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ABSTRACT

The rapid advancement of technology not only simplifies life but also introduces nu-
merous security challenges. Over the years, as the Internet has evolved, the frequency
and sophistication of cyberattacks have increased significantly, targeting individuals, or-
ganizations, and critical infrastructures. This growing threat underscores the vital need
for robust security frameworks. Intrusion Detection Systems (IDS) play a crucial role in
continuously monitoring network activity, identifying malicious behaviours, and miti-
gating potential attacks in real time. Hence, anomaly-based network intrusion detection
powered with machine learning techniques is proposed in this thesis to develop intelli-
gent and adaptive IDS solutions, which are crucial for maintaining strong cybersecurity
defences.

This thesis aims to enhance the effectiveness of Intrusion Detection Systems by
initially addressing the challenge of selecting the most relevant features from high-
dimensional network traffic data. The presence of redundant and irrelevant features
can lead to increased computational complexity and reduced detection accuracy. We
proposed a three-phase network-based IDS to counter this issue, where we developed
a dynamic mutual information-based genetic algorithm (DMI-GA), a novel feature se-
lection technique designed to identify an optimal set of features. By integrating mutual
information to measure feature relevance and a genetic algorithm to optimize selec-
tion, DMI-GA enhances both the efficiency and accuracy of IDS models. Unlike many
existing feature selection methods that evaluate each feature independently and fail to
account for feature dependencies, our approach considers the relationships between fea-
tures, leading to more informed selection and improved computational performance.
This method not only reduces dimensionality but also ensures that the most significant
features contribute to better attack detection.

The high dimensionality of data degrades IDS performance, causing sparsity is-
sues that obscure meaningful patterns. It also increases the risk of overfitting, making
models learn noise instead of actual attack behaviours, reducing their ability to detect
new threats. Also, since dataset quality is crucial for accurately detecting and classi-
fying intrusions, the presence of highly imbalanced data, where benign network pack-
ets significantly outnumber anomalous ones, can deteriorate classification performance.
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Thus, we developed another anomaly-based IDS in conjunction with machine learning
techniques and a novel modified picture fuzzy clustering-based approach, mPicFC, on
the dimensionality-reduced dataset. This approach incorporates an additional decision-
making layer to handle uncertainty more effectively. By differentiating between partial
membership and complete non-membership, it enables more precise classifications. The
inclusion of refusal or hesitation degrees helps minimize bias in clustering, preventing
uncertain data points from disproportionately influencing the results. Moreover, the
proposed framework addresses the class imbalance by reducing bias toward the ma-
jority class, using the Synthetic Minority Oversampling Technique (SMOTE), which
ultimately improved the model’s accuracy.

To address the growing need for real-time threat detection, we propose HIL-IDS, a
real-time Intrusion Detection System based on a hybrid incremental learning approach.
HIL-IDS continuously monitors network traffic, detects anomalies, and adapts to evolv-
ing cyber threats with minimal latency. It integrates the Hoeffding Tree for incremental
supervised learning, leveraging its efficiency in processing streaming data, and an en-
semble of Isolation Forest and K-Means for unsupervised anomaly detection, effective
in identifying novel attack patterns without prior labels. Confidence scores from the
combination of these supervised and unsupervised models are evaluated to enhance the
interpretability of the proposed framework. To maintain robustness against shifting data
distributions, drift detection enables adaptation to emerging threats in real time. By
combining multiple anomaly detection methods in an ensemble, HIL-IDS improves the
likelihood of detecting diverse attack types. While hybrid intrusion detection systems
exist, the integration of incremental learning in both supervised and unsupervised com-
ponents allows HIL-IDS to dynamically adapt to evolving attacks and network traffic in
real time, making it highly suitable for modern, dynamic network environments.

The performance of the developed methods is compared with the various contempo-
rary models on the sophisticated network traffic datasets using quantitative and statisti-
cal sampling assessments. The empirical results, along with statistical tests, show the
superiority of the proposed methods over the existing methods for intrusion detection.
Overall, the findings establish a strong foundation for future research in developing
more adaptive and intelligent intrusion detection systems, enhancing real-time threat
detection, and improving the scalability and efficiency of cybersecurity solutions.
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Chapter 1
Introduction

With the rapid advancement of technology and the increasing reliance on computer
networks, cybersecurity has become a critical concern. Organizations, governments,
and individuals are constantly at risk of cyber threats. Thus, the growing sophistication
of cyber-attacks necessitates the development of robust security mechanisms to protect
network infrastructures.

This chapter begins with an overview of network security, highlighting its associated
challenges. It then introduces the Intrusion Detection System (IDS) and discusses its
types, the network attacks it addresses, the motivation behind the research, the problem
statement, and the contributions made. The final section presents the thesis structure.

1.1 Background

The swift development of networks witnesses trillions of data transfers every day. The
sheer magnitude of this data transfer provides opportunities for intruders to develop
novel and unconventional techniques to infiltrate and exploit it. Cyber threat is one of
the challenging fields in this current data-savvy world. Thus, robust network privacy
and security measures are required to minimize the chances of data leaks and mitigate
potential network security threats. While various protection methods are available, such
as firewalls and anti-viruses, it is essential to acknowledge that these methods are not
infallible. They are susceptible to failure when attackers introduce unknown malware
or an extensive amount of it into the system. The growth of malware infection has
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1.1. Background

immensely increased from 12.4 million to 812.67 million between 2009 and 2018 [1].
Given the continuous escalating intensity and variety of cyber-attacks, developing effi-
cient and effective techniques to counteract these threats becomes crucial.

An attack or intrusion is a series of actions aimed at compromising the integrity,
privacy, or availability of a service within a computer environment. The first intrusion
detection system was proposed in 1987 [2]. Since then, many researchers have devel-
oped numerous intrusion detection models. Intrusion detection encompasses the sys-
tematic process of identifying and analyzing various events that occur within a system
or network and responding quickly to any malicious activities detected to reduce their
impact and ensure system security [3]. An Intrusion Detection System helps identify
various forms of malicious or abnormal network traffic and computer activity that may
be difficult to detect using a conventional firewall or may be unknown to the user [4].
This includes network attacks targeting vulnerable services, data-driven attacks on ap-
plications, host-based attacks such as unauthorized system or software logins, privilege
escalation, access to sensitive user files and data, and malware.

Intrusion detection systems and firewalls are both integral components of network
security, but they serve distinct purposes. A firewall acts as a protective barrier, moni-
toring external traffic to prevent intrusions before they occur. It restricts access between
networks to block unauthorized connections. However, if an attack originates within
the network, the firewall does not generate an alert. In contrast, an IDS identifies sus-
picious activity after an intrusion has occurred and triggers an alarm to notify adminis-
trators. While firewalls protect against external threats by blocking unauthorized access
attempts, IDS monitors network activity and alerts the system upon detecting malicious
behaviour. The primary objective of an IDS is to generate an alert when an attack or
network intrusion takes place [5, 6]. Various application areas of intrusion detection in-
clude the Internet of Things (IoT), smart cities, big data environments, wireless sensor
networks (WSNs), and more [7, 8, 9].

In terms of intrusion detection methods, IDS can be broadly categorized as:

• Misuse or Signature-based IDS:
This approach detects attacks by identifying specific “signature” patterns. For
instance, malware may contain known malicious instructions or byte sequences
within network traffic. A signature-based IDS is effective in detecting known at-
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1.1. Background

tacks; however, it struggles to identify new or previously unknown attack patterns.
Consequently, its effectiveness depends on how frequently its database is updated
over time.

• Anomaly-based IDS:
In contrast to signature-based IDS, anomaly-based IDS detect unknown attacks
that are difficult to identify using signature-based methods. These systems com-
pare known behaviours with incoming behaviours using machine learning al-
gorithms. As a result, any abnormal or unusual activity is flagged. Therefore,
anomaly-based IDS are effective in detecting both known and unknown attacks
within a network.

Based on the features utilized or the source data for intrusion detection, IDS can be
categorized into two types:

• Host-based IDS (HIDS):
HIDS can detect intrusions on the host system by inspecting the data such as
server logs, application system audits, database records, etc. or by identifying if
any unauthorised access has been made. It monitors the dynamic behavior of in-
dividual components or the system as a whole, as well as the system’s state based
on its configuration. HIDS is particularly effective in inspecting a specific host
targeted by network packets and tracking resource access by different programs.
For instance, it can detect if a word processor unintentionally modifies the sys-
tem password database. Therefore, HIDS plays a crucial role in analyzing and
enforcing a system’s security policies [10].

• Network-based IDS (NIDS):
NIDS helps detect threats targeting a computer network, such as malicious hack-
ing activities and denial-of-service (DoS) attacks. NIDS detects malicious data
by monitoring network traffic and examining if there is any unusual activity on
the network. It examines both network traffic and the data transmitted between
systems within the network. Before the intrusion spreads to the systems present
in the network, an alarm is initiated to notify administrators about the threat that
has been encountered.

3



1.1. Background

Fig. 1.1: Generic Network-based Intrusion Detection System

Fig. 1.1 presents the working of a generic network-based IDS, which screens the
traffic flowing through the network under inspection to detect any unusual activity. In-
coming and outgoing network traffic is routed through the central router, which manages
the data packet distribution within the internal network and to external destinations. The
firewall, positioned between the Internet and the internal network, acts as the first line
of defence. It filters traffic based on pre-configured security rules, such as IP address
restrictions, port blocking, or protocol validation. However, it mainly uses static fil-
tering rules and may not detect complex or sophisticated attacks, which could bypass
simple filtering mechanisms. After passing through the firewall, the network traffic
reaches the IDS. The IDS continuously monitors this traffic, looking for patterns or be-
haviours indicative of attacks, such as unusual access requests, spikes in data volume,
or unauthorized use of protocols. When the IDS identifies traffic that matches its prede-
fined patterns or deviates significantly from normal behaviour, it triggers an alert for the
network administrator. Simultaneously, it logs these events for further analysis, which
helps in identifying attack trends and strengthening future defences.

In this study, we focus on developing an anomaly-based network intrusion detection
system. Monitoring network traffic flows is essential to detect not only known threats
but also unknown or abnormal traffic patterns. An anomaly-based intrusion detection
system continuously analyzes network traffic, comparing it to normal traffic behaviour.
If it identifies unusual patterns or anomalies, it triggers an alarm, signalling a potential
threat. Based on this comparison, network traffic is classified as either benign (normal)
or malicious (abnormal).
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1.1.1 Benchmark IDS Datasets and Types of Network Attacks

To develop and evaluate intrusion detection systems, researchers rely on various pub-
licly available datasets. These datasets play a crucial role in cybersecurity by providing
real-world network traffic data, containing labelled instances of both normal and mali-
cious network traffic, allowing for the training and testing of machine learning models.
Table 1.1 presents some widely used benchmark NIDS datasets [11, 12, 13, 14, 15, 16,
17, 18] with their respective description.

Table 1.1: Summary of Benchmark Network Intrusion Detection System Datasets

Dataset Name Number of Features Attack Types Description

KDD Cup’99 41 DoS, R2L, U2R, Probe Derived from the 1998 DARPA Intrusion Detection
Evaluation Program, where network traffic was col-
lected over a simulated environment and preprocessed
into connection-based records. It is labeled data with
4,898,431 data points but with high redundancy.

NSL-KDD 41 DoS, R2L, U2R, Probe Enhanced version of KDD Cup’99 with no redun-
dant instances in 125,973 training and 22,544 testing
dataset instances.

CAIDA 15 DDoS This unlabelled dataset includes around one hour of
anonymized network traffic traces captured during a
DDoS attack.

Kyoto 2006+ 24 Normal and Attack classes Developed on 3 years of honeypots and Darknet sen-
sors by Kyoto University with no manual network
data labelling.

ISCX 2012 20 DoS, DDoS, Brute Force, In-
filtration

Developed by the University of New Brunswick, la-
beled network traffic data captured over seven days.

UNSW-NB15 49 DoS, Fuzzers, Backdoors,
Analysis, Exploits, Generic,
Shell Code, Reconnaissance,
Worms

Generated by the Australian Centre for Cyber Se-
curity (ACCS), with 49 features and 2,540,044 in-
stances, extracted from network traffic, divided into
five categories: Flow, Basic, Content, Time features,
and Additional generated features.

CIC-IDS2017 80 DoS, DDoS, Brute Force,
Heartbleed, Botnet, Infiltra-
tion, Web attack

Realistic network traffic, generated by Canadian In-
stitute for Cybersecurity (CIC) over 5 days using net-
work profiles, covering real-world traffic and user be-
haviours.

CSE-CIC-IDS2018 80 DoS, DDoS, Brute Force,
Botnet, Infiltration, Wen at-
tack

Developed in 2018 by a collaboration between the
Canadian Institute for Cybersecurity (CIC) and the
Communications Security Establishment (CSE). It
was prepared in an infrastructure with 50 attacking
machines and a victim organization with 420 systems
and 30 servers in a time span of 10 days, resulting in
capturing 16,233,002 network traffic instances.

CIC-DDoS2019 78 DDoS A labelled dataset created by the Canadian Institute
for Cybersecurity for detecting Distributed Denial of
Service (DDoS) attacks. It includes realistic benign
and attack traffic generated in a controlled environ-
ment, covering various DDoS types.
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The diversity of attack types included in these datasets helps assess IDS perfor-
mance against different cyber threats for network security. Understanding these attack
categories is essential for developing robust anomaly-based IDS models. Some of the
common types of network attack found in the IDS datasets are described in Table 1.2:

Table 1.2: Description of common Network Traffic Attacks in IDS datasets

Network Traffic Attack Description

Denial-of-Service (DoS) The attack occurs when a system targets the victim system or server. It over-
loads network resources to disrupt services.

Distributed Denial-of-Service (DDoS) The attack occurs when multiple devices target a victim system, server, or
network, and overwhelm it with excessive traffic.

Probe attacks Probe attacks are also known as scanning attacks, used by attackers to gather
information about a network, such as active hosts, open ports, and running
services for future exploitation.

User-to-Root (U2R) It occurs when an attacker gains unauthorized root (administrator) privileges
on a system by exploiting local vulnerabilities to gain full control over the
system.

Remote-to-Local (R2L) It occurs when an attacker, operating remotely, gains unauthorized access to
a local machine by sending malicious packets or requests to it.

Brute Force The attackers try trial-and-error hacking techniques to crack login credentials
or passwords.

Heartbleed It is a severe vulnerability in the OpenSSL cryptographic library, which allows
attackers to steal sensitive data from the memory of vulnerable servers.

Botnet It allows multiple attackers to control and penetrate the security of multiple
victim devices and remotely command and organize them, used for malicious
activities like spam, DDoS, or fraud.

Infiltration This attack gains unauthorized access within the networked system via mal-
ware or exploitation, where the infiltrator uses various techniques to compro-
mise or breach the system.

Web attack The attacker gains unauthorized access, retrieves sensitive information by tar-
geting the vulnerabilities in trusted websites by injecting malware, for in-
stance, SQLInjection.

These datasets and attack types provide a foundation for the development and evalu-
ation of IDS models, ensuring their effectiveness in real-world cybersecurity scenarios.

1.1.2 Machine Learning (ML) Algorithms

Machine learning algorithms play a crucial role in anomaly-based network intrusion de-
tection systems by enabling the automated identification of malicious activities based
on patterns and statistical deviations from normal network behavior. Unlike signature-
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based detection methods, ML-based approaches can generalize from previously unseen
attacks, making them more effective against novel threats. This subsection explores var-
ious machine learning algorithms used for network intrusion detection, their advantages,
and their limitations.

Machine learning techniques can be broadly classified into two categories, super-
vised and unsupervised ML techniques. Supervised learning relies on labeled datasets
where each data instance is explicitly categorized as either normal or malicious. This
allows models to learn decision boundaries based on known attack patterns and clas-
sify future network traffic accordingly. Supervised ML can be used for various tasks,
including binary classification, multiclass classification, integrating the predictions of
multiple machine learning models to enhance accuracy, and estimating continuous val-
ues by analyzing patterns and relationships within the data. Supervised learning excels
in detecting known attack types with high accuracy but may sometimes struggle with
unseen threats due to its dependence on labeled data.

Unsupervised learning, in contrast, does not require labeled data. Instead, it iden-
tifies anomalies by detecting deviations from normal traffic patterns and groups data
points into attack subsets. Unsupervised learning is particularly effective in detecting
novel attacks that do not have predefined signatures. However, it may often generate
false positive rates because normal variations in traffic can be mistakenly classified as
anomalies.

Some of the widely used state-of-the-art machine learning models for intrusion de-
tection, including those utilized in this study, are outlined below:

• Logistic Regression (LR): LR [19] is a supervised ML classifier and a non-linear
regression model. LR helps in both multiclass and binary classification. Data
fitting into the logistic function predicts the occurrence of an event’s probability,
and the function’s value ranges from 0 to 1. This function helps in mapping
predictions and probabilities. The standard Logistic function called sigmoid is
presented by Eqn. (1.1).

f(x) =
1

1 + e−x
. (1.1)

• Decision Tree (DT): The decision tree is a supervised tree-structured classifier
that helps not only in classification but also in regression [20, 21]. DT separates
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the dataset into multiple homogeneous sets on the basis of independent variables
and/ or significant attributes in order to make as discrete groups as possible. The
tree’s nodes represent some event, and the branches or edges represent the deci-
sion rules or conditions that categorize the data into separate groups.

• Naïve Bayes (NB): A supervised ML classification technique based on Bayes’
theorem with “naïve” postulation of independence between attributes, that is, the
presence of a particular feature within a class is disparate from any other feature’s
presence [22]. Prediction is made by evaluating instance probabilities of every
class and then choosing the maximum probability class value, as described by
Eqn. (1.2).

P (X|Y ) =
P (Y |X) ∗ P (X)

P (Y )
. (1.2)

where, P (X|Y ) is the probability of the target class with the given predictor at-
tribute, P (X) is the probability of the class, P (Y ) is the probability of the pre-
dictor, and P (Y |X) is the probability of the predictor attribute with the given
class.

• k-Nearest neighbour (k-NN): The k-Nearest Neighbour rule was first introduced
in 1951 by Fix and Hodges [23] and further expanded by [24]. k-NN is one of
the simplest supervised ML classifiers, and it can also be used for regression.
This algorithm makes use of proximity to perform predictions or classification for
grouping an individual data point. The predicted label for the input data point is
determined by this classifier by taking the class label that is most common among
the k neighbours.

• Random Forest (RF): RF is a complex non-linear supervised ensemble learning
technique used for regression as well as classification [25]. It is a collection or
forest of multiple decision trees. The outcomes of all the sets of decision trees
together result in the RF’s prediction result. In the model, the higher the number
of decision trees, the higher is the Random Forest’s prediction accuracy, which
would not over-fit the model.
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1.2. Motivation

• Support Vector Machine (SVM): This supervised binary classification ML
technique aims to assess the hyperplane by separating the dataset into two distinct
classes, maximising the margin amongst all the attack classes [26, 27]. Support
vectors, developed by segregating the training dataset into several subsets, are
used to estimate predictions. It is dependent on the type of parameters and the
kernels employed. SVM can also perform multiclass classification in a custom
cascading manner.

• K-Means: K-Means is an unsupervised clustering ML technique that classifies
the unlabelled data into K clusters [28]. Based on some similarities between the
data points, the clusters are formulated. K-Means selects k number of points for
each cluster, known as centroids. The measure of similarity between these data
points is evaluated based on the distance between them. Data points within a
cluster are homogeneous in nature, whereas the clusters are heterogeneous from
one another.

Machine learning algorithms offer a powerful framework for anomaly-based net-
work intrusion detection. By leveraging supervised, unsupervised, and ensemble mod-
els, ML-based NIDS can identify various types of intrusions. Machine learning provides
several benefits in this context, including the ability to detect unknown or novel attacks,
process large-scale network traffic data in real-time, and adapt to evolving cyber threats
and changing network environments.

1.2 Motivation

Cybersecurity has become an ever-growing challenge due to the increasing volume and
sophistication of cyber threats. Existing intrusion detection systems often fail to provide
comprehensive protection against evolving attack techniques, emphasizing the need for
more intelligent and adaptive detection mechanisms. This research is motivated by the
growing complexity and frequency of cyber attacks, which pose significant risks to indi-
viduals and organizations. Traditional IDS solutions, particularly signature-based meth-
ods, struggle to keep pace with the evolving nature of cyber threats, whereas anomaly-
based IDS offer a more proactive approach.
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The increasing sophistication of cyber threats has exposed critical limitations in tra-
ditional machine learning-based IDS. Many existing IDS struggle with high-dimensional
data, leading to elevated false alarm rates and computational inefficiencies. Addition-
ally, conventional models often rely on outdated datasets, limiting their ability to detect
emerging and rare attack patterns. Most traditional approaches employ either supervised
or unsupervised learning on lower-dimensional data, restricting their effectiveness in
handling complex network environments. Furthermore, commonly used feature selec-
tion methods often overlook feature dependencies, resulting in suboptimal classification
performance. Another major challenge is that most IDS approaches rely solely on su-
pervised learning, which requires labeled data and may not effectively address evolving,
unlabeled threats. As real-time IDS solutions become increasingly essential, traditional
ML-based IDS, trained on static datasets, struggle to adapt to dynamic network environ-
ments where data distributions change over time. These challenges highlight the need
for more robust and adaptive approaches to anomaly-based intrusion detection. This
research aims to address these critical gaps, ultimately strengthening network security,
protecting sensitive information, and mitigating the risks associated with intrusions.

1.3 Problem Statement

Traditional IDS often struggle to detect previously unseen attacks due to its reliance on
predefined signatures. While anomaly-based IDS can identify novel attacks, they tend
to produce high false positive rates, reducing their reliability in real-world scenarios.
The effectiveness of an anomaly-based IDS depends on its ability to extract meaningful
features and accurately classify network traffic patterns.

Existing supervised and unsupervised machine learning models for anomaly de-
tection face several challenges, including high false alarm rates, inefficient feature se-
lection, and computational overhead when processing large-scale network traffic data.
Class imbalance further affects traditional machine learning-based IDS methods, lead-
ing to biased detection that favors majority classes while underrepresenting minority
attack instances. Additionally, optimizing feature selection and dimensionality reduc-
tion is crucial to improving classification accuracy while minimizing information loss.
Many existing approaches fail to address the high dimensionality of network traffic data
effectively, resulting in performance bottlenecks, particularly in real-time environments.
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Datasets such as CIC-IDS2017 and CIC-IDS2018 provide rich, real-world network
traffic data, but processing and analyzing them efficiently remains a challenge due to
their complexity and size. Moreover, real-time network traffic analysis introduces addi-
tional complexities that require scalable solutions for efficient processing of streaming
data.

This research aims to address these limitations by proposing a framework to en-
hance the intrusion detection process, apply dimensionality reduction techniques before
classification, and accurately cluster network traffic patterns. The effectiveness of an
anomaly-based IDS also largely depends on its ability to extract meaningful features.
Therefore, the study proposes to optimize the feature selection process for IDS and
leverage machine learning models to enhance detection accuracy.

Furthermore, real-time network data collection and processing will be explored to
improve IDS adaptability in dynamic network environments. By addressing these chal-
lenges, this study seeks to contribute to the development of a more robust and efficient
IDS framework capable of detecting diverse cyber threats with higher accuracy and
lower computational overhead.

1.4 Main Contributions of the Thesis

The main contributions of this research include the design and development of frame-
works to classify network traffic flows as benign (normal) or malicious attacks, as well
as detecting various types of network attacks. Furthermore, this research aims to de-
velop an IDS capable of detecting intrusions in a dynamic network environment.

1.4.1 Anomaly-based NIDS using Feature Selection

Various IDS frameworks for detecting intrusions are available in the literature. However,
limited research has focused on intrusion detection using supervised and unsupervised
machine learning models with feature selection. A novel feature selection model is
developed to enhance the performance efficiency of the ML algorithms.

• We developed a hybrid feature selection technique based on mutual information
and an evolutionary genetic algorithm. This approach considers not only indi-
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vidual features but also their degree of association with each other and the target
variable to obtain an optimal feature set.

• A dynamic fitness function, serving as the core of the genetic algorithm, is devel-
oped to identify optimum features.

• The performance of various machine learning models is analyzed on selected fea-
ture subsets to assess detection accuracy and computational efficiency.

• The robustness of the NIDS framework is validated using cross-validation sam-
pling strategies and statistically using the Friedman test and Wilcoxon-Holm cor-
rection test.

1.4.2 Enhanced Anomaly-based NIDS Leveraging Modified Picture
Fuzzy Clustering

For intrusion detection, a major challenge is the curse of high dimensionality, where an
increasing number of features makes the data more sparse, making it difficult for models
to identify meaningful patterns and relationships. Higher dimensionality often results in
increased false alarm rates, greater computational complexity, and a higher risk of over-
fitting. Traditional clustering methods in NIDS face challenges with noisy data, over-
lapping attack patterns, and uncertain classifications. This study presents an efficient
anomaly detection system that first addresses the class-imbalance issue using Synthetic
Minority Over-sampling Technique (SMOTE), then reduces the dataset’s dimensional-
ity, and further classifies network traffic using supervised ML methods. Additionally, it
clusters network attacks using an enhanced fuzzy clustering-based approach.

• We developed an anomaly-based NIDS using machine learning algorithms and a
novel modified picture fuzzy clustering approach.

• Dimensionality reduction is applied to mitigate the impact of high dimensionality
on the dataset and enhance overall performance by reducing time delay, compu-
tational cost, and resource consumption.
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• Binary classification of network traffic using supervised ML classifiers on the
dimensionality-reduced dataset, to distinguish the network attacks from the be-
nign ones.

• We developed a novel picture fuzzy clustering-based technique to detect and clus-
ter various network attacks present in the anomalous network.

1.4.3 Real-time NIDS based on Hybrid Incremental Learning

Real-time intrusion detection demands scalable solutions that adapt to evolving cyber
threats, highlighting the need for adaptability. This research proposes a hybrid incre-
mental learning framework for continuous and efficient NIDS operation.

• A NIDS framework is designed for real-time analysis and processing of captured
network packets, ensuring efficient data streaming.

• Apache Kafka is leveraged for real-time data ingestion, facilitating scalable intru-
sion detection in dynamic network environments.

• We developed a Hybrid Incremental Learning-based IDS that combines a su-
pervised incremental learning algorithm with an ensemble of unsupervised al-
gorithms for adaptive and real-time network anomaly detection.

• Adaptive drift detection is performed by actively monitoring the network and re-
training the model to sustain its performance in an evolving network environment.

