FTSF-LSTM + 284 + 289 0.15 5 0.31
FTS+PSO 108509 | 138872 | 1.246 4+ | 86.51 £ | 1.46 =+
+LSTM + 262 + 274 0.14 4 0.24
Continued on next page
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Table 5.5 — continued from previous page

Model USA
MAE RMSE | RRSE sMAPE | MASE

FTS+PSO 107632 | 137718 | 1.251 4+ | 86.46 £+ | 1.44 +
+stacked-LSTM | + 253 + 259 0.14 4 0.22
FTS+PSO +Bi-| 107610 | 137632 | 1.245 + | 85.63 + | 1.41 &+
LSTM + 241 + 256 0.12 5 0.21
FTS+PSO 107344 | 137428 | 1.247 £ | 87.56 £ | 1.45 =+
+Conv-LSTM + 233 + 244 0.13 4 0.19
FTS+PSO 107198 | 137205 | 1.242 + | 85.18 £ | 1.42 +
+Attention- + 224 + 237 0.11 4 0.18
LSTM
FTS+PSO 106230 | 136938 | 1.147 84.41 1.41 +
+Attention-Bi- | + 218 | +227 | +0.11 | + 3 0.16
LSTM

Evaluation on India dataset:The superiority of a model cannot be judged

solely based on its performance on one or two datasets. Hence, five diverse
datasets are used to evaluate all the models. The forecasting performance of the
models on the test samples of the India dataset is given in Table 5.6. The results
demonstrate that the hybrid model combining FTS, PSO, and attention Bi-LSTM
outperformed all other models across all metrics. It is important to use multiple
performance metrics, as excelling in one metric does not necessarily indicate
superior performance across others. Each metric provides a unique perspective,
contributing to a more comprehensive evaluation of model performance.

Table 5.6: Forecasting accuracy (mean + standard deviation) of three runs of
the models on the India dataset (best values are shown in bold).
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Model India
MAE RMSE RRSE sMAPE | MASE
ETS(MAdM) 60731 £+ | 65662 4+ | 1.249 £ | 113.66 42.41 £+
0 0 0 +0 0
ARIMA(6,1,0) 61255 4+ | 69522 £+ | 1.217 £ | 122.25 115.33
0 0 0 +0 +0
ANN 59067 £+ | 65644 + | 1.215 £ | 104.05 148 =+
367 423 0.41 + 4 0.14
LSTM 58280 £+ | 64319 £+ | 1.222 £ | 106.92 1.34 +
349 439 0.36 +5 0.15
Panigrahi FTSF-| 57388 + | 65547 + | 1.234 + | 109.61 1.32 =+
LSTM 369 419 0.35 +7 0.18
FTS+PSO 55282 + | 63841 + | 1.182 £ | 98.22 £ | 1.29 =+
+LSTM 356 398 0.33 6 0.17
FTS+PSO 54211 £ | 63281 £ | 1.164 £ | 96.66 + | 1.28 =+
+stacked-LSTM | 344 381 0.32 6 0.16
Continued on next page
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Table 5.6 — continued from previous page

Model India
MAE RMSE RRSE sMAPE | MASE

FTS+PSO +Bi-| 54157 £ | 63014 £ | 1.159 + | 94.52 + | 1.26 =+
LSTM 339 377 0.31 5 0.15
FTS+PSO 53456 + | 62607 &= | 1.129 9456 &+ | 1.24 =+
+Conv-LSTM 331 367 + 0.18 | 4 0.14
FTS+PSO 53232 £+ | 62506 £ | 1.139 £ | 95.02 &+ | 1.23 =+
+Attention- 328 359 0.23 5 0.15
LSTM
FTS+PSO 53044 62597 1.135 &+ | 94.13 1.22 =+
+Attention-Bi- + 318 + 356 0.17 + 4 0.16
LSTM

Evaluation on UK dataset: The forecasting performance of the models
on the COVID-19 confirmed cases from the UK is presented in Table 5.7. The
multiple waves in dataset of the UK makes it an ideal example of a non-stationary
time series dataset. As shown in the table, hybrid models consistently outperform
traditional models. Notably, the hybrid model combining F'T'S, PSO, and Attention
Bi-LSTM has demonstrated strong performance across all metrics except sMAPE.
The multiple waves present in the test dataset have negatively impacted the
performance of traditional models, highlighting their limitations to deal with
dynamics in time series data. This indicates that the proposed hybrid model is
better equipped to handle complex, multi-wave time series data effectively.

Table 5.7: Forecasting accuracy (mean + standard deviation) of the models on
the UK dataset (best values are shown in bold).
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Model UK
MAE RMSE | RRSE sMAPE | MASE
ETS(AAdA) 30953 £ | 37424 £ | 1.836 % | 90.065 26.917
0 0 0 +0 +0
ARIMA(4,1,30) | 25802 + | 35344 + | 1.341 + | 92.769 13.735
0 0 0 +0 +0
ANN 24588 £+ | 32149 + | 2.623 + | 82.20 + | 1.b3 =+
297 368 0.14 13 0.12
LSTM 24374 £ | 31263 £ | 2.417 + | 81.915 149 =+
285 345 0.15 + 14 0.15
Panigrahi FTSF- | 22925 4+ | 30941 &+ | 2.484 + | 8543 + | 1.51 &+
LSTM 277 329 0.18 11 0.11
FTS+PSO 21820 £ | 30875 £ | 2496 + | 7853 £ | 1.37 =+
+LSTM 256 364 0.19 12 0.09
FTS+PSO 21426 £ | 30574 £ | 2481 + | 77.69 + | 1.34 =+
+stacked-LSTM | 242 391 0.17 11 0.12
Continued on next page
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Table 5.7 — continued from previous page

Model UK
MAE RMSE | RRSE sMAPE | MASE

FTS+PSO +Bi- | 21820 £ | 30772 £ | 2.496 £ | 79.53 £ | 1.32 =+
LSTM 281 383 0.16 13 0.08
FTS+PSO 20914 £ | 29583 + | 2.481 + | 74.59 1.29 +
+Conv-LSTM 231 359 0.14 + 14 0.09
FTS+PSO 20823 £ | 28876 £ | 2.496 + | 76.53 £ | 1.26 =+
+ Attention- 218 365 0.15 13 0.11
LSTM
FTS+PSO 20584 28470 2.329 75.089 1.25 +
+Attention-Bi- | + 212 +354 | +£0.16 | £+ 12 0.09
LSTM

Evaluation on Russia dataset: The models are further evaluated using
the time series data of COVID-19 confirmed cases in Russia. The forecasting
performance results for the testing samples are presented in Table 5.8 for each
model. In this evaluation, the hybrid of FTS, PSO, and attention Bi-LSTM model
outperformed all others on the MAE, RRSE, and sMAPE metrics. The hybrid
of FTS, PSO, and convolution LSTM model delivered the best performance on
RMSE, while the hybrid of FTS, PSO, and attention LSTM model excelled on
the MASE metric.

Table 5.8: Forecasting accuracy (mean + standard deviation) of the models on
Russia dataset (best values are shown in bold).
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Model Russia
MAE RMSE RRSE sMAPE | MASE
ETS(AAdA) 20935 £+ | 22398 £ | 2.797 £ | 61.45 + | 27.39 +
0 0 0 0 0
ARIMA(5,1,10) | 23236 £ | 25352 £ | 3.171 £ | 72.79 £+ | 110.607
0 0 0 0 +0
ANN 20356 4+ | 24443 + | 1.802 £+ | 76.89 + | 1.82 &+
158 185 0.29 ) 0.14
LSTM 20267 4+ | 23831 £ | 1.766 £ | 75.45 + | 1.67 =+
169 193 0.24 4 0.11
Panigrahi FTSF-| 19863 + | 22634 + | 1.716 4+ | 73.22 £ | 1.56 +
LSTM 149 176 0.21 4 0.09
FTS+PSO 19481 + | 21514 4+ | 1.648 4+ | 62.17 = | 1.49 =+
+LSTM 147 173 0.19 3 0.12
FTS+PSO 19339 + | 21246 + | 1.655 4+ | 61.51 £+ | 1.47 =+
+stacked-LSTM | 159 169 0.18 5) 0.11
FTS+PSO +Bi-| 19457 + | 21209 4+ | 1.648 + | 62.11 £+ | 1.46 +
LSTM 128 171 0.15 3 0.09
Continued on next page
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Table 5.8 — continued from previous page

Model Russia
MAE RMSE | RRSE sMAPE | MASE

FTS+PSO 19288 + | 21121 1.643 &+ | 61.15 £ | 1.44 =+
+Conv-LSTM 123 + 154 | 0.16 4 0.13
FTS+PSO 19293 + | 21325 + | 1.631 4+ | 60.18 £+ | 1.41 +
+Attention- 124 165 0.15 3 0.12
LSTM
FTS+PSO 19085 21213 £ | 1.629 60.16 143 +
+Attention-Bi- | += 118 | 163 +0.15 | £3 0.12
LSTM

Evaluation on Italy dataset: The models are further evaluated using
the Italy dataset to add another dimension to the comparative analysis. After
being trained on the training samples and fine-tuned on the validation samples,
forecasting is conducted on the testing samples. The forecasting results for the
testing samples are shown in Table 5.9. The results indicate that the hybrid of
FTS, PSO, and attention Bi-LSTM model outperformed all other models across
all metrics.

Table 5.9: Forecasting accuracy (mean + standard deviation) of the models on
the Italy dataset (best values are shown in bold).

Page 101 of 175 - Integrity Submission

Italy
Model MAE |RMSE |RRSE |sMAPE | MASE
ETS(AAdA) 36716 £ | 38917 £ | 9.436 + | 130.83 75.06 £
0 0 0 +0 0
ARIMA(1, 1,0) | 35073 £ | 37805 £+ | 7.832 4+ | 97.21 + | 52.767
0 0 0 0 +0
ANN 34352 £+ | 37518 £ | 6.67 £ | 84.62 + | 2.39 =+
348 397 1.09 6 0.16
LSTM 34012 £+ | 37114 £ | 6.51 =+ | 89.13 + | 2.27 =+
334 389 1.12 8 0.15
Panigrahi FTSF- | 33527 4+ | 35959 + | 6.54 + | 83.45 + | 2.36 =+
LSTM 322 366 1.18 7 0.13
FTS+PSO 33462 £+ | 35183 £ | 5.73 £ | 73.32 £ | 2.23 &£
+LSTM 321 362 1.14 6 0.17
FTS+PSO 33536 & | 34643 £ | 5.53 +£ | 72.89 + | 2.17 &+
+stacked-LSTM | 316 367 1.12 5 0.14
FTS+PSO +Bi-| 33387 + | 34399 &+ | 5.05 =4 | 74.18 £ | 2.14 =+
LSTM 314 363 1.11 5) 0.12
FTS+PSO 32529 £ | 33826 £ | 5.16 £ | 66.61 £+ | 2.12 =+
+Conv-LSTM 316 345 1.12 5! 0.11
Continued on next page
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Table 5.9 — continued from previous page
Italy

Model MAE |[RMSE |RRSE |sMAPE | MASE
FTS+PSO 32468 + | 33425 + | 496 + | 6228 £ | 1.11 =+
+Attention- 311 316 1.11 4 0.11
LSTM
FTS+PSO 32113 33192 4.25 4+ | 61.15 1.09 +
+Attention-Bi- | + 308 | + 314 | 1.02 +4 0.08
LSTM

This study carried out extensive experiments to evaluate the models across
multiple datasets and performance metrics. The forecasting capabilities were
tested on both raw and preprocessed data, emphasizing the importance of pre-
processing. The results indicated that the models demonstrate varied behavior
depending on the metric used, with performance differences generally being mini-
mal. Consequently, a statistical analysis of the models’ performance is provided
in Section 5.5.2 to determine if any model is significantly superior to the others.

Analysis of computational complexity

A hybrid model improves performance but at the cost of increased computational
complexity. Therefore, it is important to analyze the computation time of all
models during training. The computation time for all models on the USA dataset
is provided in Table 5.10, with the measured time shown in seconds. Hybrid
models accumulate the training time of the integrated methods, resulting in longer
computation times compared to the baseline models, which are faster. However,
in an era where computing resources are readily available, model accuracy takes
precedence. As a result, hybrid models are widely adopted despite their higher
computational cost.

