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ABSTRACT

The Darjeeling Himalayas, particularly the Kalimpong region, experience frequent
landslides due to a complex interplay of geological, hydrological, seismic, and
anthropogenic factors. This research provides a comprehensive slope stability
assessment of Kalimpong using a multidisciplinary approach that integrates geotechnical
investigation, numerical modeling, and geospatial analysis. The study begins with a
detailed review of the region’s geology, geomorphology, and historical landslide
activity. Field investigations were conducted to collect soil and rock samples, and
extensive laboratory tests were performed to determine key geotechnical parameters
such as cohesion, internal friction angle, unit weight, and permeability. Using these
inputs, slope stability was evaluated through GeoStudio SLOPE/W software, applying
the Morgenstern-Price method under various conditions—static and dynamic, dry and
saturated. The results revealed that many natural slopes in Kalimpong are marginally
stable under dry conditions but exhibit critical instability when subjected to rainfall
infiltration and seismic forces. The Factor of safety (FOS) significantly dropped below
1.0 for several slopes under dynamic-saturated scenarios, indicating a high probability of
failure. Furthermore, stabilization strategies such as soil nailing were modelled and
validated in SLOPE/W, showing significant improvements in FOS values and thus

enhancing slope resilience.

To complement the site-specific analyses, the study incorporated GIS-based landslide
susceptibility mapping using the Frequency ratio (FR) model. Geospatial layers
representing conditioning factors—including slope angle, aspect, elevation, lithology,
proximity to roads and faults, and rainfall intensity—were developed using Shuttle
Radar Topography Mission (SRTM) Digital Elevation model (DEM) and remote sensing
data. The FR model quantified the correlation between historical landslide events and
each parameter, producing a susceptibility zonation map that classified the region into

low, moderate, and high-risk zones. Approximately 38% of the study area fell into



moderate-to-high susceptibility classes, aligning with known landslide-prone corridors
and anthropogenic ally disturbed slopes. This dual approach—merging deterministic
Limit Equilibrium method (LEM) based modelling with probabilistic geospatial
assessment—allowed for both micro and macro-scale understanding of slope instability
in the region. The study also outlines policy recommendations, emphasizing the
integration of slope stability analysis in infrastructure planning, particularly in seismic
zones and monsoon-affected terrains. Overall, the thesis delivers a robust framework for
landslide hazard mitigation in the Kalimpong region and sets the foundation for future
research incorporating machine learning models, real-time monitoring, and climate

change projections for improved early warning and slope management strategies.
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CHAPTER 1
INTRODUCTION

1.1 General

Earth embankments are frequently needed for levees, roads, railroads, river
training projects, and earth dams. Since their failure could result in both enormous
financial loss and the loss of human life, the stability of these embankments, also
known as slopes, should be carefully examined. In the majority of engineering
applications, slope analysis is typically carried out to recommend a safe and cost-
effective design for associated structures including earth dams, embankments, and
excavations. The identification of crucial geological, material, environmental, and
economic aspects is aided by preliminary analyses. Slope stability analysis becomes
a crucial component for organizing in-depth studies of the aforementioned
structures. Generally speaking, determining the stability of any slope accurately
requires prior geotechnical and engineering geology experience in the area. Slope
stability assessment is frequently an interdisciplinary endeavor that calls for input
from engineering geology, soil mechanics, and rock mechanics. The total mass of
soil that contributes to the failure moves outward and downward in each slope
failure. Slope failure results from the effect of gravitational forces, Soil seepage

forces, and Earthquake loading shown in a generalized Fig 1.1.

Sliding surface’

Original slope

The moving soil mass

~
~

Fig 1.1 Illustration of a landslide in general



Slope failure can also result via excavation and the slow breakdown of the
soil's structure. Because gravitational forces try to mobilise a portion of the mass
downward to obtain a more level surface, every finite sloping surface is always
susceptible to shearing pressures on almost all of its internal surfaces. There are two
components to an analysis of slope stability:

a) Identifying the surface that is in a state of limiting equilibrium or
about to move.

b) Calculating the shearing strength and stresses along this surface.

Shear stress on any slope surface is dependent on a number of factors,
including the slope's shape and material unit weights. The density, drainage, and
characteristics of the soil all affect the mobilised shearing strength along any plane.

1.2 Causes of Slope Failures

The gravitational and other forces (such as tectonic stresses and
earthquake forces) causethe sliding movement of any slope. The shearing resistance
of the soil along the plane of failure tries to prevent the movement. When the
shearing resistance is overcome by the mobilizing forces trying to cause movement,
the slope becomes unstable. Sudden failure of natural slopes may be caused due to
one or several of the following reasons:

a) The current balance of forces is altered when portions of a slope or the
ground next to the slope are excavated or filled.

b) Seismic activities (i.e. earth tremors or earthquakes).

¢) Sudden rise in water table leads to increase in pore water pressure inside a
slope and subsequent reduction in the shear strength of existing soil mass.
This may be caused activities such as deforestation, alteration of natural
drainage conditions, reservoir construction or excessive rainfall etc.

d) Deformations which are not significant enough to cause instability of the slope
butgradually leading to failure. Such deformations help to reduce the shear
strength of the soil in a progressive manner. These often occur along major
natural discontinuities, ancient slip surfaces and tectonic zones within a slope.

e) Increase in pore water pressure after many years of a cutting or an excavation



(for low permeability soil) leading to considerable reduction of the shear
strength of soil.

f) Weathering of soil disturbs the internal structure or the bonds between the
soil particles. The shear strength of the soil is greatly reduced by weathering
activity. For over-consolidated clays and shales, weathering leads to increase
of recoverable strain energy and its tendency to failure (Bjerrum, 1967).
Weathering may be accelerated by slope disturbance and exposure to

atmosphericand other agencies such as stream action.

1.3 Importance of Slope Stability Analysis

For man-made or natural slopes (e.g. embankments, road cuts, open-pit

mining, excavations, landfills etc.), slope stability analysis forms an integral part to
assess its safety and economy. Slope stability analysis helps us to find endangered
areas, potential causes of failure, sensitivity to different triggering mechanisms etc.
The analysis also helps us to arrive at a safe, reliable, economical design of any
slope and also find remedial measures against failure of the same.
Slope stability analysis is a crucial component of geotechnical engineering,
essential for ensuring the safety and sustainability of infrastructure in regions prone
to landslides and soil instability. Unstable slopes pose serious risks to human lives
and critical infrastructure such as roads, dams, bridges, and urban settlements.
Landslides often triggered by heavy rainfall, seismic events, and anthropogenic
activities, result in catastrophic consequences, including fatalities, loss of property,
and economic setbacks. For instance, studies highlight that rainfall-induced
landslides account for substantial damage to infrastructure annually, particularly in
mountainous and tropical regions (Petley, 2012, Pardeshi et al., 2013). Slope
stability analysis helps identify potential failures early, enabling mitigation
strategies to safeguard lives and assets.

From a sustainability perspective, slope stability is vital for the long-
term viability of development projects. Failure to assess and address stability issues
can lead to project delays, cost overruns, and environmental degradation. Stabilized

slopes are instrumental in preventing soil erosion, preserving topsoil, and



maintaining the ecological integrity of natural landscapes (Lacasse et al., 2009).
Furthermore, advancements in computational modeling and remote sensing
techniques, such as the use of high-resolution geospatial data, have significantly
enhanced the accuracy of slope stability assessments (Fan et al., 2020, MORA C
and Vahrson, 1994).

Environmental impacts are another key concern. Landslides often lead
to sedimentation of rivers, destruction of vegetation, and disruption of ecosystems.
Proactive slope stability measures reduce these impacts, contributing to sustainable
land use management (Wang et al., 2021). Additionally, integrating soil
reinforcement methods such as soil nailing and geosynthetics can further improve
slope stability under static and dynamic conditions (Sharma et al., 2019). Slope
stability analysis is indispensable for safeguarding infrastructure, minimizing
environmental impacts, and ensuring sustainable development. Comprehensive
assessments incorporating modern technologies and mitigation techniques can
significantly reduce the risks associated with slope failures. Slopes may be of two
types: infinite slope and finite slope. If a slope represents the boundary surface of a
semi-infinite soil mass and the soil properties for all identical depthbelow the surface
are constant, it is called a finite slope. The present work mainly deals with finite
slopes. The examples of finite slopes are the inclined faces of earth dams,
embankments and cuts etc. In the present study, the stability analysis is done for
finite slopes based on limit equilibrium technique. Evaluation of safety factor (i.e.
factor of safety) using limit equilibrium technique utilizes the principle of static
equilibrium along discretized failure surface. Limit equilibrium technique based
(Morgenstern and Price, 1965) is used to evaluate the FOS of potential failure
surface. This method satisfies both moment and force equilibrium for all the slices

in the discretized failure mass.

1.4 Research Gap

Following research gaps have been identified despite the known susceptibility
of Kalimpong to landslide events, there remains a significant research gap in this

area.



1.

To date, no comprehensive studies have been undertaken to conduct landslide
susceptibility mapping and slope stability analysis in this region. This lack of
detailed, site-specific research means that the critical factors contributing to
landslide risks in Kalimpong remain poorly understood. Consequently, the
development of effective mitigation strategies and risk management plans is
hindered, underscoring the urgent need for focused research in this domain.

A significant research gap exists in Kalimpong as no comprehensive studies
have been conducted on slope stability analysis under both static and dynamic
conditions. This lack of research leaves critical uncertainties in predicting and
mitigating landslide risks, highlighting the urgent need for detailed studies in
this area.

A significant research gap exists as no studies have applied machine learning
techniques separately to static and dynamic conditions in slope stability
analysis taken consideration of Kalimpong. This omission hampers the
development of accurate and comprehensive predictive models, highlighting

the need for targeted research in this area.

1.5 Research objectives and scope

This research has been carried out to use several metaheuristic

optimisation techniques and the limit equilibrium technique to perform slope

stability analysis for a number of challenges. Below is a list of the current study's

objectives:

a)
b)

c)

d)

e)

f)
9)

To locate the critical sites in Kalimpong region as study area.

To investigate the soil parameters of the study area based on field and
laboratory tests.

To prepare models in the software of the slopes and to assign the soil
properties.

To analyze the models developed in the software under static and dynamic
loading in dry condition.

To analyze the models developed in the software under static and dynamic
loading in saturated condition.

To propose the appropriate technique to stabilize the unstable slopes.

To analyze the slopes after stabilizing technique adopted.



The overall aim of this PhD research is to comprehensively evaluate the stability of
critical slopes in the Kalimpong region through field and laboratory characterization,
numerical modeling, and simulation under varying loading and moisture conditions,

and to develop effective stabilization measures for enhancing slope safety.
1.6 Presentation of the Thesis

The thesis is composed of six chapters. Brief descriptions of the
contents of each chapterare as follows:

Chapter 1 — Introduction: The concept of slope stability and the significance
of its assessment in mountainous terrain like Kalimpong are introduced.
Causes of slope failures, the impact of rainfall, seismicity, and
anthropogenic activities are described. The aim and objectives of the
study, focusing on geotechnical analysis, modeling, and mitigation, are
outlined.

Chapter 2 — Literature Review: An overview of past research on landslides,
slope behavior, and analytical methods is presented. Factors influencing
slope failures are explored, and GIS, remote sensing, and machine
learning applications are reviewed. Also, the gaps in the present state of
the art knowledge in the area of slope stability analysis is provided at the
end of this chapter.

Chapter 3 — Materials and Methodology: Field investigation, laboratory
testing (Atterberg limits, compaction), and data collection for slope
modeling are detailed. The use of SLOPE/W software for analyzing
slopes under dry/saturated, static/dynamic scenarios before and after
stabilization is explained. The GIS-based Frequency Ratio method used
to generate susceptibility maps with thematic layers is described.

Chapter 4 — Results and discussions: The results of slope stability analyses for
six slope locations under static as well as dynamic condition
emphasizing their combined role in reducing slope safety. It highlights
the need for effective stabilization measures to mitigate failure risks.

Among the techniques evaluated, soil nailing emerged as an efficient



method for improving slope performance under both static and dynamic
conditions.

Chapter 5— Conclusion, future scope and social impact: This chapter presents
conclusions based on the current work. Summarizes key outcomes
showing that slopes are marginally stable and become critical under

extreme conditions.



CHAPTER 2
LITERATURE REVIEW

2.1 General

Natural calamities are inevitable and disastrous. The increasing
frequency and magnitude of landslides contribute significantly to natural disasters.
However, early warning and detailed study of the landslides and landslide-prone
areas have proven to be effective in minimising the risk, which is mainly reinforced
by the increasing frequency of socio-economic impacts as well as the rapid
population spread out on mountainous environment (Santi et al., 2011, Highland and
Bobrowsky, 2008, Aleotti and Chowdhury, 1999). According to the evaluation of
Research on the Epidemiology of Disasters (CRED, 2020), India was the third most
affected country in the previous two decades by geo hydro-meteorological
catastrophes. Aside from all the natural risks in mountainous areas, landslides are
perhaps the broadest common and most severe hazards, affecting at least 15% of our
country's geographical location.

"Landslide™ is characterised as the movements of slope-forming
materials made out of rocks or soils down a slope under the direct effect of gravity
(Schuster and Wieczorek, 2018, Cruden, 1991, Hutchinson, 1988, Varnes, 1978).
This morpho-dynamic phenomenon is widespread in the tectonically active
Himalayas, where landslide hazards are most prevalent, especially during intense
rainfall. Landslides can happen by sliding, flowing, toppling, or falling movements
and numerous avalanches (Hutchinson, 1988, Varnes, 1978, Lugo Hubp, 1999,
Crozier, 2010). The occurrence of landslides is triggered by different phenomena,
including heavy regional rainfall as a consequence of changing climatic
circumstances, rapid snow melting, earthquakes, and a variety of human activities
like continued deforestation, unplanned urbanisation, development, etc. in the
landslide-prone area (Wieczorek, 1996). India has growing vulnerability towards
landslides, particularly in the Himalayan geo-dynamically active region and Arakan-
Yoma belt of the Northeastern parts of the country because of their dynamic seismic

events, diverse geographical characteristics along with feeble topographical



materials, and stable domains of the Meghalaya Plateau, the Western Ghats in the
South West of the nation (van Westen et al., 2012). Hence, the Himalayan region
alone contributed around 30% of the world's complete devastations because of
landslide and their connected obliterations (Dahal et al., 2009). The rugged
topography, steep slopes, and deep and narrow valleys encourage mass movement
like earth flow, rockfall cum debris slide, avalanches, rockfall, and rock block slides
that can be controlled by gravity which may vary in size from very large scale to
small scale (Shroder Jr and Bishop, 1998, van Westen et al., 2012, Gerrard, 1994).
On top of that, the climate variables such as rainfall, temperature variation, and
freezing and thawing action play a vital role in slope failures (Kumar et al., 2019,
Kumar et al., 2018, Lee et al., 2013, Chang et al., 2011, Gupta et al., 2016, Sah and
Mazari, 1998). The slopes may be undercut or scoured by the action of the high rate
of erosion as a consequence of complicated tectonic activities, rivers, and extreme
climate conditions (Wulf et al., 2012, Thiede et al., 2009). In addition, socio-
economic development activities in the Himalayan region play havoc with the slope
failures considering rapid urbanisation that demands proper infrastructure
developments in remote areas and the construction of highways for the
communication link between the remote terrains of the Himalayas and the low land

areas of peninsular India.

2.2 Site Study

Slope failures are the easiest natural hazard to prevent, reduce, or resolve
(Collins and Znidarcic, 2004) Landslides occur on a large portion of land surfaces
except snow covered in India (Chawla et al., 2018). As per the Geological Survey of
India (2014), approximately 0.42 million square kilometers of land are prone to
landslides, with nearly 43% of this area located in the NEHR. Data from the NCRB
covering the years 2010 to 2019 reveal that landslides cause an average of 304
accidental deaths annually across India. Alarmingly, the evolving global climate has
led to more frequent and intense weather disturbances, which, in turn, have
heightened the risk of landslides. This risk is further compounded by rapid,

unplanned urban growth and unsystematic land-use modifications in hilly and



mountainous regions (Khanna et al., 2021, Phong et al., 2021, Pourghasemi et al.,
2012). Situated within the NEHR, Kalimpong district is highly vulnerable to both
minor and major landslides, especially during the monsoon months from July to
September. The region features steep mountainous terrain that experiences intense
rainfall, contributing significantly to slope instability. The main urban settlement is
positioned on a ridge near the Teesta River, while several other rivers—such as the
Relli, Neora, Geesh, Leesh, Jaldhaka, and Murti—along with numerous small
streams, drain the area. These watercourses actively erode the valley slopes,
intensifying their steepness and promoting slope failure. The narrowing of
interfluvial zones further escalates the landslide susceptibility. Between June and
September, Kalimpong records average monthly rainfall ranging from 119 cm to 417
cm (source: https://worldclim.org). Human-induced developments like road
construction, settlements, and hydropower installations disturb the natural slope
conditions by stripping vegetation, making the soil more prone to displacement. Even
a slight presence of water can trigger the movement of this loose material downhill.
These combined factors make Kalimpong an ideal region for studying landslides.
Identifying high-risk zones is essential so that appropriate mitigation strategies can
be implemented to protect both lives and property (Roy et al., 2022).

Kalimpong, located in the Darjeeling Himalayas of West Bengal, India,
forms part of the tectonically active and geologically diverse LHS. This region,
shaped by the ongoing Himalayan orogeny, features complex stratigraphy, structural
deformation, and active geomorphic processes. The interaction of tectonic activity,
lithology, and climatic factors contributes to the region's susceptibility to landslides
and slope instability (Steck, 2003). The Himalayan orogeny, initiated during the
collision of the Indian and Eurasian tectonic plates in the Cenozoic era, has produced
major thrust zones, such as the MCT and MBT, which significantly influence
Kalimpong's geology. These tectonic features have resulted in steep slopes, deep
valleys, and active river systems that dominate the landscape (Das et al., 2022). The
regional geology of the Kalimpong area reflects the broader tectonic and lithological
characteristics of the Darjeeling Himalayas. Located south of the MCT, which
divides the high-grade metamorphic rocks of the Higher Himalayas from the low- to
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medium-grade rocks of the Lesser Himalayas, the region's lithology is significantly
influenced by the Lepcha Thrust, a subsidiary fault of the MCT responsible for
extensive folding and faulting (Das et al., 2024). Dominated by the Daling Group of
Rocks, which include phyllites, quartzites, schists, and gneisses of Precambrian to
Paleozoic age, the lithology is highly weathered and fractured, making it
mechanically weak and prone to instability under static and dynamic loads(Das et al.,
2022). The geomorphology of the region is marked by steep slopes, deeply incised
river valleys, and landslide-prone terrain shaped by the Teesta and Rangit rivers
through erosion and sediment deposition (Nath et al., 2021). Stratigraphically, the
Daling Group forms the foundation, with Lower Dalings comprising weak phyllites
and slates and Upper Dalings characterized by schists interbedded with quartzites
(Steck, 2003). Overlying these are the Darjeeling Gneiss Complex, consisting of
high-grade metamorphic rocks such as banded and augen gneisses, reflecting deep
crustal processes of Himalayan orogeny. Recent alluvial and colluvial deposits
dominate lower valleys, contributing to slope instability and geomorphological
evolution (Das et al., 2022). Structurally, the region exhibits intense deformation
with thrust faults like the Lepcha Thrust creating shear zones, tight isoclinal folds
aligned northwest-southeast indicating compressive Himalayan forces, and
lineaments that act as conduits for groundwater, exacerbating instability during
monsoons (Mandal & Maiti, 2015; Sarkar et al., 1995; Das & Basu, 2012).
Geomorphological features such as steep slopes shaped by river incision and
landslide-prone zones underlain by phyllites and weathered schists, particularly on
slopes exceeding 30°, are common (Nath et al., 2021, Das et al., 2024). Seismically,
the region lies in Zone IV, experiencing moderate earthquakes that have historically
triggered landslides, as seen after the 1934 Bihar-Nepal earthquake (Das et al.,
2022). The ongoing tectonic activity along the MCT and related faults underscores
the seismic and slope stability hazards in the area (Nath et al., 2021). Before
analysing further objectives of this research, let us get into the basics of landslides,

categories, types and methods of slope stability analysis.
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2.3 Categories of Landslides

Landslides are classified based on different criteria such as type of
sliding surface, material involved, type of movement, age and state of activity. The
most common nomenclature scheme is the one proposed by Varnes, 1978, Cruden,
1996 in landslide related literature which is based on two important parameters
namely the type of movement and type of material involved. Further modification of
Varnes’ classification of landslide given by (Hungr et al., 2014), in particular, to
improve compatibility with geotechnical and geological terminology of rocks and
soils. As a result, four main types of landslides can be described as follows on the
basis of movement mechanism and material composition:

2.3.1 Falls

Occurs in steep or overhanging slopes or cliffs by the abrupt movement
of rocks along existing natural fractures or joint/ bedding planes. This typically
occurs as free falling, bouncing and rolling. Undercut river banks and road cut slopes
are prone to such failures. Weathering, gravity and water are controlling forces for
such events. Detachment of rock or soil masses, often triggered by undercutting or
seismic activity (Aleotti and Chowdhury, 1999).

