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 ABSTRACT 

 

The Darjeeling Himalayas, particularly the Kalimpong region, experience frequent 

landslides due to a complex interplay of geological, hydrological, seismic, and 

anthropogenic factors. This research provides a comprehensive slope stability 

assessment of Kalimpong using a multidisciplinary approach that integrates geotechnical 

investigation, numerical modeling, and geospatial analysis. The study begins with a 

detailed review of the region’s geology, geomorphology, and historical landslide 

activity. Field investigations were conducted to collect soil and rock samples, and 

extensive laboratory tests were performed to determine key geotechnical parameters 

such as cohesion, internal friction angle, unit weight, and permeability. Using these 

inputs, slope stability was evaluated through GeoStudio SLOPE/W software, applying 

the Morgenstern-Price method under various conditions—static and dynamic, dry and 

saturated. The results revealed that many natural slopes in Kalimpong are marginally 

stable under dry conditions but exhibit critical instability when subjected to rainfall 

infiltration and seismic forces. The Factor of safety (FOS) significantly dropped below 

1.0 for several slopes under dynamic-saturated scenarios, indicating a high probability of 

failure. Furthermore, stabilization strategies such as soil nailing were modelled and 

validated in SLOPE/W, showing significant improvements in FOS values and thus 

enhancing slope resilience. 

To complement the site-specific analyses, the study incorporated GIS-based landslide 

susceptibility mapping using the Frequency ratio (FR) model. Geospatial layers 

representing conditioning factors—including slope angle, aspect, elevation, lithology, 

proximity to roads and faults, and rainfall intensity—were developed using Shuttle 

Radar Topography Mission (SRTM) Digital Elevation model (DEM) and remote sensing 

data. The FR model quantified the correlation between historical landslide events and 

each parameter, producing a susceptibility zonation map that classified the region into 

low, moderate, and high-risk zones. Approximately 38% of the study area fell into 
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moderate-to-high susceptibility classes, aligning with known landslide-prone corridors 

and anthropogenic ally disturbed slopes. This dual approach—merging deterministic 

Limit Equilibrium method (LEM) based modelling with probabilistic geospatial 

assessment—allowed for both micro and macro-scale understanding of slope instability 

in the region. The study also outlines policy recommendations, emphasizing the 

integration of slope stability analysis in infrastructure planning, particularly in seismic 

zones and monsoon-affected terrains. Overall, the thesis delivers a robust framework for 

landslide hazard mitigation in the Kalimpong region and sets the foundation for future 

research incorporating machine learning models, real-time monitoring, and climate 

change projections for improved early warning and slope management strategies. 
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CHAPTER 1 

 INTRODUCTION 
 

1.1     General 

 

Earth embankments are frequently needed for levees, roads, railroads, river 

training projects, and earth dams. Since their failure could result in both enormous 

financial loss and the loss of human life, the stability of these embankments, also 

known as slopes, should be carefully examined. In the majority of engineering 

applications, slope analysis is typically carried out to recommend a safe and cost-

effective design for associated structures including earth dams, embankments, and 

excavations. The identification of crucial geological, material, environmental, and 

economic aspects is aided by preliminary analyses. Slope stability analysis becomes 

a crucial component for organizing in-depth studies of the aforementioned 

structures. Generally speaking, determining the stability of any slope accurately 

requires prior geotechnical and engineering geology experience in the area. Slope 

stability assessment is frequently an interdisciplinary endeavor that calls for input 

from engineering geology, soil mechanics, and rock mechanics. The total mass of 

soil that contributes to the failure moves outward and downward in each slope 

failure. Slope failure results from the effect of gravitational forces, Soil seepage 

forces, and Earthquake loading shown in a generalized Fig 1.1. 

 

Fig 1.1 Illustration of a landslide  in general 
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Slope failure can also result via excavation and the slow breakdown of the 

soil's structure. Because gravitational forces try to mobilise a portion of the mass 

downward to obtain a more level surface, every finite sloping surface is always 

susceptible to shearing pressures on almost all of its internal surfaces. There are two 

components to an analysis of slope stability:  

a) Identifying the surface that is in a state of limiting equilibrium or 

about to move. 

b) Calculating the shearing strength and stresses along this surface. 

Shear stress on any slope surface is dependent on a number of factors, 

including the slope's shape and material unit weights. The density, drainage, and 

characteristics of the soil all affect the mobilised shearing strength along any plane. 

1.2     Causes of Slope Failures 

 

The gravitational and other forces (such as tectonic stresses and 

earthquake forces) cause the sliding movement of any slope. The shearing resistance 

of the soil along the plane of failure tries to prevent the movement. When the 

shearing resistance is overcome by the mobilizing forces trying to cause movement, 

the slope becomes unstable. Sudden failure of natural slopes may be caused due to 

one or several of the following reasons: 

a) The current balance of forces is altered when portions of a slope or the 

ground next to the slope are excavated or filled. 

b) Seismic activities (i.e. earth tremors or earthquakes). 

c) Sudden rise in water table leads to increase in pore water pressure inside a 

slope and subsequent reduction in the shear strength of existing soil mass. 

This may be caused activities such as deforestation, alteration of natural 

drainage conditions, reservoir construction or excessive rainfall etc.  

d) Deformations which are not significant enough to cause instability of the slope 

but gradually leading to failure. Such deformations help to reduce the shear 

strength of the soil in a progressive manner. These often occur along major 

natural discontinuities, ancient slip surfaces and tectonic zones within a slope.  

e) Increase in pore water pressure after many years of a cutting or an excavation 
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(for low permeability soil) leading to considerable reduction of the shear 

strength of soil.  

f) Weathering of soil disturbs the internal structure or the bonds between the 

soil particles. The shear strength of the soil is greatly reduced by weathering 

activity. For over-consolidated clays and shales, weathering leads to increase 

of recoverable strain energy and its tendency to failure (Bjerrum, 1967). 

Weathering may be accelerated by slope disturbance and exposure to 

atmospheric and other agencies such as stream action. 

 

1.3     Importance of Slope Stability Analysis 

 

For man-made or natural slopes (e.g. embankments, road cuts, open-pit 

mining, excavations, landfills etc.), slope stability analysis forms an integral part to 

assess its safety and economy. Slope stability analysis helps us to find endangered 

areas, potential causes of failure, sensitivity to different triggering mechanisms etc. 

The analysis also helps us to arrive at a safe, reliable, economical design of any 

slope and also find remedial measures against failure of the same. 

Slope stability analysis is a crucial component of geotechnical engineering, 

essential for ensuring the safety and sustainability of infrastructure in regions prone 

to landslides and soil instability. Unstable slopes pose serious risks to human lives 

and critical infrastructure such as roads, dams, bridges, and urban settlements. 

Landslides often triggered by heavy rainfall, seismic events, and anthropogenic 

activities, result in catastrophic consequences, including fatalities, loss of property, 

and economic setbacks. For instance, studies highlight that rainfall-induced 

landslides account for substantial damage to infrastructure annually, particularly in 

mountainous and tropical regions (Petley, 2012, Pardeshi et al., 2013). Slope 

stability analysis helps identify potential failures early, enabling mitigation 

strategies to safeguard lives and assets. 

From a sustainability perspective, slope stability is vital for the long-

term viability of development projects. Failure to assess and address stability issues 

can lead to project delays, cost overruns, and environmental degradation. Stabilized 

slopes are instrumental in preventing soil erosion, preserving topsoil, and 
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maintaining the ecological integrity of natural landscapes (Lacasse et al., 2009). 

Furthermore, advancements in computational modeling and remote sensing 

techniques, such as the use of high-resolution geospatial data, have significantly 

enhanced the accuracy of slope stability assessments (Fan et al., 2020, MORA C 

and Vahrson, 1994). 

Environmental impacts are another key concern. Landslides often lead 

to sedimentation of rivers, destruction of vegetation, and disruption of ecosystems. 

Proactive slope stability measures reduce these impacts, contributing to sustainable 

land use management (Wang et al., 2021). Additionally, integrating soil 

reinforcement methods such as soil nailing and geosynthetics can further improve 

slope stability under static and dynamic conditions (Sharma et al., 2019). Slope 

stability analysis is indispensable for safeguarding infrastructure, minimizing 

environmental impacts, and ensuring sustainable development. Comprehensive 

assessments incorporating modern technologies and mitigation techniques can 

significantly reduce the risks associated with slope failures. Slopes may be of two 

types: infinite slope and finite slope. If a slope represents the boundary surface of a 

semi-infinite soil mass and the soil properties for all identical depth below the surface 

are constant, it is called a finite slope. The present work mainly deals with finite 

slopes. The examples of finite slopes are the inclined faces of earth dams, 

embankments and cuts etc. In the present study, the stability analysis is done for 

finite slopes based on limit equilibrium technique. Evaluation of safety factor (i.e. 

factor of safety) using limit equilibrium technique utilizes the principle of static 

equilibrium along discretized failure surface. Limit equilibrium technique based 

(Morgenstern and Price, 1965) is used to evaluate the FOS of potential failure 

surface. This method satisfies both moment and force equilibrium for all the slices 

in the discretized failure mass. 

 

1.4    Research Gap 

 

      Following research gaps have been identified despite the known susceptibility 

of Kalimpong to landslide events, there remains a significant research gap in this 

area. 
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1. To date, no comprehensive studies have been undertaken to conduct landslide 

susceptibility mapping and slope stability analysis in this region. This lack of 

detailed, site-specific research means that the critical factors contributing to 

landslide risks in Kalimpong remain poorly understood. Consequently, the 

development of effective mitigation strategies and risk management plans is 

hindered, underscoring the urgent need for focused research in this domain. 

2. A significant research gap exists in Kalimpong as no comprehensive studies 

have been conducted on slope stability analysis under both static and dynamic 

conditions. This lack of research leaves critical uncertainties in predicting and 

mitigating landslide risks, highlighting the urgent need for detailed studies in 

this area. 

3. A significant research gap exists as no studies have applied machine learning 

techniques separately to static and dynamic conditions in slope stability 

analysis taken consideration of Kalimpong. This omission hampers the 

development of accurate and comprehensive predictive models, highlighting 

the need for targeted research in this area. 

 

1.5  Research objectives and scope 

 

This research has been carried out to use several metaheuristic 

optimisation techniques and the limit equilibrium technique to perform slope 

stability analysis for a number of challenges. Below is a list of the current study's 

objectives: 

a) To locate the critical sites in Kalimpong region as study area. 

b) To investigate the soil parameters of the study area based on field and 

laboratory tests. 

c) To prepare models in the software of the slopes and to assign the soil 

properties. 

d) To analyze the models developed in the software under static and dynamic 

loading in dry condition. 

e) To analyze the models developed in the software under static and dynamic 

loading in saturated condition. 

f) To propose the appropriate technique to stabilize the unstable slopes. 

g) To analyze the slopes after stabilizing technique adopted. 
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The overall aim of this PhD research is to comprehensively evaluate the stability of 

critical slopes in the Kalimpong region through field and laboratory characterization, 

numerical modeling, and simulation under varying loading and moisture conditions, 

and to develop effective stabilization measures for enhancing slope safety. 

1.6     Presentation of the Thesis 

 

The thesis is composed of six chapters. Brief descriptions of the 

contents of each chapter are as follows: 

Chapter 1 – Introduction: The concept of slope stability and the significance 

of its assessment in mountainous terrain like Kalimpong are introduced. 

Causes of slope failures, the impact of rainfall, seismicity, and 

anthropogenic activities are described. The aim and objectives of the 

study, focusing on geotechnical analysis, modeling, and mitigation, are 

outlined. 

Chapter 2 – Literature Review: An overview of past research on landslides, 

slope behavior, and analytical methods is presented. Factors influencing 

slope failures are explored, and GIS, remote sensing, and machine 

learning applications are reviewed. Also, the gaps in the present state of 

the art knowledge in the area of slope stability analysis is provided at the 

end of this chapter. 

Chapter 3 – Materials and Methodology: Field investigation, laboratory 

testing (Atterberg limits, compaction), and data collection for slope 

modeling are detailed. The use of SLOPE/W software for analyzing 

slopes under dry/saturated, static/dynamic scenarios before and after 

stabilization is explained. The GIS-based Frequency Ratio method used 

to generate susceptibility maps with thematic layers is described. 

Chapter 4 – Results and discussions: The results of slope stability analyses for 

six slope locations under static as well as dynamic condition 

emphasizing their combined role in reducing slope safety. It highlights 

the need for effective stabilization measures to mitigate failure risks. 

Among the techniques evaluated, soil nailing emerged as an efficient 
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method for improving slope performance under both static and dynamic 

conditions.  

Chapter 5– Conclusion, future scope and social impact: This chapter presents 

conclusions based on the current work. Summarizes key outcomes 

showing that slopes are marginally stable and become critical under 

extreme conditions. 
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 CHAPTER 2 

 LITERATURE REVIEW 
 

2.1 General 

 

Natural calamities are inevitable and disastrous. The increasing 

frequency and magnitude of landslides contribute significantly to natural disasters. 

However, early warning and detailed study of the landslides and landslide-prone 

areas have proven to be effective in minimising the risk, which is mainly reinforced 

by the increasing frequency of socio-economic impacts as well as the rapid 

population spread out on mountainous environment (Santi et al., 2011, Highland and 

Bobrowsky, 2008, Aleotti and Chowdhury, 1999). According to the evaluation of 

Research on the Epidemiology of Disasters (CRED, 2020), India was the third most 

affected country in the previous two decades by geo hydro-meteorological 

catastrophes. Aside from all the natural risks in mountainous areas, landslides are 

perhaps the broadest common and most severe hazards, affecting at least 15% of our 

country's geographical location.  

"Landslide" is characterised as the movements of slope-forming 

materials made out of rocks or soils down a slope under the direct effect of gravity 

(Schuster and Wieczorek, 2018, Cruden, 1991, Hutchinson, 1988, Varnes, 1978). 

This morpho-dynamic phenomenon is widespread in the tectonically active 

Himalayas, where landslide hazards are most prevalent, especially during intense 

rainfall. Landslides can happen by sliding, flowing, toppling, or falling movements 

and numerous avalanches (Hutchinson, 1988, Varnes, 1978, Lugo Hubp, 1999, 

Crozier, 2010). The occurrence of landslides is triggered by different phenomena, 

including heavy regional rainfall as a consequence of changing climatic 

circumstances, rapid snow melting, earthquakes, and a variety of human activities 

like continued deforestation, unplanned urbanisation, development, etc. in the 

landslide-prone area (Wieczorek, 1996). India has growing vulnerability towards 

landslides, particularly in the Himalayan geo-dynamically active region and Arakan-

Yoma belt of the Northeastern parts of the country because of their dynamic seismic 

events, diverse geographical characteristics along with feeble topographical 
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materials, and stable domains of the Meghalaya Plateau, the Western Ghats in the 

South West of the nation (van Westen et al., 2012). Hence, the Himalayan region 

alone contributed around 30% of the world's complete devastations because of 

landslide and their connected obliterations (Dahal et al., 2009). The rugged 

topography, steep slopes, and deep and narrow valleys encourage mass movement 

like earth flow, rockfall cum debris slide, avalanches, rockfall, and rock block slides 

that can be controlled by gravity which may vary in size from very large scale to 

small scale (Shroder Jr and Bishop, 1998, van Westen et al., 2012, Gerrard, 1994). 

On top of that, the climate variables such as rainfall, temperature variation, and 

freezing and thawing action play a vital role in slope failures (Kumar et al., 2019, 

Kumar et al., 2018, Lee et al., 2013, Chang et al., 2011, Gupta et al., 2016, Sah and 

Mazari, 1998). The slopes may be undercut or scoured by the action of the high rate 

of erosion as a consequence of complicated tectonic activities, rivers, and extreme 

climate conditions (Wulf et al., 2012, Thiede et al., 2009). In addition, socio-

economic development activities in the Himalayan region play havoc with the slope 

failures considering rapid urbanisation that demands proper infrastructure 

developments in remote areas and the construction of highways for the 

communication link between the remote terrains of the Himalayas and the low land 

areas of peninsular India.  

 

2.2 Site Study 

 

Slope failures are the easiest natural hazard to prevent, reduce, or resolve 

(Collins and Znidarcic, 2004) Landslides occur on a large portion of land surfaces 

except snow covered in India (Chawla et al., 2018). As per the Geological Survey of 

India (2014), approximately 0.42 million square kilometers of land are prone to 

landslides, with nearly 43% of this area located in the NEHR. Data from the NCRB 

covering the years 2010 to 2019 reveal that landslides cause an average of 304 

accidental deaths annually across India. Alarmingly, the evolving global climate has 

led to more frequent and intense weather disturbances, which, in turn, have 

heightened the risk of landslides. This risk is further compounded by rapid, 

unplanned urban growth and unsystematic land-use modifications in hilly and 
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mountainous regions (Khanna et al., 2021, Phong et al., 2021, Pourghasemi et al., 

2012). Situated within the NEHR, Kalimpong district is highly vulnerable to both 

minor and major landslides, especially during the monsoon months from July to 

September. The region features steep mountainous terrain that experiences intense 

rainfall, contributing significantly to slope instability. The main urban settlement is 

positioned on a ridge near the Teesta River, while several other rivers—such as the 

Relli, Neora, Geesh, Leesh, Jaldhaka, and Murti—along with numerous small 

streams, drain the area. These watercourses actively erode the valley slopes, 

intensifying their steepness and promoting slope failure. The narrowing of 

interfluvial zones further escalates the landslide susceptibility. Between June and 

September, Kalimpong records average monthly rainfall ranging from 119 cm to 417 

cm (source: https://worldclim.org). Human-induced developments like road 

construction, settlements, and hydropower installations disturb the natural slope 

conditions by stripping vegetation, making the soil more prone to displacement. Even 

a slight presence of water can trigger the movement of this loose material downhill. 

These combined factors make Kalimpong an ideal region for studying landslides. 

Identifying high-risk zones is essential so that appropriate mitigation strategies can 

be implemented to protect both lives and property (Roy et al., 2022).  

Kalimpong, located in the Darjeeling Himalayas of West Bengal, India, 

forms part of the tectonically active and geologically diverse LHS. This region, 

shaped by the ongoing Himalayan orogeny, features complex stratigraphy, structural 

deformation, and active geomorphic processes. The interaction of tectonic activity, 

lithology, and climatic factors contributes to the region's susceptibility to landslides 

and slope instability (Steck, 2003). The Himalayan orogeny, initiated during the 

collision of the Indian and Eurasian tectonic plates in the Cenozoic era, has produced 

major thrust zones, such as the MCT and MBT, which significantly influence 

Kalimpong's geology. These tectonic features have resulted in steep slopes, deep 

valleys, and active river systems that dominate the landscape (Das et al., 2022). The 

regional geology of the Kalimpong area reflects the broader tectonic and lithological 

characteristics of the Darjeeling Himalayas. Located south of the MCT, which 

divides the high-grade metamorphic rocks of the Higher Himalayas from the low- to 
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medium-grade rocks of the Lesser Himalayas, the region's lithology is significantly 

influenced by the Lepcha Thrust, a subsidiary fault of the MCT responsible for 

extensive folding and faulting (Das et al., 2024). Dominated by the Daling Group of 

Rocks, which include phyllites, quartzites, schists, and gneisses of Precambrian to 

Paleozoic age, the lithology is highly weathered and fractured, making it 

mechanically weak and prone to instability under static and dynamic loads(Das et al., 

2022). The geomorphology of the region is marked by steep slopes, deeply incised 

river valleys, and landslide-prone terrain shaped by the Teesta and Rangit rivers 

through erosion and sediment deposition (Nath et al., 2021). Stratigraphically, the 

Daling Group forms the foundation, with Lower Dalings comprising weak phyllites 

and slates and Upper Dalings characterized by schists interbedded with quartzites 

(Steck, 2003). Overlying these are the Darjeeling Gneiss Complex, consisting of 

high-grade metamorphic rocks such as banded and augen gneisses, reflecting deep 

crustal processes of Himalayan orogeny. Recent alluvial and colluvial deposits 

dominate lower valleys, contributing to slope instability and geomorphological 

evolution (Das et al., 2022). Structurally, the region exhibits intense deformation 

with thrust faults like the Lepcha Thrust creating shear zones, tight isoclinal folds 

aligned northwest-southeast indicating compressive Himalayan forces, and 

lineaments that act as conduits for groundwater, exacerbating instability during 

monsoons (Mandal & Maiti, 2015; Sarkar et al., 1995; Das & Basu, 2012). 