Table 5.10: Training computation time (sec) of the models for USA dataset

Model Training PSO compu- Total compu- Relative
time (sec)  tation time tation time Rank
(sec) (sec)

ETS(AAdA) 5 - 5 2
ARIMA(2,1,0) 1 - 1 1
ANN 1226 - 1226 3
LSTM 2382 - 2382 5
Panigrahi- 2361 - 2361 4
FTSF-LSTM
FTS+PSO 2121 3141 5262 6
+LSTM
FTS+PSO 3192 3141 6333 11
+stacked-
LSTM

Continued on next page
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Table 5.10 — continued from previous page

Model Training PSO compu- Total compu- Relative

time (sec) tation time tation time Rank
(sec) (sec)

FTS+PSO +Bi- 2808 3141 5949 8

LSTM

FTS+PSO 2920 3141 6061 10

+Conv-LSTM

FTS+PSO 2178 3141 5319 7

+Attention-

LSTM

FTS+PSO 2902 3141 6043 9

+Attention-Bi-

LSTM

5.5.2 Statistical significance test

Comparing the performance of forecasting models on a single dataset is relatively
straightforward, but it is essential to assess whether performance of a model
remains consistently significant across different scenarios. To address this, this
section presents a statistical significance test of the proposed model in comparison
with other models. The evaluation is based on COVID-19 infections data from
five highly affected countries namely, the USA, India, the UK, Russia, and Italy.
The relative and average rankings of all models based on the RMSE metric across

these five datasets are presented in Table 5.11.

Table 5.11: Relative ranking of the forecasting models using RMSE performance
metric on the adopted datasets)

Relative Rank on RMSE Performance

Model USA India UK Russia Italy Avg. Rank

()
ETS 10 10 11 10 11 10.4
ARIMA 11 11 10 11 10 10.6
ANN 7 9 9 9 9 8.6
LSTM 8 7 8 8 8 7.8
Panigrahi- 9 8 7 7 7 7.6
FTFS-LSTM
FTS+PSO 6 6 5 6 6 5.8
+LSTM
FTS+PSO 5 5 6 5 5 5.2
+stacked-LSTM
FTS+PSO +Bi- 4 4 4 4 4 4
LSTM
FTS+PSO 3 3 3 1 3 2.6
+Conv-LSTM

Continued on next page
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Table 5.11 — continued from previous page
Relative Rank on RMSE measure

Model USA India UK Russia Italy Avg. Rank
()

FTS+PSO 2 2 2 3 2 2.2

+Attention-

LSTM

FTS+PSO 1 1 1 2 1 1.2

+Attention-Bi-

LSTM

X% = 18.36, Fr = 13.89, critical value at a = 0.05 is 2.7642, so, Hy rejected
with 95% confidence

Table 5.11 presents the relative performance ranks of the models based on the
RMSE metric across all five datasets. These ranks are derived from the RMSE
performance on the different datasets discussed in the previous section. The table
also includes the average ranking for each model across the five datasets, with the
best-performing model receiving a rank of 1. To determine whether one model is
truly better than the others, statistical significance tests can be used to support or
reject such a claim (also known as a hypothesis) based on sample data. A claim
is considered valid if it is statistically significant at a predetermined significance
level. The threshold for this significance is set by the p-value, which must be
chosen before the test is conducted. Traditionally, a p-value of 1% or 5% is used,
and in this analysis, the p-value is set at 5%.

In the statistical analysis, the Nemenyi test [158] is employed to assess the
significance of the performance differences between the models. The Nemenyi
post-hoc test is used to identify which specific models have different means. This
test conducts pairwise comparisons of model performance. The hypothesis for the
Nemenyi test is outlined below.

e Hy: There is no difference between any two models.

o H,: At least one pair of models is different.

The formula of critical difference (CD) for Nemenyi test is given in equation
5.0.1.

k(k+1)
6N

where ¢, is the critical difference value from the Studentized range distribution at
the significance level o divided by v/2, and k is the number of groups. In our case
k =11, hence ga—0.05 = 1.782. The value is taken from the online link 2. Critical
difference (CD) is calculated using the values as given below.

OD&=0.05 = 1.782 X \/ léiéz =3.732

Zhttps://statisticsbyjim.com /hypothesis-testing/t-distribution-table/
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5.5. Experimental setup
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Figure 5.7: Comparative forecasting results of the models for preprocessed time
series of COVID-19 confirmed cases of the USA.
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The difference between the highest and lowest average ranks of the models
from Table 5.11 is (10.6 — 1.2) = 9.4, which is greater than the critical difference
(CD) of 3.7322. Therefore, the null hypothesis Hy of the Nemenyi test is rejected
with 95% confidence. In other words, there is sufficient evidence to conclude that
at least one pair of models differs from the others.

]

i
1 10 9 8 7 & 5 4 3 2 1

ARIMA —— L— FT5-PS0-Attention-Bi-LSTM
ETS FT5-PS0-Attention-LSTM
AN — ———————— FT5-P50-Conv-L5TM
LSTM FT5-P50-Bi-LSTM
FTSF-L5TM FT5-P50-stacked-L5TM

FTS-PSO-LSTM

Figure 5.8: Critical difference plot showing the results of Nemenyi test for the
compared models after forecasting on test data.

The pairwise comparison of all models using the critical difference is graphically
analyzed in Fig. 5.8. The average ranks of the models are plotted along the top
line of the figure, with the best ranks appearing on the right side of the axis.
Models that are not significantly different at o = 0.05 are connected by a bold
solid line. This figure not only highlights the statistical differences between the
models but also provides insight into the most effective models. It is evident that
hybrid of FTS, PSO, and attention Bi-LSTM significantly outperforms the ETS,
ARIMA, and ANN models.

5.6 Epidemiological model based study for mu-
tant affected population

Numerous research studies have evaluated state-of-the-art epidemiological com-
partmental models using data from the COVID-19 pandemic [142, 100]. These
models have been further enhanced by incorporating additional compartments
and leveraging various machine learning and optimization techniques to improve
disease modeling [55, 25]. A standard epidemiological model may not fully capture
the complexities of a pandemic like COVID-19. Predicting the progression of a
pandemic is crucial for governments to plan strategies to control disease spread.
Therefore, a hybrid epidemiological model may be an effective alternative. Hybrid
models combine the strengths of multiple models or algorithms to achieve better
performance.

Epidemiological compartmental models are essential tools for analyzing var-
ious aspects of epidemic spread and assessing the effectiveness of public health
interventions. Therefore, a hybrid epidemiological compartmental model is pro-
posed integrating SIRD, PSO, and stacked-LSTM approaches. The proposed
hybrid model is compared with independent stacked-LSTM and SIRD models.
This chapter provides an overview of the SIRD and LSTM models, along with a
detailed explanation of the proposed methodology and the experimental results.
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5.7. SIRD Compartmental Model

5.7 SIRD Compartmental Model

The Susceptible-Infected-Recovered-Deceased (SIRD) epidemiological model is a
widely used framework for analyzing the spread of infectious diseases. It helps
in understanding the dynamics of disease transmission within a population and
can predict the future trajectory of an epidemic under various scenarios. For this
reason, the SIRD model has been chosen to model the spread of the COVID-19
pandemic. The model categorizes the population into four compartments, namely,
susceptible (S), infected (I), recovered (R), and deceased (D). The state transitions
between these compartments is illustrated in Figure 5.9.

Recovered

(R)

vi(t)
Susceptible | BS(t) Infected

(s) ()] 8I(t)

Figure 5.9: State diagram of SIRD model.

Transitions between the model compartments are governed by ordinary dif-
ferential equations (ODEs). 7?7 for the SIRD epidemiological model are given

below.

sty S@I)
e (5.7.1)
d;(:) _ g2 (t])f(t) — A I(E) — 51(8) (5.7.2)
‘”fhf) A I(8) (5.7.3)

an()

S = oI() (5.7.4)
N = S(t) + I(t) + R(t) + D() (5.7.5)

Here, S(t), I(t), R(t), and D(t) represent the numbers of susceptible, infected,
recovered, and deceased individuals at time ¢, respectively. The parameters [,
v, 0 denote the infection rate, recovery rate, and fatality rate. The model is
constructed as a positive system, therefore all variables remain positive for ¢ > 0
if initialized with non-negative values at ¢ = 0. Human births and natural deaths
are not the considered in the model [132]. The sum of all compartments remains
constant, totaling equal to the population N. The SIRD model is a foundation
for more complex models, making it an essential tool for understanding infectious
diseases. In this chapter, the SIRD model is used to develop a hybrid forecasting
model.
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5.8 Proposed hybrid methodology

Hybrid modeling combines multiple modeling approaches such as epidemiological
models, machine learning and optimization techniques to leverage their respective
strengths and achieve improved performance in solving complex problems. In
the context of epidemiology, hybrid modeling is used to improve disease spread
prediction results. For example, a hybrid epidemiological model integrated with
machine learning can take advantages of the predictive power and adaptability
of the ML approaches. The hybrid concept is based on combination of three
approaches, namely, epidemiological model, machine learning, and computational
intelligence technique.

In this chapter, PSO algorithm is adopted because it is capable of providing a
solution without entrapping into a local minima. In PSO, each particle navigates
through the search space of the optimization problem to locate the optimal solution.
Where, each particle within the swarm represents a potential final optimized
solution. In the methodology, the PSO algorithm is utilized to determine the
time-varying optimal values of the SIRD model parameters by fitting them to
time series data of the COVID-19 cases.

The LSTM deep learning network is used to deal with the long-term dependen-
cies in the time series data. The LSTM neural network consists of a memory cell,
and three gates viz. an input gate, a forget gate, and an output gate. Information
in the LSTM network is regulated by these gates and the memory cell. The
stacked-LSTM model consists of multiple LSTM layers arranged in a stacked
configuration, allowing the input data to be processed sequentially through each
layer [64, 63]. In this chapter, the stacked-LSTM is utilized to perform forecasting
of the SIRD model parameters obtained after optimization using PSO algorithm.

In this chapter, a hybrid epidemiological compartmental model is proposed
integrating SIRD, PSO, and stacked-LSTM to improve the COVID-19 forecasting
results [116]. Initial estimates of the SIRD model parameters are insufficient
to reflect real-world scenarios, such as the dynamic nature of COVID-19 time
series data. To address this, the model parameters are updated weekly to capture
variations caused by new waves or policy changes. The model parameters are
optimized using PSO algorithm. The optimized parameters are obtained for
the training dataset. For the testing dataset, stacked-LSTM is used to identify
the model parameters for future predictions. Stacked-LSTM is trained on the
optimized parameters of SIRD for training samples, and parameter forecasting
is performed for the testing samples. These predicted parameters are then input
into the SIRD model to generate forecasts for the time series data.

In the modeling process, SIRD model parameters are optimized weekly using
PSO by fitted on real values of the COVID-19 cases. The model compartments
S(0),1(0), R(0), and D(0) are initialized using real values at ¢ = 0 which is start
date in the adopted time series dataset. Model states S(t), I(t), R(t), and D(t)
define values at time at time ¢, where, ¢ > 0. The weekly optimized SIRD model
parameters are fed into the stacked-LSTM neural network to train and forecast
the parameters for upcoming four weeks (28 days). The forecasted parameters are
used in the SIRD model to get the evolution trend of the cases for next 28 days.
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5.8. Proposed hybrid methodology
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Figure 5.10: Proposed hybrid model framework for epidemiological modeling
and forecasting.
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The proposed hybrid epidemiological model is illustrated in Figure 5.10. The
modeling framework is based on a set of sequential steps. The steps are explained
below.

1. Data preprocessing: the COVID-19 time series data exhibits significant
fluctuations. Weekly averaging is applied to smooth the data and reduce
the fluctuations.

2. Train-test splitting: the preprocessed data is divided into training and testing
samples. The last 28 days (four weeks) samples are kept for testing. In case
of a highly dynamic pandemic such as COVID-19, long-term forecasting
may not be realistic.

3. SIRD modeling: SIRD compartmental model is used for the COVID-19
pandemic evolution. The model is explained in section 5.7.

