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ABSTRACT

Stress and anxiety significantly affect cognitive, emotional, and physiological functions.

Physiological signals such as Electroencephalogram (EEG), Electrocardiogram (ECG),

Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Respiration (RESP)

provide objective, real-time insights compared to subjective assessments. Machine

learning-based systems have recently gained attention for classifying stress and anxiety

from high-dimensional physiological data, enabling real-time interventions through

wearable devices. However, challenges such as redundant features, class imbalance,

and high computational complexity continue to limit their scalability and practical use.

To address these challenges, this thesis focuses on the following key research gaps: (1)

lack of optimized channel selection in EEG-based stress classification frameworks, (2)

absence of systematically collected multimodal datasets reflecting progressive stress

in academic environments, (3) need for scalable and interpretable feature selection

algorithms, and (4) limited exploration of reinforcement learning strategies for stress

detection using physiological signals.

Firstly, this thesis presents a comprehensive literature review on automated stress

and anxiety classification using physiological signals. It covers stress and anxiety

theory, physiological signals, and their relationship with mental states, preprocessing

methods, domain-specific feature extraction, feature selection techniques, and machine

learning models.

Secondly, the thesis proposes an ensemble-based EEG stress classification

framework for EEG signal-based wearable applications. It introduces the KRAFS-

ANet framework, which stacks Bagging K-Nearest Neighbor, Bagging Support Vector

Machine, and Bagging Random Forest classifiers, with an Artificial Neural Network

(ANN) as the meta-classifier. The approach incorporates optimized channel selection
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and ensemble stacking to improve accuracy while reducing computational time. The

thesis validates the framework on three benchmark datasets: MAT, SAM40, and

DASPS. It achieves accuracies of 98.63%, 97.25%, and 94.92%, respectively, along

with consistently high F1-scores. However, this work does not address multimodal

signal fusion, class imbalance, or feature interdependencies.

Thirdly, this thesis introduces the Academic Stress Dataset (ASD), where

physiological signals such as Interbeat Interval (IBI), BVP, and EDA are recorded during

the Montreal Imaging Stress Task (MIST) to induce progressive mental arithmetic stress

in engineering students. This work applies a hybrid feature selection to select the most

informative features and further utilizes Bayesian optimization for hyperparameter

tuning. The Gradient Boosting model achieves accuracy of 98.28% and 97.02% for

2-level and 3-level classification, respectively. Using only EDA and HRV features

provides comparable accuracy, and SHAP-based Explainable AI (XAI) analysis further

confirms them as the most informative features.

Finally, this thesis proposes and compares two efficient and effective feature selec-

tion algorithms. The first, CorLMI-FSA, combines Correlation, Logistic Regression

(LR), and Mutual Information (MI) to reduce redundancy in stress classification using

EDA and HRV features from the self collected ASD dataset. It achieves highest

accuracy of 96.82% for binary and 95.84% for three-level classification. The second,

ST-CIRL (SMOTETomek-Correlated Interactive Reinforcement Learning), addresses

class imbalance and optimizes feature selection through interactive reinforcement

learning. ST-CIRL utilizes ECG, EDA, and RESP features from the Spider-phobic

anxiety dataset, applies Optuna optimization, and achieves the highest accuracy

of 95.35% and an F1-score of 95.49% using LightGBM, outperforming existing

methods. Cross-dataset evaluation shows that CorLMI performs better in binary

classification with lower runtime, while ST-CIRL achieves higher accuracy in multi-

class classification.

This thesis advances intelligent, wearable stress monitoring systems and lays the

foundation for real-time health assessment, stress-aware learning environments, and

Human-Computer Interaction applications. It outlines future directions to enhance

stress and anxiety detection by improving model generalizability, enabling real-time

implementation, and integrating personalized interventions.
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Chapter 1

Introduction

In today’s fast-paced and demanding world, stress has become an unavoidable part of life

[217]. The pressures of balancing personal and professional responsibilities, meeting

societal expectations, and managing uncertainty contribute to significant emotional and

physical strain. While moderate stress can improve focus and motivation, prolonged

or unmanaged stress has serious consequences for both mental and physical health,

including cardiovascular diseases, metabolic disorders, weakened immune function,

and anxiety disorders [217] [250]. Despite these risks, stress is often overlooked or

dismissed, leading individuals to ignore early symptoms until the condition becomes

severe. Anxiety, which is closely linked to stress, manifests as persistent worry,

apprehension, and heightened emotional responses [31]. Unlike stress, which typically

arises from external pressures, anxiety is often internally driven and can occur without

an immediate trigger. Anxiety disorders, such as generalized anxiety disorder and

social anxiety disorder, further exacerbate these issues by intensifying distress and

impairing an individual’s ability to function in daily life [226]. Both stress and anxiety

activate the autonomic nervous system, leading to physiological changes that, when

prolonged, contribute to serious health issues [219].

Over the years, researchers have explored various means to monitor and assess

stress and anxiety through different approaches effectively:

1. Self-Reported Psychological Measures: Standardized questionnaires such as

the Perceived Stress Scale (PSS) [125] and the State-Trait Anxiety Inventory

(STAI) [236] are widely used due to their ease of administration and cost-
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effectiveness. However, these assessments are less reliable because they rely on

memory, personal perception, and social influences, which can make continuous

stress monitoring ineffective [13].

2. Behavioural Indicators: Stress and anxiety can also be inferred from facial

expressions [54], speech patterns [32], posture, and movement dynamics [179].

While these indicators are non-invasive and easily captured using cameras

and microphones, they remain susceptible to manipulation. Individuals may

consciously alter their expressions or tone of voice in social situations, reducing

the classification reliability of stress and anxiety. Furthermore, environmental

factors, such as lighting conditions and background noise, further affect the

accuracy of physical assessments.

3. Physiological Indicators: A more objective and reliable approach involves

analyzing physiological responses that reflect autonomic nervous system activity.

These measures include Electroencephalogram (EEG) [27], Electrocardiogram

(ECG) [171], Heart Rate Variability (HRV), Electrodermal Activity (EDA) [149],

Heart Rate (HR) [103], Blood Volume Pulse (BVP) [69], and Respiration

(RESP) [18]. Unlike self-reports and behavioral indicators, physiological

indicators provide continuous, real-time monitoring, ensuring higher accuracy

and reliability. One key advantage of physiological signals is that they cannot

be consciously controlled or easily masked, making them a more objective

measure of stress and anxiety [202]. While individuals may suppress facial

expressions or adjust speech patterns, autonomic responses, such as Heart Rate

Variability (HRV) and EDA, remain involuntary, reflecting their true emotional

state. It makes physiological monitoring valuable for real-time stress detection

and continuous assessment in diverse environments.

Moreover, integrating multiple physiological signals through a multimodal

approach further enhances stress classification by compensating for noise,

artifacts, and individual variability [62]. However, despite its advantages,

physiological monitoring relies on specialized equipment and complex signal

processing, which pose challenges for large-scale implementation.
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This thesis focuses on leveraging physiological indicators for stress and anxiety

classification. It examines the effectiveness of single and multimodal physiological

signals in capturing autonomic nervous system responses and improving stress

classification accuracy.

1.1 Motivation and Background

1.1.1 Why is Stress and Anxiety Classification Important?

Stress and anxiety-related disorders have become a major public health concern,

affecting millions of individuals worldwide. According to the World Health

Organization (WHO), over 301 million individuals, including 58 million children and

adolescents, suffered from anxiety disorders in 2019 [181]. The COVID-19 pandemic

further exacerbated these conditions, increasing global anxiety and depression rates by

25% [264].

Beyond health implications, stress and anxiety impact multiple sectors, including

education and the workplace [161]. In an academic environment, high stress

levels hinder learning outcomes, cognitive function, and long-term resilience [2].

In professional environments, excessive workplace stress reduces productivity, job

satisfaction, and decision-making abilities [136]. Given the widespread effects of these

conditions, there is a critical need for effective and automated detection methods using

physiological signals to detect stress and anxiety early, enabling timely intervention

and prevention.

1.1.2 Why Are Physiological Signals a Reliable Alternative for

Stress and Anxiety Classification?

Traditional assessment methods, such as self-reports and behavioral observations, have

inherent limitations. They are often subjective, prone to bias, and incapable of providing

real-time or continuous monitoring. These constraints reduce their effectiveness in

accurately detecting stress and anxiety levels.

In contrast, physiological signals offer objective, continuous, and real-time insights
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into an individual’s emotional state. Signals such as HRV, EDA, and RESP reflect

the activity of the autonomic nervous system, which governs involuntary physiological

responses to stress. Unlike behavioral indicators, individuals cannot easily control

or manipulate these responses, making them less susceptible to social desirability

bias and self-report inaccuracies [81]. Due to their involuntary and consistent nature,

physiological signals provide a more reliable and unbiased basis for stress and anxiety

classification, supporting the development of automated and scalable mental health

monitoring systems.

1.1.3 Background for Automated Stress and Anxiety recognition

using physiological signals?

Automated stress and anxiety recognition systems using physiological signals aim

to assess an individual’s emotional state in real-time without relying on subjective

self-reports. These systems analyze physiological signals that reflect underlying

autonomic and neural responses to stressors [85]. Given these signals’ complex and

high-dimensional nature, machine learning algorithms play a crucial role in enabling

automation. They facilitate extracting discriminative features, identifying patterns,

and classifying stress and anxiety levels [86, 81]. By training on large physiological

datasets, these models can capture subtle signal variations that may not be evident

through traditional analysis methods.

An automated recognition system typically follows a structured pipeline involving

signal acquisition, preprocessing, feature engineering, and classification, as shown in

Figure 1.1. Wearable devices initially record raw physiological data and then clean

the signals to remove artifacts and noise. Feature extraction methods convert the

cleaned signals into informative representations, while feature selection techniques

such as correlation and mutual information reduce redundancy and retain the most

relevant inputs. Furthermore, combining multiple physiological signals in a multimodal

framework enhances the reliability and accuracy of classification. This integration

captures complementary stress-related patterns across different modalities, resulting in

a more robust and comprehensive evaluation of the individual’s stress or anxiety state

[279].
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Figure 1.1: Stress and anxiety classification methodology.

Various machine learning and deep learning models, including Support Vector

Machines (SVM), Random Forests (RF), Convolutional Neural Networks (CNN), and

Long Short-Term Memory (LSTM) networks, can be employed. Further, these models

can be optimized using cross-validation and evaluated using standard performance

metrics such as accuracy, precision, recall, and F1-score [8]. These trained models

enable real-time automated stress and anxiety monitoring in academic, clinical, and

workplace environments.

1.1.4 What Are the Challenges in Using Physiological Signals for

Stress and Anxiety Classification?

Despite numerous advantages, physiological signals pose several challenges in stress

and anxiety classification.

1. Signal Noise and Artifacts: Movement, environmental interference, and sensor

limitations introduce noise and artifacts, distorting data accuracy. While offering

non-intrusive monitoring, wearable devices require advanced preprocessing

techniques to mitigate these issues [200].

2. High-Dimensionality of Physiological Signals: The multi-domain nature

of physiological signals—including time, frequency, and time-frequency do-

mains—leads to a high-dimensional feature space [200]. This increased

dimensionality introduces redundancy, reduces model interpretability, and
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increases computational complexity, necessitating effective feature selection

techniques.

3. Limited Availability of Large, Well-Labeled Datasets: The scarcity of

publicly available, well-annotated physiological datasets restricts the successful

application of advanced deep learning models [4]. This limitation affects model

generalization and performance, making it difficult to leverage deep architectures

effectively.

4. Real-Time Processing and Computational Efficiency: Ensuring real-time

stress classification while optimizing computational efficiency for wearable and

mobile applications remains a significant challenge [202].

Despite these challenges, advancements in sensor technology, machine learning

models, and signal processing techniques continue to enhance the feasibility and

accuracy of physiological stress classification. These developments have enabled a wide

range of real-world applications, including mental health monitoring, workplace stress

management, stress-aware learning environments, and human-computer interaction

systems. Such applications highlight the practical significance of developing accurate,

efficient, and real-time classification models. Chapter 7 provides a detailed exploration

of these application areas.

1.2 Research Gaps

Several challenges remain in the automated classification of stress and anxiety using

physiological signals. The key research gaps are as follows:

1. Research Gap 1: Trade-off between accuracy and efficiency.

Developing accurate yet efficient classification models for wearable devices is

challenging due to the high computational demands of processing physiological

signals [148]. Complex models improve accuracy but are unsuitable for real-time

deployment due to resource constraints, while lightweight models compromise

performance [268] [148]. Existing approaches often focus on accuracy without

optimizing efficiency, limiting practical applications [26] [271]. Therefore, there
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is a need for computationally efficient models that maintain high classification

performance while being feasible for real-time wearable implementation.

2. Research Gap 2: Lack of feature selection techniques

Existing studies have largely overlooked the role of feature selection in stress and

anxiety classification. Most approaches rely on high-dimensional feature sets,

increasing model complexity and reducing efficiency [140] [175]. Developing

advanced feature selection methods can enhance classification accuracy while

minimizing computational overhead [188].

3. Research Gap 3: Identifying relevant physiological signals and their most

contributive features

Determining the most relevant physiological signals, such as EEG, ECG, and

EDA, for stress classification remains a challenge [209][51]. Additionally,

identifying the most contributive features within each signal domain is crucial

for improving stress and anxiety classification accuracy and reducing model

complexity. Explainable AI (XAI) techniques can be leveraged to interpret

model decisions and highlight the most impactful features, which enables a more

informed feature selection process.

4. Research Gap 4: Limited application of ensemble stacking models for stress

and anxiety classification

While traditional machine learning models have been used for stress and anxiety

classification, the exploration of ensemble stacking techniques remains limited

[76]. Stacking can enhance classification performance by leveraging the strengths

of multiple models, yet its potential in stress and anxiety classification is

underexplored [100]. Addressing this gap can improve model robustness and

accuracy.
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Table 1.1: Summary of open stress and anxiety datasets

Dataset Modality Domain Stress Inducer
MAT [280] Single Stress Mental arithmetic task
SAM40 [84] Single Stress Stroop color-word test, arithmetic

problem solving, mirror image
identification, relaxation

CLAS [150] Multi Stress Mathematical problems, Stroop test,
logical problems, video and image
viewing

SRAD [99] Multi Stress Driving under different situations
DASPS [30] Single Anxiety Face-to-face psychological stimuli
Spider-Phobic
[109]

Multi Anxiety Spider phobic videos

5. Research Gap 5: Lack of open datasets in an academic environment

Existing stress datasets, such as CLAS [150], SAM40 [84], and MAT [280],

primarily focus on binary classification tasks, such as stressed vs. non-stressed,

limiting the ability to study multi-level stress progression. Additionally, these

datasets do not capture progressive stress or mental workload increases within

real-world academic environments, particularly among engineering students.

Furthermore, tasks like the Montreal Imaging Stress Task (MIST) [58] are

designed to induce progressively increasing stress; however, no publicly available

physiological dataset currently integrates MIST with real-world academic settings

for engineering students. While EEG signals provide detailed insights into

cognitive and emotional stress, their intrusive and cumbersome setup makes

them impractical for continuous or daily use among students. Hence, to address

these limitations, there is a growing need to focus on physiological signals

collected through wearable devices, such as EDA, BVP, and Interbeat Interval

(IBI), which offer non-invasive, real-time stress monitoring suitable for academic

environments. Table 1.1 summarises existing datasets briefly, and section 3.2

provides detailed information.

6. Research Gap 6: Limited exploration of deep learning algorithms for stress

and anxiety classification

While traditional stress and anxiety classification uses machine learning
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algorithms, the application of deep learning remains underexplored [48] [232].

Deep learning can automatically extract complex patterns from physiological

signals, potentially improving classification accuracy. Further research is needed

to harness its full potential in this domain.

7. Research Gap 7: Lack of automated EEG channel selection

Most existing studies rely on manual channel selection based on predefined brain

regions, which can be subjective and inefficient. There is a need for automated,

data-driven channel selection to reduce dimensionality and improve classification

performance [225][76][15].

1.3 Problem Statement

Effective stress and anxiety classification using physiological signals faces several

challenges, including EEG channel selection, feature dimensionality, and dataset

availability. This thesis aims to overcome four key challenges: 1) Existing studies

often rely on manual EEG channel selection, which introduces subjectivity and limits

reproducibility, particularly in real-time wearable applications. 2) The multi-domain

nature of physiological signals results in high-dimensional feature spaces, increasing

redundancy and reducing model interpretability. Developing efficient feature selection

techniques is crucial to enhancing classification performance while maintaining

computational efficiency. 3) Many classification models prioritize accuracy but neglect

efficiency, making them impractical for wearable devices. Achieving a balance between

performance and efficiency remains a key challenge. 4) There is a lack of publicly

available datasets for classifying stress and anxiety in an academic environment.

1.4 Research Objectives and Contribution of the Thesis

The primary objective of this thesis is to design and develop robust and efficient machine

learning-based systems for the classification of stress and anxiety using physiological

signals.

1. Objective 1: Literature Review - To perform a systematic literature review
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on anxiety detection based on Physiological signals using machine learning

techniques.

Contribution: The thesis conducts a comprehensive review of physiological

signal-based anxiety classification using machine learning. The review explores

the multi-domain nature of physiological signals and the challenges posed by

high-dimensional feature sets. It examines various machine and deep learning

models and identifies key research gaps for classifying stress and anxiety.

(Completed by Conference 2 and Journal 4)

2. Objective 2: Methodology - To develop a better scientific methodology to

reduce the complexity of the stress and anxiety detection model and perform

a comparative analysis of the proposed approach with existing stress predictive

models.

Contribution: The thesis proposes a novel Ensemble stacking KRAFS-ANet

framework, which integrates bagging K-Nearest Neighbour (KNN), bagging

Random Forest (RF), and bagging Support Vector Machine (SVM) with Artificial

Neural Network (ANN) meta-classifiers. This framework is specifically designed

to enhance the performance of stress and anxiety classification using EEG signals

from the MAT [280], SAM40 [84], and DASPS [30] datasets. It also performs

channel selection to identify the most informative EEG channels. Furthermore,

the thesis compares the proposed KRAFS-ANet framework with existing studies

for channel selection and stacking approaches to demonstrate its effectiveness

and advancements [223] [148] [76] [15]. (Completed by Journal 2)

3. Objective 3: Efficient Algorithm - To propose an efficient stress and anxiety

detection algorithm and perform a comparative analysis of the proposed approach

with existing stress predictive models.

Contribution: The thesis proposes two efficient feature selection algorithms to

enhance physiological signal-based classification. 1) The Correlation-Logistic

Mutual Information Feature Selection Algorithm (CorLMI-FSA) effectively

reduces redundancy and extracts the most relevant features, demonstrating

its utility for stress classification. The performance is evaluated on self-
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collected Academic Stress Dataset (ASD) using EDA and HRV, which are

identified as the most reliable signals for stress classification in an academic

environment. Further, this work compares the proposed work with existing

state-of-the-art work [51][45][42]. 2) The Correlated Interactive Reinforcement

Learning Feature Selection Algorithm (CIRL-FSA) is proposed to model feature

selection as a dynamic decision-making process using interactive reinforcement

learning. This work extends CIRL-FSA to the SMOTETomek-Correlated

Interactive Reinforcement Learning (STCIRL-FSA) to address class imbalance

in the Spiderphobic dataset [109]. This extension integrates the SMOTETomek

resampling technique with interactive reinforcement learning-based feature

selection. STCIRL-FSA employs EDA, HRV, and RESP signals to capture

diverse autonomic responses and enhance classification reliability. It achieves the

highest classification performance with state-of-the-art accuracy and efficiency.

(Completed by Conference 1 and Journal 3)

4. Objective 4: Data Collection - To propose a new study to collect data

and automated stress detection in an academic environment using wearable

biosignals.

Contribution: The thesis proposes an Academic Stress Dataset (ASD), which

collects physiological signals such as EDA, IBI (Interbeat Interval), and BVP

from wearable devices across different stress levels and meditation phases. A

key motivation for collecting this data is the lack of datasets that specifically

explore the combination of IBI-derived HRV, BVP, and EDA signals during

(MIST [58]) within an academic setting for engineering students. This work

identifies the most contributing features and illustrates the impact of meditation

on stress reduction through visualizations of physiological data collected from

wearable devices among college students. (completed by Journal 1)

1.5 Thesis Overview

The following is the structure for the rest of the thesis:

• Chapter 2 - Technical Background for Physiological Signals-based Stress and
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Anxiety Detection: presents the background information for Stress and Anxiety,

physiological signals, and their correlations. Further, it describes various data

preprocessing techniques and feature selection algorithms for automated stress

and anxiety classification.

• Chapter 3 - Literature Review: presents the literature survey of the existing

state of automated stress and anxiety recognition using physiological signals. It

discusses the openly available datasets and their limitations. Further, it describes

preprocessing, feature extraction, and selection-related studies. It presents

the contribution of different ML and DL models and discusses the challenges

associated with ML and DL stress and anxiety recognition techniques. This

chapter also outlines the different evaluation measures required to assess this

thesis’s proposed framework and algorithms.

• Chapter 4 - KRAFS-ANet: A Scientific Methodology for EEG-Based Stress

Classification: proposes an EEG-based novel KRAFS-ANet framework for

better scientific methodology using channel selection and optimized ensemble

stacking. This chapter proposes an efficient methodology for stress and

anxiety classification using EEG-based MAT [280], SAM40 [84], and DASPS

[30] datasets. It strategically employs channel selection to identify the most

informative channels and utilizes an ensemble stacking technique, integrating

bagging classifiers with an Artificial Neural Network (ANN) meta-classifier.

Additionally, it compares previous state-of-the-art work and validates the

performance of the proposed framework on multiple datasets [223] [148] [76]

[15].

• Chapter 5 - Academic Stress Dataset Collection and Wearable-Based

Stress Classification Optimization: proposes a Academic Stress Dataset

(ASD) collected using the Empatica E4 wearable device [137], [218] to gather

physiological signals from college students during the Montreal Image Stress

Task (MIST) [58]. It also investigates the effectiveness of meditation audio

in reducing stress levels after academic exposure. Furthermore, the XAI [104]

analysis identifies the most significant physiological features contributing to stress

classification.
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• Chapter 6 - Efficient Feature Selection Algorithm for Stress and Anxiety

Classification: addresses the challenges of redundant features, class imbalance,

and real-world applicability in physiological stress and anxiety classification.

First, it proposes the Correlation-Logistic Mutual Information Feature Selection

Algorithm (CorLMI-FSA), which dynamically adjusts redundancy weights

through a logistic function to capture nonlinear feature dependencies. CorLMI-

FSA is validated on the self-collected Academic Stress Dataset (ASD) using

EDA and HRV features and compared against state-of-the-art methods. The

chapter further introduces the Correlated Interactive Reinforcement Learning

Feature Selection Algorithm (CIRL-FSA), which formulates feature selection

as a dynamic decision-making problem using reinforcement learning and meta-

descriptive statistics. To address class imbalance in the Spiderphobic dataset

[109], CIRL-FSA is extended to STCIRL-FSA by integrating the SMOTE-

Tomek resampling technique. STCIRL-FSA enhances anxiety classification

performance by selecting compact and informative feature subsets, with machine

learning models optimized using Optuna. Finally, the chapter presents a cross-

dataset evaluation to assess the generalizability of both proposed algorithms.

• Chapter 7 - Conclusion, Future Work & Social Impact: provides Conclusion,

Future Work & Social Impact. This chapter summarizes the conclusions from this

research work and highlights the potential future work and the social applications

in this area.
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Chapter 2

Technical Background for

Physiological Signals-based Stress and

Anxiety Detection

Stress and anxiety elicit a complex set of physiological responses primarily governed by

the Autonomic Nervous System (ANS) and the Central Nervous System (CNS) [123].

These responses result in observable changes in cardiovascular activity, respiratory

patterns, and electrodermal activity. The ANS helps the body stay balanced by adjusting

these responses based on emotional and environmental changes. It comprises two main

branches: the Sympathetic Nervous System (SNS) and the Parasympathetic Nervous

System (PNS). The SNS activates the body’s fight-or-flight response, increasing heart

rate, respiration, and sweat gland activity to prepare for immediate action. Conversely,

the PNS supports the rest-and-digest state by slowing the heart rate, reducing respiration,

and promoting relaxation to restore balance. Chronic stress or prolonged anxiety can

disrupt this regulatory balance, leading to autonomic dysregulation and increasing the

risk of long-term health complications such as hypertension, cardiovascular disease,

and anxiety disorders [167].

To objectively assess these states, researchers rely on physiological signals such

as Electrodermal Activity (EDA), Heart Rate Variability (HRV), Respiration (RESP),

Electrocardiogram (ECG), Blood Volume Pressure (BVP), and Electroencephalogram

(EEG) [85]. These signals provide real-time insights into autonomic and neural activity,
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Table 2.1: Experimental stress-inducing tasks.

Test Study Description
Trier Social
Stress Test
(TSST)
[129]

[79][23][88]
[176][175]
[248][24]

It is also known as the public speaking task.
Participants deliver a speech on a specified topic
within a limited time. Afterward, they perform
verbal calculations. Both tasks are completed in
front of an audience to induce stress.

Stroop Color
Word Test
(SCWT)
[213]

[29][188] Participants view color names printed in incongruent
font colors and must name the font color rather than
reading the word. This task measures cognitive
interference and stress response.

Montreal
Imaging
Stress Task
(MIST) [58]

[276][265]
[222][158]
[265][222]

The MIST consists of three stages: rest, control, and
experiment. In the rest stage, participants view a
static screen. During the control stage, they solve
simple arithmetic problems. The experiment stage
includes time-constrained complex math problems
to induce stress.

making them valuable for stress and anxiety classification. Machine Learning (ML)

models can detect stress-induced physiological patterns by analyzing signal variations

and support real-time mental health monitoring [81]. A critical component of this

research involves the use of standardized assessment tasks that induce measurable

physiological responses. These controlled experimental methods are benchmarks

for evaluating stress and anxiety classification models, ensuring their reliability and

validity.

This chapter presents the technical foundation for physiological signal-based stress

and anxiety classification. It introduces standardized stress and anxiety inducing tasks

and assessment tests used in an experimental environment. It then provides an overview

of relevant physiological responses and commonly used signals. Finally, the chapter

outlines essential preprocessing techniques, feature extraction methods, and feature

selection algorithms that enhance signal quality and improve classification accuracy.

2.1 Stress and Anxiety Inducing Tasks

Inducing stress and anxiety in controlled settings helps researchers systematically

evaluate their effects on mental and physiological health. This process enables accurate

measurement of physiological signals and behavioral responses necessary for effective
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Table 2.2: Experimental anxiety-inducing tasks.

Task Study Description
Spiderphobic
Video Task

[109][80] Participants diagnosed with spider phobia are shown
video clips of spiders. The task is designed to trigger
fear and anxiety responses specific to phobic stimuli.

Public Speaking [207][218]
[218][9]

Participants prepare and deliver a speech on a given
topic under time constraints and in front of an
audience or evaluators. This task reliably induces
social anxiety and performance-related stress.

Face-to-Face In-
teraction Task

[31][165] Recite a situation to participants and then instruct
them to recall it.

Cycling Task [277] The participant rides a stationary bike in two
stages. During the first stage, the participant rides
at a comfortable speed. In the second stage, the
participant imagines competing with someone riding
at a speed above 80 km/h.

Arithmetic Task [130][197] Participants solve arithmetic problems, such as
subtraction, multiplication, and addition, within a
time limit. This task induces cognitive load and
performance-related anxiety.

interventions.

1. Stress Inducing Tasks: Stress assessment tasks are widely used in research

and clinical settings to evaluate stress levels and understand how stressors

affect physiological and psychological processes. Table 2.1 shows standard

experimental tasks that induce stress under controlled conditions by exposing

participants to cognitive, emotional, or social challenges. Stress-inducing tasks,

such as the MIST [58] and the TSST [129], are designed to provoke physiological

stress responses progressively or acutely.

2. Anxiety Inducing Tasks: Anxiety-related tasks vary widely, as no universally

standardized experimental task exists for anxiety evaluation. Studies incorporate

different approaches, including cognitive interference tasks [130][197], social

pressure tasks [218][9], and emotion-inducing stimuli [31][109], to elicit anxiety-

related responses.
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Table 2.3: Stress and anxiety assessment tests [198].

Questionnaire Domain Description
Perceived Stress
Scale (PSS) [125]

Stress A self-reported questionnaire that evaluates how
individuals perceive stress in their daily lives [125].

State-Trait Anxiety
Inventory (STAI)
[236]

Anxiety A self-report questionnaire that measures both state
(temporary) and trait (long-term) anxiety to assess
an individual’s anxiety levels [236].

Hamilton Anxiety
Rating Scale (HAM-
A) [146]

Anxiety A clinician-administered scale that evaluates the
severity of anxiety symptoms based on psychological
and physical indicators [146].

a)  b)

Figure 2.1: Distribution of physiological signals used in a) stress and b) anxiety
classification studies.

2.2 Stress and Anxiety Assessment Tests

Self-reported assessments rely on subjective evaluations of perceived stress or anxiety

levels, often through standardized questionnaires and clinician-administered scales.

These assessments help quantify emotional and psychological responses, but they are

influenced by individual perception biases, which can affect reliability. To mitigate

these biases, researchers typically first expose participants to stress-inducing or anxiety-

inducing tasks before administering questionnaires. This approach ensures that self-

reports correspond to real-time physiological reactions rather than general perceptions.

Additionally, it allows researchers to correlate physiological data with subjective ratings,

enhancing the validity of stress and anxiety assessments. Table 2.3 summarizes

commonly used stress and anxiety assessment tests.
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Table 2.4: List of features extracted from different physiological signals.

Signals Domain Features
EEG Time Domain

(TD)
Statistical: Mean, Median, Variance, Standard Deviation,
Peak-to-peak; Hjorth Features: Complexity, Mobility, and
Activity; Higuchi features [31] [140]

Frequency Do-
main (FD)

Power Spectral Density (PSD), Relative Power (RP), Band
power, Band Ratio, [277][24]

Entropy Spectral Entropy, Sample Entropy, Shannon entropy [244]
ECG Statistical Mean_HRV, Median_HRV, Standard Deviation_HRV

Time Domain
(TD)

Mean Heart Rate, Std_HR, Max, Min HR, RR Interval,
RMSSD, NN50 Count, Triangular Index, TINN, CVSD,
CVNNI, SampEn

Frequency do-
main (FD)

Power Spectral Density (PSD), LF, HF, LF/HF ratio, LFnu,
HFnu, Total Power [170] [197] [82]

EDA Statistical Statistical features applied to: SCR and SCL signal [80]
Tonic (SCL) Slowly fluctuating baseline patterns in the EDA signal,

reflecting continuous variations in skin conductance levels
and representing overall arousal state and tonic sympathetic
activity.

Phasic (SCR) Rapid and short-term fluctuations in EDA signal represent
momentary responses to stimuli or events and reflect the phasic
sympathetic activity

RESP Temporal Statistical and Respiratory Rate Variability (RRV) features [80]
BVP Statistical Fea-

tures
Mean BVP, standard deviation, maximum, minimum, power
VLF BVP, power LF BVP, power HF BVP

2.3 Physiological Signals for Stress and Anxiety Recog-

nition

Physiological signals serve as biological indicators that capture the body’s responses

to external and internal stimuli, offering valuable insights into the functioning of

underlying physiological systems [85]. Figure 2.1 shows how physiological signals are

used in stress and anxiety classification, highlighting which signals are most commonly

utilized in existing research. Physiological signals exhibit complex patterns and

require advanced preprocessing techniques to minimize noise and extract meaningful

information [254] [133]. Effective analysis of physiological signals relies on feature

extraction, which transforms raw signal data into numerical representations suitable for

ML models. This process plays a critical role in stress and anxiety classification by

identifying signal characteristics that contribute to accurate classification.
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Table 2.5: Relationship between physiological signals, their features, and corresponding
responses to anxiety and stress.

Signals Extracted Feature Anxiety Response Stress Response
PSD (α wave) [61], [47] ↓ [12], [38],

[157], [61],
[67]

↓

EEG PSD (β wave) [1], [47] ↑ [194], [91],
[98], [224],
[152]

↑

PSD (θ wave) [1], [194],
[270], [126],
[59]

↑ [92], [159] ↓

PSD (δ wave) [177], [86] ↑ [184], [246] ↓
θ/β ratio [7], [256] ↑ [7], [53],

[258]
↑

δ/β ratio [8] ↑ — –
β/α ratio [194] ↑ [220] ↑

ECG Heart Rate (HR) [109], [145] ↑
Heart Rate Variability
(HRV)

[170], [5] ↓

LF/HF ratio [277] ↑
Low Frequency (LF) [277] ↑
High Frequency (HF) [277] ↓
RMSSD [277] ↓

EDA Skin Conductance Re-
sponse (SCR)

[228] ↑

Skin Conductance
Level (SCL)

[228] ↑

RESP Respiration Rate (RR) [85] ↑

Note: PSD = Power Spectral Density, HR = Heart Rate, HRV = Heart Rate Variability, LF =
Low Frequency, HF = High Frequency, RMSSD = Root Mean Square of Successive Differences.
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This thesis extracts features in two primary domains, each capturing distinct signal

properties:

1. Time-Domain Features: Computed directly from raw signals, these features

describe amplitude variations, variability, and trends over time, making them

computationally efficient and interpretable.

2. Frequency-Domain Features: Obtained by applying Fast Fourier Transform

(FFT) to convert signals into the frequency domain, these features reveal

periodicity and rhythmic activity, aiding in identifying stress-related patterns.

Table 2.4 presents the key physiological features associated with anxiety. Furthermore,

Table 2.5 presents the relationship between physiological signals and their response to

stress and anxiety. A detailed explanation of each signal and its influence is provided

in the following subsections.

2.3.1 Electroencephalographic signals (EEG)

Electroencephalography (EEG) is a widely used neuroimaging technique that records

electrical activity in the brain through electrodes placed on the scalp [168]. Due

to its high temporal resolution, non-invasiveness, affordability, and lack of radiation

exposure, EEG has become a practical tool for real-time stress and anxiety monitoring

[252]. Researchers have increasingly employed EEG-based approaches to assess stress

and anxiety, as these conditions significantly alter brain activity patterns [64, 107, 24].

As the central organ for cognitive and emotional processing, the brain consists of

distinct regions that contribute to various functions [89], as illustrated in Figure 2.2.

Specifically, the human brain is divided into four distinct regions [230]: The frontal

lobe, particularly the prefrontal cortex, is responsible for higher-order cognitive tasks

such as decision-making, problem-solving, attention, and emotional regulation [117].

The temporal lobe governs auditory processing, language comprehension, and memory

formation while also aiding in the recognition and interpretation of emotions [243].

The parietal lobe integrates sensory information related to touch, spatial awareness,

and proprioception, enabling coordinated movement and perception of the external
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Controls higher cognitive
functions and emotions
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Processes sensory

information such as touch
and spatial perception

Parietal lobe

Processes visual
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and processing auditory

information

Temporal lobe

Figure 2.2: Illustrating human brain regions and key functional areas involved in
cognitive and emotional processing.
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Figure 2.3: 32 channel EEG headset montage mapping over brain regions.

environment [230]. Finally, the occipital lobe primarily involves visual processing,

allowing the brain to interpret shapes, colors, and motion [34].

Further, to capture the neural activity associated with these functions, EEG

electrodes are placed according to the 10-20 international system [111], as illustrated

in Figure 2.3. Frontal electrodes (Fp1, Fp2, F3, F4, F7, F8) record cognitive and

executive functions [215], temporal electrodes (T3, T4, T5, T6) capture auditory and

memory-related activity [33], and parietal and occipital electrodes (P3, P4, Pz, O1, O2)

monitor sensory integration and visual processing [111]. These electrode placements

comprehensively understand brain activity across different cognitive and perceptual

domains, supporting various neurological and psychological studies. These studies

confirm that frontal channels consistently provide discriminative features for stress-
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related EEG classification. At the same time, the involvement of parietal and occipital

regions often depends on the nature of the task and the features extracted.

Several studies highlight that stress predominantly affects the frontal brain region.

Sharma et al. [223] reported significant activity in channels Fp1, Fp2, F3, F4, F7, F8,

and Fz. Varshney et al. [247] achieved higher classification accuracy using entropy

features from O2, Fz, Cz, and Pz with RNN-based models, emphasizing the importance

of frontal and parietal areas. Further, Wang et al. [253] selected F8, F3, AF3, and

O2 for mental arithmetic task recognition and achieved an accuracy of 97.11% using

an SVM classifier. These studies confirm that frontal channels consistently provide

discriminative features for stress-related EEG classification. At the same time, the

involvement of parietal and occipital regions often depends on the nature of the task

and the features extracted.

EEG signals are further categorized into five primary frequency bands, each

associated with distinct neural functions [10] [148], as illustrated in Figure 2.4. Delta

(δ ) waves (0.1 - 4Hz) are the slowest and are predominantly observed during deep

sleep and unconscious states [17]. Theta (θ ) waves (4–8 Hz) are linked to drowsiness,

light sleep, and relaxation, often appearing during meditative or introspective states

[214]. Alpha (α) waves (8–12 Hz) are associated with a relaxed yet alert state,

commonly present when an individual is awake but calm [36]. Beta (β ) waves (12–30

Hz) reflect active cognitive processing, problem-solving, and focused attention [135].

Lastly, Gamma (γ) waves (>30 Hz) are the fastest frequency band and are associated

with heightened cognitive function, sensory processing, and states of high mental

engagement [102].

2.3.1.1 Significance of EEG for Stress and Anxiety

EEG is a valuable tool for understanding stress and anxiety as it provides direct insights

into neural activity and cognitive processing. Unlike peripheral physiological signals,

ECG, EDA, and HRV, which primarily reflect autonomic responses, EEG enables a

localized assessment of brain activity changes under stress-inducing conditions [182]

[37] [85]. Studies have shown that increased beta activity, altered theta-to-beta ratios,

and reduced alpha power are commonly associated with heightened stress and anxiety
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Figure 2.4: EEG frequency bands and their corresponding brain state.

states [61] [47][194] [55]. These EEG-based markers are viable for differentiating

stress and improving classification accuracy [124].

2.3.1.2 Features from EEG signals

EEG feature extraction is essential for analyzing brain activity patterns associated with

stress and anxiety. These features are typically derived from distinct domains, including

time and frequency, each capturing unique signal features.

• Time Domain (TD): Time-domain features capture the EEG signal’s amplitude

variations and temporal properties. These features provide essential insights into

signal dynamics and include the following features [86].

1. Statistical Features: Statistical features represent the distribution and

central tendency of the EEG signal, providing insights into its overall

amplitude variations and variability.

(a) Mean: Represents the average amplitude of the EEG signal over a

given period.

Mean =
1
N

N

∑
i=1

xi (2.1)
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Equation 2.1 computes the mean where N is the total number of EEG

samples, and xi represents the amplitude at time i.

(b) Variance: Measures the dispersion of signal values around the mean.

