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ABSTRACT

Wildfires, air pollution, and climate change are interconnected environmental challenges
with far-reaching consequences for ecosystems, public health, and global climate stability.
Wildfires contribute significantly to atmospheric pollution, releasing large quantities of
greenhouse gases and particulate matter, accelerating ozone depletion and global warming.
This warming effect causes polar ice to melt, reducing Earth's albedo and creating a feedback
loop that further exacerbates climate change. Addressing these issues requires advanced
monitoring and predictive systems to mitigate their impact effectively. This thesis presents the
design and development of Al-based frameworks for environmental and geospatial data
analysis, focusing on wildfire risk detection, air pollution prediction, and sea ice classification.
The research integrates state-of-the-art deep learning models and remote sensing data to
enhance the accuracy and efficiency of environmental monitoring systems. The study
introduces the Swin Transformer and IGNITE-NET models for wildfire risk detection, which
leverage dynamic receptive field blocks and channel fusion attention mechanisms to improve
predictive accuracy while maintaining computational efficiency. These models demonstrate
superior performance in classifying fire risk levels using remote sensing imagery, contributing

to proactive wildfire management strategies.

In the domain of air pollution prediction, the thesis presents the BREATH-Net model, a
hybrid deep learning framework that combines Bi-directional Long Short-Term Memory
(BILSTM) networks with Transformer architectures. Using satellite data, this model accurately
forecasts nitrogen dioxide (NO:) concentrations, offering a robust tool for air quality
management and public health interventions. The Arctic-Net model is proposed for sea ice
classification, integrating Convolutional Neural Networks (CNNs) with attention mechanisms
to efficiently classify sea ice types using Synthetic Aperture Radar (SAR) images. The model
outperforms existing methods in accuracy and robustness, providing valuable insights for
climate research and maritime navigation. The experimental results across all three domains
highlight the superior performance of the proposed models compared to traditional approaches.
By combining Al with remote sensing technologies, this research contributes to developing
scalable, efficient, and accurate environmental monitoring systems. The findings have
significant implications for environmental policy-making, disaster management, and climate
change mitigation, demonstrating the transformative potential of Al in addressing complex

environmental challenges.
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Chapter 1: INTRODUCTION

The interconnected challenges of wildfires, air pollution, and climate change represent
significant global threats with cascading effects on environmental stability, human health, and
economic resilience. Wildfires devastate ecosystems and biodiversity and release large amounts
of pollutants into the atmosphere, contributing to air quality degradation and the accumulation of
greenhouse gases. This increased atmospheric pollution accelerates ozone depletion, exacerbating
global warming. The warming atmosphere leads to the melting of polar ice, reducing the Earth's
albedo—the reflective capacity of ice surfaces—and causing further heat absorption. This
feedback loop accelerates climate change, creating a vicious cycle of environmental degradation.
Addressing these interconnected issues requires innovative, efficient, and scalable technological
solutions that simultaneously mitigate wildfire risks, predict pollution levels, and monitor climate

indicators such as sea ice extent.

The increasing frequency and severity of natural and anthropogenic hazards such as wildfires
and air pollution have far-reaching consequences for environmental stability, human health, and
economic resilience. Wildfires, in particular, have devastating impacts on ecosystems, leading to
biodiversity loss, soil degradation, and atmospheric pollution [1]. For instance, the Australian
wildfire catastrophe beginning in September 2019 inflicted over $100 billion in property damage

while simultaneously deteriorating soil and air quality and driving multiple species to extinction
[2].

Concurrently, air pollution in urban areas, particularly the rising levels of nitrogen dioxide
(NO>), poses a severe threat to public health, contributing to respiratory ailments, cardiovascular
diseases, and increased mortality rates[3].

Addressing these challenges necessitates advanced, efficient, and scalable technological
solutions. Remote sensing technologies, coupled with machine learning algorithms, have emerged
as powerful tools for environmental monitoring, offering high-resolution, real-time data that can

enhance predictive capabilities and inform risk mitigation strategies [4], [5], [6].

This thesis explores novel deep learning frameworks for both wildfire risk detection and air
pollution prediction, integrating state-of-the-art models and datasets to enhance the accuracy and

efficiency of environmental hazard assessments.



1.1 Wildfire Risk Detection

Forests play an indispensable role in maintaining ecological balance, acting as natural carbon
sinks, preserving soil integrity, and supporting biodiversity. However, wildfires have increasingly
threatened these vital ecosystems, exacerbated by climate change and human activities. The
catastrophic wildfires in Australia during 2019-2020 underscore the urgent need for effective fire

risk detection and management systems [2].

Traditional fire risk models often rely on geospatial data, satellite imagery, and GIS
technologies to map fire-prone zones and predict potential outbreaks [7], [8]. The advent of remote
sensing and optical sensor technologies has significantly improved image quality, enabling more
precise fire danger evaluations [9]. Recent studies have harnessed machine-learning techniques to

analyze remote-sensing images, offering promising results in early wildfire detection [10].
1.2 Air Pollution Prediction

Air pollution remains a pressing issue in urban areas worldwide, with nitrogen dioxide (NO-)
being a major pollutant linked to respiratory and cardiovascular diseases [11]. Delhi, recognized
as one of the most polluted cities globally, faces severe air quality challenges due to high
population density, industrialization, and vehicular emissions [12].

Satellite-based measurements, particularly from the Sentinel 5P satellite, provide valuable data
for monitoring NO: concentrations. However, converting satellite-derived tropospheric NO:
columns into accurate ground-level estimates remains challenging due to atmospheric dispersion
and instrument artifacts [13], [14], [15]. This hybrid model effectively captures temporal
dependencies and long-range spatial relationships in NO- data, significantly improving prediction
accuracy [16], [17].

1.3 Sea Ice Classification

Sea ice is a critical component of the polar environment, influencing ocean circulation,
climate patterns, and marine ecosystems [18]. Accurate sea ice classification is essential for
climate research, marine navigation, and environmental monitoring. Synthetic Aperture Radar
(SAR) imagery has been widely used to analyze sea ice dynamics, offering high-resolution, all-

weather data crucial for operational monitoring.



Traditional methods for sea ice classification include statistical classifiers, such as the Wishart
distribution, and machine learning algorithms, like support vector machines and Markov random
fields[19], [20], [21]. However, when trained on small datasets, these methods often struggle with

overfitting and limited generalization.
1.4 Motivation

The intricate interplay between environmental hazards such as wildfires, air pollution, and
climate change underscores the urgency for innovative monitoring and mitigation strategies.
Rising PM2.5 and NO: levels, increasing wildfire frequency, and shrinking sea ice pose significant
threats to ecosystems, climate stability, and human health. Wildfires degrade air quality and
accelerate glacier melt and disrupt atmospheric dynamics, creating cascading effects that further
exacerbate global warming. This reduction in sea ice decreases the Earth's albedo, leading to
increased heat absorption and accelerating climate change.

To tackle these multifaceted environmental challenges, integrating advanced Artificial
Intelligence (Al) and deep learning techniques offers transformative potential. By leveraging
satellite data and sensor technologies, Al models can forecast pollution levels, classify sea ice, and
assess wildfire risks with unprecedented accuracy and efficiency. The development of systems
capable of real-time environmental predictions enhances decision-making processes, enabling
proactive responses to emerging threats.

Achieving a balance between computational efficiency and model accuracy is critical for
scalable and reliable real-time monitoring. The use of hybrid Al architectures, such as those
combining Transformers with BiLSTM models, not only improves prediction accuracy but also
ensures robustness and scalability across diverse environmental datasets. These advancements
contribute to sustainable solutions, revolutionizing environmental risk prediction, mitigation, and

management.

In this context, the motivation for this thesis stems from the pressing need to develop efficient,
scalable, and accurate deep learning frameworks that address the interconnected challenges of
wildfire risk detection, sea ice classification, and air pollution prediction. By harnessing the power
of Al, this research aims to contribute significantly to environmental monitoring, offering

innovative solutions for safeguarding ecosystems, public health, and climate stability



1.5 Significance of Study

This study, which focuses on integrating deep learning techniques with remote sensing data for
wildfire risk detection, sea ice classification, and air pollution prediction, holds considerable

significance for multiple reasons:

e Enhanced Predictive Accuracy: This study significantly improves the precision of
environmental hazard predictions by combining satellite imagery and advanced machine
learning models. Models like Swin Transformer and IGNITE-NET offer superior
performance in fire risk detection, while Arctic-Net enhances sea ice classification
accuracy, and BREATH-Net improves NO: level forecasts in urban settings.

e Real-Time Environmental Monitoring: The integration of Al with real-time data sources
enables proactive monitoring and timely responses to environmental threats. This
capability is crucial for mitigating the immediate impacts of wildfires, pollution, and
climate change, providing decision-makers with actionable insights.

e Contextual Understanding of Environmental Dynamics: The models developed in this
research not only predict events but also provide a deeper understanding of the
environmental factors influencing these hazards. This comprehensive analysis helps
identify the root causes and interdependencies among wildfires, air pollution, and climate
phenomena like ice melt.

e Robustness to Data Variability: The deep learning frameworks employed are designed
to handle diverse datasets from different geographical regions and environmental
conditions. This robustness ensures that the models can be effectively applied in varied
real-world scenarios, enhancing their utility and reliability.

e Applications in Policy and Management: The findings from this study have direct
implications for environmental policy-making and management. By providing accurate
predictions and insights, this research supports the development of targeted strategies for
wildfire management, air quality control, and climate adaptation.

e Advancement in Al Applications for Environmental Science: This thesis demonstrates
the potential of cutting-edge Al technologies in solving complex environmental challenges.
The novel methodologies proposed contribute to the academic field by expanding the

applications of Al in environmental monitoring and management.



In summary, the significance of this study lies in its ability to offer more accurate, real-time,
and context-aware solutions for critical environmental issues. By bridging the gap between
artificial intelligence and environmental science, this research paves the way for innovative
approaches to safeguard natural ecosystems and human health in the face of escalating

environmental threats.
1.6 Sources of Research Works Studied

In this thesis, extensive literature reviews and analyses were conducted using leading journals

and conference proceedings sourced from the following databases:

e Elsevier

e |IEEE Xplore

e Springer Link

e Association for Computing Machinery (ACM) Digital Library

e Taylor & Francis Online

In addition to these primary sources, more than 150 research papers were screened, focusing on
advanced machine-learning techniques, remote sensing applications, and environmental
monitoring. Approximately 120 of these papers were selected from high-impact journals and top-

tier conferences, ensuring the inclusion of the most recent and influential research.

The search strategy involved utilizing multiple keywords and synonyms, including "wildfire

risk detection,” "remote sensing for environmental monitoring,” "deep learning in climate
science,” "sea ice classification with SAR imagery,” and "air pollution prediction using satellite
data.” This comprehensive approach ensured a robust foundation for developing the models and

methodologies presented in this thesis.

1.7 Overview of Chapters

The remaining sections of this thesis are structured as follows:

« Chapter 2: Literature Review — This chapter presents a comprehensive review of existing
research and methodologies in environmental monitoring and risk detection. It covers air

pollution forecasting, sea ice classification, and wildfire risk detection using advanced deep



learning frameworks. The review integrates findings from key research contributions that
have significantly advanced these fields.

Chapter 3: PM2.5 Prediction using CATALYST — This chapter elaborates on the
development of the CATALYST model, a hybrid Convolutional Neural Network (CNN)
and Transformer-based architecture for predicting PM2.5 concentrations in urban areas.
The chapter details the methodology, experimental setup, and performance evaluations,
demonstrating the model's superiority over traditional forecasting techniques.

Chapter 4: NO: Forecasting with BREATH-Net — This chapter introduces BREATH-
Net, a novel deep learning framework that combines Bi-directional Long Short-Term
Memory (BILSTM) networks and Transformer architectures for accurate NO:
concentration predictions. The chapter discusses data preprocessing, model architecture,
and comparative performance analysis with existing models.

Chapter 5: Sea Ice Classification using Arctic-Net — This chapter presents Arctic-Net, a
hybrid deep learning model integrating CNNs and attention mechanisms for efficient sea
ice classification using SAR images. The chapter covers the architectural components,
dataset preprocessing, and performance evaluations, highlighting the model's applicability
in climate research and marine navigation.

Chapter 6: Wildfire Risk Detection with IGNITE-NET — This chapter focuses on
IGNITE-NET, an innovative deep-learning framework designed for wildfire risk
prediction. It explores the use of Dynamic Receptive Field Blocks (DRFBs) and Dynamic
Channel Fusion Attention (DCFA) to enhance predictive accuracy while maintaining
computational efficiency. The chapter includes detailed performance evaluations and
comparative analyses.

Chapter 7: Performance vs Computational Complexity in Fire Risk Detection — This
chapter investigates the trade-offs between model performance and computational
complexity in cross-domain fire risk detection, emphasizing the Swin Transformer
architecture. It provides a thorough exploration of methodologies, experimental setups, and
performance metrics, along with future research directions.

Chapter 8: Conclusion, Future Scope, and Social Impact — This concluding chapter
summarizes the key contributions of the thesis, discusses the broader implications of the

research findings, and outlines potential directions for future work. It also highlights the



social and environmental impact of the developed models in addressing global challenges

related to wildfire management, climate monitoring, and urban air quality control.

This chapter has introduced the pressing environmental challenges posed by wildfires, air

pollution, and climate change, highlighting the need for advanced technological solutions.

Building upon these issues, the next chapter provides a comprehensive review of existing
research and methodologies that address these challenges, particularly focusing on the use of deep
learning frameworks for air pollution forecasting, wildfire risk detection, and sea ice classification.
This review forms the foundation for understanding the state-of-the-art approaches that are critical

for developing effective solutions.



Chapter 2: LITERATURE REVIEW

This chapter comprehensively reviews existing research and methodologies in environmental
monitoring and risk detection. It focuses on air pollution forecasting, sea ice classification, and fire
risk detection using advanced deep learning frameworks. The review integrates findings from key
research contributions that have significantly advanced these fields. This chapter presents a
comprehensive review of existing research and methodologies in environmental monitoring and
risk detection. It focuses on air pollution forecasting, sea ice classification, and fire risk detection
using advanced deep learning frameworks. The review integrates findings from key research

contributions that have significantly advanced these fields.
2.1 Air Pollution Forecasting and Analysis

Air pollution is a significant environmental and public health issue, with PM2.5 and NO- being
among the most harmful pollutants. Traditional forecasting models, such as ARIMA and SVR,
have shown limitations in capturing the complex, non-linear nature of pollution data. Recent
advancements in machine learning and deep learning have significantly improved the accuracy of

air quality predictions.

2.1.1 Advanced Machine Learning and Deep Learning Techniques for PM2.5

Concentration Prediction

Air pollution is a significant problem affecting millions of people’s quality of life globally. The
World Health Organization (WHO) estimates that air pollution causes 7 million premature deaths
each year, with particulate matter (PM2.5) being one of the most harmful pollutants[22]. The
investigation concerning historical data emphasizes the importance of comprehending the patterns
of air pollution over a span of time, providing valuable insights into the progression of air quality
in densely populated urban areas [23]. Predicting PM2.5 concentrations accurately is critical for
mitigating air pollution’s adverse effects. Researchers have been exploring various machine
learning models to estimate PM2.5 concentrations accurately. In recent years, Convolutional
Neural Networks (CNN) and Recurrent Neural Networks (RNN) have been the most popular
models used[24], [25], [26], [27].



This literature review aims to provide an overview of the recent research on predicting PM2.5
concentrations using machine learning models. CNNSs, extensively employed in image processing,
have been utilized in studies to forecast air quality. Liu et al.[28] outperformed standard methods
such as ARIMA Jian etal.[29] by utilizing a pre-trained CNN model to anticipate PM2.5
concentrations using meteorological data. Similarly, Yao et al. [26] employed a CNN-based model
with multi-scale and multi-channel characteristics. Li et al. [30] extracted spatial data from PM2.5
concentration maps and captured temporal features using an LSTM network[30], [31]. Both
models outperformed traditional approaches such as SVR and ANN [32].RNNs, which can model
sequential data, have been used to forecast time series[33] and predicted PM2.5 concentrations
using a hybrid model that combined a GRU and a CNN (Zhang, 2020), surpassing standard models
such as ARIMA and SVM. The study by Shi et al. [34] utilized meteorological data to train an
attention-based Recurrent Neural Network (RNN) model. The study’s results indicated that the
attention-based RNN model’s performance surpassed conventional methods such as
Autoregressive Integrated Moving Average (ARIMA) and Random Forest (RF). Hybrid models
have also been proposed, combining machine-learning techniques with classical statistical
methodologies. Liu etal. [25] created a hybrid model combining a CNN and a seasonal
decomposition approach, outperforming classic methods like ARIMA and SVM[25]. Wang
et al.[35] suggested a hybrid model that beat established procedures such as ARIMA and SVM by
combining a wavelet transform with a multivariate adaptive regression splines (MARS) approach
[36]. Incorporating additional data sources, such as meteorological and traffic data, has been
demonstrated to enhance PM2.5 forecasting accuracy. Feng et al.[37] meteorological and traffic
data were used to estimate PM2.5 concentrations in the Beijing—Tianjin—Hebei region,
outperforming established methods such as ARIMA and SVM. Wang et al.[38] projected PM2.5
concentrations using meteorological data and a MARS technique, surpassing established methods
such as ARIMA and SVM. Anthropogenic factors, air quality, and PM2.5 concentrations are also
influenced by anthropogenic causes such as industrial growth and transportation. The study by
Zhu et al. [39] aimed to examine the influence of industrial emissions on the concentrations of
PM2.5 in China. The study’s findings revealed that the high levels of PM2.5 in the country were
primarily attributed to the emissions from the industrial sector. Similarly, transportation emissions
from vehicles such as cars and trucks are also a significant source of air pollution, particularly in

urban areas with high traffic congestion[40]. In addition, changes in land use, such as
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deforestation, urbanization, and agricultural practices, can also contribute to air pollution.
Deforestation can potentially elevate the levels of dust and smoke in the atmosphere, whereas
urbanization may result in amplified emissions from industrial and transportation activities[41].
Ultimately, climate change can exert a substantial influence on the quality of the air. Elevated
temperatures have the potential to augment the occurrence and severity of wildfires, resulting in
escalated concentrations of smoke and particulate matter within the atmosphere. The phenomenon
of climate change has the potential to cause alterations in precipitation patterns, thereby
influencing the dispersion of pollutants in the atmosphere and their conveyance to diverse

geographical locations.

2.1.2 Advanced Machine Learning and Deep Learning Techniques for NO:

Concentration Forecasting

The growing focus on the impacts of air pollution on human health and the environment is
highlighted by recent improvements in air pollution forecasting. This literature review consolidates
findings from various research utilizing novel methodologies and frameworks, enhancing the
continuous endeavors in environmental management and safeguarding public health. Heydari et
al. [42] proposed a hybrid intelligent model for predicting air pollution. The model combines a
long short-term memory (LSTM) deep learning model with the multi-verse optimization algorithm
(MVO)[42]. The suggested model demonstrated more accuracy in predicting Nitrogen dioxide and
sulfur dioxide (SO2) emissions from Combined Cycle Power Plants compared to benchmark
models (ENN-PSO, ENN-MVO, LSTM-PSO). The study's focus on accurate forecasts
underscores the changing nature of forecasting models in dealing with the intricacies of air
pollution dynamics. Huang et al.[43] examined the issue of air pollution in China, with specific
emphasis on exposure to NO.. Their integrated model, which combines satellite measurements,
simulations from a chemical transport model, and detailed geographical factors, exhibited
exceptional accuracy in forecasting daily NO- values between 2013 and 2019[44]. This work made
significant contributions to exposure modeling and also uncovered a declining pattern in NO:
exposure, offering vital insights into the regional and temporal dynamics of air quality in China.
An extensive modeling framework was created to anticipate air pollution in Jiangsu Province,
China. Douros et al.[45] integrate satellite measurements, simulations from a chemical transport

model, and machine learning techniques. The ensemble model demonstrated effectiveness in
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forecasting daily NO: levels over a significant period, highlighting the need for reliable predictor

data in achieving precise air pollution predictions.

Rakholia et al. [46] have suggested a new and complex model for predicting air quality in Ho
Chi Minh City, Vietnam. This model has many steps, outputs, and variables. The global forecasting
model incorporates multiple parameters, including meteorological conditions, air quality data,
urban space information, and time components. It has proven its ability to simultaneously predict
various air pollutant concentrations, surpassing previous forecasting methods. Using artificial
intelligence, Hasnain et al.[47]employed a novel way to monitor ground-level NO: levels
throughout China. By incorporating spatiotemporally weighted information into extra trees and
deep forest models, the research successfully addressed the absence of satellite data, creating a
detailed dataset called "ChinaHighNO.." This dataset enables detailed analysis of spatial patterns
and the effects of holidays and the COVID-19 pandemic. Wei et al. [48] presented a unique
technique for estimating the emissions and lifetimes of nitrogen oxides (NOXx) in cities. This
method relies on observing tropospheric NO: levels and analyzing wind patterns using reanalysis
data. The study demonstrated the precision of the technique in calculating emissions and lifespans
for 26 cities in the United States, highlighting its capacity to estimate worldwide urban NOXx
emissions from satellite measurements. An extensive analysis highlighted the crucial importance
of artificial intelligence (Al) techniques and machine learning (ML) algorithms in predicting air
pollution and its effects on human health [48]. The evaluation emphasized the effectiveness of
hybrid models in accurately and reliably forecasting different significant pollutants, highlighting

their superiority over individual Al models.