Geomorphological features such as steep slopes shaped by river incision and 

landslide-prone zones underlain by phyllites and weathered schists, particularly on 

slopes exceeding 30°, are common (Nath et al., 2021, Das et al., 2024). Seismically, 

the region lies in Zone IV, experiencing moderate earthquakes that have historically 

triggered landslides, as seen after the 1934 Bihar-Nepal earthquake (Das et al., 

2022). The ongoing tectonic activity along the MCT and related faults underscores 

the seismic and slope stability hazards in the area (Nath et al., 2021). Before 

analysing further objectives of this research, let us get into the basics of landslides, 

categories, types and methods of slope stability analysis. 
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2.3 Categories of Landslides  

 

Landslides are classified based on different criteria such as type of 

sliding surface, material involved, type of movement, age and state of activity. The 

most common nomenclature scheme is the one proposed by Varnes, 1978, Cruden, 

1996 in landslide related literature which is based on two important parameters 

namely the type of movement and type of material involved. Further modification of 

Varnes’ classification of landslide given by (Hungr et al., 2014), in particular, to 

improve compatibility with geotechnical and geological terminology of rocks and 

soils. As a result, four main types of landslides can be described as follows on the 

basis of movement mechanism and material composition: 

2.3.1 Falls  

Occurs in steep or overhanging slopes or cliffs by the abrupt movement 

of rocks along existing natural fractures or joint/ bedding planes. This typically 

occurs as free falling, bouncing and rolling. Undercut river banks and road cut slopes 

are prone to such failures. Weathering, gravity and water are controlling forces for 

such events. Detachment of rock or soil masses, often triggered by undercutting or 

seismic activity (Aleotti and Chowdhury, 1999). 

2.3.2 Slides 

  It occurs in moderate to steep slopes and is characterized by failure of 

material at depth and then movement by sliding along a rupture or slip surface. 

Rotational slides (also referred to as slumps) involve movement of the material on a 

curved slip surface whereas if sliding is on a planer surface, it is called a transitional 

or rock slide. Translational (movement along planar surfaces) or rotational (curved 

slip surfaces) are commonly observed in areas with weak lithological strata. 

2.3.3 Flows  

Occurs in moderate slopes during or after heavy rain events and involves 

deformation of an entire soil mass that then flows downslope as a thick viscous fluid. 

Liquefaction or high-water content thus generates such condition of earth flow. If 
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downward movement of flow is very rapid it is a debris flow or as it is sometimes 

known, a mudflow. Fluid-like movement of debris or soil, typically resulting from 

heavy rainfall (Guo et al., 2022). 

2.3.4 Complex Movements  

A combination of mechanisms, such as rotational slides transitioning into 

flows, is often seen in tectonically active zones. 

2.4 Slope stability analysis 

 

2.4.1    Slope stability analysis under static conditions integrated with AI/ML  

 

Shear strength as a function of normal stress on the slip surface, cohesion, and 

internal friction generally determines slope stability. The stability of the slope is 

reflected in the FOS, which is calculated by dividing the "shear strength" by the 

"shear stress" produced. When the generated shear stress is greater than the soil's 

available shear strength, a slope typically collapses (Kabir et al., 2023). Because of 

their ease of use, low version complexity, and quick processing times, Limit 

Equilibrium method (LEM) is a fundamental and traditional analytical tool for slope 

stability investigations, are frequently employed in slope stability studies and can be 

used to calculate FOS (Mafi et al., 2021). For multi-dimensional (2D and 3D) 

environments, LEM can be used to both static and dynamic scenarios (Agam et al., 

2016, Azarafza et al., 2014). There is multiple equilibrium methods used to estimate 

the FOS. Fellenius, Bishop, Janbu, Modified Swedish, Morgenstern-Price, and others 

are some of the most well-known methods (Alejano et al., 2011). When computing 

FOS, maximum techniques yield comparable results, with the variance in projected 

values frequently being less than 6% (Huang et al., 2012). For the evaluation of slope 

stabilisation, LEM has been proposed and studied in great detail in recent decades 

(Yue and Kang, 2021, Liu et al., 2015, Wang et al., 2011, Cheng et al., 2007, Zhu et 

al., 2003, Zhu et al., 2005). The LEM technique has remained the preferred approach 

for the best use of many approaches, regardless of their utilitarian value, depending 

on the type of problem to be solved (e.g., circular, non-circular), as well as the level 

of precision that is desired in the results (Matthews et al., 2014). Along with taking 
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probabilistic soil factors into account, the method of slices is also taken into 

consideration to determine the most significant slip surface. Because of the 

difficulties involved in determining FOS values, traditional stability analysis 

techniques—which are influenced by the stabilisation process—find it difficult to 

produce trustworthy results. In order to solve this problem, scientists used 

computational intelligence techniques that provide an extremely accurate prediction 

of the slope condition, failure mechanism, and slide risk (Zhu et al., 2003, Ahangari 

Nanehkaran et al., 2022, Li and Yang, 2019, Mathe and Ferentinou, 2021, Azarafza 

et al., 2022). 

 In the meantime, there has been a lot of interest in machine learning techniques for 

reducing uncertainty in FOS calculations.In terms of calculating F.S. using 

prognostic models, AI, and in particular ML, has been very helpful in predicting the 

stability of slopes. These models make predictions about FOS based on the rate of 

machine learning and the models' stated accuracy. These algorithms attempt to 

develop methods for understanding the current state of "target data," learning, and 

using "training data" to learn. To generate likelihoods or forecasts, it uses a range of 

algorithms that fall within the categories of "deep" or "shallow" learning approaches 

(Raschka et al., 2020). The algorithms' learning mechanism, which can be compared 

to learning models like controlled, unstructured, or reinforcement learning, has a 

direct impact on how accurate the predictions are (Schmidhuber, 2015). AI and 

machine learning techniques have been successfully applied in engineering and 

science over the past 25 years (Zhang et al., 2021, Zhao et al., 2021, Armaghani et 

al., 2021, Yang et al., 2020, Kardani et al., 2021, Asteris et al., 2022). Through 

predictive modelling, risk assessment, and uncertainty analysis, ML models are also 

used to compute results for slope stability analysis that can provide insights into 

potential slope collapse processes and rates (Bui et al., 2020, Erzin and Cetin, 2012, 

Abdalla et al., 2015, Verma et al., 2016, Samui, 2013, Sakellariou and Ferentinou, 

2005a, Ferentinou and Sakellariou, 2007). The FOS of slopes was also predicted 

using MATLAB-based coded programs, ANFIS, and other techniques, and the 

outcomes of the LEM methodology were compared with the predictions (Mohamed 

and Kasa, 2014). Another study compares the FOS of slopes with 3D-Finite Element 

method (FEM) using the PSO technique (Kalatehjari et al., 2014). They showed that 



 

15  

PSO may be used well in 3D situations, but not so well in 2D slope stability 

scenarios. To predict slope stability many researchers (Ferentinou and Sakellariou, 

2007, Lu and Rosenbaum, 2003, Sakellariou and Ferentinou, 2005b) used ANN, a 

basic and popular AI model, in contrast to the LEM slope stability study.   

The results of the LEM and ANN models were found to be consistent, allowing 

sample data to be categorised according to the expected failure mechanism. In 

another study, the SVM model was found to be somewhat more accurate than the 

ANN results when compared side by side (Samui, 2008). SVR and the radius basis 

function(Wei et al., 2021a) were compared with gradient boosting to ascertain the 

FOS and its relationship to the triggering factors on slope instabilities (Zhou et al., 

2019). Various artificial intelligence-based techniques were used to accurately 

predict the FOS values for slopes, which were subsequently used for slope 

stabilisation (Qi and Tang, 2018). Numerous encouraging outcomes have been 

obtained by the "extreme learning machine" (Liu et al., 2014), "attribute recognition 

method and ANN" (Tao et al., 2021, Wei et al., 2021b), "fuzzy comprehensive 

evaluation method" (Wang and Lin, 2021), "particle swarm optimisation" (Gupta et 

al., 2016), and "cloud model" (Cui et al., 2021). In order to anticipate slope stability 

using numerical simulation techniques and the limit equilibrium approach, it is 

essential to consider the stress on the slope's body, demonstrate its deformation and 

stability, and identify the related back failure mechanism. 

2.4.2    Slope stability analysis under dynamic conditions integrated with AI/ML  

  
Slope stability under dynamic loading is a critical research area in 

geotechnical and seismic engineering, as seismic forces significantly influence slope 

deformation and failure mechanisms (Zhu, 2008). Dynamic loads include both 

natural and artificial sources, with earthquakes representing the primary natural load 

affecting slope stability (Krishnamoorthy, 2007). The interaction between soil 

dynamic properties and ground motion parameters makes evaluating seismic slope 

stability more complex than static analysis. Several approaches have been developed 

for dynamic stability evaluation, including experimental testing, numerical modeling 

(Jing-shan et al., 2001; Chuhan et al., 1997; Liu et al., 2004), the Newmark sliding 

block method (Newmark, 1965), and the pseudo-static method (Seed, 1979). Among 
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these, the pseudo-static approach remains the most widely used because of its 

simplicity and efficiency in practical engineering applications (Siyahi and Bilge, 

1998; Biondi et al., 2002; Ai-Jun and Yong-Hua, 2003; Siad, 2003). It represents the 

seismic effect through equivalent static forces acting horizontally and vertically on 

the potential sliding mass (Erzin and Cetin, 2012). 

 

In pseudo-static analysis, seismic loading is simulated as a static force 

derived from the product of the slope mass and the corresponding acceleration, 

simplifying earthquake-induced inertial effects shown in Fig 2.1 (Karray et al., 

2018). The Factor of Safety (FOS) is determined as the ratio of resisting to driving 

forces along a potential slip surface, with values above unity indicating stability 

(Johari et al., 2015). This approach, incorporated within the Limit Equilibrium 

Method (LEM), assumes equilibrium between forces and moments and is highly 

effective for both static and dynamic evaluations (Mafi et al., 2021; Agam et al., 

2016; Azarafza et al., 2014). In this study, the pseudo-static analysis was performed 

following IS 1893 (Part 1): 2016, as Kalimpong lies in seismic Zone IV, where 

horizontal and vertical seismic coefficients of 0.3 and 0.2, respectively, were used 

(Melo and Sharma, 2004). The simplicity and adaptability of the pseudo-static 

method make it well suited for regional studies, enabling rapid stability estimation 

under earthquake loading conditions. 

 

Fig. 2.1 Pseudo-static analysis approach (Melo and Sharma, 2004) 
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Over the years, LEM-based methods have been extensively applied for 

assessing seismic slope stability in both natural and engineered slopes (Howland, 

1980; Nouri et al., 2008; Leshchinsky and San, 1994; Loukidis et al., 2003; Hynes-

Griffin and Franklin, 1984; Baker et al., 2006). They have proven useful in analyzing 

earth dams, embankments, and natural slopes (Yue and Kang, 2021; Wang et al., 

2011; Liu et al., 2015; Cheng et al., 2007; Zhu et al., 2005). Recent advances have 

introduced computational intelligence and machine learning (ML) to address the 

limitations of deterministic approaches by improving prediction accuracy and 

reducing uncertainty in FOS estimation (Asteris et al., 2022; Azarafza et al., 2022; 

Zhu et al., 2003; Ahangari Nanehkaran et al., 2022; Li and Yang, 2019; Mathe and 

Ferentinou, 2021). ML techniques, including artificial neural networks (ANNs), 

support vector machines (SVMs), decision trees (DT), random forests (RF), and 

hybrid models, have shown remarkable success in learning from complex 

geotechnical datasets (Cevik, 2011; Das, 2013; Kayabasi et al., 2015; Nanehkaran et 

al., 2023). Studies demonstrate that ANN and hybrid models such as PSO-ANN 

outperform traditional LEM approaches in FOS prediction under seismic conditions 

(Erzin et al., 2016; Erzin and Cetin, 2013; Gordan et al., 2016). Other models like 

SVM (Samui, 2008), ELM (Hoang and Bui, 2017), ANFIS (Fattahi, 2017), genetic 

algorithms (Manouchehrian et al., 2014), and ensemble techniques like AdaBoost 

and gradient boosting (Lin et al., 2021) provide strong predictive capabilities, even 

for nonlinear and uncertain data (Sousa et al., 2017; Qi and Tang, 2018). 

Collectively, these methods have advanced geotechnical modeling by enhancing 

slope stability predictions, particularly under dynamic and seismic stresses, thus 

contributing to safer and more resilient slope design practices. 

 

2.5 Properties Influencing Slope Stability 

        The stability of a slope is inherently dependent on its geotechnical 

properties, which dictate the strength and deformation characteristics of the materials 

involved. Key factors include soil and rock mechanics, geological parameters, and 

hydrological factors, seismic and anthropogenic factors all of which play critical 
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roles in determining the resistance to failure under varying environmental and 

loading conditions. 

2.5.1     Soil and Rock Mechanics 

(a)Soil Mechanics: The mechanical behaviour of soils is governed by their 

composition, structure, and moisture content. Soil classification systems, such as the 

USCS, provide a basis for categorizing soils into granular (sand and gravel) and 

cohesive (clay and silt) types. These classifications are crucial for analyzing their 

response to stress and strain under loading conditions (Mizal-Azzmi et al., 2011, 

Santoso et al., 2011). Granular Soils exhibit high shear strength due to frictional 

resistance between particles. Their stability is significantly influenced by compaction 

and drainage characteristics whereas Cohesive Soils depend on cohesion and 

capillary forces for shear strength. These soils are prone to plastic deformation and 

exhibit time-dependent behaviour under loading, often leading to progressive failure. 

(b) Rock Mechanics: Rock masses are inherently heterogeneous, comprising intact 

rock material and discontinuities such as joints, faults, and bedding planes. The 

stability of rock slopes is influenced by the orientation, spacing, and persistence of 

these discontinuities (Kumsar et al., 2000, Puniya et al., 2023). RMR and GSI are 

commonly employed to assess the quality of rock masses and their susceptibility to 

failure. Shear strength along discontinuities is described by parameters such as c and 

ϕ, which are often reduced due to the presence of water and weathering (Aleotti and 

Chowdhury, 1999) 

2.5.2     Geological Factors 

Cohesion, and friction angle govern the resistance to sliding. Weak or 

weathered materials are more prone to failure (Aleotti and Chowdhury, 1999, Kechik 

et al., 2023). Rock discontinuities, such as faults, joints, and bedding planes, serve as 

potential failure surfaces, especially when aligned parallel to the slope (Thakur et al., 

2010). The orientation of geological structures relative to the slope plays a crucial 

role. Adverse dip angles increase the likelihood of translational failures (Puniya et 

al., 2023). Tectonic activity can create zones of weakness through faulting and 
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fracturing, reducing overall stability (Kumar et al., 2020). The shear strength of slope 

materials, defined by the Mohr-Coulomb failure criterion, is a critical factor in 

determining slope stability.  

(a)Cohesion: Cohesion arises from interparticle forces and cementation in soils and 

rocks. In cohesive soils like clays, cohesion is a dominant factor, but it decreases 

with weathering and saturation (Kechik et al., 2023) 

(b)Friction angle: The friction angle depends on the grain size, shape, and roughness 

of particles. Granular soils exhibit higher friction angles, whereas clays and silts have 

lower values. Laboratory tests such as direct shear and triaxial compression tests are 

commonly used to determine these parameters (Santoso et al., 2011, Zhao et al., 

2020b).  

(c)Effective Stress Principle: This principle highlights the detrimental impact of 

elevated pore water pressure on shear strength, especially during rainfall or rapid 

drawdown scenarios (Liu and Wang, 2023, Kumar et al., 2020). 

2.5.3     Hydrological factors 

Prolonged or intense rainfall increases pore water pressure, reducing 

effective stress and shear strength(Liu and Wang, 2023). Perched water tables can 

form within the slope, creating localized zones of instability (Santoso et al., 2011). 

Seepage induced by groundwater flow can destabilize slopes by exerting additional 

forces on soil particles. The effect is particularly pronounced in slopes with fine-

grained materials (Kechik et al., 2023). Sudden lowering of water levels, such as in 

reservoirs, creates a transient imbalance between hydrostatic forces and slope 

resistance, often triggering failures (Ali et al., 2014). Rainfall-induced landslides in 

tropical regions, such as the Bhagirathi Valley during the June 2013 flood, highlight 

the impact of hydrological factors on slope stability(Bhambri et al., 2017). Pore 

water pressure plays a pivotal role in slope stability, particularly in rainfall-induced 

and seepage-driven failures. It influences the effective stress and thus the shear 

strength of soils. 
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(a) Positive Pore Water Pressure: When water infiltrates the soil, it increases the pore 

pressure, reducing the effective stress and shear strength. This is especially critical in 

saturated cohesive soils where prolonged rainfall or rapid drawdown conditions can 

lead to shallow slope failures (Ali et al., 2014, Liu and Wang, 2023). 

(b) Negative Pore Water Pressure (Suction): In unsaturated soils, negative pore 

pressure (matric suction) contributes to apparent cohesion, enhancing stability. 

However, this effect diminishes as the soil becomes saturated. The relationship 

between suction and shear strength is captured by the extended Mohr-Coulomb 

criterion for unsaturated soils (Kechik et al., 2023, Santoso et al., 2011).  

(c) Rainfall Infiltration: Rainfall alters pore pressure distribution, creating perched 

water tables and zones of increased instability. Analytical models are also developed 

to predict annual probabilities of slope failure under varying rainfall intensities and 

durations (Liu and Wang, 2023).  

(d) Seepage and Permeability: Seepage forces exacerbate instability by reducing 

effective stress and inducing erosion. High-permeability materials like sand allow 

rapid drainage, mitigating pore pressure buildup, whereas low-permeability clays 

retain water, making them susceptible to failure. 

2.5.4     Seismic Factors 

Seismic activity induces inertial forces within the slope, which can 

reduce shear strength and trigger failures. The magnitude of the destabilizing forces 

depends on ground acceleration and slope geometry (Zhao et al., 2020a, Yin et al., 

2009). Earthquakes can generate excess pore water pressure, particularly in saturated 

soils, reducing effective stress and exacerbating instability (Eberhardt et al., 2004). 

Loose, saturated sandy soils may lose strength completely during seismic shaking, 

leading to catastrophic failures. This phenomenon is particularly relevant in seismic 

zones with high water tables (Kumsar et al., 2000). The 2008 Wenchuan earthquake 

in China triggered numerous seismic-induced landslides, with significant damage to 

infrastructure and loss of life (Yin et al., 2009). Seismicity-induced landslides in the 

Kashmir Himalaya during the 2005 earthquake serve as a stark reminder of the 
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destructive potential of seismic forces (Ray et al., 2009). 

 2.5.5     Anthropogenic Factors 

Slope cutting for roads, buildings, and mining activities disturbs the 

natural equilibrium, often leading to failures if proper stabilization measures are not 

implemented (Malviya et al., 2024, Mizal-Azzmi et al., 2011). Vegetation provides 

natural reinforcement to slopes through root cohesion and water interception. 

Deforestation removes this stabilizing effect, increasing susceptibility to erosion and 

failure (Puniya et al., 2023). The addition of structures or embankments increases the 

driving forces acting on slopes, particularly when combined with inadequate 

drainage systems (Kumar et al., 2017). Anthropogenic activities such as road 

widening in the Lesser Himalayas have led to frequent slope failures, highlighting 

the need for careful planning and engineering (Ansari et al., 2020).  

2.6 Types of failures 

Failure mechanisms in slopes are characterized by the type of movement, 

geometry of the failure surface, and material properties. Understanding these 

mechanisms is critical to predicting slope behavior under various environmental and 

loading conditions. The three primary failure types—translational, rotational, and 

compound—each have unique triggers and characteristics. 

