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ABSTRACT 

Wildfires, air pollution, and climate change are interconnected environmental challenges 

with far-reaching consequences for ecosystems, public health, and global climate stability. 

Wildfires contribute significantly to atmospheric pollution, releasing large quantities of 

greenhouse gases and particulate matter, which accelerate ozone depletion and global warming. 

This warming effect causes polar ice to melt, reducing Earth's albedo and creating a feedback 

loop that further exacerbates climate change. Addressing these issues requires advanced 

monitoring and predictive systems to mitigate their impact effectively. This thesis presents the 

design and development of AI-based frameworks for environmental and geospatial data 

analysis, focusing on wildfire risk detection, air pollution prediction, and sea ice classification. 

The research integrates state-of-the-art deep learning models and remote sensing data to 

enhance the accuracy and efficiency of environmental monitoring systems. The study 

introduces the Swin Transformer and IGNITE-NET models for wildfire risk detection, which 

leverage dynamic receptive field blocks and channel fusion attention mechanisms to improve 

predictive accuracy while maintaining computational efficiency. These models demonstrate 

superior performance in classifying fire risk levels using remote sensing imagery, contributing 

to proactive wildfire management strategies. 

In the domain of air pollution prediction, the thesis presents the BREATH-Net model, a 

hybrid deep learning framework that combines Bi-directional Long Short-Term Memory 

(BiLSTM) networks with Transformer architectures. Using satellite data, this model accurately 

forecasts nitrogen dioxide (NO2) concentrations, offering a robust tool for air quality 

management and public health interventions. The Arctic-Net model is proposed for sea ice 

classification, integrating Convolutional Neural Networks (CNNs) with attention mechanisms 

to efficiently classify sea ice types using Synthetic Aperture Radar (SAR) images. The model 

outperforms existing methods in accuracy and robustness, providing valuable insights for 

climate research and maritime navigation. The experimental results across all three domains 

highlight the superior performance of the proposed models compared to traditional approaches. 

By combining AI with remote sensing technologies, this research contributes to the 

development of scalable, efficient, and accurate environmental monitoring systems. The 

findings have significant implications for environmental policy-making, disaster management, 

and climate change mitigation, demonstrating the transformative potential of AI in addressing 

complex environmental challenges.  
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  Chapter 1: Introduction  

The interconnected challenges of wildfires, air pollution, and climate change represent 

significant global threats with cascading effects on environmental stability, human health, and 

economic resilience. Wildfires not only devastate ecosystems and biodiversity but also release 

large amounts of pollutants into the atmosphere, contributing to air quality degradation and the 

accumulation of greenhouse gases. This increased atmospheric pollution accelerates ozone 

depletion, which in turn exacerbates global warming. The warming atmosphere leads to the 

melting of polar ice, reducing the Earth's albedo—the reflective capacity of ice surfaces—and 

causing further heat absorption. This feedback loop accelerates climate change, creating a vicious 

cycle of environmental degradation. Addressing these interconnected issues requires innovative, 

efficient, and scalable technological solutions that can simultaneously mitigate wildfire risks, 

predict pollution levels, and monitor climate indicators such as sea ice extent. 

The increasing frequency and severity of natural and anthropogenic hazards such as wildfires 

and air pollution have far-reaching consequences for environmental stability, human health, and 

economic resilience. Wildfires, in particular, have devastating impacts on ecosystems, leading to 

biodiversity loss, soil degradation, and atmospheric pollution [1]. For instance, the Australian 

wildfire catastrophe beginning in September 2019 inflicted over $100 billion in property damage 

while simultaneously deteriorating soil and air quality and driving multiple species to extinction 

[2]. 

Concurrently, air pollution in urban areas, particularly the rising levels of nitrogen dioxide 

(NO2), poses a severe threat to public health, contributing to respiratory ailments, cardiovascular 

diseases, and increased mortality rates[3]. 

Addressing these challenges necessitates advanced, efficient, and scalable technological 

solutions. Remote sensing technologies, coupled with machine learning algorithms, have emerged 

as powerful tools for environmental monitoring, offering high-resolution, real-time data that can 

enhance predictive capabilities and inform risk mitigation strategies [4], [5], [6]. 

This thesis explores novel deep learning frameworks for both wildfire risk detection and air 

pollution prediction, integrating state-of-the-art models and datasets to enhance the accuracy and 

efficiency of environmental hazard assessments. 

3
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1.1 Wildfire Risk Detection 

Forests play an indispensable role in maintaining ecological balance, acting as natural carbon 

sinks, preserving soil integrity, and supporting biodiversity .However, wildfires have increasingly 

threatened these vital ecosystems, exacerbated by climate change and human activities. The 

catastrophic wildfires in Australia during 2019-2020 underscore the urgent need for effective fire 

risk detection and management systems [2]. 

Traditional fire risk models often rely on geospatial data, satellite imagery, and GIS 

technologies to map fire-prone zones and predict potential outbreaks [7], [8]. The advent of remote 

sensing and optical sensor technologies has significantly improved image quality, enabling more 

precise fire danger evaluations [9]. Recent studies have harnessed machine-learning techniques to 

analyze remote-sensing images, offering promising results in early wildfire detection [10]. 

1.2 Air Pollution Prediction 

Air pollution remains a pressing issue in urban areas worldwide, with nitrogen dioxide (NO2) 

being a major pollutant linked to respiratory and cardiovascular diseases [11]. Delhi, recognized 

as one of the most polluted cities globally, faces severe air quality challenges due to high 

population density, industrialization, and vehicular emissions [12]. 

Satellite-based measurements, particularly from the Sentinel 5P satellite, provide valuable data 

for monitoring NO2 concentrations. However, converting satellite-derived tropospheric NO2 

columns into accurate ground-level estimates remains challenging due to atmospheric dispersion 

and instrument artifacts [13], [14], [15].This hybrid model effectively captures temporal 

dependencies and long-range spatial relationships in NO2 data, significantly improving prediction 

accuracy [16], [17]. 

1.3 Sea Ice Classification 

Sea ice is a critical component of the polar environment, influencing ocean circulation, climate 

patterns, and marine ecosystems [18].Accurate sea ice classification is essential for climate 

research, marine navigation, and environmental monitoring. Synthetic Aperture Radar (SAR) 

imagery has been widely used to analyze sea ice dynamics, offering high-resolution, all-weather 

data crucial for operational monitoring. 

139
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Traditional methods for sea ice classification include statistical classifiers, such as the Wishart 

distribution, and machine learning algorithms like support vector machines and Markov random 

fields[19], [20], [21] .However, these methods often struggle with overfitting and limited 

generalization when trained on small datasets. 

1.4 Motivation 

The intricate interplay between environmental hazards such as wildfires, air pollution, and 

climate change underscores the urgency for innovative monitoring and mitigation strategies. 

Rising PM2.5 and NO2 levels, coupled with increasing wildfire frequency and shrinking sea ice, 

pose significant threats to ecosystems, climate stability, and human health. Wildfires not only 

degrade air quality but also accelerate glacier melt and disrupt atmospheric dynamics, creating 

cascading effects that further exacerbate global warming. This reduction in sea ice decreases the 

Earth's albedo, leading to increased heat absorption and accelerating climate change. 

To tackle these multifaceted environmental challenges, the integration of advanced Artificial 

Intelligence (AI) and deep learning techniques offers transformative potential. By leveraging 

satellite data and sensor technologies, AI models can forecast pollution levels, classify sea ice, and 

assess wildfire risks with unprecedented accuracy and efficiency. The development of systems 

capable of real-time environmental predictions enhances decision-making processes, enabling 

proactive responses to emerging threats. 

Achieving a balance between computational efficiency and model accuracy is critical for 

scalable and reliable real-time monitoring. The use of hybrid AI architectures, such as those 

combining Transformers with BiLSTM models, not only improves prediction accuracy but also 

ensures robustness and scalability across diverse environmental datasets. These advancements 

contribute to sustainable solutions, revolutionizing the prediction, mitigation, and management of 

environmental risks. 

In this context, the motivation for this thesis stems from the pressing need to develop efficient, 

scalable, and accurate deep learning frameworks that address the interconnected challenges of 

wildfire risk detection, sea ice classification, and air pollution prediction. By harnessing the power 

of AI, this research aims to contribute significantly to environmental monitoring, offering 

innovative solutions for safeguarding ecosystems, public health, and climate stability 

84
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1.5 Significance of Study  

 This study, which focuses on integrating deep learning techniques with remote sensing data for 

wildfire risk detection, sea ice classification, and air pollution prediction, holds considerable 

significance for multiple reasons: 

 Enhanced Predictive Accuracy: This study significantly improves the precision of 

environmental hazard predictions by combining satellite imagery and advanced machine 

learning models. Models like Swin Transformer and IGNITE-NET offer superior 

performance in fire risk detection, while Arctic-Net enhances sea ice classification 

accuracy, and BREATH-Net improves NO2 level forecasts in urban settings. 

 Real-Time Environmental Monitoring: The integration of AI with real-time data sources 

enables proactive monitoring and timely responses to environmental threats. This 

capability is crucial for mitigating the immediate impacts of wildfires, pollution, and 

climate change, providing decision-makers with actionable insights. 

 Contextual Understanding of Environmental Dynamics: The models developed in this 

research not only predict events but also provide a deeper understanding of the 

environmental factors influencing these hazards. This comprehensive analysis helps in 

identifying the root causes and interdependencies among wildfires, air pollution, and 

climate phenomena like ice melt. 

 Robustness to Data Variability: The deep learning frameworks employed are designed 

to handle diverse datasets from different geographical regions and environmental 

conditions. This robustness ensures that the models can be effectively applied in varied 

real-world scenarios, enhancing their utility and reliability. 

 Applications in Policy and Management: The findings from this study have direct 

implications for environmental policy-making and management. By providing accurate 

predictions and insights, this research supports the development of targeted strategies for 

wildfire management, air quality control, and climate adaptation. 

 Advancement in AI Applications for Environmental Science: This thesis demonstrates 

the potential of cutting-edge AI technologies in solving complex environmental challenges. 

The novel methodologies proposed contribute to the academic field by expanding the 

applications of AI in environmental monitoring and management. 
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In summary, the significance of this study lies in its ability to offer more accurate, real-time, 

and context-aware solutions for critical environmental issues. By bridging the gap between 

artificial intelligence and environmental science, this research paves the way for innovative 

approaches to safeguard natural ecosystems and human health in the face of escalating 

environmental threats. 

1.6 Sources of Research Works Studied 

 In this thesis, extensive literature reviews and analyses were conducted using leading journals 

and conference proceedings sourced from the following databases: 

 Elsevier 

 IEEE Xplore 

 Springer Link 

 Association for Computing Machinery (ACM) Digital Library 

 Taylor & Francis Online 

In addition to these primary sources, more than 150 research papers were screened, focusing on 

advanced machine-learning techniques, remote sensing applications, and environmental 

monitoring. Approximately 120 of these papers were selected from high-impact journals and top-

tier conferences, ensuring the inclusion of the most recent and influential research. 

The search strategy involved utilizing multiple keywords and synonyms, including "wildfire 

risk detection," "remote sensing for environmental monitoring," "deep learning in climate 

science," "sea ice classification with SAR imagery," and "air pollution prediction using satellite 

data." This comprehensive approach ensured a robust foundation for developing the models and 

methodologies presented in this thesis. 

1.7 Overview of Chapters 

 The remaining sections of this thesis are structured as follows: 

• Chapter 2: Literature Review – This chapter presents a comprehensive review of existing 

research and methodologies in environmental monitoring and risk detection. It covers air 

pollution forecasting, sea ice classification, and wildfire risk detection using advanced deep 
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learning frameworks. The review integrates findings from key research contributions that 

have significantly advanced these fields. 

• Chapter 3: PM2.5 Prediction using CATALYST – This chapter elaborates on the 

development of the CATALYST model, a hybrid Convolutional Neural Network (CNN) 

and Transformer-based architecture for predicting PM2.5 concentrations in urban areas. 

The chapter details the methodology, experimental setup, and performance evaluations, 

demonstrating the model's superiority over traditional forecasting techniques. 

• Chapter 4: NO2 Forecasting with BREATH-Net – This chapter introduces BREATH-

Net, a novel deep learning framework that combines Bi-directional Long Short-Term 

Memory (BiLSTM) networks and Transformer architectures for accurate NO2 

concentration predictions. The chapter discusses data preprocessing, model architecture, 

and comparative performance analysis with existing models. 

• Chapter 5: Sea Ice Classification using Arctic-Net – This chapter presents Arctic-Net, a 

hybrid deep learning model integrating CNNs and attention mechanisms for efficient sea 

ice classification using SAR images. The chapter covers the architectural components, 

dataset preprocessing, and performance evaluations, highlighting the model's applicability 

in climate research and marine navigation. 

• Chapter 6: Wildfire Risk Detection with IGNITE-NET – This chapter focuses on 

IGNITE-NET, an innovative deep learning framework designed for wildfire risk 

prediction. It explores the use of Dynamic Receptive Field Blocks (DRFBs) and Dynamic 

Channel Fusion Attention (DCFA) to enhance predictive accuracy while maintaining 

computational efficiency. The chapter includes detailed performance evaluations and 

comparative analyses. 

• Chapter 7: Performance vs Computational Complexity in Fire Risk Detection – This 

chapter investigates the trade-offs between model performance and computational 

complexity in cross-domain fire risk detection, emphasizing the Swin Transformer 

architecture. It provides a thorough exploration of methodologies, experimental setups, and 

performance metrics, along with future research directions. 

• Chapter 8: Conclusion, Future Scope, and Social Impact – This concluding chapter 

summarizes the key contributions of the thesis, discusses the broader implications of the 

research findings, and outlines potential directions for future work. It also highlights the 
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social and environmental impact of the developed models in addressing global challenges 

related to wildfire management, climate monitoring, and urban air quality control. 

This chapter has introduced the pressing environmental challenges posed by wildfires, air 

pollution, and climate change, highlighting the need for advanced technological solutions. 

Building upon these issues, the next chapter provides a comprehensive review of existing research 

and methodologies that address these challenges, particularly focusing on the use of deep learning 

frameworks for air pollution forecasting, wildfire risk detection, and sea ice classification. This 

review forms the foundation for understanding the state-of-the-art approaches that are critical for 

developing effective solutions.  
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2 Chapter 2: Literature Review 

This chapter presents a comprehensive review of existing research and methodologies in 

environmental monitoring and risk detection. It focuses on air pollution forecasting, sea ice 

classification, and fire risk detection using advanced deep learning frameworks. The review 

integrates findings from key research contributions that have significantly advanced these 

fields.This chapter presents a comprehensive review of existing research and methodologies in 

environmental monitoring and risk detection. It focuses on air pollution forecasting, sea ice 

classification, and fire risk detection using advanced deep learning frameworks. The review 

integrates findings from key research contributions that have significantly advanced these fields. 

2.1 Air Pollution Forecasting and Analysis 

Air pollution is a significant environmental and public health issue, with PM2.5 and NO2 being 

among the most harmful pollutants. Traditional forecasting models, such as ARIMA and SVR, 

have shown limitations in capturing the complex, non-linear nature of pollution data. Recent 

advancements in machine learning and deep learning have significantly improved the accuracy of 

air quality predictions. 

2.1.1 Advanced Machine Learning and Deep Learning Techniques for PM2.5 

Concentration Prediction 

 Air pollution is a significant problem affecting millions of people’s quality of life globally. The 

World Health Organization (WHO) estimates that air pollution causes 7 million premature deaths 

each year, with particulate matter (PM2.5) being one of the most harmful pollutants[22] . The 

investigation concerning historical data emphasizes the importance of comprehending the patterns 

of air pollution over a span of time, providing valuable insights into the progression of air quality 

in densely populated urban areas [23]. Predicting PM2.5 concentrations accurately is critical for 

mitigating air pollution’s adverse effects. Researchers have been exploring various machine 

learning models to estimate PM2.5 concentrations accurately. In recent years, Convolutional 

Neural Networks (CNN) and Recurrent Neural Networks (RNN) have been the most popular 

models used[24], [25], [26], [27] .  
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This literature review aims to provide an overview of the recent research on predicting PM2.5 

concentrations using machine learning models. CNNs, extensively employed in image processing, 

have been utilized in studies to forecast air quality. Liu et al.[28] outperformed standard methods 

such as ARIMA  Jian et al.[29]  by utilizing a pre-trained CNN model to anticipate PM2.5 

concentrations using meteorological data. Similarly, Yao et al. [26] employed a CNN-based model 

with multi-scale and multi-channel characteristics. Li et al. [30] extracted spatial data from PM2.5 

concentration maps and captured temporal features using an LSTM network[30], [31]. Both 

models outperformed traditional approaches such as SVR and ANN [32].RNNs, which can model 

sequential data, have been used to forecast time series[33] and predicted PM2.5 concentrations 

using a hybrid model that combined a GRU and a CNN (Zhang, 2020), surpassing standard models 

such as ARIMA and SVM. The study by Shi et al. [34] utilized meteorological data to train an 

attention-based Recurrent Neural Network (RNN) model. The study’s results indicated that the 

attention-based RNN model’s performance surpassed conventional methods such as 

Autoregressive Integrated Moving Average (ARIMA) and Random Forest (RF). Hybrid models 

have also been proposed, combining machine-learning techniques with classical statistical 

methodologies. Liu et al. [25] created a hybrid model combining a CNN and a seasonal 

decomposition approach, outperforming classic methods like ARIMA and SVM[25]. Wang 

et al.[35] suggested a hybrid model that beat established procedures such as ARIMA and SVM by 

combining a wavelet transform with a multivariate adaptive regression splines (MARS) approach 

[36]. Incorporating additional data sources, such as meteorological and traffic data, has been 

demonstrated to enhance PM2.5 forecasting accuracy. Feng et al.[37] used meteorological and 

traffic data to estimate PM2.5 concentrations in the Beijing–Tianjin–Hebei region, outperforming 

established methods such as ARIMA and SVM. Wang et al.[38] projected PM2.5 concentrations 

using meteorological data and a MARS technique, surpassing established methods such as ARIMA 

and SVM. Anthropogenic factors, air quality, and PM2.5 concentrations are also influenced by 

anthropogenic causes such as industrial growth and transportation. The study by Zhu et al. [39] 

aimed to examine the influence of industrial emissions on the concentrations of PM2.5 in China. 

The study’s findings revealed that the high levels of PM2.5 in the country were primarily attributed 

to the emissions from the industrial sector. Similarly, transportation emissions from vehicles such 

as cars and trucks are also a significant source of air pollution, particularly in urban areas with 

high traffic congestion[40]. In addition, land use changes such as deforestation, urbanization, and 
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agricultural practices can also contribute to air pollution. Deforestation can potentially elevate the 

levels of dust and smoke in the atmosphere, whereas urbanization may result in amplified 

emissions from industrial and transportation activities[41]. Ultimately, climate change can exert a 

substantial influence on the quality of the air. Elevated temperatures have the potential to augment 

the occurrence and severity of wildfires, resulting in escalated concentrations of smoke and 

particulate matter within the atmosphere. The phenomenon of climate change has the potential to 

cause alterations in precipitation patterns, thereby influencing the dispersion of pollutants in the 

atmosphere and their conveyance to diverse geographical locations. 

2.1.2 Advanced Machine Learning and Deep Learning Techniques for NO₂ 

Concentration Forecasting 

 The growing focus on the impacts of air pollution on human health and the environment is 

highlighted by recent improvements in air pollution forecasting. This literature review consolidates 

findings from various research utilizing novel methodologies and frameworks, enhancing the 

continuous endeavours in environmental management and safeguarding public health. Heydari et 

al. [42] proposed a hybrid intelligent model for predicting air pollution. The model combines a 

long short-term memory (LSTM) deep learning model with the multi-verse optimization algorithm 

(MVO)[42]. The suggested model demonstrated more accuracy in predicting Nitrogen dioxide and 

sulphur dioxide (SO2) emissions from Combined Cycle Power Plants compared to benchmark 

models (ENN-PSO, ENN-MVO, LSTM-PSO). The study's focus on accurate forecasts 

underscores the changing nature of forecasting models in dealing with the intricacies of air 

pollution dynamics. Huang et al.[43] examined the issue of air pollution in China, with specific 

emphasis on exposure to NO2. Their integrated model, which combines satellite measurements, 

simulations from a chemical transport model, and detailed geographical factors, exhibited 

exceptional accuracy in forecasting daily NO2 values between 2013 and 2019[44]. This work made 

significant contributions to exposure modelling and also uncovered a declining pattern in NO2 

exposure, offering vital insights into the regional and temporal dynamics of air quality in China. 

An extensive modelling framework was created to anticipate air pollution in Jiangsu Province, 

China. Douros et al.[45] integrate satellite measurements, simulations from a chemical transport 

model, and machine learning techniques. The ensemble model demonstrated effectiveness in 
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forecasting daily NO2 levels over a significant period, highlighting the need for reliable predictor 

data in achieving precise air pollution predictions. 

 Rakholia et al. [46] have suggested a new and complex model for predicting air quality in Ho 

Chi Minh City, Vietnam. This model has many steps, outputs, and variables. The global forecasting 

model incorporates multiple parameters, including meteorological conditions, air quality data, 

urban space information, and time components. It has proven its ability to simultaneously predict 

various air pollutant concentrations, surpassing previous forecasting methods. Using artificial 

intelligence, Hasnain et al.[47]employed a novel way to monitor ground-level NO2 levels 

throughout China. By incorporating spatiotemporally weighted information into extra trees and 

deep forest models, the research successfully addressed the absence of satellite data, creating a 

detailed dataset called "ChinaHighNO2." This dataset enables detailed analysis of spatial patterns 

and the effects of holidays and the COVID-19 pandemic. Wei et al. [48] presented a unique 

technique for estimating the emissions and lifetimes of nitrogen oxides (NOx) in cities. This 

method relies on observing tropospheric NO2 levels and analyzing wind patterns using reanalysis 

data. The study demonstrated the precision of the technique in calculating emissions and lifespans 

for 26 cities in the United States, highlighting its capacity to estimate worldwide urban NOx 

emissions from satellite measurements. An extensive analysis highlighted the crucial importance 

of artificial intelligence (AI) techniques and machine learning (ML) algorithms in predicting air 

pollution and its effects on human health [48]. The evaluation emphasized the effectiveness of 

hybrid models in accurately and reliably forecasting different significant pollutants, highlighting 

their superiority over individual AI models. 

The research conducted on time series forecasting of air quality in Sofia City, Bulgaria, 

provided valuable insights into air pollution patterns using the Auto Regressive Integrated Moving 

Average (ARIMA) technique [49]. By examining data collected between 2015 and 2019, the study 

has deepened our comprehension of how pollutants behave over time. This knowledge has played 

a crucial role in informing measures to prevent and regulate pollution, ultimately leading to higher 

air quality. Guo and Mao [50] have made a noteworthy contribution to developing air quality 

forecasting models by introducing a unique long-term prediction model designed explicitly for 

NOx emissions. By integrating self-attention to capture long-term patterns and utilizing a parallel 

LSTM-Transformer architecture, their solution exhibits significant enhancements, outperforming 
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existing techniques by 28.2% and 19.1% on separate datasets. The research shows the potential 

for accurate regulation of NOx emissions in response to strict environmental regulations. To 

summarise, the literature indicates a significant increase in advanced modelling approaches that 

utilize sophisticated technology for predicting air pollution. The combination of hybrid 

intelligence models, high-resolution exposure modelling, and unique city-specific emission 

inference methods all contribute to current endeavours in environmental management and 

safeguarding public health.  