The research on time series forecasting of air quality in Sofia City, Bulgaria, provided valuable
insights into air pollution patterns using the Auto Regressive Integrated Moving Average
(ARIMA) technique [49]. By examining data collected between 2015 and 2019, the study has
deepened our comprehension of how pollutants behave over time. This knowledge has played a
crucial role in informing measures to prevent and regulate pollution, ultimately leading to higher
air quality. Guo and Mao [50] have contributed noteworthy to developing air quality forecasting
models by introducing a unique long-term prediction model designed explicitly for NOx
emissions. By integrating self-attention to capture long-term patterns and utilizing a parallel
LSTM-Transformer architecture, their solution exhibits significant enhancements, outperforming
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existing techniques by 28.2% and 19.1% on separate datasets. The research shows the potential
for accurate regulation of NOx emissions in response to strict environmental regulations. To
summarise, the literature indicates a significant increase in advanced modeling approaches that
utilize sophisticated technology for predicting air pollution. Combining hybrid intelligence
models, high-resolution exposure modeling, and unigue city-specific emission inference methods,

all contribute to current endeavors in environmental management and safeguarding public health.
2.2 Innovations in Sea Ice Classification Using Deep Learning

Sea ice has a crucial impact on the global climate system, especially in the Polar Regions,
since it affects ocean circulation, regional weather patterns, and the Earth's albedo. Understanding
the creation and dynamics of sea ice is crucial because of its profound influence on marine
ecosystems, nutrient cycling, and global climate systems. Advancements in remote sensing,
particularly in SAR imaging, have allowed in-depth investigations of sea ice dynamics. This
literature review focuses on the progression of methodology for sea ice categorization using SAR
data, particularly emphasizing the shift from conventional statistical methods to more sophisticated
machine learning techniques. Recent progress in categorizing sea ice using SAR images has
brought out novel approaches to improve precision and effectiveness. Various technologies,
including local thresholding techniques and advanced deep learning frameworks, aim to overcome

the limits of classic methods and offer novel perspectives on sea ice monitoring.

Researchers comprehensively explained a dynamic local thresholding approach that adjusts to
the local fluctuations in grey levels inside SAR pictures. This technique enhances the accuracy of
differentiating ice types by dynamically adapting to regional changes in the picture, surpassing
previous global thresholding methods. The study's results suggest that this approach, which does
not require any user involvement, is relatively successful at separating ice initially. It may be
improved even more by utilizing expert systems to categorize particular ice forms and establish

their proportions within the images [51].

Notable progress has been made by utilizing a sophisticated deep neural network, MSI-ResNet,
to accurately categorize different sea ice forms during the late spring and summer seasons, utilizing
GF-3 quad-polarization data. This study highlights the significance of selecting the most suitable
patch sizes and polarization combinations to achieve a high level of accuracy in categorization.
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The MSI-ResNet approach performed more excellently than conventional classifiers, such as
SV M, with high overall accuracy and kappa coefficients across several Arctic areas. Deep learning
in this study dramatically enhances the accuracy of sea ice type recognition [52]. A new advanced
deep learning framework called Deep SAR-Net has also been created. This framework is
specifically built to handle complex-valued SAR pictures. Deep SAR-Net effectively captures
spatial characteristics and backscattering patterns by combining intensity pictures with radar
spectrograms, improving accuracy in discriminating objects. This approach performs superior to
traditional deep convolutional neural networks (CNNs), particularly in differentiating objects with
similar textures but in their scattering properties. It does this by using both spatial and frequency

domain characteristics [53].

Furthermore, a hierarchical deep learning-based pipeline mapping sea ice from SAR pictures
has been suggested. This method utilizes a semantic segmentation model to map the boundaries
between ice and water accurately. Then, it applies a two-level hierarchical CNN to classify the ice
in finer detail. The hierarchical strategy enhances classification accuracy by explicitly addressing
the unequal visual differentiation of various ice kinds, surpassing the performance of typical flat
N-way classifiers [54]. A more sophisticated technique for classifying sea ice has been created,
which integrates polarization information obtained from polarization decomposition with
spectrogram features derived from joint time-frequency analysis (JTFA). This method provides
good classification accuracy using ALOS PALSAR SLC data with quad-polarization. It requires
less data and computing effort compared to single-feature methods. The study showcases the
ability to maximize the potential of SAR data by integrating several characteristics, resulting in a

substantial improvement in classification accuracy [55].

The research introduces a unique technique called Physically Explainable CNN for SAR image
classification called physics-guided and injected learning (PGIL). PGIL incorporates the distinct
electromagnetic properties of SAR data into the deep learning framework to improve
comprehensibility and understanding of physics. This approach consists of three components:
explainable models (XM) that offer previous knowledge of physics, a physics-guided network
(PGN) that encodes this information into physics-aware features, and a physics-injected network
(PIN) that incorporates these features into the classification process. The assessments conducted
using Sentinel-1 and Gaofen-3 SAR data show that PGIL significantly enhances classification
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accuracy, especially when labeled data are scarce, compared to conventional CNNs and pre-
training techniques. The work emphasizes the capacity of PGIL to retain physical coherence in
predictions, avoid overfitting, and uphold interpretability through physics-guided signals,
providing a robust and comprehensible method for SAR image categorization[56].

These studies demonstrate substantial advancements in sea ice categorization using SAR
technology. Researchers have utilized dynamic local thresholding, sophisticated deep learning
frameworks, and multi-feature techniques to enhance the precision and dependability of methods
used for monitoring and analyzing sea ice. These developments improve our comprehension of
sea ice movements and offer essential instruments for monitoring the environment and studying
climate. Further advancement and fine-tuning of these techniques will enhance the accuracy and

suitability of SAR-based sea ice categorization.
2.3 Advanced Al Approaches for Wildfire Risk Prediction and Management

Wildfires pose significant threats to ecosystems, human life, and infrastructure. Accurate fire
risk prediction is crucial for proactive wildfire management and disaster response. Machine
learning and deep learning approaches have been increasingly utilized to enhance the accuracy and

efficiency of fire risk detection systems.
2.3.1 Dynamic Approaches to Fire Risk Prediction

In recent years, fire risk detection has become a crucial area of research due to the growing
threat of wildfires to ecosystems, economies, and human life. Many methods have been developed
that center on striking a compromise between detection performance and computational
complexity. It is evident from Munsif et al. [57]. Convolutional Neural Networks (CNNSs) are
widely utilized for fire detection, and a lightweight model was suggested for disaster recognition.
This efficient CNN model was implemented on devices with limited resources, proving its

usefulness in practical situations.

Similarly, loT-based fire detection systems have been developed, using CNNSs to interpret data
in real time. With an emphasis on Internet of Things contexts, Dilshad et al. [58]suggested an
optimized fire attention network (OFAN) for efficient fire detection. By addressing issues with

accuracy in dimly lit and foggy environments, their approach produced better results across several
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datasets. The model's ability to capture global context was enhanced by adding a dilated
convolutional layer, which qualified it for real-time applications on edge devices. Moreover, recent
developments in vision transformers (ViTs) have demonstrated promise for fire detection.
However, ViTs' high computational demand prevents them from being used in settings with
limited resources. To address these issues, a unique ViT architecture that combines local self-
attention with shifting patch tokenization was presented by Yar et al. [59]. This method made
effective fire detection possible even with small and medium-sized datasets. The changes to the
model balanced computational cost and accuracy by reducing the model size and the number of
floating-point operations. To improve the accuracy of fire detection, several designs have added
attention methods in addition to CNN and ViT models. For example, Yar et al. [60] provided a
model that combines 3D convolution operations with a modified soft attention mechanism to
enhance the identification of tiny fires from UAV data. Their method clarified how crucial it is to
control model complexity to facilitate real-time UAV deployment, which is essential for prompt

action in regions where fires are likely to occur.

Furthermore, models based on attention are still developing. The multi-attention fire network
(MAFire-Net), introduced by Khan et al. [61], incorporates channel and spatial attention processes
to improve feature representation in fire detection tasks. Compared to state-of-the-art techniques,
this architecture demonstrated greater accuracy and faster inference times, which makes it a good
contender for real-time deployment on edge devices. Its improved performance over several
benchmarks was further enhanced by creating a sizable fire dataset. The advancement of fire
detection technology has also been significantly aided by dataset creation. A substantial source of
high-resolution UAV-captured photos to detect forest fires is the UAVs-FFDB dataset, first
presented in UAVs-FFDB [62]. This dataset contributes to creating more resilient Al models for
fire detection, monitoring, and diversifying the training set. Researchers may develop and test new
fire detection algorithms using UAV-collected data, which enhances real-time fire monitoring

systems.

Additionally, ensemble approaches have been suggested to increase the accuracy and resilience
of fire detection models. Belarbi et al. [63] created a CNN ensemble to categorize fires in their

early stages, providing a low-cost substitute for deep CNNSs, which are frequently computationally
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costly. This method is perfect for early fire warning systems since it aggregated predictions from

several models, obtaining great accuracy at a low computing cost.

Ultimately, multi-scale techniques have effectively addressed the difficulties associated with
early fire detection, mainly when dealing with overlapping fire targets and challenging-to-detect
smoke pictures. Introduced by Yan et al. [64], the multi-scale depth-separable convolutional
network (MDCNet) was created to capture complex fire properties of several sizes. The application
of focus loss improved its capacity for difficult fire situations much further. With its ability to
identify fires earlier than conventional fire detection techniques, this design showed promise for

improving public safety.

The research described in these publications offers a range of methods that address
performance, computing efficiency, and practical application, which substantially contribute to the
continuous development of fire detection systems. When taken as a whole, these studies offer a
thorough framework for improving fire risk assessment, especially when it comes to cross-domain

fire detection, which is the focus of the current study
2.4 Research Gaps

» Limited integration of advanced hybrid models for addressing spatiotemporal

complexities in environmental data.

» Insufficient utilization of satellite data combined with ground monitoring for air quality

forecasting.

» Minimal exploration of computationally efficient models for large-scale SAR image

classification with high accuracy.

» Inadequate research on balancing performance and computational complexity in fire risk

detection models.

» Limited application of self-supervised learning techniques like knowledge distillation in

environmental risk prediction.

» Few studies focus on real-time deployment and scalability of models for practical

scenarios across diverse regions.

2.5 Research Objectives
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The following objectives have been proposed based on the identified research gaps:

» To develop Al-based solutions to predict accurate pollution levels for efficient

policymaking.

» To propose an efficient method for detecting forest fire risk using hyperspectral satellite

imagery.

» Todesign a novel Al-driven framework for identifying sea ice in Synthetic Aperture Radar
(SAR) data.

This chapter provides an extensive review of current research on environmental monitoring,
highlighting significant advancements in air pollution forecasting, sea ice classification, and fire
risk detection through deep learning techniques. It explores the limitations of traditional methods
and sets the foundation for more advanced solutions. The next chapter will build upon these
findings by introducing a novel hybrid deep learning model that addresses the complexities of
PM2.5 forecasting, demonstrating how the integration of convolutional and transformer-based

architectures can significantly improve predictive accuracy and computational efficiency.
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Chapter 3: CATALYST: A NEW
ARCHITECTURE FOR PREDICTION of PM 2.5

3.1 Scope of this Chapter

In the modern era of rapid industrialization and urbanization, air pollution has become a
pressing global concern, significantly affecting human health and environmental sustainability.
Among various pollutants, PM2.5 (Particulate Matter with a diameter of 2.5 micrometers or less)
poses severe health risks due to its ability to penetrate deep into the human respiratory system,
leading to respiratory diseases, cardiovascular complications, and reduced life expectancy. The
increasing concentration of PM2.5 in metropolitan cities like Delhi has prompted the need for
accurate forecasting models that can help mitigate its adverse effects and support evidence-based
policymaking. Conventional forecasting techniques such as statistical models (ARIMA) and
machine learning approaches (SVR, Decision Trees, and Random Forests) have demonstrated
limited success in accurately predicting PM2.5 concentrations due to their inability to fully capture
the non-linear and highly dynamic nature of air pollution data. These methods struggle to integrate
multiple influencing factors, such as meteorological conditions, vehicular emissions, industrial
activities, and seasonal variations, into a cohesive prediction model. To address these limitations,
this research introduces CATALYST, a hybrid Convolutional Neural Network (CNN) and
Transformer-based model designed to enhance the accuracy of PM2.5 forecasting. The
CATALYST model effectively leverages deep learning techniques to integrate spatial and
temporal dependencies in air pollution data, providing more reliable and robust predictions. By
combining CNNs for feature extraction and Transformers for sequential learning, CATALYST
aims to improve forecasting precision, optimize computational efficiency, and outperform
traditional prediction models. This chapter delves into the development, implementation, and
evaluation of CATALYST for PM2.5 forecasting in Delhi, demonstrating its superiority over
conventional models. The proposed model aims to enhance real-time air quality monitoring,
facilitate proactive pollution control strategies, and contribute to global efforts in environmental

sustainability.
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3.2 A Novel Approach for Forecasting PM2.5 Pollution in Delhi Using
CATALYST

3.2.1 Abstract

Air pollution, particularly PM2.5, poses significant threats to public health and environmental
stability, necessitating robust predictive models for effective mitigation strategies. Traditional
forecasting approaches, including statistical models (e.g., ARIMA) and machine learning
techniques (e.g., SVR, Decision Trees, and LSTM), have shown limitations in capturing the
complex spatial-temporal dependencies of PM2.5 pollution. To overcome these challenges, this
study proposes CATALYST, an advanced hybrid deep learning model integrating Convolutional
Neural Networks (CNNs) and Transformer architectures to enhance prediction accuracy. The CNN
module efficiently extracts spatial features from air pollution datasets, while the Transformer
component leverages self-attention mechanisms to model long-term temporal dependencies.
Extensive experiments were conducted using 48,362 hourly PM2.5 records from five monitoring
stations in Delhi, comparing CATALYST against state-of-the-art forecasting models such as
ARIMA, LSTM, and standard Transformer-based approaches. The results demonstrate that
CATALYST achieves the lowest RMSE (21.01) and the highest R? (0.89), outperforming all
baselines in predictive accuracy. Furthermore, CATALYST exhibits superior generalization
capabilities, making it adaptable to different air quality datasets. This research contributes to
advancing Al-driven environmental monitoring by offering an innovative deep-learning
framework for air quality forecasting. The findings of this study provide valuable insights for
policymakers and urban planners in designing data-driven pollution control strategies, thus
supporting global sustainability efforts. Air pollution, particularly PM2.5, significantly impacts
human health and environmental quality. Predicting PM2.5 concentrations accurately is crucial for
effective air quality management. Traditional statistical and machine learning models have
struggled to provide robust forecasts due to the complex spatiotemporal nature of air pollution.
This study introduces CATALYST, a hybrid CNN-Transformer deep learning model, designed to
improve the accuracy of PM2.5 forecasting in Delhi. The proposed model effectively captures both
short-term and long-term dependencies in air pollution data, outperforming existing statistical and
deep learning approaches. The experimental results demonstrate that CATALYST achieves

superior performance compared to ARIMA, LSTM, and Boosting models, with lower RMSE and
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higher R2 values. This research contributes to advancing air pollution forecasting and aiding

policymakers in implementing effective mitigation strategies.
3.2.2 Proposed Methodology

This section presents a comprehensive overview of the proposed methodology, which is
divided into three main phases. The first phase involves the collection and pre-processing of data
obtained from five distinct monitoring stations located in Delhi: DTU Delhi-CPCB, NSUT
Dwarka-CPCB, Anand Vihar-DPCC, Pusa Delhi-IMD, and IGI-T3 Delhi-IMD. An overall model
of the methodology is depicted in Figure 3.1. Subsequently, the gathered information is processed
to facilitate subsequent examination. The following phase involves the utilization of a pioneering
Transformer-based methodology to predict air quality. The data that has been gathered and
undergone pre-processing from the monitoring stations are utilized as input for the Transformer
model. By using its attention mechanism, the Transformer model can effectively capture extended
dependencies and acquire intricate patterns within the data, ultimately facilitating precise

predictions regarding air quality.

During the third stage, the outcomes derived from the predictive model are evaluated and
scrutinized through the application of performance metrics, including but not limited to mean
absolute error (MAE), coefficient of determination (R"2), and root mean square error (RMSE).
The present study examines the precision and efficacy of the suggested approach in forecasting
atmospheric conditions. The proposed methodology integrates the various components such as
data collection, pre-processing, a unique Transformer-based approach, and result analysis to offer

comprehensive framework for air quality prediction.

Table 3.1 shows the algorithm of the proposed architecture. The algorithm's objective is to
facilitate the training and prediction of air quality by utilizing the CATALYST model. The system
receives input in the form of data points obtained from monitoring stations and uses this
information to forecast air quality values. The iterative process of the algorithm is executed for a
predetermined number of epochs. The process involves converting the input data into a vector
image and extracting features through a Convolutional Neural Network (CNN). The Transformer
block is used to extract enduring characteristics. The application of dropout is observed in the

convolutional neural network features, while the Transformer features are subjected to both
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dropout and batch normalization. The final predicted output is derived by concatenating the

enhanced features.

Table 3.1 Training and prediction algorithm for CATALYST

Aim: To learn a mapping function F:(X;,¥;) — from data points obtained from five

monitoring stations

Input: Set of data points X; = {xj; Xj5, ... ... ..., Xjsw} Where, SW is the size of the sliding

window used for input layer partitioning

Output: Air Quality Prediction, Y; € forcasted value

1. D={XyYy), X1,Y1), e ee...., (Xp,Yg)} represents the dataset consisting of hourly
data points X and Y as the forecasted value with B number of blocks into which the data

Is partitioned for both input and label data.
for E < 1 to Epochs do

2. Input data X; is converted into a vector image.

3. F(X;) be the feature representation obtained by CNN from vector image.

4. T (T(X ])) « F(X;) be the long-term features obtained from Transformer block.

5. D(T(X,-)) « F(X;) improve model's performance by applying dropout to feature
representation obtained by CNN.

6. ( ( (x ))) - T(T(Xj)) improve model's performance by applying dropout and

batch-normalization to feature representation obtained by transformer.

7. P(X;)=D (?(X,-)) ® B (D (T(X,-))) concatenation of both the enhanced features to

obtain forecasted output.

end
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Data Pre-processing

This research work employs a dataset consisting of 48,362 hourly data points that have
undergone a process of cleaning and organization. The above data were obtained from five
monitoring stations and merged into a unified column. To facilitate analysis, the data underwent a
process of partitioning into blocks encompassing input and label data. Utilizing the sliding window
technique in the input layer boosted the streamlining of data processing by decreasing nested loops
and consolidating them into a singular circle. This methodology conserves both time and
computational resources. Furthermore, using the positional encoding layer facilitated the
integration of sinusoidal positional embedding with the input data. The process involves
converting the PM2.5 data into a vector image, which is subsequently utilized as input for a pre-
existing Convolutional Neural Network (CNN) to extract features.

Short-Term Contextual Feature Learning using CNN.

So, in the proposed methodology, input is fed as an image to a pre-trained Convolutional
Neural Network (CNN). That is employed for feature extraction from the input time series before
their integration into the Transformer. Utilizing a pre-existing Convolutional Neural Network
(CNN) for feature extraction from PM2.5 data is a viable methodology because CNNs are tailored
toward image processing tasks and can proficiently capture spatial patterns and dependencies
within the data. By converting PM2.5 data into a vector image, the convolutional neural network

(CNN) can extract pertinent features from the data while decreasing its dimensionality. This
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facilitates the subsequent transformer model in carrying out temporal modelling with greater
efficiency.

Step 2: Forecasting through a Novel

: Transformer based approach.

Fig. 3.1 Overall Pipeline of the Proposed Solution

Moreover, utilizing a pre-existing model conserves time and computational resources, since
the model has already undergone comprehensive training on vast datasets. It can be adapted to the
particular task at hand through fine-tuning. Finally, using the sliding window technique in the input
layer diminishes the occurrence of nested loops and streamlines the temporal intricacy of the
model. In general, the rationales, as mentioned earlier, render the utilization of a pre-trained

convolutional neural network a viable methodology for predicting PM2.5 data.

Long-Term Contextual Features Using a Transformer

Long-term contextual characteristics are just as crucial for the effective forecasting of air
quality data as the short-term contextual variables provided by the pre-trained CNN. The suggested
solution uses a transformer network to capture these long-term relationships. The transformer
network may model the input data sequence's long-term relationships well, which can also capture
the context necessary for precise prediction. The primary task of the transformer encoder layers
involves using self-attention and feed-forward neural network operations to carry out the
prognosis. Ultimately, the decoder's linear layer produces conclusive prognostications. Full
graphical representation of architecture model can be seen in Fig. 3.2.
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The transformer network computes a sequence of outputs that may be utilized for predicting
based on a series of inputs. It comprises several encoder layers, each with a feed-forward neural
network and a self-attention mechanism. The feed-forward neural network gives the model non-
linearity, and the self-attention tool enables the transformer to recognize the significance of each

input piece.