Variance =
1
N

N

∑
i=1

(xi−Mean)2 (2.2)

Equation 2.2 computes variance where σ2 represents the variance, S

is the mean, N is the total number of EEG samples, and xi denotes the

amplitude at time i.

(c) Standard Deviation: Quantifies the degree of fluctuation in the EEG

signal, indicating signal stability.

StandardDeviation =
√

variance (2.3)

Equation 2.3 computes standard deviation where σ represents the

standard deviation, and σ2 is the variance.

(d) Peak-to-Peak: Represents the difference between the maximum and

minimum values of the signal, as shown in Equation 2.4.

Peak− to−Peak = peakhigh− peaklow (2.4)

where Phigh is the highest amplitude in the signal, and Plow is the lowest

amplitude in the signal.

(e) Skewness: It measures the asymmetry of the data distribution,

indicating negative or positive skewness. Equation 2.5 shows skewness

formula:

Skewness =
1
N ∑

N
i=1(xi−Mean)2)

( 1
N ∑

N
i=1 (xi−Mean)2)

3
2

(2.5)

where N is the total number of EEG samples, xi is the amplitude at

time i, and S is the mean value of the signal.

(f) Kurtosis: It measures the tailedness of the data distribution, identifying
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whether the data has heavy or light tails. Equation 2.6 shows kurtosis

formula:

Kurtosis =
1
N ∑

N
i=1(xi−Mean)4)

( 1
N ∑

N
i=1 (xi−Mean)2)2

−3 (2.6)

where N is the total number of EEG samples, xi is the amplitude at

time i, and S is the mean value of the signal.

2. Hjorth Features: It provides key insights into the signal by measuring

activity, mobility, and complexity, making them useful for EEG analysis.

(a) Activity: Activity measures the signal’s variance, indicating its overall

power level, which can be categorized as low or high [31] [154].

Equation 2.7 shows activity formula, where y(i) is the EEG signal:

Activity =Var(y(i)) (2.7)

(b) Mobility: It is calculated as the square root of the variance of the first

derivative divided by the variance of the signal, providing an estimate of

its frequency content [31] [154]. Equation 2.8 shows mobility formula:

Mobility =

√
var(dy

dt )

var(y(t))
(2.8)

where y(t) is the EEG signal, dy
dt is its first derivative, and var(·) denotes

variance.

(c) Complexity: It is defined as the ratio of the mobility of the signal’s

first derivative to the mobility of the original signal. It quantifies how

the frequency content varies over time, reflecting the signal’s structural

intricacy [31] [154]. Equation 2.9 shows complexity formula:

Complexity =
Mobility(dy

dt )

Mobility(y(t))
(2.9)

where y(t) is the EEG signal, and dy
dt is its first derivative.

3. Higuchi Features: It quantifies the complexity of a signal by analyzing

its self-similarity across different time scales. It is particularly useful for
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measuring irregularities in EEG signals and detecting subtle changes in

brain activity [185].

HFD(k) =
log(N)

log( N
k.L(k))

′ (2.10)

Equation 2.10 computes higuchi where HFD(k) represents the Higuchi

Fractal Dimension at scale k, N is the total length of the EEG signal, and

L(k) is the average length of the curve over scale k.

• Frequency Domain (FD): Fast Fourier Transform (FFT) converts the time-

domain EEG signal into the frequency domain. Researchers extract frequency

domain features from the power spectrum, representing how signal power

is distributed across different frequency bands. The following features are

commonly used for EEG analysis:

1. Power Spectral Density (PSD): It quantifies the distribution of signal

power across different frequencies [91] [29] [25]. Researchers commonly

compute it using the Welch method to ensure a reliable estimation of power

variations over time [258] [20] [15] [15].

2. Spectral Entropy: Measures the randomness in the power spectrum,

indicating how evenly power is distributed across frequency bands. A

higher value suggests a more complex and unpredictable signal [15] [206].

Equation 2.11 represents the formula for spectral entropy.

SE =−
f=N

∑
f=4

¯PSD(F)log( ¯PSD(F)) (2.11)

where ¯PSD( f ) is the normalized PSD at frequency f .

3. Sample Entropy: Estimates the complexity of a time-series signal by

quantifying the likelihood of similar patterns occurring. It is useful for

analyzing EEG signal irregularities [100] [223]. Equation 2.12 represents

the formula for sample entropy.
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SampEn(m,r,N) =− ln
(

A
B

)
(2.12)

where m is the embedding dimension, r is the tolerance threshold, N is the

total number of data points, A is the number of matching patterns of length

m+1, and B is the number of matching patterns of length m.

4. Shannon Entropy: Represents the uncertainty or disorder in a signal

by evaluating the probability distribution of its values. Higher entropy

indicates a more unpredictable signal [223]. Equation 2.13 represents the

formula for Shannon entropy.

SE =−
N

∑
i=1

P(xi) logP(xi) (2.13)

where N is the total number of discrete signal values, and P(xi) is the

probability of occurrence of signal value xi.

5. Relative Power: Computes the proportion of power in a specific frequency

band relative to the total power of the signal, helping to analyze dominant

brainwave activity [10] [25]. Equation 2.14 represents the formula for

relative power.

RP =
power(band)

power(allbands)
∗100 (2.14)

6. Band Power: Band Power quantifies the total signal power within a specific

EEG frequency band, providing insights into cognitive and emotional states.

7. Band Ratio: Calculates the ratio between the bandpower of different EEG

frequency bands, such as θ/β ratio, to assess cognitive and emotional

states. This feature is commonly used in stress and anxiety classification

[10] [148] [187].

2.3.1.3 Related work of EEG on Stress and Anxiety

EEG-based studies consistently demonstrate that stress and anxiety influence brainwave

activity in distinct ways. Elsadek et al. [67] reported that alpha activity increases during
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relaxed states but significantly decreases under stress, indicating its sensitivity to stress-

related neural changes. Similarly, Giannakakis et al. [85] observed that stress-induced

stimuli cause a substantial rise in spectral power, particularly in the frontal and central

brain regions, reinforcing their role in stress processing. In contrast, Katmah et al. [124]

showed that gamma oscillations exhibit inconsistent responses across stress and relaxed

conditions, suggesting that gamma activity may not reliably serve as a biomarker for

stress classification.

Further investigations highlight the beta frequency band’s association with stress

responses. Sharma et al. [224] established that beta power significantly increases during

stressful situations, emphasizing its link to emotional intensity and stress perception.

Attallah et al. [26] demonstrated that frontal electrodes effectively classify stress,

underscoring the prefrontal cortex’s role in stress and anxiety regulation. Additionally,

Masood et al. [152] identified a strong correlation between fast beta activity and high-

stress phases, showing that beta oscillations intensify under increased stress levels.

For anxiety-related EEG patterns, studies consistently report an increase in delta and

theta activity in individuals diagnosed with anxiety disorders [177] [189]. Falconer et

al. [72] further confirmed that frequent transitions between frequency bands distinguish

anxiety states from normal and stress conditions. These findings collectively suggest

that while beta activation and alpha suppression characterize stress responses, anxiety is

marked by increased slow-wave activity and greater instability across frequency bands.

2.3.2 Electrodermal Activity (EDA)

EDA, also known as Galvanic Skin Response (GSR), is a reliable measure for predicting

stress levels by analyzing the skin’s electrical conductance, which reflects sympathetic

nervous system activation through sweat gland activity [144] [176]. Tonic and phasic

activity are the two information sources within a raw EDA signal, as shown in Figure

2.5.

1. Tonic activity represents the baseline level of skin conductance influenced by

factors such as skin dryness, moisture, and temperature. The Skin Conductance

Level (SCL), a common measure of tonic activity, indicates overall physiological

arousal in the absence of specific stimuli [137] [88].
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Figure 2.5: Figure 2.7 shows the decomposition of a raw EDA signal into its phasic
and tonic components.

2. Phasic activity captures rapid changes in conductance, known as Skin Con-

ductance Responses (SCR), which occur in response to emotionally stimulating

events. These short-term peaks reflect momentary changes in arousal caused by

sympathetic nervous system activation [137] [88].

2.3.2.1 Significance of EDA for Stress and Anxiety

EDA is a key physiological marker for assessing stress and anxiety, as it directly reflects

sympathetic nervous system activation through sweat gland activity [137] [134]. Stress

and anxiety trigger an increase in skin conductance, resulting in elevated SCL and

more frequent SCR [106]. The increased EDA activity indicates physiological arousal

associated with the body’s fight-or-flight response [113]. Studies have shown that

individuals experiencing acute stress or anxiety exhibit increased EDA [175] [160],

while lower conductance levels are observed in relaxed states [218]. Due to its high

sensitivity to autonomic changes, EDA is widely used in stress classification models

and real-time mental health monitoring.

2.3.2.2 Features from EDA Signal

Extracting meaningful features from the EDA signal is essential for assessing autonomic

responses related to stress and anxiety. These features are derived from tonic (SCL)
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and phasic (SCR) components, capturing variations in skin conductance over time. The

following section outlines key EDA features used in stress and anxiety classification.

• Statistical Features: Statistical features quantify variations in the EDA signal

by analyzing its distribution, central tendency, and dispersion over time.

1. Mean: Represents the average EDA value over a defined period, serving as

a baseline indicator of skin conductance and overall physiological arousal

[176] [137].

2. Variance: Quantifies the dispersion of EDA signal values over a specified

period, indicating the extent of fluctuation in skin conductance [176] [137].

3. Skewness: Evaluates the asymmetry of the EDA signal distribution relative

to its mean. A positive skew indicates a longer right tail, whereas a negative

skew reflects a longer left tail in the data distribution [176] [137].

4. Kurtosis: Assesses the sharpness of the EDA signal distribution, indicating

the presence of outliers or extreme values. Higher kurtosis signifies more

pronounced peaks and outliers, while lower kurtosis suggests a flatter

distribution [144][248].

5. Standard Deviation: Measures the extent of variation in EDA values from

the mean. A higher standard deviation indicates greater fluctuations in skin

conductance, reflecting increased physiological variability [144] [109].

• Tonic Features: Slowly fluctuating baseline patterns in the EDA signal reflect

continuous variations in SCLs and represent overall arousal state and tonic

sympathetic activity.

1. Tonic Component: Represents the slow, baseline variations in skin

conductance, typically extracted using low-pass filtering. It reflects the

overall level of physiological arousal over time [155] [137].

2. SCL (Tonic) Slope: Represents the rate of change in the tonic component of

the EDA signal, typically determined by fitting a linear model to the baseline.

It indicates the trend or directional shift in baseline skin conductance over

time [218] [176].
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3. Mean SCL Value: Represents the average level of the tonic component

over a specified period, providing a baseline measure of skin conductance.

4. Variance of SCL: Quantifies the average squared deviation of SCL values

from the mean, indicating the extent of fluctuation in the tonic component

of skin conductance [218].

5. Standard Deviation of SCL: Calculates the square root of the variance of

SCL, representing the degree of dispersion in the tonic component of skin

conductance [218] [144].

• Phasic Features: Rapid and short-term fluctuations in the EDA signal represent

momentary responses to stimuli or events and reflect the phasic sympathetic

activity.

1. SCR (Phasic) Peaks: Represents the amplitude and timing of response

peaks in the phasic component of the EDA signal, indicating rapid

changes in skin conductance due to stimuli. Higher peaks reflect stronger

physiological responses to specific events [218].

2. Mean SCL Value: Represents the average level of the tonic component

over a defined period, providing a baseline measure of skin conductance

[144].

3. Variance of SCL: Quantifies the dispersion of SCL values by measuring

the average squared deviation from the mean, indicating fluctuations in the

tonic component of skin conductance [144].

4. Standard Deviation of SCL: Represents the square root of the variance

of SCL, indicating the degree of fluctuation in the tonic component of skin

conductance [155].

2.3.2.3 Related work of EDA on Stress and Anxiety

Several studies have shown EDA as a reliable physiological marker for stress

classification. In various studies, EDA is also referred to as GSR. Can et al. [42]

analyze EDA, heart activity, and acceleration data in a study involving 21 participants

and show that SCL and SCR significantly vary across stress conditions. Their findings
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highlight the effectiveness of combining EDA with other physiological signals for stress

classification. Kumar et al. [134] examined EDA and multiple physiological signals

and confirmed that EDA-based features effectively differentiate stress, amusement,

and neutral states. Similarly, Garg et al. [79] validated that statistical EDA features

such as standard deviation, mean, minimum, and maximum values are useful stress

indicators. The study also emphasized that EDA, combined with other physiological

signals, effectively classifies stress.

Further, Albertetti et al. [14] investigated EDA responses to emotional, intellectual,

physical, and pain-induced stressors in 6 participants, demonstrating that phasic and

tonic EDA features accurately capture stress responses. Milstein et al. [156] compared

Empatica E4’s EDA and HRV measurements in 30 participants and showed that

Empatica E4 reliably records mean IBI and HR, but struggles with HRV accuracy under

movement conditions. Similarly, Zhu et al. [278] conducted a large-scale comparative

study using multiple datasets and concluded that EDA-based stress classification

achieves high classification accuracy, particularly when combined with HRV. Their

findings suggest that 30-second sliding window processing enhances EDA-based stress

classification.

In anxiety studies, Markiewicz et al. [149] observed that EDA increases when a

person experiences anxiety, when the sympathetic nervous system activates the "fight or

flight" response. This physiological reaction represents the body’s adaptive mechanism

for coping with potential threats. Najafpour et al. [173] and Singh et al. [234] further

confirmed that elevated EDA levels correlate with emotional arousal, making it an

effective indicator of anxiety intensity.

2.3.3 Heart Rate (HR) and Heart Rate Variability (HRV)

Heart Rate (HR) is defined as the number of heartbeats per minute and is a primary

indicator of cardiac function and ANS activity [50]. Researchers often analyze the Inter-

Beat Interval (IBI) to measure HR, which represents the time between consecutive

heartbeats. On the other hand, Heart Rate Variability (HRV) also focuses on the

variation in IBI over time. It reflects how the ANS dynamically adapts to internal and

external stimuli, such as stress and anxiety [139][138]. While HR presents a measure
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Figure 2.6: A normal Electrocardiogram (ECG) [196].

of overall cardiac activity, HRV quantifies the subtle variations in the timing between

consecutive heartbeats that provide deeper insights into emotional and physiological

states. HR and HRV are reliable markers for assessing mental health and stress

responses [85].

Researchers commonly measure the Inter Beat Interval (IBI) using two key

physiological sensing methods:

1. Electrocardiography (ECG): ECG devices record the electrical activity of

the heart and produce a waveform comprising four primary components:

the baseline, P wave, QRS complex, and T wave, as illustrated in Figure

2.6. Researchers calculate the RR interval—the time between successive

R-peaks—from this waveform, which directly corresponds to the IBI [90].

ECG offers precise cardiac measurements but typically requires careful sensor

placement and is more prone to motion artifacts in mobile settings.

2. Photoplethysmography (PPG): PPG sensors measure blood volume fluctuations

in peripheral tissues through a non-invasive optical technique. Similar to ECG,

PPG signals allow the extraction of IBI and subsequent calculation of HR and

HRV. Due to its simplicity, lower cost, and integration into wearable devices, PPG

supports continuous and unobtrusive monitoring of stress and anxiety, making it

highly suitable for real-world applications [81][116].
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2.3.3.1 Significance of HR and HRV for Stress and Anxiety

HR and HRV are important physiological indicators for detecting stress and anxiety as

they reflect ANS activity [128][5][51]. During stressful or anxious states, sympathetic

activation increases while parasympathetic control decreases. This leads to elevated

HR, reduced HRV, and shorter IBIs [109][145]. These responses indicate heightened

physiological arousal associated with the fight-or-flight mechanism.

Low HRV is a well-known marker of chronic stress and anxiety disorders and reflects

poor autonomic flexibility and limited recovery capacity [128]. A decrease in IBI also

highlights autonomic imbalance under such conditions [156]. Extracting and analyzing

HR and HRV features improves the accuracy of stress and anxiety classification models

across different physiological sensing methods. Devices such as ECG and PPG provide

signals used to derive HR and HRV. ECG records cardiac activity but requires precise

sensor placement and is more susceptible to environmental noise and motion artifacts,

posing challenges for wearable applications. However, PPG offers a simpler setup and

greater suitability for continuous monitoring [42].

2.3.3.2 Features from HR and HRV

Researchers extract HR and HRV features from IBIs obtained through ECG or PPG

sensors. These features are categorized into different domains, including time,

frequency, and non-linear measures, each providing valuable insights into stress and

anxiety classification.

• Time Domain: It directly analyzes the ECG waveform, capturing variations in

HR, HRV, and signal amplitudes over time. These features provide essential

insights into ANS activity and cardiac responses under stress and anxiety

conditions.

1. Mean Heart Rate: Computes the average number of heartbeats per minute

using RR intervals [57] [156].

2. Standard Deviation of Heart Rate (Std_HR): Measures the variability in

heart rate values over the recording period, indicating fluctuations in cardiac

activity [51] [156].
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3. Maximum and Minimum Heart Rate (Max, Min HR): Represents the

highest and lowest heart rate recorded within a given period, reflecting the

range of cardiac activity [144].

4. RR Interval: Represents the time between two successive R-wave peaks in

the ECG signal, serving as a key indicator of heart rate variability (HRV)

[144] [235].

5. Root Mean Square of Successive Differences (RMSSD): Quantifies beat-

to-beat variability in heart rate by computing the square root of the mean

of squared differences between successive RR intervals. It serves as a key

indicator of parasympathetic nervous system activity [42] [51] [244].

6. NN50 Count: Represents the number of consecutive RR intervals that

differ by more than 50 ms, providing an additional measure of heart rate

variability (HRV) [42].

7. Triangular Index: Computes heart rate variability by dividing the total

number of RR intervals by the height of the peak in the RR interval

histogram. It provides an overall measure of HRV [42] [244].

8. Triangular Interpolation of NN Interval Histogram (TINN): Represents

the baseline width of the RR interval histogram, obtained by interpolating

the area under the histogram into a triangular shape. It serves as an indicator

of overall heart rate variability (HRV).

9. Coefficient of Variation of Successive Differences (CVSD): Calculates

the ratio of the root mean square of successive differences (RMSSD) to the

mean RR interval, providing a normalized measure of heart rate variability

(HRV).

10. Coefficient of Variation of NN Intervals (CVNNI): Computes the ratio of

the standard deviation of RR intervals to the mean RR interval, expressed

as a percentage, to quantify heart rate variability (HRV) [51].

11. Sample Entropy (SampEn): Quantifies the complexity and irregularity

of the RR interval time series by calculating the negative logarithm of the

conditional probability that similar patterns remain consistent in subsequent

data points [51] [42].
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• Frequency-Domain Features: Analyze power distribution across various

frequency bands to provide insights into heart rate variability (HRV). These

features are derived by transforming the time-domain ECG signal into the

frequency domain using the FFT.

1. Power Spectral Density (PSD): Represents power distribution across

different frequency bands, offering insights into the energy levels within

various frequency ranges of the ECG signal. It is commonly estimated

using the Welch method [5] [109].

2. Low-Frequency Power (LF, 0.04–0.15 Hz): Represents the combined

influence of sympathetic and parasympathetic activity, providing insights

into ANS modulation [51].

3. High-Frequency Power (HF, 0.15–0.4 Hz): Primarily reflects parasym-

pathetic nervous system activity and is closely associated with respiratory

sinus arrhythmia, indicating vagal influence on heart rate variability (HRV)

[51].

4. LF/HF Ratio: Represents the balance between sympathetic and parasym-

pathetic nervous system activity by computing the ratio of low-frequency

to high-frequency power in heart rate variability (HRV) [85].

5. Low-Frequency Power in Normalized Units (LFnu): Represents the

power within the low-frequency range (0.04–0.15 Hz) as a percentage of

total power, excluding the very high-frequency (VHF) component. It is

linked to both sympathetic and parasympathetic activity, with a stronger

emphasis on sympathetic modulation [86].

6. High-Frequency Power in Normalized Units (HFnu): Represents the

power within the high-frequency range (0.15–0.4 Hz) as a percentage of

total power, excluding the very-low-frequency (VLF) component. It is

primarily associated with parasympathetic nervous system activity [85].

7. Total Power: Represents the overall energy in the ECG signal by summing

the power across all frequency bands, providing a comprehensive measure

of heart rate variability (HRV) [85].
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2.3.3.3 Related work of ECG on Stress and Anxiety

ECG-derived HRV features serve as reliable indicators for stress classification, with

several studies confirming their effectiveness. Castaldo et al. [46] demonstrated

that ultra-short-term HRV features with a duration of 1–3 min are enough to classify

mental stress accurately and identified mean NN, SDNN, mean HR, and HF power

as key markers. Further, Dalmeida et al. [51] validated HR, SDNN, RMSSD, and

pNN50 as stress-sensitive features and showed significant variations across different

stress levels. In another study, Albertetti et al. [14] highlighted SDNN, RMSSD, HF,

and LF/HF ratio as robust physiological markers across emotional, intellectual, and

physical stressors. It is observed that despite the reliability of HRV-based features,

recording duration, movement artifacts, and device limitations influence the accuracy

of stress assessment [156] [46].

In anxiety-related research, Ihmig et al. [109] and Lueken et al. [145] observed

that HRV decreases while HR increases during anxiety and mental stress. Zheng et

al. [277] further show that an anxious state leads to a reduction in HF, HRV, and an

increase in LF, with a concurrent rise in the LF/HF ratio and RMSSD, reinforcing

their significance as key physiological markers of anxiety.

2.3.4 Blood Volume Pressure (BVP)

PPG sensors also provide Blood Volume Pressure (BVP) signals by measuring blood

volume changes in peripheral tissues. Stress and anxiety directly influence the

cardiovascular system, causing noticeable alterations in BVP waveforms. During

stressful conditions, the sympathetic nervous system increases heart rate, blood

pressure, and vascular tone, altering BVP waveforms. Figure 2.7 shows the raw

and filtered BVP signals and the derived heart rate, illustrating how sympathetic

activation influences the pulse waveform. Increased sympathetic activity raises pulse

rates and modifies pulse waveform morphology, highlighting ANS imbalance [278]

[121] [176] [207]. Additionally, stress and anxiety reduce heart rate variability (HRV),

especially in individuals with chronic stress or anxiety disorders [85]. These BVP-

derived variations provide crucial insights into the physiological mechanisms of stress

and anxiety, emphasizing the importance of BVP analysis for stress monitoring and
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Figure 2.7: Raw Blood Volume Pulse (BVP) sensor signal, filtered signal, and its main
data features (onsets and HR). [40].

assessment.

2.3.4.1 Significance of BVP for Stress and Anxiety

Blood Volume Pressure (BVP) is a key physiological marker for stress and anxiety

assessment by reflecting cardiovascular autonomic regulation [85]. BVP signals

capture pulse rate, vascular tone, and HRV, which are influenced by sympathetic

and parasympathetic activity. Increased sympathetic activation under stress leads to

higher pulse rates and altered waveform morphology, while reduced HRV is commonly

observed in individuals experiencing chronic stress or anxiety [14]. Due to its non-

invasive measurement and sensitivity to autonomic changes, BVP is widely used for

stress classification and real-time physiological monitoring.

2.3.4.2 Features from BVP Signal

Feature extraction from BVP signals provides valuable insights into cardiovascular

dynamics and ANS regulation. The following are key BVP features used in stress and

anxiety classification:

1. Mean BVP: Represents the average BVP value over a given period, indicating

baseline blood volume changes [175] [207].

2. Standard Deviation of BVP: Measures the variability in BVP signal amplitude,

reflecting fluctuations in vascular tone [79].
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3. Maximum BVP: Captures the highest recorded BVP value, representing peak

pulse amplitude [175] [79].

4. Minimum BVP: Records the lowest BVP value, indicating the minimum blood

volume in a pulse cycle [207].

5. Power VLF BVP: Quantifies the power in the very-low-frequency (VLF, <0.04

Hz) range, associated with metabolic and thermoregulatory mechanisms [175]

[79] [207].

6. Power LF BVP: Measures power in the low-frequency (LF, 0.04–0.15 Hz) range,

reflecting sympathetic and parasympathetic activity [175] [79] [207].

7. Power HF BVP: Represents power in the high-frequency (HF, 0.15–0.4

Hz) range, primarily linked to parasympathetic nervous system influence and

respiratory activity [175] [79] [207].

2.3.4.3 Related work of BVP on Stress and Anxiety

Kumar et al. [134] analyzed BVP, ECG, EDA, and additional physiological signals

from 15 subjects and observed that BVP features effectively differentiate between three

stress levels, particularly when combined with HRV metrics. Similarly, Garg et al.

[79] investigated multimodal stress signals, including BVP, ECG, and EDA, from 15

participants undergoing the TSST and identified that statistical BVP features such

as standard deviation, mean, minimum, and maximum values significantly correlate

with stress states. Their findings confirmed that statistical BVP features effectively

distinguish stress from relaxation periods. Further, Nath et al. [176] explored BVP-

based stress classification in 19 older adults, incorporating cortisol levels as a biomarker

to enhance stress classification accuracy. The authors find that BVP amplitude and heart

rate fluctuations correspond to variations in cortisol concentration during stress and

recovery periods.

In anxiety studies, Rodríguez-Arce et al. [197] explored anxiety and stress

recognition in academic environments using BVP, EDA, heart rate, and respiration in

21 participants. The authors conducted time-constrained arithmetic tasks as stress-

inducing stimuli and found that BVP features significantly contribute to anxiety
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Figure 2.8: Raw and filtered RESP signal, filtered signal, and its features: zero-
crossings, respiration rate [40].

classification. The results suggest that physiological signals provide a more reliable

anxiety assessment than subjective questionnaires like STAI scores.

2.3.5 Respiration (RESP)

Respiration (RESP) regulates the inhalation and exhalation cycle, as illustrated in

Figure 2.8. The primary respiratory metrics include breath rate and breath depth

(amplitude). Respiration rate typically increases due to heightened emotional arousal

during stress and anxiety, whereas relaxation leads to a slower breathing rate [87].

Additionally, stressful situations may cause temporary interruptions in breathing

patterns. Additionally, Respiratory Rate Variability (RRV), which measures the

variation in breathing intervals over time, is a valuable marker of ANS dynamics

during stress and anxiety.

2.3.5.1 Significance of RESP for Stress and Anxiety

Respiration is a crucial physiological indicator of ANS activity, making it valuable

for stress and anxiety assessment [71]. Increased emotional arousal during stressful

situations typically reflects increased sympathetic activation, accelerates breathing

rates, and reduces breath depth, [275]. Individuals with anxiety disorders often

exhibit irregular respiratory patterns, including rapid breathing, reduced respiratory

sinus arrhythmia, and intermittent breath-holding [82][152]. Conversely, slow, deep

breathing is associated with relaxation and a shift toward parasympathetic dominance
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[82]. Although respiration alone may not definitively indicate anxiety levels, respiratory

features enhance the accuracy of stress and anxiety classification when integrated with

other physiological signals. Supporting this, George et al. [82] demonstrated that

combining ECG and RESP features improves the identification of individuals with

anxiety disorders.

2.3.5.2 Features from RESP Signal

Respiration Rate Variability (RRV) quantifies fluctuations in respiratory cycles, offering

insights into ANS regulation. Researchers derive RRV features by analyzing time-

domain, frequency-domain, and non-linear characteristics, each providing distinct

information about respiratory dynamics. The following sections describe the extracted

RRV features for stress and anxiety classification.

• Time-Domain Features: It measure variations in breath-to-breath intervals.

1. RRV_RMSSD: Root mean square of successive differences between

consecutive breath-to-breath intervals, indicates short-term variability [109]

[147].

2. RRV_MeanBB: Average duration of BB intervals, representing the mean

respiratory cycle length [109] [147].

3. RRV_SDBB: Standard deviation of BB intervals, measuring overall

variability in respiratory patterns [109] [147].

4. RRV_SDSD: Standard deviation of successive differences in BB intervals,

reflecting short-term fluctuations in breathing rate [109] [147].

5. RRV_CVBB: Coefficient of variation of BB intervals, providing a

normalized measure of respiratory cycle variability [109] [147].

6. RRV_CVSD: Coefficient of variation of successive differences in BB

intervals, quantifying short-term variability relative to the mean [109] [147].

7. RRV_MedianBB: Median value of BB intervals, offering a robust central

measure of respiration cycle length [109] [147].

8. RRV_MadBB: Median absolute deviation of BB intervals, assessing

dispersion while reducing sensitivity to outliers [109] [147].

68



9. RRV_MCVBB: Mean coefficient of variation of BB intervals, providing a

measure of normalized variability in respiratory patterns [109] [147].

• Frequency-Domain Features: It measures power distribution across respiratory

frequency bands.

1. RRV_VLF: Power in the very low-frequency range, associated with slow

respiratory oscillations and metabolic regulation [109] [147].

2. RRV_LF: Power in the low-frequency range, linked to sympathetic and

parasympathetic modulation of respiration [109] [147].

3. RRV_HF: Power in the high-frequency range, primarily reflecting parasym-

pathetic influence and respiratory sinus arrhythmia [109] [147].

4. RRV_LFHF: Ratio of low-frequency to high-frequency power, indicating

the balance between sympathetic and parasympathetic control [109] [147].

5. RRV_LFn: Low-frequency power normalized to total power, providing a

relative measure of sympathetic activity [109] [147].

6. RRV_HFn: High-frequency power normalized to total power, representing

the relative contribution of parasympathetic influence [109] [147].

• Non-Linear Features: It captures the complexity and irregularity of breathing

patterns.

• RRV_SD1: Standard deviation of short-term variability in the Poincaré plot,

capturing rapid fluctuations in respiration [147].

• RRV_SD2: Standard deviation of long-term variability in the Poincaré plot,

indicating overall breathing pattern stability [147].

• RRV_SD2SD1: Ratio of SD2 to SD1, reflecting the balance between short-term

and long-term respiratory variability [147].

• RRV_ApEn: Approximate entropy, measuring the complexity and predictability

of respiratory patterns [147].

• RRV_SampEn: Sample entropy, quantifying the irregularity and randomness

in respiration cycles [147].
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2.3.5.3 Related work of RESP on Stress and Anxiety

Several studies highlight RESP signals as key physiological indicators of stress, with

variations in respiratory rate and depth showing as strong markers for stress-induced

physiological changes. Siam et al. [229] investigated stress classification in drivers

using RESP and other signals such as ECG, EMG, and EDA from 10 subjects and

reported that changes in respiration rate and variability significantly correlate with

stress levels. Seo et al. [221] examined multimodal signals, including ECG, RESP, and

facial features, in 24 participants by performing the Stroop color-word test. The study

identified RESP as a critical feature in distinguishing between stress levels. Further,

Huang et al. [108] investigated mental workload and respiration patterns in 18 subjects,

demonstrating that respiratory rate increases significantly under high cognitive load,

reflecting a stress-induced physiological response. Masood et al. [152] analyzed HRV,

EEG, EDA, and RESP in 24 participants exposed to mental challenges.

In anxiety studies, George et al. [82] further demonstrated that ECG and respiration

features aid in identifying individuals with anxiety disorders, utilizing the Hamilton

Anxiety Scale (HAM-A) scores to classify datasets into anxiety and non-anxiety groups.

Similarly, Ihmig et al. [109] showed RRV features as important to detect anxiety levels.

Additionally, findings indicate that statistical features such as mean respiratory rate,

standard deviation, and peak-to-peak amplitude consistently emerge as strong predictors

of stress and anxiety. However, motion artifacts and inter-individual variability in

breathing patterns present challenges, necessitating robust preprocessing and filtering

techniques for accurate stress classification. The findings also state that while stress

and anxiety increase respiratory rate, RESP information serves as a supplementary

biomarker rather than a primary indicator for assessing individual stress and anxiety

levels [85] [43] [114].

2.3.6 Strength and Weakness of Physiological Signals

Physiological signals are advantageous because, unlike facial emotions, they cannot be

masked or conditioned by voluntary human activities. As a result, physiological signal

measurements convey factual information about emotional processes rather than facial

expressions. Physiological signals such as heart rate, skin temperature, and EDA are
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Table 2.6: Summary of physiological signals strength and weakness.

Physiological Signals Strength Weakness
Electroencephalography
(EEG)

Measures brain activity di-
rectly; non-invasive.

Requires multiple electrodes on
the scalp, resulting in a com-
plicated setup. Susceptible to
motion artifacts, necessitating
preprocessing.

Electrocardiography
(ECG)

Effective for emotion recogni-
tion; provides high temporal
resolution for heart rate vari-
ability analysis.

Signal quality is affected by
physical movement and respira-
tory rate variability.

Electrodermal Activity
(EDA)

Requires simple setup; allows
non-contact measurement.

External temperature impacts
skin conductivity.

Respiration (RESP) Easy to install and provides
insights into stress levels.

Limited range for detecting
broader emotional responses.

Blood Volume Pulse
(BVP)

Non-invasive; provides data
on heart rate and heart rate
variability.

Susceptible to noise and motion
artifacts; ambient lighting condi-
tions can impact signal quality.

cost-effective and easily captured data. Furthermore, these signals are easy to process

and analyze to detect human emotions. One disadvantage of physiological signal

acquisition is that data collection requires direct contact with the user’s body. The

user’s consent and preparedness are essential to properly wear the devices or sensors.

Table 2.6 shows the summarised strength and limitations of different physiological

signals.

2.3.7 Wearable Sensors for Stress and Anxiety Detection

Data gathering from physiological signals using appropriate wearable sensors benefits

anxiety detection assessment. Wearable technologies have the potential to provide

several advantages, including improved safety, better exercise targeting, greater

motivation, and better adherence. It also facilitates an improved progression of exercise

programs. However, further research needs to focus on the validity and efficacy of these

devices in healthcare, tracking, and therapy. Table 2.7 lists each sensor used for stress

and anxiety detection with advantages and limitations.
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Table 2.7: Wearable sensors for stress and anxiety detection.

Wearable
sensors

Sampling
Rate

Advantages Limitations

Emotiv EPOC Headset [211],
[118]

EEG - 128Hz Non-invasive, Lightweight,
provides a user-friendly
framework, Cost-effective

EEG readings are easily
contaminated with motion
artifacts.

MindWave EEG headset [38],
[172]

EEG 512Hz Highly resistant to noise, Low
cost.

Single-channel (FP1) device,
Low battery life.

Zephyr BioHarness 3 [38],
[77], [38]

ECG-250Hz It can be used in ambulatory
outpatient monitoring and
long-range transmission.

Low battery lifetime.

CardioSport TP3 [203] HR Comfortable and flexible,
Low cost, Records the correct
RR interval.

It does not have the memory
to store data.

BN-PPGED [210] EDA & PPG-
1000Hz

Lightweight and comfortable,
it provides high-resolution
signal waveforms.

More power-consuming.

Sleep Sense [261], [166] BR-100Hz Non-contact and cost-
effective, with Higher
accuracy.

Pairs with only a single
device, No Wi-Fi connection.

CortiWatch [208] Cortisol A unique platform for moni-
toring cortisol levels utilizing
human eccrine sweat and a
watch-like design.

It does not adapt precisely
to the skin’s surface, leaving
sample collection and analysis
gaps.

Muse Headband [24] EEG-256Hz Easy to use. More expensive.
Shimmer sensor [188] [38],
[77], [238], [273]

EDA-10Hz,
ECG-512Hz,
EMG-1024Hz

Good for real-time applica-
tions, Low power, and Large
storage.

Not waterproof.

Samsung Gear (S1, S2, S3)
[42]

PPG-100Hz
ST, ACC-
100Hz

Easy to use, Long-lasting
battery life, Waterproof.

Uncomfortable during physi-
cal activity.

LG Watch Urbane 2 [65] HR-50Hz,
ACC-50Hz

Comfortable and easy to use. Short battery life.

Empatica E4 [137], [218],
[207], [44], [119], [110]

BVP-64Hz,
EDA-4Hz,
ST-4Hz, ACC-
32Hz

Non-intrusive, Comfortable,
and Easy to wear.

Highly sensitive to motion
and motion artifacts.

AutoSense [70], [127], [174] ECG 64Hz,
RESP
21.33Hz,
ACC 10.67Hz

Low-power design with a
lifespan of more than 10 days
while continuously collecting
and transferring sensory data.

Data loss/corruption; interfer-
ence from physical activity.

NOTE: EEG = Electroencephalography, ECG = Electrocardiography, HR
= Heart Rate, EDA = Electrodermal Activity, BR = Breath Rate,
PPG = Photoplethysmography, EDA = Galvanic Skin Response, ECG =
Electrocardiography, ST = Skin Temperature, ACC = Accelerometer, BVP = Blood
Volume Pressure, RESP = Respiration
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2.4 Data Preprocessing

Physiological signals are highly sensitive and can easily become contaminated with

artifacts, which are unwanted components in the recorded data that do not originate from

the intended source. These artifacts can arise from technical issues or the individual’s

behavioral and physical activities during data acquisition [83] [201] [242].

1. Technical factors contributing to artifacts include power line interference (50/60

Hz), malfunctioning electrodes, broken leads, or electromagnetic noise affecting

the recording equipment. Poor electrode placement, excessive conductive gel,

or fluctuating impedance can also introduce noise into the signals, making it

challenging to extract meaningful information.

2. Behavioral and physiological activities of the individual can generate additional

noise.

• Eye blinks, movements, muscle activity (EMG signals), and body

movements can significantly distort recordings.

• Sweating can alter the conductivity of the electrodes, further compromising

signal quality.

Artifacts must be managed effectively to ensure the reliability of data analysis.

Various artifact removal techniques have been developed to address these challenges.

These methods involve filtering and advanced algorithms like Independent Component

Analysis (ICA).

2.4.1 Filtering

Filtering is essential for enhancing the quality of physiological signals used in stress

and anxiety classification, as it can reduce noise and retain relevant frequency bands

critical for effective feature extraction. Distinct stress and anxiety classification studies

have employed various filtering methods:

1. Butterworth Bandpass Filters (BPF): BPFs are widely used for their

smooth frequency response, enabling the isolation of specific frequency ranges
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while minimizing distortion. Their adjustable cutoff frequencies make them

particularly suitable for physiological signals; for example, a range of 4–45 Hz

is commonly applied to EEG signals for stress and anxiety classification [5] [57]

[227] [9].

2. Low-Pass Filters (LPF): LPFs remove high-frequency noise, making them

useful for reducing interference in slower physiological signals like ECG or

respiration [248] [109] [121] [108].

3. High-Pass Filters (HPF): HPFs eliminate low-frequency noise, such as baseline

wander, often found in EEG and ECG signals. Frequencies below 4 Hz are often

removed in EEG preprocessing and retain higher-frequency activity for stress and

anxiety classification [5] [101].

4. Moving Average Filters (MAF): These filters smooth the signal by averaging

over a sliding window, effectively reducing random noise. MAFs can be applied

with window sizes tailored to the sampling rate for EEG and ECG signals,

ensuring computational efficiency in real-time applications [207].

5. Notch Filters: These filters are designed to remove specific frequency

components, such as power line interference at 50 Hz or 60 Hz. For example,

a 50 Hz notch filter is often used for stress and anxiety classification in EEG

and ECG signals. These filters effectively eliminate narrow-band noise without

distorting the remaining signal [108] [248] [82].