2.2 Innovations in Sea Ice Classification Using Deep Learning 

  Sea ice has a crucial impact on the global climate system, especially in the Polar Regions, 

since it affects ocean circulation, regional weather patterns, and the Earth's albedo. Understanding 

the creation and dynamics of sea ice is crucial because of its profound influence on marine 

ecosystems, nutrient cycling, and global climate systems. Advancements in remote sensing, 

particularly in SAR imaging, have allowed in-depth investigations of sea ice dynamics. This 

literature review focuses on the progression of methodology for sea ice categorization using SAR 

data, particularly emphasizing the shift from conventional statistical methods to more sophisticated 

machine learning techniques. Recent progress in categorizing sea ice using SAR images has 

brought out novel approaches to improve precision and effectiveness. Various technologies, 

including local thresholding techniques and advanced deep learning frameworks, aim to overcome 

the limits of classic methods and offer novel perspectives on sea ice monitoring.  

Researchers comprehensively explained a dynamic local thresholding approach that adjusts to 

the local fluctuations in grey levels inside SAR pictures. This technique enhances the accuracy of 

differentiating ice types by dynamically adapting to regional changes in the picture, surpassing 

previous global thresholding methods. The study's results suggest that this approach, which does 

not require any user involvement, is relatively successful at separating ice initially. It may be 

improved even more by utilizing expert systems to categorize particular ice forms and establish 

their proportions within the images [51].  

Notable progress has been made by utilizing a sophisticated deep neural network, MSI-ResNet, 

to accurately categorize different sea ice forms during the late spring and summer seasons, utilizing 

GF-3 quad-polarization data. This study highlights the significance of selecting the most suitable 
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patch sizes and polarization combinations to achieve a high level of accuracy in categorization. 

The MSI-ResNet approach performed more excellently than conventional classifiers, such as 

SVM, with high overall accuracy and kappa coefficients across several Arctic areas. Deep learning 

in this study dramatically enhances the accuracy of sea ice type recognition [52]. A new advanced 

deep learning framework called Deep SAR-Net has also been created. This framework is 

specifically built to handle complex-valued SAR pictures. Deep SAR-Net effectively captures 

spatial characteristics and backscattering patterns by combining intensity pictures with radar 

spectrograms, improving accuracy in discriminating objects. This approach performs superior to 

traditional deep convolutional neural networks (CNNs), particularly in differentiating objects with 

similar textures but in their scattering properties. It does this by using both spatial and frequency 

domain characteristics [53].                                                                                                                                                                                                                                                                                                        

Furthermore, a hierarchical deep learning-based pipeline mapping sea ice from SAR pictures 

has been suggested. This method utilizes a semantic segmentation model to accurately map the 

boundaries between ice and water. Then, it applies a two-level hierarchical CNN to classify the 

ice in finer detail. The hierarchical strategy enhances classification accuracy by explicitly 

addressing the unequal visual differentiation of various ice kinds, surpassing the performance of 

typical flat N-way classifiers [54]. A more sophisticated technique for classifying sea ice has been 

created, which integrates polarization information obtained from polarization decomposition with 

spectrogram features derived from joint time-frequency analysis (JTFA). This method provides 

good classification accuracy using ALOS PALSAR SLC data with quad-polarization. It requires 

less data and computing effort compared to single-feature methods. The study showcases the 

ability to maximize the potential of SAR data by integrating several characteristics, resulting in a 

substantial improvement in classification accuracy [55]. 

The research introduces a unique technique called Physically Explainable CNN for SAR image 

classification called physics-guided and injected learning (PGIL). PGIL incorporates the distinct 

electromagnetic properties of SAR data into the deep learning framework to improve 

comprehensibility and understanding of physics. This approach consists of three components: 

explainable models (XM) that offer previous knowledge of physics, a physics-guided network 

(PGN) that encodes this information into physics-aware features, and a physics-injected network 

(PIN) that incorporates these features into the classification process. The assessments conducted 
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using Sentinel-1 and Gaofen-3 SAR data show that PGIL significantly enhances classification 

accuracy, especially when labeled data are scarce, compared to conventional CNNs and pre-

training techniques. The work emphasizes the capacity of PGIL to retain physical coherence in 

predictions, avoid overfitting, and uphold interpretability through physics-guided signals, 

providing a robust and comprehensible method for SAR image categorization[56]. 

 These studies demonstrate substantial advancements in sea ice categorization using SAR 

technology. Researchers have utilized dynamic local thresholding, sophisticated deep learning 

frameworks, and multi-feature techniques to enhance the precision and dependability of methods 

used for monitoring and analyzing sea ice. These developments improve our comprehension of 

sea ice movements and offer essential instruments for monitoring the environment and studying 

climate. Further advancement and fine-tuning of these techniques will enhance the accuracy and 

suitability of SAR-based sea ice categorization. 

2.3   Advanced AI Approaches for Wildfire Risk Prediction and 

Management 

Wildfires pose significant threats to ecosystems, human life, and infrastructure. Accurate fire 

risk prediction is crucial for proactive wildfire management and disaster response. Machine 

learning and deep learning approaches have been increasingly utilized to enhance the accuracy and 

efficiency of fire risk detection systems. 

2.3.1 Dynamic Approaches to Fire Risk Prediction 

In recent years, fire risk detection has become a crucial area of research due to the growing 

threat of wildfires to ecosystems, economies, and human life. Many methods have been developed 

that centre on striking a compromise between detection performance and computational 

complexity. It is evident from Munsif et al.  [57] . That Convolutional Neural Networks (CNNs) 

are widely utilized for fire detection, and a lightweight model was suggested for disaster 

recognition. This efficient CNN model was implemented on devices with limited resources, 

proving its usefulness in practical situations. 

Similarly, IoT-based fire detection systems have been developed, using CNNs to interpret data 

in real-time. With an emphasis on Internet of Things contexts, Dilshad et al. [58]suggested an 
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optimized fire attention network (OFAN) for efficient fire detection. By addressing issues with 

accuracy in dimly lit and foggy environments, their approach produced better results across several 

datasets. The model's ability to capture global context was enhanced by adding a dilated 

convolutional layer, which qualified it for real-time applications on edge devices. Moreover, recent 

developments in vision transformers (ViTs) have demonstrated promise for fire detection. 

However, ViTs' high computational demand prevents them from being used in settings with 

limited resources. To address these issues, a unique ViT architecture that combines local self-

attention with shifting patch tokenization was presented by Yar et al. [59]. This method made 

effective fire detection possible even with small and medium-sized datasets. The changes to the 

model balanced computational cost and accuracy by reducing the model size and the number of 

floating-point operations. To improve the accuracy of fire detection, several designs have added 

attention methods in addition to CNN and ViT models. For example, Yar et al. [60] provided a 

model that combines 3D convolution operations with a modified soft attention mechanism to 

enhance the identification of tiny fires from UAV data. Their method clarified how crucial it is to 

control model complexity to facilitate real-time UAV deployment, which is essential for prompt 

action in regions where fires are likely to occur. 

Furthermore, models based on attention are still developing. The multi-attention fire network 

(MAFire-Net), introduced by Khan et al. [61], incorporates channel and spatial attention processes 

to improve feature representation in fire detection tasks. Compared to state-of-the-art techniques, 

this architecture demonstrated greater accuracy and faster inference times, which makes it a good 

contender for real-time deployment on edge devices. Its improved performance over several 

benchmarks was further enhanced by creating a sizable fire dataset. The advancement of fire 

detection technology has also been significantly aided by dataset creation. A substantial source of 

high-resolution UAV-captured photos to detect forest fires is the UAVs-FFDB dataset, first 

presented in UAVs-FFDB [62]. This dataset contributes to creating more resilient AI models for 

fire detection, monitoring, and diversifying the training set. Researchers may develop and test new 

fire detection algorithms using UAV-collected data, which enhances real-time fire monitoring 

systems. 

Additionally, ensemble approaches have been suggested to increase the accuracy and resilience 

of fire detection models. Belarbi et al. [63] created a CNN ensemble to categorize fires in their 
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early stages, providing a low-cost substitute for deep CNNs, which are frequently computationally 

costly. This method is perfect for early fire warning systems since it aggregated predictions from 

several models, obtaining great accuracy at a low computing cost. 

Ultimately, multi-scale techniques have effectively addressed the difficulties associated with 

early fire detection, mainly when dealing with overlapping fire targets and challenging-to-detect 

smoke pictures. Introduced by Yan et al. [64], the multi-scale depth-separable convolutional 

network (MDCNet) was created to capture complex fire properties of several sizes. The application 

of focus loss improved its capacity for difficult fire situations much further. With its ability to 

identify fires earlier than conventional fire detection techniques, this design showed promise for 

improving public safety. 

The research described in these publications offers a range of methods that address 

performance, computing efficiency, and practical application, which substantially contribute to the 

continuous development of fire detection systems. When taken as a whole, these studies offer a 

thorough framework for improving fire risk assessment, especially when it comes to cross-domain 

fire detection, which is the focus of the current study 

2.4 Research Gaps 

 Limited integration of advanced hybrid models for addressing spatiotemporal 

complexities in environmental data. 

 Insufficient utilization of satellite data combined with ground monitoring for air quality 

forecasting. 

 Minimal exploration of computationally efficient models for large-scale SAR image 

classification with high accuracy. 

 Inadequate research on balancing performance and computational complexity in fire risk 

detection models. 

 Limited application of self-supervised learning techniques like knowledge distillation in 

environmental risk prediction. 

 Few studies focus on real-time deployment and scalability of models for practical 

scenarios across diverse regions. 
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2.5 Research Objectives 

The following objectives have been proposed based on the identified research gaps: 

  To develop AI-based solutions to predict accurate pollution levels for efficient 

policymaking. 

  Develop an efficient method for detecting forest fire risk using hyperspectral satellite 

imagery. 

  Design a novel AI-driven framework for identifying sea ice in Synthetic Aperture Radar 

(SAR) data. 

This chapter provides an extensive review of current research on environmental monitoring, 

highlighting significant advancements in air pollution forecasting, sea ice classification, and fire 

risk detection through deep learning techniques. It explores the limitations of traditional methods 

and sets the foundation for more advanced solutions. The next chapter will build upon these 

findings by introducing a novel hybrid deep learning model that addresses the complexities of 

PM2.5 forecasting, demonstrating how the integration of convolutional and transformer-based 

architectures can significantly improve predictive accuracy and computational efficiency. 

  

Page 42 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478

Page 42 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478



18 | P a g e  

 

3 Chapter 3: PM 2.5 Prediction using a novel 

architecture CATALYST 

3.1 Scope of this Chapter 

In the modern era of rapid industrialization and urbanization, air pollution has become a 

pressing global concern, significantly impacting human health and environmental sustainability. 

Among various pollutants, PM2.5 (Particulate Matter with a diameter of 2.5 micrometers or less) 

poses severe health risks due to its ability to penetrate deep into the human respiratory system, 

leading to respiratory diseases, cardiovascular complications, and reduced life expectancy. The 

increasing concentration of PM2.5 in metropolitan cities like Delhi has prompted the need for 

accurate forecasting models that can help mitigate its adverse effects and support evidence-based 

policymaking. Conventional forecasting techniques such as statistical models (ARIMA) and 

machine learning approaches (SVR, Decision Trees, and Random Forests) have demonstrated 

limited success in accurately predicting PM2.5 concentrations due to their inability to fully capture 

the non-linear and highly dynamic nature of air pollution data. These methods struggle to integrate 

multiple influencing factors, such as meteorological conditions, vehicular emissions, industrial 

activities, and seasonal variations, into a cohesive prediction model. To address these limitations, 

this research introduces CATALYST, a hybrid Convolutional Neural Network (CNN) and 

Transformer-based model designed to enhance the accuracy of PM2.5 forecasting. The 

CATALYST model effectively leverages deep learning techniques to integrate spatial and 

temporal dependencies in air pollution data, providing more reliable and robust predictions. By 

combining CNNs for feature extraction and Transformers for sequential learning, CATALYST 

aims to improve forecasting precision, optimize computational efficiency, and outperform 

traditional prediction models. This chapter delves into the development, implementation, and 

evaluation of CATALYST for PM2.5 forecasting in Delhi, demonstrating its superiority over 

conventional models. The proposed model aims to enhance real-time air quality monitoring, 

facilitate proactive pollution control strategies, and contribute to global efforts in environmental 

sustainability. 
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3.2 A Novel Approach for Forecasting PM2.5 Pollution in Delhi Using 

CATALYST 

3.2.1 Abstract 

Air pollution, particularly PM2.5, poses significant threats to public health and environmental 

stability, necessitating robust predictive models for effective mitigation strategies. Traditional 

forecasting approaches, including statistical models (e.g., ARIMA) and machine learning 

techniques (e.g., SVR, Decision Trees, and LSTM), have shown limitations in capturing the 

complex spatial-temporal dependencies of PM2.5 pollution. To overcome these challenges, this 

study proposes CATALYST, an advanced hybrid deep learning model integrating Convolutional 

Neural Networks (CNNs) and Transformer architectures to enhance prediction accuracy. The CNN 

module efficiently extracts spatial features from air pollution datasets, while the Transformer 

component leverages self-attention mechanisms to model long-term temporal dependencies. 

Extensive experiments were conducted using 48,362 hourly PM2.5 records from five monitoring 

stations in Delhi, comparing CATALYST against state-of-the-art forecasting models such as 

ARIMA, LSTM, and standard Transformer-based approaches. The results demonstrate that 

CATALYST achieves the lowest RMSE (21.01) and the highest R² (0.89), outperforming all 

baselines in predictive accuracy. Furthermore, CATALYST exhibits superior generalization 

capabilities, making it adaptable to different air quality datasets. This research contributes to 

advancing AI-driven environmental monitoring by offering an innovative deep-learning 

framework for air quality forecasting. The findings of this study provide valuable insights for 

policymakers and urban planners in designing data-driven pollution control strategies, thus 

supporting global sustainability efforts. Air pollution, particularly PM2.5, significantly impacts 

human health and environmental quality. Predicting PM2.5 concentrations accurately is crucial for 

effective air quality management. Traditional statistical and machine learning models have 

struggled to provide robust forecasts due to the complex spatiotemporal nature of air pollution. 

This study introduces CATALYST, a hybrid CNN-Transformer deep learning model, designed to 

improve the accuracy of PM2.5 forecasting in Delhi. The proposed model effectively captures both 

short-term and long-term dependencies in air pollution data, outperforming existing statistical and 

deep learning approaches. The experimental results demonstrate that CATALYST achieves 

superior performance compared to ARIMA, LSTM, and Boosting models, with lower RMSE and 
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higher R² values. This research contributes to advancing air pollution forecasting and aiding 

policymakers in implementing effective mitigation strategies. 

3.2.2 Proposed Methodology 

This section presents a comprehensive overview of the proposed methodology, which is 

divided into three main phases. The first phase involves the collection and pre-processing of data 

obtained from five distinct monitoring stations located in Delhi: DTU Delhi-CPCB, NSUT 

Dwarka-CPCB, Anand Vihar-DPCC, Pusa Delhi-IMD, and IGI-T3 Delhi-IMD. An overall model 

of the methodology is depicted in Figure 3.1.. Subsequently, the gathered information is processed 

to facilitate subsequent examination. The following phase involves the utilization of a pioneering 

Transformer-based methodology to predict air quality. The data that has been gathered and 

undergone pre-processing from the monitoring stations are utilized as input for the Transformer 

model. By using its attention mechanism, the Transformer model can effectively capture extended 

dependencies and acquire intricate patterns within the data, ultimately facilitating precise 

predictions regarding air quality. 

During the third stage, the outcomes derived from the predictive model are evaluated and 

scrutinized through the application of performance metrics, including but not limited to mean 

absolute error (MAE), coefficient of determination (R^2), and root mean square error (RMSE). 

The present study examines the precision and efficacy of the suggested approach in forecasting 

atmospheric conditions. The proposed methodology integrates the various components such as 

data collection, pre-processing, a unique Transformer-based approach, and result analysis to offer 

comprehensive framework for air quality prediction.  

Algorithm 1 shows the algorithm of the proposed architecture. The algorithm's objective is to 

facilitate the training and prediction of air quality by utilizing the CATALYST model. The system 

receives input in the form of data points obtained from monitoring stations and uses this 

information to forecast air quality values. The iterative process of the algorithm is executed for a 

predetermined number of epochs. The process involves converting the input data into a vector 

image and extracting features through a Convolutional Neural Network (CNN). The Transformer 

block is used to extract enduring characteristics. The application of dropout is observed in the 

convolutional neural network features, while the Transformer features are subjected to both 
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dropout and batch normalization. The final predicted output is derived by concatenating the 

enhanced features. 

 

Algorithm 1 Training and prediction algorithm for CATALYST 

Aim: To learn a mapping function 𝔽: (𝑿𝒋, 𝒀𝒋) ⟶ from data points obtained from five 

monitoring stations 

Input: Set of data points 𝑿𝒋 = {𝒙𝒋1,𝒙𝒋2,……… . , 𝒙𝒋𝑺𝑾} where, 𝑺𝑾 is the size of the sliding 

window used for input layer partitioning 

Output: Air Quality Prediction, 𝒀𝒋 ∈ 𝒇𝒐𝒓𝒄𝒂𝒔𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 

1. 𝐷 = {(𝑿0, 𝒀0), (𝑿1, 𝒀1), ………… , (𝑿𝑩, 𝒀𝑩)} represents the dataset consisting of hourly 

data points 𝑿 and 𝒀 as the forecasted value with 𝑩 number of blocks into which the data 

is partitioned for both input and label data. 

              for 𝜠 ← 1 to Epochs do 

2. Input data 𝑿𝒋 is converted into a vector image. 

3. ℱ(𝑿𝒋) be the feature representation obtained by CNN from vector image. 

4. 𝑇 (ℱ(𝑿𝒋)) ← ℱ(𝑿𝒋) be the long-term features obtained from Transformer block. 

5. 𝐷 (ℱ(𝑿𝒋)) ← ℱ(𝑿𝒋) improve model's performance by applying dropout to feature 

representation obtained by CNN. 

6. 𝐵 (𝐷 (ℱ(𝑿𝒋))) ←  𝑇 (ℱ(𝑿𝒋)) improve model's performance by applying dropout and 

batch-normalization to feature representation obtained by transformer. 

7. 𝑃(𝑿𝒋) = 𝐷 (ℱ(𝑿𝒋)) ⊕  𝐵 (𝐷 (ℱ(𝑿𝒋))) concatenation of both the enhanced features to 

obtain forecasted output. 

              end 
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Data Pre-processing 

This research work employs a dataset consisting of 48,362 hourly data points that have 

undergone a process of cleaning and organization. The above data were obtained from five 

monitoring stations and merged into a unified column. To facilitate analysis, the data underwent a 

process of partitioning into blocks encompassing input and label data. Utilizing the sliding window 

technique in the input layer boosted the streamlining of data processing by decreasing nested loops 

and consolidating them into a singular circle. This methodology conserves both time and 

computational resources. Furthermore, using the positional encoding layer facilitated the 

integration of sinusoidal positional embedding with the input data. The process involves 

converting the PM2.5 data into a vector image, which is subsequently utilized as input for a pre-

existing Convolutional Neural Network (CNN) to extract features. 

Short-Term Contextual Feature Learning using CNN. 

So, in the proposed methodology, input is fed as an image to a pre-trained Convolutional 

Neural Network (CNN). That is employed for feature extraction from the input time series before 

their integration into the Transformer. Utilizing a pre-existing Convolutional Neural Network 

(CNN) for feature extraction from PM2.5 data is a viable methodology because CNNs are tailored 

toward image processing tasks and can proficiently capture spatial patterns and dependencies 

within the data. By converting PM2.5 data into a vector image, the convolutional neural network 

(CNN) can extract pertinent features from the data while decreasing its dimensionality. This 
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facilitates the subsequent transformer model in carrying out temporal modelling with greater 

efficiency. 

Fig. 3.1 Overall Pipeline of the Proposed Solution 

Moreover, utilizing a pre-existing model conserves time and computational resources, since 

the model has already undergone comprehensive training on vast datasets. It can be adapted to the 

particular task at hand through fine-tuning. Finally, using the sliding window technique in the input 

layer diminishes the occurrence of nested loops and streamlines the temporal intricacy of the 

model. In general, the rationales, as mentioned earlier, render the utilization of a pre-trained 

convolutional neural network a viable methodology for predicting PM2.5 data. 

Long-Term Contextual Features Using a Transformer 

Long-term contextual characteristics are just as crucial for the effective forecasting of air 

quality data as the short-term contextual variables provided by the pre-trained CNN. The suggested 

solution uses a transformer network to capture these long-term relationships. The transformer 

network may model the input data sequence's long-term relationships well, which can also capture 

the context necessary for precise prediction. The primary task of the transformer encoder layers 

involves using self-attention and feed-forward neural network operations to carry out the 

prognosis. Ultimately, the decoder's linear layer produces conclusive prognostications. Full 

graphical representation of architecture model can be seen in  Fig. 3.2. 

The transformer network computes a sequence of outputs that may be utilized for predicting 

based on a series of inputs. It comprises several encoder layers, each with a feed-forward neural 

Step 1: Data Collection and Pre-Processing 

DTU IGI-T3 ANVT PUSA NSUT 

Step 2: Forecasting through a Novel 

Transformer based approach. 

Step 3: Results comparisons and analysis. 

RMSE R2 MAE 
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network and a self-attention mechanism. The feed-forward neural network gives the model non-

linearity, and the self-attention tool enables the transformer to recognize the significance of each 

input piece. 

The mean squared error (MSE) loss function and Adam optimizer used in CNN training are 

also used in the transformer. During training, a validation set is used to keep track of the model's 

progress while a batch size of 64 is set. A cyclical learning rate schedule is utilized to improve 

convergence, and the learning rate is adjusted during training using the learning rate annealing 

approach. 

In general, integrating a pre-trained Convolutional Neural Network (CNN) and a Transformer 

network facilitates the extraction of contextual features from the input time series, encompassing 

both short-term and long-term information. This enables precise prediction of atmospheric quality 

information with reduced computational resources. 

Final prediction 

The ultimate forecast is generated through the amalgamation of the pre-existing Convolutional 

Neural Network and the Transformer network's outputs. The convolutional neural network that 

has been pre-trained can extract contextual features that are short-term in nature. On the other 

hand, the Transformer is used to capture the long-term relationships in the input data. The final 

prediction is derived by integrating the outputs of both models. 

To enhance the model's performance, several techniques, including dropout and batch 

normalization, are employed to mitigate the issue of overfitting and augment the model's capacity 

to generalize the novel data. The evaluation of the model's performance is conducted through the 

utilization of diverse evaluation metrics, including but not limited to Mean Absolute Error (MAE), 

Root Mean Squared Error (RMSE), and R-squared (R2). 

In brief, the ultimate forecast is derived by amalgamating the results obtained from the pre-

existing Convolutional Neural Network (CNN) and the Transformer network, followed by 

implementation methodologies such as dropout and batch normalization to enhance the efficacy 

of the model. The evaluation of the model's performance is conducted through diverse evaluation 

metrics. The full methodology can be seen in Fig. 3.1. 