In summary, this thesis presents innovative solutions to the multifaceted challenges
of intrusion detection, including identifying various network attacks, selecting optimal
features, addressing high dimensionality, and detecting intrusions in a dynamic network
environment.

1.5 Organization of the Thesis

The content of this thesis is structured as follows:
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• Chapter 2 reviews existing approaches to anomaly-based intrusion detection, fo-
cusing on network traffic classification using supervised and unsupervised ML al-
gorithms, Deep Learning algorithms, feature selection, dimensionality reduction,
and real-time IDS. Furthermore, it discusses the research gaps and objectives.

• Chapter 3 presents the proposed NIDS framework, which classifies network traf-
fic data after selecting an optimized feature set using a novel feature selection
technique.

• Chapter 4 focuses on clustering various network attacks using the novel Picture
Fuzzy Clustering-based approach, following the classification of dimensionality-
reduced network traffic data.

• In Chapter 5, the development of a real-time NIDS leveraging hybrid incremen-
tal learning models for dynamic intrusion detection is discussed. The chapter ex-
plores how these models adapt to evolving threats, incorporate continuous learn-
ing, and enhance detection accuracy while minimizing false alarms.

• In Chapter 6, the key conclusions and achievements from each contribution are
presented. Additionally, it discusses potential future research directions for intru-
sion detection in network environments.
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Chapter 2
Literature Review

This chapter discusses well-established and state-of-the-art methodologies related to
anomaly-based network intrusion detection systems. The literature review covers fea-
ture selection, dimensionality reduction, and real-time intrusion detection systems. Ad-
ditionally, the chapter explores the limitations of existing frameworks, research objec-
tives, and proposed solutions.

2.1 Related Work on Anomaly-based NIDS

Anomaly-based Network Intrusion Detection Systems (NIDS) play a crucial role in
identifying malicious activities by analyzing deviations from normal network behavior.
The concept of intrusion detection and threat surveillance was first proposed by J. P.
Anderson in 1980 [5], wherein various computer security threats imposed on the sys-
tem are discussed and how to monitor and detect such threats based on the anomalous
behaviours present in the network.

This section presents a structured review of various machine learning-based tech-
niques explored over the years, categorizing them into traditional ML methods with fea-
ture selection, dimensionality reduction approaches, fuzzy clustering-based techniques,
and real-time IDS solutions.
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2.1. Related Work on Anomaly-based NIDS

2.1.1 Machine Learning Methods for Intrusion Detection Systems
Using Feature Selection

Feature selection (FS) is a fundamental yet important step in improving the efficiency
and accuracy of ML-based IDS. [29] compares the performance of Random Forest,
SVM, and Extreme Learning Machine (ELM) in detail for intrusion detection, analyz-
ing their performance against the NSL-KDD data set to determine their accuracy in
detecting intrusions. It was observed that ELM performed better than the rest when full
samples were under consideration. In [30], the authors developed a Semi-supervised
Multi-Layered Clustering (SMLC) model for preventing and detecting network intru-
sions. SMLC is capable of learning from partially labelled data while proving to be
superior to the tri-training and supervised ensemble Machine Learning models such as
Bagging, AdaBoostM1, etc., on the network intrusion datasets, NSL and Kyoto 2006+.

Tao et al. [31] proposed an intrusion detection algorithm, FWP-SVM-GA, based on
the Genetic algorithm (GA) and Support Vector Machine (SVM) algorithm, where the
algorithm initially does feature selection, weight and parameter optimization of SVM
based on GA. The GA-based feature selection method is implemented to reduce the
SVM error rate and enhance the true positive rate. A performance analysis of IDS with
the help of a feature reduction technique was performed by Kasongo et. al. [32] on the
UNSW-NB15 dataset. The authors state that a decline in performance was observed as
the dimensionality of the data space increased. Their experiment implemented five ML
techniques, SVM, kNN, LR, ANN, and DT, on the reduced feature set and determined
that the XGBoost-DT combination obtained the most efficient results. [33] presents a
comparative study of six ML algorithms, namely, Naïve Bayes, Neural Network, k-NN,
SVM, and Decision Tree for intrusion detection in association with four feature selec-
tion techniques, CFS, Information Gain Ratio (IGR), PCA, and Minimum Redundancy
Maximum Relevance feature selection (mRMR). It was concluded that it was difficult
to choose one ML technique over the other, and k-NN performed better than the other
ML methods, and IGR performed better than the rest.

Kocher and Ahuja [34] presented a performance analysis of ML classifiers on the
UNSW-NB15 dataset. The popular filter-based Chi-squared feature selection method
was employed to reduce redundant features. It was observed that the random forest clas-
sifier outperformed the others over the original as well as the selected optimal feature
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set. Uzun and Ball [35] introduced a novel method for enhancing intrusion detection
systems by combining multivariate outlier detection with ReliefF feature selection on
the NSL-KDD dataset. With the Random Forest algorithm achieving the highest ac-
curacy of 99.21%, the study concludes that combining ReliefF feature selection with
outlier detection significantly improves intrusion detection accuracy and reduces pro-
cessing time. In [36], the authors evaluate various machine learning classifiers using the
NSL-KDD dataset for intrusion detection, including the k-nearest neighbour, decision
tree, naïve Bayes, logistic regression, random forest, and ensemble methods. They apply
a basic rule-based feature selection approach to enhance efficiency by reducing dataset
size and computational complexity. Results show that the ensemble approach achieves
the highest accuracy of 99.5%, concluding that the ensemble methods, with feature se-
lection, are a promising approach for effective intrusion detection systems. An efficient
IDS was proposed by [37], where initially, data sampling and feature selection are per-
formed on the UNSW-NB15 dataset using iForest and a genetic algorithm, respectively.
Subsequently, the random forest classifier-based IDS is developed for intrusion detec-
tion. A comprehensive performance analysis on a combination of three feature selection
techniques and seven ML models on the NSL-KDD dataset is discussed in [38]. The re-
sults concluded that feature selection can significantly improve the accuracy and speed
of attack classification.

[39] introduced an enhanced Genetic Algorithm-based feature selection method,
GbFS, aimed at preserving unique data information with minimal features to improve
classifier accuracy for network security and intrusion detection. Tested on three bench-
mark datasets, CIRA-CIC-DOHBrw-2020, UNSW-NB15, and Bot-IoT, GbFS shows a
significant improvement in the accuracy of the ML classifiers, achieving up to 99.80%
detection rate. Kaushik et al. [40] compares the performance of the ML classifiers with
the ensemble approaches for intrusion detection in the military network dataset. Exper-
imental results suggest that ensemble models provide better detection accuracy when
feature selection is employed. The authors in [41] propose an effective NIDS frame-
work, using recursive feature elimination with cross-validation (DT-RFECV), to select
the optimal set of features from the UNSW-NB15 data set. The performance was evalu-
ated using various ML classifiers, and it was concluded that the model achieved higher
accuracy when the entire feature set was used.

Another network-based IDS was presented by [42], where, after pre-processing the
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datasets, CSE-CIC-IDS2018 and UNSW-NB15, extracting the features, a feature selec-
tion technique, Opposition-based Northern Goshawk Optimization algorithm (ONgO),
is used to find the optimal features. Various attacks were detected with the hybrid M-
multiSVM. Compared with other ML models, the proposed hybrid model achieved
higher accuracy than the rest. An ensemble feature selection approach, IDS-EFS, is
proposed by [43]. The experimental results on the KDDCup’99 suggest that, compared
to the other feature selection methods, the proposed method gave better results. In [44],
an ensemble model approach was used in the CSE-CIC-IDS2018 dataset to compare
the performance of seven individual classifiers. The objective was to identify the top-
performing models and integrate them into a classifier unit for evaluation. Naïve Bayes
(NB), RF, Decision Trees (DT), Quadratic Discriminant Analysis (QDA), Logistic Re-
gression (LR), Multilayer Perceptron (MLP), and Gradient Boosting were the seven
classifiers. The ensemble model was observed to perform better than the individual
classifiers with a precision and accuracy of 0.988 each when 23 feature subsets were
used, and the accuracy and precision of 0.987 and 0.980, respectively, were achieved in
the original data set.

Mallampati and Hari [45] presented another feature selection method based on fea-
ture importance, employing a fusion of various statistical feature importance techniques,
including filter, wrapper, and embedded feature selection approaches. The experiments
were conducted on the NSL-KDD, UNSW-NB15, and CIC-IDS2017 datasets. To ad-
dress the class imbalance issue, they utilized the Adaptive Synthetic oversampling tech-
nique. The results indicated that classifier performance was better on balanced datasets
than on imbalanced ones. The experimental findings demonstrated that the XGBM
model outperformed all others across the three datasets. In [46], the authors utilized Gini
feature importance and Recursive Feature Elimination (RFE) for feature selection on
the NSL-KDD dataset, while applying feature importance-based selection on the CIC-
IDS2017 dataset. Testing various ML models on the KDD Train+ test dataset revealed
that models using feature importance-based selection and 10-fold cross-validation ex-
hibited improved performance.

Based on the above discussion, feature selection consistently emerges as a critical
step for improving the performance of ML-based intrusion detection systems. Across
studies, its role in reducing dimensionality, removing irrelevant attributes, and enhanc-
ing both classification accuracy and processing speed is widely acknowledged [29, 31,
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34, 38, 45].Notably, models with optimized feature sets often outperform those using the
complete feature set, especially in high-dimensional datasets like CIC-IDS2017. This
underscores the importance of effective feature curation in developing IDS frameworks
that can scale effectively. Studies using older datasets like NSL-KDD often report very
high accuracies, sometimes exceeding 99%, likely due to the dataset’s reduced com-
plexity. However, newer and more challenging datasets like UNSW-NB15 and CSE-
CIC-IDS2018 offer a more realistic evaluation environment [29, 36, 44].

The performance and usability of filter, wrapper, and embedded feature selection
techniques vary significantly, making it essential to consider their practical applicability.
Filter-based methods such as Chi-square and ReliefF offer rapid preprocessing and are
well-suited for real-time scenarios, though they may overlook feature interactions [34,
35]. In contrast, wrapper-based methods like GA and RFE yield more accurate models
by evaluating feature subsets with classifiers, but are computationally intensive [31,
41, 46]. Whereas embedded approaches maintain a balance, making them a promising
choice for operational IDS environments.

Table 2.1 summarizes research on intrusion detection using various filter or wrapper-
based feature selection techniques, as well as approaches without feature selection. It
also lists the datasets used, the classification models employed, and the best results
obtained in each study.

2.1.2 Machine Learning Approaches for Network Attack Detection

In this subsection, we review existing ML-based IDS that focus on detecting various
network attacks. We categorize these approaches based on their use of with or without
dimensionality reduction (DR) methods and clustering-based anomaly detection. Di-
mensionality reduction techniques enhance performance by capturing essential network
characteristics. Additionally, clustering-based techniques, such as fuzzy clustering, aid
in distinguishing normal and malicious traffic without requiring labeled data.

For intrusion detection, a model generalization [47] was achieved by using four un-
supervised ML techniques, namely, autoencoder, one-class SVM, isolation forest, and
PCA on CIC-IDS-2017 and CSE-CIC-IDS-2018. The strategy used in this study en-
ables the evaluation of the model’s ability to perform well on diverse datasets beyond the
ones they were initially trained on. In terms of accuracy and precision, the autoencoder
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2.1. Related Work on Anomaly-based NIDS

achieved the highest results of 0.9426 and 0.9459, respectively, on the CIC-IDS-2017
dataset, whereas one-class SVM on CSE-CIC-IDS2018 achieved an accuracy of 0.8898
and a precision of 0.9268, which outperformed the rest. In [48], the authors propose an
ensemble model of SVM, MLP, and an instance-based learning method (IBK) to classify
network attacks and normal traffic flows in three datasets, NSL-KDD, Kyoto 2006+, and
ISCX 2012. Information gain (IG), along with PCA, was used to reduce the dimension
space of each of the datasets. The experimental results show that the proposed model in
the mentioned datasets achieved the highest accuracy of 98.24%, 98.95%, and 99.01%,
respectively. In [49], on the CSE-CIC-IDS2018 dataset, six ML techniques were im-
plemented, namely, Decision Tree, AdaBoost, Random Forest, K-Nearest Neighbour
(K-NN), LDA, and Gradient Boosting. The experimental analysis demonstrated that
the implemented models achieved a significantly high level of accuracy, outperforming
recent literature benchmarks. The authors also classified various network attacks like
Botnet attacks, Denial of Service (DoS), Infiltration, SQL injection, and Brute Force
attacks. Out of the six ML models, AdaBoost attained the highest accuracy of 99.69%.

Performance evaluation of three ML classifiers, RF, MLP, and Long-Short Term
Memory (LSTM), that follow a sequential approach, is proposed by [50] on the CIDDS-
001 dataset. On the basis of experimental analysis, it is suggested that addressing
anomaly detection from a sequential perspective may yield better results. The proposed
study also classifies the network traffic dataset into various types of attacks, such as
brute force attacks, DoS, ping scans, and port scan attacks. The LSTM model proves to
be highly reliable in capturing sequential patterns within network traffic data, exhibiting
an impressive accuracy of 99.94%. [51] proposed a dynamic auto-selection classifier
adopted on various ML techniques to enhance the model’s performance by using every
technique’s capabilities for better detection of attacks. When considering a balanced
dataset, certain attacks, such as worms, generic attacks, and DoS attacks, are observed
to demonstrate a true positive rate (TPR) surpassing 90%. Compared to individual ML
models, the proposed model attained the highest accuracy of 87.6%. In [52], an IDS im-
plemented with ML techniques along with dimensionality reduction was presented. The
CICIDS2017 dataset was used and, initially, two-dimensionality reduction techniques,
Autoencoder and PCA, were employed. Various ML classifiers such as RF, Bayesian
Network, QDA, and LDA were used to classify intrusions in the network data. Us-
ing dimensionality reduction methods, the feature set was brought down from 81 to 10
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while depicting the highest accuracy of 99.6%. The proposed model gave the follow-
ing results: RF with Autoencoder provided an F-measure of 0.995, while RF with PCA
on the unbalanced dataset had an F-measure of 0.996, and RF with PCA on the bal-
anced dataset resulted in an F-measure of 0.988. In [53], six ML models, namely, DT,
RF, SVM, Artificial Neural Network (ANN), Deep Neural Network (DNN), and Naïve
Bayes on three different IDS datasets, CIC-IDS2017, CSE-CIC-IDS2018, and LUFlow
dataset. For feature or dimensionality reduction, the authors used the RandomForest-
Classifier. The overall performance of the ML classifiers on CIC-IDS2017 displayed
a higher accuracy of 0.9967 using RF, and on the CSE-CIC-IDS2018, SVM had the
highest accuracy of 0.7559, and in the LUFlow dataset, RF and DT both had the highest
detection accuracy of 0.9994.

[54] proposed a novel NIDS based on the Difficult Set Sampling Technique (DSSTE)
algorithm, where various classifiers such as RF, SVM, XGBoost, AlexNet, LSTM, and
Mini-VGGNet were used to detect various threats present in the CSE-CIC-IDS2018
network dataset. The DSSTE algorithm was performed to overcome the problem of
class imbalance. The performance of 24 models was compared, and it was concluded
that the proposed DSSTE algorithm, along with MiniVGGNet, achieved the highest
accuracy of 96.99%. [55] designed a Class-Wise Focal Loss (CWFL) and Variational
AutoEncoder (VAE)-based class balancing approach integrated with XGBoost. It also
presents a comparative analysis of the proposed method with the existing class balanc-
ing approaches on the NSL-KDD and CSE-CIC-IDS2018 datasets, demonstrating that
the proposed framework has a higher precision of 99.67% than the traditional ones.

[56] proposed a Fuzzy C-Means-based intrusion detection model called Robust Spa-
tial Kernel Fuzzy C-Means (RSKFCM). To hand-pick the most discriminated features,
the authors implemented PCA, and then to cluster the network data, RSKFCM was em-
ployed. The model’s performance was compared with versions of conventional Fuzzy
C-Means (FCM) techniques and drew an inference that the proposed model outper-
formed the rest with an accuracy of 86.26% and a False Positive Rate (FPR) of 17.04.
[57] proposes a hybrid approach of clustering and classification using the Gaussian Mix-
ture Models (GMM) and K-Means clustering technique with the random forest classi-
fier, where detection is done on two benchmark datasets, NSL-KDD and KDD Cupp99.
The proposed hybrid model, with the help of RF, is able to classify various types of
attacks such as DoS, probe attack, U2R, and R2L attacks. The hybrid K-Means and
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RF model on NSL-KDD achieved an accuracy of 99.85%, and GMM and RF on KDD
Cup99 were implemented, achieving an accuracy of 98.27%. On the other hand, a super-
vised ensemble learning model comprising K-NN and SVM models presented a higher
performance in detecting individual network attack types than the individual classifier
and clustering models implemented.

[58] compared two clustering techniques, that is, K-Means and Fuzzy C-Means clus-
tering to detect network attacks using the NSL-KDD dataset. The algorithms were able
to detect major attacks like probe attacks, DoS, U2R, and R2L attacks. The experi-
mental results show that Fuzzy C-Means detected 45.95% of the attacks, and K-Means
detected 44.72% of attacks. A comparative study was done [59], where a supervised and
an unsupervised ML technique comparison was performed on the KDD Cup99 dataset
along with the Chi-squared feature selection method. The supervised ML technique
Support Vector Machine (SVM) and the unsupervised ML technique Fuzzy Kernel C-
Mean (FKCM) was implemented for this purpose. Experimental results were carried
out on only 10 features out of 41. In terms of the highest accuracy achieved, FKCM
secured 80.29% accuracy along with radial basis function parameter 0.5, whereas SVM
and polynomial kernel attained 88.88% accuracy with parameter 3.

A hybrid attack detection model was proposed by [60] on the NSL-KDD dataset.
The model works in 2 stages; first, in the anomaly detection phase, FCM is used to clus-
ter the normal data and attacks. After the attacks are detected, in the misuse detection
phase, the known attacks are classified with the help of Classification and Regression
Trees (CART) and the isolation forest to detect the unknown attacks. The experimental
results show that the classification of normal data and attacks by the proposed model
achieved an accuracy of 0.8454. Meanwhile, the unknown attack detection accuracy is
as follows: DoS: 0.8137, Probe: 0.8793, U2R: 0.8288, and R2L: 0.7176.

It is observed across the studies that dimensionality reduction techniques such as
PCA and autoencoders have proven effective in enhancing the performance of ML clas-
sifiers by reducing computational complexity and highlighting relevant patterns in high-
dimensional network traffic data [48, 52, 53]. Clustering-based methods, particularly
fuzzy clustering, such as RSKFCM and FKCM, have been explored for their ability to
identify novel attacks without labelled data and to capture the uncertainty and overlap-
ping nature of network traffic patterns, yet they often fall short in handling ambiguity
in highly imbalanced or complex attack scenarios [56, 58, 59, 60]. While many models
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report very high accuracy on benchmark datasets, their performance often varies sig-
nificantly across datasets, for instance, CIC-IDS2017 and LUFlow, revealing potential
overfitting or lack of generalizability [53, 55].

Table 2.2 summarizes the related work reviewed in this subsection, presenting exist-
ing IDS models for detecting various network attacks, using dimensionality reduction.
This summary also presents studies conducted using the traditional clustering and fuzzy
clustering approaches for intrusion detection

2.1.3 Deep Learning Approaches for Intrusion Detection

In recent years, deep learning (DL) techniques have gained significant attention in the
field of intrusion detection due to their ability to automatically learn complex patterns
from raw or high-dimensional data. Models like convolutional neural networks (CNNs),
recurrent neural networks (RNNs), and autoencoders have shown promising perfor-
mance, particularly in detecting sophisticated or previously unseen attacks. The fol-
lowing subsection reviews recent DL-based and hybrid intrusion detection approaches.

In [61], a DL-based IDS using various RNN architectures such as simple RNN,
LSTM, and Gated Recurrent Unit (GRU) was proposed. The framework was further
enhanced by performing feature selection using XGBoost, which improved network
security against evolving threats. Tested on NSL-KDD and UNSW-NB15 datasets, the
model selected 22 and 17 key features, respectively. For binary classification, XGBoost-
LSTM achieved 99.49% accuracy on NSL-KDD, while XGBoost-RNN performed best
on UNSW-NB15 with 87.07%. The experimental results indicated that combining the
XGBoost feature selection method with RNNs optimised the performance of the frame-
work for both binary and multiclass intrusion detection. In multiclass classification,
XGBoost-LSTM excelled on NSL-KDD and XGBoost-GRU on UNSW-NB15, demon-
strating strong performance across both datasets.

[62] developed a hybrid DL approach combining CNN and bidirectional LSTM
(BiLSTM) to perform both binary and multiclass network intrusion detection. The per-
formance of the framework was evaluated in a software-defined network (SDN) envi-
ronment and tested on three datasets, NSL-KDD, UNSW-NB15, and InSDN. To fur-
ther enhance the effectiveness of the proposed model, a hybrid feature selection tech-
nique based on Random Forest and Recursive Feature Elimination (RFE) was employed.
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2.1. Related Work on Anomaly-based NIDS

The experimental outcomes suggested that the proposed CNN-BiLSTM model outper-
formed the others by achieving the highest binary classification accuracy of 97.77% in
the InSDN dataset, 95.96% in NSL-KDD, and 93.51% in the UNSW-NB15 dataset. For
multiclass classification, it attained the best accuracy with 97.12%, 98.42%, and 84.23%
for InSDN, NSL-KDD, and UNSW-NB15 datasets, respectively.

With growing volume and complexity of network traffic, Sajid et. al. [63] proposed
a hybrid intrusion detection model that combines traditional machine learning with deep
learning techniques. Their approach integrates XGBoost and CNN for efficient feature
extraction, followed by LSTM networks for classification. The model was analysed on
four datasets, NSL-KDD, UNSW-NB15, CIC-IDS2017, and WSN-DS, for both binary
and multiclass classification tasks. The results showed promising performance, with the
hybrid model achieving high detection rates and maintaining a low FAR. The CNN-
LSTM combination achieved 96.21% accuracy on the CIC-IDS2017 dataset for binary
classification, while the XGBoost-LSTM model reached 94.41% test accuracy on the
NSL-KDD dataset. The study highlights the model’s ability to generalize well across
datasets, effectively detect various types of attacks, and minimise false positives, pri-
marily due to its strong feature selection process and the use of sequential learning for
improved pattern recognition.

Wang et. al. [64] proposed and evaluated a DL-based intrusion detection frame-
work using the up-to-date CSE-CIC-IDS2018 dataset. The authors compared the per-
formance of six DL models, DNN, CNN, RNN, LSTM, CNN+RNN, and CNN+LSTM,
for both binary and multiclass classification of network traffic. Comprehensive data
preprocessing was performed to handle redundancy, outliers, and inconsistent formats.
Results demonstrated that all models achieved over 98% accuracy, with individual mod-
els, DNN, CNN, and RNN, offering faster inference times compared to the hybrid ones.
Among the six models, CNN+LSTM showed the best detection for minority classes like
infiltration, while simpler models were better suited for real-time implementation due
to lower computational overhead. Furthermore, CNN+RNN and CNN+LSTM models
achieved the highest accuracy of 98. 84% for multiclass classification.

Another DL model based on attention for intrusion detection was proposed by [65]
that leverages the strength of CNN, BiLSTM, and a multi-head attention mechanism.
This architecture was designed to effectively capture both spatial and temporal fea-
tures, while the attention layer emphasises the most relevant parts of the input for im-
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2.1. Related Work on Anomaly-based NIDS

proved classification. The model was evaluated on NSL-KDD, UNSW-NB15, and CI-
CIDS2017 datasets. The proposed model achieved impressive performance, with the
highest accuracies of 99.87%, 99.64%, and 99.72% on NSL-KDD, UNSW-NB15, and
CIC-IDS2017 datasets for binary classification, outperforming traditional CNN, LSTM,
and hybrid models.

[66] proposed a hierarchical DL model based on LSTM and attention mechanisms,
which was analysed on the UNSW-NB15 dataset using various traditional ML and DL-
based approaches. The experimental outcomes show that the proposed model was less
time-consuming and achieved a detection rate of 92.2% for binary classification. A
deep neural network (DNN) IDS was proposed by [67] to enhance network security by
addressing the challenges of classifying diverse attack types in the NSL-KDD dataset.
The model achieved a training accuracy of 91.30% and a validation accuracy of 94.38%,
with low loss values, demonstrating effective learning and generalization.

A comparative study of various DL models, CNN, DNN, RNN, LSTM, GRU, and
hybrid CNN-LSTM was conducted by Elsayed et. al. on the benchmark NSL-KDD
dataset [68]. Their experimental findings reveal that GRU outperformed the others by
achieving a detection accuracy of 99.54% for binary classification, while LSTM gave
the best detection results of 99.39% for multiclass classification. In another study, the
authors [69] propose a multistage AI-enabled intrusion detection framework combin-
ing a DNN classifier and two autoencoders to detect known, zero-day, and adversar-
ial attacks. The framework integrates three DNN components, one classifier and two
specialized autoencoders. Using transfer learning with one-shot learning, the model
freezes selected layers to enhance adaptability. Validated on benchmark datasets, the
framework achieved an average accuracy of 98.5%, demonstrating strong performance
against evolving threats. [70] introduces a study ENIDS, a DL-based ensemble model
for detecting various types of cyberattacks. It combines three base models, namely,
CNN, LSTM, and GRU, under a DNN-based meta learner. Evaluated on the UNSW-
NB15 and CIC-IDS2017 datasets, ENIDS achieved 90.6% on UNSW-NB15 and 99.6%
accuracy on the CIC-IDS2017 dataset. Experimental results show that ENIDS outper-
forms existing deep learning models in both detection performance and computational
efficiency.

An intelligent NIDS based on and optimized CNN-LSTM model was proposed by
[71]. SMOTE was employed to deal with the data imbalance issue. The hybrid model
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2.1. Related Work on Anomaly-based NIDS

trained on the UNSW-NB15 dataset, outperformed the others by achieving the highest
detection accuracy of 78.47% for binary and 78.36% for multiclass classification. Alje-
hane et. al.[72] proposed a novel deep learning model, GJOADL-IDSNS, for intrusion
detection. The model is based on an attention-enabled BiLSTM architecture and is in-
tegrated with the Golden Jackal Optimization algorithm for feature selection. On the
CIC-IDS2017 dataset, the proposed model attained its highest accuracy of 99.70%.

