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Abstract 

Geopolymer concrete (GPC) is an innovative, sustainable, cementless, and eco-friendly 

material that significantly reduces carbon emissions by entirely replacing cement in concrete 

production. Cement manufacturing is a major contributor to CO₂ emissions, and GPC offers a 

viable alternative. In this experimental investigation, the fresh, chemical, and mechanical 

properties of GPC were evaluated across various parameters to determine the optimum mix 

design. The study examined fly ash-to-GGBFS (alccofine) ratios ranging from 100/0 to 

75/25, liquid-to-binder (L/B) ratios from 0.35 to 0.65, superplasticizer contents from 0.5% to 

2.0%, sodium hydroxide molarity from 8M to 14M, and sodium silicate-to-sodium hydroxide 

ratios from 0.5 to 3. Durability tests included exposure to seawater, magnesium sulfate 

(sulfate attack), acid attack, and wetting-drying conditions. Workability was assessed using 

slump and density tests, while mechanical properties were evaluated through compressive 

strength, splitting tensile strength, flexural strength, elastic modulus, and rebound hammer 

tests. Durability tests measured residual compressive strength, visual inspections, and density 

variations. The results revealed that oven-cured samples consistently outperformed ambient-

cured samples, with the 75/25 fly ash-to-alccofine ratio achieving the highest engineering 

strength. The compressive strength peaked at an L/B ratio of 0.55, with strength increasing 

up to this point before declining randomly at higher ratios. A mix containing 1.5% 

superplasticizer and a 0.45 L/B ratio demonstrated superior strength compared to other 

combinations. Increasing the NaOH molarity up to 12M enhanced compressive strength, but 

strength declined beyond this point under both curing conditions. Similarly, strength 

improved with higher alkaline ratios, peaking at a ratio of 2, before decreasing. Mechanical 

strength also increased with curing temperature, reaching an optimum at 100°C, after which 

it began to decrease. Durability tests showed that seawater exposure initially increased 

strength and density but led to degradation after 12 weeks. Alccofine-based GPC exhibited 

better resistance to seawater and sulfate attacks compared to other compositions. Both types 

of specimens followed similar patterns of strength and mass loss under these conditions, with 

alccofine-based samples demonstrating superior stability. Under wetting-drying cycles, 

alccofine-based GPC also exhibited greater durability and resistance to degradation. For the 

final optimum values, the Advanced machine learning techniques, including Artificial Neural 

Networks (ANN), Gene Expression Programming (GEP), Support Vector Regression (SVR), 

Bi-LSTM, and Self-Improved Jelly Search Optimization (SIJSO), demonstrated significant 
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potential in predicting the mechanical properties of GPC. These methods offer powerful tools 

for optimizing mix designs and enhancing performance. This study underscores the potential 

of Alccofine as a high-performance supplementary material and highlights the role of 

advanced ML techniques in advancing sustainable construction practices.  
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Chapter 1 

Introduction 

 
 1.1 General 

 

Concrete is the world's second most commonly used material, second only to water. 

Traditionally, Portland cement has been utilized as the primary binding material in concrete, 

with India producing over 502 million tons of cement in 2018. However, cement production 

poses significant environmental challenges, contributing approximately 8% of global 

greenhouse gas emissions, primarily CO₂ (Shobeiri et al., 2021). Additionally, the process 

depletes natural resources and generates pollution, threatening ecological sustainability. 

Given the finite availability of natural resources, sustainable alternatives are imperative. 

Meanwhile, industrial solid wastes such as flyash rice husk ash and slag present a viable 

opportunity. India annually generates 200 million tonnes of fly ash from thermal power 

plants and 20 million tonnes of slag from steel production facilities (Imtiaz et al., 2020). 

These by-products, often disposed of on arable land, exacerbate environmental pollution due 

to their limited utilization (Qaidi et al., 2022). Traditionally, Ordinary Portland Cement 

(OPC) and Portland Pozzolana Cement (PPC) have been the primary binding agents in 

concrete, but their production significantly contributes to greenhouse gas emissions. To 

mitigate this, the substitution of OPC with sustainable materials is essential. The escalating 

demand for cement, driven by India's infrastructure growth, has intensified the need for 

environmentally friendly alternatives. Promising options include alkali-activated cement, 

calcium sulphoaluminate cement, magnesium oxy-carbonate cement (carbon-negative 

cement) and supersulfated cement, which offer comparable or superior performance to OPC 

while incorporating substantial amounts of industrial waste (Imbabi et al., 2012). As coal-

based thermal power plants supplied nearly 70% of India's energy demand in the last decade, 

exploring these alternatives is critical for reducing the environmental footprint of the cement 

industry (Volaity et al., 2025). 
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The incremental production of Fly Ash (FA) from 1996-1997 to 2019-2020 in India is shown 

in Fig. 1.1, while its use across different industries is depicted in Fig. 1.2. In 2019–2020, the 

generated food waste amounted to around 201.8 million tons, of which only about 62% was 

used across different industries, while the remainder was disposed of in landfills. The 

treatment of a substantial volume of unutilized fly ash is a significant barrier for solid waste 

management. Consequently, there is significant apprehension regarding greenhouse gas 

emissions, particularly CO2 emissions from the cement manufacturing industry, driven by a 

substantial rise in cement demand within the construction sector. Simultaneously, the 

increase in fly ash generation and its management presents a pressing environmental concern. 

In this regard, geopolymer technology offers a viable alternative binder to Portland cement 

for the building industry. Geopolymer technology addresses the disposal of fly ash while 

simultaneously decreasing CO2 emissions from the cement industry, therefore contributing to 

environmental preservation. The cement production business generates around 1.35 billion 

tons of greenhouse gas emissions yearly, accounting for roughly 7% of total anthropogenic 

greenhouse gas emissions released into the atmosphere (Malhotra 2002; Central Electricity 

Authority (CEA) Report 2021).  

 

Fig. 1.1: Generation and usage of fly ash in India during the period 1996-1997 to 2019-2020 

[Central Electricity Authority (CEA) Report 2021] 
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Fig. 1.2: Modes of utilization of fly ash in India during 2019–2020 [Central Electricity 

Authority (CEA) Report 2021] 

 

The economic expansion in India and China has led to the establishment of new cement 

factories, significantly augmenting CO2 emissions, while the enormous quantity of fly ash 

generated by thermal power plants is inadequately recovered (Malhotra, 2004). McCaffrey 

(2002) proposed three strategies to mitigate CO2 emissions from the cement industry: (a) 

reducing the quantity of calcined material in cement, (b) decreasing the cement content in 

concrete by employing higher strength cement and (c) minimizing the use of cement in 

construction projects. Hardjito et al., (2004) indicated that Mehta (2002) also proposed 

environmentally sustainable concrete, comprising two phases: industrial ecology, which aims 

to minimize the utilization of natural resources, decrease energy consumption, reduce CO2 

emissions and lower material consumption rates to mitigate the impact of undesirable 

industrial by-products. Moreover, the reduction of Ordinary Portland Cement (OPC), the 

integration of additional supplementary cementitious materials, the minimization of water 

through the application of super-plasticizers and water reducers, the incorporation of recycled 

aggregates in concrete and the utilization of lightweight concrete where feasible are several 

strategies by which the cement and concrete industry can mitigate CO2 emissions for 

sustainable construction (Malhotra, 2004). 



 

4 
 

Geopolymer concrete (GPC) is a paradigm shift in construction materials, providing a 

sustainable and high-performance alternative to Portland cement concrete (PCC) with its 

lower carbon emissions and exceptional strength properties. The growing environmental 

concerns surrounding CO2 emissions associated with PCC have led to increasing research 

and adoption of GPC, which utilizes industrial by-products such as fly ash, slag and 

metakaolin as primary materials, activated by alkaline solutions like sodium hydroxide and 

sodium silicate (Okoye, 2017).  

In ancient times, synthetic rocks were created by mixing dolomite, kaolinite, or limestone 

with potassium carbonate (K₂CO₃) or sodium carbonate (Na₂CO₃), which were obtained from 

plant waste or salt lakes, along with silica. Adding water to potassium hydroxide (KOH) and 

sodium hydroxide (NaOH) produced by this mixture dissolved some of the silica, which then 

reacted with other components to form a geopolymeric binder. 

In the context of concrete and cementitious materials, the evolution of binding agents can be 

classified into three distinct generations: lime, considered the first-generation binder; 

ordinary Portland cement (OPC), regarded as the second generation; and geopolymer cement, 

representing the third. Geopolymer is an amorphous alkali alumina-silicate that has various 

names, including ‘geocements’, ‘alkali-activated cements’, ‘hydroceramics’, ‘alkali-bonded 

ceramics’ and ‘inorganic polymers. All these terms refer to materials synthesized through 

similar chemical processes. These materials undergo a process called geopolymerization, 

resulting in a hardened binder with enhanced durability, chemical resistance and thermal 

stability compared to traditional concrete (Van et al., 2012). 

The geopolymerization process is a rapid chemical reaction that occurs under highly alkaline 

conditions. It involves aluminosilicate oxides and silicates reacting to form polymeric 

Si─O─Al─O bonds, resulting in a three-dimensional network (Davidovits, 1994; Van et al., 

1997; Xu and Van, 2000). This network structure provides strength and durability, making 

geopolymers highly suitable for construction. 

With growing concerns over greenhouse gas emissions, research on geopolymer concrete 

(GPC) has intensified in the last decade, focusing on optimizing mix design, improving 

durability and understanding its performance in various environmental conditions (Zhang et 
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al., 2014). Recent advancements have explored the addition of nano-materials and fiber 

reinforcements, which further enhance the mechanical properties of GPC, expanding its 

applications from residential buildings to large infrastructure projects (Paruthi et al., 2023). 

GPC synthesis begins by activating aluminosilicate materials with highly alkaline solutions, 

which trigger the polymerization process. This creates a binder with a three-dimensional 

silico-aluminate network that often surpasses traditional Portland cement concrete (PCC) in 

compressive strength, chemical resistance and thermal insulation (Buchwald & Struble, 

2009). The choice of precursor materials, like fly ash or slag, significantly impacts the 

properties of the geopolymer. For instance, low-calcium fly ash tends to produce 

geopolymers with greater strength and durability (Zhou et al., 2018). Since 2018, research 

has increasingly focused on optimizing mix proportions to achieve desired mechanical and 

durability characteristics while minimizing environmental impact (Xie & Liew, 2019). 

Curing conditions, particularly temperature and duration, are also critical for GPC strength 

development. Elevated temperatures accelerate geopolymerization and improve early-age 

strength (Girish et al., 2020). This fine-tuning of material choice, curing and mix design 

makes GPC a promising alternative to conventional cement in building a more sustainable. 

Recent advancements in GPC have been driven by a deeper understanding of the material's 

microstructure and the influence of different synthesis parameters on its properties. Studies 

have explored the incorporation of various additives and admixtures to enhance the 

performance of GPC, including the use of nano-silica, graphene and other nano-materials to 

improve its mechanical properties and durability (Frieda & Greeshma, 2025). Furthermore, 

there has been a growing interest in the use of GPC in harsh environmental conditions, such 

as marine environments and regions with high sulfate content, where its resistance to 

chemical attack offers significant advantages over traditional concrete (Nazari & Sanjayan, 

2020). In addition to material innovations, research has also focused on the development of 

new testing methods and predictive models to better understand the long-term behavior of 

GPC and to ensure its reliability in structural applications (Kumar et al., 2021). The 

integration of advanced analytical techniques, such as X-Ray Diffraction (XRD) and 

Scanning Electron Microscopy (SEM) has provided valuable insights into the micro 
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structural development of GPC and its correlation with macroscopic properties (Zhang et al., 

2022). 

Several case studies have demonstrated the successful application of GPC in large-scale 

construction projects, highlighting its economic and environmental benefits. For instance, 

GPC has been used in the construction of pavements, precast elements and structural 

components in regions with a high availability of industrial by-products, significantly 

reducing the overall carbon footprint of these projects (Kumar et al., 2023). In addition to its 

environmental benefits, GPC has been shown to offer cost savings due to its lower material 

costs and reduced energy consumption during production (Liew et al., 2022). The use of 

GPC in infrastructure projects, such as bridges and roads, has also demonstrated its durability 

and resistance to aggressive environments, making it a viable alternative to PCC in a wide 

range of applications (Rajini et al., 2022). 

Despite the significant progress made in the development and application of GPC, several 

challenges remain. One of the primary challenges is the variability in the raw materials used 

for GPC production, which can lead to inconsistencies in the properties of the final product 

(Nazari & Sanjayan, 2023). Additionally, the long-term durability of GPC under different 

environmental conditions is still not fully understood and further research is needed to 

address these uncertainties (Zhou et al., 2024). Future research is likely to focus on the 

development of standardized testing methods and guidelines for the production of GPC, as 

well as the exploration of new precursor materials and activators that can enhance the 

performance of GPC while further reducing its environmental impact (Girish et al., 2023). 

The integration of advanced material science techniques with ML and IoT technologies is 

also expected to play a key role in the future development of GPC, leading to the creation of 

smart, sustainable construction materials that can adapt to changing environmental conditions 

and meet the demands of modern infrastructure (Zhang et al., 2024b). 
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1.2 Geopolymerization 
 

Geopolymerization is a chemical process that converts aluminosilicate minerals into a solid, 

three-dimensional network of interconnected polymer chains, resulting in the formation of a 

geopolymer. This process involves several key stages: Initially, an activation phase combines 

aluminosilicate materials like fly ash, slag or metakaolin with an alkaline activator solution, 

typically consisting of water and an alkali metal hydroxide or silicate, which releases 

hydroxyl ions to begin aluminosilicate dissolution (Davidovits, 1994; Van et al., 1997). The 

dissolution phase then involves the breakdown of mineral structures, releasing silicon (Si) 

and aluminum (Al) species into solution through hydrolysis and ion exchange, leading to the 

formation of silicate (SiO₄) and aluminate (AlO₄) species (Provis & Van, 2009; Xu & Van, 

2000). 

The Polycondensation occurs as silicon and aluminum species react with hydroxyl ions, 

producing oligomeric and polymeric chains of alternating Si-O and Al-O bonds, rapidly 

creating an amorphous gel under alkaline conditions (Sofi et al., 2007; Palomo et al., 1999). 

Cross linking follows, wherein these chains chemically bind, forming Si-O-Al or Si-O-Si 

linkages that enhance the geopolymer matrix's mechanical strength (Rangan, 2010; Xu & 

van, 2002). As cross-linked polymeric networks condense, they form a gel-like structure of 

silicon and aluminum atoms within an alkaline solution, crucial for imparting structural 

stability (Sofi et al., 2007; Palomo et al., 1999). Finally, the setting and hardening phase, 

influenced by curing temperature, time and activator composition, further densifies the 

matrix, solidifying the material and enhancing its mechanical properties (Rangan, 2010; Xu 

& van, 2002). This comprehensive process as shown in Fig. 1.3 yields geopolymers with 

notable mechanical strength, durability, and environmental sustainability, making them 

suitable for various construction applications (Davidovits, 1994; Provis & Van, 2009). 



 

8 
 

Fig. 1.3: Mechanism of Geopolymerisation (Abdila et al., 2022) 

Several elements influence the geopolymerisation process, including the composition of the 

alkaline solution, the amount of binding material in the design mix and the curing conditions. 
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Pozzolanic materials, such as fly ash, GGBFS, metakaolin and rice husk ash were used as 

binding agents in the geopolymer because of their high silica and alumina content. According 

to Duxson et al., (2005), as the Si/Al ratio increases, so does the geopolymer's compressive 

strength. 

The activation of pozzolanic material to function as a binding agent for the 

geopolymerization reaction was accomplished by using a solution containing sodium 

hydroxide and sodium silicate. Several investigations (Sung et al. 2015; Topark et al., 2015; 

Nagalia et al., 2016) have found a favorable correlation between the strength of the GPC mix 

and the molarity of NaOH. However, increasing the concentration of NaOH leads to a 

decrease in workability. Geopolymerization is responsible for increasing the strength of 

concrete, which can be affected by a variety of conditions and characteristics. The mixture's 

strength is affected by the alkaline ratio, which increases with the Na2SiO3/NaOH ratio, as 

described by Verma & Dev, (2021). 

The utilization of GPC in concrete results in superior physical, chemical and mechanical 

characteristics when compared to those of OPC cement concrete. The durability 

characteristics of GPC exhibit superior performance in comparison to those of OPC concrete. 

According to several studies (Ismail et al. 2013; Bhutta et al., 2014; Gustavo et al. 2016), 

GPC exhibits a greater degree of resistance to sulphate attack when compared to OPC 

concrete. 

Alccofine is an ultrafine slag-based Supplementary Cementitious Material (SCM) widely 

used to enhance the performance of conventional and geopolymer concrete. Its unique 

fineness and high calcium silicate content make it an efficient additive, promoting early 

strength gain, reducing permeability and improving durability in concrete structures (Sathish 

et al., 2020; Reddy et al., 2019). In traditional concrete applications, Alccofine acts as a 

pozzolanic material, reacting with calcium hydroxide to form additional calcium silicate 

hydrate (C-S-H), which densifies the matrix and improves both compressive and tensile 

strength (Sathish et al., 2020). Its ultrafine particles fill voids in the concrete mix, which 

reduces porosity and enhances the microstructure, leading to improved long-term durability 

(Kadam & Patil, 2018; Nandy et al., 2021). 
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In geopolymer concrete, Alccofine is beneficial as it contributes calcium, which aids in the 

geopolymerization process, providing a source for C-S-H gel formation alongside 

aluminosilicate gels. This dual-gel system enhances the mechanical properties of geopolymer 

concrete, especially in terms of compressive strength and durability (Reddy et al., 2019; 

Kadam & Patil, 2018). Alccofine also aids in reducing the setting time and enhances the 

early-age strength of geopolymer concrete, making it suitable for rapid construction and 

precast applications (Nandy et al., 2021). Overall, its inclusion improves workability, 

strength and durability, making Alccofine a valuable component in both conventional and 

geopolymer concrete mixes for infrastructure, pavements and precast elements (Sathish et al., 

2020; Reddy et al., 2019). 

1.3 Machine Learning Application in Geopolymer Concrete  
 

The application of Machine Learning (ML) in Geopolymer concrete (GPC) has emerged as a 

focal point of interest in recent years, offering innovative methods to optimize mix design, 

predict mechanical properties and assess durability. Traditional empirical approaches are 

increasingly being supplemented or replaced by ML models due to their ability to capture 

complex, non-linear relationships between input variables and GPC properties (Girish et al., 

2021). 

 

1.3.1 Predictive Modelling for Compressive Strength and Durability 
 

Artificial Neural Networks (ANNs) have proven effective in predicting the compressive 

strength of GPC. Factors such as fly ash content, alkaline activator concentration and curing 

temperature are considered as inputs in these models, which often outperform traditional 

regression-based techniques (Rajini et al., 2022). Similarly, Support Vector Machines 

(SVMs) and decision tree models have been employed to model durability metrics, including 

resistance to sulphate attack, carbonation and freeze-thaw cycles (Xie & Liew, 2021). These 

models provide accurate predictions, facilitating the development of GPC with enhanced 

long-term performance. 
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1.3.2 Advances in Deep Learning for Complex Applications 
 

The emergence of Deep Learning has opened new possibilities in GPC research. 

Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) have been 

applied to complex tasks such as predicting the behaviour of GPC under dynamic loading 

and monitoring the development of micro-cracks (Liew et al., 2023). These models enable 

researchers to analyse intricate patterns in GPC performance, which are difficult to capture 

using traditional approaches. 

 

 

1.3.3 Integration of ML with IoT for Smart Construction 
 

The combination of machine learning (ML) with Internet of Things (IoT) technologies has 

led to the creation of smart construction systems capable of real-time monitoring of GPC 

structures. These systems use sensors and ML algorithms to track parameters like 

compressive strength, crack development and environmental exposure, providing valuable 

insights for maintenance and extending the lifespan of infrastructure (Zhang et al., 2023). 

 

1.3.4 Enhanced Mix Design and Performance Optimization 
  

Machine learning models, such as Random Forests (RF), ANN and SVM, have enabled 

researchers to analyse the relationships between raw material composition, curing conditions 

and mechanical properties, streamlining the mix design process. This minimizes trial and 

error, significantly improving efficiency (Nath et al., 2021; Gupta & Kumar, 2020). For 

instance, ML models have shown high accuracy in predicting the compressive strength and 

setting time of GPC, facilitating the rapid identification of optimal mixes tailored to specific 

performance and environmental conditions (Deepa & Gopalakrishnan, 2019). 

 

ML also aids in optimizing the proportions of supplementary materials such as fly ash, slag 

and Alccofine, enhancing performance and promoting sustainable construction practices 

(Mishra et al., 2022; Gupta & Kumar, 2020). By leveraging historical and experimental data, 

ML models simulate the behaviour of GPC under various environmental and loading 
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conditions, enabling more reliable durability assessments and optimized designs for specific 

applications (Reddy & Saha, 2021). 

 

1.3.5 Contribution to Sustainable Construction 
 

While numerous studies have explored geopolymer concrete (GPC) mix design and the 

application of machine learning (ML), most focus on isolated parameters or lack 

experimental validation (Mishra et al., 2022; Reddy & Saha, 2021). This research offers a 

distinct contribution through its integrated design methodology that combines a 

comprehensive experimental program with machine learning-based modeling to optimize key 

GPC mix parameters. The study specifically examines the combined effects of Alccofine, 

alkaline activator concentration, and curing conditions, which remain underexplored in 

existing literature. Furthermore, the thesis presents a large experimental dataset and 

compares the experimental results with ML predictions to validate the model’s accuracy and 

applicability. This dual approach not only strengthens the reliability of the findings but also 

establishes a practical and scalable framework for designing sustainable, high-performance 

geopolymer concrete. 

 

1.4 Gaps Found Through Literature Review 

The research gaps were systematically identified through an extensive review of the existing 

literature, with the aim of addressing critical limitations observed in previous studies. 

• Limited research has been conducted on the influence of ambient and oven curing 

conditions on the properties of geopolymer concrete. 

• There are few comprehensive studies exploring the various possible combinations of 

variables in geopolymer concrete.  

• There is limited research on determining the optimum percentage of Alccofine to 

achieve the best balance of fresh, mechanical, and durability properties in fly ash-

based geopolymer concrete. 
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• Limited integration of experimental studies with machine learning-based optimization 

frameworks for improving geopolymer concrete mix design and performance 

prediction. 

1.5 Objectives of the Research 

This study focuses on identifying and recommending optimal mix proportions for 

geopolymer concrete by evaluating various combinations of key variables through both 

experimental and data-driven approaches. Special emphasis is placed on the inclusion of 

Alccofine, a high-performance supplementary cementitious material, known for significantly 

enhancing the compressive strength, elastic modulus, and durability of geopolymer concrete. 

Its addition contributes to denser microstructure and improved long-term performance, 

making it an invaluable component in sustainable construction. 

In parallel, this research leverages advanced Machine Learning (ML) techniques not only to 

predict the mechanical properties of geopolymer concrete but also to assist in the intelligent 

design and optimization of mix combinations. Models such as Artificial Neural Networks 

(ANN), Gene Expression Programming (GEP), and Support Vector Regression (SVR) were 

trained on experimental datasets to establish accurate predictive frameworks. Furthermore, 

optimization algorithms, including Genetic Algorithms (GA) and Jellyfish Search 

Optimization (JSO), were applied to fine-tune mix parameters, enabling data-informed 

decision-making for performance enhancement. The integration of ML with experimental 

validation offers a novel hybrid framework, demonstrating high predictive accuracy and 

offering a scalable strategy for the development of high-performance geopolymer concrete in 

line with modern sustainable engineering demands. 

• To recommend suitable mix proportions of geopolymer concrete, considering 

different variable combinations. 

• To determine the effect of GGBFS (alccofine) content in fresh and mechanical 

properties of geopolymer concrete. 

• To analyse the effect of GGBFS (alccofine) content on durability properties under 

various conditions. 
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• To utilize and compare optimized machine learning models for predicting and 

optimizing the final mix proportions of geopolymer concrete, assessing their 

performance against each other and against conventional models. 

 

1.6 Organization of Thesis  
 

Chapter 1:  

It describes the reason for choosing such field and topic. I summarize a general introduction 

and information required to build the knowledge required for the research topic and scope of 

work of the field. 

