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Abstract

The rapid expansion of the internet of things has led to the widespread deployment
of sensor nodes, creating a need for energy-efficient and scalable communication
frameworks. Software-defined wireless sensor networks have emerged as a promis-
ing solution by offering centralized control, dynamic reconfiguration, and enhanced
flexibility. However, these networks face critical challenges, including limited battery
life, routing inefficiencies, and the need to meet multiple quality of service constraints.

This thesis addresses these challenges by proposing a set of novel, energy-
efficient, multi-QoS-centric routing algorithms for IoT-enabled SDWSNs. A detailed
systematic literature review is conducted to classify existing clustering and routing
methods into classical, metaheuristic-based, and machine learning-based categories,
highlighting research gaps. To overcome existing limitations, three metaheuristic-based
protocols are developed: the Energy-Optimized Artificial Hummingbird Algorithm
(EOAHA), a Nature-Inspired Multi-Objective Green Routing Protocol (EO-C), and
a Multi-Constrained Hybrid Protocol (EQ-AHA). These algorithms are designed to
optimize cluster head selection and routing paths by using multi-objective fitness
functions based on energy, distance, load, and network stability. Extensive simulations
and performance evaluations confirm that the proposed models significantly outperform
existing state-of-the-art techniques in terms of network lifetime, energy consumption,
data delivery, and robustness. The research offers valuable contributions to the
development of intelligent, adaptive, and sustainable routing protocols for future
IoT-enabled smart environments.
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CHAPTER 1

INTRODUCTION

1.1 Background and Motivation

The Internet of Things (IoT) is a network of devices that communicate with
each other over existing World Wide Web infrastructure. The major advantage of these
devices is their ability to make intelligent decisions based on evolving situations. As a
result, IoT devices find applications in nearly every domain. Health [1], manufacturing
[2], smart homes [3], smart vehicles [4], smart appliances, farming [5], and smart cities
are just a few examples. Managing a smart city involves deploying a large number of
smart sensors with features like remote reconfiguration and internet connectivity. Over
the past few decades, the demand for IoT has grown significantly, prompting advances
in both software and hardware for sensor nodes capable of monitoring and collecting
diverse types of data [6]. IoT devices take intelligent decisions based on data gathered
through sensors or sensor networks. The growing IoT ecosystem demands increasingly
complex Wireless Sensor Network (WSN) architectures [7]. Traditional WSNs consist
of sensor nodes that can sense and route data but have limited connectivity, storage,
and processing capabilities [8]. Managing large-scale networks, especially in remote
or inaccessible locations, is very difficult and increases operational costs [9, 10]. The
solution to this problem is the Software-Defined Wireless Sensor Networks (SDWSNs).

IoT applications, like the smart cities, uses the concept of SDWSNs to
manage services such as smart transportation, traffic control, and power optimization
in urban areas [11–13]. The major advantage offered by IoT-enabled SDWSNs is

1



dynamic reconfiguration of network nodes centrally [14]. This feature allows the
network operator to easily add or remove nodes and ensures adaptability to changing
environmental conditions. Hence the operation cost decreases drastically and improves
network performance. As there are billions of connected IoT devices and the trend
continues to grow exponentially [15], so does the demand for energy, which poses
substantial environmental concerns. One critical issue in IoT-enabled SDWSNs is the
limited battery life of sensor nodes [16]. There are two commonly adopted strategies for
mitigating energy constraints: energy-efficient routing protocols and energy harvesting.
Since transmission energy is directly proportional to the distance between the sender
and receiver, routing protocols aim to minimize transmission distances by optimizing
the routing path to the central controller [17]. Energy harvesting, on the other hand,
leverages external sources such as solar or kinetic energy to automatically recharge
node batteries [16, 18]. These approaches are essential for improving the long-term
sustainability of SDWSNs.

Among the techniques explored for reducing energy consumption, clus-
tering has emerged as particularly effective. In this approach, the network is divided
into logical groups, each managed by a Cluster Head (CH) [19]. CHs aggregate
data from member nodes and transmit it to the base station—an energy-intensive task
that significantly affects network lifetime [20]. However, selecting optimal CHs is
an NP-hard problem [21], necessitating the use of advanced optimization strategies.
Efficient CH selection, therefore, is central to the development of sustainable and
scalable routing protocols for IoT-enabled SDWSNs [8, 22].

1.2 Key Concepts

1.2.1 Internet of Things

The Internet of Things (IoT) has attracted great attention and interest
from many researchers, industrial organizations, and users, being considered the
next-generation Internet [23]. As shown in figure 1.1, there were 8.6 billion IoT
devices in 2019, and the number is expected to rise to 3.5 times by 2030 [24]. IoT
devices are physical objects connected via the internet that exchange data with other
machines or humans. These devices enable automation across various domains by
integrating sensing, processing, and communication capabilities. IoT devices are often

2



heterogeneous, built by different manufacturers and using diverse communication pro-
tocols. This heterogeneity introduces complexity in enabling seamless interoperability
and data exchange. IoT networks can be broadly classified based on their connectivity
technologies, communication range, and energy requirements. Traditionally, they are
grouped into six major categories, but additional and emerging types also exist to
address specific use cases [25].

Figure 1.1: Projected Growth of IoT-Devices

1. Cellular Networks: Cellular networks offer long-range connectivity and are
commonly used for IoT devices that require wide-area coverage, such as vehicle
tracking or smart city applications. With declining costs and advances in low-
power cellular protocols (e.g., NB-IoT, LTE-M), cellular IoT is gaining traction
[26, 27]. Devices can be deployed anywhere within network coverage without
custom infrastructure. However, power consumption remains a concern for
battery-operated devices [28].

2. Local and Personal Area Networks (LAN/PAN): These short-range networks
are suitable for indoor and proximity-based IoT deployments. Technologies such
as Wi-Fi, Bluetooth, Zigbee, and Z-Wave fall under this category. While they
are easy to deploy and cost-effective, their limited communication range and
interference in dense environments may affect reliability [29].

3



3. Low-Power Wide Area Networks (LPWAN): LPWAN technologies such as
LoRaWAN, Sigfox, and NB-IoT are designed for long-range, low-power, low-
bandwidth communication. These are ideal for devices that transmit small packets
of data infrequently, such as in environmental monitoring or smart metering.
LPWANs can operate over tens of kilometers while consuming minimal energy
[30].

4. Satellite IoT Networks: Satellite-based IoT enables connectivity in remote,
maritime, and disaster-prone areas where terrestrial networks are unavailable.
These systems are increasingly used in applications such as asset tracking, wildlife
monitoring, and offshore operations. Examples include Iridium, Swarm, and
Inmarsat [31].

5. Wired IoT Networks: Although wireless technologies dominate the IoT land-
scape, wired networks still play a crucial role, especially in scenarios where
high bandwidth and low latency are essential, such as in industrial automation
and smart buildings. They are required where real-time data transmission and
security are critical, ensuring reliable communication and robust performance in
smart environments [32].

6. Hybrid Architectures: Some IoT systems integrate multiple networking types to
address complex environments. These hybrid architectures leverage the strengths
of various technologies, ensuring robust connectivity and adaptability in diverse
applications. For example, a smart agriculture system may use LPWAN for field
sensors and 5G or Wi-Fi for backhaul communication. Hybrid architectures
balance latency, power, cost, and reliability [33].

1.2.2 Wireless Sensor Networks

Wireless Sensor Networks (WSNs) are an important part of the Internet
of Things (IoT). They consist of many small, low-cost, low-power sensor devices that
can collect and share information. WSNs are used in many areas like environmental
monitoring, agriculture, smart homes, and even underwater systems [34–37].
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Figure 1.2: WSN Architecture

Figure 1.2 shows a basic architecture of a WSN system. The sensor nodes
are deployed across a sensing field to monitor environmental parameters. These nodes
are connected in a mesh-like structure and communicate with a centralized base station,
either directly or through other sensor nodes. The base station collects the sensed data
and forwards it to a gateway, which acts as a bridge between the WSN and external
networks. Finally, the data is sent to the user for analysis or further processing. This
setup enables remote monitoring and decision-making in real time.

One of the biggest challenges in WSNs is energy conservation, as the sensor
nodes run on limited battery that cannot be replaced or recharged [38]. The node stops
working once the battery is drained and the node becomes obsolete due to its remote
location. Therefore, it is very important to save energy to make the network last
longer [39]. The major part of the node’s energy gets exhausted in the transmission
of data. To extend the life of the network, sensor nodes must be smart about how
they send their data. If a sensor is close to the base station (called a Sink), it can
send data directly [40]. But in many cases, sensors are placed far from base stations;
therefore, direct communication would use too much energy. A better way is multihop
communication, where data is passed through other nodes until it reaches the sink.
This method uses less energy and extends the overall network lifetime [41]. Besides
energy, other important aspects are security, timely data delivery, fault tolerance, and
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scalability. Some applications of WSN also need mobility for proper data aggregation
and coverage of the monitored area. Furthermore, the network should be reliable,
adaptable to different topologies, and capable of integrating heterogeneous sensors.
All these features together can help WSNs to function efficiently in various real-world
IoT applications.

1.2.3 Software-Defined Networking

Software-defined networking (SDN) is the most important concept in mod-
ern communication networks. SDN architecture (shown in Figure 1.3) has separated
the data plane and the control plane in devices [42]. Due to this separation, the
network operators can manage the network more efficiently by controlling it centrally
and enabling programmability [43]. This separated control plane feature allows easy
addition of new devices that are configured through centralized software, making the
system more flexible and scalable. As the SDN is managed centrally, all the devices
have a global view of the network. This feature helps network operators to create
and enforce automated rules to optimize network resource usage and improve service
delivery [44, 45].

Figure 1.3: SDN Architecture
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As shown in Figure 1.3, an SDN architecture consists mainly of three
layers: the application layer, a control layer, and an infrastructure layer that forms
the data plane. The role of the centralized controller is to handle all network control
logic, while the devices in the data plane simply follow the instructions provided by the
controller. This arrangement allows network operators to implement policies for traffic
control, load balancing, security, and quality of service [46–49] .

1.2.4 IoT-enabled Software Defined Wireless Sensor Networks

Building upon the principles of SDN, Software-Defined Wireless Sensor
Networks (SDWSNs) have emerged as a more specialized network [50, 51]. SDWSNs
inherited the concepts of SDN in wireless sensor networks, which are beneficial for
IoT applications. These networks are constituted using many sensor nodes, which
collect data from the environment and communicate wirelessly. The major limitations
of traditional WSNs were lack of flexibility and difficulty in management at scale.
However, by applying SDN principles, SDWSNs easily adapt to changing conditions
in wireless environments [19].

Figure 1.4: Block Diagram of IoT-enabled SDWSN Node

Figure 1.4 depicts the model of an IoT-based SDWSN node. The sensors are
responsible for detecting environmental changes. After sensing, the sensors then send
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the data to the data collection module. In the next step, the collected data is forwarded
to the data processing module, where it undergoes filtering, transformation, or local
analysis to reduce redundancy and prepare it for transmission. A key component of each
node is the control plane, which interacts with the other modules and enables dynamic
control based on network requirements. Finally, the processed data is transmitted over
the internet using standardized IoT communication protocols [52].

This evolution of SDWSNs over traditional wireless sensor networks is
significant. With the help of a centralized controller, SDWSNs can implement advanced
control strategies that improve system performance, energy efficiency, robustness, and
reliability in modern IoT-based applications.

1.2.5 Clustering and Metaheuristic Approaches

In IoT-enabled SDWSNs, energy consumption during data communication
is a major issue due to the limited battery capacity of sensor nodes. Clustering is one
of the powerful techniques to resolve this problem [53]. Therefore, to increase the
network lifespan, the nodes are organized into clusters, and a CH is selected from each
group or cluster. The data is transferred to the CH from every associate SDSN of the
cluster, which in turn forwards it to the BS. However, a potential issue arises when the
same set of nodes is repeatedly chosen as the CH, which can result in the exhaustion of
the node’s energy, hence limiting network life. Moreover, finding which nodes should
take this role is a complex task that depends upon many factors like residual energy,
node position, and network conditions [54].

Metaheuristic algorithms are widely used to solve this efficiently. These
are smart optimization techniques that are inspired by natural or logical processes
that help find the best solutions from a large set of possibilities [55]. Algorithms
like particle swarm optimization [56], grey wolf optimization [57], and hybrid models
have shown promising results in dynamically selecting CH and determining the energy-
efficient communication paths. Metaheuristic algorithms allow the system to readjust to
changing conditions and optimize for multiple goals at once, such as energy efficiency,
balancing the load across the network, and ensuring timely delivery of data. These
algorithms make the clustering process adaptive and intelligent, significantly improving
the network’s lifetime and reliability [58, 59]. In this thesis, metaheuristic algorithms
are used to design an energy-aware and QoS-focused clustering and routing strategy.
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The goal is to reduce communication energy, avoid hotspots, and extend the lifetime of
the network in real-world conditions.

1.3 Thesis Contributions

This thesis contributes to the research on energy-efficient and QoS-aware
communication in IoT-enabled Software-Defined Wireless Sensor Networks ( IoT-
enabled SDWSNs) by addressing critical limitations in existing routing protocols. The
key contributions of this work are as follows:

1. Comprehensive Systematic Review: A detailed and structured systematic lit-
erature review of clustering and routing algorithms in IoT-based SDWSNs is
presented. The review classifies existing methods into classical, metaheuristic-
based, and machine learning-based categories, highlighting their strengths, lim-
itations, and key research gaps.

2. Energy-Optimized Metaheuristic Framework: In this thesis, three novel
energy-efficient routing frameworks are proposed using nature-inspired meta-
heuristic algorithms. The algorithms intelligently select cluster heads and op-
timize routing paths by considering multi-objective fitness functions based on
energy, distance, traffic load, and network stability.

3. Context-Aware Fitness Function Design: Fitness functions are the core of
metaheuristic-based optimization techniques. Therefore, robust and flexible
fitness functions are developed that incorporate dynamic parameters such as
residual energy, inter-node distance, intra-cluster distance, energy consumption,
energy ratio, alive nodes, etc. This enhances the adaptiveness and scalability of
the proposed routing solutions.

4. Comparative Performance Evaluation: Extensive simulations are conducted
using MATLAB to evaluate the proposed protocols under varying network sizes,
energy distributions, and traffic scenarios. The results demonstrate significant
improvements in metrics such as network lifetime, energy consumption, packet
delivery ratio, and scalability when compared with existing benchmark protocols.
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1.4 Organization of the Thesis

This thesis is organized into seven chapters as follows:

Chapter 1: Introduction
This chapter introduces the background, key concepts, challenges, objectives, and
contributions of the research. It sets the context for the need for energy-efficient
and QoS-aware routing protocols in IoT-enabled SDWSNs.

Chapter 2: Systematic Literature Review
In this chapter, a detailed and structured systematic literature review of clustering
and routing algorithms in IoT-based SDWSNs is presented. The review classifies
existing methods into classical, metaheuristic-based, and machine learning-based
categories, highlighting their strengths, limitations, and key research gaps.

Chapter 3: Energy-optimized artificial hummingbird algorithm for routing
in IoT-based software-defined WSN
In this chapter, an energy-optimized artificial hummingbird algorithm for routing
in IoT-based SDWSNs is proposed to enhance energy efficiency. The proposed
algorithm aims to outperform existing methods by optimizing the selection
of cluster heads, thereby reducing energy consumption and improving overall
network performance.

Chapter 4: A Nature-Inspired Multi-Objective Green Routing Protocol for
IoT-enabled SDWSN
This chapter introduces a multi-objective optimization framework for energy-
efficient routing using a nature-inspired algorithm based on the law of equilib-
rium. The protocol dynamically adjusts the number of clusters and cluster heads
to balance energy consumption.

Chapter 5: A Multi-Constrained Green Routing Protocol for IoT-based
Software-Defined WSN
In this chapter, a hybrid model is proposed that integrates clustering and rout-
ing using Artificial Hummingbird and equilibrium optimizer algorithms named
EQ-AHA. The EQ-AHA algorithm aims to outperform existing methods by
optimizing the process of cluster heads selection and implementing a multi-hop
strategy to find the optimum route between base station and cluster heads.
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Chapter 6: Conclusion and Future Scope
The final chapter summarizes the key findings of the research and outlines future
directions, including the integration of machine learning for intelligent adaptation
and the implementation of the proposed models in real-world IoT scenarios.
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CHAPTER 2

LITERATURE REVIEW

To explore existing solutions and research trends, this chapter presents a systematic
literature review of state-of-the-art energy-efficient clustering techniques developed for
SDWSNs and IoT based networks.

2.1 Introduction

The rapid growth of IoT technologies [24] has increased the development
of intelligent, energy-aware, and scalable solutions. As the sensors play crucial role
in decision making in IoT based networks, SDWSNs have emerged as an evolution
of traditional WSNs. SDWSN address the inherent limitations of WSN through the
integration of Software-Defined Networking (SDN) concepts. SDWSNs are easy to
reconfigure as it can be managed through centralized control which makes it efficient
in real-time resource management for IoT environments. However, combining the
SDN with WSNs introduces additional challenges like energy efficiency and QoS
provisioning. Sensor nodes typically have limited energy as they operate on battery.
Furthermore, In IoT based applications there is demand of QoS parameters, such as
low latency, high reliability, and sufficient throughput. So, there is a huge demand
for development of lightweight, robust, and adaptive protocols. In order to identify
the research gaps a Systematic Literature Review (SLR) is conducted on existing
routing protocols in the WSNs, SDWSNs and IoT-based SDWSNs. This chapter
provides critical evaluation of existing state-of-the-art techniques. SLR begins with a
formulation of key research questions. This is followed by a detailed explanation of
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the review methodology which includes literature search strategies, selection criteria,
quality assessment, and data synthesis techniques. The chapter then surveys the existing
work and categorizes approaches into classical, metaheuristic-based, and machine
learning-based methods. Key clustering parameters and evaluation metrics relevant to
SDWSNs are also examined.

The goal of this chapter is to establish a comprehensive understanding of
the current research landscape, highlight critical limitations, and motivate the novel
models proposed in subsequent chapters.

2.2 Systematic Review Process

This review was planned according to the Systematic Literature Review
(SLR) guidelines established by Kitchenham and Charters [60]. The review process
was divided into three main stages, as illustrated in Figure 2.1. The initial stage is termed
as the "Planning of the Review" and comprised two phases named "research question
formulation" and "search strategy". The second stage is the "Selection of Primary
Studies" which includes selection and rejection criteria for studies. The subsequent
stage is known as the "Research Review Phase" which included quality assessment,
data extraction, and reporting review results.

Figure 2.1: SLR Process Stages

The research questions, related to routing protocols in WSN, SDWSNs
and IoT-based SDWSNs, were articulated during the first stage. Following this, a
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search strategy was developed and implemented to determine the methodology for
conducting the search. This step was essential for locating relevant research studies to
address the formulated research questions. To refine the scope of the review during the
study selection phase specific selection criteria are applied which is termed inclusion-
exclusion criteria. The quality of the papers was subsequently evaluated using weighted
parameters in the Quality Assessment phase. Both the study selection and quality
assessment phases aimed to ensure the included studies met certain quality standards
and were comparable and thereby establishing the boundaries of the review. After
completing the screening and eligibility determinations, data extraction was performed
to critical analyze the research domain. This process aimed to address the research
questions and conduct a critical analysis of the research domain. The outcome was
a summarized critique that evaluates, extends, or identifies implications for practice,
highlights any gaps or inconsistencies, and suggests directions for future research.

The subsequent sections represents report writing of this SLR which
includes the findings of this review, organized to directly answer these research
questions. The analysis details the classification of existing clustering techniques,
the role of dynamic clustering, the design of fitness functions, and the evaluation
of QoS parameters. This discussion highlights the dynamic and evolving research
landscape aimed at resolving the intricate relationships between QoS demands, energy
constraints, and the integration of SDN principles into wireless sensor networks

2.2.1 Research Questions

In this phase a set of well-defined research questions (RQs) was formulated
in order to conduct this SLR . These RQs serve as foundations of research and help
in identifying gaps in the research . The detailed RQs are listed in Table 2.1 which
provides a clear framework for addressing key challenges, trends, and advancements in
the field.
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Table 2.1: Research Questions

RQ No. Research Question
RQ1 Which are the most prestigious and relevant journals with published

studies?
RQ2 What are the different types of clustering-based energy-efficient

techniques in SDWSNs?
RQ3 What role do dynamic clustering techniques play in optimizing

energy consumption and network performance in SDWSNs?
RQ4 What are the critical considerations in designing fitness functions for

meta-heuristic algorithms to achieve optimal clustering and routing
performance?

RQ5 What are the key Quality of Service (QoS) parameters to consider
for the evaluation of energy-efficient clustering algorithms in
SDWSNs?

2.2.2 Search Strategy

In this section search strategy for SLR is discussed. In order to find
relevant research articles over the vast online database firstly the search keywords
were identified, for example “IoT-enabled SDWSN,” “energy-efficient routing,”
“multi-QoS,” “QoS-aware protocols,” “software-defined networks,” and “wireless
sensor networks". As the searching based on keywords alone is not sufficient to find
relevant research articles. We have also applied various boolean operators with these
keywords to further refine the search results. For example the query: "IoT-enabled
SDWSN" OR "Software-Defined Wireless Sensor Networks") AND ("energy-efficient
routing" OR "QoS-aware routing") AND ("multi-QoS" OR "latency" OR "reliability"
OR "throughput") was formulated to find relevant studies. In the next step, searches were
conducted on well-known academic databases like IEEE Xplore, SpringerNature, ACM,
Google Scholar, and ScienceDirect. The article published in journals or conferences
indexed by SCI, SCIE, and SCOPUS were included only in order to focus on high
quality articles.

In additional to this, filters such as publication date range, English language,
and document type (journal articles and conference papers), were applied to make the
search results more relevant. This process led to the selection of studies that were
related to clustering, CH selection, meta-heuristic, multi-QoS, energy efficiency, and
IoT-enabled SDWSN.
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Table 2.2: Inclusion and Exclusion Criteria for Research Articles

Criteria
Type

Description

Inclusion
Criteria • Studies published in SCI/SCOPUS-listed journals.

• Studies published in the last 10 years (with exception for old
benchmark algorithms).

• Studies available in English language.

• Studies focusing on energy-efficient routing in IoT-based
networks, SDWSNs, or WSNs.

• Studies focusing on efficient cluster head selection.

• Studies using metaheuristic algorithms in IoT-based networks,
SDWSNs, or WSNs.

• Studies focusing on hierarchical routing in IoT-based networks,
SDWSNs, or WSNs.

• Studies that present clear evaluation metrics and results related to
energy-efficient routing in SDWSNs.

Exclusion
Criteria • Studies published in conferences (extended versions published in

journals were included).

• Studies without proper benchmark comparisons or empirical
analysis.

• Studies not related to IoT-enabled SDWSN, SDWSN, WSN, or
that do not address energy-efficient routing and QoS.

• Studies that are only surveys or reviews on energy-efficient routing
without implementation.

2.2.3 Study Selection

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) guidelines [61] was used throughout the screening and selection process to
ensure a rigorous and systematic review of the literature. PRISMA approach helped
us in promoting transparency, reproducibility, and thoroughness in identifying relevant
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research articles. The process was executed in two key stages: initial screening and
full-text screening.

(i) Initial Screening: In the initial screening phase, the titles and abstracts of
studies were retrieved from various selected databases for review. The primary
goal was to eliminate studies that were irrelevant or did not align with the
predefined inclusion criteria (given in Table 2.2). Specifically, articles that did not
concern IoT-enabled SDWSN, energy-efficient routing strategies, or multi-QoS
parameters were excluded. Additionally, we omitted opinion pieces, editorials,
and studies published in non-peer-reviewed sources. This critical step helped
to narrow the literature pool to those studies that are closely aligned with our
research objectives.

(ii) Full text screening: The second stage involved a comprehensive review of
the full texts of articles that had passed the initial screening. These articles
were evaluated against stringent inclusion and exclusion criteria (provided in
Table 2.2) to affirm their relevance. The inclusion criteria specified that studies
must explicitly focus on multi-QoS requirements—such as latency, reliability,
throughput, and energy efficiency related to IoT-enabled SDWSN. At this stage,
articles not published in English or lacking significant technical depth were also
excluded.

By employing this systematic methodology, the initial pool of studies was
refined into a concentrated collection of high-quality research papers pertinent to the
review’s objectives. The final selection laid a solid groundwork for data extraction and
subsequent synthesis, facilitating a comprehensive understanding of energy-efficient
routing protocols within the context of IoT-enabled SDWSN.

2.2.4 Quality Assessment

To maintain the quality standards of the selected research articles, a com-
prehensive evaluation process was implemented. This involved a thorough examination
of the novelty of the proposed techniques as well as the technical depth of the
studies. Quality assurance was further reinforced by exclusively selecting studies
from high-quality, high-impact journals published in reputable digital libraries such as
SCI or SCOPUS.
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Figure 2.2: Publisher-wise distribution of papers

2.2.5 Data Extraction

In this step, the important data was extracted from the selected research
articles and mapped with the research questions. The extracted data included informa-
tion on the authors, the publication year, the techniques implemented, the simulation
tool, the results, and the limitations. This comprehensive information was subsequently
organized into a table for further data synthesis.