 2.6.1     Translational Failures 

Translational failures occur along a planar or nearly planar failure 

surface, often dictated by weak geological layers or discontinuities. The movement is 

typically parallel to the slope surface, and these failures are common in stratified 

rock masses or slopes with distinct bedding planes (Aleotti and Chowdhury, 1999, 

Puniya et al., 2023). Failure initiates when the driving forces exceed the resisting 

forces along a pre-existing plane of weakness. Factors such as excessive loading, 

rainfall infiltration, and seismic activity reduce the shear strength of the failure 

surface, triggering sliding (Liu and Wang, 2023, Kumar et al., 2017)  

Rainfall-induced translational failures in layered Himalayan slopes have been 

extensively documented, where water infiltration leads to saturation and reduced 
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effective stress along weak bedding planes (Yin et al., 2009). 

 2.6.2     Rotational Failures 

Rotational failures involve movement along a concave, circular or non-

circular failure surface. These failures are most common in homogenous, cohesive 

soils or rock masses and are associated with deep-seated instabilities (Mizal-Azzmi 

et al., 2011, Zhao et al., 2020b). A rotational slip occurs when the moment of driving 

forces about the failure center exceeds the resisting moment. Factors such as 

increased pore water pressure, overloading, or undercutting at the slope toe promote 

failure. Bishop’s Simplified Method and Janbu’s Method are widely used for 

analyzing rotational failures by calculating the FOS for circular and non-circular 

surfaces (Donald and Chen, 1997, Zolkepli et al., 2019). Rotational failures in soft 

clays during monsoonal rainfalls are frequently reported in Southeast Asia, where 

saturated soils lose cohesion and exhibit significant deformation (Santoso et al., 

2011). 

 2.6.3     Compound Failures 

Compound failures involve a combination of translational and rotational 

mechanisms. These failures often occur in heterogeneous materials, where different 

zones within the slope exhibit distinct failure modes (Qi et al., 2016). A rotational 

slip may transition into a translational slide as the failure propagates across layers 

with varying shear strengths or material properties. Compound failures are highly 

unpredictable and require advanced numerical models for analysis (Puniya et al., 

2023, Eberhardt et al., 2004). Seismic events, such as the Wenchuan earthquake, 

triggered compound failures in steep, stratified slopes, with rotational initiation 

transitioning into debris flows (Yin et al., 2009). 

2.7 Analytical Methods in Slope Stability analysis 

 

Analytical methods form the backbone of slope stability analysis, 

providing a means to estimate the FOS under various loading and environmental 

conditions. Among these, LEM is widely employed due to their simplicity and 

effectiveness. LEMs focus on evaluating the equilibrium of forces and moments 
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along a predefined failure surface, providing a measure of slope stability. 

 

 2.7.1     Limit Equilibrium Methods (LEM) 

LEM assumes that a slope fails along a specific surface and divides the 

sliding mass into slices to calculate forces and moments acting on each slice. These 

methods use the Mohr-Coulomb failure criterion(Aleotti and Chowdhury, 1999, 

Michalowski, 1995). The following subsections discuss four prominent LEM 

techniques, each suited for different slope configurations and conditions. 

(a) Fellenius Method: Also known as the Ordinary Method of Slices, the Fellenius 

Method is the simplest form of LEM. It assumes that interslice forces are negligible, 

making the calculations straightforward but conservative(Donald and Chen, 1997). 

This is simple and computationally inexpensive, provides a quick preliminary 

assessment of slope stability, ignores interslice forces, leading to conservative 

results. Not suitable for complex or irregular failure surfaces (Zolkepli et al., 2019). 

The Fellenius Method has been applied extensively in homogeneous soil slopes and 

initial stability evaluations. 

(b) Bishop's Simplified Method: Bishop's Simplified Method improves upon the 

Fellenius Method by incorporating vertical interslice forces, making it more accurate 

for circular failure surfaces (Donald and Chen, 1997, Zhu et al., 2003b). This method 

is suitable for circular failure surfaces in homogeneous soils, moderately accurate for 

many practical applications, neglects horizontal interslice forces and requires 

iterative computations (Zhu, 2008). Widely used for embankments, earth dams, and 

homogeneous slopes (Firincioglu and Ercanoglu, 2021). Bishop’s Method is also 

utilized to assess slope stability in Himalayan terrains, highlighting its reliability 

under varying hydrological conditions (Kumar et al., 2017). 

(c) Janbu's Method: Janbu's Method is a more generalized approach that can 

accommodate both circular and non-circular failure surfaces. It accounts for 

horizontal interslice forces, making it suitable for more complex geometries(Donald 

and Chen, 1997). This method is applicable to complex failure surfaces, 
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accommodates heterogeneous material properties and requires iterative procedures. 

Results are sensitive to the assumed interslice force distribution (Aleotti and 

Chowdhury, 1999). This method has been applied in the stability analysis of slopes 

in mining and infrastructure projects where irregular failure surfaces are common 

(Puniya et al., 2023). Janbu’s Method is applied to analyze road-cut slopes in 

Northeast India, demonstrating its effectiveness in heterogeneous conditions 

(Malviya et al., 2024). 

(d) Morgenstern-Price Method: The Morgenstern-Price Method is the most rigorous 

LEM, accounting for both horizontal and vertical interslice forces through a flexible 

force distribution function. It is suitable for highly irregular and complex failure 

surfaces (Zhu et al., 2003a). The method employs a force function to represent the 

interslice forces, ensuring both force and moment equilibrium. Applicable to both 

circular and non-circular surfaces. Offers higher accuracy than other LEMs. 

Computationally intensive. Requires assumptions about the interslice force function. 

The Morgenstern-Price Method is widely used in advanced slope stability software, 

such as GeoStudio and PLAXIS, for detailed stability analyses (Ansari et al., 2020). 

Its application is also demonstrated in 3D slope stability analyses, highlighting its 

precision in heterogeneous, large-scale slopes (Firincioglu and Ercanoglu, 2021). 

Comparison of various Limit Equilibrium methods is shown in Table 2.1. 

Table 2.1: Comparison of various limit Equilibrium methods 

 

Method Complexity Accuracy Key Applications 

Fellenius Low Conservative Homogeneous slopes, 

preliminary assessments 

Bishop's 

Simplified 

Moderate Suitable for circular 

surfaces 

Embankments, earth dams 

Janbu's High Suitable for 

irregular surfaces 

Mining, heterogeneous 

slopes 

Morgenstern-

Price 

Very High Highly accurate Complex geometries, 

detailed analyses 
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 2.7.2     Finite Element Methods (FEM) 

FEM has revolutionized slope stability analysis by allowing a detailed 

evaluation of stresses, strains, and displacements within the slope mass, offering a 

more realistic representation of failure mechanisms compared to the simplified force 

and moment equilibrium approach of LEM. FEM models the slope as a continuum 

divided into finite elements, where the stress–strain relationship of the material is 

defined through appropriate constitutive models, enabling simulation of both elastic 

and plastic behavior. This method can capture stress redistribution, progressive 

failure, and post-failure deformation, providing deeper insight into the failure 

mechanism and the influence of complex factors such as material heterogeneity, 

groundwater conditions, and seismic loading (Duncan, 1996; Fredlund, 1984; 

Eberhardt et al., 2004; Kanungo et al., 2013; Zhu et al., 2003a). FEM determines the 

Factor of Safety (FOS) by progressively reducing shear strength parameters 

(cohesion c and friction angle ϕ) until instability occurs, thus eliminating the need for 

predefined failure surfaces and offering an objective and comprehensive measure of 

slope stability. Although computationally intensive and dependent on accurate input 

parameters, FEM provides a powerful and versatile framework for analyzing slope 

deformation and failure under various static and dynamic conditions, and it is widely 

implemented in advanced software such as PLAXIS and GeoStudio for geotechnical 

stability assessments (Xie et al., 2011).  

2.8 Advances in Slope Stability Analysis  

Recent advances in computational techniques and geotechnical 

understanding have driven significant progress in slope stability analysis. Among 

these advances, the adoption of 3D Analysis represents a paradigm shift, offering 

greater accuracy and insight compared to traditional 2D methods. These innovations 

are crucial for complex geotechnical problems where the limitations of conventional 

methods become evident. 
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 2.8.1     Three-Dimensional (3D) Analysis 

3D slope stability analysis overcomes the limitations of 2D methods by 

incorporating the full spatial variability of slope geometry, material properties, and 

boundary conditions, providing a more realistic representation of slope behavior. 

This is particularly critical in cases involving irregular topography, anisotropic 

materials, or non-circular failure surfaces, as highlighted by (Xie et al., 2003, 

Firincioglu and Ercanoglu, 2021). While 2D methods, which assume planar or 

axisymmetric conditions, often oversimplify the problem by neglecting out-of-plane 

effects and assuming circular or planar failure surfaces, 3D methods account for the 

actual geometry and allow the evaluation of complex slope configurations (Hungr, 

1987, Zhu et al., 2003a). This enables 3D analysis to model non-circular and 

irregular failure surfaces, better reflecting real-world conditions. Moreover, 3D 

methods capture spatial variations in stress and strength parameters, offering detailed 

insights into stress redistribution during failure, and provide a more accurate Factor 

of Safety (FOS) by incorporating out-of-plane forces and moments that 2D models 

ignore (Xie et al., 2003). Studies comparing 2D and 3D approaches demonstrate that 

2D methods yield conservative results, particularly for slopes with irregular 

geometries or anisotropic conditions (Wines, 2016). It is also emphasized that 2D 

methods oversimplify failure mechanisms by assuming plane-strain conditions and 

neglecting lateral boundary effects, leading to inaccuracies in complex geological 

settings or under varying loading conditions (Bar et al., 2020). Conversely, 3D 

analysis captures the influence of lateral boundaries and heterogeneous material 

properties, providing critical insights into the progression of failure across the entire 

slope (Firincioglu and Ercanoglu, 2021).  

Applications of 3D analysis are extensive, including the stability 

assessment of slopes near dams, tunnels, and roads, where 3D effects are pronounced 

(Ansari et al., 2020, Kumar et al., 2020), as well as large open-pit mines with 

complex geological conditions, where 3D modeling optimizes pit slopes and 

enhances safety (Lucas and de Graaf, 2013). Additionally, 3D methods have been 

employed in modeling landslides triggered by earthquakes or rainfall, where 

interactions between materials and topography are critical(Yin et al., 2009, Zhao et 
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al., 2020b). For instance, 3D analysis is used to assess the stability of a lava lobe at 

Unzen Volcano, Japan, identifying critical slip surfaces and stress distributions that 

were missed by 2D methods (Xie et al., 2003). Similarly 3D analysis in modeling pit 

slopes is demonstrated in Western Australia with complex geometries and 

anisotropic materials, underscoring the limitations of 2D methods (Firincioglu and 

Ercanoglu, 2021). Also, the effectiveness of 3D models is illustrated in analyzing the 

stability of slopes in the Lesser Himalayas, accounting for irregular topography and 

variable material properties (Ansari et al., 2020). These case studies underscore the 

enhanced accuracy and applicability of 3D methods in geotechnical engineering, 

making them indispensable for complex slope stability evaluations. 

 2.8.2     Integration of Geographic Information Systems (GIS) 

Geographic Information Systems (GIS) have revolutionized slope 

stability analysis by providing a platform to manage, analyze, and visualize spatial 

data. The integration of GIS in geotechnical engineering allows for the efficient 

handling of complex terrain and geological datasets, enhancing the understanding of 

slope behavior and the identification of high-risk zones. GIS-based approaches are 

particularly valuable in large-scale studies, where traditional methods may be 

cumbersome or impractical (Bouajaj et al., 2016, Tiwari and Douglas, 2012). 

(a) Spatial Data Analysis: GIS facilitates the integration and analysis of diverse 

spatial datasets, such as topography, geology, hydrology, and land use. These 

datasets are critical in evaluating factors influencing slope stability, including slope 

geometry, material properties, and external loads (Bouajaj et al., 2016). Digital 

Elevation Models (DEMs) generated through GIS provide detailed information on 

slope angles, aspects, and curvature, which are essential for stability assessments. 

GIS combines spatial and non-spatial data, such as soil properties, seismic activity, 

and rainfall patterns, enabling a holistic analysis of slope stability. GIS tools allow 

for automated processes, such as calculating slope angles and generating input 

parameters for analytical or numerical models (Tiwari and Douglas, 2012). 

Applications include identification of steep slopes and potential failure zones based 

on DEM-derived parameters, creating continuous spatial datasets from point 
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measurements, such as soil strength or groundwater levels, using interpolation 

techniques, simulating the impact of changes in hydrological or geological conditions 

on slope stability. (Gokceoglu et al., 2000)used GIS to generate probabilistic slope 

failure risk maps, incorporating spatial variability in discontinuity parameters. 

Landslide susceptibility maps are validated using GIS-based models, demonstrating 

the effectiveness of spatial data integration (Remondo et al., 2003). 

(b)Hazard Mapping: Hazard mapping is a core application of GIS in slope stability 

analysis, providing spatial representations of areas susceptible to landslides or slope 

failures. These maps are essential for disaster risk reduction and land-use planning, 

offering a basis for prioritizing mitigation measures and resource allocation (Aleotti 

and Chowdhury, 1999). Methodology include integration of geological, hydrological, 

and topographical datasets into a GIS platform assigning weights to contributing 

factors, such as slope gradient, soil type, and proximity to water bodies, based on 

their influence on slope stability, employing methods like heuristic approaches, 

statistical models, or machine learning algorithms to predict susceptibility levels. 

Applications include mapping landslide-prone areas for regional disaster 

management strategies, identifying safe zones for infrastructure development, such 

as roads and buildings, guiding evacuation routes and emergency response plans in 

high-risk areas. GIS-based hazard mapping is utilised to analyze seismicity-induced 

landslides in Kashmir Himalaya, incorporating factors such as slope geometry and 

seismic intensity(Ray et al., 2009). Rainfall-induced landslide hazard maps are 

induced in Peninsular Malaysia, integrating historical rainfall data and terrain 

characteristics (Hassan et al., 2018). 

GIS-based hazard maps typically present spatial variations in susceptibility or risk 

levels, with high-risk areas highlighted for focused interventions. Advantages of 

GIS-Based Hazard Mapping facilitates large-scale analyses that are impractical with 

traditional methods, provides an intuitive visualization of risk, aiding stakeholders in 

decision-making, allows for continuous updates as new data becomes available. 

Comparison of various GIS applications is shown in Table 2.2. 
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Table 2.2: Comparison of GIS Applications 

 

Application Key Features Benefits Limitations 

Spatial 

Data 

Analysis 

Terrain analysis, 

data integration, 

scenario modeling 

Efficient handling 

of large datasets 

Dependent on data 

quality and availability 

Hazard 

Mapping 

Susceptibility and 

risk mapping 

Supports disaster 

risk reduction and 

planning 

Requires accurate 

weighting and validation 

  
 2.8.3      Machine Learning and Artificial Intelligence Applications 

AI and ML have brought transformative changes to slope stability 

analysis by enabling predictive modeling and advanced data-driven approaches. 

These techniques address the limitations of traditional methods by leveraging large 

datasets to identify patterns, predict slope failures, and provide data-driven decision-

making tools. The adoption of ML and AI in geotechnical engineering has grown 

rapidly, supported by their capability to handle complex, multi-dimensional datasets 

and nonlinear relationships (Nanehkaran et al., 2023, Asteris et al., 2022). 

(a) Predictive Modeling: Predictive modeling employs ML algorithms to forecast 

slope stability outcomes by analyzing input parameters such as soil properties, slope 

geometry, and external loads, enabling the identification of high-risk areas and 

providing early warnings for potential failures (Nanehkaran et al., 2023). Common 

algorithms include Decision Trees and Random Forests, where decision trees classify 

or regress data based on feature importance, and Random Forests, as ensembles of 

trees, enhance accuracy and mitigate overfitting, as demonstrated in the classification 

of landslide-prone areas using terrain features and rainfall patterns (Asteris et al., 

2022). SVM are particularly effective for binary classifications, such as 

distinguishing stable from unstable slopes, by identifying optimal hyperplanes 

separating data classes. ANNs mimicking the neural structure of the human brain, 

excel in modeling complex nonlinear relationships in slope stability problems 

(Kanungo et al., 2013). Gradient Boosting Algorithms, such as XGBoost further 
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enhance predictive accuracy by sequentially refining weak learners, making them 

ideal for ranking slope stability risks in large datasets. Applications of these 

algorithms include landslide susceptibility modeling, which identifies landslide-

prone zones based on geological, hydrological, and environmental factors, and risk 

assessment, forecasting the likelihood and impact of slope failures on infrastructure 

projects. A case study highlighted the effectiveness of RF and ANNs in accurately 

predicting high-risk slopes, showcasing their utility in practical scenarios 

(Nanehkaran et al., 2023). These techniques efficiently handle large and complex 

datasets, reduce dependency on predefined failure criteria, and enable data-driven 

pattern discovery, though challenges such as the need for extensive training data and 

interpretability issues, particularly with deep learning models, remain. 

(b) Data-Driven Approaches: Data-driven approaches leverage empirical 

relationships derived from historical datasets to predict slope behavior and assess 

stability, complementing predictive modeling by enabling real-time analysis and 

decision-making (Asteris et al., 2022, Jiang et al., 2020). These methods integrate big 

data analytics by combining large-scale datasets such as remote sensing, historical 

landslide records, and real-time monitoring data to enhance stability assessments. 

Feature engineering extracts and transforms key parameters like slope angle, 

curvature, and precipitation intensity from GIS and sensor data to improve model 

performance (Tiwari and Douglas, 2012). Real-time monitoring systems, comprising 

sensors like inclinometers, piezometers, and accelerometers, provide continuous data 

streams that machine learning algorithms analyze to detect anomalies and predict 

failures. Applications include early warning systems that automate alerts based on 

critical thresholds, such as displacement rates monitored by sensors, and remote 

sensing integration, where satellite-based datasets are combined with machine 

learning models for mapping landslide-prone areas and monitoring slope movements 

(Yin et al., 2009). The use of tree-based intelligent techniques are showcased for 

slope stability classification under seismic conditions, integrating real-time data to 

improve predictive accuracy (Asteris et al., 2022). These approaches reduce the need 

for labor-intensive field investigations, support dynamic decision-making in rapidly 

changing conditions, and is often integrated with GIS to enhance spatial and 
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numerical analyses. However, they rely heavily on data quality and availability, and 

their high computational demands can pose challenges in resource-constrained 

environments. This multi-disciplinary integration provides a holistic framework for 

slope stability analysis (Tiwari and Douglas, 2012). Comparison of GIS Applications 

Predictive and Data-Driven Approaches in Table 2.3. 

          Table 2.3: Comparison of GIS Applications Predictive and Data-Driven 

Approaches 

 

Aspect Predictive Modeling Data-Driven Approaches 

Focus Prediction based on input 

features 

Analysis based on historical and 

real-time data 

Strengths Accurate forecasts, handles 

nonlinearities 

Real-time monitoring, empirical 

insights 

Weaknesses Requires training data, less 

interpretable 

Relies on data availability and 

quality 

Applications Landslide susceptibility, risk 

assessment 

Early warning systems, dynamic 

analysis 

  
 2.8.4     Remote sensing techniques  

Remote sensing techniques are integral to slope stability analysis, 

offering large-scale, high-resolution, and non-invasive data for monitoring, mapping, 

and assessing terrain characteristics over extensive areas, particularly in inaccessible 

regions. Advances in satellite imagery and LiDAR technology have significantly 

improved the precision and applicability of these methods in geotechnical 

engineering (Ray et al., 2009, Hassan et al., 2018). Satellite imagery, including 

optical imagery and SAR, provides critical insights into landslide-prone areas and 

slope deformations. Optical imagery captures high-resolution surface details for 

terrain mapping and post-failure assessments, while SAR, with its all-weather and 

day-night capabilities, measures ground deformation through InSAR techniques 

(Hassan et al., 2018). Applications include landslide mapping, deformation 

monitoring through time-series SAR analysis, and hazard assessment via GIS 

integration. For instance, satellite imagery is utilised to analyse landslides triggered 
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by the 2005 Kashmir earthquake, highlighting its role in post-disaster assessments 

(Ray et al., 2009). LiDAR, a laser-based remote sensing technology, generates 

precise three-dimensional (3D) representations of terrain, penetrating vegetation to 

provide accurate ground surface data (Bar et al., 2020). Airborne LiDAR facilitates 

large-scale topographic mapping, while terrestrial LiDAR offers high-resolution data 

for localized studies like rock slope analyses. Applications include DEM generation, 

change detection through temporal LiDAR datasets, and rock fall analysis by 

mapping discontinuities and failure surfaces. Also demonstrated the efficiency of 

LiDAR in rapidly appraising hazardous zones in mining areas using 3D models. 