Chapter 2:  

This Chapter comprises of the Literature review and survey researched and analyzed so as to 

provide a foundation for the Research Topic. The research and information is based on the 

parameters affecting the strength and performance of the Geopolymer.  

Chapter 3:  

This chapter presents the methodology for the current study, detailing the concrete testing 

procedures and providing an overview of machine learning techniques used, including 

artificial neural networks (ANN), gene expression programming (GEP), multiple linear 

regression, generalized linear models, quadratic polynomial regression, support vector 

regression (SVR), Bi-LSTM and Self-Improved Jelly Search Optimization (SIJSO). 

Chapter 4:  

This chapter provides a comprehensive analysis of test results for different mix design 

combinations, examining the performance and properties of each variation. The goal is to 

evaluate the mechanical and durability characteristics of each mix to identify the most 

effective and balanced composition. By comparing the outcomes of various formulations, 

this chapter aims to determine the optimal mix design that maximizes strength and durability 
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Chapter 5:  

This chapter examines the applications of machine learning methodologies, including 

artificial neural networks (ANN), gene expression programming (GEP), multiple linear 

regression, generalized linear models, quadratic polynomial regression and support vector 

regression (SVR). The approaches are used on the data acquired from Chapter 4 to assess and 

forecast the performance characteristics of the concrete mixes, therefore improving the 

comprehension of the linkages between mix design factors and their results. 

Chapter 6:  

This chapter concludes the study by highlighting the potential of geopolymer concrete and 

Alccofine as a supplementary material to enhance mechanical properties. Machine learning 

techniques, such as artificial neural networks (ANN) and support vector regression (SVR), 

Bi-LSTM and Self-Improved Jelly Search Optimization (SIJSO) effectively predicted the 

performance of various mix designs. The findings emphasize the importance of optimizing 

these mixes to improve strength and durability in sustainable construction. 
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Chapter 2 

Literature Survey 

 
2.1 Introductory Remarks 

  

This chapter offers a detailed analysis of the relevant literature on the use of industrial by-

products like fly ash and ground granulated blast furnace slag (GGBFS) in geopolymer 

concrete (GPC), highlighting their roles in enhancing sustainability and performance. It 

examines the effects of different additives, such as Alccofine and various parameters 

including alkaline solution concentration, liquid-to-binder ratios and curing conditions on the 

mechanical and durability properties of GPC. Furthermore, the chapter discusses the 

integration of machine learning (ML) techniques in GPC research, focusing on ML’s ability 

to predict material properties, optimize mix designs and improve the overall efficiency of 

GPC applications. This exploration of both material components and computational methods 

underscores the potential of GPC as a durable, eco-friendly alternative in construction. 

Furthermore, advancements in machine learning (ML) have transformed GPC research by 

enabling more accurate prediction of material properties, optimizing mix designs and 

enhancing performance monitoring. ML models, including neural networks and support 

vector machines, help predict key characteristics such as compressive strength and durability, 

supporting efficient GPC formulation and broadening its practical applications in the 

construction industry. The relevant literature review includes: Application of Fly Ash in 

Geopolymer Concrete (GPC), Application of Ground Granulated Blast Furnace Slag 

(GGBFS) and Alccofine in Geo-Polymer Concrete (GPC), Effect of Alkaline Solution in 

Geo-Polymer Concrete (GPC), Effect of Aggregates in Geo-Polymer Concrete (GPC), Effect 

of Activator Liquid to Binder Ratio in Geopolymer Concrete (GPC), Effect of Super-

plasticizers Addition in Geopolymer Concrete (GPC), Effect of Curing Conditions in Geo-

Polymer Concrete (GPC), Durability of Geo-Polymer Concrete (GPC), Effect of Alkali-

Silica Reaction (ASR) and Leaching on Geo-Polymer Concrete (GPC), Effect on the Bond 

Strength of Geo-Polymer Concrete (GPC), Application of Machine Learning in Geo-Polymer 

Concrete. 
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2.2 Application of Fly Ash in Geopolymer Concrete (GPC)  
 

Fly ash is a by-product of coal combustion in power plants, has gained significant attention 

as a primary precursor material in the development of Geo-Polymer Concrete (GPC) due to 

its abundant availability, pozzolanic properties and its contribution to reduce the carbon 

footprint associated with conventional Portland cement. The utilization of fly ash in GPC 

offers numerous environmental and performance advantages, positioning it as a key 

component in the sustainable construction sector. Fly ash is rich in aluminosilicate, making it 

an ideal material for geopolymerization when activated by alkaline solutions such as sodium 

hydroxide (NaOH) and sodium silicate (Na2SiO3). The resulting geopolymer binder not only 

exhibits superior mechanical properties but also demonstrates enhanced durability, resistance 

to chemical attacks and lower permeability compared to traditional concrete (Altawil & 

Olgun, 2025). 

The inclusion of fly ash in GPC formulations has been extensively studied for its influence 

on various mechanical and durability properties. One of the most significant benefits of using 

fly ash in GPC is the improvement in compressive strength. The fineness and high silica 

content of fly ash contribute to the formation of a denser and more homogeneous 

microstructure, which enhances the compressive strength of GPC over time. Studies have 

shown that the compressive strength of fly ash-based GPC can be further optimized by 

adjusting the molarity of the alkaline activator, curing temperature, and curing duration, 

allowing for the tailoring of concrete properties to meet specific engineering requirements 

(Zhou et al., 2018). Additionally, fly ash in GPC has been found to improve workability due 

spherical particle shape, which reduces the water requirement and enhances the flowability of 

the concrete mix. This property is particularly advantageous in reducing the water-to-binder 

ratio, thereby minimizing the potential for shrinkage and cracking in GPC structures (Xie & 

Liew, 2019). 

Beyond mechanical properties, the durability of fly ash-based GPC is another critical area of 

research. Fly ash contributes to the superior durability of GPC, particularly in aggressive 

environments where traditional concrete may deteriorate. The lower calcium content in fly 

ash results in a reduced formation of calcium hydroxide, which is susceptible to leaching and 

chemical attack. As a result, fly ash-based GPC exhibits excellent resistance to attack, acid 
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corrosion and chloride penetration, making it suitable for use in marine environments, 

wastewater treatment plants and other chemically aggressive settings (Nazari & Sanjayan, 

2020). Furthermore, the low permeability and high chemical resistance of fly ash-based GPC 

make it an ideal material for long-term infrastructure projects, where durability is a critical 

concern. 

In conclusion, the application of fly ash in geopolymer concrete not only addresses the 

disposal challenges associated with fly ash as an industrial waste but also offers an eco-

friendly substitute for conventional cement-based concrete. The use of fly ash in GPC 

enhances the mechanical strength, workability, and durability of the material, making it a 

viable option for various construction applications. As research continues to evolve, the 

optimization of fly ash-based GPC formulations will likely lead to even more robust and 

sustainable construction materials that align with global efforts to reduce the carbon footprint 

of the construction industry (Zhang et al., 2024a). 

2.3 Application of Ground Granulated Blast Furnace Slag (GGBFS) and 

Alccofine in Geo-Polymer Concrete (GPC)  
 

The incorporation of Ground Granulated Blast Furnace Slag (GGBFS) and Alccofine into 

geopolymer concrete (GPC) has garnered substantial interest due to the combined effects of 

these materials contribute to improving the mechanical strength, durability, and eco-

friendliness of GPC. GGBFS, a waste product from the iron and steel industry, is recognized 

for its elevated calcium content and inherent hydraulic characteristics, which contribute to 

the formation of a dense, durable matrix when activated by alkaline solutions. Alccofine, a 

highly efficient ultra-fine material, is also increasingly being used in GPC formulations due 

to its ability to significantly improve the workability and strength of the concrete. The use of 

these supplementary cementitious materials not only reduces the reliance on traditional 

Portland cement but also addresses the disposal issues associated with industrial by-products, 

making GPC a more sustainable construction material (Buchwald & Struble, 2009). 

The addition of GGBFS to GPC is particularly beneficial in improving the early-age strength 

development of the concrete. GGBFS contains reactive calcium, which, when combined with 

the aluminosilicate network formed during geopolymerization, enhances the overall binding 
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capacity and results in a higher rate of strength gain compared to fly ash-based GPC alone. 

This makes GGBFS an ideal component for applications requiring early strength, such as 

pre-cast concrete products and structural elements that need to be quickly put into service 

(Sujitha et al., 2025).  

Additionally, the incorporation of GGBFS into GPC has been shown to improve the long-

term durability of the concrete by reducing its permeability which leading to increasing its 

resistance to chemical attacks. The dense microstructure formed by the combination of 

GGBFS and the geopolymer matrix significantly limits the ingress of harmful substances, 

thereby extending the service life of GPC structures (Zhang et al., 2022). 

Alccofine, due to its ultra-fine particle size and high reactivity, plays a crucial role in 

enhancing the rheological properties of GPC. The addition of Alccofine improves the 

workability of the concrete, allowing for easier mixing, placing and compaction without the 

need for excessive water or chemical admixtures. This is particularly advantageous in 

producing high-performance GPC with reduced water-to-binder ratios, which in turn 

enhances the strength and durability of the material (Kumar et al., 2021). Moreover, 

Alccofine's high pozzolanic activity contributes to the refinement of the pore structure and 

the densification of the matrix, further improving the compressive strength and reducing the 

permeability of GPC. Studies have shown that the combined use of GGBFS and Alccofine in 

GPC formulations can lead to significant improvements in both early and long-term 

mechanical properties, making the material suitable for a wide range of structural 

applications, including high-rise buildings, bridges and marine structures (Girish et al., 

2021). 

In conclusion, the incorporation of GGBFS and Alccofine in geopolymer concrete offers 

numerous benefits, including enhanced strength development, improved durability and better 

workability. These materials contribute to the sustainability of GPC by reducing the carbon 

footprint and utilizing industrial by-products that would otherwise contribute to 

environmental pollution. As research continues, the optimization of GGBFS and Alccofine 

proportions in GPC mix designs will likely lead to even more robust and durable construction 

materials that meet the evolving demands of the construction industry. 
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2.4 Effect of Alkaline Solution in Geo-Polymer Concrete (GPC) 
 

The alkaline solution is essential in the geopolymerization process that creates the binder in 

geopolymer concrete (GPC). The alkaline solution, generally consisting of sodium hydroxide 

(NaOH) or potassium hydroxide (KOH) combined with sodium silicate or potassium silicate, 

activates aluminosilicate materials (such as fly ash, GGBFS, or metakaolin) in geopolymer 

concrete (GPC), promoting the dissolution of silica and alumina that subsequently react to 

establish a stable, three-dimensional polymeric network. The concentration, ratio and type of 

alkaline solution used significantly impact the mechanical properties, workability, setting 

time and durability of the resulting geopolymer concrete (Xu & Van, 2000). 

The concentration of the alkaline solution, often expressed in terms of molarity, is one of the 

most critical factors influencing the compressive strength of GPC. Higher molarity solutions, 

typically ranging from 8M to 16M, provide a more aggressive alkaline environment, which 

enhances the dissolution of the aluminosilicate precursors, leading to a more complete 

polymerization process and, consequently, a denser and stronger geopolymer matrix. 

However, excessively high molarity can lead to rapid setting and reduced workability, 

making it challenging to handle and place the concrete on-site (Nath & Sarker, 2014). 

Therefore, optimizing the molarity is crucial to balancing strength and workability in GPC 

applications. 

The ratio of sodium silicate to sodium hydroxide (or their potassium equivalents) is another 

vital parameter. A higher silicate-to-hydroxide ratio generally enhances the polymerization 

process, resulting in a denser and more cohesive matrix with improved compressive strength 

and reduced porosity. This ratio typically ranges from 1:2 to 2:1, depending on the desired 

properties of the GPC. For instance, a higher sodium silicate content increases the viscosity 

of the solution, leading to better binding between the aggregates and the paste, but it may 

also slow down the setting process (Temuujin et al., 2010). Adjusting this ratio allows for the 

tailoring of the GPC properties to meet specific engineering requirements, such as early 

strength development or enhanced durability in harsh environments. 

The type of alkaline activator (sodium versus potassium-based) also affects the 

geopolymerization process. Potassium-based solutions tend to produce a more reactive 
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environment, leading to faster setting times and higher early-age strengths compared to 

sodium-based solutions. However, sodium-based activators are more commonly used due to 

their lower cost and availability. The choice between sodium and potassium activators often 

depends on the specific application and the desired balance between cost, strength and setting 

time (Palomo et al., 1999). 

In addition to strength, the alkaline solution influences the durability of GPC, particularly its 

resistance to chemical attack. The denser microstructure formed with optimal alkaline 

activation enhances the material's resistance to aggressive environments, such as exposure to 

sulfates, acids and chlorides. This makes GPC an excellent material for infrastructure in 

marine environments, industrial settings and areas subject to deicing salts (Bakharev, 2005). 

In conclusion, the alkaline solution is a key determinant of the performance characteristics of 

geopolymer concrete. By carefully selecting and optimizing the concentration, ratio and type 

of alkaline solution, it is possible to produce GPC with superior mechanical properties and 

durability tailored to specific construction needs. Ongoing research continues to explore the 

potential of different alkaline activators and formulations to further enhance the sustainability 

and performance of GPC in various applications. 

2.5 Effect of Aggregates in Geo-Polymer Concrete (GPC)  
 

Aggregates, which typically constitute 60-75% of the total volume of concrete, play a crucial 

role in determining the mechanical properties, durability and overall performance of 

geopolymer concrete (GPC). The type, size, shape and gradation of aggregates used in GPC 

significantly influence its strength, workability, density and resistance to various 

environmental factors. Aggregates in GPC can be categorized into two main types: fine 

aggregates (such as sand) and coarse aggregates (such as gravel or crushed stone), each 

contributing differently to the concrete's properties (Sarker et al., 2013). 

The size and gradation of aggregates are vital in determining the workability and 

compressive strength of GPC. Properly graded aggregates, with a good balance of fine and 

coarse particles, help achieve a dense packing structure, which reduces the void content and 

enhances the strength and durability of the concrete. A well-graded mix of aggregates 

ensures better compaction, reducing the need for excessive binder material and contributes to 
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the overall economic and environmental efficiency of the GPC. Coarse aggregates, usually 

with a maximum size of 20 mm, contribute to the load-bearing capacity, while fine 

aggregates fill the voids between the coarse particles, improving the workability and surface 

finish of the concrete (Zhang et al., 2014). 

The shape and surface texture of aggregates also affect the workability and strength of GPC. 

Angular and rough-textured aggregates, typically from crushed stone, provide better 

mechanical interlocking and bond strength with the geopolymer matrix, leading to higher 

compressive strength. However, they can reduce workability due to increased friction 

between particles. On the other hand, rounded and smooth aggregates, like natural river 

gravel, enhance workability but may result in lower bond strength and, consequently, 

reduced compressive strength. The choice of aggregate shape and texture should be balanced 

based on the specific requirements of the GPC application (Guo et al., 2020). 

The type of aggregate used in GPC also influences its thermal and durability properties. 

Lightweight aggregates, such as expanded clay or fly ash aggregates, reduce the density of 

GPC and enhance its thermal insulation properties, making it suitable for applications where 

weight reduction and thermal resistance are essential. Conversely, heavy aggregates, like 

barite or magnetite, can be used in GPC to produce high-density concrete for radiation 

shielding or other specialized applications. The durability of GPC is also affected by the 

aggregate type, with certain aggregates providing enhanced resistance to freeze-thaw cycles, 

chemical attack, and abrasion (Haque et al., 2014). 

Recycled aggregates, derived from construction and demolition waste, are increasingly being 

used in GPC as part of sustainability efforts. While recycled aggregates can lower the 

environmental impact and cost of GPC, they often introduce variability in properties such as 

water absorption, strength, and durability due to the presence of impurities and 

inconsistencies in the source material. Research has shown that with proper processing and 

quality control, recycled aggregates can be effectively utilized in GPC without significantly 

compromising its performance, particularly in non-structural or low-load-bearing 

applications (Thomas & Gupta, 2016). 
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In conclusion, aggregates play a critical role in the performance of geopolymer concrete, 

influencing its mechanical properties, workability, durability and sustainability. The selection 

and proportioning of aggregates must be carefully considered to optimize the balance 

between strength, workability, and durability in GPC, depending on the specific requirements 

of the construction project. As the demand for sustainable construction materials grows, the 

use of recycled and alternative aggregates in GPC is expected to increase, contributing to the 

reduction of the carbon footprint and resource consumption in the construction industry. 

2.6 Effect of Activator Liquid to Binder Ratio in Geopolymer Concrete 

(GPC) 
 

The activator liquid to binder ratio (L/B ratio) in geopolymer concrete (GPC) is a critical 

parameter that significantly influences the mechanical properties, workability, setting time 

and overall performance of the concrete. The activator liquid, typically a mixture of sodium 

or potassium hydroxide and sodium or potassium silicate, is essential for initiating the 

geopolymerization process by dissolving the aluminosilicate materials in the binder, which 

could include fly ash, slag or metakaolin. The ratio of this liquid to the binder determines the 

extent of the reaction, the consistency of the mix and the quality of the hardened concrete 

(Van et al., 2012). 

The L/B ratio plays a pivotal role in determining the compressive strength of GPC. A lower 

L/B ratio generally leads to a higher concentration of the activator solution in relation to the 

binder, which can enhance the dissolution of aluminosilicate species and promote a more 

extensive polymerization process. This results in a denser and stronger geopolymer matrix, 

leading to higher compressive strength. However, if the L/B ratio is too low, it can make the 

mix too stiff, reducing workability and leading to difficulties in mixing, placing and 

compacting the concrete. Therefore, an optimal L/B ratio must be achieved to balance 

strength and workability (Duxson et al., 2007). 

Conversely, a higher L/B ratio increases the fluidity of the mix, improving workability and 

ease of handling. This can be particularly advantageous in applications where complex forms 

or detailed finishes are required. However, an excessively high L/B ratio can dilute the 

concentration of the activator solution, leading to incomplete geopolymerization and a 
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weaker, more porous matrix. This not only reduces the compressive strength but also 

negatively impacts the durability of the GPC, making it more susceptible to environmental 

degradation such as chemical attack or freeze-thaw cycles (Lloyd & Rangan, 2010). 

The L/B ratio also affects the setting time of GPC. A lower L/B ratio typically results in a 

faster setting time due to the higher concentration of the alkaline activator, which accelerates 

the geopolymerization process. This can be beneficial in situations where rapid strength gain 

is required, such as in pre-cast concrete production or repair works. On the other hand, a 

higher L/B ratio can prolong the setting time, which might be desirable in hot weather 

conditions or when longer workability is needed (Hardjito & Rangan, 2005). 

In addition to mechanical properties, the L/B ratio influences the microstructure of the 

hardened GPC. A well-balanced L/B ratio Facilitates the development of a homogeneous and 

dense geopolymer network, reducing porosity and improving the material's resistance to 

permeability and chemical attack. This is crucial for applications in aggressive environments, 

such as marine structures or industrial floors, where durability is of paramount importance. 

Conversely, an inappropriate L/B ratio can lead to an inhomogeneous structure with un-

reacted binder particles and micro-cracks, compromising the long-term performance of the 

concrete (Buchwald & Struble, 2009). 

In conclusion, the activator liquid to binder ratio is a key factor in determining the success of 

geopolymer concrete applications. It must be carefully optimized to achieve a balance 

between workability, strength, setting time and durability, depending on the specific 

requirements of the project. As the development of GPC continues to advance, understanding 

the effects of the L/B ratio will be crucial for tailoring the material to meet the diverse needs 

of modern construction. 

2.7 Effect of Superplasticizers Addition in Geopolymer Concrete (GPC)  
 

Superplasticizers, often referred to as high-range water reducers, are chemical additives 

employed in concrete to improve workability while maintaining a low water content. In the 

context of geopolymer concrete (GPC), the addition of super-plasticizers is particularly 

important due to the inherently low workability of GPC mixtures, which are typically more 

viscous than conventional Portland cement concrete. Super-plasticizers help to improve the 
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fluidity and ease of placement of GPC, thereby addressing challenges related to mixing, 

compaction and finishing, while also maintaining or even enhancing the mechanical 

properties of the hardened concrete (Nath & Sarker, 2014; Xie & Kayali, 2016). 

The primary function of super-plasticizers in GPC is to disperse the particles of the 

geopolymer binder, reducing the friction between them and thus lowering the viscosity of the 

mix. This leads to an increase in the slump value, indicating better workability, which is 

essential for producing complex shapes, achieving high-quality surface finishes and ensuring 

uniformity in the final product. The use of super-plasticizers is particularly beneficial when 

producing self-compacting geopolymer concrete (SCGPC), which requires high flowability 

without segregation or bleeding (Ghafoor & Fujiyama, 2023).  

In addition to improving workability, super-plasticizers can influence the compressive 

strength of GPC. By reducing the water content while maintaining workability, super-

plasticizers contribute to the formation of a denser geopolymer matrix, which enhances the 

compressive strength of the concrete. However, the effect of super-plasticizers on strength 

can vary depending on the type and dosage used. Some studies have reported that excessive 

use of super-plasticizers can lead to a delay in the setting time and a reduction in early-age 

strength, particularly when using certain types of fly ash or slag as binders. Therefore, 

optimizing the type and dosage of super-plasticizers is crucial for achieving the desired 

balance between workability and strength (Ribeiro et al., 2025). 

The compatibility of super-plasticizers with the alkaline environment of GPC is another 

important consideration. Unlike traditional Portland cement concrete, GPC requires super-

plasticizers that can function effectively in high pH conditions. Polycarboxylate ether (PCE)-

based super-plasticizers are commonly used in GPC because of their high efficiency in 

dispersing particles and maintaining fluidity in alkaline conditions. These super-plasticizers 

also have a lower impact on the setting time of GPC compared to other types, such as 

naphthalene-based super-plasticizers, making them a preferred choice for many GPC 

applications (Li et al., 2025). 

The addition of super-plasticizers also affects the durability of GPC. By improving the 

workability and reducing the water content, super-plasticizers help to produce a more 
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homogeneous and compact concrete, which is less permeable to water and aggressive 

chemicals. This enhances the durability of GPC in harsh environments, such as marine or 

industrial settings, where exposure to chlorides and other corrosive agents is common. 

Moreover, the reduced water content helps to minimize shrinkage and the risk of cracking, 

further contributing to the longevity of GPC structures (Kanagaraj et al., 2024). 

In conclusion, the addition of super-plasticizers in geopolymer concrete is essential for 

enhancing workability, maintaining or improving strength and ensuring durability. The 

choice of superplasticizer type and dosage must be carefully optimized to achieve the best 

results, considering the specific binder materials and the alkaline environment of GPC. As 

the use of GPC continues to grow in sustainable construction, super-plasticizers will play a 

crucial role in overcoming the practical challenges associated with its production and 

application. 

2.8 Effect of Curing Conditions in Geo-Polymer Concrete (GPC) 
 

Curing conditions play a vital role in determining the mechanical properties, durability and 

overall performance of geopolymer concrete (GPC). Unlike traditional Portland cement 

concrete, where hydration is the primary chemical reaction during curing, GPC undergoes 

geopolymerization, a process heavily influenced by temperature and moisture conditions 

during the curing phase. The choice of curing method and environment significantly impacts 

the strength development, microstructure, and long-term durability of GPC, making it a 

critical factor in the production of high-quality geopolymer concrete (Hardjito & Rangan, 

2005). 

One of the most significant differences between GPC and conventional concrete is the effect 

of curing temperature. Elevated curing temperatures, typically ranging from 60°C to 90°C, 

are often used to accelerate the geopolymerization process, leading to rapid strength gain and 

improved early-age properties. This is particularly true for GPC mixtures based on fly ash or 

other aluminosilicate materials that require thermal activation. Heat curing helps to enhance 

the dissolution of silica and alumina from the precursor materials, facilitating a more 

complete polymerization and resulting in a denser and stronger geopolymer matrix (Duxson 
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et al., 2007). As a result, GPC cured at elevated temperatures often exhibits higher 

compressive strength compared to those cured at ambient temperatures. 

