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ABSTRACT

Attitude towards quality of life in the current century is unhealthy, result-
ing in several diseases. Consequently, life expectancy has significantly declined
since 2000. Various medical imaging procedures like X-rays, Magnetic Resonance
Imaging, Ultra-Sonography, etc., in combination with pathological tests form the
basis for all medical conclusions. However, these imaging procedures are inva-
sive in nature, require specialized radiologists, and not accessible to the populace.
Hence, Thermography-based technology is proposed in this thesis for screening
and diagnosing abnormality/inflammation in human body. Medical thermal imag-
ing is unique in its potential to demonstrate the physiological change and metabolic
processes in a human body through thermal patterns radiated by it. Thermal imag-
ing technology accompanied with robust and automated computational-aided diag-
nostic systems can be deployed at public gathering locations (like malls, hospitals,
etc.) and on smartphones to timely detect and warn about potential health issues
of their body caused by inflammation.

Thermography-based cameras have shown their efficacy during the recently
seen pandemic time in screening the physical behavior of the human body and re-
porting unhealthy individuals instantly. Furthermore, improper use of Thermography-
based technology may result in wrong temperature readings due to their low res-
olution. This thesis have examined its potential in conjunction with Machine and
Deep Learning techniques for identifying inflammation in the human body as a
classification problem. We have proposed two statistical models aimed at differen-
tiating normal and abnormal thermal patterns in medical thermal imaging. The first
model utilizes a novel of asymmetry-based features extracted from three publicly
available datasets, focusing on detecting abnormalities related to breast cancer,
diabetes, and thyroid disorders. The second model systematically evaluates the
performance of this proposed feature set in comparison with eight state-of-the-art
feature extraction techniques, establishing a standardized methodology for analyz-
ing medical thermal images. To ensure unbiased evaluation, a two-level sampling
strategy was employed to address dataset imbalance, and cross-validation tech-
niques. A lightweight deep learning-based classification model designed for mo-
bile deployment is presented to detect and characterize abnormalities caused by
inflammation in human thermal images.

In the context of medical thermal image segmentation, we present two novel
density-based modified PCFS techniques, - DSIFC-PcFS and DSIMFC-PcFS, for
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segmenting inflamed regions in abnormal thermal images. The limitations of ex-
isting segmentation models include reliance on private datasets with limited sam-
ples, subjectivity in ground truth generation, and sensitivity to parameter selection,
thereby the proposed methods aim to improve robustness, accuracy, and reliability
in medical thermal image analysis. The first model (DSIFC-PCFS) uses a density-
based heuristic to automatically determine cluster centers and membership values.
Furthermore, spatial information is integrated into the model to reduce sensitiv-
ity to noise and preserve fine image structures without requiring prior smoothing.
The second model (DSIMFC-PCFS) further refines clustering by incorporating
modified Renyi’s entropy to improve segmentation accuracy and optimize cluster
partitions. The models are optimized using Lagrangian methods and validated on
thermal imaging datasets covering diabetic foot, breast cancer, and thyroid disor-
ders, with and without artificial noise (Gaussian, Salt & Pepper, and Mixed Noise).

We evaluated the performance of all developed methods using publicly avail-
able medical thermal imaging datasets through both visual and quantitative as-
sessments. Additionally, we compared their performance with well-established
and state-of-the-art algorithms. Statistical analysis was conducted using paired T-
Test and Friedman Test, demonstrating the superiority of the proposed methods
over existing state-of-the-art algorithms in classification and segmentation tasks.
Overall the findings establish a strong foundation for future research in automated
thermography-based diagnostic systems, particularly for early disease detection in
real-world clinical settings.
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Chapter 1
Introduction

The lifestyle led by today’s generation and its negligence towards health is highly
susceptible to various diseases like Cancer, Cardiovascular Disease, Diabetes, Thy-
roid, etc. Additionally, late-stage presentation and limited access to diagnosis and
treatment contribute equally to increase in mortality rates, especially in developing
nations, where access to advanced diagnostic healthcare infrastructure, is challeng-
ing1. For instance, a 2018 report of Breast Cancer statistics recorded 1,62,468 new
registered cases and 87,090 reported deaths2. The survival rates of breast cancer
in India are low as the detection takes place late. More than 50% of breast cancer
patients in India suffering from stages 3 and 4, where the chances of survival are
incredibly low3.