4. Model parameter optimization: The SIRD model parameters are estimated
periodically. PSO algorithm is used to optimize the SIRD model parameters
(8, 7, 0). Initially, the values of infection rate (3), recovery rate (), and
fatality rate (0) are randomly generated between 0 and 1. These values are
updated iteratively using the PSO algorithm by fitted on real values of the
COVID-19 cases using the SIRD model. Data fitting of S(¢), I(t), R(t), D(¢)
values are evaluated with respect to Mean Squared Error (MSE). Optimum
values of the parameters (3,7, d) are returned by the PSO. The periodicity
for the parameters estimation is set as weekly in the experimented model.

5. Model parameter forecasting: The stacked-LSTM is used to forecast the
value of the SIRD parameters. The weekly optimized parameters (3,7, d)
are used to train the LSTM model. Further, the LSTM is used to perform
forecasting for four weeks (28 days).

6. Pandemic evolution: In this step, the SIRD model is used to determine the
final forecasted values. The parameters forecasted by the stacked-LSTM are
input into the SIRD model. Four weeks forecasted values of 3, v, and § are
applied to the SIRD model to simulate the progression of the COVID-19
pandemic over the next 28 days.

The proposed hybrid time-varying epidemiological model integrating stacked-
LSTM and PSO optimization is evaluated using COVID-19 datasets. Modeling
datasets and experimental results are presented in the following sections.

5.8.1 Modeling Datasets

COVID-19 cases time series data from three countries, namely, the USA, UK, and
India are used to evaluate the proposed model. The data is publicly available
at github repository [93]. Time series of the datasets is selected involving recent
two major waves of the COVID-19 spread. The detail of the adopted time series
for each country is given in Table 5.12. Constant population is considered in the
SIRD model for the USA as 330 Million, India as 1100 Million, and the UK as 60
Million.
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5.8. Proposed hybrid methodology

Table 5.12: Timeline of COVID-19 time series used in the experiments

Dataset Start-Date End-Date

USA July 1, 2021 April 15, 2022
India January 1, 2021 March 30, 2022
UK June 1, 2021 April 30, 2022

5.8.2 Experimental setup

The proposed hybrid model is implemented using Python 3.9. Its forecasting
results are compared with the results obtained from standard stacked-LSTM and
the SIRD-PSO hybrid models. The PSO parameters are configured as shown
in Table 5.13. PSO algorithm was able to converge in around 200 iterations for
the adopted datasets. So, maximum number of iterations are set as 200 in each
experiments for the optimization. Root Mean Square Error (RMSE) performance
metric is used to compare the experimented models.

Table 5.13: PSO parameters configured in the experiments

PSO Parameter Value
Number of particles 30
Maximum number of iterations 200
Inertia weight [Wmin, Winaz] [0.4, 0.9]
Cl=0C2 2

The configured parameters for the LSTM are presented in Table 5.14. In the
stacked-LSTM model, two LSTM layers are employed: the first layer with 20
hidden units and the second layer with 30 hidden units.

Table 5.14: LSTM parameters configured in the experiments

Parameter Value

Activation Function linear

Optimizer Adam
Learning rate 0.005
Loss function Huber

Evaluation metrics MSE
Epochs 500
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5.8.3 Experimental results

The proposed model is experimented for the evolution study of the COVID-19
confirmed cases from the USA, UK, and India. The experiments are carried out in
two ways, 1) COVID-19 evolution is carried out using the proposed model, and 2)
Forecasting performance comparison of the proposed model with stacked-LSTM
and SIRD-PSO models in graphical and tabular form.

COVID-19 evolution study using the proposed hybrid model

COVID-19 evolution results using the proposed model for training and testing of
all the three countries are shown in Figure 5.11. A vertical line is used to separate
the training and forecasting results. Evolution results of the proposed model for
infected cases of the COVID-19 from the USA, India, and the UK are shown in
Figures 5.11a, 5.11b, and 5.11c, respectively.

Figure 5.11 illustrates that the proposed model successfully fits the training
samples of all the selected countries. The tuned parameters of the model are
utilized for forecasting, and the corresponding results are also displayed in the
figure. A red vertical line separates the training and forecasting outcomes. In the
next section, the forecasting performance of the proposed model is compared with
state-of-the-art approaches using the testing samples of the datasets.

Comparative analysis of the models

A comparative analysis of the proposed model with other state-of-the-art ap-
proaches is presented in Fig. 5.12 using the testing samples from each dataset.
The figure displays the forecasting results for daily cumulative COVID-19 infection
cases over the testing period. Forecasting is limited to the next four weeks (28
days) to maintain realistic predictions, particularly in the context of dynamic
pandemics like COVID-19.

Figures 6.9a, 6.9b, and 6.9c show forecasting results for the USA using the
proposed model and compared models. Figures 6.9d, 6.9¢, and 6.9f show forecasting
results for India using the three models. Figures 5.12g, 5.12h, and 5.12i show
forecasting results for the UK using the three models. From these figures, it is
evident that standalone LSTM does not perform effectively on the testing samples.
However, incorporating the PSO optimization technique with LSTM significantly
improves forecasting results across all datasets. The proposed hybrid model, which
integrates time-varying SIRD, PSO, and LSTM, outperforms the other models on
the testing samples of the selected datasets.

Table 5.15: Forecasting accuracy of the proposed model and compared models
for the COVID-19 infected cases from three countries

Model RMSE

USA India UK
Stacked-LSTM 27836 3814 37479
SIRD + PSO 25816 2399 26582

Proposed model (SIRD + PSO + LSTM) 23528 1887 24629
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Figure 5.11: COVID-19 infected cases evolution study using the proposed hybrid
model for the adopted country.
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5.9. Analysis and Discussion

The simplicity and adaptability of the SIRD model make it a valuable tool
for understanding and managing infectious disease outbreaks. LSTM is uniquely
designed to handle sequential data, making it well-suited for time series forecasting,
where past observations play a crucial role in predicting future values. It effectively
manages noisy data by identifying underlying trends and discarding irrelevant
information, thereby enhancing prediction accuracy. On the other hand, PSO
serves as a powerful tool for hyperparameter optimization in forecasting models.
Its computational efficiency and simplicity make it a preferred choice for improving
time series forecasting without adding significant complexity. By optimizing model
parameters, PSO further enhances the accuracy and performance of models like
LSTM.

The graphical representation provides a relative comparison of the results. To
precisely evaluate the forecasting accuracy of the models, statistical measures are
utilized. Accordingly, the forecasting performance is assessed using the RMSE
metric, as presented in Table 5.15, with the best results highlighted in bold. The
table reveals that the hybrid model combining SIRD, PSO, and stacked-LSTM
consistently outperformed all other models across all datasets. The combination
of SIRD and PSO outperformed the standalone stacked-LSTM model. This
demonstrates that integrating optimization techniques and deep learning with an
epidemiological model significantly enhances forecasting performance.

5.9 Analysis and Discussion

This chapter investigates a variety of hybrid forecasting models for predicting
COVID-19 cases, combining the strengths of FT'S, contextual deep learning, and
hyperparameter optimization using the PSO algorithm. F'TS forecasting effectively
handles the vagueness and imprecision inherent in non-stationary data, while the
PSO algorithm optimizes the fuzzy order and interval lengths of the FTS model.
FLR modeling and forecasting are performed using deep learning techniques.
The proposed model is evaluated using COVID-19 confirmed case data from
the USA, India, the UK, Russia, and Italy. Its performance is benchmarked
against state-of-the-art methods, demonstrating that the hybrid model FTS-PSO-
attention-Bi-LSTM statistically outperforms the other models. Several factors
can influence model performance, making it impossible to claim that a model
always performs best across all datasets. Therefore, a statistical significance test
is necessary to draw conclusions. In this chapter, the hybrid model combining
FTS, PSO, and Bi-LSTM with attention outperforms the others, as confirmed by
the Nemenyi significance test. The proposed hybrid forecasting model successfully
captures contextual patterns in the time series data and leverages past observations
to predict future data points.

Further, an epidemiological compartmental model based study is carried out
because these models are suitable for modeling the spread of epidemics. Literature
shows that the SIRD epidemiological model effectively represents the progression
of an epidemic in stationary scenarios, but it struggles to capture the time-varying
trends. Therefore, it is not able to deal with the spread of the COVID-19 pandemic.
To address this limitation, this study proposes a hybrid model that leverages the
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strengths of PSO algorithm and stacked-LSTM to handle the dynamic nature of
epidemics. The model has been evaluated using COVID-19 datasets from three
different countries and compared with other state-of-the-art approaches. The
proposed hybrid model consistently outperformed all other models across the
adopted datasets. These results demonstrate the ability of the model to accurately
project epidemic spread patterns. It can provide valuable insights for governments
to take proactive measures.
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CHAPTER 6

DESIGN OF NOVEL EPIDEMIOLOGICAL
MODEL INCORPORATING LOCKDOWNS,
MOBILITY RESTRICTIONS, AND
VACCINATION FOR COVID-19
PREDICTION

! Throughout history, numerous pandemics and epidemics have emerged, signif-
icantly impacting humanity. Identifying the symptoms and behavior of a new
virus takes time, and governments often face challenges in controlling its spread
during the early stages of its evolution. COVID-19 stands out as one of the most
severe pandemics in history. The SARS-CoV-2 virus has profoundly affected
human health, leading to increased hospitalizations and fatalities [83]. Initially,
key non-pharmaceutical methods (social distancing, self-isolation, contact tracing,
quarantines, mandatory mask usage, lockdowns, and restrictions on travel) are
adopted to curb the spread of virus [187, 114]. Over time, restrictions were gradu-
ally eased in a phased manner. Scientists worked tirelessly to develop vaccines to
combat the disease, and several vaccines were eventually approved and distributed
in stages [122]. Although COVID-19 is no longer classified as a global health
emergency [126], it has raised critical questions for future pandemic prepared-
ness. These include evaluating the effectiveness of restriction policies, vaccine
efficacy and distribution strategies, and the role of epidemic modeling in policy
formulation.

A primary measure to contain an epidemic is the implementation of a complete
lockdown. However, prolonged lockdowns can have severe economic repercussions
for both governments and individuals, making them an undesirable long-term
solution [47]. As a result, partial or intermittent lockdowns are often recommended
as more viable options to limit virus transmission while minimizing disruptions
to essential services. During the COVID-19 pandemic, the SARS-CoV-2 virus
mutated into several variants of concern [79]. These variants posed significant
challenges due to their high transmission and mortality rates [37]. Numerous
strategies and policies were employed to control the spread of COVID-19. Among
these, vaccination emerged as one of the most effective solutions. However,
developing a new vaccine requires time, and the emergence of new variants of a
virus can compromise vaccine efficacy [154].

IThe contents of this chapter are published in “Nowvel Epidemiological Model Leveraging
Resource-Optimized Containment Strategy with Hybrid Deep Learning and PSO Based Hyperpa-
rameter Optimization.” in International Conference on Advancement in Communication and
Computing Technology (INOACC), IEEE, April, 2025. and
in “Swarm-Optimized Time-varying Epidemiological Model Incorporating Multi-dose Vacci-
nations, Vaccine Efficacy and Restriction Policies.” in International Journal of Annals of
Operations Research, 2025
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Chapter 6. Design of Novel Epidemiological Model Incorporating Lockdowns,
Mobility Restrictions, and Vaccination for COVID-19 prediction

Since the outbreak of COVID-19, researchers have proposed numerous com-
partmental epidemic models. These models typically divide a population into
compartments to analyze the impact of various parameters on epidemic dynamics.
One widely used baseline model for COVID-19 is the SEIRD epidemic model [50],
where S, F, I, R, and D represent Susceptible, Exposed, Infected, Recovered, and
Dead individuals, respectively. Although many studies have focused on modeling
the spread of COVID-19, few have considered the combined effects of restriction
policies, vaccine efficacy, and vaccination doses. To address this gap, this study
introduces a novel epidemiological model that integrates these factors along with
time-varying parameters. The proposed model, named SEIRDPV, extends the
SEIRD framework by incorporating new compartments for multi-dose vaccinations,
protected individuals, and immunized susceptibles. Additional parameters such
as restriction policies, vaccine efficacy, and vaccination doses are explicitly in-
cluded. To optimize the time-varying parameters of the model, the PSO algorithm
is employed, as it provides efficient solutions with minimal computational cost
[119]. The SEIRDPV model is evaluated using two case studies of the COVID-19
outbreaks in India and the USA, covering the first year of vaccination rollouts:
January 16, 2021, to January 15, 2022 (India), and December 14, 2020, to De-
cember 13, 2021 (USA). Furthermore, the proposed model is compared with five
state-of-the-art models: ETS [232], 2. ARIMA [230], 3. ANN [157], 4. LSTM
[6], and 5. SEIRD [50]. The models are evaluated and compared using using five
different performance metrics:- MAE, RMSE, RRSE, sMAPE, and MASE. The
proposed methodology is described in the following sections.