2.3.2 Slides

It occurs in moderate to steep slopes and is characterized by failure of
material at depth and then movement by sliding along a rupture or slip surface.
Rotational slides (also referred to as slumps) involve movement of the material on a
curved slip surface whereas if sliding is on a planer surface, it is called a transitional
or rock slide. Translational (movement along planar surfaces) or rotational (curved

slip surfaces) are commonly observed in areas with weak lithological strata.

2.3.3 Flows

Occurs in moderate slopes during or after heavy rain events and involves
deformation of an entire soil mass that then flows downslope as a thick viscous fluid.

Liquefaction or high-water content thus generates such condition of earth flow. If
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downward movement of flow is very rapid it is a debris flow or as it is sometimes
known, a mudflow. Fluid-like movement of debris or soil, typically resulting from
heavy rainfall (Guo et al., 2022).

2.3.4 Complex Movements

A combination of mechanisms, such as rotational slides transitioning into

flows, is often seen in tectonically active zones.

2.4 Slope stability analysis
2.4.1 Slope stability analysis under static conditions integrated with Al/ML

Shear strength as a function of normal stress on the slip surface, cohesion, and
internal friction generally determines slope stability. The stability of the slope is
reflected in the FOS, which is calculated by dividing the "shear strength™ by the
"shear stress” produced. When the generated shear stress is greater than the soil's
available shear strength, a slope typically collapses (Kabir et al., 2023). Because of
their ease of use, low version complexity, and quick processing times, Limit
Equilibrium method (LEM) is a fundamental and traditional analytical tool for slope
stability investigations, are frequently employed in slope stability studies and can be
used to calculate FOS (Mafi et al., 2021). For multi-dimensional (2D and 3D)
environments, LEM can be used to both static and dynamic scenarios (Agam et al.,
2016, Azarafza et al., 2014). There is multiple equilibrium methods used to estimate
the FOS. Fellenius, Bishop, Janbu, Modified Swedish, Morgenstern-Price, and others
are some of the most well-known methods (Alejano et al., 2011). When computing
FOS, maximum techniques yield comparable results, with the variance in projected
values frequently being less than 6% (Huang et al., 2012). For the evaluation of slope
stabilisation, LEM has been proposed and studied in great detail in recent decades
(Yue and Kang, 2021, Liu et al., 2015, Wang et al., 2011, Cheng et al., 2007, Zhu et
al., 2003, Zhu et al., 2005). The LEM technique has remained the preferred approach
for the best use of many approaches, regardless of their utilitarian value, depending
on the type of problem to be solved (e.g., circular, non-circular), as well as the level

of precision that is desired in the results (Matthews et al., 2014). Along with taking
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probabilistic soil factors into account, the method of slices is also taken into
consideration to determine the most significant slip surface. Because of the
difficulties involved in determining FOS values, traditional stability analysis
techniqgues—which are influenced by the stabilisation process—find it difficult to
produce trustworthy results. In order to solve this problem, scientists used
computational intelligence techniques that provide an extremely accurate prediction
of the slope condition, failure mechanism, and slide risk (Zhu et al., 2003, Ahangari
Nanehkaran et al., 2022, Li and Yang, 2019, Mathe and Ferentinou, 2021, Azarafza
etal., 2022).

In the meantime, there has been a lot of interest in machine learning techniques for
reducing uncertainty in FOS calculations.In terms of calculating F.S. using
prognostic models, Al, and in particular ML, has been very helpful in predicting the
stability of slopes. These models make predictions about FOS based on the rate of
machine learning and the models' stated accuracy. These algorithms attempt to
develop methods for understanding the current state of "target data,” learning, and
using "training data" to learn. To generate likelihoods or forecasts, it uses a range of
algorithms that fall within the categories of "deep™ or "shallow" learning approaches
(Raschka et al., 2020). The algorithms' learning mechanism, which can be compared
to learning models like controlled, unstructured, or reinforcement learning, has a
direct impact on how accurate the predictions are (Schmidhuber, 2015). Al and
machine learning techniques have been successfully applied in engineering and
science over the past 25 years (Zhang et al., 2021, Zhao et al., 2021, Armaghani et
al., 2021, Yang et al., 2020, Kardani et al., 2021, Asteris et al., 2022). Through
predictive modelling, risk assessment, and uncertainty analysis, ML models are also
used to compute results for slope stability analysis that can provide insights into
potential slope collapse processes and rates (Bui et al., 2020, Erzin and Cetin, 2012,
Abdalla et al., 2015, Verma et al., 2016, Samui, 2013, Sakellariou and Ferentinou,
20054, Ferentinou and Sakellariou, 2007). The FOS of slopes was also predicted
using MATLAB-based coded programs, ANFIS, and other techniques, and the
outcomes of the LEM methodology were compared with the predictions (Mohamed
and Kasa, 2014). Another study compares the FOS of slopes with 3D-Finite Element
method (FEM) using the PSO technique (Kalatehjari et al., 2014). They showed that
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PSO may be used well in 3D situations, but not so well in 2D slope stability
scenarios. To predict slope stability many researchers (Ferentinou and Sakellariou,
2007, Lu and Rosenbaum, 2003, Sakellariou and Ferentinou, 2005b) used ANN, a
basic and popular Al model, in contrast to the LEM slope stability study.

The results of the LEM and ANN models were found to be consistent, allowing
sample data to be categorised according to the expected failure mechanism. In
another study, the SVM model was found to be somewhat more accurate than the
ANN results when compared side by side (Samui, 2008). SVR and the radius basis
function(Wei et al., 2021a) were compared with gradient boosting to ascertain the
FOS and its relationship to the triggering factors on slope instabilities (Zhou et al.,
2019). Various artificial intelligence-based techniques were used to accurately
predict the FOS values for slopes, which were subsequently used for slope
stabilisation (Qi and Tang, 2018). Numerous encouraging outcomes have been
obtained by the "extreme learning machine"” (Liu et al., 2014), "attribute recognition
method and ANN" (Tao et al., 2021, Wei et al., 2021b), "fuzzy comprehensive
evaluation method" (Wang and Lin, 2021), "particle swarm optimisation" (Gupta et
al., 2016), and "cloud model™ (Cui et al., 2021). In order to anticipate slope stability
using numerical simulation techniques and the limit equilibrium approach, it is
essential to consider the stress on the slope's body, demonstrate its deformation and
stability, and identify the related back failure mechanism.

2.4.2 Slope stability analysis under dynamic conditions integrated with AI/ML

Slope stability under dynamic loading is a critical research area in
geotechnical and seismic engineering, as seismic forces significantly influence slope
deformation and failure mechanisms (Zhu, 2008). Dynamic loads include both
natural and artificial sources, with earthquakes representing the primary natural load
affecting slope stability (Krishnamoorthy, 2007). The interaction between soil
dynamic properties and ground motion parameters makes evaluating seismic slope
stability more complex than static analysis. Several approaches have been developed
for dynamic stability evaluation, including experimental testing, numerical modeling
(Jing-shan et al., 2001; Chuhan et al., 1997; Liu et al., 2004), the Newmark sliding
block method (Newmark, 1965), and the pseudo-static method (Seed, 1979). Among
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these, the pseudo-static approach remains the most widely used because of its
simplicity and efficiency in practical engineering applications (Siyahi and Bilge,
1998; Biondi et al., 2002; Ai-Jun and Yong-Hua, 2003; Siad, 2003). It represents the
seismic effect through equivalent static forces acting horizontally and vertically on
the potential sliding mass (Erzin and Cetin, 2012).

In pseudo-static analysis, seismic loading is simulated as a static force
derived from the product of the slope mass and the corresponding acceleration,
simplifying earthquake-induced inertial effects shown in Fig 2.1 (Karray et al.,
2018). The Factor of Safety (FOS) is determined as the ratio of resisting to driving
forces along a potential slip surface, with values above unity indicating stability
(Johari et al., 2015). This approach, incorporated within the Limit Equilibrium
Method (LEM), assumes equilibrium between forces and moments and is highly
effective for both static and dynamic evaluations (Mafi et al., 2021; Agam et al.,
2016; Azarafza et al., 2014). In this study, the pseudo-static analysis was performed
following 1S 1893 (Part 1): 2016, as Kalimpong lies in seismic Zone IV, where
horizontal and vertical seismic coefficients of 0.3 and 0.2, respectively, were used
(Melo and Sharma, 2004). The simplicity and adaptability of the pseudo-static
method make it well suited for regional studies, enabling rapid stability estimation

under earthquake loading conditions.

Herizontal Accelerogram

Fig. 2.1 Pseudo-static analysis approach (Melo and Sharma, 2004)
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Over the years, LEM-based methods have been extensively applied for
assessing seismic slope stability in both natural and engineered slopes (Howland,
1980; Nouri et al., 2008; Leshchinsky and San, 1994; Loukidis et al., 2003; Hynes-
Griffin and Franklin, 1984; Baker et al., 2006). They have proven useful in analyzing
earth dams, embankments, and natural slopes (Yue and Kang, 2021; Wang et al.,
2011; Liu et al., 2015; Cheng et al., 2007; Zhu et al., 2005). Recent advances have
introduced computational intelligence and machine learning (ML) to address the
limitations of deterministic approaches by improving prediction accuracy and
reducing uncertainty in FOS estimation (Asteris et al., 2022; Azarafza et al., 2022,
Zhu et al., 2003; Ahangari Nanehkaran et al., 2022; Li and Yang, 2019; Mathe and
Ferentinou, 2021). ML techniques, including artificial neural networks (ANNS),
support vector machines (SVMs), decision trees (DT), random forests (RF), and
hybrid models, have shown remarkable success in learning from complex
geotechnical datasets (Cevik, 2011; Das, 2013; Kayabasi et al., 2015; Nanehkaran et
al., 2023). Studies demonstrate that ANN and hybrid models such as PSO-ANN
outperform traditional LEM approaches in FOS prediction under seismic conditions
(Erzin et al., 2016; Erzin and Cetin, 2013; Gordan et al., 2016). Other models like
SVM (Samui, 2008), ELM (Hoang and Bui, 2017), ANFIS (Fattahi, 2017), genetic
algorithms (Manouchehrian et al., 2014), and ensemble techniques like AdaBoost
and gradient boosting (Lin et al., 2021) provide strong predictive capabilities, even
for nonlinear and uncertain data (Sousa et al., 2017; Qi and Tang, 2018).
Collectively, these methods have advanced geotechnical modeling by enhancing
slope stability predictions, particularly under dynamic and seismic stresses, thus

contributing to safer and more resilient slope design practices.

2.5 Properties Influencing Slope Stability

The stability of a slope is inherently dependent on its geotechnical
properties, which dictate the strength and deformation characteristics of the materials
involved. Key factors include soil and rock mechanics, geological parameters, and

hydrological factors, seismic and anthropogenic factors all of which play critical
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roles in determining the resistance to failure under varying environmental and

loading conditions.

25.1 Soil and Rock Mechanics

(@)Soil Mechanics: The mechanical behaviour of soils is governed by their
composition, structure, and moisture content. Soil classification systems, such as the
USCS, provide a basis for categorizing soils into granular (sand and gravel) and
cohesive (clay and silt) types. These classifications are crucial for analyzing their
response to stress and strain under loading conditions (Mizal-Azzmi et al., 2011,
Santoso et al., 2011). Granular Soils exhibit high shear strength due to frictional
resistance between particles. Their stability is significantly influenced by compaction
and drainage characteristics whereas Cohesive Soils depend on cohesion and
capillary forces for shear strength. These soils are prone to plastic deformation and

exhibit time-dependent behaviour under loading, often leading to progressive failure.

(b) Rock Mechanics: Rock masses are inherently heterogeneous, comprising intact
rock material and discontinuities such as joints, faults, and bedding planes. The
stability of rock slopes is influenced by the orientation, spacing, and persistence of
these discontinuities (Kumsar et al., 2000, Puniya et al., 2023). RMR and GSI are
commonly employed to assess the quality of rock masses and their susceptibility to
failure. Shear strength along discontinuities is described by parameters such as ¢ and
¢, which are often reduced due to the presence of water and weathering (Aleotti and
Chowdhury, 1999)

2.5.2 Geological Factors

Cohesion, and friction angle govern the resistance to sliding. Weak or
weathered materials are more prone to failure (Aleotti and Chowdhury, 1999, Kechik
et al., 2023). Rock discontinuities, such as faults, joints, and bedding planes, serve as
potential failure surfaces, especially when aligned parallel to the slope (Thakur et al.,
2010). The orientation of geological structures relative to the slope plays a crucial
role. Adverse dip angles increase the likelihood of translational failures (Puniya et

al., 2023). Tectonic activity can create zones of weakness through faulting and
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fracturing, reducing overall stability (Kumar et al., 2020). The shear strength of slope
materials, defined by the Mohr-Coulomb failure criterion, is a critical factor in

determining slope stability.

(a)Cohesion: Cohesion arises from interparticle forces and cementation in soils and
rocks. In cohesive soils like clays, cohesion is a dominant factor, but it decreases

with weathering and saturation (Kechik et al., 2023)

(b)Friction angle: The friction angle depends on the grain size, shape, and roughness
of particles. Granular soils exhibit higher friction angles, whereas clays and silts have
lower values. Laboratory tests such as direct shear and triaxial compression tests are
commonly used to determine these parameters (Santoso et al., 2011, Zhao et al.,
2020D).

(c)Effective Stress Principle: This principle highlights the detrimental impact of
elevated pore water pressure on shear strength, especially during rainfall or rapid
drawdown scenarios (Liu and Wang, 2023, Kumar et al., 2020).

2.5.3 Hydrological factors

Prolonged or intense rainfall increases pore water pressure, reducing
effective stress and shear strength(Liu and Wang, 2023). Perched water tables can
form within the slope, creating localized zones of instability (Santoso et al., 2011).
Seepage induced by groundwater flow can destabilize slopes by exerting additional
forces on soil particles. The effect is particularly pronounced in slopes with fine-
grained materials (Kechik et al., 2023). Sudden lowering of water levels, such as in
reservoirs, creates a transient imbalance between hydrostatic forces and slope
resistance, often triggering failures (Ali et al., 2014). Rainfall-induced landslides in
tropical regions, such as the Bhagirathi Valley during the June 2013 flood, highlight
the impact of hydrological factors on slope stability(Bhambri et al., 2017). Pore
water pressure plays a pivotal role in slope stability, particularly in rainfall-induced
and seepage-driven failures. It influences the effective stress and thus the shear

strength of soils.
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(a) Positive Pore Water Pressure: When water infiltrates the soil, it increases the pore
pressure, reducing the effective stress and shear strength. This is especially critical in
saturated cohesive soils where prolonged rainfall or rapid drawdown conditions can
lead to shallow slope failures (Ali et al., 2014, Liu and Wang, 2023).

(b) Negative Pore Water Pressure (Suction): In unsaturated soils, negative pore
pressure (matric suction) contributes to apparent cohesion, enhancing stability.
However, this effect diminishes as the soil becomes saturated. The relationship
between suction and shear strength is captured by the extended Mohr-Coulomb

criterion for unsaturated soils (Kechik et al., 2023, Santoso et al., 2011).

(c) Rainfall Infiltration: Rainfall alters pore pressure distribution, creating perched
water tables and zones of increased instability. Analytical models are also developed
to predict annual probabilities of slope failure under varying rainfall intensities and
durations (Liu and Wang, 2023).

(d) Seepage and Permeability: Seepage forces exacerbate instability by reducing
effective stress and inducing erosion. High-permeability materials like sand allow
rapid drainage, mitigating pore pressure buildup, whereas low-permeability clays

retain water, making them susceptible to failure.

2.5.4 Seismic Factors

Seismic activity induces inertial forces within the slope, which can
reduce shear strength and trigger failures. The magnitude of the destabilizing forces
depends on ground acceleration and slope geometry (Zhao et al., 2020a, Yin et al.,
2009). Earthquakes can generate excess pore water pressure, particularly in saturated
soils, reducing effective stress and exacerbating instability (Eberhardt et al., 2004).
Loose, saturated sandy soils may lose strength completely during seismic shaking,
leading to catastrophic failures. This phenomenon is particularly relevant in seismic
zones with high water tables (Kumsar et al., 2000). The 2008 Wenchuan earthquake
in China triggered numerous seismic-induced landslides, with significant damage to
infrastructure and loss of life (Yin et al., 2009). Seismicity-induced landslides in the

Kashmir Himalaya during the 2005 earthquake serve as a stark reminder of the
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destructive potential of seismic forces (Ray et al., 2009).

2.5.5 Anthropogenic Factors

Slope cutting for roads, buildings, and mining activities disturbs the
natural equilibrium, often leading to failures if proper stabilization measures are not
implemented (Malviya et al., 2024, Mizal-Azzmi et al., 2011). Vegetation provides
natural reinforcement to slopes through root cohesion and water interception.
Deforestation removes this stabilizing effect, increasing susceptibility to erosion and
failure (Puniya et al., 2023). The addition of structures or embankments increases the
driving forces acting on slopes, particularly when combined with inadequate
drainage systems (Kumar et al., 2017). Anthropogenic activities such as road
widening in the Lesser Himalayas have led to frequent slope failures, highlighting

the need for careful planning and engineering (Ansari et al., 2020).

2.6 Types of failures

Failure mechanisms in slopes are characterized by the type of movement,
geometry of the failure surface, and material properties. Understanding these
mechanisms is critical to predicting slope behavior under various environmental and
loading conditions. The three primary failure types—translational, rotational, and
compound—each have unique triggers and characteristics.

2.6.1 Translational Failures

Translational failures occur along a planar or nearly planar failure
surface, often dictated by weak geological layers or discontinuities. The movement is
typically parallel to the slope surface, and these failures are common in stratified
rock masses or slopes with distinct bedding planes (Aleotti and Chowdhury, 1999,
Puniya et al., 2023). Failure initiates when the driving forces exceed the resisting
forces along a pre-existing plane of weakness. Factors such as excessive loading,
rainfall infiltration, and seismic activity reduce the shear strength of the failure
surface, triggering sliding (Liu and Wang, 2023, Kumar et al., 2017)
Rainfall-induced translational failures in layered Himalayan slopes have been

extensively documented, where water infiltration leads to saturation and reduced
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effective stress along weak bedding planes (Yin et al., 2009).

2.6.2 Rotational Failures

Rotational failures involve movement along a concave, circular or non-
circular failure surface. These failures are most common in homogenous, cohesive
soils or rock masses and are associated with deep-seated instabilities (Mizal-Azzmi
et al., 2011, Zhao et al., 2020b). A rotational slip occurs when the moment of driving
forces about the failure center exceeds the resisting moment. Factors such as
increased pore water pressure, overloading, or undercutting at the slope toe promote
failure. Bishop’s Simplified Method and Janbu’s Method are widely used for
analyzing rotational failures by calculating the FOS for circular and non-circular
surfaces (Donald and Chen, 1997, Zolkepli et al., 2019). Rotational failures in soft
clays during monsoonal rainfalls are frequently reported in Southeast Asia, where
saturated soils lose cohesion and exhibit significant deformation (Santoso et al.,
2011).