The reviewed studies highlight the growing effectiveness of deep learning in intru-
sion detection, particularly through hybrid models combining CNN, RNN, and attention
mechanisms. Integrating DL with feature selection techniques like XGBoost and Ran-
dom Forest consistently improved accuracy across datasets such as NSL-KDD, UNSW-
NB15, and CIC-IDS2017. Despite their strengths, DL models come with notable chal-
lenges. They often require large amounts of labelled data, substantial computational
resources, and remain difficult to interpret. Their longer training times and sensitiv-
ity to hyperparameter tuning can also hinder timely deployment, especially in real-time
monitoring systems where adaptability and low latency are critical. These limitations
make them less practical for real-time or resource-constrained environments. Overall,
DL methods show strong potential for improving intrusion detection systems, especially
when paired with efficient preprocessing and robust feature selection strategies.

Table 2.3 provides a comparative overview of the performance of various deep
learning-based studies discussed in this subsection for performing binary and multiclass
classification of network traffic data for intrusion detection.

2.1.4 Real-time Intrusion Detection System

With the increasing complexity and volume of network traffic, real-time intrusion de-
tection has become a critical area of research. Traditional ML-based IDS often struggle
with high computational costs and delayed detection, making them unsuitable for real-
time applications. This subsection discusses the existing methodologies and frameworks
designed to enhance the responsiveness and scalability of IDS in real-world environ-
ments.

[73] presents a real-time NIDS based on a deep learning model, AE-AlexNet. They
use Flume to collect the logs and Flink to clean the logs in real time. The experiments
suggested that with more training, the model’s performance can be enhanced. This pro-
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2.1. Related Work on Anomaly-based NIDS

posed model achieved the highest accuracy of 94.32%. An incremental learning model
based on Naïve Bayes and SVM was proposed in [74], where the authors performed
the experiments on the UAV intrusion detection dataset, which consists of six different
real-time datasets. Amongst the two, Naïve Bayes achieved the highest accuracy of
0.9840. Another incremental learning-based NIDS was presented by [75], where the
IDS was trained on the intrusion dataset UNSW-NB15. A comparative analysis of the
incremental model and random forest in this study shows that the incremental learning
model had 32% less training time than the random forest classifier.

Mirsky et al. [76] introduced Kitsune, a neural network-based NIDS designed for
real-time network intrusion detection, distinguishing between normal and anomalous
network traffic. This unsupervised learning model continuously monitors network ac-
tivity and identifies anomalies using an ensemble of autoencoders. The model was eval-
uated across multiple attack scenarios in an IP camera surveillance network and an IoT
environment. It achieved high detection accuracy with a low false positive rate, demon-
strating a notable improvement over traditional feature-engineering-based approaches.
In [77], a distributed intrusion detection framework based on the random forest algo-
rithm is proposed for real-time analysis of network traffic captured using NetFlow. The
framework integrates the random forest classifier with the Apache Spark distributed
processing system to enable efficient real-time detection. The model’s performance was
evaluated against existing intrusion detection systems using the CIC-IDS-2017 dataset,
where various machine learning techniques were compared. The results indicated that
the gradient boosting decision tree achieved the highest detection performance. In [78],
a performance analysis of an autoencoder-based intrusion detection system is conducted
in a real-time environment using Apache Kafka and Spark Streaming. Kafka is utilized
for real-time ingestion of network traffic transactions, while Spark Streaming processes
the data in batches. The study observes that increasing the number of partitions leads
to a slight reduction in processing time across three different batch configurations. The
results indicate that a 50-second batch interval outperforms a 10-second batch interval
in terms of efficiency.

A clear trend across studies is the integration of real-time data processing frame-
works such as Apache Kafka, Apache Flink, and Spark Streaming to handle the high
throughput and low-latency requirements of modern network environments [73, 77, 78].
These tools enable not just rapid ingestion and preprocessing, but also support batch and
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micro-batch operations that align well with model inference times. Multiple approaches
explore incremental learning strategies to maintain IDS adaptability in evolving traffic
scenarios, highlighting their importance in balancing performance and speed [74, 75]. In
contrast, batch-trained models [73] and ensemble autoencoders [76] offer strong initial
detection but lack built-in adaptability unless retraining is performed. This highlights
a clear trade-off between adaptability and performance that the incremental models are
well-suited for dynamic environments, whereas batch models typically excel in more
static scenarios.

2.2 Research Gaps

From the discussion in Section 2.1, numerous intrusion detection systems have been
proposed that perform feature selection for enhancing the performance of the model,
but to the best of our knowledge, there are limited studies that perform intrusion detec-
tion on the novel and current network attacks, using the combination of supervised and
unsupervised machine learning algorithms that leverages the strengths of both methods,
resulting in a more robust and adaptable system. Many IDS models rely on arbitrary fea-
ture selection techniques without standardization, leading to inconsistent results across
different datasets. A systematic feature selection framework can help improve repro-
ducibility and benchmarking.

Furthermore, as far as our knowledge extends, the majority of existing studies con-
centrate on utilizing conventional ML techniques to construct IDSs to detect various
types of network attacks. On the other hand, some existing research considers an ensem-
ble approach for enhancing the efficiency of intrusion detection. However, these conven-
tional ML-based frameworks are typically effective only on small and low-dimensional
datasets, often struggling to handle high-dimensional and large-scale data effectively. It
is also observed that there are no efficient NIDS capable of detecting various types of
recent network attacks, but they can accomplish this by detecting fewer known attack
types. Most of the IDS do not address the issue of class imbalance, especially with the
CSE-CIC-IDS2018 dataset, which may result in lower detection performance. Certain
approaches do not deal with the risk of overfitting and even biases in clustering.

While several IDS exist, traditional methods often fall short in dynamic and high-
speed network environments. Modern cyberattacks are fast, sophisticated, and auto-
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mated, spreading across networks in seconds. Traditional IDS may take a long time
to process and detect attacks, leading to delays in mitigation. Real-time IDS can in-
stantly detect and respond to attacks, preventing damage before it escalates. Many IDSs
generate a high number of false positives, overwhelming security teams with excessive
alerts.

2.3 Research Objectives

Despite significant progress in anomaly-based NIDS, several challenges remain unre-
solved. Issues such as feature selection optimization, effective dimensionality reduc-
tion, uncertainty handling in clustering, and real-time detection constraints continue to
impact IDS performance. Based on the analysis and discussion of the existing state-of-
the-art algorithms and the research gaps identified, we have formulated the following
objectives for the thesis:

• Review and compare various supervised and unsupervised Machine learning al-
gorithms implemented for intrusion detection in an anomaly-based network envi-
ronment.

• To investigate feature extraction, selection and ranking approaches during the ini-
tial phase for network traffic data.

• Develop a framework for performing dimensionality reduction based on extracted
features and further classify the dimensionality-reduced network traffic.

• Develop an anomaly-based Network Intrusion Detection System using Machine
Learning model on real-time network traffic flows collected with an aim to detect
network attacks.
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Chapter 3
Performance Analysis of NIDS using
Feature Selection

This chapter presents the analysis of various Machine learning models used for anomaly-
based network intrusion detection after selecting the optimal set of features. This study
proposes a dynamic feature selection solution based on mutual information and an evo-
lutionary genetic algorithm. The performance analysis demonstrates that the proposed
strategy provides a more effective solution for intrusion detection.

3.1 Introduction

Machine learning algorithms have emerged as powerful tools for anomaly-based intru-
sion detection, enabling the detection of sophisticated attacks. However, the perfor-
mance of these models is highly dependent on the selection of relevant features that
enhance detection accuracy while reducing computational complexity. Many intrusion
detection systems also collect network data from various sources that may contain re-
dundant and irrelevant features, leading to an increase in processing time and a low
detection rate. Several researchers have also determined that intrusion detection is a
classification problem [79, 80, 81]. Another major challenge when it comes to IDS
is high-dimensional datasets such as KDD Cup’99, Kyoto 2006+, UNSW-NB15, etc.,
which interfere with the classification process on the IDS and also have a high com-
putational complexity. Additionally, most feature selection methods overlook feature
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dependencies and evaluate each feature in isolation, resulting in lower computational
performance than other methods. To the best of our knowledge, most of the existing
anomaly-based IDS offer to detect intrusion via supervised machine learning techniques
only, whereas unsupervised learning requires classless data. In this field, a comprehen-
sive analysis of supervised and unsupervised machine learning techniques for intrusion
detection is needed, particularly after selecting the optimal set of features, which has
not been thoroughly explored.

This study introduces a dynamic feature selection approach that leverages mutual
information and an evolutionary genetic algorithm, DMI-GA, which considers not only
individual features in the feature set but also the degree of association amongst them
and the target variable to acquire optimum features. This approach enhances diversity
and optimizes feature selection by evaluating relevance and redundancy using a genetic
algorithm. The performance and detection accuracy of each selected feature set are
evaluated by applying machine learning techniques to these flows and comparing the
results to determine whether the performance improves.

The key contributions of the chapter are abstracted as follows:

1. In this study, DMI-GA, a novel hybrid feature selection technique based on mu-
tual information and an evolutionary genetic algorithm, is proposed to obtain an
optimal feature set, enabling higher detection accuracy.

2. A novel dynamic fitness function, as the core of the genetic algorithm, is devel-
oped to identify optimum features.

3. The efficiency of ML models is investigated against six well-known feature se-
lection methods and the proposed DMI-GA approach, which selects the relevant
features from the network traffic feature set to identify the intrusion present.

4. The performance of the proposed feature selection method with the ML classifier
is compared and analyzed to distinguish the network attack flows from the be-
nign ones. Furthermore, a statistical analysis was conducted using the Friedman
test and a pairwise post-hoc Wilcoxon-Holm test to assess the superiority of the
proposed approach over the baseline methods.

This chapter is structured as follows: Section 3.2 presents the methodology and ex-
perimental design of the proposed framework, including various feature selection meth-

34



3.2. Proposed Framework

ods and the proposed feature selection approach in Subsection 3.2.1, as well as the ma-
chine learning models in Subsection 3.2.2. The experimental results, a comprehensive
evaluation of the proposed approach compared to state-of-the-art methods, and statisti-
cal analysis are provided in Section 3.3. Finally, the chapter summary is presented in
Section 3.4.

3.2 Proposed Framework

This section describes a novel hybrid feature selection strategy based on mutual in-
formation and a genetic algorithm to obtain the optimal set of features from network
traffic. This study aims to evaluate the effectiveness of an intrusion detection system
in identifying anomalous network attacks. To assess the efficiency of the ML models,
this section also presents a performance evaluation using feature sets derived from both
state-of-the-art and the proposed feature selection strategies. The proposed model in-
volves three phases: Network traffic collection and pre-processing in the first phase,
feature extraction, selection, and ranking in the second phase, and intrusion detection
using ML models in the final phase. The proposed framework is represented in Fig. 3.1.

3.2.1 Data Collection and Pre-processing

During the initial phase of the framework, a network traffic packet analyser, Wireshark
[82, 83], helped capture the non-malicious or normal network traffic. The intrusion
network traffic was imported from the Canadian Institute for Cyber Security’s CICD-
DoS2019 dataset [18], the University of Victoria’s ISOT Botnet Dataset [17], and the
malware capture facility project of the Czech Technical University. The dataset, being
in the pcap format, was further pre-processed. For pre-processing, the resulting dataset,
originally in raw PCAP format, was first converted to CSV format, having 1,11,53,482
benign network traffic data and 1,03,40,287 malicious traffic instances. Further, this
data was cleaned by removing duplicate flow entries in order to reduce redundancy, fill-
ing in missing or null values, and removing infinite values by substituting them with
the average value of the respective feature. Feature encoding using LabelEncoder was
performed to convert the categorical data into numerical form. The ground-truth labels
in the datasets are assumed to be correct and representative of their respective attack or
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Fig. 3.1: Proposed Anomaly-based NIDS model framework.

36



3.2. Proposed Framework

benign classes. Likewise, the extracted flow-level features and their preprocessing are
assumed to capture meaningful behaviour rather than environment-specific artefacts.

3.2.2 Feature Extraction, Selection, and Ranking

In this study, feature extraction is performed in two stages, extracting 35 statistical fea-
tures, including conventional and additional features, from network traffic flows. In the
first stage, basic statistical and temporal features, such as flow duration, packet count,
and average time interval for packets received, were extracted using the statistics fea-
ture of the network traffic sniffing tool, Wireshark. In the second stage, behavioural
and contextual features, for instance, the number of unique destination IP per n con-
nections, were extracted based on the state-of-the-art models and domain knowledge,
as discussed in subsection 2.1.1. Furthermore, additional features were generated from
the matched features of the dataset and on the basis of the significant features, as pre-
sented in [4], which are vital for anomaly-based intrusion detection for network traffic
flows and enabled us to investigate the network more extensively, for example, mean of
source packet size. In entirety, these features provide a comprehensive representation
of network behaviour, facilitating effective intrusion detection. The extracted features
were normalized to a scale of [0, 1]. Table 3.1 briefly describes the extracted features.

Feature selection aims to identify the most relevant attributes while eliminating re-
dundant and irrelevant ones to improve classification performance, enhance processing
duration, reduce data and computational complexities, and improve data compatibil-
ity with the model. Filter, wrapper, and hybrid or embedded techniques are the three
broad categories of Feature Selection strategies [84, 85]. The filter-based approach is
chosen for feature selection as it employs statistical methods to rank features and as-
sess their dependency or correlation, thereby identifying an optimized subset. One key
advantage of this method is that it prevents overfitting and has low computational re-
quirements. However, it may oversimplify the feature selection process by ignoring the
complexities of feature interactions, which can lead to the exclusion of valuable fea-
tures. The wrapper-based approach, in contrast, evaluates models using a predefined
algorithm to determine the optimal feature set. Since it is integrated with a specific
algorithm, it generally achieves higher classification accuracy than the filter approach.
This method is particularly beneficial for complex models with non-linear relationships
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Table 3.1: Network Flow Feature Set

Feature Notation Feature Feature Description

F1 srcip Source’s IP address
F2 srcprt Source’s port number
F3 destip Destination’s IP address
F4 destprt Destination’s port number
F5 pkts Number of packets
F6 bytes Number of bytes
F7 sdpkts Number of Source packets to Destination pack-

ets
F8 sdbytes Number of Source bytes to Destination bytes
F9 dspkts Number of Destination packets to Source pack-

ets
F10 dsbytes Number of Destination bytes to Source bytes
F11 relstart Relative Start (time duration in sec between

start of capture of 1st packet and start of the con-
versation)

F12 trnsrtsd Transmission rate Source to Destination (bits/s)
F13 trnsrtds Transmission rate Destination to Source (bits/s)
F14 avgfld Average Flow Duration
F15 avgpktsz Average Packet Size
F16 avgpktszr Average Packet Size Received
F17 avgpktszs Average Packet Size Sent
F18 avgtmpktr Average time between packets received
F19 avgtmpkts Average time between packets sent
F20 ratioiobyt Ratio of Incoming bytes to Outgoing bytes
F21 ratioiopkt Ratio of Incoming packets to Outgoing packets
F22 ratiooibyt Ratio of Outgoing bytes to Incoming bytes
F23 ratiooipkt Ratio of Outgoing packets to Incoming packets
F24 meanSpktsz Mean of source packet size
F25 meanDpktsz Mean of destination packet size
F26 distSIP Number of distinctive source IP address per N

connections
F27 distDIP Number of distinctive destination IP address per

N connections
F28 minpkts Minimum time interval between packets sent
F29 maxpkts Maximum time interval between packets sent
F30 minpktr Minimum time interval between packets re-

ceived
F31 maxpktr Maximum time interval between packets re-

ceived
F32 connS Number of connections of same source address
F33 connD Number of connections to same destination ad-

dress
F34 fstpktsnt First packet size sent
F35 fstpktrcd First packet size received
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and intricate feature dependencies. However, its strong coupling with an induction al-
gorithm makes it more time-consuming as it repetitively calls the inducted algorithm
to evaluate the subset of features. Hybrid or embedded approaches combine both filter
and wrapper techniques, integrating a learning algorithm to optimize feature selection.
These methods effectively capture feature interactions and dependencies while leverag-
ing filter-based pre-selection to mitigate the risk of overfitting associated with wrapper
methods.

We proposed a hybrid approach, the Dynamic Mutual Information-based Genetic
Algorithm (DMI-GA) for feature selection, with the aim of enhancing the performance
of machine learning techniques by identifying an optimal set of features. In this study,
various other feature selection methods are explored, including filter-based techniques
(Chi-Squared, Information Gain, Correlation Feature Selection) [86] and wrapper-based
approaches (Recursive Feature Elimination, Genetic Algorithm) [38] for selecting and
ranking the optimal set of features.

• Chi-squared method (CS): The CS method uses the χ2 statistic to assess the
strength of the connection between each feature and class. The higher the value
of χ2, the higher the dependency between the two events. In terms of feature
selection, a feature’s occurrence and the class’s occurrence are the two events
considered. A higher value of χ2indicates that the two of them, that is, feature and
class are dependent. Considering the interdependence of the events, the existence
of the feature leads to a higher probability of occurrence of the class. The CS
value of a feature is computed as given in Eqn. (3.1):

χ2 =
n∑

i=1

m∑
j=1

AiBj

N
. (3.1)

where, the number of classes is m, n is the number of intervals, N is the total
number of instances, Ai is the number of instances in the ith interval, Bj are the
number of instances in the j th class.

• Correlation Feature Selection Measure (CFS): Correlation refers to the degree
to which two features are in a linear relationship with each other. It evaluates
the similarity between the two features. The correlation coefficient of two lin-
early dependent features is ±1, while the uncorrelated features have a correlation
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coefficient of 0. With respect to a correlation-based evaluation function, CFS,
an elementary filter algorithm, ranks the subsets of features. A low correlation
feature associated with the class should be disregarded as they are considered ir-
relevant features. Eqn. (3.2) defines the CFS’s feature subset evaluation function
[87] as:

MF =
krcf√

k + k(k − 1)rff )
. (3.2)

where, MF is the “merit” of a feature subset F with k features, rcf is the mean
of correlation between feature and class (f ∈ S), and rff is the average inter-
correlation between two features. The numerator specifies how predictive a fea-
ture set in a class is, and the denominator depicts the presence of redundancy
amongst the features.

• Information Gain (IG): Entropy is a metric for assessing disorder or uncertainty
in a system [88]. A system with high entropy would be unpredictable and more
disordered. Thus, it measures how unpredictable a data distribution is. Consider
nominal valued features, Y comprising of the individual probabilities of the values
y ∈ Y . The entropy of Y , H(Y ), is evaluated as shown in Eqn. (3.3).

H(Y ) = −
∑
y∈Y

p(y) log2(p(y)). (3.3)

Suppose in the training data, the observed values of Y are segregated with re-
spect to another feature X’s values, and the entropy of Y in association with the
partitions brought by X is less than the entropy of Y before partitioning. In that
case, an association or an affiliation among the features X and Y exist. Eqn. (3.4)
represents the entropy of Y after observing X .

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log2(p(y|x)). (3.4)

Information Gain is the extent to which the entropy of Y decreases and represents
the additional information about Y that X provides [89], which is represented by
Eqn. (3.5).
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IG(Y |X) = H(Y )−H(Y |X). (3.5)

Thus, X is considered to be more correlated to Y than to some feature Z belong-
ing to the same feature set as X and Y , iff IG(Y |X) > IG(Z|X).

• Symmetric Uncertainty (SU): Symmetry is an essential asset for measuring
the intercorrelation between two features. Symmetrical Uncertainty overcomes
the Information Gain’s inherent bias in favoring features or attributes with more
values by normalizing its value to the range of [0, 1].

SU(X, Y ) = 2× IG(X, Y )

H(X) +H(Y )
. (3.6)

Features with the higher value of SU are ranked higher than the other features.
SU’s maximum value, SU = 1 shows that X and Y are highly correlated and
SU = 0 depicts that X and Y are uncorrelated. Eqn. (3.6) describes how SU is
evaluated and the relationship between SU and IG.

• Recursive Feature Elimination (RFE): Recursive Feature Elimination [90] is a
wrapper-based feature selection technique. As the name suggests, it recursively
eliminates the least important feature, one at a time, evaluating the ML model’s
performance at every iteration. It starts with all features, ranks them by their
relevance to the target variable, and then removes the least important feature(s),
repeating this process until the desired model performance is achieved. RFE con-
siders interactions among features during the elimination process, which can lead
to selecting more informative subsets of features.

• Genetic Algorithm (GA): Genetic algorithm [91] is a search heuristic inspired
by the process of natural selection based on "Survival of the fittest". It starts with a
population of potential solutions encoded as chromosomes. Through iterative pro-
cesses of selection, crossover, and mutation, GAs evolve solutions based on their
fitness scores. They are advantageous for feature selection as they efficiently ex-
plore large search spaces to identify the most relevant features, improving model
performance and reducing dimensionality.
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• Proposed Dynamic Mutual Information-based Genetic Algorithm (DMI-GA):
The proposed feature selection approach, DMI-GA, is an amalgamation and en-
hanced version of mutual information-based feature selection (MIFS) [92] and
genetic algorithm [93]. As the optimization strategy employed to find an optimal
feature set, GA helps evolve the population of feature subsets, leveraging the prin-
ciples of natural selection through selection, mutation, and crossover operations
[94]. This introduces stochasticity and diversity, helping to explore the search
space and thoroughly avoid local optima. Mutual information (MI) is a funda-
mental concept in information theory used to gauge how much information one
random variable provides about another. In feature selection, it evaluates the re-
lationship between each feature and the target variable, finding features that offer
significant predictive insight. Its capability to handle nonlinear and intricate rela-
tionships between variables makes MI a crucial asset in enhancing the accuracy of
models by selecting the most relevant features. Mathematically, MI is computed
as:

I(A;B) =
m∑
i=1

n∑
j=1

p(ai, bj) log

(
p(a, b)

p(a)p(b)

)
(3.7)

where, I(A;B) denotes the mutual information between a random feature, say, A
and the target variable B. It measures how much information A provides about
B, helping to determine the relevance of A for further prediction. p(a, b) is the
joint probability of A and B. p(a) and p(b) are the marginal probability of A and
B, respectively.

For this proposed feature selection solution, we integrate the filter method to eval-
uate the mutual information with the genetic algorithm wrapper method to create
a hybrid approach, DMI-GA. Fig. 3.2 presents a flowchart of DMI-GA that begins
with initializing the population with a random set of solutions or feature subsets
and further evaluating the initial population. In the next step, we evaluate the
fitness of all individuals in the initial population with the proposed novel fitness
function. To evaluate this fitness function, the mutual information between each
feature F and each target is determined. Along with MI, an adaptive trade-off
parameter (λ) between relevance and redundancy is dynamically adjusted based

42



3.2. Proposed Framework

Fig. 3.2: Proposed Dynamic Mutual Information-based Genetic Algorithm (DMI-GA) for Feature Selec-
tion
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on the population evolution instead of a fixed or heuristically determined trade-
off parameter. This allows the algorithm to adaptively balance the importance of
relevance and redundancy during the optimization process. With the MI of the
population and the adaptive λ, the fitness function is evaluated as:

Fitness =
n∑

i=1

I(Ai;B)− λ(t)
n∑

i=1

n∑
j=1

I(Ai;Aj) (3.8)

where, the adaptive λ(t) function dynamically adjusts λ based on the generation
counter t, and is determined by:

λ(t) = λ0 ∗
(
1− t

max_gen

)
(3.9)

where, λ0 is the initial λ value and max_gen is the maximum number of genera-
tions.

In the next phase, three vital GA operators, selection, crossover, and mutation, are
performed to produce the optimal feature set. Initially, two individual parents are
selected from the current generation or population to produce the next generation.
This selection is done either randomly or via selection methods such as Tourna-
ment selection, Roulette wheel selection, Stochastic Universal Sampling, etc. We
have opted for Tournament Selection in our proposed feature selection strategy as
it is capable of working with negative fitness values as well. Crossover combines
the selected two parents to create offspring, allowing the mixing of feature subsets
and potentially discovering better combinations. By randomly flipping bits in a
feature derived from the crossover, mutation introduces diversity into the popu-
lation, helping to explore new feature subsets that might have been overlooked.
At the end of each generation, the population is assessed to determine if the algo-
rithm should terminate. If the termination condition is not satisfied, the population
undergoes re-evaluation through fitness function calculation and the application
of GA operators. This cycle continues until the stopping criteria are fulfilled. The
termination condition is met on the convergence of the fitness function.

The different phases involved in identifying the optimal set of features using the
proposed DMI-GA feature selection method are detailed in Algorithm 3.1.
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Algorithm 3.1 Proposed DMI-GA feature selection method
1: Input: Original feature set F = {f1, f2, . . . , fn}with population size N ; maximum

number of generations gmax; adaptive trade-off parameter λ.
2: Output: Optimal feature subset
3: procedure DMI-GA
4: S ← ∅
5: Initialize generation counter g ← 0
6: Initialize a population of i individuals with P0 ← random
7: while g ≤ gmax do
8: Compute mutual_info MIi = I(Ai;B) by Eqn. (3.7)
9: Repeat

10: Compute fitness value for every ith individual by Eqn. (3.8)
11: for i = 1 to n do
12: Select two individual parents via Tournament Selection
13: Perform crossover operation on selected parents to generate offspring
14: Perform mutation on generated offspring from Step 13 to form new offspring,

Ri
15: Replace Pi ← Ri

16: end for
17: g ← g + 1
18: until Convergence[λ]
19: end while
20: Rank fi in Pi in descending order based on MIi
21: S ← Pi

22: return S
23: end procedure
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3.2.3 Machine Learning Models for Intrusion Detection

Machine learning models play a crucial role in binary classification by identifying net-
work traffic as either benign (or normal) or intrusive based on selected features. The
selected features obtained from each of the feature selection methods were fed to the
state-of-the-art ML models, including logistic regression, decision tree, naive bayes,
k-nearest neighbour, random forest, SVM, and K-means. The description for the ML
models employed in this study is presented in subsection 1.1.2.

This study considered the seven mentioned state-of-the-art ML models for the ex-
periments. LR can efficiently process large-scale network traffic datasets, ensuring
quick and accurate anomaly detection, and provides probability scores for classification,
which helps in fine-tuning detection thresholds and reducing false alarms in network se-
curity [95]. We chose the DT classifier as it is simple to interpret, is able to handle
complex problems, and is capable of handling non-linear relationships amongst the fea-
ture set. The NB classifier performs well even with high-dimensional network traffic
data, which is common in IDS, and can handle both discrete and continuous network
features [96]. Due to the ease of use for k-NN, its capability to handle both categorical
and numerical data, and lack of pre-requisite assumptions about the underlying data dis-
tribution, we have opted for this flexible model to classify network attacks from benign
ones. As RF performs efficiently for high-dimensionality datasets, takes less training
time in comparison to other classifiers, and addresses the issue of overfitting by making
predictions based on either majority voting or averaging [97], it is therefore employed
in this work. SVM performs well even when network traffic data has a large number of
features, making it suitable for complex intrusion detection datasets. Also, SVM max-
imizes the margin between different classes, improving its ability to correctly classify
previously unseen network traffic patterns [98].