Computational efficiency  
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Various techniques are investigated and assessed with the aim of improving computational 

efficacy and mitigating the risk of overfitting. The selected model utilizes a solitary encoder and a 

linear layer, resulting in a notable decrease in complexity while still achieving proficient 

performance. 

The utilization of a solitary encoder in the model results in optimization of the processing 

pipeline, thereby, reducing the computational burden. The utilization of this methodology obviates 

the necessity for numerous encoder layers, thereby, diminishing the computational workload 

during both the training and inference stages. Furthermore, the model integrates a linear layer, 

which enhances the computational efficiency. Linear layers exhibit computational efficiency in 

comparison to more intricate layers, such as fully connected layers, due to their utilization of 

simpler matrix operations. Through the implementation of these measures, the model can enhance 

the efficiency of computational resources while maintaining the precision of its predictions. The 

acceleration of training and inference times facilitates the model's practicality for real-time or 

large-scale applications. In general, the adoption of a solitary encoder and a linear layer amplifies 

computational efficacy, thereby, expediting the processing and mitigating the likelihood of 

Page 50 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478

Page 50 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478



26 | P a g e  

 

overfitting. The enhancements facilitate a heightened level of efficacy and pragmatic in the 

forecasting framework. 

This section outlines the technical aspects of the study's implementation, encompassing the 

hardware configuration, employment of machine learning frameworks, and the particular model 

architecture utilized. The present discourse delves into the process of optimizing the model, the 

parameters involved in training, and the metrics employed for evaluation. Furthermore, the section 

presents a comprehensive examination of the dataset, demonstrating patterns in PM2.5 levels 

across various temporal dimensions such as time, seasons, and hours. The discourse underscores 

the association between the concentration of PM2.5 and diverse factors, including but not limited 

to the day of the week, season, and atmospheric conditions. Additionally, the aforementioned 
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Fig. 3.2 The architecture of CATALYST -a novel Convolutional and Transformer model for 

Air Quality Forecasting 
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section conducts a comparative analysis between the CATALYST model and other baseline 

models, showcasing its heightened predictive accuracy and dependability. 

Implementation Details  

The experiments are conducted on a PC server equipped with an NVIDIA QUADRO RTX 

A5000 graphics card featuring a memory capacity of 24GB and 3042 NVIDIA Cuda cores. 

Implementing machine learning techniques for air quality forecasting involves the utilization of 

open-source frameworks such as Pytorch (https://pytorch.org) and Sklearn (https://scikit-

learn.org/). The open-source Tensorflow library, available at https://github.com/tensorflow/, 

configures deep learning and Transformer models. The implementation that has been presented is 

founded on a time series forecasting model that utilizes transformers. This model combines a 

convolutional neural network (CNN) and a transformer network.  

The model optimization process involves utilizing the mean squared error (MSE) loss function 

alongside the Adam optimizer for updating the model parameters. The model's training is 

conducted with a batch size of 64. The training process is terminated after 1000 epochs or when 

the validation loss fails to demonstrate improvement for ten consecutive periods. The code 

employs an automatic technique, learning rate annealing, to modify the learning rate in response 

to the training progress. Additionally, cyclical learning rate schedules vary the learning rate to 

enhance convergence cyclically. The starting learning rate varies from 0.000001 to 0.000200 

according to requirement. The proposed framework's training, validation, and testing ratio has 

been set to 80%, 10%, and 10%, respectively as it can be seen in Fig. 3.3. The optimal model is 

selected employing the validation loss metric and subsequently employed to generate predictions 

on the test dataset. 

 

Fig. 3.3 Training, Validation and Testing ratio 

To assess the efficacy of the model, three evaluation metrics are employed, namely the mean 

absolute error (MAE), mean squared error (MSE), and mean fundamental percentage error 

(MAPE). Metrics are utilized to quantify the disparity between the anticipated values and the actual 
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values. The assessment is conducted on the designated test dataset, and the outcomes are 

documented. 

The implementation presented showcases a time series forecasting model that utilizes a 

transformer-based approach, integrating both a convolutional neural network and a transformer 

network. The model's performance on the test set is satisfactory, indicating its potential 

applicability to diverse time series forecasting tasks. The details about the implementation can 

serve as a valuable reference for scholars and professionals who intend to utilize this model for 

their individual time series prediction endeavours. 

Comparison of Performance with Baseline Models 

The study's performance metrics for a range of models, namely SVR-RBF, SVR-Linear, 

ARIMA, Boost, LSTM, Transformer, and the proposed CATALYST, are presented in Table 1. 

The assessment criteria encompass Root Mean Squared Error (RMSE), Mean Absolute Error 

(MAE), and R-squared (R2) score, as you can see in Table 3.1. 

The CATALYST model exhibited noteworthy outcomes, as evidenced by its RMSE value of 

21.01, MAE value of 13.37, and R2 score of 0.83. The aforementioned metrics demonstrate that 

CATALYST exhibits higher levels of predictive precision and dependability when compared to 

alternative models. It is noteworthy that CATALYST exhibits superior performance compared to 

Boost, LSTM, and Transformer models, which are widely recognized for their efficacy in time 

series prediction tasks. 

Table 3.1 Comparison of different models 

MODELS RMSE MAE R2 

SVR-RBF 36.46 28.78 0.65 

SVR-Linear 42.37 34.24 0.53 

Arima 55.51 48.28 0.82 

Boost 25.72 12.53 0.84 

LSTM 25.71 14.61 0.81 

Transformer 24.02 13.92 0.84 

CATALYST 21.01 13.37 0.89 
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3.2.3 Conclusion 

The present study introduced a comprehensive methodology for predicting air quality through 

the utilization of a pre-trained Convolutional Neural Network (CNN) in combination with a 

Transformer-based approach. The research methodology comprised of three primary phases, 

namely, data acquisition and pre-processing, learning of short-term contextual features through 

CNN, and extraction of long-term contextual features using a Transformer. 

A dataset of hourly air quality measurements was obtained by utilizing data from five 

monitoring stations in Delhi, which was subsequently subjected to cleaning and organization. The 

utilization of the sliding window methodology facilitated the division of the data into input and 

label blocks, resulting in a more efficient data processing approach and conservation of 

computational resources. Furthermore, the technique of positional encoding was employed to 

incorporate sinusoidal positional embeddings into the input data. 

During the initial phase of contextual feature acquisition, the input data was presented as an 

image and processed through a pre-existing convolutional neural network (CNN) to extract 

pertinent features. This methodology utilized the convolutional neural network's aptitude for 

detecting spatial patterns and interdependencies present in the dataset. The reduction of 

dimensionality reduction by converting the data on air quality into a vector image. This enabled 

the subsequent Transformer model to efficiently carry out temporal modelling efficiently Capture 

enduring contextual associations; a Transformer network was employed. The Transformer encoder 

layers were successful in modelling the input data sequence and capturing the requisite context for 

precise predictions through the integration of self-attention and feedforward neural network 

operations. The ultimate predictions were generated by the linear layer of the transformer decoder. 

The ultimate prediction was attained through the integration of the pre-trained Convolutional 

Neural Network and the Transformer outputs. The model's performance was enhanced, and 

overfitting was mitigated through techniques such as dropout and batch normalization. The 

evaluation of the model's performance was conducted through the utilization of various metrics, 

including but not limited to Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and 

R-squared (R2). 
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The methodology proposed in this study presented a comprehensive framework for predicting 

air quality. It involved a series of steps including data collection, pre-processing, feature extraction, 

and prediction analysis. The findings indicated the efficacy of the methodology in precisely 

predicting atmospheric phenomena. By incorporating both short-term and long-term contextual 

features, a comprehensive comprehension of the dynamics of air quality can be achieved. 

3.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

 To predict PM2.5 concentration levels using remote sensing data through a novel deep 

learning framework named “CATALYST” (Convolutional and Transformer-based 

Architecture for Learning Air Quality Spatiotemporal Trends). The proposed model 

integrates Convolutional Neural Networks (CNNs) for efficient spatial feature extraction 

and Transformer architectures for capturing long-term temporal dependencies, 

significantly enhancing predictive accuracy. 

 Conducted extensive performance evaluations using metrics such as Root Mean Square 

Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R^2). The 

CATALYST model achieved an RMSE of 21.01, MAE of 13.37, and R^2 of 0.89, 

outperforming state-of-the-art models including ARIMA, LSTM, Boosting algorithms, and 

standard Transformer approaches. 

 Analyzed temporal patterns and seasonal variations in PM2.5 concentrations across Delhi, 

providing valuable insights into the influence of industrial activities, vehicular emissions, 

meteorological conditions, and seasonal shifts on air pollution levels. This comprehensive 

analysis supports data-driven policymaking and targeted pollution control strategies. 

The following research studies serve as the foundation for this chapter: 

 Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "A novel approach for 

forecasting PM2.5 pollution in Delhi using CATALYST." Published in Environmental 

Monitoring and Assessment, Volume 196, Article number 340, (2024), IF – 3.0(Pub: 

Springer). 

In this chapter, the BREATH-Net model was introduced, which leverages a hybrid architecture 

combining a Transformer and a BiLSTM network to accurately forecast NO2 concentrations in 
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Delhi. By utilizing satellite data and advanced deep learning techniques, the model significantly 

outperforms traditional forecasting methods, offering valuable insights into the temporal and 

seasonal patterns of NO2 pollution. The next chapter will build on these findings by exploring the 

model's real-world applications and its potential for integration into broader environmental 

monitoring systems, focusing on the practical challenges and solutions for deploying such models 

in urban air quality management. 
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4 Chapter 4: Breadth-Net for accurate NO2 

Forecasting 

4.1 Scope of this Chapter 

Air pollution remains a critical environmental and public health concern in the contemporary 

era of escalating urbanization and industrialization. Among the various air pollutants, nitrogen 

dioxide (NO₂) significantly contributes to deteriorating air quality, exacerbating respiratory 

ailments, cardiovascular diseases, and environmental degradation. As one of the most polluted 

metropolitan regions in the world, Delhi experiences persistent NO₂ pollution due to vehicular 

emissions, industrial activities, and meteorological influences. Consequently, there is a growing 

demand for accurate and efficient forecasting models to predict NO₂ concentrations and facilitate 

effective air quality management strategies. 

Conventional forecasting techniques, including statistical regression models and traditional 

machine learning approaches, often struggle to capture the complex temporal and spatial 

dependencies inherent in NO₂ pollution data. These methods exhibit limitations in processing the 

highly dynamic nature of air pollution and integrating multiple influencing factors such as 

meteorological parameters, emission sources, and seasonal variations. To address these challenges, 

this study introduces BREATH-Net, a novel hybrid deep-learning framework that integrates a 

Transformer architecture with a Bidirectional Long Short-Term Memory (BiLSTM) network to 

enhance the accuracy of NO₂ concentration predictions. 

The BREATH-Net model leverages the advantages of Transformer-based attention 

mechanisms for capturing long-range dependencies and BiLSTM’s ability to effectively process 

sequential data. This combination enhances the model’s ability to learn complex temporal patterns 

and dependencies in NO₂ levels, resulting in more precise and robust forecasts. The study utilizes 

satellite-based NO₂ data from Sentinel-5P, spanning a period of three years, to train and validate 

the proposed model. A thorough exploratory data analysis (EDA) is conducted to understand 

trends and patterns in NO₂ concentrations, followed by pre-processing techniques such as MinMax 

scaling to optimize the model’s performance. 
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This chapter comprehensively discusses the development, implementation, and evaluation of 

the BREATH-Net model for NO₂ forecasting in Delhi. The effectiveness of the proposed model is 

demonstrated through performance comparisons against conventional prediction models such as 

XGBoost, LSTMs, SVR, and other baseline approaches. The study highlights the superior 

forecasting capability of BREATH-Net, which achieves a significantly lower Root Mean Square 

Error (RMSE) of 9.06 and an R² score of 0.96, outperforming other state-of-the-art models. 

By presenting a robust NO₂ prediction framework, this research aims to contribute to real-time 

air quality monitoring, support evidence-based policymaking, and aid in mitigating the adverse 

health effects of NO₂ pollution. The insights derived from this study can inform targeted pollution 

control strategies, optimize emission reduction policies, and foster the development of sustainable 

urban planning initiatives. 

4.2 BREATH-Net: A Novel Deep Learning Framework for NO2 Prediction 

Using Bi-directional Encoder with Transformer  

4.2.1 Abstract 

Air pollution poses a significant challenge in numerous urban regions, negatively affecting 

human well-being. Nitrogen dioxide (NO2) is a prevalent atmospheric pollutant that can 

potentially exacerbate respiratory ailments and cardiovascular disorders and contribute to cancer 

development. The present study introduces a novel approach for monitoring and predicting Delhi’s 

nitrogen dioxide concentrations by leveraging satellite data and ground data from the Sentinel 5P 

satellite and monitoring stations. The research gathers satellite and monitoring data over 3 years 

for evaluation. Exploratory data analysis (EDA) methods are employed to comprehensively 

understand the data and discern any discernible patterns and trends in nitrogen dioxide levels. The 

data subsequently undergoes pre-processing and scaling utilizing appropriate techniques, such as 

MinMaxScaler, to optimize the model’s performance. The proposed forecasting model uses a 

hybrid architecture of the Transformer and BiLSTM models called BREATH-Net. BiLSTM 

models exhibit a strong aptitude for effectively managing sequential data by adeptly capturing 

dependencies in both the forward and backward directions. Conversely, transformers excel in 

capturing extensive relationships over extended distances in temporal data. The results of this 

study will illustrate the proposed model’s efficacy in predicting the levels of NO2 in Delhi. If 
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effectively executed, this model can significantly enhance strategies for controlling urban air 

quality. The findings of this research show a significant improvement of RMSE = 9.06 compared 

to other state-of-the-art models. This study’s primary objective is to contribute to mitigating 

respiratory health issues resulting from air pollution through satellite data and deep learning 

methodologies. 

4.2.2 Proposed Methodology 

In this proposed research study, we suggest a methodology to forecast NO2 (nitrogen dioxide) 

pollutant levels using a hybrid model that combines a Transformer architecture with a Bi-

directional Long Short-Term Memory (BiLSTM) network named as BREATH-Net. The aim is to 

leverage the strengths of both models to improve the accuracy of NO2 predictions and contribute 

to effective air quality management. 

 

Fig. 4.1 Framework for NO2 Forecasting 

The suggested model architecture effectively combines the attention-based features of the 

Transformer component with the temporal context modelling capabilities of the BiLSTM network. 

This hybrid methodology allows the model to proficiently comprehend intricate material 

connections and generate accurate forecasts about NO2 pollutant concentrations. The thorough 

NO2 
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assessment and analysis of the model's performance are crucial in facilitating efficient air quality 

management and environmental monitoring. 

The proposed approach for forecasting levels of NO2 pollutants involves the application of a 

hybrid model BREATH-Net that incorporates a Transformer architecture with a Bi-directional 

Long Short-Term Memory (BiLSTM) network. This innovative amalgamation's primary objective 

is to leverage both models' advantages, facilitating a comprehensive analysis of temporal patterns 

and linkages in the NO2 data. The input of the model comprises a tensor that represents a sequential 

series of historical NO2 concentration values. The tensor exhibits a (num, 1) shape, wherein 'num' 

denotes the number of preceding time steps taken into account for forecasting. The provided input 

data facilitates the model's acquisition and comprehension of the temporal patterns and fluctuations 

in NO2 pollutant concentrations. 

Transformer Component 

The Transformer component represents the initial fundamental element of the proposed model. 

The model utilizes Multi-Head Attention, consisting of four attention heads, each with a critical 

dimension 32. This mechanism facilitates the model's ability to concurrently focus on various 

segments of the input sequence, thereby effectively capturing a diverse array of temporal patterns 

and dependencies inherent in the data. The attention scores in the given equation (4.1) are 

computed by applying the Softmax function to the dot product of the query matrix (Q) and the key 

matrix (K). The mathematical formulation presented here serves as a crucial component of the 

Multi-Head Attention mechanism within the Transformer module of our model. The Softmax 

function is responsible for normalizing the scores, so ensuring that the model allocates suitable 

attention weights to various portions of the input sequence in accordance with their significance. 

Including this phase is of utmost importance to successfully capture a wide range of temporal 

patterns and relationships within the data.   

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 𝑆𝑐𝑜𝑟𝑒

= 𝑆𝑜𝑓𝑡𝑀𝑎𝑥 (
𝑄𝐾𝑇

√𝑑𝑘
)                                                                                                                                (4.1) 

To mitigate the issue of over-fitting, a dropout regularisation technique is implemented after 

the attention layer, with a dropout rate of 0.1. The utilization of dropout, a method that randomly 
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deactivates a portion of neurons during the training process, improves the model's capacity to 

generalize effectively to unfamiliar data. The Dropout operation plays a vital role in the 

regularisation approach of our model, as seen in the equation (2). During the training process, a 

certain probability 𝑝 is used to randomly assign a percentage of the input values to zero. The use 

of noise in this stochastic process serves the purpose of mitigating overfitting, hence promoting 

enhanced generalisation of the model to unobserved data. 

𝐷𝑟𝑜𝑝𝑜𝑢𝑡(𝑥) = {
𝑥, 𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 1 − 𝑝
0,        𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦         𝑝

                                                                           (4.2) 

The output of the attention layer is subsequently standardized through Layer Normalisation, 

employing an epsilon value of 1e-6. Normalization stabilizes the learning process, guaranteeing 

consistent convergence throughout the training phase. In equation (3), Layer Normalisation 

(LayerNorm) is a method employed to normalize the activations of individual neurons within a 

layer in an independent manner. The algorithm computes the arithmetic mean 𝜎 and standard 

deviation 𝜇 of the given input values. It then applies scaling and shifting operations to the data in 

order to achieve a uniform distribution of activations. 

LayerNorm(𝑥) = 𝜎𝑥 − 𝜇                                                                                                                     (4.3) 
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Fig. 4.2 The architecture of Multihead attention and BiLSTM for NO2 Forecasting 

Fused Representation 

The fused representation, which incorporates temporal information, is obtained by combining 

the output of the Transformer model with the initial input sequence. The concatenated sequence is 

subsequently fed into the BiLSTM layer, enhancing the original time series data by incorporating 

pertinent contextual information. The given equation (4.4) demonstrates the fusion of the output 

of the Transformer model 𝑋 with the original input sequence 𝑇 at each time step, resulting in the 

fused representation 𝐹. The integration of contextual information acquired by the Transformer 

with the original time series data results in the production of a novel representation. The use of a 

fused representation significantly improves the model's capacity to capture temporal patterns and 
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relationships inherent in the data, thereby rendering it an essential component within the suggested 

architecture. 

 𝐹 = [𝑋, 𝑇]                                                                                                                                             (4.4)  

 

Dual-directional Long Short-Term Memory (LSTM) Layer 

The fused sequence undergoes processing through a Bidirectional Long Short-Term Memory 

(BiLSTM) layer consisting of 64 units. The bidirectional nature of the BiLSTM enables the model 

to gather information from both preceding and subsequent time steps, thereby improving its 

understanding of the temporal patterns in the NO2 data. 

The BiLSTM layer can effectively capture contextual information from preceding and 

succeeding time steps, allowing the model to discern intricate patterns and temporal dependencies 

within the data. 

Densely Connected Regression Layer 

After the BiLSTM processing, the extracted features are further processed using a fully 

connected Dense layer with 16 units. The dense layer is responsible for transforming the feature 

representation, characterized by many dimensions, into a format appropriate for regression-based 

prediction. 

The concentration of NO2 is predicted using a single-neuron output layer, resulting in the 

ultimate prediction. The output layer of the model generates forecasts for the levels of NO2 

pollutants based on the input time series data and the contextual information extracted by the 

BREATH-Net components. 

Model Training and Hyperparameter Optimization 

The hybrid model uses the Adam optimizer, employing a learning rate of 0.001. The Adam 

optimizer is an adaptive algorithm for optimizing the learning rate, which efficiently updates the 

parameters of a model during the training process. This results in accelerated convergence and 

enhanced performance.During the training process, a learning rate annealing scheduler is 

implemented, whereby the learning rate is systematically reduced by 10 after every 50 epochs. The 
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utilization of the annealing process enhances the convergence of the optimization process by 

promoting smoother transitions and mitigating the occurrence of overshooting. 

Algorithm 1 Hybrid Model for Forecasting 𝑵𝑶𝟐 Pollutant Levels 

Aim: Forecasting 𝑵𝑶𝟐pollutant levels is critical for effective air quality management and 

environmental monitoring 

Input: Raw 𝑵𝑶𝟐 values, 𝑵𝑶𝟐_𝒊 where, 𝒊 ≤ 𝒏 

Output: Forcasted value for 𝑵𝑶𝟐 pollutant level, 𝑵𝑶𝟐_𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅_𝒊 ∈ 𝒇𝒐𝒓𝒄𝒂𝒔𝒕𝒆𝒅 𝒗𝒂𝒍𝒖𝒆 

1. 𝑵𝑶𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅_𝒊 =  (𝑵𝑶𝟐_𝒊 −  𝒎𝒊𝒏(𝑵𝑶𝟐)) / (𝒎𝒂𝒙(𝑵𝑶𝟐)  −  𝒎𝒊𝒏(𝑵𝑶𝟐)), 

normalize 𝑵𝑶𝟐 values 

2. 𝑿_𝒊 =  [𝑵𝑶𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅_𝒊(𝒕 − 𝟏),𝑵𝑶𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅_𝒊(𝒕 −

𝟐), . . . , 𝑵𝑶𝟐_𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅_𝒊(𝒕 − 𝒏𝒖𝒎)], obtain the input tensor 𝑿_𝒊 using different 

values of normalized 𝑵𝑶𝟐 acquired in the previous step 

  for 𝜠 ← 1 to Epochs do 

3. 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏𝒊 =  𝑴𝒖𝒍𝒕𝒊𝑯𝒆𝒂𝒅𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏(𝑿𝒊, 𝒏𝒖𝒎𝒉𝒆𝒂𝒅𝒔, 𝒅𝒊𝒎𝒑𝒆𝒓𝒉𝒆𝒂𝒅), apply multi-

headed attention on the input tensor 𝑿𝒊 

4. 𝑫𝒓𝒐𝒑𝒐𝒖𝒕_𝒊 =  𝑨𝒑𝒑𝒍𝒚𝑫𝒓𝒐𝒑𝒐𝒖𝒕(𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏_𝒊, 𝒅𝒓𝒐𝒑𝒐𝒖𝒕_𝒓𝒂𝒕𝒆), apply dropout layer 

on 𝑨𝒕𝒕𝒆𝒏𝒕𝒊𝒐𝒏_𝒊 to reduce overfitting 

5. 𝑳𝑵_𝒊 =  𝑳𝒂𝒚𝒆𝒓𝑵𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒂𝒕𝒊𝒐𝒏(𝑫𝒓𝒐𝒑𝒐𝒖𝒕_𝒊), pass the output of the previous layer to 

the normalization layer 

6. 𝑭𝒖𝒔𝒆𝒅_𝒊 =  𝑪𝒐𝒏𝒄𝒂𝒕𝒆𝒏𝒂𝒕𝒆(𝑿_𝒊, 𝑳𝑵_𝒊), fused representation by concatenation of input 

tensor 𝑿𝒊 and the output 𝑳𝑵_𝒊 obtained from the layer normalization 

7. 𝑩𝒊𝑳𝑺𝑻𝑴_𝒊 =  𝑩𝒊𝒅𝒊𝒓𝒆𝒄𝒕𝒊𝒐𝒏𝒂𝒍𝑳𝑺𝑻𝑴(𝑭𝒖𝒔𝒆𝒅_𝒊, 𝒏𝒖𝒎_𝒖𝒏𝒊𝒕𝒔), fused representation 

passed through the BiLSTM layers  

8. 𝑫𝒆𝒏𝒔𝒆_𝒊 =  𝑫𝒆𝒏𝒔𝒆𝑳𝒂𝒚𝒆𝒓(𝑩𝒊𝑳𝑺𝑻𝑴_𝒊, 𝒏𝒖𝒎_𝒖𝒏𝒊𝒕𝒔_𝒅𝒆𝒏𝒔𝒆), output obtained from 

dense layer 
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9. 𝑵𝑶𝟐_𝒑𝒓𝒆𝒅𝒊𝒄𝒕𝒆𝒅_𝒊 =  𝑶𝒖𝒕𝒑𝒖𝒕𝑳𝒂𝒚𝒆𝒓(𝑫𝒆𝒏𝒔𝒆_𝒊), forcasted value of 𝑁𝑂2 is obtained by 

passing through the dense and the output layer 

End 

 

4.2.3 Experimental Results and Discussion 

This section contains detailed information regarding the dataset utilized during the research, the 

experimental settings of the proposed framework, and performance assessments. 