However, the benefits of elevated temperature curing come with some trade-offs. Heat curing 

can lead to the formation of micro cracks due to thermal shrinkage, especially if the 

temperature is too high or if the concrete is subjected to rapid temperature changes. These 

micro cracks can compromise the durability of GPC, making it more susceptible to 

environmental degradation, such as freeze-thaw cycles or chemical attack. Therefore, careful 

control of the curing temperature and duration is essential to maximize the benefits of heat 

curing while minimizing potential drawbacks (Nath & Sarker, 2014). 

Ambient temperature curing, on the other hand, is more practical for in-situ construction and 

is increasingly being explored for GPC formulations that do not require heat activation. 

Ambient curing conditions, typically around 20°C to 30°C, can still produce high-strength 

GPC, especially when blended with slag or other calcium-rich materials that contribute to 

early strength development. However, the rate of strength gain is generally slower compared 

to heat-cured GPC and the final strength may be lower unless the mix design is optimized for 

ambient curing. Moisture retention during ambient curing is also critical to prevent drying 

shrinkage and to ensure the complete geopolymerization of the binder materials (Alameri et 

al., 2025). 

Curing duration is another key factor influencing the properties of GPC. Longer curing times 

generally allow for more complete geopolymerization, resulting in higher ultimate strength 

and better durability. However, the optimal curing duration depends on the curing 

temperature and the specific mix design. For heat-cured GPC, shorter durations may be 

sufficient to achieve high strength, whereas ambient-cured GPC may require extended curing 

periods to reach its full potential. Post-curing conditions, such as exposure to drying or 

wetting cycles, can also affect the long-term performance of GPC, particularly its resistance 

to cracking and chemical attack (Olivia & Nikraz, 2011). 

In conclusion, curing conditions are critical to the success of geopolymer concrete, affecting 

everything from strength development to durability. Elevated temperature curing is highly 

effective for rapid strength gain but requires careful control to avoid thermal damage. 
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Ambient curing is more practical for many applications but may require optimized mix 

designs and extended curing periods. Understanding and controlling the curing conditions is 

essential for producing high-performance GPC that meets the specific demands of modern 

construction. 

2.9 Durability of Geo-Polymer Concrete (GPC) 
 

The durability trials demonstrate that the long-term strength of the GPC declines with time 

when subjected to various severe environmental conditions that lead to concrete degradation. 

The durability tests included acid exposure, maritime environments, sulphate attack, concrete 

carbonation, chloride ingress, alkali-aggregate reactions, and freeze-thaw cycles. 

2.9.1 Effect of Sulfate Attack on Geo-Polymer Concrete (GPC) 
 

Sulfate attack is a significant durability concern for concrete structures exposed to 

environments containing sulfates, such as soils or water with high content. In traditional 

Portland cement concrete, sulfates react with the hydration products, leading to expansive 

reactions that cause cracking, spalling and ultimately, structural failure. Geopolymer concrete 

(GPC), however, exhibits a higher resistance to sulfate attack due to its unique chemistry, 

which lacks the calcium hydroxide found in Portland cement and is thus less prone to 

forming expansive products like ettringite (Bakharev, 2005). 

The primary reason for GPC’s superior sulfate resistance is its aluminosilicate-based binder, 

which is more chemically stable in the presence of sulfates compared to the calcium silicate 

hydrates (C-S-H) found in traditional cement. Studies have shown that GPC, especially those 

based on fly ash and slag, can withstand prolonged exposure to sulfate-rich environments 

with minimal degradation. The absence of calcium phases in GPC means that there are no 

sulfate-reactive phases that would typically lead to expansion and cracking. As a result, GPC 

maintains its mechanical stability and mechanical properties even after prolonged exposure 

to sulfates (Songpiriyakij et al., 2010: Xie et al., 2019). 

However, the sulfate resistance of GPC can vary depending on its composition, particularly 

the type and proportion of aluminosilicate precursors used. For instance, GPCs with higher 

slag content may show different behavior due to the presence of calcium in the slag, which 
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could introduce minor vulnerability to sulfate attack. Nevertheless, even in these cases, GPC 

generally outperforms conventional concrete in sulfate environments, making it an excellent 

choice for infrastructure in aggressive conditions (Olivia & Nikraz, 2011). 

In conclusion, geopolymer concrete has enhanced resilience to degradation relative to 

conventional Portland cement concrete, principally owing to its distinctive aluminosilicate 

binder chemistry. This resistance renders GPC a viable material for use in demanding 

situations, where long-term durability is essential. 

2.9.2 Effect of Acid Attack on Geo-Polymer Concrete (GPC)  
 

Acid attack is a critical concern for concrete structures exposed to aggressive acidic 

environments, such as industrial effluents, sewage systems or acid rain. Traditional Portland 

cement concrete is particularly vulnerable to acid attack because the calcium hydroxide 

present in the cement matrix reacts with acids, leading to leaching, softening and loss of 

mechanical stability. Geopolymer concrete (GPC), on the other hand, has shown superior 

resistance to acid attack due to its low calcium content and dense aluminosilicate matrix, 

which is less reactive with acids (Bakharev, 2005). 

The enhanced acid resistance of GPC is primarily attributed to the absence of calcium 

hydroxide and the presence of a stable aluminosilicate gel, which does not easily degrade in 

acidic environments. When exposed to acids, GPC undergoes less mass loss and retains more 

of its mechanical properties compared to Portland cement concrete. This resistance makes 

GPC particularly suitable for applications where long-term exposure to acidic conditions is 

expected, such as in chemical plants or wastewater treatment facilities (Zuhua et al., 2009). 

However, the degree of acid resistance in GPC can vary depending on the type and 

concentration of the acid, as well as the specific composition of the geopolymer. For 

instance, GPC made with higher proportions of fly ash has been found to perform better 

against acid attack than those with slag, as the latter may contain some calcium that could 

react with acids. Additionally, the curing conditions and the mix design, including the type 

and ratio of activators used, also influence the acid resistance of GPC (Rangan, 2008). 
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In conclusion, geopolymer concrete exhibits significantly better resistance to acid attack 

compared to traditional Portland cement concrete, makingit a viable option for structures 

exposed to harsh acidic environments. This resistance is primarily due to its low calcium 

content and chemically stable aluminosilicate matrix. 

2.9.3 Effect of Sea Water on Geo-Polymer Concrete (GPC) 

 
Exposure to seawater presents significant challenges for concrete structures due to the 

combined effects of chloride-induced corrosion, sulfate attack and continuous wetting and 

drying cycles. Traditional Portland cement concrete is particularly vulnerable to these 

conditions, as the chlorides in seawater can penetrate the concrete, leading to the corrosion of 

embedded steel reinforcement, while sulfates can cause expansive reactions, resulting in 

cracking and deterioration. Geopolymer concrete (GPC), however, has demonstrated superior 

resistance to seawater due to its unique chemical composition, which lacks the calcium 

hydroxide and calcium silicate hydrates that are susceptible to these forms of degradation 

(Palomo et al., 1999). 

GPC's high resistance to chloride penetration is one of its most significant advantages in 

marine environments. The dense, low-permeability microstructure of GPC, formed through 

the geopolymerization process, acts as a barrier against chloride ions, significantly reducing 

the risk of corrosion of steel reinforcement. This characteristic makes GPC a promising 

material for marine structures, such as coastal defenses, bridges, and piers, where long-term 

durability is crucial (Hussein et al., 2017). 

In addition to chloride resistance, GPC exhibits excellent resistance to sulfate attack, which is 

a common problem in seawater environments due to the presence of magnesium and sulfate 

ions. Unlike Portland cement concrete, GPC does not form ettringite or other expansive 

products when exposed to sulfates, thereby maintaining its mechanical stability, and 

preventing cracking. Studies have shown that GPC can withstand prolonged exposure to 

seawater with minimal degradation, making it an ideal material for use in aggressive coastal 

conditions (Sarker et al., 2013). 

Overall, geopolymer concrete offers significant advantages over traditional concrete in 

seawater environments, particularly in terms of resistance to chloride-induced corrosion and 
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attack. Its durability and longevity in such harsh conditions make it a sustainable and reliable 

choice for marine and coastal infrastructure. 

 

2.10 Effect of Alkali-Aggregate Reaction and Leaching on Geo-Polymer 

Concrete (GPC) 

 
The Alkali-Aggregate Reaction is a critical durability concern in conventional Portland 

cement concrete, whereby reactive silica in aggregates interacts with alkalis from the cement, 

resulting in the creation of expanding gel, cracking, and structural deterioration. Geopolymer 

concrete (GPC) has reduced vulnerability to Alkali-Aggregate Reaction owing to its low 

calcium content and the stable aluminosilicate gel matrix, which limits the availability of 

alkalis that initiate Alkali-Aggregate Reaction (Rangan, 2008). The absence of calcium 

hydroxide in GPC reduces the potential for expansive gel formation, contributing to its 

enhanced durability in environments prone to Alkali- Aggregate Reaction. 

Leaching, on the other hand, involves the dissolution of components from the concrete 

matrix when exposed to water, leading to a loss of material and a decrease in strength. GPC 

shows resistance to leaching due to its dense microstructure and stable geopolymer network, 

which limits the dissolution of its components in aggressive environments (Sun & 

Vollpracht, 2020). This resistance to leaching further enhances the longevity and durability 

of GPC, especially in applications where exposure to water or aggressive chemicals is a 

concern. 

2.11 Effect on the Bond Strength of Geo-Polymer Concrete (GPC) 

 
Bond strength between concrete and reinforcing steel is a critical factor in the mechanical 

stability of reinforced concrete structures. In traditional Portland cement concrete, the bond is 

achieved through a combination of mechanical interlocking and chemical adhesion, primarily 

influenced by the hydration products. Geopolymer concrete (GPC), with its unique 

aluminosilicate binder, exhibits different bonding characteristics, which can be both 

advantageous and challenging depending on the specific mix design and application 

(Almutairi et al., 2021).  
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The bond strength in GPC is generally influenced by several factors, including the type of 

aluminosilicate source material (e.g., fly ash, slag), the molarity and composition of the 

alkaline activators and the curing conditions. Studies have shown that GPC can achieve bond 

strengths comparable to or even exceeding that of traditional concrete, particularly when 

using high-quality materials and optimized curing processes. The dense microstructure of 

GPC, which results from the geopolymerization process, contributes to strong mechanical 

interlocking between the steel and the concrete matrix (Benli et al., 2025). 

However, the chemical adhesion in GPC is somewhat different due to the absence of calcium 

hydroxide and the presence of a geopolymeric gel, which may alter the nature of the bond at 

the interface. While this can result in high initial bond strength, it also means that the bond 

performance can vary more with changes in mix composition and curing methods. For 

example, elevated temperature curing, often used in GPC production, can enhance early-age 

bond strength but may also lead to shrinkage issues that affect the long-term bond (Sarker et 

al., 2013). 

In conclusion, GPC can achieve excellent bond strength with reinforcing steel, provided the 

mix design and curing conditions are carefully controlled. Its unique bonding mechanism, 

driven by mechanical interlocking and influenced by the geopolymeric matrix, offers 

potential advantages in specific structural applications, though it requires careful 

consideration of the specific materials and methods used. 

2.12 Application of Machine Learning in Geo-Polymer Concrete 
  

The application of Machine Learning (ML) in the domain of Geopolymer Concrete (GPC) 

has significantly advanced since 2018, transforming how researchers and engineers approach 

the design, optimization, and performance prediction of this sustainable construction 

material. As GPC gains traction as a low-carbon alternative to traditional Portland cement 

concrete, the inherent complexity of its chemical composition and the variability in the 

properties of its constituent materials such as flyash, rice husk ash, slag, and other industrial 

by-products - have necessitated the use of advanced computational methods to model and 

predict its behavior under various conditions. Traditional empirical methods, while useful, 

have often struggled to capture the non-linear relationships between the numerous factors 
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that influence GPC's performance. This has led to a surge in the adoption of machine 

learning techniques, which excel in identifying patterns within large datasets and can provide 

more accurate predictions of material properties, thereby improving the reliability and 

efficiency of GPC in practical applications (Nguyen et al., 2025). 

One of the primary areas where ML has made a substantial impact is in the prediction of the 

compressive strength of GPC. Compressive strength is a critical parameter for concrete 

materials and its accurate prediction is essential for ensuring the mechanical stability and 

safety of constructions. Researchers have employed various machine learning models, such 

as Artificial Neural Networks (ANNs), Support Vector Machines (SVMs), decision trees and 

ensemble learning methods, to predict the compressive strength of GPC based on input 

variables such as the type and proportion of raw materials, the concentration of alkaline 

activators, curing conditions and the addition of supplementary materials like nano-silica or 

fibers (Xie & Liew, 2019). ANNs, in particular, have shown considerable success in this 

domain due to their ability to model complex, non-linear relationships between input features 

and output properties. Studies have demonstrated that ANN models can outperform 

traditional regression-based methods in predicting compressive strength, offering higher 

accuracy and generalization across different mix designs (Girish et al., 2020). Additionally, 

the use of ensemble learning methods, which combine the predictions of multiple models to 

improve overall accuracy, has further enhanced the reliability of strength predictions in GPC, 

making these models valuable tools in both research and industrial applications (Liew et al., 

2022). 

Beyond compressive strength, ML has been instrumental in predicting other key properties of 

GPC, such as workability, durability against to environmental factors like sulfate attack, 

carbonation and freeze-thaw cycles. For instance, SVMs and random forest models have 

been used to predict the workability of GPC mixes by analyzing the influence of water-to-

binder ratio, aggregate gradation and the specific surface area of precursors. Accurate 

predictions of workability are crucial for ensuring that GPC can be efficiently mixed, 

transported and placed on-site without compromising its performance (Rajini et al., 2022). 

Furthermore, machine learning has facilitated the development of predictive models for the 

long-term durability of GPC, which is particularly important for its use in infrastructure 
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exposed to harsh environmental conditions. Researchers have employed ML models to assess 

the potential for sulfate attack, chloride penetration and carbonation in GPC, providing 

valuable insights into how different mix compositions and curing regimes affect the 

material's resistance to these forms of degradation (Nazari & Sanjayan, 2020). These models 

not only enhance the understanding of GPC's behavior over time but also guide the 

formulation of more durable GPC mixes tailored to specific environmental challenges. 

In addition to property prediction, ML has also been applied to optimize the mix design of 

GPC, a task traditionally performed through trial and error or based on empirical 

relationships derived from limited experimental data. Machine learning algorithms such as 

Genetic Algorithms (GAs) and Particle Swarm Optimization (PSO) have been integrated 

with predictive models to identify optimal mix proportions that meet specific performance 

criteria, such as maximizing strength while minimizing the environmental impact or cost 

(Xie & Liew, 2021). These optimization techniques allow for the exploration of a vast design 

space, enabling the identification of mix designs that might not be evident through 

conventional approaches. The result is a more efficient and targeted development process 

that reduces the need for extensive laboratory testing and accelerates the implementation of 

GPC in real-world projects (Wang & Zhang, 2025).  

Moreover, the integration of Machine Learning with the Internet of Things (IoT) has opened 

new dimensions for the real-time monitoring and management of GPC structures. Smart 

sensors embedded within GPC elements can continuously collect data on parameters such as 

temperature, humidity, and strain, which are then analyzed by machine learning algorithms to 

assess the structural health and predict potential failure points before they occur (Zhang et al., 

2023). This capability is particularly valuable for critical infrastructure, where early detection 

of potential issues can prevent catastrophic failures and extend the service life of structures. 

The combination of ML and IoT thus represents a significant step towards the development 

of smart construction materials that can adapt to their environment and provide continuous 

feedback on their condition, enhancing both safety and sustainability in construction 

practices (Liew et al., 2023). 

Despite the significant advancements in applying ML to GPC, challenges remain in fully 

realizing it’s potential. One of the primary challenges is the availability of high-quality, 
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standardized datasets, which are essential for training accurate and generalizable machine 

learning models. The variability in raw materials, experimental setups and testing methods 

used across different studies can lead to inconsistencies in the data, complicating the 

development of robust models (Nazari & Sanjayan, 2023). To address this, there is a growing 

emphasis on creating comprehensive, open-access databases that aggregate data from 

multiple sources, providing a more reliable foundation for model development. Additionally, 

the interpretability of machine learning models, particularly more complex ones like deep 

neural networks, remains a concern, as it can be challenging to understand the decision-

making process of these models and ensure they are making accurate predictions based on 

relevant features (Girish et al., 2023). Ongoing research is focused on developing 

interpretable ML models that balance accuracy with transparency, making them more 

accessible and trustworthy for use in critical applications like construction. The application 

of machine learning in geopolymer concrete has revolutionized the field by providing 

powerful tools for predicting material properties, optimizing mix designs, and enhancing the 

monitoring and management of GPC structures. These advancements have the potential to 

accelerate the adoption of GPC in the construction industry, contributing to more sustainable 

and resilient infrastructure. As research continues to evolve, it is likely that ML will play an 

increasingly central role in the development and application of GPC, paving the way for new 

innovations and broader adoption of this environmentally friendly material (Zhang et al., 

2024b). 

2.13 Concluding Remarks  
 

In conclusion, this chapter provides a comprehensive review of the use of industrial by-

products like fly ash and GGBFS in geopolymer concrete (GPC), focusing on their roles in 

promoting sustainability and improving material performance. The effects of various 

parameters including alkaline solution concentration, liquid-to-binder ratios and curing 

conditions are discussed, showing how they significantly influence GPC’s mechanical and 

durability properties. Additionally, this chapter highlights the transformative role of machine 

learning (ML) in GPC research, particularly in predicting material properties, optimizing mix 

designs, and enhancing durability assessments. ML techniques, such as neural networks, 

support vector regression and soon, enable more accurate predictions for key characteristics 
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like compressive strength, workability, and environmental resistance. This integration of ML 

not only streamlines the GPC design process but also supports its use as a durable, eco-

friendly alternative in construction, contributing to more resilient and sustainable 

infrastructure. 
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Chapter 3 

Materials and Methodology 
 

3.1 Introduction  
 

This chapter outlines the methodology adopted in the current study, focusing on the 

procedures for testing concrete properties and the application of various machine learning 

techniques. It begins with a detailed description of the concrete testing methods used to 

evaluate the material's performance. The chapter then provides an overview of the machine 

learning models employed, including Artificial Neural Networks (ANN), Gene Expression 

Programming (GEP), multiple linear regression, generalized linear models, quadratic 

polynomial regression, and Support Vector Regression (SVR), Bi-LSTM and Self-Improved 

Jelly Search Optimization (SIJSO). These techniques were selected to analyze and predict 

concrete behavior, leveraging their unique strengths in handling complex, nonlinear 

relationships within the data. The methodologies presented here lay the foundation for 

developing robust predictive models in concrete research. 

 

3.2 Materials 
 

The section provides a comprehensive analysis of materials used in geopolymer concrete, 

including fly ash, Alccofine, sodium hydroxide, sodium silicate, aggregates, and 

superplasticizers. It highlights their chemical and physical properties, sourcing, and 

significance in concrete applications. 

 

3.2.1 Fly-Ash 
 

Fly ash, a byproduct of coal combustion in thermal power plants, is an industrial solid waste 

that is commonly collected through electrostatic precipitation of coal ash fumes 

(Ahmaruzzaman, 2010). The particle size of fly ash is similar to or slightly smaller than 

ordinary Portland cement (OPC), and its composition is notably rich in silica and alumina, 

making it a valuable pozzolanic material in various construction applications 

(Ahmaruzzaman, 2010; Malhotra, 2002). For this study, the fly ash was sourced from the 

National Thermal Power Plant in Dadri, Gautam Budh Nagar, Uttar Pradesh, and is classified 
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as Class F fly ash.  

The physical characteristics of Class F fly ash are distinct, as the particles are predominantly 

spherical and porous, which improves workability and bonding in concrete mixes. (Gougazeh 

& Buhl, 2014). The properties of the fly ash used, Tables 3.1 and 3.2 detail the chemical and 

physical compositions, respectively. Table 3.1 lists the main oxides such as silica (SiO₂), 

alumina (Al₂O₃), iron oxide (Fe₂O₃), and calcium oxide (CaO) that influence the reactivity and 

pozzolanic behavior of the fly ash (Chindaprasirt et al., 2005).  

 

 Table 3.1: Mineral Composition of Fly Ash 

Chemical Analysis Mass % 

SiO2 55 

 26 

 7 

CaO 9 

MgO 2 

 1 

 

Table 3.2 presents physical properties like specific gravity, fineness, and particle size 

distribution, which are essential parameters for assessing fly ash's performance in geopolymer 

concrete mixes. The data support the suitability of this Class F fly ash for use in geopolymer 

concrete, leveraging its reactivity and particle structure for improved durability and 

performance. 
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Table 3.2: Physical Properties of Fly Ash 

 

Physical analysis Range 

 (G) 2.5 

Surface Area (Blaine air 

permeability method) 

360 cm2/g 

Particle Shape Spherical particles 

 

 

3.2.2 Alccofine 

Alccofine, obtained from Ambuja Cements, Gurugram, is an advanced supplementary 

cementitious material (SCM) increasingly used in construction for enhancing concrete 

properties. Made as a fine-grained powder primarily derived from rice husk combustion, 

Alccofine demonstrates high reactivity, allowing it to act as a pozzolanic material that 

reacts with calcium hydroxide in the presence of water to form additional cementitious 

compounds, thus improving concrete strength and durability (Singh et al., 2023; Patel et 

al., 2024). 

Due to its ultra-fine particle size and high pozzolanic activity, Alccofine effectively fills 

micro-pores within the concrete matrix, enhancing density, durability, and resistance to 

permeation (Patel et al., 2024). Fig. 3.1 illustrates the Scanning Electron Microscopy 

(SEM) analysis of Alccofine, showing a fine particle structure conducive to efficient 

chemical reactions. The elemental composition of Alccofine is detailed in Fig. 3.2 using 

Energy Dispersive X-ray Spectroscopy (EDS), indicating the presence of essential 

components like silicon (Si), calcium (Ca), and aluminum (Al), which contribute to its 

cementitious capabilities. 



 

40 
 

 

Fig. 3.1: SEM Image of Alccofine 

 

Fig. 3.2: EDS Graph of Alccofine 
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Tables 3.3 and 3.4 present the chemical and physical properties of Alccofine. Table 3.3 

includes the key chemical components, such as SiO₂, Al₂O₃, Fe₂O₃, and CaO, which play 

a pivotal role in enhancing concrete performance (Sharma & Gupta, 2024). 

 

       Table 3.3: Mineral Composition of Alccofine 

 

Chemical Analysis  Mass % 

 

30- 34 

 

18 -25 

 

18 -25 

SO3 0.1-0.4 

MgO 6 to 10 

SiO2 30-36 

 

Table 3.4 provides physical characteristics such as fineness, specific surface area, and 

particle size distribution, essential for optimizing Alccofine's effectiveness in concrete 

applications. Collectively, these properties make Alccofine a promising SCM for 

producing high-performance, durable concrete (Sharma et al., 2016). 

 

Table 3.4: Physical Properties of Alccofine 

Physical Analysis  Range 

Specific Gravity  2.86 

Surface Area (Blaine Air 

Permeability Method) 

1200 cm2 /gm 

Particle Shape Irregular/Angular 
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3.2.3 Sodium Hydroxide 

For activating the fly ash, a blend of sodium hydroxide (NaOH) and sodium silicate solution 

was selected as the alkaline activator, as sodium-based activators are more cost-effective 

compared to potassium-based alternatives (Kryvenko et al., 2024). The NaOH solution was 

prepared by dissolving flakes or pellets in water, with its concentration specified in molarity 

(M). For instance, an 8M NaOH solution was made by dissolving 320 grams of NaOH solids 

(in flake or pellet form) per litre of solution, where 40 represents the molecular weight of 

NaOH (Oti et al., 2024). 

The amount of NaOH solids per kilogram of solution varies based on the concentration: 262 

grams for 8M, 314 grams for 10M, 361 grams for 12M, 404 grams for 14M, and 444 grams 

for 16M. In these solutions, water constitutes the majority of the mass, while NaOH solids 

make up a smaller portion (Kumar et al., 2023). This precise formulation is crucial for 

ensuring consistent geopolymerization and achieving optimal binding properties in the 

resultant concrete. 