Despite their advantages, such as large-scale coverage and high accuracy, limitations 

include weather and vegetation interference in optical imagery and high costs and 

computational demands for LiDAR data. The integration of remote sensing with GIS, 

numerical modelling, and machine learning provides a comprehensive framework for 

slope stability analysis, enhancing prediction accuracy and decision-making (Hassan 

et al., 2018). 

2.9    Mitigation and Remediation Strategies 

Effective slope mitigation and remediation require a comprehensive 

framework that integrates engineering measures, real-time monitoring, and policy-

based management to enhance infrastructure resilience, minimize landslide risks, and 

ensure sustainable land use (Mizal-Azzmi et al., 2011; Sarkar et al., 2018). 

Engineering strategies remain central to this approach, focusing on site-specific 

reinforcement, drainage, and surface protection techniques that respond to local 

geological and hydrological conditions. Among these, drainage control is one of the 

most effective stabilization methods, as excess water increases pore pressure and 

reduces soil strength (Urciuoli and Pirone, 2013). Properly designed surface 

systems—such as catch drains, lined channels, and diversion trenches—prevent 

infiltration, while subsurface systems like horizontal and French drains or 

geosynthetic drainage layers lower groundwater levels and improve stability 

(Rahardjo et al., 2003; Arbanas and Arbanas, 2015). 
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Reinforcement and retaining methods are essential in resisting lateral 

earth pressure and improving slope integrity. Soil nailing, involving the insertion of 

grouted steel bars, provides internal tensile resistance and has been successfully 

applied in road cut slopes and retaining structures (Mizal-Azzmi et al., 2011; Rawat 

and Gupta, 2016; Mangnejo et al., 2019). Similarly, retaining systems such as 

concrete, gabion, or mechanically stabilized earth (MSE) walls resist soil movement 

and, when equipped with drainage provisions like weep holes and filter layers, 

effectively prevent hydrostatic buildup (Huang and Chen, 2004; Bathurst and Jones, 

2001; Ansari et al., 2020; Hong et al., 2023). Geosynthetics—including geotextiles, 

geogrids, and geocells—further enhance soil reinforcement and drainage, offering 

flexible and durable stabilization for both natural slopes and embankments (Kristo et 

al., 2019; Niroumand et al., 2012; Mehdipour et al., 2020). 

Surface protection plays a complementary role by reducing erosion and 

infiltration. Vegetative cover is an eco-friendly solution that improves shear strength 

through root interlocking and reduces runoff velocity, while bioengineering 

techniques like hydroseeding, brush layering, and vegetated geogrids combine 

natural and mechanical benefits (Suhatril et al., 2019; Kumarasinghe, 2021; Auty et 

al., 2024; Greenwood et al., 2004; Kokutse et al., 2016). In areas subject to high 

runoff, stone pitching or riprap provides additional protection. Other effective 

measures include slope grading, which modifies slope geometry to lower driving 

forces (Jeldes et al., 2013; Schor and Gray, 1995; Fay et al., 2012), and buttressing, 

which enhances resistance by adding compacted fill or rock at the toe (Gray and 

Sotir, 1992; Samson et al., 2024; Markiewicz et al., 2024). For deeper or more 

critical failures, ground anchors transfer tensile loads into stable layers (Hryciw, 

1991; Liu and Geo, 2015), while grouting strengthens weak soils and reduces 

permeability using cementitious or chemical injections (Daraei et al., 2018; 

Winterkorn and Pamukcu, 1991). 

In addition to engineering solutions, continuous monitoring and policy 

support are crucial for sustainable slope management. Monitoring instruments—such 

as inclinometers, piezometers, extensometers, and rain gauges—track key parameters 
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like displacement, pore pressure, and rainfall intensity, facilitating timely 

interventions (Ray et al., 2009; Hassan et al., 2018). Technological advancements, 

including IoT-enabled sensor networks and remote sensing systems, now enable 

near-continuous observation, early warning, and informed decision-making for 

hazard mitigation (Bar et al., 2020). On the governance front, effective risk 

management requires establishing and enforcing technical standards, building codes, 

and retrofitting protocols to ensure structural safety. Regular updates to risk and 

vulnerability assessments are also vital to reflect evolving geotechnical and climatic 

conditions. Ultimately, slope mitigation aims to either reduce driving forces such as 

gravity, pore pressure, and seismic effects or enhance resisting forces through 

drainage, reinforcement, and soil improvement. A coordinated integration of 

engineering innovation, real-time monitoring, and institutional frameworks offers the 

most robust pathway toward reducing slope instability and protecting vulnerable 

communities. 

2.10      Summary of literature review 

 

      The literature review highlights that landslides are among the most frequent 

and destructive natural hazards, particularly in the geodynamically active Himalayan 

region, where steep slopes, intense rainfall, and tectonic activity contribute to 

instability. Kalimpong, located in the Lesser Himalayas, is highly susceptible to 

slope failures due to its fragile lithology, heavy monsoonal rainfall, and human 

interventions like road construction and urban expansion. Various types of 

landslides—falls, slides, flows, and complex movements—occur based on material 

composition and movement mechanisms. The integration of Artificial Intelligence 

(AI), Machine Learning (ML), Geographic Information Systems (GIS), and remote 

sensing technologies has further improved prediction accuracy and risk assessment. 

Key influencing factors include geological structure, hydrology, seismic activity, and 

human disturbances. Mitigation strategies emphasize engineering solutions such as 

soil nailing, drainage control, and retaining structures, supported by continuous 

monitoring and policy frameworks. Overall, the review underscores the necessity of 

combining geotechnical, computational, and data-driven approaches for sustainable 

landslide risk management in mountainous terrains like Kalimpong. 
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 CHAPTER 3 

 MATERIALS AND METHODOLOGY 
  
 3.1     General 

  
Situated on the border with Nepal, Kalimpong is a tiny peninsula town in 

the Indian state of West Bengal. It is well-known for its pleasant temperatures and 

stunning natural surroundings and is located 1,250 meters above sea level. 

Kalimpong is renowned for its tea plantations, flowers, and stunning views of the 

Himalayas. It is encircled by verdant hills. The Relli River encircles it on the east, 

while the Teesta River borders it on the west. This region's average temperature 

ranges from 27°C to 5°C. Every year, the powerful monsoons in this area cause 

terrible floods that block off Kalimpong from the rest of the state. Kalimpong is 

prone to landslides, much as many other mountainous locations, due to its position 

and natural feature. Because of the steep slopes and loose soil, the area experiences 

heavy rainfall throughout the summer, which frequently causes landslides. It still 

poses a serious threat to Kalimpong and the other towns in spite of several efforts. To 

avoid and lessen its consequences in the area, local authorities and citizens must 

exercise vigilance and adopt the necessary measures (Das et al., 2022). 

Kalimpong, a hill station in West Bengal, is highly prone to landslides due to a 

combination of natural and human-induced factors.  

• The region's heavy monsoon rainfall, which ranges from 2000 to 2500 mm 

annually, saturates the soil, reduces its shear strength, and increases pore 

water pressure, leading to slope failures.  

• Human activities such as rapid urbanization and deforestation further 

destabilize slopes by removing vegetation cover, altering natural drainage 

patterns, and increasing surface runoff. 

• Additionally, Kalimpong's location in a seismically active zone means that 

earthquakes frequently trigger landslides by inducing ground movement and 

reducing slope material strength.  

• Effective mitigation strategies, including proper land use planning, 

afforestation, and improved slope stabilization and drainage, are crucial for 

reducing landslide risks in Kalimpong. 
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 3.2     Remote sensing and GIS in landslide studies 

Remote sensing data, including high-resolution satellite imagery and 

SRTM elevation data, provide critical terrain information such as slope, aspect, and 

elevation. SoI toposheets is used for base mapping and georeferencing. The spatial 

data are processed and analyzed within a GIS environment, where thematic layers 

representing landslide causative factors—such as slope, aspect, elevation, rainfall, 

proximity to roads and faults—are created and overlaid. The Frequency Ratio model 

is applied to calculate the likelihood of landslide occurrence for each class of these 

factors, based on their correlation with past landslide events. These past events are 

mapped through the creation of a landslide inventory, derived from satellite imagery 

interpretation and historical data. All spatial datasets are standardized and 

georeferenced to ensure consistent analysis. The influencing factors are grouped into 

physical (e.g., geology, slope) and environmental (e.g., land use, rainfall) variables, 

each of which can significantly affect slope stability. The study ultimately identifies 

critical landslide-prone zones and contributes to the development of mitigation 

strategies and land-use planning (Powers et al., 1996).  

 3.3     Landslide susceptibility mapping by Frequency ratio method 

LSM is a critical tool in landslide risk assessment and mitigation 

planning, enabling the identification of areas that are potentially prone to slope 

failure. It involves the systematic analysis of various conditioning factors—such as 

geological, topographical, hydrological, and anthropogenic influences—that 

contribute to landslide occurrence. While LSM does not predict the exact timing of a 

landslide, it provides a spatial representation of the probability of future events, 

which is essential for land-use planning, infrastructure development, and disaster 

preparedness. Given the growing socio-economic impacts of landslides and the 

mounting pressure from urbanization in fragile mountainous environments, LSM has 

become increasingly important. Over the past three decades, numerous attempts have 

been made across various parts of India to delineate landslide-prone areas. One early 

effort employed photogrammetry and 3D GIS systems to enhance hazard zonation 

(Ramakrishnan et al., 2003). More recently, advanced techniques have been 
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introduced, including integrated models using GIS, remote sensing, and neural 

networks, such as in the eastern portion of the North Anatolian Fault Zone (Demir et 

al., 2015). Further, alternative frameworks have been proposed to better assess 

landslide consequences, considering past limitations and impacts (Alimohammadlou 

et al., 2013).  

LSM employs a range of methodologies broadly categorized into 

heuristic, statistical, machine learning, and deterministic approaches. Heuristic 

techniques, such as the AHP, depend on expert knowledge to assign weights to 

conditioning factors like slope, geology, and land use, and are useful when data are 

scarce. Statistical methods establish mathematical relationships between historical 

landslides and causative factors. Among these, the FR model is a widely used 

bivariate statistical method that estimates the correlation between landslide 

occurrences and specific classes of conditioning variables. It calculates the ratio 

between the probability of landslides occurring within a particular class and the 

overall probability across the study area. Each conditioning factor—such as 

lithology, slope, aspect, rainfall, and proximity to roads or faults—is represented as a 

thematic layer in a GIS environment. Frequency ratios derived from these layers help 

compute the LSI, which reflects the cumulative effect of all contributing factors. The 

FR method has proven effective in various regional studies and is recognized for its 

simplicity, interpretability, and compatibility with remote sensing and GIS platforms 

(Lee and Talib, 2005).  

The FR model has been successfully applied in diverse terrains for 

landslide susceptibility assessment. For example, it has been used to map the spatial 

distribution of landslides in south-west Calabria, Italy (Goswami, 2012), in  Penang 

district, Malaysia (Lee and Pradhan, 2007). The model can be further strengthened 

through the integration of SRTM data, which provides high-resolution DEMs. These 

DEMs allow for the extraction of essential topographic parameters such as slope, 

aspect, and elevation—critical inputs for the FR model. These factors are classified 

and spatially correlated with historical landslide inventories to assess their relative 

influence on slope instability. In the present study, the FR model was selected to map 
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landslide susceptibility in the Kalimpong region of the Darjeeling Himalayas, owing 

to its computational efficiency and robustness in data-limited settings. Key 

advantages of the FR model include ease of application, straightforward 

interpretation of results, and the ability to generate reliable maps even when input 

data are of moderate quality. Overall, the integration of FR with remote sensing and 

GIS techniques provides an effective framework for identifying high-risk zones and 

informing disaster risk reduction and sustainable development efforts. For this study, 

six primary factors were selected based on their proven relevance in landslide 

occurrences: elevation, slope, aspect, distance to roads, distance to faults or 

lineaments, and annual rainfall. The integration of these factors was carried out in a 

GIS environment, ensuring spatial accuracy and analytical rigor. 

 3.3.1     Data Acquisition and Preprocessing 

Understanding the geomorphological characteristics of terrain is 

fundamental to landslide susceptibility mapping, where slope instability is largely 

influenced by topography. The SRTM data plays a pivotal role in this context by 

offering high-resolution elevation data essential for analyzing landform attributes. In 

this study, SRTM1 data with a spatial resolution of 30 meters was used to derive a 

DEM that facilitated the extraction of critical topographic parameters. The 30 m 

SRTM elevation data is more than good enough for the vast majority of engineering-

grade, regional analyses. It’s a globally accepted baseline used by NASA/USGS and 

countless peer-reviewed studies. These features are essential for assessing terrain 

morphology and hydrological patterns associated with slope failure. For instance, 

slope gradient directly affects gravitational forces acting on the terrain, while slope 

aspect influences microclimatic conditions such as sunlight, vegetation, and moisture 

retention—all contributing to slope stability.  

Beyond topographic characterization, the study integrated various 

ancillary datasets using advanced GIS-based preprocessing techniques. Landslide 

inventory data, comprising 126 landslide events, was acquired from the Bhukosh 

portal of the Geological Survey of India (GSI) in shapefile format. These points were 

processed in a GIS environment and served as ground-truth references for model 
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training and validation. Additional layers included road and fault proximity derived 

from infrastructure and geological vector datasets, as roads often act as destabilizing 

agents due to excavation, and faults signify structural weaknesses. Long-term rainfall 

data was interpolated to generate spatial distribution maps, which were overlaid with 

terrain and geological layers to assess their compounded effect on slope instability. 

Lineament analysis was also conducted to delineate fracture zones that enhance 

infiltration and reduce cohesion within slopes. Various GIS operations, such as 

buffer analysis for proximity calculations and raster-based analysis for topographic 

layers, were employed to standardize and reclassify all variables. Each contributing 

factor was assigned a weight based on expert judgment and statistical validation, 

allowing their integration into a robust LSM. This comprehensive approach 

underscores the effectiveness of SRTM data and geospatial tools in delineating 

landslide-prone zones and guiding mitigation planning. Sources from where different 

data was procured is mentioned in Table 3.1. A detailed methodological flowchart of 

this process is depicted in Figure 3.1. 

Table 3.1 Different landslide conditioning factors and their source 

Factors Data source 

DEM, Slope, Aspect, SRTM Open Topography 

Distance to Road, Lineament Bhukosh Portal 

Rainfall CRU database 

To ensure the statistical validity of the susceptibility model, the inventory data was 

divided into two subsets: 

1. Training Dataset (75%): Comprising 94 points, this dataset was used to 

develop and calibrate the model. 

2. Testing Dataset (25%): Containing 32 points, this dataset was reserved for 

validating the predictive accuracy of the model. 

Testing and training division of dataset points are shown in Fig 3.2. 
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Fig 3.1 Flowchart for landslide susceptibility mapping 

 

Fig 3.2 Map showing testing and training points in Kalimpong dataset 
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This division is critical in landslide susceptibility studies as it ensures the 

model is not overfitted to the training data, thereby maintaining its generalizability 

(Chung and Fabbri, 1999). The splitting process was performed using the 

Geostatistical Analyst tool in ArcGIS, ensuring a spatially consistent separation of 

data points. Each subset retained a representative distribution of the study area's 

landslide patterns. 

3.3.2     Selection of Landslide-Conditioning Factors 

Landslides are complex phenomena influenced by interplay of natural 

and human-induced factors. The selection of conditioning factors for this study was 

guided by their established significance in previous research and the availability of 

high-quality data. The six factors considered were processed using geospatial 

techniques, ensuring their compatibility with the analytical framework. 

(a)Elevation: Elevation, derived from high-resolution DEMs, is a fundamental 

topographical variable. It influences slope stability, weathering processes, vegetation 

cover, and human activity patterns. For this research, elevation data was extracted 

and classified into five distinct categories ranging from 378.31 m to 1649.733 m 

shown in Fig 3.3. These classes were determined using natural breaks in the data 

distribution, a method that minimizes variance within each class while maximizing 

variance between classes. Elevation indirectly impacts landslide occurrences by 

influencing human habitation and infrastructure development. For instance, lower 

elevations are more likely to host settlements and roads, which can destabilize 

slopes, while higher elevations often have steeper gradients prone to natural failures. 

Studies such as those by Koukis et al. (1994) and Dai and Lee (2003) have 

highlighted the dual role of elevation in direct and indirect landslide susceptibility. 
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Fig 3.3 Thematic map for landslide causative factors: Elevation 

(b) Slope: The slope angle is one of the most critical factors in landslide 

susceptibility, as it directly affects the gravitational force acting on soil and rock 

masses. Steeper slopes are inherently less stable, especially under conditions of 

intense rainfall or seismic activity. Using the Spatial Analyst tool in ArcGIS, the 

slope map was derived from the DEM shown in Fig 3.4 and categorized into five 

classes: 

 0°–13.88° 

 13.88°–20.36° 

 20.36°–27.77° 

 27.77°–36.87° 

 36.87°–61.53° 

             These classes capture the variability of slope angles across the study area, 

allowing for a detailed analysis of their influence on landslide occurrences. As noted 

by Nohani et al. (2019), higher slope angles typically correspond to a greater 
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likelihood of landslides, particularly in regions with loose or unconsolidated soils. 

 

Fig 3.4 Thematic map for landslide causative factors: Slope 

(c) Aspect: Aspect, or the orientation of slope faces, influences microclimatic 

conditions such as sunlight exposure, wind patterns, and precipitation distribution. 

These factors, in turn, affect soil moisture levels, vegetation cover, and erosion rates, 

all of which contribute to slope stability. The aspect map was generated using 

ArcGIS's Spatial Analyst tool, with orientations classified into 360° azimuth values 

as shown in Fig 3.5. The significance of aspect varies by region. In areas with 

predominant wind directions or uneven precipitation patterns, slopes facing these 

directions may experience greater instability. Similarly, slopes exposed to direct 

sunlight may undergo increased evaporation, reducing soil moisture and altering 

cohesion. 
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Fig 3.5 Thematic map for landslide causative factors: Aspect 

(d) Distance to Roads: Road construction is a major anthropogenic factor contributing 

to landslide occurrences. Roads often involve cut-and-fill activities, drainage 

alterations, and vibrations from vehicular traffic, all of which destabilize natural 

slopes. For this study, road data was sourced from the Bhukosh portal and processed 

using the Euclidean Distance tool in ArcGIS to create a raster map with a 30-meter 

resolution. Distances were categorized into five classes, ranging from 0 to 2653.77 

meters. Proximity to roads is a critical parameter in LSM as it reflects the extent of 

human intervention in natural terrains. Areas closer to roads are generally more 

susceptible to slope failures, particularly in hilly regions where road construction 

often involves extensive slope cutting. Map depicting distance to roads in Kalimpong 

for LSM is shown in Fig 3.6. 
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Fig 3.6 Thematic map for landslide causative factors: Distance to Roads 

(e) Distance to Faults/Lineaments: Faults and lineaments are structural features that 

signify zones of weakness in the Earth's crust. These geological discontinuities make 

the surrounding areas more susceptible to landslides, especially under seismic 

activity. Vibrations generated during earthquakes can destabilize slopes by reducing 

shear strength and inducing soil or rock movement. Furthermore, faults often 

facilitate groundwater movement, which can lead to increased pore water pressure 

and reduced soil cohesion, further enhancing landslide potential. For this study, 

lineament data was sourced from the Bhukosh portal of the Geological Survey of 

India. The data was processed using the Euclidean Distance tool in ArcGIS to 

calculate distances from these geological features. The final raster output, with a 30-

meter resolution, categorized the study area into five distance classes, ranging from 0 

to 8414.77 meters. This classification was essential to identify how proximity to 

faults influences landslide occurrences. The results showed a higher concentration of 

landslides within close proximity to faults, consistent with findings in previous 

studies. This underscores the importance of incorporating geological factors into 

LSM to enhance predictive accuracy. Map depicting distance to lineamnents in 

Kalimpong for LSM is shown in Fig 3.7. 
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Fig 3.7 Thematic map for landslide causative factors: Distance to Faults/Lineaments 

(f)Annual Rainfall: Rainfall is one of the most significant extrinsic factors influencing 

landslides, particularly in regions with tropical and subtropical climates. Precipitation 

directly impacts slope stability by saturating the soil, increasing pore water pressure, 

and reducing cohesion. Prolonged or intense rainfall can lead to slope failures, 

especially in areas with unconsolidated soils or steep gradients. For this research, 

annual rainfall data spanning the years 2011 to 2020 was acquired in NetCDF format 

from the CRU database. This dataset was processed using the IDW interpolation tool 

in ArcGIS, resulting in a high-resolution raster map. The map categorized annual 

rainfall values within the study area, ranging from 537.74 mm to 69612.55 mm as 

shown in Fig 3.8. 