2.2.6 Data Synthesis

The data synthesis phase involved critical analysis and discussions of
research articles. In this phase, we systematically summarized and interpreted the
extracted data to provide direct answers to the defined research questions (RQs). Figure
2.3 shows the overall filtration process to find the most relevant studies. The research
process commenced with the application of identified keyword terms across five major
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Figure 2.3: SLR Filtration Process

selected digital libraries, yielding a total of 155 papers. After eliminating duplicate
studies, we refined our focus to 115 studies. Subsequently, applying our inclusion
and exclusion criteria allowed us to identify 70 potentially relevant studies for further
analysis.

2.3 Literature Survey

The continuous evolution of Wireless Sensor Networks (WSNs), partic-
ularly in the context of IoT and Software-Defined Networking (SDN), has driven
extensive research into energy-efficient clustering and routing strategies. To provide a
structured overview, this literature survey categorizes existing techniques into three
main groups: classical approaches, metaheuristic-based approaches, and machine
learning-based approaches. Classical techniques primarily rely on rule-based heuris-
tics, while metaheuristic methods draw inspiration from nature to solve optimization
problems. In contrast, machine learning-based approaches leverage data-driven models
to adapt dynamically to network conditions. This categorization enables a comprehen-
sive understanding of the progression, strengths, and limitations of various protocols
developed to address energy efficiency and network performance in WSNs.
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2.3.1 Classical Approaches

Since early 2000s various energy efficient clustering protocols have been
proposed to improve the life of sensor nodes in WSN. These routing protocols were
simple rule based heuristic techniques. These techniques reduce the communication
overhead, balance the energy consumption hence increases the network life. In this
section, classical routing protocols in the field of WSNs are discussed. These protocols
have laid the foundation for energy-aware routing in WSNS. Table 2.3 presents a
comparative analysis of classical clustering techniques in WSNs and SDWSNs, such as
LEACH, TEEN, and PEGASIS, highlighting their simulation tools, evaluation metrics
(e.g., network lifetime, energy dissipation), and key findings regarding their operational
efficiency. Heinzelman et al. [62] introduced Low-Energy Adaptive Clustering Hier-
archy (LEACH). LEACH is one of the widely used clustering techniques and server
as foundation for modern clustering algorithms. LEACH improved the network life by
randomly rotating the role of CH among the sensor nodes in WSNs. The simulation
results proved that LEACH optimized the energy consumption by sensor nodes and was
eight times more efficient than older methods. Later, Manjeshwar et al. [63] proposed
Threshold sensitive Energy Efficient sensor network (TEEN) protocol. TEEN was
designed for real-time applications where quick response matters, like monitoring
disasters. To achieve the energy optimization goal sensors nodes transmit the sensed
data only after the threshold is crossed. The results proved that TEEN helped the sensor
nodes in reducing energy consumption and performed better than LEACH.

Table 2.3: Comparison of Classical Clustering Techniques in WSNs

Technique Comparison
Metrics

Simulation Tool Findings

LEACH [62] FND, LND, En-
ergy, NL

MATLAB Enhances system lifetime
by distributing energy
load; delays first node
death by 8×.

TEEN [63] ED, TAN NS-2 Simulator Introduces TEEN proto-
col for reactive WSNs, im-
proving energy efficiency.

Continued on next page
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Technique Comparison
Metrics

Simulation Tool Findings

Modified-
LEACH [64]

FND, HNA,
LND, ED

YANASim Outperforms LEACH by
approximately 30%, im-
proving energy metrics.

LEACH-C [65] NL, Latency, ED NS-2 Simulator Delivers 10× more ef-
fective data transfer than
MTE routing.

PEGASIS [66] NL, Latency, ED NS-2 Simulator Greedy approach: cre-
ates chains by connecting
neighbor nodes.

HEED [67] RE, CH Selec-
tion

Not Mentioned Ensures scalable, fault-
tolerant multi-hop cluster-
ing.

BCDCP [68] NL, Energy Effi-
ciency

MATLAB Outperforms LEACH and
PEGASIS in energy sav-
ings.

UCR [69] ED, CH Count
per Round

Not Mentioned Balances load among
CHs, solving the hot-spot
problem.

ILP-Two
Phase [9]

Coverage Ratio,
Sensing Range

Not Mentioned Proposes a two-phase
reprogramming technique
for WSNs.

WECRR [70] Data Latency,
PDR, NL, Delay,
Route Load

NS-2 Simulator Incorporates RE, packet
error ratio, and traffic den-
sity in routing decisions.

Novel Routing in
SDWSN [71]

ED, TAN, Data
Packets

MATLAB Introduces distance
queue-based
energy-efficient routing
for SDWSNs.

CLP [72] TAN, FND MATLAB Combines LEACH for
cluster formation and PE-
GASIS for routing.

Continued on next page
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Technique Comparison
Metrics

Simulation Tool Findings

Clustered
SDWSN [73]

Energy, Load
Balancing, NL

OMNeT++ Implements a fixed grid-
based cluster along with a
mobile data mule.

SDN Clustering
[74]

NA OpenDaylight
Helium SR4

Distributed SDN Cluster
Architecture Proposed

SDN Clustering
[75]

RE, TAN, NL MATLAB The protocol creates clus-
ters of unequal size, based
on the node’s distance to
the BS

Heinzelman et al. [64] proposed another version of the LEACH protocol
called LEACH-C. LEACH-C was a centralized clustering protocol based on LEACH,
where the base station was responsible for controlling the routing in WSN centrally.
Another variation of the LEACH protocol, modified-LEACH, was proposed by Handy
et al. [65]. They modified the LEACH protocol by using the deterministic cluster head
selection method based on energy levels, location, and data needs. The simulation
results show that the modified LEACH protocol outperformed the original LEACH by
30%. The paper also introduced three new metrics to define the lifetime of microsensor
networks: FND, LND, and HND. Another improvement over LEACH was proposed by
Lindsey and Raghavendra [66] using Power-Efficient GAthering in Sensor Information
Systems (PEGASIS). PEGASIS makes use of a greedy algorithm to construct chains
of sensor nodes; using these chains or paths, each node communicates with close
neighbors, thereby minimizing energy expenditure. The simulation results of PEGASIS
outperformed the LEACH protocols.

Younis et al. [67] presented a Hybrid Energy-Efficient Distributed (HEED)
clustering protocol to optimize energy consumption in WSNs. HEED selects cluster
heads based on a hybrid of node RE and secondary parameters like proximity to
neighbors, ensuring uniform distribution of cluster heads. Simulation results indicate
that HEED effectively minimizes communication costs and achieves a uniform dis-
tribution of cluster heads, enhancing data aggregation capabilities. Muruganathan et
al. [68] presented the Base-Station Controlled Dynamic Clustering Protocol (BCDCP),
a centralized routing protocol designed for WSNs. Simulation results demonstrated that
BCDCP outperforms existing protocols by increasing network life by at least by 30%
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when compared with LEACH, LEACH-C, and PEGASIS. The limitation of BCDCP
was the decrease in performance with a decrease in area size, and also its performance
depends on the location of BS.

Chen et al. [69] proposed an Unequal Cluster-based Routing (UCR) protocol
to address the hot spot problem. The hot spot problem occurs when cluster heads
near the base station experience heavier traffic and deplete their energy faster. UCR
organizes nodes into clusters of unequal sizes, allowing cluster heads closer to the
base station to manage smaller clusters, thus conserving energy for data forwarding.
Zeng et al. [9] proposed an energy-efficient reprogramming algorithm for SDWSN
while considering quality of sensing (coverage ratio). They achieved energy efficiency
by jointly considering two critical factors: firstly, selecting which sensor nodes to
reprogram and optimizing the routing of the program distribution to these sensors.
Haseeb et al. [70] presented a deterministic approach for cluster head selection based
on weighted factors named Weighted Energy-Efficient Clustering with Robust Routing
(WECRR) for WSNs. WECRR is a three phase protocol designed to improve energy
efficiency and routing robustness. In WECRR CH was selected based on CH score
which was calculated using RE, NC and distance to BS. Due to high transmission
cost of direct transmission WECRR uses multi-hop paths to deliver data collected by
CHs. Junli et al. [71] presented a novel energy-efficient routing algorithm based on
SDWSN architectures. The algorithm operates through a centralized controller. The
controller constructs a distance based queue of all the sensor nodes. After each round
the controller updates the nodes energy and re-created the routing paths. In this way
the algorithm balanced the energy consumption, reduced overhead, and extended the
network life.

Oudani et al. [72] proposed an improved hierarchical routing protocol
named CLP for sensor networks by combining LEACH and PEGASIS. The CLP
protocol selects the CH using probabilistic approach of LEACH. To reduce the energy
consumption of CH it uses multi-hop chaining technique of PEGASIS and the last node
in the chain (near to BS) delivers the data to BS. Hot-spot is a major issue in WSNs
and to address this issue Singh et al. [?] presented unequal fixed grid-based clustering.
To balance the energy consumption they formed small clusters near the BS and larger
cluster far from BS. To select the CH they considered parameter like RE, proximity to
BS and node density. The protocol reduced the traffic load of nodes near to BS by using
multi-hop transmission between CHs. One of the major challenges with traditional
WSN is the deployment of sensor nodes at remote locations which make it very difficult
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to manually update every device. Flauzac et al. [74] proposed a solution by integrating
Software-Defined Networking (SDN) with Wireless Sensor Networks (WSNs) in IoT
environments. They introduced the Software-Defined Networking Clustered Head
(SDNCH) concept and also evaluated the effectiveness of SDN deployment in IoT
clusters.

2.3.2 Metaheuristic-based Approaches

Clustering is recognized as a more energy-efficient approach than direct
transmission in WSNs. But selecting CH is an NP-hard problem. This problem
can be solved with the help of a meta-heuristic-based algorithm. In this section,
the application of various nature-inspired approaches in the domain of WSN or IoT-
SDWSNs is discussed. Table 2.4 provides a detailed comparison of metaheuristic-based
approaches for clustering and routing, the simulation tools used, and the fitness function
parameters utilized to optimize network performance. Hoang et al. [76] presented
an HSA-based clustering protocol. The HSA clustering protocol optimizes energy
consumption by minimizing ICD. The simulation results proved the superiority of HSA
over LEACH, K-Means, Fuzzy C-Means, GA, and PSO. HSA, like many clustering
algorithms, may face challenges in adapting to dynamic changes in the network, such
as node mobility or heterogeneous nodes.

Table 2.4: Comparison of Metaheuristic-based Approaches

Technique Meta-
heuristic
Algorithm

Comparison
Metrics

Simulation
Tool

Fitness
Function
Parameters

Cou-
nt

HSA-
Clustering
[76]

HSA FND, NL, ED,
TAN

MATLAB ER, Distance
Ratio

2

PSO-ECHS
[77]

PSO EC, Data Sent,
BS Position

MATLAB Avg. ICD,
Sink Distance,
CH Energy

3

Continued on next page
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Technique Meta-
heuristic
Algorithm

Comparison
Metrics

Simulation
Tool

Fitness
Function
Parameters

Cou-
nt

K-
meansPSO
[78]

K-means
with PSO

TAN, RE MATLAB RE(CH),
Distance,
Distance
threshold

3

NWPSO
[79]

Non-linear
PSO

FV, FND, NL,
ED, TAN, CH
Count

MATLAB RE, Transmis-
sion Distance

2

nCRO-
UCRA [80]

CRO RE, NL, CR MATLAB RE, Distance,
Avg. NND,
ER

4

FJAPSO
[81]

Fork-
and-Join
Adaptive
PSO

NL, Delay, Jit-
ter

MATLAB Avg. RE,
Distance, RE
Ratio

3

ALO-
Clustering
[82]

ALO DN, TAN, RE,
Throughput,
NL, NN
Count, CH
Count, Tour
Length

MATLAB Energy, NN
Count, ICD,
CD

4

CRHS [83] HSA TAN, RE,
Data Packet
Received

MATLAB RE(CH), ICD,
CD, ND

4

GWO-C
[84]

GWO RE, Dead
Nodes, BS
Position, Data
Packets

MATLAB Avg. CD, SD,
RE, CH Bal-
ancing Factor

4

HFAPSO
[85]

FF with PSO FND,
LND, RE,
Throughput

NS-2 RE and Dis-
tance

2

Continued on next page
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Technique Meta-
heuristic
Algorithm

Comparison
Metrics

Simulation
Tool

Fitness
Function
Parameters

Cou-
nt

EBGWO
[86]

GWO NL, RE,
Throughput,
CR

MATLAB BS-CN
Distance,
ICD, Node RE

3

Hybrid
Routing
[87]

BOA (CH),
ACO
(Route)

TAN, Energy,
Delay,
Packets,
Throughput,
FND, HND,
LND

MATLAB CH: RE,
Neighbor
Distance, BS
Distance, ND,
Centrality;
Route:
Distance,
RE, ND

7

Two-way
PSO [88]

PSO MTTF, Delay,
Jitter, RE

MATLAB RE, Distance
and Cluster
count

3

PSOGA
[89]

PSO and GA FND, HND,
LND, RE,
Throughput,
TAN, PDR

Not
Mentioned

Energy-
Distance
Ratio, TV

2

MWCSGA
[90]

CSO with
GA

Energy, Delay,
NL, PDR

NS-2 RE, Distance,
ND

3

HHO-
UCRA [91]

HHO ED, NL, CR,
Data Received

Java and
MATLAB

ND,
Successor-BS
Distance, ER,
BS Distance,
NND

5

GA-UCRA
[92]

GA FND, HND,
LND,
Hotspot,
EC, NL,
CR, Packets
Received

MATLAB RE, BS Dis-
tance, Inter-
cluster Sepa-
ration

3

Continued on next page
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Technique Meta-
heuristic
Algorithm

Comparison
Metrics

Simulation
Tool

Fitness
Function
Parameters

Cou-
nt

TAMOMO-
SCRP [93]

MO-BES NL, Stability,
HND, LND,
RE, Data Sent

Not
Mentioned

Clustering:
TV, Comm.
Cost, RE,
ND; Routing:
Queue Length,
Link Quality

6

ICITS [94] GA and BAT NL, Packets
Sent, DN, RE

MATLAB RE, Sink
Distance,
ICD, Avg.
Energy, CH
Count, TV

6

WOA-SA
[95]

WOA with
SA

TAN,
Workload,
ED

MATLAB Energy, Load,
Latency,
Comm.
Length, Heat

5

MSO-Tabu
[96]

TS CH Count,
ED, E2E
Delay, Packet
Loss, NL

MATLAB RE,
Transmission
Range, Node
Mobility

3

MRFO-C
[97]

MRFO ED, NL, Data
Packets, LND

MATLAB ICD, SD, RE,
CH Balancing

4

EAFFO–CS
[98]

FFO NL, Hotspot,
Overhead, RE,
Throughput

MATLAB Neighbor Dis-
tance, BS Dis-
tance, Energy

3

LCPSO-
CRP [99]

Modified
PSO

NL, RE, TAN MATLAB ICD, CD,
RE(NN),
RE(CH)

4

ICOOT
[100]

COOT Bird
Optimizer

RE, NL, PDR,
Throughput

MATLAB RE, Distance,
ND

3

Continued on next page
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Technique Meta-
heuristic
Algorithm

Comparison
Metrics

Simulation
Tool

Fitness
Function
Parameters

Cou-
nt

Ref. [101] MSSO
with Fuzzy
C-Means

NL, FND,
HND, LND,
RE, ED,
Throughput

MATLAB ICD, CD, CH-
BS Distance,
RE, ER, Dis-
tance Ratio

5

Ref. [102] ABC and
ACO

Coverage,
Sensing,
Energy
Dissipation

MATLAB ND, RE,
CH-BS
Distance,
Energy-
Distance
Ratio

4

Ref. [103] SFO and
SHO

NL, PDR, RE,
Throughput,
DN, TAN,
Latency

MATLAB SFO:RE, Cov-
erage area, La-
tency; SHO:
RE, Distance,
Latency

4

Ref. [104] WOA with
Block Chain

NL, Alive
nodes, RE,
Security
Robustness

MATLAB NE, Distance
between CH
and BS

4

EOAMRCL
[105]

GWO RE, FND,
HND, LND,
Overhead,
Live Nodes,
Packet
Received

MATLAB CH-BS
Distance,
RE, CH-NN
Distance

4

Rao et al. [77] developed the PSO-ECHS algorithm for CH selection in
WSNs. The optimization parameters included IDC, SD, and RE of sensor nodes.
This particle swarm optimization-based approach minimized energy consumption
and prolonged NL, outperforming traditional clustering methods. Xiang et al. [79]
introduced an energy-efficient protocol for SDWSNs named the Non-Linear Weight
PSO (NWPSO) algorithm. NWPSO calculated the optimum number of cluster heads
required in SDWSNs considering RE and communication distance. The results proved
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the NWPSO outperformed other SoA algorithms in terms of network life. Solaiman
and Sheta [78] presented energy optimization in WSNs using hybrid K-means PSO
clustering. In their work, firstly, they used k-means clustering to create the network
clusters, and then cluster heads were selected using PSO and got impressive results as
compared with the LEACH algorithm. Rao and Banka [80] suggested a novel approach
to address the hot spot problem in WSNs using CRO-based algorithms. The algorithms
were tested with varying numbers of sensor nodes and CHs. They demonstrated superior
performance compared to existing algorithms, showing improvements in metrics such
as RE, NL, and CR.

Kumar and Vidyarthi [81] introduced Fork and Join Adaptive PSO (FJAPSO),
a hybrid metaheuristic-based green routing protocol designed for IoT-enabled SDWSNs
to find the optimum number of CH counts and hence efficiently create clusters. FJAPSO
optimizes the network energy consumption, data delay, and jitter using the distance,
RE, and energy ratio as fitness parameters. In another study, Yogarajan and Revathi [82]
proposed an ALO-based clustering protocol utilizing energy, number of neighboring
nodes, ICD, and CD. The ALO-based algorithm improves the NL of the network by at
least 13% compared to other clustering algorithms. In a paper presented by Lalwani et
al. [83], they introduced a hybrid meta-heuristic algorithm for the optimization of the CH
selection process in IoT-enabled SDWSNs. Their approach combined the competitive
swarm optimization and harmony search algorithm. The proposed routing protocol [83]
demonstrated faster convergence rates by leveraging global search solutions. It also
improved search efficiency and dynamic ability, ultimately extending the lifespan of
nodes. Aggarwal et al. [84] introduced the GWO-based Clustering (GWO-C) technique
for WSNs. The GWO-C protocol effectively selects cluster heads based on average ICD,
SD, RE, and CH balancing factors. The simulation results of GWO-C outperformed
other protocols like FIGWO and PSO-ECHS. Pitchaimanickam et al. [85] proposed
a clustering algorithm using the global search behavior of fireflies to achieve optimal
CH. The aim of their work was to improve network lifetime and reduce the energy
utilization of nodes. Simulation results exhibit better residual energy and throughput
than other SoA. In the process of clustering, the CH selection plays an important role
in the health of the network. As discussed, the role of CH is to forward the data
collected by the sensor nodes to BS. The CH generally uses direct transmission to
communicate with BS. Hence, this process consumes a large amount of CH’s energy.
Mishra et al. [86] proposed an Energy-Balanced GWO (EBGWO) routing protocol
for IoT-enabled SDWSNs. By considering the distance from the BS to cluster nodes,
CD, and the RE of nodes, the EBGWO algorithm improved NL, throughput, and CR
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compared to other SoAs. Maheshwari et al. [87] presented a hybrid metaheuristic
approach by using the BOA to select the best CHs and ACO to find the optimum route
between the CH and the BS. The hybrid approach used heads RE of the CH, distance to
neighbors, distance to the base station, ND, and node centrality to select optimum CHs.
The routing process is optimized by ACO, considering parameters such as distance,
RE, and ND. In another paper, Kumar et al. [88] presented a routing based on 2-way
PSO for distributing traffic data in the social internet of vehicles. This paper was an
application of SD-WSN routing in SIoV. They calculated two forward and backward
solutions and compared them to select the best CH. Mishra et al. [89] introduced a
hybrid routing protocol combining PSO and GA for IoT applications. The PSOGA
algorithm optimizes parameters such as RE, hop count, and path reliability for CH
selection. This approach achieves higher throughput, energy efficiency, and a high
packet delivery rate. Comparative analysis showed PSOGA outperformed traditional
LEACH protocols across multiple scenarios. An energy optimization solution named
a Multi Weight CSO and GA (MWCSGA) was modeled by Ajmi et al. [90] to improve
NL and PDR. Parameters such as RE, distance, and ND were incorporated into a
comprehensive fitness function. The CH selection process was further refined using
genetic operations like crossover and mutation to maximize the population’s diversity.
MWCSGA achieved lower end-to-end delay, reduced packet drop, and improved PDR,
indicating its effectiveness in maintaining communication quality within the network.

To solve the hotspot issue, Jain et al. [91] proposed HHO-based algorithms.
The process was divided into two algorithms. The first algorithm optimizes the process
of cluster head selection by considering CH’s RE, ND, distance between CH and
nodes, and distance between CH and BS. The second algorithm proposed HHO-based,
optimized energy-efficient multi-hop routing using CH’s RE, ND, and distance between
CH and nodes. Gunjan et al. [92] proposed a GA-based UCR (GA-UCR) protocol
designed for WSNs to enhance energy conservation and NL. GA-UCR employed a
GA for CH selection and inter-cluster routing. The fitness functions for GA-UCR
considered RE, distance to the base station, and CD for optimizing energy usage and
handling hotspot issues.

To address the security and energy efficiency issue of Industrial IoT (IIoT), a
Trust-Aware Multi-Objective Metaheuristic Optimization-based Secure Route Planning
Technique (TAMOMO-SCRP) developed by Nagappan et al. [93]. TAMOMO-SCRP
used BES for secure clustering and routing. The objective function of TAMOMO-
SCRP for CH selection was designed using four parameters: RE, trust value, ND, and
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communication cost. The decision for route selection for data transmission was made
using queue length and link quality. To address the security and energy concerns of
WSN-based Intelligent Transportation Systems (ITS), Verma et al. [94] presented an
Intelligent Clustering for ITS (ICITS). ICITS used GA and BAT algorithms (GABAT) to
optimize the clustering and routing processes. The ICITS approach integrated multiple
parameters for CH selection, such as RE, distance from the sink, ICD, the network’s
average energy, CH count control, and TV for security.

Khan et al. [95] developed a CH selection protocol named WOA with SA
(WOA-SA) to improve network life in IoT-based WSNs. The study aimed to improve
NL and enhance performance metrics such as load distribution, temperature control,
and energy utilization. WOA-SA selects CH using a fitness function incorporating
five network parameters, i.e., energy, load, latency, communication length, and heat.
Moreover, the WOA-SA was compared with other SoAs in terms of alive nodes per
round and RE. In 2022, Suganthi et al. [96] introduced the Multi-Swarm Optimization
with TS (MSO-Tabu) algorithm, targeting energy-efficient clustering in WSNs. This
hybrid approach combined the exploratory capabilities of MSO with the local search
strengths of TS. The MSO-Tabu algorithm aimed to enhance CH selection, improve
routing efficiency, and extend NL. The approach accounted for parameters such as
RE, transmission range, and node mobility to optimize CH selection. Experimental
simulations were conducted by comparing with other SoAs with a focus on metrics
such as the number of clusters formed, energy dissipation, end-to-end delay, packet
loss, and NL. A novel energy-efficient algorithm, named MRFO-C, for CH selection
in WSNs using the MRFO technique was developed by Khodeir et al. [97] in 2022.
The primary objective of MRFO-C was to extend NL, reduce energy consumption, and
increase the PDR. MRFO-C considered matrices like ICD, sink distance, RE, and CH
balancing for optimized CH selection. Overall, the MRFO-C algorithm demonstrates
significant improvements in WSN performance under various conditions.

Balasubramanian and Govindasamy [98] proposed EAFFO-CS, a clustering
scheme for WSNs using FFO. The EAFFO-CS technique considers a fitness function
that incorporates three critical input variables: distance to neighbors, distance to the
BS, and energy, which enhances the selection of optimal CHs. Simulations demonstrate
that the EAFFO-CS technique outperforms existing methods by achieving a maximum
RE of 11% with 1000 sensor nodes. Zhang et al. [99] proposed LCPSO-CRP, a
clustering and routing scheme for industrial wireless sensor networks using an improved
Levy Chaotic Particle Swarm Optimization algorithm. The LCPSO-CRP method
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employs a multi-objective fitness function that integrates intra-cluster distance, CH-
to-BS distance, residual energy of cluster members, and energy of cluster heads. It
further enhances global search capability using Levy flights and chaotic perturbations
to escape local optima. Simulations in MATLAB demonstrate that LCPSO-CRP
significantly extends network lifetime and reduces energy consumption, outperforming
LEACH, SEP, and DEEC protocols under various network scales. Alkhayyat et al. [100]
introduced an optimized COOT Bird Optimization (ICOOT) method for clustering and
routing in IoT-assisted WSNs. This approach dynamically adapts to changing network
conditions, allowing for efficient data transmission while conserving energy. The
study compared ICOOT with existing methods such as CBR-ICWSN, TSGWO, iASEF,
and EENFC-MRP, displayed significant advantages in terms of NL, RE management,
and PDR. Yang et al. [101] introduced a hybrid clustering and routing approach that
combines the MSSO with a minimum spanning tree algorithm. This method enhances
cluster head selection by incorporating dynamic parameter updates, adaptive alpha
mutation, and bidirectional search optimization. Unlike traditional clustering methods,
this approach balances energy consumption more effectively by considering factors such
as node location, energy levels, and distance from the BS. Results from experimental
simulations demonstrated that this protocol reduces energy consumption by at least
26.64% and extends network lifetime by over 25%, while also improving stability and
throughput performance.