The NaOH and sodium silicate solutions were combined to prepare the alkaline activator, 

which was left to stabilize for 20–24 hours before use. Sodium hydroxide was procured 

from Qualigens Scientific, a company based in Powai, Mumbai, Maharashtra, India, as 

depicted in Fig. 3.3. The stability period prior to application ensures that the mixture reaches 

a homogenous state conducive to effective fly ash activation (Jin et al., 2023) 
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Fig. 3.3: Sodium Hydroxide Pellets 

 

3.2.4 Sodium Silicate Solution 

Sodium silicate, often referred to as water glass, plays a crucial role in the activation of 

pozzolanic materials, enhancing their binding properties through the formation of a gel 

matrix. This gelation process is pivotal in the geopolymerization of materials, wherein the 

alkaline solution facilitates the dissolution of aluminosilicate compounds, leading to the 

crosslinking and setting of the material. Sodium silicate is typically supplied as a slightly 

cloudy or tacky liquid, containing high concentrations of sodium oxide (Na₂O), which is 

essential for the activation of pozzolans. In the case of the sodium silicate solution Shown in 

Fig. 3.4 purchased from Loba Chemie Pvt. Ltd. in New Delhi (India), the product contains a 

minimum Na₂O assay of 10.0%, with a silicon dioxide (SiO₂) content ranging between 25.5% 

and 28.5% (gravimetric). This formulation ensures the solution’s effectiveness in the 
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geopolymerization process, promoting the formation of strong and durable binders. 

Recent studies have highlighted the significance of sodium silicate in optimizing the 

properties of geopolymer concrete, with improvements in mechanical strength, durability, 

and environmental sustainability (Dadsetan et al., 2022; Wu et al., 2022). Sodium silicate’s 

role in enhancing the reactivity of aluminosilicate materials has been extensively explored, 

with particular attention given to its interactions with various alkaline activators, which 

influence the final material performance (Adeleke et al., 2023). Furthermore, the precise 

formulation and concentration of Na₂O and SiO₂ in the solution are critical to achieving the 

desired setting times and strength development in geopolymer materials, as noted in recent 

studies on geopolymer concrete (Castillo et al., 2021). 

 

Fig. 3.4: Sodium Silicate Solution 

3.2.5 Fine Aggregates 

 Aggregate forms the structural framework of concrete, making up 75-85% of its total 

volume. It is broadly divided into two main types: fine aggregates and coarse aggregates. 

Fine aggregates include particles smaller than 4.75 mm, whereas coarse aggregates consist of 

particles larger than 4.75 mm. Commonly used coarse aggregates in mix design are 10 mm 

and 20 mm in size, while fine aggregates typically comprise crushed stone dust. Before 
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incorporating aggregates into the mix design, their quality must be verified according to 

Indian Standard codes. Preliminary testing should include assessments of the aggregate's 

gradation, zone classification, fineness modulus, specific gravity, water absorption, silt 

content, and bulk density of the fine aggregates or stone dust (Patel & Yadav, 2023). Fig.3.5 

shows a sample of the stone dust used for testing in various mix designs.  

 

 

Fig. 3.5: Stone-Dust or Fine Aggregate  

Table 3.5 provides the particle size distribution, detailing the percentage of material retained 

on each sieve and the corresponding percentage passing through each sieve size. The analysis 

highlights the characteristics of the particles in the samples. The results indicate that the 

stone dust sample falls within Zone II, classified as medium and well-graded based on its 

particle size distribution. 
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Table 3.5: Sieve Analysis of Sand / Stone Dust (IS 383:2016) 

 

Table 3.6 outlines all the properties of the dust samples, based on the tests conducted on the 

sample materials. As per the code IS 383:2016 standards, the sand belongs to gradation II. 

From the gradation curve, we find the sand is well graded sand. 

 

Table 3.6: Properties of Fine Aggregate/Stone Dust (m-sand) 

S. No. Test Results 

1 Zone & Grade Zone – II & well graded 

2 
 

2.743( ) 

3  ( ) 2.55 

4 Water Absorption 1.13% 

5 
 

6% 

6  ( ) 1587 kg/m3 

 

 

 Weight 

Retained (g) 

Cumulated 

Weight 

Retained 

Cumulated % 

Weight 

Retained 

Cumulated 

% Passing 
 

4.75mm 0 0 0 100  

 

 

 

Sand falls                    

in zone II 

2.36mm 105 105 10.5 89.5 

1.18mm 294 399 39.9 60.1 

600µ 216 615 61.5 38.5 

300µ 133 748 74.8 25.2 

150µ 128 876 87.6 12.4 

75 µ 38 914 91.4 8.6 

Pan 86 1000 100 0 



 

47 
 

3.2.6 Coarse Aggregate 

Coarse aggregate, consisting of crushed stone or gravel retained on a 4.75 mm sieve, is a 

crucial component in concrete, providing strength and durability. Proper grading ensures 

optimal packing, reducing voids and enhancing the mix's performance. Fig.3.6 illustrates that 

locally available coarse aggregate samples were utilized in various mix designs, emphasizing 

their relevance to the study. 

 

 

 

Fig. 3.6: Coarse Aggregate Sample 

 

Table 3.7 provides a detailed analysis of the particle size distribution of the coarse aggregate 

samples, presenting the percentage of material retained on each sieve and the corresponding 

percentages passing through. This comprehensive distribution helps in understanding the 

gradation and uniformity of the aggregates. Additionally, the Table 3.7 includes the 

calculation of the fineness modulus, a critical parameter indicating the aggregate's coarseness 

and its suitability for use in concrete mix designs. 
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Table 3.7: Sieve Analysis of Coarse aggregate (IS 383:2016) 

 Weight 

retained (g) 

Cumulative 

weight 

retained 

Cumulative 

%  

weight  

retained 

% 

Cumulative 

passing 

% Passing 

of nominal 

size 

 
 mm   0 100  

 mm  0 0 100 - 

20 mm 266 266 13.3 86.7 - 

16 mm 571 837 41.85 58.15 - 

12.5 mm 730 1567 78.35 21.65 - 

10 mm 336 1903 95.15 4.85 0-20 

4.75 mm 87 1990 99.5 0.5 0-5 

PAN 10 2000 100 0 - 

 

Fineness modulus: (0+0+13.3+41.85+78.35+95.15+99.5+5X100)/100 = 7.28 

Table 3.8 describes their properties. Preliminary tests were conducted to assess the quality of 

the raw materials before their use, ensuring that the materials met the necessary standards for 

the mix design (Etxeberria et al., 2007; Kore & Vyas, 2015). 

Table 3.8: Properties of Coarse Aggregate 

Sl. No. Test Results 

1 
 

7.28 

2  (G) 2.77 

3 
 

20% 

4 
 

23% 

5 Impact Value 24% 

6 
 

23% 

7 Elongation Index 20% 

8 Abrasion Value 9% 
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3.2.7 Superplasticizer 

Superplasticizers are used to enhance concrete performance by reducing the water 

content in the mix design while increasing the workability of the fresh mixture. The 

SNF-based superplasticizer used in the concrete mix design is SP Sikaplast-5061, 

produced by Sika India Pvt. Ltd, as per IS 9103:1999 (April 1999). Table 3.9 delineates 

the characteristics of the superplasticizer sample. Fig. 3.7 illustrates the superplasticizer 

used in the mix designs. 

 

Table 3.9: Superplasticizer Properties 

 

Fig. 3.7: Superplasticizer Sample Picture 

 

 

 

 

Sl. No. Test  

1. Visual Aspect Brown Color Liquid 

2.  1.19 @ 25°C 

3.  Nil to BS5076 / BS: EN936 

4.  < 2% ( ) 
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3.3 Mix Proportion 

The mix design calculation for geopolymer concrete (GPC) was performed after conducting 

thorough testing on the material samples to ensure the appropriate properties for the desired 

mix. Table 3.10 outlines the model mix designs used for the various tests conducted 

throughout the study. These mix designs were developed using empirical relations derived 

from extensive research in the field of geopolymer concrete, along with established reference 

journals and guidelines on mix proportions. The design process took into account several key 

factors, including the ratio of alkaline activator to pozzolanic material, the specific type of 

binder used, and the moisture content of the mix. Additionally, adjustments were made based 

on the workability, setting time, and strength development characteristics observed in the 

preliminary tests. The formulation of the mix was guided by the principles outlined in current 

literature on GPC, which suggests the optimization of the SiO₂/Na₂O ratio, the use of fly ash 

or other industrial by-products as supplementary cementitious materials, and the careful 

selection of alkaline activators like sodium hydroxide and sodium silicate. Several studies 

have highlighted that these ratios significantly influence the mechanical properties and 

durability of GPC, particularly in terms of compressive strength, shrinkage, and resistance to 

chemical attacks (Patel & Yadav, 2023; Sharma et al., 2024). The reference mix designs were 

derived and adjusted according to the local material properties, ensuring the mix was both 

cost-effective and sustainable, while still achieving the targeted performance standards for 

the geopolymer concrete used in the study. 

         Table 3.10: Summary of Material Quantities for M30 Mix (for 1 m³) 

Material Quantity (kg/m³)/ Range 

Fly Ash 405 kg/m³ 

 
1273 kg/m³ 

 
672 kg/m³ 

 Solution 8 M -14 M 

Na₂SiO₃/ NaOH 0.5 - 2.5 

Liquid/Binder (NaOH + Na₂SiO₃) 0.35-0.65 

Superplasticizer 0.5 - 2.5 % 
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3.4 Mixing, Casting and Curing 

The mix designs for geopolymer concrete (GPC) were implemented by combining all 

constituents in specified proportions using a pan mixer, following the mixing procedure 

outlined in Indian Standard IS 12119-1987. For GPC, the alkaline solution was prepared 20-

24 hours before the main mixing to ensure full activation of the pozzolanic materials. During 

the mixing process, the alkaline solution was added to the dry materials, and the mixture was 

subsequently poured into moulds with proper compaction to achieve optimal density in the 

cast samples. The GPC specimens, including cubical, cylindrical, and beam-shaped forms, 

were then cured in an oven at 60°C for 24 hours to enhance the polymerization process and 

improve the final strength of the concrete (Paruthi et al., 2024; Davidovits, 2002). 

The fresh produced GPC from fly ash was black in hue because to the intrinsic coloration of 

the fly ash and had cohesive characteristics. The water content in the mix played a crucial 

role in determining the behaviour of the fresh concrete, affecting both workability and 

cohesiveness. Observations revealed that extended mixing times with high water content led 

to bleeding and segregation of the aggregate and paste, negatively impacting the 

compressive strength of the hardened concrete. Davidovits (2002) emphasized the 

importance of pre-mixing the sodium silicate and sodium hydroxide solutions before their 

incorporation into the solid constituents to prevent these issues. Based on preliminary 

findings, water content and mixing duration were identified as essential parameters in the 

detailed study (Smith & Patel, 2023). The following standardized mixing process was 

adopted for all further tests to ensure consistent quality in the GPC preparation: 

1. Pre-mix the Alkaline Solutions: Sodium hydroxide and sodium silicate solutions 

were mixed together 20-24 hours before combining with the solid materials to 

maximize the reactivity of the alkaline solution. 

2. Dry Mixing of Materials: All dry components (e.g., fly ash, sand, aggregates) were 

mixed in the pan mixer for approximately three minutes to achieve uniform 

distribution. 

3. Addition of Liquid Component: The pre-mixed alkaline solution was added to the 
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dry materials, followed by an additional four minutes of mixing to ensure even 

distribution and activation. 

 

Fig. 3.8: Pan Mixture in the Laboratory 

 

3.4.1 Slump Cone Test  

The slump cone test is a widely used method for assessing the workability and consistency 

of fresh concrete, providing a quick and reliable measure of its physical properties. This test 

is commonly employed on construction sites and in laboratories due to its simplicity and 

effectiveness (Neville & Brooks, 2023). The main instrument for the slump test is a conical 

metal mold, Referred to as a slump cone, it is open at both ends and generally has a height of 

300 mm, a base diameter of 200 mm, and a top diameter of 100 mm. 

To perform the slump test, fresh concrete is placed in the cone in three layers, with each 

layer compacted by tamping with a rod to eliminate air voids and ensure uniform density 

(Mindess et al., 2023). Once filled, the cone is gently lifted in a vertical motion, enabling the 

concrete to settle under its own weight. The difference in height between the filled cone and 

the slumped concrete indicates the workability. High slump values correspond to more fluid, 

workable concrete, while lower slump values suggest a stiffer, less workable mix, critical for 
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applications requiring specific workability characteristics (Mehta & Monteiro, 2024). This 

test ensures that the concrete mix meets necessary requirements for placement and 

compaction, especially for structural and foundational applications where consistency is 

essential. 

 

Fig. 3.9: Slump Apparatus 

 

 

3.4.2 Curing of Specimens 
 

In this study, two curing methods were utilized to enhance the strength of the geopolymer 

concrete (GPC) specimens: ambient curing and oven curing. Curing plays a critical role in 

the polymerization process, which is essential for developing the strength and durability of 

GPC. In ambient curing, specimens are left to cure at room temperature, typically for a 

specified period depending on the mix design and the requirements of the study (Patel & 

Yadav, 2023). This method is often preferred when minimal energy input is desired, as it 

allows the specimens to harden naturally, which is particularly beneficial in moderate 

climates. Ambient curing is advantageous for GPC applications where extended curing times 

are feasible and where thermal energy for curing is either unavailable or cost-prohibitive. 

In contrast, oven curing involves placing the specimens in a controlled environment, 
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typically set to a temperature of 60°C, for a defined period often around 24 hours (Mehta et 

al., 2024). Oven curing accelerates the geopolymerization reaction by providing additional 

heat, which enhances the bonding of aluminosilicate materials within the GPC matrix. This 

method is particularly effective in increasing early-age strength, as the elevated temperature 

expedites the chemical reactions necessary for hardening (Tayeh et al., 2023). Fig. 3.10 and 

Fig. 3.11 illustrate the specimens during the ambient and oven curing processes, 

respectively, demonstrating the setup used for each method. 

 

Both curing methods have been extensively studied, with research indicating that oven 

curing generally leads to higher compressive strength in GPC compared to ambient curing, 

particularly within the early stages (Sharma & Singh, 2023). However, ambient curing 

remains a viable alternative for structural applications where strength development can 

occur over a more extended period. 

 

Fig. 3.10: Specimens During Ambient Curing 
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Fig. 3.11: Oven for Heat Curing  

3.4.3 Density 

The weight of the specimens is a critical parameter used to identify the density of the 

geopolymer concrete (GPC) mixes before undergoing destructive testing. Density is 

calculated to assess the material’s compactness, which correlates directly with strength and 

durability characteristics. In this study, density measurements were taken 28 days after 

casting, aligning with standard practices for evaluating concrete properties at a significant 

curing age (Neville & Brooks, 2023). By recording the weight of each specimen, the mass-

to-volume ratio is calculated to determine density, which is fundamental for understanding 

the quality and performance of the GPC. To obtain these measurements, each specimen was 

weighed using a digital scale. The digital weighing process provides high precision, reducing 

any potential errors that may affect the density calculation. This density measurement serves 

as a non-destructive preliminary test that indicates how well the materials are compacted in 

the mix, indirectly affecting the porosity and strength development within the GPC (Patel & 

Yadav, 2023). The 28-day density values are particularly important because they help 

evaluate the stability of the hardened matrix, offering insights into the GPC’s overall 

mechanical stability and its suitability for load-bearing applications. This assessment aligns 



 

56 
 

with current practices in concrete evaluation, where density is considered an indicator of 

material performance under various environmental and mechanical stresses (Mehta et al., 

2024). 

3.4.4 Compressive Strength 

The compressive strength of geopolymer concrete mixes was evaluated using the cube 

sample test, conducted under a Compression Testing Machine (CTM) at a steady loading rate 

of 5.25 kN/sec. This gradual, statically applied load is essential for obtaining accurate 

compressive strength values, as specified by standard testing procedures (Patel et al., 2023). 

The 100 mm × 100 mm × 100 mm cube specimens were prepared according to Indian 

Standard (IS) code specifications, ensuring consistency in results. 

In the case of geopolymer concrete (GPC), most of the strength development occurred by 14 

days under ambient curing conditions and by 7 days with oven curing, which accelerates the 

geopolymerization process and produces high early-age strength (Raja & Sujatha, 2024).  

This difference in curing times is significant for GPC, as oven curing promotes a rapid 

chemical reaction between the alkaline activators and pozzolanic materials, achieving 

structural strength within a short period. For GPC, testing intervals of 7, 14, 28 and 56 days 

were observed to monitor the standard strength gain curve and GPC’s strength gain at earlier 

stages highlights its potential for applications requiring faster readiness (Neville & Brooks, 

2023). 

Fig. 3.12 illustrates a cube specimen under compressive strength testing on a Compression 

Testing Machine (CTM). This setup provides a controlled environment for assessing the 

material's load-bearing capacity, which is critical for GPC mixes. By testing at these 

specified intervals, the compressive strength results for each mix design contribute to an 

understanding of how these materials perform under load, guiding their use in structural 

applications that demand rapid strength development or conventional strength progression 

(Mehta et al., 2024). 
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  Fig. 3.12: Compressive Strength Test of GPC Cube in the CTM 

 

3.4.5 Splitting Tensile Strength 

 

The splitting tensile test evaluates the indirect tensile strength of concrete using cylindrical 

specimens with dimensions of 150 mm in diameter and 300 mm in length, conducted in 

accordance with Indian Standard codes. A loading rate of 4.5 kN/sec is applied transversely 

to these cylindrical specimens, allowing measurement of their splitting tensile strength, 

which generally exceeds direct tensile strength but is lower than the flexural strength for the 

same mix design.  
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3.4.6 Flexural Strength 
 

 Flexural strength, also referred to as the modulus of rupture, evaluates the bending capacity 

of concrete specimens and serves as a critical measure of a concrete mix's resistance to 

bending stress. For specimens with a maximum aggregate size of 20 mm or less, standard 

beam dimensions of 100 mm × 100 mm × 500 mm are used for casting. The flexural strength 

test involves applying a two-point load along the specimen's transverse axis, using a flexural 

testing machine. This setup helps to simulate the bending forces that concrete may encounter 

in structural applications. Fig. 3.13 shows a beam specimen positioned during the flexural 

strength test. 

Fig. 3.13: The Flexural Strength Test Setup 

 

3.4.7 Elastic Modulus  
 

The elastic modulus of the concrete mix is measured by applying a uniaxial static load in the 

vertical direction to cylindrical specimens. This test setup enables the assessment of both 

vertical and horizontal displacements, as well as the compressive strength of the specimens. 
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To determine the elastic modulus, the test involves incrementally loading the specimens up to 

approximately one-third of their ultimate strength, then releasing and repeating this loading 

cycle multiple times. A stress-strain curve is plotted and the elastic modulus is obtained from 

the chord modulus according to ASTM standards.  

 

3.4.8 Rebound Strength 

 

A rebound hammer equipment is a non-destructive testing device used to evaluate the 

strength of geopolymer concrete samples by assessing the surface indentation. This method is 

widely applied to both cube and cylindrical specimens to estimate their compressive strength. 

The device works by striking the concrete surface with a spring-loaded hammer, and the 

rebound distance is measured to infer the material's strength. The rebound number obtained 

from this test correlates with the compressive strength, providing a quick and efficient 

estimate without causing damage to the sample (Brencich et al., 2020; Kumavat et al., 2021). 

Fig. 3.14 illustrates the rebound hammer strength test being conducted on a concrete sample. 

Fig. 3.14: Picture During Rebound Hammer Strength Test 
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3.4.9 Seawater Condition 
 

 The seawater condition is created by using salt to simulate a saline environment in 

compliance with ASTM standards. A 5% concentration of salt is dissolved in 40 liters of tap 

water. Following the preparation of the saline solution, the GPC cube specimens were 

submerged in it for durability assessment. The specimens' weight measurements and 

compressive strength evaluations after 6, 12, 18, and 24 weeks were conducted in the saline 

solution. Fig. 3.15 illustrates the seawater conditions established in a water tub containing 

concrete sample. 

 

Fig. 3.15: Picture of Seawater Solution with the Cube Specimens 

 

3.4.10 Sulphate Attack 
 

A sulfate solution was prepared in the laboratory by dissolving 5% magnesium sulfate in tap 

water and storing it in a 40-liter tub. The sulfate attack test involved submerging the GPC 

cube specimens in this solution for a period of 18 weeks. Fig. 3.16 depicts the sulfate attack 

setup, showing the water tubs containing the concrete cube specimens. The GPC specimens 

were analyzed for weight and compressive strength at intervals of 6 weeks, 12 weeks, and 18 

weeks, respectively. 
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Fig. 3.16: Picture of Sulphate Solutions with the Cube Specimens 

 

3.4.11 Acid Attack 

 

The acid attack resistance of the concrete specimens was evaluated by immersing them in an 

acidic solution for durations ranging from 6 weeks to 18 weeks. The solution, prepared in 

accordance with ASTM standards, consisted of 5% sulfuric acid dissolved in tap water and 

stored in a tub. The specimens were analyzed for weight and compressive strength after 6 

weeks of exposure to the solution. 

 

3.4.12 Wetting-Drying Condition 
 

The wetting-drying condition was assessed on GPC specimens by submerging them in water 

at room temperature for 24 hours, followed by repeated cycles of wetting and drying. After 

completing 30, 45, 60, 75, and 90 cycles, the specimens were assessed for weight and 

compressive strength. 
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3.5  Machine Learning  

 

3.5.1 Genetic Programming (GP) 

 
Genetic techniques (GA) are adaptive heuristic search techniques categorized under 

evolutionary algorithms. Genetic algorithms are based on the ideas of natural selection and 

genetics. These strategies include using historical data to direct a random search toward 

regions of the solution space that are probable to provide superior performance. They are 

often used to provide enhanced solutions for optimization and search problems. Genetic 

algorithms emulate the process of natural selection, wherein organisms capable of adapting 

to environmental changes may live, reproduce, and pass their traits to subsequent 

generations. These simulations use the notion of "survival of the fittest" to identify the most 

successful individuals in each generation as they endeavour to resolve a difficulty. Each 

generation has people that signify points inside the search space and potential solutions. Each 

person is denoted by a sequence of characters, numbers, floats, or bits. This sequence has 

resemblance to the chromosome. 

Genetic Programming (GP) is a methodology for pattern recognition that involves 

developing a model via adaptive learning using many occurrences of input data. The 

innovation may be credited to Koza in 1992. It utilizes genetic algorithms (GA) to simulate 

the natural evolution of living organisms for the purpose of analysing their behaviour. In 

classical regression analysis, the user must explicitly specify the model structure. In Genetic 

Programming (GP) regression, the model's structure and parameters are autonomously 

established. The answer is presented in either a hierarchical structure or a concise 

mathematical statement, depending upon the provided information. The GP model, 

distinguished by its hierarchical tree structure of nodes, is sometimes termed a GP tree. A 

functional set, sometimes termed a terminal set, has nodes that serve as its primary elements. 

The expression can incorporate mathematical operators (-, +, ×, ÷), mathematical functions 

(e.g., sin, cos, tanh, ln), Boolean operators (e.g., AND, OR, NOT), logical statements (e.g., 

IF, THEN), or any other user-defined functions. The comprehensive collection comprises 

variables (e.g., x1, x2, x3, etc.) or numerical values (e.g., 3, 5, 6, 9, etc.), or a synthesis of 

both. A GP tree is generated by the stochastic selection of functions and terminals, 

culminating in a total of 44 terminals. Fig. 3.17 depicts the hierarchical configuration of the 
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tree, with a central node and subordinate nodes that branch from each functional node to 

terminal nodes. The equation (3*x + 8/2) may be simplified for enhanced clarity. The 

variable x denotes the terminal nodes. This topic includes the mathematical function and the 

operations of addition (+), subtraction (-), multiplication (×), and division (/). 

 

 

 

Fig. 3.17: A Typical GP Tree Encoding a Mathematical Equation: 3*x + 8/2 (Kruse et al., 

2022) 

A collection of GP trees is created based on the user-specified population size. The growth of 

these trees is arbitrary, with the user supplying several functions and terminals. The fitness 

criteria are defined by the objective function and are used to assess the relative quality of 

each individual within a population. Successive generations are created by selectively 

breeding individuals from the initial population based on their level of adaptation. 