Medical imaging procedures like X-rays, Magnetic Resonance Imaging (MRI),
Ultra-Sonography (USG), Endoscopy, Tactile Imaging (TI), and Computerized To-
mography Scan (CT Scan) are available for the diagnosis of diseases. In fact, these
procedures in combination with pathological tests form the basis for all medical
conclusions. However, these imaging procedures are invasive in nature, require
specialized radiologists, and not accessible to the populace[1, 2]. Also, these de-
vices require unique installation and follow a complicated process, limiting the
number of possible tests per equipment. Therefore, an adjunct modality for screen-
ing human body4, Digital Infrared Thermal Imaging technology (DITI) (also called
as Thermography-based technology), is proposed in this thesis for screening and

1https://www.who.int/news/item/13-12-2019-world-bank-and-who-half-the-world-lacks-
access-to-essential-health-services-100-million-still-pushed-into-extreme-poverty-because-of-
health-expenses

2https://cytecare.com/blog/breast-cancer/statistics-of-breast-cancer/
3https://www.oncostem.com/blog/alarming-facts-about-breast-cancer-in-india/
4https://www.fda.gov/consumers/consumer-updates/breast-cancer-screening-thermogram-no-

substitute-mammogram
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1.1. Thermography Based Imaging

diagnosing abnormality/inflammation in human body. Recently, Thermography
based cameras have been deployed around the world5 at various organizations and
public gathering points as a first measure of screening COVID-19 patients and re-
porting unhealthy individuals instantly [3, 4, 5, 6]. But due to low resolution of
thermal cameras and human intervention in the procedure, they resulted in poor
performance.

This chapter introduces DITI as potential modality for screening abnormality
in human body and describes the related datasets and its pre-processing steps used
for the study. Further, this chapter discusses the challenges, significance, and con-
tribution of this research. The organization of thesis is elaborated in section 1.4.

1.1 Thermography Based Imaging

Fundamentally, any black body continuously emits infrared radiation, with the
emitted energy directly related to its temperature, as described by the Stefan–Boltzmann
law[7, 8]. The thermographic sensitive camera accurately captures this informa-
tion and then directly transforms into corresponding temperature values through
this law, enabling precise thermal analysis. The Figure 1.1 illustrates a represen-
tation of a breast thermal image as a gray-scale image along with its temperature
file.

Fig. 1.1: Thermal Image representation as gray-scale image along with its temperature file.

Thermography-based imaging for human body provides its biological and func-
tional assessment. It captures physical indicators of abnormal activity within the
vascular system, sensory system, or sympathetic nervous system [9]. The research
work [9] explored the correlation between thermographic findings and breast can-
cer diagnosis.

5https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/thermal-
imaging-systems-infrared-thermographic-systems-thermal-imaging-cameras

2



1.1. Thermography Based Imaging

Any disease in the human body leads to inflammatory activities (indicated by
Erythrocyte Sedimentation Rate (ESR) pathological test[10, 11, 12]). These ac-
tivities cause intense thermal patterns radiated by the corresponding body part[13,
14]. Thermography-based cameras capture these thermal patterns and use them as
markers for identifying the abnormal regions [15, 13, 16, 17].

Thermography-based technology is an human and environment-friendly ap-
proach of screening abnormality in human bodies. It is simple, non-invasive, cost-
wise appropriate, painless, contact-less, and portable modality[18, 19]. This tech-
nology is instant, human-friendly, and straightforward to use for individuals of all
age groups. Thermography-based imaging systems requires very little equipment
for deployment and use, especially in rural areas with limited power facilities. The
figure 1.26 illustrates the ease in setup and capturing thermal images.