2.4.2 Artifact Removal

Artifact removal is a critical preprocessing step in anxiety classification, especially

when dealing with physiological signals prone to contamination by motion, environ-

mental noise, or physiological artifacts like muscle movements or eye blinks [130].

Different techniques are employed to ensure that the signals used for feature extraction

and classification are free from distortions that could affect the accuracy of ML models.

1. Independent Component Analysis (ICA): Independent Component Analysis

(ICA) is a technique for blind source separation commonly used in preprocessing
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physiological signals. It separates mixed signals into statistically independent

components by applying linear decomposition [16] [29] [122]. ICA operates

under specific assumptions:

• The recorded signals are mixtures of spatially stable sources, including

neural, physiological, and external artifacts.

• The summation of potentials from various sources, including brain activity,

eye movements, and muscle signals, occurs linearly at the sensors.

• The propagation delay from source to sensor is negligible, allowing

instantaneous mixing.

2. Empirical Mode Decomposition (EMD): Empirical Mode Decomposition

(EMD) decomposes non-linear and non-stationary signals, making it effective

for processing EEG and ECG data. This adaptive technique breaks a signal into

multiple Intrinsic Mode Functions (IMFs), where each IMF represents oscillatory

patterns at different time scales. Unlike conventional filtering methods, EMD

extracts frequency components without relying on a predefined filter bank,

allowing precise separation of brainwave frequencies such as delta, theta, alpha,

and beta. Some IMFs may contain artifacts, which researchers can easily

discard, while artifact-free IMFs undergo further analysis. EMD extends to

multiple channels through Bivariate EMD (two channels), Trivariate EMD (three

channels), and Multivariate EMD (up to 32 channels), enabling enhanced signal

decomposition for complex data.

2.5 Feature Extraction and Selection

Feature extraction converts raw physiological signals into meaningful numerical

representations, which enables effective stress and anxiety classification. This process

extracts statistical, temporal, and frequency features from EEG, ECG, EDA, and RESP

signals, as discussed in Section 2.3. Further, to enhance feature extraction, signals

are segmented into overlapping sliding windows, ensuring temporal continuity and

preserving crucial patterns. Figure 2.9 illustrates this process, where each segment
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Figure 2.9: Window overlapping on EEG signal [260].

partially overlaps the previous one. This method captures short-term variations in

physiological responses while maintaining sufficient data for meaningful analysis. The

window size and overlap ratio are carefully selected to balance detecting rapid signal

fluctuations and retaining essential temporal characteristics. Applying this approach

makes feature extraction more robust, improving the model’s ability to identify stress-

related patterns effectively. However, the feature extraction process often results in a

high-dimensional feature space, which may include irrelevant or redundant features.

Retaining all features can lead to the following challenges:

• Increased computational time for analysis and model training

• The risk of overfitting, which may reduce the model’s ability to generalize and

lower classification accuracy.

• The issue of high-dimensional data, often called the "curse of dimensionality,"

can degrade model performance.

Therefore, feature selection is crucial for improving model efficiency and

effectiveness by retaining only the most relevant features. Further, the feature selection

techniques can broadly be categorized into Filter, Wrapper, and Embedded methods.

These approaches help to identify the most important features while removing redundant

or irrelevant ones.

2.5.1 Filter Method

Filter methods evaluate the relevance of features based on their statistical properties

with respect to the target variable, independent of any learning algorithm. These
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methods are computationally efficient and often serve as a first step in feature selection

[140] [130] [176] [244].

1. Pearson Correlation Coefficient (PCC): Measures the linear relationship between

each feature and the target variable. Features with low correlation are removed

to reduce redundancy [277][51][140].

2. Mutual Information (MI): Quantifies the mutual dependence between features

and the target class and captures non-linear relationships [115][197][93].

3. Minimum Redundancy Maximum Relevance (mRMR): Selects features that

are highly relevant to the target but minimally redundant among themselves

[52][163].

4. F-Score and p-Value Tests: Perform feature ranking based on statistical

significance through ANOVA F-test and t-test [100][223][257][175].

5. ReliefF: Assigns feature weights based on instance-based learning to identify

relevant features [186].

2.5.2 Wrapper Method

Wrapper methods evaluate the performance of different feature subsets by training a

model and choosing the subset that yields the highest accuracy. These methods are

computationally intensive but often result in better performance as they are tailored to

the classifier [109] [24] [165].

1. Recursive Feature Elimination (RFE): Recursively removes the least important

features based on the model’s weight coefficients to find the optimal subset

[165][248].

2. Genetic Algorithm (GA): A population-based optimization technique that evolves

feature subsets over generations to maximize classification performance [151].

3. Particle Swarm Optimization (PSO): A swarm intelligence algorithm that

searches for optimal feature subsets by simulating the movement of particles

in a search space [268].
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4. Whale Optimization Algorithm (WOA): Inspired by the hunting behavior of

humpback whales, WOA explores and exploits the search space to identify the

best feature subset [223].

5. Sequential Backward Selection (SBS): Starts with all features and iteratively

removes the least useful features to improve performance [268][109][24][259].

2.5.3 Embedded Method

Embedded methods integrate feature selection into the model training process,

leveraging regularization or internal metrics to select features during model building

[207][137].

1. Random Forest (RF): Computes feature importance scores based on Gini impurity

reduction across decision trees during model training [207].

2. Bagged Trees (BT): Aggregates feature importance across bagged decision trees,

reflecting their contribution to overall prediction accuracy [96].

3. Least Absolute Shrinkage and Selection Operator (LASSO): Performs embedded

feature selection by penalizing and shrinking coefficients to zero during training

[137][180].

2.5.4 Hybrid Method

Hybrid methods integrate multiple feature selection strategies, combining filter,

wrapper, or embedded approaches to leverage the strengths of each. This combination

enhances feature selection performance by mitigating the limitations inherent in

individual techniques [277] [82] [248] [35] [197].

2.6 Summary

This chapter establishes the technical foundation for stress and anxiety classification

using physiological signals. It introduces key preprocessing techniques, including

artifact removal, filtering, and automated channel selection, essential for enhancing
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signal quality. Feature extraction from time and frequency domains is discussed,

highlighting its role in identifying stress- and anxiety-related biomarkers. Additionally,

various FSAs are explored, emphasizing their importance in reducing redundancy and

improving model performance.
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Chapter 3

Literature Review of Stress and

Anxiety Classification

In recent years, stress and anxiety classification has gained significant attention due

to its impact on mental health, cognitive performance, and overall well-being. Self-

reported questionnaires provide assessments but often lack reliability because they are

subjective and prone to bias. Researchers have studied various physiological signals

to improve stress and anxiety classification. These include EEG, EDA, HRV, BVP,

and RESP [252]. Each signal captures different responses from the autonomic and

central nervous systems. These responses provide valuable insights into an individual’s

physiological state.

Machine Learning (ML) and Deep Learning (DL) techniques have been widely

adopted to analyze these physiological responses [228]. They provide automated

and objective methods to classify stress and anxiety states with improved accuracy

[85]. However, several challenges, including class imbalance, high-dimensional feature

spaces, and model interpretability, still limit the generalizability of classification models

[80][29][148]. To address these challenges, automated stress and anxiety classification

methodologies typically follow a structured process comprising data preprocessing,

feature extraction, feature selection, and classification. ML and DL models are then

applied to the extracted features to perform the final classification.

This chapter presents a detailed literature review on stress and anxiety classification.

It explores publicly available datasets collected using physiological signals recorded
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Table 3.1: Research questions.

Research Questions Description
RQ1 What are the publicly available datasets used for stress and anxiety

classification, and what are their limitations?
RQ2 What Machine Learning and Deep Learning techniques have been

explored for stress and anxiety classification using physiological
signals?

RQ3 What are the key challenges in developing robust Machine
Learning models for stress and anxiety classification?

during stress and anxiety inducing stimuli. It further reviews the application of signal

processing and feature selection techniques across stress and anxiety classification.

This chapter further analyzes traditional ML and DL approaches, highlighting their

significance in physiological signal-based classification. Additionally, it investigates

challenges in ML techniques for stress and anxiety classification. Finally, it discusses

evaluation metrics, including accuracy, F1-score, AUC_ROC, and statistical analysis,

which are utilized in this research for assessing classification performance.

3.1 Research Methodology

This literature review examines ML and DL techniques for stress and anxiety

classification using physiological signals. It explores existing research on distinct

datasets, classification models, and the challenges associated with physiological signal-

based stress and anxiety classification. The review focuses on studies that utilize EEG,

HRV, EDA, BVP, and RESP signals, analyzing their role in developing automated

classification frameworks.

3.1.1 Research Questions

This research explores the following research questions (RQs), outlined in Table 3.1.

These questions define the scope of the survey and establish the keywords for inclusion

criteria in selecting relevant studies on stress and anxiety classification. They also

aid in identifying key methodologies, datasets, and challenges addressed in existing

literature.

Inclusion Criteria: The literature review was conducted by searching relevant
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articles across multiple academic databases, including IEEE Digital Library, Springer,

Google Scholar, Science Direct, ACM Digital Library, and PubMed, as illustrated in

Figure.

Keywords: It uses the preliminary search keywords formulated based on

the research focus. Anxiety classification, Stress classification, multimodal

stress classification, multimodal anxiety classification, anxiety classification using

physiological signals, stress classification using physiological signals, physiological

signals and stress, physiological signals, and anxiety, anxiety detection via wearable

sensors, stress detection via wearable sensors, machine learning in smart healthcare,

anxiety classification using machine learning and stress classification using machine

learning.

Exclusion Criteria: This research excludes non-English articles and studies

focusing solely on statistically evaluating physiological signals without incorporating

classification or predictive modeling.

3.2 Open Datasets Available for Stress and Anxiety

The research particularly focuses on two types of open stress and anxiety datasets,

i.e., single-modal and multimodal datasets. Table 3.2 provides a detailed explanation

of each dataset and enables a direct comparison between different methodologies,

facilitating the benchmarking of stress and anxiety classification techniques. Out of

these datasets, this thesis utilizes four datasets: MAT [280], SAM40 [84], DASPS [30]

and Spiderphobic [109] as they serve as benchmark datasets for EEG-based stress and

multimodal anxiety classification.

3.2.1 Limitations of Existing Datasets

This thesis evaluates several publicly available datasets for stress and anxiety

classification and identifies key limitations that impact their applicability.

1. No publicly available dataset integrates multimodal physiological signals such as

HRV, EDA, and BVP in an academic environment.
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Table 3.2: Open datasets available for stress and anxiety

Dataset Domain Year Modality Signal Subjects Stress Inducer Channel
Selection

Ensemble
Stacking

Hybrid FSA Real-time
Academic
Envi-
ronment
Assess-
ment

MAT [280] Stress 2019 Single
modal

EEG 36 Mental arithmetic task × × × Limited

SAM40 [84] Stress 2022 Single
modal

EEG 40 Stroop color-word test, solving
arithmetic questions, identification
of symmetric mirror images, and a
state of relaxation

× × × Limited

CLAS [150] Stress 2019 Multimodal ECG, PPG, and
EDA

62 Interactive task: 24 mathematical
problems, a Stroop test, and 30
logical problems; perspective tasks:
video and image

– × × Limited

SRAD [99] Stress 2005 Multimodal EMG, ECG, EDA
(foot and hand),
and RESP

17 Driving in different situations – × × ×

DASPS [30] Anxiety 2019 Single
modal

EEG 23 Face-to-face psychological stimuli × × × ×

Spider-
phobic [109]

Anxiety 2020 Multimodal ECG, EDA,
RESP

57 Spider phobic videos – × × ×

2. Datasets such as MAT [280], CLAS [150], SAM40 [84] do not incorporate

Montreal Imaging Stress Task (MIST) [58], which induces stress in a gradually

increasing manner and is ideal for evaluating the mental workload in an academic

environment.

3. Most publicly available multimodal datasets classify stress into binary levels. The

datasets such as MAT [109], SAM40 [84], CLAS [150], and Spiderphobic [109]

classify stress into binary levels, which restricts the ability to analyze varying

degrees of stress.

4. Some datasets, such as SRAD [99], AffDataset [95], and DPPS [66], have

relatively small sample sizes, reducing the generalizability for large-scale

applications.

5. No datasets explicitly examine the effect of interventions such as meditation and

relaxation on physiological responses to stress and anxiety.

3.3 Automated Stress and Anxiety Detection Using

Physiological Signals

Machine learning has emerged as a powerful technique for the automated detection of

stress and anxiety using physiological signals [29][81]. Researchers leverage various

physiological signals to train classification models capable of identifying stress- or
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Figure 3.1: Classification Methodology for Stress and Anxiety Classification

anxiety-related patterns in distinct scenarios. However, developing such models

requires a systematic methodology that ensures data quality and model reliability.

This methodology typically involves different phases, including data preprocessing,

feature extraction, feature selection, and model training, as shown in Figure 3.1. Each

step directly influences the overall performance of the classification system.

Chapter 2 presents a detailed overview of commonly used techniques for data

preprocessing and feature engineering in the context of stress and anxiety classification.

The subsequent subsections describe each phase of this methodology and review related

work that implement these techniques to physiological signal-based stress and anxiety

classification.

3.3.1 Data Preprocessing

Data preprocessing plays a critical role in preparing physiological signals for reliable

analysis. Various preprocessing techniques utilised in the studies are detailed in Section

2.3. This section focuses on reviewing the preprocessing strategies adopted in previous

research.

3.3.1.1 Related work of Data Preprocessing on Stress and Anxiety

Several studies emphasize the importance of filtering techniques to eliminate noise

and unwanted frequency components from raw physiological signals. Seo et al. [221]

applied a bandpass filter from 1.5 to 150 Hz for ECG and a low-pass filter with a cutoff

of 0.5 Hz for RESP signals for stress classification. Similarly, Nath et al. [176] used

a low-pass Butterworth filter of a 10 Hz cutoff for BVP signals and a 1 Hz cutoff for

EDA to reduce motion artifacts while preserving essential physiological information.

In anxiety studies, Vaz et al. [248] applied a 4th-order Butterworth bandpass filter
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for ECG, EDA, and EMG signals. Similarly, Grigoras et al. [251] employed 0.5-12 Hz

low-pass filters for ECG signals to maintain heart rate variability information, which

is essential for detecting anxiety states. For the EDA signal, Vaz et al. [248] applied

a 5 Hz low-pass Butterworth filter to focus on the tonic component of the EDA signal,

effectively removing high-frequency noise and capturing slow-varying physiological

responses associated with anxiety. Daneshmand et al. [52] employed an FIR pass-band

filter (4-45 Hz) to preprocess EEG data.

In addition to ICA, Artifact Subspace Reconstruction (ASR) is another robust

technique that removes transient noise from EEG signals. Lee et al. [137] utilized ASR

to remove motion and environmental artifacts during the classification of driver anxiety,

which improved the quality of EEG data and led to more reliable anxiety classification

results. ASR is effective in real-time systems, where continuous signal quality control

is essential for accurately detecting emotional states. Li et al. [140] effectively utilized

ICA in their anxiety classification study. ICA is particularly used for EEG signals

because it can efficiently separate neural activity from non-invasive noise.

For signals such as EDA, ECG, and PPG, where artifacts typically originate from

motion and environmental factors, filtering techniques like bandpass filtering are often

paired with artifact removal processes. Vaz et al. [248] applied a combination of

Butterworth filters and Notch filters to handle artifacts in ECG and EMG signals,

resulting in better signal quality for classification tasks. Puli et al. [188] demonstrated

that combining multimodal Kalman filters with bandpass filtering significantly reduced

motion artifacts, especially during real-time classification of anxiety in dynamic

environments. This technique is particularly useful in wearable devices, where motion

is inevitable and can heavily distort the signal quality.

3.3.2 Feature Extraction and Selection

After preprocessing the physiological signals, the feature extraction process captures

discriminative patterns associated with stress and anxiety. Section 2.2 describes the

detailed feature extraction from each physiological signal. Applying feature selection

becomes essential as this process often generates a high-dimensional feature space

that may contain irrelevant or redundant features. This step reduces dimensionality,
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improves classification performance, and enhances model interpretability. Section

2.4 discusses various feature selection algorithms, such as filter, wrapper, embedded,

and hybrid methods, in detail to refine physiological signal data and optimize the

performance of stress and anxiety classification models. This section presents related

work that implements these algorithms for physiological signal-based stress and anxiety

classification.

3.3.2.1 Related Work of Feature Selection in Stress Classification

Studies applying filter methods have effectively ranked features based on statistical

significance. Hemakom et al. [100] used ANOVA F-value selection to refine ECG

and EEG features, enabling an SVM classifier to achieve 87.50% accuracy. Sharma

et al. [223] applied F-score selection on EEG entropy-based features, enhancing

classification performance with RF, SVM, and evolutionary algorithms. Wen et al.

[257] employed P-value selection to refine EEG-based FD and Time-Frequency Domain

features, increasing SVM accuracy to 99%. Jebelli et al. [115] applied a Correlation-

Based Wrapper Method, identifying EEG features correlated with salivary cortisol

levels, which led to 80.32% accuracy with Gaussian SVM. These studies highlight the

importance of statistical ranking techniques in stress classification, ensuring that the

most relevant biomarkers contribute to classification models.

Wrapper-based approaches have further refined feature selection in stress classi-

fication. Mustafa et al. [169] applied a wrapper-based selection method, reducing

EEG feature dimensionality and improving classification accuracy across Naïve Bayes,

SVM, and MLP classifiers (91.52%). Saputra et al. [192] used K-best selection to

reduce 900 EEG features, leading to 95.36% accuracy with SVM. Xiong et al. [268]

employed SBS and PSO to optimize feature selection for EEG and ECG, improving

classification performance across Quadratic SVM, KNN, and Decision Tree models.

These findings show that wrapper techniques efficiently select the most discriminative

stress-related features, improving model robustness.

Several studies have integrated embedded feature selection within model training

to improve computational efficiency. Attallah et al. [26] applied PCA-based

dimensionality reduction, demonstrating that a minimal number of frontal EEG
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electrodes can achieve high-accuracy stress classification (Cubic SVM: 99.91%, KNN:

99.98%). Halim et al. [93] combined PCA, MI, and Random Subset Feature Selection,

achieving 97.95% accuracy with an ensembled model. Doma et al. [63] applied

PCA for EEG-based stress classification, identifying frequency-domain features as

crucial for stress classification. Furthermore, hybrid feature selection methods, which

combine filter, wrapper, and optimization-based techniques, have further enhanced

stress classification models. Hasan et al. [96] combined Boruta selection with PCA,

increasing KNN classification accuracy to 73.38%.

3.3.2.2 Related Work of Feature Selection in Anxiety Classification

Similar to stress classification, researchers have explored various FSA techniques for

anxiety classification. Studies using filter methods have efficiently ranked anxiety-

related EEG features. Li et al. [140] extracted 90 EEG features, selecting 30 using

correlation coefficients, which resulted in 62.56% accuracy with SVM. Klados et al.

[130] applied CfsSubsetEval on 466 EEG features, improving Naïve Bayes classification

accuracy to 93.75%. Nath et al. [176] employed P-value selection to refine 24 features

from wristband sensor data, achieving 92% accuracy with Random Forest. Tripathy et

al. [244] applied ANOVA to ECG signals, selecting 187 out of 200 features, leading to

79.17% accuracy with a Decision Tree. Daneshmand et al. [52] implemented mRMR

for EEG-based anxiety classification, reducing 28 features to 15 and obtaining 100%

accuracy with KNN. These studies demonstrate that filter-based selection methods

effectively rank anxiety-related features, allowing classifiers to distinguish between

anxiety levels more accurately.

Wrapper methods have also shown promise in anxiety classification. Ihmig et al.

[109] applied Sequential Forward Selection (SFS) to retain six out of 25 features from

ECG, RESP, and EDA, achieving 89.8% accuracy with Bagged Trees. Arsalan et al.

[24] employed forward selection, selecting five out of ten EEG features, leading to

76.92% accuracy with MLP. Muhammad et al. [165] reduced 60 EEG features to 18

using RFE, improving classification accuracy to 94.9% with Random Forest. Wen et

al. [259] applied backward selection, refining 11 heart rate features to four, which

improved SVM classification accuracy to 90.5%.
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a) 

b) 

Figure 3.2: Accuracy of different feature selection algorithms for a) stress and b)
anxiety classification, along with the number of subjects in each dataset.

A metaheuristic feature selection approach has also been introduced for anxiety

classification. Mo et al. [162] implemented the Improved Fireworks Algorithm for

multimodal feature selection (heart rate, respiration rate, behavioral, audio, text, and

questionnaire data), selecting 19 features and achieving 97.61% accuracy with Adaptive

Boosting (ADB).

For embedded methods, Salkevicius et al. [207] applied Random Forest-based

embedded selection, reducing 33 multimodal features to ten, achieving 86.3% accuracy

with SVM. Lee et al. [137] used LASSO feature selection for EEG, PPG, EDA, and

pupil size data, selecting 31 out of 445 features, achieving 77.01% accuracy with

Logistic Regression.

Hybrid approaches have also demonstrated effectiveness in anxiety classification.

Zheng et al. [277] applied Pearson Correlation and PCA for PPG and EEG feature

reduction, achieving 62.5% accuracy with KNN. George et al. combined P-value

selection and PCA, reducing 23 features to 11, reaching 82.2% accuracy with SVM.
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a) b)

Figure 3.3: Frequency of feature selection algorithms utilized in a) stress and b) anxiety
classification studies.

Baygin et al. [35] integrated Neighborhood Component Analysis (NCA) and Chi-

square tests, improving KNN classification accuracy to 99.32% using ECG. Vaz

et al. [248] employed unsupervised FSA and RFECV, reducing 109 ECG, EDA,

and EMG features to 34, achieving 71.1% accuracy with Logistic Regression.

Lastly, Rodríguez-Arce et al.[197] focused on multimodal physiological signals in

an academic environment, applying CfsSubsetEval, CorrelationAttributeEval, and

InfoGainAttributeEval, selecting 13 out of 21 features, which led to 95.56% accuracy

with KNN.

To further illustrate the impact of feature selection algorithms on stress and anxiety

classification, Figures 3.2 and 3.3 present a comparative analysis of different FSAs

used in existing studies. Figure 3.2 highlights the classification accuracy achieved by

various FSAs and the number of subjects in each dataset, providing insights into their

effectiveness in optimizing feature subsets. Further, Figure 3.3 visualizes the frequency

of feature selection techniques employed in stress and anxiety classification research,

highlighting the most commonly utilized methods.

3.3.3 Machine Learning Techniques for Stress Classification

Machine Learning (ML) techniques enable the identification of temporal patterns in

physiological signals to classify stress levels. The training phase ensures accurate

classification and requires extensive and diverse datasets to develop robust models.

This process involves mapping selected features to corresponding stress levels. High-

quality training data enhances model generalization, allowing its application across
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Figure 3.4: Distribution of traditional ML and DL algorithms for stress classification.
(a) ML algorithm utilization. (b) DL algorithm utilization. (c) Comparison of ML vs.
DL utilization.

diverse datasets and experimental conditions.

Although researchers widely use ML for stress classification, physiological

signal-based approaches face several challenges, including class imbalance, feature

redundancy, and model complexity, which affect classification performance. To

improve classification accuracy, researchers integrate techniques such as data balancing

methods, feature selection, and model optimization within supervised learning

frameworks to enhance stress level differentiation. Figure 3.4 presents a comparative

analysis of ML and DL algorithms utilized for stress classification. Figure 3.4(a)

illustrates the Distribution of ML algorithms, highlighting the prevalence of Support

Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbor (KNN) in stress

classification tasks. Figure 3.4(b) depicts the Distribution of DL models, emphasizing

the widespread adoption of Convolution Neural Network (CNN), Multilayer Perceptron

(MLP), and Artificial Neural Network (ANN) models in handling physiological signals.

Lastly, Figure 3.4(c) compares ML and DL utilization, indicating that ML-based

approaches remain more widely employed than DL techniques in stress classification

research. Observations show that SVM consistently demonstrates high accuracy among

all models, making it one of the most utilized classifiers for distinguishing distinct

stress levels. Table 3.3 summarises the ML studies for physiological signals-based

stress classification.
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Table 3.3: Overview of stress classification studies using traditional ML.

Author Task Preprocessing Dataset Signal Subjects Features Algorithms Results
Badr et al.[29] SCWT ICA, PSD Private EEG 22 FD KNN, LDA,

SVM, NB, DT
KNN: Delta
99.46%, SVM:
Alpha 99.98%,
SVM: Beta
99.96%, SVM:
Theta 99.85%

Marthinsen et
al.[151]

Stroop, Arith-
metic, Mirror

– Public EEG 40 FD SVM, CNN CNN: 84.18%,
SVM: 87.50%,
SVM with
wavelet
scattering:
87.50%

Suryawanshi
et al.[239]

Cognitive
Task

FFT Private EEG – FD SVM, KNN, DT,
ANN

SVM: 91%

Hemakom et
al.[100]

Mental arith-
metic task

EEG: LPF
200Hz, HPF
1Hz; ECG:
HPF 1Hz

Private EEG +
ECG

40 FD NB, LR, ADB,
KNN, RF, SVM,
RBF-SVM

No stress vs
Low stress: SVM
86.13%, No stress
vs High stress:
SVM 87.75%,
No stress vs (low
& high) Stress:
SVM 87.50%

Mustafa et
al.[169]

Questionnaire
+ PSS

90% overlap
window

Private EEG 40 FD NB, SVM, LR,
RF, MLP, ADB

2-class: 91.52%,
3-class: 88.47%,
4-class: 87.36%

Sharma et
al.[223]

Mental arith-
metic task

Notch filter:
50Hz, LPF
and HPF

Public EEG 36 Entropy-based features RF, J48, NB,
KNN, SVM

4s: 94.02%, 8s:
97.26%

Halim et
al.[93]

Driving
Videos

BPF, removed
0-4Hz

Private EEG 86 TD and FD SVM, RF, NN RF: 87.23%,
NN: 89.00%,
SVM: 91.60%,
Ensembled:
97.95%

Attallah et
al.[26]

Mental arith-
metic task

Butterworth
IIR Filter,
Wavelet de-
composition,
PCA

Public EEG 36 TD and FD RF, KNN, SVM,
LDA

LDA: 98.6%,
Linear SVM:
94.5%, Cubic
SVM: 99.7%,
KNN: 99%, RF:
98.91%

Ahammed et
al.[3]

Mental arith-
metic task

HPF: 0.5 Hz,
LPF: 45 Hz,
Notch: 50 Hz

Public EEG 36 Multivariate Sample
Entropy

SVM + Statistical
Analysis

SVM: 90%

Xiong et
al.[268]

Mental arith-
metic task

HPF: 0.5 Hz,
LPF: 45 Hz,
ICA

Public EEG,
ECG

36 TD, and FD SVM, KNN, DT SVM (quadratic):
80.6%, KNN
91.7%, DT
86.1%

Garg et al.[79] TSST 10s sliding
window

Public BVP,
ECG,
EDA,
EMG,
BT, RP,
Acceler-
ation

15 TD RF, SVM, KNN,
LDA, ADB

NB: 60%, KNN:
80%, SVM: 81%,
MLP: 83%, RF:
85%, GBM: 85%

Dalmeida et
al.[51]

Driving Task Minmax, re-
places missing
values

Private ECG,
HRV

16 TD and FD NB, KNN, SVM,
MLP, RF, GBM

NB: 60%, KNN:
80%, SVM: 81%,
MLP: 83%, RF:
85%, GBM: 85%

Deng et al.[60] Driving Task 5-minute seg-
ments

Private ECG,
EMG,
EDA

10 FD ANN, SVM, NB,
KNN

SVM: 78.46%,
NB: 75.38%,
KNN: 72.31%

Pankajavalli et
al.[180]

Driving Task Not
Mentioned

Private ECG,
EMG,
EDA,
RR

– TD, FD and Statistical SVM, NB, DT,
LR, KNN

SVM: 100%

NOTE: LDA: Linear Discriminant Analysis, RBF: Radial Basis Function; TD:
Time Domain; FD: Frequency Domain

91



3.3.3.1 Related Work of Traditional ML Models on Stress Classification

Several studies demonstrate the effectiveness of traditional ML techniques for stress

classification using physiological signals. Among traditional ML models, SVM is one

of the most widely used classifiers, consistently achieving high accuracy across multiple

studies. Badr et al. [29] extracted PSD-based Frequency Domain (FD) features from

EEG signals and applied SVM to classify stress, achieving an accuracy of 99.98% in the

alpha band and 99.96% in the beta band using SVM. Similarly, Marthinsen et al. [151]

applied wavelet scattering-based features from EEG signals and observed that SVM

achieves an accuracy of 87.50%, outperforming the CNN model with an accuracy of

84.18%. Hemakom et al. [100] combined EEG and ECG signals and employed Naïve

Bayes (NB), Logistic Regression (LR), Adaptive Boosting (ADB), KNN, RF, SVM,

and RBF-SVM. The authors achieved the highest accuracy of 87.75% in distinguishing

high-stress levels using SVM. Additionally, Attallah et al. [26] utilized feature selection

techniques along with traditional classifiers and achieved the highest accuracy of 99.7%

using SVM.

Furthermore, ensemble-based methods demonstrate robust classification accuracy

in stress classification. Dalmeida et al. [51] utilized ECG-derived HRV features and

observed the highest accuracy of 85% using RF and Gradient Boosting Machine (GBM),

respectively. Similarly, Garg et al. [79] examined multimodal signals, including BVP,

ECG, EDA, EMG, BT, RP, and Acceleration, and observed the highest accuracy of 85%

using RF and GBM, outperforming other classifiers such as KNN with an accuracy of

80%, SVM with an accuracy of 81% and MLP with an accuracy of 83%.

Moreover, several studies explored the integration of multimodal physiological

signals to enhance classification performance. Xiong et al. [268] utilized EEG and ECG

features, achieving an accuracy of 91.7%, using KNN. Additionally, Pankajavalli et al.

[180] utilized SVM along with other traditional classifiers for multimodal physiological

signal-based stress classification, achieving 100% accuracy. These results demonstrated

that multimodal approaches, combined with traditional ML classifiers, significantly

improve stress classification by capturing diverse autonomic responses. Mustafa et al.

[169] employed NB, SVM, LR, RF, MLP, and ADB for EEG-based stress classification

and achieved an accuracy of 91.52%, 88.47%, and 87.36% for binary, three-class, and
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four-class classification, respectively.

3.3.3.2 Related Work of DL Models on Stress Classification

Deep learning (DL) approaches have been extensively applied in stress classification,

utilizing various physiological signals such as EEG, ECG, EDA, PPG, and respiration.

Researchers have demonstrated the effectiveness of CNN-based models in stress

classification. Gil-Martin et al. [88] employed CNN on multimodal signals such

as ECG, EMG, EDA, respiration, and skin temperature from the WESAD dataset

[216] and achieved an accuracy of 96.62% for two-level classification and 85.03% for

three-level classification. Seo et al. [221] applied Deep Neural Networks (DNN) on

multimodal signals, including ECG, RESP, and facial images, and achieved an accuracy

of 73.30%.

Among EEG-based studies, Bhatnagar et al. [39] utilized an EEGNet-based CNN

with ReLU activation for stress classification based on academic and social stressors,

achieving an accuracy of 99.45%. Malviya et al. [148] developed a CNN-BiLSTM

hybrid model and employed an EEG signal from the MAT dataset [280]. The authors

achieve the highest accuracy of 99.20% using CNN-BiLSTM.

Furthermore, researchers have also widely explored recurrent models such as LSTM

and BiLSTM. Varshney et al. [247] utilized LSTM, BiLSTM, and Gated Recurrent Unit

(GRU) models for EEG-based stress classification. The authors achieved an accuracy of

99.81%, 99.81%, and 99.43% using GRU, LSTM, and BiLSTM, respectively. Similarly,

Roy et al. [199] evaluated CNN-RNN (Recurrent Neural Network), CNN-LSTM, CNN-

GRU, and BiLSTM models on EEG data. The authors achieved the highest accuracy

of 97.10% and 95.60% using BiLSTM and CNN-LSTM, respectively.

Further, Multimodal approaches integrating multiple physiological signals have

gained good performance in recent studies. Salankar et al. [205] combined EEG

and ECG signals and achieved the highest accuracy of 100% using MLP. Huang et al.

[108] explored different combinations of CNN, LSTM, and ConvLSTM for multimodal

stress classification, where CNN-LSTM achieved the highest accuracy of 97.8%. Nath

et al. [176] employed CNN on multimodal signals from the WESAD dataset [216]. The

authors achieved the highest accuracy of 87% using CNN for stress classification. Table
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Table 3.4: Overview of stress classification studies using DL.

Study Task Preprocessing Dataset Signal
Modality

Subjects Channels Feature Extrac-
tion

Algorithms Results (% Accu-
racy)

Roy et al.[199] A commercial
psychological
test

HPF: 1Hz Public EEG 48 14 FD, Time-
Frequency
Domain

CNN-RNN,
CNN-LSTM,
CNN-GRU,
BiLSTM

CNN-RNN:
89.91%, CNN-
LSTM: 95.60%,
CNN-GRU: 95.20%,
BiLSTM: 97.10%

Bhatnagar et al.[39] Academic and
social stress
questionnaire

– Private EEG 45 23 FD CNN (ReLU acti-
vation)

CNN: 99.45%

Hafeez et al.[91] Mental
arithmetic
task

EEG Lab pro-
cessing

Private EEG 14 10 FD LSTM, ResNet,
CNN

Not reported

Salankar et al.[206] Mental
arithmetic
task

EMD+VMD Public EEG 36 19 Statistical SVM, MLPNN MLPNN: 99.99%

Malviya et al.[148] Mental
arithmetic
task

DWT Public EEG 36 19 FD KNN, CNN,
CNN-BiLSTM

KNN: 96.96%,
CNN-BiLSTM:
99.20%

Al-Saggaf et al.[10] MIST BPF: 4–30 Hz Private EEG – 128 TD and FD CNN, DT, LR,
SVM

CNN: 96.00%

Salankar et al.[205] Mental
arithmetic
task

VMD Public EEG+ECG 36 19 EEG + 1
ECG

Statistical SVM, MLPNN MLP: 100%
(temporal), SVM:
78% (temporal),
SVM: 70.67%
(frontal)

Kamińska et al.[122] Stroop + VR re-
laxation

FIR, ICA,
Time-Freq
conversion

Private EEG 28 32 FD CNN, SVM,
MLPNN

KNN: 91.7%
(Theta), RF: 92.86%
(Theta), SVM:
96.42% (Combo),
MLP: 96.42%
(Combo), CNN:
87.5%

Varshney et al.[247] Mental
arithmetic
task

2s sliding win-
dow

Public EEG 36 23 Entropy-based
features

LSTM, BiLSTM,
GRU

GRU: 99.81%,
LSTM: 99.81%,
BiLSTM: 99.43%

Salankar et al.[204] Mental
arithmetic
task

VMD Public EEG+ECG 36 23 Poincare plot fea-
tures

MLP, SVM MLP: 100%
(Good Performer),
SVM: 78% (Bad
Performer)

Arsalan et al.[23] TSST Onboard DRL
feedback cir-
cuit

Private EEG 28 4 FD, DASM,
RASM

SVM, NB, MLP MLP: 92.85% (2-
class), 64.28% (3-
class)

Kalra et al.[120] Stroop Color-
Word Test

LPF 5 Hz Private PPG 15 – TD, FD MLP, DNN, LR,
SVM

DNN: 92.00%

Seo et al.[221] Stroop Color-
Word Test

10s window,
BP + Notch
filters

Private TD and FD 24 – ECG, RESP, Se-
quence facial fea-
tures

DNN 73.30%

Gil-Martin et al.[88] Trier Social
Stress Test
(TSST)

– Public ECG, EMG,
EDA, RESP,
ST

15 – – CNN CNN: 96.62% (2
levels), 85.03% (3
levels)

Huang et al.[108] Driving EEG:
Notch:50
Hz, DWT,
EMD

Private EEG, ECG,
EDA, RESP

18 2 – CNN, LSTM,
ConvLSTM,
XGB

CNN+LSTM:
97.80%, CNN:
96.5%, ConvLSTM:
88.0%, XGB: 74.4%

Nath et al.[176] Trier Social
Stress Test
(TSST)

13 CNN filters Public BVP, ECG,
EDA, EMG,
BT, RP,
Acceleration

15 – – CNN CNN: 87.00%

NOTE: TD: Time Domain; FD: Frequency Domain

3.4 summarises the DL studies for physiological signals-based stress classification.

3.3.4 Machine Learning Techniques for Anxiety Classification

Machine Learning (ML) techniques play a significant role in anxiety classification by

enabling models to differentiate between varying anxiety levels based on physiological

signals. Researchers have widely adopted supervised learning approaches to train

models using features extracted from EEG, ECG, EDA, and respiration signals.

Traditional classifiers such as SVM, KNN, and RF remain prevalent due to their

interpretability and effectiveness, as shown in Figure 3.5(a). Figure 3.5(b) presents the
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Figure 3.5: Distribution of traditional ML and DL algorithms for anxiety classification.
(a) ML algorithm utilization. (b) DL algorithm utilization. (c) Comparison of ML vs.
DL utilization.

DL techniques used for anxiety classification, with CNN, LSTM, and Artificial Neural

Network (ANN) emerging as the most frequently utilized models. Lastly, Figure 3.5(c)

compares the overall utilization of ML and DL approaches in anxiety classification,

demonstrating that ML techniques remain more prevalent than DL-based methods.

Additionally, recent studies have integrated feature selection techniques to enhance

model performance by reducing redundancy and improving generalization.

Furthermore, multimodal approaches combining multiple physiological signals

have improved classification accuracy by capturing diverse anxiety-related biomarkers.

The subsequent sections explore traditional ML and DL methodologies for anxiety

classification, providing insights into their effectiveness in identifying anxiety states

based on physiological responses.

3.3.4.1 Related work of Traditional ML Models on Anxiety Classification

Several studies explore traditional ML techniques for anxiety classification using

various physiological signals. Among the most investigated signals, EEG-based studies

show that the choice of features and preprocessing techniques significantly impact

classification performance. Klados et al. [130] apply NB, KNN, and SVM on EEG

signals processed using ICA and bandpass filters. The results indicate that NB achieves

the highest accuracy of 93.75% and outperforms KNN and SVM.

Multimodal approaches integrating multiple physiological signals further strengthen

anxiety classification. Rodríguez-Arce et al. [197] demonstrated the advantages of

combining EDA, HR, BR, ST, and SPO2 signals by applying KNN, SVM, Decision

Tree (DT), and Logistic Regression (LR). The study achieved accuracies of 95.56%,
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94.44%, 86.88%, and 87.59% using KNN, RF, SVM, and LR, respectively. Similarly,

Nath et al. [175] analyzed EDA and BVP signals for 41 subjects. RF achieved the

highest accuracy of 92%, significantly outperforming both SVM and LR.