Evolutionary techniques such as reproduction, crossover, and mutation are then applied to the 

functions and terminals of the selected GP trees. The new population replaces the existing 

one, and this process continues until termination criteria are met, which may involve 

achieving a specified fitness value or reaching the maximum number of generations. The 

result of genetic programming is determined by selecting the GP model with the highest 

fitness value across all generations. This document provides a concise overview of the 

evolutionary techniques employed in genetic programming (GP). 
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Space Search in Genetic Programming 

The genetic programming starts by generating a population, which comprises a collective of 

individuals. Every individual function as a resolution to the provided issue. An individual is 

characterized by a set of elements referred to as Genes. Genes are linked together to create a 

sequence and generate chromosomes, which function as the solution to the problem. An 

extensively used technique for initialization involves the utilization of randomly generated 

binary strings. 

Fig. 3.18:  Search Space in Genetic Programming (https://www.geeksforgeeks.org/genetic-

algorithms/) 

 

Fitness Assignment in Genetic Programming 

A fitness function is implemented to evaluate an individual's degree of physical fitness. 

Competitiveness is the ability of a person to successfully compete with others. During each 

iteration, people are assessed according to their fitness function. The fitness function 

allocates a fitness score to each individual. This score further influences the probability of 

selection for reproduction. A higher fitness score increases the probability of selection for 

reproduction. 

Selection in Genetic Programming 

The selection phase entails the process of choosing people to produce children. Subsequently, 

the chosen people are paired together to enhance the process of reproduction. Subsequently, 

these people pass on their genetic material to the next generation. 

Three types of selection methods are available, namely: 

• Tournament selection 
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• Roulette wheel selection 

• Rank-based selection 

Tournament Selection 

Throughout this procedure of selection, a certain quantity of  trees engage in tournaments. 

The tournament size is determined by the number of trees that participate in the 

competition. The winner persists and obtains a larger number of reproductions, while the 

loser is prevented from advancing to the subsequent offspring. 

 

Roulette Wheel Selection 

Parent selection is based on their fitness levels, with higher-quality chromosomes having a 

greater likelihood of being chosen. This process is illustrated through the example of a 

Roulette wheel, where the chromosomes in the population are arranged. The size of each 

segment on the Roulette wheel is directly proportional to the fitness function value of the 

corresponding chromosome. In simple terms, chromosomes with higher fitness values 

occupy larger segments on the wheel, as depicted in Fig. 3.19. A marble is then spun on the 

wheel, and the chromosome where it lands is selected. Consequently, chromosomes with 

superior fitness values are more likely to be selected frequently. 

The procedure may be delineated by the following phases.  

Phase 1: Determine the total fitness of all chromosomes in the population; sum = .  

Phase 2: Generate a random number, denoted as r, from a given interval (0, )  

Phase 3: Iterate across the population and calculate the total fitness by summing the 

values from 0 to the sum of  . Terminate and output the ith chromosome when 

the total     exceeds  .  

Phase 4:  Perform steps 2 and 3 again 
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Fig. 3.19: Roulette Wheel Selection in Genetic Programming 

(https://www.obitko.com/tutorials/genetic-algorithms/selection.php) 

 

Rank-Based Selection 

The traditional selection process faces challenges when there is a significant variation in 

fitness levels among chromosomes. For example, if a single chromosome possesses a fitness 

level exceeding half the total value of the roulette wheel, other chromosomes will have a 

reduced chance of selection. To address this, rank selection is employed, where the 

population is first sorted by fitness levels, and each chromosome is assigned a fitness value 

based on its rank. The chromosome with the lowest fitness is assigned a value of 1, the next 

lowest a value of 2, and so forth, with the fittest chromosome receiving a value equal to the 

total number of chromosomes in the population. This ensures that all chromosomes have an 

opportunity for selection. The probability of selecting a chromosome is determined by its 

rank in the sorted list rather than its actual fitness value. However, this method may lead to 

slower convergence due to the minimal difference between the best-performing 

chromosomes and the rest. 
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Reproduction in Genetic Programming 

Following the selection process, the reproduction stage focuses on generating offspring. 

During this phase, the genetic algorithm employs two variation operators to modify the 

parent population. These two operators play a crucial role in the reproduction process. 

Crossover 

The crossover operation is a key component of the reproductive phase in the genetic 

algorithm. In this process, a random point is chosen within the genetic material. The 

crossover operator enables the exchange of genetic information between two parent 

chromosomes, resulting in the generation of a new individual representing the offspring. 

Fig. 3.20: A Typical Crossover Operation in Genetic Programming 

(https://www.javatpoint.com/genetic-algorithm-in-machine-learning) 

Mutation 

The mutation operator introduces random genetic variations into the offspring to preserve 

diversity within the population. This process is achieved by altering specific segments within 

the chromosomes. Mutation helps prevent premature convergence and promotes the inclusion 

of a broad range of variations. Fig. 3.21 illustrates the mutation process. 

Fig. 3.21: The Mutation Process in Genetic Programming 

(https://www.javatpoint.com/genetic-algorithm-in-machine-learning) 
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Termination in Genetic Programming 

Following the reproduction phase, a termination criterion is applied to decide when the 

process should end. The algorithm terminates once it reaches a fitness value that meets the 

predefined threshold. The final selection is identified as the optimal solution among the 

population. The GP predictive algorithm incorporates several control parameters, including 

the function set, population size, number of generations, maximum gene count per individual 

(Gmax), maximum tree depth (dmax), tournament size, probability of crossover events, 

major crossover, minor crossover, mutation events, subtree mutation, replacement of input 

terminals with random terminals, Gaussian perturbation of randomly selected constants, 

reproduction, and ephemeral random constants. 

These parameters are essential for determining the algorithm's outcomes. The selection of 

these control parameters significantly influences the model's generalization capabilities, as 

generated by GP. The parameters are selected through a trial-and-error method, tailored to 

the specific problem and guided by values previously recommended by Searson et al. (2010). 

The user has flexibility in choosing the function set, which may include arithmetic operators, 

mathematical functions, and other relevant operations based on their understanding of the 

physical system being analysed. 

Population size determines the number of individuals within the population, while the 

number of generations refers to how frequently the algorithm iterates during the run. The 

complexity of the problem typically influences the ideal population size and the required 

number of generations. Various generations and populations are thoroughly tested to identify 

the most efficient model. As overfitting occurs, the fitness value for training data decreases, 

while the fitness value for testing data increases due to higher Gmax and dmax values. This 

overfitting results in reduced generalization capability for the previously generated model. 

Therefore, when constructing the MGGP model, it is essential to achieve a balance between 

accuracy and complexity, particularly concerning Gmax and dmax. Research indicates that 

optimal values for Gmax and dmax exist, leading to the creation of highly efficient models 

(Searson et al., 2010). Using optimal parameter values often enhances the GP algorithm's 
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effectiveness, but exceeding these values can further improve the algorithm's performance 

when appropriately managed. 

In the Genetic Programming (GP) process, a diverse range of potential models is generated 

randomly. Each model is subsequently trained and evaluated using the respective training 

and testing datasets. The fitness of each model is assessed by minimizing the root mean 

square error (RMSE) between the predicted and actual values of the output variable, 

Compressive Strength (C), through the objective function (f). 

            (3.1) 

Let n denote the total number of instances within the fitness group. If the errors calculated 

using Eq. (3.1) for all models in the current population do not satisfy the termination criteria, 

the iterative process of generating a new population continues until the desired optimal 

model is obtained, as previously described. 

3.5.2 Support Vector Machines (SVM) 

 

The Support Vector Machine (SVM) technique is a versatile machine learning method used 

for both classification and regression tasks, where the goal is to predict continuous output 

variables from given inputs. SVM achieves this by mapping input data into a higher-

dimensional feature space using kernel functions, enabling the identification of a regression 

line that minimizes error and maximizes the margin within defined tolerance levels (Drucker 

et al., 1999). One of the key advantages of SVM is its ability to handle complex, non-linear 

relationships between input and output variables. By employing kernels such as polynomial, 

radial basis function (RBF), and sigmoid, SVM can effectively model intricate variable 

interactions (Chalimourda et al., 2004). 
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SVM has been successfully applied across various industries, including banking, 

transportation, and healthcare. Selecting and optimizing the kernel function and its associated 

parameters is crucial for achieving optimal performance. To transform a linear classifier into 

a non-linear one, a non-linear function can be used to map the input space x into a higher-

dimensional feature space F. Alternatively, a non-linear mapping function can be employed to 

achieve the desired transformation. 

Fig. 3.22: Support vector machine (SVM) hyper plane (Reddy et al., 2024) 

The separating function in space F may be defined as: (Reddy et al., 2024) 

        (3.2) 

The function f(x) serves as the decision function in the feature space F. It calculates the 

output for a given input xx by performing the dot product of the weight vector W and the 

feature vector ϕ(x), followed by the addition of a bias term b. The decision function classifies 

new data points by determining their position relative to the hyperplane within the feature 

space. 

The statistical techniques within the subspace are expressed through the algebraic function 

f(x, w). 

         (3.3) 

      (3.4) 
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       (3.5) 

The weight vector w is represented as a linear combination of the support vectors xi, with the 

coefficients αi determined during the optimization process of solving the SVM problem. 

These coefficients signify the importance or contribution of each support vector in defining 

the orientation of the separating hyperplane. The function f(x, w) is expressed as a 

summation over all support vectors xi, where each support vector is mapped to a higher-

dimensional space using the feature mapping function ϕi(x). The decision function is then 

computed by taking the dot product of each mapped support vector with its corresponding 

coefficient αi, adding a bias term b, and summing the results across all support vectors. 

This statement is represented in the feature space F. 

     (3.6) 

       (3.7) 

       (3.9) 

 

3.5.3  ANN Model 

 
The ANN is a noteworthy computational methodology that is currently experiencing rapid 

advancements in its development. An ANN is a system comprised of interconnected 

components referred to as neurons or nodes, which are organized in a layered structure for 

ease of manipulation. The diagram depicted in Fig. 3.23 illustrates the structural composition 

of an ANN that adheres to the back-propagation neural network (BPNN) model and features 

a feed forward design comprising three layers. The three layers are comprised of I input 

neurons, m hidden neurons and n output neurons. The input layer serves as the point of entry 

for the data into the network. The intermediate layer, commonly referred to as the hidden 

layer, acquires input data from the preceding layer, namely the input layer, which is primarily 

responsible for data processing. The subsequent layer, namely the output layer, receives the 

processed data from the network. The information derived from the output is transmitted to 

external receptors. ANNs are structured in layers that are linked to subsequent layers through 

interconnections established among them. The connections are commonly denoted as weights 

and weighted values, correspondingly. Increasing the weights of interconnections as a means 
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of constraining the behavior of designated cost functions within an ANN (Upreti et al., 

2022). 

In this investigation, an Artificial Neural Network (ANN) was employed to forecast the 

compressive strength of geopolymer concrete incorporating alccofine. The feed-forward 

network, implemented in Python, utilized a backpropagation training algorithm for effective 

prediction. The network must first undergo a training phase, during which the weights and 

biases of the neurons are fine-tuned to minimize the error and align with the desired outputs. 

The ANN training process relies on three fundamental components: inter-neuron weights to 

signify the relevance of input variables, a sigmoid activation function to regulate neuron 

outputs, and learning rules that iteratively adjust the weights for optimal performance. In the 

process of training, a non-linear function, typically a sigmoid function, is employed by Upreti 

et al., (2022): 

         (3.8) 

Where a represents the sum of the weighted input values plus the bias. The resulting value is 

passed to the next layer of nodes for further processing. The feed-forward back-propagation 

neural network method consists of four key stages, outlined as follows: 

Sum the weighted input: 

       (3.9) 

Where Nodz represents the sum for the zth hidden node, n is the total number of input nodes, 

Wxz denotes the connection weight between the xth input and the zth hidden node, kz is the 

normalized input at the xth input node, and ∈z is the bias value associated with the zth hidden 

node. 

Transform the weighted input: 

         (3.10) 

where Outz = output from the zth hidden node. 
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Sum the hidden node output: 

      (3.11) 

Where Nody = sum of yth output node, m = total number of hidden nodes, Wzy = connection 

weights between the zth hidden node and the yth output node and ∈y = bias value at the yth 

output node. 

Transform the weighted sum: 

        (3.12) 

Where Outy = output at the yth output node. 

The neural network's architecture was established by utilizing eleven neurons for the input 

layer, varying neurons for the hidden layers and one neuron for the output layer 

  

 

Fig. 3.23: Artificial Neural Networks (ANN) Architecture 

(https://www.analyticsvidhya.com/blog/2021/09/introduction-to-artificial-neural-networks/) 
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3.5.4 Bi-LSTM Structure Formation 

 
The Bi-LSTM model consists of two different layers named as forward hidden layers and 

backward hidden layers (Rahman et al., 2021). Let be the forward hidden layer, which 

receives input in incremental order i.e. , whereas be the backward hidden 

layer, which receives input in decrement order i.e. . The combination of  and 

  produces output . The implementation of Bi-LSTM is represented in Eq. (3.13), to Eq. 

(3.15), where is the weight parameter (   points out the weight, which is linked the input 

to hidden layer), indicates bias vector, represent the hidden layer activation function,  

      (3.13) 

      (3.14) 

       (3.15) 

Fig. 3.24: The Architecture of Bi-LSTM Model 

(https://en.wikipedia.org/wiki/Long_short-term_memory) 
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Conventionally, the sigmoid activation function is employed in Bi-LSTM, which has some 

drawbacks like gradient vanishing problem, challenging in weight updation. To tackle this 

issue, we utilize an improved tangent activation function using ICMIC map.  

Hyperbolic Tangent Activation Function: Conventional 

The hyperbolic activation function is also known as Tanh function, which is almost same as 

sigmoid activation function, but it is equal around the origin (Sharma et al., 2017). It receives 

the input value and generates output between -1 and 1. The expression of tan H activation 

function is indicated in Eq. (3.16), here is the sigmoid activation function. The gradient of 

hyperbolic tangent activation function is steeper, which is not limited to change in any 

direction and self-centered.  

        (3.16) 

Improved Hyperbolic Tangent Activation Function Using ICMIC Map 

Let the sigmoid function in the tanH activation function is computed using ICMIC map. 

The ICMIC map is one of the 1-D chaotic map (Rani et al., 2023). The expression of ICMIC 

map is shown in Eq. (3.17), where the selection of value is achieved based on Lyapunov 

exponent, the ICMIC map exhibits chaotic behavior.  

, ,      (3.17) 

3.5.5 Self-Improved Jelly Search Optimization (SIJSO): 

 

The SIJSO approach is a met heuristic optimization algorithm supports to find the optimal 

hyper parameterized the weight parameter of Bi-LSTM. This algorithm developed by the 

behavior of jellyfish. The food searching procedure of jelly fish involves the following 

process (Alam et al., 2021).  

• The movement of jelly fish within the swarm.  

• For the creation of jelly fish proliferation, which means the sudden upgrading of jelly 

fish population is done by following the ocean currents. 
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• According to the time control mechanism, passive and active movements within the 

jelly fish swarms that are switched to each other.  

• Jelly fish are move towards the area with higher concentration of available food. 

• Measuring the amount of food is influenced by the specific position and its respective 

objective function.  

Primarily, the SIJSO approach includes random initialization for distributing solutions 

(weight) within the searching process. The fitness value is evaluated as per Eq. (3.20). The 

motion of jelly fish is either pursuing ocean current or towards the improvement within the 

swarm based on time control mechanism.  

Ocean Current: Jelly fish are drawn to ocean currents because these oceans current contains 

abundant nutrients. The ocean current is depending on the average vectors of individual jelly 

fish present in the ocean to the jelly fish, which possess current optimal position. The ocean 

current vector is determined using Eq. (3.18) and Eq. (3.19), where  indicates jelly fish 

occurs at a present best position in the entire population, indicates total number of jelly 

fish, points out the average position of jelly fish swarm and represent attraction 

coefficient.  

        (3.18) 

        (3.19) 

The mathematical representation of ocean current is shown in Eq. (3.20), the computation of 

updated location of each jelly fish in ocean current is indicated in Eq. (3.21), here  

indicates location of  jelly fish at instance . The instance of time  equals to the 

algorithm iteration.  

       (3.20) 

   (3.21) 

Jelly Fish Swarm: The movement of jelly fish is classified into active and passive. During 

the creation of swarm, jelly fish pursues active motion, which moves around their self-

position and updating the location of every jelly fish. The mathematical representation of 
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updated position of each jelly fish is indicated in Eq. (3.22), where  represent movement co-

efficient appropriate to the distance of motion across the position of jelly fish, and  

indicated upper and lower bounds in the search zone.  

      (3.22) 

Proposed Position Update Formation: According to the proposed SIJSO, the position 

update formation is evaluated by combining the updated location of each jelly fish in ocean 

current and the updated position of each jelly fish within the swarm. The computation of 

updated position in self-improved JSO is expressed in Eq. (3.25), Eq. (3.26), Eq. (3.25) 

           (3.23) 

 

           (3.24) 

     (3.25) 

In Eq. (3.23), the computation of random value  is done by using tent map. The tent 

map is group of functions. Its iteration forms a discrete dynamical system. The evaluation of 

tent map is expressed in Eq. (3.26), where  points out data,  indicates real valued 

function. When , the system mapping interval  on itself. The density of periodic 

points contributes to the chaotic nature of the map. 

                  (3.26) 
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3.6 Conclusion  

 
The study conducted in this chapter established a comprehensive methodology for evaluating 

the properties of geopolymer concrete using various material tests and advanced predictive 

modeling techniques. Non-destructive methods, like the rebound hammer and ultrasonic 

pulse velocity tests, proved effective in estimating the compressive strength without 

damaging samples. The use of high-reactivity materials like Class F fly ash and Alccofine, 

combined with optimized alkaline activator solutions, significantly enhanced the mechanical 

properties of the concrete. Machine learning models, including genetic programming and 

support vector machines, ANN, Bi-LSTM and Self-Improved Jelly Search Optimization were 

developed to predict concrete behavior with high accuracy. The integration of both empirical 

and computational methods ensures reliable performance assessments, providing a robust 

framework for future research and applications in concrete technology. 
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Chapter 4 

Results and Discussions 
 

4.1 Introduction  

 
This chapter presents a comprehensive analysis of the experimental investigations carried out 

to evaluate the mechanical performance, durability, and microstructural behaviour of 

geopolymer concrete (GPC) under various influencing parameters. A series of experiments 

were designed and executed to assess the impact of critical factors such as liquid-to-binder 

(L/B) ratio, superplasticizer dosage, sodium hydroxide (NaOH) molarity, and the sodium 

silicate to sodium hydroxide (SS/SH) ratio. Each of these parameters was varied 

systematically to study their influence on workability, density, compressive strength, and 

other mechanical properties. The role of curing temperature was also explored, ranging from 

60°C to 120°C, to understand its effect on the geopolymerization process and subsequent 

strength development. Furthermore, the inclusion of Alccofine, an ultra-fine pozzolanic 

material, was investigated as a partial replacement for fly ash in proportions ranging from 0% 

to 25%. Its influence on strength development, density, and durability was thoroughly 

evaluated. 

In addition to evaluating the basic mechanical properties, a series of advanced experiments 

was conducted on the optimized geopolymer concrete (GPC) mix incorporating 15% 

Alccofine to assess its durability under aggressive environmental conditions, including 

seawater exposure, sulfate and acid attacks and cyclic wetting-drying regimes. These tests 

provided critical insights into the long-term durability performance of the mix. Furthermore, 

microstructural characterization techniques such as Fourier Transform Infrared Spectroscopy 

(FTIR), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectroscopy 

(EDX) were employed to analyze the internal morphology and elemental composition of the 

hardened matrix. Complementary mechanical assessments, including splitting tensile 

strength, flexural strength and rebound hammer tests, were also performed to validate and 

support the observed results. The experimental findings offer a comprehensive understanding 

of the synergistic effects of key mix parameters on both fresh and hardened properties of 
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GPC, serving as a robust foundation for optimizing geopolymer concrete formulations aimed 

at improved strength, durability, and sustainability. 

 

4.2 Effect of Liquid to Binder Ratio: 

 
The liquid-to-binder (L/B) ratio is a critical parameter in geopolymer concrete, governing the 

interaction between the liquid activator and the binder, which directly influences properties 

such as workability, compressive strength, density, and durability. Optimizing the L/B ratio 

is essential to achieving the desired balance between workability and mechanical properties, 

ensuring the material's long-term mechanical stability and suitability for various applications. 

4.2.1 Workability  

 
The liquid-to-binder (L/B) ratio is a critical factor influencing the properties of geopolymer 

concrete, particularly its workability, strength, and durability. Increasing the L/B ratio 

enhances workability, as shown by the Fig.4.1, rise in slump values from 15 mm at an L/B 

ratio of 0.35 to 150 mm at 0.65, due to the greater availability of liquid reducing the viscosity 

of the geopolymer paste and facilitating easier handling and placement. However, while 

higher L/B ratios improve workability, they often lead to reduced compressive strength and 

durability as the increased porosity weakens the microstructure of the geopolymer matrix. 

Conversely, lower L/B ratios, such as 0.35 or 0.40, result in reduced workability due to 

limited water availability, making the mix challenging to compact, which can also hinder the 

geopolymerization process. The optimal L/B ratio of 0.55 and a slump of 89 mm, strikes a 

practical balance between workability. Striking this balance is crucial, as an inappropriate 

L/B ratio can compromise either the workability or the strength of the material.  
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Fig. 4.1: Workability of Geopolymer Concrete with Varying Liquid/Binder Ratio 

 

4.2.2 Density  

 
The liquid-to-binder (L/B) ratio significantly influences the workability and density of 

geopolymer concrete, with curing methods playing a critical role. At lower L/B ratios (e.g., 

0.35 or 0.40), density decreases (2400 kg/m³ for ambient curing and 2421 kg/m³ for oven 

curing) due to insufficient liquid, resulting in incomplete geopolymerization, poor mixing, 

and higher porosity. Optimal density and workability are achieved at an L/B ratio of 0.50 

(2465 kg/m³ for ambient curing and 2480 kg/m³ for oven curing), while higher ratios (e.g., 

0.65) reduce density (2412 kg/m³ for ambient curing and 2423 kg/m³ for oven curing) due to 

excess liquid causing porosity. Oven curing enhances density by accelerating 

geopolymerization and improving the bond between components. Balancing the L/B ratio 

and employing effective curing methods are crucial for achieving the desired properties. 
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Fig. 4.2: Density of Geopolymer Concrete with Varying Liquid/Binder Ratio 

4.2.3 Compressive Strength  
 

The compressive strength of geopolymer concrete (GPC) was evaluated using cube 

specimens in a Compression Testing Machine (CTM) at 7, 14, 28, and 56 days. As illustrated 

in Fig. 4.3, the maximum compressive strength under ambient curing was recorded as 30.07 

MPa at a liquid-to-binder (L/B) ratio of 0.55, while oven curing yielded 32.87 MPa at the 

same ratio. Beyond this optimal L/B ratio, the strength decreased due to higher porosity 

resulting from excess liquid. Fig.4.4 highlights that oven curing consistently produces higher 

compressive strength than ambient curing, attributed to accelerated geopolymerization at 

higher temperatures. While higher L/B ratios increase porosity and micro-cracks, reducing 

strength, overly low L/B ratios can hinder workability and compaction, also affecting 

strength. Maintaining a balanced L/B ratio around 0.55 is essential for optimal workability 

and mechanical performance of GPC. 
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Fig. 4.3: Compressive Strength of Ambient Cured Geopolymer Concrete with Varying 

liquid/binder ratio 

Fig. 4.4: Compressive Strength of Oven-Cured Geopolymer Concrete with Varying 

Liquid/Binder Ratio 
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4.3 Effect of Superplasticizer Dosage Percentage 

 
The dosage of superplasticizer in geopolymer concrete plays a significant role in enhancing 

its workability, as reflected by variations in slump values. The recommended dosage 

typically ranges between 0.5% and 2% of the binder content, ensuring optimal flowability 

and ease of placement without compromising the mix's mechanical stability. In addition to 

workability, the compressive strength is critical parameters that influence the overall 

properties of geopolymer concrete, particularly its strength, density, and durability. These 

factors collectively determine the concrete’s ability to perform under various loading and 

environmental conditions, making their optimization essential for achieving the desired 

balance between mechanical performance and durability. 

