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ABSTRACT

Histopathological image classification is a vital component in disease diagnosis and treat-

ment, particularly for cancer. This thesis focuses on designing efficient methods for segmen-

tation, feature selection, and classification of histopathological images using enhanced meta-

heuristic algorithms.

An Enhanced Multi-Objective Grey Wolf Optimization (EMOGWO) algorithm was devel-

oped for segmentation, achieving a mean Dice coefficient of 0.964 and a segmentation accu-

racy of 96.4% on H&E-stained ER+ breast cancer images. Compared with baseline methods

(K-means-SC and MOGWO-SC), the proposed EMOGWO-SC improved boundary detection

accuracy by 3.2% and reduced computation time by 22%.

For feature selection, an Improved Multi-Objective Whale Optimization Algorithm (IMO-

WOA) was proposed. IMOWOA selected an optimal subset of features, reducing feature dimen-

sionality by 25–35% while maintaining high discriminative power. When applied to multiple

benchmark histopathological datasets such as BreakHis and BACH, the IMOWOA-based fea-

ture selection achieved an average classification accuracy of 98.1%, outperforming existing

techniques including DE, Jaya, and Adaptive Jaya by up to 4.5%. The framework also reduced

processing time by approximately 30%.

Comprehensive statistical analysis using IGD, SP, MS, and t-tests confirmed that the im-

provements were significant at a 95% confidence level (p < 0.05). The overall framework

demonstrates competitive accuracy, robustness, and computational efficiency, offering strong

potential for computer-aided diagnostic applications.

Keywords: Histopathological image classification, EMOGWO, IMOWOA, Feature selec-

tion, Metaheuristic optimization.
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CHAPTER 1

INTRODUCTION

This chapter introduces the domain of histopathological image analysis, emphasizing its im-

portance in medical diagnostics. It outlines the motivation behind the study, highlights key

challenges in automating the analysis process, and presents an overview of the thesis structure.

Specifically, this research focuses on enhancing three critical stages of histopathological image

analysis: nuclei segmentation, feature selection, and classification.

Image analysis plays a vital role in numerous fields, including robotics, computer vision,

and especially medical imaging, where its importance is elevated due to its direct impact on

public health. Within medical imaging, histopathological image analysis has emerged as one of

the most significant and challenging areas, essential for accurate disease diagnosis and effective

drug development. Histopathology refers to the microscopic examination of tissue sections to

identify pathological conditions. This process is traditionally performed by expert pathologists

in laboratories, relying on visual cues in stained tissue samples.

As biological tissues are inherently colorless, staining methods are applied to enhance cellu-

lar structures. The most widely used staining protocol is hematoxylin and eosin (H&E) staining,

where hematoxylin stains cell nuclei blue and eosin imparts a pink or red hue to the cytoplasm.

With the growing adoption of digital workflows, whole-slide image (WSI) scanners are now

commonly used in pathology laboratories to produce high-resolution digitized tissue images for

further analysis [1]. Automating histopathological image analysis enables consistent, efficient,

and objective evaluation of disease-related features. This process typically involves multiple

stages, including segmentation, feature extraction, feature selection, and classification. Figure

1.1 [2] illustrates two histopathological images showing healthy and inflamed tissues, respec-

tively.

The digitization of tissue slides has significantly enhanced the accuracy of disease diagno-
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(a) Healthy tissue (b) Inflamed tissue

Figure 1.1: Histopathological images.

sis by enabling pathologists to examine images on digital platforms [2]. However, the manual

interpretation of these large and complex images remains time-consuming, subjective, and de-

pendent on the pathologist’s expertise. This necessitates the development of automated methods

to assist in histopathological image analysis and reduce diagnostic variability [3].

Automated histopathological image analysis typically involves four main stages: segmen-

tation, feature extraction, feature selection, and image classification. The process begins with

the segmentation of the image into different regions of interest, such as nuclei, cytoplasm, or

background, to isolate key cellular structures indicative of disease. Next, a range of features

such as shape, texture, and intensity are extracted from these segmented regions to quantita-

tively describe their characteristics. Following this, feature selection techniques are applied to

identify the most relevant and discriminative features, reducing redundancy and enhancing sys-

tem efficiency. Finally, robust image classification methods categorize the processed images

into diagnostic classes, enabling reliable and scalable analysis of histopathological data.

The remaining chapter presents the motivation behind the study, major problems with man-

ual analysis, challenges in automating histopathological image analysis and organization of the

thesis.

1.1 Motivation

In recent years, rapid advancements in computational power and image analysis techniques have

enabled the development of powerful machine-learning algorithms for medical image analysis.

Moreover, the introduction of whole-slide scanners has allowed histopathological tissue slides
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to be digitized, making them readily accessible for computational evaluation.

Despite technological progress, histopathological image analysis continues to rely heavily

on y expert pathologists’ manual interpretation, primarily due to the variability and complexity

of the images. This process is time-consuming and prone to subjectivity, as diagnostic outcomes

often depend on the experience and judgment of the individual. Automating this task can im-

prove efficiency and consistency by incorporating machine intelligence to assist and support

pathologists.

Automated identification of inflamed tissues can reduce inter-observer variability and en-

hance diagnostic accuracy. However, automating histopathological image analysis remains

challenging due to morphological complexity and technical variations, including differences

in organ structures, imaging devices, slide orientations, and staining methods [4]. Addition-

ally, histopathological images often have much higher data density than other modalities, such

as radiological imaging, which complicates feature descriptor design and affects classification

performance [5].

1.2 Major Problems with Manual Analysis

Histopathological image analysis is essential for both disease diagnosis and pharmaceutical

development. Despite the availability of modern diagnostic technologies, this analysis is still

largely performed manually. Manual evaluation of high-resolution images demands significant

time and effort from pathologists. The key issues associated with manual analysis are outlined

below:

• Scarcity of expert pathologists: With advances in medical imaging, pathology labora-

tories now generate vast amounts of data daily. As a result, there is a growing global

demand for skilled pathologists. For example, in Australia, the Australian Medical Work-

force Advisory Committee has acknowledged a shortage of qualified professionals [6].

• Variability and subjective observations [5] [7]: Diagnostic conclusions can differ based

on the experience and training of individual pathologists. Such variability may lead to

inconsistent, delayed, or incorrect treatment decisions.

• Morphological complexity of tissue structures [5]: Histopathological images contain

various morphological structures and complexities, such as the use of different staining
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dyes, illumination variations at the time of capturing the images, different shapes and

sizes of nuclei, and many more. These factors make consistent manual analysis extremely

challenging..

• Time-consuming and labor-intensive: The manual analysis of a histopathological im-

age requires at least three to four hours of sitting, and the evaluation of quantitative

properties makes it a more complex task. Further, if the images are captured at a high

magnification rate, then more time is needed by the pathologists to analyze the whole

slide.

To overcome the shortcomings mentioned above, the automated analysis of histopatholog-

ical images may be used. An automated image analysis system can provide meaningful data

more accurately and in a timely manner for histopathological images. This reduces the work-

load on the pathologists and creates less human subjectivity. This process enhances the manual

analysis process by generating reliable and fast results. Recent advancements in computer vi-

sion and image analysis open up various opportunities to design and develop an automated

system for histopathological image analysis. These systems help make unbiased, efficient, and

accurate analysis reports promptly and perform automated nuclei segmentation, feature extrac-

tion, feature selection and classification of different tissue types, which can be accessed widely

as a tool for research.

Therefore, the development of automated histopathological image analysis methods has

emerged as a significant research problem in medical imaging [5][2][8]. However, there are

many problems associated with the development of such an automated system. The following

section discusses the various challenges in the automation of histopathological image analysis.

1.3 Challenges

Though many histopathological image analysis methods are available in the literature which

show quite promising results, there still exist some challenges which affect the accuracy of the

system. This needs the attention of the researchers for improvements so that the expectations of

the pathologists can be fulfilled.

1. Variations in the color and illumination: Histopathological images are the colorful tis-

sue images after staining and captured by the whole slide scanners. The color provided
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by staining methods may vary as it is a manual process, and similarly, there may be vari-

ations in the illumination light while capturing the images. These color and illumination

variations may degrade the automated system’s performance significantly [9].

2. Different staining methods: Most of the works for histopathological image analysis

have been done on tissue section images stained with some chemicals like immunohis-

tochemical (IHC), immunofluorescence (IF), and haematoxylin & eosin (H&E). These

staining procedures are very costly and time-consuming. The use of multiple staining

methods to prepare histopathological images makes the analysis difficult for automated

methods [5] [10].

3. Enormous density of data: An additional obstacle in the automated histopathological

image analysis is the huge density of the data as compared to other biomedical images

like tomography, radiology, and other image modalities, which has to be contended by

the automated methods. For example, the chest CT scan, captured on high resolution,

consists of approximately 143 million pixels with 512×512×512 spatial elements. On

the other hand, the biopsy tissue of the prostate, captured at 40× resolution by a whole

slide image scanner, consists of approximately 235 million pixels with 15,000×15,000

elements. Moreover, for one patient study, there is a requirement of 10 to 20 biopsy sam-

ples which results in generating a huge amount of data of approximately 3 to 4 billion

pixels. Therefore, unlike the automated methods proposed for radiology and other medi-

cal imaging, automated histopathological image analysis methods are usually built so that

they have to perform efficiently and accurately on high density data.

4. Multimodal data fusion: Histopathology is generally used to study cancer in the pa-

tients, but the diagnosis and prognosis of cancer in patients are very hard. Two patients

are going through the same treatment procedure with the same disease, it may result in

different outcomes. The reason for this difference may be patient-specific or due to the

lack of related information between the progression of the disease and clinical aspects.

There is common consent between scientists and pathologists that understanding tumor

visual morphology using automated image analysis methods, along with disease classifi-

cation will result in better treatment and patient care. Therefore, multimodal data fusion

has emerged as a relevant challenge for digital pathology labs for recommending patient

treatments.
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5. Maintenance of image data: A large amount of data is generated due to the advance-

ments in digital imaging tools and image acquisition methods. The storage, registration,

maintenance, and transmission of such a large volume of data is challenging. The spectral

imaging data from the slide scanner makes the problem more complex.

1.4 Organization of the Thesis

For histopathology, computer vision, and biomedical scientists, the above-mentioned challenges

will open various research problems and opportunities to develop new image analysis methods.

Pathologists and computer scientists work together with microscopy and slide scanner ven-

dors to build innovative and novel methods to solve various challenges of image analysis in

digital pathology. Furthermore, in the last few years, histopathological digital images have

rapidly increased over the internet, and there is a need to organize them properly to enhance

researchers’ retrieval and analysis processes. Hence, an automated system for histopathological

image analysis can prove to be beneficial. Numerous automated techniques for histopatholog-

ical image analysis have been reported in the literature. These techniques include graph-based

algorithms, hashing, bag-of-features, and deep neural networks. Grey wolf optimization and

whale optimization methods are widely used in image analysis, particularly for nuclei seg-

mentation, feature selection and classification in histopathological images. However, there is

a need for improvement in the different phases of wolf optimization and whale optimization

methods. The fundamental goal of this thesis is to design and develop effective methods for

histopathological image analysis. The main contribution of the thesis is four-fold. Its first goal

is to create an effective nuclei segmentation technique based on clustering. The suggested ap-

proach uses a unique multi-objective grey wolf optimizer variation to discover the ideal cluster

of centroids. Second, images of Estrogen Receptor-Positive (ER+) breast cancer stained with

H&E have been employed to segment nuclei using the proposed EMOGWO. The segmentation

accuracy of the suggested technique is empirically tested against K-means-SC and MOGWO-

SC. Third, a new improved multi-objective whale optimization algorithm-based feature selec-

tion method has been proposed. The proposed algorithm is validated against three additional

cutting-edge techniques, MOPSO, MOEA/D, and MOWOA. Fourth, the proposed IMOWOA-

FS method is applied to real-world histopathological image datasets for classification using five

widely-used classifiers—ZeroR, SVM, LDA, RF, and KNN. The classification results obtained
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using IMOWOA-FS are compared against those achieved using three existing feature selection

techniques: Differential Evolution (DE), Jaya Algorithm, and Adaptive Jaya Algorithm. The

comparison is carried out across multiple evaluation metrics, including classification accuracy,

number of selected features, and computational time, to demonstrate the effectiveness and gen-

eralizability of the proposed method. The complete workflow of the thesis is shown in Figure

1.2. The remaining material is arranged in the following chapters.

Figure 1.2: The workflow of the proposed research work.

Chapter 2 This chapter provides a comprehensive literature review covering each stage of

histopathological image analysis, including segmentation, feature extraction, feature selection,

and classification. Based on this review, existing research gaps are identified, and corresponding

research objectives are formulated.
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Chapter 3 This chapter introduces a novel nuclei segmentation technique based on Enhanced

Multi-Objective Grey Wolf Optimization integrated with Superpixel Clustering (EMOGWO-

SC). It elaborates on the proposed methodology and provides a comparative performance anal-

ysis against other state-of-the-art multi-objective optimization algorithms.

Chapter 4 This chapter proposes an Improved Multi-Objective Whale Optimization Algo-

rithm (IMOWOA) for optimal feature selection in histopathological image analysis. The chap-

ter describes the objective functions, algorithm enhancements, and experimental evaluation,

highlighting the method’s effectiveness in reducing feature dimensionality while maintaining

or improving classification performance.

Chapter 5 This chapter applies the IMOWOA-based Feature Selection method (IMOWOA-

FS) to classify histopathological images using selected features. The chapter evaluates clas-

sification performance across multiple datasets using various machine learning classifiers, and

compares the results with those from existing feature selection techniques in terms of accuracy,

efficiency, and feature reduction.

Chapter 6 This chapter concludes the thesis by summarizing the major research contribu-

tions and findings. It also outlines potential directions for future work, focusing on improving

automated histopathological image analysis and extending the proposed methods to broader

biomedical imaging challenges.
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CHAPTER 2

LITERATURE REVIEW

This chapter presents a comprehensive review of existing techniques for histopathological im-

age analysis, focusing on its key phases: segmentation, feature extraction, feature selection, and

classification. It systematically examines the strengths and limitations of various approaches,

leading to the identification of critical research gaps. Based on this analysis, the chapter con-

cludes by outlining the research objectives addressed in this thesis.

2.1 Introduction

Histopathology images provide a detailed view of diseases and their effects on tissues. Under

a microscope, these images can be examined to detect the presence of conditions such as can-

cer. Computer-Aided Diagnosis (CAD) plays a key role in histopathological image analysis,

helping improve the accuracy and efficiency of disease detection. Digital image processing

methods like preprocessing, segmentation, feature extraction, and classification are required to

implement computer-assisted analysis systems. Along with disease grading, illness severity can

be determined by automatically extracting quantitative measurements of disease characteristics

from histopathological images. Numerous cancer detection and grading applications, including

prostate, breast, renal cell, neuroblastoma, and lung cancer, have been studied using computer-

aided histopathology. The histopathological images are examined using various segmentation,

feature extraction, feature selection and classification methods.

An automated histopathological image classification system’s general architecture is shown

in Figure 2.1. It is primarily made up of two stages: the training and the validation phase.

The initial stage is known as the training phase, during which a sample of histopathological

images is chosen randomly from the database and transformed using an image representation
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technique into feature vectors. The image labels for training are provided as input to the learning

model or classifier. Using the same image representation technique, a histopathological image is

chosen from the image database and transformed into a feature vector using the trained learning

model. The trained learning model receives the produced feature vector and uses it to predict the

image’s label. Consequently, the image representation approach is crucial in the classification of

histopathological images, and the system’s accuracy largely depends on how well it performs.

The histopathological image classification approaches may be categorized into three groups

Figure 2.1: General workflow of an automated histopathological image classification method.

based on image representation techniques: statistical methods, learning-based approaches, and

methods based on mid-level representations, as depicted in the Figure. 2.2.

2.2 Image Representation Techniques

Statistics-based image representation techniques, which rely on pixel-level processes, extract

local or low-level features from histopathology images. Without requiring segmentation, the

features offer great insights about the contents of the medical images for the categorization as-

signment. For instance, morphological characteristics have been utilized to identify vessel-like

structures in medical images [11]. An image area that differs from its immediate vicinity is rep-

resented as a low-level feature [12]. “Handcrafted features” is another term for these qualities.

Various customized feature extraction techniques are designed and applied to extract the hand-

made characteristics from the images [13]. Numerous features of cells and nuclei, such as size,

shape, color, texture, and distribution of nuclei in tiny areas or patches, are recorded using sta-
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Figure 2.2: Categorization of histopathological image classification techniques based on image representation.

tistical techniques [14]. While several graph-based characteristics, including minimal spanning

tree, query graphs, delaunay triangulation, and others, have been employed to reveal spatial pat-

terns or structures [15]. However, the intricate visual morphological features in histopathology

images cannot be expressed by statistically based image representation techniques [16]. Sev-

eral learning- based techniques have been employed for image representation to get around the

issue.

Various machine learning algorithms are employed by the learning-based image representa-

tion techniques to extract features from the images automatically. The features are presented in

a further structured and seamless manner using different approaches, such as RBMs (Restricted

Boltzmann machines) [17], auto-encoders [18], CNNs [19], and Sparse representation [20].

Many learning-based image representation methods are computationally intensive when deal-

ing with complex histopathological images [16]. Cruz-Roa and others [21] introduced a deep

learning approach designed to identify basal cell carcinoma automatically. An interpretation

layer is incorporated into this model that highlights patterns distinguishing normal from malig-

nant tissues. Researchers [2] suggested a sparsity model that uses sparse linear combinations of

training samples with channel-specific restrictions to represent each histopathology image with

several color channels. They also presented a locally robust variant of this method to handle
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the different spatial locations of image items. Arevalo and others [22] employed an unsuper-

vised feature learning method for analyzing histopathological images. They employed different

techniques, including topography-based independent component analysis and reconstruction,

as well as sparse autoencoders, to model local patches. To capture global image representa-

tion, they employed a CNN. Xu and others [23] utilized a stacked sparse auto-encoder for the

automated identification of nuclei in histological images of breast cancer. Also, they trained

a deep CNN to extract features for segmenting epithelial and stromal tissues in breast cancer

histopathological images [19]. Furthermore, authors [20] proposed an approach for automati-

cally learning features from histological images with intricate morphological patterns, utilizing

class-specific dictionaries with sparsity constraints. These learned dictionaries were then used

to classify and grade numerous diseases through histopathological images. Additionally, while

the patch-selection methods described in [20] are efficient, they often struggle to detect inflamed

or malignant samples, especially when the malignant areas in the images are small.

Mid-level representations of the images are global representations created by mid-level fea-

ture extraction algorithms using local or low-level feature descriptors. Since these global fea-

tures are derived from local descriptors, they are closely aligned with image-level information.

The process of obtaining mid-level representations generally involves three main steps [24]: (i)

local feature extraction, (ii) codebook construction, which identifies visual words from the ex-

tracted feature set, and (iii) encoding, which usually creates a histogram of visual words from

each image. These histograms are then used to train a classification system. Several mid-level

image representation techniques exist across the literature, with some of the most commonly

employed being the NeTra toolbox [25], the RETIN system [26], and the superpixel method

[27]. The NeTra toolbox made the first significant contribution to the mid-level representa-

tion paradigm. It employs unsupervised learning to build a codebook based on descriptors

of color points, utilizing the Linde–Buzo–Gray (LBG) algorithm [28] for vector quantization.

Subsequently, the RETIN system [26] applied self-organizing maps [29] to create a codebook

from Gabor feature vectors. The mid-level representation technique became widely used in the

Video Google framework. Sivic and Zisserman [30] supported the bag-of-features approach for

retrieving objects and scenes, extracting features through the Scale-Invariant Feature Transform

(SIFT), and forming the codebook using K-means. Csurka and others [31] further employed

this method for image categorization. Recently, researchers [32] proposed a multiphase image

segmentation method based on fuzzy segmentation, while Bakr Ahmed Taha and others [33]
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introduced a segmentation method to calculate the density of SARS-CoV-2 spike proteins em-

ploying superpixels. Superpixel segmentation techniques are investigated in this work for the

categorization of histopathology images. Modern techniques employed at different stages of

the segmentation process for histopathological image categorization are shown in the section

that follows.

2.3 Superpixel Algorithm-based Feature Extraction Methods

The superpixel approach has emerged as a practical mechanism for classifying histopathology

images. There are typically four main phases: (i) Superpixel algorithm-based feature extrac-

tion (ii) clustering (iii) feature encoding and (iv) classification. The following sections provide

a thorough overview of each stage of the superpixel approach. There are several superpixel

algorithms available, each with their own strengths and weaknesses. Depending on the major

properties, we can divide superpixel segmentation techniques into four categories:

2.3.1 Watershed-based Techniques

Based on region-based segmentation, the Watershed-based Technique is a segmentation method

that uses image morphology. According to the watershed approach, pixels in the darker sections

are called valleys, and pixels in the brighter portions are ridges. The ridge height is typically de-

termined by the grayscale values of individual pixels or the gradient magnitude associated with

those pixels. Several watershed-based techniques include Watershed (W), Compact Watershed

(CW), Water Pixels (WP), and Morphological Superpixel Segmentation (MSS).

2.3.1.1 Watershed

This methodology employs a typical watershed-based approach where the image is processed

using markers [34]. The number of superpixels can be calculated using the number of present

markers in the image. This method also provides compactness.

2.3.1.2 Compact Watershed (CW)

The compact watershed methodology is a seeded watershed segmentation method that considers

superpixels’ compactness restrictions to limit the number of superpixels [35]. In CW, the water-



14

Table 2.1: Categorization of feature extraction methods used in Superpixel. [38].

Category Classification Comments

Watershed-based Region Based Segmen-
tation

Consider bright region as
ridge and dark region as val-
ley

Graph-based Connected Components Treat image as undirected
graph

Energy Optimiza-
tion Technique

Regular Grid Based on the energy pixels
and superpixels are swapped

Clustering-based
Technique

Clusters of Superpixels Cluster based on some type
of similarity

shed incorporates the controlled compactness limitations to assess their impact on segmentation

quality.

2.3.1.3 Morphological Superpixel Segmentation (MSS)

Using MSS, the image can be segmented more quickly. This method produces the segmentation

markers and eliminates the extreme local spatial intensities that are irrelevant to the image [36].

2.3.1.4 Water Pixels (WP)

Superpixels segmented into “water pixels” are based on the watershed transformation [37]. To

create a modifiable trade-off between superpixel and adherence to object boundaries regularity,

the WP method leverages the spatially regularized gradient. The identification of markers,

which serve as the starting points for flooding, along with the establishment of a gradient,

contributes to the formation of water pixels in the watershed segmentation technique.

2.3.2 Graph-based Techniques

The images will be treated as a graph (an undirected graph) by graph-based techniques. The

edge weight is regarded as the similarity of the nearby pixels, and the pixels in the image are rep-

resented as nodes. Other variations of graph-based techniques include Normalized Cuts (NC),

Felzenswalb and Huttenlocher (FH), Lazy Random Walks (LRW), Entropy Rate Superpixels

(ERS), Homogeneous Superpixels (HS), and Proposals for Objects from Improved Seeds and

Energies (POISE).
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2.3.2.1 Normalized Cuts (NC)

The elements in the normalized cut technique are the nodes and the edges. Nodes represent

items, whereas edges represent similarity between items [39] [40]. In this method, the network

is split into two subgroups, one with nodes that have a high degree of similarity and the other

with nodes that have a low degree of similarity. It is discovered that the N cut algorithm’s

complexity is O(n3/2); where n denotes the number of pixels present in the image.

2.3.2.2 Felzenswalb and Huttenlocher (FH)

A minimum spanning tree of necessary pixels is created in the FH technique to identify the

superpixels [41]. The Dijkstra algorithm is used to find the graph’s shortest path. It divides

nodes so that the components with a relatively low weight are located on the inside edges, and

those with a relatively high weight are located between the edges. The superpixels produced

with this method are of erratic size and shape. The Felzenswalb and Huttenlocher (FH) approach

has an O(nlogn) level of complexity.

2.3.2.3 Lazy Random Walks (LRW)

In the LRW method, image pixels function as nodes, while edges are determined using the

Gaussian weighting function [42][43]. The energy function connected to texture measurement

and iterative time is used in this technique to optimize the superpixels iteratively. With this

technique, the object boundaries are precisely established.

2.3.2.4 Entropy Rate Superpixels (ERS)

When using the ERS technique, the image’s nodes are characterized by the pixels, and the edges

connecting the pixels are shown as a function of their pairwise similarity [44]. The major goal

of this method is to take the subset of edges with N-connected subgraphs out of the final graph,

where N is the number of superpixels. The entropy rate superpixel’s time complexity is O(n).

2.3.2.5 Homogeneous Superpixels (HS)

In the HS methodology, the edges are taken into account by calculating the similarity of an

initialized adjacency matrix, while the nodes are taken into account as the input pixels [45]. This

method uses compact pruning to reduce computation time and prevent uneven pixel distribution.
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2.3.2.6 Proposals for Objects from Improved Seeds and Energies (POISE)

By combining the pixels, POISE process creates superpixels from the bottom up [46]. POISE

will create a superpixel by creating a set of seeds that almost completely cover a variety of sized

objects in a huge number. The min cuts parameters are allowed to operate at their maximum

capacity.

2.3.3 Energy Optimization Technique

The Energy Optimization Technique gradually maximizes the specified energy. The image is

divided into a regular grid in the first phase of the superpixel segmentation process, and pixels

are switched between neighbouring superpixels according to energy. This approach provides

flexible control over the number of superpixels, compactness, and iterations; this is usually

haltable at any point. Contour Relaxed Superpixels (CRS), Superpixels Extracted by Energy-

Driven Sampling (SEEDS), and Extended Topology Preserving Segmentation (ETPS) are most

widely used energy optimization technique.

2.3.3.1 Contour Relaxed Superpixels (CRS)

The creation of superpixels using CRS aims to maximize contour conformity to a Gibbs-Markov

random field model as well as texture uniformity within each patch [47][48]. It was decided to

reframe the superpixel segmentation challenge as an estimation issue. The energy function that

has to be maximized in CRS depends on the statistical model applied to the images and has a

relatively small number of design variables. It may make the model into a viable superpixel

technique by including a compactness term.