Dataset Description 

The dataset, named "NO2 Concentration Time Series Data for Delhi City," provides a 

comprehensive compilation of nitrogen dioxide (NO2) concentrations observations during a 

specific period, emphasizing the city of Delhi, as can be seen in Fig. 4.3. The dataset comprises 

hourly average NO2 measurements collected at different timestamps ranging from November 25, 

2020, to January 24, 2023. Every data point in the collection corresponds to a distinct date and 

time, together with its respective concentration of NO2. 

 

Fig. 4.3 Dataset Timeline 

Importance of Nitrogen Dioxide (NO2) 
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Nitrogen dioxide (NO2) is a notable atmospheric contaminant discharged from several origins, 

encompassing vehicular discharges, industrial operations, and the burning of fossil fuels. 

Monitoring nitrogen dioxide (NO2) levels plays a vital role in evaluating air quality and 

comprehending air pollution's possible health and environmental consequences. 

Temporal Coverage 

The temporal coverage of the dataset provides valuable information on the diurnal and seasonal 

variations in NO2 concentrations inside Delhi, a region renowned for its elevated pollution levels. 

Dataset pre-processing 

The 'date' column within the dataset is transformed into a Date Time format to examine 

temporal patterns comprehensively. Following that, supplementary material characteristics such 

as 'Year,' 'Month,' 'Day,' and 'Hour' were derived from the 'date' column. Implementing this pre-

processing procedure facilitated a more comprehensive comprehension of the temporal patterns 

and fluctuations in the levels of NO2 pollution throughout the study. The dataset undergoes a 

normalization process to guarantee the data's comparability and equity across various scales—the 

MinMaxScaler function from the sklearn. The pre-processing library is utilized for this objective. 

The relative relationships between NO2 values are preserved by scaling the measurements within 

the range of 0 to 1. The implementation of this normalization procedure plays a vital role in 

preparing the dataset for subsequent model training. This step is required to make sure that scale-

related biases do not interfere with the model's ability to learn from the data. The gathering of a 

trustworthy and comprehensive dataset for the model's development and analysis later on is made 

possible by the use of satellite-based remote sensing technologies and the use of data extraction, 

datetime conversion, and normalization methods. This step is required to make sure that scale-

related biases do not interfere with the model's ability to learn from the data. The gathering of a 

trustworthy and comprehensive dataset for the model's development and analysis later on is made 

possible by the use of satellite-based remote sensing technologies and the use of data extraction, 

datetime conversion, and normalization methods. 

 Implementation Details  

The studies are performed on a personal computer (PC) server that is equipped with an NVIDIA 

QUADRO RTX A5000 graphics card. This graphics card had a memory capacity of 24GB and is 

equipped with 3042 NVIDIA CUDA cores. The use of machine learning approaches for air quality 
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forecasting necessitates the utilisation of open-source frameworks, such as Pytorch , Sklearn , 

seaborn and Pandas The open-source Tensorflow library, which can be accessed at 

https://github.com/tensorflow/, is utilised for the configuration of deep learning and Transformer 

models. The given implementation is based on a time series forecasting model that leverages 

transformers. This model integrates a transformer network with a bidirectional long short-term 

memory (Bi-LSTM) component and names as BREATH-Net.. 

Model configuration 

The experimental configuration encompassed the integration of a hybrid model that effectively 

merged a Transformer architecture with a Bi-directional Long Short-Term Memory (BiLSTM) 

network for the purpose of forecasting nitrogen dioxide (NO2) pollution levels. The used model is 

utilised four attention heads inside the Multi-Head Attention mechanism of the Transformer, with 

each head having a crucial dimensionality of 32. In order to address the issue of overfitting, a 

dropout regularisation approach is implemented subsequent to the attention layer, with a dropout 

rate of 0.1. The use of Layer Normalisation was employed to normalise the output of the attention 

layer. During the training process, the Adam optimizer is utilised with a learning rate of 0.001. 

Additionally, a learning rate annealing scheduler is applied to progressively decrease the learning 

rate by a factor of 10 after every 50 epochs. The model underwent training for numerous epochs 

in order to iteratively update its parameters, hence enhancing its predicting skills. 

 

 

Fig. 4.4 Training, Validation and Testing ratio 

Dataset Splitting 

The dataset that has undergone pre-processing is divided into three sets, namely the training set 

, validation set and test set, with a division ratio of 80% ,10% and 10% respectively as seen in Fig. 

4.4. The model known as BREATH-Net is compiled using the Adam optimizer, which has a using 

learning rate annealing technique. The loss function chosen for this model is a mean squared error 

(MSE). The optimization of model parameters is achieved by iteratively updating them over 

Training Validation Testing 

80% 10% 10% 
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multiple epochs, enabling the model to acquire knowledge from the available data and enhance its 

ability to make accurate predictions. 

Evaluation Metrics 

The quantification of the model's performance was conducted through the use of several 

assessment measures. The main evaluation criterion employed is the root mean square error 

(RMSE) equation(4.5), which quantified the precision of the model's forecasts with respect to the 

observed NO2 concentration values. Furthermore, the mean absolute error (MAE) in equation(4.6) 

and the coefficient of determination (R2) in equation (4.7) are utilised as extra metrics in order to 

offer a more thorough evaluation of the predictive performance of the model. The combination of 

these measurements provided valuable insights into the model's capacity to provide precise 

predictions for the amounts of NO2 pollutants. 

𝑅𝑀𝑆𝐸 = √
∑ (𝑧𝑖−𝑓𝑖)

2𝑙−1

𝑖=0

𝑙
         (4.5) 

𝑀𝐴𝐸 =
∑ |𝑧𝑖−𝑓𝑖|
𝑙−1

𝑖=0

𝑙
          (4.6) 

𝑅2 = 1 −
∑ (𝑧𝑖
𝑥

𝑖=1
−𝑓𝑖)

2

∑ (𝑧𝑖
𝑥

𝑖=1
−𝑓𝑖

𝑚𝑒𝑎𝑛)2
          (4.7) 

Within this particular piece, we proceed to disclose the outcomes derived from our 

comprehensive research investigation. Our primary attention is to evaluate the efficacy of our 

hybrid model in accurately predicting levels of NO2 pollutants. Furthermore, we engage in an in-

depth analysis and discourse pertaining to the discoveries made during this study. BREATH-Net 

outperforms over all other relevant models and predicted values more shown in detailed illustration 

in Table 4.1. 
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Fig. 4.5 Predicted values vs Actual values 

Table 4.1 Comparison Of Performance with Baseline Models 

MODELS RMSE MAE R2 

XGB Boost[65] 12.01 6.62 0.95 

SVR-Linear[66] 19.45 15.58 0.86 

GRU +LSTM[67] 12.27 7.34 0.94 

FB Prophet[68] 63.07 44.48 0.11 

LSTM[69] 13.78 7.45 0.91 

Transformer[70] 20.02 10.92 0.89 

BREATH -Net 9.06 5.11 0.96 

Among the different models assessed for NO2 forecasting, "BREATH-Net" demonstrates 

superior performance, establishing itself as the most prominent contender. The predictive accuracy 

and fit of "BREATH-Net" are noteworthy, as evidenced by its exceptionally low root mean square 

error (RMSE) of 9.06, the lowest mean absolute error (MAE) of 5.11, and an impressive coefficient 
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of determination (R2) score of 0.96. These results indicate that "BREATH-Net" performs 

exceptionally well in accurately predicting the outcomes and effectively capturing the patterns in 

the data. By utilising sophisticated neural network architecture and employing innovative 

techniques, this model demonstrates exceptional proficiency in capturing the complex patterns and 

dynamics exhibited by NO2 concentration data. The exceptional performance of this model 

establishes it as the foremost option for NO2 prediction, providing researchers and practitioners 

with a dependable instrument for making well-informed decisions in the realm of air quality 

control and management, surpassing other models in a comprehensive manner. 

Predicted Values Analysis and EDA 

In order to comprehend the temporal patterns and seasonal fluctuations of this important air 

pollutant, we thoroughly examined Nitrogen Dioxide (NO2) concentrations in the Delhi region for 

this study. Box plots, a potent graphic technique that effectively depicts the distribution and 

statistical measurements of NO2 concentrations throughout several dates and seasons, were used 

to illustrate our findings graphically. Each box plot in our visualization offers a different angle on 

the data, analysing each weekday concerning several seasons. The interquartile range (IQR), which 

encompasses the middle 50% of the data, is shown by the centre box of the graphic. The horizontal 

line inside the box shows the median concentration of NO2, while the bottom and top margins of 

the box represent the 25th and 75th percentiles, respectively. The whiskers that protrude from the 

boxes show the dispersion and fluctuation of NO2 concentrations. The top whisker shows the most 

outstanding value within 1.5 times the IQR, while the minimum value within 1.5 times the lower 

whisker shows the IQR. Outliers are extreme data points independently shown as distinct points 

outside the whiskers to shed light on unusual occurrences or noteworthy abnormalities. The box 

plot analysis provides fascinating new information on NO2 pollution's spatiotemporal trends. For 

instance, throughout the Autumn and Spring seasons, we saw greater NO2 concentrations on 

Mondays, with mean values of around 77.21 g/m3 and 80.65 g/m3, respectively as seen in Fig. 

4.6. 
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Fig. 4.6 Box and whisker and Dot plot showing NO2 Conc. day-wise 

On the other hand, during the Summer, the mean NO2 concentration on Mondays was around 

52.91 g/m3, which was lower in comparison. These data point to significant weekday-based 

changes in NO2 concentrations, which may affect our knowledge of how industrial processes, 

traffic patterns, and weather patterns affect air quality. The seasonal differences also highlight the 

importance of the atmosphere and the sources of emissions at various periods of the year. 

Policymakers, academics, and stakeholders may get essential insights into the temporal dynamics 

of NO2 pollution in the Delhi region by using the box plot visualization which is clearly visible in 

Fig. 4.7. 
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Fig. 4.7 Monthly trend NO2 conc. level 

In order to comprehend the temporal patterns and seasonal fluctuations of this important air 

pollutant, we thoroughly examined Nitrogen Dioxide (NO2) concentrations in the Delhi region for 

this study. Box plots, a potent graphic technique that effectively depicts the distribution and 

statistical measurements of NO2 concentrations throughout several dates and seasons, were used 

to illustrate our findings graphically. 

This study comprehensively investigates the levels of Nitrogen Dioxide (NO2) in the Delhi area 

for a period of 12 months. The graphical representations employed in this study serve as visual 

aids to depict the patterns and fluctuations in nitrogen dioxide (NO2) levels, utilising data derived 

from monthly observations. The main objective of our study was to provide valuable insights for 

air quality control initiatives by examining the temporal trends of NO2 pollution and identifying 

potential periods of heightened risk. 

The line figure illustrates the concentration trend of NO2 over the course of many months, 

emphasising notable seasonal variations. Significantly, the concentrations of NO2 exhibited a 

noticeable increase throughout the month of November, characterised by a mean value of 94.36 

g/m3 and a reported maximum concentration of 460.62 g/m3. In contrast, there was a notable 
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decline in NO2 concentrations during the months of April and May, with average values of 51.94 

g/m3 and 56.75 g/m3, respectively. 

In addition, we noticed that NO2 levels varied with the seasons, with winter (December to 

February) showing greater NO2 concentrations than other times of the year. Due to increasing 

emissions from heating and vehicular activity, the mean NO2 concentration for this period was 

around 79.40 g/m3. In contrast, NO2 levels were much lower during the monsoon season (July to 

September), with a mean value of 50.99 g/m3, possibly due to rain-dispersing pollutants and 

decreased industrial emissions. 

The study also focuses on the graph effectively depicts the fluctuations, showcasing a prominent 

initial concentration of 42.78 µg/m³ at the onset (0-hour). Following this, the concentration 

exhibited a gradual and consistent rise, culminating at the 6th hour with an impressive peak value 

of 69.65 µg/m³ as it can be observed in Fig. 4.7 . Subsequent to this apex, a noticeable decrease 

occurred, resulting in a significant drop to a minimum level of 18.92 µg/m³ by the eighth hour. 

Remarkably, there was a subsequent reversal in the observed pattern, characterised by a gradual 

increase towards the duration of 14.5 hours, accompanied by a surge in PM2.5 concentrations to 

approximately 114.98 µg/m³. As the passage of time continued, specifically as it neared the 20th 

hour, a significant decline was observed, eventually reaching a steady state at a concentration of 

60 µg/m³. Ultimately, after the completion of the 24-hour duration, the concentration reverted back 

to its initial value of 42 µg/m³. The comprehensive examination conducted on an hourly basis 

highlights the ever-changing characteristics of air quality, which is marked by noticeable high and 

low points. As a result, this analysis provides significant and indispensable knowledge for the 

purposes of environmental monitoring and the development of management strategies. 
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Fig. 4.7 Hourly depiction of NO2 levels 

Policymakers, researchers, and environmental authorities may thoroughly study the NO2 

concentration trend to develop practical solutions for reducing air pollution in the Delhi region. 

We may apply targeted interventions and restrictions to minimize NO2 emissions at peak times 

and support sustainable air quality management by comprehending the temporal patterns and 

seasonal changes of NO2. 

To fully understand air pollution dynamics, this study emphasizes the importance of ongoing 

monitoring and analysis of air quality data. These results are essential in creating evidence-based 

policies and strategies to safeguard public health and improve the general well-being of the 

population in the Delhi region as we work to create a cleaner and healthier environment. 

To comprehend the temporal patterns and seasonal fluctuations of this vital air pollutant, we 

thoroughly examined nitrogen dioxide (NO2) concentrations in the Delhi region for this study. 

Box plots, a potent graphic technique that effectively depicts the distribution and statistical 

measurements of NO2 concentrations throughout several dates and seasons, were used to illustrate 

our findings graphically. 

40
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In this study, a comprehensive analysis was conducted on the levels of Nitrogen Dioxide (NO2) 

in the Delhi region over a span of 12 months . The study employed monthly measurements and 

employed graphical representations to depict the patterns and fluctuations in NO2 levels visually. 

The main objective of our study was to provide valuable insights for air quality control initiatives 

by examining the temporal variations of NO2 pollution and determining potential periods of 

heightened risk. 

The line plot visually represents the concentration trend of NO2 over the course of many 

months, emphasizing notable seasonal patterns. Notably, NO2 concentrations increased noticeably 

in November, with a mean value of 94.36 g/m3 and a maximum-recorded concentration of 460.62 

g/m3. On the other hand, the NO2 concentrations significantly decreased in April and May, with 

mean values of 51.94 g/m3 and 56.75 g/m3, respectively same can be seen in Fig. 4.8. 

 

Fig. 4.8 Depiction of NO2 levels based on months 

In addition, we noticed that NO2 levels varied with the seasons, with winter (December to 

February) showing greater NO2 concentrations than other times of the year. Due to increasing 

emissions from heating and vehicular activity, the mean NO2 concentration for this period was 

around 79.40 g/m3. In contrast, NO2 levels were much lower during the monsoon season (July to 

September), with a mean value of 50.99 g/m3, possibly due to rain-dispersing pollutants and 

decreased industrial emissions as it is depicted in Fig. 4.8. 
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Fig. 4.9 Season wise level of NO2 levels 

Policymakers, researchers, and environmental authorities may thoroughly study the NO2 

concentration trend to develop practical solutions for reducing air pollution in the Delhi region. 

We may apply targeted interventions and restrictions to minimize NO2 emissions at peak times 

and support sustainable air quality management by comprehending the temporal patterns and 

seasonal changes of NO2. 

To fully understand air pollution dynamics, this study emphasizes the importance of ongoing 

monitoring and analysis of air quality data. These results are essential in creating evidence-based 

policies and strategies to safeguard public health and improve the general well-being of the 

population in the Delhi region as we work to create a cleaner and healthier environment. 

4.2.4 Conclusion 

This study introduced a novel hybrid model that integrated a Transformer architecture with a 

Bidirectional Long Short-Term Memory (BiLSTM) network to forecast Delhi's nitrogen dioxide 

(NO2) pollutant concentrations. The proposed model effectively utilized the advantages of both 

architectures, allowing it to capture intricate temporal patterns and dependencies within the NO2 

data. The study's presentation of experimental outcomes offered evidence supporting the 

40
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effectiveness of the suggested technique in generating accurate forecasts and demonstrating 

promising potential for air quality management. The investigation examined the temporal patterns 

and seasonal variations of nitrogen dioxide (NO2) concentrations through graphical 

representations, including box and line plots. The results indicated notable fluctuations in NO2 

concentrations based on weekdays and seasons, providing insights into the impact of industrial 

activities, traffic flow, and meteorological factors on atmospheric conditions. This information has 

the potential to provide valuable guidance to policymakers, researchers, and stakeholders in the 

formulation of focused interventions and policies aimed at mitigating NO2 emissions during 

periods of heightened risk, thereby enhancing the management of air quality. The performance of 

the hybrid model was assessed by employing the root mean square error (RMSE) metric, which 

measured the accuracy of the model's predictions relative to the true values. The findings suggested 

that the proposed methodology exhibits promising results in forecasting levels of NO2 pollutants. 

The thorough evaluation and analysis of the model's performance are crucial in facilitating efficient 

air quality management and environmental monitoring. 

4.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• To predict nitrogen dioxide (NO2) concentration levels using satellite data through a novel 

deep learning framework named BREATH-Net (Bi-directional Encoder with Transformer 

for NO2 Prediction). The proposed model integrates two primary components: Bi-

directional Long Short-Term Memory (BiLSTM) networks for capturing sequential 

dependencies and Transformer architecture for leveraging attention mechanisms to model 

long-range temporal relationships, significantly enhancing predictive accuracy. 

• Implemented robust data preprocessing techniques such as MinMaxScaler for 

normalization, and optimized model training using the Adam optimizer with learning rate 

annealing, improving the model's convergence and generalization on unseen data. 

• Conducted extensive performance evaluations, including Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R²). BREATH-

Net achieved an RMSE of 9.06, MAE of 5.11, and R² of 0.96, outperforming other state-

of-the-art models like XGBoost, SVR-Linear, GRU+LSTM, and standalone Transformer 

architectures. 

1

2
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• Performed comprehensive Exploratory Data Analysis (EDA) to examine temporal patterns 

and seasonal variations in NO2 concentrations across Delhi, revealing significant weekday 

and seasonal fluctuations, thus providing valuable insights into the impact of industrial 

activities, vehicular emissions, and meteorological factors on air quality. 

• Assessed the robustness and applicability of the BREATH-Net model in real-world urban 

air quality management, demonstrating its potential to support policy-making for pollution 

control and mitigation of respiratory health risks associated with NO2 exposure. 

The following research studies serve as the foundation for this chapter: 

 Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "BREATH-Net: a novel 

deep learning framework for NO2 prediction using bi-directional encoder with 

transformer." Published in Environmental Monitoring and Assessment, Volume 196, 

Article number 340, (2024), IF – 3.0(Pub: Springer). 

This chapter presents the BREATH-Net model, a hybrid deep learning framework combining 

Transformer and BiLSTM architectures for accurate NO₂ forecasting, with performance 

evaluations compared to existing models. The next chapter will introduce Arctic-Net, a hybrid 

model designed for efficient sea ice classification using SAR images, focusing on its innovative 

architecture, training techniques, and exceptional performance in environmental monitoring. 
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5 Chapter 5: Arctic-Net: Advancing Automated Sea 

Ice Classification with Hybrid Deep Learning 

5.1 Scope of this Chapter 

In the era of rapid climate change and increasing concerns about Arctic and Antarctic ice 

dynamics, accurate sea ice classification has become a critical component of environmental 

monitoring, climate modelling, and maritime navigation. The ability to efficiently classify and 

monitor sea ice using Synthetic Aperture Radar (SAR) images is essential for understanding global 

climate patterns, optimizing shipping routes, and mitigating risks associated with Arctic 

exploration. Traditional classification methods, such as statistical modelling and classical machine 

learning techniques, often struggle to effectively analyse the complex spatial and temporal 

variations in SAR data, limiting their accuracy and generalization capabilities. 

To address these challenges, this chapter presents Arctic-Net, a novel hybrid deep learning 

framework designed to enhance the efficiency and precision of sea ice classification. Arctic-Net 

integrates Convolutional Neural Networks (CNNs) with attention-based mechanisms, leveraging 

the strengths of both approaches to capture local texture features and global contextual 

dependencies within SAR images. This hybrid methodology allows the model to outperform 

existing state-of-the-art classifiers, including DenseNet, ResNext, and Swin Transformer, by 

achieving superior accuracy, precision, and computational efficiency. 

This chapter provides a comprehensive discussion of the Arctic-Net framework, including its 

architectural components: Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder 

(STE), and Hierarchical Transpose Attention (HTA). It explores the dataset utilized for training 

and validation, detailing preprocessing techniques such as image normalization, augmentation, and 

stratified sampling to improve model robustness. The experimental setup, including hardware 

configurations and hyperparameter optimization, is also elaborated to ensure reproducibility. 

The performance evaluation of Arctic-Net is conducted through rigorous comparisons against 

benchmark models, demonstrating its ability to achieve a classification accuracy of 0.93, a 

precision of 0.91, and an F1-score of 0.91. Additionally, the chapter highlights qualitative analyses 

83
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using visualization techniques such as Layer CAM, which provides interpretability by illustrating 

how the model distinguishes between different ice categories. 

By introducing Arctic-Net, this research contributes to advancing automated sea ice 

classification, enabling more efficient and scalable solutions for remote sensing applications. The 

insights derived from this study can aid in the development of real-time sea ice monitoring systems, 

support climate policy decisions, and facilitate safer maritime operations in polar regions. Future 

advancements could explore the integration of multimodal remote sensing data, self-supervised 

learning techniques, and real-time deployment strategies to further improve the applicability of 

Arctic-Net in operational environments. 