3.3 Experimental Results and Analysis

This section discusses the outcomes from various stages of the proposed IDS frame-
work. By implementing machine learning algorithms on the extracted, selected, and
ranked feature sets, we compare and analyze the results based on the performance eval-
uation metrics discussed in the previous section. We executed two experiments on this
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dataset. In the first experiment, ML models used the original pre-processed dataset,
while in the second experiment, ML techniques performed intrusion detection on the
optimal feature set obtained after feature selection.

The experiments were performed on a computer running the Windows 10 operating
system, equipped with 16GB RAM and an i7 (9th generation) processor. The entire ex-
periment was conducted using Spyder (64-bit). The feature selection methods outlined
in subsection 3.2.2 were precisely implemented, and the optimal ranked feature set was
extracted from the original features, as presented in Table 3.1, for further analysis.

3.3.1 Hyperparameter Tuning and Validation

The process of tuning hyperparameters for both the proposed DMI-GA feature selection
method and the ML classifiers, as well as the procedures employed to assess robustness,
is discussed in this subsection. All model selection decisions were based on validation
accuracy. The aim is to make sure that improvements in performance come from sound
model selection rather than favourable randomness or evaluation bias. Consequently,
we compared six well-known feature selection approaches to evaluate the relevance of
all features in the feature set, independently of the classifier.

Hyperparameters for the proposed DMI-GA were tuned with respect to population
size, maximum generations, crossover rate, mutation rate, and the seven ML models
used for intrusion detection. This tuning was carried out to ensure the optimal perfor-
mance of both the DMI-GA feature selection method and the subsequent ML classifiers.
The process was aimed at identifying parameter configurations that maximize classifi-
cation accuracy, reduce overfitting, and maintain computational efficiency.

The DMI-GA parameters, population size, maximum number of generations, crossover
probability, and mutation probability were initially selected from common ranges used
in the literature on evolutionary feature selection. Then, these were fine-tuned through
pilot experiments in which each parameter was varied independently, while others re-
mained constant, to assess its impact on two criteria, classification accuracy using se-
lected features and convergence rate in terms of generations required. During tuning,
the population size was varied from 50 to 150 and the number of generations from 0 to
160, each with a step size of 20. The crossover probability ranged from 0.70 to 0.90
with a step size of 0.05, while the mutation probability varied from 0.01 to 0.10 with a
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step size of 0.02.
Following feature selection, the machine learning models were tuned individually

using 10-fold cross-validation on the training set to ensure fair comparison. Table 3.2
defines the typical parameter ranges for each ML technique and the selected value.

Table 3.2: Hyperparameter tuning ranges and optimal settings for six ML techniques.

ML
Technique

Parameter Tuned Tested Range Selected Value

LR Regularization (R) R: 0.1-10 1.0

DT Max. Tree Depth (d) d: 5-25 20

NB Smoothing (α) α: 0.1-1.5 1.0

kNN No. of Neighbours (k) k: 1-15 7

RF Number of Trees (n)
Max. Depth (D)

n: 50-300
D: 5-20

n = 200, D = 15

SVM Penalty (C)
Stopping criteria tolerance
(t)

C: 0.5-15
t: 0.001-0.01

C = 11; t = 0.001

K-Means No. of Clusters (x)
Convergence tolerance
(cv_tol)

x: 2
cv_tol: 1e-3, 1e-4

x = 2; cv_tol = 1e-4

Table 3.3 summarizes the parameters and their values used for the proposed DMI-
GA feature selection method. These parameters are crucial for controlling the evolu-
tionary process and ensuring efficient convergence toward an optimal feature subset.

The population size is set to 100, ensuring a balance between genetic diversity and
computational efficiency. The algorithm runs for a maximum of 150 generations, pre-
venting excessive computations while allowing sufficient iterations for convergence. A
crossover probability of 0.85 promotes diversity by exchanging genetic material be-
tween parent solutions, while a mutation probability of 0.05 introduces small random
variations to explore new solutions without disrupting good feature combinations. The
initial trade-off parameter, λ0 = 1.0 helps dynamically balance feature relevance and
redundancy based on mutual information. To ensure stability, the convergence tolerance
is set to 1 × 10−5, stopping the algorithm when improvements become negligible. Fi-
nally, tournament selection is employed as the selection method, ensuring that stronger
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Table 3.3: Parameter setting for proposed DMI-GA feature selection method

Parameter Value
Population size (popsize) 100

Maximum number of generations (genmax) 150

Probability of crossover (Crossover_rate) 0.85

Probability of mutation (Mutation_rate) 0.05

Initial trade-off (λ0) 1.0

Convergence tolerance (tol) 1× 10−5

Selection method Tournament selection

candidates have a higher chance of survival while maintaining diversity within the pop-
ulation. These parameter choices collectively enhance the efficiency and effectiveness
of the proposed feature selection approach.

We quantified how DMI-GA performance varies with the crossover–mutation oper-
ators using three reference classifiers, RF, SVM, and kNN. Fig. 3.3 shows the validation
accuracy heatmaps for each evaluator classifier. All three heatmaps exhibit a shared op-
timum region centered at crossover ≈ 0.85 and mutation ≈ 0.05, with a robust plateau
spanning 0.80–0.90 crossover probability and 0.03–0.07 mutation rate. Minor variation
in the peak, for instance, a slightly wider plateau with kNN, does not affect the overall
optimum choice. This indicates that operator selection is not limited to any one classifier
and supports the configuration presented in Table 3.3.

Fig. 3.4 shows the convergence behaviour of the proposed DMI-GA method with
the three reference classifier evaluators, RF, kNN, and SVM. It can be observed that for
the random forest setting, the validation accuracy increases sharply within the first 40
generations, reaching ≈ 97%. After that, it gradually stabilizes and converges around
99.90%. This shows that with RF as the evaluator, the DMI-GA quickly finds high-
quality feature subsets and converges early. Similar to RF, the curve rises rapidly for
the kNN evaluator and converges around 99.7%–99.8%. The SVM-based convergence
curve starts slower but increases quickly, converging around 99.60%. SVM converges
more slowly than RF and kNN but achieves comparable accuracy.

For all three classifiers, performance improves smoothly and stabilizes by≈approximately
150 generations, justifying genmax = 150 as a balanced performance setting.
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Fig. 3.3: Validation accuracy (%) across crossover and mutation probabilities for DMI-GA parameter
tuning with (a) RF, (b) kNN, and (c) SVM

Fig. 3.4: DMI-GA convergence curves showing validation accuracy across generations for DMI-GA with
(a) RF, (b) kNN, and (c) SVM evaluators
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To demonstrate the systematic tuning of the ML models, each classifier was tuned
with 10-fold cross-validation using accuracy. To keep the explanation concise, yet trans-
parent, we present three representative tuning landscapes with RF, SVM, and kNN, as
visualised in Fig. 3.5.

Fig. 3.5: ML Classifier hyperparameter tuning for (a) RF, (b) kNN, and (c) SVM

It was observed that accuracy in random forest monotonically improves as trees in-
crease, then saturates beyond 200 trees. Depth up to approximately 15, after which it
gains a plateau or slightly dips. For kNN, the number of neighbours (k) varied from
3-15, and the distance metrics were tested for the Euclidean and Manhattan distance.
Accuracy rises from small k to a peak around k ≈ 7, then declines for larger k. This
happens because very small k produces high-variance, noisy decision boundaries and
very large k oversmoothens class boundaries and blends minority attack points with nor-
mal traffic. Manhattan (p=1) is consistently slightly worse than Euclidean (p=2) across
the grid. In the linear SVM heatmap, accuracy forms a clear ridge along the penalty
C, with the best region near C ≈ 11 and tolerance around 0.001. Too small a C or a
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weaker penalty leads to underfitting with overly wide margins, while excessively large
C risks overfitting by enforcing hard margins. Similarly, very loose tolerances prevent
proper convergence, while overly tight tolerances add unnecessary computational bur-
den without accuracy gain. Thus, the setting C = 11 and tol = 0.001 achieves a balanced
trade-off, resulting in stable and near-optimal validation accuracy.

These example landscapes illustrate the selection process used across all models.
The final chosen values per ML techniques are summarized in the hyperparameter table
3.2.

Table 3.4 presents the optimal selected subset of features along with their ranking,
obtained from the original dataset of 35 features by various feature selection methods
(FS), along with the proposed DMI-GA employed. The features were fed iteratively to
the classifier in the order of ranks provided by the respective feature selection methods.
In addition, features are fed incrementally according to their rank in the classifier, and
the best performance is recorded in terms of the metrics stated in subsection 3.3.2.

This study aims to analyse and comprehensively compare different combinations
of state-of-the-art feature selection methods and the proposed hybrid feature selection
method DMI-GA with ML algorithms for anomaly-based network intrusion detection.
We also analyse the results when the original dataset is under consideration, that is, with
no feature selection (No FS). Taking into account a combination of No FS along with
seven feature selection methods with seven ML algorithms, considering the value of k
in kNN as k = 5, k = 10, and k = 15, 72 models were experimented with for intrusion
detection

3.3.2 Performance Evaluation Metrics

To assess the effectiveness of anomaly-based network intrusion detection systems, var-
ious performance metrics are used. These metrics help quantify the system’s ability to
accurately distinguish between normal and anomalous network traffic. This study con-
siders Accuracy, Precision, Recall, and F1-score as primary criteria for evaluating the
performance [99]. Accuracy measures the overall correctness of the system. Precision,
on the other hand, indicates how many of the detected anomalies were actual intrusions,
helping to minimise false alarms. Recall, also called sensitivity, measures how well the
system identifies all intrusions, focusing on minimising missed attacks. F1-score bal-
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Table 3.4: Selected and Ranked Optimal Feature Set based on Various Feature Selection
Algorithms

Feature
Selection
Method

#Features
Selected

Selected Features and their Ranking

CS 28 F22, F23, F16, F5, F35, F25, F12, F24, F9, F31, F17,
F8, F34, F10, F6, F30, F11, F15, F13, F4, F18, F14, F28,
F29, F19, F20, F7, F2

CFS 17 F9, F5, F29, F4, F7, F15, F6, F30, F17, F16, F13, F28,
F10, F31, F12, F2, F8

IG 21 F11, F12, F2, F10, F35, F20, F32, F30, F24, F16, F29,
F28, F6, F4, F17, F33, F8, F25, F34, F15, F31

SU 21 F9, F15, F28, F25, F17, F2, F6, F34, F7, F16, F10, F5,
F14, F18, F31, F24, F19, F35, F8, F4, F11

RFE 14 F5, F2, F10, F16, F34, F29, F28, F4, F6, F17, F30, F8,
F31, F15

GA 15 F12, F13, F4, F6, F2, F15, F16, F17, F5, F7, F8, F28,
F30, F25, F24

Proposed
DMI-GA

18 F2, F4, F6, F11, F8, F5, F7, F24, F25, F15, F17, F16,
F12, F13, F30, F31, F29, F28

ances precision and recall, providing a single measure of detection effectiveness. The
classifier parameters were considered optimal if they produced the highest metric val-
ues.

To statistically validate the model’s efficiency to an independent set of features, we
performed two widely popular cross-validation strategies, K-fold (for K = 10) and
Leave-one-out cross-validation (LOOCV) strategies [100]. Cross-validation offers a
more accurate assessment of a model’s ability to generalize, as it evaluates the model
on various validation sets. This process helps to mitigate overfitting by offering a reli-
able estimate of how well a model will perform on data it has not encountered before.
The 10-fold cross-validation was selected as it provides a reliable bias-variance balance
with manageable computation, while LOOCV offers the most exhaustive use of data for
validation, though at the expense of heavier computational overhead. Including both
strategies allowed us to compare the stability of results under different levels of data
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reuse. In both CV schemes, stratification was applied to preserve the original class dis-
tribution of normal and attack instances within each fold, ensuring balanced evaluation.
The accuracy and F1-score values of K-fold cross-validation (K = 10 and LOOCV) of a
model are obtained by averaging them across each fold of k-fold cross-validation.

3.3.3 Performance Comparison of Combinations of ML and FS Tech-
niques

This subsection introspects the performance of the eight FS methods in conjunction with
the seven ML models in terms of intrusion detection accuracy (%) as presented in Table
3.5.

The feature selection methods were observed to significantly improve the detection
accuracy as compared to without feature selection, that is, No FS. No FS method gave
the lowest accuracy, whereas FS methods like CFS, RFE, GA, and the proposed DMI-
GA significantly enhanced the accuracy. Additionally, CFS, IG, and SU also improve
accuracy but are less effective than GA-based methods. The proposed DMI-GA FS
method consistently outperformed all others, achieving the highest detection accuracy
across all ML classifiers. Also, RF performed the best among ML models across differ-
ent FS methods, reaching a maximum accuracy of 99.94% with the proposed DMI-GA.
Fig. 3.6 is a visualisation of the detection accuracy of each of the ML models, demon-
strating that in every aspect of the feature selection, the proposed DMI-GA feature se-
lection strategy outperformed the others, and NB presented the weakest performance
across all FS methods.

The bold values across the experimental results presented emphasize the most sig-
nificant value(s) compared to the rest.

Tables 3.6 and 3.7 represent the precision and recall values, respectively, for all
models combining ML and FS strategies. In terms of these metrics, again, it can be ob-
served that DMI-GA with RF has the highest precision of 96.47% and the highest recall
of 99.99%. No FS resulted in lower precision which indicates more false positives. It
is also noted that certain methods, such as SU and CFS, achieved high recall but lower
precision, suggesting they identify a large number of anomalies but with an increased
rate of false positives.
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Table 3.5: Detection Accuracy (%) for Combinations of ML and FS methods

Feature Selection (FS) LR DT NB
kNN

RF SVM K-Means
k=5 k=10 k=15

No FS 94.62 95.68 89.17 94.99 94.92 94.88 95.79 96.11 93.24

CS 97.18 99.86 91.23 99.56 99.44 99.17 99.87 99.10 96.96

CFS 96.08 96.12 90.09 96.29 96.17 96.09 96.44 96.13 95.77

IG 96.36 98.99 90.15 98.71 98.69 98.55 98.98 98.79 96.88

SU 96.23 97.98 89.99 97.32 97.18 97.22 98.02 97.47 96.43

RFE 97.15 99.76 93.44 99.20 98.89 98.73 99.85 98.82 96.91

GA 97.99 99.87 94.00 99.58 99.49 99.22 99.88 99.18 97.27

Proposed DMI-GA 98.10 99.89 94.97 99.77 99.71 99.65 99.94 99.70 97.88

Fig. 3.6: Comparison of Detection Accuracy (%) of ML models with the FS methods
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Table 3.6: Precision (%) for Combinations of ML and FS methods

Precision (%)

Feature Selection (FS) LR DT NB
kNN

RF SVM K-Means
k=5 k=10 k=15

No FS 90.16 91.38 85.99 90.88 90.75 90.56 91.38 92.27 89.79

CS 93.99 95.68 88.73 95.47 95.44 95.29 95.71 95.14 93.64

CFS 92.15 92.31 86.69 92.61 92.60 92.54 92.89 92.49 91.92

IG 93.32 95.42 87.18 95.39 95.26 95.16 95.68 95.10 93.60

SU 93.30 95.16 86.81 94.61 94.57 94.43 95.16 94.61 93.27

RFE 93.89 95.59 88.65 95.43 95.38 95.20 95.70 95.12 93.62

GA 94.78 95.97 89.69 95.77 95.48 95.33 96.10 95.29 93.71

Proposed DMI-GA 95.02 96.39 90.86 96.18 95.99 95.71 96.47 95.66 93.99

Table 3.7: Recall (%) for Combinations of ML and FS methods

Recall (%)

Feature Selection (FS) LR DT NB
kNN

RF SVM K-Means
k=5 k=10 k=15

No FS 96.75 97.86 91.43 96.89 96.84 96.81 97.88 98.99 96.09

CS 99.78 99.99 97.55 99.86 99.84 99.84 99.99 99.82 98.91

CFS 98.04 98.10 93.79 98.19 98.18 98.15 98.28 98.14 97.78

IG 98.79 99.90 97.49 99.78 99.66 99.52 99.92 99.43 98.89

SU 98.78 99.47 95.68 99.39 99.38 99.38 99.49 99.39 98.68

RFE 99.52 99.92 97.51 99.80 99.66 99.61 99.95 99.59 98.89

GA 99.79 99.98 97.93 99.89 99.84 99.84 99.98 99.84 98.95

Proposed DMI-GA 99.80 99.99 98.26 99.90 99.87 99.86 99.99 99.85 98.99

This trend is clearly visible in Fig. 3.7. Across all ML techniques, the NoFS method
had the highest false positive rate (FPR) and an elevated false negative rate (FNR), re-
sulting in the model overwhelming administrators with spurious alerts while still failing
to detect real intrusions. Without feature selection, IDS generates excessive false alarms,
with FPR peaking at nearly 13%, which is impractical for real-world deployment. Con-
sidering from NoFS to DMI-GA, shows a huge FPR drop from approximately 8-10%
down to approximately 3-4%, while FNR to well below 1%, approximately 0.1% to
0.5%. This corresponds to a 40% to 60% reduction in false alarms and an 85–95% re-
duction in missed attacks across ML models. For instance, with the RF–DMI-GA, the
FPR is only 3.39%, indicating that roughly 1 in every 30 benign flows is incorrectly
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flagged as malicious, while the FNR is as low as 0.01%, missing only about 1,034 at-
tacks out of more than ten million, which suggests almost complete attack detection.
Overall, DMI-GA consistently minimizes both false alarms and missed intrusions, re-
gardless of the classifier employed. Even with inherently strong models such as RF
and SVM, DMI-GA still provides a measurable operational benefit by generating fewer
alerts without compromising recall. These results confirm that DMI-GA delivers the
most practical feature subset for deployment, giving the right balance between strong
detection capability and efficient operation.

After these experiments, the observations suggested that combining machine learn-
ing techniques with feature selection for intrusion detection is more efficient and accu-
rate when using the optimal set of features in comparison to the original set of features.

3.3.4 Enhanced Performance Comparison of ML and FS Techniques
with Cross-Validation

This subsection presents the performance evaluation of various ML models combined
with different FS techniques, incorporating cross-validation to ensure robustness and
generalizability. The results offer valuable insights into how effectively the models
perform across various data splits, ensuring a more comprehensive evaluation of the
intrusion detection system.

Table 3.8 highlights the performance of the combinations of ML and FS techniques
based on the detection accuracy achieved and the F1 score. As observed in Table 3.5, the
k-NN classifier achieves optimal performance for intrusion detection at k=5. Therefore,
for cross-validation, we conducted experiments exclusively at k=5 for this model.

We observed that the LOOCV strategy provides more robust results than the 10-fold
CV, suggesting its robustness in evaluating model performance across different data
subsets. The results also suggested that the proposed DMI-GA method consistently
achieves the highest accuracy and F1-score across all ML models. The highest accu-
racy of 99.91% (LOOCV) and 99.61% (10-Fold CV) is observed for the Random Forest
classifier using DMI-GA, demonstrating its superiority in selecting relevant features.
Additionally, among all the FS techniques, GA performs more efficiently but is slightly
outperformed by DMI-GA, indicating that the additional mutual information-based en-
hancement improves the feature selection effectiveness. As declared previously, the No
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Fig. 3.7: Comparison of FPR (%) and FNR (%) across nine ML models and eight FS methods
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Table 3.8: Performance analysis of ML classifiers with the FS methods using two cross-
validation strategies

Classifier FS method Accuracy (%) F1-Score (%)

10-Fold CV LOOCV 10-Fold CV LOOCV

LR NoFS 94.33 94.50 93.62 94.24
CS 96.99 97.04 96.66 96.70
CFS 95.71 95.86 94.68 94.90
IG 95.90 96.18 95.80 95.88
SU 95.83 96.11 95.79 95.86
RFE 96.87 96.99 96.41 96.52
GA 97.88 97.92 96.94 97.12
DMI-GA 97.96 98.00 97.20 97.25

DT NoFS 94.65 95.10 94.00 94.41
CS 99.37 99.68 97.09 97.69
CFS 95.66 96.01 94.83 95.02
IG 98.41 98.65 96.59 97.51
SU 97.44 97.80 96.37 97.17
RFE 99.09 99.42 96.85 97.61
GA 99.43 99.71 97.33 97.83
DMI-GA 99.52 99.79 97.60 98.06

NB NoFS 88.99 89.06 88.41 88.53
CS 91.08 91.17 92.79 92.83
CFS 89.65 89.82 89.86 90.00
IG 89.97 90.05 91.89 91.95
SU 89.73 89.82 90.90 90.93
RFE 90.86 90.94 92.70 92.77
GA 93.89 93.94 93.49 93.53
DMI-GA 94.80 94.88 94.11 94.32

k-NN (k=5) NoFS 94.57 94.63 93.88 93.69
CS 99.10 99.33 97.06 97.52
CFS 95.52 95.99 94.81 95.00
IG 98.36 98.50 96.43 97.44
SU 96.99 97.16 96.30 96.84
RFE 98.79 98.91 96.77 97.47
GA 99.16 99.35 97.09 97.69
DMI-GA 99.29 99.46 97.41 97.90

SVM NoFS 94.50 94.56 93.68 95.41
CS 98.80 98.88 96.95 97.32
CFS 95.44 95.89 94.79 95.13
IG 98.27 98.45 96.39 97.12
SU 96.93 97.01 96.22 96.84
RFE 98.58 98.66 96.52 97.20
GA 99.00 99.09 97.00 97.41
DMI-GA 99.22 99.40 97.38 97.61

K-Means NoFS 93.07 93.22 93.59 93.63
CS 96.80 96.89 95.99 96.10
CFS 95.59 95.67 94.66 94.66
IG 95.83 96.15 95.72 95.83
SU 95.71 96.07 95.67 95.80
RFE 96.76 96.85 95.94 96.08
GA 97.19 97.22 96.04 96.16
DMI-GA 97.73 97.80 96.27 96.33

RF NoFS 95.09 95.44 94.05 94.42
CS 99.41 99.70 97.14 97.70
CFS 95.77 96.19 95.20 95.41
IG 98.48 98.69 96.67 97.65
SU 97.70 97.88 96.52 97.18
RFE 99.11 99.55 96.99 97.68
GA 99.55 99.79 97.41 97.90
DMI-GA 99.61 99.91 97.77 98.10
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FS results in significantly lower accuracy, reinforcing the importance of feature selec-
tion in improving the ML model performance.

The use of both CV strategies allowed us to evaluate how sensitive the model is to
data partitioning. We observed consistent accuracy and F1-score values across both CV
methods, indicating the stability of the proposed feature selection approach, DMI-GA.
Furthermore, by averaging the performance metrics across all folds in each method,
we mitigated the risk of overfitting and obtained a more reliable estimate of real-world
performance.

In this study, we have also investigated the relative performance of seven machine
learning models with chosen eight feature selection methods across two cross-validation
strategies, using a robust ranking mechanism [101] to evaluate the average percentage
gain in the accuracies of each model. The ranking was determined based on the average
increase in performance compared to the lowest accuracy (PL) achieved by all other
combinations of methods. For n combinations of classifiers and feature selection meth-
ods, including those without feature selection, the average percentage gain in accuracy
(Gaini) for combination i is calculated as:

Gaini =
1

n

n∑
c=1

accc − PL

PL

× 100 (3.10)

where, accc is the intrusion detection accuracy of the model for the ith combination
and ML model c.

Fig. 3.8: Ranking of the combination of ML and FS methods based on Performance Gain in Accuracy
(%)

Fig. 3.8 illustrates the ranking of 56 models using a combination of ML and FS
methods, sorted by their relative accuracy gain values in descending order. Notably,
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the combination of random forest and the novel DMI-GA method exhibits the highest
relative performance gain based on achieved detection accuracy. The analysis further
indicates that the performance is consistently superior when using a combination of ML
and FS methods compared to scenarios where no feature selection is applied. These
results also suggested that evolutionary-based feature selection methods like DMI-GA
and GA effectively enhance performance when paired with robust classifiers like RF and
DT. It can therefore be concluded that the model’s performance improves in detecting
intrusions when applied to the optimal feature set obtained through the novel hybrid
feature selection method, DMI-GA.

3.3.5 Statistical Significance

To establish the robustness of our experimental results, statistical significance tests were
performed on the outcomes of the feature selection techniques when evaluated with in-
dividual machine learning models. This is done using two statistical tests, the Friedman
test [102] and paired Wilcoxon signed-rank test with Holm correction [103].

The goal is to test whether the proposed DMI-GA feature selection method yields
significantly better performance than the other FS methods. To analyse this, we per-
formed the statistical tests separately for each ML model and across the 10 CV folds
using accuracy. The tests are performed at a standard significance level, α = 0.05 and a
confidence interval of 95%.

The non-parametric Friedman test was employed to evaluate whether statistically
significant differences existed among the feature selection techniques. It compared the
eight feature selection methods across 10 CV folds to test the null hypothesis (H0)

that all feature selection techniques perform equivalently. The alternative hypothesis
(H1) indicates that at least one feature selection method differs significantly. Following
the rejection of the null hypothesis, post-hoc analysis is conducted to examine pairwise
comparisons between the proposed DMI-GA approach and the baseline feature selection
methods. For every fixed ML method, the Friedman rank test is evaluated using average
ranking Rj , where within each fold i = 1, . . . , N and method j = 1, . . . , k, let rij be the
rank. The sum of ranks Rj =

∑N
i=1 rij and the average rank, R̄j = 1

N
Rj for N = 10

folds and k = 8 feature selection methods, given by Eqn. 3.11.
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χ2
F =

12N

k (k + 1)

k∑
j=1

R̄ 2
j − 3N (k + 1) (3.11)

Table 3.9 presents the Friedman rank test statistics, including the F-statistic values
(Fr) and corresponding p-values, for each machine learning classifier when evaluated
with the eight feature selection techniques under 7 degrees of freedom. In all cases,
the p-values are well below the 0.05 significance level, leading to the rejection of the
null hypothesis and confirming that statistically significant performance differences ex-
ist among the methods. The relative values of the Fr = χ2

F statistics also highlight
classifier-specific sensitivity to feature selection. For instance, SVM and Logistic Re-
gression show greater dependence on the choice of features compared to Random For-
est, which appears more robust across feature subsets. To summarise, all classifiers
experience statistically significant performance improvements due to feature selection,
with the strongest effects in SVM, LR, kNN, and NB, while the least in RF, but still
show significant improvement. Consequently, a pairwise post-hoc test, the Wilcoxon
signed-rank with Holm correction, was performed to identify which feature selection
method significantly outperforms the other.