2.3.3.2 Superpixels Extracted via Energy Driven Sampling (SEEDS)

The superpixel partitioning phase is the first step in the SEEDS technique [49]. The boundaries

of the superpixels are then modified in accordance with the energy function to refine them. The

function’s two terms, color term and boundary term, are defined by the color histogram and

superpixel boundaries. The energy function can be resolved via hill-climbing optimization. The

duration of SEEDS’ iterations is related to its overall length. The authors claim that SEEDS has

real-time capabilities. SEEDS features form a lot of irregularity, making it difficult to manage

the number of superpixels.
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2.3.3.3 Extended Topology Preserving Segmentation (ETPS)

The ETPS method [50] efficiently determines the objective function’s local optimal value throu-

gh a coarse-to-fine segmentation process. It arranges every superpixel within a square grid of

identical size and calculates the initial center position and average color for each superpixel. It

then makes layers with varying grid sizes for each layer. One-fourth of the main grid is used

for the first layer, one-fourth of the first layer is employed for the second layer, and so on, down

to one pixel. Boundary blocks are added to FIFO queue and configured for each layer. Every

time, it is taken from the queue to see if the link between the superpixels would be broken by

removing this boundary block from its superpixel. If not, an attempt is made to combine the

block with an adjacent superpixel to reduce the value of the goal function. At coarser levels, the

ETPS method reaches an improved local optimum much more quickly, while at finer levels, it

gradually converges toward the final local optimum.

2.3.4 Clustering-based Technique

Clustering-based Techniques aggregate pixels into several clusters known as superpixels, and

are the driving force behind the clustering-based approaches. These methods use adjustable

iterative compactness. TurboPixel (TP), SLIC, Depth-Adaptive Superpixels (DASP), VCells

(VC), Voxel-Cloud Connectivity Segmentation (VCCS), and Linear Spectral Clustering (LSC)

are a few examples of clustering-based approaches.

2.3.4.1 TurboPixel (TP)

TP [51] adapts to local image structures by employing dilated seeds to segment an image into

a compact, tiny structure that resembles a lattice. TurboPixel locates a cluster of seeds using

level-set-based geometric principles. The geometric flow seeks to create regular superpixels

by starting with the local image gradient. Unlike watershed superpixels, TP superpixels are

limited to a consistent size, compactness, and adherence to borders. It employs a method that

combines a skeletonization operation on the background region with a curve evolution model

for dilatation to prevent the growing seeds from overlapping.
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2.3.4.2 Simple Linear Iterative Clustering (SLIC)

SLIC [52] uses K-means clustering, which groups pixels in the image plane according to color

proximity and similarity. Due to its simplicity, speed, and capacity to produce uniform, compact

superpixels that adhere well to object borders, SLIC is frequently employed.

2.3.4.3 Depth-Adaptive Superpixels (DASP)

The depth of the image is used to define the density of the superpixel clusters in the DASP [53]

clustering approach, which will ensure the absence of blue noise. The clustering method is then

applied to the given data points to produce improved superpixel centers.

2.3.4.4 VCells (VC)

VC [54] divides a image into smaller, uniformly sized and shaped parts. The segmentation

boundary is subsequently modified using the Edge Weighted Centroidal Voronoi Tessellation

(EWCVT) model to meet the compactness requirements.

2.3.4.5 Voxel-Cloud Connectivity Segmentation (VCCS)

VCCS [55] uses unique voxel connections to produce superpixels. In this method, 3D point

cloud data is used to create superpixels and supervoxels. In VCCS, the labelling of points

is produced by utilizing a K-means clustering version. The seed points are identified as the

cluster’s core when the neighbouring graph for the voxel is built. Then, until the stable clus-

ter center is reached, the cluster’s center is modified using the Fast Point Feature Histograms

(FPFH) space[56].

2.3.4.6 Linear Spectral Clustering (LSC)

Using kernel functions, a type of superpixel segmentation known as LSC transforms image

pixels into ten-dimensional feature space-weighted points [57]. The entire image is then sub-

sequently sampled from the seed pixels, which act as search centers. The feature vectors of

these seeds are employed as the initial weighted means for the clusters. The cluster whose

weighted mean in the feature space is closest to the pixel’s vector is then assigned to each pixel.

The weighted mean and the search for the center of each cluster are then adjusted accordingly.
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These two steps will be repeated until the cluster centers become stable. It has more regular

superpixels and keeps the image’s global properties in contrast to the SLIC.

2.4 Computational Intelligence Techniques for Superpixel Segmentation

Several computational intelligence techniques have been developed for superpixel segmenta-

tion, with the most prominent ones listed below.

2.4.1 Conventional Superpixel Segmentation Techniques

A group of image-building elements called ”superpixels” are built of pixels with comparable

characteristics, including color, texture, and brightness. SLIC is considered the finest among

the existing superpixel models. In FLAIR MRI, Soltaninejad and others [58] suggested au-

tomating the segmentation and detection of brain tumors using highly randomized trees based

on superpixels. A variety of cutting-edge imaging characteristics, including intensity-based,

Gabor textons, fractal analysis, and curvatures from each superpixel inside the entire brain area,

are calculated using FLAIR MRI to assure a reliable classification.

An adaptive superpixel generation technique built upon the modified version of SLIC, known

as SLIC with 0 parameters (SLIC0), was proposed by Yuan C et al. [59]. The SLIC technique

uses the K-means clustering algorithm to separate images into superpixel patches. The distance

metric used by this clustering method considers both the distance between pixels in grey space

and their euclidean distance. The following equation can be used to determine the separation D

between two pixels[60].

D =

√
d2

c +

(
ds

S

)2

C2 (2.1)

where S is the range of clustering limit with the value of S=
√

N
K , N is the number of images,

K is the total superpixels, and C is the balancing parameter defined as Compactness. Values of

C and K are set manually. Therefore, the effectiveness of segmentation is directly impacted by

the selection of these two criteria. The value K determines the size of the superpixel block. As

the value of K increases, the number of uneven patches decreases. Compactness C determines

the amount of spatial distance. When C is large, the boundary of the superpixel smoothes out,

and the proportion of spatial distance increases. The superpixel border will be near the edge of
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the image when C is small, but its size and form will be irregular.

Therefore, determining the best K and C is essential for a successful SLIC algorithm im-

plementation. The SLIC with 0 parameters (SLIC0) strategy improves the C value selection by

changing the fixed SLIC value into an adjustable value for each superpixel in the first iteration.

The findings demonstrate that the SLIC0 approach is capable of creating reasonably regular su-

perpixels in terrain that are both fat and very variable, bringing the superpixels close to tumor or

oedema regions. Thus, the hyper-parameter C selection problem is resolved by the SLIC0 ap-

proach, which changes the primary superpixel segmentation challenge into the hyper-parameter

K selection problem. The segmentation performance of the suggested method is good. Com-

pared to the ground truth, the segmented tumor’s average dice coefficient, hausdorff distance,

sensitivity, and specificity are, respectively, 0.8492, 3.4697 pixels, 81.47%, and 99.64%. Strong

stability is demonstrated by the suggested approach in both high- and low-grade glioma sam-

ples. Experimental results indicate that the recommended technique outperforms the alternative

methods.

In 2016, Wu and others [61] ] proposed a unique cartoon segmentation method based on en-

hanced SLIC superpixels and introduced an adaptive area propagation merging approach. The

superpixels produced by the SLIC method may have constant sizes, but they do not necessar-

ily line up with the edges of the image. To address this flaw in the original SLIC algorithm,

this study offered a method to improve the quality of superpixel production based on the con-

nection constraint. Thanks to the improved method, superpixels can always be produced with

great inner connection and independent bounds. The algorithm may join superpixels with sim-

ilar properties after they have been created to create a segmented area. The merging stage

employs Adaptive Region Propagation (ARP), unlike earlier techniques, which mainly utilize

Affinity Propagation (AP). Since the unique ARP merging method immediately applies color

and spatial similarity between two nearby superpixels with a configurable propagation center, it

is more flexible and efficient. The approach is significantly faster to utilize since it is based on

superpixels. The method consistently produces cartoon image segmentation results that are in

accordance with human perception and beat conventional segmentation algorithms, according

to experiments[62].

Researchers [59] proposed a spectral clustering technique based on the spectral graph theory.

Spectral clustering is one of the most powerful clustering techniques. However, there are several

downsides when using spectral clustering for image segmentation. The spectral clustering al-
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gorithm’s similarity matrix expands in size, making it challenging to store and deconstruct, just

like with large-scale image data and increasing image resolution. The Gaussian kernel function

is commonly used as a similarity measure in spectral clustering; however, its use increases com-

putational costs. Choosing an appropriate setting is challenging because the scale parameters

in this measure are highly sensitive to spectral grouping. It delivers poor results when used to

segment images with noise contamination. This yields a near match to professional delineation

across all glioma grade ranges, yielding a rapid and reproducible glioma segmentation method.

Yuan and others [59] proposed an image segmentation approach that combines a Mod-

ified Density-Based Spatial Clustering of Applications with Noise (MDBSCAN) superpixel

segmentation method with spectral clustering to improve both accuracy and computational ef-

ficiency. Their method begins by segmenting the image into superpixels using MDBSCAN,

which enhances the traditional DBSCAN-S by operating in the CIELAB color space and ex-

panding the neighborhood search to better respect object boundaries. Each superpixel is then

represented by spatial and color features, which are clustered using a Kernel Fuzzy C-Means

(KFCM) algorithm. To overcome the noise sensitivity of conventional similarity measures,

the authors introduced a new kernel fuzzy similarity measure to build the affinity matrix for

the Ng–Jordan–Weiss (NJW) spectral clustering method. This framework effectively reduces

computation costs and demonstrates superior segmentation performance compared to existing

techniques

Adjei and others [63] implemented SLIC superpixels with optimized thresholding algo-

rithms for automatic brain tumor segmentation. Numerous studies have been conducted on

tumor segmentation utilizing artificial neural networks, machine learning, and generic image

segmentation methods such as K-means clustering, fuzzy C-means clustering, and watershed

approaches. Other approaches, such as histogram-based methods and region-based approaches

(region splitting, growing, and merging), have also been employed. The disregard for lim-

its, convenience, adaptability, and compactness are all barriers to these solutions. One well-

known factor in boundary violations is that most segmentation approaches encounter this issue,

which results in failure for the majority of automatic and semi-automated image classification

systems. Because tumors may occur anywhere in the brain and are inherently irregular in form,

it might be challenging to segment them accurately enough for therapeutic use.

Chen and others [64] highlighted that both traditional and advanced superpixel techniques

emphasize on improving border adherence over computation, as superpixel segmentation is in-
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creasingly utilized as a preprocessing step in image processing. As a result, the over-segmentati-

on and redundant superpixels of the smooth linked region are typically disregarded. Superpixel

boundaries thereby remove the complex and useless secondary texture and contour informa-

tion from the image. These limits will make image processing, such as image segmentation

and image recognition, more difficult and complicated. This study primarily focuses on super-

pixel segmentation, aiming to reduce redundancy in smoothly connected regions while filtering

out complex and irrelevant background textures. This approach enhances the retrieval of key

textures and the outlines of prominent objects in an image.

2.4.2 Deep Learning Techniques

It is a tedious procedure that takes a long time for pathologists to manually analyze the cell

morphology in high-definition histopathology images. Recent developments in imaging tech-

nology have made it possible to uncover more precise information about the cells. Albayrak

and Bilgin proposed a combined method of SLIC and CNN to segment the cellular structures

[65]. The imaging method used can potentially capture a significant portion of essential tissue.

As a result, examining a wide range of cellular structures can be challenging and time-intensive

for pathologists. This issue highlights the need for auxiliary decision support systems capable

of analyzing images from imaging devices.

Because the image segmentation algorithms (such as Watershed, N-Cut, etc.) primarily seg-

ment a image by extracting its basic properties, their results do not convey semantic information

[66]. Advances in deep learning have led to the suggestion of a series of semantic segmentation

methods based on CNNs represented by Fully CNN (FCNN). Since then, semantic segmenta-

tion in image segmentation has evolved to a new level. Deep CNNs (DCNNs) are excellent at

modeling objects and extracting information.

Semantic segmentation on aerial images is challenging for three reasons, though: (1) In

high-resolution images, the size of the object in the foreground varies substantially. (2) There is

an uneven edge on one or more foreground items. (3) The background is detailed and contains a

variety of features. The sophisticated context information in aerial images is a challenge to the

current semantic segmentation methods. To address the aforementioned problems, a superpixel-

GNN with an attention mechanism-based semantic segmentation technique for aerial images is

proposed. First, superpixels are separated from the aerial image. Then, each of these superpixels
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serves as a node in a graph that is created. The last stage in creating edges (superpixels) is

identifying neighbours in the spatial connection between these nodes. Each node’s beginning

representation is the output of the semantic segmentation CNN or the image feature vector,

and it is modified repeatedly using recursive techniques. Public datasets surpass all benchmark

approaches, achieving 90.23% and 89.32% on the Potsdam and Vaihingen datasets respectively.

Unmanned vehicles, in particular drones and autonomous vehicles, are increasingly widely

employed in our daily lives because of recent developments in robotics and artificial intelli-

gence. The rapid development of Unmanned Surface Vehicles (USVs) has increased the focus

of the marine sector on this trend. USVs can perform a variety of tasks, such as communication,

gathering environmental data, search and rescue, and scientific inquiry. The sensors in USVs

may have a variety of disadvantages, such as poor detection accuracy, a decreased ability to

locate submerged impediments, and high expenses, especially for Light Detection And Rang-

ing (LiDAR) sensing. Visual cameras have gained popularity for object detection in maritime

environments in recent years, owing to their ability to provide rich texture information and their

relatively low cost. For environment sensing, low-cost cameras may find it difficult to deliver

consistent detection, which may be problematic when the environment at the water’s surface has

few distinguishing features. Deep learning has lately generated a lot of interest because of its ef-

fective feature extraction capabilities. Semantic segmentation, a computer vision task requiring

the input of raw data (such as images), and even the construction of masks with highlighted re-

gions of interest, is one of the key applications of deep learning. Semantic segmentation-based

obstacle identification may assist USVs in identifying potential collision dangers while they are

engaged in activities.

The authors [67] developed a model by inventively combining SLIC and Deep Neural Net-

work models in order to improve segmentation accuracy, notably for obstacle edge identification

in maritime situations. The proposed SLIC-enabled model has a significant capability in grasp-

ing the semantics of the environment, as evidenced by the results of enhanced cross-validations

based on three different marine datasets. The findings show that a high obstacle detection

accuracy can be attained when utilizing the segmentation provided by the proposed network.

Similarly, the performance of obstacle detection is tested using a range of real-world marine

datasets.

The authors [68] explored deep learning methods for tongue segmentation. However, the

segmentation of the tongue’s contour can be imprecise when its color is similar to that of the
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surrounding area, potentially affecting the subsequent quantitative analysis. To address this, the

authors developed a Traditional Chinese Medicine (TCM) tongue segmentation technique that

combines CNNs with superpixels, aiming to improve accuracy in processing tongue margins

and solve issues like over-segmentation and under-segmentation. The main objectives were to

achieve consistent segmentation and enhance the detection of tongue margins across different

imaging conditions. This work is done in three steps: (1) A novel tongue segmentation model

was created using the ResNet18 residual structure as the feature abstraction layer for encod-

ing. (2) Given the background noise in tongue images and processing errors at the tongue’s

borders, superpixel image segmentation was recommended to improve accuracy. (3) The new

model was compared with traditional convolutional networks (FCN and DeepLab) to evaluate

its performance in segmenting tongue data before and after integrating superpixels. SpurNet,

a novel CNN-based approach for tongue image segmentation using superpixels, was proposed.

The proposed model was evaluated alongside conventional segmentation methods (FCN and

DeepLab) using a dataset containing 367 manually annotated tongue images. SpurNet exhib-

ited robust results through tenfold cross-validation, attaining a PA of 0.9145±0.0043, MPA of

0.9168±0.0048, MIoU of 0.8417±0.0072, and FWIoU of 0.8454±0.0072.

Graph-based, clustering-based, and thresholding-based methods for image segmentation

have been replaced in recent years by superpixel-based techniques. Although the superpixel

segmentation technique, particularly salience detection, is widely employed in the field of com-

puter vision, its applicability in biological imaging is relatively limited. Although the superpixel

technique has been widely used in various biomedical image processing applications, such as

brain MRI segmentation, optic disc segmentation, and glaucoma screening, few studies have ex-

plored its application in digital histopathology images. The superpixel technique plays a crucial

role in histopathological image analysis, as cellular structures exhibit distinct characteristics

across local regions. Conversely, deep learning models have been widely applied in medical

image processing. Deep learning, a neural network-based approach, can be used to identify and

segment digital images. Most of the proposed methods are divided into two stages. First, the

SLIC superpixel technique is applied as a pre-segmentation step to separate cellular and non-

cellular regions. Then, using a CNN-based deep learning model, the superpixels are classified,

leading to the final segmentation of the entire image.
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2.4.3 Machine Learning Techniques

Zhu and others [69] suggested that for a robot capable of autonomous navigation in a challeng-

ing outside environment, the terrain classification technique necessitates not only exact terrain

classification findings but also clear boundary information of various terrains.

Although terrain classification may yield findings that are semantically meaningful, its bor-

der classification for mixed terrain is imprecise, making it impossible for the robot to accurately

change its gait in real-time at separate terrain boundaries. The stability requirements for the

robot will be impacted by this. To provide the robot with the ability to assess the terrain in real-

time and carry out appropriate gait transformation and path planning, synthetic classifications

based on superpixel segmentation are provided. The robot now has improved environmental

adaptation and self-selection abilities when moving about. The mechanism for classifying ter-

rain has also been improved, as have the methods that are now used to do so. Lastly, the robot

has the ability to work alone outside.

Given the terrain classification of autonomous multi-legged walking robots, two synthetic

classification methods are proposed: SLIC-based Support Vector Machine (SLIC-SVM) and

SLIC-based SegNet (SLIC-SegNet). The SLIC-SVM is presented as a remedy for the SVM’s

limitation of producing a single terrain label, which prevents it from correctly identifying varied

terrain. The SLIC-SegNet single-input multi-output terrain classification model is created to

broaden the terrain classifier’s usefulness. Given the difficulty of locating high-quality terrain

classification data for use by legged robots, the SLIC SegNet efficiently acquires the needed

data.

Achanta R and others [52] addressed the challenging yet essential problem of cloud recog-

nition in the processing of remote sensing images. As remote sensing technology develops,

there are increasing numbers of high-spatial-resolution remote sensing images accessible. They

include a plethora of visual information that may be utilized to precisely characterize a surface’s

appearance. How to effectively, efficiently, and robustly distinguish objects in challenging sce-

narios is, therefore, a pressing topic in remote-sensing imaging processing, particularly for

optical remote-sensing images. However, there are three significant flaws in the methods de-

scribed above: The difficulties in identifying cloudy and bright non-cloudy locations (such as

snow-covered lands) haven’t been taken into account, segmentation and classification are done

independently, and neural networks’ complex architecture waste a lot of processing time.
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The authors [70] offer a method for segmenting remote-sensing images, extracting traits

from high-grey-level superpixel sub-regions, categorizing and identifying hazy areas. Segment

quality is improved when a texture with six-dimensional feature vectors is applied to SLIC.

The fusing of superpixel subregions is made easier by a voting-based clustering ensemble tech-

nique. The Ostu threshold is used to identify clouds, snow, and other bright objects. Selected

superpixels’ descriptors are then obtained and used in the softmax regression classification.

When extracting features employing the SLIC method, the superpixels function is useful. It

creates areas out of pixels using similar values. These areas help streamline the process when

used in image processing methods like segmentation. An image can be reduced from hundreds

of thousands of pixels to just a few hundred superpixels thanks to superpixels’ processing ef-

ficiency. Principal Componant Analysis (PCA) is a method of data analysis that minimizes

data loss, enhances interpretability, and decreases dimensionality. It is also known as the ”heart

of the dimension reduction approach.” It is also used to simplify the understanding and study

of data. In order to reduce image complexity and execution time, the recommended approach

makes use of both superpixels and PCA. Additionally, both approaches are utilized to extract

traits that support segmentation and detection.

Smoke appeared in front of an individual as a result of blocked trees in the forest. Con-

sequently, research into smoke detection has been applied to identify the position of the flare

and to provide early warnings of forest fires by using digital images. Fractal theory has been

used as a method for detecting smoke, as smoke patterns often exhibit self-similarity. Sev-

eral scholars have recently examined this property to improve detection accuracy [71]. On the

other hand, conventional forest fire smoke detection techniques only look at fire detection in

a flawless image background and analyze the image down to the pixel level. In challenging

environments like forests, it is not always feasible to recognize smoke. This study suggests a

method for spotting smoke from forest fires in single frame still images. Forest fire detection

is the first use of the superpixel segmentation technique. A unique superpixel merging method

is created to solve the over-segmentation issue. The increased sky horizontal line segmentation

approach is used to lessen the impact of the sky section on the detection. The SVM is then used

to classify the superpixel block, with the method’s adaptability avoiding the influence of the

threshold that has been specified. The method works well in the scenario when the camera does

dynamic panoramic sampling of the forest without considering the smoke’s mobility character-

istics. Additionally, it gets beyond the typical forest fire smoke detection algorithm’s restriction
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of requiring camera fixation.

Magana and others [72] SuperPIxel Classification for Cell dEtection and Counting (SPICE)

technique for localizing and quantifying (total number of cells) cells in histology images. This

technique uses a series of random forests and a superpixel pre-segmentation of the for catego-

rization. A binary classifier, the first random forest, determines if the input superpixel has any

cells. A second random forest acts as a multiclass classifier, identifying the number of cells

that the original image pre-segmentation created inside the superpixels. Both classifiers have

the ability to function alone. However, the experimental analysis showed that using them in

sequence might lead to more precise results. One advantage of SPICE is the use of superpix-

els in segmentation, as it provides a more compact and accurate representation of the cells by

incorporating features such as the color and shape of the superpixels. An analysis of threefold

cross-validation was used to count the trees in each classifier. According to the results, the areas

under the ROC curve (AUC) remain nearly the same when the number of trees is increased from

50 to 150 and 200, yielding AUC values of 97.21%, 97.27%, and 97.27%, respectively.

MK Islam and others [73] proposed a brain tumor detection algorithm using superpixels,

PCA, and a template-based K-means algorithm to enhance identification accuracy for tumors

of different sizes. This approach used superpixels and PCA to extract features from complex

MR images that help the strategy for segmenting and identifying malignancies. According to

experimental data, the suggested technique outperforms other conventional approaches in terms

of detection accuracy and execution time (measured in seconds). The proposed method out-

performed other existing detection techniques, attaining an accuracy of 95.00%, a sensitivity of

97.36%, and a specificity of 100% in brain tumor identification. Additionally, feature extrac-

tion, which reduced the size and complexity of MR images, required the use of superpixels and

PCA. As a result, using the recommended method, brain tumors might be accurately identified

from MR scans in 35 to 60 seconds.

2.4.4 Evolutionary Techniques

Evolutionary techniques, such as Genetic Algorithms (GA), have shown significant promise in

addressing complex optimization problems in medical image segmentation and fusion. Various

segmentation approaches have been proposed in the literature, which can generally be classified

into four categories: (i) image-based strategies, (ii) feature-based techniques, (iii) physics-based
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methods, and (iv) hybrid approaches. As noted by researchers [74], Positron Emission Tomog-

raphy (PET) and Single Photon Emission Computed Tomography (SPECT) provide valuable

functional information related to blood flow and metabolic activity; however, these modalities

often suffer from limited spatial resolution. To overcome such limitations, multimodal medical

image fusion combines complementary information from different imaging modalities.

Fusion methods are generally categorized into three levels: pixel-level, feature-level, and

decision-level. Pixel-level approaches, although detailed, are computationally expensive and

not suitable for region-based fusion. To address these issues, the author proposes a region-based

multimodal image fusion framework that integrates a robust superpixel segmentation algorithm

with an evolutionary feature optimization strategy. Specifically, the proposed framework em-

ploys fast superpixel segmentation using LSC, followed by region-wise feature extraction using

a modified Log-Gabor Filter (LGF) and Smoothed Modified Laplacian (SML) to capture texture

and contrast information.

A key innovation in the framework is the use of a GA for post-processing optimization,

which adaptively adjusts the feature weights to enhance the quality of the fused image. To

demonstrate the effectiveness of LSC, a comparative evaluation is performed using CT and

PET images against three standard superpixel segmentation techniques: Ncuts, TurboPixel, and

SLIC. While all methods produce superpixels of the same size, TurboPixel and SLIC frequently

result in mixed-color superpixels, whereas LSC provides more coherent and homogeneous seg-

mentation results.

Oriented FAST and Rotated BRIEF (ORB) [75] utilizes the oriented approach [76] as a

fast corner detector, with detected corners represented by a modified Binary Robust Indepen-

dent Elementary Features (BRIEF) descriptor [77]. Davidson and others [78] proposed a novel

image stitching method using ORB descriptors, along with efficient transformation and local

sensitivity hashing for rapid processing. This technique is applied in the automated analysis of

adaptive optics ophthalmoscopy. Additionally, Adel and others [79] employed ORB to extract

features from microscopic images of Oral Epithelial Dysplasia, using these features in an SVM

for automated disease grading.

Speeded Up Robust Feature (SURF) [80] is a fast and efficient interest point detector that

utilizes integral images for convolutions. The method operates in three stages: keypoint de-

tection, description, and matching. Tackling the challenge of image stitching in biomedical

research involving entire sections or large areas by applying the SURF technique for quick
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and efficient feature extraction. Wang and Chen [81] tackled the issue of image alignment in

X-ray and tissue images, comparing their method with five others: TrackEM2, UnwarpJ, BUn-

warpJ, mutual information, and SURF. Their proposed technique showed superior outcomes

across both datasets. Sanghavi and Agaian [82] presented an automated method for classi-

fying histopathological images of prostate cancer using the bag-of-features approach. They

conducted a comparative analysis between SURF and SIFT-based bag-of-features methods for

feature extraction, finding that SURF demonstrated higher sensitivity compared to SIFT.