5.2 Arctic-Net: A Hybrid Convolutional and Attention-Based Model for 

Efficient Sea Ice Classification Using SAR Images  

5.2.1 Abstract 

Sea ice classification accuracy is crucial for climate research, marine navigation, and 

environmental monitoring. This study presents Arctic-Net, a unique hybrid model that improves 

sea ice categorization using SAR pictures by combining convolutional neural networks (CNNs) 

with attention processes. The Adaptive Convolutional Encoder (ACE), the Spatial Transposer 

Encoder (STE), and the Hierarchical Transpose Attention (HTA) mechanism make up the three 

main parts of the model. Together, these elements extract global and local information with high 

efficiency, allowing for accurate sea ice classification with low computing costs. On a dataset of 

4,000 SAR pictures, the Arctic-Net model achieves an accuracy of 0.93, precision of 0.91, and F1-

score of 0.91, outperforming many state-of-the-art models, such as DenseNet, ResNext, and Swin 

Transformer. This makes operational sea-ice monitoring and classification tasks in resource-

constrained contexts a strong solution. The paper's conclusion includes a review of potential future 

research avenues and industrial uses for Arctic-Net in real-time sea ice monitoring systems. 

5.2.2 Proposed Methodology 

The proposed sea-ice classification method is a novel hybrid framework that employs the 

advantages of Convolutional Neural Networks (CNNs) and attention processes to improve the 

extraction of features and classification accuracy. The model is precisely engineered to effectively 
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handle and examine SAR images, collecting spatial texture features and backscattering 

information. These factors are crucial for precisely distinguishing various forms of sea ice. 

Algorithm 1 presents the training process for the Arctic-Net model 

 

Arctic-Net Framework 

The Arctic-Net model consists of three primary components: the Adaptive Convolutional 

Encoder (ACE), the Spatial Transposer Encoder (STE), and the Hierarchical Transpose Attention 

(HTA) mechanism. The purpose of these components is to enhance the process of extracting 

features and encoding global context in a computationally efficient manner. The presence of this 

structure is essential for developing a solid deep neural network when resources are constrained. 

The ACE module utilizes depth-wise separable convolutions with dynamic kernel widths 

ranging from 3 to 9 to minimize computational effort while preserving feature efficacy. This 

concept improves the representation of local features using flexible kernels, resulting in better 

performance than fixed alternatives. ACE incorporates Layer Normalization (LN) and Gaussian 

Error Linear Unit (GELU) activations to provide accurate and effective non-linear feature 

mapping. In addition, ACE has a skip connection to guarantee seamless information transmission 

inside the network. 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: Pseudocode of the Proposed “ Arctic -Net ” Model 

             𝐈𝐧𝐩𝐮𝐭: Dataset= {𝑿𝒊, 𝒀𝒊}𝐢=𝟏
𝑵 , 𝑿𝒊 ∈ 𝑹

𝟑×𝟐𝟐𝟒×𝟐𝟐𝟒 illustrating input images & 𝒀𝒊 ∈{0,1,2,3,4,5,6} 

               as corresponding labels 

               Model parameters 𝜽 

               Batch Size 𝜷 

               Epoch 𝓔 

               Learning Rate 𝑳𝒓 

               After 𝒏 epochs, Learning Rate Decay Factor 𝜸, where  𝜸 ∈[0,1] 

                𝐎𝐮𝐭𝐩𝐮𝐭: Trained Arctic-NET  model for Sea Ice assessment 

Initialize 𝜽 and the adaptive weights 𝜶 

𝐟𝐨𝐫 𝒊 = 𝟏……  𝓔 𝐝𝐨                                               (Training for  𝓔 epochs) 

       𝐟𝐨𝐫 j= 𝒙𝟏……𝒙𝜷 𝐝𝐨                                       (Iterate through each batch 𝜷 within the epoch) 

              (𝒙𝜷, 𝒚𝜷)𝝆                                                  (Randomly select one batch with a size of 𝜷) 

               𝒚̂𝒃 = (𝒙𝜷; 𝜽)                                    (Compute posterior probability for each input sequence)          

               𝑳𝑪𝑬 = 𝒄𝒓𝒐𝒔𝒔 𝒆𝒏𝒕𝒓𝒐𝒑𝒚 𝒍𝒐𝒔𝒔 (𝒚,𝒚𝜷)        (Calculate cross-entropy loss) 

               𝜽 ⇐ 𝜽 − 𝑳𝒓𝜟𝜽𝑳𝑪𝑬(𝒚𝑭, 𝒚)               (Optimize model parameters by minimizing.  

               computing loss{ 𝜽 }                       cross-entropy loss 𝑳𝑪𝑬 using backpropagation) 

              𝐢𝐟 (𝒊%𝒏 == 𝟎) 
      𝐞𝐧𝐝 𝐟𝐨𝐫 

If i % n=0 then 

     𝑳𝒓 ← 𝑳𝒓 ×  𝜸                                               (Decay learning rate after every ‘n’ epochs) 

𝐞𝐧𝐝 𝐟𝐨𝐫 
𝐫𝐞𝐭𝐮𝐫𝐧 𝐍𝐨𝐧𝐞 

2
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The STE module is designed to teach the acquisition of adaptable multiscale feature 

representations and improve comprehension of global context. The input tensor is divided into 

subsets, and each subgroup is processed using depth-wise convolutions. The results are then 

combined to capture both detailed and global representations. This approach guarantees the 

creation of an efficient network in terms of its parameters, resulting in a reduced computing load 

compared to conventional techniques. 
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Fig. 5.1 Overall framework for Arctic-Net 
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The HTA method in Arctic-Net is a fundamental invention integrating components from Vision 

Transformers (ViTs) and Convolutional Neural Networks (CNNs). The HTA architecture begins 

by evaluating an input image with dimensions of 224×224. It next divides the image into smaller 

patches, either 14×14 or 7×7 in size.  

The patches are transformed into linear embedding tokens and then inputted into a series of 

HTA blocks. These blocks are specifically intended to encode both spatial and channel 

information. The HTA block is composed of two main modules: Permute-MLP and Channel-MLP. 

The Permute-MLP module processes spatial information, whereas the Channel-MLP module 

encodes channel information. The Weighted Permute-MLP improves this process by adaptively 

modifying the significance of different branches through divided attention, enhancing network 

performance. 

Integrating these components into the Arctic-Net model architecture simplifies the creation of 

a precise and economical deep neural network. Combining the ACE, STE, and HTA modules 

allows for complete feature extraction and global context representation while minimizing 

computing complexity. By employing this comprehensive method, Arctic-Net guarantees 

exceptional precision and effectiveness, rendering it an ideal choice for vision tasks on devices  

N x N  

CW-Conv 
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HxWxC 

HxWx4C 

HxWxC 

Flatten 

Flatten 
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() 

Fig. 5.2 Adaptive Conv. Encoder 
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with limited resources. 

    The layer CAM representation in  

 graphically emphasizes the model's attention on particular input portions that significantly 

affect the categorization decision. Additionally, it exposes the distinct characteristics present in 

these areas, such as textures, forms, or edges, which the model depends on to formulate its forecast. 

Arctic-Net offers a robust and expandable solution for complex deep learning tasks by utilizing 

innovative feature extraction methods and attention mechanisms. 

Adaptive Convolutional Encoder (ACE) 

The adaptable Convolutional Encoder (ACE) presents a new method for representing features 

using depth-wise separable convolutions with dynamic and adaptable kernel sizes; it can also be 

observed in Fig. 5.2 .ACE is a two-layer structure that improves the representation of local features 

by using adaptable N×N kernels. These kernels have sizes of 3, 5, 7, and 9 at different phases. This 

design decision enhances performance compared to static kernel alternatives and incorporates 

conventional Layer Normalisation (LN) and Gaussian Error Linear Unit (GELU) activations for 

reliable non-linear feature mapping. 

Unlike typical Convblocks, ACE incorporates a skip connection to guarantee smooth 

information transmission within network topologies. This novel paradigm has exhibited 

exceptional performance, specifically emphasized in Table 8 of the current research. The following 

equations precisely specify the ACE. 

       

       

Water 

Bodies 
Young Ice 

First Year 

Ice 
Old Ice 

Isberg 

Glacier 
IceBerg Floating Ice 

Fig. 5.3 Layer CAM visualization of a SAR image from the Sentinel-1 product (Wishart), with the 

corresponding layer output. 

 

Fig. 5.3 Layer CAM visualization of a SAR image from the Sentinel-1 product (Wishart), with the 

corresponding layer output. 
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𝓏𝑖+1 = 𝓏𝑖 + 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝐺(𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝑁(𝐶𝑊(𝓏𝑖)))     (5.1) 

The equation (1) demonstrates the relationship between the input feature maps 𝓏𝑖 denotes the 

input feature maps of shape H×W×C, 𝐹𝑙𝑎𝑡𝑡𝑒𝑛𝐺  is a point-wise convolution layer followed by 

GELU, CW is k×k  Channel-wise convolution, 𝑁 is a normalization layer, and 𝓏𝑖+1 denotes the 

output feature maps of the ACE. 

Spatial Transposer Encoder (STE) 

 

The STE consists of two main components specifically developed to enhance feature 

representation and improve understanding of the global context. It is represented in Fig. 5.4. It 

utilizes cutting-edge methods to improve flexibility and effectiveness in managing various levels 

of detail and worldwide picture representations. 
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Fig. 5.4 Spatial Transpose Encoder 
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The first component of the STE focuses on learning adaptive multiscale feature representations. 

The STE adopts a multi-scale processing approach without using 1×1 pointwise convolution 

layers, ensuring a lightweight network with optimized parameters and operational efficiency. 

The method involves splitting the input tensor of size ℍ ×  𝕎 × ℂ into 𝑒𝑖𝑔ℎ𝑡 subsets, each 

represented by 𝑎𝑖, the spatial dimensions remain the same, while the number of channels is reduced 

to 
ℂ

𝕤
 . The 𝒾 ∈{1, 2, 3, 4…,𝕤} and ℍ,𝕎 , ℂ denote height, width and channel respectively. Every 

subset, excluding the initial one, performs a 3x3 channel-wise convolution 𝑓𝑖 , generating an 

outcome denoted as 𝒵𝑖. In addition, the result of the previous depth-wise convolution, denoted as 

𝒵𝑖−1, is combined with the current subset 𝑎𝑖 before being processed by 𝑓𝑖. Each depth-wise 

operation 𝑓𝑖 processes feature maps from all preceding splits 𝑎𝑗 , 𝒿 ≤ 𝑖  

The cardinality of the set 𝑠 is dynamically modified according to the stage 𝑡, where 𝑡 belongs 

to the set { 2, 3, 4}. The output variable 𝒵𝑖 is defined as shown in eq (5.2): 

𝒵𝑖 = {

𝒶𝑖                                                                         𝑖𝑓 𝑖 = 1;

    𝑓𝑖(𝑎𝑖)                                            𝑖𝑓 𝑖 = 1; , t = 2 ;  

 𝑓𝑖(𝑎𝑖)                                      𝑖𝑓  2 < 𝑖 ≤ 𝑠 𝑎𝑛𝑑 𝑡.  
                          

} (5.2) 

To represent the global context more efficiently, we have implemented a transposed query and 

critical attention method, which avoids the excessive computational burden associated with typical 

transformer self-attention layers. This method simplifies the process by calculating the dot-product 

operation of the multi-head self-attention (MSA) across channel dimensions instead of spatial 

dimensions. This allows for the computation of cross-covariance across channels, resulting in 

attention feature maps with a natural awareness of global context. Given a tensor 𝒵 that has been 

normalized and has a shape of ℍ ×  𝕎 × ℂ, it computes the projections of the query (𝒬), key (𝒦), 

and value (𝒱) using three linear layers as it shows in eq(5.3): 

𝒬 = 𝒲𝒬  𝒵,   𝒦 = 𝒲𝒦  𝒵,   𝒱 = 𝒲𝒱  𝒵      (5.3) 
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The variables 𝒲𝒬, 𝒲𝒦, and 𝒲𝒱 represent the projection weights for 𝒬, 𝒦, and 𝒱 respectively. 

The dimensions of each object are defined by the variables ℍ,𝕎 𝑎𝑛𝑑 ℂ. 𝐿2 normalization is used 

on 𝒬 and 𝒦 to provide stability throughout training. Instead of calculating the dot-product between 

𝒬 and 𝒦 𝒯across the spatial dimension (ℍ ∙𝕎 ×  ℂ)⋅( ℂ ×  ℍ ∙ 𝕎 ), it calculates across the 

channel dimensions between 𝒬𝒯and 𝒦 (ℂ × ℍ ∙ 𝕎)⋅( ℍ ∙ 𝕎 × ℂ), resulting in a C×C softmax-

scaled attention score matrix. The final attention maps are derived by multiplying the scores with 

the matrix 𝒱 and then summing them. Afterward, two 1x1 pointwise convolution layers, layer 

normalization (LN) and GELU activation generate non-linear features as it is demonstrated in eq 

(5.4) & (5.5). 

𝒳̂ =TransposeAttention(𝒬, 𝒦,𝒱) + 𝒳   (5.4) 

TransposeAttention(𝒬, 𝒦,𝒱) = 𝒱 ∙softmax( 𝒬𝒯 ∙ 𝒦)     (5.5)                                                                                                                                                                                                     

Hierarchical Transpose Attention (HTA) 

The Hierarchical Transpose Attention (HTA) architecture combines components of Vision 

Transformers (ViTs) and Convolutional Neural Networks (CNNs) to produce accurate and 

efficient feature representation, as can be observed in Fig. 5.5. The architecture begins by 

analyzing an input image with dimensions of 224×224. The image is then separated into smaller 

patches, which can be 14×14 or 7×7. The patches are converted into linear embedding (tokens) 

using a standard linear layer, following the approach suggested by Tolstikhin et al. (2021)[71]. 

The tokens are then inputted into a sequence of HTA blocks specifically intended to encode spatial 

and channel information. Once the HTA blocks have been processed, the tokens are averaged 

across the spatial dimensions and fed into a fully connected layer to provide the final class 

predictions. 

The HTA block, which serves as the foundational unit of this architecture, has two primary 

modules: Permute-MLP and Channel-MLP. The Permute-MLP module stores spatial information, 

while the Channel-MLP module encodes channel information. The Channel-MLP module is 

organized comparably to the feed-forward layer in Transformers[70], consisting of two wholly 

linked layers with a GELU activation function in the middle. 

The Permute-MLP in the HTA block performs a distinct operation on three-dimensional token 

representations by utilizing three branches. Each branch encodes information specifically along 
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the height, breadth, or channel dimension. The process of spatial information encoding consists of 

a height-channel permutation operation, which is then followed by a fully linked layer to combine 

and include the spatial information. Given an input tensor 𝕏 that belongs to the actual numbers 

and has dimensions as shown in eq(5.6-5.10). 

ℍ ×  𝕎 × ℂ.               (5.6) 

𝕏ℍ = ℙ𝕖𝕣𝕞𝕦𝕥𝕖 − ℍ(𝕏),         (5.7) 

𝕏𝕎 = ℙ𝕖𝕣𝕞𝕦𝕥𝕖 −𝕎(𝕏),      (5.8) 

𝕏ℂ = 𝔽𝕦𝕝𝕝𝕪 ℂ𝕠𝕟𝕟𝕖𝕔𝕥𝕖𝕕ℂ(𝕏)  (5.9) 

𝕏̂ =  𝔽𝕦𝕝𝕝𝕪 ℂ𝕠𝕟𝕟𝕖𝕔𝕥𝕖𝕕(𝕏ℍ, 𝕏𝕎, 𝕏ℂ), (5.10) 

To improve the Permute-MLP, we propose the Weighted Permute-MLP, which adjusts the 

significance of various branches dynamically employing divided attention. This enhanced 

approach prioritizes optimizing the network's ability to emphasize the most relevant aspects, 

namely focusing on 𝕏ℍ, 𝕏𝕎 & 𝕏ℂ. The HTA network consists of many HTA blocks, each carrying 

out adaptive multiscale feature learning and efficient global context encoding. The partnership of 

the Permute-MLP and Channel-MLP modules effectively captures complex spatial and channel 

interactions, guaranteeing a robust and efficient feature representation. 
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Fig. 5.5   Hierarchical Transpose Attention 

In summary, the HTA architecture is a notable improvement that effectively manages the 

complexity of models and computing efficiency. The architecture of this system enables efficient 

processing and achieves high accuracy, effectively tackling the specific issues presented by 

surroundings with limited resources. 

5.2.3 Experimental Results and Discussion 

This section contains detailed information regarding the dataset utilized during the research, the 

experimental settings of the proposed framework, and performance assessments. 

Dataset and preprocessing 

To evaluate the effectiveness of the Arctic-Net model, we employed an extensive SAR dataset 

consisting of 4,000 sea ice pictures that were categorized into seven unique groups. Every image 

was adjusted to a resolution of 224×224 pixels to maintain uniformity throughout the collection. 

The dataset was divided into three subsets: training (70%), validation (15%), and testing (15%). 
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Careful attention was given to ensuring that each division maintained a balanced distribution of 

classes. 

Normalization was a crucial step in preprocessing, including adjusting pixel values to have a 

mean of zero and a standard deviation of one based on the dataset. Constraining the pixel values 

to a consistent range improved the efficiency of training the neural network. After normalizing, 

the dataset was divided into 80% for training, 10% for validation, and 10% for testing. Stratified 

sampling was used to equally represent all sea ice categories in these subgroups. 

The data loading process was overseen by PyTorch's DataLoader, which was set up to handle 

batch sizes and shuffling optimally, specifically designed for the training, validation, and test sets. 

This configuration was explicitly created to accelerate importing and grouping data during the 

training stage. In addition, data augmentation techniques were utilized, such as random horizontal 

and vertical flips, to improve the model's capacity to generalize. The preparation process, which 

includes data augmentation, normalization, and efficient data loading, greatly enhanced the quality 

and variety of the training dataset. As a result, the performance and generalization of the Arctic-

Net model in the sea ice classification task were dramatically improved. 

Implementation details 

The PyTorch implementation of the Arctic-Net model consists of three main components: the 

Adaptive Convolutional Encoder (ACE), the Spatial Transposer Encoder (STE), and the 

Hierarchical Transpose Attention (HTA) mechanism. Every element is carefully crafted to 

maximize computing efficiency while maintaining the integrity of feature representation. 

 Adaptive Convolutional Encoder (ACE): ACE is built utilizing depth-wise separable 

convolutions, which use dynamic kernel sizes (3, 5, 7, and 9). This design enables the 

effective extraction of local features in a resource-efficient manner. Layer Normalization 

(LN) and Gaussian Error Linear Unit (GELU) activations are used to map non-linear 

features efficiently. ACE incorporates skip connections to enable continuous information 

propagation inside the network. 

 Spatial Transposer Encoder (STE): STE is designed to acquire flexible and 

comprehensive feature representations at several scales and improve the encoding of 

overall context. The input tensor is partitioned into eight subgroups, and each subset 
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undergoes depth-wise convolutions. An efficient method is used to capture global context 

by employing a transposed query and key attention mechanism, which avoids the 

computing burden usually associated with traditional self-attention layers. 

 Hierarchical Transpose Attention (HTA): The HTA model combines features from 

Vision Transformers (ViTs) and Convolutional Neural Networks (CNNs) to capture both 

spatial and channel information. The architecture consists of a sequence of HTA blocks, 

each consisting of Permute-MLP and Channel-MLP modules. The Permute-MLP module 

specifically emphasizes the encoding of spatial data, whereas the Channel-MLP module is 

responsible for processing channel information. The addition of weighted permute-MLP 

incorporates dynamic attention, improving the model's capacity to prioritize essential 

characteristics. 

Training Protocols 

The Arctic-Net model underwent training using the AdamW optimizer, with an initial learning 

rate of 0.001. A cosine annealing learning rate schedule was implemented to reduce the learning 

rate, following a cosine curve progressively. This approach was shown to be successful in 

improving the learning process in the later phases of training. The training was carried out for 100 

epochs using a batch size of 32. The model's generalization capabilities were enhanced by applying 

data augmentation techniques, such as random rotations, horizontal and vertical flips, and 

normalization. 

Hardware 

The studies utilized a machine with two NVIDIA A5000 GPUs, each possessing 24 GB of 

RAM, to enhance the deep learning calculations for Arctic-Net model training. The device was 

also equipped with 128 GB of RAM and SSD storage to effectively manage the extensive SAR 

dataset and guarantee seamless data processing. The model was implemented and optimized using 

PyTorch's deep learning framework, utilizing GPU acceleration via CUDA for enhanced speed. 

Performance Metrics 

The performance of the trained model is assessed using a range of evaluation metrics, including 

accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC). These metrics 

offer comprehensive insights into various facets of the model's classification performance. 
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Accuracy: It measures the accuracy of the model's predictions by calculating the ratio of 

correctly classified samples to the total number of samples in the dataset. However, accuracy may 

provide a partial picture, especially in class imbalance. 

Precision: This metric focuses on the correctness of optimistic predictions and measures the 

proportion of accurate positive predictions among all optimistic predictions made by the model. It 

is beneficial when the cost of false positives is high. 

 Recall: Also known as sensitivity or actual positive rate, recall measures the proportion of 

accurate optimistic predictions among all actual positive samples in the dataset. It evaluates the 

model's ability to capture all relevant instances of a particular class. 

F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure of the model's performance. It is precious when there is an imbalance between the number 

of positive and negative instances in the dataset. 

Matthews Correlation Coefficient (MCC): MCC is a correlation coefficient that considers true 

and false positives and negatives. It ranges from -1 to 1, with 1 indicating perfect predictions, 0 

indicating random predictions, and -1 indicating complete disagreement between predictions and 

ground truth.  

Experimental Results and Analysis 

This section evaluates the proposed Arctic-Net model compared to many advanced models for 

sea ice classification, including PGN+SVM, PGIL, Vision Transformer (ViT), DenseNet, DaVIT, 

ResNext, and Swin Transformer. This study utilizes Precision, Recall, F1 Score, and Accuracy as 

evaluation measures to examine each model's performance thoroughly. 

Table 5.1 Performance Metrics and Comparison Again SOTA 

Model 
Performance Metrics 

Precision Recall  F1 score Accuracy 

PGN+SVM[56] 0.83 0.82 0.82 0.84 

PGIL[56] 0.85 0.85 0.84 0.86 

VIT[72] 0.85 0.86 0.85 0.87 

DenseNet[73] 0.89 0.88 0.87 0.89 
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The findings in Table 5.3 indicate that Arctic-Net surpasses all rival models in the assessed 

criteria, highlighting its exceptional categorization proficiency. 

The Arctic-Net model has superior performance across all parameters, with a precision of 0.92, 

recall of 0.92, F1 score of 0.91, and accuracy of 0.93. These results indicate a substantial 

advancement compared to previous models, underscoring Arctic-Net’s superior capacity to 

reliably categorize various sea ice forms. 

The enhancements in recall and F1 score illustrate Arctic-Net's capability to accurately detect 

pertinent events across all categories, particularly infrequent or more challenging to classify. The 

equilibrium between accuracy and recall is essential in practical contexts like sea ice monitoring, 

where both overestimating and underestimating particular ice types can significantly affect marine 

navigation and climate research. 

Compared to the baseline models and prior research, including PGN+SVM and PGIL[56]. 