ECG-derived HRV also proves highly effective in detecting anxiety-related

responses. Vaz et al. [248] explored ECG, EDA, and EMG features using various

classifiers and achieved the highest accuracy of 92% using ADB, 91.6% using Extreme

Gradient Boosting (XGB), and 89.8% using RF. Similarly, George et al. [82] applied

SVM, RF, and GBM to ECG signals, with SVM reaching an accuracy of 82.2%.

Furthermore, Tripathy et al. [244] examined ECG signals and achieved an accuracy

of 92.27% with XGB. Results show that tree-based ensemble methods offer superior

classification performance.

Additionally, researchers have also explored HR and PPG features for anxiety

classification. Puli et al. [188] investigated HR and Accelerometer (ACC) signals.

The authors showed that a Kalman-filter-based approach significantly improves

classification accuracy to 93%, which outperforms conventional classifiers such as

KNN, SVM, RF, and ADB. Additionally, Lee et al. [137] employed a combination of

EEG, PPG, and EDA signals. The authors achieved the highest accuracy of 77.01%

using LR. The results show that EEG is an important physiological signal; however,

integrating peripheral physiological signals further enhances classification robustness.

Studies by Ihmig et al. [109] and Gazi et al. [80] utilized ECG, RESP, and EDA signals

to classify anxiety responses. The results showed that tree-based classifiers effectively

capture autonomic changes. Ihmig et al. [109] achieved an accuracy of 89.80% using

Bagged Trees, whereas Gazi et al. [80] reported 88% accuracy using RF.

Traditional ML models consistently demonstrate strong performance in anxiety

classification. SVM, KNN, and RF remain widely used due to their robustness in

handling physiological data, while multimodal approaches incorporating EEG, ECG,

EDA, and HRV improve classification accuracy. Table 3.5 summarises the ML studies

for physiological signals-based anxiety classification.
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Table 3.5: Overview of anxiety classification studies using traditional ML.

Author Stimuli Preprocessing Dataset
(Public/Private)

Signal Subjects Channels Features Algorithms Accuracy

Zheng et
al.[277]

Ride stationary
bike on high speed
during competition

PPG: 3rd order BPF,
MAF

Private EEG, PPG 20 1 TD and FD PCA-KNN, PCA-
SVM

KNN: 62.5%,
SVM: 50%

Klados et
al.[130]

Mental arithmetic
task

LP: 0.5-45Hz, BPF: 47-
53Hz, ICA

Private EEG 16 57 – NB, KNN, SVM NB: 93.75%,
KNN: 81.4%,
SVM: 77.4%

Salkevicius et
al.[207]

Public speaking MAF Private BVP, EDA, ST 30 – Statistical, Differen-
tial, Phasic, HR

SVM: RBF SVM: 86.30%

Puli et
al.[188]

SCWT Multimodal Kalman fil-
ter, BPF:0.25-5Hz, re-
sampled to 5Hz

Private HR, ACC 15 – TD KNN, LR, SVM, DT,
RF, ADB

KNN: 71%,
SVM: 70%,
LR: 67%,
DT: 65%,
RF: 71%,
ADB: 71%,
Proposed
Kalman Filter:
93%

Sebastiao et
al.[218]

Public speaking – Private EDA, HR 15 – TD, Statistical 100 Bagged Trees 95.70%

Lee et al.[137] Anxiety inducing
videos

STFT with 1-s window,
50% overlapping, PSD

Private FD 31 31 EEG: FD, Statistical
features for other sig-
nals

LR 77.01%

Rodríguez-
Arce et
al.[197]

Mental arithmetic
task

LPF Private ST, EDA, HR,
BR, SPO2

21 – Statistical KNN, SVM, DT, LR KNN: 95.56%,
SVM: 86.88%,
LR: 87.59%,
RF: 94.44%

Nath et
al.[175]

TSST Normalization, BVP:
LPF: 1Hz, EDA: 10Hz

Private EDA, BVP 41 – Statistical and
context-based
features

RF, LR, SVM RF: 92%, LR:
61%, SVM:
61%

George et
al.[82]

Sleep study LPF: 0.5-0.6 Hz, Notch:
50Hz, FIR

Private ECG 52 – Statistical and FD SVM, RF, GBM SVM: 82.2%,
RF: 81.64%,
GBM: 78%

Vaz et al.[248] TSST ECG: BPF, EDA: LPF:
5Hz, EMG: Notch:
50Hz

Public ECG, EDA,
EMG

15 – TD, FD, and non-
linear, phasic and
tonic

LR, LDA, DT, SVM,
ADB, RF, XGB

LR: 71.1%,
LDA: 67.1%,
DT: 75.6%,
SVM: 70.2%,
ADB: 92%,
RF: 89.8%,
XGB: 91.6%

Tripathy et
al.[244]

Anxiety inducing
video clips

Fourier–Bessel Domain
Adaptive Wavelet
Transform

Public ECG 19 – TD, FD DT, Light GBM,
XGB, RF, ERT

DT: 79.17%,
Light GBM:
90.46%, XGB:
92.27%, RF:
88.91%, ERT:
91.92%

Daneshmand
et al.[52]

Face-to-face stimu-
lation, HAM-A

FIR: 4-45Hz Public EEG 23 – Novel Chaotic map
based features

KNN, DT KNN: 100%,
DT: 78%

Mo et al.[162] Questionnaire, fa-
cial videos, audio

– Private PPG,
behavioral,
audio

227 – FD ADB ADB: 97.61%

Baygin et
al.[35]

Watch anxiety in-
ducing video clips

– Public ECG 19 – Probabilistic Binary
Pattern

KNN+NCA,
SVM+Chi2

KNN+NCA:
98.81%,
SVM+Chi2:
99.94%

Wen et
al.[259]

TSST – Private ECG 65 – TD and FD SVM, NB, KNN,
LDA, QDA

SVM: 90.5%,
NB: 86.64%,
KNN: 87.39%,
LDA: 86.34%,
QDA: 84.76%

Li et al.[140] Public speech BPF: 0.5-50Hz, ICA Private EEG 12 128 TD and FD SVM SVM: 62.56%

Jang et
al.[114]

Cognitive/perceptual
tasks

– Private ECG, EDA,
RESP,
Temperature

71 – FD LR, KNN, SVM, RF,
MLP

LR: 66.30%,
KNN: 60.15%,
SVM: 64.66%,
RF: 64.15%,
MLP: 75.16%

Ihmig et
al.[109]

Short spiderphobic
videos

ECG: BPF: 5–12 Hz,
RESP: 0.1–24 Hz,
EDA: LPF: 1.5 Hz

Public ECG, EDA,
BR

57 – FD Bagged Trees 89.80%

Gazi et al.[80] short spiderphobic
videos

Resampled to 1Hz us-
ing FIR anti-aliasing
filter, smoothed with 5-
s MAF

Public ECG, RESP,
EDA

57 – FD, Phasic and Tonic RF 88%

NOTE: PCA: Principle Component Analysis; TD: Time Domain; FD: Frequency
Domain
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3.3.4.2 Related work of DL Models on Anxiety Classification

Deep Learning (DL) techniques have gained prominence in anxiety classification by

leveraging their ability to automatically extract meaningful patterns from physiological

signals. Various studies apply CNN, LSTM, and hybrid architectures to enhance

classification accuracy. However, while DL models demonstrate strong performance,

traditional ML models often remain competitive, particularly with multimodal

physiological signals.

Several studies explore EEG-based DL approaches to classify anxiety. Mokatren

et al. [164] employed CNN, SVM, and KNN on EEG recordings of Social Anxiety

Disorder patients. CNN achieved the highest accuracy of 87%, outperforming SVM

with an accuracy of 79% and KNN with an accuracy of 75%. In one study, Liu et al.

[143] employed MSTCNN with a squeeze-and-excitation (SE) attention mechanism and

CNN+LSTM. The authors achieved the highest accuracy of 99.47% using MSTCNN-

SE. Similarly, Baghdadi et al. [30] extracted time and frequency domain features

from EEG signals and implemented multiple classifiers, including SVM, KNN, and a

Stacked Sparse Autoencoder (SSAE). The SSAE outperformed traditional ML models,

achieving an accuracy of 83.35%, reinforcing the effectiveness of feature learning in

enhancing classification performance. The results showed that the attention mechanism

enhances feature learning by selectively focusing on critical EEG regions, leading to

significant performance improvements. Similarly, Ezzi et al. [9] employed CNN and

CNN+LSTM and obtained the highest accuracy of 96.43%.

Multimodal physiological signal approaches have also shown enhanced classifica-

tion accuracy. Aristizabal et al. [22] integrated ECG, RESP, EDA, and cortisol features

using a neural network. The authors achieved the highest accuracy of 96.05% using

a Neural Network. However, in some cases, traditional ML models outperformed DL

Models. Henry et al. [101] evaluated ECG and BVP signals with DL models such as

ResNet and MLP but achieved a higher accuracy of 81.1% using SVM. The authors

achieved an accuracy of 71.5% and 64.2% using ResNet and MLP, respectively.

DL techniques have also been applied to ECG and EDA signals to capture autonomic

nervous system activity associated with anxiety. Grigoras, i et al. [251] employed a 1D

CNN on ECG signals and achieved the highest accuracy of 83.29%. Additionally,
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Table 3.6: Overview of anxiety classification studies using DL.

Author Stimuli Preprocessing Dataset
(Public/Private)

Signal Subjects Channels Features Algorithms Accuracy

Xie et al.[267] Stroop task BPF:0.5-100Hz,
notch: 50Hz

Private EEG 20 31 Brain network
features,
prefrontal
lateralization

CNN, RF, LR, MLP CNN: 67.67%,
RF: 87.69%, LR:
70.76%, MLP:
56.92%

Baghdadi et
al.[30]

Face-to-face
Stimulation

Finite impulse
response 4-45Hz,
EEGLAB artifact
removal

Public EEG 23 14 TD and FD SVM, KNN, SSAE SVM: 77.40%,
KNN: 81.40%,
SSAE: 83.37%

Arsalan et
al.[24]

TSST PSD Private EEG 65 4 – MLP, RF, LR MLP: 76.92%,
RF: 87.69%, LR:
70.76%

Aristizabal et
al.[22]

TSST – Private ECG, RESP,
EDA, Cortisol

18 – – Neural Network 96.05%

Muhammad et
al.[165]

Face-to-face
stimulation

FIR: 4-45Hz, PSD Public EEG 23 14 FD DT, KNN, SVM,
MLP, RF

DT: 85.39%,
KNN: 84.69%,
SVM: 86.98%,
MLP: 88.10%,
RF: 94.90%

Henry et
al.[101]

Anxiety inducing
video clips

BVP: 0.5-5Hz, ECG:
HPF

Public ECG, BVP 45 – TD and FD SVM, RF, XGB,
MLP, ResNet

SVM: 81.1%,
RF: 75.2%,
XGB: 65.3%,
MLP: 64.2%,
ResNet: 71.5%

Mohan et
al.[163]

Anxiety inducing
video clips

FOBF filter Public EEG 30 – TD and FD CNN, ANN, KNN Deep CNN:
97.6%, ANN:
94.5%, KNN:
80.3%

Liu et al.[143] – BPF: 4-30Hz, ICA Private EEG 81 – MSTCNN, SE at-
tention

MSTCNN,
CNN+LSTM,
Squeeze-and-
Excitation Networks
(SE)

MSTCNN:
99.19%,
CNN+LSTM:
97.25%,
MSTCNN +
SE Attention:
99.47%

Mokatren et
al.[164]

SAD Patients data BPF: 1-50Hz, FFT Private EEG 64 34 FD CNN, SVM, KNN CNN: 87%,
SVM: 79%,
KNN: 75%

Ezzi et al.[9] Social
performance
task

FIR BPF: 0.4-50Hz,
spatial filters

Private EEG 89 – FD CNN+LSTM, CNN CNN: 96.43%,
CNN+LSTM:
96.43%

Grigoras, i et al. Short spider pho-
bic videos

Bandpass filter (5-
12Hz)

Public ECG 57 – – 1D CNN 83.29%

NOTE: TD: Time Domain; FD: Frequency Domain

Muhammad et al. [165] analyzed EEG signals with multiple classifiers, including RF,

SVM, KNN, DT, and MLP. However, RF outperforms other models by achieving the

highest accuracy of 94.90%. Similarly, Arsalan et al.[24] applied MLP, RF, and LR on

EEG data, where RF achieved the highest accuracy of 87.69% and outperformed MLP

with an accuracy of 76.92%. Similarly, Xie et al. [267] applied CNN, RF, LR, and

MLP to EEG signals. The authors observed that RF outperformed CNN by achieving

the highest accuracy of 87.69% and showed that tree-based ML models provide a robust

classification for EEG data.

In conclusion, DL techniques significantly enhance classification accuracy.

However, traditional ML models continue to offer competitive performance, especially

in multimodal settings [267]. CNNs and hybrid networks effectively learn complex

spatial and temporal dependencies in EEG data [143]. On the other hand, SVM,

RF, and ensemble learning models still demonstrate superior results in certain cases,
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particularly for cardiovascular and electrodermal signals [101][22]. The choice

between ML and DL depends on the dataset, signal type, and preprocessing approach,

highlighting the ongoing need to balance computational complexity with classification

performance. Table 3.6 summarises the DL studies for physiological signals-based

anxiety classification.

3.3.5 Challenges in ML-Based Stress and Anxiety classification

In previous studies, ML techniques have shown advancements in stress and anxiety

classification of physiological signals. However, several challenges exist in the related

work.

1. Class Imbalance in Physiological Signal based Datasets: Several publicly

available datasets such as Spiderphobic [109] and DASPS [30] suffer from

imbalanced class distributions. This class imbalance skews ML models towards

predicting non-stress conditions, reducing sensitivity in detecting stress and

anxiety. Researchers have explored techniques such as SMOTE [54] and cost-

sensitive learning to mitigate this issue, but balancing class distributions remains

an ongoing challenge.

2. Feature Selection and Dimensionality Reduction: Physiological signals

generate high-dimensional data, which makes feature selection crucial for

optimizing model efficiency and interpretability. Studies applying filter-based

[115] [100][223], wrapper-based [169] [268][259], and hybrid feature selection

[96] techniques demonstrate improved classification performance. However,

determining the optimal feature subset and removing redundant or irrelevant

features without losing valuable information remains an open challenge.

3. Preprocessing Challenges: It is challenging to preprocess physiological signals

to remove noise and artifacts, especially in dynamic environments such as driving

and walking. Artifacts such as baseline drift, motion artifacts, and power line

interference can contaminate the signals, necessitating advanced filtering and

preprocessing techniques for accurate analysis [51].
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4. Trade-off between Accuracy and Computational Efficiency: DL models,

particularly CNNs and LSTMs, require substantial computational power,

limiting their deployment in real-time stress monitoring applications. While

traditional ML models such as SVM and RF offer computational efficiency,

they may struggle with capturing the complex temporal dependencies inherent in

physiological signals [206][164]. The trade-off between computational efficiency

and model accuracy necessitates further exploration of lightweight, real-time

capable ML solutions.

5. Lack of Explainability and Model Interpretability: ML models for stress

and anxiety classification often work as black boxes, which makes it difficult to

interpret how specific physiological features contribute to classification decisions.

Studies have emphasized the importance of explainability methods such as SHAP

and LIME for improving model transparency [231]. However, interpretability

remains challenging, particularly for DL models, which rely on hierarchical

feature representations.

6. Lack of Privacy Concerns: Traditional ML and DL approaches used in

automated stress and anxiety classification systems often lack mechanisms to

ensure users’ sensitive physiological data privacy during model training. This

limitation increases the risk of unauthorized access, enabling potential attackers

to exploit biometric and physiological information.

3.4 Answers to RQs

This thesis answers the following research questions based on the literature survey on

stress and anxiety classification using physiological signals:

• RQ1: What are the publicly available datasets used for stress and anxiety

classification, and what are their limitations?

Ans: Several publicly available datasets support stress and anxiety classification

using physiological signals. MAT [280] and SAM40 [84] provide EEG-

based recordings, while CLAS [150], SRAD [99], Spiderphobic [109], and
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AffDataset [95] include multimodal signals such as ECG, HRV, EDA, BVP,

and RESP. However, these datasets have several limitations. Most classify

stress into only two categories, restricting the analysis of varying stress levels.

Additionally, no publicly available dataset integrates EEG, HRV, EDA, and BVP

within an academic environment, limiting research on stress classification in

educational settings. Stress and anxiety classification in academic contexts

requires datasets that reflect the cognitive challenges students face. Incorporating

these physiological signals in such environments would improve research on

stress classification and intervention strategies. Furthermore, datasets like SRAD

[99], AffDataset [95], and DPPS [66] have small sample sizes, reducing their

generalizability.

• RQ2: What Machine Learning and Deep Learning techniques have been explored

for stress and anxiety classification using physiological signals?

Ans: Researchers have explored various ML and DL techniques for stress and

anxiety classification using physiological signals. Traditional ML models such

as SVM [29] [151][207][251], RF [80][248][223], KNN [29][26][277][188],

and DT[268][180][52][188] have been widely used due to their ability to

handle structured physiological data effectively. These models rely on feature

extraction techniques from EEG, ECG, EDA, and HRV signals to classify

stress and anxiety levels. Ensemble learning methods, including GBM

[251][79][51], ADB [188], and XGB [248], have further improved classification

accuracy by combining multiple weak classifiers into a robust predictive

model. In contrast, DL approaches, such as CNN [39][199][88][267][164] and

LSTM [91][247][108] networks, have gained attention for their capability to

learn complex temporal and spatial patterns from raw physiological signals.

Hybrid architectures combining CNNs with LSTMs [108][199][148][143][9]

or autoencoders [30] have shown promise in extracting high-level features

while maintaining temporal dependencies. Despite their success, DL models

require large datasets and extensive computational resources, whereas traditional

ML techniques offer competitive performance with fewer data and simpler

implementations. The choice of model depends on the dataset characteristics,
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signal type, and classification complexity, highlighting the ongoing need to

balance interpretability and accuracy in stress and anxiety classification systems.

• RQ3: What are the key challenges in developing robust Machine Learning

models for stress and anxiety classification?

Ans: Developing robust ML models for stress and anxiety classification presents

multiple interconnected challenges that affect performance and generalizability.

One major issue is class imbalance, as many publicly available datasets contain

skewed distributions, causing models to favor non-stress conditions and reducing

their sensitivity in detecting stress and anxiety [109] [30]. In addition, the

high dimensionality of physiological signals demands feature selection and

dimensionality reduction to retain only the most relevant information without

losing critical details. However, selecting optimal features remains complex,

particularly when combined with the challenge of preprocessing physiological

data. Noise, motion artifacts, and baseline drift often degrade classification

performance, requiring sophisticated filtering techniques for accurate analysis

[51]. Furthermore, computational efficiency is a concern, especially for DL

models like CNNs and LSTMs, which require substantial processing power and

limit their feasibility for real-time applications [206][164]. Model interpretability

further complicates development, as many ML and DL models function as

black boxes, making it difficult to understand their decision-making process

and limiting trust in automated systems. Additionally, privacy concerns remain

unresolved, as traditional ML and DL approaches often lack secure mechanisms

to protect sensitive physiological data, increasing the risk of unauthorized access

and exploitation. Addressing these challenges is crucial for improving stress and

anxiety classification models’ reliability, efficiency, and ethical considerations.

3.5 Evaluation Measures for ML-Based Stress and

Anxiety Classification

This section outlines the evaluation metrics essential for assessing the effectiveness of

stress and anxiety classification models. These measures are crucial for validating the
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performance of the proposed methodologies, which address both binary and multi-

level classification. It is essential to ensure the classification models’ reliability,

generalizability, and practical applicability, particularly in real-time scenarios involving

physiological signal data. The subsequent sections discuss various performance metrics

utilized in this study and their significance in stress and anxiety classification.

3.5.1 Classification Performance Measures

This thesis assesses the classification performance of the proposed stress and anxiety

classification models using widely recognized evaluation metrics, including the

Confusion Matrix, Accuracy, F1-score, Sensitivity, and Specificity. These metrics

provide a comprehensive understanding of the model’s effectiveness in distinguishing

between different stress and anxiety levels. The evaluation encompasses both binary

classification and multi-class classification. Each metric plays a critical role in

analyzing the model’s capability to handle imbalanced datasets, reduce misclassification

errors, and ensure overall reliability in real-world applications.

3.5.1.1 Confusion Matrix

The Confusion Matrix is a fundamental tool for evaluating the performance of

classification models. It presents a structured comparison between actual and predicted

classifications, allowing for a detailed analysis of model performance. Table 3.7 shows

that the matrix consists of four key components: True Positives (TP), True Negatives

(TN), False Positives (FP), and False Negatives (FN). These values illustrate how

accurately the model classifies stress and anxiety levels, highlighting areas where it

performs well and where misclassifications occur. The confusion matrix provides the

following performance metrics:

1. Accuracy: The proportion of correctly classified instances across all predictions

provides an overall measure of the model’s effectiveness.

2. F1-score: The harmonic mean of Precision and Recall, ensuring a balanced

evaluation of classification performance, is particularly useful when handling

class imbalances.
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Table 3.7: Confusion Matrix representation.

Predicted Positive Predicted Negative

Actual Positive True Positive False Negative

Actual Negative False Positive True Negative

3. Sensitivity: The percentage of actual positive cases correctly identified by the

model, indicating how effectively stress and anxiety states are detected.

4. Specificity: The proportion of actual negative cases correctly classified,

highlighting the model’s ability to distinguish non-stress and non-anxiety states.

3.5.1.2 Classification Accuracy

Classification accuracy is a fundamental metric for evaluating ML models. It measures

the proportion of correctly classified instances out of the total cases. Accuracy is

calculated as the sum of true positives (TP) and true negatives (TN) divided by the

total number of predictions, including false positives (FP) and false negatives (FN), as

shown in Equation 3.1:

Accuracy =
T P+T N

T P+T N +FP+FN
(3.1)

Accuracy provides an overall measure of a model’s performance. However, it is

not always reliable for stress and anxiety classification. The physiology-based datasets

often suffer from class imbalance, where non-stress cases significantly outnumber

stress cases. In such scenarios, a model may achieve high accuracy by predominantly

predicting the majority class while failing to detect actual stress cases effectively.

It makes accuracy insufficient, as a high value does not necessarily indicate good

classification performance.

False negatives are particularly concerning in stress and anxiety classification since

misclassifying stressed individuals as non-stressed can prevent timely intervention.

Similarly, false positives may lead to unnecessary concerns and interventions.

Therefore, additional metrics such as F1-score, Sensitivity, and Specificity are used

alongside accuracy to address these limitations. The F1 score balances precision
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and recall, which is more suitable for imbalanced datasets. While sensitivity ensures

that true stress cases are detected, specificity evaluates how well the model identifies

non-stress cases.

3.5.1.3 F1-score

F1-score is a crucial metric that balances precision and recall, providing a compre-

hensive evaluation of a classification model’s performance. It is particularly useful

when dealing with imbalanced datasets, as it considers both false positives and false

negatives. The F1-score is the harmonic mean of precision and recall, ensuring that

both metrics contribute equally to the final score. Equation 3.2 defines F1-score:

F1-score = 2× Precision×Recall
Precision+Recall

(3.2)

A high F1 score indicates that the model achieves a good balance between precision

and recall, reducing both false positives and false negatives. In stress and anxiety

classification, where misclassifications can lead to incorrect assessments of mental

health conditions, the F1-score provides a more reliable measure of performance than

accuracy alone. A low F1 score suggests that the model struggles either with identifying

positive instances or with minimizing false classifications, highlighting the need for

further optimization.

3.5.1.4 Sensitivity

Sensitivity, also known as recall or the true positive rate. It measures the model’s ability

to identify actual positive instances correctly. It represents the proportion of correctly

predicted positive cases out of all actual positive cases. A high sensitivity value

indicates that the model effectively detects positive instances, while a low sensitivity

value suggests that many positive cases are being misclassified as negative. Equation

3.3 defines the formula for sensitivity.

Sensitivity =
T P

T P+FN
(3.3)

Sensitivity plays a crucial role in correctly identifying individuals experiencing
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high stress or anxiety, especially in applications like medical diagnosis and stress or

anxiety classification, where missing positive cases can have severe consequences. A

model with low sensitivity may fail to detect such cases, leading to underdiagnosis or

inadequate interventions. However, high sensitivity alone does not guarantee overall

performance, as it must be balanced with specificity to avoid excessive false positives.

Therefore, optimizing sensitivity is essential for improving the reliability of stress and

anxiety classification systems while minimizing misclassifications.

3.5.1.5 Specificity

Specificity measures a model’s ability to correctly identify negative cases by

distinguishing between actual negatives and false positives. It is particularly important

in stress and anxiety classification to avoid falsely diagnosing individuals who are not

experiencing these conditions. A high specificity indicates that the model effectively

excludes non-stressed or non-anxious individuals, reducing unnecessary interventions.

However, the model must balance specificity with sensitivity to classify both stressed

and non-stressed individuals accurately. Equation 3.4 defines formula for specificity:

Specificity =
T N

T N +FP
(3.4)

Maintaining a balance between sensitivity and specificity is essential for developing

an effective stress and anxiety classification system that minimizes false positives and

false negatives.

3.5.1.6 Area Under the Receiver Operating Characteristic Curve (AUC-ROC)

The Receiver Operating Characteristic (ROC) curve plots the true positive rate

(sensitivity) against the false positive rate (1-specificity) across different classification

thresholds. It visually represents the trade-off between sensitivity and specificity for

a classification model. The Area Under the ROC Curve (AUC-ROC) quantifies the

overall ability of the model to discriminate between classes. An AUC value of 1

indicates perfect classification, while an AUC of 0.5 suggests performance equivalent

to random guessing. Higher AUC values reflect better model performance across

varying threshold settings, making it a robust metric for evaluating imbalanced datasets
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Figure 3.6: Illustration of ROC curve and the Area Under the Curve. The AUC
quantifies the model’s performance across all threshold levels [28].

and classification reliability. Figure 3.6 illustrates the ROC curve and the corresponding

AUC. The shaded region under the ROC curve represents the area that quantifies the

classifier’s ability to separate the positive and negative classes.

3.5.2 Statistical Analysis

This thesis utilizes statistical analysis to assess the significance of selected features and

validate model performance. Statistical analysis plays a crucial role in ML. It ensures

that the extracted features meaningfully contribute to classification rather than arise

from random variations in the data. Applying statistical methods allows researchers

to determine whether specific physiological signals effectively distinguish between

different stress and anxiety levels. This process is particularly important in feature

selection, as it removes irrelevant or redundant features, enhancing model efficiency

and interpretability.

This work employs Analysis of Variance (ANOVA) as a statistical technique to

evaluate feature significance in stress and anxiety classification. ANOVA quantifies the

variance between groups to identify distinguishing features and determine whether

physiological signal differences across stress and anxiety levels are statistically

significant. It produces an F-value, which measures the ratio of variance between and

within groups, providing insight into the relevance of each feature. The corresponding

p-value further indicates the likelihood that observed differences occur by chance,

with a lower p-value (typically x≤ y 0.05) confirming that a feature holds meaningful

discriminative power.
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3.5.3 ANALYSIS OF VARIANCE (ANOVA)

Statistical analysis plays a crucial role in validating feature selection and assessing the

significance of extracted features in classification tasks. The Analysis of Variance

(ANOVA) can be utilized to determine whether the means of different groups

vary significantly. ANOVA helps identify features that contribute meaningfully to

classification rather than being influenced by random variations by analyzing variance

within and between groups. This method assumes that observations are independent,

follow a normal distribution, and have equal variance across groups. ANOVA computes

an F-statistic to evaluate the significance of differences among feature groups. The F-

statistic is calculated using the following Equation 3.5:

F =
MSB

MSW
(3.5)

where MS_B is the Mean Square Between groups and MS_W is the Mean Square

Within groups. The p-value, derived from ANOVA, quantifies the probability that

the observed differences occur due to chance. A low p-value (typically p ≤ 0.05

0.05) indicates that a feature significantly contributes to classification, ensuring that the

model captures meaningful distinctions rather than noise. Conversely, a high p-value

suggests that the feature lacks statistical relevance and may not improve classification

performance. Since the F-value and p-value are inversely related, a high F-value

typically corresponds to a low p-value, reinforcing the statistical importance of a

feature.

3.6 Summary

This chapter reviews ML-based stress and anxiety classification, which covers publicly

available datasets, classification techniques, challenges, evaluation metrics, and

statistical validation methods. It explores physiological signal-based datasets for model

development. It further provides a comprehensive review of related studies and presents

the application of signal processing and feature selection techniques across stress and

anxiety classification. It highlights the role of traditional ML models, such as SVM, RF,

and KNN, along with DL approaches, like CNNs and LSTMs, for stress and anxiety
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classification. While DL techniques effectively capture complex patterns in EEG

signals, traditional ML models often outperform them with multimodal physiological

signals. The discussion identifies distinct major challenges in stress and anxiety

classification. The chapter explains accuracy, F1-score, sensitivity, and specificity

to emphasize the importance of handling imbalanced data and assessing classification

performance. Finally, it highlights statistical analysis using ANOVA, ensuring that

selected features hold significant discriminatory power for classification.

This chapter is based on the following work:

• J4: Shikha, Divyashikha Sethia, and S. Indu. ”A Systematic Review on

Physiology-based Anxiety Detection using Machine Learning” Biomedical

physics & engineering express (2025): 1-36. ESCI, Impact factor: 1.3,

Publisher: IOP Science. Doi: https://doi.org/10.1088/2057-1976/

add5fc. (Published).

• Conference 2: Shikha, Divyashikha Sethia, and S. Indu. "A Review on Feature

Selection Techniques for Anxiety Classification from Physiological Signals." In

Proceedings of the IEEE International Conference on Advances in Computer

Science, Electrical, Electronics, and Communication Technologies (CE2CT),

2025. Doi: https://doi.org/10.1109/CE2CT64011.2025.10939412.

(Published).
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Chapter 4

KRAFS-ANet: A Scientific

Methodology for EEG-Based Stress

Classification

This chapter presents a lightweight and automated framework, KRAFS-ANet, for

EEG-based stress classification. The framework integrates automated EEG channel

selection with an ensemble stacking model to enhance classification efficiency and

performance. The channel selection process identifies the most relevant EEG channels

while reducing computational complexity. Additionally, the framework conducts

comprehensive experiments and employs an ensemble stacking approach that combines

bagging-based models as base classifiers, with an Artificial Neural Network (ANN)

serving as the meta-classifier. The use of ensemble stacking also enables the exploration

of prediction probability-based features to improve deep learning performance further.

The chapter further demonstrates that the robustness and generalizability of KRAFS-

ANet are validated across three benchmark datasets: MAT [280], SAM40 [84], and

DASPS [30].

4.1 Motivation

EEG signals offer a non-invasive and objective approach for mental stress classification.

However, raw EEG recordings typically include multiple channels, many of which
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contribute minimal information, resulting in increased computational overhead and

reduced efficiency in real-time or wearable systems. While several studies rely on

manual channel selection based on neuroscience expertise, these approaches lack

scalability and generalizability across datasets [223][76][91].

Furthermore, Deep learning models such as CNNs and LSTMs have demonstrated

high accuracy in EEG-based stress classification. However, their significant

computational demands and lack of interpretability make them less practical for real-

world applications, especially in resource-constrained environments [206][247][148].

These limitations highlight the need for lightweight and interpretable frameworks that

can efficiently process EEG data without compromising accuracy.

Ensemble stacking presents a promising solution that combines multiple classifiers

to enhance performance while maintaining low complexity. Yet, the integration of au-

tomated, data-driven channel selection with ensemble stacking remains underexplored

in EEG-based stress detection. This chapter addresses these challenges by proposing

a robust and efficient KRAFS-ANet framework, which leverages Normalized Mutual

Information (NMI) and Recursive Feature Elimination (RFE) for channel selection and

integrates an ensemble stacking model to improve classification accuracy and system

efficiency.

Contributions:

The key contributions of this chapter are as follows:

1. Exploration of ML, DL, and Ensemble Techniques: Conduct comprehensive

experiments on the MAT dataset [280] to compare the performance of machine

learning, deep learning, bagging, and stacking models for EEG-based stress

classification.

2. Development of the KRAFS-ANet Framework: Propose a novel ensemble

stacking framework that combines NMI and RFE for automated channel selection

and integrates bagging KNN, bagging RF, and bagging SVM with an ANN as

the meta-classifier.

3. Validation on Multiple Benchmark Datasets: Evaluate the proposed frame-

work on the SAM40 [84] and DASPS [30] datasets to demonstrate its robustness

and generalizability for stress and anxiety classification.
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Figure 4.1: KRAFS-ANet framework: EEG-based stress classification proposed
methodology with channel selection and ensemble stacking.

4.2 Experimental Methodology

This section explores the MAT dataset [280] to develop an efficient methodology

that integrates a channel selection algorithm for stress classification. Further, it

conducts extensive experiments with ML, DL, bagging, and various ensemble stacking

techniques, as shown in Figure 4.1. It validates the effectiveness of the proposed

methodology using the EEG-based SAM40[84] and DASPS[30] datasets.

4.2.1 Dataset Description

The KRAFS-ANet framework employs the MAT dataset [280] as the primary dataset

and validates its performance on the secondary SAM40 [84] and DASPS [30] datasets,

as summarized in Table 4.1

1. MAT Dataset [280]: This dataset contains EEG recordings from 36 students

performing mental arithmetic tasks. Participants engage in serial subtraction of

two numbers while using 23 channels of EEG signal. Each recording consists of

artifact-free EEG segments, including a resting state with closed eyes and EEG

data during mental tasks. It utilizes data sampled at 500Hz from 20 electrodes

arranged in a 10–20 pattern across the scalp.

2. SAM40 Dataset [84]: This dataset includes EEG recordings from 40
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Table 4.1: Summary of EEG datasets utilized for KRAFS-Anet framework.

Description/
Dataset

MAT [280] SAM40 [84] DASPS [30]

Domain Stress Stress Anxiety
Participants 36 40 23
Experimental Task
and relax phase

Mental arithmetic
task

SCWT, mental
arithmetic, mirror
image and relax
phase

Recitation (15 sec)
and self-recall (15
sec) for six anxiety-
inducing scenarios

EEG Device Neurocom EEG
System

Emotiv Epoc Flex
Gel Kit

Emotiv EPOC

EEG Electrodes 19 32 14
Sampling Rate 500 Hz 128 Hz 128 Hz

participants, consisting of 14 females and 26 males, with an average age of

21.5 years. EEG signals were collected while participants engaged in three

cognitive tasks: the Stroop color-word test (SCWT), solving arithmetic problems,

and identifying symmetric mirror images, along with a relaxation state. The

experiment aims to assess short-term stress responses triggered by these tasks.

Each task runs for 25 seconds and repeats across three trials. EEG data is recorded

using a 32-channel Emotiv Epoc Flex gel kit and segmented into non-overlapping

25-second epochs based on the performed tasks.

3. DASPS Dataset [30]: This dataset contains raw EEG recordings in .edf format

collected from 23 participants. The authors capture EEG signals using a 14-

channel Emotiv EPOC wireless EEG headset with a sampling rate of 128 Hz.

Additionally, the dataset provides preprocessed data in .mat format. During the

recording sessions, participants experienced six anxiety-inducing scenarios while

keeping their eyes closed and minimizing movement. Each scenario includes two

phases: a 15-second description by a psychotherapist, followed by 15 seconds in

which participants recall the scenario. After completing the sessions, participants

evaluated their emotional states using the SAM scale.

114



4.2.2 Data Preprocessing

The EEG signal preprocessing involves multiple steps to enhance signal quality and

ensure reliable classification. This work applies ICA using the FastICA technique to

remove physiological artifacts and separate independent signal sources. Further, it

utilizes the MNE 4 1 Python package to process the EEG signals by applying a 5th-

order Butterworth bandpass filter from the 4 to 44 Hz range. Additionally, this work

applies SMOTE to the SAM40 dataset [84] to handle the class imbalance issue caused

by unequal numbers of stress and relaxation segments.

4.2.3 Channel Selection

In EEG-based stress classification, each channel may contribute several features, which

will lead to a substantial increase in the feature vector space. Previous research

has utilized feature selection techniques to optimize the number of features without

eliminating channels [26][268][197][24]. Although feature selection applied across

multiple channels can achieve high accuracy in a laboratory environment. However,

its practical efficiency tends to decrease in home-based or everyday applications due

to longer setup times and increased user discomfort. As a result, identifying the most

relevant channels for source localization becomes important for developing a more

practical and user-friendly stress assessment system.

In many studies, channel selection approaches rely heavily on neuroscience

expertise [223][91][137], correlating specific brain regions with tasks related to

mental stress. However, researchers have applied various EEG channel selection

techniques in distinct domains like emotion classification, using methods such as

ReliefF [274], Maximum Relevance Minimum Redundancy (mRMR) [269], and NMI

[255]. Nevertheless, limited research exists on channel selection for stress classification.

The current study utilizes an automated channel selection approach to optimize

the performance of EEG-based stress classification. The proposed framework

employs NMI to identify complex, non-linear relationships between EEG channels and

stress labels, which provides a comprehensive measure of shared information [255].

Additionally, it implements RFE to iteratively refine the channel selection process,
1https://mne.tools/stable/generated/mne.preprocessing.ICA.html
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Figure 4.2: KRAFS-Anet Framework: Number of channels and accuracy rate using
NMI in RF-based stress classification.

reduce redundancy, and retain the most informative channels.

4.2.3.1 NMI-RFE Channel Selection

This work utilizes preprocessed EEG signals and computes NMI for each channel

corresponding to stress labels during the channel selection process. Channels with

higher NMI values contain more relevant information for stress classification. The

method ranks all channels in descending order based on their NMI values and selects

the top channels with the highest mutual information as the most informative for

classification.

Furthermore, it evaluates the average classification accuracy using the RF algorithm,

which is selected based on its superior performance during preliminary experiments

without channel selection. As shown in Table 4.4, RF achieves the highest accuracy

compared to other classifiers. Figure 4.2 presents the variation in average classification

accuracy for the MAT [280], SAM40 [84], and DASPS [31] datasets as the number of

selected channels changes. The results suggest that selecting 12, 18, and 10 channels

yields optimal performance for the MAT [280], SAM40 [84], and DASPS [30] datasets,

respectively. It further applies the RFE algorithm across all three datasets to enhance
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Table 4.2: KRAFS-Anet Framework: Summary of extracted EEG features on selected
channels.

Domain Feature Name No of Features
Hjorth Parameters (Activity, Mobility, Complexity) 3
Higuchi Fractal Dimension 1
Peak to Peak Amplitude 1

Time Domain Mean 1
Variance 1
Standard Deviation 1
Skewness 1
Kurtosis 1
Relative Power of Theta (4–8 Hz), Alpha (8–12 Hz),
Beta (12–35 Hz)

3

Frequency
Domain

Band Power Ratio of Theta/Alpha, Alpha/Beta 2

Spectral Entropy 1

the selection process. This refinement results in a final selection of 9 channels for the

MAT [280], 12 for the SAM40 [84], and 6 for the DASPS [30].