4.3.1 Workability  

 
The dosage of superplasticizer in geopolymer concrete plays a critical role in determining 

workability, as reflected in changes to slump values. Recommended dosages range between 

0.5% and 2% of the binder content, with increasing dosage improving flowability by 

reducing water demand and enhancing particle mobility within the concrete matrix. As 

shown in Table 4.1 and Fig. 4.5, a 1.5% dosage with an L/B ratio of 0.45 resulted in a slump 

value of 90 mm, indicating sufficient workability for typical structural applications. Higher 

dosages, such as 2% with an L/B ratio of 0.65, increased the slump value to 210 mm, 

offering exceptional workability but introducing risks of segregation and bleeding. 

Conversely, lower dosages, like 0.5% with an L/B ratio of 0.40, yielded a slump value of 

only 42 mm, creating a stiff and less workable mix unsuitable for practical applications. 

These findings underscore the importance of optimizing superplasticizer dosage to strike a 

balance between fluidity and stability, ensuring adequate workability while maintaining the 

integrity and quality of the concrete. 
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Table 4.1: Slump Values of Geopolymer Concrete with Varying 

Superplasticizer Dosage 

 

Super plasticiser Dosage Liquid/Binder Ratio Slump (mm) 

0.5 0.4 42.00 

0.45 67.00 

0.50 88.00 

0.55 110.00 

0.60 127.00 

0.65 164.00 

1 0.40 52.00 

0.45 75.00 

0.50 97.00 

0.55 110.00 

0.60 135.00 

0.65 175.00 

1.5 0.40 70.00 

0.45 90.00 

0.50 107.00 

0.55 135.00 

0.60 148.00 

0.65 195.00 

2 0.40 89.00 

0.45 110.00 

0.50 130.00 

0.55 156.00 

0.60 175.00 

0.65 210.00 
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Fig. 4.5: Slump Values of Geopolymer Concrete with 1.5 % Superplasticizer Dosage 

 

4.3.2 Density 

 
The dosage of superplasticizer significantly affects the density of geopolymer concrete by 

enhancing flowability, reducing water content, and improving particle packing, which 

minimizes voids. Appropriate dosages facilitate proper compaction, reducing air entrapment 

and increasing density. However, excessive dosages can cause segregation or bleeding, 

leading to density variations and reduced uniformity. As shown in Table 4.2 and Fig. 4.6, 

density consistently increased with superplasticizer dosages up to 1.5%, achieving a 

maximum of 2538 kg/m³ (oven curing) and 2524 kg/m³ (ambient curing) at an L/B ratio of 

0.45. Lower superplasticizer dosages, such as 0.5%, resulted in reduced density, with 2497 

kg/m³ (oven curing) and 2486 kg/m³ (ambient curing) at an L/B ratio of 0.4 due to low 

availability of water. At 2% of superplasticizer dosage, density began to decline due to 

segregation and bleeding. These findings emphasize the importance of optimizing 

superplasticizer dosage to achieve a dense, uniform, and cohesive geopolymer concrete mix. 
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Table 4.2: Density of Geopolymer Concrete with Varying Superplasticizer Dosage 

Superplasticizer Dosage Liquid/Binder 

Ratio 

Density(kg/m3) 

(Ambient Curing) 

Density (kg/m3) 

(Oven Curing) 

0.5 0.4 2486 2497 

0.45 2497 2505 

0.50 2500 2515 

0.55 2523 2528 

0.60 2520 2529 

0.65 2503 2514 

1 0.40 2496 2502 

0.45 2506 2514 

0.50 2510 2521 

0.55 2515 2524 

0.60 2513 2520 

0.65 2510 2518 

1.5 0.40 2513 2517 

0.45 2524 2538 

0.50 2518 2524 

0.55 2515 2520 

0.60 2513 2518 

0.65 2508 2513 

2 0.40 2522 2534 

0.45 2515 2524 

0.50 2507 2516 

0.55 2500 2506 

0.60 2496 2501 

0.65 2487 2493 
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Fig. 4.6: Density of Geopolymer Concrete with 1.5 % Superplasticizer Dosage 

 

4.3.3 Compressive Strength 

 
The compressive strength of geopolymer concrete (GPC) is evaluated by testing cube 

samples using a Compression Testing Machine (CTM) at 7, 14, 28 and 56 days after casting. 

As shown in Fig. 4.7 (ambient-cured samples) and Fig. 4.8 (oven-cured samples), oven-cured 

samples consistently exhibit higher compressive strength than ambient-cured samples due to 

the accelerated geopolymerization process under heat. The dosage of superplasticizer plays a 

critical role in compressive strength by enhancing workability, improving particle dispersion 

and reducing water content, which leads to a denser and more compact concrete matrix, thus 

improving strength. However, excessive superplasticizer can cause segregation or bleeding, 

reducing the homogeneity and strength. As indicated in Fig. 4.7, for ambient-cured GPC, the 

maximum compressive strength of 35.99 MPa was achieved with a 1.5% superplasticizer 

dosage and an L/B ratio of 0.45 after 56 days. Similarly, Fig. 4.8 shows that oven-cured 

samples reached a maximum compressive strength of 40.99 MPa under the same conditions.  
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Fig. 4.7: Compressive Strength of Ambient-Cured Geopolymer Concrete At 1.5 % of 

Superplasticizer 

 

Fig. 4.8: Compressive strength of Oven-Cured Geopolymer Concrete At 1.5 % of 

Superplasticizer 
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4.4 Effect of Molarity of Sodium Hydroxide 
 

Sodium hydroxide (NaOH) serves as an activator for binders like fly ash and GGBFS in 

geopolymer concrete (GPC) mix designs. The molar concentration of NaOH plays a critical 

role in influencing the mix design and the properties of GPC. Variations in NaOH molarity, 

ranging from 8M to 14M, directly impact key characteristics such as workability, strength, 

and durability. Specimens prepared with different molarities were tested using destructive 

strength tests to evaluate their performance. These tests revealed how the molar 

concentration of NaOH affects critical properties like compressive strength and density. 

Optimizing NaOH concentration is essential to achieving a balanced mix design that meets 

the desired performance criteria for geopolymer concrete. 

4.4.1 Workability  
 

In geopolymer concrete (GPC) mix designs, the molarity of sodium hydroxide (NaOH) plays 

a crucial role in determining both workability and compressive strength. As the molarity of 

NaOH increases from 8M to 14M, the slump value decreases significantly, as shown in Fig. 

4.9, where the slump value drops from 193 mm at 8M to 60 mm at 14M. Higher NaOH 

molarity improves compressive strength, making it suitable for structural applications, while 

lower molarities, such as 8M, enhance workability but result in reduced strength. Thus, 

balancing NaOH molarity is essential for optimizing both workability and strength based on 

project-specific requirements. 
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Fig. 4.9: Slump Values of Geopolymer Concrete with Varying NaOH Molarity 

 

4.4.2 Density  
 

The molarity of sodium hydroxide (NaOH) in geopolymer concrete (GPC) significantly 

influences its density. Higher molarity NaOH solutions, such as 12M, result in a denser 

microstructure. As shown in Fig. 4.10, the maximum density was achieved at 12M, with 

ambient-cured and oven-cured specimens recording densities of 2537 kg/m³ and 2545 kg/m³, 

respectively. Beyond this point, densities began to decline, with 14M ambient and oven-

cured specimens having densities of 2447 kg/m³ and 2462 kg/m³, respectively. Lower 

molarity levels, such as 8M, yielded ambient- and oven-cured densities of 2410 kg/m³ and 

2432 kg/m³, respectively. These findings highlight the importance of optimizing NaOH 

molarity to achieve balance in density and mechanical strength. 
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Fig. 4.10: Density of Geopolymer Concrete with Varying NaOH Molarity 

4.4.3 Compressive Strength 
 

The molarity of sodium hydroxide (NaOH) in geopolymer concrete (GPC) significantly 

affects its compressive strength. As the molarity of NaOH increases up to 10M, compressive 

strength improves due to enhanced dissolution of aluminosilicates, resulting in a denser and 

more robust geopolymer matrix. As shown in Fig. 4.11 and Fig. 4.12, the maximum 

compressive strength for ambient-cured specimens reached 38.46 MPa at 10M after 56 days, 

while oven-cured samples achieved peak strength of 41.16 MPa at the same molarity. 

Beyond 10M, compressive strength declines, with ambient-cured samples decreasing to 

14.77 MPa and oven-cured samples dropping to 20.86 MPa at 14M. These findings highlight 

the importance of optimizing NaOH molarity to achieve maximum compressive strength 

while minimizing micro structural defects caused by excess alkali concentration. 
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Fig. 4.11: Compressive Strength Ambient Cured Geopolymer Concrete with Varying 

Percentage of NaOH Molarity 

 

Fig. 4.12: Compressive Strength Oven Cured Geopolymer Concrete with Varying Percentage 

of NaOH Molarity 
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4.5  Effect of Sodium Silicate to Sodium Hydroxide Ratio (SS/SH) 
 

The sodium silicate to sodium hydroxide (SS/SH) ratio is a critical factor influencing the 

workability, density, compressive strength, and durability of geopolymer concrete. A higher 

SS/SH ratio increases the liquid content, enhancing flowability and resulting in higher slump 

values, which improve workability and compaction. However, excessively high ratios may 

lead to segregation and bleeding, adversely affecting mix quality. This ratio also impacts 

density by ensuring proper consolidation and uniformity, while an optimal balance 

strengthens the activation of aluminosilicate materials, contributing to higher compressive 

strength and durability. Careful adjustment of the SS/SH ratio is essential for achieving the 

desired performance of geopolymer concrete. 

4.5.1  Workability 
 

The Sodium Silicate to Sodium Hydroxide (SS/SH) ratio significantly affects the workability 

of geopolymer concrete (GPC). As the SS/SH ratio increases, slump values decrease, 

indicating reduced workability due to higher viscosity in the activator solution. As shown in 

Fig. 4.13, the highest slump value of 143 mm was observed at an SS/SH ratio of 0.50, 

indicating superior workability. However, as the ratio increased to 2.00, the slump value 

dropped to 91 mm and at higher ratios of 2.50 and 3.00, the slump values further decreased to 

79 mm and 67 mm, respectively. These results emphasize the importance of selecting an 

optimal SS/SH ratio to balance workability and mechanical performance, ensuring proper 

compaction and superior long-term durability in structural applications. 
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Fig. 4.13: Workability of Geopolymer Concrete with Varying Sodium Silicate to Sodium 

Hydroxide (SS/SH) Ratio 

 

4.5.2  Density 
 

The sodium silicate to sodium hydroxide (SS/SH) ratio significantly influences the density of 

geopolymer concrete (GPC) by affecting its polymerization and compaction properties. A 

higher SS/SH ratio enhances geopolymerization, resulting in a denser microstructure with 

improved binding and reduced porosity. As shown in Fig. 4.14, the maximum densities were 

recorded at an SS/SH ratio of 2.00, with ambient-cured specimens reaching 2510 kg/m³ and 

oven-cured specimens achieving 2520 kg/m³. However, further increases in the ratio led to a 

slight reduction in density, with ambient-cured and oven-cured densities dropping to 2443 

kg/m³ and 2469 kg/m³, respectively, at a ratio of 2.50. These findings highlight the 

importance of selecting an optimal SS/SH ratio to achieve maximum density while 

maintaining proper workability and compaction, ensuring the suitability of GPC for structural 

applications requiring high-density and durable materials applications. 
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Fig. 4.14: Density of Geopolymer Concrete with Varying Sodium Silicate to Sodium 

Hydroxide (SS/SH) Ratio 

 

4.5.3  Compressive Strength 
 

The sodium silicate to sodium hydroxide (SS/SH) ratio significantly affects the compressive 

strength of geopolymer concrete (GPC) by controlling the degree of geopolymerization. A 

higher SS/SH ratio enhances the formation of aluminosilicate gels, resulting in a denser and 

more cohesive matrix capable of withstanding greater compressive loads. As shown in Fig. 

4.15 and Fig. 4.16, the maximum compressive strength for ambient-cured GPC was 37.50 

MPa at an SS/SH ratio of 2.00 after 56 days, while oven-cured specimens achieved 41.76 

MPa at the same ratio. Beyond this point, compressive strength declined, with ambient-cured 

specimens dropping to 34.32 MPa at a ratio of 2.50 and 27.66 MPa at 3.00, while oven-cured 

specimens fell to 40.00 MPa and 30.66 MPa, respectively. These results emphasize the 

importance of selecting the optimal SS/SH ratio to achieve maximum compressive strength 

while maintaining workability and ease of compaction, ensuring GPC's suitability for high-

strength structural applications. 
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Fig. 4.15: Compressive Strength Ambient Cured Geopolymer Concrete with Varying Sodium    

Silicate to Sodium Hydroxide (SS/SH) Ratio 

 

Fig. 4.16: Compressive Strength Oven Cured with Varying Sodium Silicate to Sodium 

Hydroxide (SS/SH) Ratio 
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4.6 Effect of Curing Temperature 
 

The curing temperature for the optimal geopolymer concrete (GPC) mix design varies within 

the range of 60°C to 120°C. Variations in curing temperature significantly influence the 

chemical and mechanical properties of the GPC specimens, as these temperatures affect the 

geopolymerization process. To assess the impact of curing temperature, an experimental 

analysis was conducted. This analysis focused on examining how changes in temperature 

during the curing phase alter properties such as the density and compressive strength. The 

study systematically evaluated GPC specimens cured at different temperature levels to 

identify the optimum curing conditions for achieving the best balance of strength in the mix 

design.  

 

4.6.1 Density  
 

The density of geopolymer concrete (GPC) specimens is influenced by curing temperature, 

which affects water evaporation and the formation of micro-voids in the concrete matrix. As 

curing temperature increases, more water evaporates, reducing density and potentially 

weakening the geopolymer structure. As shown in Fig. 4.17, the maximum density of 2523 

kg/m³ was recorded at a curing temperature of 100°C, reflecting optimal geopolymerization 

where water loss was effectively balanced with structural formation. At 120°C, the density 

decreased slightly to 2513 kg/m³ due to excessive water evaporation. Lower curing 

temperatures, such as 60°C and 80°C, produced densities of 2520 kg/m³ and 2522 kg/m³, 

respectively, indicating that moderate water loss supports matrix consolidation.  
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 Fig. 4.17: Density of Geopolymer Concrete with Varying Curing Temperatures 

 

4.6.2 Compressive Strength 
 

The compressive strength of geopolymer concrete (GPC) increases with rising curing 

temperatures due to the acceleration of the geopolymerization process. Higher temperatures 

enhance the chemical reaction between aluminosilicate particles and the alkaline activator, 

resulting in a denser and stronger matrix (Rajput et al., 2024). As shown in Fig. 4.18, the 

maximum compressive strength of 43.65 MPa was achieved at 100°C after 28 days of curing, 

indicating optimal geopolymerization. At a temperature of 120°C, compressive strength 

decreased slightly to 42.02 MPa after 28 days due to excessive water loss, micro-cracking, 

and reduced cohesion. At lower curing temperatures of 60°C and 80°C, compressive 

strengths of 40.00 MPa and 42.11 MPa, respectively, were recorded after 28 days, showing 

that moderate temperatures support adequate geopolymerization but are less effective than 

curing at 100°C.  
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Fig. 4.18: Compressive Strength of Geopolymer Concrete with Varying Curing 

Temperatures 

 

4.7 Effect of Alccofine/Fly-Ash Ratio 
 

The effect of the Alccofine/Fly Ash ratio in concrete and geopolymer composites has 

garnered significant attention due to its influence on mechanical properties and durability. 

Alccofine, an ultra-fine slag-based material and early strength, while fly ash contributes to 

long-term strength development and sustainability. In this study inclusion of Alccofine in the 

range of 0% to 25% has shown significant improvements in compressive strength, and 

enhanced durability, particularly at early stages. Optimizing their ratio within this range can 

improve the microstructure, making it a critical factor in achieving desired performance 

characteristics while promoting eco-friendly construction practices. 
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4.7.1 Workability 
 

The inclusion of Alccofine in fly ash-based geopolymer concrete (GPC) significantly affects 

workability due to their fine particle size. As the percentage of Alccofine increases, the 

slump value decreases, indicating reduced workability. As shown in Fig. 4.19, the slump 

value dropped from 98 mm at 0% Alccofine dosage to 30 mm at a 25% dosage, highlighting 

the inverse relationship between Alccofine dosage and workability. This reduction in 

workability is attributed to the increased surface area of finer particles, which reduces the 

free water available for lubrication within the mix. While decreased workability may require 

additional water or super-plasticizers to ensure proper mixing and placement. Balancing the 

dosage of Alccofine with appropriate water content or chemical admixtures is crucial to 

optimizing both workability and mechanical properties for practical applications. 

 

Fig. 4.19: Workability of Geopolymer Concrete with Varying Percentages of Alccofine 

Replacement 

 

4.7.2 Density 
 

The density of geopolymer concrete (GPC) evolves with curing time and temperature due to 

the progressive polymerization of aluminosilicate materials. During curing, the chemical 

reaction between fly ash and alkaline activators densifies the matrix by consuming un-reacted 
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materials and reducing porosity, with heat curing further accelerating this process. 

Additionally, the inclusion of Alccofine enhances density by promoting calcium silicate 

hydrate (C-S-H) formation alongside geopolymer gels, refining the pore structure. As shown 

in Fig. 4.20, the density increased from 2510 kg/m³ at 0% Alccofine dosage to 2549 kg/m³ 

for ambient-cured specimens and 2552 kg/m³ for oven-cured specimens at 25% Alccofine 

dosage. This improvement is attributed to enhanced particle packing and a denser 

microstructure. Higher Alccofine content accelerates the reaction rate, promoting more 

complete geopolymerization and better compaction. Optimizing curing conditions and 

supplementary cementitious material dosage is essential to maximize density and overall 

mechanical performance while maintaining workability. 

 

 

Fig. 4.20: Density of Geopolymer Concrete with Varying Percentages of Alccofine 

Replacement 

 

4.7.3 Extra Water  
 

The inclusion of Alccofine in geopolymer concrete (GPC) significantly affects water demand 

due to its finer particle size, angular in shape, and higher reactivity compared to fly ash. 

Alccofine’s increased surface area requires more water for adequate dispersion and 

hydration, raising the water-to-binder ratio necessary to maintain workability. In contrast, fly 
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ash’s spherical particles enhance workability by reducing water demand and improving 

particle flow within the mix. As shown in Table 4.3, slump values decreased with increased 

Alccofine dosage unless additional water was added. For instance, at a 5% alccofine dosage 

with 50 ml of extra water, the slump reached 145 mm, indicating high workability. However, 

at a 25% dosage with the same water content, the slump dropped to 72 mm, demonstrating 

reduced flowability due to increased water absorption by Alccofine particles. These findings 

highlight the importance of adjusting the water-to-binder ratio with higher Alccofine dosages 

to maintain a balance between workability and mechanical properties, ensuring proper 

mixing, placement and compaction. 

Table 4.3: Additional water applied in geopolymer concrete with varying 

percentages of alccofine replacement 

 

Alccofine Dosage Extra water (ml) Slump (mm) 

0.05 10 84 

20 107 

30 112 

40 133 

50 145 

0.1 10 78 

20 86 

30 96 

40 118 

50 127 

0.15 10 65 

20 77 

30 81 

40 92 

50 112 

0.2 10 45 

20 58 
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30 71 

40 85 

50 100 

0.25 10 37 

20 44 

30 56 

40 61 

50 72 

60 87 

 

4.7.4 Compressive Strength 
 

The inclusion of Alccofine in geopolymer concrete (GPC) significantly enhances 

compressive strength due to its ultra-fine particles and high pozzolanic activity. Its increased 

surface area improves particle packing, creating a denser and more cohesive matrix. 

Additionally, Alccofine’s chemical composition facilitates the formation of calcium silicate 

hydrate (C-S-H) gels, complementing the aluminosilicate network of geopolymer matrices 

and boosting compressive strength. As shown in Fig. 4.21 and Fig. 4.22, the maximum 

compressive strength for ambient-cured GPC reached 50.98 MPa after 56 days at a 15% 

Alccofine dosage, while oven-cured specimens achieved 53.10 MPa at the same dosage, 

showcasing the benefits of heat curing in enhancing geopolymerization. Lower dosages, such 

as 5% and 10%, also improved strength compared to fly ash-only mixes, driven by enhanced 

matrix binding and flowability. However, exceeding the 15% Alccofine dosage resulted in 

diminished strength, emphasizing the importance of balancing Alccofine content to optimize 

both strength and workability in GPC. 
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Fig. 4.21: Compressive Strength of Ambient Cured Geopolymer Concrete with Varying 

Percentages of Alccofine Replacement 

 

Fig. 4.22: Compressive Strength of Oven Cured Geopolymer Concrete with Varying             

Percentages of Alccofine Replacement 
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4.7.5 Splitting Tensile Strength 
 

The Alccofine-to-fly ash ratio significantly influences the splitting tensile strength of 

geopolymer concrete (GPC). As shown in Fig. 4.23 and Fig. 4.24, the maximum splitting 

tensile strength for ambient-cured GPC was 6.16 MPa at a 15% Alccofine dosage after 56 

days, while oven-cured specimens achieved 6.95 MPa at the same dosage, reflecting 

enhanced matrix bonding and reduced porosity. Beyond 15%, tensile strength decreased 

slightly, with ambient-cured specimens dropping to 5.02 MPa and oven-cured samples to 

5.76 MPa at a 25% dosage. This reduction is attributed to reduced workability, compaction 

challenges and micro-crack formation due to excessive Alccofine content.  

 

Fig. 4.23: Split Tensile Strength of Ambient Cured Geopolymer Concrete with Varying      

Percentages of Alccofine Replacement 
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Fig. 4.24: Split Tensile Strength of Oven Cured Geopolymer Concrete with Varying 

Percentages of Alccofine Replacement 

 

4.7.6 Flexural Tensile Strength 
 

The Alccofine-to-fly ash ratio significantly affects the flexural strength of geopolymer 

concrete (GPC). Increasing Alccofine dosage enhances flexural strength. As shown in Fig. 

4.25 and Fig. 4.26, the maximum flexural strength for ambient-cured GPC was 8.15 MPa 

after 56 days at a 15% Alccofine dosage, while oven-cured specimens achieved 9.45 MPa at 

the same dosage, demonstrating enhanced geopolymerization under heat. Beyond 15%, 

flexural strength slightly decreased due to reduced workability and potential compaction 

challenges, which are critical considerations in field applications.  
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Fig. 4.25: Flexural Tensile Strength of Ambient Cured Geopolymer Concrete with Varying 

Percentages of Alccofine Replacement 

 

 

Fig. 4.26: Flexural Tensile Strength of Oven Cured Geopolymer Concrete with Varying 

Percentages of Alccofine Replacement 
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4.7.7 Rebound Hammer Strength  
 

The inclusion of Alccofine in geopolymer concrete (GPC) significantly enhances rebound 

hammer strength due to the formation of a denser and more cohesive matrix. The ultra-fine 

particles and high pozzolanic activity of Alccofine improve geopolymerization, resulting in 

better interfacial bonding and reduced porosity, which contribute to higher surface hardness 

and rebound hammer strength. As shown in Fig. 4.27 and Fig. 4.28, the maximum rebound 

hammer strength for ambient-cured GPC was 50.98 MPa after 56 days at a 15% Alccofine 

dosage, while oven-cured specimens achieved 53.10 MPa at the same dosage, demonstrating 

enhanced geopolymerization and improved microstructure under higher temperatures. 

Beyond 15%, rebound hammer strength decreased, with ambient-cured and oven-cured 

values dropping to 41.55 MPa and 43.98 MPa, respectively, at a 25% dosage, due to reduced 

workability and compaction challenges caused by increased mix viscosity.  