The mean squared error (MSE) loss function and Adam optimizer used in CNN training are
also used in the transformer. During training, a validation set is used to keep track of the model's
progress while a batch size of 64 is set. A cyclical learning rate schedule is utilized to improve
convergence, and the learning rate is adjusted during training using the learning rate annealing
approach.

In general, integrating a pre-trained Convolutional Neural Network (CNN) and a Transformer
network facilitates the extraction of contextual features from the input time series, encompassing
both short-term and long-term information. This enables precise prediction of atmospheric quality

information with reduced computational resources.

Final prediction

The ultimate forecast is generated through the amalgamation of the pre-existing Convolutional
Neural Network and the Transformer network's outputs. The convolutional neural network that
has been pre-trained can extract contextual features that are short-term in nature. On the other
hand, the Transformer is used to capture the long-term relationships in the input data. The final
prediction is derived by integrating the outputs of both models.

To enhance the model's performance, several techniques, including dropout and batch
normalization, are employed to mitigate the issue of overfitting and augment the model's capacity
to generalize the novel data. The evaluation of the model's performance is conducted through the
utilization of diverse evaluation metrics, including but not limited to Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and R-squared (R2).

In brief, the ultimate forecast is derived by amalgamating the results obtained from the pre-
existing Convolutional Neural Network (CNN) and the Transformer network, followed by

implementation methodologies such as dropout and batch normalization to enhance the efficacy
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of the model. The evaluation of the model's performance is conducted through diverse evaluation

metrics. The complete methodology is presented in
Fig. 3.1.

Computational efficiency

Various techniques are investigated and assessed with the aim of improving computational
efficacy and mitigating the risk of overfitting. The selected model utilizes a solitary encoder and a
linear layer, resulting in a notable decrease in complexity while still achieving proficient

performance.

The utilization of a solitary encoder in the model results in optimization of the processing
pipeline, thereby, reducing the computational burden. The utilization of this methodology obviates
the necessity for numerous encoder layers, thereby, diminishing the computational workload
during both the training and inference stages. Furthermore, the model integrates a linear layer,
which enhances the computational efficiency. Linear layers exhibit computational efficiency in
comparison to more intricate layers, such as fully connected layers, due to their utilization of
simpler matrix operations. Through the implementation of these measures, the model can enhance
the efficiency of computational resources while maintaining the precision of its predictions. The
acceleration of training and inference times facilitates the model's practicality for real-time or
large-scale applications. In general, the adoption of a solitary encoder and a linear layer amplifies
computational efficacy, thereby, expediting the processing and mitigating the likelihood of
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overfitting. The enhancements facilitate a heightened level of efficacy and pragmatic in the

forecasting framework.
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Fig. 3.2 The architecture of CATALYST -a novel Convolutional and Transformer model for Air

Quality Forecasting

This section outlines the technical aspects of the study's implementation, encompassing the

hardware configuration, employment of machine learning frameworks, and the particular model

architecture utilized. The present discourse delves into the process of optimizing the model, the

parameters involved in training, and the metrics employed for evaluation. Furthermore, the section
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presents a comprehensive examination of the dataset, demonstrating patterns in PM2.5 levels
across various temporal dimensions such as time, seasons, and hours. The discourse underscores
the association between the concentration of PM2.5 and diverse factors, including but not limited
to the day of the week, season, and atmospheric conditions. Additionally, the aforementioned
section conducts a comparative analysis between the CATALYST model and other baseline

models, showcasing its heightened predictive accuracy and dependability.

Implementation Details

The experiments are conducted on a PC server equipped with an NVIDIA QUADRO RTX
A5000 graphics card featuring a memory capacity of 24GB and 3042 NVIDIA Cuda cores.
Implementing machine learning techniques for air quality forecasting involves the utilization of
open-source frameworks such as Pytorch (https://pytorch.org) and Sklearn (https://scikit-
learn.org/). The open-source Tensorflow library, available at https://github.com/tensorflow/,
configures deep learning and Transformer models. The implementation that has been presented is
founded on a time series forecasting model that utilizes transformers. This model combines a

convolutional neural network (CNN) and a transformer network.

The model optimization process involves utilizing the mean squared error (MSE) loss function
alongside the Adam optimizer for updating the model parameters. The model's training is
conducted with a batch size of 64. The training process is terminated after 1000 epochs or when
the validation loss fails to demonstrate improvement for ten consecutive periods. The code
employs an automatic technique, learning rate annealing, to modify the learning rate in response
to the training progress. Additionally, cyclical learning rate schedules vary the learning rate to
enhance convergence cyclically. The starting learning rate varies from 0.000001 to 0.000200
according to requirement. The proposed framework's training, validation, and testing ratio has
been set to 80%, 10%, and 10%, respectively as it can be seen in Fig. 3.3. The optimal model is
selected employing the validation loss metric and subsequently employed to generate predictions

on the test dataset.

Training Validation Testing

80% 10% 10%
Fig. 3.3 Training, Validation and Testing ratio
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To assess the efficacy of the model, three evaluation metrics are employed, namely the mean
absolute error (MAE), mean squared error (MSE), and mean fundamental percentage error
(MAPE). Metrics are utilized to quantify the disparity between the anticipated values and the actual
values. The assessment is conducted on the designated test dataset, and the outcomes are

documented.

The implementation presented showcases a time series forecasting model that utilizes a
transformer-based approach, integrating both a convolutional neural network and a transformer
network. The model's performance on the test set is satisfactory, indicating its potential
applicability to diverse time series forecasting tasks. The details about the implementation can
serve as a valuable reference for scholars and professionals who intend to utilize this model for

their individual time series prediction endeavours.

Comparison of Performance with Baseline Models

The study's performance metrics for a range of models, namely SVR-RBF, SVR-Linear,
ARIMA, Boost, LSTM, Transformer, and the proposed CATALYST, are presented in the Table
3.2. The bold text shows the performance of the proposed model. The assessment criteria
encompass Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), and R-squared (R2)

score, as you can see in Table 3.2.

The CATALYST model exhibited noteworthy outcomes, as evidenced by its RMSE value of
21.01, MAE value of 13.37, and R2 score of 0.83. The aforementioned metrics demonstrate that
CATALYST exhibits higher levels of predictive precision and dependability when compared to
alternative models. It is noteworthy that CATALY ST exhibits superior performance compared to
Boost, LSTM, and Transformer models, which are widely recognized for their efficacy in time

series prediction tasks.

Table 3.2 Comparison of different models

MODELS RMSE MAE R2
SVR-RBF[65] 36.46 28.78 0.65
SVR-Linear[66] 42.37 34.24 0.53
ARIMA[67] 55.51 48.28 0.82
BOOST[68] 25.72 12.53 0.84
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LSTM[69] 25.71 14.61 0.81
Transformer[70] 24.02 13.92 0.84
CATALYST 21.01 13.37 0.89

3.2.3 Conclusion

The present study introduced a comprehensive methodology for predicting air quality through
the utilization of a pre-trained Convolutional Neural Network (CNN) in combination with a
Transformer-based approach. The research methodology comprised of three primary phases,
namely, data acquisition and pre-processing, learning of short-term contextual features through

CNN, and extraction of long-term contextual features using a Transformer.

A dataset of hourly air quality measurements was obtained by utilizing data from five
monitoring stations in Delhi, which was subsequently subjected to cleaning and organization. The
utilization of the sliding window methodology facilitated the division of the data into input and
label blocks, resulting in a more efficient data processing approach and conservation of
computational resources. Furthermore, the technique of positional encoding was employed to

incorporate sinusoidal positional embeddings into the input data.

During the initial phase of contextual feature acquisition, the input data was presented as an
image and processed through a pre-existing convolutional neural network (CNN) to extract
pertinent features. This methodology utilized the convolutional neural network's aptitude for
detecting spatial patterns and interdependencies present in the dataset. The reduction of
dimensionality reduction by converting the data on air quality into a vector image. This enabled
the subsequent Transformer model to efficiently carry out temporal modelling efficiently Capture
enduring contextual associations; a Transformer network was employed. The Transformer encoder
layers were successful in modelling the input data sequence and capturing the requisite context for
precise predictions through the integration of self-attention and feedforward neural network

operations. The ultimate predictions were generated by the linear layer of the transformer decoder.

The ultimate prediction was attained through the integration of the pre-trained Convolutional
Neural Network and the Transformer outputs. The model's performance was enhanced, and

overfitting was mitigated through techniques such as dropout and batch normalization. The
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evaluation of the model's performance was conducted through the utilization of various metrics,
including but not limited to Mean Absolute Error (MAE), Root Mean Squared Error (RMSE), and
R-squared (R2).

The methodology proposed in this study presented a comprehensive framework for predicting

air quality. It involved a series of steps including data collection, pre-processing, feature extraction,

and prediction analysis. The findings indicated the efficacy of the methodology in precisely

predicting atmospheric phenomena. By incorporating both short-term and long-term contextual

features, a comprehensive comprehension of the dynamics of air quality can be achieved.

3.3 Significant Outcomes of this Chapter

The significant outcomes of this chapter are as follows:

To predict PM2.5 concentration levels using remote sensing data through a novel deep
learning framework named “CATALYST” (Convolutional and Transformer-based
Architecture for Learning Air Quality Spatiotemporal Trends). The proposed model
integrates Convolutional Neural Networks (CNNSs) for efficient spatial feature extraction
and Transformer architectures for capturing long-term temporal dependencies,
significantly enhancing predictive accuracy.

Conducted extensive performance evaluations using metrics such as Root Mean Square
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R*2). The
CATALYST model achieved an RMSE of 21.01, MAE of 13.37, and R"2 of 0.89,
outperforming state-of-the-art models including ARIMA, LSTM, Boosting algorithms, and
standard Transformer approaches.

Analyzed temporal patterns and seasonal variations in PM2.5 concentrations across Delhi,
providing valuable insights into the influence of industrial activities, vehicular emissions,
meteorological conditions, and seasonal shifts on air pollution levels. This comprehensive

analysis supports data-driven policymaking and targeted pollution control strategies.

The following research studies serve as the foundation for this chapter:

% Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "A novel approach for

forecasting PM2.5 pollution in Delhi using CATALYST." Published in Environmental
Monitoring and Assessment, Volume 196, Article number 340, (2024).
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In this chapter, the BREATH-Net model was introduced, which leverages a hybrid architecture
combining a Transformer and a BiLSTM network to accurately forecast NO. concentrations in
Delhi. By utilizing satellite data and advanced deep learning techniques, the model significantly
outperforms traditional forecasting methods, offering valuable insights into the temporal and

seasonal patterns of NO- pollution.

The next chapter builds on these findings by exploring the model's real-world applications and
its potential for integration into broader environmental monitoring systems, focusing on the

practical challenges and solutions for deploying such models in urban air quality management.
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Chapter 4: BREATH-NET a PRECISION MODEL
for NO: FORECASTING

4.1 Scope of this Chapter

Air pollution remains a critical environmental and public health concern in the contemporary
era of escalating urbanization and industrialization. Among the various air pollutants, nitrogen
dioxide (NO:) significantly contributes to deteriorating air quality, exacerbating respiratory
ailments, cardiovascular diseases, and environmental degradation. As one of the most polluted
metropolitan regions in the world, Delhi experiences persistent NO2 pollution due to vehicular
emissions, industrial activities, and meteorological influences. Consequently, there is a growing
demand for accurate and efficient forecasting models to predict NO: concentrations and facilitate

effective air quality management strategies.

Conventional forecasting techniques, including statistical regression models and traditional
machine learning approaches, often struggle to capture the complex temporal and spatial
dependencies inherent in NO: pollution data. These methods exhibit limitations in processing the
highly dynamic nature of air pollution and integrating multiple influencing factors such as
meteorological parameters, emission sources, and seasonal variations. To address these challenges,
this study introduces BREATH-Net, a novel hybrid deep-learning framework that integrates a
Transformer architecture with a Bidirectional Long Short-Term Memory (BiLSTM) network to

enhance the accuracy of NO: concentration predictions.

The BREATH-Net model leverages the advantages of Transformer-based attention
mechanisms for capturing long-range dependencies and BiLSTM’s ability to effectively process
sequential data. This combination enhances the model’s ability to learn complex temporal patterns
and dependencies in NO2 levels, resulting in more precise and robust forecasts. The study utilizes
satellite-based NO: data from Sentinel-5P, spanning a period of three years, to train and validate
the proposed model. A thorough exploratory data analysis (EDA) is conducted to understand
trends and patterns in NO: concentrations, followed by pre-processing techniques such as MinMax

scaling to optimize the model’s performance.
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This chapter comprehensively discusses the development, implementation, and evaluation of
the BREATH-Net model for NO: forecasting in Delhi. The effectiveness of the proposed model is
demonstrated through performance comparisons against conventional prediction models such as
XGBoost, LSTMs, SVR, and other baseline approaches. The study highlights the superior
forecasting capability of BREATH-Net, which achieves a significantly lower Root Mean Square

Error (RMSE) of 9.06 and an R2 score of 0.96, outperforming other state-of-the-art models.

By presenting a robust NO- prediction framework, this research aims to contribute to real-time
air quality monitoring, support evidence-based policymaking, and aid in mitigating the adverse
health effects of NO: pollution. The insights derived from this study can inform targeted pollution
control strategies, optimize emission reduction policies, and foster the development of sustainable

urban planning initiatives.

4.2 BREATH-Net: A Novel Deep Learning Framework for NO: Prediction

Using Bi-directional Encoder with Transformer

4.2.1 Abstract

Air pollution poses a significant challenge in numerous urban regions, negatively affecting
human well-being. Nitrogen dioxide (NO.) is a prevalent atmospheric pollutant that can potentially
exacerbate respiratory ailments and cardiovascular disorders and contribute to cancer
development. The present study introduces a novel approach for monitoring and predicting Delhi’s
nitrogen dioxide concentrations by leveraging satellite data and ground data from the Sentinel 5P
satellite and monitoring stations. The research gathers satellite and monitoring data over 3 years
for evaluation. Exploratory data analysis (EDA) methods are employed to comprehensively
understand the data and discern any discernible patterns and trends in nitrogen dioxide levels. The
data subsequently undergoes pre-processing and scaling utilizing appropriate techniques, such as
MinMaxScaler, to optimize the model’s performance. The proposed forecasting model uses a
hybrid architecture of the Transformer and BILSTM models called BREATH-Net. BiLSTM
models exhibit a strong aptitude for effectively managing sequential data by adeptly capturing
dependencies in both the forward and backward directions. Conversely, transformers excel in
capturing extensive relationships over extended distances in temporal data. The results of this

study will illustrate the proposed model’s efficacy in predicting the levels of NO: in Delhi. If
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effectively executed, this model can significantly enhance strategies for controlling urban air
quality. The findings of this research show a significant improvement of RMSE =9.06 compared
to other state-of-the-art models. This study’s primary objective is to contribute to mitigating
respiratory health issues resulting from air pollution through satellite data and deep learning

methodologies.
4.2.2 Proposed Methodology

In this proposed research study, we suggest a methodology to forecast NO: (nitrogen dioxide)
pollutant levels using a hybrid model that combines a Transformer architecture with a Bi-
directional Long Short-Term Memory (BiLSTM) network named as BREATH-Net. The aim is to
leverage the strengths of both models to improve the accuracy of NO- predictions and contribute

to effective air quality management.

Sentinel-5P

NO2

Step 2: Forecasting through a Novel Approach
BIiLSTM+TRANSFORMER based approach.

Fig. 4.1 Framework for NO. Forecasting

The suggested model architecture effectively combines the attention-based features of the
Transformer component with the temporal context modelling capabilities of the BiLSTM network.
This hybrid methodology allows the model to proficiently comprehend intricate material
connections and generate accurate forecasts about NO: pollutant concentrations. The thorough
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assessment and analysis of the model's performance are crucial in facilitating efficient air quality

management and environmental monitoring.

The proposed approach for forecasting levels of NO- pollutants involves the application of a
hybrid model BREATH-Net that incorporates a Transformer architecture with a Bi-directional
Long Short-Term Memory (BiLSTM) network. This innovative amalgamation's primary objective
is to leverage both models' advantages, facilitating a comprehensive analysis of temporal patterns
and linkages in the NO: data. The input of the model comprises a tensor that represents a sequential
series of historical NO- concentration values. The tensor exhibits a (hum, 1) shape, wherein 'num'’
denotes the number of preceding time steps taken into account for forecasting. The provided input
data facilitates the model's acquisition and comprehension of the temporal patterns and fluctuations

in NO: pollutant concentrations.

Transformer Component

The Transformer component represents the initial fundamental element of the proposed model.
The model utilizes Multi-Head Attention, consisting of four attention heads, each with a critical
dimension 32. This mechanism facilitates the model's ability to concurrently focus on various
segments of the input sequence, thereby effectively capturing a diverse array of temporal patterns
and dependencies inherent in the data. The attention scores in the given equation (4.1) are
computed by applying the Softmax function to the dot product of the query matrix (Q) and the key
matrix (K). The mathematical formulation presented here serves as a crucial component of the
Multi-Head Attention mechanism within the Transformer module of our model. The Softmax
function is responsible for normalizing the scores, so ensuring that the model allocates suitable
attention weights to various portions of the input sequence in accordance with their significance.
Including this phase is of utmost importance to successfully capture a wide range of temporal

patterns and relationships within the data.

, QK"

Attention Score = SoftMax \/d_ (4.1)
k

To mitigate the issue of over-fitting, a dropout regularisation technique is implemented after

the attention layer, with a dropout rate of 0.1. The utilization of dropout, a method that randomly

deactivates a portion of neurons during the training process, improves the model's capacity to
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generalize effectively to unfamiliar data. The Dropout operation plays a vital role in the
regularisation approach of our model, as seen in the equation (2). During the training process, a
certain probability p is used to randomly assign a percentage of the input values to zero. The use
of noise in this stochastic process serves the purpose of mitigating overfitting, hence promoting
enhanced generalisation of the model to unobserved data.

X, with probability 1 —p

0, withprobability p (4.2)

Dropout(x) = {

The output of the attention layer is subsequently standardized through Layer Normalisation,
employing an epsilon value of 1e-6. Normalization stabilizes the learning process, guaranteeing
consistent convergence throughout the training phase. In equation (3), Layer Normalisation
(LayerNorm) is a method employed to normalize the activations of individual neurons within a
layer in an independent manner. The algorithm computes the arithmetic mean ¢ and standard
deviation u of the given input values. It then applies scaling and shifting operations to the data in

order to achieve a uniform distribution of activations.

LayerNorm(x) = ox — u (4.3)
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Fig. 4.2 The architecture of Multihead attention and BiLSTM for NO. Forecasting

Fused Representation

The fused representation, which incorporates temporal information, is obtained by combining
the output of the Transformer model with the initial input sequence. The concatenated sequence is
subsequently fed into the BiLSTM layer, enhancing the original time series data by incorporating
pertinent contextual information. The given equation (4.4) demonstrates the fusion of the output
of the Transformer model X with the original input sequence T at each time step, resulting in the
fused representation F. The integration of contextual information acquired by the Transformer
with the original time series data results in the production of a novel representation. The use of a

fused representation significantly improves the model's capacity to capture temporal patterns and
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relationships inherent in the data, thereby rendering it an essential component within the suggested

architecture.
F=[X,T] (4.4)

Dual-directional Long Short-Term Memory (LSTM) Layer

The fused sequence undergoes processing through a Bidirectional Long Short-Term Memory
(BILSTM) layer consisting of 64 units. The bidirectional nature of the BiLSTM enables the model
to gather information from both preceding and subsequent time steps, thereby improving its

understanding of the temporal patterns in the NO- data.

The BILSTM layer can effectively capture contextual information from preceding and
succeeding time steps, allowing the model to discern intricate patterns and temporal dependencies

within the data.

Densely Connected Regression Layer

After the BILSTM processing, the extracted features are further processed using a fully
connected Dense layer with 16 units. The dense layer is responsible for transforming the feature
representation, characterized by many dimensions, into a format appropriate for regression-based

prediction.

The concentration of NO- is predicted using a single-neuron output layer, resulting in the
ultimate prediction. The output layer of the model generates forecasts for the levels of NO:
pollutants based on the input time series data and the contextual information extracted by the
BREATH-Net components.