Fig. 1.2: Illustration of setup and capturing of thermal images.

Considering the Sustainable Development Goals (SDGs), thermography-based
screening contributes both directly and indirectly to multiple SDGs, particularly
those related to health. The SDG-3 emphasizes the goal of "Ensuring healthy

lives and promoting well-being for all at all ages.". The integration of thermal
cameras with automated Computational Intelligence-Aided Diagnostic Systems
can be implemented in public gathering spaces to detect potential diseases caused
by inflammation. This approach shall strengthen healthcare systems while offering
a solution that is both human- and environmentally-friendly.

6https://www.fda.gov/medical-devices/general-hospital-devices-and-supplies/thermal-
imaging-systems-infrared-thermographic-systems-thermal-imaging-cameras
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1.1. Thermography Based Imaging

Fig. 1.3: The graphical abstract of the methodology followed in the thesis.
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1.2. Problem Statement

1.2 Problem Statement

Thermal imaging technology offers several advantages over other medical modal-
ities, as it effectively captures inflammation and abnormalities in the human body.
However, thermal images generally have lower resolution and are highly suscepti-
ble to inevitable environmental noise during capture. To address these challenges,
thermal cameras integrated with robust and automated Computational Intelligence-
Aided Diagnostic Systems can be developed for deploying in public spaces to de-
tect and alert individuals to potential diseases caused by inflammation, thereby
enhancing healthcare systems.

In view of this objective, we evaluated existing feature extraction methods for
analyzing thermal patterns on a uniform platform using publicly available datasets.
We then proposed a refined feature set comprising relevant and non-redundant fea-
tures for distinguishing thermal patterns. Additionally, we developed lightweight
deep learning-based features capable of differentiating abnormal thermal patterns
from normal ones, making them suitable for deployment on mobile devices.

Furthermore, we designed a pre-processing framework for thermal images and
introduced two robust picture fuzzy clustering-based methods for segmenting in-
flamed regions. Figure 1.3 presents the graphical abstract of the methodology
adopted in this thesis. All results were statistically analyzed and validated. Our
proposed algorithms demonstrated improved performance compared to existing
methods for screening and diagnosing inflammation in the human body.

1.2.1 Dataset Description and its Pre-Processing

The experiments are conducted using three publicly available thermography based
datasets- DB-DMR-IR7 dataset [20], DB-FOOT-IR[21] and DB-THY-IR8 [22].
Figure 1.4 exemplifies the normal and abnormal subjects (in RGB and normalized
gray-scale format) for breast cancer, diabetes and thyroid cancer.

Following describes the pre-processing steps of the three datasets used:

• DB-DMR-IR and DB-THY-IR - The authors [20, 22] used both static and
dynamic acquisition protocol. They used an environment with a temperature
range of 20 – 24◦C to cool the patient’s relevant region, followed by image
capturing using a FLIR thermal camera (model SC620). The patients were
directed to relax for 15-20 minutes before capturing images to minimize

7http://visual.ic.uff.br/dmi/
8http://visual.ic.uff.br/thyroid/pt/
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1.2. Problem Statement

(a) Breast Cancer gray-scale and Thermal
Images

(b) Thyroid Cancer gray-scale
and Thermal Images

(c) Diabetic Feet Ulcer
gray-scale and Thermal
Images

Fig. 1.4: Example of abnormal and normal Thermograms for various diseases.

the possible displacements of glands and attain thermal equilibrium. They
acquired 20 Infrared images of dimensions 640 X 480 for a duration of five
minutes for each patient. The thermal images taken last in the sequence
are used in the experiments. The corresponding temperature matrices were
available in both datasets. The medical and demo graphical history of the
patients is also available78. BIRADS-related information is not present for
the DB-DMR-IR database.