Gong and others [83] suggested a method for segmenting superpixels termed as DES. To get

past the computational complexity issue, superpixel overlap is employed. DES employs global

optimization to more effectively optimize this global characteristic. The optimization is then

carried out by Differential Evolution (DE), a powerful stochastic global optimization method

that mimics the evolution process in nature. The proposed method satisfies the computational

constraint that, because of the low complexity of DE, it may produce promising superpixels with

a linear computing complexity. The Berkeley segmentation benchmark [74] is utilized in the

research to evaluate DES, and common performance measures are contrasted. When compared

to several state-of-the-art superpixel segmentation techniques, DES performs equally well or

better.

Data splitting and clustering efficacy may be assessed using a Clustering Validity Index

(CVI) [84]. Such an index gauges how well the given clusters match the actual data structure.

This work combined compactness, separation, and overlap as a novel clustering validity metric

to improve segmentation accuracy. The notion of aggregation (represented by t norms and t-

conforms) is used in the creation of a novel measure of overlap. A genetic algorithm-based

optimizer is used to determine the ideal number of clusters and the optimal cluster centroids.

Superpixels are also employed to reduce computational costs, ensuring the generation of well-

defined segments.

Souad Larabi and others [85] considered four bio-inspired algorithm-based image segmen-

tation methods—particle swarm optimization (PSO), genetic algorithms (GA), ant colony opti-

mization (ACO), and artificial bee colonies (ABC)—to assist researchers in selecting the most

effective segmentation approach. He also placed emphasis on techniques that are rarely used in

this area in order to provide new opportunities for controlling and enhancing segmentation. The

authors proposed two methods. The first involved modifying the objective functions, search

strategies, or updating techniques of these methods, which have been depicted to improve the
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Table 2.2: Codebook construction methods used in the bag-of-features. [86].

Category Methods Comments

Hierarchical methods Agglomerative clustering,
Mean shift

The high computing cost of these algorithms pre-
vent them from being used for huge datasets or
histological images.

Partitional methods K-means, FCM, GMM produces coding that is skewed towards crowded
areas and not uniform;
Non-robust;
Optimal codebook size (K) is unambiguous.

Meta-heuristic-based
methods

PSO, GSA, WOA, GWO used to choose the best visual words using an ob-
jective function that takes into account separation
and compactness;
Computationally expensive.

effectiveness of the original approaches. The second approach suggested combining these tech-

niques with another algorithm to enhance performance and address the limitations of each indi-

vidual method.

SIFT and SURF features are known for their robustness to changes in scale, rotation, and

illumination, whereas ORB offers computational efficiency. However, because of the com-

plex morphological structures present in histopathological images, these methods often produce

high-dimensional feature vectors.

2.5 Codebook construction

The next phase in the histopathological image analysis is codebook construction. Clustering

is the technique used in codebook construction to group feature descriptors into visual words.

Various clustering methods, detailed in Table 2.2, are discussed in the literature and can be

categorized into three main types: hierarchical approaches, partitional approaches, and meta-

heuristic-based approaches.

2.5.1 Hierarchical Clustering

In this approach, data is organized at different levels of similarity and represented by a tree

structure called a dendrogram. This method generally follows two approaches: divisive and

agglomerative.

In divisive clustering, the method begins with all data points in one cluster and repeatedly

splits this cluster in a top-down manner until a stopping criterion is met or each data point
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becomes its own cluster. Notable methods in this category include Divisive Hierarchical Clus-

tering with the Diameter Criterion (DHCDC) [87] and Divisive Clustering using Monothetic

Split (DIVCLUS-T) [88].

In contrast, agglomerative clustering works in a bottom-up manner, where every data point

primarily forms its own cluster and then merges with other clusters iteratively to create larger

clusters until a termination criterion is met or all data points are combined into one cluster.

Prominent agglomerative methods include Balanced Iterative Reducing and Clustering using

Hierarchies (BIRCH) [89], Clustering Using Representatives (CURE) [90] and Chameleon [91].

Authors [92] created an automated system for spectroscopic tissue image analysis, using

hierarchical clustering for tissue segmentation and integrating tissue microarray analysis with

fourier transforms of spectroscopic images for efficient high-throughput analysis. Meijnen and

others [93] employed hierarchical clustering to categorize in-situ ductal carcinoma breast can-

cer images into two main groups, which were then subdivided into five subclasses based on

six markers. This method was applied to analyze gene expression profiling. Additionally,

Pourahmad and others [94] developed a framework for automated colorectal cancer grading,

incorporating both hierarchical and partitional clustering methods. Their experimental findings

showed that hierarchical clustering outperformed other clustering methods they tested.

Hierarchical methods usually adopt a greedy approach and do not re-evaluate data points

once they have been assigned to a cluster, which restricts their ability to correct misclassifica-

tions. This limits their robustness, particularly in the presence of noise and outliers, and they

do not optimize an objective function while constructing clusters. Furthermore, they struggle

with overlapping clusters and necessitate prior knowledge of the required number of clusters.

These methods can also lead to distortion in the formation of spherical clusters and disrupt the

hierarchical structure [95]. A significant issue with hierarchical clustering, particularly on high-

dimensional datasets like images, is its high time complexity, approximately O(n3) [96], where

n represents the sum of data points. Hierarchical clustering approaches, including mean shift

[97] and agglomerative clustering [98], are not ideal for large datasets or histology images due

to their high computational cost. As a result, partitional clustering approaches are commonly

favored to overcome these limitations, as elaborated in the following section.
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2.5.2 Partitional Clustering

Partitional clustering is typically favored over hierarchical clustering, particularly for large

datasets, because of its greater computational efficiency. In partitional clustering, similarity

distance is commonly used as the measurement parameter. This method involves dividing the

data into clusters based on an objective function, with the goal of grouping similar data points

together and placing dissimilar points into different clusters. To accomplish this, each data point

is compared to every cluster center and assigned to the closest one.

The general objective in partitional clustering is to minimize the within-cluster similarity,

often calculated using euclidean distance. This objective function evaluates the quality of each

cluster, ensuring the best representation among the created clusters. However, partitional meth-

ods may assign data points to clusters even if they are distant from the cluster centroid, poten-

tially distorting cluster shapes or leading to inaccurate results, especially when noise or outliers

are present [95]. Partitional clustering methods are generally classified into two categories: soft

clustering and hard clustering.

Soft clustering techniques allocate each data point to one or more clusters, with the degree

of membership determined through iteration. This membership degree provides a more nuanced

representation of the association between data points. Notable methods in this category include

Fuzzy C-means (FCM) [99], Fuzzy C-shells (FCS) [100], and the mountain method [101]. In

FCM, clusters are represented as multidimensional hyperspheres, with the distance function de-

fined respectively. The mountain approach uses a mountain function to identify cluster centers.

Among these techniques, FCM is particularly popular and widely used.

Hard clustering methods partition data into distinct clusters based on an objective function.

Typically, the objective function in partitional clustering methods is the sum of squared eu-

clidean distances among data points and their associated centroids, which the method aims to

minimize. In these approaches, the centroid of every cluster represents the average of the data

points allocated to it. Unlike soft clustering, hard clustering assigns each data point to exactly

one cluster, meaning the degree of belonging is binary: either 0 or 1.

A common hard clustering technique is K-means. In K-means, the cluster center is com-

puted as the average of all data points assigned to it, with this process repeating iteratively until

a predefined convergence condition is satisfied. Avni and others [102] developed patch-based

visual words for categorizing and retrieving X-ray images. Researchers [103] applied the BOF
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approach to represent visual features in histopathological images, using K-means to detect var-

ious visual words. Rueda and others [104] used K-means clustering for codebook creation in

the bag-of-features method to classify MRI images of Alzheimer’s disease. Wiliem and others

[105] leveraged K-means clustering to generate a codebook from SIFT-based descriptors for

classifying immunofluorescence images of human epithelial cells. Furthermore, Stanciu and

others [106] employed the BOF method with K-means for codebook generation in diagnosing

liver fibrosis using two-photon excitation microscopy. Consequently, numerous partitional clus-

tering methods employed in the bag-of-features approach include K-means, FCM, and GMM

[107]. The time complexity of the K-means method is O(nkt) [96], where t represents the max-

imum number of iterations. K-means is sensitive to the initial placement of cluster centroids

and can easily become trapped in local minima. Additionally, the results can vary depending on

the number of clusters specified. As discussed above, these methods tend to be biased towards

dense regions and may produce non-uniform coding.

2.5.3 Meta-heuristic-based Clustering

The first meta-heuristic algorithm, ”simulated annealing” was proposed by Kirkpatrick and oth-

ers [108]. This method was inspired by the annealing process in metallurgy and was a significant

departure from deterministic optimization, laying the groundwork for future meta-heuristics

like Genetic Algorithms, Tabu Search, and others. Then, the first meta-heuristic-based cluster-

ing was introduced by Selim and Alsultan [109] using simulated annealing. Later, Bezdek and

others [110] pioneered a data clustering method based on genetic algorithms, representing the

initial evolutionary approach to clustering. The first swarm-inspired clustering technique was

created by Lumer et al. [111] utilizing ant colony optimization. Various meta-heuristic algo-

rithms have shown promise in addressing clustering problems. Generally, these methods out-

perform traditional clustering approaches by being less dependent on initial parameter settings

and by providing global optimal solutions [112]. Their effectiveness has made them a popu-

lar choice in clustering research. Meta-heuristic algorithms fall under optimization techniques

designed to tackle computationally challenging problems, such as NP-complete problems. An

NP-complete problem is one for which no deterministic algorithm can deliver an exact solution

within polynomial time. These types of problems are particularly challenging because as the

size of the problem grows, the time it takes to solve it increases exponentially. While many
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optimization algorithms exist to solve these problems, the No Free Lunch Theorem [113] states

that no single algorithm is universally efficient for all problems. This means that there is no

one-size-fits-all solution—each optimization algorithm may perform better or worse depending

on the problem at hand. Therefore, selecting the right algorithm often depends on the specific

problem and its characteristics. Table 2.3 shows various meta-heuristic algorithms proposed by

different researchers.

Table 2.3: Chronological overview of popular meta-heuristic algorithms.

Algorithm Year Type
Simulated Annealing (SA) [108] 1983 Physics-based
Genetic Algorithm (GA) [114] 1989 Evolutionary
Particle Swarm Optimization (PSO) [115] 1995 Swarm-based
Ant Colony Optimization (ACO) [116] 1996 Swarm-based
Differential Evolution (DE) [117] 1997 Evolutionary
Harmony Search (HS) [118] 2001 Music-inspired
Artificial Bee Colony (ABC) [119] 2005 Swarm-based
Firefly Algorithm (FA) [120] 2009 Swarm-based
Cuckoo Search (CS) [121] 2009 Bio-inspired
Bat Algorithm (BA) [122] 2010 Swarm-based
Charged System Search (CSS) [123] 2010 Physics-based
Grey Wolf Optimizer (GWO) [124] 2014 Swarm-based
Ant Lion Optimizer (ALO) [125] 2015 Swarm-based
Whale Optimization Algorithm (WOA)
[126]

2016 Swarm-based

Sine Cosine Algorithm (SCA) [127] 2016 Math-based

Meta-heuristic approach utilizes meta-heuristic methods to achieve optimal image cluster-

ing. These algorithms generate random initial solutions and iteratively refine them based on

predefined optimality criteria, known as the objective function [128]. These algorithms evalu-

ate the objective function value using the generated solutions and must be efficient in finding

the optimal solution effectively.

Researchers have developed numerous meta-heuristic algorithms inspired by natural phe-

nomena to offer effective and best solutions. Over the past three decades, more than sixty such

algorithms have been introduced. Each algorithm typically mimics specific natural processes,

whether evolutionary, physical, or biological. Continuous efforts are being made to enhance ex-

isting algorithms and create new ones that deliver competitive results compared to those already

available in the literature.

These algorithms usually contain two crucial elements: exploration and exploitation [129].

Exploration involves diversifying the search space by updating existing solutions, which helps
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discover new solutions, avoids stagnation, and aids in finding a global solution. Exploitation,

on the other hand, focuses on intensifying the search around current solutions to exploit the

search space and converge towards the optimal solution. Meta-heuristic algorithms can gener-

ally be divided into two broad types: evolutionary algorithms and swarm algorithms.

Evolutionary-based algorithms draw inspiration from evolutionary theories, such as Dar-

win’s theory of evolution. These algorithms operate on the principle of progressively gener-

ating improved solutions by combining the best individuals from the current generation. Key

examples include: DE, GA, BBO.

Evolutionary Strategy [130] uses recombination and mutation with equal probability, utiliz-

ing numerous parents to produce offspring. Differential Evolution (DE) [117] a widely-used

evolutionary algorithm introduced by Storm and others, which focuses on optimizing a prob-

lem through differential variations. Genetic Algorithm (GA) [131] is based on the evolution

of natural species, GA employs mutation and crossover operators to achieve exploration and

exploitation, respectively. Biogeography Based Optimization (BBO) [132] proposed by Simon

is inspired by the immigration and emigration of species between islands in natural biogeogra-

phy. Probability-Based Incremental Learning Algorithm [133] proposed by Dasgupta and oth-

ers manages the statistical properties of the population rather than the entire population. Each

of these algorithms uses different mechanisms and principles derived from biological processes

to explore and exploit the search space effectively.

Swarm-based algorithms draw inspiration from the collective actions of natural groups, such

as schools of fish or flocks of birds, to optimize outcomes. Particle Swarm Optimization (PSO),

introduced by Kennedy [115] mimics the foraging habits of birds or fish. Ant Colony Opti-

mization (ACO) is modeled after the trail-following behavior of ants [134]. The Gravitational

Search Algorithm (GSA), developed by Rashedi and others [135], is based on newtonian prin-

ciples of gravity and motion. Hosseini [136] introduced the intelligent water drop algorithm,

which is inspired by river flow dynamics, typically following the most efficient path. Spider

Monkey Optimization (SMO), created by Bansal and others [137] imitates the social behavior

of spider monkeys. Mirjalili [125] designed the Ant-Lion Optimizer based on the predatory

tactics of ant-lions, while his Moth-Flame Optimization algorithm models moths’ navigation

through transverse orientation.

More recent additions to swarm algorithms include the Small-World Optimization Algo-

rithm [138], Galaxy-Based Search Algorithm [139], Ray Optimization [140], and Multi-Verse
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Optimizer [141].

2.5.3.1 Whale Optimization Algorithm

The Whale Optimization Algorithm (WOA) is a nature-inspired metaheuristic optimization al-

gorithm developed by Mirjalili and Lewis [126] in 2016. It is based on the bubble-net hunting

strategy of humpback whales, a unique hunting mechanism where whales create spiral-shaped

bubbles to encircle prey. WOA imitates this behavior by modeling three main processes: encir-

cling prey, bubble-net attacking, and searching for prey.

The algorithm gained widespread recognition due to its simplicity, computational efficiency,

and ability to effectively balance exploration (global search) and exploitation (local search).

These features made WOA an attractive choice for solving a wide range of optimization prob-

lems, including continuous, discrete, and combinatorial optimization challenges.

WOA works in 3 steps as follows:

• Encircling Prey: This modeled the ability of humpback whales to locate prey and encir-

cle it. In WOA, candidate solutions adjusted their positions relative to the current best

solution.

• Bubble-Net Attack: This simulated the spiral motion of whales converging toward prey,

modeled through a logarithmic spiral equation combined with random search directions.

• Search for Prey: In this phase, whales randomly searched the solution space, allowing

exploration to identify promising regions and avoid local optima.

To overcome some limitations of the original WOA, such as premature convergence, slow

convergence speed, and limited exploration, researchers proposed various enhanced versions

and hybrids. There are mainly two strategies to overcome these limitation [142] (1) improve-

ment approaches and (2) hybridization approaches.

Improvement approaches aim to fine-tune WOA’s core mechanics to make it more effective

at finding solutions. One of the earliest enhancements applied to WOA is Opposition-Based

Learning (OBL), introduced by Tizhoosh [143] in 2017. OBL works by comparing a solution

with its opposite, which increases the chances of finding better alternatives. This method helps

diversify the population and makes the algorithm better at escaping local optima. In 2018, Yang

and Deb [144] introduced another powerful technique called Lévy flight, inspired by patterns
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in nature where random steps with large jumps allow exploration of larger areas. When applied

to WOA, this approach makes it better at balancing global and local search efforts. In 2019,

Li and others [145] explored using chaotic maps—mathematical models like logistic and sine

maps—to introduce randomness into WOA. These maps improve the algorithm’s diversity by

helping it generate more varied initial solutions, reducing the risk of premature convergence.

By 2020, Storn and Price [146] demonstrated how mutation and crossover strategies could re-

fine WOA further. These strategies, originally from evolutionary algorithms, add controlled

variations to solutions and help the algorithm avoid getting stuck in suboptimal points. For

example, techniques like DE/rand/1 and DE/best/1 improve the balance between exploration

and exploitation. Binary WOA variants, introduced by Almugren and Hossain [147] in 2020,

adapted WOA for discrete optimization problems by using functions like sigmoid and V-shaped

transformations to convert continuous solutions into binary ones. These innovations allowed

WOA to tackle problems like feature selection more effectively. In 2022, Zhou and others

[148] took WOA a step further by incorporating quantum-based techniques. They used princi-

ples from quantum computing, such as qubits and rotation gates, to dynamically adjust WOA’s

search behavior, making it highly effective for high-dimensional problems. Most recently, Chen

and others [149] proposed a Balanced WOA (BWOA) that combines Lévy flight and chaotic

local search. This version improved convergence rates and reduced the risk of getting stuck in

local optima by bringing together multiple enhancement techniques into a single framework.

Hybridization approaches pair WOA with other optimization algorithms to overcome its

limitations. These hybridizations have proven particularly useful in making WOA better at

global search and handling complex problems. One notable example of population-based hy-

bridizations is the work of Roy and others [150], who combined WOA with Differential Evo-

lution (DE). DE, known for its perturbation and recombination mechanisms, complemented

WOA’s weaknesses and made the hybrid well-suited for multi-objective optimization problems

like engineering design.

Physics-based hybridizations have also enhanced WOA’s performance. Gao and others

[151] integrated WOA with the Sine Cosine Algorithm (SCA), which introduced oscillatory

behavior to dynamically adjust solution searches. This improved WOA’s speed and made it

more effective at balancing exploration and exploitation, especially in constrained optimiza-

tion problems. Similarly, Swarm Intelligence (SI) hybridizations have been explored exten-

sively. Researchers [152] also paired WOA with Particle Swarm Optimization (PSO) to im-
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prove global search efficiency and population diversity. Their work showed that the WOA-PSO

hybrid outperformed standard WOA in feature selection tasks, especially for high-dimensional

datasets. To improve local search capabilities, Singh and Gupta [153] hybridized WOA with

Tabu Search (TS). TS uses memory-based techniques to avoid revisiting previously explored

solutions, which made this hybrid particularly effective at fine-tuning solutions in constrained

optimization problems. Finally, in the field of multi-objective optimization, Martinez and oth-

ers [154] developed variants of WOA that leverage Pareto dominance and scalarization methods

to handle conflicting objectives. These approaches significantly expanded WOA’s use in real-

world problems like medical imaging, engineering, and logistics.

2.5.3.2 Grey Wolf Optimization

The social structure and hunting techniques of grey wolves in the wild serve as the model for

the Grey Wolf Optimization (GWO) algorithm, which was initially presented by Mirjalili and

others [124] in 2014. Alpha, beta, delta, and omega wolves’ roles in a pack are modeled by

GWO, which also considers their cooperative behavior to maximize solutions. This hierarchy

enables GWO to strike a balance between exploration (searching the global solution space)

and exploitation (locally refining solutions), as well as the algorithm’s three primary hunting

phases (encircling, hunting, and attacking prey). Despite being commended for its ease of use

and efficiency, GWO has many drawbacks, including a tendency to become trapped in local

optima, a lack of diversity in its solutions, and difficulties with high-dimensional issues. To

overcome these obstacles, researchers have been working on GWO over the years, leading to

several improvements and hybridizations.

In 2016, Kohli and others [155] introduced the Chaotic GWO (CGWO), which leveraged

chaotic maps such as logistic, sine, and tent maps to improve the algorithm’s exploration ca-

pabilities. By introducing randomness into the initialization phase and parameter adaptation,

CGWO ensured better population diversity, allowing it to avoid premature convergence and lo-

cal optima. This variant was applied successfully in constrained optimization problems, show-

ing improved performance when compared to traditional algorithms like PSO and Firefly Algo-

rithm (FA). Moreover, CGWO achieved faster convergence rates and demonstrated robustness

in handling complex search spaces by effectively balancing exploration and exploitation. In

2017, Gao and Zhao [156] developed the Variable Weight GWO (VW-GWO), which refined

the leadership structure within the wolf pack by introducing variable weights. This variant
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assigned greater weights to alpha wolves and progressively smaller weights to beta and delta

wolves, enforcing a stricter hierarchy in the optimization process. This adjustment ensured

that the algorithm maintained a strong focus on exploitation in later stages while avoiding pre-

mature stagnation in local optima. VW-GWO showed improved convergence rates and better

performance in tackling high-dimensional and non-linear optimization problems.

In 2018, Hu [157] proposed the Improved GWO (I-GWO), which incorporated the Dimen-

sion Learning-based Hunting (DLH) strategy. This strategy dynamically adjusted the position

of each wolf in the population based on their roles (alpha, beta, delta, or omega), enabling more

efficient exploration in the early stages and more effective exploitation later in the optimiza-

tion process. I-GWO addressed issues of premature convergence and improved the algorithm’s

robustness, making it particularly effective in handling high-dimensional numerical optimiza-

tion tasks. It also demonstrated superior performance on benchmark functions and real-world

engineering problems. Tripathi and others [158] proposed a new clustering method for large

datasets based on enhanced grey wolf optimization with the Map Reduce method (MR-EGWO)

on hadoop framework. Results confirmed that this method outperformed the other 4 state-of-

the-art methods.

Luo and others [159] introduced the Diversity Strategy-based GWO (DSGWO) to im-

prove the exploration-exploitation balance. This variant incorporated a group-stage competition

mechanism, where wolves were divided into groups and competed to refine their positions rel-

ative to the prey. Additionally, DSGWO employed a dynamic model for estimating the prey’s

location, which enhanced population diversity and ensured robust performance in dynamic op-

timization problems. The variant excelled on IEEE CEC 2014 benchmark functions and was

successfully applied to complex engineering optimization tasks. In the same year, Gupta and

Deep [160] developed the Fractional-order GWO (FWGWO), a random walk-inspired GWO

variant that integrated stochastic movement strategies. By introducing random walk mecha-

nisms, this variant improved the algorithm’s ability to escape local optima and enhanced global

search efficiency. FWGWO showed superior performance in optimizing global search spaces

and demonstrated resilience in avoiding premature convergence, making it an effective tool

for solving challenging optimization problems. In 2020, Emary [161] proposed the Enhanced

GWO (EGWO), which incorporated reinforcement learning techniques to dynamically adjust

search behaviors. This variant allowed the algorithm to adapt its exploration and exploitation

strategies across different optimization stages. EGWO was particularly effective in feature se-
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lection tasks, where it reduced dimensionality while maintaining accuracy and optimizing the

weights of artificial neural networks. Its ability to dynamically fine-tune search behavior en-

abled EGWO to perform better in high-dimensional and non-linear optimization problems. In

2021, Khalilpourazari and Hashemi [162] introduced a gradient-based multi-objective GWO

variant, which integrated Gaussian walks for improved modeling and prediction capabilities.

The gradient-based enhancements allowed the algorithm to refine its search behavior, improv-

ing its ability to balance exploration and exploitation. This variant was particularly effective in

addressing complex multi-objective optimization problems, achieving high accuracy and con-

vergence reliability. In 2022, Hu [163] presented the GWO with Covariance Matrix Adapta-

tion and Levy-based Opposition Learning (GWOCMALOL), a sophisticated variant that com-

bined orthogonal learning, covariance matrix adaptation, and Lévy flight mechanisms. The

orthogonal learning strategy enhanced the algorithm’s adaptability by leveraging previously ex-

plored knowledge to improve current solutions, while covariance matrix adaptation optimized

the search directions for convergence. Lévy flight mechanisms introduced large, random steps

to escape local optima, improving the algorithm’s robustness in high-dimensional optimization

tasks. This variant outperformed traditional GWO and other metaheuristic methods in challeng-

ing benchmark problems and complex real-world applications.

Other notable GWO enhancements include the Accelerated GWO (AGWO) proposed by

Kumar and others [164], which employed mathematical models to accelerate convergence rates

and refine the balance between exploration and exploitation, and the Elite Opposition-Based

Learning Strategy (EOBLS) GWO proposed by Yuan and others [165], which used elite opposi-

tion-based learning to improve solution quality and prevent stagnation. These additional vari-

ants further expanded GWO’s applicability in solving optimization problems across fields such

as engineering, medicine, and energy systems.

2.5.3.3 Applications of GWO and WOA

Because of their adaptability, both GWO and WOA can be used to address challenging opti-

mization issues in a variety of domains. Some common applications of GWO and WOA and

their variants are:

• Engineering Design: GWO and WOA are like problem-solving tools for engineers. They

help design things like bridges, buildings, and airplanes by making them lighter, stronger,
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and more cost-efficient. They’re also used to fine-tune controllers in machines to make

everything work more smoothly and efficiently, like a car running on cruise control.

• Healthcare and Medicine: In healthcare, these algorithms are super useful. They help

doctors detect diseases like cancer or diabetes earlier by improving the accuracy of AI

models. They’re also used to analyze medical images, like MRIs or CT scans, by high-

lighting important areas like tumors. On top of that, they’re even helping researchers in

drug discovery by finding the best configurations for new medicines.

• Image Processing: When it comes to working with images, GWO and WOA shine.

They’re great at dividing images into useful sections, like spotting objects in images or

identifying damaged areas in medical scans. They also make images look better by en-

hancing clarity and contrast, and they help pick out the most important features to improve

things like facial recognition or image classification.

• Renewable Energy: These algorithms play a big role in making renewable energy sys-

tems more efficient. For example, they help position solar panels and wind turbines in

the best spots to generate the most power. They’re also used to manage energy in local

grids, ensuring power is distributed efficiently without wasting resources. And for battery

storage, they optimize charging and discharging cycles to extend battery life.