Rainfall-triggered landslides are common in the study area due to the 

region's susceptibility to intense monsoon rainfall. The integration of rainfall data 

into the LSM ensures that the model accounts for temporal and spatial variations in 

precipitation patterns. The inclusion of this factor aligns with the findings of 
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Rahardjo et al. (1995), who emphasized the critical role of rainfall in landslide 

initiation, especially in areas with residual soils and steep slopes. 

 

Fig 3.8 Thematic map for landslide causative factors: Annual Rainfall 

 3.3.3     Integration of Factors in Frequency Ratio (FR) Model 

After processing and classifying the six conditioning factors, to create the 

landslip susceptibility map, they were incorporated into the FR model. By examining 

the ratio of landslide-prone to non-landslide-prone areas for each factor's class, the 

FR model determines the correlation between landslide occurrences and each 

conditioning factor. This statistical approach ensures that the relative contribution of 

each factor to landslide susceptibility is quantitatively assessed. 

The FR technique is widely regarded as an effective method for 

identifying regions prone to landslide occurrences. Initially, FR values for each class 

within every influencing factor were calculated using Microsoft Excel. Following 

this, the RFV and PR for each factor were derived. The classes of individual factors 

were then reclassified by substituting their original values with the computed RF 

values. Subsequently, the Raster Calculator tool in ArcMap was employed to 



 

48  

multiply the PR values with the reclassified factor layers to produce a landslide 

susceptibility map for the study region. The FR and RF for each class of the 

causative factors were determined using Equations (3.1) and (3.2). 

FR = (% Landslide Pixels  % Class Pixels)……………………….………...…. (3.1) 

RFV = FR/Total sum of Frequency Ratios for that causative factor……………  (3.2)  

Then, prediction rate (PR) and LSM for all the six landslide causative factors can be 

calculated in Excel as mentioned in Eq. 3.3 and 3.4 respectively. 

PR for a LCF = {RFVmax - RFVmin} {(RFVmax -RFVmin)min} ………………..…(3.3) 

LSM=∑(PR for a LCF)∗(Corresponding LCF)……………...………………..….(3.4) 

In this study, FR values were first computed for each class of every conditioning 

factor using Microsoft Excel and shown in Table 3.2 and 3.3 with corresponding 

prediction rate graph in Fig 3.9. The corresponding RF and PR values were then 

determined to assign appropriate weights. Using the raster calculator in ArcGIS, the 

weighted factor layers were integrated to produce the final landslide susceptibility 

map (LSM), which delineates areas with varying degrees of susceptibility based on 

the spatial relationship between landslide occurrences and conditioning factors. 

Table 3.2 Calculation table for Frequency ratio model for all factors (FR and RF) 

 

F
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Factor 

Classes 

Landsli

de 

Pixels 

% 

landslide 

pixels 

Class 

Pixels 

% 

class 

pixels 

Frequen

cy Ratio 

Relative 

Frequenc

y 

S
L

O
P

E
 

0.469799966- 

13.66061902 
15300 22.37 8976 23.29 0.96 0.21 

13.88061903-

20.34654964 
23400 34.21 13371 34.70 0.99 0.21 

20.34654965-

27.7703959 
18900 27.63 8977 23.29 1.19 0.26 

27.77039591-

36.87059455 
9000 13.16 4731 12.28 1.07 0.23 

36.87059456-

61.53692245 
1800 2.63 2482 6.44 0.41 0.09 
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 TOTAL 68400 100.00 38537 100.00 4.61 1.00 

A
S

P
E

C
T

 
-1 0 0.00 0 0.00 0.00 0.00 

0-22.5 2700 3.95 1240 3.22 1.23 0.14 

22.5-67.5 2700 3.95 2663 6.91 0.57 0.07 

67.5-112.5 9000 13.16 5720 14.84 0.89 0.10 

112.5-157.5 9900 14.47 5856 15.20 0.95 0.11 

157.5-202.5 7200 10.53 6199 16.09 0.65 0.07 

202.5-247.5 6300 9.21 3259 8.46 1.09 0.12 

247.5-292.5 12600 18.42 6124 15.89 1.16 0.13 

292.5-337.5 16200 23.68 5913 15.34 1.54 0.18 

337.5-360 1800 2.63 1563 4.06 0.65 0.07 

 TOTAL 68400 100.00 38537 100.00 8.73 1.00 

D
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E
 T
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IN

E
A

M
E

N
T

 

3000.149902-

4401.581623 
3600 5.26 3674 9.53 0.55 0.12 

4401.581624-

5420.804693 
7200 10.53 7056 18.31 0.57 0.12 

5420.804694-

6376.326321 
16200 23.68 8083 20.97 1.13 0.24 

6376.326322-

7289.380321 
27900 40.79 9675 25.11 1.62 0.35 

7289.380322-

8414.772461 
13500 19.74 10049 26.08 0.76 0.16 

 TOTAL 68400 100.00 38537 100.00 4.64 1.00 

D
IS

T
A

N
C

E
 T

O
 R

O
A

D
 0-

301.8014074 
43200 63.16 15470 40.14 1.57 0.44 

301.8014075-

686.8583755 
15300 22.37 10521 27.30 0.82 0.23 

686.8583756-

1144.763959 
6300 9.21 6769 17.56 0.52 0.15 

1144.76396-

1737.959829 
2700 3.95 3912 10.15 0.39 0.11 

1737.95983-

2653.770996 
900 1.32 1865 4.84 0.27 0.08 

 TOTAL 68400 100.00 38537 100.00 3.58 1.00 

E
L

E
V

A
T

IO
N

 

378.3127747-

717.358372 
6300 9.21 5016 13.02 0.71 0.15 

717.3583721-

936.7408173 
9900 14.47 8688 22.54 0.64 0.14 

936.7408174-

1131.193439 
16200 23.68 11530 29.92 0.79 0.17 

1131.19344-

1345.58992 
32400 47.37 9961 25.85 1.83 0.40 

1345.589921-

1649.733765 
3600 5.26 3342 8.67 0.61 0.13 

 TOTAL 68400 100.00 38537 100.00 4.58 1.00 
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R
A

IN
F

A
L

L
 

537.7427979-

14352.70518 
6300 9.21 5915 15.35 0.60 0.12 

14352.70519-

28167.66755 
18000 26.32 10000 25.95 1.01 0.21 

28167.66756-

41982.62993 
10800 15.79 7836 20.33 0.78 0.16 

41982.62994-

55797.59231 
31500 46.05 7690 19.95 2.31 0.48 

55797.59232-

69612.55469 
1800 2.63 6999 18.16 0.14 0.03 

 

TOTAL 68400 100 38440 
99.748

29385 

4.84346

5059 
1 

 

Table 3.3 Calculation table for Frequency ratio model for all factors (PR) 

 

Feature PR Net PR 

Aspect 1.05 105 

Slope 1 100 

Distance From Lineament 1.35 135 

Elevation 1.59 159 

Distance From Road 2.12 212 

Annual Avg Rainfall 2.65 265 

 

 
 

Fig 3.9 Prediction rate graph of various factors 

The resulting LSI values were classified into susceptibility zones—high, 

moderate, and low—using natural breaks. This classification ensures that areas with 

similar susceptibility levels are grouped together, facilitating their identification and 

prioritization for mitigation efforts. The landslide susceptibility map shown in Fig 
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3.10 provides a spatial representation of areas categorized into high, moderate, and 

low susceptibility zones. This map serves as a crucial tool for various applications: 

1. Disaster Risk Reduction: By identifying high-risk areas, the map enables 

targeted interventions, such as slope stabilization, afforestation, and drainage 

improvement. 

2. Infrastructure Planning: The map informs the siting of roads, buildings, and 

other infrastructure to minimize exposure to landslide risks. 

3. Land-Use Planning: Policymakers can use the map to enforce land-use 

regulations, restricting development in high-susceptibility zones. 

4. Community Awareness: The map can be disseminated to local communities 

to raise awareness of landslide risks and promote preparedness. 

 

Fig 3.10 Landslide susceptibility map of Kalimpong by FR model 

Following the landslide susceptibility mapping, three locations classified 

as very high susceptibility, and one location each from high, moderate, and low 

susceptibility areas, were selected for further study. These selections shown in Fig. 

3.11 were based on actual site visits and information gathered from locals regarding 

recurring landslides. Post landslide images of critical locations with latitudes and 

longitudes have been shown in Fig 3.12. 
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Fig.3.11 Critical locations selected in Kalimpong 

  

Location 1 (27.08681,88.49431) Location 2 (27.0518, 88.46469) 

  

Location 3 (27.05211, 88.4415) Location 4 (27.05141, 88.44572) 



 

53  

  

Location 5 (27.07102, 88.45036) Location 6 (27.089218, 88.519134) 

Fig. 3.12 Post landslide images of critical locations with latitudes and longitudes 

 

 

 3.4     Geo-mechanical Properties of Soil Sample  

  
The experiment was conducted for the mechanical analysis tests of 

samples taken from the soil slope in the field. The geomechanical characteristics of 

the slope-forming materials were investigated in the laboratory collected from the 

failure zones of the debris slope. Disturbed samples were collected to perform the 

following basic soil tests such as Grain Size Distribution (GSD) as per IS 2720 Part 

4(1985), Proctor Compaction Test as per IS 2720 Part 8(1983), and Atterberg Limit 

tests as per IS 2720 Part 5 are essential for understanding soil behavior in slope 

stability analysis. The GSD test determines the proportion of different particle sizes 

in a soil sample, helping classify the soil and assess its permeability and shear 

strength characteristics. The Proctor Compaction test establishes the optimum 

moisture content and maximum dry density, which are vital for evaluating soil 

strength and stability under field conditions. The Atterberg Limit test identifies the 

liquid limit, plastic limit, and plasticity index, indicating the soil’s consistency, 

compressibility, and potential for volume change.  
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 3.4.1     Estimated through the triaxial test  

  
The primary goal of triaxial testing is to look into strength properties for 

stability designs. The natural effective stress conditions can be replicated in the 

triaxial test to get important soil strength parameters. The strength characteristics and 

stress-strain behavior of cylindrical soil specimens—either ―undisturbed‖ or 

―remolded‖—are evaluated through CD triaxial tests. In this procedure, specimens 

are first isotropically consolidated and subsequently sheared under drained 

conditions at a controlled axial strain rate. CD tests are applicable to a wide range of 

soil types. During both the consolidation and shearing phases, drainage is permitted, 

allowing for pore water dissipation throughout the test. The specimen is initially 

consolidated under a specified confining pressure, and following full consolidation, 

shear strength is mobilized by gradually applying deviator stress at a slow, constant 

rate of strain while maintaining drainage. Due to the time-intensive nature of 

complete drainage at every stage, CD tests require significantly longer durations to 

complete compared to CU tests. For this reason, they are often referred to as "slow" 

tests and are typically reserved for detailed research applications. The experimental 

setup is illustrated in Fig. 3.13. Different confining pressures were applied to the 

same type of soil in four tests to calculate shear strength parameters. The test results 

are recorded using axial displacement, load cells, and pressure transducers. 

According to the relationship given by Kezdi (1980), the strain rates were checked 

within the recommended limit.  

Furthermore, during consolidation and shearing, the volume of the specimen area 

may change due to compression shown in Fig 3.14 before and after shearing. As a 

result, the initial area was corrected to account for both the change in the cross-

section area and the rubber membrane's restricting impact. The shear strength 

parameters (c and ϕ) were determined using the adjusted axial, and radial forces 

applied to the specimen from the modified Mohr circle failure envelope of the 

effective shear stress vs. normal stress relationship graph (Fig 3.15-3.20). Also final 

geotechnical parameters of all soil samples have been shown in Table 3.4. 
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Fig 3.13 Triaxial shear test apparatus 

  

Before failure After failure 

Fig 3.14  Soil specimen before and after failure 
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Fig 3.15  Mohr- Coulomb failure envelope for sample L1 

 

Fig 3.16 Mohr- Coulomb failure envelope for sample L2 
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Fig 3.17 Mohr- Coulomb failure envelope for sample L3 

 

Fig 3.18 Mohr- Coulomb failure envelope for sample L4 
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Fig 3.19 Mohr- Coulomb failure envelope for sample L5 

 

Fig 3.20 Mohr- Coulomb failure envelope for sample L6 

 

 

 

 

 

 



 

59  

Table 3.4 Geotechnical properties of soil samples 
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3.5 Geostudio SLOPE/W Program- Slope stability analysis 

 

    SLOPE/W is an advanced geotechnical analysis software that applies the 

LEM to evaluate the stability of slopes. It is capable of simulating a wide variety of 

soil behaviors, accommodating complex stratigraphic profiles, diverse slip surface 

configurations, and spatially variable pore-water pressure distributions through the 

use of multiple constitutive soil models. These capabilities render SLOPE/W highly 

effective for comprehensive slope stability assessments, which justifies its selection 

for this study. The software supports multiple analytical approaches, including the 

Ordinary/Fellenius method, Bishop's Simplified method, Janbu's Simplified method, 

Spencer's method, Morgenstern-Price method, the GLE method, and finite element-

based stress analyses. Among these, only the M-P and GLE methods account for 

both interslice normal and shear forces, thereby satisfying conditions of both force 

and moment equilibrium. In contrast, the remaining methods simplify the problem by 

neglecting interslice shear interactions. The M–P method is used in this work to 

measure the FOS for a range of critical cut slopes in Kalimpong with various soil 

parameters. 

 3.5.1     Approach for static conditions 

  
In this study, the Limit Equilibrium Method (LEM) was selected over the 

Finite Element Method (FEM) due to its computational efficiency, lower data 
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dependency, and suitability for regional-scale slope assessments. While FEM allows 

detailed stress–strain simulations, it requires complex constitutive models and 

precise parameter calibration, which can introduce uncertainty in large-scale 

applications. LEM, on the other hand, effectively estimates the Factor of Safety 

(FOS) by analyzing the equilibrium of forces and moments along potential slip 

surfaces using readily available geotechnical parameters. The static slope stability 

assessment was carried out using GeoStudio’s SLOPE/W software, which applies 

LEM to evaluate slope stability under defined conditions. Slope profiles were 

prepared using field survey data and Digital Elevation Models (DEMs) to accurately 

represent terrain geometry. The Morgenstern-Price method was adopted as it 

provides a rigorous framework by considering both force and moment equilibrium 

between slices, offering more reliable results than simplified methods such as 

Bishop’s or Janbu’s. Soil parameters including unit weight, cohesion, and angle of 

internal friction were assigned based on laboratory test outcomes and validated 

through literature values specific to the Kalimpong region. Analyses were performed 

under both dry and saturated conditions to capture the influence of pore-water 

pressure variations. The software iteratively identified the most critical slip surface 

and computed the corresponding FOS and stress distribution profiles, highlighting 

the zones of potential instability. Furthermore, the FOS values and model outputs 

were integrated with previously published datasets and subjected to machine learning 

techniques for coherence evaluation, statistical correlation, and predictive modeling. 

This integration allowed for the development of advanced data-driven models aimed 

at improving the accuracy and reliability of future slope stability assessments under 

similar geological and environmental conditions. 

3.5.2     Approach for dynamic conditions 

The analysis of slope stability under dynamic conditions was carried out 

using a pseudo-static approach within GeoStudio’s SLOPE/W framework to simulate 

the influence of seismic loading on slope performance. This method was preferred 

for its simplicity and effectiveness in incorporating earthquake-induced forces into 

conventional static analysis, making it suitable for preliminary and regional-scale 

stability evaluations. In this approach, dynamic effects were represented by 
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equivalent static forces characterized through horizontal and vertical seismic 

coefficients, which were determined in accordance with the provisions of IS 1893 

(Part 1): 2016 for seismic design considerations. These coefficients were assigned 

based on the seismic zoning of the Kalimpong region, which falls under Zone IV of 

the Indian seismic map, ensuring that the seismic loading conditions reflected 

realistic ground motion intensities. The slope geometry and material properties used 

in the static analysis were retained, while the additional inertial forces were 

introduced to simulate earthquake acceleration acting on the potential sliding mass. 

The Morgenstern-Price method was again employed to achieve comprehensive force 

and moment equilibrium between slices, allowing for accurate estimation of the 

Factor of Safety (FOS) under pseudo-static conditions. Analyses were performed for 

both dry and saturated states to account for the combined influence of seismic 

excitation and pore-water pressure on slope stability. The results provided insight 

into how seismic loading alters the location of the critical slip surface and reduces 

the FOS compared to static conditions. Subsequently, the dynamic FOS values and 

related parameters were incorporated into the machine learning framework alongside 

static results and existing datasets to perform statistical analyses, pattern recognition, 

and predictive modeling. This integration enabled the development of a robust data-

driven system capable of forecasting slope performance under future seismic events 

with improved precision. 

 3.6      Stabilization Technique adopted- Soil Nailing 

  

Soil nailing is a superior technique for slope stabilization compared to 

geogrids and retaining walls due to its specific advantages and applications. Geogrids 

are generally used for land leveling and ground improvement, providing 

reinforcement for the soil but primarily functioning in flatter terrains or gentle slopes. 

They are less effective in stabilizing steep or highly unstable slopes where higher 

shear strength is required. Retaining walls, on the other hand, often face issues such 

as soil settlement behind the wall, which can lead to wall failure over time. The rigid 

nature of retaining walls can make them susceptible to such failures, especially in 

areas with significant soil movement or water infiltration. Soil nailing, by contrast, 
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involves inserting steel bars into the slope, which increases the shear strength and 

provides immediate and continuous support(Mangnejo et al., 2019). This method is 

particularly effective for steep and complex slopes where conventional retaining 

methods might fail. It allows for incremental stabilization, meaning nails can be 

installed progressively as excavation or construction advances, ensuring ongoing 

support and minimizing the risk of collapse. 

In addition to its comparative advantages, soil nailing is widely regarded 

as one of the most effective and reliable methods for stabilizing soil slopes due to its 

versatility, deep reinforcement capability, and minimal disturbance to the existing 

terrain. Unlike surface-based treatments such as vegetative cover or terracing, soil 

nailing provides internal stabilization by reinforcing the soil mass with closely 

spaced steel bars that are drilled and grouted into the slope. This technique 

significantly improves the shear strength of the slope and enhances its resistance to 

both shallow and deep-seated failures. One of the primary advantages of soil nailing 

is that it preserves the existing slope geometry, making it highly suitable for space-

constrained areas such as urban developments, road cuts, and steep embankments 

where extensive excavation or slope flattening is impractical. Moreover, it is cost-

effective and allows for relatively fast installation, without the need for large 

retaining structures or heavy fill. Construction can proceed in a top-down manner, 

enabling immediate support to excavated sections and enhancing safety throughout 

the process. Soil nailing also performs well under both static and dynamic loading 

conditions, making it highly suitable for landslide-prone and seismically active areas. 

Its compatibility with other stabilization methods, such as shotcrete, geosynthetics, 

and drainage systems, further strengthens its applicability. With a strong track record 

in critical infrastructure projects and the ability to customize designs for varying site 

conditions, soil nailing stands out as the most dependable and flexible method for 

ensuring long-term slope stability. 
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 CHAPTER 4  

 RESULTS AND DISCUSSIONS 
 

 

4.1    SLOPE/W Results for static loading 

  
With the use of Slope/W software and the M–P method (Morgenstern 

and Price 1965), the current study calculates the FOS for a range of critical cut slopes 

in Kalimpong with different soil characteristics. This is verified by a field survey. 