Model Training and Hyperparameter Optimization

The hybrid model uses the Adam optimizer, employing a learning rate of 0.001. The Adam
optimizer is an adaptive algorithm for optimizing the learning rate, which efficiently updates the
parameters of a model during the training process. This results in accelerated convergence and
enhanced performance.During the training process, a learning rate annealing scheduler is
implemented, whereby the learning rate is systematically reduced by 10 after every 50 epochs. The
utilization of the annealing process enhances the convergence of the optimization process by

promoting smoother transitions and mitigating the occurrence of overshooting.
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Table 4.1 Hybrid Model for Forecasting NO, Pollutant Levels

Aim: Forecasting NO,pollutant levels is critical for effective air quality management and

environmental monitoring
Input: Raw NO,, values, NO,_i where, i <n

Output: Forcasted value for NO, pollutant level, NO,_predicted_i € forcasted value

1. NO,_normalized_i = (NO,_i — min(NO,)) / (max(NO,;) — min(NO,)),

normalize NO, values

2. X i = [NO,_normalized_i(t — 1), NO,_normalized_i(t —
2),...,NO,_normalized_i(t — num)], obtain the input tensor X_i using different

values of normalized N0 acquired in the previous step
for E < 1 to Epochs do

3. Attention; = MultiHeadAttention(X; numpeaqs, dimye,,..,),  apply — multi-

headed attention on the input tensor X;

4. Dropout_i = ApplyDropout(Attention_i,dropout_rate), apply dropout layer

on Attention_i to reduce overfitting

5. LN_i = LayerNormalization(Dropout_i), pass the output of the previous layer to

the normalization layer

6. Fused_i = Concatenate(X_i,LN_i), fused representation by concatenation of input

tensor X; and the output LN_i obtained from the layer normalization

7. BIiLSTM_i = BidirectionalLSTM(Fused_i,num_units), fused representation
passed through the BiLSTM layers

8. Dense_i = DenseLayer(BiLSTM_i,num_units_dense), output obtained from

dense layer

9. NO, _predicted_i = OutputLayer(Dense_i), forcasted value of NO, is obtained by

passing through the dense and the output layer
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End

4.2.3 Experimental Results and Discussion

This section contains detailed information regarding the dataset utilized during the research, the

experimental settings of the proposed framework, and performance assessments.

Dataset Description

The dataset, named "NO: Concentration Time Series Data for Delhi City," provides a
comprehensive compilation of nitrogen dioxide (NO:) concentrations observations during a
specific period, emphasizing the city of Delhi, as can be seen in Fig. 4.3. The dataset comprises
hourly average NO. measurements collected at different timestamps ranging from November 25,
2020, to January 24, 2023. Every data point in the collection corresponds to a distinct date and

time, together with its respective concentration of NO..

NO2
Test sct

400 < Train set
=}
g . . .t . o
& 300 : — O S I — :
E s, 0 o5 . . C oo .“b
8
g
O 200
I
O
Z

100

Fig. 4.3 Dataset Timeline
Importance of Nitrogen Dioxide (NO:)
Nitrogen dioxide (NO-) is a notable atmospheric contaminant discharged from several origins,

encompassing vehicular discharges, industrial operations, and the burning of fossil fuels.
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Monitoring nitrogen dioxide (NO.) levels plays a vital role in evaluating air quality and

comprehending air pollution's possible health and environmental consequences.

Temporal Coverage

The temporal coverage of the dataset provides valuable information on the diurnal and seasonal

variations in NO: concentrations inside Delhi, a region renowned for its elevated pollution levels.

Dataset pre-processing

The 'date’ column within the dataset is transformed into a Date Time format to examine
temporal patterns comprehensively. Following that, supplementary material characteristics such
as 'Year,' 'Month,' 'Day,' and 'Hour" were derived from the 'date’ column. Implementing this pre-
processing procedure facilitated a more comprehensive comprehension of the temporal patterns
and fluctuations in the levels of NO: pollution throughout the study. The dataset undergoes a
normalization process to guarantee the data's comparability and equity across various scales—the
MinMaxScaler function from the sklearn. The pre-processing library is utilized for this objective.
The relative relationships between NO- values are preserved by scaling the measurements within
the range of 0 to 1. The implementation of this normalization procedure plays a vital role in
preparing the dataset for subsequent model training. This step is required to make sure that scale-
related biases do not interfere with the model's ability to learn from the data. The gathering of a
trustworthy and comprehensive dataset for the model's development and analysis later on is made
possible by the use of satellite-based remote sensing technologies and the use of data extraction,
datetime conversion, and normalization methods. This step is required to make sure that scale-
related biases do not interfere with the model's ability to learn from the data. The gathering of a
trustworthy and comprehensive dataset for the model's development and analysis later on is made
possible by the use of satellite-based remote sensing technologies and the use of data extraction,

datetime conversion, and normalization methods.

Implementation Details

The studies are performed on a personal computer (PC) server that is equipped with an NVIDIA
QUADRO RTX A5000 graphics card. This graphics card had a memory capacity of 24GB and is
equipped with 3042 NVIDIA CUDA cores. The use of machine learning approaches for air quality
forecasting necessitates the utilisation of open-source frameworks, such as Pytorch , Sklearn ,

seaborn and Pandas The open-source Tensorflow library, which can be accessed at
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https://github.com/tensorflow/, is utilised for the configuration of deep learning and Transformer
models. The given implementation is based on a time series forecasting model that leverages
transformers. This model integrates a transformer network with a bidirectional long short-term

memory (Bi-LSTM) component and names as BREATH-Net..

Model configuration

The experimental configuration encompassed the integration of a hybrid model that effectively
merged a Transformer architecture with a Bi-directional Long Short-Term Memory (BiLSTM)
network for the purpose of forecasting nitrogen dioxide (NO-) pollution levels. The used model is
utilised four attention heads inside the Multi-Head Attention mechanism of the Transformer, with
each head having a crucial dimensionality of 32. In order to address the issue of overfitting, a
dropout regularisation approach is implemented subsequent to the attention layer, with a dropout
rate of 0.1. The use of Layer Normalisation was employed to normalise the output of the attention
layer. During the training process, the Adam optimizer is utilised with a learning rate of 0.001.
Additionally, a learning rate annealing scheduler is applied to progressively decrease the learning
rate by a factor of 10 after every 50 epochs. The model underwent training for numerous epochs

in order to iteratively update its parameters, hence enhancing its predicting skills.

Training Validation | Testing

80% 10% 10%

Fig. 4.4 Training, Validation and Testing ratio

Dataset Splitting

The dataset that has undergone pre-processing is divided into three sets, namely the training set
, validation set and test set, with a division ratio of 80% ,10% and 10% respectively as seen in Fig.
4.4. The model known as BREATH-Net is compiled using the Adam optimizer, which has a using
learning rate annealing technique. The loss function chosen for this model is a mean squared error
(MSE). The optimization of model parameters is achieved by iteratively updating them over
multiple epochs, enabling the model to acquire knowledge from the available data and enhance its

ability to make accurate predictions.

Evaluation Metrics
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The quantification of the model's performance was conducted through the use of several
assessment measures. The main evaluation criterion employed is the root mean square error
(RMSE) equation(4.5), which quantified the precision of the model's forecasts with respect to the
observed NO: concentration values. Furthermore, the mean absolute error (MAE) in equation(4.6)
and the coefficient of determination (R2) in equation (4.7) are utilised as extra metrics in order to
offer a more thorough evaluation of the predictive performance of the model. The combination of
these measurements provided valuable insights into the model's capacity to provide precise
predictions for the amounts of NO- pollutants.

-1
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x _fA2
Rz -1-— zi=1(zz f (47)

z ’ile(zi_fimean)z

Within this particular piece, we proceed to disclose the outcomes derived from our
comprehensive research investigation. Our primary attention is to evaluate the efficacy of our
hybrid model in accurately predicting levels of NO. pollutants. Furthermore, we engage in an in-
depth analysis and discourse pertaining to the discoveries made during this study. In Table 4.2.
,BREATH-Net is highlighted in bold and demonstrates superior performance over all other
relevant models, with the predicted values presented in a detailed illustration for comparison.
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Table 4.2 Comparison of Performance with Baseline Models
MODELS RMSE MAE R2
XGB Boost[68] 12.01 6.62 0.95
SVR-Linear[71] 19.45 15.58 0.86
GRU +LSTM[69] 12.27 7.34 0.94
FB Prophet[72] 63.07 44.48 0.11
LSTM[73] 13.78 7.45 0.91
Transformer[74] 20.02 10.92 0.89
BREATH -Net 9.06 511 0.96
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Among the different models assessed for NO- forecasting, "BREATH-Net" demonstrates

superior performance, establishing itself as the most prominent contender. The predictive accuracy

and fit of "BREATH-Net" are noteworthy, as evidenced by its exceptionally low root mean square

error (RMSE) of 9.06, the lowest mean absolute error (MAE) of 5.11, and an impressive coefficient
of determination (R2) score of 0.96. These results indicate that "BREATH-Net" performs
exceptionally well in accurately predicting the outcomes and effectively capturing the patterns in

the data. By utilising sophisticated neural network architecture and employing innovative
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techniques, this model demonstrates exceptional proficiency in capturing the complex patterns and
dynamics exhibited by NO- concentration data. The exceptional performance of this model
establishes it as the foremost option for NO: prediction, providing researchers and practitioners
with a dependable instrument for making well-informed decisions in the realm of air quality

control and management, surpassing other models in a comprehensive manner.

Predicted Values Analysis and EDA

In order to comprehend the temporal patterns and seasonal fluctuations of this important air
pollutant, we thoroughly examined Nitrogen Dioxide (NO-) concentrations in the Delhi region for
this study. Box plots, a potent graphic technique that effectively depicts the distribution and
statistical measurements of NO- concentrations throughout several dates and seasons, were used
to illustrate our findings graphically. Each box plot in our visualization offers a different angle on
the data, analysing each weekday concerning several seasons. The interquartile range (IQR), which
encompasses the middle 50% of the data, is shown by the centre box of the graphic. The horizontal
line inside the box shows the median concentration of NO-, while the bottom and top margins of
the box represent the 25th and 75th percentiles, respectively. The whiskers that protrude from the
boxes show the dispersion and fluctuation of NO- concentrations. The top whisker shows the most
outstanding value within 1.5 times the IQR, while the minimum value within 1.5 times the lower
whisker shows the IQR. Outliers are extreme data points independently shown as distinct points
outside the whiskers to shed light on unusual occurrences or noteworthy abnormalities. The box
plot analysis provides fascinating new information on NO: pollution's spatiotemporal trends. For
instance, throughout the Autumn and Spring seasons, we saw greater NO- concentrations on
Mondays, with mean values of around 77.21 g/m3 and 80.65 g/m3, respectively as seen in Fig.
4.6.
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NO2 by Day of Week
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Fig. 4.6 Box and whisker and Dot plot showing NO: Conc. day-wise

On the other hand, during the Summer, the mean NO: concentration on Mondays was around
52.91 g/m3, which was lower in comparison. These data point to significant weekday-based
changes in NO: concentrations, which may affect our knowledge of how industrial processes,
traffic patterns, and weather patterns affect air quality. The seasonal differences also highlight the
importance of the atmosphere and the sources of emissions at various periods of the year.
Policymakers, academics, and stakeholders may get essential insights into the temporal dynamics
of NO: pollution in the Delhi region by using the box plot visualization which is clearly visible in
Fig. 4.8.
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In order to comprehend the temporal patterns and seasonal fluctuations of this important air
pollutant, we thoroughly examined Nitrogen Dioxide (NO:) concentrations in the Delhi region for
this study. Box plots, a potent graphic technique that effectively depicts the distribution and
statistical measurements of NO. concentrations throughout several dates and seasons, were used

to illustrate our findings graphically.

This study comprehensively investigates the levels of Nitrogen Dioxide (NO-) in the Delhi area
for a period of 12 months. The graphical representations employed in this study serve as visual
aids to depict the patterns and fluctuations in nitrogen dioxide (NO) levels, utilising data derived
from monthly observations. The main objective of our study was to provide valuable insights for
air quality control initiatives by examining the temporal trends of NO: pollution and identifying

potential periods of heightened risk.

The line figure illustrates the concentration trend of NO: over the course of many months,
emphasising notable seasonal variations. Significantly, the concentrations of NO: exhibited a
noticeable increase throughout the month of November, characterised by a mean value of 94.36
g/m3 and a reported maximum concentration of 460.62 g/m3. In contrast, there was a notable
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decline in NO: concentrations during the months of April and May, with average values of 51.94

g/m3 and 56.75 g/m3, respectively.

In addition, we noticed that NO- levels varied with the seasons, with winter (December to
February) showing greater NO- concentrations than other times of the year. Due to increasing
emissions from heating and vehicular activity, the mean NO- concentration for this period was
around 79.40 g/m3. In contrast, NO: levels were much lower during the monsoon season (July to
September), with a mean value of 50.99 g/m3, possibly due to rain-dispersing pollutants and

decreased industrial emissions.

The study also focuses on the graph effectively depicts the fluctuations, showcasing a prominent
initial concentration of 42.78 pg/m3 at the onset (0-hour). Following this, the concentration
exhibited a gradual and consistent rise, culminating at the 6th hour with an impressive peak value
of 69.65 pg/m? as it can be observed in Fig. 4.8 . Subsequent to this apex, a noticeable decrease
occurred, resulting in a significant drop to a minimum level of 18.92 pg/m3 by the eighth hour.
Remarkably, there was a subsequent reversal in the observed pattern, characterised by a gradual
increase towards the duration of 14.5 hours, accompanied by a surge in PM2.5 concentrations to
approximately 114.98 pg/ms3. As the passage of time continued, specifically as it neared the 20th
hour, a significant decline was observed, eventually reaching a steady state at a concentration of
60 pg/ms3. Ultimately, after the completion of the 24-hour duration, the concentration reverted back
to its initial value of 42 pg/m3. The comprehensive examination conducted on an hourly basis
highlights the ever-changing characteristics of air quality, which is marked by noticeable high and
low points. As a result, this analysis provides significant and indispensable knowledge for the

purposes of environmental monitoring and the development of management strategies.
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Policymakers, researchers, and environmental authorities may thoroughly study the NO-
concentration trend to develop practical solutions for reducing air pollution in the Delhi region.
We may apply targeted interventions and restrictions to minimize NO: emissions at peak times
and support sustainable air quality management by comprehending the temporal patterns and
seasonal changes of NO..

To fully understand air pollution dynamics, this study emphasizes the importance of ongoing
monitoring and analysis of air quality data. These results are essential in creating evidence-based
policies and strategies to safeguard public health and improve the general well-being of the

population in the Delhi region as we work to create a cleaner and healthier environment.

To comprehend the temporal patterns and seasonal fluctuations of this vital air pollutant, we
thoroughly examined nitrogen dioxide (NO-) concentrations in the Delhi region for this study. Box
plots, a potent graphic technique that effectively depicts the distribution and statistical
measurements of NO-. concentrations throughout several dates and seasons, were used to illustrate

our findings graphically.
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In this study, a comprehensive analysis was conducted on the levels of Nitrogen Dioxide (NO-)
in the Delhi region over a span of 12 months . The study employed monthly measurements and
employed graphical representations to depict the patterns and fluctuations in NO: levels visually.
The main objective of our study was to provide valuable insights for air quality control initiatives
by examining the temporal variations of NO. pollution and determining potential periods of

heightened risk.

The line plot visually represents the concentration trend of NO. over the course of many months,
emphasizing notable seasonal patterns. Notably, NO: concentrations increased noticeably in
November, with a mean value of 94.36 g/m3 and a maximum-recorded concentration of 460.62
g/m3. On the other hand, the NO: concentrations significantly decreased in April and May, with

mean values of 51.94 g/m3 and 56.75 g/m3, respectively same can be seen in Fig. 4.9.
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Fig. 4.9 Depiction of NO: levels based on months

In addition, we noticed that NO: levels varied with the seasons, with winter (December to
February) showing greater NO- concentrations than other times of the year. Due to increasing
emissions from heating and vehicular activity, the mean NO. concentration for this period was
around 79.40 g/m3. In contrast, NO: levels were much lower during the monsoon season (July to
September), with a mean value of 50.99 g/m3, possibly due to rain-dispersing pollutants and
decreased industrial emissions as it is depicted in Fig. 4.9.
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Policymakers, researchers, and environmental authorities may thoroughly study the NO-
concentration trend to develop practical solutions for reducing air pollution in the Delhi region.
We may apply targeted interventions and restrictions to minimize NO- emissions at peak times
and support sustainable air quality management by comprehending the temporal patterns and

seasonal changes of NO..

To fully understand air pollution dynamics, this study emphasizes the importance of ongoing
monitoring and analysis of air quality data. These results are essential in creating evidence-based
policies and strategies to safeguard public health and improve the general well-being of the

population in the Delhi region as we work to create a cleaner and healthier environment.

4.2.4 Conclusion

This study introduced a novel hybrid model that integrated a Transformer architecture with a
Bidirectional Long Short-Term Memory (BiLSTM) network to forecast Delhi's nitrogen dioxide
(NO>) pollutant concentrations. The proposed model effectively utilized the advantages of both
architectures, allowing it to capture intricate temporal patterns and dependencies within the NO-
data. The study's presentation of experimental outcomes offered evidence supporting the
effectiveness of the suggested technique in generating accurate forecasts and demonstrating
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promising potential for air quality management. The investigation examined the temporal patterns
and seasonal variations of nitrogen dioxide (NO:) concentrations through graphical
representations, including box and line plots. The results indicated notable fluctuations in NO:
concentrations based on weekdays and seasons, providing insights into the impact of industrial
activities, traffic flow, and meteorological factors on atmospheric conditions. This information has
the potential to provide valuable guidance to policymakers, researchers, and stakeholders in the
formulation of focused interventions and policies aimed at mitigating NO- emissions during
periods of heightened risk, thereby enhancing the management of air quality. The performance of
the hybrid model was assessed by employing the root mean square error (RMSE) metric, which
measured the accuracy of the model's predictions relative to the true values. The findings suggested
that the proposed methodology exhibits promising results in forecasting levels of NO- pollutants.
The thorough evaluation and analysis of the model's performance are crucial in facilitating efficient

air quality management and environmental monitoring.
4.3 Significant Outcomes of this Chapter

The significant outcomes of this chapter are as follows:

» To predict nitrogen dioxide (NO-) concentration levels using satellite data through a novel
deep learning framework named BREATH-Net (Bi-directional Encoder with Transformer
for NO: Prediction). The proposed model integrates two primary components: Bi-
directional Long Short-Term Memory (BiLSTM) networks for capturing sequential
dependencies and Transformer architecture for leveraging attention mechanisms to model
long-range temporal relationships, significantly enhancing predictive accuracy.

* Implemented robust data preprocessing techniques such as MinMaxScaler for
normalization, and optimized model training using the Adam optimizer with learning rate
annealing, improving the model's convergence and generalization on unseen data.

« Conducted extensive performance evaluations, including Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), and Coefficient of Determination (R?). BREATH-
Net achieved an RMSE of 9.06, MAE of 5.11, and R2 of 0.96, outperforming other state-
of-the-art models like XGBoost, SVR-Linear, GRU+LSTM, and standalone Transformer

architectures.
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« Performed comprehensive Exploratory Data Analysis (EDA) to examine temporal patterns
and seasonal variations in NO- concentrations across Delhi, revealing significant weekday
and seasonal fluctuations, thus providing valuable insights into the impact of industrial
activities, vehicular emissions, and meteorological factors on air quality.

» Assessed the robustness and applicability of the BREATH-Net model in real-world urban
air quality management, demonstrating its potential to support policy-making for pollution
control and mitigation of respiratory health risks associated with NO- exposure.

The following research studies serve as the foundation for this chapter:

% Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "BREATH-Net: a novel
deep learning framework for NO: prediction using bi-directional encoder with
transformer.” Published in Environmental Monitoring and Assessment, Volume 196,
Acrticle number 340, (2024), IF — 3.0.

This chapter presents the BREATH-Net model, a hybrid deep learning framework combining

Transformer and BiLSTM architectures for accurate NO: forecasting, with performance

evaluations compared to existing models.

The next chapter introduces Arctic-Net, a hybrid model designed for efficient sea ice
classification using SAR images, focusing on its innovative architecture, training techniques, and

exceptional performance in environmental monitoring.
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Chapter 5: ARCTIC-NET: HYBRID DEEP
LEARNING MODEL FOR AUTPOMATED SEA-
ICE CLASSIFICATION

5.1 Scope of this Chapter

In the era of rapid climate change and increasing concerns about Arctic and Antarctic ice
dynamics, accurate sea ice classification has become a critical component of environmental
monitoring, climate modelling, and maritime navigation. The ability to efficiently classify and
monitor sea ice using Synthetic Aperture Radar (SAR) images is essential for understanding global
climate patterns, optimizing shipping routes, and mitigating risks associated with Arctic
exploration. Traditional classification methods, such as statistical modelling and classical machine
learning techniques, often struggle to effectively analyse the complex spatial and temporal

variations in SAR data, limiting their accuracy and generalization capabilities.

To address these challenges, this chapter presents Arctic-Net, a novel hybrid deep learning
framework designed to enhance the efficiency and precision of sea ice classification. Arctic-Net
integrates Convolutional Neural Networks (CNNs) with attention-based mechanisms, leveraging
the strengths of both approaches to capture local texture features and global contextual
dependencies within SAR images. This hybrid methodology allows the model to outperform
existing state-of-the-art classifiers, including DenseNet, ResNext, and Swin Transformer, by

achieving superior accuracy, precision, and computational efficiency.