6.1 Proposed 10-Compartments Epidemiological
Model

At the onset of the COVID-19 pandemic, governments implemented complete
lockdowns and travel restrictions to slow and halt the transmission of the virus.
These restrictive measures were introduced in response to the limited availability
of medical resources and the absence of vaccines [107]. The development of a
COVID-19 vaccine was anticipated as a key solution to controlling the disease.
Consequently, efforts to develop vaccines were rapidly accelerated [176]. Currently,
several single-dose or double-dose based vaccines have been developed and approved
for use in most countries worldwide. Table 6.1 presents a list of vaccines approved
for adults during the initial phase of the pandemic. Vaccination programs have
been implemented based on the prescribed number of doses and the required
intervals between consecutive shots. In this study, vaccination parameters have
been incorporated in alignment with the vaccines approved in the selected country
for the experiments.

This study introduces a novel compartmental epidemiological model by ex-
tending the SEIRD framework with additional compartments for multi-dose vacci-
nations, protected individuals, and immunized susceptibles. The proposed model,
referred to as the Susceptible-Exposed-Infected-Recovered-Deceased-Protected-
Vaccinated (SEIRDPV) model, comprises ten compartments: Susceptible (5),
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6.1. Proposed 10-Compartments Epidemiological Model

Table 6.1: Type of vaccines and efficacy with number of doses.

Vaccine 1st 2nd Interval Immunity] Reference
Dose Dose between 1st | Time
Efficacy | Efficacy | and 2nd | (days)
(%) (%) Dose
Oxford/ As- | 57-74 70-90 12-16 Weeks | 14 [21, 171]
traZeneca
(Covishield)
Covaxin 78 78-95 4-6 weeks 14 [21, 60,
171]
Pfizer/  BioN-| 80 95 14 7 [72, 173]
Tech
Johnson & John- | 85 - - 14 [159]
son
Sputnik V 83-88 85.6- 21 14 [202, 181]
95.2
Moderna 82 94.1 4-8 weeks 14 [72]

Exposed (E), Infected (I), Recovered (R), Deceased (D), Not-fully-vaccinated
(Vig), Fully-vaccinated (V}), Booster (B), Protected (P), and Immunized sus-
ceptible (S’). These compartments are designed to reflect the dynamics of the
post-vaccination phase of the COVID-19 pandemic. In the 77 model, illustrated
in Fig. 6.1, the S compartment represents the population susceptible to infection.
The Exposed (E) compartment represents individuals who have contracted the
virus but remain asymptomatic, while the Infected (I) compartment contains
confirmed positive cases exhibiting symptoms. Infected individuals may either
recover, transitioning to the R compartment, or succumb to the disease, moving
to the D compartment. Recovered individuals acquire natural immunity and are
added to the P (Protected) compartment. Additionally, vaccinated individuals
gain immunity after receiving the required doses and/or booster shots and are
also added to the P compartment. However, depending on vaccine efficacy, some
vaccinated individuals may still contract the infection and are moved to the E
compartment. The state-transition diagram of the SEIRDPV model, showing the
interactions and transitions between compartments, is provided in Fig. 6.1.
Most approved vaccines follow a one- or two-dose regimen to achieve maximum
protection. To account for this, the proposed model introduces two new com-
partments: not-fully-vaccinated (e,f) and fully-vaccinated (ey). For single-dose
vaccines, vaccinated individuals are directly added to the fully-vaccinated (ey)
compartment. Each vaccine type has specific efficacy and administration delays.
Vaccines may not provide complete (100%) protection, even after all recommended
doses. To capture this, the model designates the efficacy of not-fully-vaccinated
individuals as e,y and that of fully-vaccinated and booster recipients as ey. After
completing all required doses, an individual acquires immunity and transitions
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Figure 6.1: State-transition diagram of the proposed SEIRDPV model

to the protected (P) compartment after a delay of Tj,, days, representing the
time required to develop immunity post-vaccination. Individuals in the P com-
partment retain immunity for a finite duration, 7). days, after which they move
to the immunized susceptible (S’) compartment. Those in S’ compartment have
higher immunity than individuals in the susceptible (S) compartment. To reflect
governmental efforts to control disease spread, the model incorporates a restriction
parameter (p ). This parameter accounts for the impact of restriction policies,
with its value estimated based on factors such as the emergence of new variants or
government advisories and restrictions implemented during specific periods. For
simplicity, natural births and deaths are excluded from the model.

The proposed model is a bi-linear, positive system where all variables remain
positive for time ¢ > 0, provided they are initialized with non-negative values
at t = 0. The dynamics of the system are described using ordinary differential
equations (ODEs) derived from the state-transition diagram shown in Fig. 6.1.

The ODEs are given below.
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6.1. Proposed 10-Compartments Epidemiological Model

S=—(1- u(t))a(t)[((%S(t) — M ()S(t) (6.1.1)

Vir = M(0)S(t) — (1 — p(t)(1 = enp)a(t) Vs (t) — Xa(t)Vis (1) (6.1.2)

Vi = Xa(t)Vas(t) — (1= pl))(1 = ep)a(t)Vy(t) — T, Vi (D) (6.1.3)
1(t)

E = (1= pu(t))a(t) =S 1) + (1= p(®)(1 = enp)a(t) Vs ()
N()

)
+ (1= p(@)( = ep)a(®)Vi(t) + (1 — u(t))a(t)S' (1)
+ (1= pu@®))(1 = ep)a(t)B(t) - SA)ER) (6.1.4)

P =T, (Vi(t) + B(t)) + KrpR(t) — T, ' P(1) (6.1.5)
S =T7'P(t) — (1= ult)a(t)S'(t) — s(6)S'(t) (6.1.6)
B = X3(1)S'(t) — (1 — pu())(1 — ef)a(t)B(t) — T, B(t) (6.1.7)
[=B)E() —~(&)I(t) - 5(t)I(t) (6.1.8)
R=~(t)I(t) — KprpR(t) (6.1.9)
D = §(t)I(t) (6.1.10)

In the above equations, state variables at event time ¢ are S(t): susceptible
individuals, E(t): Exposed individuals, I(t): Infected individuals, R(t): recovered
individuals, D(t): dead individuals, V,,¢(¢): not-fully-vaccinated individuals, V}(%):
fully-vaccinated individuals, B(t): Booster taken individuals, P(t): Protected
individuals, and S’(¢): Immunized susceptibles. For the mass conservation prop-
erty, the summation of all the state variables is constant and equal to the total
population N at time ¢, as given in equation 6.4.7.

N =5(t) + E(t) + I(t) + R(t) + D(t) + Vos(t) + Vi(t) + B(t) + P(t) + S'(t)
(6.1.11)

The parameters used in the proposed model are described below.
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p: The restriction parameter, representing the level of government-imposed
restrictions during a specific timespan. It ranges from 0 to 1, where 0
indicates no restrictions (fully open) and 1 represents a complete lockdown.

e T,.: The duration of vaccinal and natural immunity after vaccination or
recovery, set to 240 days (8 months) based on findings from [57].

e T;,: The time required to acquire immunity after receiving the full vac-
cination or booster dose. This duration is set to 14 days, as reported in
[173].

o ¢e,s: The efficacy of the first dose of a vaccine. The required number of doses
and corresponding efficacies for various vaccines are detailed in Table 6.1.

o ¢s: The efficacy of the fully vaccinated or booster dose of a vaccine, as
specified in Table 6.1.

o aft), B(t), v(t), 0(t), M\ (t), A2(t), and A3(t): These represent the exposed
rate, infection rate, recovery rate, death rate, first-dose vaccination rate,
second-dose vaccination rate, and booster-dose vaccination rate at time t,
respectively.

e Kprp: The transition rate from the recovered compartment to the protected
compartment. This parameter ranges from 0 to 1. In this model, it is set to
1, assuming that all recovered individuals acquire immunity.

The structure of the proposed compartmental epidemiological modeling and
forecasting framework is illustrated in Fig. 6.2. The framework comprises several
main components: data preprocessing, epidemic modeling with time-varying
parameters, parameter optimization, forecasting, and evaluation metrics. Each
component is distinctly outlined using dashed borders for clarity. Thick arrows
represent transitions between the main components, while thin arrows indicate
transitions within individual processing units or algorithms. The key stages of
the proposed framework are described below.

« Data preprocessing: To reduce fluctuations, daily cumulative COVID-19
cases are averaged weekly. The Interquartile Range (IQR) method is applied
to detect and remove outliers [224]. Min-max normalization is performed
on the time series data [129]. The dataset is split into training and testing
sets to evaluate the model on unseen data. A 30-day forecasting time span
is chosen, as predicting an epidemic beyond one month may not be realistic
due to dynamic scenarios.

o Model parameter estimation: The program is initialized with the following
model parameters. (1) Most relevant events are identified to model the
restriction policies. (2) The value of the restriction parameter u(t) is
estimated based on the event at time t. (3) The value of vaccination
related parameters are set according to the approved vaccine and vaccination
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Figure 6.2: Proposed SEIRDPV epidemiological compartmental model forecast-
ing framework.

programs in a country. (4) The value of the parameters «(t), 5(t), v(t), 6(t),
A1(t), Aao(t), and A3(t) are generated randomly between 0 and 1 for duration
t.

Parameter optimization: Time-varying model parameters are optimized
using Particle Swarm Optimization (PSO) by fitting the SEIRDPV model
to a country’s epidemic data. Optimization is performed for each event du-
ration ¢, as parameters typically vary with governmental policies. Epidemic
modeling is conducted using the optimized parameters.

Forecasting: Forecasting for future days is performed using the average of
the optimized parameters from the past month. Since future events are
unknown, the restriction parameter u(t) is varied between 0 and 1 to assess
its impact on prediction results.

6.2 Experimental Setup and Dataset

The proposed model is implemented using Python 3.9. The COVID-19 time
series data for India and the USA is sourced from the publicly available GitHub
repository hosted by Our World in Data [92]. For each country, the starting point
of the time series is set as the first date a vaccine was administered. The model is
evaluated using COVID-19 time series data for confirmed, recovered, and death
cases during the periods of January 16, 2021, to January 15, 2022 (India), and
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December 14, 2020, to December 13, 2021 (USA), corresponding to the first year
of vaccination rollouts in these countries. A one-year time frame is selected to
encompass seasonal variations and their effects on the pandemic’s progression, as
well as the impact of immunization. The vaccination data includes information
on not-fully vaccinated, fully vaccinated, and booster doses. Data preprocessing
is conducted using three techniques.

1. Handling outliers with the Interquartile Range (IQR) method [224].
2. Weekly averaging of the time series data to mitigate fluctuations.

3. Min-max normalization of the time series data [129].

Table 6.2: PSO parameter settings

PSO Parameter Value
Number of particles 100

Maximum number of iterations 1000
Inertia weight [Wiin, Winaz) [0.4, 0.9]
Acceleration constants C1 = C2 2

The model parameters are optimized using the bio-inspired PSO algorithm.
PSO effectively searches for an optimal or near-optimal solution to an optimization
problem with minimal computational effort and avoids being trapped in local
minima. Convergence analysis of the algorithm is conducted using the India
and USA datasets for the proposed model. The optimal convergence parameters
identified for PSO are presented in Table 6.2. Optimization of the proposed model
parameters «(t), 5(t), y(t), 6(t), A1 (t), A2(t), and A3(t) is performed using PSO.
The proposed SEIRDPV model is evaluated through two case studies involving
India and the USA. Its performance is compared against five state-of-the-art
methods: 1. ETS, 2. ARIMA, 3. ANN, 4. LSTM, and 5. SEIRD. Forecasting is
limited to the next 30 days, as predicting an epidemic beyond one month may not
be realistic due to the dynamic nature of COVID-19 transmission. The forecasting
accuracy of the models is assessed using the metrics MAE, RMSE, RRSE, sMAPE,
and MASE.