 

Fig. 4.27: Rebound Hammer Strength of Ambient Cured Geopolymer Concrete with Varying     

Percentages of Alccofine Replacement 
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Fig. 4.28: Rebound Hammer Strength of Oven Cured Geopolymer Concrete with Varying 

Percentages of Alccofine Replacement 

 

4.7.8 Modulus of Elasticity  
 

The Alccofine-to-fly ash ratio significantly impacts the modulus of elasticity (MOE) of 

geopolymer concrete (GPC). Oven-cured GPC specimens consistently exhibit higher MOE 

due to enhanced geopolymerization under heat, resulting in a denser and more cohesive 

matrix. As shown in Fig. 4.29, the maximum MOE recorded for oven-cured GPC was 31.01 

GPa at a 15% Alccofine dosage, while ambient-cured specimens reached 29.05 GPa at the 

same dosage. This reflects superior particle packing and increased interfacial bonding from 

Alccofine’s ultra-fine particles. However, at a 25% dosage, the MOE decreased to 29.98 GPa 

(oven-cured) and 28.89 GPa (ambient-cured), likely due to reduced workability and potential 

compaction challenges from higher mix viscosity.  
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Fig. 4.29: Modulus of Elasticity of Geopolymer Concrete with Varying Percentages of 

Alccofine Replacement 

 

4.8 Micro-Structural Analysis of Optimum Alccofine Percentage 

Geopolymer Concrete  
 

The micro-structural analysis of geopolymer concrete with the optimum percentage of 

Alccofine was conducted using Fourier Transform Infrared Spectroscopy (FTIR), Scanning 

Electron Microscopy (SEM) and Energy Dispersive X-ray Spectroscopy (EDX). FTIR 

revealed the characteristic peaks indicating the formation of aluminosilicate gel, confirming 

the geopolymerization process. SEM analysis demonstrated a dense and compact 

microstructure with minimal voids, attributed to the enhanced particle packing due to 

Alccofine. EDX results provided elemental composition, highlighting the presence of silica 

(Si), aluminum (Al) and calcium (Ca), which are crucial for strength and durability.  
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4.8.1 Fourier Transforms Infrared (FT-IR) Spectroscopy 
 

4.8.1.1 Fourier Transforms Infrared (FT-IR) Spectroscopy Of Alccofine  
 

The Fig. 4.30 presents the FTIR spectrum of Alccofine, showcasing its chemical structure 

and functional groups. The x-axis indicates the wave number (cm⁻¹) and the y-axis represents 

the percentage transmittance (%T). The sharp peak near 1000–1100 cm⁻¹ corresponds to Si-

O-Si and Si-O-Al stretching vibrations, confirming the presence of silicate and alumina 

phases, which are essential for its pozzolanic and binding properties. The broad absorption 

band around 3400–3600 cm⁻¹ is attributed to O-H stretching vibrations, signifying the 

presence of hydroxyl groups and moisture. The smaller peaks near 1500–1650 cm⁻¹ 

correspond to H-O-H bending vibrations, indicating residual water. These characteristic 

peaks demonstrate Alccofine's high reactivity and its role as a supplementary cementitious 

material, enhancing the geopolymerization process and contributing to the strength and 

durability of geopolymer concrete. 

         Fig. 4.30: Fourier Transforms Infrared (FT-IR) Spectroscopy Of Alccofine 
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4.8.1.2 Fourier Transforms Infrared (FT-IR) Spectroscopy Of Ambient 

Cured 15 % Alccofine Replacement Geopolymer Concrete  
 

The FTIR spectra of geopolymer concrete with 15% Alccofine replacement reveal key 

insights into the chemical structure and functional groups under different curing conditions. 

Both oven-cured and ambient-cured samples as shown in Fig. 4.31 and Fig. 4.32 exhibit 

similar functional groups, with broad absorption bands around 3400–3600 cm⁻¹ 

corresponding to O-H stretching vibrations, indicating the presence of hydroxyl groups and 

water molecules. The sharp peak near 1000 cm⁻¹, attributed to Si-O-Si asymmetric stretching, 

confirms the formation of aluminosilicate gel, a critical product of geopolymerization. The 

band near 1500–1650 cm⁻¹, representing H-O-H bending vibrations, highlights the presence 

of residual water. However, notable differences emerge between the curing methods. In 

oven-cured samples, the peaks around 1000 cm⁻¹ are sharper and the O-H stretching region 

exhibits higher intensity, indicating enhanced geopolymerization and reduced residual 

moisture due to accelerated reaction kinetics. In contrast, ambient-cured samples show 

broader peaks and more prominent H-O-H bending vibrations, reflecting slower reactions 

and higher retained water. These differences emphasize that oven curing produces a denser 

and more uniform matrix, while ambient curing results in a less compact structure due to its 

slower geopolymerization process. These findings confirm the role of Alccofine as a 

sustainable additive that enhances the chemical and mechanical stability of both curing 

methods. 
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Fig. 4.31: Fourier Transforms Infrared (FT-IR) Spectroscopy of Oven Cured 15 % Alccofine 

Replacement Geopolymer Concrete 

 

Fig. 4.32: Fourier Transform Infrared (FT-IR) Spectroscopy of Ambient Cured 15 % 

Alccofine Replacement Geopolymer Concrete 

 



 

115 
 

4.8.2 Scanning Electron Microscopy ( ) and Energy Dispersive X-Ray 

analysis ( ) 

 

4.8.2.1 Scanning Electron Microscopy ( ) and Energy Dispersive X- 

Ray ( ) Analysis of Alccofine  
 

The microstructural and elemental composition of alccofine were investigated using 

Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray (EDX) techniques. The 

SEM images, shown in Fig. 4.37, reveal the fine and uniform particle morphology of 

alccofine, which is critical for its high reactivity and ability to enhance concrete performance. 

The EDX analysis, illustrated in Fig. 4.38, provides the elemental composition, with carbon 

and oxygen being the predominant elements, accounting for weight percentages of 47.31% 

and 34.67%, respectively. Other essential elements include calcium (6.8%), silicon (6.25%), 

and aluminum (3.47%), which contribute to its pozzolanic activity and binding properties. 

The findings confirm the suitability of alccofine as a supplementary cementitious material, 

capable of improving the structural and durability characteristics of geopolymer concrete. 

    Fig. 4.33: Scanning Electron Microscopy Of Alccofine 
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Fig. 4.34: Energy Dispersive X-Ray of alccofine 

Table 4.4: Elemental Mass Percentage Of Alccofine 

 

Elements Atomic % weight% 

C K 33.35 47.31 

O K 32.56 34.67 

Mg K 1.9 1.33 

Al K 5.5 3.47 

Si K 10.31 6.25 

K K 0.39 0.17 

Ca K 16 6.8 

TOTAL 100  
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4.8.2.2 Scanning Electron Microscopy ( ) and Energy Dispersive X-Ray 

( ) Analysis Of Ambient And Oven Cured 15% Alccofine Replacement 

Geopolymer Concrete 

 
 

The SEM and EDX analyses reveal significant differences in the microstructure and 

elemental composition of oven-cured and ambient-cured geopolymer concrete with 15% 

Alccofine replacement, as presented in Fig. 4.35– Fig. 4.38 and detailed in Tables 4.5 and 

4.6. The oven-cured sample demonstrates a compact and dense microstructure with minimal 

porosity, as evident from the SEM image (Fig. 4.35). The corresponding EDX analysis (Fig. 

4.36) indicates a high oxygen content (43.15%) and carbon content (31.25%), along with 

significant levels of silicon (7.8%) and calcium (7.9%). These findings confirm enhanced 

geopolymerization, driven by elevated temperature curing, which facilitates the formation of 

a strong aluminosilicate network. This process promotes the development of stronger 

chemical bonds, resulting in reduced porosity, improved mechanical properties, and superior 

durability. In contrast, the ambient-cured sample exhibits a less dense microstructure with 

visible porosity, as shown in the SEM image (Fig. 4.37). The EDX analysis (Fig. 4.38) 

reveals a significantly higher oxygen content (60.13%) and markedly lower carbon content 

(2.07%), reflecting slower geopolymerization. Although silicon (15.16%) and calcium 

(6.07%) are present, their levels are lower than those observed in the oven-cured sample, 

leading to a weaker and less uniform matrix. The slower reaction kinetics under ambient 

curing conditions contribute to the increased porosity and reduced mechanical integrity. 

These observations highlight the critical influence of curing conditions on the microstructure 

and performance of geopolymer concrete. High-temperature oven curing significantly 

enhances geo-polymerization, promoting a denser and more durable matrix. In contrast, 

ambient curing, while capable of facilitating essential reactions, results in slower bond 

formation and inferior mechanical properties, underscoring the importance of optimizing 

curing conditions for improved concrete performance. 
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Fig. 4.35: Scanning Electron Microscopy of Oven Cured 15 % Alccofine Replacement 

Geopolymer Concrete 

 

Fig. 4.36: Energy Dispersive X-Ray of Oven Cured 15 % Alccofine Replacement 

Geopolymer Concrete 
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Table 4.5: Elemental Mass Percentage Of Oven Cured 15 % Alccofine 

Replacement Geopolymer Concrete 

 

Elements Atomic % weight% 

C K 20.27 31.25 

O K 37.28 43.15 

N K 4.33 3.48 

Mg K 2.51 1.91 

Al K 6.32 4.34 

Si K 11.84 7.8 

K K 0.34 0.16 

Ca K 17.10 7.90 

TOTAL 100  

 

Fig. 4.37: Scanning Electron Microscopy of Ambient Cured 15 % Alccofine Replacement 

Geopolymer Concrete 
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Fig. 4.38: Energy Dispersive X-Ray Of Ambient Cured 15 % Alccofine Replacement     

Geopolymer Concrete 

 

Table 4.6: Elemental Mass Percentage Of Ambient Cured 15 % Alccofine 

Replacement Geopolymer Concrete 

 

Elements Atomic % weight% 

C K 1.2 2.07 

O K 46.44 60.13 

N K 11.46 10.33 

Mg K 1.35 1.15 

Al K 5.88 4.51 

Si K 20.56 15.16 

K K 0.42 0.22 

Ca K 11.74 6.07 

Fe L 0.94 0.35 

TOTAL 100  
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4.9 Durability Optimal Geopolymer Concrete (15% Alccofine) 
 

The durability of the optimal geopolymer concrete (15% Alccofine) was assessed under 

severe conditions, including seawater exposure, acid attack, magnesium sulfate attack, and 

wetting-drying cycles.  

4.9.1 Effect of Sea Water Condition  
 

The seawater condition was simulated by preparing a saline solution in the laboratory that 

mimics seawater, following ASTM standards. Specimens of both geopolymer concrete 

(GPC) and conventional concrete were immersed in the solution for an extended duration. 

The GPC specimens were analyzed for weight loss and compressive strength at intervals of 6 

weeks, 12 weeks, 18 weeks, and 24 weeks of exposure. 

4.9.1.1 Density  
 

The density and mass loss of geopolymer concrete (GPC) exposed to seawater are influenced 

by Alccofine dosage and curing conditions. Alccofine’s high pozzolanic activity enhances 

matrix densification, reducing porosity and improving chemical resistance. Oven-cured 

specimens with 25% Alccofine achieved a maximum density of 2554 kg/m³ after 6 weeks, 

compared to 2551 kg/m³ for ambient-cured specimens. Strength and density increased until 

12 weeks due to sodium ion interaction with the geopolymer matrix, enhancing binding and 

densification. After 12 weeks, these reactions stabilized, with density slightly decreasing by 

18 weeks due to leaching and ion exchange, stabilizing at 2545 kg/m³ (oven-cured) and 2535 

kg/m³ (ambient-cured). Higher Alccofine dosages mitigated mass loss and degradation by 

forming a dense microstructure with fewer pores.  
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Fig. 4.39: Density of ambient-cured geopolymer concrete immersed in seawater with varying 

percentages of alccofine replacement 

 

Fig. 4.40: Density of oven-cured geopolymer concrete immersed in seawater with varying 

percentages of alccofine replacement 
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4.9.1.2 Compressive Strength 
 

The compressive strength and density of geopolymer concrete (GPC) exposed to seawater 

significantly depend on the dosage of Alccofine, a mineral admixture with fine particles and 

high pozzolanic reactivity. Alccofine promotes the formation of calcium silicate hydrate (C-

S-H), enhancing resistance to seawater-induced degradation. As shown in Fig. 4.41 and Fig. 

4.42, the maximum compressive strength for ambient-cured GPC was 49.88 MPa at a 15% 

Alccofine dosage after 12 weeks, while oven-cured specimens achieved 53.23 MPa under the 

same conditions. Strength increased until 12 weeks due to the interaction of seawater sodium 

ions with the geopolymer matrix, enhancing densification and binding. Oven curing 

accelerated these reactions, leading to higher strength and density. However, beyond 18 

weeks, strength declined due to surface leaching and chloride penetration. At 24 weeks, 

ambient-cured specimens retained a compressive strength of 40.85 MPa, while oven-cured 

samples achieved 43.60 MPa. Despite this decline, the enhanced microstructure from 

Alccofine significantly mitigated long-term degradation, ensuring better durability than 

conventional concrete. 

 

 

Fig. 4.41: Compressive strength of ambient-cured geopolymer concrete immersed in 

seawater with varying percentages of alccofine replacement 
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Fig. 4.42: Compressive strength of oven-cured geopolymer concrete immersed in seawater 

with varying percentages of alccofine replacement 

 

4.9.2 Effect of sulphate attack  
 

The sulfate attack test was conducted by preparing a sulfate solution in the laboratory, 

dissolving magnesium sulfate in tap water in accordance with ASTM guidelines. 

Geopolymer concrete (GPC) specimens were immersed in the solution for an extended 

period and evaluated for weight loss and compressive strength at intervals of 6 weeks, 12 

weeks, and 18 weeks during exposure to the sulfate solution. 

4.9.2.1 Density  
 

The exposure of geopolymer concrete (GPC) to magnesium sulfate solutions affects its 

density and mass stability. Prolonged exposure of geopolymer concrete (GPC) to aggressive 

environments results in a reduction in density and mass loss, primarily due to chemical 

degradation and leaching processes. Oven-cured specimens with 25% Alccofine achieved a 

maximum density of 2520 kg/m³ after 12 weeks, compared to 2506 kg/m³ for ambient-cured 

specimens. Prolonged magnesium sulfate exposure reduced density, with oven-cured GPC 

stabilizing at 2505 kg/m³ and ambient-cured at 2481 kg/m³ after 18 weeks.  
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Fig. 4.43: Density of ambient-cured geopolymer concrete immersed in seawater with varying 

percentages of alccofine replacement 

 

 

 

Fig. 4.44: Density of oven-cured geopolymer concrete immersed in seawater with varying 

percentages of alccofine replacement 
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4.9.2.2 Compressive strength 
 

The compressive strength of geopolymer concrete (GPC) exposed to sulfate solutions is 

influenced by the dosage of Alccofine and the curing method. As shown in Fig. 4.45 and Fig. 

4.46 ambient-cured GPC specimens achieved a maximum compressive strength of 42.47 

MPa after 12 weeks at a 15% Alccofine dosage, while oven-cured specimens attained 45.53 

MPa under the same conditions. However, prolonged sulfate exposure led to a gradual 

decrease in strength, with ambient-cured specimens stabilizing at 35.01 MPa and oven-cured 

samples at 39.30 MPa after 18 weeks. This reduction in compressive strength after extended 

exposure is attributed to chemical reactions such as the formation of ettringite and gypsum 

due to sulfate attack. 

 

Fig. 4.45: Compressive strength of ambient-cured geopolymer concrete immersed in 

seawater with varying percentages of alccofine replacement 
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Fig. 4.46: Compressive Strength of Oven-Cured Geopolymer Concrete Immersed in 

Seawater with Varying Percentages of Alccofine Replacement 

 

4.9.3 Effect of Acid Attack  
 

The acid attack test was performed by preparing a 5% sulfuric acid solution in the laboratory, 

adhering to ASTM guidelines. Geopolymer concrete (GPC) specimens were submerged in 

the solution for an extended duration. The specimens were analyzed for weight loss and 

compressive strength at intervals of 6 weeks, 12 weeks, and 18 weeks while exposed to the 

acidic solution. 

4.9.3.1 Density 
  

The density and mass stability of geopolymer concrete (GPC) in acidic environments depend 

on Alccofine dosage and curing conditions. Alccofine showed superior resistance compared 

to fly ash-based GPC due to its dense, and enhanced calcium silicate hydrate (C-S-H) gel 

formation. Oven-cured specimens with 25% Alccofine achieved a maximum density of 

2505.46 kg/m³ at 12 weeks. Ambient-cured specimens showed similar trends, with densities 

reducing to 2492 kg/m³. 
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Fig. 4.47: Density of Ambient-Cured Geopolymer Concrete Immersed in Acid with Varying 

Percentages of Alccofine Replacement 

 

Fig. 4.48: Density of Oven-Cured Geopolymer Concrete Immersed in Acid with Varying 

Percentages of Alccofine Replacement 
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4.9.3.2 Compressive Strength 
 

The effect of Alccofine dosage on the compressive strength of geopolymer concrete (GPC) 

exposed to acidic environments was evaluated under ambient and oven curing conditions. 

The results indicate a progressive decline in compressive strength over time (from 6 to 18 

weeks) for all Alccofine dosages. An optimal dosage of 15% was identified, delivering the 

highest compressive strength in both curing methods: 39.08 MPa (ambient curing) and 41.89 

MPa (oven curing) at 6 weeks. Beyond this dosage, compressive strength decreased. At 18 

weeks, compressive strength for oven-cured specimens with 15% Alccofine remained higher 

(34.45 MPa) compared to their ambient-cured counterparts (31.58 MPa). 

 

 

 

Fig. 4.49: Compressive Strength of Ambient -Cured Geopolymer Concrete Immersed in Acid 

with Varying Percentages of Alccofine Replacement 
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Fig. 4.50: Compressive Strength of Oven-Cured Geopolymer Concrete Immersed in Acid 

with Varying Percentages of Alccofine Replacement 

 

4.9.4 Wetting-Drying Condition  
 

The wetting-drying process was implemented through a repeated cycle, wherein the 

specimens were submerged in water for 24 hours, followed by exposure to ambient 

conditions for another 24 hours. This cycle was continuously repeated over an extended 

duration, up to a total of 90 cycles. Geopolymer concrete specimens underwent this 

procedure, and evaluations were conducted at specified intervals (30, 45, 60, 75, and 90 

cycles) to assess mass loss and compressive strength. 

4.9.4.1 Density  
 

The density of geopolymer concrete (GPC) is affected by wetting and drying cycles due to 

moisture-induced expansion and contraction. Increased Alccofine dosage improved GPC 

resistance by enhancing microstructure and reducing permeability. After 30 cycles, the 

maximum density for oven-cured GPC with 25% Alccofine was 2478 kg/m³, slightly higher 

than ambient-cured specimens at 2473 kg/m³. Following 120 cycles, densities declined to 

2459 kg/m³ (oven-cured) and 2462 kg/m³ (ambient-cured), reflecting cumulative matrix 

degradation.  
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Fig. 4.51: Density of Ambient-Cured Geopolymer Concrete in Alternative Wetting-Drying 

with Varying Percentages of Alccofine Replacement 

 

Fig. 4.52: Density of Oven-Cured Geopolymer Concrete in Alternative Wetting-Drying with 

Varying Percentages of Alccofine Replacement 
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4.9.4.2 Compressive Strength  
 

The compressive strength of geopolymer concrete (GPC) under wetting-drying cycles is 

influenced by Alccofine dosage and curing conditions. These cycles cause alternating 

swelling and shrinkage, leading to micro-cracking and gradual strength reduction. However, 

GPC's chemical stability and dense matrix, enhanced by Alccofine, help mitigate these 

effects, maintaining higher long-term strength compared to conventional concrete in similar 

conditions. As shown in Fig. 4.53 and Fig. 4.54, the maximum compressive strength after 60 

wetting-drying cycles was 36.85 MPa for oven-cured GPC at a 15% Alccofine dosage, while 

ambient-cured specimens achieved 34.66 MPa at the same dosage. After 90 cycles, 

compressive strength decreased to 34.45 MPa (oven-cured) and 32.14 MPa (ambient-cured), 

reflecting the impact of continuous wetting-drying-induced stress. After 120 cycles, oven-

cured specimens retained 31.44 MPa, while ambient-cured samples stabilized at 30.32 MPa. 

 

Fig. 4.53: Compressive Strength of Ambient -Cured Geopolymer Concrete in Alternative 

Wetting-Drying with Varying Percentages of Alccofine Replacement 
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Fig. 4.54: Compressive Strength of Ambient -Cured Geopolymer Concrete in Alternative 

Wetting-Drying with Varying Percentages of Alccofine Replacement 

 

4.10 Conclusion  
 

This chapter comprehensively explores the effects of critical parameters and environmental 

conditions on the performance of geopolymer concrete (GPC), with a special focus on the 

role of Alccofine. The inclusion of Alccofine significantly enhances the mechanical and 

durability properties of GPC due to its fine particle size, high pozzolanic activity and 

contribution to calcium silicate hydrate (C-S-H) gel formation. Optimal Alccofine dosage, 

identified at 15%, improves compressive strength, flexural strength and splitting tensile 

strength under both ambient and oven curing conditions. Oven curing further amplifies these 

benefits by accelerating geopolymerization and creating a denser matrix. Environmental 

exposure tests reveal that GPC with Alccofine exhibits superior resistance to acid, sulfate and 

seawater attacks, as well as cyclic wetting-drying conditions. The addition of Alccofine 

mitigates mass loss and degradation, and enhances mechanical stability resulting in improved 

long-term durability. However, excessive Alccofine content may compromise workability 

and lead to segregation, emphasizing the importance of dosage optimization. In conclusion, 

the study confirms that Alccofine is a valuable additive for enhancing the performance of 

GPC.  
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Chapter 5 

 

The Optimized Machine Learning Methods to Evaluate 

Compressive Strength of Geopolymer Concrete  

 

5.1 Introduction  
 

This chapter elaborates on the predictive modeling of the compressive strength of alccofine-

based geopolymer concrete using machine learning algorithms applied to the data presented 

in Chapter 4. To account for the complex, non-linear interactions among factors affecting 

compressive strength, the basic and advanced machine learning methods Artificial Neural 

Networks (ANN), Support Vector Regression (SVR), Gene Expression Programming (GEP), 

Bidirectional Long Short-Term Memory (Bi-LSTM) networks and optimization algorithms 

like the Self-Improved Jelly Search (JS) optimizer were used to predict this compressive 

strength. Each model evaluates many significant aspects, including alccofine concentration, 

curing conditions, and mix proportions. A thorough comparison study was performed using 

statistical measures such as R², MAE, RMSE and MAPE to assess the predicted accuracy and 

dependability of each model. 

 

5.2 Basic Machine Models 
 

In this study, basic machine learning (ML) models, including Support Vector Regression 

(SVR), Gene Expression Programming (GEP), and Artificial Neural Networks (ANN), are 

implemented to perform predictive analysis and optimization effectively. 

SVR excels in handling high-dimensional data and provides robust predictions for 

classification and regression tasks. GEP, an evolutionary algorithm, develops mathematical 

models that reveal complex variable relationships. ANN, inspired by the human brain, 

captures nonlinear patterns, making it particularly effective for predicting GPC's mechanical 

properties and performance. These models analyze experimental data, optimize mix designs, 

and deepen the understanding of GPC behavior. Their performance is evaluated using 
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statistical metrics like R2, MSE, RMSE, MAE, and MAPE, ensuring accurate insights and 

hypothesis testing. This streamlined approach eliminates redundancy while maintaining 

clarity and focus. 

 

5.2.1 SVM Model 
 

The compressive strength of geopolymer concrete mixed with Alccofine was evaluated using 

a robust experimental dataset, split into training and testing sets in a 70:30 ratio using 

Python. Table 5.1 compares five Support Vector Regression (SVR) models (S1 to S5), 

highlighting differences in kernel functions, kernel scales, prediction speeds, and training 

times. The Linear SVR model (S1) demonstrated the fastest prediction speed (650 

observations/second) and shortest training time (15.49 seconds). The Cubic SVR model (S3), 

while slightly slower at 610 observations/second with a training time of 16.27 seconds, 

balanced computational efficiency with superior predictive performance.  