Khediri et al. [102] proposed a hybrid metaheuristic approach to enhance
energy efficiency in WSNs and extend their NL. This approach integrates the ABC
algorithm for optimal CH selection and ACO for efficient routing. The CH election
considers parameters such as RE, distance to neighbors, distance to the BS, ND,
and centrality. ACO is utilized to determine the most energy-efficient path for data
transmission. The proposed method was evaluated against traditional protocols like
LEACH, BeeCluster, iABC, and BeeSensor, demonstrating a significant improvement
in network lifetime by at least 15.49%, respectively. Roberts et al. [103] introduced
a dual-phased hybrid optimization framework combining SFO and SHO. This ap-
proach leverages SFO’s rapid exploration for efficient CH selection and SHO’s refined
exploitation for routing optimization, achieving significant improvements in packet
delivery ratio, energy efficiency, and network lifetime. Xiao et al. [104] presented
BS-SCRM, a secure clustering routing method that integrates blockchain with a WOA.
BS-SCRM significantly enhances network security and efficiency, achieving a 24–73%
improvement in network lifetime under various attack scenarios. Kaddi et al. [105]
proposed an algorithm called EOAMRCL to improve energy efficiency in WSNs using
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GWO and enhanced CSMA/CA protocol. EOAMRCL integrates GWO to help in the
selection of best CHs. A key feature of this method was its ability to adjust duty cycles
dynamically, allowing nodes to switch between active and sleep modes more effectively.
Additionally, an improved CSMA/CA mechanism reduced the collisions and enhanced
the reliability. The simulations showed that EOAMRCL outperforms other well-known
clustering protocols such as EEUC, DWEHC, and CGA-GWO.

2.3.3 Machine Learning-Based Approaches

Machine learning algorithms have emerged as powerful tools for addressing
the dynamic and complex nature of IoT-enabled SDWSNs. By leveraging data-driven
decision-making, these approaches enhance network adaptability, optimize energy
consumption, and improve QoS beyond the capabilities of traditional heuristic meth-
ods. Table 2.5 provides a comprehensive summary of these machine learning-based
approaches, categorizing them by the specific ML technique employed. Misra et
al. [106] proposed a situation-aware protocol-switching framework for SDWSNs.
Using supervised learning, the framework dynamically adjusted routing protocols
based on application-specific requirements, achieving significant improvements in net-
work performance. The optimization parameters included were energy consumption,
throughput, packet delivery ratio, and delay. Mukherjee et al. [107] developed a
clustering protocol for IoT-based networks called a Hybrid Neural Network (HNN)
model by integrating a Gaussian copula for inter-cluster and intra-cluster correlation
analysis. The HNN model utilizes Back Propagation Neural Network (BPNN) and
Convolutional Neural Network (CNN) to optimize clustering phases, ensuring balanced
resource allocation and enhanced NL.

Table 2.5: Comparison of Machine Learning-Based Approaches

Technique ML Tech-
nique

Comparison
Metrics

Simulation
Tool

Findings

Ref [106] Supervised
learning

Energy
consumption,
throughput,
packet delivery
ratio, and delay

NS3 Delay in deployment
at sensor level and
low PDR.

Continued on next page
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Technique ML Tech-
nique

Comparison
Metrics

Simulation
Tool

Findings

HNN [107] CNN,
BPNN

Calculation time
and energy con-
sumption

Not
Mentioned

The hybrid NN
model reduces
computational
complexity and
energy consumption
compared to existing
methods, making it
suitable for advanced
IoT applications.

FCMDE
[108]

Fuzzy
C-Means

Average energy
usage, NL,
stability, and
throughput

Python It improved RE by at
least 26% and NL by
at least 38.5%.

EECA
[109]

ANN FND, LND Python It selects CHs based
on parameters such
as residual energy,
number of events
detected, distance to
the base station, and
number of neighbors.

EFUCSS
[110]

Fuzzy
C-Means

FND, HND,
LND, NL, RE,
TAN

Python and
MATLAB

It selects CHs using
distance, remaining
energy, and centrality
of CH.

PCSOA-
CHS [111]

PCSO with
K-means

RE, NL, DP,
TAN

MATLAB It uses RE and rela-
tive position to find
the best CH.

Abdulzahra et al. [108] presented a Fuzzy C-Means-based protocol called
Fuzzy C-Means with Distance-and-Energy (FCMDE) clustering technique for IoT-
based WSNs. FCMDE considers parameters such as node location and residual power
to choose the most suitable CH. Instead of frequently changing CHs for dynamic
clustering, FCMDE uses an energy threshold to determine the dynamism of CHs
based on existing energy levels. Kumar et al. [109] proposed an Energy-Efficient
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Clustering Algorithm (EECA) using an Artificial Neural Network (ANN) for selecting
cluster heads. EECA used the backpropagation method to train ANN based on a
data set consisting of many combinations of four parameters, i.e., distance to the base
station, number of neighbors, number of events detected, and RE. In another paper,
Abdulzahra et al. [110] developed an energy-efficient protocol for IoT-based WSNs
named an Energy-Efficient Fuzzy-based Unequal Clustering with Sleep Scheduling
(EFUCSS) protocol. EFUCSS used fuzzy C-means to create unequal clusters and
CH selection using distance, remaining energy, and centrality of CH. Lakshmaiah
et al. [111] developed a metaheuristic-based clustering method called MEECR to
improve the energy efficiency of WSNs. This approach combines K-Means clustering
with the PCSO Algorithm to optimize Cluster Head (PCSOA-CHS) selection. The
selection process considers RE levels and node positioning, ensuring a balanced
energy distribution across the network. Comparative evaluations showed that MEECR
performs better than EECA, EECRP, and EDDUCA by reducing traffic congestion,
minimizing energy loss, and significantly extending NL.

2.4 Role of Dynamic Clustering

Based on the studies reviewed in this SLR, dynamic clustering techniques
play a significant role in optimizing energy consumption and improving network perfor-
mance in IoT-enabled SDWSNs. Unlike static clustering techniques, dynamic clustering
allows cluster formation based on real-time network conditions, hence balance the load
and improve NL. Techniques such as meta-heuristic-based clustering (e.g., PSO, GWO,
and HHO) adjust CH selection by considering parameters like RE, ICD, CH Count, CD,
and ND, ensuring more efficient energy usage and robust network operation. Dynamic
clustering also addresses hot-spot problem by CHs near the BS hence preventing
uneven energy depletion. Moreover, hybrid approaches (e.g., BOA-ACO and PSOGA)
combine multiple optimization algorithms for both clustering and routing, reducing
communication overhead and improving throughput.These methods can dynamically
adjust, making them vital for accommodating the changing workloads and energy
limitations present in IoT settings.
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2.5 Fitness Parameters for Effective Clustering

Energy-efficient clustering (CH selection) is a complex optimization prob-
lem where traditional methods often fail to perform effectively. Metaheuristic algo-
rithms are a class of powerful problem-solving techniques used to find optimal or
near-optimal solutions to complex optimization problems.

Table 2.6: Fitness Parameters for Effective Clustering in IoT-Enabled SDWSNs

Fitness Parame-
ter

Objective References

RE, ER Maximize network lifetime [76,79–82,84,86,87,
89–98,100–102,105]

ICD Minimize energy consumption and
improve communication

[82, 86, 93, 94, 97,
101]

CD Minimize inter-cluster transmis-
sion delays

[82, 92, 101]

Distance to BS Reduce energy consumption in
data forwarding

[79,87,89,90,92,98,
100, 102, 105]

NND Improve local data aggregation and
clustering efficiency

[80, 87, 91, 93]

TD Reduce energy expenditure and
packet loss

[79, 96]

DR Optimize energy usage and mini-
mize delays

[101,102]

ND Optimize network connectivity
and data aggregation performance

[87, 90, 93, 94, 102]

Load Balancing Extend network lifetime and
reduce congestion

[95]

PDR Maximize data reliability and
reduce retransmissions

[89, 97, 100]

CH Balancing Fac-
tor

Enhance network stability and
efficiency

[84, 97]

Communication
Overhead

Reduce overhead and improve
throughput

[98]

Continued on next page
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Fitness Parame-
ter

Objective References

Trust Value (TV) Enhance network security and
prevent malicious activities

[89, 93, 94]

FND Indicate network energy imbalance
or inefficiency

[76, 89, 92, 101, 105]

HND Mark a critical threshold in
network performance

[89, 92, 93, 101, 105]

LND Represent maximum achievable
network lifetime

[89, 92, 93, 101, 105]

EC Reflect energy efficiency of the
network

[96, 101]

Average EC Ensure fairness in energy distribu-
tion among nodes

[87, 94, 105]

Throughput Assess network performance and
efficiency

[82, 86, 92, 95, 98,
100, 101]

Latency Reduce delay, particularly for time-
critical applications

[81, 87, 95]

Jitter Minimize packet reordering delays [81]
DP Transmitted Measure data transmission capa-

bility and network congestion
[91–94,105]

TAN Indicate network stability and node
survivability

[76, 79, 82, 87, 89]

CR Ensure sufficient sensing coverage
for the network’s purpose

[80, 86, 92, 95, 102]

Metaheuristic algorithms uses fitness function to assess candidate solution
quality. These functions aim to optimize multiple parameters simultaneously to address
energy efficiency, network stability, and communication reliability. Fitness function
provides a score to every solution and helps our algorithm move to a better solution.
These algorithms maximize the efficiency of this process by striking a balance between
exploration and exploitation, exploring the search space to avoid local optima and
exploiting promising solutions for optimal performance. Mutation, crossover, swarm
intelligence, and evolutionary algorithms, for example, heuristically refine solutions
according to their fitness values over several iterations. By iteratively assessing and
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refining solutions, meta-heuristic algorithms effectively approach towards near-optimal
or optimal solutions, thus making them suitable for addressing complex optimization
challenges in the real world.

The Table 2.6 provides a comprehensive summary of key fitness parameters
used in clustering algorithms. The energy-related parameter (eg, RE, ER, or EC) is often
the most used parameter for the fitness function. The ultimate goal of these metrics
is mainly towards enhancing the lifespan of the network and increasing the energy
efficiency. Besides energy-based parameters, distance-related parameters (for example,
Distance to BS and NND) are commonly used to decrease communication cost and
enhance the performance of data aggregation. Parameters like Latency, Throughput,
and TV are also significant, focusing on enhancing network performance, reliability, and
security. Balancing these parameters ensures the development of robust and efficient
clustering algorithms for IoT-enabled SDWSNs.

2.6 QoS Parameters for Evaluation

1. Network Lifetime: Network life is defined as the duration for which a network
can operate effectively before maintenance or resource depletion becomes nec-
essary. This metric plays a critical role in evaluating the overall efficiency of
IoT-enabled SDWSNs, particularly in the context of energy management. The
NL can be measured in the following ways:
(a) First Node Died: It is the point in time when a network experiences failure
of its first node. An early FND indicates imbalance or inefficiencies in resource
allocation in the network.
(b) Half Node Died: HND occurs when 50% of the sensor nodes exhaust their
energy or no longer operational. This indicator acts as a critical threshold where
communication efficiency declines significantly.
(c) Last Node Died: LND happens when the last active node experiences failure.
This parameter is used to indicate maximum achievable energy efficiency.

2. Network Energy: As the sensor operates on limited battery energy, it is important
to keep track of energy consumption by nodes in the SDWSN. Network energy
can be measured in the following ways:
(a) Initial energy: It is the sum of energy available in the network at the beginning
of its operation. It acts as a baseline for energy consumption analysis.
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(b) Residual energy: It is the total energy available after a certain number of
transmission rounds. RE indicates how efficiently the network conserves energy
over time and helps in predicting NL.
(c) Energy consumed: It measures total energy depleted after certain rounds of
transmission. EC reflects the energy efficiency.
(d) Average energy consumption: It reflects energy consumed per sensor node
over a specified period. This parameter determines energy distribution fairness
among nodes.
(e) Energy consumption per packet: This parameter measures energy required
to transmit a single data packet.
(f) Energy Efficiency: It is defined as the amount of data successfully transmitted
per unit of energy consumed.

3. Load Balancing: This parameter measures the even distribution of network
traffic across sensor nodes. LB prevents energy depletion and congestion in the
network.

4. Data Packets Transmitted: Total data packet sent by sensor node to BS is
measure of data transmission capabilities of the SDWSN. It also helps in finding
PDR and network congestion.

5. Packet Delivery Ratio: PDR is a ratio of packets successfully received at the
destination to the total packets transmitted from the source. PDR acts as a key
metric for network reliability.

6. Latency: The time taken for a data packet to travel from the sensor node to the
destination BS is called latency. It is a very important parameter for time-critical
applications where delay may lead to serious consequences (e.g., healthcare
monitoring, industrial automation).

7. Jitter:The variation in the sequence of data packets arrived at the destination
is defined as jitter. It is undesirable as package reordering is required before
processing, which leads to a delay in decision-making.

8. Throughput: Throughput is the rate at which data is successfully transmitted
over the SDWSN. It determines the performance and efficiency of IoT-enabled
SDWSNs.

9. Communication Overhead: Communication overhead is defined as the percent-
age of extra data packet sent for successful transmission. A high value of CO
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may lead to a reduction in network efficiency and increased energy consumption.

10. Total Alive Nodes: TAN represents the number of sensor nodes having sufficient
energy to perform their assigned task at the end of each transmission round. It
indicates the stability of the network.

2.7 Chapter Summary

This systematic review has provided a comprehensive analysis of energy-
efficient clustering techniques in IoT-enabled SDWSNs, highlighting their significance
in enhancing network performance and optimizing energy consumption. The study
categorized existing approaches into classical and meta-heuristic-based. Classical
techniques such as LEACH and PEGASIS have laid the groundwork for energy-efficient
clustering, but their limitations in scalability and adaptability are evident in dynamic IoT
environments. Meta-heuristic-based approaches, including PSO, GWO, and ACO, have
demonstrated significant improvements in network lifetime, energy efficiency, and load
balancing through optimized cluster head selection and routing. Dynamic clustering
techniques play a critical role in optimizing network performance by adapting to real-
time changes, preventing energy depletion, and distributing network traffic evenly.
The use of well-designed fitness functions in meta-heuristic algorithms incorporating
parameters such as residual energy, communication distance, and node centrality has
been instrumental in improving cluster formation and routing efficiency. Furthermore,
the study emphasized the importance of key QoS parameters—such as network lifetime,
packet delivery ratio, throughput, latency, and energy consumption—in evaluating and
benchmarking the performance of clustering protocols.

In conclusion, this chapter lays a solid foundation for developing next-
generation, adaptive, and QoS-centric routing protocols tailored to the challenges of
IoT-enabled SDWSNs. The outlined research objectives provide clear direction and
set the stage for the novel models—EOAHA, EO-C, and EQ-AHA—introduced in
the subsequent chapters to address the identified limitations of existing state-of-the-art
techniques.
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CHAPTER 3

ENERGY-OPTIMIZED ARTIFICIAL
HUMMINGBIRD ALGORITHM FOR ROUTING IN

IOT-BASED SOFTWARE-DEFINED WSN

With the proliferation of IoT-enabled wireless sensor networks and the integration of
software-defined networking (SDN) principles, the need for adaptive, energy-efficient
routing algorithms has become increasingly vital [112, 113]. Conventional routing
protocols often fail to adequately address the dynamic and resource-constrained nature
of IoT-enabled SDWSNs. In this scenario, metaheuristic approaches inspired by
natural processes have emerged as promising alternatives that are characterized by
their feasibility, scalability, and efficiency in addressing multi-objective optimization
operations [114–116]. In this chapter, a novel energy-efficient routing method based on
the behavioral intelligence of hummingbirds is proposed to optimize the CH selection
and routing schemes in the IoT-SDWSN architecture.

3.1 Introduction

The previous chapter presented a systematic literature review of energy-
efficient and QoS-aware routing mechanisms in IoT-enabled software-defined wireless
sensor networks. Through a structured methodology encompassing defined research
questions, search strategies, and quality assessment criteria, the review synthesized and
categorized existing approaches into classical, metaheuristic, and machine learning-
based techniques. The chapter also highlighted critical challenges such as energy
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constraints, dynamic network topologies, scalability, and the need for multi-QoS
provisioning. These identified gaps serve as the foundational motivation for the work
proposed in this chapter.

In view of these challenges, this chapter introduces the Energy-Optimized
Artificial Hummingbird Algorithm (EOAHA), a novel nature-inspired routing pro-
tocol tailored for IoT-enabled SDWSNs. The algorithm builds upon the Artificial
Hummingbird Algorithm (AHA), which mimics the foraging strategies of humming-
birds—guided, territorial, and migration foraging. AHA’s adaptive behavior makes it
well-suited for complex optimization tasks such as routing in resource-constrained and
dynamically changing network environments.

The proposed EOAHA enhances the original AHA by incorporating energy-
aware decision-making and SDWSN-specific constraints. It dynamically selects op-
timal cluster heads and constructs efficient routing paths based on a multi-parameter
fitness function that exclusively takes into account the remaining energy of nodes, the
distance between CHs and BS, and the distance within clusters. This approach aims to
balance energy consumption across the network, minimize overhead, and extend overall
network longevity while ensuring reliable data transmission. The key contributions of
this chapter are:

• The Energy-Optimized Artificial Hummingbird Algorithm (EOAHA) has been
suggested to enhance network longevity by aiding in the identification of optimal
CHs.

• A fitness function is designed to be effective by taking into account two compo-
nents. The first component calculates the ratio of the sum of the energy left in
CH to the energy left in common nodes. The second component considers the
distance between CHs and BS, as well as the distance between SDSNs and CH,
in order to minimize transmission energy.

• To validate its effectiveness, the performance of the EOAHA algorithm is tested
under various conditions.

• The experimental study provided evidence that EOAHA outperforms other state-
of-the-art methods
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3.2 The System Model

The network architecture of the IoT-based SD-WSN, shown in Figure 3.1,
showcases the important incorporation of SDN principles. In this network paradigm,
cluster heads use wireless communications to facilitate connections between all nodes
and the base station. The integration of SDN in this design introduces a revolutionary
element, specifically in the real-time modification of nodes inside the network. Using
the SDN concept, the network acquires the ability to swiftly reconfigure and update
nodes in real-time, enabling adaptive and responsive improvements to evolving network
conditions. The dynamic management of nodes improves the flexibility, scalability, and
responsiveness of the IoT-based SD-WSN, guaranteeing an optimal and robust network
infrastructure. The system model is divided into two subsections, namely the network
model and the energy model, which are as follows:

Figure 3.1: An illustration of an IoT-SDWSN network scenario with a Base station
and CH.
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3.2.1 The Network Model

The IoT-based SD-WSN network architecture is shown in the Figure 3.1. In
this figure, all nodes are connected to the base station via a cluster head or CH through
a wireless link. This architecture is a directed graph G(V, E). In this graph G, the V
represents the vertex set of randomly deployed BS, CH, and SDSN in an area. In this
graph G and E represents the set of direct wireless communication links between BS,
CHs, and SSDNs to transfer data. The network model for EOAHA is based on the
following assumptions:

• All SDSNs are deployed randomly in the SD-WSN region and battery power.

• |𝐼𝑜𝑇 − 𝑆𝐷𝑊𝑆𝑁 | = |𝐵𝑆 | ∪ |𝐶𝐻 | ∪ |𝑆𝐷𝑆𝑁 | and each device has identification
number 𝐼 = 1, 2, 3. . . , 𝑖, . . . ., 𝑁

• All the nodes, BS, CHs, and SDSN are stationary.

• The BS is on external power.

• The SD-WSN is homogeneous, and the initial energy of all the SDSNs is equal.

• Each node in the SD-WSN can act in either sensing mode or communication
mode.

• The task of SDSNs is to sense the assigned parameter and then communicate that
data to the CHs or the BS using wireless communication links. If the SDSN acts
as a CH, it gathers the information from all the SDSNs in the cluster and then
transmits it to the BS.

• Each SDSN is unaware of the location and is without GPS-enabled equipment.

3.2.2 The Energy Model

The path attenuation model [62] is used as an energy consumption model
for data communication. In this model, energy consumed by the transmitter 𝑘-bits
message for distance (𝑑) is calculated considering both multi-path fading, (𝐸𝑚𝑝), and
free space fading(𝐸 𝑓 𝑠). The distance, 𝑑, is the Euclidean distance between the receiver
and transmitter SSDN, which is calculated using the following equation (3.1).
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𝑑𝑖 𝑗 =

√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2 (3.1)

Here,(𝑥𝑖, 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗 ) is the locations of the transmitter and receiver,
respectively. In addition, path loss may be compensated by using the power control
mechanism. In this model, the free space model is applied if 𝑑 is less than a threshold
distance (𝑑𝑡ℎ); otherwise, the multi-path energy model gets employed [1]. The energy
consumption 𝐸

𝑖 𝑗

𝑆𝑆𝐷𝑁𝑇𝑋
for a general SSDN node to transmit k-bits data over distance, d

is calculated using the following equation (3.2).

𝐸
𝑖 𝑗

𝑆𝑆𝐷𝑁𝑇𝑋
=


𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑑4, for 𝑑 ≥ 𝑑𝑡ℎ.

𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑑2, otherwise.
(3.2)

The energy consumption by the CH, 𝐸 𝑖 𝑗

𝐶𝐻𝑇𝑋
, for transmitting 𝑘-bits over distance, 𝑑, is

calculated using equation (3.3).

𝐸
𝑖 𝑗

𝐶𝐻𝑇𝑋
=


𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑑4, for 𝑑 ≥ 𝑑𝑡ℎ.

𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑑2, otherwise.
(3.3)

Where 𝐸𝐷𝐴 is the energy consumed in data aggregation by CH. The
threshold distance 𝑑𝑡ℎ is calculated using equation(3.4).

𝑑𝑡ℎ =

√︄
𝐸 𝑓 𝑠

𝐸𝑚𝑝

(3.4)

Where 𝐸 𝑓 𝑠 and 𝐸𝑚𝑝 represent free space amplification energy and ampli-
fication energy for multi-path models respectively.
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3.3 Overview of Artificial Hummingbird Algorithm

Hummingbirds are considered to be the tiniest birds on the planet, and they
are the most intelligent species on Earth in terms of the brain-to-body ratio [117]. Zhao
et al. [118] proposed AHA as a method of global search optimization. It models the
foraging behavior of hummingbirds. The structure of the AHA [118] is shown in the
following algorithm: 3.1.

Algorithm 3.1 Artificial Hummingbird Algorithm
1: Initialization
2: while stop criterion is not satisfied do
3: if condition met then
4: Guided Foraging (Algorithm 3.2)
5: else
6: Territorial Foraging (Algorithm 3.3)
7: if lack of food then
8: Migration Foraging (Algorithm 3.4)

Hummingbirds exhibit three behaviors related to foraging, namely guided,
territorial, and migrating foraging. In AHA, 𝑛 population of birds on 𝑛 food sources
are initialized and a visiting table with visit levels [118] of food sources is initialized
using the following equation (3.5). The health of the food source is represented by the
visit level here.

𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒𝑖, 𝑗 =


0, 𝑖 ≠ 𝑗 .

𝑛𝑢𝑙𝑙, 𝑖 = 𝑗 .
𝑓 𝑜𝑟 𝑖, 𝑗 = 1, 2..., 𝑛 (3.5)

Hummingbird’s flight is modeled using a direction switch vector in the AHA algorithm,
which includes omnidirectional, diagonal, and axial flight [118]. The axial 𝐴𝑖, diagonal
𝐷𝑖, and omnidirectional 𝑂𝐷𝑖 flight are determined using the following equations (3.6),
(3.7) and (3.8), respectively [118].

𝐴𝑖 =


1, 𝑖 𝑓 𝑖 = 𝑟𝑎𝑛𝑑 ( [1, 𝑑]).

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
𝑓 𝑜𝑟 𝑖, 𝑗 = 1, ..., 𝑑 (3.6)
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𝐷𝑖 =


1, 𝑖 𝑓 𝑖 = 𝑃(𝑖); 𝑗𝜀[𝑖, 𝑘]; 𝑃 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘);

𝑖, 𝑗 = 1, 2..., 𝑑; 𝑘𝜀 = [2, ⌈𝑟1 ∗ (𝑑 − 2) + 1⌉] .

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(3.7)

𝑂𝐷𝑖 = 1, 𝑓 𝑜𝑟 𝑖, 𝑗 = 1, ..., 𝑑 (3.8)

1. Guided foraging: Hummingbirds have a natural tendency to prefer food sources
with the highest nectar volume and cling onto them. If visit levels are equal, a
food source with the highest nectar refilling rate is selected during guided foraging;
otherwise, the food source with the topmost visit level is picked. To simulate the guided
foraging behavior, the following equation (3.9) is used.

𝑣𝑖 (𝑡 + 1) = 𝑥𝑖,𝑡𝑎𝑟 (𝑡) + 𝑎 ∗ 𝐷 ∗ (𝑥𝑖 (𝑡) − 𝑥𝑖,𝑡𝑎𝑟 (𝑡)) (3.9)

Whereas 𝑥𝑖,𝑡𝑎𝑟 (𝑡) is the location of the target food to be visited by 𝑖𝑡ℎ

hummingbird; guide factor 𝑎 ∼ 𝑁 (0, 1), 𝑁 (0, 1) is normal distribution, represents the
location of 𝑖𝑡ℎ food source at time t; and D is axial, diagonal or omnidirectional flight.
The hummingbird uses the following equation (3.10) to select a food source with a
higher rate of nectar filling.