6.3 COVID-19 Case Studies and Evaluation

The proposed model is evaluated through case studies conducted for two countries,
India and the USA, over the periods January 16, 2021, to January 15, 2022 (India),
and December 14, 2020, to December 13, 2021 (USA), corresponding to the first
year of vaccination program rollouts in each country. Detailed information on
country-specific model parameters, significant events, optimization processes, and
epidemic evolution for each case study is provided in the following subsections.
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6.3. COVID-19 Case Studies and Evaluation

6.3.1 The USA Case Study

The mass vaccination campaign in the USA commenced on December 14, 2020
[218]. A one-year time series dataset, spanning from December 14, 2020, to
December 13, 2021, is utilized for epidemic modeling. The Pfizer/BioNTech
vaccine, which follows a two-dose regimen for optimal protection against COVID-
19, was the primary vaccine administered in the USA. The vaccination dataset
includes information on partially vaccinated, fully vaccinated, and booster dose
recipients. Consequently, the experiments incorporate two-dose and booster-based
vaccination compartments for modeling the epidemic in the USA. Additionally,
the USA government implemented various restrictions over time to mitigate the
spread of COVID-19, while individuals also self-imposed restrictions based on
news and updates about the pandemic.

Table 6.3: Events and corresponding values of the restriction parameter (u(t))
for the USA during COVID-19.

Date Event Restriction
Parameter
(u(t))

14 Dec 2020 COVID-19 vaccination started. 0.40

19 Dec 2020  Case of SARS-Cov-2 Alpha variant (B.1.1.7) was 0.50
reported.

21 Jan 2021 Strategy is released for the pandemic preparedness 0.40
and COVID-19 Response.

25 Jan 2021  SARS-Cov-2 Gamma variant (P.1) is detected. 0.45

28 Jan 2021  SARS-Cov-2 Beta variant (B.1.351) is detected. 0.35

27 Feb, 2021  Johnson & Johnson vaccine is approved for the vacci- 0.30
nation.

02 Mar 2021  Full reopening is announced in Texas and Mississippi.  0.35

12 Apr 2021  SARS-Cov-2 Delta variant (B.1.617) detected. 0.30

19 Apr 2021  Vaccination eligibility is extended for individuals aged  0.15
16 and older.

13 May 2021 Compulsory facial mask restriction lifted for fully- 0.20
vaccinated individuals in the most of the states.

01 Aug 2021 The USA passed 35 million cases of COVID-19. 0.10

08 Sep 2021  The USA passed 40 million cases of COVID-19. 0.15

01 Oct 2021  The USA passed 700000 deaths from COVID-19. 0.05

26 Nov 2021  Restrictions imposed on travel from South Africa and 0.015
other impacted African countries due to the emer-
gence of new variant called Omicron.

01 Dec 2021  SARS-Cov-2 Omicron variant is detected. 0.005

Table 6.3 highlights the most significant and impactful events of the COVID-19
pandemic in the USA. It includes the event timeline, descriptions, and the corre-
sponding values of the restriction parameter (1(t)). These events are integrated
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Table 6.4: Optimized value of time-varying SEIRDPV model parameters for
each event period in the USA

From To « 3 y 0 Al A2 A3
14 Dec 20 Jan 0.122330 0.878986 0.116691 0.013704 0.000136 0.026148 0 =+ 0.0
2020 2021 + + + + + +
0.252120 0.219206 0.281240 0.000566 0.000081 0.005518
21 Jan 24 Jan 0.768627 0.949413 0.989540 0.027281 0.000709 0.069829 0.000057
2021 2021 + + + + + + +
0.047841 0.158665 0.031568 0.004910 0.000027 0.001815 0.000089
25 Jan 27 Jan 0.764900 0.422812 0.935090 0.025477 0.000831 0.113097 0.0000023
2021 2021 + + + + + + +
0.018356 0.024887 0.005400 0.002007 0.000009 0.000841 0.000001
28 Jan 26 Feb 0.111997 0.222336 0.463980 0.025389 0.000299 0.087365 0.000002
2021 2021 + + + + + + +
0.117288 0.203734 0.393917 0.000987 0.000113 0.014506 0.000001
27 Feb 01 Mar 0.119428 0.429410 0.885433 0.047845 0.000721 0.093794 0.000005
2021 2021 + + + + + + +
0.122090 0.299722 0.123618 0.030713 0.000162 0.020173 0.000002
02 Mar 11 Apr 0.089126 0.567221 0.882409 0.020943 0.000526 0.070163 0.000006
2021 2021 + + + + + + +
0.025931 0.412537 0.309044 0.000472 0.000044 0.002728 0.000001
12 Apr 18 Apr 0.088926 0.551343 0.992240 0.000082 0.000096 0.055500 0.000005
2021 2021 + + + + + + +
0.001134 0.351726 0.003762 0.000007 0.000002 0.000249 0.000001
19 Apr 12 May 0.008293 0.144112 0.208086 0.010159 0.000227 0.104869 0.000005
2021 2021 + + + + + + +
0.022420 0.300794 0.261582 0.003589 0.000045 0.007999 0.000001
13 May 31 Jul 0.001103 0.098863 0.013948 0.015776 0.000067 0.065487 0.000005
2021 2021 + + + + + + +
0.003121 0.298350 0.038088 0.003295 0.000002 0.000809 0.000000
01 Aug 07 Sep 0.423800 0.772143 0.978698 0.006800 0.000394 0.160627 0.035341
2021 2021 + + + + + + +
0.004361 0.267669 0.002155 0.000724 0.000005 0.000843 0.000143
08 Sep 30 Sep 0.474457 0.817573 0.972795 0.016193 0.000377 0.299483 0.072784
2021 2021 + + + + + + +
0.005868 0.240166 0.007175 0.000446 0.000003 0.001479 0.000358
01 Oct 25 Nov 0.202823 0.819453 0.918534 0.017076 0.000436 0.354430 0.468067
2021 2021 + + + + + + +
0.000767 0.238506 0.000551 0.000147 0.000004 0.000614 0.000573
26 Nov 30 Nov 0.221244 0.840013 0.998452 0.001746 0.000229 0.249734 0.251235
2021 2021 + + + + + + +
0.002452 0.212505 0.001452 0.001308 0.000003 0.001708 0.002541
01 Dec 13 Dec 0.268168 0.806566 0.999879 0.012930 0.00092 0.657796 0.530186
2021 2021 + + + + + + +
0.136830 0.303577 0.000008 0.001232 0.000201 0.120188 0.093933
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into the epidemiological modeling using both the SEIRD model and the proposed
SEIRDPV model to simulate the evolution of COVID-19. Each event directly
influenced movement of the population, leading to variations in model parameters
[59]. The restriction parameter u(t) is incorporated into the epidemiological
modeling of the USA. The events listed are sourced from references [228, 229].

For the starting point of (¢ = 0) on December 14, 2020, the values of the
SEIRDPYV model state variables for the USA are set as follows.

N = 3.3 x 108, I(0) = 216846, R(0) = 214151, D(0) = 315706, P(0) =
214814, V,,£(0) = 165826, V;(0) = 662, B(0) = 0,5"(0) =0, S(0) = N — 1(0) —
R(0) — D(0) — Vyis(0) — V3(0) — B(0) — 5'(0), E(0) = 215(0).

The value of PSO parameters are set as mentioned in Table 6.2. Modeling
of the COVID-19 spread is started from the initial state conditions. SEIRDPV
model parameters a(t), 5(t), v(t), 6(t), A\1(t), Aa(t), and A3(t) are optimized using
the PSO algorithm for each event time ¢ given in Table 6.3. Each experiment
is run 10 times to ensure the reliability of the optimized parameters. The mean
values of the model parameters from 10 runs are given in Table 6.4 along with
the standard deviation of the values. In the table, initially, value of A3(¢) is O
because booster dose programs were started after completing first and second
dose vaccination programs. It can be observed that the deviation in the optimized
values is minimal, indicating the stability of the proposed model. The evolution
of confirmed, recovered, and death cases of COVID-19 in the USA is simulated
using the mean values of the optimized parameters, as presented in Table 6.4.

The evolution and forecasting results of COVID-19 cases in the USA using the
proposed SEIRDPV model, along with a comparison to the state-of-the-art SEIRD
model, are shown in Figure 6.3. The epidemiological evolution is performed using
time series data of COVID-19 cases during the vaccination programs in the USA.
Forecasting for the next 30 days is carried out using the optimized parameters of
the SEIRDPV model, which are estimated based on the last month’s data of the
COVID-19 time series. Vertical dotted lines in the figures indicate the occurrence
points of identified events. The SEIRDPV model parameters are re-estimated at
the start of each event duration ¢, and the corresponding value of the restriction
parameter (u(t)) is applied. Figure 6.3a shows the evolution of confirmed COVID-
19 cases in the USA, with a comparison of the forecasting results between the
SEIRD and the proposed SEIRDPV models. The results demonstrate that the
time-varying parameters in the SEIRDPV model help it to closely match the real
values of confirmed cases, while the SEIRD model, with parameters optimized
on the training dataset, fails to effectively model the transmission dynamics
of COVID-19. This highlights the importance of periodically estimating the
parameters to account for dynamic conditions in epidemiological modeling.

The evolution of recovered cases in the USA is depicted in Figure 6.3b. The
correlation between recovered and confirmed cases is evident from the results
shown in the figure. The proposed SEIRDPV model performs better in predict-
ing recovered cases compared to the SEIRD model, as illustrated in the figure.
Similarly, the evolution of death cases in the USA is presented in Figure 6.3c.
The cumulative death cases in the SEIRDPV model closely align with the actual
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Figure 6.3: Evolution and forecasting results of the proposed SEIRDPV model
and comparison with the SEIRD epidemiological model on the USA dataset
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6.3. COVID-19 Case Studies and Evaluation

values from the time series data. To distinguish the model’s evolution from the
actual time series, the evolution trend is shown with weekly data points. While
the SEIRD model also demonstrates good performance in modeling death cases,
the SEIRDPV model outperforms it.

Figure 6.3d presents the forecast of COVID-19 confirmed cases for the upcoming
month using the SEIRDPV model for the USA. Forecasting is conducted with
various values of the restriction parameter (u(t)) from the set {0,0.1,0.3,0.5},
as shown in the figure. These different values of the restriction parameter are
tested to examine the impact of restriction policies on the pandemic’s spread.
The results reveal that increasing the restriction parameter reduces the number of
confirmed cases, but it does not necessarily result in the complete mitigation of
the disease. Therefore, the study suggests that imposing more restrictions is not
the definitive or ultimate solution in combating a pandemic like COVID-19.

6.3.2 India Case Study

For the India case study, COVID-19 time series data is collected starting from
the initiation of the vaccination campaign on January 16, 2021. The study uses
data from this period, covering one year from January 16, 2021, to January 15,
2022. The Covishield vaccine, which follows a two-dose regimen for maximum
protection, was primarily administered in India. As a result, a two-dose vaccination
compartmental model, similar to the one used for the USA, is applied in the
analysis for India.

Table 6.5: Events and corresponding values of the restriction parameter (u(t))

in India.
Date Event Restriction
Parameter
(1(t)

16 Jan 2021  First phase of vaccination started. This phase covered 0.20
frontline workers and health workers.

01 Feb 2021 Restrictions Unlock 9.0. 0.15

01 Mar 2021  Restrictions Unlock 10.0. 0.10

01 Apr 2021  Partial lockdown imposed in some states and vaccina- 0.15

tion eligibility was extended to all residents over the
age of 45. Restrictions Unlock 11.0 in other states.

08 Apr 2021  Vaccination started for age over 18. 0.10
01 May 2021 Restrictions Unlock 12.0. 0.08
01 Jun 2021  Restrictions Unlock 13.0. 0.07
22 Jun 2021  SARS-Cov-2 Delta plus variant detected. 0.10
01 July 2021  Restrictions Unlock 14.0. 0.09
01 Aug 2021  Restrictions Unlock 15.0. 0.08
01 Sep 2021  Restrictions Unlock 16.0. 0.07
01 Oct 2021  Restrictions Unlock 17.0. 0.06
01 Nov 2021  Restrictions Unlock 18.0. 0.05

Continued on next page
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Table 6.5 — continued from previous page

Date Event Restriction
Parameter

(u(t))
02 Dec 2021 SARS-Cov-2 Omicron variant detected and Restric- 0.04
tions Unlock 19.0.