4.2.4 Feature Engineering

The KRAFS-Anet framework utilizes features from multiple domains to enhance

classification accuracy. Table 4.2 presents a comprehensive summary of the extracted

features. Section 2.2.1 in Chapter 2 explains the detailed description of EEG features.

Further, MinMax normalization is applied to all extracted features to ensure consistent

scaling.

For feature selection, the study employs the Least Absolute Shrinkage and Selection

Operator (LASSO). This regression-based technique applies L1 regularization to

eliminate less relevant features by driving their coefficients to zero. It enhances model

efficiency by selecting the most informative features while reducing redundancy.

4.2.5 Bagging

Bagging, or Bootstrap Aggregating, is an ensemble learning technique commonly used

in supervised machine learning for classification and regression tasks. Breiman et

al. [262] introduced this method in 1996 to improve accuracy and reduce overfitting.
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Table 4.3: KRAFS-Anet Framework: Selected hyperparameters of machine learning
and deep learning models.

Model Selected Hyperparameters
RF criterion: ’gini’, max_depth: ’20’, max_features: ’sqrt’, min_samples_leaf:

’1’, min_samples_split: ’2’, n_estimators: ’100’
DT criterion: ’gini’, max_depth: ’8’, min_samples_leaf: ’1’, min_samples_split:

’2’
KNN metric: ’minkowski’, n_neighbors: ’5’, p: ’2’, weights: ’uniform’
SVM C: ’1.0’, degree: ’3’, gamma: ’scale,’ kernel: ’rbf’
Adaboost learning_rate: ’1.0’, n_estimators: ’150’
ANN activation: ’tanh’, learning_rate: ’0.001’, hidden_layer_sizes: ’(100, 50)’,

optimizer: ’adam’
CNN Filters: ’32’; Activation Function:’Relu’ and ’tanh’; pooling

layer:’MaxPooling’; Dropout rate: ’0.5’; Dense Layer Size: ’32’

The approach generates multiple subsets of training data through bootstrapping, a

process that randomly selects samples with replacement. These subsets are then trained

in parallel using numerous weak classifiers, which may be of the same or different

types. The final prediction is obtained by aggregating the outputs of all classifiers. In

regression tasks, the model averages the predictions through a process known as soft

voting. In contrast, in classification tasks, it selects the most frequently predicted class

through hard voting [233][240].

This study utilizes hard voting, as represented in Equation 4.1.

Ĝbag(x) = argmaxk f̂bag(x) (4.1)

Ĝbag(x) denotes the predicted class label for input x, k represents each class from

the set of possible classes, and f̂bag(x) is the aggregated (bagged) estimate function for

class k.[97].

4.2.6 Ensemble Stacking

Stacking is an ensemble learning approach that utilizes a meta-model to improve

predictive performance. This technique integrates predictions from multiple base

learners and uses a separate classifier to make the final prediction. Wolpert et al.

[263] introduced stacking in 1992 to minimize bias and variance and enhance model
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accuracy. The framework consists of two layers, where the first layer includes multiple

base learning algorithms, and the second layer features a meta-learner that combines

their outputs. It divides the dataset into training and validation sets using k-fold

cross-validation, where k-1 folds train the base models, and the remaining fold serves

for validation. Equation 4.2 describes how the base learners generate probability

distributions for class predictions,

PM(x) = (PM(c1 | x),PM(c2 | x), ......,PM(cm | x)) (4.2)

where c denotes the class value, and PM(ci | x) represents the probability of x

belonging to ci [193].

4.2.7 Hyperparameter Optimization

The hyperparameter tuning process utilizes GridSearchCV 2 to determine the optimal

hyperparameters that maximize accuracy. This method systematically explores a

predefined grid of hyperparameter values and evaluates each combination using

stratified 10-fold cross-validation. The combination that achieves the highest

performance is selected and finalized to enhance model efficiency. Table 4.3 presents

the chosen hyperparameters for each algorithm.

4.3 Experimental Framework

This section illustrates the comprehensive experiment for the KRAFS-ANet framework,

as shown in Figure 4.3. The experimental process follows these phases:

1. The KRAFS-Anet framework utilizes data from the publicly available MAT

[280], SAM40 [84], and DASPS [31] datasets.

2. The raw EEG signals undergo preprocessing to remove noise and artifacts.

3. Further, the framework applies NMI+RFE for channel selection on the

preprocessed signals. This approach selects 9 out of 20 channels from the
2https://rb.gy/kvlswi
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Figure 4.3: Comprehensive experiment for KRAFS-ANet Framework.

MAT dataset [280], 12 out of 32 from SAM40 [84], and 6 out of 14 from DASPS

[30].

4. Feature selection takes place on both the full set of channels and the selected

channels. The study employs LASSO to reduce dimensionality and enhance

classification performance. It also applies MinMax normalization using the

Sklearn library to ensure uniform feature scaling.

(a) Experiment 1 applies machine learning and deep learning models to all

extracted and selected features. Machine learning models include SVM,

KNN, RF, DT, and Adaboost, while deep learning models consist of CNN

and ANN. The study optimizes models using GridSearchCV with stratified

10-fold cross-validation.

(b) Experiment 2 evaluates machine learning and deep learning models on

the selected features from the selected channels. The study compares the

performance of models with and without channel selection and observes

better results with chosen channels. Table 4.5 shows that among machine

learning models, RF, SVM, and KNN achieve the highest accuracy, while

ANN performs best in deep learning. The study continues experimentation

with RF, SVM, and KNN in machine learning and ANN in deep learning.
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It selects ANN for its lightweight nature, universal approximation ability,

and capability to maintain high accuracy even with smaller datasets. Its

lower computational complexity makes it suitable for resource-constrained

devices.

(c) Experiment 3 introduces bagging ensemble models using the best-

performing classifiers from machine learning and deep learning on selected

channels. Each classifier undergoes hyperparameter tuning through

GridSearchCV, leading to improved accuracy.

(d) Experiment 4 implements a novel stacking ensemble model by combining

bagging KNN, bagging RF, and bagging SVM. The study employs ANN as

the meta-classifier and optimizes it using GridSearchCV. All experiments

maintain a constant random state of 42. The final model achieves peak

accuracy values of 98.63% on the MAT [280], 97.25% on the SAM40 [84],

and 94.92% on the DASPS [30] datasets.

4.4 Experimental Results

This section discusses the experimental results obtained in the development of the

KRAFS-ANet framework for EEG-based stress classification.

4.4.1 Performance Measure

This work evaluates the KRAFS-ANet framework using performance metrics such as

confusion matrix, Accuracy (Acc), F1-score (F1), Sensitivity (Sens), and Specificity

(Spec), as detailed in section 3.7. The model undergoes 10-fold cross-validation, where

the dataset is divided into ten equal parts, treating each part as a test set in rotation.

This approach ensures model reliability and stability. The confusion matrix further

analyzes classification performance by comparing predicted and actual labels.

4.4.2 Experiment 1: Before Channel Selection

Table 4.4 presents the classification performance of machine learning and deep learning

models on the MAT [280], SAM40 [84], and DASPS [31] datasets before applying
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Table 4.4: KRAFS-Anet Experiment 1: Classification performance before channel
selection.

MAT [280] SAM40 [84] DASPS [31]

Model Acc. (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%)

RF 86.81 85.58 87.69 83.56 84.44 84.78 85.65 83.26 83.17 82.84 82.42 84.90

DT 74.1 73.46 73.5 75.36 68.72 69.01 69.12 68.3 67.64 66.83 66.34 68.02

KNN 77.23 76.83 76.82 79.61 82.9 83.86 84.54 82.17 75.84 76.15 76.93 75.38

SVM 79.75 80.62 81.62 84.58 76.5 77.08 75.61 77.47 84.98 84.99 83.74 85.5

Adaboost 74.03 76.48 79.45 71.59 66.25 65.49 66.49 66.02 69.01 70.93 70.34 69.73

ANN 87.23 87.75 89.83 84.53 85.58 85.71 87.81 83.41 83.32 83.83 83.17 84.23

CNN 78.05 79.98 80.02 78.03 71.5 71.12 69.59 73.54 70.37 70.09 69.4 72.62

channel selection. For MAT [280], RF, KNN, and SVM achieve the highest accuracies

among machine learning models, with 86.81%, 77.23%, and 79.75%, respectively.

Adaboost and DT achieve lower accuracies of 74.03% and 74.1%, respectively. Among

deep learning models, ANN performs the best with an accuracy of 87.23%, while CNN

achieves an accuracy of 78.05%.

SAM40 [83] shows a similar trend, where RF, KNN, and SVM outperform other

machine learning models with accuracies of 84.44%, 82.9%, and 76.5%, respectively.

ANN achieves the highest accuracy among deep learning models with 85.58%.

Adaboost and DT achieve an accuracy of 66.25% and 68.72%, respectively. CNN

provides moderate results with an accuracy of 71.5% and an F1-score of 71.12%.

Figure 4.4 presents the 10-fold cross-validation results for the three datasets.

For DASPS [30], SVM and RF achieve the highest accuracies of 84.98% and

83.17%, respectively, while ANN performs similarly with 83.32%. KNN records a

moderate accuracy of 75.84%, while Adaboost and DT achieve 69.01% and 67.64%,

respectively. CNN continues to show lower performance, obtaining an accuracy of

70.37%, which is consistent with its results on the other datasets.

4.4.3 Experiment 2: After Channel Selection

Experiment 2 applies the NMI-RFE algorithm to the preprocessed datasets to identify

the most relevant EEG channels. It results in the selection of 9 channels for the MAT

[280], 12 channels for the SAM40 [84], and 6 channels for the DASPS [31]. Following

channel selection, the thesis performs feature extraction and applies the LASSO feature

selection algorithm to retain the most informative features from the selected channels.
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[268] [79]

[28]

Figure 4.4: KRAFS-Anet Experiment 1: 10-fold cross-validation on classification
algorithms before channel selection.

[268] [79]

[28]

Figure 4.5: KRAFS-Anet Experiment 2: 10-fold cross-validation on classification
algorithms after channel selection.
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Table 4.5: KRAFS-Anet Experiment 2: Classification performance after channel
selection.

MAT [280] (9 channels) SAM40 [84] (12 channels) DASPS [31] (6 channels)

Model Acc (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%)

RF 90.76 90.82 89.32 91.77 91 90.85 92.25 89.81 87.26 87.25 86.35 88.17

DT 78.02 78.04 77.43 76.36 79.3 79.56 80.12 77 74.34 74.30 73.14 73.24

KNN 82.55 82.83 82.96 80.44 84.48 85.69 88.9 80.57 81.29 81.18 82.79 81.80

SVM 82.8 82.78 81.83 81.9 89.4 89.4 90.34 97.82 85.67 85.53 83.65 85.68

Adaboost 78.67 77.06 79.1 77.22 70.5 71.32 74.72 66.83 71.27 72.54 71.30 71.84

ANN 86.85 86.92 87.92 85.77 90.72 90.62 91.76 89.72 85.37 85.36 84.38 85.87

CNN 78.58 78.82 78.23 79.86 78.17 78.43 78.69 77.66 74.67 74.61 74.06 75.19

Table 4.5 presents the classification performance of machine learning and deep learning

models after channel selection, demonstrating a significant improvement in accuracy.

On MAT [280], RF achieves the highest accuracy and F1-score, reaching 90.76% and

90.82%, respectively. ANN follows with an accuracy of 86.85% and an F1-score of

86.92%.

For SAM40 [84] and DASPS [30], channel selection enhances the performance of

most models. Random Forest achieves the highest accuracy in both datasets, increasing

from 84.44% to 91.00% in SAM40 [84] and from 83.27% to 87.26% in DASPS

[30]. KNN and SVM also show substantial improvements, while ANN remains the

best-performing deep learning model, achieving 90.72% in SAM40 [84] and 85.37%

in DASPS [30]. Although DT and Adaboost demonstrate minor improvements after

channel selection, they continue to show the lowest accuracy compared to other models.

Figure 4.5 illustrates the 10-fold cross-validation results after channel selection.

Across all datasets, ANN consistently outperforms CNN, as both models operate on

pre-extracted features instead of raw EEG signals. CNN performs best when applied to

raw data or images, where convolutional layers can learn hierarchical spatial patterns

[29]. The reliance on pre-extracted features limits CNN’s ability to leverage spatial

feature extraction, making ANN a more suitable choice for processing these features.

As a result, ANN achieves higher accuracy than CNN in stress classification.

4.4.4 Experiment 3: Bagging Model

Recent advancements in ensemble learning have demonstrated its effectiveness in

improving the performance of traditional classification algorithms. Tables 4.4 and
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Table 4.6: KRAFS-Anet Experiment 3: Classification performance of the bagging
models on the MAT [280] and SAM40 [84] datasets.

MAT [280] SAM40 [84] DASPS [31]

Model Acc (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%) Acc (%) F1 (%) Sens (%) Spec (%)

Bagging
RF

92.25 92.32 92.54 94.32 91.63 91.48 92.6 90.72 90.45 90.77 89.53 91.45

Bagging
KNN

84.62 84.41 86.34 83.3 87.61 87.91 89.36 85.82 85.77 86.17 84.50 87.18

Bagging
SVM

90.18 90.44 92.31 91.54 92.85 92.8 91.61 94.1 86.79 86.43 84.49 89.07

Bagging
ANN

87.23 86.75 89.83 84.53 91.36 91.2 89.35 93.37 88.82 89.44 91.02 87.44
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Figure 4.6: KRAFS-Anet Experiment 3: Confusion matrices of bagging models for
MAT [280].
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Figure 4.7: KRAFS-Anet Experiment 3: Confusion matrices of bagging model for
SAM40 [84].

4.5 indicate that RF, SVM, KNN, and ANN consistently achieve the best results for

EEG-based stress classification across all datasets. Based on these findings, Experiment

3 builds bagging models for these high-performing algorithms to enhance classification

accuracy and model robustness.

Table 4.6 presents the classification performance of the bagging models on MAT

[280], SAM40 [84], and DASPS [31] datasets. On MAT [280], the bagging RF model

achieves the highest accuracy of 92.25%, followed by bagging SVM with 90.18% and

bagging ANN with 87.23%. SAM40 [84] shows a similar trend, where bagging SVM

outperforms other models with an accuracy of 92.85%. Bagging RF and bagging ANN

also show competitive performance, achieving 91.63% and 91.36%, respectively.

For DASPS [30], bagging RF achieves the highest accuracy of 90.45%, followed

by bagging ANN with 88.82%. Bagging SVM and bagging KNN also perform well,
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Figure 4.8: KRAFS-Anet Experiment 3: Confusion matrices of bagging models for
DASPS [31].
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Figure 4.9: KRAFS-ANet framework: Ensemble stacking of bagging models integrated
with an ANN meta-classifier

attaining accuracy of 86.79% and 85.77%, respectively. The Figures 4.6, 4.7, and 4.8

illustrate the confusion matrices. It provides insights into the stability and reliability of

the bagging models across all datasets.

4.4.5 Experiment 4: Proposed KRAFS-ANet Framework

Stacking differs from bagging by integrating multiple heterogeneous algorithms into a

single model using a meta-classifier, combining their predictive strengths to improve

classification performance. Experiment 4 builds the KRAFS-ANet framework by

merging the four most effective models from previous experiments, each optimized

with its best hyperparameters.

The stacking model begins with parallel stacking, where bagging KNN, bagging RF,

and bagging SVM generates prediction probability-based features (PBF). These features

are then concatenated and passed into an ANN deep learning algorithm, which serves as

the meta-classifier due to its superior performance over a bagging ANN. GridSearchCV

optimizes the meta-classifier to achieve the highest possible accuracy. Figure 4.9
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Figure 4.10: KRAFS-Anet Experiment 4: Confusion matrices and ROC curve for stress
classification.

illustrates the proposed ensemble stacking model structure for stress classification.

Table 4.7 presents the classification performance of KRAFS-ANet on MAT [280]

and its validation on the SAM40 [84] and DASPS [31] datasets. On MAT [280],

KRAFS-ANet achieves an accuracy of 98.63%, an F1-score of 98.82%, a sensitivity

of 98.23%, and a specificity of 99.11%, demonstrating its robustness in stress

classification. The thesis further validates the model on SAM40 [84] and DASPS

[30], achieving accuracies of 97.25% and 94.92%, respectively. The corresponding

F1-scores are 97.24% for SAM40 and 95.15% for DASPS, confirming the model’s

ability to generalize effectively across different datasets. Figure 4.10 shows the analysis

by illustrating the confusion matrix and ROC curve, providing insights into the model’s
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Table 4.7: KRAFS-ANet Experiment 4: Proposed framework classification
performance on MAT [280], SAM40 [84], and DASPS [31] datasets.

Proposed Framework Acc (%) F1 (%) Sens (%) Spec (%)
MAT [280] (9 Channels)

KRAFS-ANet 98.63 98.82 98.23 99.11
SAM40 [84] (12 Channels)

KRAFS-ANet 97.25 97.24 97.39 97.12
DASPS [30] (6 Channels)

KRAFS-ANet 94.92 95.15 95.70 94.07

classification performance and ability to distinguish stress levels accurately.

4.5 Discussion

Recent studies have explored machine learning techniques for stress classification using

physiological data. However, applying these models in real-world scenarios remains

challenging, highlighting the need for lightweight and adaptable approaches. This

work presents an optimized ensemble stacking-based KRAFS-ANet framework for

efficient stress classification. The framework integrates machine learning, bagging,

and ensemble stacking techniques with a systematic channel selection approach. The

study conducts experiments on the EEG-based MAT [280] and further validates the

framework using the SAM40 [84] and DASPS [30] datasets.

Table 4.8 presents a comparative analysis of the selected classifiers across different

evaluation metrics for all four experiments, demonstrating the contribution of each

base model. The results from Experiment 2 show significant improvements over

Experiment 1, primarily due to the integration of channel selection using NMI+RFE.

The combination of the NMI+RFE algorithm offers two key advantages. First, it retains

the most relevant channels while eliminating redundant ones, optimizing the model’s

ability to identify distinct stress-related patterns in EEG signals. Second, it enhances

the signal-to-noise ratio, leading to a more precise and effective stress classification

model.

This work identifies the most informative EEG channels by considering the non-

stationary nature of EEG data and individual variations in brain activation patterns in

response to stress stimuli. MAT [280] involves arithmetic tasks, where the selected
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Table 4.8: KRAFS-Anet Framework: Stress classification performance of the final
models in each experiment on MAT [280], SAM40 [84], and DASPS [31] datasets for
KRAFS-Anet.

Experiment Classifier
MAT [280] SAM40 [84] DASPS [30]

Train Acc (%) Test Acc (%) F1 (%) Train Acc (%) Test Acc (%) F1 (%) Train Acc (%) Test Acc (%) F1 (%)

Experiment 1

RF 91.44 86.81 85.58 88.95 84.44 84.78 85.15 83.17 82.84

KNN 83.02 77.23 76.83 87.22 82.90 83.86 78.99 75.84 76.15

SVM 84.80 79.75 80.62 81.90 76.50 77.08 88.51 84.98 84.99

ANN 91.17 87.23 87.75 90.24 85.58 85.71 87.46 83.32 83.83

Experiment 2

RF 94.84 90.76 90.82 94.82 91.00 90.85 91.71 87.26 87.25

KNN 86.47 82.55 82.83 89.54 84.48 85.69 84.20 81.29 81.18

SVM 85.93 82.80 82.78 93.57 89.40 89.40 87.34 85.67 85.53

ANN 89.53 86.85 86.92 95.15 90.72 90.62 90.17 85.37 85.36

Experiment 3

Bagging RF 95.58 92.25 92.32 95.88 91.63 91.48 92.15 90.45 90.77

Bagging KNN 87.44 84.62 84.41 92.51 87.61 87.91 88.86 85.77 86.17

Bagging SVM 92.12 90.18 90.44 96.10 92.85 92.80 90.37 86.79 86.43

Bagging ANN 89.52 87.23 86.75 94.39 91.36 91.20 91.52 88.82 89.44

Experiment 4 Proposed KRAFS-ANet 99.17 98.63 98.82 99.75 97.25 97.24 97.57 94.92 95.15

channels include Fp1, F7, F8, Fp2, O2, P3, T3, Fz, and T6. For SAM40 [84],

which incorporates arithmetic tasks, Stroop tests, and mirror image tests, the identified

channels are F2, FT8, FT10, F8, PO10, CP5, P8, C3, FCz, and CP1. Similarly, for

DASPS [30], where participants recite and recall anxiety-inducing scenarios, the final

selected channels are AF4, F7, T7, T8, FC6, and O2, representing the most informative

regions for anxiety classification.

Figure 4.11 depicts the predominant activation of the brain’s right hemisphere

during stress and anxiety, particularly in the frontal, temporal, parietal, and occipital

lobes. In Figure 4.11 (a), the activation is evident in regions such as the frontal (Fp1,

F7, F8, Fp2, Fz), temporal (T3, T6), parietal (P3), and occipital (O2) areas for MAT

[280]. Previous studies have also reported right hemisphere dominance during stress,

especially in tasks such as MAT [280], showing activation patterns in the frontal,

temporal, parietal, and occipital regions, which align with the findings of this study

[223][247][75].

Figure 4.11 (b) illustrates stress-related activation in the SAM40 [84], primarily

observed in the frontal and right hemispheres. The activated regions include the frontal

(F2, F8), frontotemporal (FT10, FT8), parietal-occipital (PO10), and central-parietal

(CP5, P8, CP1) areas. SAM40 [84] consists of distinct tasks, indicating the involvement

of both the frontal and central lobes, particularly in the right hemisphere [56][253].

Fig. 4.11 c) illustrates similar findings for DASPS [31] for anxiety classification.

The selected channels also exhibit significant activation in the right hemisphere,
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Figure 4.11: Selected EEG channel location after NMI+RFE based channel selection
a) 9 channels selected for MAT [280], b) 12 channels selected for SAM40 [84], c) 6
channels selected for DASPS [31] datasets.

particularly in regions such as the frontal (AF4, F7), temporal (T7, T8), and occipital

(O2) lobes. These findings align with the stress-related activation patterns observed

in the other datasets, confirming the involvement of both frontal and temporal regions

during stress. The selection of channels like FC6, T7, and O2 further supports the

notion that stress responses vary across different tasks but consistently engage specific

brain regions across datasets. Thus, these findings reveal that recognizing mental stress

and anxiety for different tasks involves distinct combinations of EEG channels.

The results from Experiment 3 demonstrate that the bagging ensemble significantly

improves accuracy across all stress and anxiety classification datasets. For MAT

[280], bagging RF achieves notable performance with a moderate increase in accuracy.

Bagging KNN also enhances classification results, although its improvement is less

significant. Bagging SVM shows substantial gains across all performance metrics,

likely due to the ensemble’s ability to refine decision boundaries. In contrast, bagging

ANN exhibits only a slight accuracy increase of 0.38%, indicating stability but limited

performance gains compared to other models. SAM40 [84] also benefits from slight

improvements across the machine and deep learning models, with each bagged classifier

contributing to enhanced classification performance.

DASPS [30] further highlights the effectiveness of the bagging ensemble approach,

with bagging RF achieving an accuracy improvement of approximately 3.5%. Bagging

KNN, SVM, and ANN also show performance increases of 4.5%, 1.3%, and 3.45%,

respectively, compared to their standalone counterparts. These findings demonstrate
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how bagging leverages the complementary strengths of individual classifiers to enhance

overall classification accuracy. The ability of RF to handle complex non-linear

relationships and the localized classification insights of KNN contribute significantly

to the improved performance of the ensemble model.

In Experiment 4, the KRAFS-ANet framework employs a stacking approach by

integrating bagging RF, bagging SVM, and bagging KNN, with bagging ANN as

the meta-classifier. This approach aggregates the strengths of individual bagged

classifiers, further enhancing classification performance. The results demonstrate

superior accuracy across all datasets. MAT [280] achieves the highest accuracy

of 98.63% with an F1-score of 98.82%. Similarly, SAM40 [84] and DASPS [30]

datasets obtain peak accuracies of 97.25% and 94.92%, with F1-scores of 97.24% and

95.15%, respectively. These findings validate the effectiveness of ensemble stacking

and emphasize the importance of data-driven channel selection in improving EEG-

based stress classification across different datasets.

4.5.1 KRAFS-ANet Framework: Lightweight and Efficient

The KRAFS-ANet framework incorporates several key strategies to ensure a lightweight

and efficient design:

1. Channel Selection: The framework applies a systematic channel selection

approach to identify the most informative EEG channels. This approach

reduces the input data size while preserving high classification accuracy. By

optimizing the number of channels, the model lowers computational complexity

and minimizes memory usage.

2. Feature Selection: The framework employs LASSO feature selection to extract

the most relevant features, reducing data dimensionality. This approach decreases

computational overhead while enhancing model interpretability and efficiency.

3. Bagging: The framework integrates bagging with parallelization, allowing

multiple base classifiers to train simultaneously. It reduces training time while

maintaining computational efficiency, ensuring the ensemble model remains

lightweight despite its complexity.
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Table 4.9: KRAFS-ANet framework performance comparison with the base ensemble
stacking model.

Model Dataset
NMI+RFE
Channel
Selection

No of
Channels

Total
Features

Selected
Features

using LASSO

Acc (%) F1 (%)
Execution
Time (sec)

Data Usage
(MB)

Ensemble stacking:

Bagging(KNN+RF+SVM)

+ANN

MAT [280] × 20 320 158 92.48 93.32 2394.34 1266.53

SAM40 [84] × 32 512 160 90.59 92.01 3129.94 1881.43

DASPS [31] × 14 224 72 91.24 90.51 190.44 396.66

Proposed KRAFS-ANet
Framework

MAT [280] ✓ 9 144 16 98.63 98.82 878.67 836.31
SAM40 [84] ✓ 12 192 37 97.25 97.24 1370.32 1130.15
DASPS [31] ✓ 6 96 17 94.92 95.15 103.28 236.07

Time and Memory Efficiency: The KRAFS-ANet framework is evaluated based on

execution time and peak memory usage to assess its lightweight design. These metrics

demonstrate the model’s efficiency, particularly in resource-constrained environments.

1. Execution Time: The total duration required for the model to complete its entire

process, measured in seconds.

2. Peak Memory Usage: The highest amount of RAM consumed during model

execution, measured in megabytes.

Table 4.9 compares the KRAFS-ANet framework, which integrates channel

selection and feature selection, with a base ensemble stacking model that does not

include channel selection. This comparison evaluates the impact of channel selection

on accuracy, F1-score, data usage, and execution time across the MAT [280], SAM40

[84], and DASPS [30] datasets.

For MAT [280], accuracy improves by 6.2%, while execution time decreases by

63.3% and memory usage reduces by 34%. SAM40 [84] achieves a 7.3% accuracy

increase, with execution time decreasing by 56.2% and memory usage dropping by

40%. Similarly, in DASPS [30], accuracy improves by 3.68% with NMI+RFE, while

execution time decreases by 46.7% and memory usage reduces by 40.4%. These

enhancements reduce computational overhead while enhancing accuracy and F1-score

across all datasets.

4.5.2 Comparison with Existing Studies

Table 4.10 presents a comparative analysis of the proposed approach against existing

studies focusing on channel selection and stacking. In a previous study on MAT [280],
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Table 4.10: KRAFS-Anet framework performance comparison with existing studies.

Author Domain Dataset
Channel Selection
Approach

No of
Channels

Feature Domain FSA Algorithm Acc (%)

Sharma
et al. [223]

Stress MAT [280]
Frontal and anterior

frontal lobe channels
7

Time-frequency

domain
Fisher Score WOA + SVM WOA+SVM: 97.25

Malviya et al. [148] Stress MAT [280] — 19 Frequency domain CNN CNN+BiLSTM CNN+BiLSTM: 99.20

Fatimah et al. [75] Stress MAT [280]
Analysis on different

channels performance
1 Frequency domain Kruskal-Wallis Test LR, SVM, KNN

SVM: 98.6,

LR: 95.8,

KNN: 93.1

Mathur et al. [153] Stress SAM40 [84] — 17 Frequency domain Kruskal-Wallis Test DT, KNN, SVM

DT: 87.30,

KNN: 92.38,

SVM: 93.38

Sim et al. [232] Stress SAM40 [84] — 32
Time-frequency

domain (DWT)
PCA, PCA+ICA, LDA Rusboost, Adaboost

Rustboost: 79.08,

Adaboost: 72.42

Hemakom et al. [100] Stress Kaggle [100] — 8 Frequency domain
ANOVA

F-value

NB+LR+AB+KNN

+RF+SVM+RBF-SVM

SVM(Male):71.57,

SVM(Female):62.60,

SVM(Mixed): 64.08

Aldayel et al. [15] Anxiety DASPS [31]
Manually selected

based on affected

brain regions

10
Time, Frequency,

Time-Frequency domain
—

KNN, Adaboost,

GB, RF, LDA, SVM
RF: 87.5

Xie et al. [266] Emotion DEAP [132] — 32 Entropy
Linear Discriminant

Analysis
(LGB+XGB+RF)+XGB

Valence -79.06,

Arousal -77.19

Proposed Work
Stress
and
Anxiety

MAT [280],
SAM40 [84],
DASPS [31]

NMI+RFE
MAT: 9,
SAM40: 12,
DASPS: 6

Time and
Frequency domain

Lasso

(Bagging RF +
Bagging KNN +
Bagging SVM) +
ANN

MAT: 98.63,
SAM40: 97.25,
DASPS: 94.92

Sharma et al. [223] selected seven channels from the frontal and anterior frontal lobes

and applied the Fisher score feature selection algorithm. Using SVM optimized with

the Whale Optimization Algorithm (WOA), the study achieved 97.25% accuracy for

an 8-second window. These findings emphasize the frontal region’s role in stress

classification due to its involvement in emotional and cognitive processes. However,

restricting channel selection to the frontal lobe may omit crucial information from other

brain regions that contribute to stress responses.

Fatimah et al. [75] [76] conducted two studies on the MAT [280], evaluating

single-channel performance and achieving a 98.6% accuracy using LR and QDA. Their

findings identified C3 as the most informative channel for stress classification. While

their approach demonstrates that high accuracy can be obtained with a simple model,

relying on a single channel may overlook the complex and distributed brain activity

associated with stress responses.

Malviya et al. [148] applied Discrete Wavelet Transform (DWT) to preprocess 19-

channel EEG signals before feeding them into a stacked CNN + BiLSTM model. The

CNN extracted relevant features, which the BiLSTM model further processes. Their

approach achieved 99.20% accuracy, demonstrating the effectiveness of deep learning

with multi-channel data. However, the high computational demands and resource

requirements limit its practical application, particularly in wearable technologies that
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require efficient real-time processing and user comfort. Mathur et al. [153] and Sim et

al. [232] analyzed the SAM40 [84], achieving maximum accuracies of 79.08% using

Rustboost and 71.57% with a stacking algorithm, respectively. In previous research,

Aldayel et al. [15] analyzed the DASPS [30] and used a manual channel selection

approach, selecting 10 channels based on affected brain regions and achieving 87.5%

accuracy with Random Forest (RF). However, this method introduces subjectivity and

may reduce the model’s adaptability to diverse datasets and individual differences.

To the best of our knowledge, no prior research has investigated channel selection

combined with ensemble stacking for EEG-based stress classification. This study

compares the proposed approach with state-of-the-art models used in emotion

classification to evaluate its effectiveness, as presented in Table 4.10. Previous studies

by Xie et al. [266] and Aquino et al. [21] applied stacking techniques on the DEAP [132]

dataset, utilizing 32 EEG channels. Xie et al. [266] developed an ensemble stacking

model incorporating LGB, XGB, and RF for EEG-based emotion classification. Their

approach achieved 79.06% accuracy for valence and 77.19% for arousal, employing

Linear Discriminant Analysis (LDA) for feature selection. Similarly, Aquino et al. [21]

proposed an EEG-based stacking model combining CNN, SVM, and DT, attaining an

accuracy of 94.6% using all 32 channels.

In contrast, the KRAFS-ANet framework applies NMI + RFE to reduce the number

of channels from 20 to 9 in the MAT [280] while incorporating an effective feature

selection technique. This work further validates the framework on SAM40 [84], where

12 channels are selected, achieving an accuracy of 97.25% for stress classification.

Although this approach may result in a slight accuracy reduction compared to Malviya et

al. [148], it significantly enhances computational efficiency and real-world adaptability.

Integrating optimized channel and feature selection with an ensemble stacking approach

ensures that KRAFS-ANet surpasses existing stress classification methods in both

performance and efficiency.

4.5.3 Limitations

The KRAFS-ANet framework enhances stress classification using EEG signals;

however, it has certain limitations:
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1. Signal-Modality: The framework relies solely on EEG signals, which require

a complex setup and may not be practical for daily use. Multimodal wearable

systems combining multiple physiological signals can offer a more practical and

comprehensive approach to real-world stress assessment.

2. Feature Interdependency: While LASSO effectively reduces dimensionality, it

may not fully capture interdependencies and interactions between features, which

can affect classification performance.

4.6 Summary

The KRAFS-ANet framework incorporates an ensemble stacking model that effectively

classifies EEG-based stress levels while maintaining computational efficiency through

automated, data-driven channel selection. It enhances prior work by integrating

KNN, RF, SVM, and ANN as meta-classifiers, optimizing performance through

NMI+RFE-based channel selection and LASSO feature selection. The framework

systematically selects the most informative EEG channels, reducing data dimensionality

while preserving classification accuracy.

This chapter performs four comprehensive experiments for the KRAFS-ANet

framework and validates the proposed methodology on the MAT [280], SAM40

[84], and DASPS [30] datasets. Experiments 1 and 2 assess model performance

with and without channel selection, confirming its impact on classification accuracy.

Experiments 3 and 4 explore ensemble techniques, demonstrating that ensemble

stacking significantly improves classification performance. The KRAFS-ANet model

achieves 98.63% accuracy on MAT [280], 97.25% on SAM40 [84], and 94.92%

on DASPS [30], outperforming existing stress classification methods. This chapter

concludes that effective channel selection and ensemble stacking improve EEG-based

stress classification, making the framework scalable, computationally efficient, and

well-suited for real-world applications.
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Chapter 5

Academic Stress Dataset Collection

and Wearable-Based Stress

Classification Optimization

This chapter presents the details of data collection for the Academic Stress Dataset

(ASD) during the Montreal Imaging Stress Task (MIST) [58] in an academic

environment for engineering students. It explores the feasibility of multimodal

physiological signals for automated stress classification. This chapter focuses on

collecting progressive stress data from engineering students using MIST [58] and

also examines the effectiveness of meditation in alleviating stress. A hybrid feature

selection approach, combining Genetic Algorithm and Mutual Information (GA+MI),

is employed to identify the most significant features. Further, Bayesian optimization

fine-tunes machine learning classifiers for automated stress level classification.

5.1 Motivation

Students in academic environments often experience significant stress due to

examinations, deadlines, and demanding academic responsibilities. Prolonged

exposure to academic stress adversely affects mental and physical health, contributing

to anxiety, sleep disturbances, and reduced cognitive performance. Although numerous

studies have used physiological signals for stress classification, existing datasets rarely
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capture stress as a gradual and progressive condition specific to academic contexts.

To induce stress under controlled conditions, researchers have adopted various

experimental tasks, including public speaking [79][152], questionnaires [24], pro-

gramming contests [42], and games [65]. Among these, MIST [58] is a widely

validated protocol that induces stress in a gradually increasing manner through time-

constrained arithmetic challenges, making it particularly well-suited for evaluating

cognitive load and mental workload in academic environments. Previous studies

[276][11] have employed EEG with MIST for stress classification. While EEG offers

valuable insights into brain activity, its susceptibility to noise and the discomfort of

electrode placement limit its practical applicability. In contrast, wearable devices such

as smartwatches offer non-invasive and continuous monitoring of physiological signals,

including Electrodermal Activity (EDA), Blood Volume Pulse (BVP), and Inter-Beat

Interval (IBI).

However, no existing study has combined the MIST protocol with multi-

modal physiological signals such as ECG, EDA, and BVP for stress classification

[158][266][222][94][41][100]. Furthermore, most publicly available datasets support

only binary classification, limiting the ability to capture stress severity and progression.

Datasets such as MAT [280], CLAS [150], and SAM40 [84] do not incorporate the

MIST task, despite its ability to model stress gradually and realistically. Additionally,

despite the distinct academic pressures experienced by engineering students, no dataset

has been specifically developed to investigate academic stress using physiological

signals in this population.

Contributions:

The key contributions of this chapter are as follows:

1. Collecting Multimodal Physiological Academic Stress Dataset (ASD): ASD

collects data by recording EDA, IBI, and BVP from the Empactica E4 smartwatch.

The ASD dataset is collected from students under varying stress levels induced

by the MIST, ensuring a progressive representation of stress in an academic

environment. Additionally, ASD incorporates meditation phases, showing an

analysis of how relaxation techniques impact physiological stress responses.
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2. Automated Stress classification through Machine Learning: A hybrid feature

selection approach combining Genetic Algorithm (GA) and Mutual Information

(MI) is implemented to extract the most relevant physiological features. Machine

learning models are then optimized using Bayesian optimization to enhance the

accuracy and efficiency of automated stress classification.

3. Explainable AI for Feature Importance Analysis: Integrate SHAP (Shapley

Additive Explanations) Explainable AI (XAI) to determine the most influential

physiological features contributing to stress classification. It enhances model

transparency and helps understand the physiological markers most indicative of

stress.

4. Visualization of Meditation’s Impact on Stress Reduction: Analyze the effect

of meditation on stress alleviation using dynamic visualizations of physiological

data. This analysis provides insights into how meditation influences physiological

responses, contributing to stress management strategies for students.

5.2 Dataset Collection Procedure

The data collection procedure follows strict ethical guidelines to prioritize participant

well-being. The ethics committee approves these guidelines. Before the experiment

begins, researchers inform all participants about the stress-inducing nature of the study

and obtain informed consent. Each participant completes the Perceived Stress Scale

(PSS) [125] questionnaire to evaluate their self-reported stress levels. Participants also

retain the right to withdraw from the study at any stage without penalty.

1. Participants: This study collects physiological data from 36 engineering students

aged 17 to 25 at Delhi Technological University, India. Among them, 32 are male, and

four are female. However, due to missing IBI data caused by movement artifacts, the

final dataset includes 30 participants. Before data collection begins, participants are

provided with a detailed explanation of the study protocol and its objectives.

Trained personnel closely monitor participants throughout the experiment to ensure

their safety and well-being. A debriefing session follows the experiment, allowing

participants to express concerns or discomfort experienced during the procedure. The
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experimental protocol consists of five distinct phases: Neutral Phase, Rest Phase,

Controlled Phase, Experimental Phase, and Recovery Phase.

1. Neutral Phase: This phase is a training stage where participants become familiar

with MIST. This phase introduces the test interface, control mechanisms, and

answer format. The test consists of single-digit answers ranging from 0 to 9.

Participants respond using a rotary dial displayed on the screen, which they can

control by clicking the left and right mouse buttons.