2.6.3 Compound Failures

Compound failures involve a combination of translational and rotational
mechanisms. These failures often occur in heterogeneous materials, where different
zones within the slope exhibit distinct failure modes (Qi et al., 2016). A rotational
slip may transition into a translational slide as the failure propagates across layers
with varying shear strengths or material properties. Compound failures are highly
unpredictable and require advanced numerical models for analysis (Puniya et al.,
2023, Eberhardt et al., 2004). Seismic events, such as the Wenchuan earthquake,
triggered compound failures in steep, stratified slopes, with rotational initiation

transitioning into debris flows (Yin et al., 2009).

2.7 Analytical Methods in Slope Stability analysis

Analytical methods form the backbone of slope stability analysis,
providing a means to estimate the FOS under various loading and environmental
conditions. Among these, LEM is widely employed due to their simplicity and

effectiveness. LEMs focus on evaluating the equilibrium of forces and moments
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along a predefined failure surface, providing a measure of slope stability.

2.7.1  Limit Equilibrium Methods (LEM)

LEM assumes that a slope fails along a specific surface and divides the
sliding mass into slices to calculate forces and moments acting on each slice. These
methods use the Mohr-Coulomb failure criterion(Aleotti and Chowdhury, 1999,
Michalowski, 1995). The following subsections discuss four prominent LEM

techniques, each suited for different slope configurations and conditions.

(@) Fellenius Method: Also known as the Ordinary Method of Slices, the Fellenius
Method is the simplest form of LEM. It assumes that interslice forces are negligible,
making the calculations straightforward but conservative(Donald and Chen, 1997).
This is simple and computationally inexpensive, provides a quick preliminary
assessment of slope stability, ignores interslice forces, leading to conservative
results. Not suitable for complex or irregular failure surfaces (Zolkepli et al., 2019).
The Fellenius Method has been applied extensively in homogeneous soil slopes and

initial stability evaluations.

(b) Bishop's Simplified Method: Bishop's Simplified Method improves upon the
Fellenius Method by incorporating vertical interslice forces, making it more accurate
for circular failure surfaces (Donald and Chen, 1997, Zhu et al., 2003b). This method
is suitable for circular failure surfaces in homogeneous soils, moderately accurate for
many practical applications, neglects horizontal interslice forces and requires
iterative computations (Zhu, 2008). Widely used for embankments, earth dams, and
homogeneous slopes (Firincioglu and Ercanoglu, 2021). Bishop’s Method is also
utilized to assess slope stability in Himalayan terrains, highlighting its reliability
under varying hydrological conditions (Kumar et al., 2017).

(c) Janbu's Method: Janbu's Method is a more generalized approach that can
accommodate both circular and non-circular failure surfaces. It accounts for
horizontal interslice forces, making it suitable for more complex geometries(Donald

and Chen, 1997). This method is applicable to complex failure surfaces,
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accommodates heterogeneous material properties and requires iterative procedures.
Results are sensitive to the assumed interslice force distribution (Aleotti and
Chowdhury, 1999). This method has been applied in the stability analysis of slopes
in mining and infrastructure projects where irregular failure surfaces are common
(Puniya et al., 2023). Janbu’s Method is applied to analyze road-cut slopes in
Northeast India, demonstrating its effectiveness in heterogeneous conditions
(Malviya et al., 2024).

(d) Morgenstern-Price Method: The Morgenstern-Price Method is the most rigorous
LEM, accounting for both horizontal and vertical interslice forces through a flexible
force distribution function. It is suitable for highly irregular and complex failure
surfaces (Zhu et al., 2003a). The method employs a force function to represent the
interslice forces, ensuring both force and moment equilibrium. Applicable to both
circular and non-circular surfaces. Offers higher accuracy than other LEMs.
Computationally intensive. Requires assumptions about the interslice force function.
The Morgenstern-Price Method is widely used in advanced slope stability software,
such as GeoStudio and PLAXIS, for detailed stability analyses (Ansari et al., 2020).
Its application is also demonstrated in 3D slope stability analyses, highlighting its
precision in heterogeneous, large-scale slopes (Firincioglu and Ercanoglu, 2021).

Comparison of various Limit Equilibrium methods is shown in Table 2.1.

Table 2.1: Comparison of various limit Equilibrium methods

Method Complexity Accuracy Key Applications
Fellenius Low Conservative Homogeneous slopes,
preliminary assessments
Bishop's Moderate | Suitable for circular | Embankments, earth dams
Simplified surfaces
Janbu's High Suitable for Mining, heterogeneous
irregular surfaces slopes
Morgenstern- | Very High Highly accurate Complex geometries,
Price detailed analyses
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2.7.2  Finite Element Methods (FEM)

FEM has revolutionized slope stability analysis by allowing a detailed
evaluation of stresses, strains, and displacements within the slope mass, offering a
more realistic representation of failure mechanisms compared to the simplified force
and moment equilibrium approach of LEM. FEM models the slope as a continuum
divided into finite elements, where the stress—strain relationship of the material is
defined through appropriate constitutive models, enabling simulation of both elastic
and plastic behavior. This method can capture stress redistribution, progressive
failure, and post-failure deformation, providing deeper insight into the failure
mechanism and the influence of complex factors such as material heterogeneity,
groundwater conditions, and seismic loading (Duncan, 1996; Fredlund, 1984;
Eberhardt et al., 2004; Kanungo et al., 2013; Zhu et al., 2003a). FEM determines the
Factor of Safety (FOS) by progressively reducing shear strength parameters
(cohesion ¢ and friction angle ¢) until instability occurs, thus eliminating the need for
predefined failure surfaces and offering an objective and comprehensive measure of
slope stability. Although computationally intensive and dependent on accurate input
parameters, FEM provides a powerful and versatile framework for analyzing slope
deformation and failure under various static and dynamic conditions, and it is widely
implemented in advanced software such as PLAXIS and GeoStudio for geotechnical
stability assessments (Xie et al., 2011).

2.8 Advances in Slope Stability Analysis

Recent advances in computational techniques and geotechnical
understanding have driven significant progress in slope stability analysis. Among
these advances, the adoption of 3D Analysis represents a paradigm shift, offering
greater accuracy and insight compared to traditional 2D methods. These innovations
are crucial for complex geotechnical problems where the limitations of conventional

methods become evident.

25



2.8.1 Three-Dimensional (3D) Analysis

3D slope stability analysis overcomes the limitations of 2D methods by
incorporating the full spatial variability of slope geometry, material properties, and
boundary conditions, providing a more realistic representation of slope behavior.
This is particularly critical in cases involving irregular topography, anisotropic
materials, or non-circular failure surfaces, as highlighted by (Xie et al., 2003,
Firincioglu and Ercanoglu, 2021). While 2D methods, which assume planar or
axisymmetric conditions, often oversimplify the problem by neglecting out-of-plane
effects and assuming circular or planar failure surfaces, 3D methods account for the
actual geometry and allow the evaluation of complex slope configurations (Hungr,
1987, Zhu et al., 2003a). This enables 3D analysis to model non-circular and
irregular failure surfaces, better reflecting real-world conditions. Moreover, 3D
methods capture spatial variations in stress and strength parameters, offering detailed
insights into stress redistribution during failure, and provide a more accurate Factor
of Safety (FOS) by incorporating out-of-plane forces and moments that 2D models
ignore (Xie et al., 2003). Studies comparing 2D and 3D approaches demonstrate that
2D methods vyield conservative results, particularly for slopes with irregular
geometries or anisotropic conditions (Wines, 2016). It is also emphasized that 2D
methods oversimplify failure mechanisms by assuming plane-strain conditions and
neglecting lateral boundary effects, leading to inaccuracies in complex geological
settings or under varying loading conditions (Bar et al., 2020). Conversely, 3D
analysis captures the influence of lateral boundaries and heterogeneous material
properties, providing critical insights into the progression of failure across the entire
slope (Firincioglu and Ercanoglu, 2021).

Applications of 3D analysis are extensive, including the stability
assessment of slopes near dams, tunnels, and roads, where 3D effects are pronounced
(Ansari et al., 2020, Kumar et al., 2020), as well as large open-pit mines with
complex geological conditions, where 3D modeling optimizes pit slopes and
enhances safety (Lucas and de Graaf, 2013). Additionally, 3D methods have been
employed in modeling landslides triggered by earthquakes or rainfall, where

interactions between materials and topography are critical(Yin et al., 2009, Zhao et
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al., 2020b). For instance, 3D analysis is used to assess the stability of a lava lobe at
Unzen Volcano, Japan, identifying critical slip surfaces and stress distributions that
were missed by 2D methods (Xie et al., 2003). Similarly 3D analysis in modeling pit
slopes is demonstrated in Western Australia with complex geometries and
anisotropic materials, underscoring the limitations of 2D methods (Firincioglu and
Ercanoglu, 2021). Also, the effectiveness of 3D models is illustrated in analyzing the
stability of slopes in the Lesser Himalayas, accounting for irregular topography and
variable material properties (Ansari et al., 2020). These case studies underscore the
enhanced accuracy and applicability of 3D methods in geotechnical engineering,
making them indispensable for complex slope stability evaluations.

2.8.2 Integration of Geographic Information Systems (GIS)

Geographic Information Systems (GIS) have revolutionized slope
stability analysis by providing a platform to manage, analyze, and visualize spatial
data. The integration of GIS in geotechnical engineering allows for the efficient
handling of complex terrain and geological datasets, enhancing the understanding of
slope behavior and the identification of high-risk zones. GIS-based approaches are
particularly valuable in large-scale studies, where traditional methods may be
cumbersome or impractical (Bouajaj et al., 2016, Tiwari and Douglas, 2012).

(@) Spatial Data Analysis: GIS facilitates the integration and analysis of diverse
spatial datasets, such as topography, geology, hydrology, and land use. These
datasets are critical in evaluating factors influencing slope stability, including slope
geometry, material properties, and external loads (Bouajaj et al., 2016). Digital
Elevation Models (DEMSs) generated through GIS provide detailed information on
slope angles, aspects, and curvature, which are essential for stability assessments.
GIS combines spatial and non-spatial data, such as soil properties, seismic activity,
and rainfall patterns, enabling a holistic analysis of slope stability. GIS tools allow
for automated processes, such as calculating slope angles and generating input
parameters for analytical or numerical models (Tiwari and Douglas, 2012).
Applications include identification of steep slopes and potential failure zones based

on DEM-derived parameters, creating continuous spatial datasets from point

27



measurements, such as soil strength or groundwater levels, using interpolation
techniques, simulating the impact of changes in hydrological or geological conditions
on slope stability. (Gokceoglu et al., 2000)used GIS to generate probabilistic slope
failure risk maps, incorporating spatial variability in discontinuity parameters.
Landslide susceptibility maps are validated using G1S-based models, demonstrating

the effectiveness of spatial data integration (Remondo et al., 2003).

(b)Hazard Mapping: Hazard mapping is a core application of GIS in slope stability
analysis, providing spatial representations of areas susceptible to landslides or slope
failures. These maps are essential for disaster risk reduction and land-use planning,
offering a basis for prioritizing mitigation measures and resource allocation (Aleotti
and Chowdhury, 1999). Methodology include integration of geological, hydrological,
and topographical datasets into a GIS platform assigning weights to contributing
factors, such as slope gradient, soil type, and proximity to water bodies, based on
their influence on slope stability, employing methods like heuristic approaches,
statistical models, or machine learning algorithms to predict susceptibility levels.
Applications include mapping landslide-prone areas for regional disaster
management strategies, identifying safe zones for infrastructure development, such
as roads and buildings, guiding evacuation routes and emergency response plans in
high-risk areas. GIS-based hazard mapping is utilised to analyze seismicity-induced
landslides in Kashmir Himalaya, incorporating factors such as slope geometry and
seismic intensity(Ray et al., 2009). Rainfall-induced landslide hazard maps are
induced in Peninsular Malaysia, integrating historical rainfall data and terrain
characteristics (Hassan et al., 2018).
GIS-based hazard maps typically present spatial variations in susceptibility or risk
levels, with high-risk areas highlighted for focused interventions. Advantages of
GIS-Based Hazard Mapping facilitates large-scale analyses that are impractical with
traditional methods, provides an intuitive visualization of risk, aiding stakeholders in
decision-making, allows for continuous updates as new data becomes available.

Comparison of various GIS applications is shown in Table 2.2.
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Table 2.2: Comparison of GIS Applications

Application Key Features Benefits Limitations
Spatial Terrain analysis, Efficient handling Dependent on data
Data data integration, of large datasets quality and availability

Analysis scenario modeling

Hazard Susceptibility and Supports disaster Requires accurate
Mapping risk mapping risk reduction and | weighting and validation
planning

2.8.3 Machine Learning and Artificial Intelligence Applications

Al and ML have brought transformative changes to slope stability
analysis by enabling predictive modeling and advanced data-driven approaches.
These techniques address the limitations of traditional methods by leveraging large
datasets to identify patterns, predict slope failures, and provide data-driven decision-
making tools. The adoption of ML and Al in geotechnical engineering has grown
rapidly, supported by their capability to handle complex, multi-dimensional datasets

and nonlinear relationships (Nanehkaran et al., 2023, Asteris et al., 2022).

(@) Predictive Modeling: Predictive modeling employs ML algorithms to forecast
slope stability outcomes by analyzing input parameters such as soil properties, slope
geometry, and external loads, enabling the identification of high-risk areas and
providing early warnings for potential failures (Nanehkaran et al., 2023). Common
algorithms include Decision Trees and Random Forests, where decision trees classify
or regress data based on feature importance, and Random Forests, as ensembles of
trees, enhance accuracy and mitigate overfitting, as demonstrated in the classification
of landslide-prone areas using terrain features and rainfall patterns (Asteris et al.,
2022). SVM are particularly effective for binary classifications, such as
distinguishing stable from unstable slopes, by identifying optimal hyperplanes
separating data classes. ANNs mimicking the neural structure of the human brain,
excel in modeling complex nonlinear relationships in slope stability problems

(Kanungo et al., 2013). Gradient Boosting Algorithms, such as XGBoost further
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enhance predictive accuracy by sequentially refining weak learners, making them
ideal for ranking slope stability risks in large datasets. Applications of these
algorithms include landslide susceptibility modeling, which identifies landslide-
prone zones based on geological, hydrological, and environmental factors, and risk
assessment, forecasting the likelihood and impact of slope failures on infrastructure
projects. A case study highlighted the effectiveness of RF and ANNSs in accurately
predicting high-risk slopes, showcasing their utility in practical scenarios
(Nanehkaran et al., 2023). These techniques efficiently handle large and complex
datasets, reduce dependency on predefined failure criteria, and enable data-driven
pattern discovery, though challenges such as the need for extensive training data and

interpretability issues, particularly with deep learning models, remain.

(b) Data-Driven Approaches: Data-driven approaches leverage empirical
relationships derived from historical datasets to predict slope behavior and assess
stability, complementing predictive modeling by enabling real-time analysis and
decision-making (Asteris et al., 2022, Jiang et al., 2020). These methods integrate big
data analytics by combining large-scale datasets such as remote sensing, historical
landslide records, and real-time monitoring data to enhance stability assessments.
Feature engineering extracts and transforms key parameters like slope angle,
curvature, and precipitation intensity from GIS and sensor data to improve model
performance (Tiwari and Douglas, 2012). Real-time monitoring systems, comprising
sensors like inclinometers, piezometers, and accelerometers, provide continuous data
streams that machine learning algorithms analyze to detect anomalies and predict
failures. Applications include early warning systems that automate alerts based on
critical thresholds, such as displacement rates monitored by sensors, and remote
sensing integration, where satellite-based datasets are combined with machine
learning models for mapping landslide-prone areas and monitoring slope movements
(Yin et al., 2009). The use of tree-based intelligent techniques are showcased for
slope stability classification under seismic conditions, integrating real-time data to
improve predictive accuracy (Asteris et al., 2022). These approaches reduce the need
for labor-intensive field investigations, support dynamic decision-making in rapidly
changing conditions, and is often integrated with GIS to enhance spatial and
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numerical analyses. However, they rely heavily on data quality and availability, and
their high computational demands can pose challenges in resource-constrained
environments. This multi-disciplinary integration provides a holistic framework for
slope stability analysis (Tiwari and Douglas, 2012). Comparison of GIS Applications
Predictive and Data-Driven Approaches in Table 2.3.

Table 2.3: Comparison of GIS Applications Predictive and Data-Driven

Approaches
Aspect Predictive Modeling Data-Driven Approaches
Focus Prediction based on input Analysis based on historical and
features real-time data
Strengths Accurate forecasts, handles Real-time monitoring, empirical
nonlinearities insights
Weaknesses Requires training data, less Relies on data availability and
interpretable quality
Applications | Landslide susceptibility, risk Early warning systems, dynamic
assessment analysis

2.8.4 Remote sensing techniques

Remote sensing techniques are integral to slope stability analysis,
offering large-scale, high-resolution, and non-invasive data for monitoring, mapping,
and assessing terrain characteristics over extensive areas, particularly in inaccessible
regions. Advances in satellite imagery and LiDAR technology have significantly
improved the precision and applicability of these methods in geotechnical
engineering (Ray et al., 2009, Hassan et al., 2018). Satellite imagery, including
optical imagery and SAR, provides critical insights into landslide-prone areas and
slope deformations. Optical imagery captures high-resolution surface details for
terrain mapping and post-failure assessments, while SAR, with its all-weather and
day-night capabilities, measures ground deformation through InSAR techniques
(Hassan et al., 2018). Applications include landslide mapping, deformation
monitoring through time-series SAR analysis, and hazard assessment via GIS

integration. For instance, satellite imagery is utilised to analyse landslides triggered
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by the 2005 Kashmir earthquake, highlighting its role in post-disaster assessments
(Ray et al., 2009). LIiDAR, a laser-based remote sensing technology, generates
precise three-dimensional (3D) representations of terrain, penetrating vegetation to
provide accurate ground surface data (Bar et al., 2020). Airborne LIDAR facilitates
large-scale topographic mapping, while terrestrial LIDAR offers high-resolution data
for localized studies like rock slope analyses. Applications include DEM generation,
change detection through temporal LiDAR datasets, and rock fall analysis by
mapping discontinuities and failure surfaces. Also demonstrated the efficiency of
LiDAR in rapidly appraising hazardous zones in mining areas using 3D models.
Despite their advantages, such as large-scale coverage and high accuracy, limitations
include weather and vegetation interference in optical imagery and high costs and
computational demands for LIDAR data. The integration of remote sensing with GIS,
numerical modelling, and machine learning provides a comprehensive framework for
slope stability analysis, enhancing prediction accuracy and decision-making (Hassan
etal., 2018).

2.9 Mitigation and Remediation Strategies

Effective slope mitigation and remediation require a comprehensive
framework that integrates engineering measures, real-time monitoring, and policy-
based management to enhance infrastructure resilience, minimize landslide risks, and
ensure sustainable land use (Mizal-Azzmi et al., 2011; Sarkar et al., 2018).
Engineering strategies remain central to this approach, focusing on site-specific
reinforcement, drainage, and surface protection techniques that respond to local
geological and hydrological conditions. Among these, drainage control is one of the
most effective stabilization methods, as excess water increases pore pressure and
reduces soil strength (Urciuoli and Pirone, 2013). Properly designed surface
systems—such as catch drains, lined channels, and diversion trenches—prevent
infiltration, while subsurface systems like horizontal and French drains or
geosynthetic drainage layers lower groundwater levels and improve stability
(Rahardjo et al., 2003; Arbanas and Arbanas, 2015).
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Reinforcement and retaining methods are essential in resisting lateral
earth pressure and improving slope integrity. Soil nailing, involving the insertion of
grouted steel bars, provides internal tensile resistance and has been successfully
applied in road cut slopes and retaining structures (Mizal-Azzmi et al., 2011; Rawat
and Gupta, 2016; Mangnejo et al., 2019). Similarly, retaining systems such as
concrete, gabion, or mechanically stabilized earth (MSE) walls resist soil movement
and, when equipped with drainage provisions like weep holes and filter layers,
effectively prevent hydrostatic buildup (Huang and Chen, 2004; Bathurst and Jones,
2001; Ansari et al., 2020; Hong et al., 2023). Geosynthetics—including geotextiles,
geogrids, and geocells—further enhance soil reinforcement and drainage, offering
flexible and durable stabilization for both natural slopes and embankments (Kristo et
al., 2019; Niroumand et al., 2012; Mehdipour et al., 2020).