01 Jan 2022 Restrictions Unlock 20.0. 0.02

Restriction policies and vaccination programs have significantly influenced the
spread pattern of COVID-19 in India. Several key events that occurred during the
adopted COVID-19 time series period in India are identified. For each event, the
time, description, and corresponding value of the restriction parameter (u(t)) are
listed in Table 6.5 for India. These intervention events are incorporated into the
proposed model to accurately reflect the real-world scenarios in epidemiological
modeling. The model parameters are re-estimated for each event duration t using
PSO-based optimization. The events included in the study are sourced from the
links [227, 86].

For the starting point of (t = 0) on January 16, 2021, the values of the model
state variables for India are set as follows.

N = 1.3x10°, I(0) = 13964, R(0) = 13804, D(0) = 152565, P(0) = 13804, V,,;(0) =
198656, V¢(0) = 0, B(0) = 0,57(0) =0, S(0) = N — 1(0) — R(0) — D(0) — V,,;(0) —
V#(0) — B(0), E(0) = £25(0).

The model parameters are optimized using PSO to match the spread pattern of
COVID-19 cases in India. The optimized parameter values for each event duration
t in India are shown in Table 6.6. These values represent the mean of 10 runs of
the proposed model for each event duration. The table also includes the average
values and standard deviations of the parameters from the 10 runs for each event
duration. These averaged parameter values are then used in the SEIRDPV model
for COVID-19 epidemic modeling.

Figure 6.4 presents the evolution and forecasting results of COVID-19 cases
in India using the proposed SEIRDPV model, alongside a comparison with the
state-of-the-art SEIRD model. The dataset from India captures a significant wave
of COVID-19 (the Delta variant) and the early phase of the subsequent wave
(the Omicron variant). The evolution of confirmed COVID-19 cases in India is
shown in Figure 6.4a. The results demonstrate that the SEIRDPV model, with
its time-varying parameters, achieves close alignment with observed transmission
patterns, whereas the SEIRD model proves inadequate in capturing the true
spread dynamics.

Figure 6.4b illustrates the evolution of COVID-19 recovered cases in India
using both the SEIRD and the proposed SEIRDPV model. The proposed model
outperforms the SEIRD model. Similarly, Figure 6.4c shows the evolution of
COVID-19 death cases, where the SEIRDPV model closely matches the actual
values. The proposed model demonstrates better performance compared to the
SEIRD model.
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Table 6.6: Optimized value of parameters for each event period in India

From To « B ~y 1) A1 Ay A3
16 Jan 31 Jan 0.200000 0.727273 0.303030 0.000021 0.000017 04+0.0 0=+£0.0
2021 2021 + + + + +

0.000000 0.000000 0.000000 0.000016 0.000002
01 Feb 28 Feb 0.181200 0.533410 0.426890 0.001318 0.000012 0=£0.0 0=+ 0.0
2021 2021 + + + + +

0.030330 0.312490 0.200677 0.003757 0.000002
01 Mar 31 Mar 0.108239 0.091587 0.992942 0.011302 0.000094 0=£0.0 04 0.0
2021 2021 + + + + +

0.004708 0.013260 0.008827 0.002542 0.000001
01 Apr 07 Apr 0.137605 0.118732 0.999777 0.000915 0.000340 0.021178 0 £ 0.0
2021 2021 + + + + + +

0.002481 0.015180 0.000164 0.002482 0.000001 0.000062
08 Apr 30 Apr 0.326703 0.099052 0.917752 0.005335 0.000182 0.044076 0 4 0.0
2021 2021 + + + + + +

0.006036 0.004883 0.015578 0.001826 0.000004 0.000380
01 May 31 May 0.326315 0.154295 0.976473 0.012669 0.000143 0.054019 0 £ 0.0
2021 2021 + + + + + +

0.002923 0.006756 0.002098 0.001371 0.000001 0.000378
01 Jun 21 Jun 0.045022 0.091948 0.859968 0.030866 0.000099 0.012584 0 4 0.0
2021 2021 + + + + + +

0.003088 0.004183 0.012244 0.002206 0.000002 0.000102
22 Jun 30 Jun 0.999908 0.006467 0.933687 0.052441 0.001388 0.055336 0 4 0.0
2021 2021 + + + + + +

0.000093 0.000377 0.072023 0.019647 0.000001 0.000327
01 Jul 31 Jul 0.969843 0.001187 0.967975 0.023752 0.000985 0.150275 0 4 0.0
2021 2021 + + + + + +

0.030715 0.000031 0.019573 0.008359 0.000030 0.003481
01 Aug 31 Aug 0.222649 0.000682 0.925986 0.010389 0.000422 0.045105 0 4+ 0.0
2021 2021 + + + + + +

0.266898 0.000092 0.095263 0.003909 0.000342 0.020509
01 Sep 30 Sep 0.000073 0.000610 0.975826 0.011636 0.000178 0.047521 0 4+ 0.0
2021 2021 + + + + + +

0.000053 0.000090 0.020078 0.001688 0.000002 0.000087
01 Oct 31 Oct 0.038326 0.000311 0.952723 0.012949 0.000169 0.076588 0 % 0.0
2021 2021 + + + + + +

0.079104 0.000047 0.039576 0.001136 0.000107 0.020008
01 Nov 30 Nov 0.000617 0.000194 0.958419 0.038901 0.000267 0.160291 0 4 0.0
2021 2021 + + + + + +

0.001504 0.000029 0.043285 0.013716 0.000003 0.000819
02 Dec 31 Dec 0.000099 0.000138 0.950000 0.047941 0.000259 0.186651 0 4 0.0
2021 2021 + + + + + +

0.000035 0.000021 0.041268 0.015921 0.000003 0.000301
01 Jan 15 Jan 0.274265 0.000389 0.092841 0.005353 0.000887 0.117150 0.008660
2022 2022 + + + + + + +

0.001810 0.000521 0.293586 0.007698 0.000009 0.000389 0.000009
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Figure 6.4: Evolution and forecasting results of the proposed SEIRDPV model
and comparison with the SEIRD epidemiological model on India dataset.
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6.3. COVID-19 Case Studies and Evaluation

Additionally, the proposed SEIRDPV model is used to forecast COVID-19
confirmed cases in India for the next 30 days. The forecasting is based on the
optimized parameters from the previous month’s time series data. The results
of the 30-day forecast for confirmed cases are shown in Fig. 6.4d. To assess
the impact of the uncertain restriction parameter (x) in the future, forecasts are
made with varying values of i, as shown in Fig. 6.4d. The results indicate that
increasing the value of p does not halt the pandemic’s spread; rather, it only
delays the timeline of the spread.

6.3.3 Empirical Analysis of the Models

We perform a rigorous comparative assessment using five evaluation metrics to
analyze the predictive performance of our SEIRDPV model relative to ETS,
ARIMA, ANN, LSTM, and SEIRD approaches. The performance metrics used for
evaluation include RMSE, MAE, RRSE, sMAPE, and MASE. Short-term (30-day)
forecasting is performed for the comparative analysis, taking into account the
dynamic nature of the pandemic, as long-term forecasting may not be reliable in
such cases. The models are trained on the training dataset, and their forecasting
performance is evaluated on a testing dataset (30 days). The evaluation focuses on
COVID-19 confirmed cases. The SEIRD and SEIRDPV models are assessed with
a restriction parameter p set to 0.2, assuming no major government restrictions
during the forecasting period. The ETS, ARIMA, ANN, and LSTM models are
trained on confirmed COVID-19 cases. The comparative forecasting results for
India and the USA are presented in the following subsections.

Model comparison on the USA dataset

The forecasting results for the USA are shown in Fig. 6.5. The performance of the
ETS model for forecasting the next 30 days is displayed in Fig. 6.5a. It can be seen
that ETS fails to capture the actual fluctuations, as it relies on smoothing data
points. The ARIMA model also does not perform well in forecasting COVID-19
confirmed cases in the USA, as shown in Fig. 6.5b. In contrast, both the ANN
and LSTM models successfully learned the dynamics of COVID-19 confirmed
cases from the testing data and adapted to the evolving trends, as demonstrated
in Fig. 6.5¢ and Fig. 6.5d. The SEIRD and proposed SEIRDPV models, based
on statistical evolution with hyperparameters, require regular updates to account
for the changing transmission dynamics of the pandemic. Additionally, these
models are capable of incorporating restriction parameters, multi-dose vaccination
programs, and the evolution of various related aspects.

The forecasting results of the models are compared using various performance
metrics, as shown in Table 6.7, with the best performance values highlighted in bold.
From the table, it is evident that all models exhibit varying levels of performance
across different metrics. The SEIRDPV model outperforms the other models in
terms of MAE and sMAPE, while the ANN model leads in RMSE, sMAPE, and
MASE metrics. These findings suggest that combining epidemiological models
with machine learning techniques can be effective in addressing dynamic scenarios
and uncovering hidden patterns in time series data.
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Figure 6.5: Forecasting results of the models for testing samples of the COVID-19
confirmed cases of the USA

Table 6.7: Forecasting accuracy of the models on the USA dataset using different
measures (best values are shown in bold)

Model USA

MAE RMSE RRSE sMAPE MASE
ETS [232] 22964 27521 1.988 25.62 10.85
ARIMA [230] 24719 28489 2.058 27.83 396.36
ANN [157] 7146 8300 0.60 7.81 1.69
LSTM [6] 14705 16031 1.16 15.80 5.26
SEIRD [50] 10312 12778 0.92 11.12 4.02
SEIRDPV 7134 9457 0.68 7.26 5.93
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Model comparison on India dataset

The performance of a model can vary across different datasets. In this context, the
proposed model is compared with five state-of-the-art models using the COVID-19
confirmed cases dataset from India. The forecasting results of these models on the
India dataset are shown in Fig. 6.6, which align with the results from the USA
dataset. As seen in 6.6b, the ARIMA model does not perform well on the India
dataset either. The ETS model performs relatively well across all five performance
metrics, although the ANN model outperforms the others. As shown in Fig. 6.6¢,
the ANN model achieves the best results. The SEIRD model fails to match the
testing time series, as shown in Fig. 6.6e, while the SEIRDPV model closely
matches the testing time series of confirmed cases, as shown in Fig. 6.6f. While
graphical results do not clearly identify a superior model, five performance metrics
are used to determine the better model.
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Figure 6.6: Forecasting results of the models for testing samples of the COVID-19
confirmed cases of India

The forecasting accuracy results of the compared models on the testing dataset
are presented in Table 6.8, with the best values highlighted in bold. From the
table, it is evident that the ANN model outperforms all other models across all
performance metrics. The next best-performing model is LSTM. These results
suggest that machine learning models are better suited to capturing the dynamics in
data that reflect multiple waves of the pandemic (e.g., Delta, Omicron). In contrast,
epidemiological models like SEIRD can only model disease evolution based on
preset hyperparameters. However, an epidemiological model like the proposed
SEIRDPV can effectively capture real-time dynamics if the hyperparameters are
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Table 6.8: Forecasting accuracy of the models on India dataset using different
measures (best values are shown in bold)

Model India

MAE RMSE  RRSE SMAPE  MASE
ETS [232] 4558 4675 4927 38.56 13.66
ARIMA [230] 34903 59295 1.24 81.66 514.66
ANN [157] 3621 4902 0.11 14.37 0.71
LSTM 6] 14724 92924 0.48 30.27 3.52
SEIRD [50] 43534 77018 1.23 96.82 950.21
SEIRDPV 22077 927950 0.45 107.55 2.86

periodically re-estimated or updated based on specific events.

6.4 A study on resource-optimized restrictions

Epidemiological models are essential tools for estimating the transmission dynamics
of infectious diseases. Among these, the Susceptible-Exposed-Infected-Recovered-
Dead (SEIRD) model has been extensively studied for disease modeling [50].
However, the COVID-19 pandemic has introduced several additional complexi-
ties, such as asymptomatic infections, quarantine protocols, hospitalization, ICU
admissions, and vaccination efforts. To better capture these dynamics, many
researchers have extended the SEIRD framework to incorporate these factors and
evaluate their effects on outbreak progression [116]. In this study, we extend the
SEIRD model by adding a new compartment for hospitalization (H), resulting in
a SEIHRD model that includes seven distinct compartments. Given that disease
dynamics evolve over time, relying on static model parameters may not effectively
reflect future conditions. Therefore, this study emphasizes the importance of
using time-varying parameters that can adapt to shifts in disease transmission
and intervention strategies.