2. Rest Phase: In this phase, participants sit in a comfortable and relaxed position

while minimizing movement. A blank screen remains displayed throughout

this phase. The primary objective is to establish each participant’s baseline

physiological state before proceeding with the next stages of the experiment.

3. Controlled Phase: In this phase, participants solve arithmetic questions of

distinct difficulty levels without any time constraints. They are encouraged to

answer as many questions as possible correctly. This phase does not provide

feedback. This stage is labeled as "mild stress" in the study.

4. Experimental Phase: This phase introduces adaptive arithmetic questions

designed to induce increased stress levels through time constraints and social

comparison. Each question runs on a timer, and the screen displays the partici-

pant’s current performance score alongside an artificially inflated average score

representing all participants. This artificially set score remains unattainable,

fostering a sense of competition and increased pressure. Additionally, the

task dynamically adjusts difficulty based on performance. Incorrect or delayed

responses lead to an increased time limit for the next question, whereas three

consecutive correct answers shorten the time limit for the following question.

This phase effectively induces higher stress and is labeled "high stress".

5. Recovery Phase: The final phase evaluates physiological changes as participants

transition back to a relaxed state. During this phase, participants engage in a stress

alleviation task by listening to guided meditation audio while sitting comfortably

with closed eyes. This phase is classified as "low stress" in the study.
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Figure 5.1: ASD acquisition procedure.

The study begins with a 2-minute training phase followed by a 3-minute neutral

phase, allowing participants to familiarize themselves with the task. Next, participants

complete a 5-minute control and a 5-minute experimental phase, where stress levels

progressively increase. The study concludes with a 5-minute recovery phase, during

which participants engage in stress alleviation activities. 1-minute rest phases are placed

between the control, experimental, and rest phases to ensure proper segmentation, as

shown in Figure 5.1.

2. Physiological Signal Monitoring with Empatica E4: The ASD utilizes the

Empatica E4 wristwatch to monitor physiological signals throughout the experiment

continuously. The device integrates four primary sensors, including a temperature

sensor, an accelerometer, EDA sensors, and PPG sensors. The PPG sensor records both

IBI and BVP signals. Data is transmitted via Bluetooth to a connected smartphone and

monitored in real-time using the E4 Real-time app. After collection, the system uploads

the data to Empatica’s cloud platform, E4 Connect, for further processing. It generates

.csv files containing Skin Temperature (ST), BVP, IBI, EDA, HR, and acceleration.

The sampling rate is 4 Hz for ST and EDA and 64 Hz for IBI, HR, and BVP.

5.3 Experimental Methodology for Automated Stress

Classification

This section describes the methodology illustrated in Figure 5.2. The methodology first

performs data preprocessing to improve signal quality and remove potential noise. It

then performs feature extraction and selection to identify the most relevant physiological

features. Finally, different classifiers process the features and use Bayesian optimization

to enhance predictive performance.
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Figure 5.2: Academic Stress Dataset (ASD): Proposed methodology for stress
classification in an academic environment.

5.3.1 Data Preprocessing

This work aims to analyze physiological signals recorded by the Empatica E4 and

assess the accuracy of the proposed machine learning model. Although data collection

occurs in a controlled laboratory environment, signal quality may still be affected

by factors such as sensor detachment, outliers, and missing values. Therefore, signal

preprocessing is necessary to enhance the signal-to-noise ratio and preserve meaningful

information.

Labeling: Before preprocessing, the experiment segments the data based on

consecutive sessions. Three-level stress classification labels the control phase as "Mid

Stress," the experimental phase as "High Stress," and the recovery phase as "Low

Stress."

Signal Windowing: Signal windowing helps extract detailed temporal patterns from

continuous physiological data. This experiment applies a ten-second rolling window

with a 50% overlap to the wristband data, ensuring maximum information retention
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from the recorded signals.

1. Interbeat Interval (IBI): The IBI.csv file contains time intervals between successive

heartbeats derived from the PPG sensor. The study preprocesses and analyzes the

IBI data using the hrvanalysis 1 module in Python, which provides a comprehensive

suite of HRV analysis tools. It facilitates preprocessing, R-peak detection, and feature

extraction.

Data Cleaning: The IBI data consists of missing values and outliers. This experiment

applies interpolation techniques to handle outliers and ensure data continuity. Wearable

devices often introduce gaps in the IBI series due to discarded ectopic beats or

undetected heartbeats, which can impact HRV analysis accuracy. It applies the "malik"

method for correcting ectopic beats and improving data reliability to address this issue.

2. Electrodermal Activity (EDA): Among the five recorded features, BVP and IBI have

the highest sampling frequency at 64 Hz. Therefore, the study upsamples the EDA

signal from 4 Hz to 64 Hz, enabling uniform signal processing to match this frequency.

To remove potential artifacts, a Savitzky-Golay filter [41] is applied with a 40-point

window and a sigma of 400 ms, smoothing the signal and improving its quality. After

preprocessing, only artifact-free segments proceed to the feature extraction stage.

2. Blood Volume Pressure (BVP): The Empatica E4 extracts the BVP signal from the

PPG sensor. The experiment applies an HPF to remove low-frequency noise. The filter

sets the cut-off frequency between 0.05 and 0.5 Hz to retain only the relevant signal

components. Further, it employs a median filter to refine the signal. This filtering

technique scans the signal point by point, replacing each value with the median of its

neighboring entries, effectively reducing noise while preserving signal integrity.

5.3.2 Feature Extraction

The Empatica E4 [68] device provides IBI data used to extract HRV features. HRV

features are computed across time, frequency, and non-linear domains using the

hrvanalysis Python module. Similarly, Blood Volume Pulse (BVP) data undergoes

statistical feature extraction using the NumPy 2 module. For EDA processing, the study
1https://pypi.org/project/hrv-analysis/
2https://pypi.org/project/numpy/
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Table 5.1: Summary of multi-domain features extracted from EDA, IBI, and BVP
signals for ASD.

Feature Domain Features Feature ID
EDA Statistical var_gsr, mean_gsr, kurtosis_gsr, skew_gsr, std_gsr 1-5
EDA Tonic SCL_slope (tonic), var_scl, mean_scl, kurtosis_scl, skew_scl,

slope_scl, std_scl
6-12

EDA Phasic scr_peaks (phasic), var_scr, mean_scr, kurtosis_scr, skew_scr,
max_scr, std_scr

13-19

HRV Time Domain median_nni, mean_nni, pnni_50, nni_50, nni_20, pnni_20,
hrv_sdnn, hrv_rmssd, hrv_sdsd, range_nni, cvnni, cvsd,
max_hr, mean_hr, std_hr, min_hr, tinn, triangular_index, cvi,
sd1, csi, sd2, sampen, ratio_sd1_sd2, HR_max-HR_min

20-44

HRV Frequency
Domain

total_power, lf, vlf, hf, lf_hf_ratio, hfnu, lfnu 45-51

BVP Statistical Mean BVP, standard deviation, maximum, minimum, power
VLF BVP, power LF BVP, power HF BVP

52-58

employs the PyEDA 3 package in Python to extract phasic and tonic features from the

preprocessed signal. It extracts 58 features from HRV, EDA, and BVP, categorizing

them according to their respective domains, as summarized in Table 5.1. Chapter 2

Sections 2.2.2, 2.2.3, and 2.2.5 discuss HRV, EDA, and BVP features in detail.

5.3.3 Feature Selection

5.3.3.1 Genetic Algorithm with Mutual Information (GA-MI)

This work enhances the GA for feature selection by incorporating MI to improve stress

classification. Table 5.2 presents the parameters for implementing the GA Feature

Selection Approach (FSA). Additionally, Figure 5.3 illustrates the core process of the

GA combined with MI for feature selection in a physiology-based stress dataset. The

following section details the step-by-step procedure of this method:

1. Initial Population Generation: The process begins by defining a population size

p, which represents the number of chromosomes in the initial population. Each

chromosome ci is a binary string of length n, where n denotes the total number of

features in the physiology-based stress dataset. Each bit ci j within the chromosome

corresponds to a specific feature f j. To introduce diversity, each bit ci j is randomly

assigned a value of 0 or 1, ensuring that the initial population comprises a broad range

of potential feature subsets.
3https://pyeda.readthedocs.io/en/latest/
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Table 5.2: Parameters for implementing Genetic Algorithm.

Parameter Description Value
Initial Population Number of chromosomes in the initial

population
100

Evaluation Criteria Metric used to assess chromosome fitness Mutual Information
(MI)

Reproduction
Operators

Genetic operators for generating new
offspring

Single-point crossover,
mutation rate: 0.05

Crossover Rate Probability of crossover occurring be-
tween chromosomes

0.8

Selection Criteria Method for selecting chromosomes based
on fitness

Fitness-proportional se-
lection with elitism

Termination Criteria Condition for stopping the GA iterations 100 generations or con-
vergence

2. Compute Mutual Information: MI quantifies the statistical dependence between two

random variables. In this step, MI is used to evaluate the relevance of a given feature

set, represented by a chromosome ci, to the target class y. A higher MI value signifies

a stronger relationship between the selected features and the target class.

For a chromosome ci, let Xci denote the subset of features selected by ci, meaning

features where the corresponding bits in ci are set to 1. Equation 5.1 computes MI

MI(ci,y) as follows:

MI(ci,y) = ∑
xεci

∑
yεY

p(x,y) log
p(x,y)

p(x)p(y)
(5.1)

where p(x,y) represents the joint probability distribution of feature values x ∈ Xci

and class labels y, while p(x) and p(y) represent their respective marginal probability

distributions. Chromosomes with the highest MI values proceed to the next phase of

the algorithm.

3. Fitness-Proportional Selection: In this step, the selection is based on fitness

proportionality, where the probability P(ci) of selecting a chromosome ci depends

on its MI value. Chromosomes with higher MI values are more likely to be chosen for

reproduction, ensuring that the algorithm prioritizes features with stronger relevance

to the target class. Equation 5.2 computes selection probability as follows:

P(ci) =
MI(ci,y)

∑
p
j=1 MI(c j,y)

(5.2)
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Figure 5.3: GA-MI feature selection algorithm.

where MI(ci,y) denotes the mutual information of chromosome ci, and the

denominator represents the total mutual information across all chromosomes in the

population.

4. Crossover and Mutation: The crossover operator simulates genetic recombination

by merging genetic material from two selected parent chromosomes to produce new

offspring chromosomes. This process facilitates the discovery of better feature

combinations by exchanging information between parents. The mutation operator

randomly modifies individual bits in the offspring chromosomes. These alterations

can introduce new features or eliminate irrelevant ones, enhancing diversity within

the population. The mutation prevents the algorithm from becoming trapped in local

optima and promotes exploration of a broader solution space.

5. Iteration and Termination: The algorithm repeatedly performs Steps 2 to 4, refining

the population across multiple generations. The process continues until it meets the

termination criterion, defined by the maximum number of generations Gmax. The

value of Gmax is typically determined through experimental evaluation, considering the

problem’s complexity and the required convergence level.

6. Optimal Solution: The algorithm identifies the optimal feature subset by selecting

the chromosome cbest with the highest MI value MI(cbest ,y) in the final generation.

This chromosome contains the most relevant features for the target class and aims to

enhance classification performance.
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5.3.4 Classification Algorithm

Following feature selection, the study splits the dataset into 80% for training and 20% for

testing. The study utilizes five classification algorithms to evaluate model performance:

Random Forest (RF), Decision Tree (DT), Support Vector Machine (SVM), K-Nearest

Neighbors (KNN), XGBoost (XGB), and Gradient Boosting (GB).

5.3.4.1 Bayesian Optimization

The performance of classification algorithms depends significantly on their hyper-

parameters, which influence model accuracy and generalization. Hyperparameter

optimization is essential for fine-tuning these parameters to achieve optimal perfor-

mance. Traditionally, parameter tuning has relied on trial-and-error experimentation

and subjective judgment, making it time-consuming and computationally demanding

[131]. However, grid search is a widely used method for hyperparameter tuning.

However, it becomes inefficient for models with a large number of hyperparameters

due to its high computational cost [105] [19].

Bayesian optimization offers a more systematic and efficient approach to hyper-

parameter tuning [178]. Studies have shown that Bayesian optimization outperforms

traditional methods in global optimization problems, particularly in hyperparameter

selection [105][74][245]. Given its advantages, this work employs Bayesian

optimization to fine-tune the hyperparameters of classification models for stress

classification. This method enhances the search process for optimal hyperparameters,

leading to improved model performance and efficiency.

5.4 Experimentation and Results

5.4.1 Preliminary Analysis and Optimization

1. Statistical Feature Analysis: This work employs ANOVA to assess the

distinctiveness of the optimal feature subset obtained through GA+MI feature selection.

Tables 5.3 present the statistical results for binary and three-level stress classifications.

The analysis in Tables 5.3 identifies multiple features with statistically significant

effects (p-value < 0.05) in distinguishing between different stress levels. In Table 5.3a,
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Table 5.3: ANOVA test for EDA+IBI+BVP feature subset using GA+MI feature
selection algorithm.

(a) 2-Level Stress Classification

Features F-Value P-Value
Min HR 2.77E+03 0.00E+00
mean_gsr 1.53E+03 0.00E+00
Mean HR 2.77E+03 0.00E+00
LF/HF 7.45E+00 1.00E-14
RMSSD RR 4.46E+01 3.05E-03
mean_scl 2.77E+03 4.25E-04
slope_scl 6.04E+01 6.36E-03
std_scr 2.04E+01 6.51E-01
Mean BVP 6.79E+00 9.69E-01

(b) 3-Level Stress Classification

Features F-Value P-Value
Mean HR 6.73E+04 0.00E+00
Min HR 5.74E+03 0.00E+00
mean_gsr 5.79E+03 0.00E+00
mean_scl 3.59E+03 3.10E-23
Power HF RR 3.62E+03 4.42E-13
LF/HF 3.59E+03 2.10E-04
RMSSD RR 2.11E+03 1.25E-03
Mean BVP 1.25E+03 3.90E-11
max_scr 9.43E+02 3.08E-03
Slope scl 1.25E+03 1.20E-05
STD RR/SDNN 5.23E+01 2.87E-02

features such as Min HR, mean_gsr, and Mean HR consistently demonstrate significance

across both binary and three-level classifications. Their high F-values and low p-

values further indicate their strong contribution to the model’s predictive performance.

Additionally, Table 5.3b highlights other significant features, including LF/HF, Power

HF RR, and STD RR/SDNN, which also play a crucial role in differentiating stress

levels.

2. Performance Measures: The following measures evaluate the performance of

machine learning classifiers in stress classification: Accuracy (Acc), F1-score (F1),

and Area Under the Curve (AUC). These metrics, derived from the confusion matrix,

comprehensively assess the model’s effectiveness. A detailed description of these

performance measures is available in Chapter 3, Section 3.7. Further, the model

undergoes 10-fold cross-validation, where the dataset is divided into ten equal parts,

treating each part as a test set in rotation. This approach ensures model reliability and

stability.

3. Hyperparameter Tuning: This work employs Bayesian hyperparameter

optimization to fine-tune classifier parameters and enhance model performance. Table

5.4 presents the optimal hyperparameters selected for the experiment. A comprehensive

experimental process is conducted to ensure the reliability and consistency of
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Table 5.4: List of hyperparameters used for ASD stress classification models.

Classifier Hyperparameter Value Range Selected
Value

RF

n_estimators [10, 40, 60, 80, 100, 150, 200] 200
max_depth [2, 4, 8, 10, 12, 14] 4
min_samples_split [3, 5, 10, 15] 3
random_state - 0

DT
max_depth [2, 4, 8, 10, 12, 14] 8
min_samples_split [2, 5, 10, 15, 20, 25] 10

KNN
n_neighbors [3, 4, 5, 6, 7, 9, 12, 14, 16] 6
metric ["euclidean", "manhattan", "minkowski"] "minkowski"
weights ["uniform", "distance"] "distance"

SVM
C [0.1, 1, 10] 1
kernel ["linear", "rbf"] "rbf"
gamma [0.01, 0.001, 0.0001, scale, auto] 0.1

XGB
n_estimators [50, 100, 200, 500, 700] 500
learning_rate [0.01, 0.001, 0.1, 0.2] 0.1
max_depth [2, 4, 8, 10, 15] 8

GB
n_estimators [100, 200, 500, 700, 900, 1000] 200
learning_rate [0.01, 0.001, 0.1, 0.2] 0.1
max_depth [2, 4, 8, 10, 12, 14] 4

computational results. This process identifies which hyperparameters should retain

their default values and which require optimization through the Bayesian approach.

5.4.2 Classification Results

Previous studies have not explored the integration of ECG and EDA for stress

classification in an academic environment during MIST. This work investigates

the potential of wearable sensors, specifically IBI, BVP, and EDA biomarkers, to

comprehensively assess stress responses.

The proposed stress classification methodology extracts distinctive features from a

high-dimensional dataset using the GA+MI FSA. Following feature selection, machine

learning classifiers, including RF, DT, SVM, KNN, XGBoost, and GB, are applied to

classify stress levels. The experiment employs 10-fold cross-validation and evaluates

average performance metrics to ensure reliability and stability.
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Table 5.5: ASD: Performance comparison of distinct physiological signals for 2-level
stress classification with 58 original feature sets.

Signals
RF DT SVM KNN XGB GB

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

EDA 76.4 77.69 84.4 76.32 75.61 78.3 55.7 55.69 60.2 60.15 59.57 69.67 78.93 77.91 87.3 85.12 85.64 94.63

IBI 83.84 83.62 89.42 80.37 79.11 83.65 78.72 78.88 86.52 80.5 80.33 83.98 82.92 81.4 86.83 86.54 86 93.02

BVP 83.91 83.92 88.54 78.61 78.75 78.37 54.7 55.03 64.29 78.83 78.73 86.66 82.88 83.97 88.29 85.53 85.91 91.4

EDA+IBI 93.35 92.54 97.03 90.22 90.47 95.03 83.96 83.5 87.1 83.5 81.45 87.4 92.94 92.98 96.7 94.97 95.35 97.86

IBI+BVP 89.76 89.67 95.02 86.22 87.14 92.64 79.71 80.78 84.98 83.88 83.75 89.75 90.00 90.1 95.69 92.02 92.56 96.94

EDA+BVP 88.3 88.13 93.76 87.37 87.35 91.54 62.15 62.03 67.7 80.91 82.55 87.32 88.21 88.16 94.72 91.93 91.91 97.38

EDA+IBI+BVP 93.37 92.43 97.83 90.54 90.87 94.15 84.54 83.21 89.26 84.59 85.63 90.41 92.23 91.67 97.36 95.67 95.73 98.59

Table 5.6: ASD: Performance comparison of distinct physiological signals for 2-level
stress classification with selected 9 features using GA-MI FSA.

Signals
RF DT SVM KNN XGB GB

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

EDA 81.89 80.6 88.86 78.3 76.98 81.92 55.93 54.07 60.58 69.85 66.8 72.81 80.27 80.69 87.71 88.61 88.5 94.02

IBI 85.1 85.32 92.76 78.8 78.2 80.55 80.7 80.73 89.05 82.8 82.79 90.93 84.41 84.67 90.11 90.86 90.71 97.07

BVP 85.2 85.18 92.77 79.00 79.48 82.24 55.7 55.68 64.96 82.9 82.91 89.48 85.12 85.3 92.78 87.3 88.9 93.94

EDA+IBI 94.66 94.76 98.82 92.98 92.94 97.32 84.04 84.14 89.83 90.21 91.24 96.34 95.3 95.2 98.27 97.07 97.05 99.03

IBI+BVP 91.87 91.67 96.53 88.07 88.34 94.84 82.63 82.68 88.03 85.15 86.94 90.04 91.86 91.87 97.18 94.83 95.26 98.21

EDA+BVP 89.21 89.8 94.44 87.37 88.66 93.23 64.13 64.25 70.2 82.91 83.28 88.74 90.15 90.15 96.03 93.42 93.98 97.72

EDA+IBI+BVP 95.5 95.08 99.83 93.84 93.71 97.53 84.54 84 90.44 91.15 91.89 95.53 95.66 95.65 98.64 98.28 97.44 99.78

Table 5.7: ASD: Performance comparison of distinct physiological signals for 3-level
stress classification with 58 original feature sets.

Signals
RF DT SVM KNN XGB GB

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

EDA 68.39 67.87 73.8 64.69 65.34 72.56 52.57 52.89 59.65 61.85 63.73 68.23 73.17 73.12 79.11 75.01 75.04 80.23

IBI 76.52 77.55 84.53 73.48 74.10 80.79 72.36 72.93 77.78 74.56 74.40 80.24 77.08 77.23 84.17 79.74 80.12 87.31

BVP 74.42 74.53 81.4 69.61 69.73 75.68 59.37 60.85 68.74 70.38 71.37 78.74 76.02 76.47 82.01 79.70 79.20 86.09

EDA+IBI 91.91 92.90 97.09 89.49 89.41 95.00 75.04 75.78 82.32 70.28 70.90 78.78 91.49 91.47 96.43 93.87 93.91 97.74

IBI+BVP 89.51 89.90 95.93 83.52 83.89 89.31 73.66 73.44 79.09 71.82 71.90 78.23 89.54 89.61 94.57 91.92 91.93 97.01

EDA+BVP 85.42 85.38 92.61 78.29 78.3 84.27 59.51 59.67 67.78 64.97 64.43 72.34 86.81 86.83 92.17 89.43 89.66 95.28

EDA+IBI+BVP 93.26 94.76 97.15 91.54 92.33 97.7 79.17 79.8 85.45 80.53 81.92 87.78 93.29 93.2 97.64 95.16 96.2 98.8

Table 5.8: ASD: Performance comparison of distinct physiological signals for 3-level
stress classification with selected 11 features using GA-MI FSA.

Signals
RF DT SVM KNN XGB GB

Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC Acc F1 AUC

EDA 71.6 70.32 77.98 67.07 68.34 73.3 52.52 52.78 59.78 67.13 67.42 72.26 75.17 75.27 81.56 79.23 79.98 87.76

IBI 79.93 79.27 89.48 75.88 75.56 84.84 75.26 75.08 83.1 77.3 77.63 86.04 80.04 80.41 87.72 82.93 82.91 89.48

BVP 77.15 77.13 83.17 70.83 70.85 77.66 64.31 64.18 72.67 72.23 73.01 80.34 78.63 78.85 85.3 82.45 83.46 88.11

EDA+IBI 93.12 94.23 98.21 91.76 91.98 97.78 76.68 76.23 83.32 73.07 73.87 79.77 93.16 93.28 97.16 95.23 96.05 98.47

IBI+BVP 90.43 90.35 96.95 84.98 84.65 92.02 75.11 75.74 81.54 73.65 73.25 79.67 90.06 90.4 95.82 92.78 92.24 97.63

EDA+BVP 88.48 88.35 93.7 80.62 80.57 86.45 62.98 62.62 68.96 77.77 77.92 84.21 89.03 89.02 95.6 91.45 91.42 96.42

EDA+IBI+BVP 95.65 96.56 99.52 93.95 94.83 98.4 80.61 80.67 87.67 89.16 90.57 95.42 95.66 95.75 98.13 97.02 96.53 99.13

Tables 5.5, 5.6, 5.7, and 5.8 present the experimental results for 2-level and 3-level

stress classification, both with and without feature selection. These results offer critical

insights into the effectiveness of the models in accurately distinguishing stress levels.
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For 2-level stress classification, analyzing individual physiological signals reveals

significant findings. Table 5.5 shows that EDA and BVP features perform similarly

without feature selection. Notably, IBI-derived HRV features achieve the highest

classification accuracy of 86.54%, highlighting their strong predictive capability.

Table 5.6 presents the classification results after applying the GA+MI FSA. The

findings indicate an accuracy improvement of 3.49% for EDA and 1.77% for BVP.

Additionally, IBI-derived HRV features show substantial performance gains, with

accuracy increasing by 4.32% and the F1-score improving by 4.71% following feature

selection. These results highlight the effectiveness of the GA+MI FSA in enhancing

stress classification accuracy.

Further, the feature combination of EDA and HRV achieves an accuracy of 94.97%

without feature selection, which increases to 97.07% after applying the GA+MI FSA.

However, incorporating all three features, including EDA, HRV, and BVP, results in a

modest accuracy improvement of 2.68%. Additionally, the study observes that RF, DT,

and KNN exhibit similar performance, while XGB and GB consistently outperform

other classifiers, both with and without GA+MI feature selection.

Tables 5.7 and 5.8 present the classification results before and after applying feature

selection, demonstrating improved performance in three-level stress classification. This

classification task adds complexity by distinguishing between low, medium, and high

stress levels. While individual EDA and IBI signals yield moderate performance,

their combination outperforms feature sets that include BVP. However, when using

the GB classifier, incorporating EDA, IBI, and BVP achieves the highest accuracy of

97.02%, F1-score of 96.53%, and AUC score of 97.47%, indicating its effectiveness in

multi-level stress classification.

The results demonstrate that applying feature selection, specifically the GA+MI

FSA, significantly improves classification accuracy. This improvement underscores

the importance of removing redundant features, which can negatively affect model

performance. Figure 5.4 compares the test accuracy between the original feature set

(Fo) and the selected feature set (Fs) for both 2-level and 3-level stress classification,

highlighting the effectiveness of feature selection in enhancing model efficiency.
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Figure 5.4: Comparison of test accuracy of different classification models for 2-level
and 3-level stress classification for the original feature set (Fo) and the selected feature
set (Fs).

5.4.3 Explainable AI

Figure 5.5a and 5.5c display bar plots that visualize SHAP (Shapley Additive

Explanations) values, highlighting the feature importance for 2-level and 3-level stress

classification, respectively. Each feature’s mean absolute SHAP value across all

samples determines its importance. Additionally, Figure 5.5b and 5.5d present SHAP

summary plots, showcasing the top 9 features for 2-level stress classification and the

top 11 features for 3-level stress classification based on the entire stress dataset. These

visualizations provide insights into how each physiological feature contributes to the

classification of stress levels.
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c) Mean Plot for 3 level stress
classification

d) Summary Plot for 3 level stress
classification

b) Summary Plot for 2 level stress
classification

a) Mean Plot for 2 level stress
classification

Figure 5.5: Explanation of SHAP values for ASD features.

The summary plots in Figure 5.5b and Figure 5.5d illustrate the impact and

contribution of individual features in the stress classification model. The horizontal axis

represents the SHAP values, indicating their influence on high or low-stress predictions.

The vertical axis above zero suggests minimal impact on the classification outcome. A

SHAP value of zero signifies no substantial effect on predictions, while values closer to

zero indicate features with lower influence. Conversely, higher SHAP values, whether

positive or negative, highlight features with strong correlations to the predicted stress

levels. Each row in the plots corresponds to a specific feature, ranked based on their

mean absolute SHAP values. Additionally, A stacked dot plot visualizes the distribution

of SHAP values, with colors representing feature intensity. Red denotes high feature

values, while blue indicates lower feature values. These visualizations provide insights

into the relative importance of physiological features in distinguishing stress levels.

Furthermore, Figure 5.5 highlights mean HR, Min HR, and mean_gsr as the

most influential features in stress classification. This finding aligns with the ANOVA

statistical analysis results presented in Table 5.3a and Table 5.3b. The low p-values and

high F-scores in the ANOVA results further confirm the significance of these features

in predicting stress levels.
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Figure 5.6: Confusion Matrix of the best-evaluated results for integrated signals using
Gradient Boosting.

5.5 Discussion

The experimental findings highlight the effectiveness of EDA and IBI as key

physiological indicators for stress classification, particularly when utilizing the GB

classifier, and combining EDA and IBI results in an impressive 97.07%

Extending stress classification to three levels with BVP features further enhances

the model’s performance, achieving an accuracy of 97.02%

The findings emphasize the effectiveness of EDA and IBI in differentiating stress

from non-stress states. The minimal accuracy improvement after incorporating BVP

features suggests that IBI, derived from BVP, may introduce redundant information,

contributing only a slight enhancement. This outcome reinforces the idea that

combining EDA and IBI provides a comprehensive representation of physiological

responses to stress, ensuring strong and reliable performance in stress classification.

The study also reveals that GB outperforms XGBoost in stress classification.

Although XGBoost is highly effective for high-dimensional datasets with numerous

features, its performance may be less optimized when applied to datasets with a limited
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a) 2-Level Stress (EDA+IBI) b) 3-Level Stress (EDA+IBI)

d) 3-Level Stress (EDA+IBI+BVP)c) 2-Level Stress (EDA+IBI+BVP)

Figure 5.7: ROC of the best-evaluated results for integrated signals using Gradient
Boosting.

feature set, as observed in this study. Since XGBoost relies on a broader range of features

for optimal performance, its effectiveness may decrease when feature availability is

restricted. In contrast, GB, less dependent on feature quantity, demonstrates superior

classification performance, making it a more suitable approach for this experiment.

The ASD protocol comprises two key stages: stress classification and stress

alleviation. During the stress recovery phase, participants listened to meditation

audio, and the findings suggest that this intervention effectively contributes to stress

reduction. The experimental results highlight IBI and EDA as key contributors to stress

classification. Figure 5.8 presents the FFT spectrum, generated using Kubios analysis,

to depict different stress levels. The FFT analysis examines the HRV signal derived

from IBI. HRV measures the time variation between consecutive heartbeats, reflecting

the activity of the ANS. The ANS regulates essential physiological functions such as

heart rate, blood pressure, and respiration, influencing stress responses.

Figure 5.8 a) and 5.8 b) depict a distinct peak in the low-frequency (LF) range,

reflecting Sympathetic Nervous System (SNS) activity during moderate and high-stress

conditions. Additionally, a smaller peak in the high-frequency (HF) range represents

Parasympathetic Nervous System (PNS) activity, indicating that despite stress, some
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Figure 5.8: Fast Fourier Transform Spectrum of distinct stress levels derived from IBI
data and visualized using Kubios software: a) High-stress level, b) Mid-stress level, c)
Low-stress level.

level of parasympathetic function persists, potentially mitigating stress effects. In

contrast, Figure 5.8 c) illustrates a pronounced peak in the HF range during low-stress

conditions, signifying heightened PNS activity associated with relaxation and stress

recovery.

Figure 5.9 presents the EDA graph, illustrating the analysis of phasic and tonic

components. Multiple factors, including stress, arousal, and perspiration, influence skin

conductance. Phasic EDA represents rapid fluctuations in skin conductance triggered

by specific stimuli or events, typically lasting for a short duration and associated with

emotional arousal. In contrast, tonic EDA reflects gradual and sustained variations in

skin conductance over time, indicating the overall level of arousal and physiological

activation.

Figure 5.9 EDA graph identifies various stress states by examining their phasic and

tonic components. High-stress conditions show increased phasic EDA responses and

elevated tonic EDA levels. Moderate stress exhibits moderate phasic EDA responses

and a moderate tonic EDA level. The figure illustrates a progressive decline in phasic

and tonic EDA levels during low-stress conditions, with a gradual reduction in EDA

peaks.

156



Figure 5.9: EDA graph to analyze phasic and tonic components of EDA during stress
classification.

5.5.1 Comparison with Existing Studies

The ASD consists of both stress classification and stress alleviation phases. The

stress classification model attains an accuracy of 98.28% for binary stress classification

and 97.02% for three-level stress classification. During the stress alleviation

phase, participants engage in meditation audio sessions. Additionally, the study

utilizes Explainable AI (XAI) to determine the most influential physiological

features contributing to stress classification. This work examines the role of EDA

and IBI-derived HRV in stress classification, focusing on how stress and stress

alleviation influence the sympathetic and parasympathetic branches of the ANS. The

results demonstrate that meditation audio effectively reduces stress in an academic

environment.

Table 5.9 presents a comparative analysis of previous MIST-based studies

incorporating stress alleviation techniques. It outlines key aspects, including

physiological signals, number of channels, participant details, stress alleviation

methods, experiment duration, selected features, and classification performance.

Limited studies have explored stress alleviation within the MIST framework. Zhang

et al. [276] classified stress levels using FD features and applied the Fisher Ratio

for feature selection. The study evaluates multiple stress relief techniques, including
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Table 5.9: Performance comparison of the proposed ASD with existing MIST-based
stress alleviation studies in the literature.
Author Signals Channels Sub Stress Alleviation Technique Experiment Du-

ration
Feature
Selection

Features Classifiers Accuracy F1-score Other
Metrics

Zhang et al.
[276]

EEG 4 25 Watching a video, listening to
alpha music, squeezing a stress
ball, bubble wrap popping, and
hugging a pillow.

16 min approx Fisher Ra-
tio

4 LDA 2 level:
85.6%, 3 level:
71.5%

– –

Xia et al.
[265]

EEG,
ECG

128 22 Sitting in a relaxed position and
focusing on a circle appearing on
a computer screen

80 min FDR,
mRMR, In-
formation
Gain

– SVM 79.45% – Recall: 81%,
Specificity:
78%

Setz et al.
[222]

EDA – 32 Questionnaire and reading mag-
azines

50 min Not
mentioned

16 LDA, SVM, NCC 82.80% – –

Han et al.
[94]

ECG,
RSP

– 39 Sitting in a relaxed position 18 minutes (ex-
cluding stress re-
port filling time)

OOB 36 SVM, KNN,
LDA, Adaboost

84% 83% Recall: 84,
Precision: 83

Proposed
Work

ECG,
EDA

– 30 Listening to meditation audio 22 min GA + MI 9 RF, DT, SVM,
KNN, GB, XGB

2 levels:
98.28%,
3 levels:
97.02%

2 levels:
97.44%,
3 levels:
96.53%

AUC: 99.78,
AUC: 99.13

listening to alpha music, watching nature videos, popping bubble wrap, hugging a

pillow, and squeezing a stress ball. The findings indicated that hugging a pillow is the

most effective stress reduction method, as it demonstrates a clear reduction in stress

levels compared to baseline measures. The study achieves an accuracy of 85.6% for

binary stress classification and 71.5% for three-level stress classification.

Xia et al. [265] employed EEG and ECG signals for stress classification, utilizing

Fisher’s Discriminant Ratio, Minimum Redundancy, Maximum Relevance (mRmR),

and Information Gain for feature selection. Their approach achieved a maximum

accuracy of 79.5%. Further, participants follow instructions to sit in a relaxed position

and focus on a circle displayed on a computer screen to alleviate stress induced by MIST.

However, the study did not specify the final selected features used for classification.

Similarly, Han et al. [94] investigated ECG and RESP signals for stress classification

and identified sitting in a relaxed position as a stress-relief technique. However,

this method may be influenced by environmental factors, as external distractions or

discomfort in the selected setting could reduce its effectiveness. Additionally, this

approach is primarily a short-term stress alleviation method, as some individuals may

struggle to recall stressful situations or experience genuine stress responses when

attempting to relax.

Setz et al. [222] introduced a general questionnaire and reading magazines as

methods for stress relief. However, the effectiveness of reading magazines as a stress

reduction strategy may differ among individuals, as engagement levels vary based on

personal preferences. Additionally, the passive nature of this activity may not provide an

equally effective stress-relief mechanism for all participants. Moreover, these studies
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lack a quantitative assessment of the proposed stress alleviation techniques, leaving

their overall effectiveness unverified.

5.5.2 Limitations

This research collects the ASD dataset from 36 engineering students. However, noise

and artifacts in physiological signals led to the exclusion of six participants, resulting

in a final dataset of 30 students. It highlights the artifact and noise removal challenge

in wearable devices, which is crucial for ensuring reliable data quality in real-time

stress classification applications. Additionally, while the GA+MI feature selection

method effectively reduces feature redundancy, some selected features may still be

correlated. Future studies can explore advanced feature selection techniques to enhance

interpretability and reduce redundancy. Moreover, this research primarily focuses on

academic stress for engineering students. In the future, researchers can extend this

approach to investigate automated workplace stress and anxiety classification, or sports

performance stress, which enlarges the scope of physiological signals-based stress

classification.

5.6 Summary

This chapter outlines the data collection methodology designed to assess automated

stress classification for engineering students using wearable physiological sensors in

an academic environment. The experiment collects EDA, IBI, and BVP signals from

30 engineering students. It uses MIST to induce progressive stress, followed by a

stress alleviation phase, where participants listen to audio meditation to assess stress

reduction. The experimental protocol is structured into five phases: Neutral, Rest,

Control, Experimental, and Recovery, ensuring a controlled and progressive stress-

inducing framework. The collected signals undergo preprocessing, including artifact

removal, signal normalization, and resampling, to enhance data quality for further

analysis. The study labels stress into two and three levels and extracts statistical,

time-domain, and frequency-domain features for classification. The findings highlight

that IBI-derived HRV and EDA are highly effective biomarkers for stress classification.
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Furthermore, the stress alleviation phase demonstrates that listening to meditation audio

effectively reduces stress, supporting its use as a practical intervention for students. The

GA+MI hybrid feature selection approach combined with Bayesian-optimized machine

learning classifiers improves classification performance. The results show a 2.61%

improvement in two-level stress classification and a 1.86% improvement in three-level

stress classification compared to models without feature selection.

In conclusion, this chapter emphasizes the potential of wearable technology for

real-time automated stress classification in academic environments. The results prove

that HRV and EDA signals can enhance stress classification accuracy, while meditation-

based interventions offer an effective stress alleviation strategy. Future research

can explore advanced feature selection techniques to optimize classification accuracy

further and expand the application of this methodology to other domains, including

workplace stress, healthcare, and sports performance stress.

This chapter is based on the following work:

• J1: Shikha, Divyashikha Sethia, and S. Indu. "Optimization of Wearable

Biosensor Data for Stress Classification Using Machine Learning and Explainable

AI" IEEE Access (2024): 1-17. (SCIE, Impact factor: 3.4, Publisher: IEEE).

Doi: https://doi.org/10.1109/ACCESS.2024.3463742. (Published).
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Chapter 6

Efficient Feature Selection Algorithm

for Stress and Anxiety Classification

High-dimensional data from physiological signals such as EDA, HRV, and RESP

often leads to overfitting, increased computation time, and reduced generalizability.

This chapter proposes two efficient feature selection algorithms, the Correlation-

Logistic Mutual Information Feature Selection Algorithm (CorLMI-FSA) and the

Correlated Interactive Reinforcement Learning-based Feature Selection Algorithm

(CIRL-FSA), to address these limitations for improving stress and anxiety classification

using physiological signals. 1) CorLMI-FSA enhances mutual information feature

selection by incorporating correlation-based preselection and logistic redundancy

control. 2) CIRL-FSA formulates feature selection as a dynamic decision-making

problem using interactive reinforcement learning to enable adaptive and context-aware

feature selection strategies. Additionally, CIRL-FSA is further extended to STCIRL-

FSA by integrating the SMOTETomek resampling approach to manage class imbalance

in the Spiderphobic dataset [109]. The chapter also presents a cross-dataset evaluation

to assess the generalizability of both algorithms across stress and anxiety domains.

6.1 Motivation

Physiological signals such as EDA, HRV, and RESP offer valuable information for

stress and anxiety classification. These signals generate high-dimensional feature
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spaces across time, frequency, and non-linear domains [272]. The resulting feature

sets often contain redundancy and irrelevant features, which degrade classification

performance and increase computational cost. These issues are problematic in real-

time and resource-constrained systems, where model efficiency and interpretability are

critical.