𝑥𝑖 (𝑡 + 1) =

𝑥𝑖 (𝑡), 𝑖 𝑓 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥𝑖 (𝑡)) ≤ 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑣𝑖 (𝑡 + 1)

𝑣𝑖 (𝑡 + 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(3.10)

Where 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑥(𝑡)) is the value of the fitness function for the food source.
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Algorithm 3.2 Guided Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (3.9)

2: [𝑆𝑡 (𝑡)] = 𝑆𝑃𝑉 [𝑣 𝑗

𝑖
(𝑡)]

3: 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑡 (𝑡), 𝑛𝐶𝐻)
4: for 𝑘-th food from 1 to 𝑛 (𝑘 ≠ tar, 𝑖) do
5: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) = 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) + 1
6: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, tar) = 0
7: if 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑖 then
8: 𝑥

𝑗

𝑖
(𝑡) = 𝑣

𝑗

𝑖
(𝑡)

9: 𝑓𝑖 = 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠

10: for 𝑘-th food from 1 to 𝑛 (𝑡 ≠ 𝑘) do
11: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑖) = max(𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑡)) + 1

2. Territorial foraging: Hummingbirds probably look for a new food source within
their region once their current food source is exhausted. The following equation (3.11)
simulates the territorial foraging behavior of hummingbirds.

𝑣𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑏 ∗ 𝐷 ∗ 𝑥𝑖 (𝑡) (3.11)

Where territorial factor 𝑏 ∼ 𝑁 (0, 1), 𝑁 (0, 1) is a normal distribution with
mean=0 and standard deviation=1; D is axial, diagonal, or omnidirectional flight.
Hummingbirds can use the above equation (3.11) to discover a new food source in their
territory. If the new food source refills at a faster rate as compared to a current source,
the newer one gets selected by using equation (3.10). In each iteration, the visitor
table is updated when the hummingbird performs either guided or territorial foraging
behavior. The visit level in the visitor table is set to zero for the target food, while for
all other sources, it is incremented by 1. If the hummingbird moves to a new source of
food, then for the old food source, the visit level for other birds in the population is set
to the bird’s highest visit level increased by one [118].
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Algorithm 3.3 Territorial Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (3.11)

2: [𝑆𝑡 (𝑡)] = 𝑆𝑃𝑉 [𝑣 𝑗

𝑖
(𝑡)]

3: 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑡 (𝑡), 𝑛𝐶𝐻)
4: for 𝑘-th food from 1 to 𝑛 (𝑘 ≠ 𝑖) do
5: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) = 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) + 1
6: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑡𝑎𝑟) = 0
7: if 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑖 then
8: 𝑥

𝑗

𝑖
(𝑡) = 𝑣

𝑗

𝑖
(𝑡)

9: 𝑓𝑖 = 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠

10: for 𝑘-th food from 1 to 𝑛 (𝑘 ≠ 𝑖) do
11: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑖) = 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑡) + 1

3. Migration foraging: When the hummingbird faces scarcity of food within its
territory, it usually migrates to a different region. The following equation (3.12)
generates a new food source at random in the domain. The hummingbird will migrate
to it to feed on a new food source and update its visitor table.

𝑥𝑤𝑜𝑟𝑠𝑡 (𝑡 + 1) = 𝐿𝑜𝑤 + 𝑟 ∗ (𝑈𝑝 − 𝐿𝑜𝑤) (3.12)

Where 𝑥𝑤𝑜𝑟𝑠𝑡 represents food sources with the slowest nectar refill rate, In AHA,
if the iteration exceeds the migration coefficient, the migration foraging behavior of
hummingbirds gets simulated.

Algorithm 3.4 Migration Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (3.12)

2: for 𝑘-th food from 1 to 𝑛 (𝑘 ≠ 𝑖) do
3: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) = 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑘) + 1
4: for 𝑘-th food from 1 to 𝑛 (𝑘 ≠ 𝑖) do
5: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑖) = 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑘, 𝑡) + 1

3.4 The Proposed Model

Here, we divided this section into two subsections. In the first subsec-
tion, we discuss the proposed Energy Optimized Artificial Hummingbird Algorithm
(EOAHA) model. Further, in the second subsection, the fitness function used in the
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EOAHA model is defined.

Figure 3.2: EOAHA flowchart.

3.4.1 The EOAHA Model

The proposed EOAHA is a nature-inspired metaheuristic-based algorithm.
The Algorithm 3.5 explains the EOAHA pseudo-code used to address the energy
optimization problem in an IoT-based SD-WSN. The algorithm comprises two distinct

52



phases, namely the initialization phase and the updation phase.

1. Initialization Phase: It begins with the initialization of the population. The
position of the predefined number N of randomly generated hummingbirds on N
number of food sources is determined using the following equation (3.13).

𝑥
𝑗

𝑖
(𝑟) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) (3.13)

whereas, 𝑟𝑎𝑛𝑑 is a random vector in [0, 1]; the random food positions are
represented as a vector 𝑥𝑖 (𝑟) with continuous random values. Here, 𝐿𝐵 and 𝑈𝐵

denote the lower and upper bounds, respectively, for a multi-dimensional problem
with 𝑗 dimensions. The location of the 𝑖𝑡ℎ food source is represented by 𝑥 𝑗

𝑖
(𝑟). To

determine the position of each bird in the sequence, the Smallest Position Vector
(SPV) rule (for description, see [119]) is applied on 𝑥𝑖 (𝑟), resulting in a sequence
position vector 𝑆𝑖 (𝑟). In this proposed algorithm, a total of 10% of the active
nodes in the network are selected as CHs for each bird, using SPV [119]. The
fitness of each hummingbird is determined by evaluating its position using the
fitness function 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖 (𝑟), 𝑛𝐶𝐻). The resulting fitness value is then stored
in 𝐹𝑖. After initializing the fitness value for each bird, using equation (3.5),
the VisitTable is initialized. At the end of this phase, the global best solution
(𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡) is initialized with the bird having the best fitness value.

2. Updation Phase: The updation phase includes five steps. In the first step, the
type of flight for each bird is selected randomly from the omnidirectional, axial,
and diagonal flight. Next, during the second step, for each bird, the type of
foraging behavior is chosen randomly, i.e., guided or territorial foraging. If the
guided foraging is selected, the new food vector 𝑣𝑖 (𝑛) is calculated using equation
(3.9); in the case of territorial foraging, equation (3.11) is used to calculate the
new food vector 𝑣𝑖 (𝑛). The third step of the algorithm involves the utilization
of the SPV rule [84] to determine the sequence vector, represented by 𝑆𝑖 (𝑟), for
each bird. Subsequently, during the fourth step, for each bird, the fitness value is
calculated, and if the new values are smaller than the older one, the fitness value 𝑓𝑖

and the visit table for that bird are updated (as described in the previous section).
In the final step, the algorithm checks if the number of iterations exceeds the
migration coefficient. If so, the migration foraging behavior of hummingbirds
is simulated. In migration foraging, new food sources are created in the entire
search space using equation (3.12). If the fitness value computed in this step is
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greater than the old global best value, the global best solution is updated.

Algorithm 3.5 EOAHA
Input: 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙, 𝑁𝑜𝑑𝑒𝑠

Output: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜 𝑓 𝐶𝐻𝑠

1: 𝑟 = 0
2: while 𝑎𝑙𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠 ≠ 0 do
3: 𝑛𝐶𝐻 = 10% of 𝑎𝑙𝑖𝑣𝑒𝑁𝑜𝑑𝑒𝑠

4: for each 𝑖𝑡ℎ hummingbird from 1 to 𝑛 do
5: Randomly initialize the position of both hummingbird and food, i.e., 𝑥𝑖

𝑗
(𝑟)

of 𝑖𝑡ℎ particle in 𝑗 𝑡ℎ dimension for 𝑘 𝑡ℎ iteration
6: [𝑆𝑖 (𝑟)] = 𝑆𝑃𝑉 [𝑥𝑖

𝑗
(𝑟)]

7: 𝑓𝑖 = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑆𝑖 (𝑟), 𝑛𝐶𝐻)
8: for each 𝑗 𝑡ℎ food from 1 to 𝑛 do
9: if 𝑖 ≠ 𝑗 then

10: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑗) = 1
11: else
12: 𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒(𝑖, 𝑗) = null
13: 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡 = min[ 𝑓𝑖]
14: while 𝑡 < maxIteration do
15: for each 𝑖𝑡ℎ hummingbird from 1 to 𝑛 do
16: if 𝑟𝑎𝑛𝑑2 < 1

3 then
17: perform equation 3.6
18: else if 𝑟𝑎𝑛𝑑2 > 2

3 then
19: perform equation 3.7
20: else
21: perform equation 3.8
22: if 𝑟𝑎𝑛𝑑1 ≤ 0.5 then
23: Do Guided foraging
24: else
25: Do Territorial foraging
26: if mod(𝑡, 2𝑛) = 0 then
27: Do Migration foraging
28: 𝑔𝑙𝑜𝑏𝑎𝑙𝐵𝑒𝑠𝑡𝐹𝑖𝑡 = min[ 𝑓𝑖]
29: 𝑟 = 𝑟 + 1

3.4.2 Smallest Position Value

Tasgetiren et al. [120] proposed heuristic rule called smallest position value.
To adapt the continuous nature of standard PSO for this discrete sequencing problem,
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the authors propose a novel Smallest Position Value (SPV) rule. This technique enables
the algorithm to translate continuous position vectors into discrete job permutations by
sorting the vector values to determine processing order.

The fundamental function of the SPV rule is to transform a continuous
position vector v𝑖

𝑘
= {𝑣𝑖

𝑘,1, 𝑣
𝑖
𝑘,2, . . . , 𝑣

𝑖
𝑘,𝑛

} into a discrete permutation sequence S𝑖
𝑘
=

{𝑠𝑖
𝑘,1, 𝑠

𝑖
𝑘,2, . . . , 𝑠

𝑖
𝑘,𝑛

}. This is achieved by sorting the continuous position values in
ascending order and retrieving their corresponding indices to determine the processing
order. Formally, for a dimension 𝑛 (representing the number of jobs or nodes), the
discrete sequence is derived such that:

S𝑖
𝑘 = argsort(v𝑖𝑘 ) (3.14)

whereby the indices are reordered based on the magnitude of the values in X𝑖
𝑘
.

Furthermore, to enhance the robustness of this approach, the original model embeds a
local search mechanism to improve the quality of solutions discovered by the swarm.

3.4.3 Fitness Function

The following parameters are utilized in the fitness function’s development:

1) Total Residual Energy: The longevity of the network heavily relies on the
residual energy of its nodes. The following equation (3.15) provides the general
formula for calculating total residual energy.

𝐸𝑡𝑜𝑡𝑎𝑙 =

𝑛∑︁
𝑖=1

𝐸𝑟 (3.15)

Where 𝐸𝑟 is the energy left in 𝑖𝑡ℎ node, equation (3.16) is utilized to determine
the total remaining energy of the CH, whereas the calculation of the total residual
energy of a normal node within the cluster is performed using Equation (3.17).

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻 =

𝑛𝐶𝐻∑︁
𝑖=1

𝐸 𝑖𝐵𝑆
𝐶𝐻 (𝑙, 𝑑) (3.16)
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The variables used in the calculation include nCH, which denotes the number of
CH; l represents the number of bits; d, which indicates the distance between CH
and BS; and 𝐸 𝑖𝐵𝑆

𝐶𝐻𝑇𝑋
, which represents the residual energy in the 𝑖𝑡ℎ node.

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛 =

𝑛𝐶𝐻∑︁
𝑗=1

𝑛𝑁𝑜𝑑𝑒∑︁
𝑖=1

𝐸
𝑖 𝑗

𝑆𝐷𝑆𝑁
(𝑙, 𝑑𝑖, 𝑗 ) (3.17)

Whereas the 𝑑𝑖, 𝑗 is the distance from the 𝑗 𝑡ℎ CH and 𝑖𝑡ℎ node; nNode rest of nodes
in the network excluding CH. The equation (3.18) represents the first objective
function 𝑓1 for the calculation of fitness while 𝑓1 is the ratio of total energy left
in CH and the rest of the nodes after transmission.

𝑓1 =
𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛

(3.18)

2) Distance: The distance is directly proportional to the energy required to send data
in space, i.e., the larger the distance between the receiver and sender, the greater
the energy required to transmit the data. Therefore, if we need to reduce the
energy consumption for transmission, it will be required to minimize the distance
between the sender and receiver. Here we considered the distance between BS
& CH and the distance between CH & its cluster nodes to optimize the results.
The total distance between the BS and all the cluster heads is calculated using
the following equation (3.19).

𝐷𝑡𝑜𝑡𝑎𝑙𝐶𝐻𝑡𝑜𝐵𝑆 =

𝑛𝐶𝐻∑︁
𝑖=1

√︃
(𝑥𝐶𝐻𝑖

− 𝑥𝐵𝑆)2 + (𝑦𝐶𝐻𝑖
− 𝑦𝐵𝑆)2 (3.19)

Whereas, the location of the 𝑖𝑡ℎ CH is (𝑥𝐶𝐻𝑖
, 𝑦𝐶𝐻𝑖

) and the location of the base
station as (𝑥𝐵𝑆, 𝑦𝐵𝑆).

𝐷𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑡𝑜𝐶𝐻 =

𝑛𝐶𝐻∑︁
𝑗=1

𝑛𝑁𝑜𝑑𝑒∑︁
𝑖=1

√︃
(𝑥𝐶𝐻 𝑗

− 𝑥𝑁𝑂𝐷𝐸𝑖
)2 + (𝑦𝐶𝐻 𝑗

− 𝑦𝑁𝑂𝐷𝐸𝑖
)2 (3.20)

The total distance between the CH and all the nodes in the cluster is calculated
using the above equation (3.20). Whereas, the (𝑥𝐶𝐻 𝑗

, 𝑦𝐶𝐻 𝑗
)is the location of the

𝑗 𝑡ℎ base node and (𝑥𝑁𝑂𝐷𝐸𝑖
, 𝑦𝑁𝑂𝐷𝐸𝑖

) is the location of the 𝑖𝑡ℎ node in a cluster.
Equation (3.21) represents the second objective function 𝑓2, which is based on
the average total distance covered between CH & BS and nodes & CH in the
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cluster

𝑓2 =
1

(𝐷𝑡𝑜𝑡𝑎𝑙𝐶𝐻𝑡𝑜𝐵𝑆 + 𝐷𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑡𝑜𝐶𝐻)/2
(3.21)

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛾 ∗ 𝑓1 + 𝛿 ∗ 𝑓2 (3.22)

The above equation (3.22) represents the fitness function, which balances the
residual energy and the distance covered during transmissions. Here, 𝛾 and 𝛿 are
constants.

3.5 The Performance Analysis

Table 3.1 outlines the various parameters of IoT-based SD-WSN and EOAHA,
which are used to evaluate performance through computer simulation in this section.
All the experiments are performed in the MATLAB (version 2019a) tool on an Intel i5
processor with 8GB RAM.

Table 3.1: Parameters for Testing

Category Parameter Value
Network Area (𝑚2) 100x100

BS (Position) 50,50
Node Energy 0.5J
No. of SDSNs 100

Application Data Packet length 100 bits
Broadcast packet size 25 bits

EOAHA Initial POP 30
Iteration 50
𝛾, 𝛿 0.5, 0.5

3.5.1 Parameter Settings

The behavior of SD-WSN nodes is simulated in a geographical area of 100
m x 100 m with a base station at the center using the testing settings listed in Table 3.1.
A network of 100 nodes is deployed at random, as shown in Figure 3.3. An energy
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allocation of 0.5 J is assigned to each node in the network. The location of the base
station is the center of the area of deployment.

Figure 3.3: Random deployment of sensor nodes in 100m x 100m field

Figure 3.4: The fitness response of EOAHA on population and iterations.
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Figure 3.5: Comparison of performance with different % of CHs.

Figure 3.6: EOAHA outcome for the packet transmitted to BS, total residual energy,
and no. of dead/failed nodes.
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In order to evaluate the optimum number of hummingbird populations and
the maximum iteration, the fitness function is tested with a different set of populations
ranging from 5 to 100, as shown in the above Figure 3.4. As we can observe from the
given Figure 3.4, the optimum fitness value can be achieved with the initial population
size of 30 and a maximum of 50 iterations. Thus, a population of 30 hummingbirds
is initialized with a food position vector that lies in the [-4 to 4] range using equation
(3.13) in multi-dimension search space. In EOAHA, the number of CH is set to 10%
of the alive nodes after comparing the performance of the EOAHA, as shown in Figure
3.5, with different numbers of CHs, i.e., 5%, 10%, 15%, and 20% of the total alive
nodes.

3.5.2 Performance Evaluation

From Figure 3.6, we can observe that for the EOAHA algorithm, the first
node died at 1224 rounds with steady decay of total network energy. The last node of
the network died at the 1261 round with no energy left in the network. As the network
lasted for 1261 rounds, the number of packets transmitted to the base station was 12519.

Figure 3.7: No. of alive node comparison based on the position of BS.

To test the impact of the position of BS on the performance of the proposed
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algorithm, the algorithm is simulated with different positions of BS, i.e., at the center
(50,50), origin (0,0), corner (100,100), and random location (150,50) outside the area of
deployment. The results shown in Figure 3.7 depict that the performance of EOAHA is
almost the same when BS is placed at the corners of the area of deployment. However,
the performance of the algorithm when the BS is outside the area of deployment
decreases significantly, and the proposed algorithm performs best when the BS is in
the center of the deployment area.

Figure 3.8: Dead node comparison based on different node densities of deployment.

This algorithm is further tested with the different densities of nodes de-
ployed in networks, i.e., 100, 200, 300, 400, and 500 nodes. As the number of nodes
distributed within the same region increases, the results shown in Figure 3.8 indicate
that the proposed method exhibits greater efficiency. This result may also be verified
with the data shown in Figure 3.9; it is observed that as the area of the network
is increased with the same number of nodes (i.e., decrease in density), the network
lifetime decreases significantly.
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Figure 3.9: Dead node comparison based on different areas of deployment.

3.5.3 Comparative Analysis

The system is configured using all the parameters in Table 3.1. The
simulation results of EOAHA are compared with state-of-the-art algorithms, i.e.,
EBGWO [86], LEACH [62], KmeansPSO [78], GWO-C [84], and EAFFO [98], in
terms of the number of dead nodes and total residual energy per round. The performance
of network models is measured using network lifespan [81], and it is defined as the
period from the deployment of the network until the last node dies [65]. The network
lifespan for periodic data collection is calculated as the time between the first node
becoming operational and when the First Node Dies (FND) [65] in the SD-WSN.
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Figure 3.10: Dead node comparison based on the number of rounds.

Figure 3.11: FND and number of rounds comparison.

In Figures 3.10 and 3.11, the result shows that for LEACH, the first node
died at 270 rounds; for Kmeans-PSO FND at 560 rounds; for GWO-C FND at 543
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rounds; for EB-GWO FND at 1078 rounds; for EAFFO FND at 996; and for EOAHA
FND at 1224 rounds. According to the findings, EOAHA has enhanced the network
lifespan for periodic data collection by over 13.5 percent when compared to EBGWO,
and if we compare it with LEACH, Kmeans-PSO, EAFFO, and GWO-C, the network
lifespan is enhanced by more than 350%, 118%, 123% and 125% respectively. If we
compare the proposed solution with LEACH, the overall network lifespan with respect
to the last node died; the result shows SD-WSN lasted for 562 more rounds than LEACH
(in which LND at 662). Figure 3.11 clearly shows that EOAHA prolongs the network
lifespan for periodic data gathering.

Figure 3.12: The number of data packets by different algorithms to Base Station.

Figure 3.12 shows that the EOAHA transmits fewer packets to BS than
LEACH, GWO-C, EAFFO, and EBGWO. Here, Figure 3.13 shows the comparison
between the number of rounds and total residual energy. Due to the energy and
distance-balanced fitness function, energy-draining for EOAHA is steady. To test the
stability of all the state-of-the-art algorithms and EOAHA with the increase in density
of nodes in a defined area, all the algorithms are simulated with node densities of
100, 200, 300, 400, and 500, and the results are exhibited in Figure 3.14. The data
displayed in Figure 3.14 proves that the performance of EOAHA is consistent or even
improves with the increase in the density of nodes, whereas the performance of others
is inconsistent, i.e., performance decreases in some cases and increases in other cases.
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Figure 3.13: Comparison of energy drain of EOAHA.

Figure 3.14: FND and the number of rounds comparison with state-of-the-art
algorithms.

The experiment results depict that EOAHA is significantly superior than the state-of-
the-art algorithm in extending the network lifespan for periodic data gathering, as the
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energy consumption in the network is steady.

3.6 Chapter Summary

This chapter addresses the critical challenge of energy conservation and
prolonged network longevity in IoT-SDWSNs by introducing EOAHA. Leveraging
the behavioral intelligence of hummingbirds, the EOAHA methodology optimizes the
complex process of CH selection through a specialized fitness function designed to
balance transmission costs with node vitality. This function prioritizes the selection
of optimal CHs by maximizing the ratio of residual energy between CHs and member
nodes while simultaneously minimizing the communication distance to both the CH and
cluster members. Extensive simulations validated the protocol’s superior robustness,
demonstrating that EOAHA achieved a FND metric of 1224 rounds and delivered
significant network lifespan improvements ranging from 13.5% against EBGWO to
over 350% against LEACH. Furthermore, the results confirmed the algorithm’s ability
to maintain consistent energy stability and performance superiority even as node density
increased, establishing EOAHA as a resilient solution for scalable IoT deployments.
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CHAPTER 4

A NATURE INSPIRED MULTI-OBJECTIVE GREEN
ROUTING PROTOCOL FOR IOT-ENABLED SDWSN

In the previous chapter, the EOAHA was introduced as a novel metaheuristic rout-
ing protocol designed to enhance energy efficiency and prolong network lifetime in
IoT-enabled SDWSNs. Inspired by the foraging behavior of hummingbirds, EOAHA
effectively optimized energy consumption and improved packet transmission by in-
telligently selecting CHs. However, a key limitation of the approach was that the
number of CHs remained fixed during the entire network operation. Since the role
of CH is energy-critical and incurs higher energy costs, fixing the number of CHs
can lead to suboptimal performance under dynamic network conditions. Therefore,
it is essential to adaptively determine both the selection and the number of CHs
based on real-time parameters such as node density, residual energy, and traffic
load. Building upon the foundational insights and limitations identified in Chapter
3, this chapter introduces an enhanced energy-efficient routing framework, Equilibrium
Optimization-based Clustering (EO-C).

4.1 Introduction

EO-C is a multi-objective green routing protocol, inspired by the natural
phenomenon of equilibrium, tailored for IoT-enabled SDWSNs. While the previously
proposed EOAHA effectively selected CHs based on behavioral intelligence and resid-
ual energy, EOAHA operated under the constraint of a fixed number of CHs, limiting
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adaptability under dynamic network conditions. To overcome this limitation, EO-C
introduces a dynamic and adaptive mechanism that adjusts both the selection and
quantity of CHs based on real-time network conditions such as node density, residual
energy, communication distance, node availability, and current communication load.
The protocol simultaneously optimizes key Quality of Service (QoS) metrics such as
energy consumption, network longevity, load distribution, and data packet delivery,
making it more suitable for scalable and IoT-based SDWSN environments.

EO-C defines a comprehensive fitness function that integrates multiple
parameters: energy ratio, residual energy, and node alive. These metrics collectively
guide the adaptive clustering and routing process, enabling the formation of balanced
and energy-aware topologies. EO-C is based on the equilibrium optimizer algorithm
[121]. EO-C intelligently selects CHs based on factors like total residual energy, energy
balance ratio, and alive nodes. The key contributions of this chapter are as follows:

• This chapter introduces an energy-efficient EO-C algorithm. The goal of this
algorithm is to improve the network’s life and mitigate the hot-spot problem.

• A novel fitness function is proposed, which is based on constraints such as total
residual energy, energy balance ratio, and alive node count.

• EO-C dynamically selects the optimum cluster count based on network condi-
tions.

• The performance of the EO-C algorithm is evaluated under various conditions to
validate its effectiveness.

• The experimental study provided evidence that EO-C outperformed other state-
of-the-art (SoA) methods

By leveraging evolutionary principles and intelligent decision-making, EO-C advances
beyond single-objective models and positions itself as a robust candidate for real-world
deployments in energy-constrained, data-intensive IoT-SDWSNs.
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4.2 Preliminaries

This section presents the network model, energy model, and terminology
used in the proposed EO-C algorithm.

Figure 4.1: An illustration of an IoT-SDWSNs scenario with a CH and BS.

4.2.1 The Network Model

The network architecture of the IoT-enabled SDWSN is depicted in Figure
4.1. The integration of SDN principles in IoT introduced a groundbreaking element,
particularly in the real-time modification of nodes within the network. Leveraging SDN,
the network gains the capability to swiftly reconfigure and update nodes in real time,
facilitating adaptive and responsive adjustments to evolving network conditions. This
dynamic node management enhances the flexibility, scalability, and responsiveness of
the IoT-enabled SDWSNs, ensuring an optimal and robust network infrastructure. In
Figure 4.1, the IoT-enabled SDWSN architecture portrays the wireless connections of
nodes with BS via CH. The network model is based on clustering to minimize energy
consumption, where Normal Nodes (NN) monitor the environment and transmit sensory
data to the cluster heads, aiding in data aggregation before transmission to the base
station. The CH aggregates the data received from CN and forwards it to the BS. The
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task of BS is to collect data, select CH, and create clusters. Here are the assumptions
regarding the network:

• All deployed nodes in the network architecture are homogeneous, possessing
equivalent energy, computational capability, and data transmission range.