A variety of optimization algorithms are available to identify optimal solutions
with minimal computational effort. Among these, PSO has demonstrated high
effectiveness [119]. In this study, a recent variant of the PSO algorithm is
utilized to optimize the parameters of the SEIHRD model, which includes five
hyperparameters that must be estimated concurrently. To facilitate this process,
a multi-variable deep learning model based on LSTM networks is developed.
This deep learning model is applied to the weekly optimized hyperparameters to
generate short-term forecasts over a four-week horizon, recognizing that long-term
forecasting of infectious diseases may not be reliable. The model is trained on
historical hyperparameter estimates to produce accurate short-term projections.
These forecasted hyperparameters are then input into the SEIHRD model to
simulate disease transmission patterns. As part of the epidemiological modeling,
a containment measure is derived using the ratio of available hospital beds to
hospitalized cases. This measure, which ranges from 0 to 1, can be instrumental
in shaping containment strategies, although the formulation of specific policy
recommendations falls outside the scope of this study. COVID-19 time series data
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from two countries—India and the United States is used to train and evaluate the
proposed model. Forecasting performance is assessed using statistical metrics and
compared against benchmark models.

6.4.1 Proposed Epidemiological Compartmental Model

In this study, the traditional SEIRD model is extended by adding a new compart-
ment to represent hospital admission capacity. The resulting model, known as the
77 model, consists of six compartments: Susceptible (S), Exposed (E), Infected
(I), Hospitalized (H), Recovered (R), and Deceased (D). The model structure is
illustrated in Fig. 6.7. The Susceptible (S) group includes individuals at risk of in-
fection. The Exposed (E) compartment contains individuals who have encountered
the virus but are not yet symptomatic. The Infected (I) compartment represents
confirmed cases. Infected individuals may either be admitted to the Hospitalized
(H) compartment, recover (R), or die (D). Those who recover eventually return to
the Susceptible (S) group after their temporary immunity period expires.

Figure 6.7: Proposed SEIHRD model state-transition diagram.

The proposed model is a bilinear and positive system, which guarantees that
all state variables remain non-negative for ¢ > 0, given that their initial values are
non-negative at t = 0. The corresponding ordinary differential equations (ODEs)
of the system, derived from the state-transition diagram shown in Fig. 6.7, are
provided below.

S(t) = —(1— u(t))a(t)mS(t) + T—RR(t) (6.4.1)
. I(t)
B(1) = (1= u(®)(t) 50-5(0) = B E( (6.4.2)
(t) = BU)E(E) — A()I(t) — 5()I(E) — n(t)I (1) (6.4.3)
() =010 ~ pH(E) 1 — (1= p) - H() (6.4.4)
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R(t) = () I(H) + (1 - p>T1HH<t> - ;RR@ (6.4.5)
D(E) = 5()I(t) + pH(t)j}D (6.4.6)

The above equations preserve the mass conservation of state variables, ensuring
that their sum remains equal to the total population N at time ¢, as expressed in
Equation 6.4.7.

N=S@t)+ E{t)+I(t)+ H(t) + R(t) + D(t) (6.4.7)

The variables used in equations of the proposed model are described below.

o Restriction parameter (u): It is determined by the restriction policies of
government during a specific time period and is assigned a value between
0 and 1, where 0 represents no-restrictions and 1 indicates a complete
lockdown.

o Immunity period (T): The number of days of immunity after recovery from
the decease. It is set to 240 days (8 months) based on the study in [57].

» Hospital admission period (Tf): Average time period from admission to
discharge of an infected individual. It is set to 16 days.

« Death probability (p): Probability of death of an infected individual after
hospital admission. It is set to 0.15.

o Death period (Tp): It is an average time period from admission to death of
an infected individual. It is set to 16 days.

o aft), B(t), v(t), n(t), and 6(t) are the exposed rate, infection rate, recovery
rate, admission rate, and death rate at time ¢, respectively. These are
estimated weekly.

Resource-Optimized Restriction Parameter Estimation

This study investigates the optimal utilization of hospital beds by estimating a
restriction parameter designed to keep the number of infections within the limits
of available hospital capacity. A country’s hospitalization capacity is quantified
as the number of hospital beds per thousand individuals. Based on this metric,
the maximum hospitalization capacity can be expressed by Equation 6.4.8.

N
H,pow = 1000 x hospital _beds per thousand (6.4.8)

During a pandemic, a portion of hospital beds must be reserved. Thus, a
practical capacity (set point) is determined by Equation 6.4.9. In this study, 15%
beds are reserved for other patients in the pandemic modeling.

Hg, = Hpor X (1 — hospital _beds__for_other) (6.4.9)
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6.4. A study on resource-optimized restrictions

The value of restriction parameter (1) at time ¢ is determined using Equation

6.4.9 and model parameters as given in Equation 6.4.10.

Hy — H(t) = n(t)I(1)

(6.4.10)

A = )

6.4.2 Forecasting Framework

Forecasting framework based on the proposed compartmental epidemiological
model is shown in Fig. 6.8. The main components of the framework are described

below.
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Figure 6.8: Forecasting framework for the proposed SEIHRD model.

1. Data pre-processing: Two techniques are applied to pre-process the data:-
(i) Weekly averaging of the time series of COVID-19 cases to smooth the
data. (ii) Interquartile Range (IQR) method is used to remove outliers from

the data [224].

2. Training-testing data: The pre-processed data is split into train and test
samples. The last 28 days samples are kept for testing. More than one
month forecasting may not be realistic in case of highly contangious diseases.

3. SEIHRD modeling: The proposed model is used for COVID-19 pandemic
evolution. The model parameters S0, K0, [0, HO, RO, D0 are initialized using
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Mobility Restrictions, and Vaccination for COVID-19 prediction

the real values at t = 0, and weekly S(¢), E(t), (t), H(t), R(t), D(t) using
values at time ¢ > 0.

4. Resource-Optimized containment parameter estimation: Resource constraint
based restriction parameter (u(t)) is estimated weekly using equations
described in Section 6.4.1.

5. PSO optimization: The SEIHRD model parameters (o, 5, v, n, §) are
optimized at weekly interval using the PSO algorithm. The optimal values
of the model parameters are returned by the PSO.

6. Deep learning: A multi-variable-LSTM is Incorporated to forecast the value
of SEIHRD model parameters. The weekly optimized parameters («, 3, v,
n, 6) are used to train the LSTM model, and perform forecasting for four
weeks.

7. Pandemic evolution and forecasting: In this step, Multi-variable-LSTM fore-
casted model parameters are fed into the SEIHRD model to show evolution
of the COVID-19 pandemic.

Datasets

COVID-19 case data from the United States and India are used to evaluate the
proposed model. The dataset, which is publicly available, is sourced from the
GitHub repository maintained by Our World in Data [93]. The evaluation is based
on reported cases from April 1, 2020, to September 30, 2020.

PSO, LSTM, and Model Variables Configurations

In the experiments, the value of hospital beds_ per_thousand = 2.77 and popula-
tion N = 3.3 x 108 are set for the USA. Similarly, hospital beds per thousand =
0.53 and N = 1.4 x 10° are set for India.

PSO algorithm is used to optimize the proposed model hyperparameters. The
PSO parameters are configured as shown in Table 6.9.

Table 6.9: Configured parameters of PSO algorithm.

PSO Parameter Value
Number of particles 50
Maximum number of iterations 300
Inertia weight [Wpin, Winax) (0.4, 0.9]
Cl=C2 (0.5, 2.5]

Multi-variable-LSTM is used for deep learning of the SEIHRD model parame-
ters. Configured values of LSTM parameters are shown in Table 6.10.
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Table 6.10: Configured values of LSTM parameters.

Parameter Value

Activation Function linear

Optimizer Adam
Hidden units 20
Dense units 4
Learning rate 0.005
Loss function Huber

Evaluation metrics MSE
Epochs 500

6.4.3 Experimental Results

Based on the configured parameters of the model, results of COVID-19 pandemic
spread are generated for the USA and India.

Resource Optimized Restriction Level result

Table 6.11 presents the optimized restriction levels for the United States, alongside
the actual restrictions implemented by the country without accounting for the
optimal use of healthcare resources. A similar analysis has been conducted for the
COVID-19 pandemic in India. The results from both countries are subsequently
used for forecasting COVID-19 case trends.

Forecasting results without resource-constraint

This section presents forecasting results without incorporating the optimal utiliza-
tion of hospitalization capacity of a country. Figure 6.9 illustrates the forecasts
for infected cases, hospitalizations, and COVID-19-related deaths for both India
and the USA. The results demonstrate that the proposed model accurately pre-
dicts realistic trends in infections and fatalities for both countries. In terms of
hospitalizations, the model suggests efficient utilization of hospital beds in the
USA, while India shows relatively lower hospitalization numbers. Furthermore,
the model reveals signs of overutilization of hospital resources in India.

Forecasting results with resource-constraint

This section presents the forecasting results of the proposed model, incorporating
the estimation of restriction parameters based on healthcare resource limitations.
Research on COVID-19 indicates that complete lockdowns are not the most effec-
tive strategy for disease containment, as they primarily delay transmission rather
than prevent it. A more practical approach involves the efficient management of
medical resources until a vaccine becomes widely available. Accordingly, restriction
levels should be determined in alignment with the capacity of healthcare facilities
to avoid both overuse and underuse of hospital resources. Figure 6.10 displays the
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Table 6.11: Optimized and direct restriction level for the USA dataset.

7) turnitin

Optimized Restriction Level

Direct Restriction Level

Weeks

0 0.00126
1 0.00146
2 0.00128
3 0.00141
4 0.00129
5 0.00117
6 0.00112
7 0.00109
8 0.00101
9 0.00098
10 0.00105
11 0.00129
12 0.00186
13 0.00234
14 0.00287
15 0.00328
16 0.00327
17 0.00298
18 0.00259
19 0.00252
20 0.00212
21 0.00205

0.7
0.65
0.6
0.55
0.5
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
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Figure 6.9: Forecasting results without resource-optimization in India and the

USA

forecasted numbers of infections, hospitalizations, and deaths for India and the
USA. The results show a marked improvement in forecasting accuracy compared
to those generated without incorporating resource constraints. However, for India,
the model still indicates an overutilization of healthcare resources in terms of
hospitalizations. It shows need to increase the hospital_beds per thousand in
India.

Forecasting Performance

This section evaluates the performance of the proposed model using various
statistical metrics. Table 6.12 summarizes the forecasting accuracy for infected
cases in India and the USA, assessed using four metrics namely, MAE, RMSE,
RRSE, and MAPE. The model demonstrates better performance on the USA
dataset, exhibiting lower MAPE and improved RRSE values. Comparable results
are observed for the forecasts of deaths and hospitalizations.

Table 6.12: Forecasting accuracy of the proposed model on infected cases using
different metrics

Dataset MAE RMSE RRSE MAPE
USA 23745 57227 1.24 14
India 27229 37784 1.85 18
119
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Figure 6.10: Forecasting of COVID-19 cases with restriction-optimization for
India and the USA.

6.5 Analysis and Discussion

The proposed epidemiological model is designed to simulate the COVID-19 epi-
demic across different countries. It adapts to varying national contexts by learning
from the evolution of an epidemic based on model parameters. The model can
accommodate single-dose or multi-dose vaccination data, with the inclusion of
booster dose compartments essential for long-term epidemics like COVID-19. Ad-
ditionally, government-imposed restriction policies play a crucial role in controlling
the spread of the epidemic, and such measures must be incorporated into the
model to reflect real-world scenarios. To capture the impact of these measures, the
model integrates a restriction parameter. The spread of an epidemic is influenced
by both the restriction policies and the virus dynamics, making periodic estimation
of the model parameters critical. In the proposed approach, the parameters are
re-estimated for each event duration.