Arctic-Net significantly enhances accuracy and recall, signifying a more effective equilibrium 

between reliably recognizing positive samples and minimizing false positives. This benefit is more 

apparent when juxtaposing Arctic-Net with more sophisticated designs like ViT, DenseNet, 

ResNext, and Swin. While DenseNet attains a commendable accuracy of 0.89, Arctic-Net 

outperforms all SOTA models, underscoring the superiority of its architectural elements. The 

improvements in Arctic-Net's performance are due to its distinctive architecture, which 

incorporates the Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder (STE), and 

Hierarchical Transpose Attention (HTA) methods. This combination efficiently collects local and 

global information, optimizing accuracy and model complexity. 

The experimental findings validate the efficacy of Arctic-Net as a reliable approach for sea ice 

categorization. The model's capacity to attain elevated accuracy while maintaining balanced 

DaVIT[74] 0.84 0.84 0.84 0.85 

ResNext[75] 0.85 0.85 0.85 0.86 

Swin[76] 0.87 0.87 0.86 0.87 

Proposed 0.91 0.92 0.91 0.93 
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precision and recall renders it especially appropriate for practical applications where computing 

resources are constrained, yet superior classification performance is essential. 

Qualitative analysis of Arctic-Net 

The t-SNE visualization of Arctic-Net's output offers a lucid representation of the model's 

ability to distinguish between sea-ice types, which can be seen in Fig. 6. The scatter figure 

demonstrates that the model proficiently clusters many categories, including Sea-Young Ice and 

sea-old-ice, signifying excellent differentiation between these classes. Nevertheless, categories 

with limited samples, such as Isbergs-Glacier and Icebergs, have more varied distributions. This 

indicates that although the model excels in more common categories, there is room for 

enhancement in differentiating less frequent classifications. The t-SNE results underscore the 

model's ability to delineate unique feature representations of several sea-ice kinds while 

identifying improvement opportunities. 

5.2.4 Conclusion 

This study presented the Arctic-Net model, an innovative hybrid framework that combines the 

advantages of Convolutional Neural Networks (CNNs) and attention processes to proficiently 

categorize sea ice from SAR pictures. Arctic-Net exhibited enhanced accuracy and computing 

efficiency by utilizing the Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder 

(STE), and Hierarchical Transpose Attention (HTA) components. The model surpassed leading 

methodologies, including Vision Transformers (ViT), DenseNet, and Swin Transformer, 

demonstrating significant enhancements in precision, recall, F1-score, and overall accuracy. 
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Fig. 5.6 t-SNE visualization of Arctic-Net embedding showing clustering of sea-ice categories.  

Arctic-Net can derive local and global contextual information from intricate SAR data, 

facilitating accurate sea-ice classification, especially in demanding conditions with few labeled 

data. Its lightweight construction renders it exceptionally appropriate for deployment in resource-

limited environments, hence broadening its potential applications in climate monitoring, marine 

navigation, and environmental research. 

Although the model demonstrates considerable progress, subsequent research should 

investigate improving its scalability and resilience to diverse sensor inputs and seasonal 

fluctuations. Moreover, subsequent research may integrate more varied datasets and real-time 

processing functionalities to enhance its applicability in operational sea-ice monitoring systems. 

5.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 
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 To predict fire risk levels using remote sensing imagery through a novel framework named 

“IGNITE-NET” (Fire Risk Prediction using Dynamic Receptive Fields and Dynamic 

Channel Fusion Attention). The proposed model comprises two primary modules: 

Dynamic Receptive Field Blocks (DRFBs) for efficient feature extraction with reduced 

computational complexity and Dynamic Channel Fusion Attention (DCFA) for optimized 

cross-channel interactions, enhancing the predictive accuracy without dimensionality 

reduction. 

 Implemented Self-Supervised Knowledge Distillation (SSKD) to improve model 

generalization and robustness, enabling the use of both annotated and unannotated datasets 

for enhanced learning outcomes. 

 Conducted extensive performance evaluations, including accuracy, precision, recall, F1 

score, and Matthews Correlation Coefficient (MCC), demonstrating the model’s superior 

performance over state-of-the-art approaches. 

 Performed ablation and generalization studies to assess the resilience and robustness of the 

proposed IGNITE-NET model across various environmental conditions and datasets, 

ensuring its applicability in real-world fire risk assessment scenarios. 

The following research studies serve as the foundation for this chapter: 

 Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, “Arctic-Net: A Hybrid 

Convolutional and Attention-Based Model for Efficient Sea Ice Classification Using 

SAR Images ” Communicated in Cluster Computing, IF–3.6 . 

This chapter introduces Arctic-Net, a novel hybrid deep learning framework that integrates 

CNNs with attention mechanisms to enhance sea ice classification using SAR images, achieving 

significant performance improvements over existing models. The next chapter will focus on 

IGNITE-NET, a cutting-edge fire risk prediction model that combines Dynamic Receptive Field 

Blocks (DRFBs) and Dynamic Channel Fusion Attention (DCFA) to deliver accurate and efficient 

fire risk assessments, marking an important step forward in disaster management and 

environmental monitoring. 
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6 Chapter 6: IGNITE-NET: Intelligent Fire Risk 

Prediction with Dynamic Attention Mechanisms 

6.1 Scope of this chapter 

Accurate fire risk prediction has become a pivotal element in environmental conservation, 

disaster management, and public safety in the context of escalating wildfire occurrences due to 

climate change and urban expansion. The ability to efficiently assess fire risks using remote 

sensing data and Advanced Machine Learning and Deep Learning Techniques is crucial for 

mitigating the adverse impacts of wildfires on human life, infrastructure, and ecosystems. 

Traditional fire risk assessment models, including physics-based simulations and classical 

statistical methods, often grapple with high computational demands and limited feature extraction 

capabilities, which restrict their effectiveness and scalability. 

To address these challenges, this chapter introduces IGNITE-NET, an innovative deep learning 

framework tailored for fire risk prediction. IGNITE-NET integrates Dynamic Receptive Field 

Blocks (DRFBs) and Dynamic Channel Fusion Attention (DCFA) mechanisms within a 

lightweight Convolutional Neural Network (CNN) architecture. This integration leverages 

dynamic feature extraction and attention-based optimization strengths to enhance local cross-

channel interactions and maintain high-dimensional feature integrity. The proposed methodology 

significantly reduces computational complexity while achieving superior predictive accuracy, 

outperforming existing models such as HRNET, ResNext, and Max ViT. 

This chapter provides a detailed exposition of the IGNITE-NET framework, elucidating its core 

components: DRFBs, which optimize spatial and channel-wise feature interactions, and DCFA, 

which refines channel attention predictions without dimensionality reduction. The FireRisk 

dataset, derived from the Wildfire Hazard Potential (WHP) dataset and the National Agriculture 

Imagery Program (NAIP), serves as the primary data source for training and evaluation. The 

dataset section covers preprocessing techniques including image normalization, augmentation, and 

stratified sampling to enhance model robustness and generalization. The experimental setup is 

comprehensively discussed, detailing the hardware configurations, software environment, and 

hyperparameter tuning strategies employed to optimize model performance. Performance metrics 2
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such as Accuracy, Precision, Recall, F1 Score, and Matthews Correlation Coefficient (MCC) are 

used to rigorously evaluate IGNITE-NET, with comparative analyses against state-of-the-art 

models demonstrating its robustness and reliability. Additionally, this chapter highlights 

qualitative analyses using visualization techniques like t-SNE and Layer CAM, which provide 

insights into the model’s decision-making process and its ability to discriminate between different 

fire risk levels. The integration of Self-Supervised Knowledge Distillation (SSKD) is also 

explored, showcasing its role in enhancing model generalization and reducing overfitting. 

By introducing IGNITE-NET, this research advances the field of fire risk assessment, offering 

scalable and efficient solutions for environmental monitoring and wildfire management. The 

findings contribute to the development of proactive fire mitigation strategies, informing policy 

decisions and supporting real-time fire risk monitoring systems. Future research directions include 

the incorporation of additional geospatial data sources, the application of advanced data 

augmentation techniques, and the exploration of real-time deployment scenarios to further enhance 

the practical applicability of IGNITE-NET in diverse environmental settings. 

6.2 IGNITE-NET: Fire Risk Prediction using Dynamic Receptive Fields and 

Dynamic Channel Fusion Attention 

6.2.1 Abstract 

Forecasting the likelihood of fires is crucial for reducing the severe impacts of wildfires, making 

it a key component of environmental conservation and public protection. Identifying fire-prone 

areas promptly and accurately allows for taking pre-emptive steps, minimizing risks to human 

lives, property, and ecosystems. Current approaches to predicting fire danger struggle with 

computational complexity and inefficiency in extracting features. This research presents IGNITE-

NET, a method for assessing fire risk that utilizes advanced deep neural network topologies and 

attention mechanisms. The IGNITE-NET system comprises two main components: Dynamic 

Receptive Field Blocks (DRFBs) and Dynamic Channel Fusion Attention (DCFA). The 

components improve existing approaches by reducing computational costs, retaining feature 

quality, and capturing local cross-channel interactions without reducing dimensionality. IGNITE-

NET also utilizes Self-Supervised Knowledge Distillation (SSKD) to improve the model's 

performance and generalization skills. Experimental evaluations show that IGNITE-NET 
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outperforms existing models in crucial performance measures like test accuracy, Matthews 

Correlation Coefficient, precision, recall, and F1 score. Collaboration is invited to improve the 

feasibility and application of the suggested model in real-world situations. IGNITE-NET is a 

significant step forward in fire risk assessment, providing creative ways to tackle persistent 

difficulties and support proactive wildfire control tactics. 

6.2.2 Proposed Methodology  

The proposed methodology will be discussed in this section.  

Dynamic Receptive Field Blocks (DRFBs) 

The ResNet architecture has become a reliable foundation for addressing diverse computer 

vision tasks [35], with skip connections effectively mitigating vanishing gradient issues in deeper 

models. Inspired by ResNeSt[75]: Split-Attention Networks, which employs multi-branch 

channel-wise attention to enhance representation learning, we propose Dynamic Receptive Field 

Blocks (DRFBs). DRFBs extend the Split-Attention mechanism by dynamically adjusting 

receptive fields, enabling enhanced spatial and channel-wise feature interactions. This design 

improves the network’s ability to capture complex spatial details, making it ideal for fire risk 

assessment., as given by Equation (6.1). 

𝑖𝑜𝑢𝑡𝑝𝑢𝑡 = 𝔅𝓇( 𝒜𝓊(ℒ
𝐶𝑜𝑛𝑣3(𝒞𝒹(𝑖𝑛𝑝𝑢𝑡)))) + 𝑖𝑖𝜂𝑝𝑢𝑡                (6.1) 

The input feature map is represented as 𝑖𝑛𝑝𝑢𝑡 ∈ ℝ𝐶×𝐻×𝑊. The notation 𝒞𝒹(. )  denotes a 1×1 

convolutional operation that decreases the number of channels (C) in the input feature map to a 

new number of channels 𝐶′, where 𝐶 > 𝐶′. 𝔅𝓇(. ) is a concatenation of batch normalization and 

rectified linear unit (ReLU) activation. The operation ℒ𝐶𝑜𝑛𝑣3(. ) indicates a 3×3 convolutional 

operation that captures important non-linear correlations. This operation maintains the same 

number of feature channels while gradually reducing the spatial dimension, which refers to the 

height and width of the feature maps. 𝒜𝓊(. )  denotes a 1×1 convolution that increases the 

resolution of features with 𝐶′ channels to 𝐶. 

In this work, a novel “Dynamic Receptive Field Blocks” (DRFB) module is designed to reduce 

the computational cost of feature extraction without compromising the quality of features. 

Specifically, the single-branch feature extraction of Eq. 1 can be replaced by a multi-branch design 
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that reduces the computational overheads. Specifically, the number of sub-branches is defined by 

a hyperparameter 𝜇 such that the ℒ𝐶𝑜𝑛𝑣3(. ) operation reduces each feature map to 𝐶′′ = 2 × 𝐶 𝜇  ⁄  

channels in each sub-branch, thereby significantly reducing the computational complexity. It is 

noteworthy that 𝐶 > 𝐶′ > 𝐶′′.The resulting feature maps from each sub-branch after the squeeze, 

convolution, and unsqueeze operations are summed elementwise, which is represented by the ∑(. ) 

in Eq. 2. Here 𝒜𝓊𝐶′′
(. ), ℒ𝐶𝑜𝑛𝑣3𝐶′′(. ) and 𝒞𝒹𝐶′′(. ) represent similar operations from Eq. 1 with 

reduced computation. 

𝑖𝑜𝑢𝑡𝑝𝑢𝑡 = ∑ (𝔅𝓇( 𝒜𝓊𝐶′′
(ℒ𝐶𝑜𝑛𝑣3𝐶′′(𝒞𝒹𝐶′′(𝑖𝑖𝜂𝑝𝑢𝑡)))))

𝜇
𝑘=1 +                     𝑖𝑖𝜂𝑝𝑢𝑡         (6.2)                                        

For example, let the input be 𝑖𝑖𝜂𝑝𝑢𝑡 ∈ ℝ
64×32×32 which is the input feature size of the first skip 

connection block of the Fig. 6.2 Dynamic Receptive Field Blocks module ResNet architecture. In 

the ResNet architecture, the 3 × 3 convolution operation produces 64 channel features of the same 

spatial dimension. The total number of parameters in this lightweight convolutional layer is 

36928. However, constructing the proposed DRFB module with 𝜇 = 32, the 3 × 3 convolution 

µ 
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Fig. 6.1 The proposed Dynamic Receptive Field Blocks (DRFBs) module 
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𝐶𝑜𝑛𝑣3𝐶′′(. ) produces 4 channel output from 4-channel input. It is noteworthy that the 1 × 1 

convolution 𝒞𝒹𝐶′′(. ) in the DRFB downsamples 64 channel inputs to 4 channels for each sub-

branch before passing to ℒ𝐶𝑜𝑛𝑣3𝐶′′(. ). Each convolution layer in this design contains merely 148 

parameters. The total number of convolutional parameters across all the sub-branches is 148 ×

32 = 4736, significantly less than the convolutional block of the standard ResNet. Similarly, for 

𝜇 = 64, the proposed DRFB module has a convolutional layer with just 2432 parameters, clearly 

demonstrating the lightweight nature of the proposed DRFB blocks against each of the four ResNet 

skip connection blocks. Proposing such a multi-branch architecture helps achieve superior 

performance at reduced computation without increasing the depth of the neural network, which 

often leads to overfitting [77]. 

The DRFB feature extractor can simulate the representational power typically achieved by 

larger and denser layers without incurring the computational complexity that is commonly 

associated with such layers. This is accomplished by splitting the input into lower-dimensional 

embedding using unit convolutions, followed by transformation using the same set of filters in 

parallel branches. Finally, the transformed embedding are concatenated to achieve the desired 

consolidated transformation. The uniform across all multiple branches has significant implications 

for model complexity, as it minimizes the need for fine-tuning a large number of hyper parameters 

that would have been required if each branch had a distinct design. 

Dynamic Channel Fusion Attention (DCFA) 

This section introduces Dynamic Channel Fusion Attention (DCFA), inspired by DynaMixer: 

A Vision MLP Architecture with Dynamic Mixing[78]. While DynaMixer employs dynamic 

token-wise fusion to enhance MLP-like models, DCFA adapts this concept for channel 

interactions. Unlike traditional methods like the SE block, which use dimensionality reduction, 

DCFA efficiently captures local cross-channel interactions without reducing dimensionality. 

Building on DynaMixer's dynamic fusion principles, DCFA enhances channel attention prediction, 

ensuring robust performance for tasks like fire risk assessment.. 

The operation of DCFA can be broken down into three discrete stages, which also can be 

observed in Fig. 6.1. 
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Global Feature Representation: To begin, we independently apply global average pooling to 

each channel of the input feature maps. Input feature map X of size H × W × C, where H is the 

height, W is the width, and C is the number of channels. This process extracts a 1 × 1 × C feature 

vector, where C denotes the number of channels. Implement global average pooling on each 

channel separately to generate a feature vector. 

𝐹𝑎𝑣𝑔(𝑐) =
1

𝐻 ×𝑊
∑ ∑ 𝑋(𝑖, 𝑗, 𝑐)                                         (6.3) 𝑊

𝑗=1
𝐻
𝑖=1                                              

Importance Estimation: The feature vector's importance is estimated by using a one-

dimensional convolution with a kernel size of 1 × k, where k is computed dynamically dependent 

on channel dimension C. 

𝐹𝑐𝑜𝑛𝑣 = 𝐶𝑜𝑛𝑣1𝐷(𝐹𝑎𝑣𝑔,𝑊𝑘 ) + 𝑏                                               (6.4)                                            

𝐹𝑖𝑚𝑝 = 𝑅𝑒𝐿𝑈(𝐹𝑐𝑜𝑛𝑣)                                                                    (6.5)   

Regularization using Activation Function: The prediction of importance is constrained between 

0 and 1 through the application of an appropriate activation function, such as the sigmoid function. 

𝐹𝑠𝑖𝑔 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝐹𝑖𝑚𝑝)                                                        (6.6)                                                        

This section introduces a new method for creating a specialized deep neural network for 

detecting FireRisk levels, focusing on optimizing both cost and accuracy. We are implementing 

the DCFA module to improve the network's learning skills. We use a lightweight CNN framework 

that incorporates multi-scale feature fusion to perform risk analysis successfully. We explain how 

the SSKD technique is used to train the network model, guaranteeing good performance 

effectively. 

 The SE block, commonly used in several models, typically uses global average pooling, two 

fully linked layers with non-linearity, and ends with a sigmoid function to produce channel 

weights. Although this method successfully captures cross-channel interaction and reduces 

dimensionality to handle model complexity, recent research has shown that dimensionality 

reduction has a negative effect on channel attention prediction, making it inefficient and 

unnecessary to capture dependencies across all channels. 

6

6

6
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Observed in Fig 3 for a graphic depiction of our module. This module comprises three primary 

steps: first, performing global average pooling on feature maps to produce a 1 × 1 × C feature 

vector; second, evaluating the significance prediction of the feature vector via one-dimensional 

convolution with a kernel size of 1×k; and finally, normalizing the significance prediction to a 

range of 0 to 1 using the Sigmoid function. Refer to Fig 3 for a graphical representation of our 

module. 

Dataset Description 

The FireRisk dataset, referenced as[79], is a carefully curated compilation of remote-sensing 

images that have been rigorously organized to assess the danger of fire. FireRisk is a crucial 

resource in remote sensing and environmental monitoring. FireRisk will be compared with several 

cutting-edge prediction models for fire risk categorization. 

The United States Department of Agriculture's Wildfire Hazard Potential (WHP) study is the 

primary source from which the FireRisk dataset was generated. The comprehensive analysis of 

fire-risk danger and wildfire severity in different settings has influenced the research community. 

The 2020 edition of the WHP raster dataset gives a thorough and complete evaluation of fire-risk 

hazards in different parts of the US. Many geostatistical datasets were used to compile this 

assessment. For instance, the Fire Programme Analysis (FPA) was used to compile a dataset on 

the frequency and severity of fires, Wildfire was used to compile data on fuels and vegetation, and 

FSim was used to estimate the likelihood and severity of wildfires. 

The FireRisk dataset encompasses a full knowledge of the complex dynamics and nuanced 

aspects of fire risk assessment, by including various and multiple information from the WHP 

project. The FireRisk dataset plays a crucial role in our research by providing a robust and reliable 

foundation for assessing and refining fire risk prediction algorithms. Its comprehensive structure 

and carefully curated data support a systematic evaluation process, enabling accurate 

benchmarking and improvement of predictive methodologies. 

To effectively assess fire risk, the FireRisk dataset serves as an essential resource, offering 

comprehensive and detailed information. By analyzing its spatial and temporal data, we can 

identify and explain critical patterns and trends influencing fire risk dynamics. This enables a 

6
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deeper understanding of the factors driving fire risk variability across diverse environments and 

timeframes. 

This research shows that the FireRisk dataset is an important source for building and testing 

algorithms to anticipate fire risks. By utilizing the extensive information in this carefully selected 

dataset, we can accurately assess the effectiveness and reliability of different prediction. 

 

Fig. 6.3 Diagram of Dynamic Channel Fusion Attention (DCFA). 
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Integrating with the WHP project and drawing from an array of geo-statistical resources, the 

Fire-risk dataset is also very detailed. The forecasting models are more accurate and reliable as a 

result. 

𝐀𝐥𝐠𝐨𝐫𝐢𝐭𝐡𝐦 𝟏: Pseudocode of the Proposed “ IGNITE-NET ” Model 

             𝐈𝐧𝐩𝐮𝐭: Dataset= {𝑿𝒊, 𝒀𝒊}𝒊=𝟏
𝑵 , 𝑿𝒊 ∈ 𝑹

𝟑×𝟐𝟕𝟎×𝟐𝟕𝟎 illustrating input images & 

𝒀𝒊 ∈{0,1,2,3,4,5,6} 

                as Corresponding   labels 

               Model Parameters 𝜽 

               Batch Size 𝑩 

               Epoch 𝜺 

               Learning Rate 𝒍𝒓 

               After 𝒏 epochs, Learning Rate Decay Factor 𝜸, where  𝜸 ∈[0,1] 

                𝐎𝐮𝐭𝐩𝐮𝐭: Trained IGNITE-NET  model for Fire Risk assessment 

1. Initialize 𝜽 and weights 𝜶 

2. 𝐟𝐨𝐫 𝒊 = 𝟏……𝜺 𝐝𝐨               (Train for a certain  𝜺 number of epochs) 

3.        𝐟𝐨𝐫 j= 𝒙𝟏……𝒙𝑩 𝐝𝐨    (Iterate through each batch 𝑩 within the  

4.               (𝒙𝑩, 𝒚𝑩)𝝆                 (Randomly select one batch with a size of 𝑩) 

5.                𝒚̂𝒃 = (𝒙𝑩; 𝜽)          (Compute posterior probability for each input sequence)          

6.                𝑳𝑪𝑬=𝒄𝒓𝒐𝒔𝒔 𝒆𝒏𝒕𝒓𝒐𝒑𝒚 𝒍𝒐𝒔𝒔(𝒚,𝒚𝒃)        (Calculate cross entropy loss) 

7.                𝜽 ⇐ 𝜽 − 𝒍𝒓𝜟𝜽𝑳𝑪𝑬(𝒚𝑭, 𝒚)               (Optimize model parameters by minimizing.  

8.                computing loss{ 𝜽 }                       cross-entropy loss 𝑳𝑪𝑬 using backpropagation) 

9.               𝐢𝐟 (𝒊%𝒏 == 𝟎) 
10.       𝐞𝐧𝐝 𝐟𝐨𝐫 
11. 𝐞𝐧𝐝 𝐟𝐨𝐫 
12. 𝐑𝐞𝐭𝐮𝐫𝐧 𝐍𝐨𝐧𝐞 
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To conduct comprehensive investigations and develop robust models for predicting fire risks, 

the FireRisk dataset is an integral aspect of our research infrastructure. As a comprehensive tool 

for evaluating fire risk, the WHP project distinguishes itself because it integrates many 

geostatistical data sources. More effective approaches have been developed for reducing wildfires 

based on this increased understanding of wildfire dynamics. 

 Overall Model Structure 

The fire risk assessment model name IGNITE-NET that incorporates two main components: 

the "Dynamic Receptive Field Blocks" (DRFBs) and the "Dynamic Channel Fusion Attention" 

(DCFA) module it is demonstrated in Fig. 6.5, which aim to improve feature extraction and 

efficiently record local cross-channel interactions. These components are essential for creating a 

strong deep neural network designed to identify fire risk levels. 