Surface protection plays a complementary role by reducing erosion and
infiltration. Vegetative cover is an eco-friendly solution that improves shear strength
through root interlocking and reduces runoff velocity, while bioengineering
techniques like hydroseeding, brush layering, and vegetated geogrids combine
natural and mechanical benefits (Suhatril et al., 2019; Kumarasinghe, 2021; Auty et
al., 2024; Greenwood et al., 2004; Kokutse et al., 2016). In areas subject to high
runoff, stone pitching or riprap provides additional protection. Other effective
measures include slope grading, which modifies slope geometry to lower driving
forces (Jeldes et al., 2013; Schor and Gray, 1995; Fay et al., 2012), and buttressing,
which enhances resistance by adding compacted fill or rock at the toe (Gray and
Sotir, 1992; Samson et al., 2024; Markiewicz et al., 2024). For deeper or more
critical failures, ground anchors transfer tensile loads into stable layers (Hryciw,
1991; Liu and Geo, 2015), while grouting strengthens weak soils and reduces
permeability using cementitious or chemical injections (Daraei et al., 2018;
Winterkorn and Pamukcu, 1991).

In addition to engineering solutions, continuous monitoring and policy
support are crucial for sustainable slope management. Monitoring instruments—such

as inclinometers, piezometers, extensometers, and rain gauges—track key parameters
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like displacement, pore pressure, and rainfall intensity, facilitating timely
interventions (Ray et al., 2009; Hassan et al., 2018). Technological advancements,
including loT-enabled sensor networks and remote sensing systems, now enable
near-continuous observation, early warning, and informed decision-making for
hazard mitigation (Bar et al., 2020). On the governance front, effective risk
management requires establishing and enforcing technical standards, building codes,
and retrofitting protocols to ensure structural safety. Regular updates to risk and
vulnerability assessments are also vital to reflect evolving geotechnical and climatic
conditions. Ultimately, slope mitigation aims to either reduce driving forces such as
gravity, pore pressure, and seismic effects or enhance resisting forces through
drainage, reinforcement, and soil improvement. A coordinated integration of
engineering innovation, real-time monitoring, and institutional frameworks offers the
most robust pathway toward reducing slope instability and protecting vulnerable

communities.

2.10  Summary of literature review

The literature review highlights that landslides are among the most frequent
and destructive natural hazards, particularly in the geodynamically active Himalayan
region, where steep slopes, intense rainfall, and tectonic activity contribute to
instability. Kalimpong, located in the Lesser Himalayas, is highly susceptible to
slope failures due to its fragile lithology, heavy monsoonal rainfall, and human
interventions like road construction and urban expansion. Various types of
landslides—falls, slides, flows, and complex movements—occur based on material
composition and movement mechanisms. The integration of Artificial Intelligence
(Al), Machine Learning (ML), Geographic Information Systems (GIS), and remote
sensing technologies has further improved prediction accuracy and risk assessment.
Key influencing factors include geological structure, hydrology, seismic activity, and
human disturbances. Mitigation strategies emphasize engineering solutions such as
soil nailing, drainage control, and retaining structures, supported by continuous
monitoring and policy frameworks. Overall, the review underscores the necessity of
combining geotechnical, computational, and data-driven approaches for sustainable

landslide risk management in mountainous terrains like Kalimpong.
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CHAPTER 3
MATERIALS AND METHODOLOGY

3.1 General

Situated on the border with Nepal, Kalimpong is a tiny peninsula town in
the Indian state of West Bengal. It is well-known for its pleasant temperatures and
stunning natural surroundings and is located 1,250 meters above sea level.
Kalimpong is renowned for its tea plantations, flowers, and stunning views of the
Himalayas. It is encircled by verdant hills. The Relli River encircles it on the east,
while the Teesta River borders it on the west. This region's average temperature
ranges from 27°C to 5°C. Every year, the powerful monsoons in this area cause
terrible floods that block off Kalimpong from the rest of the state. Kalimpong is
prone to landslides, much as many other mountainous locations, due to its position
and natural feature. Because of the steep slopes and loose soil, the area experiences
heavy rainfall throughout the summer, which frequently causes landslides. It still
poses a serious threat to Kalimpong and the other towns in spite of several efforts. To
avoid and lessen its consequences in the area, local authorities and citizens must
exercise vigilance and adopt the necessary measures (Das et al., 2022).

Kalimpong, a hill station in West Bengal, is highly prone to landslides due to a
combination of natural and human-induced factors.

* The region's heavy monsoon rainfall, which ranges from 2000 to 2500 mm
annually, saturates the soil, reduces its shear strength, and increases pore
water pressure, leading to slope failures.

* Human activities such as rapid urbanization and deforestation further
destabilize slopes by removing vegetation cover, altering natural drainage
patterns, and increasing surface runoff.

» Additionally, Kalimpong's location in a seismically active zone means that
earthquakes frequently trigger landslides by inducing ground movement and
reducing slope material strength.

« Effective mitigation strategies, including proper land use planning,
afforestation, and improved slope stabilization and drainage, are crucial for

reducing landslide risks in Kalimpong.
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3.2 Remote sensing and GIS in landslide studies

Remote sensing data, including high-resolution satellite imagery and
SRTM elevation data, provide critical terrain information such as slope, aspect, and
elevation. Sol toposheets is used for base mapping and georeferencing. The spatial
data are processed and analyzed within a GIS environment, where thematic layers
representing landslide causative factors—such as slope, aspect, elevation, rainfall,
proximity to roads and faults—are created and overlaid. The Frequency Ratio model
is applied to calculate the likelihood of landslide occurrence for each class of these
factors, based on their correlation with past landslide events. These past events are
mapped through the creation of a landslide inventory, derived from satellite imagery
interpretation and historical data. All spatial datasets are standardized and
georeferenced to ensure consistent analysis. The influencing factors are grouped into
physical (e.g., geology, slope) and environmental (e.g., land use, rainfall) variables,
each of which can significantly affect slope stability. The study ultimately identifies
critical landslide-prone zones and contributes to the development of mitigation

strategies and land-use planning (Powers et al., 1996).

3.3 Landslide susceptibility mapping by Frequency ratio method

LSM is a critical tool in landslide risk assessment and mitigation
planning, enabling the identification of areas that are potentially prone to slope
failure. It involves the systematic analysis of various conditioning factors—such as
geological, topographical, hydrological, and anthropogenic influences—that
contribute to landslide occurrence. While LSM does not predict the exact timing of a
landslide, it provides a spatial representation of the probability of future events,
which is essential for land-use planning, infrastructure development, and disaster
preparedness. Given the growing socio-economic impacts of landslides and the
mounting pressure from urbanization in fragile mountainous environments, LSM has
become increasingly important. Over the past three decades, numerous attempts have
been made across various parts of India to delineate landslide-prone areas. One early
effort employed photogrammetry and 3D GIS systems to enhance hazard zonation
(Ramakrishnan et al., 2003). More recently, advanced techniques have been
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introduced, including integrated models using GIS, remote sensing, and neural
networks, such as in the eastern portion of the North Anatolian Fault Zone (Demir et
al., 2015). Further, alternative frameworks have been proposed to better assess
landslide consequences, considering past limitations and impacts (Alimohammadlou
etal., 2013).

LSM employs a range of methodologies broadly categorized into
heuristic, statistical, machine learning, and deterministic approaches. Heuristic
techniques, such as the AHP, depend on expert knowledge to assign weights to
conditioning factors like slope, geology, and land use, and are useful when data are
scarce. Statistical methods establish mathematical relationships between historical
landslides and causative factors. Among these, the FR model is a widely used
bivariate statistical method that estimates the correlation between landslide
occurrences and specific classes of conditioning variables. It calculates the ratio
between the probability of landslides occurring within a particular class and the
overall probability across the study area. Each conditioning factor—such as
lithology, slope, aspect, rainfall, and proximity to roads or faults—is represented as a
thematic layer in a GIS environment. Frequency ratios derived from these layers help
compute the LSI, which reflects the cumulative effect of all contributing factors. The
FR method has proven effective in various regional studies and is recognized for its
simplicity, interpretability, and compatibility with remote sensing and GIS platforms
(Lee and Talib, 2005).

The FR model has been successfully applied in diverse terrains for
landslide susceptibility assessment. For example, it has been used to map the spatial
distribution of landslides in south-west Calabria, Italy (Goswami, 2012), in Penang
district, Malaysia (Lee and Pradhan, 2007). The model can be further strengthened
through the integration of SRTM data, which provides high-resolution DEMs. These
DEMs allow for the extraction of essential topographic parameters such as slope,
aspect, and elevation—critical inputs for the FR model. These factors are classified
and spatially correlated with historical landslide inventories to assess their relative
influence on slope instability. In the present study, the FR model was selected to map
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landslide susceptibility in the Kalimpong region of the Darjeeling Himalayas, owing
to its computational efficiency and robustness in data-limited settings. Key
advantages of the FR model include ease of application, straightforward
interpretation of results, and the ability to generate reliable maps even when input
data are of moderate quality. Overall, the integration of FR with remote sensing and
GIS techniques provides an effective framework for identifying high-risk zones and
informing disaster risk reduction and sustainable development efforts. For this study,
six primary factors were selected based on their proven relevance in landslide
occurrences: elevation, slope, aspect, distance to roads, distance to faults or
lineaments, and annual rainfall. The integration of these factors was carried out in a

GIS environment, ensuring spatial accuracy and analytical rigor.

3.3.1 Data Acquisition and Preprocessing

Understanding the geomorphological characteristics of terrain is
fundamental to landslide susceptibility mapping, where slope instability is largely
influenced by topography. The SRTM data plays a pivotal role in this context by
offering high-resolution elevation data essential for analyzing landform attributes. In
this study, SRTM1 data with a spatial resolution of 30 meters was used to derive a
DEM that facilitated the extraction of critical topographic parameters. The 30 m
SRTM elevation data is more than good enough for the vast majority of engineering-
grade, regional analyses. It’s a globally accepted baseline used by NASA/USGS and
countless peer-reviewed studies. These features are essential for assessing terrain
morphology and hydrological patterns associated with slope failure. For instance,
slope gradient directly affects gravitational forces acting on the terrain, while slope
aspect influences microclimatic conditions such as sunlight, vegetation, and moisture

retention—all contributing to slope stability.

Beyond topographic characterization, the study integrated various
ancillary datasets using advanced GIS-based preprocessing techniques. Landslide
inventory data, comprising 126 landslide events, was acquired from the Bhukosh
portal of the Geological Survey of India (GSI) in shapefile format. These points were

processed in a GIS environment and served as ground-truth references for model
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training and validation. Additional layers included road and fault proximity derived
from infrastructure and geological vector datasets, as roads often act as destabilizing
agents due to excavation, and faults signify structural weaknesses. Long-term rainfall
data was interpolated to generate spatial distribution maps, which were overlaid with
terrain and geological layers to assess their compounded effect on slope instability.
Lineament analysis was also conducted to delineate fracture zones that enhance
infiltration and reduce cohesion within slopes. Various GIS operations, such as
buffer analysis for proximity calculations and raster-based analysis for topographic
layers, were employed to standardize and reclassify all variables. Each contributing
factor was assigned a weight based on expert judgment and statistical validation,
allowing their integration into a robust LSM. This comprehensive approach
underscores the effectiveness of SRTM data and geospatial tools in delineating
landslide-prone zones and guiding mitigation planning. Sources from where different
data was procured is mentioned in Table 3.1. A detailed methodological flowchart of

this process is depicted in Figure 3.1.

Table 3.1 Different landslide conditioning factors and their source

Factors Data source
DEM, Slope, Aspect, SRTM Open Topography
Distance to Road, Lineament Bhukosh Portal
Rainfall CRU database

To ensure the statistical validity of the susceptibility model, the inventory data was

divided into two subsets:

1. Training Dataset (75%): Comprising 94 points, this dataset was used to
develop and calibrate the model.
2. Testing Dataset (25%): Containing 32 points, this dataset was reserved for

validating the predictive accuracy of the model.

Testing and training division of dataset points are shown in Fig 3.2.
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Fig 3.1 Flowchart for landslide susceptibility mapping
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This division is critical in landslide susceptibility studies as it ensures the
model is not overfitted to the training data, thereby maintaining its generalizability
(Chung and Fabbri, 1999). The splitting process was performed using the
Geostatistical Analyst tool in ArcGIS, ensuring a spatially consistent separation of
data points. Each subset retained a representative distribution of the study area's

landslide patterns.

3.3.2  Selection of Landslide-Conditioning Factors

Landslides are complex phenomena influenced by interplay of natural
and human-induced factors. The selection of conditioning factors for this study was
guided by their established significance in previous research and the availability of
high-quality data. The six factors considered were processed using geospatial

techniques, ensuring their compatibility with the analytical framework.

(a)Elevation: Elevation, derived from high-resolution DEMs, is a fundamental
topographical variable. It influences slope stability, weathering processes, vegetation
cover, and human activity patterns. For this research, elevation data was extracted
and classified into five distinct categories ranging from 378.31 m to 1649.733 m
shown in Fig 3.3. These classes were determined using natural breaks in the data
distribution, a method that minimizes variance within each class while maximizing
variance between classes. Elevation indirectly impacts landslide occurrences by
influencing human habitation and infrastructure development. For instance, lower
elevations are more likely to host settlements and roads, which can destabilize
slopes, while higher elevations often have steeper gradients prone to natural failures.
Studies such as those by Koukis et al. (1994) and Dai and Lee (2003) have

highlighted the dual role of elevation in direct and indirect landslide susceptibility.
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Fig 3.3 Thematic map for landslide causative factors: Elevation

(b) Slope: The slope angle is one of the most critical factors in landslide
susceptibility, as it directly affects the gravitational force acting on soil and rock
masses. Steeper slopes are inherently less stable, especially under conditions of
intense rainfall or seismic activity. Using the Spatial Analyst tool in ArcGIS, the
slope map was derived from the DEM shown in Fig 3.4 and categorized into five

classes:

o 0°-13.88°

» 13.88°-20.36°
o 20.36°-27.77°
o 27.77°-36.87°
o 36.87°—61.53°

These classes capture the variability of slope angles across the study area,
allowing for a detailed analysis of their influence on landslide occurrences. As noted
by Nohani et al. (2019), higher slope angles typically correspond to a greater
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likelihood of landslides, particularly in regions with loose or unconsolidated soils.
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Fig 3.4 Thematic map for landslide causative factors: Slope

(c) Aspect: Aspect, or the orientation of slope faces, influences microclimatic
conditions such as sunlight exposure, wind patterns, and precipitation distribution.
These factors, in turn, affect soil moisture levels, vegetation cover, and erosion rates,
all of which contribute to slope stability. The aspect map was generated using
ArcGIS's Spatial Analyst tool, with orientations classified into 360° azimuth values
as shown in Fig 3.5. The significance of aspect varies by region. In areas with
predominant wind directions or uneven precipitation patterns, slopes facing these
directions may experience greater instability. Similarly, slopes exposed to direct
sunlight may undergo increased evaporation, reducing soil moisture and altering

cohesion.
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Fig 3.5 Thematic map for landslide causative factors: Aspect

(d) Distance to Roads: Road construction is a major anthropogenic factor contributing
to landslide occurrences. Roads often involve cut-and-fill activities, drainage
alterations, and vibrations from vehicular traffic, all of which destabilize natural
slopes. For this study, road data was sourced from the Bhukosh portal and processed
using the Euclidean Distance tool in ArcGIS to create a raster map with a 30-meter
resolution. Distances were categorized into five classes, ranging from 0 to 2653.77
meters. Proximity to roads is a critical parameter in LSM as it reflects the extent of
human intervention in natural terrains. Areas closer to roads are generally more
susceptible to slope failures, particularly in hilly regions where road construction
often involves extensive slope cutting. Map depicting distance to roads in Kalimpong
for LSM is shown in Fig 3.6.
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Fig 3.6 Thematic map for landslide causative factors: Distance to Roads

(e) Distance to Faults/Lineaments: Faults and lineaments are structural features that
signify zones of weakness in the Earth's crust. These geological discontinuities make
the surrounding areas more susceptible to landslides, especially under seismic
activity. Vibrations generated during earthquakes can destabilize slopes by reducing
shear strength and inducing soil or rock movement. Furthermore, faults often
facilitate groundwater movement, which can lead to increased pore water pressure
and reduced soil cohesion, further enhancing landslide potential. For this study,
lineament data was sourced from the Bhukosh portal of the Geological Survey of
India. The data was processed using the Euclidean Distance tool in ArcGIS to
calculate distances from these geological features. The final raster output, with a 30-
meter resolution, categorized the study area into five distance classes, ranging from 0
to 8414.77 meters. This classification was essential to identify how proximity to
faults influences landslide occurrences. The results showed a higher concentration of
landslides within close proximity to faults, consistent with findings in previous
studies. This underscores the importance of incorporating geological factors into
LSM to enhance predictive accuracy. Map depicting distance to lineamnents in

Kalimpong for LSM is shown in Fig 3.7.
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Fig 3.7 Thematic map for landslide causative factors: Distance to Faults/Lineaments

(HAnnual Rainfall: Rainfall is one of the most significant extrinsic factors influencing
landslides, particularly in regions with tropical and subtropical climates. Precipitation
directly impacts slope stability by saturating the soil, increasing pore water pressure,
and reducing cohesion. Prolonged or intense rainfall can lead to slope failures,
especially in areas with unconsolidated soils or steep gradients. For this research,
annual rainfall data spanning the years 2011 to 2020 was acquired in NetCDF format
from the CRU database. This dataset was processed using the IDW interpolation tool
in ArcGIS, resulting in a high-resolution raster map. The map categorized annual
rainfall values within the study area, ranging from 537.74 mm to 69612.55 mm as

shown in Fig 3.8.

Rainfall-triggered landslides are common in the study area due to the
region's susceptibility to intense monsoon rainfall. The integration of rainfall data
into the LSM ensures that the model accounts for temporal and spatial variations in
precipitation patterns. The inclusion of this factor aligns with the findings of
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Rahardjo et al. (1995), who emphasized the critical role of rainfall in landslide

initiation, especially in areas with residual soils and steep slopes.
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Fig 3.8 Thematic map for landslide causative factors: Annual Rainfall

3.3.3 Integration of Factors in Frequency Ratio (FR) Model

After processing and classifying the six conditioning factors, to create the
landslip susceptibility map, they were incorporated into the FR model. By examining
the ratio of landslide-prone to non-landslide-prone areas for each factor's class, the
FR model determines the correlation between landslide occurrences and each
conditioning factor. This statistical approach ensures that the relative contribution of

each factor to landslide susceptibility is quantitatively assessed.

The FR technique is widely regarded as an effective method for
identifying regions prone to landslide occurrences. Initially, FR values for each class
within every influencing factor were calculated using Microsoft Excel. Following
this, the RFV and PR for each factor were derived. The classes of individual factors
were then reclassified by substituting their original values with the computed RF
values. Subsequently, the Raster Calculator tool in ArcMap was employed to
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multiply the PR values with the reclassified factor layers to produce a landslide
susceptibility map for the study region. The FR and RF for each class of the

causative factors were determined using Equations (3.1) and (3.2).

FR = (% Landslide Pixels+ % Class Pixels).........cccooiiiiiiiiiiiiiiiiiiienea, (3.1)

RFV = FR/Total sum of Frequency Ratios for that causative factor............... (3.2)

Then, prediction rate (PR) and LSM for all the six landslide causative factors can be

calculated in Excel as mentioned in Eq. 3.3 and 3.4 respectively.