This chapter provides a comprehensive discussion of the Arctic-Net framework, including its
architectural components: Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder
(STE), and Hierarchical Transpose Attention (HTA). It explores the dataset utilized for training
and validation, detailing preprocessing techniques such as image normalization, augmentation, and
stratified sampling to improve model robustness. The experimental setup, including hardware

configurations and hyperparameter optimization, is also elaborated to ensure reproducibility.

The performance evaluation of Arctic-Net is conducted through rigorous comparisons against

benchmark models, demonstrating its ability to achieve a classification accuracy of 0.93, a



55

precision of 0.91, and an F1-score of 0.91. Additionally, the chapter highlights qualitative analyses
using visualization techniques such as Layer CAM, which provides interpretability by illustrating

how the model distinguishes between different ice categories.

By introducing Arctic-Net, this research contributes to advancing automated sea ice
classification, enabling more efficient and scalable solutions for remote sensing applications. The
insights derived from this study can aid in the development of real-time sea ice monitoring systems,
support climate policy decisions, and facilitate safer maritime operations in polar regions. Future
advancements could explore the integration of multimodal remote sensing data, self-supervised
learning techniques, and real-time deployment strategies to further improve the applicability of

Arctic-Net in operational environments.

5.2 Arctic-Net: A Hybrid Convolutional and Attention-Based Model for

Efficient Sea Ice Classification Using SAR Images

5.2.1 Abstract

Sea ice classification accuracy is crucial for climate research, marine navigation, and
environmental monitoring. This study presents Arctic-Net, a unique hybrid model that improves
sea ice categorization using SAR pictures by combining convolutional neural networks (CNNs)
with attention processes. The Adaptive Convolutional Encoder (ACE), the Spatial Transposer
Encoder (STE), and the Hierarchical Transpose Attention (HTA) mechanism make up the three
main parts of the model. Together, these elements extract global and local information with high
efficiency, allowing for accurate sea ice classification with low computing costs. On a dataset of
4,000 SAR pictures, the Arctic-Net model achieves an accuracy of 0.93, precision of 0.91, and F1-
score of 0.91, outperforming many state-of-the-art models, such as DenseNet, ResNext, and Swin
Transformer. This makes operational sea-ice monitoring and classification tasks in resource-
constrained contexts a strong solution. The paper's conclusion includes a review of potential future

research avenues and industrial uses for Arctic-Net in real-time sea ice monitoring systems.
5.2.2 Proposed Methodology

The proposed sea-ice classification method is a novel hybrid framework that employs the

advantages of Convolutional Neural Networks (CNNSs) and attention processes to improve the
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extraction of features and classification accuracy. The model is precisely engineered to effectively
handle and examine SAR images, collecting spatial texture features and backscattering
information. These factors are crucial for precisely distinguishing various forms of sea ice. Table

5.1 presents the training process for the Arctic-Net model

Table 5.1 Pseudocode of the Proposed “Arctic -Net” Model

Input: Dataset= {X;,Y;},, X; € R3*?24x224 j||ystrating input images & Y; €{0,1,2,3,4,5,6}
as corresponding labels
Model parameters 6
Batch Size g8
Epoch €
Learning Rate Lr
After n epochs, Learning Rate Decay Factor y, where y € [0, 1]
Output: Trained Arctic-NET model for Sea Ice assessment

Initialize @ and the adaptive weights a

fori=1.... Edo (Training for &€ epochs)
forj=x4.... xg do (Iterate through each batch g within the epoch)
(xg, ¥p)P (Randomly select one batch with a size of B)
Vp = (x,;; 0) (Compute posterior probability for each input sequence)
L¢g = cross entropy loss (y,yg) (Calculate cross-entropy loss)
0 <=0 —LrAagLcg(yr, y) (Optimize model parameters by minimizing.
computing loss{ 0 } cross-entropy loss L¢g using backpropagation)
if (i%n == 0)
end for
If i % n=0 then
Lr «Lr xy (Decay learning rate after every ‘n’ epochs)
end for

return None

Arctic-Net Framework

The Arctic-Net model consists of three primary components: the Adaptive Convolutional
Encoder (ACE), the Spatial Transposer Encoder (STE), and the Hierarchical Transpose Attention
(HTA) mechanism. The purpose of these components is to enhance the process of extracting
features and encoding global context in a computationally efficient manner. The presence of this

structure is essential for developing a solid deep neural network when resources are constrained.

The ACE module utilizes depth-wise separable convolutions with dynamic kernel widths
ranging from 3 to 9 to minimize computational effort while preserving feature efficacy. This

concept improves the representation of local features using flexible kernels, resulting in better
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performance than fixed alternatives. ACE incorporates Layer Normalization (LN) and Gaussian
Error Linear Unit (GELU) activations to provide accurate and effective non-linear feature
mapping. In addition, ACE has a skip connection to guarantee seamless information transmission
inside the network.
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Fig. 5.1 Overall framework for Arctic-Net
The STE module is designed to teach the acquisition of adaptable multiscale feature
representations and improve comprehension of global context. The input tensor is divided into

subsets, and each subgroup is processed using depth-wise convolutions. The results are then
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combined to capture both detailed and global representations. This approach guarantees the
creation of an efficient network in terms of its parameters, resulting in a reduced computing load

compared to conventional techniques.

The HTA method in Arctic-Net is a fundamental invention integrating components from Vision

li

N x N
CW-Conv

HxWxC

Normalization

\ 4

A 4
HNEEEENEEEEE

Flatten

HxWx4C
HEEEEEREEEEEN

A\ Flatten
Y HxWxC

Fig. 5.2 Adaptive Conv. Encoder
Transformers (ViTs) and Convolutional Neural Networks (CNNs). The HTA architecture begins

by evaluating an input image with dimensions of 224x224. It next divides the image into smaller

patches, either 14x14 or 7X7 in size.

The patches are transformed into linear embedding tokens and then inputted into a series of
HTA blocks. These blocks are specifically intended to encode both spatial and channel
information. The HTA block is composed of two main modules: Permute-MLP and Channel-MLP.
The Permute-MLP module processes spatial information, whereas the Channel-MLP module
encodes channel information. The Weighted Permute-MLP improves this process by adaptively
modifying the significance of different branches through divided attention, enhancing network

performance.
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Integrating these components into the Arctic-Net model architecture simplifies the creation of a
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Fig. 5.3 Layer CAM visualization of a SAR image from the Sentinel-1 product (Wishart), with the
corresponding layer output.
precise and economical deep neural network. Combining the ACE, STE, and HTA modules allows
for complete feature extraction and global context representation while minimizing computing
complexity. By employing this comprehensive method, Arctic-Net guarantees exceptional
precision and effectiveness, rendering it an ideal choice for vision tasks on devices with limited

resources.

The layer CAM representation in graphically emphasizes the model's attention on particular
input portions that significantly affect the categorization decision. Additionally, it exposes the
distinct characteristics present in these areas, such as textures, forms, or edges, which the model
depends on to formulate its forecast. Arctic-Net offers a robust and expandable solution for
complex deep learning tasks by utilizing innovative feature extraction methods and attention

mechanisms.

Adaptive Convolutional Encoder (ACE)

The adaptable Convolutional Encoder (ACE) presents a new method for representing features
using depth-wise separable convolutions with dynamic and adaptable kernel sizes; it can also be
observed in Fig. 5.2 .ACE is a two-layer structure that improves the representation of local features
by using adaptable NxN kernels. These kernels have sizes of 3, 5, 7, and 9 at different phases. This

design decision enhances performance compared to static kernel alternatives and incorporates
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conventional Layer Normalisation (LN) and Gaussian Error Linear Unit (GELU) activations for

reliable non-linear feature mapping.

Unlike typical Convblocks, ACE incorporates a skip connection to guarantee smooth
information transmission within network topologies. This novel paradigm has exhibited

exceptional performance, . The following equations precisely specify the ACE.
Ziy1 = 3; + Flatteng (Flatten(N(CW (3;))) (5.1)

The equation (1) demonstrates the relationship between the input feature maps z; denotes the
input feature maps of shape HXWxC, Flatten, is a point-wise convolution layer followed by
GELU, CW is kxk Channel-wise convolution, N is a normalization layer, and z;,, denotes the

output feature maps of the ACE.

Spatial Transposer Encoder (STE)
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The STE consists of two main components specifically developed to enhance feature
representation and improve understanding of the global context. It is represented in Fig. 5.4. It
utilizes cutting-edge methods to improve flexibility and effectiveness in managing various levels
of detail and worldwide picture representations.

The first component of the STE focuses on learning adaptive multiscale feature representations.
The STE adopts a multi-scale processing approach without using 1x1 pointwise convolution

layers, ensuring a lightweight network with optimized parameters and operational efficiency.

The method involves splitting the input tensor of size H x W x Cinto eight subsets, each

represented by a;, the spatial dimensions remain the same, while the number of channels is reduced
to g . The i €{1, 2, 3,4...,s} and H, W, C denote height, width and channel respectively. Every
subset, excluding the initial one, performs a 3x3 channel-wise convolution f; , generating an
outcome denoted as Z;. In addition, the result of the previous depth-wise convolution, denoted as

Z;_4, Is combined with the current subset a; before being processed by f;. Each depth-wise

operation f; processes feature maps from all preceding splits a;, 7 < i

The cardinality of the set s is dynamically modified according to the stage t, where t belongs
to the set { 2, 3, 4}. The output variable Z; is defined as shown in eq (5.2):

a; lfl =1;
z, =1 fila) Cifi=1t=2; 5.2)
fi(a;) if 2<i<sandt.

To represent the global context more efficiently, we have implemented a transposed query and
critical attention method, which avoids the excessive computational burden associated with typical
transformer self-attention layers. This method simplifies the process by calculating the dot-product
operation of the multi-head self-attention (MSA) across channel dimensions instead of spatial
dimensions. This allows for the computation of cross-covariance across channels, resulting in
attention feature maps with a natural awareness of global context. Given a tensor Z that has been
normalized and has ashape of H x W X C, it computes the projections of the query (Q), key (¥),

and value (V) using three linear layers as it shows in eq(5.3):

Q=W,2, K=Wy 2, V=Wy2 (5.3)
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The variables Wy, Wy, and W), represent the projection weights for 9, %, and V respectively.
The dimensions of each object are defined by the variables H, W and C. L, normalization is used
on Q and X to provide stability throughout training. Instead of calculating the dot-product between
Q and X Tacross the spatial dimension (H-W x C)-(Cx H-W), it calculates across the
channel dimensions between 97and X (C x H - W)-(H - W x C), resulting in a CxC softmax-
scaled attention score matrix. The final attention maps are derived by multiplying the scores with
the matrix V and then summing them. Afterward, two 1x1 pointwise convolution layers, layer
normalization (LN) and GELU activation generate non-linear features as it is demonstrated in eq
(5.4) & (5.5).

X =TransposeAttention(Q, K, V) + X (5.4)
TransposeAttention(Q, K, V) = V -softmax( 9”7 - K) (5.5)

Hierarchical Transpose Attention (HTA)

The Hierarchical Transpose Attention (HTA) architecture combines components of Vision
Transformers (ViTs) and Convolutional Neural Networks (CNNs) to produce accurate and
efficient feature representation, as can be observed in Fig. 5.5. The architecture begins by
analyzing an input image with dimensions of 224x224. The image is then separated into smaller
patches, which can be 14x14 or 7x7. The patches are converted into linear embedding (tokens)
using a standard linear layer, following the approach suggested by Tolstikhin et al. (2021)[75].
The tokens are then inputted into a sequence of HTA blocks specifically intended to encode spatial
and channel information. Once the HTA blocks have been processed, the tokens are averaged
across the spatial dimensions and fed into a fully connected layer to provide the final class
predictions.

The HTA block, which serves as the foundational unit of this architecture, has two primary
modules: Permute-MLP and Channel-MLP. The Permute-MLP module stores spatial information,
while the Channel-MLP module encodes channel information. The Channel-MLP module is
organized comparably to the feed-forward layer in Transformers[74], consisting of two wholly

linked layers with a GELU activation function in the middle.

The Permute-MLP in the HTA block performs a distinct operation on three-dimensional token

representations by utilizing three branches. Each branch encodes information specifically along
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the height, breadth, or channel dimension. The process of spatial information encoding consists of
a height-channel permutation operation, which is then followed by a fully linked layer to combine
and include the spatial information. Given an input tensor X that belongs to the actual numbers
and has dimensions as shown in eq(5.6-5.10).

H x W xC. (5.6)
Xy = Permute — H(X), (5.7)
Xw = Permute — W(X), (5.8)
X¢ = Fully Connected(X) (5.9
X = Fully Connected(Xy, Xy, Xc), (5.10)

To improve the Permute-MLP, we propose the Weighted Permute-MLP, which adjusts the
significance of various branches dynamically employing divided attention. This enhanced
approach prioritizes optimizing the network's ability to emphasize the most relevant aspects,
namely focusing on Xy, Xy & X¢. The HTA network consists of many HTA blocks, each carrying

out adaptive multiscale feature learning and efficient global context encoding. The partnership of
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the Permute-MLP and Channel-MLP modules effectively captures complex spatial and channel

interactions, guaranteeing a robust and efficient feature representation.

H
—

w
—

—>
Identify

Skip

Connection v
Output

\ 4

Fig. 5.5 Hierarchical Transpose Attention
In summary, the HTA architecture is a notable improvement that effectively manages the
complexity of models and computing efficiency. The architecture of this system enables efficient

processing and achieves high accuracy, effectively tackling the specific issues presented by

surroundings with limited resources.
5.2.3 Experimental Results and Discussion

This section contains detailed information regarding the dataset utilized during the research, the

experimental settings of the proposed framework, and performance assessments.

Dataset and preprocessing
To evaluate the effectiveness of the Arctic-Net model, we employed an extensive SAR dataset
consisting of 4,000 sea ice pictures that were categorized into seven unique groups. Every image

was adjusted to a resolution of 224x224 pixels to maintain uniformity throughout the collection.
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The dataset was divided into three subsets: training (70%), validation (15%), and testing (15%).
Careful attention was given to ensuring that each division maintained a balanced distribution of

classes.

Normalization was a crucial step in preprocessing, including adjusting pixel values to have a
mean of zero and a standard deviation of one based on the dataset. Constraining the pixel values
to a consistent range improved the efficiency of training the neural network. After normalizing,
the dataset was divided into 80% for training, 10% for validation, and 10% for testing. Stratified

sampling was used to equally represent all sea ice categories in these subgroups.

The data loading process was overseen by PyTorch's DataLoader, which was set up to handle
batch sizes and shuffling optimally, specifically designed for the training, validation, and test sets.
This configuration was explicitly created to accelerate importing and grouping data during the
training stage. In addition, data augmentation techniques were utilized, such as random horizontal
and vertical flips, to improve the model's capacity to generalize. The preparation process, which
includes data augmentation, normalization, and efficient data loading, greatly enhanced the quality
and variety of the training dataset. As a result, the performance and generalization of the Arctic-

Net model in the sea ice classification task were dramatically improved.

Implementation details

The PyTorch implementation of the Arctic-Net model consists of three main components: the
Adaptive Convolutional Encoder (ACE), the Spatial Transposer Encoder (STE), and the
Hierarchical Transpose Attention (HTA) mechanism. Every element is carefully crafted to

maximize computing efficiency while maintaining the integrity of feature representation.

e Adaptive Convolutional Encoder (ACE): ACE is built utilizing depth-wise separable
convolutions, which use dynamic kernel sizes (3, 5, 7, and 9). This design enables the
effective extraction of local features in a resource-efficient manner. Layer Normalization
(LN) and Gaussian Error Linear Unit (GELU) activations are used to map non-linear
features efficiently. ACE incorporates skip connections to enable continuous information
propagation inside the network.

e Spatial Transposer Encoder (STE): STE is designed to acquire flexible and

comprehensive feature representations at several scales and improve the encoding of
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overall context. The input tensor is partitioned into eight subgroups, and each subset
undergoes depth-wise convolutions. An efficient method is used to capture global context
by employing a transposed query and key attention mechanism, which avoids the
computing burden usually associated with traditional self-attention layers.

e Hierarchical Transpose Attention (HTA): The HTA model combines features from
Vision Transformers (ViTs) and Convolutional Neural Networks (CNNSs) to capture both
spatial and channel information. The architecture consists of a sequence of HTA blocks,
each consisting of Permute-MLP and Channel-MLP modules. The Permute-MLP module
specifically emphasizes the encoding of spatial data, whereas the Channel-MLP module is
responsible for processing channel information. The addition of weighted permute-MLP
incorporates dynamic attention, improving the model's capacity to prioritize essential

characteristics.
Training Protocols

The Arctic-Net model underwent training using the AdamW optimizer, with an initial learning
rate of 0.001. A cosine annealing learning rate schedule was implemented to reduce the learning
rate, following a cosine curve progressively. This approach was shown to be successful in
improving the learning process in the later phases of training. The training was carried out for 100
epochs using a batch size of 32. The model's generalization capabilities were enhanced by applying
data augmentation techniques, such as random rotations, horizontal and vertical flips, and

normalization.

Hardware

The studies utilized a machine with two NVIDIA A5000 GPUs, each possessing 24 GB of
RAM, to enhance the deep learning calculations for Arctic-Net model training. The device was
also equipped with 128 GB of RAM and SSD storage to effectively manage the extensive SAR
dataset and guarantee seamless data processing. The model was implemented and optimized using

PyTorch's deep learning framework, utilizing GPU acceleration via CUDA for enhanced speed.

Performance Metrics
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The performance of the trained model is assessed using a range of evaluation metrics, including
accuracy, precision, recall, F1-score, and Matthews Correlation Coefficient (MCC). These metrics

offer comprehensive insights into various facets of the model's classification performance.

Accuracy: It measures the accuracy of the model's predictions by calculating the ratio of
correctly classified samples to the total number of samples in the dataset. However, accuracy may
provide a partial picture, especially in class imbalance.

Precision: This metric focuses on the correctness of optimistic predictions and measures the
proportion of accurate positive predictions among all optimistic predictions made by the model. It
is beneficial when the cost of false positives is high.

Recall: Also known as sensitivity or actual positive rate, recall measures the proportion of
accurate optimistic predictions among all actual positive samples in the dataset. It evaluates the
model's ability to capture all relevant instances of a particular class.

F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced
measure of the model's performance. It is precious when there is an imbalance between the number

of positive and negative instances in the dataset.

Matthews Correlation Coefficient (MCC): MCC is a correlation coefficient that considers true
and false positives and negatives. It ranges from -1 to 1, with 1 indicating perfect predictions, 0
indicating random predictions, and -1 indicating complete disagreement between predictions and

ground truth.
Experimental Results and Analysis

This section evaluates the proposed Arctic-Net model compared to many advanced models for
sea ice classification, including PGN+SVM, PGIL, Vision Transformer (ViT), DenseNet, DaVIT,
ResNext, and Swin Transformer. This study utilizes Precision, Recall, F1 Score, and Accuracy as

evaluation measures to examine each model's performance thoroughly.

Table 5.2 Performance Metrics and Comparison Again SOTA

Performance Metrics
Model

Precision Recall F1 score Accuracy
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PGN+SVMI56] 0.83 0.82 0.82 0.84
PGIL[56] 0.85 0.85 0.84 0.86
VIT[76] 0.85 0.86 0.85 0.87

DenseNet[77] 0.89 0.88 0.87 0.89
DaVIT[78] 0.84 0.84 0.84 0.85
ResNext[79] 0.85 0.85 0.85 0.86
Swin[80] 0.87 0.87 0.86 0.87
Proposed(Arctic-Net) 0.91 0.92 0.91 0.93

The findings in Table 5.2 indicate that Arctic-Net(highlighted in bold) surpasses all rival models
in the assessed criteria, highlighting its exceptional categorization proficiency.

The Arctic-Net model has superior performance across all parameters, with a precision of 0.92,
recall of 0.92, F1 score of 0.91, and accuracy of 0.93. These results indicate a substantial
advancement compared to previous models, underscoring Arctic-Net’s superior capacity to

reliably categorize various sea ice forms.

The enhancements in recall and F1 score illustrate Arctic-Net's capability to accurately detect
pertinent events across all categories, particularly infrequent or more challenging to classify. The
equilibrium between accuracy and recall is essential in practical contexts like sea ice monitoring,
where both overestimating and underestimating particular ice types can significantly affect marine

navigation and climate research.

Compared to the baseline models and prior research, including PGN+SVM and PGIL[56].
Arctic-Net significantly enhances accuracy and recall, signifying a more effective equilibrium
between reliably recognizing positive samples and minimizing false positives. This benefit is more
apparent when juxtaposing Arctic-Net with more sophisticated designs like ViT, DenseNet,
ResNext, and Swin. While DenseNet attains a commendable accuracy of 0.89, Arctic-Net
outperforms all SOTA models, underscoring the superiority of its architectural elements. The
improvements in Arctic-Net's performance are due to its distinctive architecture, which

incorporates the Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder (STE), and
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Hierarchical Transpose Attention (HTA) methods. This combination efficiently collects local and

global information, optimizing accuracy and model complexity.