Feature selection is a crucial step in the machine learning pipeline to address the

high dimensionality problem. Existing methods include filter-based algorithms like

Mutual Information (MI) [197], statistical approaches such as ANOVA [244][277],

and wrapper-based methods [259][24]. However, most traditional approaches rely on

static ranking criteria or ignore feature dependencies, limiting their adaptability across

datasets.

Contributions:

The key contributions of this chapter are as follows:

1. Development of CorLMI-FSA: Propose an improved filter-based approach that

uses correlation-based preselection followed by a logistic redundancy control over

mutual information scores to select highly relevant and non-redundant features.

2. Development of STCIRL-FSA : Formulate feature selection as an interactive

reinforcement learning process to enable dynamic decision-making. Further,

extend CIRL-FSA to STCIRL-FSA by incorporating SMOTETomek resampling

to improve performance on Spiderphobic imbalanced dataset [109].

3. Cross-Dataset Generalizability Evaluation: Evaluate CorLMI-FSA and CIRL-

FSA on both the Academic Stress Dataset (ASD) and the Spiderphobic anxiety

dataset [109]. Apply each algorithm to both domains to test robustness and

adaptability.

The following sections describe each algorithm in detail, followed by a comparative

analysis highlighting their relative performance, strengths, and potential for real-world

stress and anxiety classification systems.
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6.2 Correlation-Logistic Mutual Information Feature

Selection Algorithm (CorLMI-FSA)

Traditional feature selection methods struggle to balance relevance and redundancy,

especially in complex physiological datasets where features often exhibit non-linear

dependencies. Among these methods, MI is widely used to quantify the dependency

between features and target variables [249]. However, it fails to effectively manage

redundancy, which becomes more pronounced as the number of features increases. In

physiological signal features, redundancy grows nonlinearly and limits the classification

performance. Addressing this requires a feature selection approach that dynamically

adjusts redundancy weighting to retain only the most informative features.

This section introduces an efficient Correlation-Logistic Mutual Information

Feature Selection Algorithm (CorLMI-FSA). The novel feature selection algorithm

optimizes the trade-off between relevance and redundancy. It incorporates a logistic

function to adaptively weight redundancy, ensuring that selected features maximize

classification performance. This work validates CorLMI-FSA using HRV and EDA

signals recorded during the MIST in the self-collected ASD dataset, as proposed in

Chapter 5.

Following are the main contributions of this section:

1. Developing CorLMI-FSA for Stress Classification: Proposes a novel feature

selection algorithm, Correlation-Logistic Mutual Information Feature Selection

Algorithm (CorLMI-FSA), for stress classification using EDA and IBI-derived

HRV signals.

2. Comprehensive Evaluation with Machine Learning Models: Evaluates

performance of CorLMI-FSA using machine learning models, including SVM,

KNN, RF, GB, and EBM.

3. Feature Importance Analysis with Explainable Boosting Machine (EBM):

Employ EBM to identify the most influential physiological features, providing

interpretability in stress classification.
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Figure 6.1: CorLMI-FSA proposed methodology for stress classification in an academic
environment.

6.2.1 Experimental Methodology

This section describes the methodology as illustrated in Figure 6.1. It begins with

data acquisition, outlining the process of collecting physiological signals. Data

preprocessing is followed to enhance signal quality and eliminate noise. Next, feature

extraction and selection identify the most relevant physiological features for stress

classification. Finally, the selected features are input into various machine learning

classifiers, which undergo further optimization using Bayesian optimization to improve

predictive performance.

6.2.1.1 Dataset Description

This work utilizes the Academic Stress Dataset (ASD) collected in Chapter 5. Previous

findings in Chapter 5 concluded that EDA and IBI-derived HRV are the most informative

signals for stress classification. Therefore, this chapter focuses on extracting features

from these signals. Section 5.1.1 presents detailed information about the dataset and

collection process.
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6.2.1.2 Data Preprocessing

This section utilizes the preprocessed dataset from Chapter 5. IBI data undergoes

cleaning and processing using the hrvanalysis Python module, where interpolation

methods correct outliers and the "malik" method handles ectopic beats. EDA signals

are upsampled from 4 Hz to 64 Hz to match the IBI signal’s sampling rate. Section

5.1.2 provides a detailed description of data preprocessing and labeling.

6.2.1.3 Feature Extraction

The experiment extracts HRV features from IBI data recorded by the Empatica E4

device. These features span multiple domains, including time, frequency, and non-

linear measures, and are computed using the hrvanalysis Python module. Additionally,

the study processes EDA signals using the PyEDA package to extract phasic and tonic

component features. It derives a total of 58 features from HRV and EDA signals.

Section 5.1.3 provides a detailed description of each feature category based on its

respective domain.

6.2.1.4 CorLMI - Feature Selection Algorithm

Feature selection enhances stress classification by reducing dimensionality and

improving computational efficiency. Mutual Information, a widely used filter-

based method, evaluates feature relevance based on its statistical dependency on

the target variable. However, it struggles to balance relevance and redundancy in

high-dimensional physiological datasets, often retaining features with overlapping

information. To address this limitation, this work proposes Correlation-Logistic Mutual

Information Feature Selection Algorithm (CorLMI-FSA), which optimizes feature

selection by dynamically adjusting redundancy weighting:

1. Correlation-Based Pre-Selection: The experiment first applies a correlation-

based feature selection algorithm to remove highly correlated features. This

process eliminates 20 features, ensuring that the remaining 31 provide unique

and complementary information. By reducing redundancy, this pre-selection

step refines the candidate feature set for further evaluation.
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2. Enhanced Mutual Information FSA: The proposed CorLMI-FSA enhances the

traditional mutual information FSA to overcome the limitations of traditional

MI-based algorithms. Traditional approaches assume that feature redundancy

increases linearly as more features are selected. However, this assumption

does not hold for complex physiological datasets, where features often exhibit

non-linear dependencies. CorLMI-FSA introduces a logistic function-based

redundancy coefficient, which dynamically adjusts redundancy weighting as

new features are added to the selected subset. This adaptive approach ensures

that only the most informative and non-redundant features contribute to stress

classification. Equation 6.1 defines the mutual information (MI) between a

candidate feature Xk and the target variable Y:

I(Xk; Y ) = H(Xk)−H(Xk | Y ) (6.1)

where H(Xk) represents the entropy of the feature, and H(Xk | Y ) denotes its

conditional entropy given the target class Y .

To incorporate a redundancy control mechanism, CorLMI-FSA introduces a

logistic coefficient β , as defined in Equation 6.2:

β =
1

1+ e
−S

F
(6.2)

where S represents the number of already selected features, and F denotes the

total number of candidate features. This coefficient gradually increases as more

features are selected, allowing a controlled balance between feature relevance and

redundancy. Equation 6.3 presents the scoring function used by CorLMI-FSA to

rank and select features:

J(Xk) = I(Xk; Y )−β ∑
X j∈S

I(X j; Xk) (6.3)

The CorLMI-FSA algorithm selects 10 features for the two-level stress classification

and 11 features for the three-level stress classification, ensuring optimal feature
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representation for each classification task.

6.2.1.5 Classification Algorithms

This work evaluates the performance of CorLMI-FSA using five machine-learning

classifiers: SVM, KNN, RF, GBM, and EBM. The dataset is split into 80% training

and 20% testing, ensuring a balanced evaluation. The experiment applies 10-fold cross-

validation, which trains and tests the models on multiple subsets of the data to improve

reliability.

Further, performance evaluation relies on accuracy (Acc) and F1-score (F1) to

assess classification effectiveness. Additionally, the Receiver Operating Characteristic

(ROC) curve provides insights into the models’ ability to distinguish between stress

levels. Chapter 3, Section 3.7 presents a detailed description of these performance

measures. The study applies Bayesian optimization for hyperparameter tuning

to optimize predictive performance and ensure efficient parameter selection while

maintaining computational efficiency. Section 5.1.5 provides a detailed explanation of

the optimization process.

6.2.2 Results and Discussion

Multi-domain features extracted from signals such as IBI and EDA often include

redundant and irrelevant information, which can obscure critical patterns necessary for

accurate stress classification. Identifying the most relevant features is essential to reduce

dimensionality, enhance model performance, and improve interpretability. However,

traditional feature selection methods struggle with high inter-feature correlation and

non-linear dependencies in physiological data. These limitations often result in

suboptimal feature subsets that may reduce classification accuracy.

This experiment utilizes the self-collected ASD introduced in Chapter 5. It

focuses on IBI-derived HRV and EDA features, which effectively capture physiological

responses to stress, as demonstrated in the previous chapter. After extracting features,

the study applies the proposed CorLMI-FSA algorithm to manage redundancy. To

assess classification performance, the study evaluates multiple machine learning

models, including SVM, KNN, RF, GB, and EBM.
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Table 6.1: Performance comparison of various classifiers for two-level stress
classification with and without the proposed CorLMI-FSA.

Before FSA (58) CorLMI-FSA (10)
Accuracy F1 score Accuracy F1 score

SVC 83.96 83.50 87.61 87.17
KNN 83.5 81.45 87.02 86.06
RF 93.35 92.54 94.39 94.39
GBM 94.97 95.35 96.82 96.81
EBM 90.23 89.41 93.43 93.43

Table 6.2: Performance comparison of various classifiers for three-level stress
classification with and without the proposed CorLMI-FSA.

CorLMI-FSA (11) Before FSA (58)
Accuracy F1 score Accuracy F1-score

SVC 81.93 81.22 75.04 75.78
KNN 76.9 75.11 70.28 70.9
RF 92.43 92.59 91.91 92.9
GBM 95.84 95.12 93.87 93.91
EBM 90.32 90.45 86.03 86.63

Table 6.1 presents the classification performance of machine learning models before

and after applying the CorLMI-FSA algorithm for two-level stress classification. The

algorithm reduces the original 58 features to 10, retaining only the most relevant ones.

This reduction enhances classification accuracy across all models. SVM improves from

83.96% to 87.61%, while KNN increases from 83.5% to 87.02%, reflecting an accuracy

gain of approximately 4% in both models. RF achieves the highest accuracy of 94.39%,

while EBM shows significant improvement, reaching 93.43% accuracy. Notably, GB

outperforms all models with an accuracy of 96.82% and an F1-score of 96.81%.

Table 6.2 presents the classification performance for three-level stress classification

after applying the CorLMI-FSA algorithm. The algorithm reduces the original feature

set to 11 features, enhancing model performance across all classifiers. SVM improves

by 6.89%, while KNN shows a 6.62% increase. RF achieves an accuracy of 94.39%,

while EBM improves significantly from 90.23% to 93.43%. GB demonstrates the

highest performance after feature selection, achieving an accuracy of 95.84% and an

F1-score of 95.12%. Figure 6.2 illustrates the ROC curves for different classifiers after

applying feature selection for both two-level and three-level stress classification. The
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Figure 6.2: ROC curve for the distinct classifiers after CorLMI-FSA. a) Two-level stress
classification, a) Three-level stress classification.

Figure 6.3: CorLMI-FSA: Feature importance plot generated by EBM for two-level
stress classification, illustrating the importance of individual physiological features and
notable feature interactions.

Figure 6.4: CorLMI-FSA: Feature importance plot generated by EBM for three-level
stress classification, illustrating the importance of individual physiological features for
stress classification.

curves highlight the models’ ability to distinguish between stress levels, demonstrating
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Table 6.3: CorLMI-FSA performance comparison with existing stress classification
studies based on feature selection algorithm.

Author Dataset Signal Subjects Original
Features

Feature
Selection
Algorithm
(FSA)

Selected
Features

Algorithms Accuracy (%)

Nath et al.
[176]

Private EDA,
BVP,
Salivary
cortisol

19 39 ANOVA F-
value

10 RF, KNN, LR,
SVM, LSTM

LSTM: 93 (macro F1-
score)

Can et al.
[42]

Private HR,
EDA,
ACC

21 – PCA – LDA, SVM,
KNN, LR, RF,
MLP

PCA + MLP: 92.15

Castaldo et
al. [46]

Private HRV 42 23 Wilcoxon
signed-
rank test +
Spearman’s
correlation

6 SVM, MLP, IBK,
C4.5, LDA

IBK: 94

Dalmeida
et al. [51]

SRAD
[99]

ECG,
HRV

16+4 22 Pearson corre-
lation

7 NB, KNN, SVM,
MLP, RF, GB

GB: 85

Radhika et
al. [190]

CLAS
[150]

ECG,
EDA

59 63 RFE 50 SVM, CNN SVM: 88.9

Radhika et
al. [191]

CLAS
[150]

ECG,
EDA

59 63 RFE 50 SVM (poly),
CNN

SVM: 84.7

Proposed
Work

ASD IBI,
EDA

30 58 CorLMI-FSA SVM, KNN, RF,
GB, EBM

GB: 96.82%(2 levels),
GB: 95.84%(3 levels)

improved classification performance following the application of CorLMI-FSA.

The experiment applies EBM to identify the most influential features for two-

level and three-level stress classification. Figure 6.3 shows that Max HR, Power Total

RR, and mean_gsr contribute the most to classification accuracy for the two-level stress

classification task. Additionally, the study observes notable feature interactions, such as

Max HR & mean_gsr and Max HR & mean_scl, demonstrating how combining specific

features enhances predictive performance. These results reinforce the importance of

selecting optimal features to improve classification accuracy and model interpretability.

Figure 6.4 shows that EBM identifies Min HR, Mean HR, and mean_gsr as the

most influential features for three-level stress classification. The results indicate that

these individual features differentiate between low, mid, and high stress levels. Unlike

the two-level classification, this analysis does not reveal strong feature interactions,

suggesting that single features provide sufficient distinction in the multi-class setting.

These findings highlight the importance of selecting features that independently

contribute to stress classification accuracy.
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6.2.2.1 Comparison with Existing Studies

Table 6.3 compares the proposed CorLMI-FSA with existing stress classification models

to assess improvements in feature selection efficiency and classification accuracy.

In one study, Nath et al. [176] used EDA, BVP, and salivary cortisol for stress

classification in older adults. The authors selected 10 statistical features using ANOVA

F-value and achieved a macro F1-score of 93% with LSTM. However, the method does

not explicitly reduce redundancy, which may affect performance on high-dimensional

datasets.

Can et al. [42] employed PCA to reduce feature dimension for stress classification

using Heart Rate (HR), EDA, and accelerometer (ACC) data. The authors achieved the

highest accuracy of 92.15% with MLP. However, the PCA linear transformation may

fail to capture complex feature dependencies, limiting its effectiveness in multi-class

classification. Castaldo et al. [46] showed that ultra-short-term HRV can be used

for stress classification. The authors achieved the highest accuracy of 94% with IBK.

Furthermore, Dalmeida et al. [51] extracted ECG-derived HRV features and applied

Pearson correlation for feature selection. The authors reduced the feature set from

23 to 6. The model achieved an accuracy of 95% using GB and RF. Radhika et al.

[190] applied RFE with SVM and CNN for binary stress classification and achieved

88.9% accuracy with SVM. In another study, Radhika et al. [191] achieved the highest

accuracy of 84.7 using SVM and RFE FSA.

In contrast, the proposed CorLMI-FSA reduces the feature set from 58 to 10 for

two-level classification and from 58 to 11 for three-level classification. Further, it

achieves accuracy improvement from 94.97% to 96.82% using 10 features for 2-level

stress classification. Similarly, it achieves accuracy improvement from 93.87% to

95.84% using 11 features for 3-level stress classification. The results demonstrate

performance comparable to that of existing studies. Unlike previous methods, CorLMI-

FSA dynamically adjusts redundancy weighting using a logistic function, ensuring

efficient feature selection without high computational costs. Additionally, Explainable

Boosting Machine (EBM) improves interpretability, making the framework well-suited

for real-time stress monitoring in wearable applications.
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6.2.3 Significant Outcome

The CorLMI-FSA algorithm successfully reduces the high dimensionality of physio-

logical signal features by identifying the most informative and non-redundant subset.

It demonstrates that incorporating logistic control over mutual information enables

better handling of redundancy, which often limits the performance of traditional

filter-based methods. However, CorLMI-FSA does not account for complex feature

interdependencies and lacks adaptability to dataset-specific variations. Therefore, the

following section introduces a interactive reinforcement learning-based approach that

supports adaptive and context-aware feature selection to address these limitations.

6.3 Correlated Interactive Reinforcement Learning based

Feature Selection Algorithm (CIRL-FSA)

While the CorLMI-FSA algorithm effectively reduces feature redundancy and improves

classification performance, it operates as a static filter-based approach. It does

not capture complex dependencies among features or adapts to dataset-specific

characteristics. Therefore, this section proposes a dynamic and context-aware

feature selection method based on interactive reinforcement learning to address these

limitations.

This section proposes the Correlated Interactive Reinforcement Learning Feature

Selection Algorithm (CIRL-FSA). It extends the proposed CIRL-FSA by incorporating

SMOTETomek resampling to address class imbalance present in the Spiderphobic

anxiety dataset [109]. CIRL-FSA initially applies the Pearson Correlation Coefficient

(PCC) to eliminate highly correlated features, reducing redundancy in the initial feature

space. Then, interactive reinforcement learning is employed to iteratively select the

most informative subset of features based on performance feedback. The algorithm

processes multimodal physiological signals, including ECG, EDA, and RESP, to capture

richer and more discriminative anxiety patterns.

Following are the main contributions of this section:

1. Designing the Correlated Interactive Reinforcement Learning Feature Se-

lection Algorithm (CIRL-FSA): proposes a novel two-stage feature selection
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approach that combines correlation-based filtering with interactive reinforcement

learning. The algorithm uses meta-descriptive statistics to represent the state

space during learning to enable dynamic and context-aware selection of the most

informative features based on reward feedback.

2. Extending CIRL-FSA with SMOTETomek for Imbalanced Data (STCIRL-

FSA): Addresses class imbalance in the Spiderphobic anxiety dataset [109]. This

work extends CIRL-FSA by incorporating SMOTE and Tomek-link resampling

techniques, resulting in the STCIRL-FSA.

3. Hyperparameter Optimization Using Optuna: Utilizes Optuna framework to

optimize ML classifiers. This technique systematically fine-tunes hyperparame-

ters to improve classification accuracy and computational efficiency.

4. Comparing CIRL-FSA with Standard Feature Selection Algorithms: Com-

pares the performance of CIRL-FSA with distinct existing feature selection

techniques.

6.3.1 Experimental Methodology

This section presents the methodology for the proposed STCIRL-FSA, as depicted in

Fig. 6.5. The study designs and evaluates experiments using two distinct approaches.

The first follows a traditional machine learning framework, while the second implements

the enhanced STCIRL-FSA. This advanced approach integrates SMOTETomek for

data balancing, interactive reinforcement learning for feature selection, and Optuna for

hyperparameter optimization.

6.3.1.1 Dataset Description

This work employs the publicly available Spiderphobic dataset [109]. This dataset

consists of physiological recordings from 57 participants aged 18 to 40, captured

using the BITalino device with ECG, EDA, and RESP sensors. Participants watch 16

Spiderphobic video clips across two sessions, followed by a five-minute resting phase.
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Figure 6.5: Proposed STCIRL-FSA for anxiety classification using physiological
signals.

Table 6.4: Summary of Spiderphobic anxiety dataset [109] for STCIRL-FSA.

Dataset Subjects Task Duration Signals Device Sampling
Frequency

Spiderphobic
dataset [109]

57 Participants
watch
spiderphobic
videos

Rest: 5 minutes
Task: 16 videos × 1
minute

ECG, EDA,
RESP

Recorded using
BITalino device

100 Hz

6.3.1.2 Data Preprocessing

This work employs the same preprocessing pipeline described in Chapter 5 for ECG

and EDA. Further, it preprocesses RESP signals with the NeuroKit2 library1, which

provides filtering and feature extraction techniques for RESP data.

Labeling and Windowing: The Triggers.txt file in the dataset provides identifiers

and timestamps that indicate the start and end of each video clip and resting phase.

These timestamps align with the Signal folders to ensure precise labeling of segments

as "anxiety" for video clips and "non-anxiety" for resting phases. Since no subjective

survey data are publicly available, video clips are labeled as "anxiety," while resting

phases are labeled as "non-anxiety." Further, the experiment employs a 30-second

sliding window for signal feature extraction to overcome the difficulty of detecting

RESP peaks in shorter windows.
1https://neuropsychology.github.io/NeuroKit/functions/rsp.html
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6.3.1.3 Imbalanced Dataset Issue

The Spiderphobic dataset [109] used in this work exhibits a significant class imbalance,

with 76% of samples labeled as "anxiety" and 24% as "rest." This uneven distribution

can bias the classification model and may favor the majority class and misclassify

underrepresented instances. Addressing this issue is essential to improve model

generalizability and performance.

Previous studies have attempted to mitigate class imbalance using various labeling

strategies. Ihmig et al. [109] categorized video clips based on physiological responses,

where the authors label the eight clips with the highest mean HR and EDA as "high"

anxiety, the remaining eight as "medium" anxiety, and the entire five-minute resting

phase as "low" anxiety. Despite these efforts, the dataset remained imbalanced, with

38% classified as high, 38% as medium, and 24% as low. To improve classification

performance, the authors applied feature selection using the SFS wrapper approach

and achieved a maximum accuracy of 89.8% with bagged trees. Similarly, Gazi et al.

[80] labeled the top five clips with the highest HR means as "anxiety" and assigned

all resting data as "rest," implementing a 300-second window with 299 seconds of

overlap. The classification approach using an RF model achieved an accuracy of 88%.

Although these studies introduced feature selection and classification techniques, they

did not fully resolve the class imbalance issue.

SMOTETomek Resampling Technique

This work applies SMOTETomek, a resampling method that integrates both over-

sampling and under-sampling to create a more balanced dataset. Chawla et al. [49]

introduced the Synthetic Minority Over-sampling Technique (SMOTE) to address class

imbalance. This advanced over-sampling method generates synthetic samples for the

minority class using a k-nearest neighbor approach. Instead of duplicating existing data,

it creates new instances within the feature space and minimizes the risk of overfitting

[195]. Equation 6.4 presents the formula for generating synthetic samples.

Ssyn = r(SkNN−S f )+S f (6.4)

Here, S f represents the feature sample, SkNN refers to the k-nearest neighbor, and r

is a randomly generated value between 0 and 1. The classifier utilizes these synthetic
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Table 6.5: Multi-domain features derived from EDA, IBI, and RESP signals for
STCIRL-FSA.

Signal Feature Domain Feature Description Features Feature ID
Statistical Captures central tendencies

and variability, providing
important information about
overall arousal levels and
autonomic activity.

var_eda, mean_eda, kurto-
sis_eda, skew_eda, std_eda

1-5

EDA Tonic (Skin Con-
ductance Level)

Represent slowly varying
baseline characteristics of
the EDA signal, capturing
continuous variations in
skin conductance levels and
reflecting an individual’s
overall arousal state and tonic
sympathetic activity.

SCL_slope (tonic), var_scl,
mean_scl, kurtosis_scl,
skew_scl, slope_scl, std_scl

6-12

Phasic (Skin
Conductance
Response)

Captures rapid and short-
term fluctuations in EDA
signals, represents momen-
tary responses to stimuli or
events, and reflects the phasic
sympathetic activity.

scr_peaks (phasic), var_scr,
mean_scr, kurtosis_scr,
skew_scr, max_scr, std_scr

13-19

HRV-Time
Domain

Statistical measures derived
from the time intervals be-
tween consecutive heartbeats
(RR intervals) in an HRV
analysis.

median_nni, mean_nni,
pnni_50, nni_50, nni_20,
pnni_20, hrv_sdnn,
hrv_rmssd, hrv_sdsd,
range_nni, cvnni, cvsd,
max_hr, mean_hr,
std_hr, min_hr, tinn,
triangular_index, cvi, sd1, csi,
sd2, sampen, ratio_sd1_sd2,
HR_max-HR_min

20-44

ECG HRV-Frequency
Domain

Captures the power distri-
bution across different fre-
quency bands, representing
the relative contributions of
sympathetic and parasympa-
thetic activities in heart rate
regulation.

total_power, lf, vlf, hf,
lf_hf_ratio, hfnu, lfnu

45-51

RESP RRV Features Numerical values that de-
scribe the RESP signal and
its changes over time and
frequency.

RRV_RMSSD, MeanBB,
SDBB, SDSD, CVSD,
MedianBB, MCVBB, HF,
SD1, SD2, SD2/SD1, Apen

52-63

samples to define distinct regions for classification.

In contrast, Tomek-link operates on two distinct classes, typically a majority and

a minority class. It identifies a link, known as the Tomek link, which represents the

distance between these two classes, denoted as d(ya,yb). A Tomek link is valid if no

other class, yz, is closer to either class than they are to each other. This condition

holds if neither d(ya,yz) < d(ya,yb) and d(yb,yz) < d(ya,yb) is satisfied [183]. The

Tomek-link method removes the majority class instances closest to the minority class

by applying the nearest neighbor rule to refine class separation [212].
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6.3.1.4 Feature Extraction

This section outlines the feature extraction process. Table 6.5 provides a detailed list of

63 features derived from ECG, EDA, and RESP signals. These features span multiple

domains, including statistical analysis, time-domain, and frequency-domain methods.

This work extracts HRV features from ECG signals following the approach

described in Chapter 5, incorporating time-domain, frequency-domain, and non-linear

analyses to capture heart rate fluctuations. Similarly, the work extracts EDA features,

including Skin Conductance Level (SCL) and Skin Conductance Responses (SCR),

using the PyEDA package in Python, following the methodology presented in Chapter

5. For RRV feature extraction, it applies the $rsp_rrv() function from the NeuroKit2

Python module.

6.3.1.5 Feature Selection

Feature selection plays a vital role in machine learning by enhancing model performance

and reducing computational complexity by identifying the most relevant features from

a dataset [241]. Traditional feature selection methods are categorized into filter

[140][130][176][244], wrapper [109][24][165], and embedded [207][137] approaches.

However, these algorithms often evaluate features independently or in conjunction with

specific models, which may lead to overlooked feature interactions or overfitting to

predefined assumptions [142]. Recent advancements have investigated the application

of Reinforcement Learning (RL) for feature selection [112] [141]. This section

applies RL-based feature selection to Human-Computer Interaction (HCI), focusing

on multimodal physiological signal analysis.

Reinforcement Learning (RL) is a branch of ML that optimizes decision-making

strategies in dynamic and uncertain environments. RL algorithms enable an agent to

interact with its environment through trial and error. It refines its actions to maximize

cumulative rewards over time. A Markov Decision Process (MDP) commonly models

RL problems, representing sequential decision-making under uncertainty. RL adopts

a single-agent approach in feature selection and formulates the selection process as an

MDP. The framework defines the tuple (S, A, Pa(s,s′), R(s,a), γ), as follows:

1. s represents the set of states, each corresponding to a selected feature combination.
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Figure 6.6: Proposed CIRL-FSA for anxiety classification.

2. A denotes the actions that involve selecting or removing a feature.

3. Pa(s,s′) defines the probability of transitioning from state s to s
′ after performing

action a.

4. R(s,a) represents the reward obtained for executing action a in state s.

5. γ serves as the discount factor, determining the significance of future rewards in

the decision-making process.

However, the single-agent approach struggles to explore and exploit the feature

space effectively, as it fails to capture intricate interdependencies among features [73].

Additionally, relying on a single agent to select or remove all N features results in an

exponentially growing action space of 2N . As the number of features increases, this

expansion significantly reduces the efficiency of the learning process. This approach

resembles evolutionary algorithms, which attempt to identify optimal solutions within

a constrained search space but often face scalability and computational efficiency

challenges.

The Correlated Interactive Reinforcement Learning Feature Selection Algorithm

(CIRL-FSA) enhances feature selection for anxiety classification by utilizing physiolog-

ical signals, including ECG, EDA, and RESP. Figure 6.6 illustrates the proposed CIRL-

FSA for anxiety classification, while Table 6.6 provides an overview of the parameters

used in its implementation. The algorithm operates through multiple sequential phases:
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Table 6.6: IRL parameters for implementing CIRL-FSA.

Parameter Description Value
epsilon Exploration rate, balances exploration and

exploitation.
0.7

alpha Learning rate 0.4
epsilon decay
rate

Decay rate for epsilon, decreases exploration
over time.

0.999

alpha decay rate Decay rate for an alpha, decreases learning rate
over time.

0.999

num episodes Number of episodes for the learning process. 150
num agents Number of agents, each representing a feature. 24
Meta
Descriptive
Stat

mean, variance, standard deviation, median, Q1
(first quartile), Q2 (second quartile), Q3 (third
quartile) and entropy

—

1. Initial Feature Set and Pearson Correlation Analysis:

(a) Feature Selection: The algorithm starts with an initial feature set extracted

from ECG, EDA, and RESP signals. The PCC evaluates the linear

association between each feature and the target variable. This process

helps to eliminate the redundant features by selecting those with strong

correlations to the target, improving the selected subset’s quality.

(b) Correlation Computation: The relationship between a feature x and the

target variable y is quantified using Equation 6.5:

Correlation(x,y) =
cov(x,y)

std(x) · std(y)
(6.5)

2. Feature Agents and Actions:

(a) Agent Allocation: Once the initial feature selection is completed, each

feature fi is assigned to a distinct agent within the Interactive Reinforcement

Learning (IRL) framework. Each agent operates within a binary action

space, where 0 represents feature exclusion and 1 signifies feature selection.

(b) Formation of Feature Subset: The selected agents collectively determine a

feature subset, which is then evaluated based on its impact on classification

accuracy. This approach minimizes the complexity of the action space,
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facilitating a more effective and efficient exploration process.

3. Exploration, Exploitation, and Reward Mechanism:

(a) Epsilon-Greedy Exploration: Agents utilize an epsilon-greedy strategy

to maintain a balance between exploration, where they test new feature

selections, and exploitation, where they rely on previously learned actions.

This adaptive approach enables agents to refine feature selection based on

its contribution to model performance.

(b) Reward Mechanism: After agents finalize their selections, the updated

feature subset is applied to the environment. The model uses this subset

to assess its accuracy and assigns rewards accordingly. Performance

improvements receive positive rewards, while accuracy declines result

in negative rewards, guiding the learning process toward optimal feature

selection.

4. Environment and State Representation Using Meta-Descriptive Statistics:

(a) Environment Update: The environment, defined by the selected feature

subspace, is updated continuously based on the actions taken by agents and

the rewards they receive.

(b) State Representation: At time t, the state st represents the configuration of

the selected features. Meta-descriptive statistics enhance this representation

by providing deeper insights into feature distributions. Once the process

computes the initial set of statistics Stati for each feature, it derives a second

layer of statistical measures to refine feature characterization. The state st

is defined by Equation 6.6:

st = Meta_Descriptive_Stats( f1, f2, ..., fn) (6.6)

In this context, Meta_Descriptive_Stats calculates higher-order statistical

measures, including mean, variance, standard deviation, median, quartiles

(Q1,Q2,Q3), and entropy, based on the initially extracted feature statistics.
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This method improves the decision-making process within the reinforce-

ment learning framework by offering a deeper understanding of feature

distributions.

5. Interpreter and Feedback Mechanism:

(a) Analysis and Iterative Refinement: The interpreter evaluates the selected

feature subset and updates the state representation using meta-descriptive

statistics. This iterative process continues until agents converge on an

optimized feature subset that enhances classification accuracy.

6. Learning and Q-Value Updates:

(a) Q-Value Adjustment: Each agent refines its policy by incorporating both

individual and collective rewards. The Q-value update mechanism, which

guides the agent’s decision-making, is defined by Equation 6.7:

Qi(s,ai)← Qi(s,ai)+α

[
R(s,a)+ γ max

a′i

Qi(s
′
,a
′
i)−Qi(s,ai)

]
(6.7)

The agent updates its Q-value Qi(s,ai) by considering the immediate

reward R(s,a) and the estimated maximum future reward maxa′i
Qi(s

′
,a
′
i).

The learning rate α controls the degree of Q-value adjustment, while the

discount factor γ determines the importance of future rewards in the learning

process.

6.3.1.6 Classification Algorithm and Hyperparameter Tuning

This work extracts features from three primary physiological signals: ECG-derived

HRV, RESP-derived RRV, and EDA. It employs STCIRL-FSA to balance the data and

minimize data dimensionality by removing redundant and less informative features.

Following feature selection, the dataset is divided into training and testing sets using

an 80:20 split.

Various classification models, including RF, SVM, KNN, and LGBM, are utilized

for anxiety classification. Each model incorporates 10 to 15 hyperparameters, covering
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Figure 6.7: Optuna architecture hyperparameter tuning approach for STCIRL-FSA

categorical, continuous, conditional, and integer types, which are vital in optimizing

performance. Given the computational complexity of hyperparameter tuning, the

approach balances by keeping certain parameters at their default values while selectively

optimizing others.

Further, this work employs the Optuna framework to optimize hyperparameters

systematically. Researchers recognize Optuna for its efficient search and pruning

algorithms. This approach enhances the tuning process while ensuring robust and

reproducible classification outcomes [78]. Figure 6.7 presents the architecture of the

Optuna framework, which utilizes a define-by-run strategy to construct the search space

and determine optimal hyperparameters dynamically.

Optuna optimizes hyperparameters by leveraging advanced search (SUGGEST

ALGO) and pruning mechanisms (PRUNE ALGO), which refine the model by

minimizing or maximizing the objective function to achieve an optimal validation

score [6] [78]. The SUGGEST ALGO dynamically defines the search space, while

the PRUNE ALGO eliminates underperforming trials early, ensuring computational

efficiency and cost-effective hyperparameter tuning.

Multiple workers execute the objective function independently for each study. This

function conducts trials using Optuna’s APIs, retrieving relevant data from shared

storage as required [237]. The SUGGEST() API dynamically generates hyperparam-

eters, the REPORT() API tracks intermediate results, and the SHOULD_PRUNE()

API terminates trials that fail to meet predefined conditions [237]. Further, each
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Table 6.7: STCIRL-FSA confusion matrices for anxiety classification across distinct
phases.

Initial
RF SVM KNN LGBM

Class Low High Class Low High Class Low High Class Low High
Low 0.044 0.065 Low 0.007 0.102 Low 0.035 0.074 Low 0.051 0.058
High 0.014 0.286 High 0.001 0.299 High 0.019 0.281 High 0.016 0.284

Post SMOTETomek
RF SVM KNN LGBM

Low 0.848 0.124 Low 0.858 0.136 Low 0.819 0.153 Low 0.919 0.075
High 0.143 0.822 High 0.224 0.719 High 0.253 0.712 High 0.106 0.833

STCIRL-FSA: SMOTETomek + Post CIRL FSA
RF SVM KNN LGBM

Low 0.869 0.103 Low 0.889 0.103 Low 0.940 0.132 Low 0.891 0.080
High 0.128 0.837 High 0.166 0.779 High 0.175 0.690 High 0.107 0.859

STCIRL-FSA + Optuna Optimization
RF SVM KNN LGBM

Low 0.901 0.071 Low 0.929 0.074 Low 0.899 0.104 Low 0.952 0.029
High 0.106 0.859 High 0.094 0.840 High 0.153 0.779 High 0.061 0.895

classification model undergoes evaluation using 10-fold cross-validation to ensure

robust and generalizable results.

6.3.2 Experimental Results

This work utilizes accuracy (Acc), F1-score (F1), sensitivity (Sens), specificity (Spec),

and the receiver operating characteristic (ROC) curve to measure the performance of

the proposed STCIRL-FSA on the Spiderphobic dataset [109]. Table 6.7 details the

confusion matrix, which provides the evaluation metrics.

6.3.2.1 Experimental setup

This work evaluates performance under two experimental setups: one employing a

traditional machine learning framework and the other integrating the SMOTETomek

data balancing technique, interactive reinforcement learning for feature selection, and

Optuna for hyperparameter optimization.
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Figure 6.8: Statistical analysis for EDA+HRV+RRV feature subset obtained using
CIRL-FSA Note: The p-values presented are transformed (− log10(p-value)).

6.3.2.2 Statistical Analysis

This work utilizes statistical metrics such as mean, standard deviation, F-value, and

p-value to assess the significance and variability of features in the anxiety classification

model. The mean represents the central tendency, while the standard deviation measures

the dispersion, offering insights into the distribution and consistency of each feature.

Section 3.7.2 provides a detailed description of the statistical analysis. Figure 6.8

illustrates the feature importance metrics to showcase the mean, standard deviation,

F-value, and transformed p-values (−log10) for each feature.

The analysis identifies HRV_NNI_20, HRV_LF/HF, Mean_hr, GSR_Mean, and

RRV_RMSSD as key features for distinguishing anxiety levels, as indicated by their

high F-values and p-values. These features exhibit significant variance between groups,

highlighting their importance in the classification model. While features such as

HR_RMSSD and RRV_SDBB show lower F-values and p-values, they still provide

relevant information with a lesser impact.

6.3.2.3 Evaluation of classifier performance with different balancing approaches

This section investigates how a class imbalance in the Spiderphobic dataset [109]

affects classifier performance and evaluates different techniques for data balancing. To

improve class distribution, the data balancing approach includes SMOTE, Tomek Links,

and the SMOTETomek combination. Before classification, the dataset undergoes

normalization using the standard_scaling technique.

Table 6.8 imbalanced dataset results presents the baseline performance of classifiers
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Table 6.8: STCIRL-FSA: Comparative performance of classifiers before and after data
balancing techniques with 63 features.

Imbalanced Dataset Post SMOTE
Classifier Acc. F1 Sens Spec Acc. F1 Sens Spec
RF 81.89 79.84 95.50 43.17 83.53 81.48 74.07 92.58
SVM 75.58 66.75 99.52 59.30 70.18 71.85 69.58 55.25
KNN 78.46 75.87 93.67 34.30 75.78 78.35 74.72 77.29
LGBM 81.90 88.47 94.66 46.78 88.47 87.27 83.62 92.81

Post Tomek Post SMOTETomek
Classifier Acc. F1 Sens Spec Acc. F1 Sens Spec
RF 80.94 79.06 94.90 44.60 86.22 86.40 85.57 86.89
SVM 74.72 66.84 99.07 11.07 81.41 82.66 79.30 84.09
KNN 78.63 76.64 92.88 41.56 79.04 80.14 76.40 82.31
LGBM 83.52 82.14 76.16 90.82 90.64 91.04 89.66 91.74

on the original Spiderphobic dataset [109]. The results indicate high sensitivity but

significantly lower specificity. The analysis reveals that the learning curve of the models

tends to favor the majority class. Initially, RF achieves a sensitivity of 95.5% but has

a lower specificity of 43.17%. In contrast, SVM achieves the highest sensitivity of

99.52% while maintaining a specificity of 59.3%. Similarly, KNN and LGBM show

variations in sensitivity and specificity across different cases.

Further, Table 6.8 presents the results for Post SMOTE on distinct classifiers.