This section gives details about the results related to slope failures, factor of safety at 

different locations including mathematical modelling. 

 

 4.1.1     Location 1 in Mahakal Dara Bhalukhop (static) 

Mahakal Dara in Bhalukhop, Kalimpong, is a geologically active region 

characterized by steep slopes and a fragile geomorphic setup, making it highly 

susceptible to landslides. The area experiences significant seasonal rainfall, 

contributing to high pore water pressures in the soil strata. In this study, the slope 

stability analysis was conducted using the soil parameters specific to the site, where c 

and ϕ were determined from site-specific geotechnical investigations. For saturated 

conditions, a water table was modeled at a depth of 5 meters from the ground surface 

as per ―Report on the Dynamic Ground Water Resources of West Bengal as on 31-

03-2022‖ to simulate the effects of infiltration and increased pore pressure during 

monsoons. Conversely, for dry conditions, the water table was considered absent to 

evaluate slope stability under normal circumstances. The presence of high pore 

pressures during saturated conditions reduces the effective stress and shear strength 

of the soil, significantly increasing the likelihood of slope failure. Combined with 

Kalimpong's seismic vulnerability and its history of rainfall-induced landslides, the 

region around Mahakal Dara remains at high risk for landslide occurrences, 

necessitating detailed risk mitigation and stabilization measures. Fig. 4.1 and 4.2 

shows the SLOPE/W results for the location L1 under dry and saturated situations, 

respectively. 
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Fig 4.1 SLOPE/W results for L1 in dry condition under static loading 

 

Fig 4.2 SLOPE/W results for L1 in saturated condition under static loading 

 

 4.1.2     Location 2 in  Chandraloke (static) 

Chandraloke in Kalimpong is a region of hilly terrain with steep slopes 
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and a history of instability due to its geological and hydrological characteristics. This 

site, like much of Kalimpong, is highly vulnerable to landslides, exacerbated by 

heavy rainfall during monsoons and the area's seismic activity. For the slope stability 

analysis of this location, the soil parameters, including cohesion (c) and internal 

friction angle (ϕ), were obtained from detailed geotechnical studies. The water table 

was modeled at a depth of 5 meters below the surface to simulate the saturated 

conditions that typically occur during peak rainfall periods, while no water table was 

considered for dry conditions to represent stable weather periods. Under saturated 

conditions, elevated pore water pressures significantly reduce the effective stress and 

shear strength of the soil, increasing the potential for slope failure. The combination 

of steep slopes, variable water levels, and the region’s propensity for heavy rainfall 

makes Chandraloke particularly susceptible to rainfall-triggered landslides, 

emphasizing the need for effective slope stabilization techniques and proactive risk 

management. Fig. 4.3 and 4.4 shows the SLOPE/W results for the location L2 under 

dry and saturated situations, respectively. 

 

Fig 4.3 SLOPE/W results for L2 in dry condition under static loading 
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Fig 4.4 SLOPE/W results for L2 in saturated condition under static loading 

 

 4.1.3     Location 3 in Upper Tashiding (static) 

  
 Upper Tashiding in Kalimpong is a region with a complex terrain 

marked by steep gradients and loosely consolidated soil, making it highly vulnerable 

to slope instability. The area is characterized by frequent heavy rainfall during the 

monsoon, leading to significant changes in groundwater levels and an increase in 

pore water pressure. For the slope stability analysis at this site, geotechnical 

parameters, including the c and ϕ, were evaluated to assess soil strength under 

varying conditions. A water table was considered at a depth of 5 meters from the 

surface to account for saturated conditions, reflecting the effects of prolonged 

rainfall, while dry conditions were modelled without any water table to simulate non-

monsoon scenarios. The increase in pore water pressure under saturated conditions 

drastically reduces the soil’s shear strength, making the slopes more prone to failure. 

Given the area's geological sensitivity and the dynamic hydrological influences, 

Upper Tashiding is highly susceptible to landslide events, particularly during intense 

rainfall, necessitating targeted mitigation measures and continuous monitoring to 

ensure slope stability. Fig. 4.5 and 4.6 shows the SLOPE/W results for the location 
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L3 under dry and saturated situations, respectively. 

 

Fig 4.5 SLOPE/W results for L3 in dry condition under static loading 

 

 

Fig 4.6 SLOPE/W results for L3 in saturated condition under static loading 

 

 4.1.4     Location 4 in Upper Tashiding (static) 

Ngassey Busty, located in the hilly terrain of Kalimpong, is a region with 

slopes that are highly sensitive to environmental and geotechnical factors, making it 

prone to landslides. The area experiences significant monsoonal rainfall, which plays 
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a critical role in destabilizing the slopes. The slope stability analysis for this site 

incorporated detailed soil parameters, including c and ϕ, derived from geotechnical 

investigations. For scenarios simulating saturated conditions, a water table was 

placed 5 meters below the surface, representing the typical impact of prolonged 

rainfall and infiltration. Under dry conditions, no water table was considered to 

reflect normal circumstances. Saturated conditions substantially weaken the soil 

structure by increasing pore water pressures, reducing shear strength, and elevating 

the risk of slope failure. Coupled with the steep topography and high precipitation 

levels, the site exhibits a heightened susceptibility to rainfall-induced landslides, 

underlining the necessity for robust monitoring systems and slope reinforcement 

strategies to mitigate risks effectively. Fig. 4.7 and 4.8 shows the SLOPE/W results 

for the location L4 under dry and saturated situations, respectively. 

 

Fig 4.7 SLOPE/W results for L4 in dry condition under static loading 
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Fig 4.8 SLOPE/W results for L4 in saturated condition under static loading 

 4.1.5     Location 5 in Mongbol Road (static) 

Mongbol Road in Kalimpong presents a challenging terrain where slope 

stability is a critical concern due to the interplay of steep gradients, soil 

characteristics, and climatic conditions. This area experiences frequent and intense 

rainfall during the monsoon, a key factor influencing slope failure. For this study, 

soil parameters such as c and ϕ were utilized to assess stability under varying 

hydrological scenarios. Saturated conditions were modeled with the water table 

positioned at 5 meters below the surface to reflect typical monsoonal impacts, 

whereas dry conditions excluded the presence of a water table to represent normal 

weather. Saturation during heavy rainfall significantly elevates pore water pressure, 

undermining the effective stress and thereby reducing the soil's ability to resist shear 

forces. Given the dynamic hydrological environment and steep topography, Mongbol 

Road is highly susceptible to landslides, especially during periods of intense rainfall. 

Proactive slope stabilization measures and consistent geotechnical monitoring are 

essential to mitigate these risks and ensure the safety of this area. Fig. 4.9 and 4.10 

shows the SLOPE/W results for the location L5 under dry and saturated situations, 

respectively. 
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Fig 4.9 SLOPE/W results for L5 in dry condition under static loading 

 

Fig 4.10 SLOPE/W results for L5 in saturated conditions under static loading 

 

 4.1.6     Location 3 in Deolo (static) 

Deolo, a prominent location in Kalimpong known for its elevated terrain 

and scenic landscapes, faces significant challenges related to slope stability. The site 
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is characterized by steep slopes and a combination of loose and weathered soils, 

which are particularly susceptible to external triggers such as heavy rainfall. To 

analyze slope stability, key geotechnical parameters, including c and ϕ were 

considered. For saturated conditions, a water table was modeled at a depth of 5 

meters below the surface to simulate the effects of water infiltration during monsoon 

rains. In dry conditions, the absence of a water table was assumed to evaluate 

stability under normal circumstances. The saturated condition increases pore water 

pressures, reducing effective stress and weakening the soil's shear resistance, thus 

amplifying the likelihood of slope failure. Deolo's combination of steep gradients, 

variable hydrological conditions, and susceptibility to rainfall-triggered instability 

underscores the need for thorough monitoring and the implementation of slope 

reinforcement techniques to ensure safety and minimize landslide risks. Fig. 4.11 and 

4.12 shows the SLOPE/W results for the location L6 under dry and saturated 

situations, respectively. 

 

Fig 4.11 SLOPE/W results for L6 for dry conditions under static loading 
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Fig 4.12 SLOPE/W results for L6 for saturated conditions under static loading 

 

 4.2     Sanity of the data (static) 

  
In the present investigation, a total of 97 slope stability case studies were 

analyzed. This dataset includes 85 documented cases sourced from existing literature 

(Sah et al. 1994; Zhou and Chen 2009; Li and Wang 2010) focused on slope stability 

evaluation along with 12 additional cases derived from critical locations within the 

Kalimpong region. The outcomes of the Kalimpong site analyses have been detailed 

in the preceding sections. Every sample represents a slope engineering field study 

that includes five input parameters, or independent components. After that, a signal 

with one dependent component is utilized to determine whether the slope is stable or 

not. For the purpose of prediction, slope conditions were encoded numerically—

assigning a value of 0 to "failure" cases and 1 to "stable" cases. This binary 

classification was subsequently standardized to ensure compatibility with ML model 

input requirements. Each group of data was matched based on five independent 

variables, resulting in one dependent outcome. Because the data has been integrated, 

each sample property is significant, distinct, and provides an accurate indicator.  

Among the 97 dataset rows, 41 are classified as "stable," while the remaining 56 are 

classified as "failure." There is a 1:1.36 ratio between these two groupings, showing 
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that the indications are dispersed almost evenly. A violin chart (a strip plot that 

reveals underlying data via points) is used to quickly assess the data's authenticity. 

Figure 4.13(a-e) depicts the violin plots for UW, C, Phi, SA, and SH in both the 

"Stable" and "Failure" categories. Each plot's median is represented with a white 

circle in the centre. The box's range contains both the first and third quartiles. The 

95% confidence level is represented by a narrow black line in each violin plot. The 

silhouette or boundary of each violin approximates the normal kernel density for the 

given feature. The findings show that the data is stable and has a normal distribution. 

 

 

(a) UW 

 

(b) C 
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(c) Phi 

 

(d) SA 

 

(e) SH 

Fig. 4.13 Normal kernel density Violin plots for different input parameters 

 



 

76  

 

 4.3     Statistical summary of the simulated dataset for static modeling 

  
In order to determine whether the data or parameters have a "skewness" 

distribution, this section examines various statistics for each feature. Each of the five 

sources is assessed separately due to their different SI units and meanings. All 

statistical data values, including mean, median, mode, min, max, standard deviation, 

and dispersion, are also shown in Table 4.1. A parametric distribution is shown in 

Fig. 4.14, along with the rate parameter (lambda) for an exponential distribution and 

the mu and sigma for a normal distribution. In contrast to the normal distribution in 

other indices, the slope height in Fig. 4.14 (d) shows that it fits the exponential 

distribution better. The rate parameter lambda=0.01379 is the inverse of the mean 

and standard deviation. However, because slope height fits the distribution better if 

the rate parameter (lambda=0.01379) is present, it shows that this component has a 

relatively exponential distribution. Additionally, the exponential distribution's mean 

and standard deviation, which equal 72.49, are the inverse of the rate parameter. The 

distribution of the remaining parameters, UW, C, Phi, and SA, is normal. 

 

Table 4.1  Statistical characteristics of dataset for static modeling 

 

Indices Mean Mode Median Maximum Minimum Dispersion 
Standard 

Deviation 

UW 20.827 18.5 19.97 31.3 13.97 0.1811 3.79 

C 22.161 5 16.28 70.07 0 0.7417 16.52 

Phi 25.389 0 28.8 38 0 0.4078 10.4 

SA 32.799 30 31 50 16 0.2629 8.66 

SH 72.499 50 37 432 3.6 1.353 72.499 
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(a) UW 

 

(b) C 

 

(c) Phi 
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(d) SA 

 

(e) SH 

Fig. 4.14 Distribution histogram of different indexes UW, C, Phi, SA and SH 

 4.4     Assessment of correlations among parameters for static modeling 

  
Before drawing any conclusions about prediction models, it is imperative 

to first examine the relationship between the five qualities, or variables. The strong 

correlation between these characteristics may affect the forecast accuracy of the 

models and result in derogatory conclusions that contradict reality. Eq. 4.1 shows the 

equation to determine "Pearson's correlation coefficient" for any two items (Cohen et 

al., 2009). 

        

  ( )  
∑(    ̅)(    ̅)

√∑(    ̅)
 ∑(    ̅)

 
  ……………………………………………….……... (4.1)                                          

where yi is the value of the y variable, xi is the value of the x variable, x   

is the mean of the x values, y   is the mean of the y values, and r is the coefficient of 
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correlation of x and y (range -1 to 1). A matrix containing the association values for 

each of the five attributes can be found in Fig 4.15. Two components are considered 

to have a strong correlation if their correlation values are close to one. If not, there is 

little connection between these two components. The correlation between 

cohesiveness and internal friction angle is -0.22, indicating a negative relationship 

between the materials. With an r value of 0.522, the slope angle and friction have the 

most positive correlation. Nonetheless, two entities are not inexorably linked if their 

correlation coefficient is less than 0.5. The five attributes so show an ignorable 

relationship. The correlation matrix illustrating the interrelationships among the 

factors affecting slope stability is presented in Fig. 4.15. It was generated by 

integrating graphical elements using specialized drawing software to enhance the 

interpretation of interactions among the five selected parameters. This visual 

representation aids in clarifying the variable ranges and the degree of association 

between the influencing factors considered in this study. 
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Fig. 4.15 Correlation matrix for parameters undergoing static modeling 

 

 4.5     Prediction from models 

 

 4.5.1     Conventional ML Models  

 

This study uses one probabilistic model NB, and seven supervised 

models: SVM, DT, KNN, LR, RF, and AdaBoost. SVM is a supervised machine 

learning technique that can be used for outlier identification, regression, and 

classification. This type of linear classifier looks for the best hyperplane to use while 

classifying the data. By selecting the hyperplane in this way, the difference between 

the two classes is maximised (Samui, 2008). Decision Trees are supervised machine 

learning techniques for regression analysis and categorisation. It is a visual depiction 

of every option for a decision depending on specific criteria. Every node in a 

decision tree denotes a choice, and every edge shows how that choice turned out 

(Hwang et al., 2009). As a non-parametric approach, kNN does not assume any 

particular distribution of the data. It just looks at a data point's k nearest neighbours 

to determine its categorisation or regression value (Cheng and Hoang, 2016). The 

likelihood that the output variable will belong to a certain class is represented by a 

logistic function in the logistic regression linear model (Bhagat et al., 2022).  

The final prediction is obtained by averaging the forecasts of each 

individual decision tree, which is trained in Random Forest using arbitrary subsets of 

the training data (Xie et al., 2022). For regression analysis and classification, a 
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supervised machine learning method known as AdaBoost is used. To improve the 

model's performance and accuracy, a number of weak learners are combined in this 

ensemble learning technique  (Lin et al., 2021). One probabilistic machine learning 

approach for categorisation is called Naive Bayes. It assumes that the input qualities 

are conditionally independent of each other and is based on the Bayes theorem (Feng 

et al., 2018). The first step in using ML for geotechnical analysis is gathering and 

preprocessing geotechnical data, which includes data normalisation and missing 

value correction. Finding the elements required for predicting slope stability and 

possibly even engineering them is the next stage. The particular problem at hand and 

the available data will determine which machine learning model is best. The 

hyperparameters of the model are then adjusted for best results using a portion of the 

training data. An extra data set is then used to ensure that the model has good 

generalisation capabilities. In the end, criteria like accuracy and precision are used to 

assess the model. After validation, it is put into use and then regularly checked to 

adapt to fresh information and evolving circumstances. Additionally, the full 

procedure employed for this investigation is depicted in the flowchart in Fig. 4.16 

below. 

 

Fig 4.16 Methodology flowchart 
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 4.5.2     Consideration of impacting parameters on slope stability (static) 

  
Both quantitative and qualitative factors affect slope stability. 

Cohesiveness, slope height and angle, pore water pressure, unit weight, internal 

friction angle, and other factors are among the numerical parameters. Failure 

patterns, the physical attributes and quality of rocks and soil, subsurface water, and 

more are examples of qualitative factors. Here, the goal is to use numerical 

computations to ascertain whether a slope is stable or failing. The largest problem, 

though, is translating qualitative traits into numerical values when field data is 

insufficient. The dependent component pertaining to the evaluation of slopes is 

therefore categorised as "stable" or else "failure" when ML algorithms are utilised to 

create prediction models based on the following five indicators: C, SA, SH, Phi, and 

UW. Since value assignment is based on a variety of criteria and interstitial water 

pressure is frequently ambiguous in field situations, it is excluded from the prediction 

models. The five selected variables correctly depict slope stability, according to this 

study, which focuses on 99 slope data case sets. In order to guarantee adequate 

precision and dependability in the prediction models, interstitial water pressure is 

thus eliminated. 

 

 4.5.3     ML models analysis (static) 

  
On the initial test data, standard cross validation methods like 2, 3, 5, 10, 

and 20 fold are used. 29 randomly chosen samples are used as a testing set and rest 

of the data is used as the training set to build the slope stability predicting model. The 

model's final outcome is the mean of the five prediction outcomes following five 

iterations of the previously specified random option. Randomized cross validation is 

carried out in this article utilizing the Python programming language for 

convenience. Due to space constraints, this article only shows the "scatter plots" and 

"linear fitting curves" between unit weight on the horizontal axis (x) and different 

parameters on the vertical axis (y). The fitting line equation, its slope and intercept, 

Pearson's coefficient (r), and the COD are also shown in Fig. 4.17.  
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(a) UW-C (b) UW-Phi 

  

(c) UW- SA (d) UW- SH 

 

Fig. 4.17 Regression fitting line and scatter plots of different parameters 

  

 4.5.4     Valuation of Models (static) 

 

Common performance evaluation metrics for classification models 

include CA, P, R, F1 and AUC shown in Fig 4.18. The comparison between 

predicted and actual outcomes is categorized into four outcomes: TP, TN, FP, and 

FN. Classification Accuracy represents the overall correctness of the model in 

predicting both positive and negative outcomes (Begum et al., 2021). Precision 

quantifies the proportion of correctly predicted positive instances among all instances 

predicted as positive (Chen et al., 2022). Recall, conversely, measures the model’s 
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ability to identify all actual positive instances. The F1 Score, which is the harmonic 

mean of Precision and Recall, provides a more balanced performance measure, 

especially under imbalanced class distributions or when both false positives and false 

negatives incur similar costs. A higher F1 Score signifies improved model 

performance in distinguishing between positive and negative classes. When Recall is 

plotted on the x-axis and Precision on the y-axis, the Precision-Recall curve is 

obtained. The ROC curve, on the other hand, graphically represents the relationship 

between the TPR and the FPR across different classification thresholds. The AUC 

serves as an aggregate measure of model performance, where higher values indicate 

greater classification effectiveness. 

 

Fig 4.18 Performance indicators 

 

4.6     Examination of results from predictions (static) 

 

 4.6.1     Model assessment based on the unprocessed data (static) 

  
To perform the random cross assessment, seven different machine 

learning techniques are presented, along with one stacking technique of Random 

Forest and AdaBoost, or R-Boost. The classification accuracy, precision, recall, F1, 

and AUC values obtained are displayed in Table 4.2. AUC is a crucial machine 

learning metric because it offers a trustworthy and understandable assessment of a 

model's performance in binary classification tasks, particularly in cases where the 

dataset is unbalanced. R-Boost has an AUC of 0.798, followed by LR with a value of 

0.74, while RF shows an average value of 0.81. With an average of 0.725, R-Boost 
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also has the best forecasting ability in terms of CA. After this AdaBoost and RF had 

an average accuracy of 0.723. Additionally, AdaBoost generates excellent results 

because it transforms a high bias low variance model into a low bias low variance 

model, which helps create the optimal machine learning model that yields an 

extremely accurate estimate. In comparison to methods like SVM, it is also easier to 

use and requires less modification.  