• |𝐼𝑜𝑇 − 𝑆𝐷𝑊𝑆𝑁𝑠 | = |𝐵𝑆 | ∪ |𝐶𝐻 | ∪ |𝑁𝑁 | and each device has identification
number 𝐼 = 1, 2, 3. . . , 𝑖, . . . ., 𝑁

• All the nodes CHs and SDSN are stationary.

• The BS is on external power.

• All nodes are deployed randomly in the area.

• Every node inside the SDWSNs has the capability to function in either sensing
mode or communication mode.

• The task of SDSNs is to sense the assigned parameter and then communicate that
data to CHs or base stations using wireless communication links. If the SDSN
acts as a CH, It gathers the information from all the SDSNs in the cluster and
then transmits it to the BS.

• Each SDSN is without GPS.

4.2.2 The Energy Model

The EO-C algorithm employs the path attenuation model [81] as the basis
for its energy consumption model during data communication. This model helps to
estimate the energy required for transmitting data by considering how the signal weakens
or loses strength as it travels over a distance. By incorporating the path attenuation
model, the energy consumption for communication can be more accurately calculated,
ensuring efficient use of resources in the network.

𝑠(𝑖, 𝑗) =
√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2 (4.1)
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Here,(𝑥𝑖, 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗 ) are the locations of the transmitter and receiver,
respectively. In addition, path loss may be compensated by using the power control
mechanism. In this model, the free space model is applied if 𝑑 is less than a
threshold distance (𝑠𝑡ℎ); else, the multi-path energy model gets employed. The energy
consumption 𝐸

𝑖 𝑗

𝑆𝑆𝐷𝑁𝑇𝑋
for a general SSDN node to transmit k-bit data over distance (𝑠)

is calculated using the following equation (4.2).

𝐸𝑆𝑆𝐷𝑁𝑇𝑋
=


𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑠4, for 𝑠 ≥ 𝑠𝑡ℎ.

𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑠2, otherwise.
(4.2)

The energy consumption by the cluster head, 𝐸𝐶𝐻𝑇𝑋
, for transmitting 𝑘-bits over

distance, 𝑠, is calculated using equation (4.3).

𝐸𝐶𝐻𝑇𝑋
=


𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑠4, for 𝑠 ≥ 𝑠𝑡ℎ.

𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑠2, otherwise.
(4.3)

Where 𝐸𝐷𝐴 is the energy consumed in data aggregation by cluster heads.
The threshold distance 𝑠𝑡ℎ was calculated using equation (4.4).

𝑠𝑡ℎ =

√︄
𝐸 𝑓

𝐸𝑚

(4.4)

Where 𝐸 𝑓 and 𝐸𝑚 represent free space amplification energy and amplifi-
cation energy for multi-path models respectively.
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Figure 4.2: EO-C Flow Chart

4.3 The Proposed Model

The EO-C algorithm is discussed in this section. EO-C is based on the
equilibrium optimizer algorithm by Faramarzi et al. [121]. The equilibrium optimizer
algorithm is a meta-heuristic optimization method based on physics’ fundamental
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principle of equilibrium. It is designed to identify the most favorable solution for
a specific optimization problem by emulating the behavior of particles with different
concentrations as they approach the state of equilibrium. By incorporating these
principles, EO-C optimizes the clustering process in IoT-enabled SDWSNs using
the principle of exploration and exploitation within the framework of meta-heuristic
optimization.

Algorithm 4.1 explains the pseudocode of the EO-C algorithm, which is
structured into two main phases: initialization and optimization. Figure 4.2 illustrates
the detailed flowchart of the EO-C algorithm, outlining its sequential workflow. The
process begins with the initialization phase, where the network parameters, particle
population, and the number of CHs are initialized randomly (explained in subsection
4.3.1). Following this, the algorithm assigns initial fitness values and equilibrium
candidates to the particles. In the optimization phase (explained in subsection 4.3.2), the
process begins by identifying the best CH candidate nodes using the Smallest Position
Value (SPV) rule [120]. In the following step, the fitness of each particle is recalculated
using the fitness function, which is explained in subsection 4.3.3. The algorithm
subsequently updates the concentration of particles and constructs an equilibrium pool,
selecting the global best solution to achieve optimization. Once the global best solution
is identified, the data transmission phase is executed using the best CH configuration.
If nodes are alive, the process loops back to re-optimize and continue the transmission
cycle; otherwise, the process terminates.

4.3.1 The Initialization Phase

This phase starts with the initialization of 𝑛 particles. The number of
particles and the size of the search space define the initial particle concentrations. In
the next step, the initial concentration of all n particles is randomly initialized with a
uniform distribution across the search space using equation 4.5.

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 = 𝐶𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝐶𝑚𝑎𝑥 − 𝐶𝑚𝑖𝑛)
, 𝑓 𝑜𝑟 𝑖 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑢𝑝𝑡𝑜 𝑛 (4.5)

𝐶𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖

denotes 𝑖𝑡ℎ particle’s initial concentration, where 𝑟𝑎𝑛𝑑 is a random
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Algorithm 4.1 Equilibrium Optimizer Clustering
Input: 𝑁𝑒𝑡𝑤𝑜𝑟𝑘 𝑀𝑜𝑑𝑒𝑙, 𝑁𝑜𝑑𝑒𝑠

Output: 𝑂𝑝𝑡𝑖𝑚𝑎𝑙 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 𝑜 𝑓 𝐶𝐻𝑠& 𝑐𝑙𝑢𝑠𝑡𝑒𝑟 𝑐𝑜𝑢𝑛𝑡

1: Initialize the particles and randomly initialize their concentrations using equation
4.5

2: Set 𝑎1 = 2, 𝑎2 = 1, and 𝐺𝑃 = 0.5
3: while 𝐼𝑡𝑒𝑟𝑎 < 𝑀𝑎𝑥iter do
4: 𝑛𝐶𝐻 = 𝑟𝑎𝑛𝑑 [𝑚𝑖𝑛(5, 𝑐𝑒𝑖𝑙 (𝑎𝑙𝑖𝑣𝑒 ∗ 0.1)), 𝑚𝑎𝑥(𝑐𝑒𝑖𝑙 (𝑎𝑙𝑖𝑣𝑒 ∗ 0.25), 1)]
5: for 𝑖 = 1 to number of particles do
6: 𝑐ℎ𝐿𝑖𝑠𝑡 = 𝑆𝑃𝑉 [𝑛𝐶𝐻 , 𝐶𝑖]
7: Calculate the fitness of the 𝑖th particle.

𝑓 𝑖𝑡 (𝐶𝑖) = 𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝐶𝑖, 𝑁𝑒𝑡𝑤𝑜𝑟𝑘𝑀𝑜𝑑𝑒𝑙, 𝑛𝐶𝐻 , 𝑐ℎ𝐿𝑖𝑠𝑡)
8: if fit(𝐶𝑖) < fit(𝐶eq1) then
9: 𝐶eq1 = 𝐶𝑖

10: fit(𝐶eq1) = fit(𝐶𝑖)
11: else if fit(𝐶𝑖) > fit(𝐶eq1) & fit(𝐶𝑖) < fit(𝐶eq2) then
12: 𝐶eq2 = 𝐶𝑖

13: fit(𝐶eq2) = fit(𝐶𝑖)
14: else if fit(𝐶𝑖) > fit(𝐶eq1) & fit(𝐶𝑖) > fit(𝐶eq2) & fit(𝐶𝑖) < fit(𝐶eq3) then
15: 𝐶eq3 = 𝐶𝑖

16: fit(𝐶eq3) = fit(𝐶𝑖)
17: else if

fit(𝐶𝑖) > fit(𝐶eq1) & fit(𝐶𝑖) > fit(𝐶eq2) & fit(𝐶𝑖) > fit(𝐶eq3) & fit(𝐶𝑖) < fit(𝐶eq4)
then

18: 𝐶eq4 = 𝐶𝑖

19: fit(𝐶eq4) = fit(𝐶𝑖)
20: 𝐶avg = (𝐶eq1 + 𝐶eq2 + 𝐶eq3 + 𝐶eq4)/4
21: Find 𝐶 pool,eq using equation (4.7)
22: if 𝐼𝑡𝑒𝑟𝑎 > 1 then
23: Find 𝑡 using equation (4.10)
24: for 𝑖 = 1 to number of particles do
25: Choose one candidate from 𝐶 pool,eq (randomly)
26: Generate random vectors 𝜆 and 𝑟

27: Generate vectors 𝐸 using equation (4.9)
28: Generate vectors 𝐺𝐶𝑃 using eq. (4.13)
29: Generate vectors 𝐺0 using eq. (4.12)
30: Generate vectors 𝐺 using eq. (4.11)
31: Update 𝐶 using eq. (4.8)
32: 𝐼𝑡𝑒𝑟𝑎 = 𝐼𝑡𝑒𝑟𝑎 + 1
33: 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = fit(𝐶eq1)
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vector that lies within the [0, 1] range; 𝐶𝑚𝑖𝑛 and 𝐶𝑚𝑎𝑥 represents the minimal and
maximum values of the dimensions. The number of particles in the population is
represented by 𝑛.

4.3.2 Optimization Phase

The equilibrium state refers to the ultimate convergence state of the algo-
rithm [121], known as the global optimum. This phase is crucial for improving the
algorithm’s performance and convergence. The optimization process starts by entering
into the main loop bounded by a maximum number of iterations, i.e. (𝑀𝑎𝑥iter). After
entering the loop, it first randomly selects the number of clusters (𝑛𝐶𝐻) within a certain
range based on the number of alive nodes using equation (4.6).

𝑛CH = rand [min (5, ⌈alive × 0.1⌉) ,max (⌈alive × 0.25⌉, 1)] (4.6)

where 𝑎𝑙𝑖𝑣𝑒 is the total number of nodes with energy greater than 0.

During the second step, it calculates the fitness of each particle by executing
the novel fitness function discussed in subsection 4.3.3. The particles are evaluated
using the fitness function ( 𝑓 𝑖𝑡) based on energy ratio, energy, and alive nodes. The
third step starts with the creation of an equilibrium pool vector, 𝐶𝑝𝑜𝑜𝑙,𝑒𝑞. During the
initial stages of the optimization process, there is a lack of information regarding the
equilibrium state. 𝐶𝑝𝑜𝑜𝑙,𝑒𝑞 created using equation (4.7) by selecting the four best-so-far
particles based on their fitness values (𝐶𝑒𝑞1, 𝐶𝑒𝑞2, 𝐶𝑒𝑞3, 𝐶𝑒𝑞4) and arithmetic average
(𝐶𝑎𝑣𝑔) of these four. The inclusion of these four candidates enhances the exploration
capability, whereas the average candidate contributes to the exploitation aspect.

𝐶 pool,eq = (𝐶eq1, 𝐶eq2, 𝐶eq3, 𝐶eq4) (4.7)

In the fourth step, the concentration for each particle is updated using
equation (4.8).
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𝐶 = 𝐶𝑒𝑞 + (𝐶 − 𝐶𝑒𝑞) ∗ 𝐸 + 𝐺

𝜆𝑉
∗ (1 − 𝐸) (4.8)

Where 𝜆 ∼ [0, 1] is a random vector, and V is a unit vector. Here is a
concise explanation of every element:

• Equilibrium Component:𝐶𝑒𝑞: The first term in equation (4.8),𝐶𝑒𝑞, corresponds
to the equilibrium concentration, serving as a reference point for the particle’s
concentration. It is calculated using equation (4.7).

• Exploration Component: (𝐶 − 𝐶𝑒𝑞) ∗ 𝐸 : The second term plays a crucial role
in exploring the solution space globally, aiming to locate an optimum point. It
emphasizes exploration by capitalizing on large concentration variations, such
as the direct disparity between an equilibrium state and a sampled particle. The
exponential term, denoted as ®𝐸 , is responsible for updating concentration and is
calculated using the equation 4.9.

®𝐸 = 𝑎1𝑠𝑖𝑔𝑛(®𝑟 − 0.5)
[
𝑒−

®𝜆𝑡 − 1
]

(4.9)

In equation (4.9), the constant value 𝑎1, specifically set to 2, represents the
exploration capability. The second component, 𝑠𝑖𝑔𝑛(®𝑟 − 0.5), holds significant
importance in determining both exploration and exploitation capabilities. Here,
a random vector spanning a range of 0 to 1 is indicated by 𝑠𝑖𝑔𝑛(®𝑟). Using the
equation (4.10), the variable 𝑡 is computed as a function of the iteration.

𝑡 =
(
1 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑀𝑎𝑥

) (𝑎2
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑀𝑎𝑥

)
(4.10)

In the given equation, 𝑖𝑡𝑒𝑟 denotes the current iteration count, while 𝑖𝑡𝑒𝑟𝑀𝑎𝑥

signifies the maximum iteration count in the optimization process. Furthermore,
𝑎2 serves as a constant (typically set to 1), utilized to regulate the extent of
exploitation capability.

• Exploitation Component: 𝐺
𝜆𝑉

∗ (1 − 𝐸): Once a solution is identified, the
third term fine-tunes the solution further. This term focuses on exploitation,
leveraging minor concentration variations to enhance solution accuracy. It relies
on generation rates, which are calculated using equation (4.11) to navigate these
subtle concentration changes effectively.
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®𝐺 = ®𝐺0. ®𝐸 (4.11)

Where ®𝐺0 is the initial generation rate [121] and is calculated using the equation
(4.12).

𝐺0 = 𝐺𝐶𝑃 ∗ (𝐶𝑒𝑞 − 𝜆 ∗ 𝐶) (4.12)

The generation rate control parameter, or GCP, is defined in equation 4.13 as the
generation term’s potential contribution to the updating process.

𝐺𝐶𝑃 =


0.5, 𝑟2 ≥ 𝐺𝑃.

0, 𝑒𝑙𝑠𝑒.
(4.13)

Where 𝑟1 and 𝑟2 represent random numbers ranging from 0 to 1. The term
Generation Probability (𝐺𝑃) represents the proportion of particles that used
the generation term to update their states [121]. To achieve a balance between
exploration and exploitation (𝐺𝑃 = 0.5) is used [121]. This balance enables
particles to explore the search space for better potential solutions while exploiting
promising regions to effectively converge toward optimal solutions.

Finally, after updating the concentration of each particle, if the fitness of
the updated particle is better than the old fitness value, the global best value is updated.

4.3.3 Fitness Function

The fitness function is a foundational component of the EO-C algorithm,
developed to optimize the selection of CHs in IoT-enabled SDWSNs. It addresses
multiple objectives, including prolonging the network lifetime, mitigating the hot-spot
problem, and maintaining energy efficiency across the network. The fitness function is
mathematically formulated as:

fitness = 𝛾 · 𝑓1 + 𝛿 · 𝑓2 + 𝜂 · 𝑓3 (4.14)

where 𝑓1, 𝑓2, and 𝑓3 represent total residual energy, energy balance ratio,
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and alive node count, respectively. The weighting factors 𝛾, 𝛿, and 𝜂 are used to balance
the contribution of each criterion.

1) Total Residual Energy ( 𝑓1): The sustainability of the network significantly
hinges upon the residual energy of its nodes. The equation (4.15) gives the
general formula for determining total residual energy, 𝐸𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 which represents
the first objective function 𝑓1.

𝑓1 = 𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻 + 𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛 (4.15)

where 𝐸totalCH and 𝐸totalNN denote the residual energy of CH and normal nodes,
respectively. By prioritizing configurations with higher residual energy, the
fitness function ensures sustained operation of critical network components and
extends the overall network lifespan. The total remaining energy of the CH is
calculated using equation (4.16), whereas the calculation of the total residual
energy of a normal node within the cluster is performed using equation (4.17).

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻 =

𝑛𝐶𝐻∑︁
𝑖=1

𝐸 𝑖𝐶𝑆
𝐶𝐻𝑇𝑋

(𝑙, 𝑑) (4.16)

Where nCH is the number of cluster heads; l represents the number of bits; d,
which indicates the distance between CH and BS; and 𝐸 𝑖𝐶𝑆

𝐶𝐻𝑇𝑋
, which represents

the residual energy in the 𝑖𝑡ℎ node.

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛 =

𝑛𝐶𝐻∑︁
𝑗=1

𝑛𝑁𝑜𝑑𝑒∑︁
𝑖=1

𝐸
𝑖 𝑗

𝑆𝐷𝑆𝑁𝑇𝑋
(𝑙, 𝑑𝑖, 𝑗 ) (4.17)

Whereas the 𝑑𝑖, 𝑗 is the distance from the 𝑗 𝑡ℎ CH and 𝑖𝑡ℎ node; nNode represents
the rest of the nodes in the network excluding CH.

2) Energy Balance Ratio: Cluster heads typically perform more energy-intensive
tasks such as data aggregation, coordination, and communication. If cluster heads
have higher energy levels, they are more likely to remain stable and operational
for a longer duration, enhancing the reliability and longevity of the network. To
ensure the longevity of CH, we have considered the ratio of the average energy
of selected CH to the average energy in normal nodes in the network, defined in
equation (4.18).
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𝑓2 =
𝐸𝑎𝑣𝑔 (𝐶𝐻)
𝐸𝑎𝑣𝑔 (𝑁𝑁) (4.18)

This ratio provides a measure of the relative energy distribution between cluster
heads and normal nodes within the cluster. A value greater than 1 indicates that,
on average, cluster heads have more energy than normal nodes, which potentially
addresses the hot spot problem, where certain nodes become overburdened due
to excessive energy consumption.
The average energy of CHs, 𝐸𝑎𝑣𝑔 (𝐶𝐻), and the average energy of normal nodes,
𝐸𝑎𝑣𝑔 (𝑁𝑁), is calculated using equations (4.19) and (4.20) respectively.

𝐸𝑎𝑣𝑔 (𝐶𝐻) = 𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻

𝑁𝐶𝐻

(4.19)

𝐸𝑎𝑣𝑔 (𝑁𝑁) = 𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛

𝑁𝑁𝑁

(4.20)

Where 𝑁𝐶𝐻 is the total number of CH in the network and 𝐸𝑎𝑣𝑔 (𝑁𝑁) represents
normal nodes in the network.

3) Total Alive Nodes: The count of alive nodes provides a crucial metric for assess-
ing the overall health and status of the network at any given time. Maintaining
a higher number of alive nodes is essential for ensuring robust connectivity and
uninterrupted data flow. The objective function 𝑓3 encourages configurations
that keep more nodes alive. Equation 4.21 is used to calculate the number of
alive nodes in the network.

𝑁 alive =

𝑁∑︁
𝑖=1

countIF(𝐸𝑖 (𝑛𝑜𝑑𝑒) > 0) (4.21)

Where 𝐸𝑖 (𝑛𝑜𝑑𝑒) is the energy left in 𝑖𝑡ℎ node.

By leveraging this fitness function, EO-C achieves optimal energy effi-
ciency, longevity, and resilience, addressing both the hot-spot problem and overall
network performance challenges.
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4.4 Result and Analysis

Table 4.1 provides an overview of the many factors associated with EO-C
and IoT-enabled SDWSN, which form the basis for the performance analysis presented in
this section using computer simulations. All experimental procedures were conducted
using the MATLAB (version 2023a) software on an Intel i5 processor equipped with
8GB of RAM technology.

Table 4.1: Parameters for Testing

Category Parameter Value
Network Deployment Area (𝑚2) 100×100

BS (Position) 50, 50
Energy 0.5J per Node
No. of SDSNs 100

Application Data Packet Length 100 bits
Broadcast Packet Size 25 bits

EO-C Initial POP 20
Iteration 100
𝛾, 𝛿, 𝜂 0.6, 0.2, 0.2

4.4.1 Simulation Parameters

The behavior of IoT-enabled SDWSNs nodes is simulated in a geographical
area of 100m x100 m with a base station at the center using the testing settings listed
in Table 4.1. A network of 100 nodes is deployed at random, as shown in Figure 4.3.
An energy allocation of 0.5J is assigned to each node in the network.
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Figure 4.3: Network scenario: Random deployment of 100 nodes in a 100m x 100m
area.

The particle population was initialized using equation 4.5 to generate their
initial concentration. The search domain was configured as a multidimensional space,
with particle concentration vectors confined to the range [-4, 4]. The Population size
and number of cluster plays important role in the optimization process. Both parameters
are discussed below:

• Optimal Population Size and Iterations count: In order to determine the
optimal number of particle populations and the minimum number of iterations,
the fitness function was evaluated using various population sizes ranging from 5
to 50. The findings, illustrated in Figure 4.4, demonstrated that the optimal fitness
value was achieved by setting the initial population size to 20 and imposing a
maximum restriction of 100 iterations. The parameter configurations employed
in this algorithm effectively balanced the exploration and exploitation aspects
within the search space, hence promoting efficient convergence toward optimal
solutions.
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Figure 4.4: Fitness of EO-C evaluated with various population sizes.

Figure 4.5: Performance of EO-C with different ranges of CH count.
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Figure 4.6: Random Number of CHs per Round.

• The Optimal range of CH count: In the proposed algorithm, the number of CH
is not fixed; instead, the algorithm selects the best CH count based on network
conditions. To determine the optimal range for CH count, we evaluated the EO-C
with CH ranges of 5%, 10%, 15%, 20%, 25%, and 50%, as seen in Figure 4.5.
The Figure 4.5 shows that the First Node Died (FND), Half Node Died (HND),
and Last Node Died (LND) [65] metrics continually grow and reach a peak when
the CH range is up to 25% of alive nodes; when the CH range is up to 50%, the
performance of EO-C somewhat falls. Based on the previous observations, we
may conclude that the optimal range for CH count is up to 25%.

In subsequent experiments, a population size of 20 was selected, with an iteration limit
of 𝑖𝑡𝑒𝑟𝑀𝑎𝑥 = 100. Additionally, The cluster head count was randomly chosen to be
between 5% and 25% of the alive nodes.

4.4.2 EO-C Performance Evaluation

In this sub-section, the performance of the EO-C algorithm under various
conditions is examined.
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• Network Performance: To test the network performance 100 nodes are deployed
in 100 m x 100 m area with initial energy 100 × 0.5𝐽 = 50𝐽 where each node
is assigned 0.5𝐽 initial energy. As discussed in the preceding section, the CH
count is capped at 25% of the total alive nodes. In EO-C, the cluster count
varies dynamically with each round. Figure 4.6 shows that EO-C selects cluster
numbers randomly based on fitness value. From the initial round until the 1260th
round, the cluster count fluctuated between 16% and 25% of alive nodes and
subsequently started decreasing from the 1261st round onward.

Figure 4.7: Dead Nodes per Round.

The performance of EO-C is illustrated in Figure 4.7. The results demon-
strate that the proposed algorithm sustained the transmission till 1248th round. This
delayed node failure demonstrates the proposed algorithm’s robustness, as it lasted
several rounds before experiencing the initial node failure at the 1249th round. Figure
4.8 depicts the total energy remaining in the network after each round, indicating a
consistent and gradual energy decay.
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Figure 4.8: Total Network Energy Left per Round.

Figure 4.9: Total Data Packet Sent to BS per Round.

The proposed algorithm transmitted a total 29320 number of packets before
exhausting their energy, which is shown below in Figure 4.9. The energy consumption
analysis in Figure 4.10 reveals the distribution of energy usage among different activities
within the network. The CH consumed the highest proportion of energy, accounting for
96.64% of the total 50 joules. Neighboring node communication (energyNN) utilized
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3.51%, while energy aggregation (energyAgg) required only 0.0003%. These findings
highlight the significant energy demands of the CH role, underscoring the importance
of optimizing CH selection to enhance network energy efficiency. By addressing this
imbalance, the proposed EO-C algorithm effectively mitigates energy hotspots and
improves network lifespan, as demonstrated in the simulation results.

Figure 4.10: Energy Consumption by different phases.

Figure 4.11: Performance of EO-C with respect to various node densities.
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• Impact of Node Density: To study the scalability and robustness of the proposed
algorithm, we tested the EO-C algorithm with node density of 100, 200, 300,
500, and 1000 nodes in an area of 100 m x 100 m. The igure 4.11 shows
the performance of the network in terms of the FND, HND, and LND. These
metrics provide insights into the network’s resilience and efficiency as node
density changes. The results depict that, as the number of nodes increases,
the performance of the network (in terms of FND, HND, and LND) shows an
upward trend, peaking at 1000 nodes. This observation highlights the proposed
algorithm’s scalability, as it can effectively handle larger node populations while
remaining robust and resilient. Furthermore, it emphasizes the algorithm’s ability
to adapt and optimize performance across varying node densities, an important
aspect in real-world network deployments where node populations may fluctuate.

Figure 4.12: Performance of EO-C with respect to various BS positions.
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Figure 4.13: FND, HND, and LND of EO-C network at various BS positions.

• Impact of BS Location: The base stations serve as central points for network
management, data collection, and coordination. The location of BS has a great
impact on network life. To test the performance of the proposed algorithm, we
deployed 100 nodes in a 100 m x 100 m area with the BS at the center location
(50,50), random location (35,75) inside the deployment area, random location
(50,150) outside the deployment area, and at the corner (100,100). From Figure
4.12, we can observe that the network performs best when the location of BS
is at the center (50,50) and worst when BS is outside the deployment area, i.e.,
location (50,150). This suggests that BS placement directly influences network
performance, with central locations facilitating better network management and
coordination. In Figure 4.13, metrics such as FND, HND, and LND exhibit
minimal variation across all cases, with deviations ranging between 20 to 30
rounds. However, a clear trend emerges, network performance peaks when
BS is located at the center, gradually declining as BS moves away from this
optimal position, with the best performance observed at (50,50), followed by
(35,75), (100,100), and worst at (50,150). By strategically locating BS, network
designers can maximize efficiency and ensure robust operation, particularly in
scenarios where network resources are limited.
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Figure 4.14: Performance of EO-C in different deployment area sizes.