Table 3.9: Friedman Rank Test Results

ML Model Fr p-value
LR 32.448 0.000762
DT 22.631 0.000901
NB 30.509 0.000119
kNN 32.400 0.000786
SVM 34.176 0.000301
Kmeans 28.457 0.000769
RF 18.933 0.000746

The post-hoc Wilcoxon-Holm correction analysis presented in Table 3.10 demon-
strates that the proposed DMI-GA technique gives statistically significant improvements
over most baseline FS methods across the majority of ML models, along with the Holm-
adjusted p-values. Although DMI-GA achieves results statistically comparable to GA
and RFE in certain models, it consistently avoids performance degradation across clas-
sifiers, unlike other methods, which show variability. This stability highlights DMI-GA
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as not only an effective but also a highly reliable feature selection method.

Table 3.11: Average Ranking of Feature Selection Methods

Feature Selection Method Average Ranking

DMI-GA 1.2
GA 2.8
CFS 3.3
IG 3.7
SU 5.5

RFE 5.9
CS 6.6

NoFS 8.0

Table 3.11 presents the average Friedman ranking for different feature selection
methods across 10 CV folds for each ML method. The lower the rank, the better the fea-
ture selection method. The ranking results reveal that the proposed DMI-GA achieved
the highest consistency across folds, outranking the others.

3.3.6 Performance Comparison of Proposed Framework with exist-
ing IDS models

In addition to comparing the proposed solution with other feature selection models and
machine learning techniques, we conducted an experiment to compare the DMI-GA
method with recent state-of-the-art methods for intrusion detection, presented in Ta-
ble 3.12, based on the model’s detection accuracy and F1-score. These studies are
selected for comparison based on their relevance and recency in the field of intrusion
detection, the methodological similarity to our approach, their established performance
benchmarks, and the diversity of techniques they encompass. This selection ensures
a comprehensive evaluation of the proposed DMI-GA method against state-of-the-art
solutions. It can be observed that the proposed intrusion detection model, RF-DMI-
GA, achieved the highest accuracy, demonstrating superior performance in detecting
network intrusions against the existing intrusion detection models when implemented
on the original set of features.
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Table 3.12: Performance analysis of the RF-DMI-GA intrusion detection model with
existing models on the original dataset

Ref. Detection
Model

FS Method Features Accuracy
(%)

F1 (%)

Halim et. al. [39] SVM GbFS 14 99.83 97.78
Awad and Fraihat [41] RF DT-RFECV 12 95.27 93.99
Turukmane et. al. [42] M-MultiSVM ONgO 12 99.79 97.63
Akhiat et. al. [43] RF IDS-EFS 10 98.88 97.51
Proposed RF DMI-GA 18 99.91 98.10

3.3.7 Performance Comparison of Proposed Framework on Vari-
ous Benchmark Datasets

The proposed framework is also compared with several existing intrusion detection sys-
tems, discussed in subsection 2.1.1, on five publicly available datasets, including KDD
Cup’99 [104, 105], UNSW-NB15 [106], CIC-IDS2018 [16], IOTID20 [107], and CIC-
IoT2023 [108], with performance assessed based on detection accuracy, presented in
Table 3.13. These datasets are widely used in IDS research and provide a standardized
benchmark for evaluating the effectiveness of different approaches. They differ in net-
work traffic characteristics, attack types, and feature sets, providing a comprehensive
foundation for comparative analysis. By evaluating the framework across these diverse
datasets, the study highlights the robustness and generalizability of the proposed model
in varied network environments.

The IoTID20 dataset includes 83 features with labelled benign and malicious traffic
collected from a smart home IoT setup, while the CIC-IoT2023 dataset comprises 47
features and represents diverse, realistic IoT attack scenarios. These datasets were uti-
lized to assess the generalizability and robustness of the proposed RF-DMI-GA model in
modern IoT environments, beyond conventional network-level flows, demonstrating its
effectiveness against emerging threats in resource-constrained and heterogeneous IoT
systems.

In [4], we performed a comparative analysis for intrusion detection using DT, NB,
RF, SVM, LR, and KNN classifiers. Binary classification of benign and intrusive data
was carried out after applying feature importance-based selection using Gini impor-
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3.4. Chapter Summary

tance. A comparative analysis of this model on various benchmark datasets is presented
in Table 3.13.

The results emphasize the critical role of feature selection in enhancing intrusion
detection accuracy. The proposed RF-DMI-GA model consistently outperforms ex-
isting models, achieving the highest accuracy across all the datasets: 99.90% for KDD
Cup’99, 99.86% for UNSW-NB15, 99.30% for CSE-CIC-IDS2018, 99.82% for IoTID20,
and 99.87% for CIC-IoT2023 dataset. This suggests that the DMI-GA feature selection
method effectively enhances classification performance. Additionally, while other mod-
els like LR with Gini Feature Importance (FI) and RF with DT-RFECV also exhibit high
accuracy, they generally require a higher computational complexity to achieve an opti-
mal number of features, indicating that the proposed method achieves a better feature
set efficiently.

3.4 Chapter Summary

This chapter presents a comprehensive analysis of the anomaly-based Network Intru-
sion Detection Systems (NIDS), emphasizing the impact of feature selection on detec-
tion performance. It introduces a novel Dynamic Mutual Information-based Genetic
Algorithm (DMI-GA), which integrates mutual information and genetic algorithms to
select the most relevant features while minimizing redundancy. The study evaluated
the efficiency of DMI-GA against six existing feature selection techniques, including
Chi-Squared, Information Gain, Correlation Feature Selection, Recursive Feature Elim-
ination, and Genetic Algorithm, as well as a baseline with no feature selection. The pro-
posed framework consists of three phases: data collection and pre-processing, feature
extraction, selection, and ranking, followed by intrusion detection using machine learn-
ing models, including Logistic Regression, Decision Tree, Naïve Bayes, k-NN, Random
Forest, SVM, and K-Means. Experimental results indicated that DMI-GA consistently
outperformed other selection methods, achieving the highest accuracy of 99.91% and
F1-score of 98.10% with the Random Forest classifier, which demonstrated its effective-
ness in reducing false positives and improving classification precision. Cross-validation
using 10-Fold CV and LOOCV further demonstrated the robustness of the approach.
Two statistical analysis tests, the Friedman rank test and the post-hoc Wilcoxon-Holm
correction test, were performed to validate the results obtained and confirming that the
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proposed feature selection method gives dominant results than no feature selection or
other baseline methods. A comparative study with recent state-of-the-art intrusion de-
tection models confirmed that RF-DMI-GA surpasses existing methodologies, estab-
lishing it as a highly efficient feature selection-based approach for enhanced intrusion
detection in high-dimensional datasets. Performance analysis across various benchmark
datasets also revealed the robustness of the proposed framework. This chapter focused
on the binary intrusion detection to establish a strong baseline. Multiclass categoriza-
tion is addressed in the following chapter, while future work will extend evaluation to
include computational profiling and cross-dataset generalization. Moreover, the next
chapter explores the challenge of the high dimensionality of the dataset.
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Chapter 4
Enhanced NIDS Leveraging Modified
Picture Fuzzy Clustering

This chapter presents an anomaly-based NIDS framework that addresses the curse of
high dimensionality in datasets and is evaluated using a robust benchmark dataset en-
compassing modern attack types. This study proposes a modified Picture Fuzzy Clus-
tering technique, mPicFC designed to improve the efficiency of intrusion detection.
The optimization problem is formulated and solved to determine the prototypes of the
clusters. In addition, this chapter provides experimental results, analysis, and statistical
validation for attack classification.

4.1 Introduction

Intrusion Detection Systems have proven to be an effective mechanism to monitor and
detect potential attacks, as well as abnormal activities, to mitigate the risks associated
with network attacks. In the past, several state-of-the-art machine learning-based ap-
proaches have been developed to detect network intrusions in order to safeguard one’s
information. Researchers have been striving to develop intrusion detection techniques
that are not only more efficient but also more robust. Furthermore, these conventional
models employ either supervised or unsupervised machine learning techniques on a
lower-dimensionality dataset and thus are incapable of handling a higher-dimensional
data space. Due to the higher dimensionality of the data, the ML models are affected
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more severely, leading to a higher false alarm rate (FAR). Most of the traditional in-
trusion detection methods also fail to detect the types of attacks present in the net-
work or are capable of finding a few of the existing ones [110, 56]. The datasets used
in these conventional models are significantly outdated, limiting the efficiency of the
IDS, particularly when it comes to detecting rarely encountered or recent attack types
[49]. Since dataset quality is essential for accurately classifying and detecting intru-
sions, these datasets containing both anomalous and benign network data packets are
often highly imbalanced, which can reduce classification performance [111, 112].

Higher dimensional data interfere with the performance of the detection model and,
as a result, produce a lower detection rate of finding anomalous network traffic. Over
the past few years, Fuzzy Clustering has been widely used in the field of intrusion
detection [113, 114]. Clustering is an unsupervised ML technique that proves to be a
highly effective approach for analyzing data and extracting valuable insights. The fuzzy
cluster method can be used for network traffic flow analysis by examining and grouping
network traffic flow patterns.

This study proposes an ML–mPicFC model, a novel approach for anomaly-based
network intrusion detection that leverages machine learning techniques and picture fuzzy
clustering on a dimensionality-reduced dataset. Our approach focuses not only on in-
trusion detection, but also on reducing the dimensionality of the dataset and detecting
the current type of network attacks.

The Picture Fuzzy C-Means clustering method (FC-PcFS), based on Picture Fuzzy
Sets, is proposed [115]. Its performance is highly sensitive to the initialization of key
parameters, including initial cluster centers, fuzzifier, membership partition matrix, and
neutrality matrix. However, improper initialization can lead to suboptimal results and
impact the convergence time of the algorithm.

The novel mPicFC approach introduces an additional layer of decision making that
helps to handle uncertainty more efficiently. By distinguishing between partial mem-
bership and complete non-membership, the mPicFC allows for more precise classifi-
cations. The refusal or hesitation degrees help reduce bias in clusters, ensuring that
uncertain data points do not unduly influence the clustering results. Furthermore, the
proposed framework addresses the class imbalance problem in the dataset to reduce bias
toward the majority class and enhance the model’s performance. Also, the robustness
of the proposed framework is investigated in contrast to other related methods on the
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CSE-CIC-IDS2018 dataset. The key contributions of the chapter are summarized as:

1. We proposed a ML–mPicFC model for anomaly-based network intrusion detec-
tion based on Machine Learning (ML) techniques and modified Picture Fuzzy
Clustering (mPicFC) method.

2. Binary classification using four well-known ML classifiers was performed on the
dimensionality-reduced optimal dataset, which classifies the network attacks from
the benign ones.

3. We proposed a novel Picture Fuzzy Clustering technique, mPicFC, to detect and
cluster the various types of attacks present in the anomalous network. Experi-
ments were carried out on the up-to-date dataset CSE-CIC-IDS2018, which helped
detect the latest network attacks.

4. We utilized the kernel function as a distance measure to compute the distance
between the center of the cluster and the data samples, as it aids in reducing the
effect of noise.

5. Principal component analysis (PCA) and linear discriminant analysis (LDA) are
used to minimize the effect of high dimensionality on the dataset and further im-
prove overall performance by reducing time delay, computational resources, and
computational cost.

6. We validated the performance of the ML classifiers using Leave-One-Out Cross-
Validation (LOOCV) and k-fold validation techniques, with k values set to 5 and
10, on balanced and imbalanced datasets. Additionally, a statistical analysis was
performed using the Friedman test and a post-hoc Wilcoxon-Holm test. We sub-
sequently analysed the performance of the proposed framework in comparison to
other related state-of-the-art models on the aforementioned dataset.

This chapter is organized as follows. In section 4.2, various notations and prelim-
inary concepts used in our work are discussed. Section 4.3 describes the proposed
modified Picture Fuzzy Clustering method for intrusion detection. Section 4.4 presents
the experimental results, performance validation, and statistical analysis. Also, a com-
parison of the performance evaluation of the proposed model with the existing ones is

71



4.2. Preliminaries and Notations

presented in this section. The study is summarized in section 4.5, which provides a
summary of the chapter.

4.2 Preliminaries and Notations

This section gives a brief description of the prerequisites related to Picture Fuzzy Sets,
clustering principles, and key mathematical notations essential for understanding the
proposed methodology. It serves as a foundation for the development and application of
mPicFC in the anomaly-based network intrusion detection.

• Fuzzy Sets (FS): The fuzzy set S is defined over the universe-of-discourse X and
with µS(x) as the membership function which represents the degree of belong-
ingness of an element in a fuzzy set, for an element x ∈ X [116], represented
by:

S = {⟨x, µS(x)⟩ | x ∈ X} (4.1)

where, µS(x) is the membership function with µS(x): X → [0, 1], whereas νS(x)
is the non-membership function defined as:

νS(x) = 1− µS(x) (4.2)

• Intuitionistic fuzzy sets (IFS): An IFS F, over set X with x ∈ X [117], is repre-
sented by:

F = {⟨x, µF (x), νF (x)⟩ | x ∈ X} (4.3)

where µF (x) and νF (x) ∀x ∈ X satisfy the constraints presented in Eqns. (4.4)
and (4.5), as follows:

µF (x), νF (x) ∈ [0, 1] (4.4)

0 ≤ µF (x) + νF (x) ≤ 1 (4.5)

• Hesitation: The presence of uncertainty arose from a lack of sufficient knowl-
edge in defining the membership function of x in the IFS F, which is called the
hesitation degree, defined by:
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πF (x) = 1− [µF (x) + νF (x)] (4.6)

µF (x), νF (x) ∈ [0, 1] (4.7)

An IFS is equivalent to a fuzzy set when πF (x) = 0.

• Sugeno and Yager Generating function operators: Using Sugeno and Yager
generating operators, the non-membership or the negation function can be de-
fined. With the help of the Sugeno function [118], the negation function for the
set of membership values given for any element x, along with the negation param-
eter δ, can be defined as follows:

νF (x) = Neg(µF (x)) =
1− µF (x)

1 + δµF (x)
, δ > 0 (4.8)

Whereas, using the Yager generating function [119, 120], it is defined as:

νF (x) = Neg(µF (x)) = (1− µδ
F (x))

1/δ, δ > 0 (4.9)

• Picture Fuzzy Set (PFS): A PFS, P [121], an extension of IFS, defined over set
X with x ∈ X is

P = {⟨x, µP (x), ηP (x), γP (x)⟩ | x ∈ X} (4.10)

where µP (x), ηP (x), and γP (x) are the positive, neutral, and negative degrees of
each x, which satisfies the following two constraints ∀x ∈ X:

µP (x), ηP (x), γP (x) ∈ [0, 1] (4.11)

0 ≤ µP (x) + ηP (x) + γP (x) ≤ 1 (4.12)
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The degree of refusal of x can be evaluated as:

ξP (x) = 1− (µP (x) + ηP (x) + γP (x)),∀x ∈ X (4.13)

Similar to the equivalence of IFS and FS, PFS yields to the conventional IFS when
ξP (x) = 0.

• Fuzzy c-means (FCM): In 1984, [122] presented the FCM algorithm, which is
an improvisation of k-means algorithms. It allocates a membership value to each
data point, determined by the distance between the data point and each cluster
center [123]. Let X = {x1, . . . , xr} have r data points with c centroids in V =

{v1, . . . , vi, . . . , vj} with U = {µij}cXr as the partition matrix. Minimizing the
objective function Jm results in the Fuzzy C-Means (FCM) algorithm partitioning
the dataset X into c clusters. Minimization of Jm is defined by:

minJm =
c∑

i=1

r∑
j=1

µm
ij∥xj − vi∥2 (4.14)

s.t.
c∑

i=1

µij = 1, 1 ≤ j ≤ r; (4.15)

µij ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ r; (4.16)
r∑

j=1

µij > 0, 1 ≤ i ≤ c (4.17)

where m is the fuzzifier constant, which manages the resulting partition’s fuzzi-
ness. For the ith cluster, the membership value of the jth data point is represented
by µij and νi represents the center of the ith cluster. ∥xj − vi∥2 represents the
distance between the centroid of the ith cluster and the jth data point. By the
Lagrangian method of undetermined multiplier [122], the solution of Eqn. (4.14)
can be obtained.

• Intuitionistic Fuzzy c-means (IFCM): IFCM is a modified version of FCM [124,
125] that performs clustering on IFS. The IFS theory uses an additional uncer-
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tainty parameter, hesitation degree, to define the membership function, and there-
fore, the clusters converge to the desired location more than the ones achieved us-
ing FCM [126]. In IFCM, a distance measure is applied as a proximity function,
which represents the Euclidean distance between the centroid of the ith cluster
and the jth data point, thus presenting the objective function as:

min Jm =
c∑

i=1

r∑
j=1

µm
ij∥xjIFS − viIFS∥2 (4.18)

s.t.
c∑

i=1

µij = 1, 1 ≤ j ≤ r; (4.19)

µij ≥ 0, 1 ≤ i ≤ c, 1 ≤ j ≤ r; (4.20)
r∑

j=1

µij > 0, 1 ≤ i ≤ c (4.21)

where Y = {y1, . . . , yr} are r IFSs, each having n data points with c centroids
in V = {v1, . . . , vj} and the Euclidean distance for IFS between xjIFS and viIFS is
defined by [127] as:

∥xj − vi∥ =
[
1

2

{
(µ(xj)− µ(vi))

2 + (ν(xj)− ν(vi))
2 + (π(xj)− π(vi))

2
}]1/2
(4.22)

• Picture Fuzzy Clustering (PFC): PFC is a fuzzy clustering method applied to
PFS [115], called FC-PFS. It is an improved variant of IFCM with the optimized
objective function defined as follows:

min Jm =
r∑

k=1

c∑
j=1

(µkj(2− ξkj))
m ∥Xk − Vj∥2 +

r∑
k=1

c∑
j=1

ηkj (log ηkj + ξkj)

(4.23)
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s.t.
c∑

j=1

(µkj(2− ξkj)) = 1; (4.24)

0 ≤ µkj, ηkj, ξkj ≤ 1; (4.25)

µkj + ηkj + ξkj ≤ 1; (4.26)
c∑

j=1

(ηkj +
ξkj
c
) = 1 (4.27)

Where, the first constraint is the new membership-like function that satisfies the
sum-row constraint of the traditional FCM algorithm. The last constraint suggests
that the model is guaranteed to work as one of the two uncertainties, refusal or
neutral degree, exists in the model.

If ξkj = 0 and the last constraint, Eqn. (4.27) is non-existent, then the FC-PFS
model generalizes to the conventional IFCM model. When this condition, along
with ηkj = 0, is met, the FC-PFS model is generalized to the traditional FCM
model.

As the above-mentioned model is employed on PFS, it provides better quality clus-
tering than FS and IFS, and it also performs well for complex real-world structures.
Thus, for efficient identification of various types of network attacks, we propose a novel
fuzzy clustering model based on the FC-PFS model.

4.3 Proposed Framework

This section describes the proposed framework for an efficient anomaly-based network
intrusion detection of the latest network attacks using supervised machine learning mod-
els to classify the benign network traffic from the attack classes, and further employed
unsupervised machine learning techniques to detect and cluster various network attacks.
The study also proposed a novel fuzzy clustering approach, mPicFC based on the pic-
ture fuzzy clustering approach with an aim to create a proficient model that can detect
anomalous intrusions in the network.
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The framework of the proposed intrusion detection system, developed in three phases
involving data pre-processing, binary classification of network traffic, and clustering
network attacks, is illustrated in Fig. 4.1. Initially, the captured network traffic was
preprocessed, the class imbalance problem was addressed, and, due to the high dimen-
sionality of the dataset, two widely used dimensionality reduction techniques, PCA and
LDA, were employed. Further, in the second phase, we investigated the performance
of the four widely popular binary classifiers-random forest, SVM, k-NN, and decision
tree-on the dimensionality-reduced dataset to classify the network attacks from the be-
nign (or normal) traffic. To validate the performance of these classifiers, we used three
Cross-Validation (CV) strategies: 5-fold CV, 10-fold CV, and LOOCV. Once the net-
work attacks were identified, the proposed mPicFC method was used to cluster the vari-
ous types of attacks in the final phase. These three phases are explained in detail in the
following subsections.

4.3.1 Phase I: Data Pre-processing and Dimensionality Reduction

In this work, the experiments were performed on the publicly available network dataset
CSE-CIC-IDS2018, which is an up-to-date benchmark and realistic dataset for cyber
defence. It was developed collaboratively by the Canadian Institute for Cybersecurity
(CIC) and the Communications Security Establishment (CSE). It captures real-world
network traffic from both benign and malicious activities, making it well-suited for
evaluating anomaly-based intrusion detection models. Network flows in the dataset are
captured using CICFlowMeter, which extracts 80 statistical features per flow and each
flow is labelled with its traffic class. It was prepared in an infrastructure comprising 50
attacking machines and a victim organization with 420 systems and 30 servers in a time
span of 10 days, resulting in capturing 1,62,33,002 network traffic instances. A snippet
of the traffic flow in the CSE-CIC-IDS2018 dataset is presented in Fig. 4.2, and the
distribution of the dataset consisting of various types of network traffic categories and
attack types present in CSE-CIC-IDS2018, along with the network traffic distribution
(%) [128] is presented in Fig. 4.3, with approximately 83% of benign network instances
and 17% of attack instances. This shows that the dataset is highly imbalanced, which
means the classifier is biased towards the majority class.

The dataset, originally in PCAP format, underwent further pre-processing as de-
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Fig. 4.1: Overall framework of the proposed intrusion detection model
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Fig. 4.2: Snippet of network traffic flow in CSE-CIC-IDS2018

tailed in subsection 3.2.1. After cleaning the data, we normalized the dataset using
the Min-Max normalization technique [129] and then reduced its dimensionality using
two techniques, PCA and LDA. Additionally, experiments were conducted on a dataset
that, after cleaning, was class-balanced using the Synthetic Minority Over-sampling
Technique (SMOTE) and subsequently underwent dimensionality reduction, described
later in this subsection. Throughout, we assume that after cleaning, Min-Max scaling
and SMOTE-based balancing, when employed, preserve class-relevant structure prior
to PCA or LDA.

Fig. 4.3: Approximate traffic distribution (%) of CSE-CIC-IDS2018

• Normalization: Normalization is a data scaling method of transforming the fea-
tures in a dataset to a standardized scale. This method helps enhance the ef-
ficiency and accuracy of machine learning classifiers, especially in the case of
large datasets, since it gives equal weightage to all features. Some of the data nor-
malization techniques include Z-score normalization, Sigmoidal normalization,
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Min-Max normalization, Softmax normalization, Max normalization, etc. In this
work, we have employed the Min-Max normalization technique, which maintains
the exact relationships among data values without introducing any latent bias.
Additionally, this technique takes less time and is less complex than the others
[130, 131, 132]. Based on this technique, raw data features were scaled to the
range of [0, 1]. The normalized value (Xnormalized) is obtained by subtracting the
feature’s minimum value X(min) from each data point (X) and then dividing the
result by the feature’s range, as presented below:.

Xnormalized =
X −X(min)

X(max)−X(min)
(4.28)

• Handling Class Imbalance: Class imbalance is a challenging issue that occurs
when one class in a dataset significantly outnumbers the others, often leading to
biased model performance [49]. Handling class imbalance is crucial in intrusion
detection as the majority of network traffic is benign, while actual intrusions are
rare, creating an uneven distribution of classes. This imbalance can lead models
to favour the majority class, resulting in missed detections of intrusions. Vari-
ous techniques exist to address class imbalance issues, including random over-
sampling, random undersampling, Synthetic Minority Oversampling Technique
(SMOTE), and Adaptive Synthetic Sampling (ADASYN). In this study, we have
handled this imbalance problem with the widely-used method, SMOTE. It helps
mitigate overfitting in minority classes as, unlike random oversampling, which
simply duplicates samples, SMOTE creates synthetic samples by interpolating
between existing minority class instances, making the dataset more varied and
reducing the risk of overfitting in duplicate samples [111]. It also helped clas-
sifiers better recognize minority attacks that are otherwise underrepresented in
the dataset, such as infiltration or web attacks. Since we perform dimensional-
ity reduction with PCA and LDA, SMOTE works well with both of them. As
PCA captures maximum variance in the data, the presence of additional minority
samples from SMOTE helps PCA retain a more balanced representation. LDA
is supervised and works to maximize class separability. Synthetic SMOTE sam-
ples support this by making the minority class more distinct, which can improve
LDA’s effectiveness, especially in binary classification.
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• Dimensionality Reduction: In this work, dimensionality reduction using the
most popular methods—PCA [56, 133, 134, 135] and LDA [136, 137]—was ap-
plied to the pre-processed dataset to transform it into a lower-dimensional space
while preserving the essence of the original data. This was done to reduce com-
putation time while simultaneously improving the model’s performance.

The unsupervised dimensionality reduction technique, PCA, was performed by
transforming the original features or variables into newer ones called principal
components, while using the principal components of the dataset instead of all ex-
isting original variables, ML algorithms converge in a much faster manner; hence
reducing the training time of the algorithm. Its goal is to maximize the variance in
the dataset captured by each component. Due to such advantageous characteris-
tics, we opt for PCA for dimensionality reduction in this work, as it is a prevailing
analysis tool. In the case of LDA, which is a supervised dimensionality reduction
technique, it aims to maximize the separability between different classes. It finds
a linear combination of features that best separates the classes. For selecting the
number of dimensions, PCA focuses on maximizing variance, which is a measure
of the spread of data points, while LDA focuses on maximizing class separability,
which is a measure of how well classes can be distinguished. PCA can select up
to f dimensions, while LDA can select up to min(C − 1, f) dimensions for C

number of classes and f features.

4.3.2 Phase II: Binary Classification of Network Traffic

Binary classification in network intrusion detection provides higher accuracy, faster de-
tection, and reduced computational costs. It enhances cybersecurity defences by al-
lowing efficient, real-time attack identification while minimizing complexity and false
alarms.