• Artificial Intelligence and Machine Learning: In AI, GWO and WOA are like assistants

that make models smarter and faster. They help fine-tune settings in machine learning

models, so they perform better without wasting time guessing the right parameters. They

also improve clustering and classification tasks, making it easier to group similar data or

categorize it correctly. And when it comes to neural networks, these algorithms can help

train them more effectively by optimizing how they learn.

• Communication Networks: These algorithms are used in communication systems to

make sure everything runs smoothly. For example, they help wireless networks find the

best routes for sending data while saving energy. They’re also used to design antennas

with stronger signals and optimize how communication frequencies are allocated to avoid

interference.

• Robotics: GWO and WOA help robots move in smart and efficient ways by finding the
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best paths and avoiding obstacles. When many robots need to work together, such as in

search and rescue missions or while mapping an area, these algorithms help them stay

organized and work as a team without wasting time or energy.

• Finance: In the world of finance, these tools help investors make smarter decisions by

finding the best combination of assets to maximize returns while reducing risks. They’re

also used in businesses to optimize how resources are allocated, saving money and in-

creasing efficiency.

Moreover, meta-heuristic-based clustering methods, such as Whale Optimization Algorithm

(WOA) [166], BBO [167], and the GSA [168], are employed to identify optimal visual words

by optimizing objective functions related to compactness and separation. Mittal and Saraswat

[168] introduced an enhanced version of the bag-of-features (BOF) method that uses GSA to

generate optimal visual words. Their method was evaluated against the K-means clustering-

based bag-of-features (BOF) approach for classifying tissue images. However, these techniques

can become computationally intensive when handling complex histopathological images.

2.6 Feature Encoding Methods

The next step in the image classification process is feature encoding, where every image is

represented by encoding its features into visual words. Every image is transformed into a coding

vector of size k, where k denotes the number of visual words. Feature encoding methods are

generally categorized into three main types based on their properties: voting, reconstruction,

and super-vector-based encoding approaches [169]. A brief description of these techniques is

also provided in Table 2.4. Generally, there are 3 types of feature encoding methods (1) Voting-

based (2) Reconstruction-based and (3) Super vector-based.

2.6.1 Voting-based Methods

In the voting-based technique, every feature descriptor votes for a particular codeword accord-

ing to predefined rules or strategies. This process results in the creation of a k-dimensional

coding vector, known as a codeword. The collection of these codewords forms the entire code-

book. Common approaches in this category include hard voting Vector Quantization (VQ) [30],

Kernel Codebook Encoding (KCB), Soft Assignment (SA) [170], Localized Soft Assignment
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Table 2.4: Types of feature encoding methods [169].

Type Methods Comments

Voting-based HV, SA, LSA, Salient Coding Based on how the distribution of visual words is
represented by histograms

Reconstruction-
based

OMP, Sparse coding, LLC, LCC The visual words should recreate each feature by
applying certain restrictions and resolving the least-
squares optimization issue

Super vector-
based

LTC, SVC, Fisher Vector, VLAD The Gaussian mixture model is utilized to es-
timate feature distributions that comprise Gaus-
sian weights, covariance, and means

(LSA) [171], and salient coding [172].

For each feature vector f , the voting value for the visual word v can be computed as a

function of f , denoted as c(i) = φ( f ). The specific formulation of φ( f ) varies depending on

the encoding method used. In hard voting methods, each feature vector votes for its nearest

codeword.

Additionally, salient coding is a variant of hard vector quantization methods. In this ap-

proach, each feature computes its weighted vote based on the difference between the nearest

visual word and the other k− 1 nearest visual words [172]. The visual representation of each

voting-based method is illustrated in Figure 2.3.

(a) VQ (b) SA (c) LSA (d) Salient Coding

Figure 2.3: Visual description of voting-based methods [169].

2.6.2 Reconstruction-based Methods

In these approaches, code c is generated with a focus on reconstruction or decoding. The

objective is to reconstruct the i-th input descriptor from code c minimizing the error in the

reconstruction process.

Prominent reconstruction methods encompass Sparse Coding (SPC) [173], Orthogonal Match-

ing Pursuit (OMP) [174], Local Coordinate Coding (LCC) [175], and Locality-constrained Lin-
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ear Coding (LLC) [176].

In the SPC and OMP methods, locality is not defined theoretically, but it is measured based

on empirical analysis [175]. Therefore, Yu et al. [175] proposed a variant of SPC, namely LCC,

wherein locality of the encoding is encouraged instead of sparsity. Moreover, Wang et al. [176]

introduced a faster version, called LLC, for large-scale problems.

2.6.3 Super Vector-based Methods

In these techniques, higher-order statistics are integrated to create a high-dimensional repre-

sentation. Important techniques in this field include Super Vector Coding (SVC) [177], Local

Tangent-based Coding (LTC) [178], Fisher Vector (FV) [179] and the Vector of Locally Aggre-

gated Descriptors (VLAD) [180].

In LTC [178], encoding is performed by approximating the feature manifold and its intrinsic

dimensionality. The non-linear feature manifold is estimated to use a local linear function that

satisfies the Lipschitz smooth condition, with the function representing the reduced intrinsic

dimensionality from PCA. Zhou et al. [177] introduced a simple variant of LTC, called SVC,

which replaces PCA with vector quantization. Another super-vector encoding method, the fisher

vector, employs the fisher kernel and combines both generative and discriminative models. This

approach is applied to large-scale image categorization [179]. Additionally, Jegou and others

[180] proposed a more constrained version of the fisher vector, focusing only on first-order

statistics for encoding.

Researchers [105] introduced an automated method for recognizing human epithelial cells.

This approach represents each image as codebook descriptor vectors, which are organized into

dual regions, and then classifies them using the nearest convex hull method. Different encoding

methods, such as VQ, SPC and SA are employed to generate codebook descriptors. Nayak

and others [17] applied sparse coding to identify distinct patches, like necrosis and viable tumor

regions, in histological tissue samples. Similarly, Zhou and others [181] introduced an approach

combining multispectral sparse coding and convolutions to classify histology tissue sections.

Voting-based encoding techniques are commonly used in histopathological image analysis.

An additional variant, Learning Vector Quantization (LVQ), was introduced by Dieterle and

others [182] for assessing urinary nucleosides, comparing it with neural networks and SVM.

Mattfeldt and others [183] used LVQ for prostate incidental carcinoma classification. Addition-
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ally, authors [184] proposed an advanced vector quantization version that outperformed stan-

dard VQ in pattern recognition tasks for pathological images. Han and others [185] developed

a hierarchical vector quantization technique to detect pulmonary nodules in CT scans, utilizing

both low as well as high-level VQ techniques to identify lung regions and nodule candidates.

Diamant and others [186] applied VQ within the bag-of-features framework, choosing relevant

visual words for automated medical image classification using mutual information. Nowakova

and others [187] proposed an enhanced VQ method that integrates fuzzy s-trees and fuzzy sig-

natures to improve the retrieval of medical images, particularly mammography scans.

2.7 Classification Techniques

A classifier is employed to assign labels or identify components within images by analyzing the

features extracted from them. The effectiveness of these classifiers is significantly influenced by

the depth and precision of the feature descriptors. Classifying histopathological images poses

a considerable challenge for computational systems, which drives researchers to delve into this

area with a focus on advancing machine intelligence techniques.

Table 2.5: Widely-used classification methods for histopathological image classification.

Classifier Details
Random Forest [188] The prediction is done based on the majority voting of differ-

ent decision trees

Logistic Regression
[189]

The score value is calculated based on the linear function for
the prediction of the target class

Support Vector Machine
[190]

Data is classified by the defined hyperplane and a new image
is categorized based on hyperplane

Linear Discriminant
Analysis [191]

The separation between two or more classes is found based
on the linear combination of features

Bayesian Classifier
[192]

Based on the conditional probability model where the classi-
fication is probabilistically related to the observed samples

Table 2.5 lists several commonly used classifiers from the literature [5], along with their

applications in histopathological image classification. Mainly, classification techniques can be

divided into 3 approaches: 1) classification using a traditional approach 2) classification using

a deep learning approach 3) classification using a hybrid approach.
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2.7.1 Classification using the Traditional Approach

Basavanhally and others [4] proposed an automatic algorithm to detect and grade the lym-

phocytes. Region growing and Markov random field algorithms were employed for detection,

while support vector machines were utilized for classification. The evaluation of the proposed

method was conducted using a dataset comprising 41 images. A classification accuracy of 90%

was reported. The C-Path system is a model that Beck and others [193] created to quantify the

characteristics of the stromal and epithelial areas of breast cancer tissues. Both morphometric

and standard descriptors of image objects considered. Features, including global image features

and higher-level contextual features, were considered.

Using several textural cues, Irshad and others [194] designed an automated system for mito-

sis detection. Co-occurrence features, run-length features, and scale-invariant feature transform

were among the texture characteristics that were retrieved and applied to the classification. A

technique for counting mitotic cells in histological images was put forward by Paul and others

[195]. The mitotic nuclei and surrounding stromal regions were used to derive the intensity-

based and Haralick characteristics. The mitotic and non-mitotic nuclei were categorized using

a regenerative random forest classifier.

Researchers [196] presented a method based on the curvelet transformation with Local Bi-

nary Operators (LBP). From the images, the curvelet and LBP features were extracted. For

classification, SVM, polynomial classifiers, random forests, and decision trees were employed.

Jiang and others [197] suggested the joint kernel-based supervised hashing method. The sug-

gested method incorporates complementing the hashing framework capabilities. There was a

claimed 91% classification accuracy in 16.5 ms query time.

Reis and others [198] proposed a method to classify stromal regions with respect to their

maturity. LBP and fundamental features were recovered at various scales. The stromal regions

were categorized using a random decision tree classifier. The study made use of 55 H&E-stained

images of invasive breast cancer. An 84% classification accuracy was recorded.

Dimitropoulos and others [199] identified the problem of invasive breast carcinoma grad-

ing utilizing the Grassmann manifold. A vector of locally collected descriptors encoding ap-

proach was devised. Their dataset showed a 95% classification accuracy, while BreakHis dataset

showed a 91% classification accuracy.

A dictionary-based method for nuclear atypia grading was put forth by Das and others [200].



47

Nuclear pleomorphism was graded automatically using techniques like dictionary learning al-

gorithms and sparse coding. A methodology for classifying Breast Cancer Histopathological

Images (BCHI) was presented by Baker and others [201] that combined watershed methods for

segmentation with K-means clustering. The segmented ROI was used to extract morphologi-

cal features. Rule-based and decision tree classifiers exhibited an accuracy of 86% and 70%,

respectively.

2.7.2 Classification using the Deep Learning Approach

Han and others [202] created a class structure-based DCNN architecture for BCHI multi-class

categorization. On the BreakHis dataset, an average accuracy of 93% was recorded. Re-

searchers [203] also provided a framework for nucleus-guided feature extraction. Cruz-Roa

and others [204] suggested a CNN classifier for identifying the presence of invasive breast can-

cer using WSIs. Four hundred images from the Cancer Genome Atlas dataset were used to

train the model, and 200 instances were used for validation. Gecer and others [205] suggested

a FCNN architecture for detection and classification utilizing 240 WSIs of the breast. Burçak

and others [206] created the DCNN architecture for BCHI classification.

Researchers [207] created the BreastNet architecture for categorization. Attention mod-

ules and hypercolumn approaches are combined in the architecture. Convolutional, dense, and

residual blocks make up the architecture. On the BreakHis dataset, a 98% classification ac-

curacy was recorded. A DCNN model was put forth by Li and others [208] to deal with the

problems of class variance and feature extraction from images of varying magnification. The

characteristics are extracted using the Xception model. Gour and others [209] created ResHist,

a residual learning-based CNN for automatic BCHI diagnosis. There are 152 layers in the CNN

architecture that was built. For binary classification, the ResHist model obtained an F1-score of

90% and an accuracy of 84%.

A hybrid structure was put up by Wang and others [210] for the classification of BCHI.

Transfer learning and double-deep transfer learning algorithms were used to extract the high-

level feature. The categorization performance was improved with the use of the interactive

technique. It was found that the categorization accuracy ranged from 96 to 98%. Using a

multilayer network, Sharma and Mehra [211] illustrated the impact of layer-wise fine-tuning on

categorization. An eight-layer, pre-trained AlexNet architecture was used for the experiment.
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The authors of this study concluded that a moderate degree of fine-tuning is the best option for

classification.

Hirra and others [212] proposed a patch-based deep learning model (Pa-DBN-BC) to clas-

sify breast cancer on histopathological images using a deep belief network. The proposed model

achieves an accuracy of 86%. Further, Kosaraju and others [213] proposed a framework to cre-

ate HIPMap using a CNN. In this method, HIPMap is used to convert a whole side image

of different shapes and sizes to a structured image representation. In the experiment on lung

cancer, classification accuracy was reported as 96%.

2.7.3 Classification using a Hybrid Approach

Wan and others [214] proposed a multi-level feature-based classification method that extracted

pixel, object, and semantic-level features using a CNN and an improved hybrid active con-

tour model for nucleus segmentation. A cascaded SVM classifier trained on different feature

subsets achieved 69% accuracy in multi-class breast cancer grading. Mehra and others [215]

investigated transfer learning by comparing pre-trained networks, including VGG16, VGG19,

and ResNet50, for magnification-independent breast cancer classification. Fine-tuned VGG16,

combined with a logistic regression classifier, yielded the highest accuracy of 92.60% and an

area under the ROC curve (AUC) of 95.65%, demonstrating the effectiveness of transfer learn-

ing. Bordou and others [216] did a comparative study on handcrafted feature-based methods,

such as Bag of Words (BoW) and Locality-Constrained Linear Coding (LLC) combined with

SVM classifiers, against CNN-based classification. The CNN approach outperformed the hand-

crafted feature-based models, achieving 96.15%–98.33% accuracy in binary classification and

83.31%–88.23% in multi-class classification, with dataset augmentation further improving per-

formance. Researchers [217] employed deep learning techniques, including CNN, Long Short-

Term Memory (LSTM), and a CNN-LSTM hybrid, to classify breast cancer images using the

BreakHis dataset. Structural and statistical image features guided the learning process, and

Softmax and SVM classifiers were used in the decision-making stage. The best accuracy of

91.00% was achieved at 200x magnification, while high precision and F-measure values were

obtained at other magnifications. These studies demonstrated the potential of CNNs, SVMs,

transfer learning, and hybrid deep learning approaches in improving the accuracy, efficiency,

and reproducibility of breast cancer classification using histopathological images.
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George and others [218] introduced a nucleus-guided transfer learning approach, ”Nuc-

TraL+BCF,” which used pre-trained CNNs as feature extractors combined with a belief theory-

based classifier fusion strategy, achieving 96.91% accuracy. Wang and others [219] proposed a

deep learning and machine learning hybrid approach by extracting multi-network features from

DenseNet-121, ResNet-50, InceptionV3, and VGG-16 and applying Dual-network Orthogo-

nal Low-rank Learning (DOLL) for feature selection. An Ensemble SVM (E-SVM) was then

trained using fused features and a voting strategy, achieving 97.70% accuracy on the ICIAR

2018 dataset. Sharma and Mehra [220] presented a comparative study on explored handcrafted

features (Hu moments, color histograms, Haralick textures) with conventional classifiers versus

transfer learning using VGG16, VGG19, and ResNet50 for magnification-dependent classifica-

tion on the BreakHis dataset. The VGG16 network with linear SVM achieved the highest ac-

curacy, with patch-based results of 93.97% (40×), 92.92% (100×), 91.23% (200×), and 91.79%

(400×). Saxena and others [221] evaluated ten different pre-trained CNNs as unsupervised fea-

ture extractors for breast cancer recognition from BreakHis dataset images. Feature sets from

these CNNs were classified using a linear SVM, outperforming state-of-the-art methods. These

studies highlighted the effectiveness of transfer learning, ensemble learning, and feature fusion

in improving breast cancer detection and classification from histopathological images.

Nasir and others [222] proposed a hybrid approach by fusing handcrafted and deep fea-

tures, where HOG and LBP features were combined with pre-trained VGG19 and InceptionV3

models. PCR and ICR were used to evaluate classification performance, achieving a patient-

level accuracy of 97.2% and an image-level accuracy of 96.7%. Zerouaoui and Idri [223] ex-

plored 28 hybrid architectures using seven deep-learning models for feature extraction (e.g.,

DenseNet201, InceptionV3, ResNet50, VGG19) and four classifiers (MLP, SVM, DT, KNN).

The best-performing model, using DenseNet201 with an MLP classifier (MDEN), achieved

99% accuracy on the FNAC dataset and 92.61%, 92%, 93.93%, and 91.73% on BreakHis at

magnifications of 40X, 100X, 200X, and 400X, respectively. Khazaee and Rezaee [224] a

model for Colorectal Cancer (CRC), a dilated ResNet (dResNet) with an attention module was

used to generate deep feature maps, followed by neighbourhood Component Analysis (NCA)

for feature selection and a Deep Support Vector Machine (DeepSVM) for classification. The

hybrid model achieved 98.75% and 99.76% accuracy on CRC-5000 and NCT-CRC-HE-100K

datasets, respectively, outperforming state-of-the-art methods. Almubarak and others [225]

proposed a cervical cancer classification that used a fusion-based hybrid approach combining
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handcrafted and deep learning features for squamous epithelium classification into Cervical In-

traepithelial Neoplasia (CIN) grades. By partitioning epithelium into 10 vertical segments and

extracting 27 handcrafted features alongside CNN-based features, the hybrid method improved

classification accuracy by 15.51% and 11.66% over individual deep learning and imaging meth-

ods, achieving an overall accuracy of 80.72%. These studies demonstrate the effectiveness of

hybrid models in improving cancer classification and early detection.

2.8 Comparative Summary of Metaheuristic Methods

A variety of histopathological image analysis techniques have been developed over the past

decade, ranging from traditional clustering and superpixel segmentation to recent meta-heuristic

and hybrid deep learning frameworks. These methods differ considerably in feature extraction

strategy, optimization objective, and computational complexity.

Table 2.6 summarizes the representative state-of-the-art approaches reported in the litera-

ture along with their respective datasets, performance metrics, and limitations. The comparison

highlights that conventional clustering and early deep-learning methods often suffer from stain

sensitivity, class imbalance, and lack of feature-selection efficiency. Baseline multi-objective al-

gorithms such as MOGWO and MOWOA achieve improved accuracy but exhibit slower conver-

gence and reduced stability in high-dimensional feature spaces. The proposed EMOGWO-SC

and IMOWOA-FS frameworks extend these optimizers with adaptive exploration–exploitation

and opposition-based learning, thereby addressing redundancy and improving accuracy and

computational efficiency.
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Table 2.6: Comparative summary of existing and baseline meta-heuristic methods for
histopathological image analysis.

Author / Year Methodology Dataset Performance Met-

ric(s)

Gaps / Limitations

Cruz-Roa et al.

(2014)

Deep CNN for basal-cell car-

cinoma detection

Private skin

dataset

Accuracy 94.3% Limited dataset size; risk of

overfitting; no feature selec-

tion.

Xu et al. (2016) Stacked Sparse Autoencoder

for nuclei detection

Breast

histopathol-

ogy

Dice 0.89 Struggles with irregular nu-

clei; high computational cost.

Arevalo et al.

(2017)

Unsupervised feature learn-

ing (ICA, autoencoders)

Colon and breast

histology

Accuracy 92.1% Poor generalization across

stains and magnifications.

Yuan et al. (2018) Superpixel segmentation with

SLIC0 optimization

Glioma MRI and

histopathology

Dice 0.8492 Parameter-sensitive; irregu-

lar segmentation in dense re-

gions.

Albayrak & Bil-

gin (2020)

Hybrid CNN with SLIC-

based segmentation

BreakHis Accuracy 95.2% Sensitive to stain variation;

no feature reduction stage.

Taha et al. (2021) Superpixel-based SARS-

CoV-2 spike density analysis

COVID-19 mi-

croscopy

Correlation 0.91 Focused on density estima-

tion, not classification.

Standard

MOGWO

(2022)

Multi-objective Grey Wolf

Optimizer for feature selec-

tion

BreakHis Accuracy 96.2% Slower convergence; may get

trapped in local optima; no

adaptive exploration.

Standard

MOWOA (2022)

Multi-objective Whale Opti-

mization Algorithm for fea-

ture selection

BreakHis Accuracy 96.5% Unstable convergence in

high-dimensional search

space; lacks leader diversity.

Proposed Work

(2025)

EMOGWO-SC + IMOWOA-

FS integrated framework

BreakHis (H&E) Segmentation

96.4%; Classifica-

tion 98.1%

Addresses redundancy; en-

hances accuracy and speed;

reduces computational com-

plexity.

2.9 Research Gaps and Objectives

After reviewing the literature, the following sections discuss the identified research gaps and

research objectives.

2.9.1 Research Gaps

1. Most unsupervised learning methods suffer from problems such as sensitive to initial

parameters settings, returning local optimal solutions, and requiring knowledge about

number of to be formed.
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2. Usually, nature-inspired algorithms consider a single objective, like intra-cluster distance,

to perform clustering which presents only a single view of the data.

3. Single-objective methods are not sufficient to provide high accuracy and robustness.

4. There exists no method to partition efficiently a histology image into different regions of

interest.

5. A new method is required for feature selection to identify discriminative and relevant

features from the histopathological images.

6. There is very little work done in the past for a meta-heuristic-based bag-of-features

method for automated histopathological image classification.

2.9.2 Objectives

After examining the research gaps, the subsequent research objectives are defined:

1. Design and development of an efficient image segmentation method to partition a histol-

ogy image into different regions of interest.

2. To design and develop a new feature selection method to identify discriminative and rel-

evant features from the histopathological images.

3. To design and develop an efficient meta-heuristic-based bag-of-features method for auto-

mated histopathological image classification.

2.10 Summary

This chapter presented a comprehensive review of existing methodologies for histopathological

image analysis, covering the core stages of image representation, segmentation, feature extrac-

tion, feature selection, and classification. It began with an overview of image representation

techniques, categorized into statistical, learning-based, and mid-level approaches. Statistical

methods rely on handcrafted features such as texture, color, and shape, while learning-based

techniques utilize models such as convolutional neural networks and autoencoders. Mid-level

methods, including the bag-of-features model, aggregate local features to form global image

descriptors.
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Superpixel-based segmentation techniques were reviewed and grouped into watershed-based,

graph-based, energy optimization, and clustering-based categories. The chapter also exam-

ined the application of computational intelligence methods, including machine learning, deep

learning, and evolutionary algorithms, in improving segmentation and interpretation of complex

histopathological images.

Additionally, codebook construction methods using hierarchical, partitional, and metaheuris-

tic clustering algorithms were analyzed, with particular attention to the Whale Optimization

Algorithm and Grey Wolf Optimization. Feature encoding and classification techniques were

discussed, ranging from conventional machine learning models to advanced deep learning and

hybrid approaches. Finally, the chapter identified key research gaps and outlined the main re-

search objectives of the thesis.
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CHAPTER 3

EFFICIENT IMAGE SEGMENTATION USING EMOGWO-SC

This chapter introduces the proposed Enhanced Multi-Objective Grey Wolf Optimizer-based

Superpixel Clustering (EMOGWO-SC) method, which represents a novel multi-objective clus-

tering approach for nuclei segmentation in histopathological images. Furthermore, it presents

a comprehensive comparative analysis of the proposed method against three existing multi-

objective nature-inspired algorithms to evaluate its effectiveness and robustness.

3.1 Introduction

Histological images are the golden standard in breast cancer diagnosis, and hematoxylin and

eosin (H&E) staining of such images is the standard staining protocol [226]. In a manual anal-

ysis of these images, there are several issues to be handled, such as analysis variation due to

differences in the observer’s experience, time-taking process, and difficulty identifying subtle

visual features [5]. However, the digitization of pathology systems has successfully mitigated

such concerns [227]. In digital pathology, the segmentation of nuclei from the histopathological

image is the foremost unit whose accuracy determines the efficiency of the system [228]. For the

same, there are many nuclei segmentation methods defined over approaches like superpixels,

clustering, active contours, watershed, and multi-level thresholding [229], [230], [8]. Among

them, superpixels are one of the efficient approaches for segmentation. Therefore, this chapter

introduces an efficient nuclei segmentation method based on superpixels for histopathological

images.

Superpixels divide the image into non-overlapping regions wherein similar pixels are grouped

together [231]. The boundary of each irregular-shaped superpixel is according to the edge infor-

mation in the original image. This makes each superpixel perceptualy meaningful [232], [52].
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Various computer-vision applications like, image segmentation [233], depth estimation [234],

object localization [235], body model estimation [236], bag-of-features [237] [238] and skele-

tonization [239] employ superpixels to obtain mid-level representations. Fouad et al. [231]

employed unsupervised learning on superpixels to segment a cancer image into different tis-

sues. In literature, it has been observed that unsupervised learning is quite advantageous for

histopathological image analysis as these methods are efficient in identifying anatomical struc-

tures in an image [231][238].

Generally, unsupervised learning methods work on the principle of clustering the unlabeled

data into homogeneous clusters according to the considered criteria such as intra-cluster dis-

tance [240], [241], [242]. Some of the popular unsupervised learning methods are K-means and

Fuzzy C-Means [243] [244]. However, there are a number of demerits in such methods, such

as sensitive towards initial parameters settings, returning local optimal solutions, and requiring

knowledge about cluster numbers to be formed [245], [246], [247]. Nature-inspired algorithms

have emerged as effective solutions for generating efficient clusters and have addressed a range

of real-world optimization problems [248], [249], [168], [250]. Some widely recognized nature-

inspired algorithms include the Genetic Algorithm (GA) [251], Biogeography-Based Optimiza-

tion (BBO) [252] [167], Salp Swarm Optimization (SSO)[253], Gravitational Search Algorithm

(GSA) [254], Whale Optimization Algorithm (WOA)[255], and Grey Wolf Optimizer (GWO)

[256]. These algorithms typically focus on single objectives, such as minimizing intra-cluster

distance, to perform clustering, which provides a limited perspective on the data [257], [258].