The experimental findings validate the efficacy of Arctic-Net as a reliable approach for sea ice
categorization. The model's capacity to attain elevated accuracy while maintaining balanced
precision and recall renders it especially appropriate for practical applications where computing

resources are constrained, yet superior classification performance is essential.

Qualitative analysis of Arctic-Net

The t-SNE visualization of Arctic-Net's output offers a lucid representation of the model's
ability to distinguish between sea-ice types, which can be observed in Fig. 6. The scatter figure
demonstrates that the model proficiently clusters many categories, including Sea-Young Ice and
sea-old-ice, signifying excellent differentiation between these classes. Nevertheless, categories
with limited samples, such as Isbergs-Glacier and Icebergs, have more varied distributions. This
indicates that although the model excels in more common categories, there is room for
enhancement in differentiating less frequent classifications. The t-SNE results underscore the
model's ability to delineate unique feature representations of several sea-ice kinds while

identifying improvement opportunities.
5.2.4 Conclusion

This study presented the Arctic-Net model, an innovative hybrid framework that combines the
advantages of Convolutional Neural Networks (CNNs) and attention processes to proficiently
categorize sea ice from SAR pictures. Arctic-Net exhibited enhanced accuracy and computing
efficiency by utilizing the Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder
(STE), and Hierarchical Transpose Attention (HTA) components. The model surpassed leading
methodologies, including Vision Transformers (ViT), DenseNet, and Swin Transformer,

demonstrating significant enhancements in precision, recall, F1-score, and overall accuracy.
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t-SNE Visualization of Arctic-Net
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Fig. 5.6 t-SNE visualization of Arctic-Net embedding showing clustering of sea-ice categories.

Arctic-Net can derive local and global contextual information from intricate SAR data,
facilitating accurate sea-ice classification, especially in demanding conditions with few labeled
data. Its lightweight construction renders it exceptionally appropriate for deployment in resource-
limited environments, hence broadening its potential applications in climate monitoring, marine

navigation, and environmental research.

Although the model demonstrates considerable progress, subsequent research should
investigate improving its scalability and resilience to diverse sensor inputs and seasonal
fluctuations. Moreover, subsequent research may integrate more varied datasets and real-time

processing functionalities to enhance its applicability in operational sea-ice monitoring systems.

5.3 Significant Outcomes of this Chapter
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The significant outcomes of this chapter are as follows:

e To predict fire risk levels using remote sensing imagery through a novel framework named
“IGNITE-NET” (Fire Risk Prediction using Dynamic Receptive Fields and Dynamic
Channel Fusion Attention). The proposed model comprises two primary modules:
Dynamic Receptive Field Blocks (DRFBs) for efficient feature extraction with reduced
computational complexity and Dynamic Channel Fusion Attention (DCFA) for optimized
cross-channel interactions, enhancing the predictive accuracy without dimensionality
reduction.

e Implemented Self-Supervised Knowledge Distillation (SSKD) to improve model
generalization and robustness, enabling the use of both annotated and unannotated datasets
for enhanced learning outcomes.

e Conducted extensive performance evaluations, including accuracy, precision, recall, F1
score, and Matthews Correlation Coefficient (MCC), demonstrating the model’s superior
performance over state-of-the-art approaches.

e Performed ablation and generalization studies to assess the resilience and robustness of the
proposed IGNITE-NET model across various environmental conditions and datasets,
ensuring its applicability in real-world fire risk assessment scenarios.

The following research studies serve as the foundation for this chapter:

% Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, “Arctic-Net: A Hybrid
Convolutional and Attention-Based Model for Efficient Sea Ice Classification Using
SAR Images” Communicated in Cluster Computing

% Indian patent published ,application number 202511033470 “System and Method for
monitoring Sea Ice Formations Fire in Real time

This chapter introduces Arctic-Net, a novel hybrid deep learning framework that integrates

CNNs with attention mechanisms to enhance sea ice classification using SAR images,

achieving significant performance improvements over existing models.

The next chapter focusses on IGNITE-NET, a cutting-edge fire risk prediction model that
combines Dynamic Receptive Field Blocks (DRFBs) and Dynamic Channel Fusion Attention
(DCFA) to deliver accurate and efficient fire risk assessments, marking an important step forward

in disaster management and environmental monitoring.
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Chapter 6: IGNITE-NET: DYNAMIC ATTENTION
DRIVEN FIRE RISK PREDICTION

6.1 Scope of this chapter

Accurate fire risk prediction has become a pivotal element in environmental conservation,
disaster management, and public safety in the context of escalating wildfire occurrences due to
climate change and urban expansion. The ability to efficiently assess fire risks using remote
sensing data and Advanced Machine Learning and Deep Learning Techniques is crucial for
mitigating the adverse impacts of wildfires on human life, infrastructure, and ecosystems.
Traditional fire risk assessment models, including physics-based simulations and classical
statistical methods, often grapple with high computational demands and limited feature extraction

capabilities, which restrict their effectiveness and scalability.

To address these challenges, this chapter introduces IGNITE-NET, an innovative deep learning
framework tailored for fire risk prediction. IGNITE-NET integrates Dynamic Receptive Field
Blocks (DRFBs) and Dynamic Channel Fusion Attention (DCFA) mechanisms within a
lightweight Convolutional Neural Network (CNN) architecture. This integration leverages
dynamic feature extraction and attention-based optimization strengths to enhance local cross-
channel interactions and maintain high-dimensional feature integrity. The proposed methodology
significantly reduces computational complexity while achieving superior predictive accuracy,
outperforming existing models such as HRNET, ResNext, and Max ViT.

This chapter provides a detailed exposition of the IGNITE-NET framework, elucidating its core
components: DRFBs, which optimize spatial and channel-wise feature interactions, and DCFA,
which refines channel attention predictions without dimensionality reduction. The FireRisk
dataset, derived from the Wildfire Hazard Potential (WHP) dataset and the National Agriculture
Imagery Program (NAIP), serves as the primary data source for training and evaluation. The
dataset section covers pre-processing techniques including image normalization, augmentation,
and stratified sampling to enhance model robustness and generalization. The experimental setup
is comprehensively discussed, detailing the hardware configurations, software environment, and

hyper parameter tuning strategies employed to optimize model performance. Performance metrics
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such as Accuracy, Precision, Recall, F1 Score, and Matthews Correlation Coefficient (MCC) are
used to rigorously evaluate IGNITE-NET, with comparative analyses against state-of-the-art
models demonstrating its robustness and reliability. Additionally, this chapter highlights
qualitative analyses using visualization techniques like t-SNE and Layer CAM, which provide
insights into the model’s decision-making process and its ability to discriminate between different
fire risk levels. The integration of Self-Supervised Knowledge Distillation (SSKD) is also

explored, showecasing its role in enhancing model generalization and reducing overfitting.

By introducing IGNITE-NET, this research advances the field of fire risk assessment, offering
scalable and efficient solutions for environmental monitoring and wildfire management. The
findings contribute to the development of proactive fire mitigation strategies, informing policy
decisions and supporting real-time fire risk monitoring systems. Future research directions include
the incorporation of additional geospatial data sources, the application of advanced data
augmentation techniques, and the exploration of real-time deployment scenarios to further enhance

the practical applicability of IGNITE-NET in diverse environmental settings.

6.2 IGNITE-NET: Fire Risk Prediction using Dynamic Receptive Fields and

Dynamic Channel Fusion Attention

6.2.1 Abstract

Forecasting the likelihood of fires is crucial for reducing the severe impacts of wildfires, making
it a key component of environmental conservation and public protection. Identifying fire-prone
areas promptly and accurately allows for taking pre-emptive steps, minimizing risks to human
lives, property, and ecosystems. Current approaches to predicting fire danger struggle with
computational complexity and inefficiency in extracting features. This research presents IGNITE-
NET, a method for assessing fire risk that utilizes advanced deep neural network topologies and
attention mechanisms. The IGNITE-NET system comprises two main components: Dynamic
Receptive Field Blocks (DRFBs) and Dynamic Channel Fusion Attention (DCFA). The
components improve existing approaches by reducing computational costs, retaining feature
quality, and capturing local cross-channel interactions without reducing dimensionality. IGNITE-
NET also utilizes Self-Supervised Knowledge Distillation (SSKD) to improve the model's

performance and generalization skills. Experimental evaluations show that IGNITE-NET
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outperforms existing models in crucial performance measures like test accuracy, Matthews
Correlation Coefficient, precision, recall, and F1 score. Collaboration is invited to improve the
feasibility and application of the suggested model in real-world situations. IGNITE-NET is a
significant step forward in fire risk assessment, providing creative ways to tackle persistent

difficulties and support proactive wildfire control tactics.
6.2.2 Proposed Methodology

The proposed methodology will be discussed in this section.

Dynamic Receptive Field Blocks (DRFBs)

The ResNet architecture has become a reliable foundation for addressing diverse computer
vision tasks [35], with skip connections effectively mitigating vanishing gradient issues in deeper
models. Inspired by ResNeSt[79]: Split-Attention Networks, which employs multi-branch
channel-wise attention to enhance representation learning, we propose Dynamic Receptive Field
Blocks (DRFBs). DRFBs extend the Split-Attention mechanism by dynamically adjusting
receptive fields, enabling enhanced spatial and channel-wise feature interactions. This design
improves the network’s ability to capture complex spatial details, making it ideal for fire risk

assessment, as given by Equation (6.1).
ioutput =B,( Cﬂu('ﬁcom}?’ (Cd(input)))) + iinput (6.1)

The input feature map is represented as input € RE*#*W_ The notation Cd4(.) denotes a 1x1
convolutional operation that decreases the number of channels (C) in the input feature map to a
new number of channels C’, where C > C'. B,.(.) is a concatenation of batch normalization and
rectified linear unit (ReLU) activation. The operation £¢°™3(.) indicates a 3x3 convolutional
operation that captures important non-linear correlations. This operation maintains the same
number of feature channels while gradually reducing the spatial dimension, which refers to the
height and width of the feature maps. A, (.) denotes a 1x1 convolution that increases the

resolution of features with ¢’ channels to C.

In this work, a novel “Dynamic Receptive Field Blocks” (DRFB) module is designed to reduce
the computational cost of feature extraction without compromising the quality of features.

Specifically, the single-branch feature extraction of Eq. 1 can be replaced by a multi-branch design
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Fig. 6.1 The proposed Dynamic Receptive Field Blocks (DRFBs) module
that reduces the computational overheads. Specifically, the number of sub-branches is defined by
a hyperparameter u such that the £L°™¥s(.) operation reduces each feature map to C”’ = 2 x C/ u

channels in each sub-branch, thereby significantly reducing the computational complexity. It is
noteworthy that C > C' > C''.The resulting feature maps from each sub-branch after the squeeze,
convolution, and unsqueeze operations are summed elementwise, which is represented by the }.(.)

inEq. 2. Here A, . (.), L2 01 (.) and Cd 1 (.) represent similar operations from Eq. 6.1 with

reduced computation.
ioutput = ZZ:l(%w( "quc”(ﬁconUSC”(Cdc”(iinput))))) + iinput (6.2)

For example, let the input be i, € R®**32*32 which is the input feature size of the first skip

connection block of the Fig. 6.2 Dynamic Receptive Field Blocks module ResNet architecture. In
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the ResNet architecture, the 3 x 3 convolution operation produces 64 channel features of the same
spatial dimension. The total number of parameters in this lightweight convolutional layer is
36928. However, constructing the proposed DRFB module with ¢ = 32, the 3 x 3 convolution

Convs..,(.) produces 4 channel output from 4-channel input. It is noteworthy that the 1 x 1

convolution Cd . (.) in the DRFB downsamples 64 channel inputs to 4 channels for each sub-
branch before passing to £°™3 ..,(.). Each convolution layer in this design contains merely 148
parameters. The total number of convolutional parameters across all the sub-branches is 148 x
32 = 4736, significantly less than the convolutional block of the standard ResNet. Similarly, for
u = 64, the proposed DRFB module has a convolutional layer with just 2432 parameters, clearly
demonstrating the lightweight nature of the proposed DRFB blocks against each of the four ResNet
skip connection blocks. Proposing such a multi-branch architecture helps achieve superior
performance at reduced computation without increasing the depth of the neural network, which

often leads to overfitting [81].

The DRFB feature extractor can simulate the representational power typically achieved by
larger and denser layers without incurring the computational complexity that is commonly
associated with such layers. This is accomplished by splitting the input into lower-dimensional
embedding using unit convolutions, followed by transformation using the same set of filters in
parallel branches. Finally, the transformed embedding is concatenated to achieve the desired
consolidated transformation. The uniform across all multiple branches has significant implications
for model complexity, as it minimizes the need for fine-tuning a large number of hyper parameters

that would have been required if each branch had a distinct design.

Dynamic Channel Fusion Attention (DCFA)

This section introduces Dynamic Channel Fusion Attention (DCFA), inspired by DynaMixer:
A Vision MLP Architecture with Dynamic Mixing[82]. While DynaMixer employs dynamic
token-wise fusion to enhance MLP-like models, DCFA adapts this concept for channel
interactions. Unlike traditional methods like the SE block, which use dimensionality reduction,
DCFA efficiently captures local cross-channel interactions without reducing dimensionality.
Building on DynaMixer's dynamic fusion principles, DCFA enhances channel attention prediction,

ensuring robust performance for tasks like fire risk assessment..
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The operation of DCFA can be broken down into three discrete stages, which also can be

observed in Fig. 6.1.

Global Feature Representation: To begin, we independently apply global average pooling to
each channel of the input feature maps. Input feature map X of size H x W x C, where H is the
height, W is the width, and C is the number of channels. This process extractsa 1 x 1 x C feature
vector, where C denotes the number of channels. Implement global average pooling on each

channel separately to generate a feature vector.

1 H W 3 3

Importance Estimation: The feature vector's importance is estimated by using a one-
dimensional convolution with a kernel size of 1 x k, where k is computed dynamically dependent

on channel dimension C.
Feony = Conv1D(Fppg, Wy ) + b (6.4)
Fimp = ReLU(Fconv) (6.5)

Regularization using Activation Function: The prediction of importance is constrained between
0 and 1 through the application of an appropriate activation function, such as the sigmoid function.

Fsig = Sigmoid(Fimy) (6.6)

This section introduces a new method for creating a specialized deep neural network for
detecting FireRisk levels, focusing on optimizing both cost and accuracy. We are implementing
the DCFA module to improve the network's learning skills. We use a lightweight CNN framework
that incorporates multi-scale feature fusion to perform risk analysis successfully. We explain how
the SSKD technique is used to train the network model, guaranteeing good performance

effectively.

The SE block, commonly used in several models, typically uses global average pooling, two
fully linked layers with non-linearity, and ends with a sigmoid function to produce channel
weights. Although this method successfully captures cross-channel interaction and reduces

dimensionality to handle model complexity, recent research has shown that dimensionality
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reduction has a negative effect on channel attention prediction, making it inefficient and

unnecessary to capture dependencies across all channels.

Observed in Fig 3 for a graphic depiction of our module. This module comprises three primary
steps: first, performing global average pooling on feature maps to produce a 1 x 1 x C feature
vector; second, evaluating the significance prediction of the feature vector via one-dimensional
convolution with a kernel size of 1xk; and finally, normalizing the significance prediction to a
range of 0 to 1 using the Sigmoid function. Refer to Fig 3 for a graphical representation of our

module.

Dataset Description

The FireRisk dataset, referenced as[83], is a carefully curated compilation of remote-sensing
images that have been rigorously organized to assess the danger of fire. FireRisk is a crucial
resource in remote sensing and environmental monitoring. FireRisk will be compared with several

cutting-edge prediction models for fire risk categorization.

The United States Department of Agriculture's Wildfire Hazard Potential (WHP) study is the
primary source from which the FireRisk dataset was generated. The comprehensive analysis of
fire-risk danger and wildfire severity in different settings has influenced the research community.
The 2020 edition of the WHP raster dataset gives a thorough and complete evaluation of fire-risk
hazards in different parts of the US. Many geostatistical datasets were used to compile this
assessment. For instance, the Fire Programme Analysis (FPA) was used to compile a dataset on
the frequency and severity of fires, Wildfire was used to compile data on fuels and vegetation, and

FSim was used to estimate the likelihood and severity of wildfires.

The FireRisk dataset encompasses a full knowledge of the complex dynamics and nuanced
aspects of fire risk assessment, by including various and multiple information from the WHP
project. The FireRisk dataset plays a crucial role in our research by providing a robust and reliable
foundation for assessing and refining fire risk prediction algorithms. Its comprehensive structure
and carefully curated data support a systematic evaluation process, enabling accurate

benchmarking and improvement of predictive methodologies.

To effectively assess fire risk, the FireRisk dataset serves as an essential resource, offering

comprehensive and detailed information. By analyzing its spatial and temporal data, we can
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identify and explain critical patterns and trends influencing fire risk dynamics. This enables a
deeper understanding of the factors driving fire risk variability across diverse environments and

timeframes.

This research shows that the FireRisk dataset is an important source for building and testing
algorithms to anticipate fire risks. By utilizing the extensive information in this carefully selected

dataset, we can accurately assess the effectiveness and reliability of different prediction.

GAP

s |

<— Transpose

1xCx

1xXCxC

Fig. 6.3 Diagram of Dynamic Channel Fusion Attention (DCFA).
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Table 6.1 Pseudocode of the Proposed “ IGNITE-NET ” Model

Input: Dataset= {X;,Y;}¥,, X; € R3*270%270 j||ystrating input images & Y; €{0,1,2,3,4,5,6}
as Corresponding labels
Model Parameters 6
Batch Size B
Epoch &
Learning Rate L,

After n epochs, Learning Rate Decay Factor y, where y € [0, 1]

Output: Trained IGNITE-NET model for Fire Risk assessment
Initialize @ and weights a
fori=1.... edo (Train for a certain & number of epochs)
forj=xq.... xp do (lterate through each batch B within the
(x, YB)P (Randomly select one batch with a size of B)
¥y, = (xp;0) (Compute posterior probability for each input sequence)
Lcg=cross entropy loss(y,yp) (Calculate cross-entropy loss)
0 <=0—-1LAgLcs(VF Y) (Optimize model parameters by minimizing.
computing loss{ 8 } cross-entropy loss L¢g using backpropagation)
if (i%n == 0)
end for
end for

Return None

Integrating with the WHP project and drawing from an array of geo-statistical resources, the
Fire-risk dataset is also very detailed. The forecasting models are more accurate and reliable as a

result.
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To conduct comprehensive investigations and develop robust models for predicting fire risks,
the FireRisk dataset is an integral aspect of our research infrastructure. As a comprehensive tool
for evaluating fire risk, the WHP project distinguishes itself because it integrates many
geostatistical data sources. More effective approaches have been developed for reducing wildfires

based on this increased understanding of wildfire dynamics.

Overall Model Structure

The fire risk assessment model name IGNITE-NET that incorporates two main components:
the "Dynamic Receptive Field Blocks™ (DRFBs) and the "Dynamic Channel Fusion Attention"
(DCFA) module it is demonstrated in Fig. 6.5, which aim to improve feature extraction and
efficiently record local cross-channel interactions. These components are essential for creating a

strong deep neural network designed to identify fire risk levels.

High Low Moderate Non- Very High  Very Low Water

Burnable

Fig. 6.4 Layer Cam Visualization

In order, reduce computational effort while compromising features effectiveness, the DRFBs
module incorporates a multi-branch approach built around the ResNet architecture. By which
involves the hyper-parameter p, the DRFBs module effectively reduces computational complexity,
providing sub-branches to evaluate feature maps with decreased channel dimensions. Lightweight
convolutional layers that operate with fewer parameters than conventional Res Net block represent
the by-product of this technique. This allows for enhanced performance without getting the model
deeper.
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In contrast to traditional methods like the SE block, the DCFA module has an effective attention
mechanism that keeps track of localized cross-channel encounters yet maintains dimension
constant. The three-stage module proceeds through the following steps: first, it uses global average
pooling to represent features globally; second, it uses one-dimensional convolution with a kernel
size that is dynamically set; and third, it uses an appropriate activation function for normalization.
The DCFA module optimizes channel attention prediction through improving the neural network

more effective at learning using concentrating on local interactions.

Developing an accurate and cost-effective deep neural network for assessing fire risk becomes
easier by incorporating all of these elements within the model architecture. Comprehensive risk
assessments could be accomplished with less computational complexity by combining DRFBs and
DCFA modules with a lightweight CNN architecture that uses multi-scale feature fusion.
Improving the network model's performance and scalability, the proposed SSKD technique

ensures successful training.
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Fig. 6.5 Framework of the proposed Architecture where green block represents DCFA, and pink
block represents DRFB.
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The layer CAM representation in Fig. 6.4 visually highlights the model's concentration on
specific regions of the input that contribute most to the classification decision. It also reveals the
specific features within these regions, such as textures, shapes, or edges, that the model relies on

to make its prediction. As depicted in

Table 6.1, the model framework uses sophisticated feature extraction algorithms and attention
mechanisms. It also uses the FireRisk dataset, integrated with the Wildfire Hazard Potential (WHP)
project. By combining the two data sets, we can evaluate fire risk prediction models, which helps
us understand wildfire dynamics and develop better methods for controlling them.