In this study, after the dataset was pre-processed, in the second phase, four well-
known supervised ML classification models were used to categorize the network traffic
as benign or attack. In this work, we compared and analyzed the performance of these
binary classifiers, namely, SVM, Decision Tree, Random Forest, and K-Nearest Neigh-
bour, to detect intrusive traffic from the normal. However, for advanced threat intelli-
gence, further categorization can be performed to identify and analyze different types
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of attacks. Therefore, in the final phase, the traffic in the network classified as attacks
was used to identify and cluster them into different attack classes.

4.3.3 Phase III: Clustering Network Attacks

This subsection provides an in-depth discussion of the proposed clustering approach,
mPicFC, which is built upon picture fuzzy clustering principles. This approach is specif-
ically designed to enhance the detection and classification of various network attack
types by leveraging the attack dataset obtained from the previous phase. By incorpo-
rating picture fuzzy clustering, the method aims to improve the accuracy and reliability
of intrusion detection by effectively handling uncertainty and overlapping data points
in the dataset. The results of the proposed clustering approach are expected to con-
tribute to the overall efficiency of network security systems by providing a structured
categorization of potential threats.

Clustering is an unsupervised ML and data mining technique that helps categorize
unlabelled data items into distinct groups called clusters, with each cluster comprising
similar data items. It does so with the help of various features of this unlabelled data,
drawing a similar pattern and grouping them according to the presence of these similar
patterns. Clustering techniques can be categorized as hard and soft clustering techniques
[138, 139]. In hard clustering, every data item either belongs to a particular cluster
completely or does not. Meanwhile, in soft clustering, data items can belong to multiple
clusters depending on the membership value.

One of the commonly used hard clustering techniques is K-means clustering [28,
140], which divides the data points into k clusters according to the chosen distance
metric, which is calculated between the data points and the cluster centroids. The data
point nearest to the centroid of the cluster is allocated to that specific cluster. Based on
the minimum distance, each data point is always assigned to one of the clusters, which
is particularly effective when dealing with highly organized data but not real-world data
[141].

In fuzzy clustering, a membership value is assigned to every data point for each of
the clusters that it belongs to. The membership value lies within [0, 1], which depicts
the degree to which the data point represents a cluster. Therefore, fuzzy clustering
offers a versatile and robust approach for dealing with real-world data that possesses
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vagueness and uncertainty. Soft or fuzzy clustering consists of techniques like fuzzy c-
means (FCM) [122], intuitionistic fuzzy c-means (IFCM) [124], etc., as explained in the
previous section. Thus, the difference between hard k-means and soft fuzzy c-means,
along with its variants, is that k-means clustering clusters the entire set of data points
into k clusters, and each data point belongs to a single cluster. In contrast, fuzzy c-means
generates k clusters and subsequently assigns each data point to these clusters. Still, it
also incorporates a factor that quantifies the degree of membership or the strength of
affiliation of the data point to each cluster.

4.3.3.1 The modified Picture Fuzzy Clustering method (mPicFC)

Picture fuzzy clustering is an improved version of IFCM based on picture fuzzy sets that
consider the degree of positive membership, neutral membership, and negative member-
ship, along with the degree of refusal membership. Thus, according to [115] PFSs have
better-quality clustering than FS and IFS. Therefore, inspired by the optimal and su-
perior performance of PFC over FCM and IFCM, we employed the mPicFC technique
to detect and cluster various types of network attacks. The additional membership de-
gree enhances clustering quality and enables better handling of ambiguous data points.
Furthermore, the integration of the Sugeno function for computing the negation mem-
bership refines membership calculations, leading to more reliable clustering outcomes.

Even though there are numerous advantages of PFC, for finding the distance between
the data points and the cluster centers, it uses Euclidean distance, and experiments have
concluded that for clustering. But, Euclidean distances can exhibit higher error rates
and greater sensitivity to noise. In order to overcome this limitation, we have chosen a
Hypertangent kernel function [142], which has the potential to boost the expressive ca-
pacity of linear machines. Its incorporation into clustering algorithms can enhance their
clustering capabilities, leading to improved accuracy and effectiveness. This enhance-
ment is particularly beneficial in cybersecurity applications, where network traffic data
can be highly complex. Also, we opted for this kernel due to its robust nature towards
noise and non-linear structures present in the underlying data.

Overall, mPicFC’s ability to handle uncertainty, its robustness against noise, and its
effectiveness in dealing with non-linear data structures make it a superior choice for
clustering tasks.
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As the network data was classified into intrusive and non-intrusive (benign) datasets
using ML classifiers, the intrusive data was further clustered into various types of net-
work attacks using the mPicFC method, ∀i 1 ≤ i ≤ C, ∀j 1 ≤ j ≤ N , given by:

min Jm =
C∑
i=1

N∑
j=1

[
(µij(2− ξij))

m∥ϕ(xj)− ϕ(vi)∥2
]
+

C∑
i=1

N∑
j=1

(
ξijη

2
ij + ηijξ

2
ij

)
(4.29)

s.t. 0 ≤ µij, ηij, ξij ≤ 1; (4.30)

0 ≤ µij + ηij + ξij ≤ 1; (4.31)
C∑
i=1

(µij(2− ξij)) = 1; (4.32)

C∑
i=1

(ηij +
ξij
C

) = 1 (4.33)

where ∥ϕ(xj) − ϕ(vi)∥2 is the distance between the kernel spaces ϕ(xj) and ϕ(vi)

presented in Eqn. (4.34), and m is the fuzzifier constant, and the value of the negation
function ξij is evaluated using the Sugeno function [118] using Eqn. (4.35).

∥ϕ(xj)− ϕ(vi)∥2 = ϕ(xj)
Tϕ(xj) + ϕ(vi)

Tϕ(vi)− 2ϕ(xj)ϕ(vi) (4.34)

ξij = 1−
[
µij + ηij +

1− (µij + ηij)

1 + δ(µij + ηij)

]
(4.35)

The optimization problem, presented in Eqn. 4.29 is composed of two terms. The
first term measures the weighted intra-cluster similarity in kernel space, thus encour-
aging the formation of compact and coherent clusters, where points closely align with
their respective cluster centers. The second term acts as a regularization function that
penalizes high values of both non-membership and refusal simultaneously. Its objec-
tive is to control the balance between uncertainty and non-affiliation, thereby promoting
crisper and more interpretable clustering results. By discouraging ambiguous cluster
assignments, this term supports a clearer separation of data into distinct clusters while
still respecting the fuzziness inherent to network traffic data.
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Derivation of Cluster Prototype:
The Lagrangian method of undetermined multiplier was used to find the optimal solu-
tion of the above-stated model. The Lagrangian function L(µij, ηij, vi, αj, βj) is repre-
sented as:

L =
C∑
i=1

N∑
j=1

[
(µij(2− ξij))

m ∥ϕ(xj)− ϕ(vi)∥2
]
+

C∑
i=1

N∑
j=1

(ξijηij
2 + ηijξij

2)

+
N∑
j=1

αj

(
1−

C∑
i=1

(
ηij +

ξij
C

))
+

N∑
j=1

βj

(
1−

C∑
i=1

(µij(2− ξij))

) (4.36)

where αj and βj are the two Lagrange’s multipliers for j = {1, 2, . . . , N}.
To find the value of µij , taking the partial derivative of L w.r.t. µij and equating it to

0, we have:

∂L

∂µij

= m(µij)
m−1 (2− ξij)

m ∥ϕ(xj)− ϕ(vi)∥2 − βj(2− ξij) = 0 (4.37)

(µij)
m−1 =

βj

m

1

(2− ξij)m−1

1

∥ϕ(xj)− ϕ(vi)∥2
(4.38)

µij =
1

(2− ξij)

(
βj

m

)1/(m−1) (
1

∥ϕ(xj)− ϕ(vi)∥2

)1/(m−1)

(4.39)

µij(2− ξij) =

(
βj

m

)1/(m−1) (
1

∥ϕ(xj)− ϕ(vi)∥2

)1/(m−1)

(4.40)

Taking summation
∑C

i=1 on both sides, we rewrite the equation as follows:

C∑
i=1

µij(2− ξij) =

(
βj

m

)1/(m−1) C∑
i=1

(
1

∥ϕ(xj)− ϕ(vi)∥2

)1/(m−1)

= 1 (4.41)
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⇒
(
βj

m

)1/(m−1)

=
C∑
i=1

(
1

∥ϕ(xj)− ϕ(vi)∥2

)−1/(m−1)
1

(2− ξij)
(4.42)

Substituting the value of
(

βj

m

)1/(m−1)

in Eq. (4.40) and further solving for µij , we get:

µij =
1

(2− ξij)

(
1

∥ϕ(xj)−ϕ(vi)∥2

)1/(m−1)

∑C
i=1

(
1

∥ϕ(xj)−ϕ(vi)∥2

)1/(m−1)
(4.43)

Similarly, taking the partial derivative of L from Eqn. (4.36) w.r.t. ηij and equating it to
0 to find the value of ηij:

∂L

∂ηij
= 0 + 2 ηij ξij + ξij

2 − αj = 0 (4.44)

αj = 2 ηij ξij + ξij
2 (4.45)

Also, let ∂L
∂ ξij

= 0, we get:

∂L

∂ξij
= mµij

m∥ϕ(xj)− ϕ(vi)∥2 (2− ξij)
m−1(−1) + ηij

2 + 2ηij ξij −
αj

C
+ βj µij = 0

(4.46)

∂L

∂ξij
= µij

[
−mµij

m−1 (2− ξij)
m−1 ∥ϕ(xj)− ϕ(vi)∥2 +βj ] + ηij

2 + 2 ηij ξij −
αj

C
= 0

(4.47)

From Eq. (4.37), we get:
ηij

2 + 2 ηij ξij −
αj

C
= 0 (4.48)

Therefore, from Eqns. (4.44) to (4.48), we obtain the value of ηij as:

ηij =
2ηijξij + ξij

2

C[ηij + 2ξij]
(4.49)
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To derive the value of the cluster centers vi, we apply the kernel and rewrite the Eqn.
(4.36) as:

L =
C∑
i=1

N∑
j=1

(µij(2− ξij))
m

(
1− tanh

(
−∥xj − vi∥2

σ2

))
+

C∑
i=1

N∑
j=1

(ξijηij
2 + ηijξij

2)

+

N∑
j=1

αj

(
1−

C∑
i=1

(
ηij +

ξij
C

))
+

N∑
j=1

βj

(
1−

C∑
i=1

(µij(2− ξij))

)
(4.50)

Equating the partial derivative of Eqn. (4.50) to 0, i.e. ∂L
∂vi

= 0, we get:

N∑
j=1

2(µij(2− ξij))
m

(
1− tanh

(
−∥xj − vi∥2

σ2

))(
∥xj − vi∥

σ2

)
= 0 (4.51)

Subsequently solving Eqn. (4.51), we get:

vi =

∑N
j=1(µij(2− ξij))

m
(
1 + tanh

(
−∥xj−vi∥2

σ2

))
K(xj, vi)xj∑N

j=1(µij(2− ξij))m
(
1 + tanh

(
−∥xj−vi∥2

σ2

))
K(xj, vi)

(4.52)

where K(xj, vi) = ϕ(xj)
Tϕ(vi) is the Hypertangent Kernel function, using this, Eq.

(4.34) can be rewritten as:

∥ϕ(xj)− ϕ(vi)∥2 = K(xj, xj) +K(vi, vi)− 2K(xj, vi) (4.53)

Also, the parameter σ2 is the dataset’s degree of separation and is computed as
σ2 = 1

N

∑N
i=1 ∥zi − z̄∥2, where z̄ = 1

N

∑N
k=1 zk.

The above-proposed methodology and various stages involved in finding the solution
of the proposed mPicFC, as discussed in this section, are outlined in Algorithm 4.1.
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Algorithm 4.1 Proposed mPicFC method
1: Input: Network data with N data points for C clusters; fuzzifier constant m; max

iterations maxSteps; threshold ϵ.
2: Output: µ, η, ξ, and cluster centers vi.
3: procedure MPicFC(Novel modified Picture Fuzzy Clustering)
4: k ← 1
5: Initialize cluster centers vik ← random
6: repeat
7: for k ← k + 1 do
8: Compute µ

(k)
ij membership values for each data point w.r.t. centroids by Eqn.

(4.43), 1 ≤ i ≤ C, 1 ≤ j ≤ N .
9: Compute ηij

(k) membership values for each data point w.r.t. centroids by Eqn.
(4.49), 1 ≤ i ≤ C, 1 ≤ j ≤ N .

10: Compute ξij
(k) membership values for each data point w.r.t. centroids by Eqn.

(4.35), 1 ≤ i ≤ C, 1 ≤ j ≤ N .
11: Compute the cluster centroids vi(k), 1 ≤ i ≤ C by Eqn. (4.52).
12: end for
13: until ∥µ(k)−µ(k−1)∥+ ∥η(k)− η(k−1)∥+ ∥ξ(k)− ξ(k−1)∥ < ϵ or i ≥ maxSteps
14: end procedure

4.4 Experimental Results and Analysis

In this section, we present a detailed discussion and comparative analysis of the pro-
posed framework against state-of-the-art methods using various evaluation metrics. The
performance of four ML classifiers was then compared on both the original and class-
balanced datasets. Lastly, we analyzed the performance of widely used clustering tech-
niques, including K-Means, FCM, IFCM, and PFC, in comparison with the proposed
mPicFC model. To evaluate the efficiency of our approach, we conducted experiments
on the publicly available, up-to-date network traffic dataset CSE-CIC-IDS2018.

For the implementation of the proposed intrusion detection framework, experiments
were carried out on a 64-bit Windows 10 operating system, i7 processor with 16 GB
RAM. 64-bit Spyder was used for conducting the experiments, with Python v3.7 as the
programming language for the implementation of the model. A packet sniffer, Wire-
shark, was used to capture network data and convert pcap files to the desired CSV
format.
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4.4.1 Performance Evaluation Metrics

The performance of the proposed method is assessed with the help of various evaluation
metrics like accuracy, precision, F1 score, false positive rate (FPR), and false negative
rate (FNR), along with three cluster validity indices.

Cluster validity indices are the measures used for the validation of the quality of
the clustering algorithms [143, 144]. Since mPicFC extends fuzzy clustering with addi-
tional membership degrees, evaluating clustering compactness and separation is crucial.
These cluster validity indices help assess how well-defined and meaningful the gener-
ated clusters are.

The three cluster validity indices that we have used for clustering are partition co-
efficient (PC), partition entropy (PE), and Xie-Beni function (XB). PC and PE, cluster
validity indices are evaluated using membership values. PC value lies between

[
1
C
, 1
]

where C is the number of clusters, whereas the value of PE varies from [0, loga C]. The
higher the value of PC or the lower the value of PE, the more optimal clusters are ac-
complished [145, 146]. XB index [147] is based on compactness and separability, was
later modified by [148] with the widely used fuzzifier constant value as m = 2 and is
represented in Eqn. (4.54). The larger the value of PC, the smaller the degree of overlap
amongst the clusters, which indicates that the clusters are well separated. Meanwhile, a
lower value of PE indicates a lesser degree of fuzziness in the clusters, tending to a more
well-defined cluster. The numerator of XB represents the fuzzy partition’s compactness,
and the denominator depicts the separation strength amongst the clusters. The lower the
XB value, the more optimal the cluster is. PC, PE, and XB are defined and evaluated as:

PC =
1

N

C∑
i=1

N∑
j=1

µij
2 (4.54)

PE = − 1

N

C∑
i=1

N∑
j=1

µij log(µij) (4.55)

XB =

∑C
i=1

∑N
j=1 µij

m∥xj − vi∥2

n(mini,j=1,2,..,C,i̸=j∥vi − vj∥2)
(4.56)

89



4.4. Experimental Results and Analysis

To statistically validate and compare the performance of the four binary classifica-
tion models, we used three cross-validation methods, k–fold CV (k = 5 and k = 10),
and LOOCV. The primary objective of these methods is to prevent overfitting, which
offers an additional robust estimate of the performance of the model. It utilizes all data
points and helps reduce biases, making it a more data-efficient method.

Table 4.1 describes all the notations and symbols used in this work.

4.4.2 Binary Classification Performance on Dimensionality-Reduced
Datasets

Two experiments were conducted in this study to classify the network data using four
ML techniques on both the original and balanced versions of the CSE-CIC-IDS2018
dataset. In the first experiment, the classification was performed on the original and
balanced datasets without dimensionality reduction. In the second experiment, classifi-
cation was carried out on the datasets after dimensionality reduction.

We adopted the same hyperparameter protocol as in the previous chapter 3.3.1. Sim-
ilar search spaces that produced stable plateaus were used, and then a narrow confirma-
tory grid was performed on the current approach. Fig. 4.4 demonstrates confirmatory
hyperparameter heatmaps with a 10-fold validation mean. The SVM displays a clear
ridge for C ∈ [10, 14] with tol = 10−3, supporting C = 12 and tol = 10−3. For RF,
we observe that accuracy improves steadily as the number of trees increases from 50
to around 200, after which the gains begin to saturate, indicating diminishing returns.
The chosen default of 100 trees already falls within the stable region, providing reliable
accuracy without unnecessary computation. The Decision Tree improves with depth
approximately up to 20 and then stabilizes or slightly dips, and smaller split thresholds
perform better. kNN supports the Minkowski metric and shows a shallow optimum
for k ∈ 5, 7. Table 4.2 presents the various parameters and their corresponding values
for the ML classifiers chosen in the experiments of the proposed framework, ensuring
optimized performance for classification tasks.

90



4.4.
E

xperim
entalR

esults
and

A
nalysis

Table 4.1: Notations used in the proposed work.

Notation Description Notation Description

S Fuzzy Set X Universe-of-discourse

µS(x) Membership function of the fuzzy set S, which as-
signs a degree of belongingness to the element x

νS(x) Non-membership function or negation function of
the fuzzy set S

x An element of Universe-of-discourse X i.e x ∈ X. ϵ Threshold Value

F Intuitionistic fuzzy set (IFS) P Picture Fuzzy Set (PFS)

πF (x) Hesitation degree associated with an element x in
the intuitionistic fuzzy set F

Neg(µF (x)) Negation function applied to the membership func-
tion µF (x), which transforms the membership de-
gree into a non-membership degree

δ Negation parameter r Number of data points in X

µP (x) Positive membership degree of x, x ∈ P ηP (x) Neutral membership degree of x

γP (x) Negative membership degree of x ξP (x) Degree of refusal

C Number of clusters V Set of cluster centroids with vi as the center of ith

cluster, i = 1,2,. . . ,C

µij Membership value of data point ith data point of
the jth cluster

U Partition matrix which contains membership val-
ues ij , i = 1, 2, . . . , c, j = 1, 2, . . . , r

Jm Objective Function m Fuzzifier constant

Y Set of r IFSs p Number of dimensions in the dataset

ϕxj Mapping of data point xj in kernel space K(xj, vi) Hypertangent Kernel function

αj, βj Lagrange multipliers, j = 1, 2, 3..., N σ2 Dataset’s degree of separation

z̄ Mean of all data points in the dataset maxSteps Maximum number of iterations

tanh(·) Hyperbolic tangent function used in the Hypertan-
gent kernel function
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Fig. 4.4: Hyperparameter tuning heatmaps for ML Classifiers, SVM, RF, DT, and kNN.

The penalty parameter for SVM is set to 12, striking a balance between misclas-
sification tolerance and model complexity, while the linear kernel is chosen for its
efficiency in handling linearly separable data. A stopping tolerance of 0.001 ensures
convergence without unnecessary iterations, and the maximum iteration limit of 1000
prevents excessive computation. For Decision Trees, the Gini impurity criterion is used
to evaluate splits, ensuring the selection of the most informative features, while a max-
imum tree depth of 20 prevents overfitting by limiting tree complexity. Random Forest
employs an ensemble of 100 trees to enhance robustness, using Gini impurity for split
decisions and setting the minimum samples per split and leaf to 2 and 1, respectively,
to maintain flexibility in tree growth. In K-Nearest Neighbour, K is set to 5, balancing
noise sensitivity and generalization, while the Minkowski distance metric is used for
adaptive distance calculations. The uniform weight function ensures equal contribution
from all neighbours in classification. These parameter choices collectively enhance the
classifiers’ generalization ability and efficiency, ensuring reliable performance on the
CSE-CIC-IDS2018 dataset.
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Table 4.2: ML classifier’s parameter setting and their values used in the experiments

S. No. ML Classifier Parameter Parameter Value

1. SVM Penalty 12
Kernel Linear

Tolerance for stopping criteria 0.001
Max iterations 1000

2. DT Splitting criterion Gini
Split strategy at each node Best

Min samples split 2
Max tree depth 20

3. RF Number of trees default = 100
Splitting criterion Gini
Min samples split 2
Min sample leaf 1

4. K-NN Number of neighbours (K) 5
Weight function Uniform
Distance metric Minkowski

Initially, after cleaning the dataset, we scaled it using the Min-Max scaler func-
tion that transformed the value of the data points to a standard scale ranging within
[0, 1]. Consequently, two dimensionality reduction techniques, PCA and LDA, were
performed on the datasets. Table 4.3 presents the number of original features in the
dataset along with the number of transformed features or dimensions using these di-
mensionality reduction techniques. The criterion to minimise the number of features in
our experiment is based on the cumulative variance and number of classes in the dataset
for PCA and LDA, respectively. In preliminary experiments, detection accuracy was
tested at various cumulative variance thresholds for PCA, including 80%, 85%, 90%,
and 95%. The results showed that accuracy was 7-15% lower at cumulative variances
between 80% and 90% compared to 95%. Consequently, a cumulative variance of 95%
was chosen as the selection criterion for PCA. With this threshold, the original set of 80
features was reduced to 10 features or dimensions. However, LDA reduced the feature
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set to 14 based on the selection criterion of C− 1, where C = 15 represents the number
of attack classes in the dataset. It was observed that the use of SMOTE had a slight
impact on dimensionality reduction, particularly with LDA. As a result, the number of
dimensions remained 10 for PCA and 14 for LDA in both the original and balanced
datasets, as presented in Table 4.3.

Table 4.3: Number of features before and after performing Dimensionality Reduction

Dataset Number of Features/ Dimensions

Original 80

Dimensionality-reduced dataset PCA 10
LDA 14

Further, the binary classification of network traffic was analyzed using the accuracy,
precision and F1 score evaluation metrics obtained by performing three cross-validation
strategies, namely 5-fold CV, 10-fold CV, and LOOCV. Table 4.4 highlights the model’s
performance for binary classification of network data into benign and attack classes,
along with the DR methods based on the accuracy (%) and F1-score (%) in the original
dataset and for the balanced dataset in Table 4.5. Considering the dimensionality reduc-
tion methods, the results indicate that classifiers exhibit improved intrusion detection
efficacy when the dataset’s dimensionality is reduced using PCA and/or LDA. Using
the LOOCV strategy, the highest accuracy for detecting network intrusions among all
combinations of classifiers and dimensionality reduction methods was achieved by the
PCA–RF model, reaching 99.91% for the original dataset and 99.94% for the balanced
dataset. The bold values indicate the maximum performance achieved by the respective
classifier.

Table 4.4 presents a performance comparison of ML classifiers using different di-
mensionality reduction techniques across three cross-validation strategies. It can be ob-
served that, overall, Random Forest with PCA and LDA achieved the highest accuracy
and F1-score, making it the most effective classifier. It is also evident that dimension-
ality reduction improves performance for all classifiers, with PCA performing the best.
Also, among cross-validation strategies, LOOCV consistently yielded the best results,
followed by the 10-Fold CV. RF with PCA using LOOCV achieved the highest accuracy
of 99.91% and F1-score of 99.70%, making it the best-performing configuration. These
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Table 4.4: Performance analysis of ML classifiers using three cross-validation strategies
on the CSE-CIC-IDS2018 dataset

Classifier DR method Accuracy (%) F1-Score (%)

5-Fold
CV

10-Fold
CV

LOOCV 5-Fold
CV

10-Fold
CV

LOOCV

SVM WDR 90.65 93.18 93.39 90.47 92.22 92.99
PCA 95.53 97.76 98.88 94.24 97.70 98.49
LDA 94.99 97.77 98.48 94.20 96.93 98.17

DT WDR 89.89 91.85 92.44 88.95 90.90 92.23
PCA 94.44 96.23 98.88 94.76 95.99 98.39
LDA 93.82 96.11 98.35 93.36 97.88 98.01

RF WDR 94.79 96.04 96.99 94.59 95.16 95.41
PCA 98.65 99.20 99.91 98.39 99.09 99.70
LDA 98.15 98.89 99.62 98.01 98.27 99.59

K-NN WDR 92.40 94.98 95.85 92.13 94.61 95.38
PCA 97.90 99.01 99.67 97.69 98.49 99.12
LDA 97.55 98.21 98.97 96.28 98.10 98.73

observations can be perceived from Fig. 4.5. These results highlight the importance of
dimensionality reduction in improving classification performance, particularly for SVM
and DT, while RF with PCA remains the optimal choice for anomaly detection in the
CSE-CIC-IDS2018 dataset.

Fig. 4.5: Performance comparison for the combination of ML classifiers, dimensionality reduction tech-
niques, and cross-validation strategies based on accuracy (%) and F1-score (%).

Table 4.5 presents the performance of ML classifiers on the SMOTE-balanced CSE-
CIC-IDS2018 dataset using three cross-validation strategies. Across all classifiers, di-
mensionality reduction using PCA and LDA significantly improves performance com-
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pared to WDR. The RF classifier demonstrates the highest accuracy and F1-score across
all cross-validation methods, with PCA and LDA yielding exceptional results, achiev-
ing an accuracy of 99.94% and an F1-score of 99.78% with LOOCV. Overall, it was
observed that PCA and LDA enhance classification accuracy and robustness, with RF
emerging as the best-performing model on the SMOTE-balanced dataset.

Table 4.5: Performance analysis of ML classifiers using three cross-validation strategies
on the SMOTE- balanced CSE-CIC-IDS2018 dataset

Classifier DR method Accuracy (%) F1-Score (%)

5-Fold
CV

10-Fold
CV

LOOCV 5-Fold
CV

10-Fold
CV

LOOCV

SVM WDR 90.72 93.22 93.41 90.54 92.26 93.01
PCA 95.55 97.78 98.88 94.26 97.72 98.49
LDA 95.06 97.77 98.56 94.27 96.98 98.27

DT WDR 89.90 91.87 92.44 88.95 90.90 92.29
PCA 94.45 96.26 98.88 94.77 96.00 98.44
LDA 93.84 96.12 98.36 93.38 97.90 98.08

RF WDR 94.83 96.06 97.01 94.63 95.18 95.43
PCA 98.75 99.29 99.94 98.49 99.18 99.78
LDA 98.21 98.93 99.64 98.07 98.31 99.61

K-NN WDR 92.40 95.01 95.85 92.17 94.67 95.42
PCA 97.94 99.03 99.69 97.73 98.51 99.14
LDA 97.62 98.26 98.99 96.35 98.15 98.75

We have also investigated the relative performance of 24 combinations of 4 ML clas-
sifiers and 3 dimensionality reduction techniques across 3 cross-validation strategies,
using a robust ranking mechanism [149] on both datasets. The ranking is performed us-
ing the average gain in the performance in comparison to the least performance accuracy
(AL) attained by the rest of the combinations of methods. For n number of combina-
tions of classifiers and dimensionality reduction and without dimensionality reduction
methods, the average percentage gain in accuracy (Gi) for the combination i is evaluated
as:

Gi =
1

n

n∑
c=1

acccd − AL

AL

X100 (4.57)
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where acccd is the intrusion detection accuracy achieved for the model with ith com-
bination and classifier c.