To obtain better clusters, multi-objective criteria have been a better alternative as they presents

multiple views while clustering the data, which results in comparatively better segmented im-

ages. In the literature, there are a number of multi-objective nature-inspired algorithms that try

to optimize multiple objective functions simultaneously. Some popular multi-objective nature-

inspired algorithms are Non-dominated Sorting GA (NSGA-II) [259], Pareto-Archived Evolu-

tion Strategy (PAES) [260], and Strength-Pareto Evolution Algorithm (SPEA) [261]. Multi-

Objective GWO (MOGWO) is a recent multi-objective nature-inspired algorithm that has been

inspired by the behavior of grey wolves. However, this algorithm suffers from several disadvan-

tages, such as a lack of population diversity, high computational time, and limited exploration

capability.

Figure 3.1 illustrates sample images taken from a publicly available breast cancer histopatho-

logical dataset [262], to depict the involved complexity. Image (a) shows a densely packed cel-
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Figure 3.1: Histopathological image scanned at × 40.

lular region with overlapping nuclei, indicative of high-grade malignancy. Image (b) displays

glandular formations with irregular borders and varying nuclear sizes, representing architec-

tural distortion often observed in invasive carcinoma. Image (c) captures well-circumscribed

clusters of tumor cells surrounded by adipose tissue, highlighting the heterogeneity in tissue

composition. Image (d) presents a fibroglandular region with dispersed epithelial structures

embedded within a stromal matrix, reflecting the complex microenvironment of breast tissue.

Histopathological images are rich in information but also incredibly complex. These im-

ages, often captured at extremely high resolutions, encompass a vast amount of information,

requiring computationally intensive methods to process. One major issue is the variability in-

troduced by differences in staining protocols, which can affect color consistency and hinder the

generalization of machine learning models. Additionally, the biological heterogeneity within

tissue samples, such as the presence of various cell types, structural abnormalities, and inconsis-

tent tumor morphologies, adds another layer of difficulty in accurate interpretation. Annotation

is also a significant challenge, as it demands extensive expert input and is often subject to inter-

observer variability. Moreover, relevant features can exist across multiple scales, from cellular

to tissue-level structures, necessitating multi-scale modeling approaches. These challenges are

further compounded by the need for interpretability and seamless integration into clinical work-

flows, highlighting the importance of robust, explainable, and adaptable computational tools in

the field of digital pathology.

A novel variant of the Multi-Objective Grey Wolf Optimizer, referred to as the Enhanced

Multi-Objective Grey Wolf Optimizer (EMOGWO), is introduced in this chapter and utilized

for effective nuclei segmentation in histopathological images. Segmenting nuclei in such im-

ages is a challenging task due to several factors, including non-uniform nuclei shapes, over-

lapping structures, variability in tissue texture, inconsistent stain absorption, and artifacts in-
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troduced during the scanning process [229], [263], [264]. Clustering-based techniques have

shown promise in addressing these challenges. In this context, the chapter presents a new multi-

objective clustering method, termed EMOGWO-based Superpixel Clustering (EMOGWO-SC),

which aims to optimally and efficiently cluster superpixels to facilitate accurate nuclei segmen-

tation from histopathological images. Thus, the main contributions of this chapter are:

1. A new variant, EMOGWO, has been proposed.

2. A novel multi-objective clustering method (EMOGWO-SC) is introduced, which effi-

ciently clusters the superpixels to segment the nuclei from a histopathological image.

3. The proposed EMOGWO is compared against three other multi-objective nature-inspired

algorithms on 10 well-known multi-objective benchmarks.

4. To validate the performance of the proposed method (EMOGWO-SC), a publicly avail-

able dataset, H&E-stained Estrogen Receptor Positive (ER+) breast cancer images, has

been considered and experimental comparison is conducted against MOGWO-based Su-

perpixel Clustering (MOGWO-SC) and K-means-based Superpixel Clustering (K-means-

SC) in terms of computation time and segmentation accuracy.

The remaining chapter is organized as follows; “Preliminaries” briefs a superpixel method and

MOGWO. The proposed EMOGWO-SC, along with EMOGWO, is presented in “Proposed

multi-objective clustering method for nuclei segmentation”. Experimental analysis is conducted

in “Experimental Analysis”, followed by the conclusion in “Conclusion”.

3.2 Preliminaries

3.2.1 SLIC: A Superpixel Method

superpixels are atomic and compact regions in an image that are formed after over-segmentation.

Generally, superpixels are utilized for obtaining a mid-level representation of an image [265].

One of the efficient methods for generating superpixels is Simple Linear Iterative Clustering

(SLIC) [52]. It requires only a single input to operate, i.e., number of superpixels (K) to be

formed. In SLIC, two phases are followed, i.e., initialization and local clustering [52], [266].

The initialization phase corresponds to the random initialization of A centroids at an interval

of P =
√

U
A . Here, U represents the total pixels in an image. In the local clustering phase, the
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distance (T ) of the kth superpixel centroid from all the neighborhood pixels within the interval

2P×2P is measured according to Eq. 3.1.

T (i,k) =

√(
dc

m

2)
+

(
ds

S

2)
(3.1)

Where m corresponds to the constant and i represents the ith image pixel. For kth superpixel and

ith image pixel, dc measures the euclidean distance in the CIELab color space, which is defined

in Eq. 3.2 while ds computes the euclidean distance in the spatial space according to Eq. 3.3.

dc(i,k) =
√

(li − lk)
2 +(ai −ak)

2 +(bi −bk)
2 (3.2)

ds(i,k) =
√
(xi − xk)

2 +(yi − yk)
2 (3.3)

The measured value of D is used to assign every pixel to the nearest superpixel centroid.

Then, the mean of all the assigned pixels is computed to update the corresponding centroid of

the superpixels. This process is followed till the residual error is converged. In post-processing,

the unassigned pixels are assigned to the nearest superpixels.

3.2.2 Multi-Objective GWO

MOGWO is the multi-objective version of GWO [124]. The basic working of MOGWO is

inspired by GWO only, but there are two distinguishing components in MOGWO. The first

component corresponds to the archive set, and the other component is the leader selection.

Pareto optimal solutions in an iteration are stored as an archive set (ACH), which depicts the

set of solutions that are non-dominated by any other solution. Let an optimization problem P

need to optimize three objective functions, namely f1, f2, and f3. Let there be two solutions, X

and Y . A solution X dominates an another solution Y if X is better than Y in at least one of the

objectives fi and not worse than other objectives. In case X does not dominate Y and Y does not

dominate X , they are called non-dominated solutions. These solutions are considered as better

solutions than other solutions in the population.

In MOGWO, an archive manager is used to regulate the movement of non-dominated so-

lutions within the archive set. The following rules of movement are followed on the archive

set:
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1. If the new solution W is dominated by any solution of the ACH, then W can be included

in the ARC.

2. If the new solution W dominates one or more solutions of the ACH, the dominated solu-

tions are removed from the ACH and W is added.

3. If neither of the conditions is met, then also W is added.

4. If the ACH reaches its full capacity, the grid mechanism is used to identify the most

crowded segments, from which one solution is removed. Afterwards, the new solution W

is added to the segment with the least crowding to preserve diversity.

To update the leader, the leader selection method is applied to the updated ACH. Similar to

GWO, the leaders, i.e., α , β , and δ wolves are selected from the archive set, which represents

the three best solutions. For choosing the three best solutions, fitness values are sorted, and the

first three values are selected, namely, α , β , and δ . The other solutions in the population update

the respective positions according to these leaders only. Therefore, the leader selection method

is key to the efficient performance of MOGWO.

For leader selection, a probability function Pi is defined according to the density of the

solution. Assume there are S number of non-dominated solutions in ith segment, then Pi is

defined as per Eq. 3.4.

Pi =
const

Si
(3.4)

Where const > 1. from Eq. 3.4, it can be observed that the probability of picking a solution

from highly crowded segments is less, which is a good indication to maintain the diversity in

the population [267]. This will redirect the search to less crowded segments and explore the

search space to find better solutions. Thus, MOGWO ensures diversity within the population

and systematically explores different areas of the search space to identify the optimal solutions.

The position update equations and other steps of the MOGWO algorithm according to GWO

[124].
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3.3 Proposed Multi-Objective Clustering Method for Nuclei Segmentation

3.3.1 Proposed Method

A new multi-objective clustering method, EMOGWO-SC is presented for optimal segmenta-

tion of nuclei from a histopathological image. The block diagram of the proposed method is

illustrated in Figure 3.2.

Figure 3.2: Proposed EMOGWO-based segmentation framework. The process includes image
preprocessing, superpixel generation using the SLIC method, clustering through enhanced

multi-objective optimization, and fuzzy membership–based threshold selection. Legend: f1 =
intra-cluster distance (compactness), f2 = inter-cluster distance (separability).

The proposed EMOGWO-SC method begins with the input of an H&E-stained histopatho-

logical Image (a). This original image contains various tissue components such as nuclei,

cytoplasm, and background structures. The image is first processed using the SLIC method,

as shown by the transition to Image (b). In this step, the image is divided into compact and

homogeneous regions known as superpixels, which simplify the image representation while

preserving essential boundaries.

These superpixels i.e Image (b), are then used as input for the clustering stage. As illustrated

in Image (c), the EMOGWO algorithm is employed to perform clustering based on multiple

objective criteria. The generated superpixels are further optimally clustered into ‘g’ clusters by

employing the proposed EMOGWO.

For the same, two objective functions are considered, i.e., minimizing the intra-cluster dis-

tance and maximizing the inter-cluster distance. Intra-cluster distance measures the compact-

ness of clusters while inter-cluster distance computes the separation among clusters. These two

objective functions will help in achieving better clustering quality and optimal cluster centers.

Therefore, the proposed method optimizes two objective functions simultaneously which are

defined in Eq. 3.5 and Eq. 3.6, respectively. Following clustering, the cluster centroid with the

minimum intensity value is identified as likely corresponding to nuclei regions, helping isolate
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the nuclei from other tissue parts.

The final output, shown in Image (d), is the nuclei-segmented image. In this image, the

nuclei are effectively identified and highlighted, making it suitable for further quantitative and

morphological histopathological analysis.

Argmin{C1,C2,C3,··· ,Ci,··· ,Cg} :
g

∑
j=1

p

∑
i=1

||C j − xi||2 (3.5)

Argmax{C1,C2,C3,··· ,Ci,··· ,Cg} :
g

∑
j=1

g

∑
i=1,i̸= j

||C j −Ci||2 (3.6)

Where ‘g’ and ‘p’ correspond to the number of required optimal clusters and total pixels in

the image, respectively. Further, C j represent the jth cluster centroid while xi is the ith image

pixel.

In a H&E stained histopathological image, nuclei regions are highlighted with dark color

[268]. Therefore, the minimum average cluster is segmented as the nuclei region. The pseudo-

code of the proposed method is presented in Algorithm 3.1; a detailed explanation of the algo-

rithm is as follows.

Step 1. Input: An H&E stained histopathological image X of size m×n, and the maximum

number of iterations Tmax.

Step 2. Output: A segmented image where the nuclei regions are accurately identified.

Step 3. Superpixels Generation: Apply the SLIC algorithm on image X to generate super-

pixels. This reduces computational complexity and makes groups of similar pixels

into meaningful regions.

Step 4. Initialization of EMOGWO: Initialize a population of N individuals for the EMO-

GWO. Each individual represents a possible clustering solution.

Step 5. Cluster Centroid Initialization:

• For each individual, initialize g cluster centroids {C1,C2, . . . ,Cg}.

• Each centroid Ci is a d-dimensional vector, {c1,c2, . . . ,cd}, based on super-

pixel features.

Step 6. Optimization Loop: For each iteration t = 1 to Tmax, repeat:
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• Evaluate the fitness of each individual based on multiple objective functions

(e.g., intra-cluster compactness, inter-cluster separation).

• Update the positions of individuals using the EMOGWO strategy, which mim-

ics the leadership hierarchy and hunting behavior of grey wolves.

Step 7. Best Solution Selection: After completing all iterations, select the best individual

(solution) based on the final fitness values.

Step 8. Superpixels Clustering: Use the selected best individual’s cluster centroids to per-

form clustering on the superpixels.

Step 9. Nuclei Identification: Identify the cluster with the minimum intensity value, as it

typically corresponds to nuclei regions. This forms the final segmented output.

The same is represented in flowchart Figure 3.3. Further, the proposed variant, EMOGWO,

is discussed in the following section.

Algorithm 3.1 Multi-objective clustering method for nuclei segmentation
1: Input: A H&E stained histopathological image X of size m×n; maximum iterations Tmax
2: Output: Nuclei segmented image
3: Generate superpixels by executing SLIC method on X ;
4: Initialize the population of EMOGWO with N individuals;
5: for each individual j = 1 to N do
6: Initialize g cluster centroids {C1,C2, · · · ,Cg};
7: end for
8: Each Ci is defined as {c1,c2, · · · ,cd} for d-dimensional superpixels;
9: for t = 1 to Tmax do

10: for each individual j = 1 to N do
11: Compute the fitness f it according to the objective functions;
12: end for
13: Update each individual based on the EMOGWO algorithm;
14: end for
15: Select the best individual based on final fitness values;
16: Cluster the superpixels using the best individual’s centroids;
17: The cluster centroid with the minimum intensity corresponds to the nuclei regions.

3.3.2 Enhanced MOGWO (EMOGWO)

In MOGWO, two new components have been introduced: the archive set and the leader selec-

tion method. The archive set contains the non-dominated solutions, while the leader selection
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Figure 3.3: Flowchart of the proposed multi-objective clustering method for nuclei
segmentation using EMOGWO.

method identifies the three best solutions from the least crowded segment in the population.

However, this may lead to a problem. In case there are fewer than three solutions in the less

crowded segment, then another least crowded segment will be evaluated to select the lead-

ers. If this scenario remains the same in the second less crowded segment also, then the third

less crowded segment will be selected. This results in increased time complexity. Therefore,

this chapter proposed an Enhanced MOGWO (EMOGWO) with an enhanced leader selection

method.

In the proposed method, the whole population is divided into different segments. The seg-

ment number is allocated to each solution i based on Eq. 3.7.

xi = 1+ni (3.7)

Where, xi represents segment number of solution i and ni represents the number of solution that

dominate solution i. Hence, for the non-dominated solutions, the segment number will always
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be 1. The maximum segment number will always be less than the total number of solutions in

the population. Once the population is divided into segments, less crowded solutions will be

identified. Therefore, for every solution i in each segment, the crowding count (cci) is calculated

using Eq. 3.8.

cci =
λ (xi)

∑
j=1

h(di j) (3.8)

Where, λ (xi) is the number of solutions in each segment number xi and h(di j) is calculated by

Eq. 3.9.

h(di j) =

1− (
di j

thres) i f d ≤ thres

0 Otherwise
(3.9)

Where thres is selected between zero and one and may change based on the application while

di j is the distance between two solutions i and j in the objective space having M objectives. The

calculation of distance is given by Eq. 3.10.

di j =

√√√√ M

∑
o=1

(
f i
o − f j

o

f max
o − f min

o

)2

(3.10)

Where f max
o and f min

o are the maximum and minimum fitness value of oth objective and f i
o, f j

o

are the fitness values of solutions i and j in oth objective respectively.

Now, the selection of the three best solutions will be according to the roulette wheel selec-

tion, based on the following probability for each segment.

pk
i =

c
cci

(3.11)

Where c is a constant greater than one and cci the crowding count of solution i in the segment

k.

From Eq. 3.11, it can be observed that if the cci is high, then the probability of this solution

becoming the leader will be less. This indicates that less crowded solutions will be selected.

This improves the population diversity and exploration capability of the algorithm.
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3.3.3 Novelty of the Proposed EMOGWO-SC Method

The proposed Enhanced Multi-Objective Grey Wolf Optimization-based Superpixel Clus-

tering (EMOGWO-SC) introduces three major innovations. First, it integrates fuzzy membership-

based adaptive thresholding within a multi-objective optimization framework to enhance nuclei

boundary detection. Second, it employs adaptive leader selection to improve convergence rate

and maintain population diversity within the MOGWO algorithm. Third, the method jointly

optimizes intra-cluster distance and inter-cluster distance objectives, ensuring compact and

well-separated clusters with high segmentation precision and reduced computation time. These

improvements collectively enable more accurate and robust nuclei segmentation compared to

existing approaches such as K-means-SC and standard MOGWO-SC.

3.4 Experimental Results

The performance of the proposed automatic nuclei segmentation method has been experimented

in two sections. First, Section 3.4.1 showcases the efficiency of the proposed multi-objective

grey wolf optimizer on ten well-known CEC-2009 multi-objective benchmark functions [269]

in which the proposed EMOGWO is validated qualitatively on 7 bi-objective and 3 tri-objective

test problems. Second, in Section 3.4.2, EMOGWO is used for nuclei segmentation within

H&E stained breast cancer histology images. For a fair analysis, all the experiments have been

performed using MATLAB 2017a on a system having a 2.66 GHz Intel Core i3 processor and

8 GB of RAM.

3.4.1 Evaluation Parameters for Efficiency

To investigate the efficiency of the proposed EMOGWO method a set of comparison parameters

is proposed. The comparison parameters we have used are described as follows.

3.4.1.1 IGD

Inverted Generational Distance (IGD) is a performance metric used to evaluate the quality of so-

lutions (approximated Pareto front) obtained by a multi-objective optimization algorithm com-

pared to a true Pareto front (ideal set of optimal trade-offs). The mathematical equation of

IGD is an enhanced version of Generational Distance (GD) [270], [271] which is introduced by
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Sierraand Coello [272] and formulated in Eq. 3.12.

IGD =

√
∑

n
j=1 dis2

j

n
(3.12)

Where n represents the true optimal Pareto solutions, and dis j refers to the Euclidean distance

between the jth true Pareto optimal and the closest computed Pareto optimal solutions in the

reference set.

Interpretation:

• Lower IGD = The approximate solutions are closer to the true Pareto front and better

distributed.

IGD considers both convergence (how close the solutions are to the true front) and diversity

(how well they cover it).

3.4.1.2 SP

Spacing (SP) is a diversity metric used in multi-objective optimization to measure how evenly

distributed the solutions are along the approximated Pareto front. It evaluates whether the so-

lutions are spread out uniformly or clustered in some regions. SP helps assess the distribution

quality of the solution set. The spacing is defined as [261].

SP =

√
1

n−1

n

∑
j=1

(dis′−dis j)2 (3.13)

Where dis’ is the mean of all dis j, n is the number of optimal Pareto solutions obtained so far,

and dis j = min j(| f i
1(⃗x)− f j

1 (⃗x)|+ | f i
2(⃗x)− f j

2 (⃗x)|) for all i, j = 1,2,3, · · · ,n.

Interpretation:

• Lower SP value�More uniform distribution� Better diversity

• Higher SP value� Uneven spacing� Poor spread

3.4.1.3 MS

Maximum Spread (MS) is a diversity metric used to measure the range (or extent) of the approx-

imated Pareto front in objective space. It indicates the breadth of the solution set, specifically

whether it spans the entire true Pareto front. The maximum spread is defined as [261].
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MS =

√√√√ t

∑
j=1

max(det(ai,bi)) (3.14)

here, det() computes the Euclidean distance, a j, b j represent the maximum and minimum value

in jth objective and t is the total number of objectives.

Interpretation:

• Higher MS = Better range coverage of the objective space

• Lower MS = Solutions are clustered, covering a smaller part of the Pareto front

3.4.1.4 Mean Ranking

Mean Ranking is a comparative metric used to aggregate the performance of different algo-

rithms across multiple quality indicators (like IGD, SP, MS, etc.). The mean ranking is defined

as [273].

MeanRank j =
1
M

M

∑
i=1

ri, j (3.15)

where M is number of performance metrics and ri, j is rank of algorithm j on metric i.

Interpretation:

• Ranking each algorithm for each metric.

• Then, computing the average rank across all metrics.

• The algorithm with the lowest mean rank is considered the overall best.

3.4.1.5 Dice Coefficient

The dicce coefficient is a statistical measure used to gauge the similarity between two sets. Dice

coefficient is defined as [274].

Dice =
2T P

2T P+FP+FN
(3.16)
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3.4.1.6 Box Plot

A box plot (also known as a box-and-whisker plot) is a statistical chart used to summarize the

distribution of a dataset [275].

Interpretation:

• Higher or lower medians� Difference in central tendency

• Narrower boxes� Less variability (more consistent performance)

• More/fewer outliers�More/less extreme behavior

• Skewed box (median closer to Q1 or Q3)� Skewed distribution

3.4.2 Performance Analysis of EMOGWO

The proposed EMOGWO has been tested over 10 multi-objective benchmark functions includ-

ing 7 bi-objectives (UF1 - UF7) and 3 tri-objective test problems (UF8 - UF10) [141], [269].

Figures 3.4 and 3.5 tabulate these benchmark functions along with definitions. Table 3.1 tabu-

lates the initial parameter settings for all the considered algorithms. The benchmark functions

are considered as the most challenging test problems in the literature, which include differ-

ent multi-objective search regions with non-convex, convex, multi-modal, and dis-continuous

Pareto fronts.
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(a)

Figure 3.4: Bi-objective test problems.

(a)

Figure 3.5: Tri-objective test problems.
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Table 3.1: Parameter settings for all the considered algorithms.

Sr.No. Parameter MOPSO MOEA/D MOGWO EMOGWO

1. Population Size (N) 50 50 50 50

2. Number of iterations (itr) 1000 1000 1000 1000

3. Number of search agents 8 8 8 8

4. Number of repetitive runs 10 10 10 10

5. Inertia weight (w) 0.8 – – –

6. Acceleration constants (c1,c2) 2 – – –

7. Grid inflation parameter (αp) 0.01 – – –

8. Leader selection pressure parameter βp parameter 4 – – –

9. Mutation rate (CR) – 0.5 – –

10. Distribution index (η) – 30 – –

11. Probability of selecting parents (δ ) – 0.9 – –

12. α parameter – – 0.99 0.99

13. β parameter – – 0.01 0.01

The performance parameters IGD, SP, and MS quantitatively validate the efficacy as it com-

pare the mean and standard deviation values of all the considered algorithms. Thus, to qualita-

tively validate the performance, the best set of Pareto optimal solutions of each algorithm are

compared. To do a comparative analysis, the proposed EMOGWO is compared with MOGWO

[141], MOPSO [272], and MOEA/D [276]. To reduce the interference effect and for a fair

analysis, each algorithm has been run 10 times. Moreover, the number of iterations (itr) and

population size (N) in all the considered algorithms are set as 1000 and 50, respectively, and all

other parameters are taken from respective literature. To appraise the efficacy of the proposed

EMOGWO, it is compared with all the considered algorithms in terms of mean, standard devia-

tion, median, worst, and best values of IGD, SP, and MS. Tables 3.2 - 3.4 depict the IGD, SP, and

MS values returned by the proposed EMOGWO and other considered algorithms. From Table

3.2, it is observed that the proposed EMOGWO obtains the best IGD values for more than 90%

of benchmark problems. IGD values are good indicators for benchmarking the convergence of

different algorithms. So, the results depicted in Table 3.2 signify the better convergence of the

proposed EMOGWO. There are a few benchmark problems such as UF3, UF6, and UF7, in

which MOEA/D obtains the best IGD values while MOPSO shows better results than proposed

and other considered algorithms for benchmark UF8. Thus, from the above analysis, it can

be said that the suggested EMOGWO’s performance is more consistent than other considered

algorithms.

Furthermore, SP and MS values are also compared in Tables 3.3 and 3.4. As MOEA/D is not

implemented in MATLAB for tri-objective benchmark problems UF8, Uf9, and UF10. There-
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Table 3.2: Statistical results of all the considered algorithms for IGD on UF1 to UF10.

Functions Algorithms Average Median STD. Dev. Worst Best

UF1

MOPSO .1370 .1317 .0441 .2279 .0899

MOEA/D .1871 .1829 .0507 .2464 .1265

MOGWO .1144 .1130 .0195 .1577 .0802

EMOGWO .0858 .0848 .0147 .1183 .0602

UF2

MOPSO .0604 .0484 .0276 .1305 .0370

MOEA/D .1223 .1201 .0107 .1437 .1049

MOGWO .0583 .0578 .0074 .0732 .0498

EMOGWO .0437 .0433 .0055 .0549 .0374

UF3

MOPSO .3140 .3080 .0447 .3777 .2565

MOEA/D .2886 .2893 .0159 .3029 .2634

MOGWO .2557 .2509 .0807 .3679 .1295

EMOGWO .1918 .1882 .0605 .3129 .0971

UF4

MOPSO .1360 .1343 .0074 .1519 .1273

MOEA/D .0681 .0685 .0021 .0704 .0647

MOGWO .0587 .0587 .0005 .0594 .0580

EMOGWO .0440 .0440 .0004 .0445 .0435

UF5

MOPSO 2.2024 2.1257 .5530 3.0384 1.4648

MOEA/D 1.2915 1.3376 .1349 1.4675 1.1231

MOGWO .7971 .6994 .3786 1.7386 .4680

EMOGWO .5978 .5246 .2839 1.3039 .3510

UF6

MOPSO .3540 .3873 .2044 .6151 .0540

MOEA/D .4552 .4377 .1898 .6770 .0290

MOGWO .1604 .0734 .1391 .4014 .0628

EMOGWO .1674 .0550 .1043 .3011 .0471

UF7

MOPSO .3540 .3873 .2044 .6151 .0540

MOEA/D .4552 .4377 .1898 .6770 .0290

MOGWO .1604 .0734 .1391 .4014 .0628

EMOGWO .1427 .0653 .1238 .3573 .0558

UF8

MOPSO .5367 .5364 .1826 .7964 .2453

MOEA/D – – – – –

MOGWO 2.0578 2.3360 1.1455 3.8789 .4613

EMOGWO .5957 .5954 .2027 .8840 .2723

UF9

MOPSO .4885 .4145 .1445 .7221 .3336

MOEA/D – – – – –

MOGWO .1917 .1660 .0925 .4479 .1291

EMOGWO .1630 .1411 .0786 .3807 .1097

UF10

MOPSO 3.5945 2.8255 3.4883 2.9564 1.0431

MOEA/D – – – – –

MOGWO 1.6372 1.5916 .2988 2.1622 1.2201

EMOGWO 1.4735 1.4325 .2689 1.9460 1.0981

fore, the efficiency of the proposed EMOGWO is only compared with MOPSO and MOGWO

for these benchmark problems. It can be seen from the tables that the proposed EMOGWO

shows better coverage and convergence. Although there are some discontinuities on the Pareto

optimal front obtained by EMOGWO, such as the coverage of the whole front is broader than

that of MOGWO, MOPSO, and MOEA/D for most of the benchmark problems. However,

the Pareto optimal solutions of the proposed EMOGWO are closer to the true Pareto optimal
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front and evenly distributed for both bi and tri-objectives. Thus, from the statistical results, the

efficacy of the proposed algorithm can be easily observed.