PR fOI’ a LCF = {RFVmaX = RFVmin}+{(RFVmaX ‘RFVmin)min} ....................... (33)

LSM=} (PR for a LCF)*(Corresponding LCF)...........ccoviiiiiiiiiiiieee, (3.4)

In this study, FR values were first computed for each class of every conditioning
factor using Microsoft Excel and shown in Table 3.2 and 3.3 with corresponding
prediction rate graph in Fig 3.9. The corresponding RF and PR values were then
determined to assign appropriate weights. Using the raster calculator in ArcGIS, the
weighted factor layers were integrated to produce the final landslide susceptibility
map (LSM), which delineates areas with varying degrees of susceptibility based on

the spatial relationship between landslide occurrences and conditioning factors.

Table 3.2 Calculation table for Frequency ratio model for all factors (FR and RF)

= Landsli % % Relative
S Factor de landslide Class class Frequen Frequenc
ﬂ’ Classes . . Pixels . cy Ratio
L Pixels pixels pixels y
0.469799966-
13.66061902 15300 22.37 8976 | 23.29 0.96 0.21
13.88061903-
. | 2034654964 23400 34.21 13371 | 34.70 0.99 0.21
o | 20.34654965-
g 97 7703959 18900 27.63 8977 | 23.29 1.19 0.26
27.77039591-
36.87059455 9000 13.16 4731 | 12.28 1.07 0.23
36.87059456-
6153692245 1800 2.63 2482 6.44 0.41 0.09

48




TOTAL 68400 100.00 | 38537 | 100.00 4.61 1.00
-1 0 0.00 0 0.00 0.00 0.00
0-22.5 2700 3.95 1240 | 3.22 1.23 0.14
22.5-67.5 2700 3.95 2663 | 6.91 0.57 0.07
— | 675-1125 9000 13.16 5720 | 14.84 0.89 0.10
Q| 1125-1575 9900 14.47 5856 | 15.20 0.95 0.11
& | 157.5-202.5 7200 10.53 6199 | 16.09 0.65 0.07
< [72025-2475 6300 9.21 3259 | 8.46 1.09 0.12
247.5-292.5 | 12600 18.42 6124 | 15.89 1.16 0.13
292.5-337.5 | 16200 23.68 5913 | 15.34 1.54 0.18
337.5-360 1800 2.63 1563 | 4.06 0.65 0.07
TOTAL 68400 100.00 | 38537 | 100.00 8.73 1.00
3000.149902-
4401 581623 3600 5.26 3674 | 9.53 0.55 0.12
O | 4401.581624-
E =| 5420.804693 7200 10.53 7056 | 18.31 0.57 0.12
O S| 5420.804694-
|<z£$ 6376 326321 16200 23.68 8083 | 20.97 1.13 0.24
o Z| 6376.326322-
S 3 7289 380321 27900 40.79 9675 | 25.11 1.62 0.35
7289.380322-
8414 772461 13500 19.74 | 10049 | 26.08 0.76 0.16
TOTAL 68400 100.00 | 38537 | 100.00 4.64 1.00
O-
9( 301.8014074 43200 63.16 | 15470 | 40.14 1.57 0.44
O | 301.8014075-
g 636.8583755 15300 22.37 | 10521 | 27.30 0.82 0.23
~ | 686.8583756-
W | 1144.763959 6300 9.21 6769 | 17.56 0.52 0.15
Z | 1144.76396-
<
< | 1737.959829 2700 3.95 3912 | 10.15 0.39 0.11
= | 1737.95983-
(|
2653 770096 900 1.32 1865 | 4.84 0.27 0.08
TOTAL 68400 100.00 | 38537 | 100.00 3.58 1.00
378.3127747-
217 358372 6300 9.21 5016 | 13.02 0.71 0.15
717.3583721-
e
5 | 936.7408173 9900 14.47 8688 | 22.54 0.64 0.14
= | 936.7408174-
% 1131193439 16200 23.68 | 11530 | 29.92 0.79 0.17
| 1131.19344-
M | {345 58992 32400 47.37 9961 | 25.85 1.83 0.40
1345.589921-
1649733765 3600 5.26 3342 | 8.67 0.61 0.13
TOTAL 68400 100.00 | 38537 | 100.00 4.58 1.00
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Table 3.3 Calculation table for Frequency ratio model for all factors (PR)

Feature PR Net PR
Aspect 1.05 105
Slope 1 100
Distance From Lineament 1.35 135
Elevation 1.59 159
Distance From Road 2.12 212
Annual Avg Rainfall 2.65 265
300
250
o 200
«= 150
< 100
50
0
Aspect Slope  Distance Elevation Distance  Annual
From FromRoad Avg
Lineament Rainfall

Fig 3.9 Prediction rate graph of various factors

The resulting LSI values were classified into susceptibility zones—high,
moderate, and low—using natural breaks. This classification ensures that areas with
similar susceptibility levels are grouped together, facilitating their identification and

prioritization for mitigation efforts. The landslide susceptibility map shown in Fig
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3.10 provides a spatial representation of areas categorized into high, moderate, and

low susceptibility zones. This map serves as a crucial tool for various applications:

1. Disaster Risk Reduction: By identifying high-risk areas, the map enables
targeted interventions, such as slope stabilization, afforestation, and drainage
improvement.

2. Infrastructure Planning: The map informs the siting of roads, buildings, and
other infrastructure to minimize exposure to landslide risks.

3. Land-Use Planning: Policymakers can use the map to enforce land-use
regulations, restricting development in high-susceptibility zones.

4. Community Awareness: The map can be disseminated to local communities

to raise awareness of landslide risks and promote preparedness.
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Fig 3.10 Landslide susceptibility map of Kalimpong by FR model

Following the landslide susceptibility mapping, three locations classified
as very high susceptibility, and one location each from high, moderate, and low
susceptibility areas, were selected for further study. These selections shown in Fig.
3.11 were based on actual site visits and information gathered from locals regarding
recurring landslides. Post landslide images of critical locations with latitudes and

longitudes have been shown in Fig 3.12.
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Location 5 (27.07102, 88.45036) Location 6 (27.089218, 88.519134)

Fig. 3.12 Post landslide images of critical locations with latitudes and longitudes

3.4 Geo-mechanical Properties of Soil Sample

The experiment was conducted for the mechanical analysis tests of
samples taken from the soil slope in the field. The geomechanical characteristics of
the slope-forming materials were investigated in the laboratory collected from the
failure zones of the debris slope. Disturbed samples were collected to perform the
following basic soil tests such as Grain Size Distribution (GSD) as per IS 2720 Part
4(1985), Proctor Compaction Test as per IS 2720 Part 8(1983), and Atterberg Limit
tests as per IS 2720 Part 5 are essential for understanding soil behavior in slope
stability analysis. The GSD test determines the proportion of different particle sizes
in a soil sample, helping classify the soil and assess its permeability and shear
strength characteristics. The Proctor Compaction test establishes the optimum
moisture content and maximum dry density, which are vital for evaluating soil
strength and stability under field conditions. The Atterberg Limit test identifies the
liquid limit, plastic limit, and plasticity index, indicating the soil’s consistency,

compressibility, and potential for volume change.
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3.4.1 Estimated through the triaxial test

The primary goal of triaxial testing is to look into strength properties for
stability designs. The natural effective stress conditions can be replicated in the
triaxial test to get important soil strength parameters. The strength characteristics and
stress-strain behavior of cylindrical soil specimens—either “undisturbed” or
“remolded”—are evaluated through CD triaxial tests. In this procedure, specimens
are first isotropically consolidated and subsequently sheared under drained
conditions at a controlled axial strain rate. CD tests are applicable to a wide range of
soil types. During both the consolidation and shearing phases, drainage is permitted,
allowing for pore water dissipation throughout the test. The specimen is initially
consolidated under a specified confining pressure, and following full consolidation,
shear strength is mobilized by gradually applying deviator stress at a slow, constant
rate of strain while maintaining drainage. Due to the time-intensive nature of
complete drainage at every stage, CD tests require significantly longer durations to
complete compared to CU tests. For this reason, they are often referred to as "slow"
tests and are typically reserved for detailed research applications. The experimental
setup is illustrated in Fig. 3.13. Different confining pressures were applied to the
same type of soil in four tests to calculate shear strength parameters. The test results
are recorded using axial displacement, load cells, and pressure transducers.
According to the relationship given by Kezdi (1980), the strain rates were checked
within the recommended limit.

Furthermore, during consolidation and shearing, the volume of the specimen area
may change due to compression shown in Fig 3.14 before and after shearing. As a
result, the initial area was corrected to account for both the change in the cross-
section area and the rubber membrane's restricting impact. The shear strength
parameters (c and ¢) were determined using the adjusted axial, and radial forces
applied to the specimen from the modified Mohr circle failure envelope of the
effective shear stress vs. normal stress relationship graph (Fig 3.15-3.20). Also final

geotechnical parameters of all soil samples have been shown in Table 3.4.

54



Before failure After failure

Fig 3.14 Soil specimen before and after failure
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Table 3.4 Geotechnical properties of soil samples
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3.5 Geostudio SLOPE/W Program- Slope stability analysis

SLOPE/W is an advanced geotechnical analysis software that applies the
LEM to evaluate the stability of slopes. It is capable of simulating a wide variety of
soil behaviors, accommodating complex stratigraphic profiles, diverse slip surface
configurations, and spatially variable pore-water pressure distributions through the
use of multiple constitutive soil models. These capabilities render SLOPE/W highly
effective for comprehensive slope stability assessments, which justifies its selection
for this study. The software supports multiple analytical approaches, including the
Ordinary/Fellenius method, Bishop's Simplified method, Janbu's Simplified method,
Spencer's method, Morgenstern-Price method, the GLE method, and finite element-
based stress analyses. Among these, only the M-P and GLE methods account for
both interslice normal and shear forces, thereby satisfying conditions of both force
and moment equilibrium. In contrast, the remaining methods simplify the problem by
neglecting interslice shear interactions. The M—P method is used in this work to
measure the FOS for a range of critical cut slopes in Kalimpong with various soil
parameters.

3.5.1 Approach for static conditions

In this study, the Limit Equilibrium Method (LEM) was selected over the

Finite Element Method (FEM) due to its computational efficiency, lower data
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dependency, and suitability for regional-scale slope assessments. While FEM allows
detailed stress—strain simulations, it requires complex constitutive models and
precise parameter calibration, which can introduce uncertainty in large-scale
applications. LEM, on the other hand, effectively estimates the Factor of Safety
(FOS) by analyzing the equilibrium of forces and moments along potential slip
surfaces using readily available geotechnical parameters. The static slope stability
assessment was carried out using GeoStudio’s SLOPE/W software, which applies
LEM to evaluate slope stability under defined conditions. Slope profiles were
prepared using field survey data and Digital Elevation Models (DEMs) to accurately
represent terrain geometry. The Morgenstern-Price method was adopted as it
provides a rigorous framework by considering both force and moment equilibrium
between slices, offering more reliable results than simplified methods such as
Bishop’s or Janbu’s. Soil parameters including unit weight, cohesion, and angle of
internal friction were assigned based on laboratory test outcomes and validated
through literature values specific to the Kalimpong region. Analyses were performed
under both dry and saturated conditions to capture the influence of pore-water
pressure variations. The software iteratively identified the most critical slip surface
and computed the corresponding FOS and stress distribution profiles, highlighting
the zones of potential instability. Furthermore, the FOS values and model outputs
were integrated with previously published datasets and subjected to machine learning
techniques for coherence evaluation, statistical correlation, and predictive modeling.
This integration allowed for the development of advanced data-driven models aimed
at improving the accuracy and reliability of future slope stability assessments under
similar geological and environmental conditions.

3.5.2 Approach for dynamic conditions

The analysis of slope stability under dynamic conditions was carried out
using a pseudo-static approach within GeoStudio’s SLOPE/W framework to simulate
the influence of seismic loading on slope performance. This method was preferred
for its simplicity and effectiveness in incorporating earthquake-induced forces into
conventional static analysis, making it suitable for preliminary and regional-scale

stability evaluations. In this approach, dynamic effects were represented by
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equivalent static forces characterized through horizontal and vertical seismic
coefficients, which were determined in accordance with the provisions of 1S 1893
(Part 1): 2016 for seismic design considerations. These coefficients were assigned
based on the seismic zoning of the Kalimpong region, which falls under Zone IV of
the Indian seismic map, ensuring that the seismic loading conditions reflected
realistic ground motion intensities. The slope geometry and material properties used
in the static analysis were retained, while the additional inertial forces were
introduced to simulate earthquake acceleration acting on the potential sliding mass.
The Morgenstern-Price method was again employed to achieve comprehensive force
and moment equilibrium between slices, allowing for accurate estimation of the
Factor of Safety (FOS) under pseudo-static conditions. Analyses were performed for
both dry and saturated states to account for the combined influence of seismic
excitation and pore-water pressure on slope stability. The results provided insight
into how seismic loading alters the location of the critical slip surface and reduces
the FOS compared to static conditions. Subsequently, the dynamic FOS values and
related parameters were incorporated into the machine learning framework alongside
static results and existing datasets to perform statistical analyses, pattern recognition,
and predictive modeling. This integration enabled the development of a robust data-
driven system capable of forecasting slope performance under future seismic events

with improved precision.

3.6  Stabilization Technique adopted- Soil Nailing

Soil nailing is a superior technique for slope stabilization compared to
geogrids and retaining walls due to its specific advantages and applications. Geogrids
are generally used for land leveling and ground improvement, providing
reinforcement for the soil but primarily functioning in flatter terrains or gentle slopes.
They are less effective in stabilizing steep or highly unstable slopes where higher
shear strength is required. Retaining walls, on the other hand, often face issues such
as soil settlement behind the wall, which can lead to wall failure over time. The rigid
nature of retaining walls can make them susceptible to such failures, especially in

areas with significant soil movement or water infiltration. Soil nailing, by contrast,
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involves inserting steel bars into the slope, which increases the shear strength and
provides immediate and continuous support(Mangnejo et al., 2019). This method is
particularly effective for steep and complex slopes where conventional retaining
methods might fail. It allows for incremental stabilization, meaning nails can be
installed progressively as excavation or construction advances, ensuring ongoing

support and minimizing the risk of collapse.

In addition to its comparative advantages, soil nailing is widely regarded
as one of the most effective and reliable methods for stabilizing soil slopes due to its
versatility, deep reinforcement capability, and minimal disturbance to the existing
terrain. Unlike surface-based treatments such as vegetative cover or terracing, soil
nailing provides internal stabilization by reinforcing the soil mass with closely
spaced steel bars that are drilled and grouted into the slope. This technique
significantly improves the shear strength of the slope and enhances its resistance to
both shallow and deep-seated failures. One of the primary advantages of soil nailing
is that it preserves the existing slope geometry, making it highly suitable for space-
constrained areas such as urban developments, road cuts, and steep embankments
where extensive excavation or slope flattening is impractical. Moreover, it is cost-
effective and allows for relatively fast installation, without the need for large
retaining structures or heavy fill. Construction can proceed in a top-down manner,
enabling immediate support to excavated sections and enhancing safety throughout
the process. Soil nailing also performs well under both static and dynamic loading
conditions, making it highly suitable for landslide-prone and seismically active areas.
Its compatibility with other stabilization methods, such as shotcrete, geosynthetics,
and drainage systems, further strengthens its applicability. With a strong track record
in critical infrastructure projects and the ability to customize designs for varying site
conditions, soil nailing stands out as the most dependable and flexible method for

ensuring long-term slope stability.
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CHAPTER 4
RESULTS AND DISCUSSIONS

4.1 SLOPE/W Results for static loading

With the use of Slope/W software and the M—P method (Morgenstern
and Price 1965), the current study calculates the FOS for a range of critical cut slopes
in Kalimpong with different soil characteristics. This is verified by a field survey.
This section gives details about the results related to slope failures, factor of safety at

different locations including mathematical modelling.

4.1.1 Location 1 in Mahakal Dara Bhalukhop (static)

Mahakal Dara in Bhalukhop, Kalimpong, is a geologically active region
characterized by steep slopes and a fragile geomorphic setup, making it highly
susceptible to landslides. The area experiences significant seasonal rainfall,
contributing to high pore water pressures in the soil strata. In this study, the slope
stability analysis was conducted using the soil parameters specific to the site, where ¢
and ¢ were determined from site-specific geotechnical investigations. For saturated
conditions, a water table was modeled at a depth of 5 meters from the ground surface
as per “Report on the Dynamic Ground Water Resources of West Bengal as on 31-
03-2022” to simulate the effects of infiltration and increased pore pressure during
monsoons. Conversely, for dry conditions, the water table was considered absent to
evaluate slope stability under normal circumstances. The presence of high pore
pressures during saturated conditions reduces the effective stress and shear strength
of the soil, significantly increasing the likelihood of slope failure. Combined with
Kalimpong's seismic vulnerability and its history of rainfall-induced landslides, the
region around Mahakal Dara remains at high risk for landslide occurrences,
necessitating detailed risk mitigation and stabilization measures. Fig. 4.1 and 4.2
shows the SLOPE/W results for the location L1 under dry and saturated situations,

respectively.
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Fig 4.2 SLOPE/W results for L1 in saturated condition under static loading

41.2

Chandraloke in Kalimpong is a region of hilly terrain with steep slopes

Location 2 in Chandraloke (static)
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and a history of instability due to its geological and hydrological characteristics. This
site, like much of Kalimpong, is highly vulnerable to landslides, exacerbated by
heavy rainfall during monsoons and the area's seismic activity. For the slope stability
analysis of this location, the soil parameters, including cohesion (c) and internal
friction angle (¢), were obtained from detailed geotechnical studies. The water table
was modeled at a depth of 5 meters below the surface to simulate the saturated
conditions that typically occur during peak rainfall periods, while no water table was
considered for dry conditions to represent stable weather periods. Under saturated
conditions, elevated pore water pressures significantly reduce the effective stress and
shear strength of the soil, increasing the potential for slope failure. The combination
of steep slopes, variable water levels, and the region’s propensity for heavy rainfall
makes Chandraloke particularly susceptible to rainfall-triggered landslides,
emphasizing the need for effective slope stabilization techniques and proactive risk
management. Fig. 4.3 and 4.4 shows the SLOPE/W results for the location L2 under

dry and saturated situations, respectively.
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Fig 4.3 SLOPE/W results for L2 in dry condition under static loading
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Fig 4.4 SLOPE/W results for L2 in saturated condition under static loading

4.1.3 Location 3 in Upper Tashiding (static)

Upper Tashiding in Kalimpong is a region with a complex terrain
marked by steep gradients and loosely consolidated soil, making it highly vulnerable
to slope instability. The area is characterized by frequent heavy rainfall during the
monsoon, leading to significant changes in groundwater levels and an increase in
pore water pressure. For the slope stability analysis at this site, geotechnical
parameters, including the ¢ and ¢, were evaluated to assess soil strength under
varying conditions. A water table was considered at a depth of 5 meters from the
surface to account for saturated conditions, reflecting the effects of prolonged
rainfall, while dry conditions were modelled without any water table to simulate non-
monsoon scenarios. The increase in pore water pressure under saturated conditions
drastically reduces the soil’s shear strength, making the slopes more prone to failure.
Given the area's geological sensitivity and the dynamic hydrological influences,
Upper Tashiding is highly susceptible to landslide events, particularly during intense
rainfall, necessitating targeted mitigation measures and continuous monitoring to

ensure slope stability. Fig. 4.5 and 4.6 shows the SLOPE/W results for the location
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L3 under dry and saturated situations, respectively.
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Fig 4.5 SLOPE/W results for L3 in dry condition under static loading
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Fig 4.6 SLOPE/W results for L3 in saturated condition under static loading

4.1.4 Location 4 in Upper Tashiding (static)

Ngassey Busty, located in the hilly terrain of Kalimpong, is a region with

slopes that are highly sensitive to environmental and geotechnical factors, making it

prone to landslides. The area experiences significant monsoonal rainfall, which plays
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a critical role in destabilizing the slopes. The slope stability analysis for this site
incorporated detailed soil parameters, including ¢ and ¢, derived from geotechnical
investigations. For scenarios simulating saturated conditions, a water table was
placed 5 meters below the surface, representing the typical impact of prolonged
rainfall and infiltration. Under dry conditions, no water table was considered to
reflect normal circumstances. Saturated conditions substantially weaken the soil
structure by increasing pore water pressures, reducing shear strength, and elevating
the risk of slope failure. Coupled with the steep topography and high precipitation
levels, the site exhibits a heightened susceptibility to rainfall-induced landslides,
underlining the necessity for robust monitoring systems and slope reinforcement
strategies to mitigate risks effectively. Fig. 4.7 and 4.8 shows the SLOPE/W results

for the location L4 under dry and saturated situations, respectively.