However, in this case, the R-Boost algorithm produces the highest CA 

since it generates an initial array of decision trees by applying random forest to the 

dataset. AdaBoost is then applied to the decision trees to improve their accuracy and 

efficiency. This technique can improve the model's accuracy and reduce its variance, 

increasing its dependability and capacity to manage complex datasets with a wide 

range of features. to more clearly describe each model's soundness. One sign that the 

model's behaviour is erroneous for skewed data is accuracy. It is possible to create 

effective prediction models when both F1 and AUC values are considered. The 

results in Table 4.2 show that R-Boost, AdaBoost, and RF are the forecast models 

with F1 values more than 70%. Additionally, the AUC values for LR, R-Boost, and 

RF are higher than 74%. According to AUC and CA, RF and R-Boost are therefore 

thought to be the most accurate predictor, which further enhances the novelty factor 

of this study. 

Table 4.2 Evaluation metrics for different ML methods 
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 4.6.2     Sensitivity Analysis for static analysis 

  
The importance factor is calculated for each input parameter in this 

section, which focusses on the sensitivity analysis using weight determination 

criteria. This task is carried out using the CRITIC approach, which uses the 

coefficient of variation, which is equal to (Standard Deviation/Average) for each 

individual parameter provided by Ij. Equation 4.2 is used to calculate the objective 

weight (Wj) of any given criterion j (Krishnan et al., 2021) 

      ∑   
 
   ………………………………….............................................. (4.2) 

In accordance with the five input criteria, weightage plays a vital function. The 

values of weightage in percentage comes out to be 2.7, 12, 7.5, 6.3 and 71.5 for UW, 

C, Phi, SA and SH correspondingly.  According to the data, slope height has a bigger 

influence on slope stability than cohesiveness while unit weight has the least 

demonstrated in Fig 4.19. 
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Fig. 4.19 Weightage indicator of each parameter 

 4.6.3     Receiver Operating Characteristic (ROC) Curve for static analysis 

  
The ROC curve is a graphical representation used to evaluate the 

performance of binary classification models. The AUC-ROC serves as a quantitative 

measure of a model's discriminative ability. In the present study, as illustrated in Fig. 

4.20 and 4.21 for failure and stable classes respectively, the RF algorithm 

demonstrated the highest overall classification accuracy among all evaluated models. 

Both RF and R-Boost, being robust ensemble learning techniques, exhibited strong 

predictive capabilities for estimating the Factor of Safety (F.S) across various slope 

conditions, as inferred from the ROC analysis. SVM also yielded reliable and 

consistent results, making it a viable alternative classifier. Among the models 

assessed, RF achieved the highest AUC value of 0.81, followed by R-Boost with an 

AUC of 0.798, and LR with 0.74. In contrast, the Naïve Bayes classifier recorded the 

lowest AUC value of 0.654. These findings underscore the superior predictive 

accuracy and reliability of RF and R-Boost models, aligning well with results 

obtained through conventional LEMs. Consequently, the application of these 

machine learning approaches holds significant promise for the development of 

efficient slope stability assessment frameworks and the formulation of appropriate 

stabilization strategies.

3% 
12% 

8% 

6% 

71% 

UNIT WT. C PHI SA SH
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Fig. 4.20 ROC Curve (Failure) 

 

Fig. 4.21 ROC Curve (Stable) 

 4.6.4     Comparison with GeoStudio results for static loading 

  
As per the above results, in Table 4.3 author has presented the slope 

stability assessment outcomes, derived from both the best-performing machine 

learning models and the SLOPE/W simulation outputs. Among the predictive 
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models, R-Boost, followed closely by RF, demonstrated high reliability by producing 

results that closely align with the stability outcomes observed in the numerical 

analysis.  

Table 4.3 Testing results on stability condition criteria for Kalimpong (static 

condition) 
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L1 Dry 20 5 33 35.5 50 S S S F S 

L1 Sat. 21 5 33 35.5 50 F F F F F 

L2 Dry 18.5 2 33.2 30 25 S F S S S 

L2 Sat. 20 2 33.2 30 25 S S F S S 

L3 Dry 15 1 33.6 34.6 45 S S S S S 

L3 Sat. 17 1 33.6 34.6 45 F F F S F 

L4 Dry 19.7 5 32.3 33 19 S S S S S 

L4 Sat. 21.8 5 32.3 33 19 S S S S S 

L5 Dry 19.9 32 31.5 41.6 65 S S S F S 

L5 Sat. 22 32 31.5 41.6 65 F F F F F 

L6 Dry 19 5 28.8 33.3 25 S S S S S 

L6 Sat. 20 5 28.8 33.3 25 F S S F S 

  
 4.7     Slope/W results for dynamic loading 

  
For a variety of critical slopes in Kalimpong with variable soil 

parameters, such as seismic loading for dry and saturated conditions, the current 

study employs the M-P approach to measure the FOS using the "Slope/W" software 

under GeoStudio 2021.4, which is confirmed by field survey (Morgenstern and Price, 

1965). The entire procedure, including mathematical models and field validation, is 

covered in this section.  
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 4.7.1     Location 1 in Mahakal Dara, Bhalukhop (dynamic) 

 

Mahakal Dara in Bhalukhop lies in a seismically active region with steep 

terrain and loose soil strata, making it particularly vulnerable to dynamic loading 

factors. In this slope stability analysis, pseudo-static loading was introduced to 

simulate seismic conditions, reflecting the additional forces generated during 

earthquakes. Key soil parameters, such as c and ϕ, were analyzed for both dry and 

saturated conditions. In saturated scenarios, a water table was placed 5 meters below 

the surface to represent post-rainfall infiltration. The seismic forces act as an added 

destabilizing factor, increasing the shear stress within the slope while reducing the 

effective stress, particularly under saturated conditions where pore water pressure is 

already elevated. This combined impact significantly lowers the factor of safety, 

emphasizing the critical need for earthquake-resistant slope reinforcement measures, 

such as retaining walls, soil nailing, and drainage systems, to prevent potential 

catastrophic slope failures in this area. SLOPE/W results are shown in Fig. 4.22 and 

4.23 for L1 soil specimens under dry and saturated conditions, respectively.  

 
Fig 4.22 SLOPE/W results for L1 in dry conditions under dynamic loading 
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Fig 4.23 SLOPE/W results for L1 in saturated conditions under dynamic loading 

 

 

 4.7.2     Location 2 in Chandraloke (dynamic) 

  
 

The terrain of Chandraloke, with its steep inclines and proximity to 

seismic zones, poses a substantial risk of landslides under dynamic conditions. 

Pseudo-static analysis was utilized to assess the stability of the slope under seismic 

forces. Soil properties, including c and ϕ were measured to evaluate the resistance of 

the soil mass against these forces. Saturated conditions, modeled with a water table at 

5 meters below the surface, significantly weaken the soil due to increased pore water 

pressure. When combined with dynamic forces, the destabilization is further 

amplified, as the inertial effects of seismic loading increase the likelihood of slope 

failure. This analysis underscores the necessity for advanced mitigation techniques, 

such as shock-absorbing barriers, geosynthetic reinforcements, and seismic slope 

drainage systems, to enhance the stability of Chandraloke’s vulnerable slopes. 

SLOPE/W results are shown in Fig. 4.24 and 4.25 for L2 soil specimens under dry 

and saturated conditions, respectively.  
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Fig 4.24 SLOPE/W results for L2 in dry conditions under dynamic loading 

 
Fig 4.25 SLOPE/W results for L2 in saturated conditions under dynamic loading 

 

 4.7.3     Location 3 in Upper Tashiding (dynamic) 

  
  

Upper Tashiding is characterized by steep slopes and loose, weathered 

soils, making it extremely susceptible to seismic activity and associated landslide 

risks. The slope stability analysis incorporated pseudo-static factors to model the 
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impact of dynamic loading during seismic events. The geotechnical parameters, 

including c and ϕ were evaluated under both dry conditions and saturated scenarios, 

the latter featuring a water table at 5 meters depth to reflect post-rainfall effects. 

Dynamic loading introduces additional shear stresses and reduces the soil's ability to 

resist failure, particularly in water-saturated conditions where pore water pressures 

compromise soil stability further. This compounded risk highlights the importance of 

integrated stabilization strategies, such as anchored retaining systems, slope 

reinforcement using geogrids, and earthquake-resistant infrastructure, to mitigate the 

seismic and hydrological vulnerabilities of the site. SLOPE/W results are shown in 

Fig. 4.26 and 4.27 for L3 soil specimens under dry and saturated conditions, 

respectively.  

 

 
Fig 4.26 SLOPE/W results for L3 in dry conditions under dynamic loading 
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Fig 4.27 SLOPE/W results for L3 in saturated conditions under dynamic loading 

 

 4.7.4     Location 4 in Ngassey Busty (dynamic) 

  
 

The slopes of Ngassey Busty are notably steep, with a geologically 

fragile soil structure that is highly sensitive to dynamic influences. Pseudo-static 

slope stability analysis was performed to assess the effects of seismic accelerations, 

representing the potential impact of earthquakes. Soil parameters c and ϕ were 

crucial parameters in evaluating the soil's strength. Saturated conditions were 

modeled with a water table positioned at 5 meters below the surface, simulating the 

hydrological impact of intense rainfall. During seismic events, the added inertial 

forces generated by ground shaking interact with pore water pressures in saturated 

soils, further decreasing the shear strength and increasing the likelihood of slope 

failure. The findings highlight the need for robust interventions, such as earthquake-

resilient slope stabilization, efficient subsurface drainage systems, and the use of 

energy-dissipating retaining structures to safeguard this area against potential 

dynamic slope failures. SLOPE/W results are shown in Fig. 4.28 and 4.29 for L4 soil 

specimens under dry and saturated conditions, respectively.  
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Fig 4.28 SLOPE/W results for L4 in dry conditions under dynamic loading 

 
Fig 4.29 SLOPE/W results for L4 in saturated conditions under dynamic loading 

 

 4.7.5     Location 5 in Mongbol Road (dynamic) 

  
  

Mongbol Road traverses a region with steep gradients and loose soil, 

making it highly susceptible to the compounded effects of seismic activity and 

hydrological changes. In this study, a pseudo-static approach was adopted to simulate 
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seismic loading, allowing for an assessment of slope stability under dynamic 

conditions. The soil's c and ϕ were analyzed under both dry conditions and saturated 

scenarios, with the latter featuring a water table at 5 meters to reflect monsoonal 

influences. Seismic forces intensify the destabilizing shear stresses while reducing 

the effective stress within the slope, particularly in water-saturated soils. This 

combined impact significantly lowers the safety margin, highlighting the urgent need 

for dynamic slope stabilization measures. Recommended interventions include the 

installation of flexible retaining walls, reinforcement with soil nails or geogrids, and 

slope drainage improvements to mitigate the risk of landslides along Mongbol Road. 

SLOPE/W results are shown in Fig. 4.30 and 4.31 for L5 soil specimens under dry 

and saturated conditions, respectively.  

 

 

Fig 4.30 SLOPE/W results for L5 in dry conditions under dynamic loading 
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Fig 4.31 SLOPE/W results for L5 in saturated conditions under dynamic loading 

 

 4.7.6     Location 6 in Deolo (dynamic) 

  
   

Deolo, a high-altitude location in Kalimpong with steep and scenic 

terrain, is highly vulnerable to dynamic slope instability. Pseudo-static slope stability 

analysis was undertaken to evaluate the effects of seismic forces on this already 

fragile terrain. The study incorporated soil c and ϕ as key parameters and analyzed 

stability under dry and saturated conditions. For saturated scenarios, the water table 

was modeled at 5 meters from the surface to represent monsoonal conditions. 

Dynamic loading due to seismic forces further destabilizes the slope by increasing 

the shear stresses acting on the soil mass, especially in conditions where pore water 

pressures are elevated. These findings indicate a pressing need for earthquake-

resistant stabilization strategies, including reinforced earth embankments, the use of 

shock-absorbing geosynthetics, and efficient drainage systems, to manage the 

combined risks posed by seismic and hydrological factors in Deolo. SLOPE/W 

results are shown in Fig. 4.32 and 4.33 for L6 soil specimens under dry and saturated 

conditions, respectively.  
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Fig 4.32 SLOPE/W results for L6 in dry conditions under dynamic loading 

 

Fig 4.33 SLOPE/W results for L6 in saturated conditions under dynamic loading 

 

 4.8      Coherence of database (dynamic) 

  
This study looked at 92 field examples of slope stability analysis, 
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including 80 cases with slope cases that were previously described in the literature 

and 12 cases with significant locations in the Kalimpong region whose outcomes had 

already been published. The database contains information about the geometry, 

stability condition, slope location, and geological conditions that were found during 

fieldwork and that consider seven input parameters (i.e., seven independent factors). 

After the creation of the primary database, its features were classified and given 

labels. If the evaluated FOS values were less than 1.00, they were categorised as 

unstable; if they were more than or equal to 1.00, they were categorised as stable. 

This well-known and experimentally proven classification technique offers 

adaptability in a variety of contexts. Next, a signal with one dependent component 

that may be categorised as "stable" or "failure" will be used to assess the slope's 

stability. To make the application of ML models simpler, the terms "failure" and 

"stable" were represented as 0 and 1 during prediction and subsequently transformed 

to these values. Seven different factors were used to harmonize each and every data 

set. The geometric and geological requirements of slopes were characterized by 

seven parameters (UW, C, Phi, SA, SH, Kh, and Kv) with a single dependent 

outcome. These seven characteristics were then used to generate the input features 

for the classification models. Slope occurrences were classified as either S or F based 

on their stability state. Because of the data integration, every specimen attribute is 

distinct, contains valuable information, and exhibits precise signs. 45 of the dataset's 

92 rows are categorised as "stable," while the remaining 47 are categorised as 

"failure" The 1:1.04 ratio between these two clusters indicates that the signals are 

dispersed nearly evenly. The violin charts for each parameter are shown in Figs. 

4.34(a-g). The median is shown by the white circle in the middle of each figure. 

Summary statistics that provide more information about the data, such as the median, 

quartiles, and possible outliers, are usually shown inside each violin as a box plot or 

horizontal line. All things considered, the violin plot provides a straightforward and 

educational way to show how data is distributed and fluctuates over multiple groups 

or categories. The box spectrum is a statistical representation of a variable's quartile 

distribution. The box's ends represent the lower and higher degrees of variance, while 

the body represents the data concentration. In each violin plot, a thin black line 

indicates the 95% confidence level. In addition to providing a visual depiction of the 
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data's distribution, the violin plot's border or silhouette offers details on the data's 

density, range, central tendency, and symmetry. The findings demonstrate the data's 

stability and normal distribution. 

 

(a) UW 

 

(b) C 
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(c) Phi 

 

(d) SA 

 

(e) SH 
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(f) Kh 

 

 

(g) Kv 

Fig. 4.34 Standard kernel density Violin charts showcasing various input parameters 

 

 4.9      Statistical summary of the simulated dataset for dynamic modeling 

  
To identify distributional tendencies that could be statistically 

summarised, a preliminary analysis of the simulation data was conducted prior to 

creating a prediction model. According to statistics, the values of these variables 

span wide ranges, indicating that the database includes a range of soil types and slope 

scenarios. For each characteristic, this section examines several statistics to see if the 

data or parameters have a "skewness" distribution. Because the seven sources have 

various SI units and meanings, they are all analysed independently. The means, 
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medians, modes, lowest and maximum values, standard deviations, and dispersion 

are given for the relevant data in Table 4.4 and Fig. 4.35 displays the mean and 

variability of normal distribution of different parameters. 

Table 4.4 Statistical breakdowns of the five variables in the database under 

consideration 

 

Indices Mean Median Mode Max. Min. 
Standard 

Deviation 
Dispersion 

Unit Weight 18.4467 18.875 18.875 22 13.1 1.724 0.093 

Cohesion 33.6348 22.5 15 124.6 1 34.43 1.0181 

Internal 

Friction angle 
26.059 25 22 36 17 5.864 0.224 

Angle of 

slope 
39.391 37.25 20 80 10 22.369 0.565 

Height of 

slope 
18.093 18.093 18.093 65 10.7 10.298 0.566 

Horizontal 

pseudostatic 

coefficient 

0.2152 0.15 0.15 0.5 0 0.116 0.537 

Vertical 

pseudostatic 

coefficient 

0.13913 0.1 0.1 0.2 0.1 0.049 0.35078 

 

 

 

(a) UW 
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(b) C 

 

(c) Phi 

 

(d) SA 
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(e) SH 

 

(f) Kh 

Fig. 4.35 Distribution histogram of different indexes 

 4.10     Assessment of correlations among parameters for dynamic modeling 

  
Evaluating slope stability was complex due to its variability. Limit Equilibrium 

Methods (LEMs) were used to calculate the factor of safety (FOS) for each slope 

individually. Prediction algorithms assessed slope conditions based on categorized data. 

Standardizing this data before training was crucial. Additionally, analyzing the relationships 

among the seven factors was essential, as incorrect assumptions could lead to false 

conclusions. The effectiveness of the prediction models relied on identifying meaningful 

correlations between these attributes. The "Pearson's correlation coefficient" equation, 

whose values range from -1 to 1, can be used to find the correlation between any two 

items (Cohen et al., 2009). A correlation value nearer one suggests a strong 

association between the components, whilst a number farther away suggests a 

weaker relationship. Using drawing software, a "correlation matrix" was created to 

help visualise the ranges and affiliations of the variables and improve comprehension 

of the connections in Fig. 4.36. This matrix demonstrated the independent 

significance of each feature in determining slope stability by examining the 

correlations between the index parameters that are used as inputs in ML prediction 
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models. 
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Fig. 4.36 Correlation matrix for parameters undergoing dynamic modeling 
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 4.11    Model based predictions (dynamic) 

  
 4.11.1     Traditional Machine Learning Models (dynamic) 

 

The seven supervised models utilised in this study are SVM, KNN, DT, 

RF, LR, Adaboost and GB. A highly effective supervised machine learning 

technique for classification and regression applications is the Support Vector 

Machine (SVM). Its primary objective is to determine the best hyperplane to split the 

data into several groups (Samui, 2008). Decision trees are flexible and easily 

understood machine learning models that are frequently employed in both regression 

and classification applications. They serve as a fundamental building block for more 

intricate algorithms like Random Forests and Gradient Boosting and offer practical 

insights and prediction capabilities across a range of fields (Hwang et al., 2009). K-

Nearest Neighbours (KNN), a supervised machine learning technique, is simple and 

widely used. It can be applied to both regression and classification tasks. Since it is 

instance-based and non-parametric, it makes predictions based on the similarity of 

data points rather than making any assumptions about the distribution of the 

underlying data. One well-known and commonly applied statistical and machine 

learning technique for binary classification problems is logistic regression (Bhagat et 

al., 2022). Random Forest is a versatile and efficient ensemble learning technique 

that may be applied to regression and classification tasks. In order to produce more 

precise and reliable predictions, this decision tree extension trains many decision 

trees and then aggregates their predictions (Xie et al., 2022). Adaptive Boosting, or 

AdaBoost, is an ensemble learning method that builds a strong prediction model by 

combining weak learners (Lin et al., 2021). Gradient Boosting is widely used in 

several machine learning competitions and real-world applications due to its high 

accuracy and robustness (Feng et al., 2018). 

 

 4.11.2     Parameters and Techniques undertaken for dynamic modeling 

  
Slope stability is examined in this study using both qualitative and 

quantitative criteria. Numerical constraints include UW, C, Phi, SA, SH, Kh, and Kv. 

On the other hand, the qualitative aspects take into account the prominence of the 

rocks and soil, failure patterns, and physical features. The primary goal is to 
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determine a slope's stability, or whether it is stable or prone to failure, and this is 

done by numerical computations. However, the lack of sufficient instances of field 

data makes it difficult to quantify qualitative qualities. In order to address this, the 

researchers developed prediction models based on these seven factors using machine 

learning techniques. Slopes are classified as "stable" or "unstable" in these models. 

Because interstitial water pressure has different rules for assigning values and is 

unpredictable in real-world situations, the modelling notably does not take this into 

account. The study confirms the accuracy of the five indicators selected to describe 

slope stability based on an examination of 92 slope data case sets. Using a multi-fold 

method and traditional cross-validation procedures, a slope stability forecasting 

model is built on the selected testing dataset. After this procedure is completed five 

times, the mean of those estimations is the end result. The "Python" programming 

language makes it easier to construct randomised cross-validation. Due to space 

constraints, the article can only show "scatter plots" and "linear fitting curves" in Fig. 