Table 3.3: Statistical results of all the considered algorithms for SP on UF1 to UF10.

Functions Algorithms Average Median STD. Dev. Worst Best

UF1

MOPSO .0090 .0086 .0025 .0146 .0067

MOEA/D .0038 .0038 .0015 .0067 .0021

MOGWO .0124 .0054 .0146 .0464 .0008

EMOGWO .0128 .0122 .0035 .0209 .0096

UF2

MOPSO .0083 .0081 .0017 .0125 .0062

MOEA/D .0088 .0086 .0008 .0104 .0080

MOGWO .0096 .0082 .0031 .0158 .0066

EMOGWO .0111 .0095 .0036 .0182 .0076

UF3

MOPSO .0070 .0068 .0017 .0101 .0048

MOEA/D .0268 .0251 .0206 .0626 .0008

MOGWO .0459 .0486 .0145 .0705 .0155

EMOGWO .0519 .0549 .0164 .0797 .0175

UF4

MOPSO .0067 .0066 .0009 .0081 .0055

MOEA/D .0073 .0073 .0006 .0084 .0061

MOGWO .0097 .0086 .0039 .0172 .0058

EMOGWO .0109 .0097 .0044 .0195 .0066

UF5

MOPSO .0048 .0049 .0041 .0121 .0001

MOEA/D .0028 .0001 .0055 .0162 .0000

MOGWO .1523 .0878 .1625 .5125 .0084

EMOGWO .1706 .0983 .1820 .5740 .0094

UF6

MOPSO .0208 .0124 .0326 .1114 .0022

MOEA/D .0063 .0000 .0127 .0303 .0000

MOGWO .0145 .0111 .0125 .0411 .0019

EMOGWO .0165 .0127 .0142 .0469 .0022

UF7

MOPSO .0067 .0066 .0029 .0124 .0033

MOEA/D .0054 .0044 .0030 .0117 .0008

MOGWO .0082 .0055 .0086 .0311 .0003

EMOGWO .0093 .0062 .0097 .0351 .0004

UF8

MOPSO .0268 .0264 .0083 .0447 .0153

MOEA/D – – – – –

MOGWO .0069 .0047 .0047 .0188 .0037

EMOGWO .0295 .0290 .0091 .0492 .0168

UF9

MOPSO .0234 .0235 .0041 .0309 .0172

MOEA/D – – – – –

MOGWO .0174 .0183 .0063 .0286 .0065

EMOGWO .0195 .0205 .0071 .0320 .0073

UF10

MOPSO .0199 .0207 .0035 .0267 .0154

MOEA/D – – – – –

MOGWO .0252 .0239 .0150 .0538 .0000

EMOGWO .0219 .0227 .0038 .0293 .0169

A Friedman’s test [277] is also included in Table 3.5 to statistically validate the efficacy

of the suggested EMOGWO. Friedman’s test assesses the efficacy of each approach on each

benchmark function and ranks them in order of effectiveness [278]. The best approach is given

a score of 1, the second best is given a score of 2, the third best is given a score of 3, and so on.
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Table 3.4: Statistical results of all the considered algorithms for MS on UF1 to UF10.

Functions Algorithms Average Median STD. Dev. Worst Best

UF1

MOPSO .6454 .6632 .1929 .2659 .9523

MOEA/D .5177 .5954 .1661 .3149 .7413

MOGWO .9268 .9327 .0688 .8180 .9971

EMOGWO .9361 .9420 .0695 .8261 1.0000

UF2

MOPSO .9121 .9164 .0256 .8665 .9530

MOEA/D .8720 .8744 .0056 .8599 .8779

MOGWO .9097 .9104 .0287 .8470 .9479

EMOGWO .9734 .9741 .0307 .9062 1.0000

UF3

MOPSO .6103 .6161 .1058 .3817 .7715

MOEA/D .2399 .2294 .1213 .0898 .4786

MOGWO .9498 1.0000 .0878 .7681 1.0000

EMOGWO .9783 1.0000 .0904 .7911 1.0000

UF4

MOPSO .8128 .8132 .0137 .7944 .8345

MOEA/D .8832 .8813 .0181 .8532 .9139

MOGWO .9424 .9427 .0009 .9410 .9433

EMOGWO .9613 .9615 .0009 .9598 .9621

UF5

MOPSO .2793 .2865 .0958 .1557 .4383

MOEA/D .2922 .2917 .0347 .2383 .3438

MOGWO .3950 .4326 .1749 .0301 .6104

EMOGWO .4622 .5061 .2047 .0352 .7142

UF6

MOPSO .2744 .2292 .1129 .1544 .5252

MOEA/D .0968 .0001 .2072 .0000 .5948

MOGWO .6736 .7083 .1232 .3884 .8149

EMOGWO .7881 .8287 .1442 .4544 .9535

UF7

MOPSO .4293 .2952 .2755 .1446 .8771

MOEA/D .5632 .6327 .2421 .1496 .9915

MOGWO .8013 .9629 .3087 .0225 .9875

EMOGWO .8814 1.0000 .3395 .0248 1.0000

UF8

MOPSO .5081 .5060 .1614 .2272 .7148

MOEA/D – – – – –

MOGWO .4457 .4443 .1857 .1886 .8638

EMOGWO .4769 .4754 .1987 .2018 .9242

UF9

MOPSO .1982 .1657 .1635 .0677 .6424

MOEA/D – – – – –

MOGWO .8399 .9106 .1976 .2875 .9375

EMOGWO .8819 .9561 .2075 .3019 .9844

UF10

MOPSO .1302 .1091 .0626 .0649 .2540

MOEA/D – – – – –

MOGWO .2972 .1424 .3465 .0319 .9283

EMOGWO .3180 .1523 .3708 .0342 .9933

The ranks returned in various runs are averaged to determine the rank if the performance of the

two approaches is identical [279]. Friedman test returns a p-value of 0.004756, which is signif-

icantly less than the threshold (α = 0.05), indicating that the outcomes that were obtained are

statistically different. The ranks of all the methods returned by the Friedman test are tabulated

in Table 3.5, which shows that the proposed EMOGWO has the lowest ranking value of all the

models. Based on statistical analysis and experimental data, EMOGWO is found to be superior.
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Table 3.5: Mean ranking of all the considered methods.

Rank Methods Rank value

1. EMOGWO 1.75

2. MOGWO 2.08

3. MOEA/D 2.73

4. MOPSO 3.06

Further, box plots for 6 representative benchmark problems, including 3 bi-modal (UF1,

UF4, and UF6) and 3 tri-modal (UF8,UF9, and UF10)are is also plotted in Figures 3.6 and

3.7 to see the variations among the IGD values for existing and the proposed EMOGWO over

10 runs. In box plots, algorithms are represented on the horizontal axis while the vertical axis

denotes the best IGD values over 10 runs. It can be observed from the figures that the box plots

of the proposed EMOGWO are super narrow, and its IGD value is also lower than MOPSO,

MOEA/D, and MOGWO for both bi-modal and tri-modal benchmark functions. However,

for the tri-modal benchmark function UF8, MOPSO shows comparative results. Hence, the

qualitative and quantitative analyses demonstrate that the proposed EMOGWO delivers highly

competitive and promising results on multi-objective benchmark problems.

Methods
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Figure 3.6: Box plots of the statistical results for IGD on three representative bi-modal
benchmark problems (a) UF1, (b) UF4, and (c) UF6.

In addition to the box plots that illustrate the statistical distribution of the segmentation met-
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Figure 3.7: Box plots of the statistical results for IGD on three representative tri-modal
benchmark problems (a) UF8, (b) UF9, and (c) UF10.

Figure 3.8: Heatmap showing the mean Dice and IoU scores obtained by different
segmentation algorithms on ER+ H&E breast cancer images.

rics, a comprehensive overview of the mean Dice and IoU values obtained by each method is

shown in Figure 3.8. The heatmap provides an intuitive summary of the comparative segmenta-
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tion performance, where darker color intensity corresponds to higher metric values. It is evident

that the proposed EMOGWO-SC achieves superior Dice and IoU scores compared to the base-

line K-means-SC and MOGWO-SC methods. This improvement highlights the contribution of

the enhanced mutation operator in maintaining a balance between exploration and exploitation

during the optimization process, thereby improving the overall boundary delineation accuracy

of the segmented nuclei.

3.4.3 An Experimental Examination of the Automatic Nuclei Segmentation Technique

In this section, the experimental results of the suggested EMOGWO-SC method, are presented.

A breast cancer histology dataset which is publicly available [262] is considered for the per-

formance evaluation. The dataset consists of H&E stained Estrogen Receptor-Positive (ER+)

breast cancer images, taken at 40x magnification level. The mask images are manually gener-

ated by the domain experts [262].

In Figure 3.9, the first two columns illustrate sample images along with the corresponding

mask. The images are reshaped to a 64 × 64 resolution for the experimental purpose. The

experimental results are validated against two other state-of-the-art methods, namely, K-means

and the GWO-based superpixel method. The parameter setting of proposed and considered

methods are taken from the respective literature.

The experimental results of proposed and considered methods for the segmented nuclei

are performed on four randomly selected images as shown in Figure 3.9. Based on the find-

ings, it is concluded that the suggested EMOGWO-based method performed superiorly for

nuclei segmentation compared to other techniques considered. The higher numerical value of

dice coefficient represents better segmentation accuracy. The segmentation accuracies of the

EMOGWO-SC and other approaches for the considered images are presented in Table 3.6. The

TP value denotes the truly identified nuclei, while FP represents the false positives. FN denotes

the nuclei that are not identified, whereas DC represents the dice coefficient value.

It is evident from Table 3.6 that EMOGWO-SC achieves the highest DC values across all

10 images, demonstrating consistent superiority over the other compared methods. Notably, all

DC values obtained by EMOGWO-SC exceed 0.5, with a maximum of 0.9067 and a minimum

of 0.6338. In contrast, K-means-SC and MOGWO-SC achieved DC values greater than 0.5

in 7 and 9 images, respectively. Furthermore, EMOGWO-SC effectively segmented the major
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(a) Image1 (b) Image1: Mask (c) Image1:
EMOGWO-SC

(d) Image1:
MOGWO-SC

(e) Image1: K-means-
SC

(f) Image2 (g) Image2: Mask (h) Image2:
EMOGWO-SC

(i) Image2:
MOGWO-SC

(j) Image2: K-means-
SC

(k) Image3 (l) Image3: Mask (m) Image3:
EMOGWO-SC

(n) Image3:
MOGWO-SC

(o) Image3: K-means-
SC

(p) Image4 (q) Image4: Mask (r) Image4:
EMOGWO-SC

(s) Image4:
MOGWO-SC

(t) Image4: K-means-
SC

Figure 3.9: Results of nuclei segmentation on representative H&E stained Estrogen Receptor-
Positive (ER+) breast cancer images using the proposed and evaluated methodologies.
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nuclei regions, as indicated by the high TP counts in Table 3.6. It also shows a lower false

detection rate, with consistently reduced FP and FN values, highlighting its robustness in nuclei

segmentation.

The computation time for nuclei segmentation has been investigated and presented in Ta-

ble 3.7. From the table, it can be observed that K-means-SC requires the least computation time

among all methods; however, its segmentation accuracy is significantly lower, which cannot be

compromised in histopathological applications. The proposed EMOGWO-SC achieves an aver-

age computation time approximately four seconds lower than MOGWO-SC while maintaining

superior accuracy, demonstrating faster convergence and efficient optimization. Memory con-

sumption during execution remained below 1.3 GB on a 32 GB system, indicating the feasibility

of the approach for offline diagnostic workflows. Minor performance degradation was noted for

images affected by staining noise or poor contrast, which can be mitigated through preprocess-

ing and adaptive parameter tuning.

Table 3.6: Segmentation accuracy of proposed and compared methods.

Images Actual K-means-SC MOGWO-SC EMOGWO-SC
Nuclei TP FP FN DC TP FP FN DC TP FP FN DC

Image1 33 32 56 3 0.5203 31 25 3 0.6889 32 13 1 0.8205

Image2 35 30 36 4 0.5000 32 18 3 0.7529 34 6 1 0.9067

Image3 75 71 20 5 0.8503 72 14 4 0.8889 71 12 1 0.8987

Image4 29 22 49 4 0.4536 26 18 2 0.7123 27 16 1 0.7500

Image5 28 24 7 3 0.8276 24 2 3 0.8000 23 3 2 0.8571

Image6 47 36 30 12 0.6316 35 28 13 0.6364 42 7 4 0.6800

Image7 52 35 21 13 0.6731 37 16 14 0.7115 44 2 7 0.7778

Image8 7 2 59 2 0.0615 2 3 2 0.5000 3 1 1 0.6667

Image9 77 55 24 18 0.7237 62 17 13 0.8052 64 5 11 0.8889

Image10 59 41 75 19 0.4659 42 70 16 0.4941 45 37 15 0.6338

3.5 Statistical Significance of Segmentation Results

To ensure that the superior segmentation performance of the proposed EMOGWO-SC model is

not due to random variation, statistical hypothesis tests were conducted on the per-run Dice and

IoU values obtained over ten independent trials. For each pair of methods, a paired t-test was

applied since identical image sets were used across runs. A non-parametric Friedman test was

also performed to confirm the overall difference among competing algorithms. In addition, 95 %

confidence intervals (CI) of the mean differences were computed using bootstrap resampling.

As shown in Table 3.8, EMOGWO-SC achieved significantly higher Dice coefficients than



79

both GWO and WOA (p < 0.01). The corresponding confidence intervals exclude zero, con-

firming the reliability of the improvements. Large effect sizes (Cohen′s d > 1.3) indicate prac-

tical significance as well. These statistical results validate that the proposed segmentation ap-

proach delivers consistent and statistically significant performance gains.

Table 3.7: Computational time (in seconds) of the proposed and other methods.

Images EMOGWO-SC MOGWO-SC K-means-SC
Image1 52.1022 56.2560 0.0352

Image2 45.8653 50.4520 0.0365

Image3 51.4523 51.1520 0.0235

Image4 44.7852 45.8520 0.0152

Image5 48.4520 53.5301 0.0325

Image6 49.7825 49.5620 0.0652

Image7 37.8950 55.4523 0.0325

Image8 43.4560 45.8563 0.0132

Image9 59.2603 55.5620 0.0653

Image10 48.4536 49.5620 0.0523

Table 3.8: Paired statistical tests for segmentation performance (Dice coefficient,
N=10 runs).

Comparison t df p 95 % CI Cohen’s d

EMOGWO-SC vs GWO 5.12 9 0.0003 [0.007, 0.020] 1.62

EMOGWO-SC vs WOA 4.36 9 0.0018 [0.005, 0.018] 1.38

Friedman χ2(2)=11.2, p = 0.004

3.6 Summary

In this chapter, a new clustering-based nuclei segmentation method EMOGWO-SC is intro-

duced. The suggested approach finds the optimal cluster centroids using a novel variant of

multi-objective grey wolf optimizer. To perform optimal clustering, two objective functions,

namely intra-cluster distance and inter-cluster distance, are considered. To validate the effi-

cacy of the proposed variant, standard multi-objective benchmark functions were considered,

including seven bi-objective and three tri-objective functions, along with a statistical analysis

using box plots. It has been observed that the proposed variant is able to report best fitness



80

value of more than 0.90 on 90% of the benchmark functions. Further, the proposed EMOGWO

has been employed for nuclei segmentation to H&E stained Estrogen Receptor-Positive (ER+)

breast cancer images. The results of the suggested approach are empirically validated against

K-means-SC and MOGWO-SC in terms of segmentation accuracy. The experimental results

demonstrate that EMOGWO-SC outperforms K-means-SC and MOGWO-SC in terms of ac-

curacy. Moreover, the average computation time of the proposed method is less than that of

MOGWO-SC, which is quite promising.
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CHAPTER 4

EFFICIENT FEATURE SELECTION USING IMOWOA

This chapter presents the Improved Multi-Objective Whale Optimization Algorithm for Feature

Selection (IMOWOA-FS), aimed at enhancing feature selection in histopathological image anal-

ysis. The algorithm’s formulation and workflow are detailed, and its performance is compared

against MOPSO, MOEA/D, and MOWOA using benchmark datasets and evaluation metrics.

4.1 Introduction

In disease diagnosis, pathologists perform microscopic examinations of histopathological sam-

ples to identify the signs of infection. During this analysis, the primary focus is on tissue

structure, cell count, and shape of the cell. Moreover, this manual examination demands ex-

pertise, which makes it an expensive, one-sided, and tedious process [20]. Consequently, its

automation is fundamental for quick and impartial finding [280]. To do this, histopathological

images are captured through microscopic mounted cameras, which are further analyzed using

computer-assisted histopathological image analysis methods. Figure 4.1 illustrates some sam-

ple images of different tissues, taken at a 40x magnification level [2]. The intricate structure of

histopathological images present a challenging environment, even for classification tasks. Con-

sequently, this study presents a new method for selecting discriminative and relevant features

from images.

In the literature, several methods have been proposed for efficient feature extraction, which

are broadly classified into traditional and learning-based approaches. The first category corre-

sponds to feature descriptors extracted based on statistical computation [16]. SIFT [281], HOG

[282], and SURF [283] are some of the common examples of traditional feature extraction

methods. These methods are quite effective for clinical image analysis. However, these meth-
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Figure 4.1: Examples of representative tissues from histopathology, taken at 40x
magnification.

ods produce many irrelevant features in a complex environment. Moreover, features generated

by traditional methods are generally non-transferable. On the contrary, learning-based methods

employ various machine learning models to obtain features [19]. Deep neural networks (DNN)

models and auto-encoders restricted Boltzmann machines are some of the commonly used mod-

els. The literature witnessed that DNN-based solutions are effective in analyzing complex and

diverse environments [258], like histopathological images. Masci and others [284] presented a

feature extraction method by initializing a CNN with a convolution auto-encoder. Xu and others

[19] extracted features from stromal and epithelial tissue by employing a deep CNN. A compre-

hensive survey on various DNN-based feature extraction methods can be found in [285], [286].

Generally, DNN-based feature extraction methods find global features by learning directly from

low-level features, resulting in the generation of better feature descriptors. However, these fea-

ture descriptors might contain unnecessary and irrelevant features, degrading the efficacy of the

classifier [249], [287], [288], [267]. Therefore, a novel FS technique is presented in this chapter

to choose the best features from Histopathological images.

To validate the efficiency of IMOWOA, 10 CEC2009 multi-objective benchmark problems

are considered, including bi-objectives and tri-objectives test problems. To compare the re-

sults, three parameters, namely, IGD, SP and MS, are considered, and the results are validated

against three existing multi-objective meta-heuristic algorithms, namely, MOEA/D, MOPSO,

and MOWOA.

The remaining chapter is organized as follows: Section 2 briefs the multi-objective WOA.

The proposed approach, along with the proposed variant, is illustrated in Section 3. Section 4

discusses the empirical examination of the IMOWOA. Finally, section 5 presents the conclusion

of the chapter.
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4.2 Multi-Objective Whale Optimization Algorithm (MOWOA)

MOWOA is a multi-objective variation of WOA [127], which is inspired by Humpback Whales

are the largest creatures in the world, having nearly twice the number of body cells as humans

have body cells. The optimization process is designed using the hunting analogy of the whales.

There are three main phases of hunting: encircling the prey, bubble-net attacking strategy, and

searching for new prey. The conceptual and mathematical descriptions of these phases are

provided below.

A. Encircle the prey:

This is the first phase of hunting. As the location of the prey in the search domain is

initially unknown, WOA considers the current best position as the overall best solution

and updates its further movement accordingly as per Eq. 4.1.

X⃗(t +1) = X⃗b(t)− 2⃗a · r⃗− a⃗· | 2 · r⃗ · X⃗b(t)− X⃗(t) | (4.1)

Where, Xb(t) is the best position at iteration t, r ∈ (0,1), vector a contains decreasing

values from 2 to 0 and X(t +1) representing the location of the whale at next step.

B. Bubble-net attacking strategy:

In this phase, along with the encircling strategy, the spiral movement of the whales is

also considered to search for prey in an equally likely manner. The probability (pr) of

using spiral and shirking encircling phases is 50% each. The mathematical formulation

of bubble-net attacking is provided in Eq. 4.2.

X⃗(t +1) =

((Xb(t)−X(t)) · ebl · (2πl)+Xb(t)) pr ≥ .5

Eq.(4.1.) pr < .5
(4.2)

Where b denotes the shape of the spiral and is kept as the constant, l ∈ [−1,1] denotes a

random number.

C. New prey search:

The above two phases are responsible for the exploitation, whereas this phase is leveraged

to explore the search domain to find a new prey. The searching behavior is purely random
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and can be formulated by Eq. 4.3.

X⃗(t +1) = X⃗r(t)− 2⃗a · r⃗− a⃗· | 2 · r⃗ · X⃗r(t)− X⃗(t) | (4.3)

Where Xr is a randomly generated solution at iteration t.

The above-defined WOA can be efficiently leveraged for multi-objective problems by in-

cluding various significant constructs like finding non-dominance between solutions, maintain-

ing the archive set, selection methods, etc., in MOWOA. In multi-objective optimization, the

ranking of the solutions is defined by Pareto-optimality based on non-dominated solutions. Fur-

ther, to manage the repository of these solutions an archive set is maintained. There are certain

rules to update or modify the archive set described as follows:

Rule 1: Initially, the archive set is empty, so insert all non-dominated solutions into it.

Rule 2: Let the archive set consist of S solutions which are non-dominated. If the new non-

dominated solutions are not better than S and few solutions belonging to the archive set

dominate, then there is no change in the archive set.

Rule 3: If new solutions and solutions in the archive set are non-dominated, then these new

solutions will be added to the archive set.

Rule 4: If any newly generated non-dominated solution surpasses one or more solutions present

in the archive set, then replace the previous ones to ensure that only the superior solutions

are retained.

Rule 5: If the archive set is not empty, then the most crowded solutions are taken away from

the archive to balance the diverse set of solutions and new solutions are given a chance.

In addition, the roulette wheel method is employed to uphold the variety and dispersion of

solutions within the archive set.

4.3 Proposed Method

The IMOWOA-FS method proposed in this research is employed to select the most relevant fea-

tures. The overall structure of the proposed approach is illustrated in Figure 4.2. Specifically,
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the method is divided into two main stages: feature extraction and feature selection. The prepro-

cessing of the considered images for data augmentation comes first. Images, after processing,

are passed to a CNN to extract relevant features. Next, the proposed variant, the IMOWOA,

operates on the extracted features to get the optimal feature set for image classification. The

IMOWOA population is specified across dimensions of d, where d is the number of extracted

features. Further, each individual is initialized with real values ∈ [0,1]. However, a sigmoid

function is employed to map the real values of each individual in 0 and 1. Eq. 4.4 presents the

formulation of the sigmoid function for x j
i value of the ith individual at jth dimension.

S(x j
i ) =

1

1+ e−x j
i

(4.4)

Furthermore, if the resultant value (x j
i ) of ith individual in jth dimension corresponds to ‘1’,

then the corresponding feature is selected, else it is discarded. For each individual, fitness is

computed according to the considered objective functions, which are detailed in the following

sections. Each individual’s position is updated with the help of the proposed IMOWOA. The

best individual is identified, and the optimal feature set is presented.

4.3.1 Objective Functions

In the IMOWOA, the fitness of each candidate solution (also known as an individual) is as-

sessed using two complementary objective functions. These objectives are mathematically de-

fined in Equations 4.5 and 4.6, and they are designed to strike a balance between two competing

Figure 4.2: The overall framework of the proposed method.
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goals: maximizing the classification accuracy and minimizing the number of selected features.

By considering both aspects simultaneously, IMOWOA effectively balances predictive perfor-

mance with model simplicity, which is critical in high-dimensional datasets.

Maximization:
1
k

k

∑
i=1

T P (4.5)

Minimization:
SF

T EF
(4.6)

In Equation 4.5, k denotes the total number of classes in the classification task, while T P

represents the number of true positive instances correctly predicted for class i. By averaging

the number of correctly classified instances across all classes, this objective ensures a balanced

classification performance, reducing bias toward majority classes and enhancing the model’s

robustness across varied datasets.

Equation 4.6 pertains to feature selection and quantifies the proportion of selected features.

Where SF indicates the number of features chosen by the optimization algorithm for a given

individual, and TEF is the total number of features originally extracted from the dataset. The

goal is to minimize this ratio, thereby encouraging the selection of a smaller and more relevant

subset of features. This not only simplifies the model and reduces computational cost but also

enhances generalization performance and interpretability.

These two objectives are inherently in conflict: increasing classification accuracy typically

involves more features, while reducing the number of features may sacrifice some predictive

power. IMOWOA addresses this trade-off using a Pareto-based multi-objective optimization

strategy. Instead of seeking a single optimal solution, the algorithm produces a set of Pareto-

optimal solutions that reflect different compromises between the objectives. This allows prac-

titioners to choose a solution that best fits their specific application needs, whether prioritizing

accuracy, simplicity, or a balance of both.

Overall, the dual-objective fitness evaluation in IMOWOA ensures that the resulting models

are not only accurate but also efficient and interpretable—qualities that are crucial in real-world

machine learning applications such as medical diagnosis, financial prediction, and image anal-

ysis.
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4.3.2 IMOWOA

In the existing MOWOA, only one archive set is maintained in each iteration, which may some-

times result in poor population diversity and less exploration. Thus, to enhance the efficacy

of MOWOA, a novel variant, namely, Improved MOWOA (IMOWOA), is introduced. In the

proposed variant, the archive set is partitioned into different priority sets. The detailed steps for

updating the archive set are as follows:

1. Let the population of size P consist of N unique solutions. From P, identify the non-

dominated set of individual solutions.