Although the model incorporates many real-world factors, achieving a perfect
match with actual pandemic scenarios is challenging due to the large number of
variables involved, such as virus dynamics, environmental conditions, healthcare
infrastructure, government responses, education, human behavior, and regional
factors. Model selection is another key aspect of epidemic evolution modeling.
In this study, an epidemiological model is designed with ten compartments that
account for vaccination trends, as well as protected and immunized-susceptible
populations. To optimize the model parameters efficiently, PSO algorithm is
adopted. The selection of an appropriate optimization algorithm is a critical
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decision, and further research is needed to explore the use of other bio-inspired
algorithms for optimization. To evaluate the model, case studies of two countries
heavily affected by COVID-19 are conducted. These studies indicate that while
increased restrictions can slow the spread of an epidemic, they cannot fully
control it. Developing effective vaccines is one promising solution for eradicating
large-scale pandemics like COVID-19.

It is important to note that evaluating a model based on a single dataset
and performance metric may not provide a comprehensive understanding of its
effectiveness. To address this, the proposed model has been assessed using datasets
from both India and the USA and compared it with five state-of-the-art models
across five different performance metrics. This comparative study has offered a
broader perspective on the performance of a model. The results suggest that
machine learning models are better at capturing the dynamic fluctuations of
pandemic data, especially during multiple waves, something that is challenging
for traditional epidemiological models. Therefore, combining epidemiological and
machine learning models is beneficial to improve ability to learn from and adapt to
evolving time series data. Additionally, periodic re-estimation of epidemiological
parameters and the integration of relevant factors are essential to effectively model
the dynamic nature of an epidemic.

Further, in this chapter a novel epidemiological compartmental model has
been proposed that introduces hospitalization as a new compartment. Time-
varying parameters are incorporated to account for dynamic conditions, and the
model parameters are optimized using the PSO algorithm. A resource-constraint-
based restriction parameter is integrated into the model to optimize hospital
bed capacity within a country. Additionally, a multi-variable LSTM based deep
learning approach is employed to train and forecast the model parameters. The
proposed model is applied to COVID-19 time series data from India and the USA,
effectively capturing the real-world progression of the disease. It highlights both
over-utilization and under-utilization of hospital resources. Future research can
further enhance the model by integrating alternative optimization techniques,
deep learning approaches, and diverse datasets.
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CHAPTER 7

CONCLUSION, FUTURE SCOPE AND
SOCIAL IMPACT

Time series forecasting models are highly valuable for predicting future outcomes
based on historical data. These models enable preventive measures to mitigate
undesirable outcomes. Different types of time series data can be utilized for pre-
dictions, and in the context of epidemics, such predictions can be instrumental in
combating diseases. A recent example is the COVID-19 pandemic, which claimed
millions of lives and underscored the importance of analyzing and forecasting
epidemic evolution. This thesis has examined widely used and well-known method-
ologies related to COVID-19 time series modeling and forecasting, and presented
two new proposals 1) machine-learning based (FTS-PSO-attention-Bi-LSTM), and
2) novel epidemiological model incorporating restriction policies and vaccination
(SEIRDPV) for accurate time series forecasting of COVID-19 confirmed, death,
and recovered cases in a timeline spanning multiple COVID-19 waves attributed
to multiple mutations of the SARS-CoV-2 virus.. Trends in infection cases, active
cases, recoveries, deaths, and hospitalizations have been analyzed. An overview
of SARS-CoV-2 variants and COVID-19 vaccines has been presented to provide
insights into the dynamics of pandemic.

Research outcomes of this thesis are summarized in Table 7.1 and further
elucidated below. In initial studies, state-of-the-art forecasting models, including
ETS, ARIMA, FB-Prophet, ANN, LSTM, and its variants, are evaluated using
COVID-19 datasets from highly affected countries such as the USA, Spain, Italy,
France, Germany, Russia, Iran, the UK, Turkey, and India. The analysis begins
with a comparison of ARIMA and FB-Prophet models based on error metrics such
as MAE, RMSE, RRSE, and MAPE, where ARIMA outperforms FB-Prophet. In a
subsequent study, ARIMA and LSTM models are compared using the USA dataset,
demonstrating that while both adapt to the multi-wave nature of the pandemic,
LSTM outperforms ARIMA in modeling long-term and short-term dependencies in
non-linear time series data. Further, ETS, ANN, ARIMA, and LSTM models are
evaluated across five datasets containing multiple COVID-19 waves, with ANN and
LSTM models showing strong robustness and effectiveness in capturing temporal
dependencies. The findings highlight the superior ability of the LSTM to handle
multi-wave time series data. Given the dynamic nature of COVID-19, influenced by
factors like lockdowns, variants, vaccination programs, and governmental policies,
FTS models have been explored due to their effectiveness in handling uncertainties.
Two novel optimization algorithms, nested-PSO and exhaustive-search-PSO, have
been proposed to optimize FTS models by determining partition parameters and
fuzzy orders. These algorithms have outperformed state-of-the-art FT'S models,
with the exhaustive-search-PSO-based F'T'S model achieving the best forecasting
performance on evolving COVID-19 timelines.
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Table 7.1: Summary of the research findings presented in this thesis.
Chapter | Proposed Dataset Comparison| Performance Novelties
Methodology Used Methods Matrics
Chapter 3 | COVID-19 Time se- | ARIMA and | MAE, ARIMA
forecasting of | ries data of | FB-Prophet MAPE, outper-
infected, active, | USA, India, RMSE, formed FB-
recovered, and | UK, Spain, RRSE Prophet on
death cases dur- | Italy, France, all datasets
ing initial phase | Germany,
of outbreak. Russia, Iran,
and Turkey
from March
1, 2020, to
May 20, 2020
Chapter 3 | COVID-19 fore- | Time series | ARIMA and | MAE, LSTM out-
casting of con- | data of the | LSTM MAPE, performed
firmed cases hav- | USA  from RMSE, ARIMA
ing more than | April 1, 2020, Correlation
one wave. to March 31,
2021
Chapter 3 | COVID-19 Time series | ETS, ANN, | MAE, LSTM
forecasting  of | data of USA, | ARIMA and | RMSE, outper-
confirmed cases | India, UK, | LSTM RRSE, formed other
having multiple | Russia, and sMAPE, compared
waves. Italy  from MASE models.
June 1, 2020,
to April 15,
2022
Chapter 4 | COVID-19 FTS | Time se- | ARIMA, FB- | MSE, MAPE | Proposed
forecasting using | ries data of | Prophet, Methodology
novel nested- | USA, India, | FTS, exhaustive-
FTS-PSO and | UK, Spain, | FTS-PSO, search-FTS-
exhaustive- Italy, France, | Nested-FTS- PSO outper-
search-FTS- Germany, PSO, and formed other
PSO Methodolo- | Russia, Iran, | Exhaustive- compared
gies for initial | and Turkey | search-FTS- models.
phase (Phase-1). | from  April | PSO
2020 to
October
2020
Chapter 4 | COVID-19 FTS | Time series | ARIMA, FB- | MSE, MAPE | Proposed
forecasting using | data of USA | Prophet, Methodology
novel nested- | and India | FTS, exhaustive-
FTS-PSO and | from January | FTS-PSO, search-FTS-
exhaustive- 1, 2021, to | Nested-FTS- PSO outper-
search-FTS- May 15, 2021 | PSO, and formed other
PSO Methodolo- Exhaustive- compared
gies for evolved search-FTS- models.
phase (Phase-2). PSO
Continued on next page
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Chapter | Proposed Dataset Comparison| Performance Novelties
Methodology Used Methods Metrics
Chapter 5 | COVID-19 FTS | Time series | ETS, ANN, | MAE, Performance
forecasting us- | data of USA, | ARIMA, RMSE, compared
ing novel hybrid | UK, India, | LSTM, RRSE, with or
model using | Russia and | FTSF- sMAPE, without
FTS, PSO, and | Italy from | LSTM, MASE data pre-
deep learning | June 1, 2020 | FTS+PSO processing
techniques. to April 15, | +LSTM, where hy-
2022 having | FTS+PSO brid of FTS,
multiple +stacked- PSO, and
waves of | LSTM, Attention-
outbreak FTS+PSO Bi-LSTM
+Bi-LSTM, outper-
FTS+PSO formed other
+Conv- compared
LSTM, models.
FTS+PSO
+Attention-
LSTM,
FTS+PSO
+Attention-
Bi-LSTM
Chapter 5 | Evolution of | Time series | Stacked- RMSE Proposed
COVID-19 mu- | data  with | LSTM, hybrid deep
tant affected | two  major | SIRD+PSO, learning epi-
population using | waves for | Proposed demiological
proposed novel | the USA | (SIRD+PSO model  out-
hybrid epidemi- | from July 1, | +  stacked- performed
ological model | 2021 to April | LSTM) the com-
integrating 15, 2022, pared models
SIRD, PSO, and | for India on all the
stacked-LSTM. from January datasets.
1, 2021 to
March 30,
2022, and for
the UK from
June 1, 2021
to April 30,
2022.
Continued on next page
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Table 7.1 — continued from previous page

Chapter | Proposed Dataset Comparison| Performance Novelties
Methodology Used Methods Metrics

Chapter 6 | Evolution of | Time series | ETS, MAE, The pro-
COVID-19 data for | ARIMA, RMSE, posed
using novel | confirmed, ANN, LSTM, | RRSE, SEIRDPV
10-compartment | recovered, SEIRD, sMAPE, effectively
SEIRDPV epi- | and death | Proposed- MASE captures
demiological cases during | SEIRDPV real-time
model incorpo- | Jan 16, 2021, dynamics if
rating  restric- | to Jan 15, the hyperpa-
tion parameter | 2022 (India), rameters are
and multi-dose | and Dec periodically
vaccination. 14, 2020, to re-estimated

Dec 13, 2021 or updated
(USA), corre- based on
sponding to specific

the first year events.

of  vaccina-

tion rollouts

in these

countries.

Chapter 6 | Estimation Time series | Actual hospi- | MAE, The pro-
of resource- | data of the | talized cases | RMSE, posed
optimized USA and RRSE, SETHRD
restriction pa- | India  from MAPE model in-
rameter by | April 1, 2020, vestigates
adding hos- | to September the optimal
pitalizations 30, 2020 utilization
compartment (evolving of  hospital
with SEIRD | phase of the beds by
model to rep-| COVID-19 estimating
resent hospital | pandemic) a restriction
admission parameter
capacity. designed to

keep the
number  of
hospital
admissions
within  the
limits of
available
hospital
beds.

To enhance forecasting accuracy in dynamic conditions, a hybrid FTS-deep
learning model has been developed, integrating FTS with PSO and attention-Bi-
LSTM. The proposed hybrid model consistently outperforms other models across
datasets and performance metrics. Additionally, a hybrid model combining the
SIRD epidemiological model, PSO optimization, and stacked-LSTM has been
proposed to address the dynamic nature of epidemics. This model has been
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evaluated on COVID-19 datasets from three countries which has outperformed all
compared models.

Furthermore, a novel ten-compartment epidemiological model, SEIRDPV, is
introduced for COVID-19 modeling. This model extends the traditional SEIRD
model by incorporating multi-dose vaccinations, protected individuals, and immu-
nized susceptibles. It adapts to country-specific vaccination programs by varying
parameters for vaccine doses and efficacy, and it accounts for government restric-
tion policies through a restriction parameter. The SEIRDPV model has closely
matched actual pandemic trends in the USA and India and outperformed models
like ETS, ARIMA, ANN, LSTM, and SEIRD in forecasting accuracy. The study
concludes that while restrictions can delay disease spread, estimating time-varying
parameters is essential for modeling dynamic epidemics effectively. Additionally,
a study is carried for resource-optimization parameter estimation incorporating
hospital beds capacity compartment into SEIRD model. The proposed model
has been evaluated using COVID-19 cases from the USA and India. Results
from the study reveal patterns of both over-utilization and under-utilization of
hospital resources, demonstrating potential of the proposed model for informing
data-driven healthcare policy and capacity planning.

This research has proposed several novel models for time series forecasting and
epidemiological modeling. Time series forecasting models have the potential to
drive changes in the society by improving decision-making and resource allocation
across various sectors. In this view, the proposed models in this thesis can be
used in fields such as economics, healthcare, and public policy, which can lead
to significant positive societal outcomes. Future work could improve forecasting
accuracy by incorporating variables such as population density, weather, healthcare
systems, and patient history. The proposed models can also be extended to
incorporate multimodal inputs (text, image, audio, sensor data) using advanced
deep learning methods and evolutionary algorithms for analyzing the spread of
other epidemics and pandemics.
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