Figure 4.15: Impact of deployment area size on FND, HND, and LND of the EO-C
algorithm.

• Impact of area of deployment: Understanding the effect of area on a network
is critical for design, optimization, and management. By considering the size of
the deployment area, network planners can make informed decisions to address
coverage, connectivity, resource allocation, scalability, and energy efficiency. To
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test the performance of EO-C in different coverage areas, we deployed 100 nodes
in areas of sizes 100 m x 100 m, 200 m x 200 m, 300 m x 300 m, 500 m x
500 m, and 1000 m x 1000 m. From igure 4.14 and 4.15, we can observe that
the performance of the network decreases as the area of deployment increases.
Specifically, the EO-C algorithm performed best when the area is 100 m x 100
m and worst when the area is 1000 m x 1000 m. Also, from igure 4.15, we
can observe a trend in FND and HND metrics. Both parameters experience a
sharp decline as the deployment area increases. However, with LND, the value
decreases gradually. FND for deployment areas 100 m x 100 m, 200 m x 200 m,
300 m x 300 m, 500 m x 500 m, and 1000 m x 1000 m are 1249, 1032, 618, 119,
and 6 rounds, respectively. This trend highlights the impact of deployment area
size on network performance, with larger areas leading to quicker exhaustion of
network resources and, consequently, earlier node failures.

4.4.3 Comparative Analysis

In this section, we evaluate the simulation results of EO-C in comparison
to several SoA algorithms, including LEACH [62], GWO-C [84], EBGWO [86], and
EAFFO [98]. EO-C is configured using all parameters listed in Table 4.1. To evaluate
the effectiveness of each algorithm, we consider performance metrics such as FND,
HND, LND, residual energy, and the number of data packets sent to the BS.

Table 4.2: Comparison of Performance Metrics

Algorithm FND HND LND
LEACH 270 447 662
GWO-C 538 1195 1377
EB-GWO 1078 1258 1303
EAFFO 998 1466 2062
EO-C 1249 1259 1269
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Figure 4.16: Comparison of FND, HND, and LND of EO-C with SoA algorithm.

Figure 4.17: Dead node comparison of EO-C with SoA algorithms.

The Table 4.2 and Figure 4.16 provide a comparison of performance metrics
(FND, HND, & LND) for various algorithms, including EO-C, EAFFO, EB-GWO,
GWO-C, and LEACH. The performance of EO-C surpasses that of other SoA algorithms
across all metrics. EO-C records 1249 for FND, 1259 for HND, and 1269 for LND.
In Figure 4.17, the number of dead nodes is plotted against the number of rounds.
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The results show that FND for EO-C, EAFFO, EB-GWO, GWO-C, and LEACH at
1249, 998, 1078, 538, and 270, respectively. EO-C exhibits a notable enhancement in
network lifespan for periodic data collection when compared to several other algorithms.
Although the network life span is high in EAFFO, i.e. 2062, but EO-C outperforms
EAFFO in terms of FND by more than 25.15%. Moreover, EO-C outperforms LEACH,
GWO-C, and EB-GWO, increasing network lifespan by over 362.6%, 132.15%, and
15.86%, respectively. Since EO-C exhibits the longest time to FND happened, these
findings highlight EO-C’s effectiveness in mitigating the hot spot problem, as well as
its potential as an effective strategy for improving network longevity in the context of
periodic data collection.

Figure 4.18: Comparison of energy decay in EO-C with SoA algorithm.

Figure 4.18 shows the network’s residual energy per round. The graph
shows a steady energy decline, which is important because it allows the algorithm to
maintain network stability, with nodes failing only in the final 5% of rounds. This
characteristic is especially important in scenarios where the failure of a single node
might endanger the entire network.
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Figure 4.19: Comparison of data packets sent to BS in EO-C with SoA algorithm.

Figure 4.19 illustrates the comparison of various SoA with the EO-C
algorithm. The graph demonstrates that EO-C outperforms the EAFFO, EB-GWO,
GWO-C, and LEACH algorithms in terms of data transmission volume, with 29320
data packets, which is 108.5% higher than LEACH.

Figure 4.20: Comparison of performance of EO-C with SoA algorithm with respect
to node density.
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Figure 4.21: Comparison of EO-C with SoA algorithm with respect to FND vs node
density.

To compare the robustness & the scalability of the proposed algorithm with
SoA like EAFFO, EB-GWO, GWO-C, and LEACH. We tested our algorithm with 100,
200, 300 and 500 nodes in 100 m x 100 m area of deployment, as shown in Figures
4.20 and 4.21. From the analysis of the results depicted in the graph, it is evident
that EO-C outperforms all the state-of-the-art algorithms across all tested network
sizes. EO-C’s ability to maintain superior performance as network size increases
demonstrates its effectiveness in handling larger-scale deployments and resilience to
scalability challenges. Thus, based on these findings, EO-C appears to be a promising
solution for robust and salable IoT-enabled SDWSNs applications.

4.4.4 Mitigating Hot-Spot Problems

The simulation results highlight EO-C’s superior performance in mitigating
the hot-spot problem compared to SoA algorithms. EO-C achieved a FND metric of
1249 rounds, significantly outperforming LEACH (270 rounds), GWO-C (538 rounds),
EAFFO (998 rounds), and EB-GWO (1078 rounds). This demonstrates that EO-C
effectively prevents premature energy depletion in nodes near the base station by dy-
namically balancing energy consumption across the network. Furthermore, the energy
decay analysis (Figure 4.18) demonstrates that EO-C promotes a gradual reduction in
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energy levels, ensuring that nodes in critical regions retain sufficient energy to prolong
the network’s lifespan. This balanced energy consumption effectively minimizes the
formation of energy hotspots, enhancing the network’s reliability, stability, and overall
performance.

These results confirm EO-C’s capability to alleviate hotspot issues, making
it a robust and energy-efficient solution for IoT-enabled SDWSN applications, where
network longevity and resilience are critical.

4.4.5 Statistical Validation

To evaluate the performance of EO-C in comparison to other methods
(LEACH, GWO-C, EB-GWO, and EAFFO), a pairwise t-test was conducted. The
results (shown in Table 4.3) revealed statistically significant differences in performance
between EO-C and SoA algorithms.

Table 4.3: Pairwise t-test Results Between EO-C and Other SoA Methods

Comparison t-statistic p-value Cohen’s
d

95% CI Signifi-
cance

LEACH vs
EO-C

48.698 5.03 × 10−9 6.12 [942.57,
1017.93]

Yes

GWO-C vs
EO-C

34.975 3.64 × 10−8 5.23 [680.94,
819.06]

Yes

EB-GWO vs
EO-C

12.380 1.70 × 10−5 2.78 [183.27,
274.73]

Yes

EAFFO vs
EO-C

14.667 6.31 × 10−6 3.12 [224.86,
275.14]

Yes

1. LEACH vs EO-C: EO-C significantly outperformed LEACH with a large t-
statistic (𝑡 = 48.698) and an extremely low p-value (𝑝 = 5.03 × 10−9). The
effect size (Cohen’s 𝑑 = 6.12) indicates a substantial difference, while the 95%
confidence interval ([942.57, 1017.93]) confirms consistent performance gains.

2. GWO-C vs EO-C: A strong performance advantage was observed for EO-C,
with a t-statistic of 𝑡 = 34.975 and a p-value (𝑝 = 3.64 × 10−8). The effect size
(Cohen’s 𝑑 = 5.23) reflects a substantial difference, supported by the confidence
interval ([680.94, 819.06]).
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3. EB-GWO vs EO-C: EO-C showed significant improvement over EB-GWO,
evidenced by a t-statistic of 𝑡 = 12.380 and a p-value (𝑝 = 1.70×10−5). The effect
size (Cohen’s 𝑑 = 2.78) highlights a meaningful difference, with a confidence
interval of [183.27, 274.73].

4. EAFFO vs EO-C: EO-C also outperformed EAFFO, with a t-statistic of 𝑡 =

14.667 and a p-value (𝑝 = 6.31 × 10−6). The effect size (Cohen’s 𝑑 = 3.12)
indicates a large difference, and the confidence interval ([224.86, 275.14])
reinforces the result.

The results strongly support the effectiveness of EO-C in achieving energy-
efficient operation, delaying node failures, and sustaining network operations for longer
durations. These findings highlight EO-C’s potential for critical applications such as
environmental monitoring, disaster management, and IoT-based systems.

4.5 Chapter Summary

In this chapter, we proposed and evaluated an equilibrium optimizer cluster-
ing algorithm. EO-C is based on an equilibrium optimizer algorithm and is designed to
address the energy conservation, optimum CH selection, optimum CH count selection,
and hot spot problem in IoT-enabled SDWSNs. EO-C addresses these challenges with
the help of dynamic CH count and a novel fitness function based on total residual
energy, energy balance ratio, and total number of alive nodes in the network. Further,
the performance of EO-C under various conditions is compared with several SoA
algorithms, including EAFFO, EB-GWO, GWO-C, and LEACH. The results indicate
that the EO-C outperforms other SoA algorithms in terms of network longevity,
resilience, scalability, and coverage. The simulation results demonstrate that the
proposed algorithm shows improvement ranging from 15.9% to 372.6% when compared
with EAFFO, EB-GWO, GWO-C, and LEACH. However, despite these enhancements,
EO-C was observed to suffer from uneven energy depletion and routing instability,
particularly in scenarios involving high node density, large deployment areas, or when
the base station is positioned outside the network field. To effectively address these
specific stability issues, the subsequent chapter introduces a hybrid multi-constrained
approach named EQ-AHA.

Overall, EO-C has the potential to significantly improve the reliability and
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efficiency of IoT applications in various domains, including smart cities, environmental
monitoring, and industrial automation.
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CHAPTER 5

A MULTI-CONSTRAINED GREEN ROUTING
PROTOCOL FOR IOT-BASED
SOFTWARE-DEFINED WSN

The evolution of energy-efficient routing protocols in IoT-enabled SDWSNs, as pre-
sented in Chapters 3 and 4, marks significant strides toward addressing energy con-
straints and QoS challenges in resource-constrained environments. Chapter 3 intro-
duced the Energy-Optimized Artificial Hummingbird Algorithm, a single-objective,
nature-inspired approach that demonstrated considerable improvements in energy-
aware clustering and routing. By focusing on residual energy and transmission cost,
EOAHA effectively extended network lifetime and reduced communication overhead.
To overcome these limitations, Chapter 4 proposed the Equilibrium Optimizer Cluster-
ing protocol—a multi-objective routing framework that balanced total residual energy,
energy ratio, and node alive. This holistic design enabled EO-C to outperform EOAHA
by delivering enhanced reliability and scalability across varying network densities and
topologies. In high-density networks or highly dynamic scenarios, EO-C was observed
to suffer from uneven energy depletion among nodes and routing instability.

Building upon the insights and performance gaps identified in the preceding
chapters, this chapter introduces an advanced solution: the EQ-AHA (Equilibrium
Optimizer and Artificial Hummingbird Algorithm).
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5.1 Introduction

The limitation of the EOAHA and EO-C routing algorithms was the use
of direct transmission techniques between CH and BS, which exhausts the CH energy.
To solve this problem, we have extended our work by proposing a hybrid algorithm
named EQ-AHA, i.e., Equilibrium Optimizer (EO) [121] with Artificial Hummingbird
Algorithm (AHA) [118]. The proposed solution acts in two steps: Firstly, EQ-AHA
utilizes the AHA to find the best CHs among the live nodes in the IoT network, and in
the next step, it finds an optimized route between CHs and BS using EO. In this way,
we optimize the allocation of energy resources and achieve an even distribution of load
among sensor nodes. This newly designed protocol extends the capabilities of EOAHA
and EO-C by integrating a multi-constrained optimization strategy that jointly considers
communication distance, energy consumption, load balancing, packet delivery ratio,
latency, and residual energy in the routing process. The main contributions of this
chapter are as follows:

• This chapter introduces EQ-AHA, a novel approach to improve networks’ longevity
by utilizing two meta-heuristic algorithms, AHA and EO. Specifically, the AHA
is used to determine the CH and form clusters, while the EO algorithm finds the
optimal route among the clusters for delivering aggregated data to the BS.

• The fitness functions for both meta-heuristic algorithms are designed separately
while considering various constraints. These constraints include the distance
between CH & BS and the residual energy. The shortest route to the BS, and the
distance between the CH & the cluster nodes.

• To evaluate the effectiveness of the EQ-AHA algorithm, its performance is
evaluated under diverse conditions.

• The experimental study on EQ-AHA yielded compelling evidence indicating that
it outperforms other SoA methods.

5.2 The System Model

The system model is divided into two parts: the network model and the
energy model. The explanation of the network model is as follows:
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5.2.1 The Network Model

The following Figure 5.1 shows the IoT-SDWSN network model, which can
also be represented by a graph G = (V, C). In this model, C represents the communication
links connecting the vertices, while V represents the set comprising SDSNs, CHs, and
BS.

Figure 5.1: A scenario of an IoT-enabled SD-WSN with a BS and CH.

The various characteristics of this model are defined, which are as follows:

• All devices remain immobile and |SDSN| = |NN| ∪ |CH|. Where, Device IDs
are represented by 𝐼𝐷 = 1, 2, . . . . . . , 𝑁 , and NN is a normal node.

• Every node performs some task denoted as𝜆 𝑗 = 𝜆𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒, 𝜆𝑣𝑖𝑏𝑟𝑎𝑡𝑖𝑜𝑛𝑠, . . . , 𝜆𝑠𝑒𝑛𝑠𝑖𝑛𝑔.
BS controls these tasks through programming.
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• The location of the SDSN is represented as 𝑆𝐷𝑆𝑁 (𝑥, 𝑦)𝑖 ∈ [𝑥min, 𝑥max], [𝑦min, 𝑦max].

• The complete path followed by sensing node 𝑖, denoted as 𝑃𝑎𝑡ℎ𝑖, consists of two
segments: 𝑙𝑖−𝐶𝐻 and 𝑙𝐶𝐻−𝐵𝑆. (i.e., from sensor node to CH and then CH to BS)

• In this system, the communication links exhibit symmetry, indicating that the
link 𝑙 𝑗−𝑖 connecting node j and node i is indistinguishable from the link 𝑙𝑖− 𝑗

connecting node i and node j. This symmetry implies that the communication
link is a full-duplex link.

• Each SDSN has the capability to operate in two different modes: sensing mode,
denoted as 𝑀 = 0, or CH mode, denoted as 𝑀 = 1. In the sensing mode, the
SDSN primarily functions as a sensor node, collecting and transmitting data from
its assigned tasks. On the other hand, in the CH mode, the SDSN takes on the
role of CH, responsible for processing and forwarding data received from other
sensor nodes within the network. The SDSN can switch between these modes
based on the system’s requirements.

• Each SDSN lacks knowledge of its location and does not possess GPS-enabled
equipment (i.e. 𝑆𝐷𝑆𝑁𝑖 (𝐺𝑃𝑆) = 0).

• The IoT-enabled SD-WSN is homogeneous, which means that all the SDSNs
within the network have the same characteristics and functionality.

• The BS is powered by an external power source.

5.2.2 The Energy Model

The EQ-AHA employs the path attenuation model [62] as the basis for
its energy consumption model during data communication. Moreover, in this energy
model, energy consumed by the transmitter𝑚-bits message for distance (𝑑) is calculated
considering both multi-path fading (𝐸𝑚𝑝) and free space fading (𝐸 𝑓 𝑠). The distance d
is the Euclidean distance between the receiver and transmitter SSDN, calculated using
equation (5.1).

𝑑𝑖 𝑗 =

√︃
(𝑥 𝑗 − 𝑥𝑖)2 + (𝑦 𝑗 − 𝑦𝑖)2 (5.1)
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Here,(𝑥𝑖, 𝑦𝑖) and (𝑥 𝑗 , 𝑦 𝑗 ) are the locations of the transmitter and receiver,
respectively. The power control mechanism can be used to compensate for this path
loss. The free space model is applied if 𝑑 is less than a threshold distance (𝑑𝑡ℎ);
otherwise, the multi-path energy model acts. The energy consumption 𝐸

𝑖 𝑗

𝑆𝑆𝐷𝑁𝑇𝑋
for a

general SSDN node to transmit 𝑘-bits data over distance (𝑑) is calculated using equation
(5.2).

𝐸
𝑖 𝑗

𝑆𝑆𝐷𝑁𝑇𝑋
=


𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑑4, for 𝑑 ≥ 𝑑𝑡ℎ.

𝑘 ∗ 𝐸𝑒𝑙𝑒𝑐 + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑑2, otherwise.
(5.2)

The energy consumed by the cluster head 𝐸
𝑖 𝑗

𝐶𝐻𝑇𝑋
for transmitting 𝑘-bits

over distance (𝑑) is calculated using equation (5.3).

𝐸
𝑖 𝑗

𝐶𝐻𝑇𝑋
=

𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸𝑚𝑝 ∗ 𝑑4, for 𝑑 ≥ 𝑑𝑡ℎ.

𝑘 ∗ (𝐸𝑒𝑙𝑒𝑐 + 𝐸𝐷𝐴) + 𝑘 ∗ 𝐸 𝑓 𝑠 ∗ 𝑑2, otherwise.
(5.3)

Where 𝐸𝐷𝐴 is the energy consumed in data aggregation by cluster heads.
𝐸𝑒𝑙𝑒𝑐 is the energy consumed per bit at the receiver/transmitter. 𝑑𝑡ℎ is the threshold
distance and is calculated using equation (5.4).

𝑑𝑡ℎ =

√︄
𝐸 𝑓 𝑠

𝐸𝑚𝑝

(5.4)

Whereas 𝐸 𝑓 𝑠 and 𝐸𝑚𝑝 represent free space amplification energy and multi-path models.
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Figure 5.2: Flowchart of EQ-AHA.
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5.3 The Proposed Model

The proposed approach introduces a new algorithm named EQ-AHA, which
incorporates two meta-heuristic algorithms. The artificial hummingbird algorithm
selects optimal CH, which is as defined in the subsection 5.3.1, while the equilibrium
optimizer algorithm determines the best route among CHs to BS and is described
in subsection 5.3.2. The data collected by CHs is then transmitted to BS via the
path generated by EO. Further details of the proposed technique are described in the
subsequent section, and the complete process is illustrated in the flowchart presented
in Figure 5.2. This flowchart provides a comprehensive visual representation of the
various steps and stages involved in the proposed method, offering a holistic view of
the entire process.

5.3.1 CH selection and cluster formation using AHA

Zhao et al. [118] developed the AHA, a meta-heuristic algorithm inspired
by nature, to simulate the foraging behavior of hummingbirds. Hummingbirds are
considered the most intelligent species on Earth regarding the brain-to-body ratio [122].
Hummingbirds exhibit three behaviors related to foraging: guided, territorial, and
migrating foraging. The structure of the modified AHA (i.e., EQ-AHA) is as given in
Algorithm 5.1. This algorithm is structured into two distinct phases: the initialization
phase and the update phase. At last, this subsection explains the fitness function used
by AHA to make decisions.

A. Initialization Phase

This algorithm starts with the establishment of the population, where N
randomly generated hummingbirds are placed on N food sources. Each bird’s location
is determined by applying the equation (5.5).

𝑥
𝑗

𝑖
(𝑟) = 𝐿𝐵 + 𝑟𝑎𝑛𝑑 ∗ (𝑈𝐵 − 𝐿𝐵) (5.5)
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where 𝑟 is a random vector with values ranging from 0 to 1 in 𝑗 a multi-
dimensional problem; 𝑥 𝑗

𝑖
(𝑟) denotes the position of the 𝑖𝑡ℎ food source; 𝐿𝐵 and 𝑈𝐵

represents the lower and upper bounds, respectively.

In the following step, the Smallest Position Vector (SPV) rule [119] is
applied to 𝑥𝑖 (𝑟) to obtain the sequence position vector for each bird. Then, the fitness
value and list of CHs are calculated and stored in 𝐹𝑖 and 𝑆𝑖 (𝑟), respectively. Once
the fitness values are initialized for each bird, the visit table matrix is initialized using
equation (5.6). The initialization phase concludes by setting the global best solution
for the bird with the best fitness value.

𝑣𝑖𝑠𝑖𝑡𝑇𝑎𝑏𝑙𝑒𝑥,𝑦 =


0, 𝑥 ≠ 𝑦.

𝑛𝑢𝑙𝑙, 𝑥 = 𝑦.
𝑓 𝑜𝑟 𝑥, 𝑦 = 1, 2..., 𝑛 (5.6)

B. Update Phase

This update phase includes five steps. In the first step, the type of flight
for each bird is selected randomly from the omnidirectional, axial, and diagonal flights
using equations (5.7), (5.8), and (5.9) respectively.

𝐴𝐹𝑥 =


1, 𝑖 𝑓 𝑥 = 𝑟𝑎𝑛𝑑 ( [1, 𝑑]).

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
𝑓 𝑜𝑟 𝑥 = 1, ..., 𝑑 (5.7)

𝐷𝐹𝑥 =


1, 𝑖 𝑓 𝑥 = 𝑃(𝑦); 𝑦𝜀[𝑖, 𝑘]; 𝑃 = 𝑟𝑎𝑛𝑑𝑝𝑒𝑟𝑚(𝑘);

𝑘𝜀[2, ⌈𝑟1 ∗ (𝑑 − 2) + 1⌉]; 𝑥 = 1, ..., 𝑑;

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

(5.8)

𝑂𝐷𝐹𝑥 = 1, 𝑓 𝑜𝑟 𝑥 = 1, ..., 𝑑 (5.9)
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Algorithm 5.1 EQ-AHA
Input: NetworkModel, Nodes
Output: Optimal selection of CNs

1: 𝑟 = 0
2: while aliveNodes ≠ 0 do
3: 𝑛𝐶𝑁 = 10% of aliveNodes
4: for each 𝑘 th hummingbird from 1 to 𝑛 do
5: Randomly initialize the position of both hummingbird and food i.e. 𝑥𝑘

𝑗
(𝑟)

of 𝑘 th particle in 𝑗 th dimension for 𝑛th iteration
6: [𝑆𝑘 (𝑟)] = SPV[𝑥𝑘

𝑗
(𝑟)]

7: Find the route to BS using EO (Algorithm: 5.5)
8: 𝑓𝑘 = fitness(𝑆𝑘 (𝑟), 𝑛𝐶𝑁)
9: for each 𝑗 th food source from 1 to 𝑛 do

10: if 𝑘 ≠ 𝑗 then
11: visitTable(𝑘, 𝑗) = 1
12: else
13: visitTable(𝑘, 𝑗) = null
14: globalBestFit = min[ 𝑓𝑘 ]
15: while 𝑧 < maxIteration do
16: for each 𝑘 th hummingbird from 1 to 𝑛 do
17: if rand2 < 1

3 then
18: perform equation 5.8
19: else if rand2 > 2

3 then
20: perform equation 5.9
21: else
22: perform equation 5.10
23: if rand1 ≤ 0.5 then
24: Do Guided foraging (Algorithm: 5.2)
25: else
26: Do Territorial foraging (Algorithm: 5.3)
27: if mod(𝑧, 2𝑛) = 0 then
28: Do Migration foraging (Algorithm: 5.4)
29: globalBestFit = min[ 𝑓𝑘 ]
30: 𝑟 = 𝑟 + 1

Next, during the second step, for each bird, the type of foraging behavior is
chosen randomly, i.e., guided (Algorithm 5.2) or territorial foraging (Algorithm 5.3).
If the guided foraging is selected, the new food vector 𝑣𝑖 (𝑡 + 1) is calculated using
equation (5.10). Else, in the case of territorial foraging, equation (5.11) is used.
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𝑣𝑖 (𝑡 + 1) = 𝑥𝑖,𝑡𝑎𝑟 (𝑡) + 𝑎 ∗ 𝐷 ∗ (𝑥𝑖 (𝑡) − 𝑥𝑖,𝑡𝑎𝑟 (𝑡)) (5.10)

Algorithm 5.2 Guided Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (5.11)

2: [𝑆𝑡 (𝑡)] = SPV[𝑣 𝑗

𝑖
(𝑡)]

3: Find the route to BS using EO (Algorithm: 5.5)
4: 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = fitness(𝑆𝑡 (𝑡), 𝑛𝐶𝑁)
5: for 𝑟 th food from 1 to 𝑛 (𝑟 ≠ tar, 𝑖) do
6: visitTable(𝑖, 𝑟) = visitTable(𝑖, 𝑟) + 1
7: visitTable(𝑖, tar) = 0
8: if 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑖 then
9: 𝑥

𝑗

𝑖
(𝑡) = 𝑣

𝑗

𝑖
(𝑡)

10: 𝑓𝑖 = newFitness
11: for 𝑟 th food from 1 to 𝑛 (𝑡 ≠ 𝑟) do
12: visitTable(𝑟, 𝑖) = max(visitTable(𝑟, 𝑡)) + 1

𝑣𝑖 (𝑡 + 1) = 𝑥𝑖 (𝑡) + 𝑏 ∗ 𝐷 ∗ 𝑥𝑖 (𝑡) (5.11)

whereas 𝑥𝑖,𝑡𝑎𝑟 (𝑡) is the location of the target food to be visited by 𝑖𝑡ℎ

hummingbird; 𝑣𝑖 (𝑡)represents the location of 𝑖𝑡ℎ food source at time t; and D is axial,
diagonal or omnidirectional flight, guide factor 𝑎 ∼ 𝑁 (0, 1) and territorial factor
𝑏 ∼ 𝑁 (0, 1), 𝑁 (0, 1) is a normal distribution with mean=0 and standard deviation=1.