6.2.3 Experimental Results and Discussion

The experimental methodology has been discussed in this section.

Dataset Selection and Pre-processing:

The experimental dataset serves a vital role in training and evaluating the effectiveness of the
fire risk categorization model. A rigorously curated dataset of high-resolution photos depicting
varied environmental situations prone to fire dangers has been selected for this investigation. The
dataset is meticulously annotated, with each image labelled to represent one of seven discrete fire
risk levels: 'high’, 'low’, 'moderate’, 'non-burnable’, ‘'very high', ‘'very low', and ‘water'. The selection
technique guarantees the equilibrium of classes and the inclusiveness of varied danger levels,
encompassing fluctuations in lighting, weather, and environmental conditions to mirror real-life

situations precisely.

Before model training, a sequence of pre-processing procedures is implemented to standardize
and improve the dataset's appropriateness for training. The photos undergo conventional
modifications, which involve scaling all images to a consistent resolution of 256x256 pixels and
normalizing pixel intensities to a standardized level. Additionally, data augmentation techniques
such as random horizontal and vertical flips enhance the training dataset, boosting the model's

robustness and generalization capabilities.
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Training Procedure

The proposed model is evaluated using F1-score, recall, accuracy, precision, and Matthew's
Correlation Coefficient to assess the trained model. Table 1 clearly illustrates the performance

metrics and the ranges of various indicators, showing the proposed model’s robustness.

Accuracy: It depicts the model's prediction accuracy by comparing correctly categorized
samples to the total samples in the dataset. An accurate representation may be imperfect,

particularly in the case of class inequality.

Precision: This indicator shows the percentage of correct optimistic model projections. It is
especially useful when false positives are costly. The percentage of optimistic projections among
all true positive samples in the collection is known as recall, sensitivity, or actual positive rate. It

evaluates the model's ability to capture all relevant instances of a particular class.

F1-score: The F1-score is the harmonic mean of precision and recall, providing a balanced
measure of the model's performance. It is precious when there is an imbalance between the number

of positive and negative instances in the dataset.

Matthews Correlation Coefficient (MCC): MCC is a correlation coefficient considering true
and false positives and negatives. It ranges from -1 to 1, with 1 indicating perfect predictions, 0
indicating random predictions, and -1 indicating complete disagreement between predictions and
ground truth.

Hardware and Software Environment

The experiments are conducted on a high-performance PC server equipped with an NVIDIA
QUADRO RTX A5000 graphics card featuring a memory capacity of 24 GB and 3042 NVIDIA
Cuda cores, acceleration to expedite model training and evaluation processes. The PyTorch deep
learning framework is utilized for model implementation and experimentation, leveraging its

extensive neural network development and training capabilities.

Result and Discussion
The evaluation metrics of various models, including HRNET, Resnext, Texture, DAVIT,
SWIN_S, Max ViT, and our proposed model as a visual representation in Fig 6. , were

meticulously analyzed to assess their performance in fire risk assessment. Each model has been
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scrutinized based on test accuracy, Matthews’s correlation coefficient (MCC), precision, recall,

and F1 score.
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Fig. 6.6 Performance metrics comparison of the proposed model and latest SOTA model

The proposed model exhibited a test accuracy of 76.08%, outperforming other models such as
HRNET (60.03%), Resnext (58.60%), Texture (55.56%), DAVIT (59.55%), SWIN_S (62.12%),
and Max ViT (59.74%). This remarkable accuracy underscores the effectiveness of our model in

accurately predicting fire risk levels.

Table 6.2 Performance Evaluation and Comparison with SOTA

Evaluation Metrics HRNET | ReSNEXT | Texture | DAVIT | SWIN_S M_ax Proposed

ViT model
Parameters(in Millions) 29 49 3 62 33 29 31

Test Accuracy 0.60 0.58 0.55 0.595 0.621 0.597 0.760
MCC 0.46 0.46 0.42 0.502 0.517 0.463 0.692
Precision 0.50 0.51 0.50 0.566 0.588 0.490 0.744
Recall 0.49 0.50 0.45 0.556 0.578 0.490 0.731
F1 0.50 0.50 0.42 0.567 0.583 0.497 0.737

Furthermore, the Matthews correlation coefficient (MCC) of our proposed model stood at
0.692, surpassing HRNET (0.462), Resnext (0.468), Texture (0.428), DAVIT (0.502), SWIN_S
(0.518), and Max ViT (0.464). The high MCC value indicates a strong correlation between the
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predicted and actual fire risk levels, highlighting the robustness of our model in capturing complex

patterns and nuances in the dataset.

In terms of precision, recall, and F1 score, our proposed model demonstrated superior
performance compared to other models. With scores of 0.744, 0.732, and 0.737 for accuracy,
recall, and F1 respectively, our model achieved a balance between the detection of fire risk and

the minimization of false positives.

Because of these scores, a proposed framework for fire risk assessment has been shown to be
useful for environmental monitoring and natural disaster management. By utilizing state-of-the-
art architecture and attention mechanisms, our model performs the fire risk more accurately than
any SOTA model. The efficient performance of the proposed model contributes to the area of fire
risk assessment, providing stakeholders with essential information that can be used to avoid
wildfires and protect vulnerable ecosystems. Due to the robustness and dependability of our model,
it is suitable for use in real-world scenarios for the purpose of developing proactive tactics to
mitigate wildfires Overall, the results presented herein underscore the significant strides in fire risk

assessment, propelled by cutting-edge research and innovative model architectures.
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Fig. 6.7 t-SNE visualization depicting the distribution of FireRisk classes, highlighting the
discriminative power of the proposed model in fire risk assessment

Analysis of T-SNE

The t-SNE portrayal in Fig gives a top-to-bottom comprehension of the spatial
dissemination of FireRisk classes. This representation helps in understanding the
discriminatory abilities of our proposed model. The significant clustering of fire risk
classifications, illustrated in Fig. 7 above, demonstrates the model's ability to classify and
distinguish between various fire hazard classes. This depiction provides a thorough overview
of our model's performance in fire risk assessment. The proposed model's discriminative ability
is better understood with the help of this visualization. This shows the unique clustering of fire
risk categories, demonstrating the model's ability to capture and discriminate between various
degrees of fire hazard. In addition to the numerical data, this visualization thoroughly reviews
the ability of model performance in fire risk assessment.

6.2.4 Conclusion

Our research model is a novel framework with deep neural network architecture to predict
fire-risk classes. The proposed approach identifies important categories of fire risk. The
Wildfire Hazard Potential (WHP) initiative was significant in establishing and evaluating the
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framework employing the FireRisk dataset. This model is designed to provide very accurate

predictions of fire risk classes because it uses a lightweight convolutional neural network

(CNN) architecture, a multi-scale feature extraction strategy, and a strong deep learning model
called IGNITE-NET. We determined that our IGNITE-NET model was the most accurate

compared to state-of-the-art models; therefore, we know it works. A high Matthews’s

correlation coefficient (MCC) demonstrated reliability in classifying fire risk classes in varied

environmental scenarios, and our approach effectively balances recall, accuracy, and F1-score.

6.3 Significant Outcomes of this Chapter

The significant outcomes of this chapter are as follows:

To enhance sea ice classification accuracy using SAR images through a novel hybrid
deep learning model named “Arctic-Net”. The proposed model integrates
Convolutional Neural Networks (CNNs) and attention mechanisms, specifically the
Adaptive Convolutional Encoder (ACE), Spatial Transposer Encoder (STE), and
Hierarchical Transpose Attention (HTA), enabling efficient extraction of local and
global features while maintaining computational efficiency.

Conducted comprehensive performance evaluations using metrics such as accuracy,
precision, recall, and F1-score. The Arctic-Net model achieved an accuracy of 0.93,
precision of 0.91, and Fl-score of 0.91, outperforming state-of-the-art models
including DenseNet, ResNext, and Swin Transformer. These results demonstrate the
model's superior classification capabilities and robustness.

Demonstrated the practical applicability of Arctic-Net for operational sea ice
monitoring, marine navigation, and climate research. The model’s ability to accurately
classify sea ice types with limited labeled data highlights its potential for real-time
environmental monitoring and deployment in resource-constrained settings,

contributing to advancements in climate studies and maritime safety.

The following research studies serve as the foundation for this chapter:

7
A X4

R/
¢

Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, “IGNITE-NET: Fire
Risk Prediction using Dynamic Receptive Fields and Dynamic Channel Fusion
Attention.” Communicated in Advances in Space Research

Indian patent published ,application number 202411073844 “System and Method for

detecting Fire Prone Areas using an Unmanned aerial Vehicle”
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This chapter introduces IGNITE-NET, an innovative deep learning framework designed to
predict fire risk levels by leveraging dynamic receptive field blocks (DRFBs) and dynamic
channel fusion attention (DCFA). The model significantly reduces computational complexity
while achieving superior predictive accuracy, demonstrating its potential for real-time fire risk

assessment.

The next chapter explores the performance versus computational complexity trade-off in
fire risk detection, focusing on the Swin Transformer architecture and evaluating models with
RGB and edge-based inputs. This study aims to provide insights into the balance between

model performance and computational cost in cross-domain fire risk detection.
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Chapter 7 : OPTIMIZING FIRE RISK
DETECTION: BALANCING MODEL
PERFORMANCE VS COMPUTATIONAL
COST

7.1 Scope of this Chapter

This chapter delves into the intricate balance between performance and computational
complexity in cross-domain fire risk detection, using advanced machine learning models,
particularly focusing on the Swin Transformer architecture. The study emphasizes evaluating
models with varying input types—RGB-based and edge-based images—derived from the
FireRisk dataset, a comprehensive collection of remote sensing imagery specifically designed
for fire risk assessment.The chapter is structured to provide a thorough exploration of the
methodologies, from data pre-processing to model selection and performance evaluation. It
begins by detailing the pre-processing techniques applied to the RGB and edge-based images,
highlighting how these inputs influence model training and accuracy. The selection of vision
models, including Swin Transformer, HRNet, ResNeXt, Max ViT, and a Texture-specific
ResNet50, is discussed in the context of their architectural advantages and limitations
concerning fire risk detection. A significant portion of the chapter is dedicated to the
experimental setup, encompassing hardware specifications, training parameters, and data
augmentation strategies. The performance of each model is meticulously analyzed through
various metrics such as accuracy, Matthews Correlation Coefficient (MCC), precision, recall,
and Fl-score, providing a comprehensive understanding of each model's capabilities and
limitations. The chapter also includes a comparative analysis with state-of-the-art models to

underscore the advancements achieved through the proposed methodologies.

Furthermore, it explores the generalization capabilities of these models across different
datasets, emphasizing the importance of robust model training for effective real-world

application.

In conclusion, this chapter not only presents a detailed examination of model performance

and computational trade-offs in fire risk detection but also sets the stage for future research
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directions, including the integration of temporal data, ensemble learning, and the development
of real-time detection systems.

7.2 Investigating the Performance vs Computational Complexity Tradeoff

in Cross-Domain Fire Risk Detection

7.2.1 Abstract

Fire risk detection is critical for timely interventions and effective management strategies in
mitigating wildfire impacts. This study examines the efficacy of many advanced models,
emphasizing the Swin Transformer architecture for efficient fire detection. We assessed RGB
input evaluations, highlighting the Swin_S model, which attained a test accuracy of 62.1%, and
the Swin_T model at 61%. Comparative analysis with current models demonstrated that
Swin_T_Edge surpassed its competitors, achieving the maximum accuracy of 66% and an F1
score of 0.587, confirming its efficacy in classification tasks while maintaining a balance in
model complexity. Cross-dataset tests further illustrated the models' durability across various
fire conditions, underscoring the necessity for solid generalization capabilities in real-world
applications. Statistical evaluations utilizing t-tests confirmed the substantial performance
enhancements of the suggested models. The findings highlight the Swin_T_Edge model's
promise as a premier option for fire risk detection systems, recommending future

improvements via ensemble learning and the incorporation of temporal data
7.2.2 Proposed Methodology

The proposed methodology is discussed in this section.

Dataset Description

The FireRisk dataset , is a carefully compiled collection of remote-sensing photos for fire
risk evaluation. It is a crucial resource for developing and accessing fire risk prediction models.
The FireRisk dataset was not generated for this study; instead, it is employed to determine the

efficacy of different prediction algorithms.

The data for this research originates from the Wildfire Hazard Potential (WHP) project,
established by the U.S. Department of Agriculture, recognized for its comprehensive
evaluations of fire risk and wildfire intensity throughout the United States. The WHP project
integrates geostatistical data sources, such as FSim for assessing wildfire susceptibility and

severity, LAND-FIRE for fuel and vegetation information, and the Fire Program Analysis
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(FPA) for historical fire occurrence records. The 2020 version of the WHP raster dataset offers
detailed fire risk evaluations classified into seven specific categories.

The raster dataset is provided in a geodatabase format (.gdb) and divides the nation into
grids, each measuring 270 meters per side, along with associated fire risk assessments for each
grid cell. The images in the FireRisk dataset are obtained from the National Agriculture
Imagery Program (NAIP), which utilizes airborne platforms to capture high-resolution ortho-
rectified imagery with a spatial resolution of no less than 1 meter, exceeding the quality
generally attained through satellite-based remote sensing. Strict quality criteria regulate the
images, necessitating a sun elevation of no less than 30 degrees and a maximum cloud cover
of 10% for each quarter of the image segments. Images are gathered during the growing season
to reduce the occurrence of snow and flooding. The collection comprises 91,872 remote-
sensing photos of fire risk assessments derived from the WHP dataset. Of them, 70,331 photos
are designated for training, whereas 21,541 images are allotted for validation. Every image is
subjected to a uniform cropping procedure, yielding dimensions of 270 x 270 pixels. It is
classified into seven discrete fire risk categories, enabling a comprehensive analysis of fire risk

levels across diverse geographical regions.

RGB-Based Input

The initial data preparation scenario involves a photograph dataset based on the RGB color
model. The images are utilized in an unaltered color format without image filtering or alteration
techniques. The preparation procedures for this subset of the dataset encompass the subsequent

steps:

Image Loading: The dataset is retrieved from the designated directory and consists of

images in RGB format.

Label Assignment: Every image is labeled according to the class in the image's file name.

The designation is employed in tasks related to supervised learning.

Image Transformation: The images undergo a transformation process to achieve a
standardized size, typically 256x256 pixels, to maintain consistency throughout the training

phase.

Data Augmentation: Data augmentation strategies enhance the model's generalization.

These transformations encompass random horizontal flips and random vertical flips.
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Edge Based Input

In the second data preparation scenario, the dataset comprises images based on edges. Edge-
based photos are produced by applying an edge-detection filter, such as the "FIND_EDGES"
filter, on the initial RGB images. The preparation procedures for this particular subset of the
dataset are outlined as follows:

Image Loading: The dataset, which consists of images that have undergone edge filtering,
is imported from the designated directory. Label Assignment: Just like RGB-based images,
edge-based images are assigned a label depending on the class indicated in the image's file

name.

Edge Filtering: The edge-filtered images are obtained by applying the "FIND_EDGES"
filter on the original RGB images. This procedure improves the perceptibility of boundaries

and outlines inside the pictures.

Image Transformation: Like RGB images, the edge-based images undergo resizing to

achieve a standardized size, guaranteeing uniformity throughout the model training process.

Data Augmentation: Data augmentation strategies are employed for edge-based images to
bolster the model's resilience. The strategies encompass the utilization of random horizontal

flips and random vertical flips.

The Preprocessing dataset is divided into RGB-based and edge-based images; the data
preparation pipeline can effectively accommodate diverse modeling techniques. This allows
for considering either raw color information or the prioritization of edge characteristics,
depending on the specific modeling requirements. The subdivision enables the creation of
specialized models that can efficiently acquire knowledge from several image categories to
tackle specific parts of your study, such as evaluating fire hazards

Pre-processing of input types

The dataset preparation encompasses two input types: RGB pictures and edge images. This
structured data preparation pipeline supports several modelling strategies, using raw color data
or focusing on edge features based on individual analytical needs. Utilizing these two input
sources in succession enables the development of models that effectively learn from each image

category, improving our capacity to evaluate fire danger levels across various geographical
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areas. This method enhances the models' flexibility and guarantees a thorough assessment of

fire dangers.
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Fig. 7.1 Proposed Framework for Fire Risk Assessment, illustrating the processing
of RGB and edge-based inputs for classifying fire risk levels.

Model Selection

The methodology utilized in the study for detecting fire danger across different domains
involves utilizing several vision models to analyze remote-sensing images. The models have
been chosen based on their appropriateness for Image classification tasks, namely those that
utilize edge information, RGB, and exclusive texture analysis. The model selection process

encompasses.

Proposed framework
This Section explains the proposed framework flow and model description employed for

further analysis, as can also be observed in Fig. 7.1.
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SWIN Transformer

The Swin Transformer (Swin_T_Edge)[76] is a significant breakthrough in visual modeling.
This model presents advancements in vision transformers by including innovative architectural
elements, like multi-headed self-attention with a window-based mechanism and shifting
windows. These advancements augment Swin's ability to capture distant relationships in visual
information efficiently. The training process employed by Swin closely aligns with that of the
Data Efficient Image Transformer (DeiT), with a particular emphasis on efficiency. The
process starts with pre-training the ImageNet-21k dataset and then fine-tuning the ImageNet-
1k dataset [84]. Swin's performance is outstanding, achieving a new state-of-the-art benchmark
on the Tiny ImageNet dataset. Notably, it has achieved a validation accuracy of 91.35%,
exceeding the previous leading model by 0.33%. Swin's adeptness in managing the Tiny
ImageNet dataset, in combination with its distinct window-based attention mechanism and the
accessibility of its source code for additional investigation, establishes it as an essential
selection for image classification tasks and a pivotal point of citation for researchers in this
domain. The study also alludes to additional transformer versions, such as Swin and MaxViT,

presenting intriguing prospects for further progressions in vision transformer models.

HRNET

The HRNet architecture, first developed for human posture estimation, has demonstrated its
versatility and applicability in several computer vision tasks. HRNet is proficient in
maintaining high-resolution representations, an essential prerequisite for functions that need
intricate spatial information, including semantic segmentation, facial landmark identification,

and object detection.

HRNet does this by maintaining several parallel convolutions that cover a range of
resolutions, from high to low. Additionally, it consistently integrates multi-scale information
across these parallel streams through fusion techniques comparable to model sizes and
computational efficiency[85].

RESNEXT

The ResNeXt architecture is a sophisticated convolutional neural network (CNN) structure
that builds upon the foundational ideas of Residual Networks (ResNets). The text presents the
fundamental notion of "cardinality," which serves as a metric for quantifying the quantity of
concurrent pathways inside a given network. These parallel routes, commonly known as

"cardinalities,” might be seen as a collective effort of numerous specialists working together to
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address a problem. By integrating this notion, ResNeXt enables the network to get a broad

spectrum of varied and comprehensive feature representations.

The cardinality-driven design of ResNeXt proves to be particularly helpful in the context of
your fire risk dataset. The system has exceptional proficiency in collecting delicate and
nuanced characteristics of utmost importance for applications such as image categorization
about fire hazards. ResNeXt's remarkable feature extraction skills enable precise and accurate
operation of your model, whether recognizing fire dangers in images or finding subtle patterns
indicative of possible risk factors[70].

Multi-Axis VIiT (Max Vit)

The Max ViT architecture represents a novel implementation of the vision transformer (ViT)
model, characterized by its efficiency and scalability. The proposed approach incorporates a
multi-axis attention mechanism, enabling the model to capture global-local spatial interactions
across various input resolutions while maintaining linear computational cost. Moreover, the
Max ViT model integrates convolutional layers into its design to enhance efficiency. The Max
ViT model has exceptional performance on many image classification benchmarks, including
ImageNet-1K, ImageNet-21K, and CIFAR-100, establishing itself as the current leader in the
field. Additionally, it has robust scalability when used for datasets of considerable size and

high-resolution images[86].

In conclusion, Max ViT has considerable strength and adaptability as a ViT model, holding
promise as a future frontrunner in many computer vision applications. The layer CAM

presented in Fig. 7.2 highlights the regions where the RESNEXT model focuses its attention.

TEXURE Model

The TEXTURE ResNet50 model is a variation of the ResNet50 architecture specifically
designed to cater to the requirements of computer vision jobs. The term "TEXTURE" in the
model's nomenclature alludes to its distinct emphasis on analyzing texture inside images. The
architecture of this model is optimized explicitly for cases in which the proper analysis of

images heavily relies on texture-based information.

TEXTURE ResNet50 inherits the fundamental structure of the ResNet50 architecture at its
core. The ResNet50 architecture is a convolutional neural network (CNN) comprising 50
layers. This depth gives it a greater capacity for learning complex hierarchical features than

earlier models. The fundamental structure of the architecture consists of a sequence of
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convolutional layers, residual blocks, and fully linked layers. The combined elements of these
components contribute to the model's capacity to effectively capture intricate patterns seen in

images.