Cohesion

O5-55kPa
O 55-6kPa

Elevation

20 —

L] 10 20 0 40 S0 60
Distance

Fig 4.7 SLOPE/W results for L4 in dry condition under static loading
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Fig 4.8 SLOPE/W results for L4 in saturated condition under static loading
4.1.5 Location 5 in Mongbol Road (static)

Mongbol Road in Kalimpong presents a challenging terrain where slope
stability is a critical concern due to the interplay of steep gradients, soil
characteristics, and climatic conditions. This area experiences frequent and intense
rainfall during the monsoon, a key factor influencing slope failure. For this study,
soil parameters such as ¢ and ¢ were utilized to assess stability under varying
hydrological scenarios. Saturated conditions were modeled with the water table
positioned at 5 meters below the surface to reflect typical monsoonal impacts,
whereas dry conditions excluded the presence of a water table to represent normal
weather. Saturation during heavy rainfall significantly elevates pore water pressure,
undermining the effective stress and thereby reducing the soil’s ability to resist shear
forces. Given the dynamic hydrological environment and steep topography, Mongbol
Road is highly susceptible to landslides, especially during periods of intense rainfall.
Proactive slope stabilization measures and consistent geotechnical monitoring are
essential to mitigate these risks and ensure the safety of this area. Fig. 4.9 and 4.10
shows the SLOPE/W results for the location L5 under dry and saturated situations,

respectively.
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Fig 4.9 SLOPE/W results for L5 in dry condition under static loading
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Fig 4.10 SLOPE/W results for L5 in saturated conditions under static loading

4.1.6 Location 3 in Deolo (static)

Deolo, a prominent location in Kalimpong known for its elevated terrain

and scenic landscapes, faces significant challenges related to slope stability. The site
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Is characterized by steep slopes and a combination of loose and weathered soils,
which are particularly susceptible to external triggers such as heavy rainfall. To
analyze slope stability, key geotechnical parameters, including ¢ and ¢ were
considered. For saturated conditions, a water table was modeled at a depth of 5
meters below the surface to simulate the effects of water infiltration during monsoon
rains. In dry conditions, the absence of a water table was assumed to evaluate
stability under normal circumstances. The saturated condition increases pore water
pressures, reducing effective stress and weakening the soil's shear resistance, thus
amplifying the likelihood of slope failure. Deolo’'s combination of steep gradients,
variable hydrological conditions, and susceptibility to rainfall-triggered instability
underscores the need for thorough monitoring and the implementation of slope
reinforcement techniques to ensure safety and minimize landslide risks. Fig. 4.11 and
4.12 shows the SLOPE/W results for the location L6 under dry and saturated

situations, respectively.
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Fig 4.11 SLOPE/W results for L6 for dry conditions under static loading
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Fig 4.12 SLOPE/W results for L6 for saturated conditions under static loading

4.2  Sanity of the data (static)

In the present investigation, a total of 97 slope stability case studies were
analyzed. This dataset includes 85 documented cases sourced from existing literature
(Sah et al. 1994; Zhou and Chen 2009; Li and Wang 2010) focused on slope stability
evaluation along with 12 additional cases derived from critical locations within the
Kalimpong region. The outcomes of the Kalimpong site analyses have been detailed
in the preceding sections. Every sample represents a slope engineering field study
that includes five input parameters, or independent components. After that, a signal
with one dependent component is utilized to determine whether the slope is stable or
not. For the purpose of prediction, slope conditions were encoded numerically—
assigning a value of 0 to "failure™ cases and 1 to "stable™ cases. This binary
classification was subsequently standardized to ensure compatibility with ML model
input requirements. Each group of data was matched based on five independent
variables, resulting in one dependent outcome. Because the data has been integrated,
each sample property is significant, distinct, and provides an accurate indicator.
Among the 97 dataset rows, 41 are classified as "stable," while the remaining 56 are
classified as "failure.” There is a 1:1.36 ratio between these two groupings, showing
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that the indications are dispersed almost evenly. A violin chart (a strip plot that
reveals underlying data via points) is used to quickly assess the data's authenticity.
Figure 4.13(a-e) depicts the violin plots for UW, C, Phi, SA, and SH in both the
"Stable” and "Failure” categories. Each plot's median is represented with a white
circle in the centre. The box's range contains both the first and third quartiles. The
95% confidence level is represented by a narrow black line in each violin plot. The
silhouette or boundary of each violin approximates the normal kernel density for the

given feature. The findings show that the data is stable and has a normal distribution.
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4.3  Statistical summary of the simulated dataset for static modeling

In order to determine whether the data or parameters have a "skewness"
distribution, this section examines various statistics for each feature. Each of the five
sources is assessed separately due to their different SI units and meanings. All
statistical data values, including mean, median, mode, min, max, standard deviation,
and dispersion, are also shown in Table 4.1. A parametric distribution is shown in
Fig. 4.14, along with the rate parameter (lambda) for an exponential distribution and
the mu and sigma for a normal distribution. In contrast to the normal distribution in
other indices, the slope height in Fig. 4.14 (d) shows that it fits the exponential
distribution better. The rate parameter lambda=0.01379 is the inverse of the mean
and standard deviation. However, because slope height fits the distribution better if
the rate parameter (lambda=0.01379) is present, it shows that this component has a
relatively exponential distribution. Additionally, the exponential distribution's mean
and standard deviation, which equal 72.49, are the inverse of the rate parameter. The

distribution of the remaining parameters, UW, C, Phi, and SA, is normal.

Table 4.1 Statistical characteristics of dataset for static modeling

Indices | Mean | Mode | Median | Maximum | Minimum | Dispersion Sg;ggﬁ]
UW |[20.827 | 18,5 | 19.97 31.3 13.97 0.1811 3.79
C 22.161 5 16.28 70.07 0 0.7417 16.52
Phi 25.389 0 28.8 38 0 0.4078 10.4
SA 32799 | 30 31 50 16 0.2629 8.66
SH 72499 | 50 37 432 3.6 1.353 72.499
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Fig. 4.14 Distribution histogram of different indexes UW, C, Phi, SA and SH

4.4  Assessment of correlations among parameters for static modeling

Before drawing any conclusions about prediction models, it is imperative
to first examine the relationship between the five qualities, or variables. The strong
correlation between these characteristics may affect the forecast accuracy of the
models and result in derogatory conclusions that contradict reality. Eqg. 4.1 shows the
equation to determine "Pearson's correlation coefficient” for any two items (Cohen et
al., 2009).

2(xi—%)(yi—y)
o o 4.1
) VE@i—2)2 X (yi-¥)? (4.1)

where y; is the value of the y variable, X; is the value of the x variable, x

is the mean of the x values, y is the mean of the y values, and r is the coefficient of
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correlation of x and y (range -1 to 1). A matrix containing the association values for
each of the five attributes can be found in Fig 4.15. Two components are considered
to have a strong correlation if their correlation values are close to one. If not, there is
little connection between these two components. The correlation between
cohesiveness and internal friction angle is -0.22, indicating a negative relationship
between the materials. With an r value of 0.522, the slope angle and friction have the
most positive correlation. Nonetheless, two entities are not inexorably linked if their
correlation coefficient is less than 0.5. The five attributes so show an ignorable
relationship. The correlation matrix illustrating the interrelationships among the
factors affecting slope stability is presented in Fig. 4.15. It was generated by
integrating graphical elements using specialized drawing software to enhance the
interpretation of interactions among the five selected parameters. This visual
representation aids in clarifying the variable ranges and the degree of association
between the influencing factors considered in this study.

Unit Weight C Phi SA SH
cC
=,
0.023 0.505 0.279 0.283 =
g.
=
-0.22 0.107 0.153 o
: 0.522 0.201 ne)
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Fig. 4.15 Correlation matrix for parameters undergoing static modeling

4.5 Prediction from models
45.1 Conventional ML Models

This study uses one probabilistic model NB, and seven supervised
models: SVM, DT, KNN, LR, RF, and AdaBoost. SVM is a supervised machine
learning technique that can be used for outlier identification, regression, and
classification. This type of linear classifier looks for the best hyperplane to use while
classifying the data. By selecting the hyperplane in this way, the difference between
the two classes is maximised (Samui, 2008). Decision Trees are supervised machine
learning techniques for regression analysis and categorisation. It is a visual depiction
of every option for a decision depending on specific criteria. Every node in a
decision tree denotes a choice, and every edge shows how that choice turned out
(Hwang et al., 2009). As a non-parametric approach, KNN does not assume any
particular distribution of the data. It just looks at a data point's k nearest neighbours
to determine its categorisation or regression value (Cheng and Hoang, 2016). The
likelihood that the output variable will belong to a certain class is represented by a
logistic function in the logistic regression linear model (Bhagat et al., 2022).

The final prediction is obtained by averaging the forecasts of each
individual decision tree, which is trained in Random Forest using arbitrary subsets of

the training data (Xie et al., 2022). For regression analysis and classification, a
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supervised machine learning method known as AdaBoost is used. To improve the
model's performance and accuracy, a number of weak learners are combined in this
ensemble learning technique (Lin et al., 2021). One probabilistic machine learning
approach for categorisation is called Naive Bayes. It assumes that the input qualities
are conditionally independent of each other and is based on the Bayes theorem (Feng
et al., 2018). The first step in using ML for geotechnical analysis is gathering and
preprocessing geotechnical data, which includes data normalisation and missing
value correction. Finding the elements required for predicting slope stability and
possibly even engineering them is the next stage. The particular problem at hand and
the available data will determine which machine learning model is best. The
hyperparameters of the model are then adjusted for best results using a portion of the
training data. An extra data set is then used to ensure that the model has good
generalisation capabilities. In the end, criteria like accuracy and precision are used to
assess the model. After validation, it is put into use and then regularly checked to
adapt to fresh information and evolving circumstances. Additionally, the full

procedure employed for this investigation is depicted in the flowchart in Fig. 4.16

below.
[ Site Selection ]
Laboratory ] ‘ Field
Testing | | Monitoring
v
[ Selection of Parameters]
) v
Factor of Safety
calculation in
_Geostudio Slope/\W
) v
| Compiling of Datasets |
J | [ [
v S i s : 5 Y
Checking
Training Set Testing Set '« Validation Set Coherence of
Database
i l J [Statistical Analysis |

Model & Model Correlation
Development = Evaluation assesment

Fig 4.16 Methodology flowchart
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45.2 Consideration of impacting parameters on slope stability (static)

Both quantitative and qualitative factors affect slope stability.
Cohesiveness, slope height and angle, pore water pressure, unit weight, internal
friction angle, and other factors are among the numerical parameters. Failure
patterns, the physical attributes and quality of rocks and soil, subsurface water, and
more are examples of qualitative factors. Here, the goal is to use numerical
computations to ascertain whether a slope is stable or failing. The largest problem,
though, is translating qualitative traits into numerical values when field data is
insufficient. The dependent component pertaining to the evaluation of slopes is
therefore categorised as "stable” or else "failure™ when ML algorithms are utilised to
create prediction models based on the following five indicators: C, SA, SH, Phi, and
UW. Since value assignment is based on a variety of criteria and interstitial water
pressure is frequently ambiguous in field situations, it is excluded from the prediction
models. The five selected variables correctly depict slope stability, according to this
study, which focuses on 99 slope data case sets. In order to guarantee adequate
precision and dependability in the prediction models, interstitial water pressure is

thus eliminated.

45.3 ML models analysis (static)

On the initial test data, standard cross validation methods like 2, 3, 5, 10,
and 20 fold are used. 29 randomly chosen samples are used as a testing set and rest
of the data is used as the training set to build the slope stability predicting model. The
model's final outcome is the mean of the five prediction outcomes following five
iterations of the previously specified random option. Randomized cross validation is
carried out in this article utilizing the Python programming language for
convenience. Due to space constraints, this article only shows the "scatter plots™ and
"linear fitting curves” between unit weight on the horizontal axis (x) and different
parameters on the vertical axis (y). The fitting line equation, its slope and intercept,

Pearson's coefficient (r), and the COD are also shown in Fig. 4.17.
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Fig. 4.17 Regression fitting line and scatter plots of different parameters

4.5.4 Valuation of Models (static)

predicted and actual outcomes is categorized into four outcomes: TP, TN, FP, and
FN. Classification Accuracy represents the overall correctness of the model in
predicting both positive and negative outcomes (Begum et al., 2021). Precision
quantifies the proportion of correctly predicted positive instances among all instances

predicted as positive (Chen et al., 2022). Recall, conversely, measures the model’s
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Common performance evaluation metrics for classification models
include CA, P, R, F1 and AUC shown in Fig 4.18. The comparison between




ability to identify all actual positive instances. The F1 Score, which is the harmonic
mean of Precision and Recall, provides a more balanced performance measure,
especially under imbalanced class distributions or when both false positives and false
negatives incur similar costs. A higher F1 Score signifies improved model
performance in distinguishing between positive and negative classes. When Recall is
plotted on the x-axis and Precision on the y-axis, the Precision-Recall curve is
obtained. The ROC curve, on the other hand, graphically represents the relationship
between the TPR and the FPR across different classification thresholds. The AUC
serves as an aggregate measure of model performance, where higher values indicate

greater classification effectiveness.

Real Label

Positive  Negative

True False Y TP
(LRI Positive Positive * Precision = TTP+ FP
Predicted (TP). (FP)
Label False True
(ELETE Negative | Negative
(FN) | (TN)
" yTP Y TP+ TN
Recall = spF PN AcCuracy = S PP T N+ TN

Fig 4.18 Performance indicators

4.6 Examination of results from predictions (static)

4.6.1 Model assessment based on the unprocessed data (static)

To perform the random cross assessment, seven different machine
learning techniques are presented, along with one stacking technique of Random
Forest and AdaBoost, or R-Boost. The classification accuracy, precision, recall, F1,
and AUC values obtained are displayed in Table 4.2. AUC is a crucial machine
learning metric because it offers a trustworthy and understandable assessment of a
model's performance in binary classification tasks, particularly in cases where the
dataset is unbalanced. R-Boost has an AUC of 0.798, followed by LR with a value of
0.74, while RF shows an average value of 0.81. With an average of 0.725, R-Boost
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also has the best forecasting ability in terms of CA. After this AdaBoost and RF had
an average accuracy of 0.723. Additionally, AdaBoost generates excellent results
because it transforms a high bias low variance model into a low bias low variance
model, which helps create the optimal machine learning model that yields an
extremely accurate estimate. In comparison to methods like SVM, it is also easier to
use and requires less modification.

However, in this case, the R-Boost algorithm produces the highest CA
since it generates an initial array of decision trees by applying random forest to the
dataset. AdaBoost is then applied to the decision trees to improve their accuracy and
efficiency. This technique can improve the model's accuracy and reduce its variance,
increasing its dependability and capacity to manage complex datasets with a wide
range of features. to more clearly describe each model's soundness. One sign that the
model's behaviour is erroneous for skewed data is accuracy. It is possible to create
effective prediction models when both F1 and AUC values are considered. The
results in Table 4.2 show that R-Boost, AdaBoost, and RF are the forecast models
with F1 values more than 70%. Additionally, the AUC values for LR, R-Boost, and
RF are higher than 74%. According to AUC and CA, RF and R-Boost are therefore
thought to be the most accurate predictor, which further enhances the novelty factor
of this study.

Table 4.2 Evaluation metrics for different ML methods
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0.71134 | 0.628866

0.71134 | 0.721649 | 0.721649

Recall

10
0.71134

20 5
0.762887 | 0.752577 | 0.701031 | 0.670103 | 0.731959

0.701031 | 0.690722 | 0.71134 | 0.618557 | 0.670103

0.680412 | 0.71134 | 0.659794 | 0.690722 | 0.628866

0.639175 | 0.628866 | 0.618557 | 0.659794 | 0.618557
0.71134

0.659794 | 0.690722 | 0.690722 | 0.762887 | 0.587629

0.762887 | 0.742268 | 0.701031 | 0.721649 | 0.701031

0.670103 | 0.701031

0.752577

Average
0.7237
0.6784
0.6742
0.6330
0.7237
0.6845
0.6784
0.7258

4.6.2 Sensitivity Analysis for static analysis

The importance factor is calculated for each input parameter in this
section, which focusses on the sensitivity analysis using weight determination
criteria. This task is carried out using the CRITIC approach, which uses the
coefficient of variation, which is equal to (Standard Deviation/Average) for each
individual parameter provided by l;. Equation 4.2 is used to calculate the objective
weight (Wj) of any given criterion j (Krishnan et al., 2021)

Wi =1+ B Lo (412)

In accordance with the five input criteria, weightage plays a vital function. The
values of weightage in percentage comes out to be 2.7, 12, 7.5, 6.3 and 71.5 for UW,
C, Phi, SA and SH correspondingly. According to the data, slope height has a bigger
influence on slope stability than cohesiveness while unit weight has the least
demonstrated in Fig 4.19.
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Fig. 4.19 Weightage indicator of each parameter

4.6.3 Receiver Operating Characteristic (ROC) Curve for static analysis

The ROC curve is a graphical representation used to evaluate the
performance of binary classification models. The AUC-ROC serves as a quantitative
measure of a model's discriminative ability. In the present study, as illustrated in Fig.
420 and 4.21 for failure and stable classes respectively, the RF algorithm
demonstrated the highest overall classification accuracy among all evaluated models.
Both RF and R-Boost, being robust ensemble learning techniques, exhibited strong
predictive capabilities for estimating the Factor of Safety (F.S) across various slope
conditions, as inferred from the ROC analysis. SVM also yielded reliable and
consistent results, making it a viable alternative classifier. Among the models
assessed, RF achieved the highest AUC value of 0.81, followed by R-Boost with an
AUC of 0.798, and LR with 0.74. In contrast, the Naive Bayes classifier recorded the
lowest AUC value of 0.654. These findings underscore the superior predictive
accuracy and reliability of RF and R-Boost models, aligning well with results
obtained through conventional LEMs. Consequently, the application of these
machine learning approaches holds significant promise for the development of
efficient slope stability assessment frameworks and the formulation of appropriate
stabilization strategies.
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4.6.4 Comparison with GeoStudio results for static loading

As per the above results, in Table 4.3 author has presented the slope

stability assessment outcomes, derived from both the best-performing machine
learning models and the SLOPE/W simulation outputs. Among the predictive



models, R-Boost, followed closely by RF, demonstrated high reliability by producing

results that closely align with the stability outcomes observed in the numerical

analysis.
Table 4.3 Testing results on stability condition criteria for Kalimpong (static
condition)
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L5Sat. | 22 | 32 | 315 | 416 65 F F F F F
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4.7  Slope/W results for dynamic loading

For a variety of critical slopes in Kalimpong with variable soil
parameters, such as seismic loading for dry and saturated conditions, the current
study employs the M-P approach to measure the FOS using the "Slope/W" software
under GeoStudio 2021.4, which is confirmed by field survey (Morgenstern and Price,
1965). The entire procedure, including mathematical models and field validation, is

covered in this section.
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4.7.1 Location 1 in Mahakal Dara, Bhalukhop (dynamic)

Mahakal Dara in Bhalukhop lies in a seismically active region with steep
terrain and loose soil strata, making it particularly vulnerable to dynamic loading
factors. In this slope stability analysis, pseudo-static loading was introduced to
simulate seismic conditions, reflecting the additional forces generated during
earthquakes. Key soil parameters, such as ¢ and ¢, were analyzed for both dry and
saturated conditions. In saturated scenarios, a water table was placed 5 meters below
the surface to represent post-rainfall infiltration. The seismic forces act as an added
destabilizing factor, increasing the shear stress within the slope while reducing the
effective stress, particularly under saturated conditions where pore water pressure is
already elevated. This combined impact significantly lowers the factor of safety,
emphasizing the critical need for earthquake-resistant slope reinforcement measures,
such as retaining walls, soil nailing, and drainage systems, to prevent potential
catastrophic slope failures in this area. SLOPE/W results are shown in Fig. 4.22 and