4.37 to illustrate the correlations between various parameters and unit weight. 

Various visualizations aid in elucidating the potential impacts of various variables on 

slope stability. 

 
 

(a) (b) 
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(c) (d) 

Fig. 4.37 Line and scatter plots of various parameters fit with regression 

 

 4.11.3     Models Evaluation (dynamic) 

  
Key evaluation metrics already discussed above are used to evaluate the 

performance of the machine learning models in binary classification scenarios 

(where there are two classes, sometimes labelled as positive and negative).  

 

4.12     Examination of results from predictions (dynamic) 

 

 4.12.1     Evaluation of the model using the raw data 

  
The outcomes of seven machine learning models used as well as one 

stacked SVM-Boost model are compared in this section. The model outputs were 

tested using a variety of performance indicators. This approach is frequently used in 

training and model building to assess a model and decide if it is appropriate. 

However, the results of the training phase indicated that the proposed AdaBoost 

model may be considered perfect. Along with one stacking strategy called SVM-

Boost, which combines Support Vector Machine and AdaBoost to do the random 

cross evaluation, seven different machine learning algorithms are demonstrated.  

AUC is a crucial machine learning statistic that offers a trustworthy and 

understandable assessment of a model's ability to classify binary data, especially 

when the datasets are unbalanced. Adaboost provides the best average AUC (0.956), 

with GB (0.952) and SVM-Boost (0.955) following closely after. With an average 

classification accuracy of 0.878, SVM-Boost demonstrates the strongest prediction 
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ability. Accuracy scores for SVM and AdaBoost were 0.865 and 0.834, respectively. 

AdaBoost is an ensemble learning strategy that adds extra weight for misclassified 

events to iteratively improve the performance of weak learners (like decision trees). 

SVM, on the other hand, is a powerful binary cataloguing method that finds the best 

hyperplane for each class inside a feature space. SVM's ability to recognise a solid 

decision boundary and AdaBoost's ability to focus on challenging cases during 

training can be combined to provide a successful outcome. This combination can 

sometimes lead to improved performance, especially when dealing with complex or 

challenging-to-separate information. The conjecture models SVM-Boost, AdaBoost, 

and SVM are shown in Table 4 with F1 values higher than 83%. Additionally, the 

AUC values of SVM-Boost, AdaBoost, and SVM with Gradient Boosting are higher 

than 95%. According to performance metrics, SVM-Boost and SVM are therefore 

regarded as the most accurate predictors, which also increases the novelty factor of 

the study report. Metrics including accuracy, precision, recall, F1-score, and AUC of 

ROC are used to compare the testing stage outcomes in Table 4.5. 

 

Table 4.5 Metrics for assessment across multiple ML techniques 
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 4.12.2     ROC Curve for dynamic analysis 

  
The ROC curve is a key tool for evaluating binary classification models, 

showing the trade-off between sensitivity and the false positive rate. As illustrated in 

Figures 4.38 and 4.39, Adaboost achieved the highest mean AUC (0.956), followed 

by SVM-Boost (0.955) and GB (0.952), while kNN had the lowest (0.91). SVM and 

SVM-Boost delivered the most accurate and reliable results, closely aligning with 

those from LEM. GB also showed strong performance and can serve as a reliable 

alternative. These machine learning models can effectively support future slope 

stability assessments and guide appropriate stabilization measures. 

 

Fig. 4.38 ROC Curve (Failure) 
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Fig. 4.39 ROC Curve (Failure) 

 4.12.3     Sensitivity Analysis for dynamic analysis 

  
By comprehending how modifications to the input variables (criteria) 

impact the model's output or results, this aims to identify the quantitative and 

qualitative factors that most significantly affect slope stability. This is accomplished 

by using the CRITIC technique and a differentiation coefficient known as "Standard 

Deviation/Average" to separately establish the weightage for each parameter (Bhadra 

et al., 2022). Weighting is a crucial consideration based on the seven input factors 

displayed in Fig. 5.20. In percentage terms, this coefficient is 2.77, 30.35, 6.67, 

16.84, 16.88, 16.01, and 10.46 for UW, C, Phi, As, Hs, Kh, and Kv, respectively.  

Out of all these attributes, cohesiveness has the biggest influence shown in Fig 4.40. 
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Fig. 4.40 Indicator representing each parameter's weight 

 4.12.4     Contrasting predicted outcomes with GeoStudio (dynamic) 

  
Commercial software called GeoStudio was utilised to oversee the results 

of the prediction method that resulted in the F.S. evaluation. GeoStudio is a two-

dimensional, fully integrated software suite that offers six finite element applications 

in many sub-models in addition to LEM-based stability analysis. In this 

investigation, the F.S. was calculated using the SLOPE/W and Morgenstern Price's 

approach. The information from this table was used by the SLOPE/W program and 

machine learning methods. Boundary conditions, stability solutions, behavioural and 

material characteristic assignment, and geometric modelling are all components of 

the multi-stage modelling approach that SLOPE/W employed. The estimated FOS 

and the outcomes of the ML prediction model were contrasted. Table 4.6 combines 

data from the FOS prediction model with the SLOPE/W program outcomes (F and S 

stand for Unstable and Stable, respectively). This table demonstrates how predictive 

models, particularly SVM-Boost, produce results that are near the FOS value when 

using their reasoning technique.  
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Table 4.6 Test outcomes regarding the stability condition criteria in Kalimpong 

(dynamic condition) 

  

  C
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L1 

Dry 
5 20 33 50 35.5 0.3 0.2 F F F F 

L1 

Sat. 
5 21 33 50 35.5 0.3 0.2 F S F F 

L2 

Dry 
2 18.5 33.2 25 30 0.3 0.2 F F F F 

L2 

Sat. 
2 20 33.2 25 30 0.3 0.2 F F F F 

L3 

Dry 
1 15 33.6 45 34.6 0.3 0.2 F F F F 

L3 

Sat. 
1 17 33.6 45 34.6 0.3 0.2 F S F F 

L4 

Dry 
5 19.7 32.3 19 33 0.3 0.2 F F S F 

L4 

Sat. 
5 21.8 32.3 19 33 0.3 0.2 F F F F 

L5 

Dry 
32 19.9 31.5 65 41.6 0.3 0.2 F F F F 

L5 

Sat. 
32 22 31.5 65 41.6 0.3 0.2 F S S S 

L6 

Dry 
5 19 28.8 25 33.3 0.3 0.2 F F F F 

L6 

Sat. 
5 20 28.8 25 33.3 0.3 0.2 F F F F 

  
 4.13     Results after stabilization done by Soil nailing 

 

Furthermore, soil nailing can be combined with other stabilization 

methods such as shotcrete or mesh facing to enhance surface stability and erosion 

control, providing a comprehensive solution for slope stabilization. Its adaptability, 

cost-effectiveness, and ability to provide robust reinforcement make soil nailing a 

preferable choice for addressing challenging slope stabilization projects. In this 
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project, soil nailing technique with Fe 415 Steel nails has been implemented. In Fig. 

4.41-4.64, slope models have been represented for all locations with nails which 

stabilize these slopes under dry and saturated conditions for static and dynamic 

loading respectively. The presented table 4.7 illustrates FoS values for six slope 

locations (L1 to L6) under varying conditions—static and dynamic loading both in 

dry and saturated states before and after stabilization measures were implemented. 

The data clearly demonstrates the effectiveness of the soil nailing stabilization 

technique as all locations show a significant improvement in FoS across every 

condition post-intervention. After stabilization, all FoS values improved, with many 

exceeding 2.0 in static dry conditions reflecting a marked enhancement in slope 

stability. This improvement highlights the stabilizing method’s capacity to 

substantially reduce slope failure risks, especially under adverse moisture and 

seismic influences.  

 

 

 

 

Fig. 4.41 Slope stabilization for L1 in Dynamic Dry condition (FOS=1.654) 

 



 

121  

 

 

Fig. 4.42 Slope stabilization for L1 in Dynamic Saturated condition (FOS=1.149) 

 

Fig. 4.43 Slope stabilization for L1 in Static Dry condition (FOS=3.109) 
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Fig. 4.44 Slope stabilization for L1 in Static Saturated condition (FOS=1.890) 

 

Fig. 4.45 Slope stabilization for L2 in Dynamic Dry condition (FOS=1.501) 
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Fig. 4.46 Slope stabilization for L2 in Dynamic Saturated condition (FOS=1.110) 

 

 

Fig. 4.47 Slope stabilization for L2 in Static Dry condition (FOS=2.430) 
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Fig. 4.48 Slope stabilization for L2 in Static Saturated condition (FOS=1.590) 

 

Fig. 4.49 Slope stabilization for L3 in Dynamic Dry condition (FOS=1.610) 
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Fig. 4.50 Slope stabilization for L3 in Dynamic Saturated condition (FOS=1.032) 

 

Fig. 4.51 Slope stabilization for L3 in Static Dry condition (FOS=2.896) 
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Fig. 4.52 Slope stabilization for L3 in Static Saturated condition (FOS=1.535) 

 

 

 

Fig. 4.53 Slope stabilization for L4 in Dynamic Dry condition (FOS=1.410) 
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Fig. 4.54 Slope stabilization for L4 in Dynamic Saturated condition (FOS=1.115) 

 

Fig. 4.55 Slope stabilization for L4 in Static Dry condition (FOS=2.270) 
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Fig. 4.56 Slope stabilization for L4 in Static Saturated condition (FOS=1.655) 

 

Fig. 4.57 Slope stabilization for L5 in Dynamic Dry condition (FOS=1.708) 
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Fig. 4.58 Slope stabilization for L5 in Dynamic Saturated condition (FOS=1.194) 

 

Fig. 4.59 Slope stabilization for L5 in Static Dry condition (FOS=3.995) 
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Fig. 4.60 Slope stabilization for L5 in Static Saturated condition (FOS=2.715) 

 

Fig. 4.61 Slope stabilization for L6 in Dynamic Dry condition (FOS=1.417) 
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Fig. 4.62 Slope stabilization for L6 in Dynamic Saturated condition (FOS=1.048) 

 

Fig. 4.63 Slope stabilization for L6 in Static Dry condition (FOS=2.716) 
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Fig. 4.64 Slope stabilization for L6 in Static Saturated condition (FOS=1.834) 

 

 

Table 4.7 Comparison of factor of safety before and after stabilization 

  

Site/State L1 L2 L3 L4 L5 L6 

Static Dry Before 

stabilization 

1.293 1.243 1.123 1.253 1.137 1.215 

After 

stabilization 

3.109 2.430 2.896 2.270 3.995 2.716 

Static 

Saturated 

Before 

stabilization 

0.808 1.098 0.716 1.173 0.684 0.905 

After 

stabilization 

1.890 1.590 1.535 1.655 2.715 1.834 

Dynamic Dry Before 0.659 0.759 0.728 0.773 0.707 0.660 
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stabilization 

After 

stabilization 

1.654 1.501 1.610 1.410 1.708 1.417 

Dynamic 

Saturated 

Before 

stabilization 

0.533 0.711 0.476 0.760 0.477 0.597 

After 

stabilization 

1.149 1.110 1.032 1.115 1.194 1.048 

 

 

  

  

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

134  

 CHAPTER 5 

 CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT 

  
 5.1     Overview of Objectives and Methodologies 

The primary objective of the study was to perform a detailed slope 

stability analysis in the Kalimpong region, accounting for both static and dynamic 

loading conditions. This included the identification of critical sites prone to 

landslides, field and laboratory investigations for determining geotechnical 

parameters, slope modeling under varying hydrological conditions (dry and 

saturated), and evaluating stabilization techniques. The research employed both 

deterministic LEM and probabilistic (frequency ratio-based GIS mapping) 

approaches to assess slope safety comprehensively. 

The methodology comprised multiple stages: first, critical slope sites in 

Kalimpong were identified through field surveys and existing landslide records. 

Then, soil samples were extracted and tested to determine key parameters such as 

cohesion, internal friction angle, and unit weight. The models of these slopes were 

then simulated in geotechnical software using LEMs, particularly Bishop’s 

Simplified Method and M-P Method, to compute the FOS under different conditions. 

Furthermore, GIS-based landslide susceptibility mapping was carried out using FR 

models, incorporating various conditioning parameters such as slope angle, 

elevation, aspect, lithology, distance to roads and faults, and rainfall data. 

 5.2     Integrated Slope Stability Assessment and Stabilization Strategy in 

Kalimpong Region 

This research presents a comprehensive evaluation of slope stability in 

the Kalimpong region by integrating numerical modeling, geospatial susceptibility 

mapping, and site-specific stabilization measures. The analysis was conducted using 

the LEM through GeoStudio’s SLOPE/W software, simulating both static and 

dynamic conditions under dry and saturated states to mirror real-world 

environmental scenarios. Under static dry conditions, slopes generally demonstrated 
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marginal to moderate stability, with FOS values between 1.3 and 1.6. However, these 

values dropped significantly by 15–25% under saturated conditions, indicating the 

destabilizing effects of elevated pore water pressures during monsoons. Dynamic 

analysis, incorporating pseudo-static seismic forces based on Zone IV classification 

under IS 1893, revealed a further decline in FOS, especially under saturated 

conditions, where values fell below 1.0 in several cases. This clearly pointed to an 

elevated landslide risk due to the combined impact of rainfall infiltration, reduction 

in effective stress, and seismic activity. Slopes composed of weak weathered phyllite 

and schist formations, particularly those with steep gradients exceeding 35° and 

aligned with tectonic discontinuities, were found to be highly prone to translational 

and flow-type failures, especially during prolonged rainfall. 

To supplement the geotechnical analysis, a GIS-based FR model was 

employed for landslide susceptibility mapping across the Kalimpong region. The 

model utilized SRTM-based DEM and remote sensing data to generate thematic 

layers based on six key causative factors: slope angle, aspect, elevation, distance to 

roads, proximity to lineaments/faults, and rainfall. The FR model quantified the 

spatial correlation between historical landslides and these conditioning parameters, 

producing a LSI. The resulting LSZ map categorized the terrain into four zones: very 

low, low, moderate, and high susceptibility. Notably, around 38% of the study area 

was classified under moderate to high susceptibility zones, with the most vulnerable 

areas located along steep road cuts, fractured lithologies, and poorly drained, 

deforested slopes. Slope gradients over 35°, road proximity within 100 meters, and 

annual rainfall exceeding 2200 mm were identified as high-risk factors with FR 

values greater than 1.5. These findings provide a critical framework for local 

authorities to plan infrastructure reinforcement, control land use, and deploy early 

warning systems, thereby bridging the gap between scientific risk assessment and 

real-world hazard mitigation. 

In response to the identified slope instability, the study proposed soil 

nailing as an effective, adaptable stabilization measure tailored to the terrain of 

Kalimpong. Steel bars were inserted into the slopes at engineered angles and spacing, 
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enhancing internal shear resistance and reducing deformation without large-scale 

excavation. GeoStudio SLOPE/W was used to reanalyze slopes with soil nailing and 

drainage elements incorporated under critical saturated-dynamic conditions. The 

models showed a substantial increase in FOS, often improving from values below 1.0 

to a safer range between 1.25 and 1.45. This validated soil nailing’s effectiveness, 

especially for steep slopes and space-constrained areas such as road cuts and 

populated hillsides. Its ease of installation, low environmental impact, and cost-

efficiency make it highly suitable for widespread application in Himalayan hill 

towns. The success of soil nailing, reinforced by quantitative modeling and real-

world applicability, affirms its value as a central component of slope management 

strategies. Together, the integrated approach of this thesis—combining LEM-based 

analysis, GIS-driven risk mapping, and validated stabilization—offers a holistic and 

replicable model for sustainable slope safety and landslide risk reduction in 

mountainous regions. 

 5.3     Limitations of the Study 

While the study provides a robust framework for slope stability 

assessment and mitigation, it acknowledges several limitations: 

 Temporal Data Gaps: The frequency ratio method relies on historical 

landslide inventories. Incomplete or outdated records can affect the accuracy 

of susceptibility models. 

 Simplified Modeling Assumptions: The limit equilibrium method, though 

widely used, assumes predefined failure surfaces and neglects strain-

softening behavior or progressive failure mechanisms. Advanced FEM 

simulations could further refine the analysis. 

 Limited Field Implementation: Although the effectiveness of stabilization 

techniques was validated through simulation, large-scale field 

implementation was outside the scope of this study. Thus, long-term 

performance under varying climatic cycles remains to be monitored. 
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 Data Resolution: The use of 30m SRTM DEM may under-represent micro-

topographic variations critical in slope failure mechanisms, particularly in 

narrow valleys and small hillslopes. 

 5.4     Scope for Future Research 

This research lays a solid foundation for future investigations and 

innovations in slope stability assessment in mountainous terrains. Potential areas for 

further exploration include: 

1. Integration of Real-Time Monitoring: Installing instrumentation such as 

inclinometers, piezometers, and ground-based LiDAR can provide continuous 

data for early warning and adaptive management of slopes. 

2. Application of Machine Learning Models: Advanced algorithms like Random 

Forests, Support Vector Machines, or Deep Learning Neural Networks can be 

employed to further improve susceptibility prediction and identify hidden 

patterns in the data. 

3. 3D Numerical Modeling: Future work can explore 3D slope modeling using 

FEM or hybrid approaches to simulate complex geometries and loading 

conditions, especially in the context of large-scale landslides or infrastructure 

expansion. 

4. Climate Change Projections: Given the increasing intensity and 

unpredictability of rainfall patterns due to climate change, future models 

should integrate precipitation forecasting and runoff modeling to assess future 

slope behavior. 

5. Community-Based Slope Management: Integrating local knowledge, training, 

and community monitoring can ensure effective and sustainable 

implementation of stabilization techniques, especially in remote or rural 

settings. 

 5.5     Social Impact 

The findings of this thesis have far-reaching social implications for the 

communities residing in the Kalimpong region and similar landslide-prone 
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Himalayan terrains. By identifying critical slopes and proposing effective, site-

specific stabilization techniques, the research contributes directly to safeguarding 

lives, homes, roads, and vital infrastructure. The GIS-based landslide susceptibility 

maps developed through this work serve as vital tools for local governments and 

disaster management authorities to implement early warning systems, formulate 

evacuation plans, and guide safe land-use policies. Moreover, the use of cost-

effective and sustainable stabilization strategies such as soil nailing, vegetative 

cover, and improved drainage offers practical solutions that can be adopted even in 

resource-constrained settings. The outcomes promote greater resilience in hill 

communities by reducing vulnerability to landslides, enabling uninterrupted access to 

healthcare, education, and livelihood, and fostering a culture of preparedness. 

Ultimately, this research not only advances engineering knowledge but also enhances 

public safety, economic stability, and long-term environmental stewardship in high-

risk regions. The findings of this thesis have important implications for regional 

planning, disaster risk reduction, and infrastructure development in Kalimpong and 

similar hilly regions. The GIS-based susceptibility maps provide a decision-making 

framework for municipal bodies, disaster management authorities, and infrastructure 

planners. By overlaying critical infrastructure—such as roads, bridges, and schools—

with the high-risk zones delineated in the susceptibility maps, authorities can 

prioritize retrofitting and reinforcement efforts. 

Additionally, the study advocates the incorporation of slope stability 

assessment into the early phases of infrastructure development, especially in terrains 

influenced by the Main Central Thrust and other active geological structures. This 

proactive approach can prevent costly retrofitting and minimize risks to life and 

property. Urban expansion and road widening projects, which have historically 

accelerated slope failures in the region, should undergo rigorous geotechnical 

screening as recommended in the study. Development permissions in high-

susceptibility zones must be linked to slope treatment commitments, including 

mandatory drainage systems and mechanical reinforcement. 

The research undertaken in this thesis successfully addresses the critical 
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issue of slope instability in the Kalimpong region through a combination of 

empirical, analytical, and geospatial techniques. It bridges the gap between 

theoretical geotechnical modeling and practical, field-applicable solutions, offering a 

comprehensive roadmap for future slope management in hilly, tectonically active 

regions. The proposed stabilization measures, validated models, and GIS-based 

susceptibility zones provide a ready-to-use toolkit for planners, engineers, and 

policymakers alike, ensuring that Kalimpong and similar Himalayan towns are better 

equipped to handle landslide hazards in a sustainable, resilient manner. 
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