𝑥𝑖 (𝑡 + 1) =

𝑥𝑖 (𝑡), 𝑖 𝑓 𝑓 𝑖𝑡 (𝑜𝑙𝑑𝑆𝑖 (𝑟)) ≤ 𝑓 𝑖𝑡 (𝑛𝑒𝑤𝑆𝑖 (𝑟))

𝑣𝑖 (𝑡 + 1), 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
(5.12)
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Algorithm 5.3 Territorial Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (5.13)

2: [𝑆𝑡 (𝑡)] = SPV[𝑣 𝑗

𝑖
(𝑡)]

3: Find the route to BS using EO (Algorithm: 5.5)
4: 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = fitness(𝑆𝑡 (𝑡), 𝑛𝐶𝑁)
5: for 𝑟 th food from 1 to 𝑛 (𝑟 ≠ 𝑖) do
6: visitTable(𝑖, 𝑟) = visitTable(𝑖, 𝑟) + 1
7: visitTable(𝑖, tar) = 0
8: if 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 > 𝑓𝑖 then
9: 𝑥

𝑗

𝑖
(𝑡) = 𝑣

𝑗

𝑖
(𝑡)

10: 𝑓𝑖 = newFitness
11: for 𝑟 th food source from 1 to 𝑛 (𝑟 ≠ 𝑖) do
12: visitTable(𝑟, 𝑖) = visitTable(𝑟, 𝑡) + 1

Algorithm 5.4 Migration Foraging

1: Find 𝑣
𝑗

𝑖
(𝑡) using equation (5.14)

2: [𝑆𝑡 (𝑡)] = SPV[𝑣 𝑗

𝑖
(𝑡)]

3: Find the route to BS using EO (Algorithm: 5.5)
4: 𝑛𝑒𝑤𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = fitness(𝑆𝑡 (𝑡), 𝑛𝐶𝑁)
5: for 𝑟 th food source from 1 to 𝑛 (𝑟 ≠ 𝑖) do
6: visitTable(𝑖, 𝑟) = visitTable(𝑖, 𝑟) + 1
7: for 𝑟 th food source from 1 to 𝑛 (𝑟 ≠ 𝑖) do
8: visitTable(𝑟, 𝑖) = visitTable(𝑟, 𝑡) + 1

In the third step, the SPV rule [120] is employed on 𝑣𝑖 (𝑡 + 1) to determine
the new sequence vector, 𝑛𝑒𝑤𝑆𝑖 (𝑟). The fourth step involves computing the new fitness
value, 𝑓 𝑖𝑡 (𝑛𝑒𝑤𝑆𝑖 (𝑟)), of each bird. In the fifth step, in-case the updated fitness is
less than the previous step, the food source for 𝑖𝑡ℎ bird is updated with the new food
source 𝑣𝑖 (𝑡 + 1), and the visit table for that bird is updated using equations (5.12)
and (5.6). Finally, in the sixth step, the migration foraging (Algorithm 5.4) behavior of
hummingbirds is simulated if the number of iterations exceeds the migration coefficient,
i.e., 2 times 𝑀𝑎𝑥𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛. In migration foraging, new food sources are created in the
entire search space using equation (5.13).

𝑥𝑤𝑜𝑟𝑠𝑡 (𝑡 + 1) = 𝐿𝑜𝑤 + 𝑟 ∗ (𝑈𝑝 − 𝐿𝑜𝑤) (5.13)

Whereas the food sources with the slowest rate of nectar replenishment are
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represented by 𝑥𝑤𝑜𝑟𝑠𝑡 in AHA. At the end of the update phase, the global best solution
is replaced with the latest one if the fitness value obtained is greater as compared to the
prior global best.

C. Fitness Function for CH Selection

Fitness function is a measure used in evolutionary algorithms to assess
the fitness of potential solutions. In this proposed algorithm, we have considered two
constraints, i.e., the ratio of residual energies of CH & NN and the distance between NN
and BS, to assess the performance. The equation (5.14) represents the fitness function
used to identify the most suitable CH for the network.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠 = 𝛾 ∗ 𝑓1 + 𝛿 ∗ 𝑓2 (5.14)

Whereas 𝛾 and 𝛿 are constants. In this case, the fitness function is developed using two
variables: residual energy and distance covered during transmissions.

(a) Total Residual Energy: The remaining energy of nodes in a network plays a
critical part in determining the longevity of the network. Equation (5.15) provides
a generic formula for determining the sum of the residual energy in each node,
denoted by 𝐸𝑟 , known as the total residual energy 𝐸𝑡𝑜𝑡𝑎𝑙.

𝐸𝑡𝑜𝑡𝑎𝑙 =

𝑛∑︁
𝑖=1

𝐸𝑟 (5.15)

Equation (5.16) is used to calculate the total residual energy left in CH, while
equation (5.17) is used to calculate the total residual energy left in a CH within
the cluster.

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻 =

𝑛𝐶𝐻∑︁
𝑖=1

𝐸 𝑖𝐵𝑆
𝐶𝐻 (𝑘, 𝑑) (5.16)

In the above equation (5.16), k denotes the number of bits, nCH represents the
total number of CH in the system, d refers to the distance between the CH and
the BS, and 𝐸 𝑖𝐵𝑆

𝐶𝐻
represents the remaining energy in the 𝑖𝑡ℎ CH.
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𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛 =

𝑛𝐶𝐻∑︁
𝑗=1

𝑛𝑁𝑜𝑑𝑒∑︁
𝑖=1

𝐸
𝑖 𝑗

𝑆𝐷𝑆𝑁
(𝑘, 𝑑𝑖, 𝑗 ) (5.17)

Whereas the variable 𝑑𝑖, 𝑗 denotes the distance between the 𝑗 𝑡ℎ CH and the 𝑖𝑡ℎ

node; 𝑛𝑁𝑜𝑑𝑒 rest of nodes in the network excluding CH. The ratio of total energy
left in the CHs and the remaining nodes after the transmission is represented by
the first objective function, 𝑓1, which is calculated using equation (5.18).

𝑓1 =
𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝐻

𝐸𝑡𝑜𝑡𝑎𝑙𝐶𝑜𝑚𝑚𝑜𝑛

(5.18)

(b) Distance: The energy needed to transmit data in space is directly related to the
distance between the receiver and sender; a greater distance requires more energy
for transmission. Consequently, reducing the transmission energy necessitates
minimizing the distance between the source and the recipient. The total distance
between the BS and all the cluster heads is calculated using the following equation
(5.19).

𝐷𝑡𝑜𝑡𝑎𝑙𝐶𝐻𝑡𝑜𝐵𝑆 =

𝑛𝐶𝐻∑︁
𝑖=1

√︃
(𝑥𝐶𝐻𝑖

− 𝑥𝐵𝑆)2 + (𝑦𝐶𝐻𝑖
− 𝑦𝐵𝑆)2 (5.19)

Whereas, the (𝑥𝐶𝐻𝑖
, 𝑦𝐶𝐻𝑖

) is the location of the 𝑖𝑡ℎ cluster head and
(𝑥𝐵𝑆, 𝑦𝐵𝑆) is the location of the base station.

𝐷𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑡𝑜𝐶𝐻 =

𝑛𝐶𝐻∑︁
𝑗=1

𝑛𝑁𝑜𝑑𝑒∑︁
𝑖=1

√︃
(𝑥𝐶𝐻 𝑗

− 𝑥𝑁𝑂𝐷𝐸𝑖
)2 + (𝑦𝐶𝐻 𝑗

− 𝑦𝑁𝑂𝐷𝐸𝑖
)2 (5.20)

The equation (5.20) calculates the total distance between the head and all
the nodes present in the cluster. The variable (𝑥𝐶𝐻 𝑗

, 𝑦𝐶𝐻 𝑗
) represents the location of the

𝑗 𝑡ℎ CH, while (𝑥𝑁𝑂𝐷𝐸𝑖
, 𝑦𝑁𝑂𝐷𝐸𝑖

) represents the location of the 𝑖𝑡ℎ node in the cluster.
On the other hand, equation (5.21) represents the second objective function 𝑓2, which is
based on the average of the total distance covered between the CH and the base station
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and between the nodes and the CH in the cluster.

𝑓2 =
1

(𝐷𝑡𝑜𝑡𝑎𝑙𝐶𝐻𝑡𝑜𝐶𝐻 + 𝐷𝑡𝑜𝑡𝑎𝑙𝑁𝑜𝑑𝑒𝑡𝑜𝐶𝐻)/2
(5.21)

5.3.2 Route Selection using EO

The EO [121] is a physics-based search algorithm that uses particles
with concentrations as search agents to find optimal solutions. It is inspired by the
control volume mass balance model [121], and the particles update their concentrations
randomly based on best-so-far solutions to reach the equilibrium state, i.e., the global
best solution. The EO algorithm starts with the initialization of the population and
setting candidate equilibrium solutions. To find the best solution globally, it conducts
exploration and exploitation in the next phase. The EO algorithm is divided into two
phases: initialization and update phases. Lastly, this subsection provides an explanation
of the fitness function employed by EO to facilitate decision-making.

A. Initialization Phase

The EO algorithm is defined in Algorithm 5.5. Like many other meta-
heuristic algorithms, it starts the optimization process with an initial population.
The initial particle concentrations are determined by the number of particles and the
dimensions of the search space. These initial concentrations are randomly initialized
with a uniform distribution across the search space using equation ??.
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Algorithm 5.5 Equilibrium Optimizer CH Routing Algorithm
1: Initialize the number of particles = number of CH
2: Randomly initialize the concentrations of particles using equation (5.22)
3: Set 𝑎1 = 2, 𝑎2 = 1, and 𝐺𝑃 = 0.5
4: while 𝐼𝑡𝑒𝑟𝑎 < 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 do
5: for 𝑖 = 1 to number of particles do
6: Calculate the fitness of the 𝑖𝑡ℎ particle
7: if 𝐹𝐹 ( ®𝐶𝑂𝑖) < 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1) then
8: ®𝐶𝑂𝑒𝑞1 = ®𝐶𝑂𝑖

9: 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1) = 𝐹𝐹 ( ®𝐶𝑂𝑖)
10: else if 𝐹𝐹 ( ®𝐶𝑂𝑖) > 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1) & 𝐹𝐹 ( ®𝐶𝑂𝑖) < 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞2) then
11: ®𝐶𝑂𝑒𝑞2 = ®𝐶𝑂𝑖

12: 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞2) = 𝐹𝐹 ( ®𝐶𝑂𝑖)
13: else if 𝐹𝐹 ( ®𝐶𝑂𝑖) > 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1) & 𝐹𝐹 ( ®𝐶𝑂𝑖) > 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞2) & 𝐹𝐹 ( ®𝐶𝑂𝑖) <

𝐹𝐹 ( ®𝐶𝑂𝑒𝑞3) then
14: ®𝐶𝑂𝑒𝑞3 = ®𝐶𝑂𝑖

15: 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞3) = 𝐹𝐹 ( ®𝐶𝑂𝑖)
16: else if 𝐹𝐹 ( ®𝐶𝑂𝑖) > 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1) & 𝐹𝐹 ( ®𝐶𝑂𝑖) > 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞2) & 𝐹𝐹 ( ®𝐶𝑂𝑖) >

𝐹𝐹 ( ®𝐶𝑂𝑒𝑞3) & 𝐹𝐹 ( ®𝐶𝑂𝑖) < 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞4) then
17: ®𝐶𝑂𝑒𝑞4 = ®𝐶𝑂𝑖

18: 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞4) = 𝐹𝐹 ( ®𝐶𝑂𝑖)
19: ®𝐶𝑂𝑎𝑣𝑔 = ( ®𝐶𝑂𝑒𝑞1 + ®𝐶𝑂𝑒𝑞2 + ®𝐶𝑂𝑒𝑞3 + ®𝐶𝑂𝑒𝑞4)/4
20: Find ®𝐶𝑂𝑝𝑜𝑜𝑙,𝑒𝑞 using equation (5.23)
21: if 𝐼𝑡𝑒𝑟𝑎 > 1 then
22: Find 𝑡 using equation (5.26)
23: for 𝑖 = 1 to number of particles do
24: Choose one candidate from ®𝐶𝑂𝑝𝑜𝑜𝑙,𝑒𝑞 (randomly)
25: Generate random vectors ®𝜆 and ®𝑟
26: Generate vectors ®𝐸 using equation (5.25)
27: Generate vectors

−−−−→
𝐺𝐶𝑃 using equation (5.29)

28: Generate vectors ®𝐺0 using equation (5.28)
29: Generate vectors ®𝐺 using equation (5.27)
30: Update concentrations ®𝐶 using equation (5.24)
31: 𝐼𝑡𝑒𝑟𝑎 = 𝐼𝑡𝑒𝑟𝑎 + 1
32: 𝑏𝑒𝑠𝑡𝐹𝑖𝑡𝑛𝑒𝑠𝑠 = 𝐹𝐹 ( ®𝐶𝑂𝑒𝑞1)

𝐶𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖 = 𝐶𝑂𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑 ∗ (𝐶𝑂𝑚𝑎𝑥 − 𝐶𝑂𝑚𝑖𝑛)

, 𝑓 𝑜𝑟 𝑖 = 𝑁𝑎𝑡𝑢𝑟𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑢𝑝𝑡𝑜 𝑛 (5.22)
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The starting concentration of the 𝑖𝑡ℎ particle is indicated by𝐶𝑂𝑖𝑛𝑖𝑡𝑖𝑎𝑙
𝑖

, where
Rand 𝑖 is a vector created at random that falls inside the [0, 1] range; 𝐶𝑂𝑚𝑖𝑛 and𝐶𝑂𝑚𝑎𝑥

determine the dimensions’ minimum and maximum values. A population’s size is
represented by the variable 𝑛. The particles are assessed using the fitness function and
subsequently arranged in order to identify the four most optimal equilibrium candidate
values, i.e., 𝐶𝑂𝑒𝑞1, 𝐶𝑂𝑒𝑞2, 𝐶𝑂𝑒𝑞3, 𝐶𝑂𝑒𝑞4.

B. Update Phase

This phase is crucial for improving the algorithm’s performance and con-
vergence. It consists of two major steps. Firstly, an equilibrium pool vector, 𝐶𝑂𝑝𝑜𝑜𝑙,𝑒𝑞,
is created using equation (5.23) by selecting the four best-so-far particles based on their
fitness values (𝐶𝑂𝑒𝑞1, 𝐶𝑂𝑒𝑞2, 𝐶𝑂𝑒𝑞3, 𝐶𝑂𝑒𝑞4) and arithmetic average (𝐶𝑂𝑎𝑣𝑔) of these
four. In the second step, the concentration for each particle is updated using equation
(5.24), and if this updated concentration is better, then the global best value is updated.

®𝐶𝑂𝑝𝑜𝑜𝑙,𝑒𝑞 = ( ®𝐶𝑂𝑒𝑞1, ®𝐶𝑂𝑒𝑞2, ®𝐶𝑂𝑒𝑞3, ®𝐶𝑂𝑒𝑞4) (5.23)

The first component of equation (5.24) indicates the concentration at equilibrium,
while the second and third components account for changes in concentration. The
function’s 2nd term carry out a global search of the space to locate the best solution,
and incorporating the 3rd term enhances the precision of the solution.

®𝐶𝑂 = ®𝐶𝑂𝑒𝑞 + ( ®𝐶 − ®𝐶𝑂𝑒𝑞) ∗ ®𝐸 +
®𝐺
®𝜆𝑉

∗ (1 − ®𝐸) (5.24)

Whereas ®𝐸 is the exponential term responsible for concentration updation
and is calculated using equation (5.25). Furthermore, generation rate ( ®𝐺) is calculated
using equation (5.27).Here, 𝜆 ∼ [0, 1] is a random vector, and V is a unit vector.

®𝐸 = 𝑎1𝑠𝑖𝑔𝑛(®𝑟 − 0.5)
[
𝑒−

®𝜆𝑡 − 1
]

(5.25)

In equation (5.25), 𝑎1 is a constant value, i.e. 2, that accounts for the exploration
ability. The second component, 𝑠𝑖𝑔𝑛(®𝑟 − 0.5), plays a critical role in both exploration
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and exploitation capabilities. Here, 𝑠𝑖𝑔𝑛(®𝑟) denotes a random vector ranging from 0
to 1. The variable 𝑡 is a function of the iteration and is calculated using the equation
(5.26).

𝑡 =
(
1 − 𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑀𝑎𝑥

) (𝑎2
𝑖𝑡𝑒𝑟

𝑖𝑡𝑒𝑟𝑀𝑎𝑥

)
(5.26)

In the aforementioned equation, 𝑖𝑡𝑒𝑟 represents the current iteration, while
𝑖𝑡𝑒𝑟𝑀𝑎𝑥 corresponds to the maximum number of iterations. These variables play
a crucial role in calculating the value of time and ensuring the progression of the
algorithm within the defined iteration limits. Additionally, 𝑎2 is a constant value (set
to 1) employed to control the level of exploitation ability.

®𝐺 = ®𝐺0. ®𝐸 (5.27)

In equation (5.27), ®𝐺0 is the initial generation rate [121] and is calculated
using the equation (5.28).

®𝐺0 = ®𝐺𝐶𝑃 ∗ ( ®𝐶𝑂𝑒𝑞 − ®𝜆 ®𝐶) (5.28)

Where the Generation rate Control Parameter (
−−−−→
𝐺𝐶𝑃) [121] is defined to

incorporate the contribution of the generation term into the updating process and is
calculated using equation (5.29). The Generation Probability (𝐺𝑃) is a term that
determines the likelihood of this contribution and specifies the number of particles that
will utilize the generation term to update their states. Setting the Generation Probability
(𝐺𝑃) to 0.5 results in a suitable equilibrium between exploration and exploitation.

−−−−→
𝐺𝐶𝑃 =


0.5, 𝑟2 ≥ 𝐺𝑃.

0, 𝑒𝑙𝑠𝑒.
(5.29)

Where 𝑟1 and 𝑟2 represent random numbers ranging from 0 to 1.
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C. Fitness Function for Route Selection

In this scenario, the total energy used throughout the transmission path
serves as the basis for the fitness function for EO. Each particle in this problem represents
a candidate route from the CH (i.e., source node) to the BS (i.e., destination node). The
evaluation of these particles is based on their energy consumption during transmission
from CHs to the BS. The particle having the lowest energy consumption is chosen as
the global best solution. The fitness function for EO route selection can be expressed
mathematically as equation (5.30). It calculates the total energy consumed while
transmitting data between CHs on the selected route (muti-hop transmission) and the
energy consumed by the last CH on the route to send the accumulated data from all
CHs to the BS.

𝑓 𝑖𝑡𝑛𝑒𝑠𝑠𝐸𝑂 (𝐸𝑟𝑜𝑢𝑡𝑒) =
𝑛−1∑︁
𝑖=1

𝐸𝐶𝐻 (𝑖),𝐶𝐻 (𝑖+1) (𝑘, 𝑑) + 𝐸𝐶𝐻 (𝑛),𝐵𝑆 (𝑘, 𝑑) (5.30)

In the above equation, n is the total number of CHs; d is the distance,
𝐸𝐶𝐻 (𝑖),𝐶𝐻 (𝑖+1) (𝑘, 𝑑) represents energy required to send 𝑘 − 𝑏𝑖𝑡𝑠 data from 𝐶𝐻𝑖 to
𝐶𝐻𝑖+1; 𝐸𝐶𝐻 (𝑛),𝐵𝑆) (𝑘, 𝑑) is the power needed to send the data from end CH node
(𝑛𝑡ℎ 𝐶𝐻) to BS.

5.4 Results

The performance of the IoT-based SD-WSN and EQ-AHA is evaluated
under different scenarios to determine the best combination of parameters for EQ-AHA.
The parameters in Table 5.1 are used to generate a variety of scenarios for simulation.
All experiments are performed in MATLAB (version R2023a) on an Intel i5 processor
with 8GB of RAM.
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(a) Scenario 1 (b) Scenario 2

(c) Scenario 3 (d) Scenario 4

Figure 5.3: Network Map

Table 5.1: Parameters for Testing

Category Parameter Value
Network Area (𝑚2) 100×100

Position of BS (50, 50)
Initial Energy 0.5 J
No. of Nodes 100

Application Data Packet Length 100 bits
Broadcast Packet Length 25 bits

EQ-AHA Initial POP 30
Iteration 50
𝛾, 𝛿 0.5, 0.5
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5.4.1 Parameter Settings

The testing parameters specified in Table 5.1 are employed to emulate the
behavior of SD-WSN nodes through four different scenarios, as illustrated in Figure
5.3. Each node in the network is allocated an energy of 0.5 J. Each scenario examines
specific aspects of the network’s behavior and is defined below:

• Scenario 1: In this scenario, there are 100 nodes deployed within a 100 x 100
m2 area. The BS is at the center (50, 50) of the area. This scenario is focused on
analyzing short-range communications within the given area.

• Scenario 2: To evaluate the scalability of the proposed algorithm, the number
of nodes is increased by 200%. The area size remains 100 x 100 m2, and the
location of BS is (50,50), similar to Scenario 1. However, the number of nodes
deployed is 300. This scenario assesses how the algorithm handles the increased
node density while maintaining optimal communication performance.

• Scenario 3: In this scenario, to assess the performance of the proposed algorithm
in a large coverage area, the area size is increased to 200 x 200 m2. There are
still 300 nodes deployed within this larger area. The BS is placed at center (100,
100) of the area. This scenario explores short-range communications in a larger
coverage area.

• Scenario 4: The goal of this arrangement is to analyze the effect of change in
the position of BS on the results of the proposed algorithm. In this setup, a total
of 300 nodes are deployed in 200 x 200 m2 area. However, the BS is kept outside
the area at random location (100, 250), which differs from the previous scenarios.
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Figure 5.4: EQ-AHA is evaluated using various population sizes.

To initialize the hummingbird population, Equation (5.5) was utilized
to generate their food position vectors. The search space was defined as a multi-
dimensional domain, and the food position vectors were constrained within the range
of [-4, 4]. The fitness function was assessed using different population sizes ranging
from 5 to 100 in order to establish the ideal number of hummingbird populations and the
minimum number of iterations. The findings, illustrated in Figure 5.4, indicated that the
maximum number of iterations was set at 50, and the optimal fitness value was achieved
when the initial population size was set at 30. These parameter settings balanced
exploration and exploitation in the search space, facilitating effective convergence
toward optimal solutions. Consequently, a population size of 30 was selected for
subsequent experiments.
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Figure 5.5: Comparison of performance with different % of CHs.

In Figure 5.5, a comprehensive analysis of EQ-AHA’s performance is
presented, showcasing the performance variations achieved at different CH percentages,
specifically 5%, 10%, 15%, and 20% of the total surviving nodes. Through careful
examination of this performance comparison, it was concluded that establishing the
number of CHs as 10 % of the surviving nodes would yield the most favorable outcomes.
A careful balance between network coverage and operational efficiency can be achieved
by setting the CH percentage at 10%.

According to Handy et al. [65], the network lifespan is commonly under-
stood as the duration spanning from the moment of network deployment to the eventual
demise of the last node. Specifically, when dealing with periodic data collection in
the context of an SD-WSN, the network lifespan can be computed by determining the
time interval commencing with the activation of the initial node and terminating at the
occurrence of the FND event [65]. The performance of the EQ-AHA for scenario 1
is illustrated in the following Figure 5.6. The experimental results demonstrated that
the proposed algorithm experienced the first node failure at the 1612th round, and the
network sustained transmission until the 1649𝑡ℎ round. The energy level of the network
exhibited a gradual decline, as depicted in Figure 5.6. Throughout the operation, a total
of 16335 data packets were transmitted.
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Figure 5.6: Performance of EQ-AHA (Scenario:1): Dead Node, Residual Energy, and
Data Packets Sent per round.

Figure 5.7: Dead node comparison based on different scenarios of deployment.

The EQ-AHA algorithm was evaluated in four different scenarios, and the
results are presented in Figure 5.7. The Figure illustrates each scenario’s FND, HND,

121



and LND metrics. These observations provide insights into the performance of the
EQ-AHA algorithm in different scenarios, showcasing the variation in the time at
which the first, half, and last nodes experienced failure during the transmission rounds.
In Scenario 1, the FND occurred at the 1610th round, followed by the HND at the
1633rd round, and finally, the LND at the 1649th round of transmission. Scenario 2
showed the earliest node deaths (FND: 1508, HND: 1578, LND: 1656), while Scenario
4 exhibited slightly delayed deaths (FND: 1637, HND: 1711, LND: 1805). For Scenario
3, FND, HND, and LND are observed at the 1622, 1703, and 1805 rounds. Overall, the
average performance across all scenarios indicated an FND of 1594 rounds, an HND
of 1656 rounds, and an LND of 1732 rounds. These results prove that the proposed
algorithm performed well in all the scenarios with slight variation.