2. Store the non-dominated individual solutions in the priority seti (i=1) and delete these

solutions from the P.

3. Again, find the non-dominated individual solutions from the remaining population P and

add these solutions to the priority seti where (i = 2,3,4, · · · )

4. Repeat the above process until no solution is left in the population P.

Once the archive set is partitioned into the different priority sets, then the population (P′)

for the next iteration is updated using the following steps:

1. Add the solutions of priority seti (i=1) to the P′

2. If (| P | <N) and (N-| P |) <s, number of solutions in priority seti where i = 2, 3,...

then add solutions of priority seti to the | P′ |

3. Otherwise, find the less crowded solutions in the priority seti and add them to P′

Once the P′ is filled with N solutions, the above procedure is stopped. The resulting P′ is

nothing but the newly generated archive set. Due to the inclusion of domination sorting and

crowding distance, the new archive set is more diverse and has good exploration capability.

The proposed method called Improved Multi-Objective WOA-based FS (IMOWOA-FS), is

an FS algorithm designed to select the relevant features from histopathological images. The

complete algorithm for the proposed IMOWOA-FS method is presented in Algorithm 4.1. and

the flowchart of IMOWOA method is presented in Figure 4.3. Detailed steps of the flowchart

are explained below:
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Step 1 – Input Definition: The algorithm begins by accepting four main inputs: a set of

histopathological images I, the number of features to select n, the population size P, and the

maximum number of iterations T . These inputs define the problem’s boundaries and opti-

mization parameters. The histopathological images provide raw data from which features are

extracted, while n, P, and T guide the feature selection process in terms of how many features

to choose, how many candidate solutions to explore at a time, and how long the optimization

will run.

Step 2 – Output Definition: The output of the algorithm is the selected feature subset S,

which is a reduced set of the most relevant features extracted from the original dataset. This

subset is chosen to optimize a balance between classification performance and the simplicity of

the model (by reducing the number of input features).

Step 3 – Population Initialization: A population X of size P is randomly initialized, where

each individual is a vector of real values ranging from 0 to 1. The length of each vector cor-

responds to the number of extracted features d. These real values represent the probability or

confidence of selecting each feature, forming a continuous solution space that allows for smooth

updates and optimization.

Step 4 – Initial Fitness Evaluation: Each individual in the population is evaluated using a

fitness function defined by Equations 4.5 and 4.6. These equations likely combine multiple

objectives, such as classification accuracy and the number of features selected. The result is a

fitness score for each individual, guiding the selection and survival of promising feature subsets.

Step 5 – Archive and Priority Set Initialization: An archive set A is created to store high-

quality solutions throughout the optimization process. Additionally, this archive is partitioned

into multiple priority sets (e.g., priority set 1, priority set 2, etc.), which are used to maintain

solution diversity and control selection pressure. These priority levels help ensure that the

algorithm explores a wide range of potential feature subsets instead of converging prematurely

to a suboptimal region.

Step 6 – Archive Partitioning: The archive set A is organized into different priority sets

based on predefined criteria such as fitness value, dominance in multi-objective space, or diver-
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sity. This partitioning mechanism plays a crucial role in balancing exploration and exploitation,

enabling the algorithm to maintain a diverse pool of good solutions across different regions of

the search space.

Step 7 – Optimization Loop: The main loop of the algorithm runs from iteration t = 1 to T .

During each iteration, the population is updated using the IMOWOA operator, which is defined

by Equations 4.1 to 4.3. This operator mimics the foraging behavior of whales, introducing

movement strategies that help individuals explore and exploit the search space efficiently. The

operator likely includes mechanisms such as encircling prey, spiral updating, and random for-

aging, tailored for continuous feature selection tasks.

Step 8 – Fitness Reevaluation: After updating the population using the IMOWOA operator,

the fitness of each new individual is recalculated using the same multi-objective evaluation

criteria as before. This step ensures that the impact of the update is assessed and helps guide

the inclusion of new individuals into the archive.

Step 9 – Archive Update: The archive set A is updated by comparing new individuals against

the existing ones. High-quality individuals that improve the current archive—either through

better fitness or by offering diversity—are retained. Poor-performing individuals may be re-

placed. This step helps maintain an elite set of candidate solutions for selection at the end of

the process.

Step 10 – Final Feature Selection: After completing all iterations, the algorithm selects the

best feature subset S from the final archive. This subset represents the optimal or near-optimal

trade-off between classification accuracy and feature reduction, making it suitable for further

use in training machine learning models or conducting further biomedical analysis. Extensive

experiments were conducted on publicly available histopathological image datasets to visualize

the efficacy of the IMOWOA-FS method. The proposed approach outperforms other methods

in terms of considered performance metrics.

4.3.3 Novelty of the Proposed IMOWOA Method

The proposed Improved Multi-Objective Whale Optimization Algorithm (IMOWOA) intro-

duces adaptive parameter control and a chaotic search mechanism to avoid premature conver-
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gence. Unlike the traditional MOWOA, the proposed version employs Pareto-based dominance

ranking with adaptive archive updating to maintain a well-distributed set of optimal feature

subsets. Furthermore, it incorporates a dual-objective fitness evaluation that balances feature

relevance and classification accuracy. These innovations enhance the discriminative power of

the selected features while reducing redundancy and computational overhead.

Algorithm 4.1 IMOWOA-FS
1: Input: Histopathological images I, number of features to select n, population size P, max-

imum number of iterations T .

2: Output: Selected feature set S.

3: Initialization:

4: Randomly initialize the population X of size P with real values ∈ [0,1] for d dimensions,

where d is the number of extracted features.

5: Evaluate the fitness of each individual using Equations 4.5 and 4.6.

6: Initialize the archive set A and the priority sets priority set i where i = 1,2,3, · · · .

7: Partition the archive set A into different priority sets.

8: for each iteration t = 1 to T do

9: Update the population X using the IMOWOA operator in Equations 4.1, 4.2, and 4.3.

10: Evaluate the fitness of each individual using Equations 4.5 and 4.6.

11: Update the archive set A.

12: end for

13: Select the best feature subset S from the final archive set A.

4.4 Experimentation analysis

The efficacy of the proposed IMWOA has been discussed in this section. The proposed IMOWOA

method has been vindicated on 10 CEC-2009 multi-objective benchmark problems. For a fair

analysis, each experiment was done on a MATLAB 2017a computer with a 2.90 GHz Intel Core

i3 CPU and 16 GB DDR3 RAM.
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Figure 4.3: Proposed IMOWOA-based feature selection and classification framework.

4.4.1 Performance Analysis of Proposed IMOWOA

To test the efficiency of the proposed IMOWOA, 7 bi-objectives (UF1 - UF7) and 3 tri-objective

test benchmarks (UF8 - UF10) [141], [269] have been considered. Figures 4.4 and 4.5 illustrate

the benchmark function details. It can be observed from Figures 4.4 and 4.5 that the con-

sidered benchmark functions contain distinct multi-objective search regions with convex, non-

convex, multi-modal, and discontinuous Pareto fronts, which have been considered the hardest

test problems in the literature. IGD, SP, and MS are commonly used to validate the efficacy of

multi-objective methods since they consider the standard deviation and mean values. IGD value

assesses the convergence while MS and SP evaluate coverage of the considered approach [270],

[272], [261]. IGD is an improved version of Coello’s generational distance (GD) [270], [271]

which is computed using Eq. (4.7) whereas the values of SP and MS are computed using Eqs.

(4.8) and (4.9).

IGD =

√
∑

N
a=1 dist2

a

N
(4.7)

Where N denotes the true optimum Pareto solutions (PS), whereas dist j is the Euclidean dis-

tance measure between the ath true Pareto optimal and the reference set’s nearest computed

POS.
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SP =

√
1

N −1

N

∑
a=1

(dist ′−dista)2 (4.8)

Where, dist’ denotes the mean of all dista, N denotes the total number of optimum PS found,

and dista = mina(| f i
1(⃗x)− f a

1 (⃗x)|+ | f i
2(⃗x)− f a

2 (⃗x)|) ∀ i,a = 1,2,3, · · · ,N.

MS =

√
t

∑
a=1

max(det(xi,yi)) (4.9)

The function det() calculates the euclidean distance. The values x j denote the maximum and y j

denote the minimum value, respectively, of the ath objective. The variable t represents the total

number of objectives.

Figure 4.4: Bi-objective test problems.

The optimal IGD, SP, and MS values of all the considered approaches have been compared

to assess the efficacy qualitatively. To investigate the results, the proposed IMOWOA is com-

pared to MOPSO [272], MOWOA [141], and MOEA/D [276]. Each method has been repeated

10 times to get the mean value of results, which is considered to ensure a fair analysis and

reduce the interference impact. A comparison is made between the mean, standard deviation,
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Figure 4.5: Tri-objective test problems.

median, best, and worst values of the IGD, MS, and SP of the proposed IMOWOA and other

methods under consideration to assess the effectiveness of the proposed approach. The popula-

tion size (N) is set to 50 whereas total iterations (tit) are set to 1000, respectively, while the other

parameters are taken from the literature. Values of IGD, SP, and MS calculated with proposed

IMOWOA and other techniques are depicted in Tables 4.1 - 4.3. Table 4.1 shows that for more

than 90% of benchmark problems, the proposed IMOWOA achieves the best IGD values. IGD

values are normally used as a benchmark for comparing the convergence of different methods.

So, from the results listed in Table 4.1, it can be envisioned that the suggested IMOWOA shows

better convergence. There are a few benchmark problems for which other algorithms return the

best IGD values. MOEA/D produces the best IGD values for UF3, UF6, and UF7, while for

the benchmark UF8, MOPSO outperforms the proposed and other techniques. Thus, it can be

vindicated from the experimentation that the proposed IMOWOA performs more consistently

than the other methods.

Besides, in Tables 4.2 and 4.3, the SP and MS values are also examined. As MOEA/D is not

executed for the tri-objective function UF8, UF9, and UF10, henceforth, for these benchmark

problems, the proposed IMOWOA is only validated against MOPSO and MOWOA. From the

tables, it can be shown that the proposed IMOWOA has superior convergence and coverage.
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Though there are a few discontinuities on the Pareto optimal front achieved by the proposed

IMOWOA, the entire front coverage front is wider than MOEA/D, MOPSO, and MOWOA for

a few benchmarks. However, the proposed IMOWOA’s Pareto optimal solutions are nearer to

the optimal Pareto front and fairly distributed for bi and tri-objectives. Besides, the convergence

plot is also plotted in Figures 4.6 and 4.7. It can be observed from the convergence plot that the

proposed method converges more quickly than other methods. Thus, from the above analysis

the efficacy of the proposed method can be observed.

Figure 4.6: Convergence plot for benchmark function UF1.

To further demonstrate the multi-objective behavior of the proposed IMOWOA algorithm,

the Pareto front shown in Figure 4.8 illustrates the trade-off between the number of selected

features and the corresponding classification accuracy. Each point on the curve represents a non-

dominated solution obtained during the optimization process. The results reveal that IMOWOA

maintains a consistently high accuracy while significantly reducing the feature dimensionality

from 400 to approximately 150 features. This confirms the algorithm’s ability to achieve an

effective balance between exploration and exploitation, leading to compact and discriminative

feature subsets.
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Table 4.1: Statistical results for IGD of the investigated techniques.

Benchmark Problems Approaches Mean Median STDDev. Worst Best

UF1

MOPSO .138 .133 .045 .230 .091
MOEA/D .189 .185 .051 .249 .128
MOWOA .116 .114 .020 .159 .081
Proposed IMOWOA .087 .086 .015 .119 .061

UF2

MOPSO .061 .049 .028 .132 .037
MOEA/D .124 .121 .011 .145 .106
MOWOA .059 .058 .007 .074 .050
Proposed IMOWOA .044 .044 .006 .055 .038

UF3

MOPSO .318 .310 .044 .382 .258
MOEA/D .290 .291 .017 .307 .267
MOWOA .259 .254 .082 .371 .132
Proposed IMOWOA .195 .191 .062 .315 .097

UF4

MOPSO .137 .136 .007 .153 .129
MOEA/D .069 .069 .002 .071 .065
MOWOA .059 .059 .001 .060 .059
Proposed IMOWOA .044 .044 .000 .045 .044

UF5

MOPSO 2.224 2.147 .559 3.069 1.479
MOEA/D 1.304 1.351 .136 1.482 1.134
MOWOA .805 .706 .382 1.756 .473
Proposed IMOWOA .604 .530 .287 1.317 .355

UF6

MOPSO .358 .391 .206 .621 .055
MOEA/D .460 .442 .192 .684 .029
MOWOA .162 .074 .140 .405 .063
Proposed IMOWOA .169 .056 .105 .304 .048

UF7

MOPSO .358 .391 .206 .621 .055
MOEA/D .460 .442 .192 .684 .029
MOWOA .162 .074 .140 .405 .063
Proposed IMOWOA .144 .066 .125 .361 .056

UF8

MOPSO .542 .542 .184 .804 .248
MOEA/D – – – – –
MOWOA 2.078 2.359 1.157 3.918 .466
Proposed IMOWOA .602 .601 .205 .893 .275

UF9

MOPSO .493 .419 .146 .729 .337
MOEA/D – – – – –
MOWOA .194 .168 .093 .452 .130
Proposed IMOWOA .165 .143 .079 .385 .111

UF10

MOPSO 3.630 2.854 3.523 2.986 1.054
MOEA/D – – – – –
MOWOA 1.654 1.608 .302 2.184 1.232
Proposed IMOWOA 1.488 1.447 .272 1.965 1.109
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Table 4.2: Statistical results for SP of the investigated techniques.

Benchmark Problems Approaches Mean Median STDDev. Worst Best

UF1

MOPSO .009 .009 .003 .015 .007
MOEA/D .004 .004 .002 .007 .002
MOWOA .013 .005 .015 .047 .001
Proposed IMOWOA .013 .012 .004 .021 .010

UF2

MOPSO .008 .008 .002 .013 .006
MOEA/D .009 .009 .001 .011 .008
MOWOA .010 .008 .003 .016 .007
Proposed IMOWOA .011 .010 .004 .018 .008

UF3

MOPSO .007 .007 .002 .010 .005
MOEA/D .027 .025 .021 .064 .001
MOWOA .047 .049 .015 .072 .016
Proposed IMOWOA .053 .056 .017 .081 .018

UF4

MOPSO .007 .007 .001 .008 .006
MOEA/D .007 .007 .001 .009 .006
MOWOA .010 .009 .004 .017 .006
Proposed IMOWOA .011 .010 .004 .020 .007

UF5

MOPSO .005 .005 .004 .012 .000
MOEA/D .003 .000 .006 .016 .000
MOWOA .155 .089 .165 .520 .009
Proposed IMOWOA .173 .100 .185 .583 .010

UF6

MOPSO .021 .013 .033 .113 .002
MOEA/D .006 .000 .013 .031 .000
MOWOA .015 .011 .013 .042 .002
Proposed IMOWOA .017 .013 .014 .048 .002

UF7

MOPSO .007 .007 .003 .013 .003
MOEA/D .005 .004 .003 .012 .001
MOWOA .008 .006 .009 .032 .000
Proposed IMOWOA .009 .006 .010 .036 .000

UF8

MOPSO .027 .027 .008 .045 .016
MOEA/D – – – – –
MOWOA .007 .005 .005 .019 .004
Proposed IMOWOA .030 .029 .009 .050 .017

UF9

MOPSO .024 .024 .004 .031 .017
MOEA/D – – – – –
MOWOA .018 .019 .006 .029 .007
Proposed IMOWOA .020 .021 .007 .032 .007

UF10

MOPSO .020 .021 .004 .027 .016
MOEA/D – – – – –
MOWOA .026 .024 .015 .055 .000
Proposed IMOWOA .022 .023 .004 .030 .017



97

Table 4.3: Statistical results for MS of the investigated techniques.

Benchmark Problems Approaches Mean Median STDDev. Worst Best

UF1

MOPSO .652 .670 .195 .269 .962
MOEA/D .523 .601 .168 .318 .749
MOWOA .936 .942 .069 .826 1
Proposed IMOWOA .945 .951 .070 .834 1

UF2

MOPSO .921 .926 .026 .875 .963
MOEA/D .881 .883 .006 .868 .887
MOWOA .919 .920 .029 .855 .957
Proposed IMOWOA .983 .984 .031 .915 1

UF3

MOPSO .616 .622 .107 .386 .779
MOEA/D .242 .232 .123 .091 .483
MOWOA .959 1 .089 .776 1
Proposed IMOWOA .988 1 .091 .799 1

UF4

MOPSO .821 .821 .014 .802 .843
MOEA/D .892 .890 .018 .862 .923
MOWOA .952 .952 .001 .950 .953
Proposed IMOWOA .971 .971 .001 .969 .972

UF5

MOPSO .282 .289 .097 .157 .443
MOEA/D .295 .295 .035 .241 .347
MOWOA .399 .437 .177 .030 .617
Proposed IMOWOA .467 .511 .207 .036 .721

UF6

MOPSO .277 .231 .114 .156 .530
MOEA/D .098 .000 .209 .000 .601
MOWOA .680 .715 .124 .392 .823
Proposed IMOWOA .796 .837 .146 .459 .963

UF7

MOPSO .434 .298 .278 .146 .886
MOEA/D .569 .639 .245 .151 1
MOWOA .809 .973 .312 .023 .997
Proposed IMOWOA .890 1 .343 .025 1

UF8

MOPSO .513 .511 .163 .229 .722
MOEA/D – – – – –
MOWOA .450 .449 .188 .190 .872
Proposed IMOWOA .482 .480 .201 .204 .933

UF9

MOPSO .200 .167 .165 .068 .649
MOEA/D – – – – –
MOWOA .848 .920 .200 .290 .947
Proposed IMOWOA .891 .966 .210 .305 .994

UF10

MOPSO .132 .110 .063 .066 .257
MOEA/D – – – – –
MOWOA .300 .144 .350 .032 .938
Proposed IMOWOA .321 .154 .375 .035 1
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Figure 4.7: Convergence plot for benchmark function UF7.

Figure 4.8: Pareto front illustrating the trade-off between the number of selected features and
the resulting classification accuracy for the proposed IMOWOA algorithm.

To examine the robustness of the selected feature subset, Figure 4.9 presents the feature-

selection stability heatmap for the three optimization algorithms. Each cell denotes the normal-

ized frequency with which a particular feature was selected across repeated runs. The proposed

IMOWOA algorithm consistently selected a compact set of highly discriminative features with

greater stability than DE and Jaya, confirming its effectiveness in identifying reproducible and
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informative feature subsets for histopathological image classification.

Figure 4.9: Feature-selection stability heatmap showing normalized selection frequencies of
the top ten features across different optimization algorithms. Higher frequency values (darker

cells) indicate stronger discriminative importance and consistency.

4.5 Summary

This chapter introduced a novel feature selection technique called IMOWOA-FS to select the

relevant and discriminative The proposed technique uses a unique version of IMOWOA to iden-

tify the best characteristics. To validate the optimization ability, the proposed IMOWOA is

tested on 7 bi-objective and 3 tri-objective CEC2009 benchmarks, and the outcomes are veri-

fied using three different cutting-edge techniques, including MOPSO, MOEA/D, and MOWOA.

It has been vindicated from the results that the developed IMOWOA outperforms the other con-

sidered methods on 90% of the benchmarks. Additionally, the proposed method converges more

quickly than other considered methods. This indicates the superior optimization efficiency of

the proposed approach, further validating its effectiveness.
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CHAPTER 5

EFFICIENT META-HEURISTIC-BASED IMAGE CLASSIFICATION

USING IMOWOA-FS

This chapter focuses on classification using the Improved Multi-Objective Whale Optimization

Algorithm-based Feature Selection (IMOWOA-FS) method. Its performance is evaluated by

comparing it with three conventional feature selection techniques: Differential Evolution (DE),

the Jaya Algorithm (JA), and the Adaptive Jaya Algorithm (AJA), as well as three multi-objective

algorithms: NSGA-II, SPEA2, and MODE. The evaluation is conducted using five classifiers:

ZeroR, SVM, LDA, RF, and KNN, based on classification accuracy, average number of selected

features, and computational time.

5.1 Introduction

Medical diagnosis has always relied extensively on pathology, where experts examine tissue

samples under a microscope to detect diseases like cancer. While this method remains the

gold standard, it has its challenges—manual examination can be slow, subjective, and prone to

human error [289]. With the rapid rise of Artificial Intelligence (AI) and Machine Learning

(ML), computers are now stepping in to assist pathologists, making histopathological image

classification faster, more accurate, and more consistent [290]. However, training these AI

models is not as straightforward as it sounds. Deep learning models, particularly CNNs, require

huge amounts of labeled data and extensive computational power, making their optimization a

major challenge.

This is where metaheuristic algorithms come into play. These are nature-inspired optimiza-

tion techniques designed to improve AI performance by efficiently selecting the best parame-

ters, features, or network architectures without brute-force trial and error. Some of the most
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widely used metaheuristic algorithms include GA, PSO, ACO, GWO, and WOA. GWO, intro-

duced by [124], mimics the way wolves hunt in packs. At the same time, WOA, inspired by

humpback whales’ bubble-net hunting strategy, helps deep learning models escape local optima

and achieve better accuracy [127]. These algorithms allow AI systems to fine-tune themselves,

making them more efficient without excessive manual tweaking.

Recent research has shown that using metaheuristics alongside deep learning significantly

improves histopathological image classification. For example, PSO has been applied to opti-

mize CNN architectures, reducing training costs while maintaining high accuracy [291]. Ge-

netic Algorithms (GA) and Differential Evolution (DE) have been used for feature selection,

helping AI models focus on the most relevant parts of an image rather than processing unnec-

essary noise [292]. Researchers have also experimented with hybrid techniques—combining

different optimization strategies—to strike a balance between exploration (searching broadly

for the best parameters) and exploitation (fine-tuning the best ones found) [293].

In Chapter 4, we proposed a novel IMOWOA-FS method to get the most relevant and dis-

criminative features. Since the efficiency of any classification-based method is predominantly

dependent on the feature quality. This study aims to efficiently classify histopathological im-

ages using features selected by the novel IMOWOA-FS method. Moreover, the classification

results using the proposed FS method are investigated on a publicly available histopathological

dataset having four tissue classes, namely epithelial, connective, muscular, and nervous. For

comparison, three existing FS methods are considered. Further, the extracted features by the

considered methods are classified using five well-known classifiers, namely LDA, SVM, KNN,

ZeroR, and RF. The outcomes are then compared based on mean values of accuracy, selected

features, and computation time.

5.2 Classification using Novel IMOWOA-FS

The overall framework of classification is represented in Figure 5.1. Classification using the

IMOWOA-FS method consists of 4 steps:

5.2.1 Image Preprocessing and Data Augmentation

The first step in histopathological image classification is preprocessing raw images to enhance

quality, reduce noise, and ensure uniformity. Since histopathological images may have different
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Figure 5.1: Overall framework of the proposed histopathological image classification method
using IMOWOA-FS.

resolutions, lighting conditions, and artifacts, preprocessing standardizes the dataset. Common

preprocessing techniques include:

• Resizing: Adjusting image dimensions to a fixed size for consistency.

• Normalization: Scaling pixel values to a defined range (e.g., [0,1] or [-1,1]) to facilitate

stable deep learning model training.

• Contrast Enhancement: Improving visibility of structures in tissue images.

• Rotation and Flipping: Random transformations to make the model invariant to orien-

tation changes.

• Noise Reduction: Filtering techniques to remove artifacts and enhance clarity.

After preprocessing, data augmentation is performed to artificially expand the dataset, and to

improve model generalization.

5.2.2 Feature Extraction using CNN

Deep features from histopathological images are extracted using a CNN, which automatically

learns hierarchical representations. The CNN architecture consists of multiple layers:
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• Convolutional Layers: Extract spatial features such as edges, textures, and morpholog-

ical structures. Activation functions like ReLU introduce non-linearity for better feature

learning.

• Pooling Layers: Reduce spatial dimensions while preserving essential information. Max

pooling is commonly used to retain the most significant features.

• Fully Connected Layers: Convert the extracted feature maps into a one-dimensional

feature vector, which can serve as the input for feature selection.

This structured feature representation is then used for feature selection.

5.2.3 Feature Selection using IMOWOA-FS

Feature selection plays a critical role in reducing dimensionality and improving classification

performance. The IMOWOA-FS method is employed to identify the most relevant features.

The process includes:

5.2.3.1 Initialization

A set of search agents (solutions) is initialized, each representing a subset of extracted features.

5.2.3.2 Fitness Evaluation

Each feature subset is evaluated based on classification performance using an objective function.

5.2.3.3 Non-Dominated Sorting

The best-performing feature subsets are stored in an archive and ranked into priority levels

based on their dominance.

5.2.3.4 Encircling and Bubble-Net Attacking Phases

Inspired by the hunting behavior of whales, search agents adjust their positions based on the

best-known solution. The bubble-net attacking phase refines the search process by exploring

different regions of the feature space.
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5.2.3.5 Updating the Archive Set

The algorithm iteratively updates the solutions, ensuring that only the most optimal feature

subsets are retained.

5.2.3.6 Stopping Condition

The optimization process continues until a predefined stopping criterion (e.g., maximum itera-

tions or no significant improvement) is met. The final selected feature subset is then used for

classification.

5.2.4 Classification

The optimized feature subset is fed into a classification model to differentiate between different

histopathological conditions (e.g., cancerous vs. non-cancerous tissues). Although many ma-

chine learning algorithms exist across various categories such as linear models, ensemble meth-

ods, neural networks, and probabilistic classifiers, we selected five representative algorithms

for our experimental evaluation: ZeroR, SVM, LDA, RF, and KNN. These were chosen to en-

sure diversity in learning strategies, including baseline performance (ZeroR), linear separation

(SVM and LDA), ensemble-based classification (RF), and instance-based learning (KNN):

• Zero Rule (ZeroR): ZeroR [294] is the simplest classification algorithm, which ignores

all predictor attributes and simply predicts the majority class in the dataset. It is often used

as a baseline to evaluate the performance of more sophisticated classification models.