Fig. 4.6 demonstrates the ranking of all combinations by sorting the relative accu-
racy of gain values in descending order. Subfigure (a) represents results on the original
dataset, while subfigure (b) depicts results on the SMOTE-balanced dataset. The find-
ings indicate that the relative accuracy gain for the combination of the Random Forest
and PCA technique is higher than any other combination under consideration. The
SMOTE-balanced dataset generally improves accuracy, demonstrating the effectiveness
of handling class imbalance in intrusion detection. It is also evident that the perfor-
mance gain (%) for any classifier without dimensionality reduction gives the worst per-
formance than the one where dimensionality reduction is used, either PCA or LDA. It
is also evident that the classifiers perform better with PCA rather than LDA.

Fig. 4.6: Ranking of the combination of ML classifiers and dimensionality reduction techniques based on
Performance Gain in Accuracy (%) on (a) Original CSE-CIC-IDS2018 and (b) SMOTE-balanced CSE-
CIC-IDS2018

Table 4.6 summarizes the comparative analysis of the proposed framework’s binary
classification performance with the existing models on the CSE-CIC-IDS2018 dataset.
The proposed PCA-RF model outperforms all other methods, achieving the highest ac-
curacy of 99.94% and F1-score of 99.78%, surpassing even advanced deep learning-
based techniques like XIDINTFL-VAE and EAFS-RF. These results highlight the ef-
fectiveness of PCA for feature reduction combined with RF for classification, leading
to superior performance in anomaly-based network intrusion detection.
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Table 4.6: Performance analysis of the PCA-RF binary classification with existing mod-
els on CSE-CIC-IDS2018 dataset

Reference Model Accuracy (%) F1-Score (%)
[49] GB 99.32 -

[44] Ensemble Learning model 98.80 -

[54] DSSTE+ miniVGGNet 96.99 97.04

[47] one-class SVM 88.98 -

[53] SVM 75.59 -

[150] CNN 73.83 -

[151] EAFS-RF 99.04 98.33

[152] RF 99.60 -

[55] XIDINTFL-VAE 99.89 97.05

Proposed framework PCA – RF 99.94 99.78

4.4.3 Results of Clustering-Based Network Attack Analysis

In this subsection, after the binary classification of the dataset into benign and attack
instances, the latter is further clustered using the proposed mPicFC approach to identify
different types of network attacks present in the dataset. To assess the effectiveness
of the proposed clustering technique, we compare its performance with state-of-the-
art clustering approaches such as K-Means, FCM, IFCM, and PFC, which are widely
used in network intrusion detection. The evaluation is conducted on both the original
and class-balanced datasets obtained after the second phase of the framework. The
hyperparameter tuning details for the clustering phase are presented in Table 4.7, with
cluster centroids initialized randomly. The comparison aims to determine the efficiency
of mPicFC in accurately grouping attack types, ensuring better anomaly detection in
cybersecurity applications.

As presented in Table 4.7, each model is configured with six clusters (C = 6) to cat-
egorize different attack types. K-Means uses a tolerance (Tol) of 0.0001, while FCM,
IFCM, PFC, and mPicFC share common parameters such as the fuzziness parameter (m
= 2), convergence criterion (ϵ = 0.0001), and a maximum iteration limit of 1000 steps.
Additionally, IFCM, PFC, and the proposed mPicFC incorporate a parameter δ, ranging
from 0 to 2 with a step size of 0.15, allowing enhanced flexibility in clustering. The
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Table 4.7: Parameter setting for the state-of-the-art and proposed clustering approach
used in the experiments

S. No. Clustering Model Parameters
1. K-Means Number of clusters, C = 6, Tol = 0.0001

2. FCM C = 6, m = 2, ϵ = 0.0001, maxSteps = 1000

3. IFCM C = 6, m = 2, ϵ = 0.0001, δ = [0-2] with a step size of 0.15, maxSteps = 1000

4. PFC C = 6, m = 2, ϵ = 0.0001, δ = [0-2] with a step size of 0.15, maxSteps = 1000

5. Proposed mPicFC C = 6, m = 2, ϵ = 0.0001, δ = [0-2] with a step size of 0.15, maxSteps = 1000

inclusion of these models facilitates a comparative performance analysis, with the pro-
posed mPicFC aiming to improve clustering efficiency in network intrusion detection.

We tuned all clustering models using internal validity indices and then reported any
external, label-based metrics only after selection to prevent bias. For the fuzzy models,
FCM, IFCM, PFC, and mPicFC, we minimized the XB and monitored the PC and PE
values. For K-means, the hyperparameters were chosen by minimizing inertia, that is,
the sum of squares within the cluster. We further verified consistency by computing PC
and PE from the 0 or 1 cluster memberships. Tol = 1e−4 was used because it avoided
a few early stops observed with 1e−3. For the fuzzy models, the fuzziness parameter m

is set to m = 2, following the PFC baseline [115] that mPicFC extends. The ϵ = 10−4

avoided the occasional premature halts seen with 10−4 and δ is tested in a range of [0-
2] as very small δ produced over-confident memberships, that is, higher PE while very
large δ over-penalised refusal, higher XB.

Initially, to validate the quality of the clustering techniques, a performance com-
parison is done using three clustering validity indices, PC, PE, and XB. The optimal
values for these metrics are stated in Tables 4.8 and 4.9. It can be observed that the
proposed mPicFC clustering approach outperformed the state-of-the-art methods as it
achieved the maximum value of PC at 0.8796 and minimum values of PE and XB at
0.1288 and 0.2892 respectively for original data samples. The proposed fuzzy cluster-
ing approach for the balanced dataset achieved a peak PC value of 0.8801, along with
minimum PE and XB values of 0.1217 and 0.2879, respectively. This demonstrates the
superior clustering capability of the mPicFC method compared to other models.

The detailed performance evaluation of the mPicFC in detecting the various network
attack categories, in terms of accuracy, precision, FPR, FNR and their respective average
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Table 4.8: Performance comparison using clustering validity indices for CSE-CIC-
IDS2018

Model PC PE XB

K-Means [28] 0.7908 0.4637 0.5241

FCM [122] 0.8315 0.3212 0.4388

IFCM [124] 0.8263 0.4146 0.4941

PFC [115] 0.8689 0.1875 0.2946

mPicFC 0.8796 0.1288 0.2892

Table 4.9: Performance comparison using clustering validity indices for SMOTE-
balanced CSE-CIC-IDS2018

Model PC PE XB

K-Means [28] 0.8027 0.4499 0.4911

FCM [122] 0.8454 0.3076 0.4003

IFCM [124] 0.8318 0.4022 0.4776

PFC [115] 0.8699 0.1855 0.2899

mPicFC 0.8801 0.1217 0.2879

values computed, are summarized in Tables 4.10 and 4.11, with mPicFC securing an
average detection accuracy of 89.74%, average precision of 88.80%, an average FPR of
0.000333, and average FNR of 0.009833 for the original dataset and average detection
accuracy of 89.98%, average precision of 89.07%, an average FPR of 0.000210, and
average FNR of 0.008816 for the SMOTE-balanced dataset. The results presented are
inclusive of the various sub-attack classes detected by the clustering methods under
consideration.

It can also be observed that on the original data, mPicFC produces an average FPR
= 0.000333, which is about 3.3 false alarms per 10,000 benign flows (approximately
1 in 3,003). The false positives are concentrated on two attacks, DDoS and Botnet,
each at an FPR of 0.001, indicating around 1 in 1000 benign flows are labelled as that
class. After performing SMOTE, the average false-alarm rate drops to 0.000210, that
is, 2.1 per 10,000 benign flows or approximately 1 in 4,762, which is a 37% reduction.
The worst case FPR also improves from 0.001 to 0.0006, for both DDoS and Botnet
attacks, making it a 40% decrease. Overall, with FPR already low, class balancing
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Table 4.10: Performance evaluation of mPicFC for detecting network attacks

Network Attack Class Acc. Prec. FPR FNR

DDoS 0.889 0.875 0.001 0.0120

DoS 0.899 0.893 0.000 0.0090

Bruteforce 0.898 0.891 0.000 0.0110

Botnet 0.892 0.886 0.001 0.0100

Infiltration 0.899 0.891 0.000 0.0090

Web attack 0.899 0.892 0.000 0.0080

Average 0.8974 0.8880 0.000333 0.009833

Table 4.11: Performance evaluation of mPicFC for detecting network attacks for
SMOTE-balanced dataset

Network Attack Class Acc. Prec. FPR FNR

DDoS 0.892 0.877 0.0006 0.0100

DoS 0.902 0.895 0.0000 0.0084

Bruteforce 0.901 0.893 0.0000 0.0077

Botnet 0.895 0.887 0.0006 0.0100

Infiltration 0.902 0.896 0.0000 0.0088

Web attack 0.902 0.894 0.0000 0.0080

Average 0.8998 0.8907 0.000210 0.008816

suppresses residual DDoS or Botnet peaks, reducing both the average and the worst-
case FPR without degrading other classes.

Across original data, mPicFC maintains stable performance across all attack classes.
FNR values are consistently below 1.2%, ensuring that only a very small fraction of
attacks go undetected. In particular, Web attacks exhibit the lowest FNR of 0.8%, while
DDoS shows a slightly higher FNR of 1.2%. However, balancing with SMOTE further
improves consistency across classes. All FNR values drop to below 1%, demonstrat-
ing that balancing enhances sensitivity, especially for minority attacks such as Infiltra-
tion and Web attacks. The near-zero FPR combined with the very low FNR confirms
mPicFC’s ability to minimize both false alarms and missed detections simultaneously.
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Comparative performance analysis of all the clustering methods for the detection of
different network attack types based on accuracy, precision, FPR, and FNR is illustrated
in Figs. 4.7 and 4.8. It can be observed that the hard clustering method, K-Means, had
the lowest performance in terms of the said metrics in the case of detecting all the attack
types. However, it is evident that in detecting all the attacks, the proposed mPicFC
method secured the maximum detection accuracy and precision as well as the lowest
FPR and FNR, indicating superiority over other state-of-the-art methods.

Fig. 4.7: Performance comparison of clustering techniques for detecting all network attacks based on (a)
Accuracy, (b) Precision, (c) False Positive Rate, and (d) False Negative Rate

Considering the average values of the above four metrics for all the clustering meth-
ods, a comparison of their performance in detecting various network attacks is demon-
strated in Tables 4.12 and 4.13 and Fig. 4.9. From the results obtained, it can be ob-
served that K-Means had the worst performance among the rest of the fuzzy clustering
methods, achieving the lowest average accuracy of 89.74% and the highest average FPR
and FNR of 0.0046 and 0.0320, respectively, across both sets of data, missing a substan-
tial portion of attacks and a frequent number of false alarms. On the unbalanced original
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Fig. 4.8: Performance comparison of clustering techniques for detecting all network attacks on balanced
dataset based on (a) Accuracy, (b) Precision, (c) False Positive Rate, and (d) False Negative Rate

dataset, FCM and IFCM reduce the FNR to around 1.4–1.8% and the FPR below 0.2%,
while PFC further improves it to 1.2%. However, dataset balancing improves detection
across all models by reducing FNR while preserving low FPR. While K-Means con-
tinues to lag, the fuzzy clustering methods, FCM, IFCM, and PFC, consistently reduce
false negatives, with FNR dropping to a range of 1.0–1.6%, and FPR also remaining
very low at less than 0.15%.

It can also be observed from Fig. 4.9 that the false positive rate and the false negative
rate drastically declines as we move from hard to soft or fuzzy clustering methods,
indicating that fuzzy clustering is more efficient in detecting network attacks than hard
clustering, and the proposed clustering method is efficient than the rest.

Subsequently, among all the clustering methods, across both datasets, the proposed
mPicFC clustering model achieved the highest average detection accuracy and preci-
sion of 89.98% and 89.07%, respectively, and the lowest FPR and FNR of 0.000210
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Table 4.12: Performance comparison of clustering techniques for the CSE-CIC-
IDS2018 dataset based on average values of accuracy, precision, FPR, and FNR

Model Acc. Prec. FPR FNR

K-Means [28] 0.7873 0.7535 0.0046 0.0320

FCM [122] 0.8522 0.8283 0.0018 0.0142

IFCM [124] 0.8822 0.8587 0.0011 0.0185

PFC [115] 0.8858 0.8630 0.0005 0.0127

mPicFC 0.8974 0.8880 0.000333 0.009833

Table 4.13: Performance comparison of clustering techniques for the SMOTE-balanced
CSE-CIC-IDS2018 dataset based on average values of accuracy, precision, FPR, and
FNR

Model Acc. Prec. FPR FNR

K-Means [28] 0.8005 0.7699 0.0044 0.0290

FCM [122] 0.8679 0.8417 0.0015 0.0120

IFCM [124] 0.8856 0.8644 0.0010 0.0162

PFC [115] 0.8883 0.8772 0.0004 0.0108

mPicFC 0.8998 0.8907 0.000210 0.008816

and 0.008816, respectively, outperforming the rest of the state-of-the-art techniques
in detecting the types of network attacks. The results also suggest that on the orig-
inal dataset, by achieving the lowest FPR and FNR, the proposed method minimizes
both false alarms and missed attacks simultaneously, which is a particularly challenging
trade-off in intrusion detection, while maintaining negligible false alarms, strengthen-
ing its reliability across minority attack classes. It is vital to note that these comparative
analyses are performed with existing methods on the intrusion detection dataset CSE-
CIC-IDS2018 only.
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Fig. 4.9: Performance comparison of proposed mPicFC with other clustering methods based on average
values of accuracy, precision, FPR, and FNR

4.4.4 Statistical Significance

This subsection discusses the statistical validation of the proposed mPicFC by perform-
ing the Friedman test and post-hoc Wilcoxon signed-rank test with Holm correction.
The test is evaluated by comparing the five clustering methods, K-Means, FCM, IFCM,
PFC, and the proposed mPicFC, using the validity indices, PC, PE, and XB on both
original and SMOTE-balanced datasets. We also test them based on external metrics,
including accuracy, precision, and FPR across attack classes, on both datasets.

To run a single non-parametric test across different metrics, we put everything on a
loss scale, that is, PC, accuracy and precision, which is higher values, were flipped to
1 − value. PE, XB, and FPR are unchanged. Each (metric, dataset) pair constitutes a
repeated-measures block for the non-parametric tests.

For the Friedman test, the null hypothesis (H0) states that all methods perform equiv-
alently, and the alternative hypothesis (H1) indicates that at least one method performs
significantly differently. For k = 5 clustering algorithms and N = 12 number of blocks,
a cumulation of six for internal validity and six for external performance over both
datasets, rij the rank of the method j in ith block, the Friedman statistic is computed
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as presented in Eqn. 3.11. For this combined set, the effect is more potent than when
considering internal and external performances, as the evaluated F-statistic is 21.60 for
a p-value of 2.98e−9, keeping α = 0.05. The average ranks of the Friedman test for
all clustering models across all evaluation blocks are presented in Table 4.14, where a
lower rank indicates better overall performance.

Table 4.14: Average Ranking of the Clustering Methods using the Friedman Test

Clustering Method Average Ranking

mPicFC 1.09
PFC 2.05

IFCM 3.50
FCM 3.60

K-Means 5.00

Table 4.15: Post-hoc Wilcoxon-Holm Test Comparing mPicFC with Baseline Methods

Comparison p-value Reject
mPicFC vs K-Means 0.000443 Y
mPicFC vs FCM 0.000327 Y
mPicFC vs IFCM 0.000211 Y
mPicFC vs PFC 0.000109 Y

Y = Yes, N = No.

The clear separation of between the mPicFC model and other baseline methods sug-
gests a pronounced and stable advantage for the proposed approach, consistent with the
expectation that it handles overlapping or uncertain boundaries better than crisp parti-
tioning. The pair-wise post-hoc Wilcoxon-Holm correction test revealed that the pro-
posed method is significantly superior to all four baseline methods, presented in Table
4.15 along with Holm-adjusted p-values.

4.5 Chapter Summary

This chapter presents an anomaly-based Network Intrusion Detection System frame-
work that addresses the high dimensionality challenge and class imbalance issue in in-
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trusion detection datasets using machine learning and the modified Picture Fuzzy Clus-
tering (mPicFC) approach. Evaluated on the CSE-CIC-IDS2018 dataset, the framework
first applies Synthetic Minority Oversampling Technique (SMOTE) to handle the class
imbalance problem, ensuring improved detection of rare attacks such as Web Attacks
and Infiltration attempts. Following this, binary classification is performed to catego-
rize network traffic into benign and attack instances using four ML classifiers (SVM,
Decision Tree, Random Forest, and K-NN) applied to a dimensionality-reduced dataset
using PCA and LDA, where Random Forest with PCA achieves the highest accuracy of
99.94% and 99.78% F1-score, outperforming existing models. In the clustering phase,
the proposed mPicFC approach further groups attack instances, demonstrating superior
clustering accuracy compared to K-Means, FCM, IFCM, and PFC, as reflected by the
highest Partition Coefficient (PC = 0.8801) and lowest Partition Entropy (PE = 0.1217)
and Xie-Beni Index (XB = 0.2879) in the SMOTE-balanced dataset. The mPicFC model
offers several advantages, including enhanced handling of uncertainty by incorporating
an additional membership degree, that is, neutrality and hesitation, superior clustering
quality, and robustness against noise and outliers through the Hypertangent Kernel func-
tion. Additionally, the integration of PCA and LDA reduces computational complexity,
while the SMOTE-balanced dataset further enhances classification performance. With
an average detection accuracy of 89.98% and the lowest false positive rate, FPR of
0.000210, the proposed model significantly enhances intrusion detection capabilities,
making it a scalable and efficient solution for real-world cybersecurity applications. To
ensure a controlled comparison, we constrained the evaluation to the CSE-CIC-IDS2018
dataset. This tight scope gives strong internal validity, and testing across additional
datasets is deferred to future work. We also focus on the attack classes captured in
this dataset under stable conditions, establishing a robust baseline for subsequent cross-
dataset studies.
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Chapter 5
Hybrid Incremental Learning-Based
Real-time NIDS

This chapter presents a network intrusion detection framework for anomaly detection in
network data streams that exhibit evolving characteristics. Addressing the challenge of
dynamically evolving networks, this study proposes a novel hybrid incremental learning
framework for anomaly-based intrusion detection, HIL-IDS.

5.1 Introduction

In various domains like cybersecurity, fraud prevention, social media, and health moni-
toring, detecting anomalies in data streams has become crucial. With the rapid increase
in cyber threats, ensuring the integrity, confidentiality, and availability of networked
systems is more important than ever. Traditional intrusion detection systems, which
rely on static datasets and predefined attack signatures, struggle to detect evolving and
sophisticated cyberattacks. This limitation arises because real-time network traffic ex-
hibits non-stationary behaviour, where attack patterns continuously change over time.
In real-time scenarios, data distribution varies over a period of time as the real-time
data streams often have a non-stationary behaviour. Due to this, real-time IDS has be-
come more essential as it helps detect and alert any security breaches, mitigate evolving
threats, process information instantly, and identify any malicious activity without com-
promising network performance.
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In order to limit such problems, this study proposes a HIL-IDS model, a novel in-
trusion detection system based on a hybrid incremental learning approach performed
on real-time network data traffic. Initially, network traffic packets were ingested in
real-time using a packet sniffer called Scapy [153], which further performed feature ex-
traction from the raw network packets. The processed data were then fed to the Apache
Kafka pipeline [154], an open-source platform for logging, processing, and monitoring
the network traffic. The hybrid incremental learning model, which integrates both super-
vised and unsupervised machine learning approaches for anomaly detection, provides a
robust and adaptive intrusion detection mechanism. Before deploying the incremental
learning model on the raw packets, it was trained on the publicly available intrusion de-
tection dataset, CSE-CIC-IDS2018, as a benchmark, which consists of modern network
attack patterns, helping our proposed intrusion detection model fine-tune on a wide cov-
erage of network attacks and preparing it to handle realistic scenarios.

The pre-trained Hoeffding tree classifier [155] performs incremental supervised learn-
ing on the incoming stream of network traffic. It is an incremental decision tree algo-
rithm that continuously updates its structure based on new network traffic patterns. This
ensures that the model remains adaptive, reducing the risk of outdated classification
rules. Also, it predicts whether the incoming data packet is normal or malicious. For the
unsupervised approach of the model, Isolation forest [156] and KMeans were utilized
for anomaly detection, providing an additional layer of security by identifying novel at-
tack patterns. Instead of simply flagging the network packets as normal or malicious, the
model evaluates a confidence score from the ensemble of the two unsupervised methods
to make a more accurate decision about the network flow. The incremental learning
model combines the predictions of the supervised and unsupervised models, refines its
output, and compares it against the predefined threshold to evaluate the network data
packets. Each sample was processed incrementally, the models were updated, and the
output was refined in real time. Using the Hoeffding tree, we model non-linear relation-
ships, and the ensemble unsupervised method is more flexible in detecting non-linear
anomalies, making our model more efficient. Also, the proposed model handles drift
effectively as the supervised model is inherently adaptive, and the unsupervised ensem-
ble is more sensitive to dynamic changes. By continuously learning from live network
traffic, adapting to evolving attack vectors, and integrating both supervised and unsuper-
vised learning methods, the proposed HIL-IDS framework establishes a highly effective,
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adaptive, and intelligent approach to real-time intrusion detection.
The key contributions of the proposed model are summarized as:

• The proposed framework performs real-time analysis and processing of sniffed
network packets for efficient data streaming using Apache Kafka.

• A novel Hybrid Incremental Learning intrusion detection system, HIL-IDS, using
a supervised Hoeffding Tree classifier and an unsupervised ensemble of Isolation
Forest and KMeans, is proposed for adaptive and real-time anomaly detection in
the network.

• The proposed work evaluates a combined confidence score from supervised and
unsupervised models for output refinement and improved detection accuracy.

• Adaptive drift detection is done by actively monitoring the network and further
retraining the model to maintain its performance in the evolving network environ-
ment.

This chapter presents the proposed HIL-IDS model in section 5.2, followed by the
experimental setup outlined in section 5.3 along with a comparative evaluation of the
results and statistical analysis of the proposed approach with existing models. Finally,
section 5.4 provides a summary of the chapter.

5.2 Proposed Framework

To effectively tackle the challenges of real-time anomaly detection in dynamic network
environments, this study presents the Hybrid Incremental Learning Intrusion Detection
System (HIL-IDS). The proposed framework seamlessly integrates supervised and un-
supervised learning techniques to enable adaptive, real-time detection of cyber threats
while addressing concept drift in network traffic. By leveraging incremental learning,
the model continuously updates itself with evolving attack patterns, reducing the risk of
outdated detection rules. The combination of supervised classification and unsupervised
anomaly detection enhances accuracy by identifying both known and unknown threats.
This section provides a detailed overview of the HIL-IDS architecture, including data
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processing, real-time network traffic handling, and the hybrid incremental learning ap-
proach that enables efficient and intelligent intrusion detection.

Fig. 5.1 illustrates the comprehensive architecture of the proposed framework, de-
veloped in four phases: real-time network traffic ingestion and pre-processing, pipeline
integration with Apache Kafka for real-time message streaming, anomaly detection by
the hybrid incremental learning (HIL) model, and output refinement and prediction.

Fig. 5.1: Overall framework of the proposed HIL-IDS model

5.2.1 Network Traffic Ingestion

In the first phase of the framework, Scapy, a powerful packet manipulation tool, was uti-
lized to sniff, ingest, and analyze real-time network packets. Following data ingestion,
17 key features—such as IP address, payload size, protocol, and port address—were ex-
tracted from the raw network packets. These extracted features were then pre-processed
and cleaned while preserving data integrity to enhance prediction accuracy. Missing
or null values were appropriately handled, and infinite values were transformed to a
defined threshold to prevent skewing the model.

After data cleaning, feature engineering techniques were applied, including normal-
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ization and dimensionality reduction. Min-Max scaling was employed to standardize
feature values, improving model efficiency and mitigating the challenges of high di-
mensionality. This normalization technique was chosen as it preserves the relationships
between data points without introducing latent bias [157]. Moreover, it is computation-
ally efficient and less complex than alternative methods such as Z-score and sigmoidal
normalization, as discussed in section 4.3.1.

As observed and concluded in the previous chapter, Principal Component Analy-
sis (PCA) has proven to be an efficient dimensionality reduction technique; hence, to
further optimize model performance, PCA was applied to the pre-processed and normal-
ized dataset. PCA transformed the data into a lower-dimensional space while retaining
its essential characteristics, thereby reducing computational overhead and enhancing the
model’s effectiveness in real-time anomaly detection.

5.2.2 Apache Kafka Pipeline Integration

Apache Kafka [158], an open-source distributed event-streaming platform, helps per-
form real-time data processing. It works on the concept of a Producer-Consumer mes-
saging system and can handle high throughput data streams, making it highly efficient
for detecting potential threats in the network [159, 160]. It can collect, store, and route
network data packets from various sources and, via this pipeline, feeds them to the intru-
sion detection models via a robust, scalable pipeline [161]. Kafka ensures fault tolerance
and high availability by replicating data across multiple brokers. This guarantees unin-
terrupted network monitoring even in the event of node failures. Kafka efficiently man-
ages growing network traffic by distributing incoming data across multiple partitions
and brokers, ensuring high performance without degradation. Fig. 5.2 demonstrates the
working of the Apache Kafka Pipeline in our proposed approach.