From the observations presented in Figure 5.7 and the characteristics of
each scenario, several conclusions can be drawn, which are as follows:

• Scalability: To check the performance, the EQ-AHA is evaluated under various
scenarios. Scenarios 1 and 2 suggest that as the number of nodes increases by
200, the FND earlier in scenario 2. However, despite this earlier node failure,
the network in Scenario 2 still lasts for 1656 rounds (LND). This suggests that
overall network stability and lifespan remain relatively unaffected even with a
significant increase in node count. Therefore, we can conclude that increasing
the number of nodes has a negligible effect on the network’s longevity, indicating
that the EQ-AHA protocol scales well with higher node densities.

• Change in size of area: When comparing Scenario 2 and Scenario 3, which
differed in the size of the deployment area, it was found that increasing the size
of the deployment area or decreasing the node density significantly improved the
performance of the EQ-AHA algorithm. The significant increase of 114 rounds
in the FND between Scenario 2 and Scenario 3 suggests that the algorithm was
more effective in handling the communication challenges in the scenario with a
larger deployment area and lower node density.

• Change in BS position: As shown in Figure 5.7, the network performance was
independent of the BS position for the same number of nodes and the same size
of deployment area (Scenarios 3 and 4). The network performance metrics did
not exhibit significant differences between the two scenarios, even though the BS
position was changed. This indicates that the EQ-AHA algorithm successfully
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preserves network energy and ensures reliable communication, irrespective of
the base station’s position.

5.4.2 Comparative Study

To evaluate the performance of EQ-AHA, we compare its simulation results
with five SoA algorithms. The algorithms selected for comparison are LEACH [62],
KmeansPSO [78], GWO-C [84], EB-GWO [86], and EOAHA [7]. The comparison is
based on FND, HND, LND, average node life, the number of dead nodes per round,
total data packets transmitted, and the total residual energy remaining in the network
per round.

Table 5.2: Comparison of Performance Metrics

Algorithms FND HND LND
LEACH 272 447 662
KmeansPSO 560 1294 1452
GWO-C 538 1195 1377
EB-GWO 1078 1258 1301
EOAHA 1224 1254 1263
EQ-AHA 1612 1633 1649

Figure 5.8: Performance of different state-of-the-art algorithms w.r.t. EQ-AHA.
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Table 5.2 and Figure 5.8 show the FND, HND, and LND of LEACH,
KmeansPSO, GWO-C, EBGWO, EOAHA, and EQ-AHA. These metrics measure
network longevity with higher values and better performance. The first node died for
LEACH, Kmeans-PSO, GWO-C, EB-GWO, and EOAHA at 270 rounds, 560 rounds,
543 rounds, 1078 rounds and 1224. Meanwhile, for EQ-AHA FND, it happened at
1612 rounds. These findings highlight the significant impact of EQ-AHA on extending
the network lifespan for periodic data collection, surpassing EBGWO by over 49.5%
and EOAHA by 31.7%.

Moreover, when comparing EQ-AHA to LEACH, Kmeans-PSO, GWO-C,
EB-GWO, and EOAHA, it is evident that EQ-AHA outperforms them by extending
the network lifespan by more than 492.65%, 187.86%, 199.63%, 49.54% and 31.70%
respectively. Additionally, in terms of the overall network lifespan until the last node
dies, comparing EQ-AHA with LEACH, the SD-WSN lasts an additional 987 rounds
beyond LEACH (where the LND occurs at 662 rounds). The LEACH has the lowest
values across all metrics, showing the shortest node life. EQ-AHA performs the best,
with the highest FND (1612), HND (1633), and LND (1649) values, indicating the
longest node lifespan. EQ-AHA contributes to a more balanced and consistent network
performance, hence making it more robust. EQ-AHA achieved this performance by
distributing network traffic evenly across all the nodes. As a result, nodes are less likely
to fail, and the network is more likely to remain operational. This stability is a highly
desirable characteristic, as it promotes consistent and reliable performance throughout
the network’s lifespan.
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Figure 5.9: FND comparison of state-of-the-art algorithms.

Figure 5.10: Total network energy left per round.

These results are visually represented in Figure 5.9, demonstrating how
EQ-AHA significantly prolongs the network lifespan for periodic data gathering. Figure
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5.10 shows that the energy decay in EQ-AHA is more stable compared to other SoA
algorithms. This finding highlights the superior energy management capabilities of
EQ-AHA

Figure 5.11: The number of data packets sent to BS.

Figure 5.11 illustrates that LEACH transmitted 14,061 data packets, Kmeans-
PSO transmitted 11,214 data packets, GWO-C transmitted 13,000 data packets, EBGWO
transmitted 13,000 data packets, EOAHA 12375 packets and EQ-AHA transmitted
16,335 data packets. EQ-AHA stands out with the highest number of data packets
transmitted, suggesting its improved data collection or transmission performance com-
pared to the other algorithms.
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Figure 5.12: FND and the number of rounds comparison

To test the stability of all the SoA algorithms and EQ-AHA with increasing
node density in a defined area, simulations are conducted with 100, 200, and 300 node
densities. The results, as shown in Figure 5.12, demonstrate that the performance
of EQ-AHA remains consistent. In contrast, the performance of other algorithms
is inconsistent, with fluctuations in some cases. These experimental results indicate
that EQ-AHA is better than the other SoA algorithms by prolonging the network’s
life for periodic data collection and ensuring steady energy consumption throughout
the operation. These results highlight the effectiveness and efficiency of EQ-AHA in
addressing the challenges associated with network longevity and energy management.

5.4.3 Statistical Validation

The Table 5.3 (statistical analysis) provides a comprehensive evaluation
of the algorithms by examining their mean, variance, Standard Error (SE), t-statistic,
and p-value. The mean represents the average node life across the metrics, with
EQ-AHA achieving the highest mean (average node life) of 1639.5 (rounds), indicating
its consistent node life in the case of EQ-AHA. Variance measures the variability of
performance metrics, and the low value of variance for EOAHA (20.28) and EQ-AHA
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Table 5.3: Statistical Analysis of Algorithms Compared to EQ-AHA

Algorithms Mean Variance SD SE t-Statistic p-Value
LEACH 560.2 5600.84 74.83 23.79 -45.36 5.16 × 10−20

KmeansPSO 1333.0 8723.78 93.39 29.64 -10.34 5.31 × 10−9

GWO-C 1175.1 25851.66 160.80 50.90 -9.12 3.60 × 10−8

EB-GWO 1255.5 1445.17 37.99 12.27 -31.30 3.79 × 10−17

EOAHA 1245.5 20.28 4.50 2.83 -139.01 9.71 × 10−29

EQ-AHA 1639.5 60.06 7.75 2.45 – –

(60.06) suggests that its performance is stable and exhibits minimal node failure. SE
reflects the precision of the mean estimate and is also the lowest for EQ-AHA at
2.45, further underscoring the reliability and consistency of its performance. The
t-statistic compares each algorithm’s performance with that of EQ-AHA, with negative
t-statistics for all other algorithms indicating that they perform worse than EQ-AHA.
For instance, LEACH has a t-statistic of -45.36, highlighting a significant performance
gap between it and EQ-AHA. The p-value, which measures the statistical significance
of these performance differences, is extremely low for all algorithms (e.g., 5.16×10−20

for LEACH).

Table 5.4: ANOVA Test for Algorithm Performance Comparison

Source Sum of Squares (SS) df Mean
Square
(MS)

F-
Statistic

p-Value

Between Groups 2.185 × 106 5 437034.86 5.53 0.0072
Within Groups 9.485 × 105 12 79043.72 – –
Total 3.134 × 106 17 – – –

Further, to validate the results of EQ-AHA, an ANOVA test was conducted
as we were comparing more than two SoA algorithms. Table 5.4 displays the result of
the ANOVA test. The ANOVA table for algorithm performance comparison shows a
statistically significant difference among the groups at a 95% confidence level (p-value
= 0.0072). The p-value is less than 0.05, leading to the rejection of the null hypothesis
and confirming a significant difference between the groups. This suggests that the
observed differences in performance are highly significant, confirming that EQ-AHA
consistently outperforms the other algorithms.
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5.5 Chapter Summary

This chapter addresses energy conservation challenges and network life-
time optimization in IoT-based SDWSNs. EQ-AHA was proposed to enhance the
performance of IoT-based SDWSNs. EQ-AHA is a hybrid technique that utilizes AHA
and EO metaheuristic algorithms to optimize communication in IoT-based networks.
First, the AHA meta-heuristic algorithm is used to optimize the CH selection process
while considering the energy ratio and an average of the total distance of CH and
normal nodes. Secondly, the EQ meta-heuristic approach is used to determine the
optimal path for delivering the data aggregated by CH to BS while considering the
shortest route between BS and CH. In this way, the EQ-AHA helps the sensor nodes
find paths at a minimum cost, hence extending the life of the network. The EQ-AHA
was tested under various conditions and was compared with other SoA algorithms, such
as EOAHA, EBGWO, GWO-C, Kmeans-PSO, and LEACH, to assess its effectiveness.
The simulation results demonstrated that EQ-AHA outperformed these algorithms by
enhancing the network lifetime for periodic data gathering by achieving an improvement
of at least 31.6%.
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CHAPTER 6

CONCLUSION AND FUTURE SCOPE

This chapter presents the concluding remarks of the thesis by summarizing the key
research contributions, outlining the limitations of the work, highlighting its potential
social impact, and discussing future directions for further research and development.

6.1 Research Summary

This research focuses on developing energy-efficient and QoS-aware rout-
ing protocols for IoT-enabled SDWSNs. These networks serve as the core of emerging
smart systems such as smart cities, intelligent agriculture, and real-time environmental
monitoring. However, their effectiveness is often limited by the restricted energy
capacity of sensor nodes and the complexity of meeting diverse QoS requirements like
latency, reliability, and throughput. To address these challenges, four key research
objectives (ROs) were formulated. Each objective has been successfully accomplished
through the publication of research articles, as summarized in Table 6.1.

To achieve RO1, a detailed and structured systematic literature review of
clustering and routing algorithms in IoT-based SDWSNs is presented. The review
classifies existing methods into classical, metaheuristic-based, and machine learning-
based categories, highlighting their strengths, limitations, QoS parameters, and key
research gaps. This comprehensive review serves as a foundation for developing novel
algorithms that address the identified gaps and enhance the performance of IoT-enabled
SDWSNs.
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Table 6.1: Research objectives and their corresponding publications

Research Objective Publication(s)

RO1: To perform
a systematic litera-
ture review of the
routing algorithms in
SD-WSNs.

1. N. Kumar and R. Beniwal, “Energy-Efficient Techniques
in IoT-based Software-Defined Wireless Sensor Networks: A
Systematic Review,” 7th International Conference on Energy,
Power and Environment (ICEPE), IEEE, NIT Meghalaya,
India, May 2025. [Presented]

RO2: To propose
novel energy-efficient
routing algorithms
to optimize network
lifetime in SD-WSN.

1. R. Beniwal and N. Kumar, “Energy optimized artificial
hummingbird algorithm for routing in IoT-based software-
defined WSN,” International Journal of Communication
Systems, vol. 37, no. 8, Wiley (SCIE), Mar. 2024.
[Published]

RO3: To propose
multi-objective rout-
ing algorithms con-
sidering QoS con-
straints for SD-WSN.

1. N. Kumar and R. Beniwal, “A Multi-Constrained Green
Routing Protocol for IoT-Based Software-Defined WSN,”
Concurrency and Computation: Practice and Experience,
vol. 36, no. 28, Wiley (SCIE), Oct. 2024. [Published]

2. R. Beniwal and N. Kumar, “A Nature-Inspired
Multi-Objective Green Routing Protocol for IoT-enabled
SDWSNs,” Transaction on Emerging Telecommunication
Technology, Wiley (SCIE) May. 2025. [Published]

RO4: Comparative
analysis of the
proposed algorithms
with existing
state-of-the-art
algorithms.

1. R. Beniwal and N. Kumar, “Energy optimized artificial
hummingbird algorithm for routing in IoT-based software-
defined WSN,” International Journal of Communication
Systems, vol. 37, no. 8, Wiley (SCIE), Mar. 2024.
[Published]

2. N. Kumar and R. Beniwal, “A Multi-Constrained Green
Routing Protocol for IoT-Based Software-Defined WSN,”
Concurrency and Computation: Practice and Experience,
vol. 36, no. 28, Wiley (SCIE), Oct. 2024. [Published]

3. R. Beniwal and N. Kumar, “A Nature Inspired
Multi-Objective Green Routing Protocol for IoT-enabled
SDWSNs,” Transaction on Emerging Telecommunication
Technology, Wiley (SCIE) May. 2025. [Published]

4. N. Kumar and R. Beniwal, “Green Routing Protocols
for IoT-Based Software-Defined Wireless Sensor Networks:
A Comparative Analysis”, 7th International Conference
on Energy, Power and Environment (ICEPE), IEEE, NIT
Meghalaya, India, May 2025. [Presented]
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In order to attain RO2, a new green computing algorithm, EOAHA, is
proposed to address this challenge based on a relatively new metaheuristic algorithm,
i.e., AHA. The EOAHA solves the optimal CH selection problem in SD-WSN through
a novel fitness function. The model aims to optimize network energy consumption by
ensuring a balance between the distance between receiver and transmitter nodes and
the amount of energy utilized.

RO3 was accomplished by proposing two different routing protocols, i.e.,
EO-C and EQ-AHA. EO-C is based on an equilibrium optimizer algorithm and is
designed to address the energy conservation, optimum CH selection, optimum CH
count selection, and hot spot problem in IoT-enabled SDWSNs. EO-C addresses these
challenges with the help of dynamic CH count and a novel fitness function based on
total residual energy, energy balance ratio, and total number of alive nodes in the
network. Further, the performance of EO-C under various conditions is compared
with several SoA algorithms, including EAFFO, EB-GWO, GWO-C, and LEACH. The
results indicate that the EO-C outperforms other SoA algorithms in terms of network
longevity, resilience, scalability, and coverage. EQ-AHA is a hybrid routing algorithm
that employs two meta-heuristic algorithms. First, the AHA meta-heuristic algorithm
is used to optimize the CH selection process while considering the energy ratio and an
average of the total distance of CH and normal nodes. Secondly, the EQ meta-heuristic
approach is used to determine the optimal path for delivering the data aggregated by
CH to BS while considering the shortest route between BS and CH. In this way, the
EQ-AHA helps the sensor nodes find paths at a minimum cost, hence extending the life
of the network. The EQ-AHA was tested under various conditions and was compared
with other SoA algorithms.

In order to achieve RO4, all three proposed models were rigorously evalu-
ated against existing state-of-the-art algorithms through MATLAB-based simulations
and compared. The results demonstrate significant improvements in network longevity,
energy consumption, data packet delivery, and resilience compared to state-of-the-art
techniques. The results consistently demonstrate that the proposed models significantly
outperform traditional approaches, confirming their effectiveness for IoT-enabled SD-
WSN applications.
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6.2 Limitations of the Work

While the proposed routing protocols demonstrate significant improve-
ments in energy efficiency and QoS provisioning for SDWSNs, certain limitations
remain:

• Simulation-Based Validation: The performance evaluation has been conducted
using MATLAB-based simulations. Real-world deployment and testing on
physical hardware platforms have not been included, which may affect practical
applicability.

• Assumption of Static Topology: The proposed algorithms assume a static
network topology. Scenarios involving mobile sensor nodes or dynamic node
failures are not thoroughly explored, which could limit applicability in more
dynamic or mobile environments.

• Computational Overhead: Metaheuristic algorithms, while effective, can intro-
duce significant computational complexity and convergence delays, particularly
in large-scale networks or applications requiring real-time decision-making.

• Security Aspects Not Considered: The research does not address security
concerns such as data confidentiality, node authentication, or secure routing,
which are critical in many IoT applications.

• Limited QoS Metrics: Although the work focuses on key QoS parameters such
as energy efficiency, data packets, distance, and load balancing, other aspects
like jitter, fairness, and support for heterogeneous traffic are not extensively
investigated.

6.3 Social Impact

The proposed energy-efficient and QoS-centric routing protocols for IoT-
enabled Software-Defined Wireless Sensor Networks (SDWSNs) have the potential
to deliver significant social and environmental benefits. By intelligently optimizing
the selection of cluster heads and routing paths, the proposed models significantly
reduce the energy consumption of sensor nodes—devices that are often deployed
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in large numbers across smart cities, environmental monitoring systems, healthcare
infrastructures, and agricultural fields. Lower energy consumption directly translates
to reduced battery usage and less frequent maintenance, thereby making these networks
more sustainable and cost-effective, especially in remote or underdeveloped regions.
More importantly, this energy efficiency contributes to a broader environmental goal.
In most parts of the world, electricity is still predominantly generated using fossil
fuels, which release considerable amounts of carbon dioxide and other greenhouse
gases into the atmosphere. These emissions are major contributors to global warming,
environmental degradation, and adverse climate change effects. By extending network
lifetimes and reducing the power demand of IoT infrastructures, the proposed protocols
help minimize the indirect carbon footprint associated with digital technology.

Consequently, the research promotes not only technological advancement
but also aligns with global sustainability goals by reducing dependence on frequent
energy replenishment and ultimately aiding in the mitigation of the greenhouse effect
and global temperature rise. This work supports the development of green IoT systems
that are both environmentally responsible and socially impactful.

6.4 Future Scope

The research presented in this thesis opens several promising directions
for future work. While the proposed routing protocols have demonstrated strong
performance in simulation environments, future studies can focus on real-world imple-
mentation using hardware platforms. Such deployment would provide deeper insights
into the practical challenges of latency, memory constraints, and communication
overhead. Moreover, the current work assumes a static network topology. Extending the
protocols to support mobility and dynamically changing environments can significantly
broaden their applicability, especially in domains like vehicular IoT, mobile healthcare
systems, and disaster recovery operations. Integration with machine learning models
also presents an exciting avenue for making the network more adaptive. Techniques
like reinforcement learning and neural networks can assist in intelligent cluster head
selection, anomaly detection, and predictive routing based on historical patterns.

Security and privacy concerns were beyond the scope of this work but
are critical in sensitive applications. Future extensions can incorporate lightweight
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encryption and secure routing protocols to enhance trustworthiness. Another potential
direction is the inclusion of energy harvesting mechanisms, such as solar or RF-based
recharging, to create self-sustaining sensor nodes and extend network lifetime even
further.
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Summary

The Internet of Things (IoT) has become widely used in applications such as

smart homes, industrial automation, and transportation due to its affordable

hardware and fast internet connectivity. However, the increase in IoT-enabled

gadgets, particularly those running on batteries or connected to other sources,

is putting strain on the world's energy requirements. Therefore, this study

focuses on a green routing solution for battery-powered IoT-enabled Software-

defined Wireless Sensor Networks (IoT-SDWSN). Finding green solutions for

IoT-based networks to address this energy challenge has become crucial. This

study focuses on developing a green routing solution for battery-powered IoT-

SDWSN. Energy efficiency in IoT-SDWSN is attained by the process of cluster-

ing nodes. The network is partitioned into small clusters, and a Control Node

(CN) is set up by a Control Server (CS) to transmit the data packets sent by

sensor nodes. Choosing a CN in these networks is a critical concern due to the

substantial energy consumption involved in delivering data to the CS. This

research focuses on the problem of energy-efficient cluster routing in IoT-

based SD-WSN. It introduces the Energy-optimized Artificial Hummingbird

Algorithm (EOAHA) as a green routing technique. EOAHA aims to extend the

lifespan of IoT-based SD-WSNs by intelligently selecting (based on a new fit-

ness function) CNs to distribute the network load and increase its overall lon-

gevity. To evaluate the performance of EOAHA, a comparative analysis is

conducted against other state-of-the-art algorithms. The results demonstrate

that EOAHA outperforms these algorithms by a minimum of 13.5% in terms of

network longevity.

KEYWORD S

AHA, EOAHA, IoT, residual energy, SD-WSN, WSN

1 | INTRODUCTION

In today's world, demand for IoT devices and their applications, such as intelligent transport systems or internet of
vehicles,1 industrial Internet of Things (IIoT),2 automation,3 medical,4 social networks of IoT devices,5 smart homes/
offices,6,7 and so forth, is increasing exponentially. According to the article,8 there are currently 19.8 billion IoT devices

Abbreviation: WSN, wireless sensor network.
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ABSTRACT
In recent times, there has been a notable surge in the utilization of Internet of Things (IoT) network devices due to their vast
applications. However, this rapid growth has undoubtedly led to raised energy consumption, which, in turn, has raised significant
concerns about the environment. Consequently, there is a growing demand for green computing techniques that can mitigate IoT
device’s energy usage and carbon footprint. Clustering IoT networks is a useful strategy for extending their lifespan. However,
clustering presents a complex optimization problem that falls under the category of NP-hard; hence making it a challenging issue.
Nevertheless, using meta-heuristics algorithms has greatly improved our ability to tackle such challenges. Therefore, this study
introduces a clustering scheme called EQ-AHA, which combines Equilibrium optimization and artificial hummingbird optimiza-
tion techniques to enhance the efficiency of IoT-based Software-Defined Wireless Sensor Networks (IoT-SDWSN). The primary
goal of EQ-AHA is to select the Cluster Heads (CHs) and determine the optimal path between CHs and the Base Station (BS).
EQ-AHA employs a fitness function that considers three important factors: the distance between CHs, the distance between nodes
and the CHs, and the energy levels of the nodes. Overall, this strategy improves the network’s performance by 31.6% compared to
other State-of-the-Art (SoA) algorithms.

1 | Introduction

The Internet of Things (IoT) is a network of devices that com-
municate with each other over existing World Wide Web infras-
tructure. The major advantage of these devices is that they can
make intelligent decisions depending on the evolving situations.
Due to this advantage, IoT devices find vast applications in almost
every domain. Starting with health, manufacturing industries,
smart homes, smart vehicles, smart appliances, and smart cities
are a few examples of applications of IoT. Managing a smart
city involves the deployment of a large number of smart sensors
(IoT-enabled SD-WSN) with features like remote reconfiguration
and internet connectivity. The smart city concept involves exten-
sive usage of software-defined wireless sensor nodes (IoT-SDSN)

----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
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in IoT networks to manage various services such as smart trans-
portation, traffic control, and smart power consumption in urban
areas [1–3]. Over the past few decades, the demand for IoT has
grown significantly, leading to software and hardware develop-
ment of sensor nodes that can monitor and collect different types
of information [4]. A wireless sensor network (WSN) that uses
SDN concepts to enable dynamic network reconfiguration, man-
agement, and resource optimization is known as an IoT-SDWSN
[5]. IoT-SDWSNs, in contrast to conventional WSN [6, 7], depend
on software to manage network setup, updating behavior of
nodes, and routing and communication protocols.

Dynamic configuration is one of the major advantages offered
by IoT-SDWSN. Due to this attribute, the network seamlessly

Concurrency and Computation: Practice and Experience, 2024; 0:e8306 1 of 17
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ABSTRACT
A smart city leverages technology and data to enhance the quality of life for its residents, improve urban services, and optimize
resource management. The rapid rise in Internet of Things (IoT) devices has led to a significant surge in energy requirements,
making energy optimization critical to mitigate this growing global demand. Clustering is a widely adopted technique to achieve
energy optimization in IoT-enabled Software-Defined Wireless Sensor Networks (SDWSNs). In clustering, the network is divided
into small groups, and a Cluster Head (CH) is chosen by a Control Station (CS) to forward data packets from sensing nodes. The role
of CH is power-consuming as it aggregates data from its cluster and forwards it to CS; this may lead to hot-spot problems. Therefore,
it is very important to select CH wisely. Hence, this article proposes an EO-C algorithm to address multiple objectives like hot-spot
problems, network life, energy optimization, and reliability. EO-C aims to enhance energy efficiency in IoT-enabled SDWSNs by
dynamically optimizing the selection process of CH using a novel fitness function based on residual energy, energy balance ratio,
and alive node count. The simulation findings demonstrated that EO-C surpasses other SOA algorithms with an improvement in
network lifespan ranging from 15.86% to 372.6%, showcasing its effectiveness across various scenarios. Additionally, EO-C exhibits
robust scalability, effectively handling diverse node densities and deployment areas, making it a promising solution for sustainable
IoT networks.

1 | Introduction

Today, the demand for IoT devices and their applications
is rapidly increasing. Some of the applications of IoT-based
networks include intelligent transit systems [1], industrial
automation [2], healthcare [3], smart homes [4], intelligent
farming [5, 6], environmental monitoring [7], etc. Due to their
wide range of applications, IoT-based networks have become
important in our everyday lives. At the heart of IoT devices lies
their ability to make informed decisions based on data gathered
through sensors or sensor networks. The growing IoT ecosystem

Abbreviations: IoT, internet of things; SDWSNs, software defined wireless sensor networks; WSN, wireless sensor networks.
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

© 2025 John Wiley & Sons Ltd.

demands the complex structure of Wireless Sensor Networks
(WSN) [8]. WSN consists of sensor nodes that sense and route
data but have limited connectivity, storage, and processing capa-
bilities. Managing extensive IoT device networks, particularly
in scenarios like WSNs operating in remote or inaccessible loca-
tions, poses significant challenges, including energy constraints,
network scalability, network security [9], and data transmission
reliability [10]. As WSN complexity grows, manual manage-
ment and maintenance of dense networks become unfeasible in
real-time. The SDWSNs address the constraints of standard WSNs
by separating the data plane and control plane. The data plane

Transactions on Emerging Telecommunications Technologies, 2025; 36:e70199 1 of 15
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