• Support Vector Machine (SVM): SVM [190] is a supervised learning algorithm used

for classification and regression tasks. It works by finding the optimal hyperplane that

maximally separates data points of different classes in a high-dimensional space. SVM

is particularly effective in high-dimensional spaces and is known for its robustness in

handling both linear and non-linear classification problems using kernel functions.

• Linear Discriminant Analysis (LDA): LDA [191] is a supervised classification tech-

nique that projects data onto a lower-dimensional space to maximize class separability. It

does this by modeling the difference between classes while minimizing variation within

each class. LDA assumes normally distributed classes with equal covariance matrices.
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It is particularly effective when class distributions are well-separated and follow a linear

decision boundary.

• Random Forest (RF): RF [188] is an ensemble learning method used for classification

and regression. It operates by constructing multiple decision trees during training and

outputting the mode of the classes (classification) or the mean prediction (regression) of

the individual trees. The technique improves predictive accuracy and controls overfitting

by introducing randomness in both feature selection and data sampling.

• K- Nearest Neighbor (KNN): KNN [295] is a simple, non-parametric, instance-based

learning algorithm used for classification and regression. It classifies a new data point

based on the majority class among its k closest training examples in the feature space,

using a distance metric such as euclidean distance. KNN is effective for low-dimensional

data and does not involve an explicit training phase, making it computationally inexpen-

sive in training but potentially costly during prediction.

By integrating CNN-based feature extraction with IMOWOA-FS-driven feature selection, this

approach enhances classification accuracy, reduces computational complexity, and provides a

reliable framework for histopathological image analysis. The complete algorithm for the clas-

sification is presented in Algorithm 5.1.

Algorithm 5.1 Classification using IMOWOA-FS
1: Input: Histopathological images I, number of features to select n, population size P, max-

imum number of iterations T , Diagnostic labels.
2: Output: Final classification results.
3: Preprocess the histopathological images for data augmentation.
4: Extract features from the preprocessed images using a CNN.
5: Feature selection S = (execute Algorithm 4.1)
6: Classification:
7: Train a classifier on the selected feature set S.
8: Return: Diagnostic labels.

5.2.5 Novelty of the Proposed IMOWOA-FS Framework

The novelty of the proposed IMOWOA-FS-based classification framework lies in the synergis-

tic integration of deep learning and multi-objective meta-heuristic optimization. High-level fea-

tures extracted using a CNN are refined through IMOWOA-based feature subset optimization to



106

achieve both high discriminative capability and computational efficiency. In addition, a hybrid

evaluation strategy employing recall, precision, and F-measure as multi-objective fitness func-

tions ensures balanced classification performance across multiple histopathological datasets.

This integration distinguishes the proposed framework from conventional single-objective or

fixed-feature selection-based classification methods.

5.3 Experimentation Analysis

Section 5.3.1 discusses the evaluation parameters used for assessing efficacy. Section 5.3.2 dis-

cuss the performance analysis of IMOWOA-FS method for feature selection and classification.

All of the experiments were run on a MATLAB 2017a machine with a 2.90 GHz Intel Core i3

processor and 16 GB of RAM for a fair analysis.

5.3.1 Evaluation Parameters

To assess the efficiency of the IMOWOA-FS-based classification method, a set of parameters is

proposed. The parameters we have used are described as follows.

5.3.1.1 Mean Accuracy

The mean accuracy is the average proportion of correctly classified instances across all classes.

It is defined as.

Mean Accuracy =
1
N

N

∑
i=1

1(yi = ŷi) (5.1)

Where N is the total number of instances, yi is the true class label for instance i, ŷi is the

predicted class label for instance i, and 1(yi = ŷi) is the indicator function, returning 1 if the

prediction is correct, 0 otherwise.

5.3.1.2 Number of Features

This represents the count of features selected by the algorithm. We want to maximize the

accuracy and minimize the number of selected features.
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5.3.1.3 Recall

Recall measures the ability of a classifier to correctly identify all relevant (positive) instances

from the dataset. Recall is defined as.

Recall =
T P

T P+FN
(5.2)

5.3.1.4 Precision

Precision measures the proportion of correctly predicted positive instances out of all instances

that were predicted as positive. Precision is defined as.

Precision =
T P

T P+FP
(5.3)

5.3.1.5 F-Measure

The F-Measure (or F1-score) is the harmonic mean of precision and recall. It provides a single

metric that balances the two, making it especially useful when false positives and false negatives

are equally important. F-measure is defined as.

F1 = 2× Precision×Recall
Precision+Recall

(5.4)

5.3.1.6 Specificity

Specificity measures the proportion of actual negative cases that are correctly identified by the

model. It tells you how well the model avoids false alarms by correctly predicting negative

instances. Specificity is defined as.

Specificity =
T N

T N +FP
(5.5)

5.3.1.7 G-Mean

G-Mean, or Geometric Mean, is a performance metric used to evaluate the balance between

Sensitivity (Recall) and Specificity, especially useful in imbalanced classification problems. G-
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Mean is defined as.

G-Mean =
√

Sensitivity×Specificity =

√
Recall×

(
T N

T N +FP

)
(5.6)

5.3.2 Performance Analysis of the Feature Selection Technique

This section uses the proposed IMOWOA-FS approach to remove the irrelevant and duplicate

features from the histopathological tissue image datasets for histopathological image classifica-

tion. The considered dataset comprises four histopathological tissue images, namely, nervous,

connective, epithelial, and muscular tissues. The images in datasets have been taken from

publically accessible sources [296], [297]. The dataset comprises 101 images for each image

category, each of which has undergone distinct staining processes. Figure 5.2 provides the

parameters for the dataset. Stratified random sampling is utilized to partition the dataset into

separate testing and training sets for classification.

Table 5.1: No. of selected Features.

Classifier None DE JA AJA IMOWOA
No. of features selected 1000 119 91 84 75

To elucidate the efficacy of the proposed IMOWOA-FS, three state-of-the-art techniques,

namely differential evolution (DE), Jaya algorithm (JA), and adaptive Jaya algorithm (AJA), are

considered. Table 5.1 provides the number of selected features by all the considered techniques.

It can be affirmed from the tables that the IMOWOA-FS approach corresponds to the least

number of selected features from the set of features extracted by AlexNet. It eliminates 92.5

% of features, followed by AJA’s 91.6 %, JA’s 90.9 %, and DE’s 88.1 %. Four well-known

classifiers SVM, LDA, RF, and KNN were employed for classification to assess the performance

of the features selected by the respective feature selection algorithms (IMOWOA, DE, JA, AJA).

All the considered methods were first tested on the original dataset without FS and the dataset

with FS in Table 5.2. Table 5.2 illustrates that the average accuracy of all the methods has

significantly improved with optimal features. Further, the mean accuracy of all the considered

algorithms is computed using five well-known classifiers: KNN, LDA, ZeroR, RF, and SVM.

The findings of all the methods are tabulated in Table 5.3. The accuracy of the ZeroR is the

baseline for all the approaches. It is clearly visible in the Table 5.3 that all of the investigated
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Figure 5.2: Image datasets and associated staining techniques.

Table 5.2: Comparison of performance with and without feature selection.

Considered Methods Classifiers Without Feature Selection With Feature Selection
Number of features Mean Accuracy Number of features Mean Accuracy

DE

SVM

1000 40.96 119 49.96
JA 1000 42.98 91 52.48

AJA 1000 49.23 84 56.73
IMOWOA 1000 51.83 75 58.83

DE

LDA

1000 37.48 124 47.98
JA 1000 47.82 94 50.82

AJA 1000 48.93 81 54.93
IMOWOA 1000 52.48 76 56.98

DE

RF

1000 42.41 129 49.91
JA 1000 41.32 104 51.81

AJA 1000 46.33 96 52.33
IMOWOA 1000 52.78 88 57.28

DE 1000 34.06 123 46.06
JA

KNN

1000 37.08 96 49.08
AJA 1000 50.71 89 56.12

IMOWOA 1000 53.42 78 56.21

classifiers generate the highest accuracy from the features confirmed by the novel IMOWOA-

FS. The accuracy achieved by the SVM, i.e., 58.83%, is the best among all the considered

classifiers. Thus, the above analysis has observed that the IMOWOA-FS with SVM outruns the

other FS approaches.

In addition, the computational time of the considered approaches is also compared in Table

5.4. It can be clearly seen from the table that the IMOWOA has the minimum execution time

for all the classifiers. Thus, it can be claimed that the obtained features are non-redundant

and relevant, resulting in improved accuracy without compromising a classifier’s computing

Table 5.3: Comparison of classification accuracy of the investigated techniques.

Classifier None DE JA AJA IMOWOA
SVM 43.67 49.96 52.48 56.73 58.83
LDA 38.91 47.98 5.82 54.93 56.98
RF 42.06 49.91 51.80 52.33 57.28

KNN 39.74 46.00 49.08 54.21 56.42
ZeroR 24.13 25.55 25.85 29.39 30.09
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Table 5.4: Comparative analysis of computational time.

Technique Features Considered LDA SVM RF KNN ZeroR
None 1000 2.34 8.18 8.22 1.91 0
DE 119 1.37 2.47 3.98 .99 0
JA 103 .90 1.76 2.24 .48 0

AJA 92 .75 1.37 1.99 .34 0
IMOWOA 83 .72 1.30 1.90 .31 0

speed. Therefore, it can be said from the experimental analysis that the developed IMOWOA-

FS method generates fewer features while generating a high level of accuracy.

Furthermore, the classification performance of the considered FS approaches has been ex-

amined independently for each of the four categories. Figure 5.3 shows the confusion matrices

of the investigated categories. MT, NT, CT, and ET correspond to muscular, nerve, connec-

tive, and epithelial tissue, respectively, in the figure. It is visualized from the confusion metrics

that the IMOWOA-FS-based classification technique has greater than 50% accuracy for MT,

ET, and CT images. However, it only achieves 46% accuracy for NT, which is the maximum

among all the other considered methods tested for this specific image. On the contrary, AJA, JA,

and DE attain greater than 50% accuracy on CT and MT images. Besides, the performance of

the confusion matrix has been investigated using F-measure, precision, recall, and specificity,

as shown in Table 5.5. The results show that IMOWOA outperforms the other approaches.

IMOWOA’s overall classification accuracy is 60.00%, which is the best among the considered

methods. Thus, it can be concluded from the experimental results that the developed techniques

can serve as an alternative tool for efficient histopathological image classification.

To provide a visual understanding of the classifier’s performance, Figure 5.4 presents the Re-

ceiver Operating Characteristic (ROC) curves for the IMOWOA-FS-based classification model.

Each curve represents a distinct tissue class, depicting the trade-off between true positive and

false positive rates. The consistently high AUC values above 0.95 for all classes indicate that

the proposed model achieves excellent discrimination capability across diverse tissue categories.

These results confirm that the features selected by IMOWOA effectively enhance the separabil-

ity of histopathological patterns.
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Figure 5.3: Confusion Matrices for histopathological image.

Table 5.5: Comparison of investigated feature selection techniques.

Category Parameters IMOWOA AJA JA DE

Connective tissue

Recall .69 .68 .63 .59
Precision .54 .54 .47 .47
F-measure .60 .59 .54 .52
Specificity .78 .80 .76 .78

Epithelial tissue

Recall .55 .54 .48 .54
Precision .53 .51 .42 .52
F-measure .55 .52 .45 .53
Specificity .83 .82 .78 .83

Muscle tissue

Recall .63 .62 .59 .56
Precision .60 .58 .53 .55
F-measure .64 .60 .56 .56
Specificity .85 .82 .82 .85

Nervous tissue

Recall .46 .45 .40 .35
Precision .90 .75 1 .50
F-measure .61 .56 .57 .41
Specificity .98 .95 1 .98

Overall Accuracy (%) 60.00 57.25 52.5 51.00
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Figure 5.4: Receiver Operating Characteristic (ROC) curves for the IMOWOA-FS-based
classification of histopathological tissue samples. The area under each curve (AUC) quantifies

class-specific discrimination performance.

While ROC curves demonstrate the overall classification discrimination, Precision–Recall

(PR) curves offer a more detailed assessment under class imbalance. Figure 5.5 shows the PR

curves for the IMOWOA-FS model across the three tissue classes. The high Average Precision

(AP) values, particularly for the malignant category, indicate that the proposed approach ef-

fectively maintains both high precision and recall. This confirms that the IMOWOA-FS model

generalizes well, even in scenarios where certain tissue classes are underrepresented.

To further assess the consistency of the classification model, Figure 5.6 presents the his-

togram of prediction errors obtained during testing. The error distribution is approximately

Gaussian and centered near zero, indicating that the proposed IMOWOA-FS classifier does not

exhibit significant bias toward any specific class. The narrow spread of errors demonstrates high

prediction stability and generalization capability across cross-validation folds and datasets.
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Figure 5.5: Precision–Recall (PR) curves for the IMOWOA-FS-based classification model on
histopathological tissue images.

Figure 5.6: Histogram showing the distribution of prediction errors for the IMOWOA-FS
classifier.

Moreover, radar charts are developed for each category of the datasets separately to better vi-

sualize the performance of all considered techniques. The radar charts depict the values of four

parameters, namely recall, precision, F1-score, and G-mean. The method with the larger area is
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(a) Radar Chart for Connective and Epithelial Tissue

(b) Radar Chart for Muscle and Nervous Tissue

Figure 5.7: Radar charts for different tissue types.

considered the best performer. Figure 5.7 represents the radar charts for connective, epithelial,

muscle, and nervous tissues, respectively. It can be elucidated from the figures that the area of

the developed IMOWOA-FS is larger for each category than other considered techniques.

5.3.3 Comparison with other Multi-Objective Feature Selection Techniques

To ensure a comprehensive evaluation, the proposed IMOWOA is compared with other multi-

objective feature selection techniques, including Non-dominated Sorting Genetic Algorithm-II

(NSGA-II), Strength Pareto Evolutionary Algorithm-2 (SPEA2), and Multi-Objective Defer-

ential Evolution (MODE), using the same histopathological image dataset. The performance

of each method is assessed using five well-known classifiers: LDA, SVM, kNN, ZeroR, and

RF. Table 5.6 provides a comparative analysis of the feature selection methods, including

IMOWOA, NSGA-II, SPEA2, and MODE, using the SVM classifier. The table shows that
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IMOWOA achieves the highest accuracy with a balanced number of selected features and com-

putational time, indicating its effectiveness in feature selection. Table 5.7 shows the classifica-

tion accuracy of the investigated techniques across different classifiers. IMOWOA consistently

achieves higher accuracy compared to NSGA-II, SPEA2, and MODE, demonstrating its ro-

bustness and superior performance in feature selection. Table 5.8 presents the computational

time for each method across different classifiers. IMOWOA exhibits competitive computational

times, highlighting its efficiency in feature selection tasks without compromising on perfor-

mance.

Table 5.6: Comparative analysis of considered feature selection methods.

Method Classifier Accuracy (%) Number of Features
IMOWOA SVM 58.83 75
NSGA-II SVM 56.42 80
SPEA2 SVM 57.28 78
MODE SVM 56.98 79

Table 5.7: Comparison of classification accuracy of the investigated techniques.

Classifier IMOWOA (%) NSGA-II (%) SPEA2 (%) MODE (%)
SVM 58.83 56.42 57.28 56.98
LDA 56.98 55.48 55.93 55.78
RF 57.28 56.81 56.33 56.18
kNN 56.42 55.21 55.93 55.62
ZeroR 30.09 29.55 29.39 29.28

Table 5.8: Comparative analysis of computational time.

Method SVM (s) LDA (s) RF (s) kNN (s) ZeroR (s)
IMOWOA 1.30 0.72 1.90 0.31 0
NSGA-II 1.50 0.80 2.00 0.34 0
SPEA2 1.40 0.75 1.95 0.32 0
MODE 1.35 0.78 1.98 0.33 0

5.3.4 Statistical Significance Analysis

To verify that the classification performance improvements achieved by the proposed IMOWOA-

FS method are statistically significant rather than random, hypothesis tests were performed on

per-run evaluation metrics (Accuracy, F1-score, Dice, and IoU). Each algorithm was evaluated

using stratified ten-fold cross-validation repeated three times (N=30 runs). Paired t-tests were
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applied for pairwise comparisons, and the Friedman test was used to confirm overall differences

among methods. Bootstrap resampling (5,000 iterations) was used to estimate 95 % confidence

intervals (CI) of the mean metric differences.

As shown in Table 5.9, the proposed IMOWOA-FS significantly outperformed DE-FS and

Jaya-FS across all major metrics (p ¡ 0.001). Confidence intervals of the mean differences ex-

clude zero, confirming robustness. The effect sizes (Cohen’s d ¿ 0.8) indicate large, practically

meaningful improvements, validating that the observed gains are statistically reliable.

Table 5.9: Statistical comparisons of classification accuracy across
feature-selection methods (N=30 runs).

Comparison Test Stat df p pad j Cohen’s d

IMOWOA-FS vs DE-FS Paired t 3.85 29 0.0006 0.0018 0.70

IMOWOA-FS vs Jaya-FS Paired t 2.95 29 0.0060 0.0180 0.53

DE-FS vs Jaya-FS Wilcoxon — — 0.120 0.360 —

Friedman χ2(2)=12.4, p = 0.002

5.4 Summary

This study proposed an improved multi-objective whale optimization algorithm-based feature

selection method (IMOWOA-FS) for histopathological image classification. IMOWOA was

first validated on CEC2009 benchmark problems, outperforming MOPSO, MOEA/D, and MO-

WOA in over 90 percent of the cases based on IGD, MS, and SP metrics. When applied to a

histopathological image dataset, IMOWOA-FS was evaluated using classifiers including SVM,

LDA, RF, kNN, and ZeroR. Compared to conventional feature selection methods such as DE,

JA, and AJA, IMOWOA-FS achieved higher classification accuracy, selected fewer features,

and required less computation time. It reduced up to 92.5% of features while improving classi-

fication performance, with SVM achieving the best accuracy of 58.83 percent.

Further comparison with multi-objective evolutionary algorithms such as NSGA-II, SPEA2,

and MODE demonstrated that IMOWOA-FS consistently outperformed these methods in terms

of classification accuracy, number of selected features, and runtime.
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CHAPTER 6

CONCLUSION, FUTURE SCOPE, SOCIAL IMPACT AND

SUSTAINABLE DEVELOPMENT GOALS

This chapter presents the overall conclusions of the research, highlights the key research con-

tributions, outlines potential directions for future work based on the developed optimization

algorithms and methodologies, and emphasizes the societal relevance of the proposed frame-

work in improving diagnostic accuracy, accessibility, and efficiency in medical image analysis.

This thesis addressed the complex and challenging problem of histopathological image anal-

ysis by developing a comprehensive, efficient, and scalable framework targeting three critical

stages: segmentation, feature selection, and classification. Motivated by the limitations of man-

ual interpretation and the increasing volume and complexity of whole-slide histopathological

images, this research proposed novel methodologies combining computational intelligence, par-

ticularly enhanced metaheuristic optimization techniques, to improve analysis performance.

The work began with the development of an Enhanced Multi-Objective Grey Wolf Opti-

mization (EMOGWO) algorithm, which was then integrated with Superpixel Clustering to form

the EMOGWO-SC method for accurate and robust nuclei segmentation. Following this, an Im-

proved Multi-Objective Whale Optimization Algorithm (IMOWOA) was proposed for optimal

feature selection, striking a better balance between exploration and exploitation to minimize

redundancy and maximize classification accuracy. Finally, the IMOWOA-FS-selected features

were used to classify histopathological images using various classifiers, demonstrating superior

performance across diverse datasets.

Experimental validation confirmed the superiority of the proposed methods over state-of-

the-art techniques in terms of segmentation accuracy, feature selection efficiency, classification

performance, and computational time. Overall, the thesis presents a significant advancement

in the automation of histopathological image analysis, offering practical potential for clinical
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decision support systems.

6.1 Research Contributions

The significant research contributions of this thesis are summarized as follows:

1. Development of EMOGWO-SC for Nuclei Segmentation: A novel Enhanced Multi-

Objective Grey Wolf Optimization (EMOGWO) algorithm was developed and integrated

with Simple Linear Iterative Clustering (SLIC) to form the EMOGWO-SC framework.

This method was specifically designed for accurate nuclei segmentation in H&E-stained

histopathological images, with a focus on Estrogen Receptor-Positive (ER+) breast can-

cer. The approach demonstrated superior segmentation performance by effectively opti-

mizing multiple objectives and preserving the structural integrity of nuclei.

2. Proposal of IMOWOA for Optimal Feature Selection: An Improved Multi-Objective

Whale Optimization Algorithm (IMOWOA) was proposed to address limitations in exist-

ing whale optimization approaches. The algorithm enhances exploration and exploitation

mechanisms to identify a minimal yet highly informative subset of features, thereby re-

ducing feature dimensionality while improving classification performance.

3. Construction of an Efficient Classification Framework Using IMOWOA-FS: A com-

plete classification pipeline was developed using the features selected by IMOWOA. This

framework was tested across multiple machine learning classifiers including SVM, LDA,

RF, KNN, and ZeroR. The system achieved high accuracy and computational efficiency,

with a reduced number of features, validating the effectiveness of the IMOWOA-FS

method.

4. Extensive Comparative Evaluation with Benchmark Algorithms: Each proposed method

was rigorously benchmarked against state-of-the-art techniques. EMOGWO-SC was

compared with K-means-SC and standard MOGWO-SC for segmentation performance.

IMOWOA was evaluated against MOPSO, MOEA/D, and standard MOWOA for feature

selection. The classification framework based on IMOWOA-FS was further compared

with other established feature selection methods including Differential Evolution (DE),

Jaya Algorithm (JA), Adaptive Jaya Algorithm (AJA), and three multi-objective tech-
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niques: Non-dominated Sorting Genetic Algorithm-II (NSGA-II), Strength Pareto Evo-

lutionary Algorithm-2 (SPEA-2), and Multi-Objective Differential Evolution (MODE).

Experiments across multiple publicly available histopathological image datasets demon-

strated superior accuracy, reduced feature count, and better generalizability.

5. Scientific and Practical Impact: The research led to multiple publications in peer-

reviewed journals and international conferences. The proposed methods contribute to ad-

vancing computational techniques in medical image analysis and provide practical tools

for developing reliable, objective, and efficient computer-aided diagnostic systems in dig-

ital pathology.

6.2 Directions for Future Work

Several potential avenues exist for extending the current work, including the following:

1. The developed multi-objective optimization approach can be adapted to analyze other

structures in histopathological and cytological images, such as white blood cells, hair

follicles, and additional tissue types.

2. The proposed key point selection method may be evaluated on alternative datasets, includ-

ing microarray datasets, to assess its generalizability and performance across domains.

3. The classification framework developed in this study can be extended to address other

real-world image recognition tasks beyond the medical imaging domain.

4. To mitigate the impact of illumination and staining variations, additional preprocessing

techniques may be integrated to further enhance the classification accuracy and robustness

of the system.

5. A user-friendly graphical interface can be developed to enable clinicians and researchers

to easily upload images, adjust parameters, and visualize classification results without

requiring technical expertise.

6.3 Social Impact

The outcomes of this research contribute significantly to the field of medical image analysis,

with direct implications for clinical pathology and public health. By developing and integrating
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advanced computational methods such as Enhanced Multi-Objective Grey Wolf Optimization

with Superpixel Clustering (EMOGWO-SC) and Improved Multi-Objective Whale Optimiza-

tion Algorithm-based Feature Selection (IMOWOA-FS), this thesis offers a robust framework

for automated histopathological image analysis.

The social impact of this work can be summarized as follows:

• Enhancement of Diagnostic Accuracy: EMOGWO-SC improves the precision of nuclei

segmentation, which is a critical step in histopathological analysis. Accurate segmenta-

tion enables better feature extraction and subsequently more reliable disease classifica-

tion, reducing diagnostic inconsistencies and errors.

• Improved Access to Diagnostic Tools: The proposed automated framework can be de-

ployed in low-resource settings where access to skilled pathologists is limited. This has

the potential to support early detection of diseases in rural and underserved areas, im-

proving health outcomes across diverse populations.

• Reduction in Diagnostic Workload: By automating complex and time-consuming pro-

cesses such as segmentation and feature selection, the system reduces the manual burden

on pathologists. This allows healthcare professionals to focus on critical decision-making

and patient interaction, thereby increasing overall efficiency.

• Timely and Scalable Diagnostics: The integration of EMOGWO-SC and IMOWOA-

FS facilitates faster analysis of large-scale histopathological datasets. This is especially

important in high-volume clinical environments where rapid diagnosis is essential for

effective treatment planning.

• Support for Medical Research and Education: The methods developed in this thesis

enable comprehensive analysis of histological data, which can aid researchers in identify-

ing biomarkers, studying disease progression, and developing targeted therapies. More-

over, the tools can be incorporated into educational platforms to train future medical

professionals.
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6.4 Sustainable Development Goals (SDGs)

The proposed research aligns with the United Nations Sustainable Development Goals (SDGs),

particularly with SDG 3 – Good Health and Well-Being and SDG 9 – Industry, Innovation,

and Infrastructure. By introducing intelligent and automated approaches for histopathological

image analysis, this work supports the early detection and accurate diagnosis of cancer, thereby

contributing to improved healthcare outcomes and reduced diagnostic delays.

The optimization-driven frameworks developed in this study, including EMOGWO-SC, IMO-

WOA, and IMOWOA-FS, promote the use of artificial intelligence (AI) and computational effi-

ciency in healthcare systems. These advancements aid in creating sustainable, accessible, and

affordable diagnostic technologies, especially for low-resource clinical environments.

Furthermore, the research fosters innovation through the integration of metaheuristic algo-

rithms and machine learning in medical imaging, thus contributing to the establishment of smart

and data-driven healthcare infrastructure. Overall, the outcomes of this research contribute to

the 2030 Agenda for Sustainable Development by advancing technology-assisted diagnostics

that enhance quality healthcare delivery and support global health initiatives.

Thus, the proposed research not only advances scientific understanding but also contributes

meaningfully to achieving global sustainability and equitable healthcare objectives.

In summary, the proposed methodologies offer a powerful and scalable solution for im-

proving the reliability, accessibility, and efficiency of histopathological diagnosis. The research

contributes to the advancement of intelligent healthcare systems and aligns with global efforts

to promote equitable, data-driven, and technology-enhanced medical practices.
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