One distinguishing characteristic of TEXTURE ResNet50 is its notable focus on examining
texture. The system is designed to effectively identify and analyze texture patterns present in
images. Examining texture is pivotal in image content analysis, particularly in material
identification, surface examination, and specific medical imaging assignments. The specialty
of TEXTURE ResNet50 allows it to perform exceptionally well in jobs requiring a high level

of emphasis on comprehending intricate aspects of texture[87].

Comparison of Methodologies

This section provides a succinct comparison of the approaches examined, emphasizing their
advantages and drawbacks. Each strategy offers distinct benefits for fire risk detection while
also posing obstacles. The table below delineates the principal advantages and disadvantages

of each model.

Table 7.1 delineates the various strengths and limitations of the models in this comparison.
The Swin Transformer is distinguished by its exceptional accuracy, but HRNet is superior at
jobs necessitating spatial precision. ResNeXt's cardinality-centric methodology is proficient
in intricate feature extraction, whereas Max ViT provides a scalable resolution. The Texture
model is optimized for texture analysis, rendering it highly appropriate when texture is
paramount. Each methodology offers distinct advantages for fire risk detection. Their choice is
contingent upon the particular demands of the work, including the necessity for texture
analysis, computing efficiency, or high-resolution representation.

Table 7.1 This table concisely compares the models, focusing on their key strengths and limitations
relevant to fire risk detection tasks.

Model Strengths Limitations
Swin Efficient multi-scale attention High computational complexity
Transformer State-of-the-art performance on

classification tasks

HRNet Preserves high-resolution details High computational demand due to multi-
Excellent for tasks requiring spatial resolution processing
precision

ResNeXt Robust feature extraction via Increased complexity leads to longer training

cardinality times
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Effective for fine-grained pattern

detection

Max ViT Efficient and scalable Limited real-world validation beyond

Strong performance on large-scale benchmark datasets

benchmarks

Texture Optimized for texture analysis Limited focus on broader contextual features

Based on proven ResNet50 architecture

7.2.3 Experimental Results and discussion

This section presents the experimental setup employed in the study, followed by a
comprehensive analysis and comparison of the performance of various vision models for cross-
domain fire risk detection. The results are evaluated based on key performance metrics,
highlighting the effectiveness and efficiency of each model in detecting fire risks across diverse

datasets.

Hardware Configuration

The experiments used a high-performance workstation with two NVIDIA A5000 graphics
cards, an Intel Xeon processor, and 128 GB of RAM. The hardware configuration was chosen

to optimize the model training and evaluation process.

Training Details

Data Parallelism: Data parallelism was employed to distribute the training workload
efficiently across the two NVIDIA A5000 graphics cards. This approach optimized training

times.
Batch Size: A batch size of 64 balanced training efficiency and memory utilization.

Number of Epochs: 50 epochs were used for training to guarantee model stability and
convergence. After conducting multiple rounds of experiments, it was determined that training

for 50 epochs was sufficient to achieve optimal model performance and convergence.

Learning Rate Schedule: The learning rate was adjusted using the cosine annealing

technique, facilitating efficient model convergence.

Optimizer: The most recent iteration of the AdamW optimizer, renowned for its potency in

deep neural network training, is employed.

Data Preprocessing
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The dataset was partitioned into two distinct groups, namely RGB-based images and edge-
based images. The preparation operations for RGB-based images encompassed many stages,
namely importing the images, assigning appropriate labels, scaling them to a specified
dimension of 256x256 pixels, and using data augmentation techniques such as random
horizontal and vertical flips. To improve the visibility of boundaries in edge-based images, a
filter called "FIND_EDGES" was utilized for edge detection. Subsequently, identical pre-

processing procedures were employed for RGB-based images.
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Fig. 7.2 Original image and Layer CAM Visualization in ResNeXt Original image (top) alongside
Layer CAM visualization (bottom). The Layer CAM highlights regions of interest in the original
image, providing insights into the model's focus areas during classification, categorized into five
classes: High, Low, Moderate, Non-Burnable, Very High, Very Low, and Water.

Model Performance and Complexity Analysis

This section thoroughly examines model performance and computational complexity to
provide significant insights into their efficacy in cross-domain fire risk detection while

considering computing requirements.

As presented in Fig. 7.3, the findings provide a comprehensive overview of key performance
indicators for each model. These indicators encompass CPU Time, GPU Time, Multiply-
Accumulate (MAC) operations, parameter count, and accuracy. This comprehensive research
enables well-informed conclusions on the trade-offs between a model's performance and
computational complexity.

The research reveals that the SWIN_T_Edge model attains the highest level of accuracy,
measuring 0.66. It is closely trailed by the SWIN_S model, which reaches an accuracy of 0.62.
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These models exhibit a noteworthy level of accuracy while simultaneously keeping the number
of parameters manageable. In contrast, the Texture Model demonstrates a moderate level of
accuracy, precisely 0.55, while exhibiting a notably low level of computing complexity. This

underscores the promise of texture-based models within this field.

Nevertheless, it is crucial to consider the computing demands associated with these models.
The Max VIiT model, which consists of 64.021 million parameters, exhibits significant
computational complexity, specifically about "CPU time™ and "GPU time”. It can be observed
in Table 7.2. Achieving an optimal trade-off between performance and complexity is

paramount in scenarios with limited resources.

In addition to the tabular data , A bubble chart in Fig. 7.3 is utilized to visually illustrate the
relationships among model accuracy, the number of parameters, and the Multiply-Accumulate
Operations (MAC). In this graph, the y-axis represents accuracy, while the x-axis represents
the number of parameters. The size of each bubble corresponds to the MAC, providing a clear

representation of how these metrics interact.
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Fig. 7.3 Model Performance Trade-off. This figure illustrates the relationship between model
complexity and accuracy, where the size of each bubble corresponds to the number of parameters (in
millions) for each model, effectively demonstrating the trade-off between computational demands and
performance metrics.

Result and Discussion

This part thoroughly examines model performance, specifically emphasizing diverse
evaluation measures for the models across distinct input situations, namely Edge Input and
RGB Input.
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The evaluated models include SWIN_T_EDGE, ResNext, SWIN_S, Max ViT, HRNET,
and Texture under RGB Input circumstances. Comprehensive performance analysis using
essential measures such as Test Accuracy, MCC (Matthews Correlation Coefficient),

Precision, Recall, and F1-score.

Fig. 7.4 presents a comprehensive summary of the performance metrics for each model
utilized in the study. The findings reveal considerable heterogeneity in CPU and GPU
processing durations, with the quantity of Multiply-Accumulate Operations (MAC) and
parameters. The Swin_T_Edge model attained the maximum accuracy of 0.66 while preserving
a comparatively low computational expense, indicating it may be the most efficient option for

fire risk assessment applications among the assessed models.
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Recall 0.565 0.498 0.584 0.495 0.497 0.498 0.507 0.455 0.552 0.578 0.495
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Fig. 7.4 This figure visually represents the evaluation metrics, including Test Accuracy, Matthews
Correlation Coefficient (MCC), Precision, Recall, and F1 score for various models (SWIN_T, ResNext,
SWIN_S, Max ViT, HRNET) using edge and RGB inputs. The chart illustrates the performance
differences across models, clearly comparing how each model performs with different input types.
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Table 7.2 Performance Metrics of Models table presents the CPU and GPU time per epoch, Multiply-
Accumulate Operations (MAC), number of parameters (in millions), and accuracy (ACC) for each
model, offering a concise comparison of their computational efficiency and performance.

Models CPU Time per GPU Time per MAC PARAM’s (in ACC
epoch epoch Millions)

ResNEXT[79] 0.31 0.7 1.399 22.994 0.58
Swin_S[80] 0.45 0.6 240.73 33.818 0.62
HRNET[88] 0.22 0.68 110.623 13.562 0.55
Texture[87] 21.48 0.8 1412.74 2.389 0.59
Max ViT[89] 1 0.19 434.665 64.021 0.59

Swin_T_Edge 0.29 0.3 124.464 19.621 0.66

Edge Input Evaluation

The assessment under edge input conditions indicates that SWIN_T consistently surpassed
other models, attaining the highest Test Accuracy of 66%. This signifies an enhanced capacity
to categorize edge-based inputs accurately. SWIN_S achieved an accuracy of 60.4%,
indicating a competitive performance. Max ViT and ResNext attained modest accuracies of
58.4% and 57.6%, respectively, demonstrating their efficacy, although lacking the
performance of the top models. Regarding the Matthews Correlation Coefficient (MCC), which
assesses the effectiveness of classifications, SWIN_T scored 0.546, highlighting its
dependability in extreme situations, whereas SWIN_S recorded 0.498. In terms of Precision,
indicating the capacity to identify positive instances accurately, SWIN_T (0.59) and SWIN_S
(0.562) exhibited the highest accuracy, but Max ViT (0.49) and HRNET (0.497) showed
marginally lesser accuracy in recognizing genuine positives. The Recall was the highest,

indicating the model's ability to identify all positive instances.

SWIN_T (0.584) and SWIN_S (0.565) demonstrated their efficacy in detecting positive
cases, while Max ViT and HRNET followed closely at 0.495 and 0.497, respectively. In
integrating accuracy and recall inside the F1-score, SWIN_T attained the optimal equilibrium
(0.596), succeeded by SWIN_S (0.562), establishing these models as the foremost contenders

under edge input conditions. A detailed illustration is in Fig. 7.4.

RGB Input Evaluation

In the RGB input assessment, SWIN_S surpassed other models with a Test Accuracy of
62.1%, underscoring its exceptional capability to process RGB inputs. SWIN_T was closely
behind at 61%, and Max VIiT attained 59.4%. This demonstrates the capacity of SWIN_S and
SWIN_T to generalize effectively over RGB input data. The MCC scores corroborated these
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findings, with SWIN_S achieving the maximum score of 0.53 and SWIN_T at 0.52, signifying
a robust association between anticipated and actual classifications. Max VIiT exhibited a
reduced MCC of 0.463, indicating marginally less consistent performance. The maximum
precision was achieved by SWIN_T at 0.588, indicating its superior capability in recognizing
true positives, but SWIN_S also demonstrated commendable performance with a precision of
0.55. Max ViT and HRNET achieved accuracy scores of 0.495 and 0.504, respectively,
signifying an elevated false positive rate relative to the leading models. Recall scores were
highest for SWIN_S (0.578) and SWIN_T (0.552), indicating their efficacy in identifying
positive instances, while Max ViT and HRNET followed at 0.495 and 0.498, respectively. The
F1-score, which reconciles precision and recall, was highest for SWIN_S (0.583), followed by
SWIN_T (0.567), underscoring their exceptional performance with RGB inputs.

Comparison with State of the Arts

Table 7.3 presents a comparison of various state-of-the-art models based on accuracy (Acc),
F1 score (F1), and parameter count (in millions). Swin_T_Edge excels with the highest
accuracy of 0.66 and an F1 score of 0.587, demonstrating its superior performance in
classification tasks. In contrast, Dense-net, EfficientNet-BO, and MobileNetV3-Large exhibit
lower accuracy and F1 scores, reinforcing the effective balance that Swin_T_Edge achieves
between performance and model complexity. This highlights Swin_T _Edge as the most
effective choice for applications requiring high accuracy and efficiency.

Table 7.3: Comparison with State-of-the-Art Models -Accuracy (Acc), F1 score (F1), and parameters

(millions) for different state-of-the-art models, showing the balance between performance and model
size.

Model Acc F1 Parameters
Dense-net[77] 0.55 0.49 ~24M
EfficientNet-B0[90] 0.53 0.47 ~5.3M
MobileNetV3-Large[91] 0.58 0.51 ~5.4M
DenseNet-121[92] 0.59 0.52 ~8M
ConvNeXt-Tiny[93] 0.6 0.53 ~28M
ViT[94] 0.612 0.501 ~86M
DINO[95] 0.628 0.526 ~87M
MAE[96] 0.633 0.549 ~87M
Swin_T _Edge 0.66 0.587 ~28M
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Generalization and Cross-Dataset Evaluation

This section assesses the generalization capabilities of the proposed models over diverse
datasets to gauge their robustness and adaptability in various real-world fire scenarios. We
conducted a cross-dataset evaluation, wherein models trained on one dataset are assessed on
the other, as outlined in Table 7.4. This evaluation is essential for determining the
generalization capability of models when confronted with unfamiliar data exhibiting varying
features, which is vital for fire detection systems that must function in multiple contexts and

situations.

Table 7.4 illustrates that models, including ResNEXT, Swin_T_Edge, Swin_S, HRNET,
and Max ViT, were trained and evaluated on both the FD and YAR datasets[97], [98]. The
outcomes are delineated in terms of accuracy (ACC), precision (P), recall (R), and F1-score
(F1). The models demonstrate differing levels of performance based on the training and testing
combinations employed. Typically, models evaluated on the same dataset exhibit superior
accuracy and enhanced performance measures relative to cross-dataset evaluations,

underscoring the significance of dataset variety in cultivating strong models.

For example, ResNEXT attained an accuracy of 0.87 when trained and evaluated on FD but
a diminished accuracy of 0.79 when assessed on YAR, highlighting the difficulties in cross-
dataset generalization. Comparable tendencies are noted with several models, including
Swin_T_Edge and HRNET. Max ViT has consistently superior performance across several
datasets, rendering it an appropriate choice for fire detection in diverse situations. This
assessment offers essential insights into the generalization capacities of the suggested models,

emphasizing the need for cross-dataset validation in fire risk detection systems.

Table 7.4 Generalization Study on the datasets where X represents FD and Y represents YAR. This
table demonstrates the cross-dataset evaluation of models trained on FDjo7] and YAR[9s] datasets,
highlighting their performance in terms of accuracy (ACC), precision (P), recall (R), and F1-score (F1)
when tested across the two datasets.

MODELS TRAIN TEST ACC P R F1
ResNEXT([79] X X 0.87 0.84 0.89 0.88
0.89 0.85 0.9 0.89
0.79 0.8 0.81 0.82
0.77 0.78 0.79 0.81
0.91 0.9 0.89 0.89
0.92 0.87 0.9 0.88

Swin_S[80]

<| x| <| x| <
<| x| x| <| <
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X Y 0.85 0.83 0.85 0.84

Y X 0.84 0.8 0.79 0.8

HRNET[88] X X 0.88 0.86 0.89 0.87
Y Y 0.87 0.84 0.86 0.85

X Y 0.85 0.82 0.84 0.83

Y X 0.84 0.83 0.85 0.84

Max ViT[89] X X 0.92 0.91 0.92 0.91
Y Y 0.93 0.89 0.91 0.9

X Y 0.88 0.84 0.89 0.85

Y X 0.88 0.85 0.86 0.84

Swin_T_Edge X X 0.89 0.88 0.87 0.87
Y Y 0.9 0.86 0.88 0.87

X Y 0.86 0.81 0.84 0.85

Y X 0.81 0.79 0.79 0.78

Evaluating Statistical Superiority: T-Test Analysis of Model Performance

The t-test is a robust statistical technique employed to evaluate the differences in means
between two samples, enabling researchers to ascertain if observed variances are statistically
significant. This study used a thorough t-test to assess the efficacy of our suggested technique
compared to several leading models. The findings display the normalized t-statistics and p-
values for pairwise comparisons. The Swin_T_Edge model regularly exhibits higher accuracy
than others, with p-values reflecting substantial statistical significance (p < 0.05) in all
comparisons. This indicates that the performance improvements realized by our method are
improbable to be coincidental, hence substantiating its efficacy in fire detection tasks. The null
hypothesis (Ho) states that no substantial difference exists between the means of the models
being compared, whereas the alternative hypothesis (Ha) asserts that such differences exist.
Employing a significance threshold of 0.05, our investigation underscores the resilience of the
Swin_T_Edge model, positioning it as a premier candidate in fire detection techniques.

7.2.4 Conclusion

In summary, the results of this study offer significant contributions to our understanding of
the complicated interplay between the performance and complexity of vision models when
applied to cross-domain fire risk detection. This paper thoroughly assesses many advanced fire

risk detection models, emphasizing the effectiveness of the Swin_T_Edge architecture. The
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experimental findings indicated that Swin_T_Edge attained the maximum accuracy (66%) and
an F1 score (0.587), surpassing traditional models while preserving a favorable equilibrium
between performance and model complexity. Examining RGB input data validated the
enhanced generalization skills of SWIN_S and SWIN_T, attaining substantial metrics
affirming their efficacy in fire detection tasks. Moreover, the cross-dataset evaluation
emphasizes the need for rigorous model training across diverse datasets to improve flexibility
in practical applications. The statistical analysis, bolstered by t-test assessments, confirms the
superiority of the presented models, particularly the Swin_T_Edge, highlighting its potential

as a premier solution in fire risk assessment.

7.3 Significant Outcomes of this Chapter

The significant outcomes of this chapter are as follows:

e This study optimized cross-domain fire risk detection using advanced vision models,
with the Swin_T_Edge model achieving the highest accuracy (66%) and F1-score
(0.587), outperforming state-of-the-art models while maintaining computational
efficiency.

e Comprehensive performance evaluations highlighted the impact of input modalities,
where edge-based images significantly improved detection accuracy. Models like
Swin_T_Edge and Max VIiT demonstrated strong generalization across datasets,
validating their robustness for real-world applications.

e Statistical analysis using t-tests confirmed the superiority of the Swin_T_Edge model
over other models, emphasizing its reliability and potential for practical deployment in
wildfire monitoring and disaster management systems.

The following research studies serve as the foundation for this chapter:

% Abhishek Verma, Virender Ranga, Dinesh Kumar Vishwakarma, "Investigating the
Performance vs Computational Complexity Tradeoff in Cross-Domain Fire Risk
Detection.” in Signal ,Image and Video Processing

This chapter concludes the study on optimizing fire risk detection, summarizing the key

contributions and future research avenues.

The next chapter discusses the conclusion, future scope and social impact.
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Chapter 8: CONCLUSION, FUTURE SCOPE and
SOCIAL IMPACT

This chapter finalizes the research on optimizing cross-domain fire risk detection using

advanced vision models. The key contributions of this study are summarized as follows:

Enhanced Fire Risk Detection Accuracy: The proposed Swin_T_Edge model
demonstrated superior classification performance with an accuracy of 66% and an F1-
score of 0.587, outperforming state-of-the-art models like DenseNet, EfficientNet-BO,
and ViT. The model maintained a balance between high accuracy and computational
efficiency, highlighting its potential for practical deployment in fire risk monitoring
systems.

Impact of Input Modalities and Model Generalization: Through comprehensive
performance evaluations, it was observed that edge-based inputs significantly improved
model accuracy, particularly for Swin Transformer variants. The models, especially
Swin_T_Edge and Max ViT, also demonstrated robust generalization capabilities
across diverse datasets, confirming their adaptability in real-world fire detection
scenarios.

Statistical VValidation and Practical Relevance: The statistical analysis, supported by
t-test evaluations, confirmed the superiority of the Swin_T_Edge model over other
models with p-values indicating significant performance improvements. This positions
the Swin_T_Edge as a reliable solution for wildfire monitoring, disaster management,

and environmental conservation.

Future Work

Despite the promising results achieved in this study, several avenues for future research

remain open:

Integration of Temporal Data: Incorporating temporal sequences from remote
sensing imagery could enhance the dynamic understanding of fire progression, leading

to improved prediction accuracy in rapidly changing fire environments.
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Ensemble Learning and Hybrid Models: Future work could explore ensemble
learning strategies or hybrid architectures that combine the strengths of different vision
models to further improve fire risk detection performance and generalization.
Utilization of Multispectral and Hyperspectral Data: Expanding the input
modalities to include multispectral or hyperspectral imagery may provide deeper
insights into vegetation health and other environmental factors contributing to fire risk,
thus enhancing model robustness.

Real-Time Deployment and Edge Computing: Further research should focus on
optimizing the models for real-time deployment in resource-constrained environments,
utilizing edge computing technologies to enable timely and efficient fire risk

monitoring.

Social Impact

The advancements in fire risk detection presented in this study have significant implications

for both environmental sustainability and public safety:

Wildfire Management and Disaster Response: The proposed models can be
integrated into early warning systems, enabling faster and more accurate identification
of high-risk areas, thereby facilitating proactive wildfire management and reducing the
devastating impacts on communities and ecosystems.

Environmental Conservation and Climate Research: By improving the accuracy
and efficiency of fire risk detection, this research contributes to better management of
natural resources and supports climate change mitigation efforts. Accurate fire risk
assessments can inform policies aimed at reducing deforestation, protecting
biodiversity, and preserving carbon sinks.

Public Health and Safety: The ability to predict and monitor fire risks effectively can
help mitigate the health hazards associated with wildfires, such as respiratory issues
from smoke inhalation. This research supports the development of tools that can

safeguard human lives, property, and infrastructure from wildfire-related disasters.

Overall, this work contributes to the development of intelligent, data-driven fire risk

assessment systems, promoting sustainable environmental management and enhancing

community resilience to wildfire threats.
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