4.23 for L1 soil specimens under dry and saturated conditions, respectively.
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Fig 4.22 SLOPE/W results for L1 in dry conditions under dynamic loading
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Fig 4.23 SLOPE/W results for L1 in saturated conditions under dynamic loading

4.7.2 Location 2 in Chandraloke (dynamic)

The terrain of Chandraloke, with its steep inclines and proximity to
seismic zones, poses a substantial risk of landslides under dynamic conditions.
Pseudo-static analysis was utilized to assess the stability of the slope under seismic
forces. Soil properties, including ¢ and ¢ were measured to evaluate the resistance of
the soil mass against these forces. Saturated conditions, modeled with a water table at
5 meters below the surface, significantly weaken the soil due to increased pore water
pressure. When combined with dynamic forces, the destabilization is further
amplified, as the inertial effects of seismic loading increase the likelihood of slope
failure. This analysis underscores the necessity for advanced mitigation techniques,
such as shock-absorbing barriers, geosynthetic reinforcements, and seismic slope
drainage systems, to enhance the stability of Chandraloke’s vulnerable slopes.
SLOPE/W results are shown in Fig. 4.24 and 4.25 for L2 soil specimens under dry

and saturated conditions, respectively.
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Fig 4.24 SLOPE/W results for L2 in dry conditions under dynamic loading
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Fig 4.25 SLOPE/W results for L2 in saturated conditions under dynamic loading

4.7.3 Location 3 in Upper Tashiding (dynamic)
Upper Tashiding is characterized by steep slopes and loose, weathered

soils, making it extremely susceptible to seismic activity and associated landslide
risks. The slope stability analysis incorporated pseudo-static factors to model the
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impact of dynamic loading during seismic events. The geotechnical parameters,
including ¢ and ¢ were evaluated under both dry conditions and saturated scenarios,
the latter featuring a water table at 5 meters depth to reflect post-rainfall effects.
Dynamic loading introduces additional shear stresses and reduces the soil's ability to
resist failure, particularly in water-saturated conditions where pore water pressures
compromise soil stability further. This compounded risk highlights the importance of
integrated stabilization strategies, such as anchored retaining systems, slope
reinforcement using geogrids, and earthquake-resistant infrastructure, to mitigate the
seismic and hydrological vulnerabilities of the site. SLOPE/W results are shown in
Fig. 4.26 and 4.27 for L3 soil specimens under dry and saturated conditions,

respectively.
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Fig 4.26 SLOPE/W results for L3 in dry conditions under dynamic loading
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Fig 4.27 SLOPE/W results for L3 in saturated conditions under dynamic loading

4.7.4 Location 4 in Ngassey Busty (dynamic)

The slopes of Ngassey Busty are notably steep, with a geologically
fragile soil structure that is highly sensitive to dynamic influences. Pseudo-static
slope stability analysis was performed to assess the effects of seismic accelerations,
representing the potential impact of earthquakes. Soil parameters ¢ and ¢ were
crucial parameters in evaluating the soil's strength. Saturated conditions were
modeled with a water table positioned at 5 meters below the surface, simulating the
hydrological impact of intense rainfall. During seismic events, the added inertial
forces generated by ground shaking interact with pore water pressures in saturated
soils, further decreasing the shear strength and increasing the likelihood of slope
failure. The findings highlight the need for robust interventions, such as earthquake-
resilient slope stabilization, efficient subsurface drainage systems, and the use of
energy-dissipating retaining structures to safeguard this area against potential
dynamic slope failures. SLOPE/W results are shown in Fig. 4.28 and 4.29 for L4 soil

specimens under dry and saturated conditions, respectively.
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Fig 4.28 SLOPE/W results for L4 in dry conditions under dynamic loading
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Fig 4.29 SLOPE/W results for L4 in saturated conditions under dynamic loading

4.7.5 Location 5 in Mongbol Road (dynamic)
Mongbol Road traverses a region with steep gradients and loose soil,

making it highly susceptible to the compounded effects of seismic activity and

hydrological changes. In this study, a pseudo-static approach was adopted to simulate
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seismic loading, allowing for an assessment of slope stability under dynamic
conditions. The soil's ¢ and ¢ were analyzed under both dry conditions and saturated
scenarios, with the latter featuring a water table at 5 meters to reflect monsoonal
influences. Seismic forces intensify the destabilizing shear stresses while reducing
the effective stress within the slope, particularly in water-saturated soils. This
combined impact significantly lowers the safety margin, highlighting the urgent need
for dynamic slope stabilization measures. Recommended interventions include the
installation of flexible retaining walls, reinforcement with soil nails or geogrids, and
slope drainage improvements to mitigate the risk of landslides along Mongbol Road.
SLOPE/W results are shown in Fig. 4.30 and 4.31 for L5 soil specimens under dry

and saturated conditions, respectively.
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Fig 4.30 SLOPE/W results for L5 in dry conditions under dynamic loading
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Fig 4.31 SLOPE/W results for L5 in saturated conditions under dynamic loading

4.7.6 Location 6 in Deolo (dynamic)

Deolo, a high-altitude location in Kalimpong with steep and scenic
terrain, is highly vulnerable to dynamic slope instability. Pseudo-static slope stability
analysis was undertaken to evaluate the effects of seismic forces on this already
fragile terrain. The study incorporated soil ¢ and ¢ as key parameters and analyzed
stability under dry and saturated conditions. For saturated scenarios, the water table
was modeled at 5 meters from the surface to represent monsoonal conditions.
Dynamic loading due to seismic forces further destabilizes the slope by increasing
the shear stresses acting on the soil mass, especially in conditions where pore water
pressures are elevated. These findings indicate a pressing need for earthquake-
resistant stabilization strategies, including reinforced earth embankments, the use of
shock-absorbing geosynthetics, and efficient drainage systems, to manage the
combined risks posed by seismic and hydrological factors in Deolo. SLOPE/W
results are shown in Fig. 4.32 and 4.33 for L6 soil specimens under dry and saturated

conditions, respectively.
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Fig 4.33 SLOPE/W results for L6 in saturated conditions under dynamic loading

4.8  Coherence of database (dynamic)

This study looked at 92 field examples of slope stability analysis,
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including 80 cases with slope cases that were previously described in the literature
and 12 cases with significant locations in the Kalimpong region whose outcomes had
already been published. The database contains information about the geometry,
stability condition, slope location, and geological conditions that were found during
fieldwork and that consider seven input parameters (i.e., seven independent factors).
After the creation of the primary database, its features were classified and given
labels. If the evaluated FOS values were less than 1.00, they were categorised as
unstable; if they were more than or equal to 1.00, they were categorised as stable.
This well-known and experimentally proven classification technique offers
adaptability in a variety of contexts. Next, a signal with one dependent component
that may be categorised as "stable™ or "failure™ will be used to assess the slope's
stability. To make the application of ML models simpler, the terms "failure” and
"stable" were represented as 0 and 1 during prediction and subsequently transformed
to these values. Seven different factors were used to harmonize each and every data
set. The geometric and geological requirements of slopes were characterized by
seven parameters (UW, C, Phi, SA, SH, K;, and K,) with a single dependent
outcome. These seven characteristics were then used to generate the input features
for the classification models. Slope occurrences were classified as either S or F based
on their stability state. Because of the data integration, every specimen attribute is
distinct, contains valuable information, and exhibits precise signs. 45 of the dataset's
92 rows are categorised as "stable,” while the remaining 47 are categorised as
"failure” The 1:1.04 ratio between these two clusters indicates that the signals are
dispersed nearly evenly. The violin charts for each parameter are shown in Figs.
4.34(a-g). The median is shown by the white circle in the middle of each figure.
Summary statistics that provide more information about the data, such as the median,
quartiles, and possible outliers, are usually shown inside each violin as a box plot or
horizontal line. All things considered, the violin plot provides a straightforward and
educational way to show how data is distributed and fluctuates over multiple groups
or categories. The box spectrum is a statistical representation of a variable's quartile
distribution. The box's ends represent the lower and higher degrees of variance, while
the body represents the data concentration. In each violin plot, a thin black line
indicates the 95% confidence level. In addition to providing a visual depiction of the
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data’s distribution, the violin plot's border or silhouette offers details on the data's
density, range, central tendency, and symmetry. The findings demonstrate the data's

stability and normal distribution.
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Fig. 4.34 Standard kernel density Violin charts showcasing various input parameters

4.9  Statistical summary of the simulated dataset for dynamic modeling

To identify distributional tendencies that could be statistically
summarised, a preliminary analysis of the simulation data was conducted prior to
creating a prediction model. According to statistics, the values of these variables
span wide ranges, indicating that the database includes a range of soil types and slope
scenarios. For each characteristic, this section examines several statistics to see if the
data or parameters have a "skewness™ distribution. Because the seven sources have

various Sl units and meanings, they are all analysed independently. The means,
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medians, modes, lowest and maximum values, standard deviations, and dispersion

are given for the relevant data in Table 4.4 and Fig. 4.35 displays the mean and
variability of normal distribution of different parameters.

Table 4.4 Statistical breakdowns of the five variables in the database under
consideration
Indices Mean | Median | Mode | Max. | Min. Star]da}rd Dispersion
Deviation
Unit Weight | 18.4467 | 18.875 | 18.875 22 13.1 1.724 0.093
Cohesion 33.6348 | 225 15 124.6 1 34.43 1.0181
Internal 26.059 | 25 22 | 36 | 17 | 5.864 0.224
Friction angle
Angleof | 39391 | 3725 | 20 | 80 | 10 | 22.369 0.565
slope
Hi'l?)gzo‘c 18.003 | 18.093 | 18.093 | 65 |10.7| 10.208 0.566
Horizontal
pseudostatic | 0.2152 | 0.15 0.15 0.5 0 0.116 0.537
coefficient
Vertical
pseudostatic | 0.13913 | 0.1 0.1 02 | 01 0.049 0.35078
coefficient
oW LR
a0 PN sigma | 1.72437
o — . I ——
12 14 16 UW‘IS 20 22
(@ uw
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Fig. 4.35 Distribution histogram of different indexes

4.10 Assessment of correlations among parameters for dynamic modeling

Evaluating slope stability was complex due to its variability. Limit Equilibrium
Methods (LEMs) were used to calculate the factor of safety (FOS) for each slope
individually. Prediction algorithms assessed slope conditions based on categorized data.
Standardizing this data before training was crucial. Additionally, analyzing the relationships
among the seven factors was essential, as incorrect assumptions could lead to false
conclusions. The effectiveness of the prediction models relied on identifying meaningful
correlations between these attributes. The "Pearson's correlation coefficient” equation,
whose values range from -1 to 1, can be used to find the correlation between any two
items (Cohen et al., 2009). A correlation value nearer one suggests a strong
association between the components, whilst a number farther away suggests a
weaker relationship. Using drawing software, a "correlation matrix™ was created to
help visualise the ranges and affiliations of the variables and improve comprehension
of the connections in Fig. 4.36. This matrix demonstrated the independent
significance of each feature in determining slope stability by examining the
correlations between the index parameters that are used as inputs in ML prediction
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4.11 Model based predictions (dynamic)
4.11.1 Traditional Machine Learning Models (dynamic)

The seven supervised models utilised in this study are SVM, KNN, DT,
RF, LR, Adaboost and GB. A highly effective supervised machine learning
technique for classification and regression applications is the Support Vector
Machine (SVM). Its primary objective is to determine the best hyperplane to split the
data into several groups (Samui, 2008). Decision trees are flexible and easily
understood machine learning models that are frequently employed in both regression
and classification applications. They serve as a fundamental building block for more
intricate algorithms like Random Forests and Gradient Boosting and offer practical
insights and prediction capabilities across a range of fields (Hwang et al., 2009). K-
Nearest Neighbours (KNN), a supervised machine learning technique, is simple and
widely used. It can be applied to both regression and classification tasks. Since it is
instance-based and non-parametric, it makes predictions based on the similarity of
data points rather than making any assumptions about the distribution of the
underlying data. One well-known and commonly applied statistical and machine
learning technique for binary classification problems is logistic regression (Bhagat et
al., 2022). Random Forest is a versatile and efficient ensemble learning technique
that may be applied to regression and classification tasks. In order to produce more
precise and reliable predictions, this decision tree extension trains many decision
trees and then aggregates their predictions (Xie et al., 2022). Adaptive Boosting, or
AdaBoost, is an ensemble learning method that builds a strong prediction model by
combining weak learners (Lin et al., 2021). Gradient Boosting is widely used in
several machine learning competitions and real-world applications due to its high

accuracy and robustness (Feng et al., 2018).

4.11.2 Parameters and Techniques undertaken for dynamic modeling

Slope stability is examined in this study using both qualitative and
quantitative criteria. Numerical constraints include UW, C, Phi, SA, SH, Ky, and K.
On the other hand, the qualitative aspects take into account the prominence of the
rocks and soil, failure patterns, and physical features. The primary goal is to
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determine a slope's stability, or whether it is stable or prone to failure, and this is
done by numerical computations. However, the lack of sufficient instances of field
data makes it difficult to quantify qualitative qualities. In order to address this, the
researchers developed prediction models based on these seven factors using machine
learning techniques. Slopes are classified as "stable” or "unstable” in these models.
Because interstitial water pressure has different rules for assigning values and is
unpredictable in real-world situations, the modelling notably does not take this into
account. The study confirms the accuracy of the five indicators selected to describe
slope stability based on an examination of 92 slope data case sets. Using a multi-fold
method and traditional cross-validation procedures, a slope stability forecasting
model is built on the selected testing dataset. After this procedure is completed five
times, the mean of those estimations is the end result. The "Python" programming
language makes it easier to construct randomised cross-validation. Due to space
constraints, the article can only show "scatter plots” and "linear fitting curves" in Fig.
4.37 to illustrate the correlations between various parameters and unit weight.

Various visualizations aid in elucidating the potential impacts of various variables on

slope stability.
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Fig. 4.37 Line and scatter plots of various parameters fit with regression

4.11.3 Models Evaluation (dynamic)

Key evaluation metrics already discussed above are used to evaluate the
performance of the machine learning models in binary classification scenarios

(where there are two classes, sometimes labelled as positive and negative).

4.12 Examination of results from predictions (dynamic)
4.12.1 Evaluation of the model using the raw data

The outcomes of seven machine learning models used as well as one
stacked SVM-Boost model are compared in this section. The model outputs were
tested using a variety of performance indicators. This approach is frequently used in
training and model building to assess a model and decide if it is appropriate.
However, the results of the training phase indicated that the proposed AdaBoost
model may be considered perfect. Along with one stacking strategy called SVM-
Boost, which combines Support Vector Machine and AdaBoost to do the random
cross evaluation, seven different machine learning algorithms are demonstrated.

AUC is a crucial machine learning statistic that offers a trustworthy and
understandable assessment of a model's ability to classify binary data, especially
when the datasets are unbalanced. Adaboost provides the best average AUC (0.956),
with GB (0.952) and SVM-Boost (0.955) following closely after. With an average

classification accuracy of 0.878, SVM-Boost demonstrates the strongest prediction
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ability. Accuracy scores for SVM and AdaBoost were 0.865 and 0.834, respectively.
AdaBoost is an ensemble learning strategy that adds extra weight for misclassified
events to iteratively improve the performance of weak learners (like decision trees).
SVM, on the other hand, is a powerful binary cataloguing method that finds the best
hyperplane for each class inside a feature space. SVM's ability to recognise a solid
decision boundary and AdaBoost's ability to focus on challenging cases during
training can be combined to provide a successful outcome. This combination can
sometimes lead to improved performance, especially when dealing with complex or
challenging-to-separate information. The conjecture models SVM-Boost, AdaBoost,
and SVM are shown in Table 4 with F1 values higher than 83%. Additionally, the
AUC values of SVM-Boost, AdaBoost, and SVM with Gradient Boosting are higher
than 95%. According to performance metrics, SVM-Boost and SVM are therefore
regarded as the most accurate predictors, which also increases the novelty factor of
the study report. Metrics including accuracy, precision, recall, F1-score, and AUC of

ROC are used to compare the testing stage outcomes in Table 4.5.

Table 4.5 Metrics for assessment across multiple ML techniques
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4.12.2 ROC Curve for dynamic analysis

The ROC curve is a key tool for evaluating binary classification models,
showing the trade-off between sensitivity and the false positive rate. As illustrated in
Figures 4.38 and 4.39, Adaboost achieved the highest mean AUC (0.956), followed
by SVM-Boost (0.955) and GB (0.952), while kNN had the lowest (0.91). SVM and
SVM-Boost delivered the most accurate and reliable results, closely aligning with
those from LEM. GB also showed strong performance and can serve as a reliable
alternative. These machine learning models can effectively support future slope

stability assessments and guide appropriate stabilization measures.
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4.12.3  Sensitivity Analysis for dynamic analysis

By comprehending how modifications to the input variables (criteria)
impact the model's output or results, this aims to identify the quantitative and
qualitative factors that most significantly affect slope stability. This is accomplished
by using the CRITIC technique and a differentiation coefficient known as "Standard
Deviation/Average" to separately establish the weightage for each parameter (Bhadra
et al., 2022). Weighting is a crucial consideration based on the seven input factors
displayed in Fig. 5.20. In percentage terms, this coefficient is 2.77, 30.35, 6.67,
16.84, 16.88, 16.01, and 10.46 for UW, C, Phi, As, Hs, Kh, and Kv, respectively.