 In order, reduce computational effort while compromising features effectiveness, the DRFBs 

module incorporates a multi-branch approach built around the ResNet architecture. By which 

involves the hyper-parameter μ, the DRFBs module effectively reduces computational complexity, 

providing sub-branches to evaluate feature maps with decreased channel dimensions. Lightweight 

convolutional layers that operate with fewer parameters than conventional Res Net block represent 

       

     
  

High Low Moderate Non-

Burnable 

Very High Very Low Water 

Fig. 6.4 Layer Cam Visualization 
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the byproduct of this technique. This allows for enhanced performance without getting the model 

deeper. 

In contrast to traditional methods like the SE block, the DCFA module has an effective attention 

mechanism that keeps track of localized cross-channel encounters yet maintains dimension 

constant. The three-stage module proceeds through the following steps: first, it uses global average 

pooling to represent features globally; second, it uses one-dimensional convolution with a kernel 

size that is dynamically set; and third, it uses an appropriate activation function for normalization. 

The DCFA module optimizes channel attention prediction through improving the neural network 

more effective at learning using concentrating on local interactions. 

Developing an accurate and cost-effective deep neural network for assessing fire risk becomes 

easier by incorporating all of these elements within the model architecture. Comprehensive risk 

assessments could be accomplished with less computational complexity by combining DRFBs and 

DCFA modules with a lightweight CNN architecture that uses multi-scale feature fusion. 

Improving the network model's performance and scalability, the proposed SSKD technique 

ensures successful training. 

Fig. 6.5 Framework of the proposed Architecture where green block represents DCFA, and 

pink block represents DRFB. 
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The layer CAM representation in Fig. 6.4 visually highlights the model's concentration on 

specific regions of the input that contribute most to the classification decision. It also reveals the 

specific features within these regions, such as textures, shapes, or edges, that the model relies on 

to make its prediction. As seen in Algorithm 1, the model framework uses sophisticated feature 

extraction algorithms and attention mechanisms. It also uses the FireRisk dataset, integrated with 

the Wildfire Hazard Potential (WHP) project. By combining the two data sets, we can evaluate fire 

risk prediction models, which helps us understand wildfire dynamics and develop better methods 

for controlling them.  

6.2.3 Experimental Results and Discussion 

The experimental methodology has been discussed in this section.  

 

Dataset Selection and Pre-processing: 

The experimental dataset serves a vital role in training and evaluating the effectiveness of the 

fire risk categorization model. A rigorously curated dataset of high-resolution photos depicting 

varied environmental situations prone to fire dangers has been selected for this investigation. The 

dataset is meticulously annotated, with each image labelled to represent one of seven discrete fire 

risk levels: 'high', 'low', 'moderate', 'non-burnable', 'very high', 'very low', and 'water'. The selection 

technique guarantees the equilibrium of classes and the inclusiveness of varied danger levels, 

encompassing fluctuations in lighting, weather, and environmental conditions to mirror real-life 

situations precisely. 

Before model training, a sequence of pre-processing procedures is implemented to standardize 

and improve the dataset's appropriateness for training. The photos undergo conventional 

modifications, which involve scaling all images to a consistent resolution of 256x256 pixels and 

normalizing pixel intensities to a standardized level. Additionally, data augmentation techniques 

such as random horizontal and vertical flips enhance the training dataset, boosting the model's 

robustness and generalization capabilities. 

Training Procedure  

2
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 The proposed model is evaluated using F1-score, recall, accuracy, precision, and Matthew's 

Correlation Coefficient to assess the trained model. Table 1 clearly illustrates the performance 

metrics and the ranges of various indicators, showing the proposed model’s robustness. 

Accuracy: It depicts the model's prediction accuracy by comparing correctly categorized 

samples to the total samples in the dataset. An accurate representation may be imperfect, 

particularly in the case of class inequality.  

Precision: This indicator shows the percentage of correct optimistic model projections. It is 

especially useful when false positives are costly. The percentage of optimistic projections among 

all true positive samples in the collection is known as recall, sensitivity, or actual positive rate. It 

evaluates the model's ability to capture all relevant instances of a particular class. 

F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced 

measure of the model's performance. It is precious when there is an imbalance between the number 

of positive and negative instances in the dataset. 

Matthews Correlation Coefficient (MCC): MCC is a correlation coefficient considering true 

and false positives and negatives. It ranges from -1 to 1, with 1 indicating perfect predictions, 0 

indicating random predictions, and -1 indicating complete disagreement between predictions and 

ground truth. 

Hardware and Software Environment 

The experiments are conducted on a high-performance PC server equipped with an NVIDIA 

QUADRO RTX A5000 graphics card featuring a memory capacity of 24 GB and 3042 NVIDIA 

Cuda cores, acceleration to expedite model training and evaluation processes. The PyTorch deep 

learning framework is utilized for model implementation and experimentation, leveraging its 

extensive neural network development and training capabilities. 

Result and Discussion 

The evaluation metrics of various models, including HRNET, Resnext, Texture, DAVIT, 

SWIN_S, Max ViT, and our proposed model as a visual representation in Fig 6.  , were 

meticulously analyzed to assess their performance in fire risk assessment. Each model has been 

scrutinized based on test accuracy, Matthews’s correlation coefficient (MCC), precision, recall, 

and F1 score.

5
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Fig. 6.6   Performance metrics comparison of the proposed model and latest SOTA model 

 

The proposed model exhibited a test accuracy of 76.08%, outperforming other models such as 

HRNET (60.03%), Resnext (58.60%), Texture (55.56%), DAVIT (59.55%), SWIN_S (62.12%), 

and Max ViT (59.74%). This remarkable accuracy underscores the effectiveness of our model in 

accurately predicting fire risk levels. 

Furthermore, the Matthews correlation coefficient (MCC) of our proposed model stood at 

0.692, surpassing HRNET (0.462), Resnext (0.468), Texture (0.428), DAVIT (0.502), SWIN_S 

(0.518), and Max ViT (0.464). The high MCC value indicates a strong correlation between the 

Test Accuracy MCC Precision Recall F1

0.4

0.45

0.5

0.55

0.6

0.65
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0.75

0.8

HRNET Resnext Texture DaViT SWIN_S Max ViT Proposed model

Table 6.1 Performance Evaluation and Comparison with SOTA 

Evaluation Metrics 
HRNE

T 

ReSNE

XT 

Textu

re 

DAVI

T 

SWIN

_S 

Max 

ViT 

Proposed 

model 

Parameters(in 

Millions) 
29 49 3 62 33 29 31 

Test Accuracy 0.60 0.58 0.55 0.595 0.621 0.597 0.760 

MCC 0.46 0.46 0.42 0.502 0.517 0.463 0.692 

Precision 0.50 0.51 0.50 0.566 0.588 0.490 0.744 

Recall 0.49 0.50 0.45 0.556 0.578 0.490 0.731 

F1 0.50 0.50 0.42 0.567 0.583 0.497 0.737 
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predicted and actual fire risk levels, highlighting the robustness of our model in capturing complex 

patterns and nuances in the dataset. 

In terms of precision, recall, and F1 score, our proposed model demonstrated superior 

performance compared to other models. With scores of 0.744, 0.732, and 0.737 for accuracy, 

recall, and F1 respectively, our model achieved a balance between the detection of fire risk and 

the minimization of false positives. 

Because of these scores, proposed framework to fire risk assessment has been shown to be 

useful for environmental monitoring and natural disaster management. By utilizing state of the art 

architecture and attention mechanisms, our model performs the risk of fire more accurately than 

any SOTA model does. The efficient performance of proposed model contributes in area of fire 

risk assessment, providing stakeholders with essential information that can be used to avoid 

wildfires and protect vulnerable ecosystems. Due to the robustness and dependability of our model, 

it is suitable for use in real-world scenarios for the purpose of developing proactive tactics to 

mitigate wildfires Overall, the results presented herein underscore the significant strides in fire risk 

assessment, propelled by cutting-edge research and innovative model architectures.  

2
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Fig. 6.7 t-SNE visualization depicting the distribution of FireRisk classes, highlighting the 

discriminative power of the proposed model in fire risk assessment 

Analysis of T-SNE 

The t-SNE portrayal in Fig gives a top-to-bottom comprehension of the spatial 

dissemination of FireRisk classes. This representation helps in understanding the 

discriminatory abilities of our proposed model. The significant clustering of fire risk 

classifications, illustrated in Fig. 7 above, demonstrates the model's ability to classify and 

distinguish between various fire hazard classes. This depiction provides a thorough overview 

of our model's performance in fire risk assessment. The proposed model's discriminative ability 

is better understood with the help of this visualization. This shows the unique clustering of fire 

risk categories, demonstrating the model's ability to capture and discriminate between various 

degrees of fire hazard. In addition to the numerical data, this visualization thoroughly reviews 

the ability of model performance in fire risk assessment. 

6.2.4 Conclusion  

Our research model is a novel framework with deep neural network architecture to predict 

fire-risk classes. The proposed approach identifies important categories of fire risk. The 

Wildfire Hazard Potential (WHP) initiative was significant in establishing and evaluating the 
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framework employing the FireRisk dataset. This model is designed to provide very accurate 

predictions of fire risk classes because it uses a lightweight convolutional neural network 

(CNN) architecture, a multi-scale feature extraction strategy, and a strong deep learning model 

called IGNITE-NET. We determined that our IGNITE-NET model was the most accurate 

compared to state-of-the-art models; therefore, we know it works. A high Matthews’s 

correlation coefficient (MCC) demonstrated reliability in classifying fire risk classes in varied 

environmental scenarios, and our approach effectively balances recall, accuracy, and F1-score. 

6.3 Significant Outcomes of this Chapter 

The significant outcomes of this chapter are as follows: 

• To enhance sea ice classification accuracy using SAR images through a novel hybrid 

deep learning model named “Arctic-Net”. The proposed model integrates 

Convolutional Neural Networks (CNNs) and attention mechanisms, specifically the 

Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder (STE), and 

Hierarchical Transpose Attention (HTA), enabling efficient extraction of local and 

global features while maintaining computational efficiency. 

• Conducted comprehensive performance evaluations using metrics such as accuracy, 

precision, recall, and F1-score. The Arctic-Net model achieved an accuracy of 0.93, 

precision of 0.91, and F1-score of 0.91, outperforming state-of-the-art models 

including DenseNet, ResNext, and Swin Transformer. These results demonstrate the 

model's superior classification capabilities and robustness. 

• Demonstrated the practical applicability of Arctic-Net for operational sea ice 

monitoring, marine navigation, and climate research. The model’s ability to accurately 

classify sea ice types with limited labeled data highlights its potential for real-time 

environmental monitoring and deployment in resource-constrained settings, 

contributing to advancements in climate studies and maritime safety. 

The following research studies serve as the foundation for this chapter: 

 Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, “IGNITE-NET: Fire 

Risk Prediction using Dynamic Receptive Fields and Dynamic Channel Fusion 

Attention.” Communicated in Applied Intelligence, IF- 3.6).  

This chapter introduces IGNITE-NET, an innovative deep learning framework designed to 

predict fire risk levels by leveraging dynamic receptive field blocks (DRFBs) and dynamic 

channel fusion attention (DCFA). The model significantly reduces computational complexity 
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while achieving superior predictive accuracy, demonstrating its potential for real-time fire risk 

assessment. The next chapter will explore the performance versus computational complexity 

trade-off in fire risk detection, focusing on the Swin Transformer architecture and evaluating 

models with RGB and edge-based inputs. This study aims to provide insights into the balance 

between model performance and computational cost in cross-domain fire risk detection. 
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7 Chapter 7 Advancing Fire Risk Detection: A 

Study on Model Performance vs Computational 

Cost 

7.1 Scope of this Chapter 

This chapter delves into the intricate balance between performance and computational 

complexity in cross-domain fire risk detection, using advanced machine learning models, 

particularly focusing on the Swin Transformer architecture. The study emphasizes evaluating 

models with varying input types—RGB-based and edge-based images—derived from the 

FireRisk dataset, a comprehensive collection of remote sensing imagery specifically designed 

for fire risk assessment.The chapter is structured to provide a thorough exploration of the 

methodologies, from data pre-processing to model selection and performance evaluation. It 

begins by detailing the pre-processing techniques applied to the RGB and edge-based images, 

highlighting how these inputs influence model training and accuracy. The selection of vision 

models, including Swin Transformer, HRNet, ResNeXt, Max ViT, and a Texture-specific 

ResNet50, is discussed in the context of their architectural advantages and limitations 

concerning fire risk detection. A significant portion of the chapter is dedicated to the 

experimental setup, encompassing hardware specifications, training parameters, and data 

augmentation strategies. The performance of each model is meticulously analyzed through 

various metrics such as accuracy, Matthews Correlation Coefficient (MCC), precision, recall, 

and F1-score, providing a comprehensive understanding of each model's capabilities and 

limitations.The chapter also includes a comparative analysis with state-of-the-art models to 

underscore the advancements achieved through the proposed methodologies. 

 Furthermore, it explores the generalization capabilities of these models across different 

datasets, emphasizing the importance of robust model training for effective real-world 

application. 

In conclusion, this chapter not only presents a detailed examination of model performance 

and computational trade-offs in fire risk detection but also sets the stage for future research 

directions, including the integration of temporal data, ensemble learning, and the development 

of real-time detection systems. 

28

122

145

Page 115 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478

Page 115 of 152 - Integrity Submission Submission ID trn:oid:::27535:82155478



91 | P a g e  

 

7.2 Investigating the Performance vs Computational Complexity Tradeoff 

in Cross-Domain Fire Risk Detection 

7.2.1 Abstract  

Fire risk detection is critical for timely interventions and effective management strategies in 

mitigating wildfire impacts. This study examines the efficacy of many advanced models, 

emphasizing the Swin Transformer architecture for efficient fire detection. We assessed RGB 

input evaluations, highlighting the Swin_S model, which attained a test accuracy of 62.1%, and 

the Swin_T model at 61%. Comparative analysis with current models demonstrated that 

Swin_T_Edge surpassed its competitors, achieving the maximum accuracy of 66% and an F1 

score of 0.587, confirming its efficacy in classification tasks while maintaining a balance in 

model complexity. Cross-dataset tests further illustrated the models' durability across various 

fire conditions, underscoring the necessity for solid generalization capabilities in real-world 

applications. Statistical evaluations utilizing t-tests confirmed the substantial performance 

enhancements of the suggested models. The findings highlight the Swin_T_Edge model's 

promise as a premier option for fire risk detection systems, recommending future 

improvements via ensemble learning and the incorporation of temporal data 

7.2.2 Proposed Methodology 

The proposed methodology is discussed in this section.  

Dataset Description 

The FireRisk dataset [79], is a carefully compiled collection of remote-sensing photos for 

fire risk evaluation. It is a crucial resource for developing and accessing fire risk prediction 

models. The FireRisk dataset was not generated for this study; instead, it is employed to 

determine the efficacy of different prediction algorithms. 

The data for this research originates from the Wildfire Hazard Potential (WHP) project, 

established by the U.S. Department of Agriculture, recognized for its comprehensive 

evaluations of fire risk and wildfire intensity throughout the United States. The WHP project 

integrates geostatistical data sources, such as FSim for assessing wildfire susceptibility and 

severity, LAND-FIRE for fuel and vegetation information, and the Fire Program Analysis 

(FPA) for historical fire occurrence records. The 2020 version of the WHP raster dataset offers 

detailed fire risk evaluations classified into seven specific categories. 
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The raster dataset is provided in a geodatabase format (.gdb) and divides the nation into 

grids, each measuring 270 meters per side, along with associated fire risk assessments for each 

grid cell. The images in the FireRisk dataset are obtained from the National Agriculture 

Imagery Program (NAIP), which utilizes airborne platforms to capture high-resolution ortho-

rectified imagery with a spatial resolution of no less than 1 meter, exceeding the quality 

generally attained through satellite-based remote sensing. Strict quality criteria regulate the 

images, necessitating a sun elevation of no less than 30 degrees and a maximum cloud cover 

of 10% for each quarter of the image segments. Images are gathered during the growing season 

to reduce the occurrence of snow and flooding. The collection comprises 91,872 remote-

sensing photos of fire risk assessments derived from the WHP dataset. Of them, 70,331 photos 

are designated for training, whereas 21,541 images are allotted for validation. Every image is 

subjected to a uniform cropping procedure, yielding dimensions of 270 × 270 pixels. It is 

classified into seven discrete fire risk categories, enabling a comprehensive analysis of fire risk 

levels across diverse geographical regions. 

RGB-Based Input 

The initial data preparation scenario involves a photograph dataset based on the RGB color 

model. The images are utilized in an unaltered color format without image filtering or alteration 

techniques. The preparation procedures for this subset of the dataset encompass the subsequent 

steps: 

Image Loading: The dataset is retrieved from the designated directory and consists of 

images in RGB format. 

Label Assignment: Every image is labeled according to the class in the image's file name. 

The designation is employed in tasks related to supervised learning. 

Image Transformation: The images undergo a transformation process to achieve a 

standardized size, typically 256x256 pixels, to maintain consistency throughout the training 

phase. 

Data Augmentation: Data augmentation strategies enhance the model's generalization. 

These transformations encompass random horizontal flips and random vertical flips. 

Edge Based Input 

In the second data preparation scenario, the dataset comprises images based on edges. Edge-

based photos are produced by applying an edge-detection filter, such as the "FIND_EDGES" 
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filter, on the initial RGB images. The preparation procedures for this particular subset of the 

dataset are outlined as follows: 

Image Loading: The dataset, which consists of images that have undergone edge filtering, 

is imported from the designated directory. Label Assignment: Just like RGB-based images, 

edge-based images are assigned a label depending on the class indicated in the image's file 

name. 

Edge Filtering: The edge-filtered images are obtained by applying the "FIND_EDGES" 

filter on the original RGB images. This procedure improves the perceptibility of boundaries 

and outlines inside the pictures. 

Image Transformation: Like RGB images, the edge-based images undergo resizing to 

achieve a standardized size, guaranteeing uniformity throughout the model training process. 

Data Augmentation: Data augmentation strategies are employed for edge-based images to 

bolster the model's resilience. The strategies encompass the utilization of random horizontal 

flips and random vertical flips. 

The Preprocessing dataset is divided into RGB-based and edge-based images; the data 

preparation pipeline can effectively accommodate diverse modeling techniques. This allows 

for considering either raw color information or the prioritization of edge characteristics, 

depending on the specific modeling requirements. The subdivision enables the creation of 

specialized models that can efficiently acquire knowledge from several image categories to 

tackle specific parts of your study, such as evaluating fire hazards 

Pre-processing of input types 

The dataset preparation encompasses two input types: RGB pictures and edge images. This 

structured data preparation pipeline supports several modelling strategies, using raw color data 

or focusing on edge features based on individual analytical needs. Utilizing these two input 

sources in succession enables the development of models that effectively learn from each image 

category, improving our capacity to evaluate fire danger levels across various geographical 
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areas. This method enhances the models' flexibility and guarantees a thorough assessment of 

fire dangers. 

Model Selection  

The methodology utilized in the study for detecting fire danger across different domains 

involves utilizing several vision models to analyze remote-sensing images. The models have 

been chosen based on their appropriateness for Image classification tasks, namely those that 

utilize edge information, RGB, and exclusive texture analysis. The model selection process 

encompasses. 

Proposed framework 

This Section explains the proposed framework flow and model description employed for 

further analysis, as can also be observed in Fig. 7.1. 

RGB 

Based Input 

Edge 

Based Input 

SWIN TINY 

HRNET 

RESNEXT 

SWIN SMALL 

Max ViT 

FIRERISK 

RGB Based 

Input 

T
ex

tu
re 

M
o
d
el 
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Non-

Burning 

 

Predicted Classes 

Fig. 7.1 Proposed Framework for Fire Risk Assessment, illustrating the 

processing of RGB and edge-based inputs for classifying fire risk levels. 
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SWIN Transformer 

The Swin Transformer (Swin_T_Edge)[72] is a significant breakthrough in visual modeling. 

This model presents advancements in vision transformers by including innovative architectural 

elements, like multi-headed self-attention with a window-based mechanism and shifting 

windows. These advancements augment Swin's ability to capture distant relationships in visual 

information efficiently. The training process employed by Swin closely aligns with that of the 

Data Efficient Image Transformer (DeiT), with a particular emphasis on efficiency. The 

process starts with pre-training the ImageNet-21k dataset and then fine-tuning the ImageNet-

1k dataset [80]. Swin's performance is outstanding, achieving a new state-of-the-art benchmark 

on the Tiny ImageNet dataset. Notably, it has achieved a validation accuracy of 91.35%, 

exceeding the previous leading model by 0.33%. Swin's adeptness in managing the Tiny 

ImageNet dataset, in combination with its distinct window-based attention mechanism and the 

accessibility of its source code for additional investigation, establishes it as an essential 

selection for image classification tasks and a pivotal point of citation for researchers in this 

domain. The study also alludes to additional transformer versions, such as Swin and MaxViT, 

presenting intriguing prospects for further progressions in vision transformer models. 

HRNET 

The HRNet architecture, first developed for human posture estimation, has demonstrated its 

versatility and applicability in several computer vision tasks. HRNet is proficient in 

maintaining high-resolution representations, an essential prerequisite for functions that need 

intricate spatial information, including semantic segmentation, facial landmark identification, 

and object detection. 

HRNet does this by maintaining several parallel convolutions that cover a range of 

resolutions, from high to low. Additionally, it consistently integrates multi-scale information 

across these parallel streams through fusion techniques comparable to model sizes and 

computational efficiency[81]. 

RESNEXT 

The ResNeXt architecture is a sophisticated convolutional neural network (CNN) structure 

that builds upon the foundational ideas of Residual Networks (ResNets). The text presents the 

fundamental notion of "cardinality," which serves as a metric for quantifying the quantity of 

concurrent pathways inside a given network. These parallel routes, commonly known as 

"cardinalities," might be seen as a collective effort of numerous specialists working together to 
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address a problem. By integrating this notion, ResNeXt enables the network to get a broad 

spectrum of varied and comprehensive feature representations. 

The cardinality-driven design of ResNeXt proves to be particularly helpful in the context of 

your fire risk dataset. The system has exceptional proficiency in collecting delicate and 

nuanced characteristics of utmost importance for applications such as image categorization 

about fire hazards. ResNeXt's remarkable feature extraction skills enable precise and accurate 

operation of your model, whether recognizing fire dangers in images or finding subtle patterns 

indicative of possible risk factors[82]. 

Multi-Axis ViT (Max Vit) 

The Max ViT architecture represents a novel implementation of the vision transformer (ViT) 

model, characterized by its efficiency and scalability. The proposed approach incorporates a 

multi-axis attention mechanism, enabling the model to capture global-local spatial interactions 

across various input resolutions while maintaining linear computational cost. Moreover, the 

Max ViT model integrates convolutional layers into its design to enhance efficiency. The Max 

ViT model has exceptional performance on many image classification benchmarks, including 

ImageNet-1K, ImageNet-21K, and CIFAR-100, establishing itself as the current leader in the 

field. Additionally, it has robust scalability when used for datasets of considerable size and 

high-resolution images[83]. 

In conclusion, Max ViT has considerable strength and adaptability as a ViT model, holding 

promise as a future frontrunner in many computer vision applications. The layer CAM 

presented in  Fig. 7.2 highlights the regions where the RESNEXT model focuses its attention.   