The results indicate that applying SMOTE improves overall accuracy significantly. RF

achieves an accuracy of 83.53%, while LGBM achieves the highest accuracy of 88.47%.

These results highlight SMOTE’s role in enhancing class balance and optimizing

performance. However, accuracy slightly declines for SVM and KNN, with the accuracy

of 70.18% and 75.78%, respectively. Despite this reduction, SMOTE improves the

trade-off between sensitivity and specificity, demonstrating its effectiveness in achieving

a more balanced class distribution.

Moreover, the Tomek resampling method improves the accuracy of SVM and KNN,

reaching 74.72% and 78.63%, respectively. This enhancement results from TOMEK’s

ability to eliminate ambiguous data points to reduce misclassifications and increase

model precision. However, its impact on balancing sensitivity and specificity remains

limited, as it primarily addresses overlapping instances rather than fully resolving
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a) b)

c) d)

Figure 6.9: Effectiveness of different resampling techniques on the Spiderphobic dataset
[109]. (a) Original imbalanced dataset. (b) Dataset after applying SMOTE. (c) Dataset
after applying Tomek Links. (d) Dataset after applying SMOTETomek.

class imbalance. Hence, this experiment incorporates the SMOTETomek approach

by leveraging the improved metric balance provided by SMOTE and the enhanced

precision achieved through the Tomek method.

Table 6.8 indicates that using the SMOTETomek technique significantly improves

the balance between sensitivity and specificity, essential for effective classification in

imbalanced datasets. Among the classifiers, LGBM achieves the highest accuracy

of 92.45% and an F1-score of 90.50%, demonstrating a balance with sensitivity at

91.14% and specificity at 93.84%. Additionally, Figure 6.9 compares the visualizations

and decision boundaries of the dataset before and after applying various resampling

techniques. The visualizations reveal how the dataset distribution changes and how

these techniques influence the separability of the classes.

6.3.2.4 Evaluation of classifier performance with SMOTETomek and CIRL-FSA

Table 6.9 presents the impact of applying CIRL-FSA following the SMOTETomek

resampling technique, which significantly enhances classifier performance. Using all

63 features initially allows the model to capture essential information from physiological

signals for anxiety classification. However, reducing the feature set to 10 through CIRL-
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Table 6.9: STCIRL-FSA before optimization: Evaluation of features selected using the
CIRL-FSA algorithm after SMOTETomek resampling and before optimization.

STCIRL-FSA: Post SMOTETomek + CIRL-FSA (10)
Acc F1 Sens Spec

RF 88.07 88.27 87.16 89.04
SVM 86.11 86.86 84.27 88.32
KNN 84.15 85.96 84.30 83.94
LGBM 90.35 90.50 89.28 91.48

FSA further improves classifier performance, increasing efficiency and potentially

lowering computational complexity without compromising predictive accuracy.

The SVM classifier demonstrates an accuracy increase from 84.41% to 86.11%,

while its F1-score rises from 82.66% to 86.86%. KNN also shows notable improvement,

with accuracy increasing from 79.04% to 84.15% and the F1-score advancing

from 80.14% to 85.96%. Additionally, RF achieves an accuracy of 88.07%, and

LGBM exhibits a slight enhancement, reaching 90.35%. These results highlight the

effectiveness of CIRL-FSA in selecting the most influential features, strengthening

classifier performance with improved precision.

6.3.2.5 STCIRL-FSA optimization using Optuna technique

Table 6.10 presents the impact of applying the Optuna optimization approach to

classifiers previously refined through SMOTETomek resampling and CIRL-FSA.

The accuracy of LGBM improved notably from 90.35% to 95.35%, with specificity

increasing to 96.86%. Similarly, SVM achieved an accuracy of 91.33%, along

with enhancements in both sensitivity and specificity. These findings demonstrate

that integrating feature selection with hyperparameter tuning enhances classifier

performance. The optimization technique allows models to capture complex data

patterns better and effectively manage class imbalance.

The significant enhancement in classifier performance is mainly due to Optuna’s

adaptive hyperparameter tuning, which leverages Bayesian optimization to explore the

hyperparameter space efficiently. This structured optimization process allows models

to adjust their parameters based on the characteristics of the balanced dataset, leading

to better generalization and improved overall accuracy.
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Table 6.10: STCIRL-FSA after optimization: Enhancements in classifier performance
using Optuna optimization approach.

STCIRL-FSA + Optuna Optimization
(10 features)

Acc. F1 Sens Spec
RF 90.86 91.06 89.47 92.37
SVM 91.33 91.71 90.81 91.90
KNN 86.72 87.49 85.46 88.22
LGBM 95.35 95.49 93.98 96.86

Figure 6.10: STCIRL-FSA: Comparative performance metrics of all classifiers at
different stages of the Optimization process.

Figure 6.10 illustrates the performance metrics of RF, SVM, KNN, and LGBM

classifiers across different stages: initial, after SMOTETomek resampling, following

CIRL-FSA feature selection, and with CIRL-FSA combined with Optuna optimization.

Additionally, Figure 6.11 displays the ROC curves, demonstrating how each phase

influences the true positive and false positive rates across the classifiers.

6.3.3 Discussion

Recent progress in anxiety classification has shown that combining physiological

signals with ML enhances predictive accuracy. Signals like ECG, RESP, and EDA
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a) b) c)

Figure 6.11: ROC curves illustrating the performance at different stages of the study: (a)
Post SMOTETomek, (b) Post SMOTETomek + CIRL-FSA, and (c) Post SMOTETomek
+ CIRL-FSA + Optuna.

effectively capture physiological responses associated with anxiety. However, the

Spiderphobic dataset [109] used in this study presents a significant challenge due to

class imbalance, where 76% of the data corresponds to anxiety states and only 24%

represents relaxed states. This uneven distribution can bias model predictions and may

affect the classification performance and reduce overall reliability.

Hence, this study applies the SMOTETomek technique, which integrates oversam-

pling for the minority class with data refinement to eliminate mislabeled instances that

could affect model accuracy. This method effectively balances the dataset, allowing

classifiers to learn more effectively from both classes. As a result, classification

performance improves significantly, with the LGBM classifier achieving 90.64%

accuracy, an F1-score of 91.04%, a sensitivity of 89.66%, and a specificity of 91.74%

before optimization.

A major challenge in physiological data analysis is the high dimensionality

of extracted features, including complex interactions and linear and non-linear

correlations, often limiting predictive accuracy. Hence, the study introduces the

CIRL-FSA algorithm, which utilizes agent-model interaction and prediction accuracy

feedback to analyze feature relationships systematically. The agent continuously refines

feature subset selection through dynamic interactions with the prediction models,

resulting in improved classification accuracy for anxiety classification.

Table 6.11 presents a summary of the selected features, their physiological

significance, and their relevance to anxiety classification. Machine learning models,

including RF, SVM, KNN, and LGBM, use the selected features as inputs. The study

applies hyperparameter tuning through the Optuna framework to enhance classification
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Table 6.11: CIRL-FSA-based selected features, domains, and their impact on anxiety
classification

Feature Domain Impact on Anxiety Disorder
HRV_NNI_20 HRV Indicating adaptive responses to anxiety-inducing

situations.
HRV_LF/HF HRV Increased LF/HF ratio signals sympathetic arousal.
Mean_hr HRV Elevates during anxiety due to sympathetic

activation.
HR_RMSSD HRV Decrease in increased sympathetic activity.
GSR_Mean EDA Increases with emotional arousal.
GSR_Var_scl EDA Reflects dynamic emotional states.
GSR_Scr_peaks EDA Represents increased arousal during anxiety.
RRV_RMSSD RRV Indicates irregular breathing during anxiety.
RRV_SDBB RRV Highlighting disrupted patterns during stress.
RRV_meanBB RRV Represents average respiratory cycle length and

alters during emotional distress.

performance.

Optuna optimization leads to a 5% increase in LGBM accuracy, while SVM

improves by 5.22%, KNN by 2.75%, and RF by 2.79%. These findings highlight

the importance of combining advanced feature selection with adaptive hyperparameter

tuning. CIRL-FSA effectively selects the most relevant features, while Optuna

optimization fine-tunes classifier parameters to align with dataset characteristics. This

combined approach enhances model generalization, mitigates class imbalance and high-

dimensional data challenges, and strengthens its applicability for anxiety classification.

This work further conducts a detailed comparative analysis against five conventional

feature selection methods used in previous anxiety studies: PCC, SFS, MI, RFE,

Permutation Importance (PI), and RF, to assess the effectiveness of the proposed CIRL-

FSA algorithm. A standardized approach is applied to preprocessing, feature extraction,

and classification, with the only variation being the feature selection technique. As

shown in Table 6.12, CIRL-FSA surpasses all other methods, selecting just ten features

while achieving the highest scores across key performance metrics, including accuracy,

F1-score, precision, and recall.

Traditional feature selection techniques, including PCC, SFS, MI, RFE, PI, and RF,

often involve a trade-off between the number of selected features and recall performance.

For example, PCC, SFS, PI, and RF reduce the feature sets to 24, 16, 16, and 17
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Table 6.12: Comparison of CIRL-FSA with traditional feature selection algorithms
using LGBM.

Feature Selection Method Acc F1 Precision Recall No of Features
Baseline (All Features) 92.45 92.57 94.05 91.14 62
PCC 92.79 92.76 94.78 89.23 24
SFS 94.09 94.54 96.56 91 16
MI 94.94 94.40 97.37 90.95 12
RFE 91.73 90.22 93.27 87.47 12
PI 93.34 91.82 94.64 91.73 16
RF 94.17 94.63 96.18 90.85 17
CIRL-FSA 95.35 95.49 97.04 93.98 10

features, respectively, yet yield only slight improvements in recall. Although MI and

RFE narrow the feature set to 12 features and achieve high precision, they show lower

recall, suggesting that they misclassify several relevant instances. In contrast, CIRL-

FSA maintains a balance between recall and precision, which is critical for anxiety

classification, ensuring accurate identification of both anxiety and non-anxiety cases.

These findings emphasize the importance of further exploring the broader applicability

of the CIRL-FSA algorithm.

6.3.3.1 Comparison with Existing Studies

Several studies have explored anxiety classification using physiological signals,

employing various feature selection techniques and classification models. Table 6.13

presents distinct methodologies and limitations in previous studies. It highlights

the need for more advanced approaches to improve classification accuracy and

generalizability.

In previous studies on the Spiderphobic dataset [109], Ihmig et al. [109] extracted

statistical, linear, and time-domain features from ECG, EDA, and BR signals and

employed a wrapper approach for feature selection. The study utilized Bagged Trees

(BT), DT, and quadratic SVM classifiers and achieved the highest accuracy of 89.8%

using BT. However, the lack of hyperparameter optimization limited the potential for

further performance improvements. Vulpe-Grigoras et al. [251] employed a 1D-CNN

model on ECG data and extracted time domain features. The authors achieved the

highest accuracy of 83.29% without employing a feature selection algorithm. Further,
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Table 6.13: STCIRL-FSA comparison with existing anxiety classification studies.

Author Subjects Signal Features FSA Optimization Algorithm Result Limitations
Vulpe et al.
[251]

57 ECG TD – – 1D-CNN 1D-CNN 2 level:
83.29%

No feature selection and
optimization performed.

Gazi et al.
[80]

57 ECG, RESP,
EDA

ECG: FD and linear,
EDA: phasic, tonic,
RESP: RRV features

Permutation
approach

Leave-One-
Subject-
Out Cross-
Validation

RF RF 2 level: 88% Permutation method is effi-
cient but may miss feature
interactions.

Ihmig et al.
[109]

57 ECG, EDA,
BR

Statistical, linear,
and time-domain
features

Sequential
Feature
Selection

– Bagged Trees,
DT, Quadratic
SVM

Bagged Trees 2
level: 89.8%

No optimization technique
applied.

Vaz et al.
[248]

15 ECG, EDA,
EMG

HRV: TD, FD, and
non-linear, EDA,
SCR, SCL, EMG:
EMG peaks

RFECV Nested
stratified
cross-
validation

LR, LDA, DT,
SVM, ADB,
RF, XGB

ADB: 92% Small sample size limits
generalization.

Tripathy et al.
[244]

19 ECG Entropy features ANOVA Grid Search
with 10-fold
CV

DT, LGBM,
XGBoost, RF,
ERT

XGBoost: 92.27% Small dataset and focuses
solely on entropy features,
potentially missing other im-
portant features.

Henry et al.
[101]

45 ECG, BVP HR, HRV, FD – Grid Search
with nested
5-fold CV

SVM, RF, XG-
Boost, MLP,
ResNet

SVM: 81.1% Deep learning models under-
performed, suggesting inade-
quate feature representation.

Baygin et al.
[35]

19 ECG Proposed Probabilis-
tic Binary Pattern
(PBP)

NCA, Chi2 – KNN+NCA,
SVM+Chi2

SVM+Chi2:
99.94%

No validation on larger
datasets, raising concerns
about overfitting. No cross-
validation was applied.

Salkevicius et
al. [207]

30 BVP, EDA, ST Statistical, Differen-
tial, Phasic, HR

RF – SVM SVM: 86.3% No optimization applied. A
small dataset affects general-
izability.

Rodriguez et
al. [197]

21 ST, EDA, HR,
BR, SPo2

Statistical Correlation
and MI

– KNN, SVM,
DT, LR

KNN: 95.56 No optimization technique
applied. A small sample size
reduces model generalizabil-
ity.

Proposed
Work

57 ECG, EDA,
RESP

HRV, Phasic, Tonic,
and RRV

Interactive
Reinforcement
Learning

Optuna + 10-
fold CV

RF, SVM,
KNN, LGBM

LGBM: 95.35% Feature selection is automated
but requires further validation
on diverse datasets to ensure
broad applicability.

Gazi et al. [80] utilized ECG, EDA, and RESP signals with a permutation-based feature

selection approach. The authors utilized Leave-One-Subject-Out cross-validation and

employed a Random Forest classifier. They achieved the highest accuracy of 88%.

However, this method achieved an accuracy of 88%.

In another study, Vaz et al. [248] incorporated ECG, EDA, and EMG signals and

employed RFECV with an unsupervised feature selection algorithm. The study used a

nested stratified cross-validation approach with distinct classifiers, including LR, LDA,

DT, SVM, ADB, RF, and XGB. The authors achieved the highest accuracy of 92% with

34 features using ADB. Tripathy et al. [244] utilized ECG-based entropy features and

ANOVA for feature selection. The authors employed grid search with 10-fold cross-

validation for optimization. The study achieved a maximum accuracy of 92.27% using

XGBoost. Further, Salkevicius et al. [207] applied statistical, differential, and phasic

feature extraction techniques on BVP, EDA, and ST signals. The authors employed

RF for feature selection and reduced the features from 33 to 10. The study achieved

the highest accuracy of 86.3% using SVM, but the absence of hyperparameter tuning

and optimization limited the model’s full potential. Rodriguez et al. [197] investigated

statistical features from ST, EDA, HR, BR, and SpO2 signals, using correlation and
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MI for feature selection. The study employed classifiers such as KNN, SVM, decision

trees, and logistic regression. The authors achieved the highest accuracy of 95.56%

with 13 features using KNN.

In a recent study, Baygin et al. [35] proposed a PBP approach for ECG feature

extraction and utilized NCA and Chi-square methods for feature selection. The study

achieved the highest classification accuracy, 98.81% for KNN+NCA and 99.94% for

SVM+Chi2. Unlike previous studies, the proposed CIRL-FSA integrates interactive

reinforcement learning-based feature selection with Optuna hyperparameter tuning to

enhance classification performance. This experiment employs ECG, EDA, and RESP

signals while addressing class imbalance through SMOTETomek resampling to ensure

a more balanced dataset for training.

Moreover, while many existing studies apply grid search for hyperparameter tuning,

this method exhaustively searches across predefined hyperparameter values, which

can be computationally expensive and inefficient, particularly for high-dimensional

datasets. Grid search also lacks adaptability, as it does not dynamically adjust the

search space based on previous results, often leading to suboptimal tuning and increased

training time.

In contrast, Optuna’s Bayesian optimization intelligently explores the hyperpa-

rameter space by leveraging an adaptive search strategy. Unlike grid search, Optuna

dynamically adjusts the search process based on prior evaluations, efficiently identifying

the best-performing hyperparameter configurations while reducing computational costs.

This adaptive approach significantly improves model optimization, allowing classifiers

to align better with dataset characteristics. As a result, the LGBM classifier achieves

95.35% accuracy, outperforming conventional methods while reducing computational

complexity by selecting only ten essential features.

6.3.4 Significant Outcome

The CIRL-FSA demonstrates the effectiveness of interactive reinforcement learning

in adaptively selecting informative features from multimodal physiological data.

Modeling feature selection as a dynamic decision-making process captures complex

interdependencies that static methods often overlook. This work further extends CIRL-
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FSA to the STCIRL-FSA by integrating the SMOTETomek resampling technique to

enhance performance under class-imbalanced conditions. This extension significantly

improves classification results while preserving the adaptive nature of the original

algorithm. Although the reinforcement learning-based approach introduces higher

computational costs, CIRL-FSA achieves high classification performance with a

reduced feature set, confirming its potential for real-world anxiety detection in Human-

Computer Interaction systems.

6.4 Comparative Evaluation of CorLMI-FSA and CIRL-

FSA

This section presents a cross-dataset evaluation of CorLMI-FSA and CIRL-FSA

to validate their performance and adaptability beyond their original application

domains. Initially, CorLMI-FSA and CIRL-FSA are developed for stress and

anxiety classification, respectively. Then, the evaluation applies each algorithm

to the alternate dataset to assess their generalizability across related physiological

contexts. Specifically, the evaluation applies CorLMI-FSA to the Spiderphobic anxiety

dataset [109] and CIRL-FSA on the self-collected ASD. The comparison focuses on

classification accuracy, feature reduction, computational efficiency, and adaptability to

dataset-specific characteristics.

Table 6.14 presents the comparative evaluation of CorLMI-FSA and CIRL-FSA

across the self-collected ASD and the publicly available Spiderphobic anxiety dataset

[109]. On the ASD with two-level classification, CIRL-FSA achieves an accuracy of

95.35% and an F1-score of 95.49%, outperforms CorLMI-FSA, which attains 96.82%

accuracy and 96.81% F1-score, but with substantially lower runtime. Similarly, CIRL-

FSA achieves the highest accuracy of 96.94%, slightly outperforming CorLMI-FSA,

with increased runtime. On the Spiderphobic dataset, CorLMI-FSA achieves 95.35%

accuracy and 95.49% F1-score, outperforming CIRL-FSA, achieving an accuracy of

92.43% and F1-score of 91.53%, although its runtime is also higher in this case. These

findings illustrate that while CIRL-FSA can model complex feature interactions and

adapt to increased class granularity, CorLMI-FSA provides a better trade-off in simpler

194



Table 6.14: Comparative evaluation of CorLMI-FSA and CIRL-FSA on self-collected
ASD and Spiderphobic anxiety [109] datasets

Datasets Domain Stress
Class

Algorithm Selected
Features

Acc
(%)

F1
(%)

Runtime
(s)

Self-collected
ASD

Stress two CorLMI-
FSA

10 96.82 96.81 156

Self-collected
ASD

Stress two CIRL-
FSA

9 97.35 96.49 1074

Self-collected
ASD

Stress three CorLMI-
FSA

11 95.84 95.12 168

Self-collected
ASD

Stress three CIRL-
FSA

12 96.94 96.08 1179

Spiderphobic
[109]

Anxiety two CorLMI-
FSA

10 95.35 95.49 1015

Spiderphobic
[109]

Anxiety two CIRL-
FSA

11 92.43 91.53 226

or well-separated tasks due to its lower computational overhead and stable performance.

The cross-dataset comparison highlights the complementary strengths of the two

proposed feature selection algorithms. CIRL-FSA demonstrates strong adaptability and

achieves the highest accuracy in complex scenarios, such as multi-class classification,

by dynamically selecting features through interactive reinforcement learning. However,

this performance gain comes with increased runtime. In contrast, CorLMI-FSA offers

faster execution with comparable or superior performance in binary classification

settings. These results suggest that CorLMI-FSA is well suited for real-time or resource-

constrained environments, whereas CIRL-FSA is better suited for tasks that require high

adaptivity. Furthermore, Table 6.15 presents a qualitative comparison of CorLMI-FSA

and CIRL-FSA across key algorithmic characteristics.

6.5 Summary

This chapter presents and evaluates two novel feature selection algorithms, CorLMI-

FSA and ST-CIRL-FSA, for physiological signal-based stress and anxiety classification,

respectively. CorLMI-FSA integrates correlation filtering with mutual information

and logistic redundancy control to identify relevant and non-redundant features. ST-

CIRL-FSA formulates feature selection as a sequential decision-making process using
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Table 6.15: Qualitative comparison of CorLMI-FSA and CIRL-FSA across key
algorithmic characteristics

Parameter CorLMI-FSA CIRL-FSA
Feature Selection Filter-based Reinforcement learning-based
Adaptability Static selection Dynamic selection based on

environment feedback
Classification
Performance

High accuracy in binary stress
classification

High accuracy in multi-class
and complex environment

Runtime
Efficiency

Low computational overhead High due to iterative explo-
ration and feedback loop

Redundancy
Handling

Logistic redundancy control in
MI-based ranking

Implicitly handled through
reward optimization

Interpretability High Moderate
Best Use Case Real-time or resource-

constrained applications
High-performance
applications with flexible
runtime

interactive reinforcement learning and incorporates SMOTETomek resampling to

address class imbalance. It applies CorLMI-FSA to the Self-collected ASD and

CIRL-FSA on the Spiderphobic anxiety dataset [109]. Further, it conducts cross-

dataset evaluation by applying each algorithm to the alternate dataset to assess

generalizability. Results indicate that CIRL-FSA achieves higher accuracy in multi-

class classification tasks, while CorLMI-FSA exhibits better runtime efficiency and

competitive performance in binary classification scenarios. Furthermore, qualitative

comparisons show that CIRL-FSA offers superior adaptability and effectively captures

complex feature interactions. In contrast, CorLMI-FSA provides faster execution,

higher interpretability, and consistent feature selection.

This chapter is based on the following work:

• J3: Shikha, Divyashikha Sethia, and S. Indu. ”ST-CIRL: A Reinforcement

Learning-Based Feature Selection Approach for Enhanced Anxiety Classifica-

tion” Physiological Measurement. (2025): 1-18. SCIE, Impact factor: 2.3,

Publisher: IOP Science. Doi: https://doi.org/10.1088/1361-6579/

adb006. (Published).
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• C1: Shikha, Divyashikha Sethia, and S. Indu. "CorLMI-FSA: An Efficient

Feature Selection Approach for Stress Classification Using Physiological

Signals." In Proceedings of the 5th IEEE International Conference on Advances

in Electrical, Computing, Communications and Sustainable Technologies

(ICAECT), 2025. Doi: https://doi.org/10.1109/ICAECT63952.2025.

10958862. (Published).
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Chapter 7

Conclusion, Future Scope and Social

Impact

With the growing demand for objective and real-time mental health monitoring,

physiological signals have proven to be a reliable modality for detecting stress and

anxiety [85]. These signals reflect dynamic changes in the autonomic nervous system,

making them well-suited for capturing emotional fluctuations in everyday life. However,

developing classification models that are both accurate and computationally efficient

remains a significant challenge, particularly for wearable and real-world applications.

This thesis presents a comprehensive literature review to identify the current

limitations in physiological signal-based stress and anxiety classification. It examines

the relationship between physiological responses and mental states, highlights

preprocessing techniques, feature extraction methods, and feature selection strategies,

and evaluates machine learning and deep learning models, open datasets, and

performance metrics. The review reveals critical gaps such as high-dimensional

data, limited model interpretability, class imbalance, and computational inefficiency,

emphasizing the need for scalable and real-time solutions.

To address these challenges, the thesis proposes KRAFS-ANet, a lightweight

framework for EEG-based stress classification that integrates automated channel

selection and ensemble stacking to enhance classification accuracy. This framework

improves classification accuracy while significantly reducing computational load that

makes it suitable for real-time implementation in wearable devices. Further, the
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development and validation of this framework demonstrate its robustness across

multiple datasets, confirming its adaptability and practical value.

Further, the thesis also introduces the Academic Stress Dataset ASD, a novel

multimodal dataset collected in an academic environment using MIST to induce

progressive stress in engineering students. The self-collected dataset fills a critical

gap in existing research by enabling the analysis of stress responses for engineering

students in the academic environment and highlighting the effectiveness of EDA and

HRV as primary biomarkers.

In addition to enhance model interpretability and efficiency, the thesis proposes

two novel feature selection algorithms for physiological signal-based stress and anxiety

classification. The CorLMI-FSA employs correlation filtering and logistic redundancy

control to reduce feature dimensionality without compromising accuracy. While,

CIRL-FSA formulates feature selection as an interactive reinforcement learning

process that dynamically explores and exploits feature dependencies across ECG, EDA,

and RESP signals. To address class imbalance in the Spiderphobic dataset [109], CIRL-

FSA is further extended to STCIRL-FSA by integrating the SMOTETomek resampling

technique. Cross-dataset evaluations demonstrate that CIRL-FSA is more effective in

multi-class scenarios, whereas CorLMI-FSA provides greater efficiency and stability

in binary classification tasks. Chapter 6 covers this work.

In conclusion, this thesis establishes an effective and scalable pipeline for

physiological signal-based stress and anxiety classification. The proposed methods

advance the field by offering interpretable, efficient, and high-performing solutions,

with strong potential for real-time and wearable applications in mental health

monitoring and human–computer interaction.

7.1 Key Insights from This Research

Based on the literature review, experiments performed, and findings, the following are

the key insights:

1. How can physiological signals be used to classify stress and anxiety?

Physiological signals provide objective and quantifiable measures of stress and
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anxiety by capturing the body’s autonomic and central nervous system responses.

These signals reflect emotional, cognitive, and physiological changes associated

with stress and anxiety.

(a) EEG captures electrical activity in the brain, reflecting mental workload

and cognitive stress responses. Stress can influence overall brain activity,

causing changes in signal amplitude and frequency bands that help

differentiate stress and anxiety levels.

(b) EDA measures sweat gland activity and reflects autonomic nervous system

arousal, making it a key indicator of emotional and psychological stress.

Increased skin conductance levels indicate heightened stress and anxiety

responses.

(c) HRV reflects autonomic nervous system balance, where decreased HRV

indicates higher sympathetic activity, stress, and anxiety, while increased

HRV suggests a relaxed state.

(d) RESP analyzes breathing patterns, which change under stress and anxiety.

Shallow, rapid breathing is often associated with heightened stress and

anxiety, while deep, slow breathing corresponds to a relaxed state.

(e) BVP tracks vascular changes linked to stress-induced blood flow and heart

rate fluctuations. Stress and anxiety can cause vasoconstriction or variations

in pulse amplitude, which provide additional markers for classification.

Machine learning models can differentiate between varying stress and anxiety

levels by analyzing patterns in these signals. The multimodal combination of

these physiological markers improves classification accuracy, providing a reliable

and objective assessment of stress and anxiety states.

2. Why is multimodal integration important for stress and anxiety classifica-

tion?

A single physiological signal may not always provide a complete and reliable

representation of stress and anxiety responses due to noise, artifacts, and external

influences. Many factors, such as motion artifacts, sensor inconsistencies, or
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environmental interference, can distort signals, which may reduce classification

accuracy. Additionally, physical exertion can cause fluctuations in heart rate,

skin conductance, and respiratory patterns, which may not necessarily indicate

stress and anxiety but rather physiological adaptation. The classification system

becomes more robust and adaptable by integrating multiple signals, such as

EEG and other peripheral signals, including ECG, EDA, BVP, and RESP. EEG

provides direct insights into cognitive and emotional stress, while peripheral

signals capture autonomic nervous system responses. If one signal is affected by

noise or external conditions, other signals can compensate, improving reliability.

3. Why is EEG integration important for stress classification?

While peripheral physiological signals such as ECG, EDA, and BVP capture

autonomic nervous system responses to stress, EEG provides direct insights

into brain activity, making it crucial for distinguishing between cognitive and

physiological stress responses. EEG signals can help identify stress-induced

neural changes that may not be reflected in peripheral signals alone. By

integrating EEG with other physiological signals, stress classification models

become more robust and adaptable, improving accuracy in detecting mental

workload, cognitive stress, and emotional states. EEG-based stress assessment

is particularly valuable in cases where physical exertion or environmental factors

may alter peripheral physiological signals, ensuring a more comprehensive and

reliable classification framework.

4. How does automated channel selection enhance EEG-based stress and

anxiety classification?

Traditional EEG-based stress classification relies on predefined channel selection,

where researchers manually choose brain regions based on neuroscience

knowledge. For example, the prefrontal cortex is commonly associated

with cognitive stress, while other regions, such as the central and parietal

lobes, are relevant for different cognitive and motor functions. However,

this manual selection process lacks adaptability across different datasets and

experimental conditions. Automated channel selection dynamically identifies

the most informative channels based on data characteristics rather than relying
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on fixed, task-specific assumptions. Data-driven selection retains only the

most relevant EEG channels, reducing dimensionality, computational load, and

sensor redundancy while maintaining high classification accuracy. Furthermore,

minimizing the required EEG channels simplifies experimental setups, improves

user comfort, and enhances the feasibility of real-time, wearable stress monitoring

applications. This approach supports the development of more efficient and

scalable EEG-based stress classification systems, making stress detection more

adaptable across different datasets and real-world scenarios.

5. What challenges arise from motion artifacts and physiological signal noise?

Physiological signals are prone to motion artifacts, sensor inconsistencies, and

powerline interference, which can introduce noise and missing values, affecting

classification performance. This issue is particularly significant in real-world

environments where users may be in motion, leading to electrode displacement,

muscle activity interference, and external disturbances. EEG, ECG, EDA, BVP,

and RESP signals can all be affected, making distinguishing stress-induced

changes from noise-related variations challenging. Preprocessing techniques

such as filtering, Independent Component Analysis (ICA), and Empirical Mode

Decomposition (EMD) help improve signal quality by reducing noise and

artifacts. However, manual preprocessing is time-consuming and may not

be effective in all cases. Further research is needed to develop automated

artifact detection and removal techniques to enhance stress classification models’

robustness and real-world applicability.

6. How does feature selection impact stress classification performance?

Feature selection improves stress and anxiety classification performance by

reducing data dimensionality, enhancing model interpretability, and improving

generalization across datasets. Since the analysis of physiological signals spans

multiple domains, such as time, frequency, and time-frequency, the extracted

features create high-dimensional data. Although this provides comprehensive

information, it also increases computational complexity and may introduce

redundant or irrelevant features that negatively impact model performance.

Some features may not contribute to stress and anxiety classification or could
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even introduce noise, leading to overfitting and reduced model robustness.

Additionally, certain features may have a negative impact on classification

accuracy. Therefore, a well-optimized feature selection process removes

redundant and less relevant features, ensuring better dataset generalization and

improving classification efficiency. By selecting only the most discriminative

and relevant features, models become computationally efficient and effective,

less prone to overfitting, and more adaptable to real-world applications.

7. How can machine learning be used for automated stress and anxiety

classification?

Physiological signals such as EEG, ECG, EDA, BVP, and RESP are collected

from wearable sensors and then preprocessed to remove artifacts and noise,

ensuring cleaner data for analysis. After preprocessing, feature extraction

techniques obtain relevant statistical, time-domain, and frequency-domain

features, which serve as inputs for machine learning models. Supervised

learning algorithms such as SVM, KNN, RF, and GB are commonly employed

to classify stress levels, as they effectively map extracted features to different

stress categories. In addition, deep learning models like ANN, MLP, and CNN

are utilized, allowing the system to learn complex temporal and spatial patterns

directly from raw physiological signals. High-dimensional feature sets often

introduce redundancy and affect model performance, making feature selection

essential to retain the most relevant features and improve classification accuracy

and computational efficiency. The overall effectiveness of these models depends

on multiple factors, including the quality and diversity of training data, feature

engineering strategies, and hyperparameter optimization techniques. Methods

such as Optuna-based tuning enhance performance further, ensuring that the

models generalize well across different datasets and provide reliable stress

classification.

7.1.1 Limitations

One of the key challenges in real-world stress classification is handling motion artifacts

and noise caused by body movements, power interference, and sensor inconsistencies.
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Unlike controlled laboratory environments, real-world physiological signals are prone

to missing values, noise, and outliers, which can degrade classification performance.

Physiological signals may vary due to muscle activity, electrode displacement, baseline

drift, and environmental interference. To address these issues, researchers should

explore advanced filtering techniques such as low-pass, high-pass, and Butterworth

filters, along with Independent Component Analysis (ICA) and Empirical Mode

Decomposition (EMD) for artifact removal and signal enhancement.

Although this study employs a multimodal approach, it does not integrate EEG with

other physiological signals such as ECG and EDA. EEG plays a crucial role in stress

processing, as brain activity directly reflects emotional and cognitive stress responses.

Combining EEG with peripheral signals could enhance classification accuracy by

distinguishing stress-induced changes from physiological fluctuations due to physical

exertion or external factors. Future research should explore EEG-based multimodal

fusion to improve the robustness and reliability of stress detection.

Additionally, while machine learning models have demonstrated high performance,

incorporating advanced deep learning approaches and self-supervised learning

techniques could further enhance feature representation and classification accuracy

in stress detection.

7.1.2 Future work

This study provides a strong foundation for stress classification using physiological

signals, but several areas remain open for further exploration. Future researchers can

extend this work in the following directions:

1. Conducting real-time data collection in natural environments to evaluate model

performance outside controlled laboratory conditions.

2. Integrating the proposed system into a mobile application to enable real-

time stress monitoring and adaptive intervention strategies for mental health

management.

3. Further, designing a real-time stress intervention framework that not only detects

stress but also provides personalized interventions, such as biofeedback, breathing
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exercises, or meditation recommendations, based on physiological responses.

4. Expanding stress classification by integrating Physiological signals with addi-

tional bodily expressions of emotion, such as eye tracking, speech, and gestures,

to develop a more comprehensive stress detection system.

5. Future research can explore advanced deep learning models such as transformers

and contrastive learning for better feature extraction and classification accuracy.

Additionally, investigating self-supervised learning techniques can help models

generalize better across different datasets.

7.2 Social Impact & Applications

This research on stress and anxiety classification using physiological signals has

significant social implications, contributing to mental health awareness, workplace

well-being, academic performance, and healthcare advancements. Integrating machine

learning-based stress detection models into wearables, mobile applications, and human-

computer interaction (HCI) systems enables real-time stress monitoring and early

intervention strategies, ensuring a proactive approach to stress management.

1. Smart Mental Health Awareness and Early Intervention: Stress and anxiety

disorders often go undiagnosed, leading to long-term mental health consequences

such as burnout, depression, and reduced cognitive performance. By leveraging

machine learning models and physiological signals, this research provides an

objective and non-invasive approach to detecting stress early. Integrating real-

time stress monitoring into wearables and mobile applications allows individuals

to track their stress levels and take preventive actions such as guided breathing,

meditation, and lifestyle adjustments. Future AI-driven advancements can

improve personalized mental health interventions, reducing the societal burden

of stress-related disorders, as shown in Figure 7.1.

2. Enhancing Workplace Productivity and Employee Well-being: Chronic stress

in workplaces leads to decreased efficiency, burnout, and health complications,

affecting both employees and organizations. Implementing real-time stress
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Figure 7.1: Smart mental health monitoring through mobile applications and wearable
devices.

Figure 7.2: AI-driven workplace stress monitoring systems integrate wearable sensors,
allowing employees to track their stress levels and real-time dashboards to show
personalized interventions.

detection systems in workplaces can help monitor employees’ stress levels,

suggest personalized interventions, and optimize workload distribution. Figure

7.2 illustrates an AI-driven workplace stress monitoring that integrates wearable

sensors with real-time dashboards. It can track employees’ stress levels while

receiving personalized stress-relief recommendations such as guided breathing

exercises and workload adjustments. Employers can integrate these models

into corporate wellness programs to promote a healthier work environment.

Organizations can offer stress management resources by identifying high-stress

periods, reducing employee turnover, and improving overall productivity.

3. Stress Detection in Academic Environments: Students face significant

academic stress, which affects learning outcomes, concentration, and emotional

well-being. The data collected in this research highlights how physiological

signals reflect stress responses in an academic environment. Figure 7.3 illustrates

how AI-assisted stress detection systems can be integrated into classrooms to

monitor physiological responses in real-time. Wearable sensors and adaptive
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Figure 7.3: AI-driven stress monitoring in academic environment

learning platforms help track cognitive load, enabling personalized interventions

that enhance student well-being and academic performance.

4. Advancing Healthcare and Remote Monitoring for Elderly and Chronic

Patients: Chronic stress significantly impacts cardiovascular health, hyper-

tension, and mental well-being, particularly among elderly individuals and

individuals with long-term health conditions. The integration of wearable

devices in stress monitoring enables continuous physiological data collection, as

illustrated in Figure 7.4. Additionally, AI-driven virtual assistants enhance patient

engagement in telemedicine applications, shown in Figure 7.5. By embedding

stress classification models into wearable medical devices, clinicians can assess

stress levels in real time, leading to improved mental health diagnostics. This

research has the potential to enhance mental healthcare accessibility, ensuring

that stress management becomes an integral component of preventive healthcare

systems.

5. Human-Computer Interaction (HCI) and Smart Environments: Integrating

stress detection models into HCI applications enables adaptive and personalized

interactions across various domains. Smart home environments can adjust

lighting, temperature, and background music based on detected stress levels
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Figure 7.4: Wearable technology and remote patient monitoring for AI-driven stress
detection.

Figure 7.5: AI-driven virtual assistants in telemedicine: Intelligent chatbots and
virtual assistants provide real-time support for stress management and mental health
monitoring.

to create a calming atmosphere. Similarly, virtual reality (VR) and gaming

applications can modify gameplay difficulty in real time to prevent frustration

and optimize user experience. Additionally, AI-driven virtual assistants can

recommend stress-relief activities such as guided breathing and mindfulness

exercises to help users manage their emotional states effectively. Figure

7.6a) illustrates the application of VR-based stress relief techniques, where

users engage in immersive relaxation environments to reduce stress levels.

Additionally, Figure 7.6b) demonstrates how AI-powered smart assistants can

provide personalized stress management solutions, such as music therapy or

meditation suggestions, enhancing human-computer interactions in everyday life.
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Figure 7.6: AI-Driven Stress Management in HCI

Figure 7.7: Real-time workplace stress monitoring using smart wearables and AI-
driven notifications.

6. Smart Wearables and Personalized Stress Management: With the growing

use of wearable technology, stress classification models can be embedded into

smartwatches, fitness bands, and biosensors to provide real-time stress tracking

and adaptive interventions. Features may include:

• Automated stress alerts when stress levels exceed normal thresholds.

• AI-driven recommendations for relaxation techniques such as guided

breathing and meditation.

• Daily stress pattern analysis to help users understand their stress triggers.

These advancements contribute to personalized stress management, enabling

individuals to actively monitor and control their stress levels through real-time

feedback and intervention strategies, as shown in Figure 7.7.
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