Table 5.1: Different Models Developed Using SVR 

 

  Kernel 

function 
 Prediction 

speed 

(obs/sec) 

Training 

time 

(sec) 

S1 Linear SVR Linear Automatic 650 15.49 

S2 Quadratic SVR Quadratic Automatic 640 16.59 

S3 Cubic SVR Cubic Automatic 610 16.27 

S4 Fine Gaussian 

SVR 

Gaussian 0.83 590 15.96 

S5 Medium 

Gaussian SVR 

Gaussian 3.3 630 15.66 

 

Table 5.2 reveals that the third model, using a cubic kernel function in SVR, produces the 

most precise predictions for the compressive strength of alccofine mixed geopolymer 

concrete. This model has a high coefficient of determination (R² = 0.987), a low rootmean 

square error (RMSE = 0.766) and a minimum mean absolute percentage error (MAPE = 

3.076) in comparison to other SVR models.  
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Table 5.2: Statistical Analyses of Models Developed Using SVR 

 

Statistical 

parameters 
 Model 2  Model 4  

R2 0.955 0.985 0.987 0.984 0.983 

RMSE 1.933 1.098 0.766 0.923 1.176 

MSE 3.738 1.207 0.587 0.852 1.384 

MAE 1.541 0.886 0.634 0.797 0.952 

MAPE 7.598 4.367 3.076 4.253 4.996 

 

Fig. 5.1 shows scatter plots comparing predicted and actual values for all models. The Cubic 

SVR model (S3) exhibited the closest alignment, confirming its high accuracy and minimal 

prediction error. This analysis highlights the Cubic SVR model as the optimal choice for this 

study 

 

   Fig. 5.1: Scatter Plots for Different Models Predicted Using SVM 
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5.2.2 GEP Model 
 

The present study adopts a modelling approach where the compressive strength is treated as 

the dependent variable, and ten independent parameters serve as input variables, as described 

in Equation (5.1). The model was developed using GeneXproTools 5.0 (2020) with 

fundamental arithmetic operators (+, −, ×, /). High-quality datasets were randomly divided 

into training and testing phases, and multiple models were created by varying the dataset 

proportions, program sizes, and the number of iterations, as detailed in Table 5.3. The 

modelling process utilized the root-mean-squared error (RMSE) as the fitness function (Ei) to 

evaluate model performance. The fitness value (fi) was calculated using an equation derived 

from the expression tree (ET), which accounts for cumulative error relative to the target 

value. Genetic components were synthesized through addition to construct an effective 

model. Fig. 5.2 illustrates the expression tree for GEP Model 3, which predicts compressive 

strength. The input parameters are labelled d0 to d10, with G1c5 representing the constant for 

gene one. A mathematical formula (Equation 5.1) was derived from Model 3, establishing an 

explicit relationship between input variables and the output variable, offering a 

comprehensive representation of the expression tree. 

 

         (5.1) 
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Fig. 5.2: GEP Formulated Expression Tree 
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Table 5.3 summarizes the models developed using Gene Expression Programming (GEP), 

detailing the configurations and data partitions for training and testing. Five models (M1 to 

M5) were generated, each with a distinct training-to-testing ratio. M1 used a 60:40 split, M2 

employed a 50:50 allocation, M3 utilized 70:30, M4 adopted 80:20, and M5 designated 90% 

for training and 10% for testing. All models were configured with 35 chromosomes, a head 

dimension of 13, and 8 genes. The program sizes ranged from 97 to 108, influenced by these 

factors. The number of literals varied between 38 and 42, while the total number of 

generations exhibited significant variation, ranging from 163,512 for M3 to 356,685 for M1. 

 

Table 5.3: Models Generated Using GEP 

 

According to the data in Table 5.4, the fifth model of GEP, employing eight genes, thirteen 

head sizes and a 90 percent to 10 percent data distribution for training and testing, produced 

the most precise predictions for the compressive strength of alccofine mixed geopolymer 

concrete relative to other GEP models. The result is substantiated by the model's elevated R2 

value of 0.995, low RMSE of 1.012 and negligible MAPE of 3.776.  

Fig. 5.3 presents scatter plots comparing the predicted and actual compressive strength values 

for the different models developed using Gene Expression Programming (GEP). Among 

these models, the third model (M3) demonstrates superior accuracy, showing closer 

 Trai

ning 

data 

(in 

perc

ent) 

Testing 

data 

(in 

percen

t) 

No. of 

chromoso

mes 

  

 

 

 

 

 

 No. of 

generat

ions 

M1 60 40 35 13 8 40 108 42 356685 

M2 50 50 35 13 8 40 97 38 270412 

M3 70 30 35 13 8 40 105 39 163512 

M4 80 20 35 13 8 40 105 40 260011 

M5 90 10 35 13 8 40 98 39 275016 
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alignment between the predicted and actual values. This indicates that M3 achieves minimal 

error and provides better predictive performance compared to the other models. 

Table 5.4: Statistical Analysis of Models Developed Using GEP 

 

Statistical 

parameters 

 Model 2   Model 5 

R2 0.977 0.978 0.995 0.974 0.987 

RMSE 1.357 1.338 1.143 1.442 1.012 

MSE 1.841 1.791 1.306 2.078 1.040 

MAE 0.985 1.022 0.866 1.092 0.797 

MAPE 4.631 4.867 4.141 5.599 3.776 

 

 

Fig. 5.3: Scatter Plots for Different Models Predicted Using GEP  

 

5.2.3 ANN Architecture 
 

The study utilized an artificial neural network (ANN) to predict the compressive strength of 

geopolymer concrete combined with alccofine. A feed-forward network was developed in 

Python using a back-propagation training algorithm. The ANN architecture consisted of 11 
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neurons in the input layer, a variable number of neurons in the hidden layer, and a single 

output neuron, as detailed in Table 5.5. Five ANN models (M1 to M5) were constructed 

using the TRAINLM training function, varying in hidden neurons, epochs, and performance 

metrics. Model M1, with 7 hidden neurons and trained over 22 epochs, achieved the best 

performance score of 0.92, a gradient of 0.480, and a Mu value of 0.100. The training 

process, illustrated in Fig. 5.4, exhibited a rapid decline in error during the initial phase, 

followed by convergence after 19 generations. Fig. 5.5 presents the error trends during 

training, testing, and validation, highlighting the progressive reduction in inaccuracies. This 

analysis underscores the significance of hidden neurons and training epochs in influencing 

model performance, offering critical insights for optimizing ANN design for accurate 

predictions. 

 

Fig. 5.4: Training Parameters During ANN Modeling 
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Fig. 5.5: Convergence Curve for the Training of Backpropgation Neural Network (BPNN) 

 

Table 5.5: Models Developed Using Artificial Neural Network (ANN) 

 

Model Input 

Neurons 

Hidden 

Neuron

s 

Epochs Performa

nce 

Gradient Mu Validati

on 

Checks 

Training 

Function 

M1 10 7 22 0.92 0.480 0.100 6 TRAINLM 

M2 10 8 34 0.317 0.571 0.001 6 TRAINLM 

M3 10 9 21 0.374 0.195 0.010 6 TRAINLM 

M4 10 10 13 0.607 2.76 0.010 6 TRAINLM 

M5 10 11 44 0.365 0.550 0.010 6 TRAINLM 

 

The data in Table 5.6 clearly indicates that the second ANN model, employing eight neurons 

in the hidden layers and TRAINLM as the training function, produces the most precise 

predictions for the compressive strength of alccofine mixed geopolymer concrete, as 

demonstrated by its high R2 value of 0.993, low RMSE value of 0.683 and low MAPE value 

of 2.492, surpassing the performance of the other ANN models.  

Fig. 5.6 presents scatter plots illustrating the predicted versus actual compressive strength 

values of geopolymer concrete for various ANN models. Among these, the second ANN 

model demonstrates superior performance, with predicted values showing closer alignment to 
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the actual values. This reduced error and improved agreement indicate the model's 

effectiveness in accurately predicting the compressive strength of geopolymer concrete. 

 

Table 5.6: Statistical Analysis of Models Developed Using ANN 

 

Statistical 

Parameters 

Model 1 Model 2 Model 3 Model 4 Model 5 

R2 0.981 0.993 0.990 0.983 0.990 

RMSE 1.230 0.683 0.913 1.179 0.888 

MSE 1.513 0.466 0.834 1.392 0.788 

MAE 0.912 0.528 0.655 0.938 0.686 

MAPE 4.699 2.492 3.199 4.854 3.707 

 

 

Fig. 5.6: Scatter Plots for Different Models Predicted Using ANN 

 

The predictive effectiveness of the SVR, GEP, and ANN models is evident from their close 

alignment with the line representing positive agreement. Among the models, SVR Model 3, 
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GEP Model 3, and ANN Model 2 exhibit projected values that closely follow the optimal 

fitted line, while other models display a more scattered distribution. Notably, the GEP model 

demonstrates greater variability in its predictions compared to SVR and ANN. Fig. 5.7 

provides a comparative analysis of the most effective models for predicting the compressive 

strength of alccofine-based geopolymer concrete, highlighting the strong alignment of the 

predicted values with the experimental data. The absence of overtraining syndrome further 

validates the robustness of these models. A detailed performance comparison, presented in 

Table 5.7, evaluates the models using statistical error metrics such as the coefficient of 

determination (R²), mean square error (MSE), root mean square error (RMSE), mean 

absolute error (MAE), and mean absolute percentage error (MAPE). Among the models, 

GEP Model 3 demonstrates superior performance, outperforming all prior models 

constructed using SVR and ANN, thereby underscoring its effectiveness in predicting the 

compressive strength with greater accuracy and generalization potential. 

 

Table 5.7: Statistical Analysis of Predicted Compressive Strength by Various 

Approaches 

 

Statistical Parameters 
 

GEP  5 ANN Model 2 

R2 0.987 0.995 0.993 

RMSE 0.766 1.012 0.683 

MSE 0.587 1.04 0.466 

MAE 0.634 0.797 0.528 

MAPE 3.076 3.776 2.492 
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  Fig. 5.7: Comparison of Best-Proposed Models 

 

5.3 Advanced Machine Learning  
 

Advanced machine learning models such as Bidirectional Long Short-Term Memory (Bi-

LSTM) networks and optimization algorithms like the Self-Improved Jelly Search (JS) 

optimizer have emerged as cutting-edge tools in geopolymer concrete (GPC) research. Bi-

LSTM, a variant of recurrent neural networks (RNNs), is adept at capturing long-range 

dependencies and contextual information in sequential data, making it particularly valuable 

for modelling time-dependent or process-driven behaviors in GPC properties. The JS 

optimizer, a novel met heuristic algorithm, enhances the search for optimal solutions by 

incorporating self-adaptive mechanisms, improving convergence speed and ensuring better 

global optimization. Together, these advanced methods provide powerful frameworks for 

predictive modelling, optimizing mix designs and uncovering intricate relationships within 

GPC data, contributing to the development of superior and sustainable concrete materials. 

 

5.3.1 Simulation Setup 
 

The proposed framework for predicting compressive strength was implemented and 

simulated using Python version 3.7. The simulation was conducted on a system equipped 
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with an 11th Gen Intel(R) Core (TM) i3-1115G4 processor, operating at a base frequency of 

3.00 GHz, and a total installed RAM capacity of 8.00 GB. 

 

5.3.2 Performance Analysis 
 

In this analysis, the distinct labels were considered: Predicting Compressive Strength, the 

predictive analysis encompassed the assessment of Bi-LSTM+SIJSO and conventional 

approaches, with a thorough examination of various error metrics, including MAE, MAPE, 

MSE, MSLE and RMSE.  

 

5.3.3 Error Analysis on Bi-LSTM1+SIJSO to Predict Compressive  

Strength 
 

Fig. 5.8 illustrates the error assessment of our Bi-LSTM+SIJSO model in comparison to 

various other models, including Bi-LSTM+AOA, Bi-LSTM+BMO, Bi-LSTM+BOA, Bi-

LSTM+BWO and Bi-LSTM+CA, for predicting Compressive strength. We conducted an 

analysis by varying the learning percentages and evaluating performance metrics such as 

MAE, MAPE, MSE, MSLE and RMSE. The objective was to achieve more accurate 

predictions of compressive strength by minimizing error ratings. As depicted in the graphical 

representation, our Bi-LSTM+SIJSO model consistently demonstrated lower error values, 

indicating its superior ability to precisely predict compressive strength. Primarily, when the 

training percentage is set at 70, the Bi-LSTM+SIJSO approach achieves an impressive 

MAPE of 0.007. In contrast, the conventional strategies yield higher MAPE values, with Bi-

LSTM+AOA at 0.034, BI-LSTM+BMO at 0.028, Bi-LSTM+BOA at 0.021, Bi-

LSTM+BWO at 0.024 and Bi-LSTM+CA at 0.033, respectively. In addition, the least MSE 

is attained using Bi-LSTM+SIJSO is 0.008 attaining rate 80, mean while the Bi-

LSTM+AOA, Bi-LSTM+BMO, Bi-LSTM+BOA, Bi-LSTM+BWO and Bi-LSTM+CA 

scored greater MSE ratings. The exceptional performance exhibited by the Bi-LSTM+SIJSO 

approach underscores its capability to make precise predictions of compressive strength. This 

achievement is made possible through the improved normalization-based pre-processing and 

the final prediction accomplished with the aid of SIJSO. 
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(a) 

 

(b) 
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(c) 

 

(d) 
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(e) 

Fig. 5.8: Error Evaluation On Bi-LSTM-SIJSO and Conventional Schemes (a) MAE (b) 

MAPE (c) MSE (d) MSLE and (e) RMSE for the Prediction of Compressive Strength 

 

Table 5.8 presents a comparison of classifiers between Bi-LSTM and conventional classifiers 

for prediction of compressive strength. Furthermore, we evaluate the performance of the 

proposed classifier (Bi-LSTM) against Bi-GRU, GRU, RNN, NN, CNN and LSTM. Mainly, 

the RMSE of the Bi-LSTM scheme is 0.092, whilst the Bi-GRU (0.260), GRU (0.229), RNN 

(0.213), NN (0.236), CNN (0.208) and LSTM (0.109) scored higher RMSE ratings.  
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Table 5.8: Classifier Comparison on Bi-LSTM and Conventional Classifiers  

for the Prediction of Compressive Strength 

 

Metrics Bi-LSTM Bi-GRU GRU RNN NN CNN LSTM 

MSE 0.008 0.068 0.053 0.045 0.056 0.043 0.012 

MAE 0.021 0.138 0.116 0.120 0.127 0.116 0.022 

MSLE 0.005 0.034 0.026 0.020 0.028 0.021 0.006 

MAPE 0.123 0.945 0.773 0.412 0.210 0.578 0.526 

RMSE 0.092 0.260 0.229 0.213 0.236 0.208 0.109 

 

5.3.4 Statistical Analysis on Error 
 

Table 5.9 describes the statistical assessment on SIJO methodology is compared with AOA, 

BMO, BOA, BWO and CA for compressive strength prediction framework. In order to 

ensure the generation of highly precise calculations, each approach undergoes a 

comprehensive evaluation process. This evaluation involves a meticulous analysis of key 

statistical measurements, encompassing parameters such as minimum, mean, standard 

deviation, median and maximum values. When these metrics are combined, they provide a 

comprehensive insight into the effectiveness and consistency of the tactics being researched. 

Considering the mean statistical metric, the Bi-LSTM-SIJO scored the least error value of 

0.032, whereas the Bi-LSTM-AOA, Bi-LSTM-BMO, Bi-LSTM-BOA, Bi-LSTM-BWO and 

Bi-LSTM-CA resulted in greater error ratings. Additionally, the SIJO approach yields the 

lowest error rate, which stands at 0.018 when considering the minimal statistical metric. 

Meanwhile, the error rates for other metrics are as follows: Bi-LSTM-AOA at 0.020, Bi-

LSTM-BMO at 0.027, Bi-LSTM-BOA at 0.022, Bi-LSTM-BWO at 0.021 and Bi-LSTM-CA 

at 0.026. 
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Table 5.9: Statistical Evaluation on Error 

 

Statistical 

Metrics 

Bi-LSTM 

AOA 

Bi-LSTM 

BMO 

Bi-LSTM 

BOA 

Bi-LSTM 

BWO 

Bi-LSTM 

CA 

Bi-

LSTM 

SIJO 

Mean 0.034 0.036 0.036 0.036 0.035 0.032 

Minimum 0.020 0.027 0.022 0.021 0.026 0.018 

Standard 

Deviation 0.009 0.005 0.006 0.008 0.006 0.010 

Median 0.039 0.037 0.039 0.036 0.035 0.037 

Maximum 0.043 0.043 0.043 0.043 0.043 0.043 

 

 

5.3.5 Convergence Analysis 
 

The convergence evaluation on Bi-LSTM-SIJO over Bi-LSTM-AOA, Bi-LSTM-BMO, Bi-

LSTM-BOA, Bi-LSTM-BWO and Bi-LSTM-CA for compressive strength prediction 

framework is shown in Fig. 5.9. To enhance the prediction of compressive strength, it is vital 

for the model to achieve reduced error rates and demonstrate faster convergence. Initially, 

both the SIJO and traditional approaches demonstrated minimal error rates during the early 

iterations. However, as the iterations improved, the error rates decreased even more. It's 

important to highlight that the Bi-LSTM-SIJO approach consistently maintained a lower 

error rate in comparison to the conventional strategies. Specifically, at the 25th iteration, the 

error value for the SIJO method is 0.017, while alternative methods such as Bi-LSTM-AOA, 

Bi-LSTM-BMO, Bi-LSTM-BOA, Bi-LSTM-BWO and Bi-LSTM-CA yielded slightly higher 

error rates of 0.021, 0.028, 0.024, 0.022and 0.027, respectively. Therefore, the outstanding 

performance witnessed during the convergence evaluation highlights the potential of the 

SIJO method to achieve accurate predictions of compressive strength. This ability is directly 

attributable to the integration of improved normalization, Bi-LSTM classification strategy 

and the utilization of SIJSO for final predictions, all of which collectively contribute to an 

enhanced overall prediction performance. 
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Fig. 5.9: Convergence Analysis on SIJO and Conventional Methods 

 

5.4 Conclusion  
 

This thesis has comprehensively demonstrated the potential of machine learning models, both 

basic and advanced, in predicting the compressive strength of alccofine-based geopolymer 

concrete and optimizing its mix designs. Among the basic models, ANN Model 2 stood out 

with a high R² value of 0.993, a low RMSE of 0.683 and a MAPE of 2.492, showcasing its 

robustness and predictive accuracy. SVM Model 3 with a cubic kernel achieved an R² of 0.987 

and RMSE of 0.766, while GEP Model 3 displayed an R² of 0.995 with RMSE of 1.012, 

highlighting their effectiveness in capturing complex relationships. Advancing this work, the 

Bi-LSTM integrated with the Self-Improved Jelly Search Optimizer (SIJSO) further enhanced 

predictive performance, achieving a MAPE of 0.007, MSE of 0.008 and RMSE of 0.092, 

outperforming conventional Bi-LSTM models with alternative optimizers. Statistical and 

convergence analyses validated the SIJSO method, with the lowest mean error of 0.032 and a 

minimal error of 0.017 by the 25th iteration. These findings underscore the transformative 

potential of AI-driven approaches in designing eco-friendly and high-performance construction 

materials, laying a strong foundation for future research in sustainable material development 

and civil engineering advancements. 
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Chapter 6 

Conclusion 
 

6.1 General 
 

This chapter presents the conclusions derived from the current research work. Based on the 

experimental results and subsequent discussions, conclusions have been drawn regarding the 

investigation and optimization of various control parameters, including the liquid-to-binder 

ratio, superplasticizer-to-liquid-binder ratio, molarity of the NaOH solution, sodium silicate-

to-sodium hydroxide ratio (SS/SH), curing temperature, and alccofine replacement level, on 

the fresh, hardened, and durability properties of geopolymer concrete. 

• The optimal liquid-to-binder (L/B) ratio for geopolymer concrete was found to be 

0.55, balancing workability and strength. This ratio achieved a slump of 89 mm, 

indicating adequate workability while maintaining high compressive strength and 

density. Lower ratios such as 0.35 or 0.40 enhanced strength and density but reduced 

workability due to limited flowability. 

 

• A dosage of 1.5% superplasticizer yielded superior compressive strengths of 36.00 

MPa under ambient curing and 40.99 MPa under oven curing after 56 days. 

Exceeding this optimal dosage led to segregation and reduced density due to 

bleeding. 

 

• The molarity of sodium hydroxide (NaOH) directly influenced the geopolymerization 

process. A 10M concentration was optimal, achieving maximum compressive 

strengths of 38.46 MPa under ambient curing and 41.16 MPa under oven curing. 

Higher molarities led to alkali saturation, while lower molarities compromised 

strength due to incomplete polymerization. 

 

• The sodium silicate to sodium hydroxide (SS/SH) ratio significantly affected the 

geopolymer matrix. An SS/SH ratio of 2.00 provided the best results, yielding a 
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compressive strength of 37.50 MPa under ambient curing and 41.76 MPa under oven 

curing. This ratio ensured good workability, with a slump value of 91 mm, and 

enhanced strength through improved polymer bonding. Ratios above 2.00 increased 

viscosity, reducing workability and compactness. 

 

• Curing temperature was a critical factor influencing strength and density. The optimal 

range was between 80°C and 100°C, achieving maximum compressive strength of 

43.65 MPa and density of 2523 kg/m³. Temperatures above 100°C caused some 

micro-cracking due to excessive water loss and thermal stresses, while lower 

temperatures around 60°C produced only moderate strength due to slower 

geopolymerization. 

 

• A dosage of 15% of alccofine was optimal, providing compressive strengths of 50.98 

MPa under ambient curing and 53.10 MPa under oven curing after 56 days. This 

dosage enhanced particle packing, reduced voids. Higher dosages reduced strength 

due to decreased workability and incomplete reaction. 

 

• In geopolymer concrete exposed to seawater conditions, an initial increase in strength 

and density is observed up to 12 weeks, attributed to continued geopolymerization. 

However, prolonged exposure beyond this period leads to degradation due to 

chemical interactions with seawater ions, causing strength reduction and mass loss. 

 

• Geopolymer concrete subjected to acid and sulfate attacks exhibits notable mass and 

strength losses over time. The aggressive chemical environments deteriorate the 

microstructure by disrupting the polymeric chains and reducing durability. 

 

• The study investigated compressive strength prediction in alccofine-based 

geopolymer concrete using machine learning models, including ANN, SVR, and 

GEP. Evaluation metrics such as R², RMSE, MAPE, assessed model performance. 

GEP showed superior predictive accuracy with an R² of 0.995 and RMSE of 1.012, 

while ANN (R²: 0.993, RMSE: 0.683) and SVR (R²: 0.987, RMSE: 0.766) also 
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performed well. GEP's strength lay in its ability to model complex, non-linear 

relationships.  

 

• This thesis has successfully demonstrated the efficacy of advanced machine learning 

models, particularly Bi-LSTM integrated with the Self-Improved Jelly Search 

Optimizer (SIJSO), for accurately predicting the compressive strength of geopolymer 

concrete. The Bi-LSTM+SIJSO model achieved superior error metrics, including a 

MAPE of 0.007, MSE of 0.008, and RMSE of 0.092 at optimal training percentages, 

outperforming conventional approaches such as Bi-LSTM+AOA, Bi-LSTM+BMO, 

and others. Statistical analysis further validated the SIJSO method, recording the 

lowest mean error of 0.032 and a minimal error of 0.018 compared to alternative 

methods. Convergence analysis revealed the SIJSO model consistently maintained a 

lower error rate, achieving an error of 0.017 by the 25th iteration. These results 

highlight the advanced model's capacity for precise predictions and its potential to 

revolutionize the design of eco-friendly and high-performance construction materials.  

 

6.2 Future Scope  
 

• Exploring alternative supplementary cementitious materials such as metakaolin, silica 

fume, or rice husk ash in combination with Alccofine could enhance geopolymer 

concrete’s mechanical and durability properties. Future research could focus on 

evaluating the long-term performance of geopolymer concrete under diverse 

environmental conditions, including freeze-thaw cycles, elevated temperatures, 

marine environments, and harsh chemical exposures. Investigating the impact of real-

time environmental factors such as humidity, temperature, and curing conditions 

could further enhance model generalization and applicability, enabling more accurate 

predictions of geopolymer concrete performance in real-world scenarios. 

 

• This research on geopolymer concrete using machine learning models such as SVR, 

GEP, and ANN highlights several promising directions for future exploration. 

Integrating hybrid models that combine the strengths of these algorithms could 
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significantly enhance prediction accuracy and reliability. Advanced optimization 

techniques like genetic algorithms, particle swarm optimization, and differential 

evolution could be employed to fine-tune model parameters for better performance. 
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