TEXURE Model 

The TEXTURE ResNet50 model is a variation of the ResNet50 architecture specifically 

designed to cater to the requirements of computer vision jobs. The term "TEXTURE" in the 

model's nomenclature alludes to its distinct emphasis on analyzing texture inside images. The 

architecture of this model is optimized explicitly for cases in which the proper analysis of 

images heavily relies on texture-based information. 

TEXTURE ResNet50 inherits the fundamental structure of the ResNet50 architecture at its 

core. The ResNet50 architecture is a convolutional neural network (CNN) comprising 50 

layers. This depth gives it a greater capacity for learning complex hierarchical features than 

earlier models. The fundamental structure of the architecture consists of a sequence of 
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convolutional layers, residual blocks, and fully linked layers. The combined elements of these 

components contribute to the model's capacity to effectively capture intricate patterns seen in 

images. 

One distinguishing characteristic of TEXTURE ResNet50 is its notable focus on examining 

texture. The system is designed to effectively identify and analyze texture patterns present in 

images. Examining texture is pivotal in image content analysis, particularly in material 

identification, surface examination, and specific medical imaging assignments. The specialty 

of TEXTURE ResNet50 allows it to perform exceptionally well in jobs requiring a high level 

of emphasis on comprehending intricate aspects of texture[84]. 

Comparison of Methodologies  

This section provides a succinct comparison of the approaches examined, emphasizing their 

advantages and drawbacks. Each strategy offers distinct benefits for fire risk detection while 

also posing obstacles. The table below delineates the principal advantages and disadvantages 

of each model. 

Table 7.1 delineates the various strengths and limitations of the models in this comparison. 

The Swin Transformer is distinguished by its exceptional accuracy, but HRNet is superior at 

jobs necessitating spatial precision. ResNeXt's cardinality-centric methodology is proficient 

in intricate feature extraction, whereas Max ViT provides a scalable resolution. The Texture 

model is optimized for texture analysis, rendering it highly appropriate when texture is 

paramount. Each methodology offers distinct advantages for fire risk detection. Their choice is 

contingent upon the particular demands of the work, including the necessity for texture 

analysis, computing efficiency, or high-resolution representation. 

Table 7.1 This table concisely compares the models, focusing on their key strengths and limitations 

relevant to fire risk detection tasks. 

Model Strengths Limitations 

Swin 

Transformer 

Efficient multi-scale attention High computational complexity 

State-of-the-art performance on 

classification tasks 

HRNet Preserves high-resolution details High computational demand due to multi-

resolution processing Excellent for tasks requiring spatial 

precision 

ResNeXt Robust feature extraction via 

cardinality 

Increased complexity leads to longer training 

times 
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Effective for fine-grained pattern 

detection 

Max ViT Efficient and scalable Limited real-world validation beyond 

benchmark datasets Strong performance on large-scale 

benchmarks 

Texture Optimized for texture analysis Limited focus on broader contextual features 

Based on proven ResNet50 architecture 

 

7.2.3 Experimental Results and discussion 

This section presents the experimental setup employed in the study, followed by a 

comprehensive analysis and comparison of the performance of various vision models for cross-

domain fire risk detection. The results are evaluated based on key performance metrics, 

highlighting the effectiveness and efficiency of each model in detecting fire risks across diverse 

datasets. 

Hardware Configuration 

The experiments used a high-performance workstation with two NVIDIA A5000 graphics 

cards, an Intel Xeon processor, and 128 GB of RAM. The hardware configuration was chosen 

to optimize the model training and evaluation process. 

Training Details 

Data Parallelism: Data parallelism was employed to distribute the training workload 

efficiently across the two NVIDIA A5000 graphics cards. This approach optimized training 

times. 

Batch Size: A batch size of 64 balanced training efficiency and memory utilization. 

Number of Epochs: 50 epochs were used for training to guarantee model stability and 

convergence. After conducting multiple rounds of experiments, it was determined that training 

for 50 epochs was sufficient to achieve optimal model performance and convergence. 

Learning Rate Schedule: The learning rate was adjusted using the cosine annealing 

technique, facilitating efficient model convergence. 

Optimizer: The most recent iteration of the AdamW optimizer, renowned for its potency in 

deep neural network training, is employed.  

Data Preprocessing 

66
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The dataset was partitioned into two distinct groups, namely RGB-based images and edge-

based images. The preparation operations for RGB-based images encompassed many stages, 

namely importing the images, assigning appropriate labels, scaling them to a specified 

dimension of 256x256 pixels, and using data augmentation techniques such as random 

horizontal and vertical flips. To improve the visibility of boundaries in edge-based images, a 

filter called "FIND_EDGES" was utilized for edge detection. Subsequently, identical 

preprocessing procedures were employed for RGB-based images. 

Model Performance and Complexity Analysis 

This section thoroughly examines model performance and computational complexity to 

provide significant insights into their efficacy in cross-domain fire risk detection while 

considering computing requirements. 

As presented in Error! Reference source not found., the findings provide a comprehensive 

overview of key performance indicators for each model. These indicators encompass CPU 

Time, GPU Time, Multiply-Accumulate (MAC) operations, parameter count, and accuracy. 

This comprehensive research enables well-informed conclusions on the trade-offs between a 

model's performance and computational complexity. 

The research reveals that the SWIN_T_Edge model attains the highest level of accuracy, 

measuring 0.66. It is closely trailed by the SWIN_S model, which reaches an accuracy of 0.62. 

       

     
  

High Low Moderate Non-

Burnable 

Very High Very Low Water 

Fig. 7.2 Original image and Layer CAM Visualization in ResNeXt Original image (top) alongside 

Layer CAM visualization (bottom). The Layer CAM highlights regions of interest in the original 

image, providing insights into the model's focus areas during classification, categorized into five 

classes: High, Low, Moderate, Non-Burnable, Very High, Very Low, and Water. 
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These models exhibit a noteworthy level of accuracy while simultaneously keeping the number 

of parameters manageable. In contrast, the Texture Model demonstrates a moderate level of 

accuracy, precisely 0.55, while exhibiting a notably low level of computing complexity. This 

underscores the promise of texture-based models within this field. 

Nevertheless, it is crucial to consider the computing demands associated with these models. 

The Max ViT model, which consists of 64.021 million parameters, exhibits significant 

computational complexity, specifically about "CPU time" and "GPU time”. It can be observed 

in Table 7.2.  Achieving an optimal trade-off between performance and complexity is 

paramount in scenarios with limited resources. 

In addition to the tabular data , A bubble chart in Fig. 7.3 is utilized to visually illustrate the 

relationships among model accuracy, the number of parameters, and the Multiply-Accumulate 

Operations (MAC). In this graph, the y-axis represents accuracy, while the x-axis represents 

the number of parameters. The size of each bubble corresponds to the MAC, providing a clear 

representation of how these metrics interact.

 

Fig. 7.3 Model Performance Trade-off. This figure illustrates the relationship between model 

complexity and accuracy, where the size of each bubble corresponds to the number of parameters (in 

millions) for each model, effectively demonstrating the trade-off between computational demands and 

performance metrics. 

Result and Discussion 

This part thoroughly examines model performance, specifically emphasizing diverse 

evaluation measures for the models across distinct input situations, namely Edge Input and 

RGB Input. 
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 The evaluated models include SWIN_T_EDGE, ResNext, SWIN_S, Max ViT, HRNET, 

and Texture under RGB Input circumstances. Comprehensive performance analysis using 

essential measures such as Test Accuracy, MCC (Matthews Correlation Coefficient), 

Precision, Recall, and F1-score. 

Fig. 7.4 presents a comprehensive summary of the performance metrics for each model 

utilized in the study. The findings reveal considerable heterogeneity in CPU and GPU 

processing durations, with the quantity of Multiply-Accumulate Operations (MAC) and 

parameters. The Swin_T_Edge model attained the maximum accuracy of 0.66 while preserving 

a comparatively low computational expense, indicating it may be the most efficient option for 

fire risk assessment applications among the assessed models.

 

Fig. 7.4 This figure visually represents the evaluation metrics, including Test Accuracy, Matthews 

Correlation Coefficient (MCC), Precision, Recall, and F1 score for various models (SWIN_T, ResNext, 

SWIN_S, Max ViT, HRNET) using edge and RGB inputs. The chart illustrates the performance 

differences across models, clearly comparing how each model performs with different input types. 

 

SWIN_S ResNext SWIN_T Max ViT HRNET HRNET Resnext Texture SWIN_T SWIN_S Max ViT

Edge Input RGB input

Test Accuracy 0.604 0.576 0.66 0.584 0.564 0.61 0.586 0.555 0.61 0.621 0.594

MCC 0.498 0.452 0.546 0.453 0.438 0.462 0.468 0.428 0.52 0.53 0.463

Precision 0.562 0.506 0.59 0.49 0.497 0.508 0.517 0.504 0.55 0.588 0.495

Recall 0.565 0.498 0.584 0.495 0.497 0.498 0.507 0.455 0.552 0.578 0.495

F1 0.562 0.497 0.596 0.499 0.495 0.502 0.504 0.428 0.567 0.583 0.497

0
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Edge Input Evaluation 

The assessment under edge input conditions indicates that SWIN_T consistently surpassed 

other models, attaining the highest Test Accuracy of 66%. This signifies an enhanced capacity 

to categorize edge-based inputs accurately. SWIN_S achieved an accuracy of 60.4%, 

indicating a competitive  

performance. Max ViT and ResNext attained modest accuracies of 58.4% and 57.6%, 

respectively, demonstrating their efficacy, although lacking the performance of the top models. 

Regarding the Matthews Correlation Coefficient (MCC), which assesses the effectiveness of 

classifications, SWIN_T scored 0.546, highlighting its dependability in extreme situations, 

whereas SWIN_S recorded 0.498. In terms of Precision, indicating the capacity to identify 

positive instances accurately, SWIN_T (0.59) and SWIN_S (0.562) exhibited the highest 

accuracy, but Max ViT (0.49) and HRNET (0.497) showed marginally lesser accuracy in 

recognizing genuine positives. The Recall was the highest, indicating the model's ability to 

identify all positive instances.  

SWIN_T (0.584) and SWIN_S (0.565) demonstrated their efficacy in detecting positive 

cases, while Max ViT and HRNET followed closely at 0.495 and 0.497, respectively. In 

integrating accuracy and recall inside the F1-score, SWIN_T attained the optimal equilibrium 

(0.596), succeeded by SWIN_S (0.562), establishing these models as the foremost contenders 

under edge input conditions. A detailed illustration is in Fig. 7.4. 

RGB Input Evaluation 

In the RGB input assessment, SWIN_S surpassed other models with a Test Accuracy of 

62.1%, underscoring its exceptional capability to process RGB inputs. SWIN_T was closely 

behind at 61%, and Max ViT attained 59.4%. This demonstrates the capacity of SWIN_S and 

Table 7.2 Performance Metrics of Models table presents the CPU and GPU time per epoch, 

Multiply-Accumulate Operations (MAC), number of parameters (in millions), and accuracy (ACC) 

for each model, offering a concise comparison of their computational efficiency and performance. 

Models 
CPU Time per 

epoch 

GPU  Time per 

epoch 
MAC 

PARAM’s (in 

Millions) 
ACC 

ResNEXT 0.31 0.7 1.399 22.994 0.58 

Swin_T_Edge 0.29 0.3 124.464 19.621 0.66 

Swin_S 0.45 0.6 240.73 33.818 0.62 

HRNET 0.22 0.68 110.623 13.562 0.55 

Texture 21.48 0.8 1412.74 2.389 0.59 

Max ViT 1 0.19 434.665 64.021 0.59 
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SWIN_T to generalize effectively over RGB input data. The MCC scores corroborated these 

findings, with SWIN_S achieving the maximum score of 0.53 and SWIN_T at 0.52, signifying 

a robust association between anticipated and actual classifications. Max ViT exhibited a 

reduced MCC of 0.463, indicating marginally less consistent performance. The maximum 

precision was achieved by SWIN_T at 0.588, indicating its superior capability in recognizing 

true positives, but SWIN_S also demonstrated commendable performance with a precision of 

0.55. Max ViT and HRNET achieved accuracy scores of 0.495 and 0.504, respectively, 

signifying an elevated false positive rate relative to the leading models. Recall scores were 

highest for SWIN_S (0.578) and SWIN_T (0.552), indicating their efficacy in identifying 

positive instances, while Max ViT and HRNET followed at 0.495 and 0.498, respectively. The 

F1-score, which reconciles precision and recall, was highest for SWIN_S (0.583), followed by 

SWIN_T (0.567), underscoring their exceptional performance with RGB inputs. 

Comparison with State of the Arts 

Table 7.3 presents a comparison of various state-of-the-art models based on accuracy (Acc), 

F1 score (F1), and parameter count (in millions). Swin_T_Edge excels with the highest 

accuracy of 0.66 and an F1 score of 0.587, demonstrating its superior performance in 

classification tasks. In contrast, Dense-net, EfficientNet-B0, and MobileNetV3-Large exhibit 

lower accuracy and F1 scores, reinforcing the effective balance that Swin_T_Edge achieves 

between performance and model complexity. This highlights Swin_T_Edge as the most 

effective choice for applications requiring high accuracy and efficiency. 

Table 7.3: Comparison with State-of-the-Art Models -Accuracy (Acc), F1 score (F1), and 

parameters (millions) for different state-of-the-art models, showing the balance between performance 

and model size. 

Model Acc F1 Parameters 

Dense-net[73] 0.55 0.49 ~24M 

EfficientNet-B0[85] 0.53 0.47 ~5.3M 

MobileNetV3-Large[86] 0.58 0.51 ~5.4M 

DenseNet-121[87] 0.59 0.52 ~8M 

ConvNeXt-Tiny[88] 0.6 0.53 ~28M 

ViT[89] 0.612 0.501 ~86M 

DINO[90] 0.628 0.526 ~87M 

MAE[91] 0.633 0.549 ~87M 

Swin_T _Edge 0.66 0.587 ~28M 
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Generalization and Cross-Dataset Evaluation 

This section assesses the generalization capabilities of the proposed models over diverse 

datasets to gauge their robustness and adaptability in various real-world fire scenarios. We 

conducted a cross-dataset evaluation, wherein models trained on one dataset are assessed on 

the other, as outlined in Table 7.4. This evaluation is essential for determining the 

generalization capability of models when confronted with unfamiliar data exhibiting varying 

features, which is vital for fire detection systems that must function in multiple contexts and 

situations.  

Table 7.4 illustrates that models, including ResNEXT, Swin_T_Edge, Swin_S, HRNET, 

and Max ViT, were trained and evaluated on both the FD and YAR datasets[92], [93]. The 

outcomes are delineated in terms of accuracy (ACC), precision (P), recall (R), and F1-score 

(F1). The models demonstrate differing levels of performance based on the training and testing 

combinations employed. Typically, models evaluated on the same dataset exhibit superior 

accuracy and enhanced performance measures relative to cross-dataset evaluations, 

underscoring the significance of dataset variety in cultivating strong models. 

For example, ResNEXT attained an accuracy of 0.87 when trained and evaluated on FD but 

a diminished accuracy of 0.79 when assessed on YAR, highlighting the difficulties in cross-

dataset generalization. Comparable tendencies are noted with several models, including 

Swin_T_Edge and HRNET. Max ViT has consistently superior performance across several 

datasets, rendering it an appropriate choice for fire detection in diverse situations. This 

assessment offers essential insights into the generalization capacities of the suggested models, 

emphasizing the need for cross-dataset validation in fire risk detection systems. 

Table 7.4 Generalization Study on the datasets where X represents FD and Y represents YAR. This 

table demonstrates the cross-dataset evaluation of models trained on FD[92] and YAR[93] datasets, 

highlighting their performance in terms of accuracy (ACC), precision (P), recall (R), and F1-score (F1) 

when tested across the two datasets. 

MODELS TRAIN  TEST  ACC P R F1 

ResNEXT 

X X 0.87 0.84 0.89 0.88 

Y Y 0.89 0.85 0.9 0.89 

X Y 0.79 0.8 0.81 0.82 

Y X 0.77 0.78 0.79 0.81 

2
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Swin_T_Edge 

X X 0.89 0.88 0.87 0.87 

Y Y 0.9 0.86 0.88 0.87 

X Y 0.86 0.81 0.84 0.85 

Y X 0.81 0.79 0.79 0.78 

Swin_S 

X X 0.91 0.9 0.89 0.89 

Y Y 0.92 0.87 0.9 0.88 

X Y 0.85 0.83 0.85 0.84 

Y X 0.84 0.8 0.79 0.8 

HRNET 

X X 0.88 0.86 0.89 0.87 

Y Y 0.87 0.84 0.86 0.85 

X Y 0.85 0.82 0.84 0.83 

Y X 0.84 0.83 0.85 0.84 

Max ViT 

X X 0.92 0.91 0.92 0.91 

Y Y 0.93 0.89 0.91 0.9 

X Y 0.88 0.84 0.89 0.85 

Y X 0.88 0.85 0.86 0.84 

 

Evaluating Statistical Superiority: T-Test Analysis of Model Performance  

The t-test is a robust statistical technique employed to evaluate the differences in means 

between two samples, enabling researchers to ascertain if observed variances are statistically 

significant. This study used a thorough t-test to assess the efficacy of our suggested technique 

compared to several leading models. The findings display the normalized t-statistics and p-

values for pairwise comparisons. The Swin_T_Edge model regularly exhibits higher accuracy 

than others, with p-values reflecting substantial statistical significance (p < 0.05) in all 

comparisons. This indicates that the performance improvements realized by our method are 

improbable to be coincidental, hence substantiating its efficacy in fire detection tasks. The null 

hypothesis (H0) states that no substantial difference exists between the means of the models 

being compared, whereas the alternative hypothesis (Ha) asserts that such differences exist. 

97
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Employing a significance threshold of 0.05, our investigation underscores the resilience of the 

Swin_T_Edge model, positioning it as a premier candidate in fire detection techniques. 

7.2.4 Conclusion  

In summary, the results of this study offer significant contributions to our understanding of 

the complicated interplay between the performance and complexity of vision models when 

applied to cross-domain fire risk detection. This paper thoroughly assesses many advanced fire 

risk detection models, emphasizing the effectiveness of the Swin_T_Edge architecture. The 

experimental findings indicated that Swin_T_Edge attained the maximum accuracy (66%) and 

an F1 score (0.587), surpassing traditional models while preserving a favorable equilibrium 

between performance and model complexity. Examining RGB input data validated the 

enhanced generalization skills of SWIN_S and SWIN_T, attaining substantial metrics 

affirming their efficacy in fire detection tasks. Moreover, the cross-dataset evaluation 

emphasizes the need for rigorous model training across diverse datasets to improve flexibility 

in practical applications. The statistical analysis, bolstered by t-test assessments, confirms the 

superiority of the presented models, particularly the Swin_T_Edge, highlighting its potential 

as a premier solution in fire risk assessment. 

7.3 Significant Outcomes of this Chapter 

 The significant outcomes of this chapter are as follows: 

 This study optimized cross-domain fire risk detection using advanced vision models, 

with the Swin_T_Edge model achieving the highest accuracy (66%) and F1-score 

(0.587), outperforming state-of-the-art models while maintaining computational 

efficiency. 

 Comprehensive performance evaluations highlighted the impact of input modalities, 

where edge-based images significantly improved detection accuracy. Models like 

Swin_T_Edge and Max ViT demonstrated strong generalization across datasets, 

validating their robustness for real-world applications. 

 Statistical analysis using t-tests confirmed the superiority of the Swin_T_Edge model 

over other models, emphasizing its reliability and potential for practical deployment in 

wildfire monitoring and disaster management systems. 

The following research studies serve as the foundation for this chapter: 

 Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "Investigating the 

2
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Performance vs Computational Complexity Tradeoff in Cross-Domain Fire Risk 

Detection." Under 2nd revision in  Signal  ,Image and Video Processing , IF–2.0  

This chapter concludes the study on optimizing fire risk detection, summarizing the key 

contributions and future research avenues. The next chapter will explore the social impact of 

the research, focusing on wildfire management, environmental sustainability, and public 

health. 
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8 Chapter 8: Conclusion, Future Scope and Social   

Impact 

This chapter finalizes the research on optimizing cross-domain fire risk detection using 

advanced vision models. The key contributions of this study are summarized as follows: 

 Enhanced Fire Risk Detection Accuracy: The proposed Swin_T_Edge model 

demonstrated superior classification performance with an accuracy of 66% and an F1-

score of 0.587, outperforming state-of-the-art models like DenseNet, EfficientNet-B0, 

and ViT. The model maintained a balance between high accuracy and computational 

efficiency, highlighting its potential for practical deployment in fire risk monitoring 

systems. 

 Impact of Input Modalities and Model Generalization: Through comprehensive 

performance evaluations, it was observed that edge-based inputs significantly improved 

model accuracy, particularly for Swin Transformer variants. The models, especially 

Swin_T_Edge and Max ViT, also demonstrated robust generalization capabilities 

across diverse datasets, confirming their adaptability in real-world fire detection 

scenarios. 

 Statistical Validation and Practical Relevance: The statistical analysis, supported by 

t-test evaluations, confirmed the superiority of the Swin_T_Edge model over other 

models with p-values indicating significant performance improvements. This positions 

the Swin_T_Edge as a reliable solution for wildfire monitoring, disaster management, 

and environmental conservation. 

Future Work 

Despite the promising results achieved in this study, several avenues for future research 

remain open: 

 Integration of Temporal Data: Incorporating temporal sequences from remote 

sensing imagery could enhance the dynamic understanding of fire progression, leading 

to improved prediction accuracy in rapidly changing fire environments. 

 Ensemble Learning and Hybrid Models: Future work could explore ensemble 

learning strategies or hybrid architectures that combine the strengths of different vision 

models to further improve fire risk detection performance and generalization. 
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 Utilization of Multispectral and Hyperspectral Data: Expanding the input 

modalities to include multispectral or hyperspectral imagery may provide deeper 

insights into vegetation health and other environmental factors contributing to fire risk, 

thus enhancing model robustness. 

 Real-Time Deployment and Edge Computing: Further research should focus on 

optimizing the models for real-time deployment in resource-constrained environments, 

utilizing edge computing technologies to enable timely and efficient fire risk 

monitoring. 

Social Impact 

The advancements in fire risk detection presented in this study have significant implications 

for both environmental sustainability and public safety: 

 Wildfire Management and Disaster Response: The proposed models can be 

integrated into early warning systems, enabling faster and more accurate identification 

of high-risk areas, thereby facilitating proactive wildfire management and reducing the 

devastating impacts on communities and ecosystems. 

 Environmental Conservation and Climate Research: By improving the accuracy 

and efficiency of fire risk detection, this research contributes to better management of 

natural resources and supports climate change mitigation efforts. Accurate fire risk 

assessments can inform policies aimed at reducing deforestation, protecting 

biodiversity, and preserving carbon sinks. 

 Public Health and Safety: The ability to predict and monitor fire risks effectively can 

help mitigate the health hazards associated with wildfires, such as respiratory issues 

from smoke inhalation. This research supports the development of tools that can 

safeguard human lives, property, and infrastructure from wildfire-related disasters. 

 Overall, this work contributes to the development of intelligent, data-driven fire risk 

assessment systems, promoting sustainable environmental management and enhancing 

community resilience to wildfire threats. 
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