Out of all these attributes, cohesiveness has the biggest influence shown in Fig 4.40.
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4.12.4 Contrasting predicted outcomes with GeoStudio (dynamic)

Commercial software called GeoStudio was utilised to oversee the results
of the prediction method that resulted in the F.S. evaluation. GeoStudio is a two-
dimensional, fully integrated software suite that offers six finite element applications
in many sub-models in addition to LEM-based stability analysis. In this
investigation, the F.S. was calculated using the SLOPE/W and Morgenstern Price's
approach. The information from this table was used by the SLOPE/W program and
machine learning methods. Boundary conditions, stability solutions, behavioural and
material characteristic assignment, and geometric modelling are all components of
the multi-stage modelling approach that SLOPE/W employed. The estimated FOS
and the outcomes of the ML prediction model were contrasted. Table 4.6 combines
data from the FOS prediction model with the SLOPE/W program outcomes (F and S
stand for Unstable and Stable, respectively). This table demonstrates how predictive
models, particularly SVM-Boost, produce results that are near the FOS value when

using their reasoning technique.
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Table 4.6 Test outcomes regarding the stability condition criteria in Kalimpong
(dynamic condition)
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4.13 Results after stabilization done by Soil nailing

Furthermore, soil nailing can be combined with other stabilization
methods such as shotcrete or mesh facing to enhance surface stability and erosion
control, providing a comprehensive solution for slope stabilization. Its adaptability,
cost-effectiveness, and ability to provide robust reinforcement make soil nailing a

preferable choice for addressing challenging slope stabilization projects. In this
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project, soil nailing technique with Fe 415 Steel nails has been implemented. In Fig.
4.41-4.64, slope models have been represented for all locations with nails which
stabilize these slopes under dry and saturated conditions for static and dynamic
loading respectively. The presented table 4.7 illustrates FoS values for six slope
locations (L1 to L6) under varying conditions—static and dynamic loading both in
dry and saturated states before and after stabilization measures were implemented.
The data clearly demonstrates the effectiveness of the soil nailing stabilization
technique as all locations show a significant improvement in FoS across every
condition post-intervention. After stabilization, all FoS values improved, with many
exceeding 2.0 in static dry conditions reflecting a marked enhancement in slope
stability. This improvement highlights the stabilizing method’s capacity to
substantially reduce slope failure risks, especially under adverse moisture and

seismic influences.
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Fig. 4.41 Slope stabilization for L1 in Dynamic Dry condition (FOS=1.654)

120



Water Pressure

o -38 TE0518 - D kPs
o 0 - 35780518 kPa
O 56760518 - 191.52104 kPa

O 191.52104 - 287 281556 kPa
O 28T.28155 - 38304207 kPa
O 383.04207 - 478 80259 kPa

8 — O 47880259 - 57455311 kPa
O 574.58311 - 6570.32353 kPa
m 670.32353 - T86.08414 kPa
o=

Elevation

/
),

10 20 30 40 50 &0 T0 50 20 100 110 120 120 140 150

Distance

Fig. 4.42 Slope stabilization for L1 in Dynamic Saturated condition (FOS=1.149)
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Fig. 4.43 Slope stabilization for L1 in Static Dry condition (FOS=3.109)
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Fig. 4.44 Slope stabilization for L1 in Static Saturated condition (FOS=1.890)
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Fig. 4.45 Slope stabilization for L2 in Dynamic Dry condition (FOS=1.501)
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Fig. 4.46 Slope stabilization for L2 in Dynamic Saturated condition (FOS=1.110)
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Fig. 4.47 Slope stabilization for L2 in Static Dry condition (FOS=2.430)
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Fig. 4.49 Slope stabilization for L3 in Dynamic Dry condition (FOS=1.610)
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Fig. 4.50 Slope stabilization for L3 in Dynamic Saturated condition (FOS=1.032)
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Fig. 4.51 Slope stabilization for L3 in Static Dry condition (FOS=2.896)

125



Elevation

20

1.5635

Water Pressure

0 -35 TEDE1E - 0 kFs

O00-35.750518 kFa

O 35760518 - 191.52104 kPa
O 131.52104 - 287 28155 kFa
O 287.28158 - 382.04207 kPa
O 382.04207 - 47880259 kPa
O 47280258 - 574.588311 kPa
O 574.56311 - 670.32363 kPa
O 870.32352 - T85.08414 kF3

5 |

80 7o a0 20 100 110 120 120

Distance

Fig. 4.52 Slope stabilization for L3 in Static Saturated condition (FOS=1.535)
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Fig. 4.53 Slope stabilization for L4 in Dynamic Dry condition (FOS=1.410)
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Fig. 4.54 Slope stabilization for L4 in Dynamic Saturated condition (FOS=1.115)
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Fig. 4.56 Slope stabilization for L4 in Static Saturated condition (FOS=1.655)
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Fig. 4.57 Slope stabilization for L5 in Dynamic Dry condition (FOS=1.708)
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Fig. 4.58 Slope stabilization for L5 in Dynamic Saturated condition (FOS=1.194)
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Fig. 4.59 Slope stabilization for L5 in Static Dry condition (FOS=3.995)
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Fig. 4.60 Slope stabilization for L5 in Static Saturated condition (FOS=2.715)
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Fig. 4.61 Slope stabilization for L6 in Dynamic Dry condition (FOS=1.417)
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Fig. 4.62 Slope stabilization for L6 in Dynamic Saturated condition (FOS=1.048)
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Fig. 4.63 Slope stabilization for L6 in Static Dry condition (FOS=2.716)
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Fig. 4.64 Slope stabilization for L6 in Static Saturated condition (FOS=1.834)

Table 4.7 Comparison of factor of safety before and after stabilization

Site/State L1 L2 L3 L4 L5 L6
Static Dry Before 1.293 | 1.243 | 1.123 | 1.253 | 1.137 | 1.215
stabilization
After 3.109 | 2.430 | 2.896 | 2.270 | 3.995 | 2.716
stabilization
Static Before 0.808 | 1.098 | 0.716 | 1.173 | 0.684 | 0.905
Saturated stabilization
After 1.890 | 1.590 | 1.535 | 1.655 | 2.715 | 1.834
stabilization
Dynamic Dry | Before 0.659 | 0.759 | 0.728 | 0.773 | 0.707 | 0.660
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stabilization

After 1.654 | 1.501 | 1.610 | 1.410 | 1.708 | 1.417
stabilization
Dynamic Before 0.533 [ 0.711 | 0.476 | 0.760 | 0.477 | 0.597
Saturated stabilization
After 1.149 | 1.110 | 1.032 | 1.115 | 1.194 | 1.048
stabilization
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CHAPTER 5
CONCLUSION, FUTURE SCOPE AND SOCIAL IMPACT

5.1 Overview of Objectives and Methodologies

The primary objective of the study was to perform a detailed slope
stability analysis in the Kalimpong region, accounting for both static and dynamic
loading conditions. This included the identification of critical sites prone to
landslides, field and laboratory investigations for determining geotechnical
parameters, slope modeling under varying hydrological conditions (dry and
saturated), and evaluating stabilization techniques. The research employed both
deterministic LEM and probabilistic (frequency ratio-based GIS mapping)

approaches to assess slope safety comprehensively.

The methodology comprised multiple stages: first, critical slope sites in
Kalimpong were identified through field surveys and existing landslide records.
Then, soil samples were extracted and tested to determine key parameters such as
cohesion, internal friction angle, and unit weight. The models of these slopes were
then simulated in geotechnical software using LEMS, particularly Bishop’s
Simplified Method and M-P Method, to compute the FOS under different conditions.
Furthermore, GIS-based landslide susceptibility mapping was carried out using FR
models, incorporating various conditioning parameters such as slope angle,

elevation, aspect, lithology, distance to roads and faults, and rainfall data.

5.2 Integrated Slope Stability Assessment and Stabilization Strategy in
Kalimpong Region

This research presents a comprehensive evaluation of slope stability in
the Kalimpong region by integrating numerical modeling, geospatial susceptibility
mapping, and site-specific stabilization measures. The analysis was conducted using
the LEM through GeoStudio’s SLOPE/W software, simulating both static and
dynamic conditions under dry and saturated states to mirror real-world

environmental scenarios. Under static dry conditions, slopes generally demonstrated
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marginal to moderate stability, with FOS values between 1.3 and 1.6. However, these
values dropped significantly by 15-25% under saturated conditions, indicating the
destabilizing effects of elevated pore water pressures during monsoons. Dynamic
analysis, incorporating pseudo-static seismic forces based on Zone 1V classification
under IS 1893, revealed a further decline in FOS, especially under saturated
conditions, where values fell below 1.0 in several cases. This clearly pointed to an
elevated landslide risk due to the combined impact of rainfall infiltration, reduction
in effective stress, and seismic activity. Slopes composed of weak weathered phyllite
and schist formations, particularly those with steep gradients exceeding 35° and
aligned with tectonic discontinuities, were found to be highly prone to translational

and flow-type failures, especially during prolonged rainfall.

To supplement the geotechnical analysis, a GIS-based FR model was
employed for landslide susceptibility mapping across the Kalimpong region. The
model utilized SRTM-based DEM and remote sensing data to generate thematic
layers based on six key causative factors: slope angle, aspect, elevation, distance to
roads, proximity to lineaments/faults, and rainfall. The FR model quantified the
spatial correlation between historical landslides and these conditioning parameters,
producing a LSI. The resulting LSZ map categorized the terrain into four zones: very
low, low, moderate, and high susceptibility. Notably, around 38% of the study area
was classified under moderate to high susceptibility zones, with the most vulnerable
areas located along steep road cuts, fractured lithologies, and poorly drained,
deforested slopes. Slope gradients over 35°, road proximity within 100 meters, and
annual rainfall exceeding 2200 mm were identified as high-risk factors with FR
values greater than 1.5. These findings provide a critical framework for local
authorities to plan infrastructure reinforcement, control land use, and deploy early
warning systems, thereby bridging the gap between scientific risk assessment and

real-world hazard mitigation.

In response to the identified slope instability, the study proposed soil
nailing as an effective, adaptable stabilization measure tailored to the terrain of
Kalimpong. Steel bars were inserted into the slopes at engineered angles and spacing,
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enhancing internal shear resistance and reducing deformation without large-scale
excavation. GeoStudio SLOPE/W was used to reanalyze slopes with soil nailing and
drainage elements incorporated under critical saturated-dynamic conditions. The
models showed a substantial increase in FOS, often improving from values below 1.0
to a safer range between 1.25 and 1.45. This validated soil nailing’s effectiveness,
especially for steep slopes and space-constrained areas such as road cuts and
populated hillsides. Its ease of installation, low environmental impact, and cost-
efficiency make it highly suitable for widespread application in Himalayan hill
towns. The success of soil nailing, reinforced by quantitative modeling and real-
world applicability, affirms its value as a central component of slope management
strategies. Together, the integrated approach of this thesis—combining LEM-based
analysis, GIS-driven risk mapping, and validated stabilization—offers a holistic and
replicable model for sustainable slope safety and landslide risk reduction in

mountainous regions.
5.3 Limitations of the Study

While the study provides a robust framework for slope stability

assessment and mitigation, it acknowledges several limitations:

e« Temporal Data Gaps: The frequency ratio method relies on historical
landslide inventories. Incomplete or outdated records can affect the accuracy
of susceptibility models.

o Simplified Modeling Assumptions: The limit equilibrium method, though
widely used, assumes predefined failure surfaces and neglects strain-
softening behavior or progressive failure mechanisms. Advanced FEM
simulations could further refine the analysis.

o Limited Field Implementation: Although the effectiveness of stabilization
techniques was validated through simulation, large-scale field
implementation was outside the scope of this study. Thus, long-term

performance under varying climatic cycles remains to be monitored.
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o Data Resolution: The use of 30m SRTM DEM may under-represent micro-
topographic variations critical in slope failure mechanisms, particularly in

narrow valleys and small hillslopes.

5.4  Scope for Future Research

This research lays a solid foundation for future investigations and
innovations in slope stability assessment in mountainous terrains. Potential areas for

further exploration include:

1. Integration of Real-Time Monitoring: Installing instrumentation such as
inclinometers, piezometers, and ground-based LiDAR can provide continuous
data for early warning and adaptive management of slopes.

2. Application of Machine Learning Models: Advanced algorithms like Random
Forests, Support Vector Machines, or Deep Learning Neural Networks can be
employed to further improve susceptibility prediction and identify hidden
patterns in the data.

3. 3D Numerical Modeling: Future work can explore 3D slope modeling using
FEM or hybrid approaches to simulate complex geometries and loading
conditions, especially in the context of large-scale landslides or infrastructure
expansion.

4. Climate Change Projections: Given the increasing intensity and
unpredictability of rainfall patterns due to climate change, future models
should integrate precipitation forecasting and runoff modeling to assess future
slope behavior.

5. Community-Based Slope Management: Integrating local knowledge, training,
and community monitoring can ensure effective and sustainable
implementation of stabilization techniques, especially in remote or rural

settings.

5.5 Social Impact

The findings of this thesis have far-reaching social implications for the

communities residing in the Kalimpong region and similar landslide-prone
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Himalayan terrains. By identifying critical slopes and proposing effective, site-
specific stabilization techniques, the research contributes directly to safeguarding
lives, homes, roads, and vital infrastructure. The GIS-based landslide susceptibility
maps developed through this work serve as vital tools for local governments and
disaster management authorities to implement early warning systems, formulate
evacuation plans, and guide safe land-use policies. Moreover, the use of cost-
effective and sustainable stabilization strategies such as soil nailing, vegetative
cover, and improved drainage offers practical solutions that can be adopted even in
resource-constrained settings. The outcomes promote greater resilience in hill
communities by reducing vulnerability to landslides, enabling uninterrupted access to
healthcare, education, and livelihood, and fostering a culture of preparedness.
Ultimately, this research not only advances engineering knowledge but also enhances
public safety, economic stability, and long-term environmental stewardship in high-
risk regions. The findings of this thesis have important implications for regional
planning, disaster risk reduction, and infrastructure development in Kalimpong and
similar hilly regions. The GIS-based susceptibility maps provide a decision-making
framework for municipal bodies, disaster management authorities, and infrastructure
planners. By overlaying critical infrastructure—such as roads, bridges, and schools—
with the high-risk zones delineated in the susceptibility maps, authorities can

prioritize retrofitting and reinforcement efforts.

Additionally, the study advocates the incorporation of slope stability
assessment into the early phases of infrastructure development, especially in terrains
influenced by the Main Central Thrust and other active geological structures. This
proactive approach can prevent costly retrofitting and minimize risks to life and
property. Urban expansion and road widening projects, which have historically
accelerated slope failures in the region, should undergo rigorous geotechnical
screening as recommended in the study. Development permissions in high-
susceptibility zones must be linked to slope treatment commitments, including

mandatory drainage systems and mechanical reinforcement.

The research undertaken in this thesis successfully addresses the critical

138



issue of slope instability in the Kalimpong region through a combination of
empirical, analytical, and geospatial techniques. It bridges the gap between
theoretical geotechnical modeling and practical, field-applicable solutions, offering a
comprehensive roadmap for future slope management in hilly, tectonically active
regions. The proposed stabilization measures, validated models, and GIS-based
susceptibility zones provide a ready-to-use toolkit for planners, engineers, and
policymakers alike, ensuring that Kalimpong and similar Himalayan towns are better

equipped to handle landslide hazards in a sustainable, resilient manner.
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Abstract

Shope stahility sxexsment is necessary bo evalmte the saiety of natursl or man-made clopes. This anahysis is onacial for
determining the pobentizl risk that could m=uolt in lendslides or other harardous sibmtions. This reseech vestigabes the
lemdslide predictability of orecial locations in K sfimpong. Darjeeling Himalsyas, which ane chemderized by complicaied
geodogy in inugh termins. The sady concentrated on the factor of ety detenminstion procesx for dry and satursted condi-
tions uliving the GeoStedio commetoial software “SLOPEW™ hased on Bmit aquilibrium method and provide an anahti-
cal comparison using compntatioeal ime ligenoe and machine leaming approaches. Sepport vector machine., decison tree.,
random forest, logistic mgresdon, naive Boes, k-neams neiphbors zlporithm, and AdaBioost ane used o machine e arning
clasxifiers having a strong capability of predicting shope failures and perils. Five parsmeters, name ly cohesdon, inketnal
friction mmgle, il weight, slope angle, and sope height, @ chiocen as rendom veriables and sabitity condition as outpet.
Inter-criteria core lation (CRITC kbased methad is utilized to perfonm sessitivity anahysis denoting the greatest impacting
parameter, i, sope heighl. Movel enssmble approach B-B oot is identified to give maimem acosmoy in comparison tooall
srven machime keamming methods. By mualtifold cross-validetion, E-Booet hes the preaiest fomcasting skill, with an aversge
classhcation accurscy of 0.7 25 and in termes of 2ma undet the osnve, mndom forest (R F) epresents 2o average value of 0.81,
todloered by B-Boost at 0798, Among all predictive mode |s, particalarty B-Boosz follosed by EF provides quite similar
msulis ax obiained by SLPEW. This iechnigee will be partioalardy benetficial in prevesting. snticipating. and reducing the
impact of these sorx of catastrophic disasiers. which fanction == sebetantial barriers (o the nation’s socineconomic progmess

Keywords Limit equilibriem method - Slope stsbility - Kalimpong - Machine learning - Facior of safiety

1 Introeduwcticn exch year. Surprisnply, moent chenges in plobal climasic

conditions have resulted in catastrophic weatherevents tha

Slope failures are the easiest nafural harard to pevent,
mduce, or rescdwe (Collins and Znidarcic 2004 L andshdas
occur on a larpe portion of lend surfaces except snow-oov-
emid areas in India (Chosels et 2. X0 15} This translstes o
a tolal =es of 0.47 millios ke, out of which 43% =ma i
fowmnd im the North-Esiern Himalayan Begion (MEHE}
according 1o GE 1014, Accordimg to the MNational Crime
Reconds Beseau's (MNOREB) satistics on inadverient faali-
ties (DO10-2019), landshides kill arommd 304 prople in |mdiz
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imcrease the likefihood of landslides (Fou et al. 3021 and
their frequency is being aggre: ated by mncontrodled wrhani-
rafion and unorpamived land-use chenpes in sieep eTTains
(Khamma et all 7021; Phong et al 7021 ; Pourghocemi et al.
X012k The Kelimpong didrict ix located in the NEHR and
is susreptible to amall. and large-scale landslides, partico-
larty during the mossoon srason, which lastx from Jaly
to September. The Kalimpong ama has a sieeply slanting
et Enoe topography that is constamtly drained by heavy
reins, making it wry prone io landdbides. The major iren is
located on o ridge mear the Teests Fiver, Bt other riverns like
Relli, Meora, Geesh, Leech, Jaldinks, =nd Murti, aswell as
several boy simams, drein K alimpong. Thess waier bodies
cresfe active denudation among shopes on the vallsy dde by
erosion, which makes them stee-per. The ierCovial (Anea
ooourting between rwo pheses or steeams) area bas been
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Abstract

Sigmifcant slope destabilisation may become mome Akely doe to the speed ot which wrbanisation is acourring, as well as
the growing necesdty for proengimeeTing imitiatives or the growth of the road netecork. Slope siability analysis is dome to
lrwrer the: risk of landslides znd shope failumes. The study area, Kalimpong, is well-knoern for its bzsh gmenery and stun-
ming views and is situaied in the Eastern Himzlsyas, Hosewr, it alko consantly confronts the risk of landslides hecanse
of it rugged topography, pole-ntial seimic zone, and he sy monsoon mins In this shedy, the ssults of the facior of sadety
compuied by limdt equilibriom {comventiomal} method heve been compared anahytically using competational inle 1 pence:
and machine k= arwing methodalogies for Both dry and satursted conditions ender dy namic boading. Comventiomal machine
learning fechniques =w combined with seven prediction modelc. T he follow ing al g orithomes hove been chosen: for sbope =tahil-
ity anahysis: wepport vector machine, k-nearest neighionms, decison tree, andom forest, logistic m pression, Ada oost, and
gradient boosting . Feamdom cross-validation is used io ssessesch mode s dependshility. The stahility condition is the nesalt
af the remdom selection of swn parameters: cohesivensss, mmit weight, dope height, anghe of the slope, imemal friction
angle, horizontal and vertical peeudo-sabic coeflicient. Momover, the coefficient of variaiion method isemploed (o sxess
the importance of every indicator in forecasting slope sability. A& « per the sensitivity analysis, slope stahility is primarity
afie-cted by cohesiveness. With an average clewifcation accurscy of 0L.ETH, ensembling spproach SV M-Boost demonsiraies
the hest pe=diction abvilities among the models tested asing multifald cross-validation. The sccuracy rtings of SWVM and
AdaBocet wene 0565 and 0834, respective by, When combined with SLOPEW advences, novel 3WVM-Boost exhibits the:
highest exactifmde, hegemony, and hest ostoomes in shope stability peedicSon. Fulus esrthgquakes, stromg reinfall, snd buman
activity coald cause the slope to collapse . The catoome de monstrates machine kearning's emormous polential for enhancing
slope stahility sxsexsmenis and provides @ means of mixing the effectieness and sefety of <lope masagemest.

Keywords Slope stabilisation - Memerical modelling - Machine learning - SlopeW - K alimpong

1 Introduction

Rapid wrhanisation snd the ince exing needs of peoengineer-
ing projects like dams, bemmels, bridges, =nd road widening
could ex acerhate larpe-soale slope destabili=ation (Pradhan
and Siddigpee 2020}, Landsdides me induced by pravity and
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entzil the descending and |aters] mowe ment of slope-formming
maierials through a variety of motioss such as falling, <lid-
img, Sowing, and =y combization of the afoementoned.
Eegularslope faikse on both naturally occurring amd artif-
cially comstrucied slopes ix Sgmiticant becanse it endamgers
fives, hinde s sociceconomic deve lopment, and degmades
habitat (Leroueil X0 1} Except for snoe-covessd areas in
India, 2 subsiantial perceniape of emestrial surfanes e peri-
ence bndslides (Chyocls et 2l A0 15) Ax per the G5 3014
mport, the camulative e panse covers approsimaie by 0,42
milliom s klometres, with the “Morth-eetem Himala-
ven Kegion™ (MEHE) accounting for £3% of this ares. B ased
o the “Matiosal Crime Becords Burean™ (MOEBE) dats on
unimentionzal fafslities dering the period 3010-30019, it is
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