In the proposed framework, a Kafka producer publishes the transformed data to a
designated Kafka topic, a logical channel for message transfer, in an incremental stream-
ing fashion in real-time. The Kafka topics are split into partitions, enabling parallel pro-
cessing and load balancing. The data is then routed to the Kafka message broker clus-
ter, a server that stores and manages the messages.A Zookeeper ensemble oversees the
Kafka cluster, handling broker coordination, topic configurations, leader election, and
failure detection, thus ensuring high availability and resilience of the message pipeline.
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Fig. 5.2: Overall framework of the proposed HIL-IDS model

On the consumer side, a Kafka consumer continuously reads the assigned topic par-
titions, fetching the most recent batches of transformed feature vectors representing
live network traffic. This enables the detection system to adapt to evolving traffic pat-
terns, including anomalies and intrusions, in real-time. In the proposed approach, the
HIL model serves as the Kafka consumer. It ingests the streamed data, processes it in-
crementally to reflect concept drift, and performs dynamic intrusion detection without
requiring retraining from the beginning.

Since a real-time IDS requires continuous data processing, and the producer-consumer
model ingests data indefinitely, termination strategies are necessary to control the con-
sumer’s execution. These strategies include setting a consumer timeout, imposing pre-
defined termination conditions, manually stopping the consumer, or allowing it to halt
when the Kafka topic is depleted, that is, no messages remain to consume. In this study,
if messages or data packets are available, the consumer continues ingesting data until
it either reaches the timeout or the end of the data packet stream. If no data packets
are available, the consumer stops after a timeout period if no new packets arrive. In this
study, based on the previous related works, the Kafka pipeline is assumed to deliver traf-
fic reliably, without packet loss or timestamp misalignment, so that incremental updates
remain meaningful.
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5.2.3 Proposed Hybrid Incremental Learning Model

The proposed intrusion detection framework based on the hybrid incremental learning
model, HIL-IDS, integrates a supervised ML model, the Hoeffding Tree classifier, and
an amalgamation of two unsupervised ML techniques, isolation forest and KMeans clus-
tering. The Hoeffding tree, also known as the Very Fast Decision Tree (VFDT), is an in-
cremental decision tree learning model that is efficient for streaming data [162]. Due to
its capability to handle continuous and large amounts of streaming data incrementally,
it can adapt to the changes in the data distributions, which is useful for concept drift
handling. Also, hoeffding trees are fast and memory-efficient, making them suitable
for high-speed network traffic analysis where low latency is essential and is, therefore,
chosen for our study.

For unsupervised learning, isolation forest, an anomaly detection algorithm, isolates
the data points using random partitioning. It is suitable for scenarios where anomalous
patterns are present in the network by isolating them from the majority of the data. It
assigns an anomaly score to each data sample based on its average path length in the
forest. If the average path is shorter, the more unusual the data sample is, the higher the
anomaly score will be. Due to its efficiency in handling imbalanced data and supporting
fast real-time processing, it is incorporated into the proposed model. KMeans cluster-
ing model, on the other hand, is effective in identifying the “normal” patterns in the
dataset and also identifies clusters of intrusions. It is designed to handle large datasets
efficiently, making it suitable for real-time applications.

Together, they can differentiate between isolated outliers and anomalous clusters of
data. KMeans helps refine the results from Isolation Forest by filtering anomalies based
on cluster characteristics, which helps reduce the false positive rate. This combination
ensures adaptability to dynamic data as KMeans adapts to changing traffic patterns by
re-clustering data periodically while isolation forest updates anomaly scores incremen-
tally, increasing the robustness of the model. Thus, fusion of incremental and ensemble
learning, that is, the integration of Hoeffding Tree for incremental learning with an un-
supervised anomaly detection ensemble is a novel and efficient approach, ensuring both
adaptability and robustness.

Initially, this hybrid incremental learning model is trained on the pre-processed
open-source network intrusion detection dataset, CSE-CIC-IDS2018, which consists
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of novel modern network attacks that help train our model to identify newer attack pat-
terns. Scores evaluated from the supervised and unsupervised models are combined and
evaluated, and these weighted scores are further used for incremental output refinement
and prediction.

5.2.4 Output Refinement

In the final phase, the outcome of the hybrid of supervised and unsupervised models
was computed and further processed to predict whether the data packet is anomalous or
not. Based on the previously learned patterns from the existing dataset, the pre-trained
Hoeffding tree predicts and provides a label for whether the incoming packet is benign
or an attack. Anomaly scores, normalized to a range of 0–1, were computed for both
Isolation Forest and KMeans clustering. For the Isolation Forest, a higher anomaly
score indicates more anomalous behavior in the data packet, while for KMeans, larger
distances to the cluster centers signify a higher anomalous pattern. The combination
of supervised and unsupervised techniques ensures a more resilient anomaly detection
approach. While the Hoeffding Tree excels at recognizing previously known attack pat-
terns, Isolation Forest and KMeans help uncover novel or evolving anomalies, making
the model adaptive to real-world cyber threats. The anomaly scores from both methods
are averaged to create a combined anomaly score.

The model then computes a weighted score by combining supervised predictions
with unsupervised anomaly scores for the incoming data, evaluated as:

weighted_score = (sup_pred ∗ sup_weight) + (anomaly_score ∗ unsup_weight)
(5.1)

where sup_pred is the confidence score evaluated from the supervised model, and
anomaly_score is the confidence score from the unsupervised anomaly detection model.
The sup_weight determines the relative importance of the supervised prediction, while
unsup_weight is computed as (1 – sup_weight). The formula combines the scores of
both models, and the weighted output is computed.

To determine the optimal threshold for classifying a data packet as anomalous or be-
nign, multiple threshold values (0.60, 0.65, 0.70, 0.75, and 0.80) were tested, and their
corresponding False Positive Rate (FPR) vs. False Negative Rate (FNR) was analyzed.
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The results showed the most promising trade-off at a threshold of 0.65, effectively bal-
ancing detection accuracy and minimizing false alerts. If the weighted_score for a data
packet exceeds this threshold, it is classified as anomalous; otherwise, it is benign.

The model also monitors the accuracy of the supervised model on real-time data
increments and compares it with the initial accuracy. If performance drops below a
predefined threshold, a concept drift is flagged, requiring the model to adapt to new
data distributions using recent samples stored in the replay buffer. The replay buffer
stores recent samples after predictions are made, ensuring that predictions are computed
before a sample is added for potential model updates or retraining. By detecting drift or
changes in data distribution, the system can trigger model updates to maintain accuracy
and prevent performance degradation over time.

5.3 Experimental Results and Analysis

This section highlights the key outcomes of the proposed real-time intrusion detection
system, which is based on a hybrid incremental learning model that ensembles super-
vised and unsupervised ML models. In the proposed HIL-IDS model, for the network
data packets sniffed, initially, the features were extracted using Scapy, pre-processed
and then standardized using Min-Max scaling. After scaling the data, dimensionality
reduction was performed using the powerful PCA technique. 17 key features were ex-
tracted from the input data stream. The criterion to minimise the number of features in
our experiment is based on the cumulative variance and number of classes in the dataset.
A cumulative variance of 95% was chosen as the selection criterion for PCA. With this
threshold, the original set of 17 features was reduced to 12 features or dimensions.

The performance of the HIL-IDS model was evaluated using standard classification
metrics, including accuracy, F1 score, and FPR. The experiments were performed on a
computer system having a Windows 10 system with an Intel i7 (9th generation) proces-
sor and 32GB RAM, using 64-bit Spyder with the Python programming language.

The various parameter settings for the machine learning models used in the exper-
iments are detailed in Table 5.1. The Hoeffding Tree model utilizes three parameters:
grace_period, which determines the number of instances seen before a split attempt. A
smaller value leads to faster learning but might increase the risk of overfitting. Thus,
it is set to a larger value of 100. split_confidence set to 1e-5, which controls the confi-
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dence level for splitting nodes, a higher value leads to more conservative splitting; and
tie_threshold of 0.05, which serves as the threshold for considering splits as ties. The
Isolation Forest method employs estimators set to 200, indicating the number of base
estimators (or trees) in the ensemble, and contamination set to 0.1, representing the
proportion of anomalies or outliers in the dataset. The KMeans clustering algorithm is
configured with Number of clusters set to 7, and a mini_batch_size to 1000, specifying
the batch size for mini-batch optimization. The Replay Buffer, which stores the newest
samples after predictions are made, has a max_length of 1000, indicating the maximum
number of samples it can store. A larger buffer provides more historical data for drift
adaptation but also increases memory usage. The Drift Detection mechanism is con-
figured with a threshold of 0.15, which means that performance changes exceeding this
threshold of 15 % indicates a concept drift in the data stream. For instance, if the initial
accuracy of the IDS is 90% and after processing several incremental batches of network
traffic, the accuracy drops to 70% then this represents a 20% decline, which surpasses
the defined threshold. This triggers the detection of a concept drift, prompting the model
to update itself accordingly.

Lastly, Output Refinement includes a sup_weight parameter, which is the weight
assigned to the supervised model’s prediction in the final decision, which is set to 0.5.
These parameter settings are crucial in optimizing model performance and ensuring
accurate anomaly detection while balancing computational efficiency. The manual hy-
perparameter tuning is performed by a similar approach as presented in the previous
chapters. Threshold optimization is set at 0.65 for anomaly scores to balance false
alarms and detection accuracy.

We have investigated the relative performance of the hybrid incremental learning
model across the initial and eight increments of data streams, each comprising network
data packets. In the initial data stream, sniffed from the network, there are 100000
samples, and consequently, each incremental dataset consists of an additional 50000
data samples. Table 5.2 presents the performance results of the proposed model on
each of these incremental datasets (I1 to I8). It was observed that the model’s accuracy
and F1-score consistently improved with each increment of training data, increasing
from 79.93% to 98.88% accuracy and 78.56% to 98.64% F1-score. Simultaneously, the
FPR decreased from 52.61% to 14.21%, indicating that the model’s reliability improved
with additional data. The FPR analysis reveals that while false alarms were initially
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Table 5.1: Various model parameter settings and their values used in the experiments

Method Parameters Parameter Value

Hoeffding Tree grace_period 100
split_confidence 1e-5
tie_threshold 0.05

Isolation Forest estimators 200
contamination 0.1

KMeans Number of clusters 7
mini_batch_size 1000

Replay Buffer max_length 1000

Drift Detection threshold 0.15

Output Refinement sup_weight 0.5

high due to limited training exposure, the incremental learning strategy steadily reduced
false positives to 14.21%. This consistent downward trend highlights the effectiveness
of incremental learning in refining decision boundaries and reducing false alarms over
time. Furthermore, it indicates that the hybrid incremental framework not only improves
detection accuracy but also achieves operational practicality by significantly reducing
false alerts. This highlights the advantage of incremental learning, where exposure to a
larger volume of network traffic enhances model generalization and detection capability.

Table 5.2: Performance analysis of the proposed HIL-IDS model (%)

Metric Initial I1 I2 I3 I4 I5 I6 I7 I8

Data Samples 100000 150000 200000 250000 300000 350000 400000 450000 500000

Accuracy 79.93 82.75 85.08 87.13 88.89 91.66 94.24 96.90 98.88

F1-score 78.56 82.46 84.60 86.41 88.40 91.42 92.23 96.17 98.64

FPR 52.61 46.83 37.51 31.78 28.15 23.45 20.84 18.79 14.21

Additionally, the proposed model demonstrated efficient computational performance.
The incremental approach significantly reduced the need for retraining on the entire
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dataset, thereby lowering computational overhead. In real-world applications, this means
the model can adapt dynamically to new network traffic patterns without requiring costly
full retraining.

An error analysis of the model showed that most false positives occurred during the
initial training stages, primarily due to the limited number of data samples available for
learning normal and anomalous behaviours. However, as more data was introduced, the
model was able to distinguish between legitimate and malicious network activity with
higher confidence. Unlike static models that struggle with evolving threats, the proposed
system leverages incremental learning to continuously refine its decision boundaries,
ensuring robustness against emerging cyber threats.

The False Negative Rate (FNR), which reflects the proportion of actual attacks
missed by the system, is equally critical in assessing the robustness of an intrusion detec-
tion framework. Although this chapter primarily reports Accuracy, F1-score, and FPR,
the observed improvements in detection accuracy of 98.88% and F1-score of 98.64%
across increments imply that FNR was very low, especially in later stages. In the early
stages, when the model had limited exposure to representative attack traffic, the like-
lihood of missed attacks was higher, but this diminished steadily as the incremental
updates provided more balanced exposure to diverse attack patterns, mitigating the risk
of undetected attacks alongside their significant reduction in false positives.

Fig. 5.3 illustrates how the prediction time per sample (in seconds) of the proposed
HIL-IDS model changes as more network data samples are incrementally added for
training. The x-axis represents the different increments of data, starting from the Initial
dataset and progressing through I1 to I8, while the y-axis represents the prediction time
per sample in seconds.

The trend in the graph shows a clear downward slope, indicating that the prediction
time per sample decreases with each incremental dataset. Initially, the prediction time
per sample is 0.04900 seconds, which significantly drops to 0.00450 seconds by the
eighth increment (I8), marking an 89.8% reduction in time. The model becomes more
efficient as it learns from a growing amount of data, leading to faster inference times.
This efficiency gain can be attributed to the model adapting and optimizing its decision-
making process over time, resulting in reduced computational complexity for each new
sample it processes.

The most substantial improvement occurs in the early increments, particularly from
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Fig. 5.3: Prediction time per sample (in sec) of the proposed model for each increment.

the Initial dataset to I3, where the prediction time decreases rapidly, suggesting efficient
feature learning and model optimization. After I3, the rate of improvement becomes
more gradual, indicating that the model has stabilized and further enhancements yield
marginal gains. This consistent reduction in prediction time highlights the efficiency of
the hybrid incremental learning approach, making the model more scalable and compu-
tationally efficient for real-time intrusion detection.

A comparative analysis of the proposed HIL-IDS model against state-of-the-art Ma-
chine Learning and Incremental Learning models in terms of accuracy, F1, and FPR is
presented in Table 5.3.

Among the ML models, the Naïve Bayes classifier exhibits the lowest accuracy of
72.72%, an F1-score of 72.23%, and a high FPR of 48.31%. This indicates that while
it performs well in certain cases, it is not well-suited for intrusion detection due to its
assumption of feature independence and inability to effectively capture complex net-
work attack patterns. On the other hand, Random forest showed an improved accuracy
of 79.30%, an F1-score of 78.71%, and a reduced FPR of 39.73%.

For the incremental learning models, the Stochastic Gradient Descent (SGD) classi-
fier, a linear model optimized using gradient descent, achieves an accuracy of 86.42%,
an F1-score of 85.84%, and an FPR of 33.26%. This indicates that SGD performs bet-
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Table 5.3: Comparative analysis of HIL-IDS with state-of-the-art ML and IL models
(in %)

Model Accuracy F1-score FPR

Naïve Bayes 72.72 72.23 48.31

Random Forest 79.30 78.71 39.73

Stochastic Gradient Descent 86.42 85.84 33.26

Online SVM 89.84 89.09 26.63

Hoeffding Tree 93.20 92.08 22.14

Proposed HIL-IDS 98.88 98.64 14.21

ter than Naïve Bayes and Random Forest by effectively learning from large-scale data,
yet its false positive rate remains relatively high. The Online SVM further improves
performance, reaching an accuracy of 89.84%, an F1-score of 89.09%, and an FPR of
26.63%. The reduced FPR indicates that SVM effectively distinguishes between normal
and malicious traffic, although it may require significant computational resources.

The Hoeffding Tree, a widely used incremental learning model, demonstrates strong
performance with an accuracy of 93.20%, an F1-score of 92.08%, and a further re-
duced FPR of 22.14%. This suggests that incremental learning techniques help adapt
the model to evolving network threats while maintaining efficiency. However, despite
its high accuracy, the Hoeffding Tree does not outperform the proposed model.

The proposed HIL-IDS achieved the most optimal results among all models, with an
accuracy of 98.88%, an F1-score of 98.64%, and the lowest FPR of 14.21%. These re-
sults demonstrate the effectiveness of the hybrid incremental learning approach, which
integrates both supervised and unsupervised learning to improve detection accuracy
while minimizing false positives. The significant performance gain indicates that HIL-
IDS efficiently learns from evolving data streams, adapts to new attack patterns, and
reduces misclassification rates.

Overall, the results in Table 5.3 clearly highlight that traditional ML models such
as Naïve Bayes, Random Forest, and SGD struggle to achieve high accuracy and suf-
fer from a high false positive rate. Incremental learning models like Hoeffding Tree
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and Online SVM improve performance, but they are still outperformed by the HIL-IDS
framework, which effectively leverages incremental updates and hybrid learning strate-
gies to deliver superior intrusion detection capabilities.

5.3.1 Statistical Significance

To validate whether the proposed HIL-IDS significantly outperforms the compared mod-
els, we applied the Friedman test across three evaluation metrics reported in Table 5.3,
accuracy, F1-score, and FPR for six models. To maintain consistency across metrics and
as higher values indicate better performance for accuracy and F1, while lower values are
better for FPR, we used (100− FPR).

The Friedman statistical test was employed as it is a non-parametric statistical test
widely used for comparing multiple algorithms across different evaluation scenarios.
Each metric was treated as an independent evaluation dimension, as it captures distinct
aspects of intrusion detection performance. We used α = 0.05 (95% confidence). Us-
ing the F-statistic from Eqn. 3.11, the Friedman test yields the value of 12.11 with
p − value = 0.00278, thus rejecting the null hypothesis (H0) that all models perform
equivalently. The average ranks of the models, as compared by the Friedman test, are
presented in Table 5.4, demonstrating that HIL-IDS attains the best (lowest) average
rank.

Table 5.4: Average Ranking of the Compared Models using the Friedman Test

Method Average Ranking

HIL-IDS 1.00
Hoeffding Tree 2.00
Online SVM 3.00

SGD 4.00
Random Forest 5.00

Naïve Bayes 6.00
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5.4 Chapter Summary

The Hybrid Incremental Learning-based Intrusion Detection System (HIL-IDS) is de-
signed to detect anomalies in real-time network data streams, addressing the limitations
of traditional intrusion detection systems that rely on static datasets and predefined at-
tack signatures. The framework consists of four main phases: real-time network traffic
ingestion, Apache Kafka pipeline integration, hybrid incremental learning, and output
refinement. Network packets were captured using Scapy, which extracted 17 key fea-
tures and applied pre-processing, normalization using Min-Max scaling, and dimension-
ality reduction with PCA to enhance model efficiency. The processed data was streamed
employing Apache Kafka, ensuring fault tolerance and scalability. The core of the sys-
tem is the hybrid incremental learning model that integrates a Hoeffding Tree classifier
for supervised learning with Isolation Forest and KMeans clustering for unsupervised
anomaly detection. The model assigns a combined confidence score to network packets,
refining detection accuracy while minimizing false positives. A weighted anomaly score
is used for classification, with a threshold of 0.65 optimized for balancing detection ac-
curacy and false alarms. The model incorporates adaptive drift detection, enabling it to
update itself when network patterns change over time. Experimental results, based on
the CSE-CIC-IDS2018 dataset, demonstrate that HIL-IDS achieves a high accuracy of
98.88% and a low false positive rate of 14.21%, significantly outperforming traditional
models such as Naïve Bayes, Random Forest, SGD, Online SVM, and Hoeffding Tree.
The model also reduced the prediction time per sample, improving efficiency in real-
time scenarios. Unlike static models, HIL-IDS continuously adapts to evolving attack
patterns, making it a highly effective solution for modern cybersecurity challenges by
providing scalable, real-time anomaly detection with high detection accuracy and min-
imal computational overhead. A Friedman test-based statistical analysis confirmed that
the HIL-IDS model outperforms other incremental learning and ML models compared.
Trained on the CSE-CIC-IDS2018 dataset and tested in a simulated real-time streaming
setup, provided consistency and ensured rigorous benchmarking. While this establishes
a reliable baseline, further validation on other datasets can broaden generalizability in
future. Similarly, the current analysis addressed the attack classes present in the chosen
dataset. Extending the study to include novel and emerging attack patterns will provide
additional insights into robustness against previously unseen threats.

123



Chapter 6
Conclusion, Future Work, and Social
Impact

In this thesis, we developed effective intrusion detection systems, which are crucial in
fighting against evolving cyber threats. This chapter summarizes the key findings of this
research, highlighting the contributions of the proposed work. Additionally, it explores
potential directions for future research and discusses the broader social impact of this
study on society.

6.1 Conclusion

In this research, we developed a novel technique for feature selection in an anoma-
lous network environment, using the Dynamic Mutual Information-based Genetic Al-
gorithm (DMI-GA). To compute the fitness value of the features, we introduce a novel
fitness function based on an adaptive trade-off parameter. A comparative analysis of
each model, consisting of the combination of ML with and without feature selection,
has been statistically evaluated using two cross-validation strategies. The experimental
results demonstrated that the detection accuracy of machine learning models improves
significantly with the use of feature selection methods. Additionally, it was observed
that among all the feature selection strategies employed with the ML model, DMI-
GA consistently yielded the highest results across all combinational detection models.
Specifically, Random Forest demonstrated superior performance compared to other ML
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models when paired with the DMI-GA feature selection method, achieving the highest
detection accuracy of 99.91% and an F1-score of 98.10%.

Furthermore, we designed and developed a robust intrusion detection system, eval-
uated on the up-to-date CSE-CIC-IDS2018 dataset. In the initial phase, we performed
dimensionality reduction to enhance the model’s performance. Since attack instances
are often much rarer than benign traffic, this class imbalance can hinder the model’s
ability to accurately detect threats. Balanced datasets improve training by enabling the
model to learn distinct features of both normal and malicious traffic. Hence, handling
this imbalance is crucial for optimal performance. In this study, SMOTE is applied to
address the class imbalance issue. After classifying network traffic as benign or mali-
cious, specific attack types were identified within the attack class using the proposed
modified Picture Fuzzy Clustering (mPicFC). A performance comparison of the pro-
posed fuzzy clustering approach with state-of-the-art clustering techniques, including
K-means, FCM, IFCM, and Picture Fuzzy Clustering, revealed that mPicFC achieved
the highest accuracy of 89.98%.

In today’s digital era, securing networks against evolving cyber threats is crucial.
Thus, in the final phase of our research, we developed HIL-IDS, a real-time intrusion
detection system that leverages a hybrid incremental learning model to effectively iden-
tify network anomalies. This model combines the supervised Hoeffding Tree with an
ensemble of unsupervised Isolation Forest and K-Means clustering. Real-time network
traffic is captured by a sniffer, then preprocessed, feature-engineered, and streamed via
the Apache Kafka pipeline to the hybrid model. If concept drift is detected, the model is
updated, and predictions from subsequent increments are recalculated and verified. This
iterative process continues until the final increment is used to classify incoming network
packets as benign or anomalous. Before deployment in the real-time pipeline, the in-
cremental learning model is pre-trained on the publicly available CSE-CIC-IDS2018
intrusion detection dataset. Experimental results show that as the number of ingested
network samples increases, the model’s performance improves, and the prediction time
per sample decreases significantly.
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6.2 Future Work

The methods developed in this thesis represent a significant advancement in the field of
network security, particularly with intrusion detection. However, as with any research
endeavor, there remain numerous opportunities for further exploration, enhancement,
and deployment. The following are several key directions for future work:

• While the current methods demonstrate robust performance, the system’s effec-
tiveness could be tested and evaluated against emerging attack types to ensure its
adaptability to evolving threats. Additionally, deploying and assessing the system
in a real-world production environment is essential. For practical deployment,
the system would be positioned behind the firewall to monitor both inbound and
outbound network traffic. This setup would enable the system to analyze network
activity, detect potential malicious attempts, and interact directly with the firewall,
allowing it to take immediate action to block detected attacks.

• Future study will aim to enhance the IDS resilience against adversarial attacks,
where attackers manipulate network traffic or features to evade detection. This
will involve adversarial training, feature hardening, and ensemble learning to im-
prove robustness.

• Building on the current work, future research will extend the scope to incorporate
Explainable AI (XAI) techniques to provide insights into IDS decision-making,
increasing trust and adoption in critical systems.

• Although Machine Learning methods have demonstrated significant results for
intrusion detection, Deep Learning methods can offer additional capabilities that
can further enhance detection performance, by automatically learning complex
patterns from large volumes of network traffic data.

By addressing these areas, future research will not only enhance the effectiveness
and robustness of intrusion detection systems but also ensure their adaptability to emerg-
ing threats and real-world environments. These advancements will ultimately lead to the
development of more scalable and secure IDS solutions, better equipped to protect net-
works from evolving cyber threats in various applications.
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6.3 Social Impact

The increasing reliance on digital infrastructure has amplified cybersecurity threats,
making network security a crucial aspect of sustainable development. Effective in-
trusion detection systems play a vital role in safeguarding sensitive information, pre-
venting financial losses, and maintaining national security. The development of a more
accurate and efficient anomaly-based IDS has far-reaching implications for individu-
als, businesses, and government organizations. By enhancing network security, this re-
search contributes to building a safer digital ecosystem and reducing the risks associated
with cybercrime. Furthermore, it underscores the importance of integrating advanced
machine learning techniques into cybersecurity frameworks to address emerging chal-
lenges. Machine learning enhances intrusion detection by enabling adaptive learning,
where models continuously update themselves to detect evolving attack patterns.

In this context, the development of an advanced intrusion detection system also
aligns with multiple United Nations Sustainable Development Goals (SDGs) by strength-
ening cybersecurity, protecting critical systems, and ensuring the confidentiality and
integrity of digital operations. By effectively identifying and mitigating cyber threats,
intrusion detection systems help prevent data breaches, safeguard sensitive information,
and support the stability of essential services, as follows:

• SDG 8 (Decent Work and Economic Growth): Cyberattacks can cause sig-
nificant financial losses to businesses, disrupt economic activities, and impact
employment. The proposed efficient anomaly-based intrusion detection system
would help businesses prevent cyber threats, ensure economic stability, and foster
a secure work environment.

• SDG 9 (Industry, Innovation, and Infrastructure): Anomaly-based NIDS en-
sure robust network security measures, mitigate security risks, and promote inno-
vation and sustainable industrial growth and technological advancements.

• SDG 11 (Sustainable Cities and Communities): As smart cities increasingly rely
on interconnected digital systems, the IDS framework safeguards urban digital
infrastructure by continuously monitoring network traffic and detecting potential
cyber threats before they disrupt essential services.
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• SDG 16 (Peace, Justice, and Strong Institutions): By detecting and mitigating
cyber threats in real time, the NIDS framework helps detect data breaches and
cyberattacks on critical systems, strengthen digital governance, protect sensitive
citizen data, and minimize cybercrime, contributing to a more secure and just
society.

An anomaly-based network intrusion detection system strengthens cybersecurity re-
silience, enhances digital trust, and supports the sustainable growth of secure digital
infrastructure.
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