• DB-FOOT-IR - The authors [21] acquired images using a FLIR Thermal
camera (model FLIR E60). During the acquisition, the camera’s position
was placed at a distance of one meter from the feet. The participants were
directed to clean their feet with a damp towel and then relax in a room with a
temperature of 20 - 22◦C for 15 minutes before capturing images to reach a
state of thermal equilibrium. The corresponding temperature matrices were
also available with the images.

Relaxing for 15-30 minutes before capturing images helps achieve a state of
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thermal equilibrium in the body. This helps in developing a robust application
and eliminates any temperature variation. The experiments considered images ac-
quired after achieving the body’s thermal equilibrium. The acquired thermal im-
ages are pseudo-colored/false-colored and can not be used directly. Also, thermography-
based applications use thermal images transformed to corresponding temperature
matrices. In all the datasets, the temperature matrices are available along with
the images. The temperature matrices are normalized, assuming the human body’s
minimum and maximum temperature to be 20◦ C and 45◦C, respectively, and trans-
formed into corresponding gray-scale images in the range [0-255] for experiments
and visualization purposes using the equation -

I = (T − 20)
255

45− 20
(1.1)

where T denotes the temperature matrix, and I is the corresponding transformed
gray-scale image. The Region of Interest (ROI) was cropped from the transformed
gray-scale images, removing the background and other irrelevant body parts using
MATLAB’s utility impoly. All the images in a dataset were resized to a uniform
size to eliminate any non-uniformity in images due to variations in human body
sizes.

1.3 Main Contributions of the Thesis

The main contributions of this research are the models development for classifying
medical thermal images as Normal/Abnormal and segmenting the inflamed regions
from abnormal thermal images.

1.3.1 Statistical Indicators for Thermal Pattern Differentiation

There does not exist an experimental comparison of the state-of-the-art feature
extraction methods on a platform using a common dataset, classifier, or cross vali-
dation/ sampling strategy. Hence, it is not appropriate to comment on the suitabil-
ity of a feature extraction method for diagnosing abnormality/inflammation in the
human body using Thermography.

• A novel set of hand-crafted features are developed and extracted for temper-
ature’s asymmetry analysis in publicly available medical thermal imaging
datasets.
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• Then, eight state-of-the-art feature extraction methods[23, 2, 24, 25, 26, 27,
15, 28] alongside the proposed feature extraction method is statistically com-
pared and analyzed the performance to distinguish an abnormal thermal im-
age from a normal one on a uniform platform.

• We developed a unified model, comprising of relevant and non-redundant
features (UnionFeature_Set), capable of identifying abnormal thermal pat-
terns due to inflammation caused by diseases and captured by a thermal
cameras.

• The above objectives are investigated using four well-known feature selec-
tion methods to select relevant features from the ten features-sets. Also, the
four well-known classifiers are used for a fair performance comparison of the
selected set of relevant features. We used three publicly available datasets of
Medical Thermal Imaging for the entire investigation, having different dis-
eases. The publicly available datasets are skewed (i.e. difference in classes
frequency in the dataset is high), so a 2-level sampling strategy is developed
and used to conduct the experiments.

1.3.2 Deep Learning-based Thermal Biomarker Analysis

A lightweight deep learning-based model for classifying thermal images as Nor-
mal/Abnormal is developed making it appropriate for deploying on mobile devices
for ease of human use.

• UnionFeature_Set and various hand-crafted and Deep Learning-based feature-
sets are extracted from two thermal imaging based datasets and their perfor-
mance is compared using four state-of-the-art classifiers and 10-fold cross
validation sampling strategy.

• Light weight pre-trained Deep Learning models are proposed to characterize
and classify abnormal patterns in medical thermal images.

1.3.3 Framework for Inflamed Region Segmentation

Limited work is done towards segmentation of affected regions in the diseased hu-
man body’s thermal images ([15, 29, 30, 31, 32, 33, 34, 35, 36]). Also, most of
the segmentation models proposed are evaluated on private datasets having fewer
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samples which is not available for further consideration and analysis by the re-
search community. Hence, the performances obtained are not reputable. In this
regard, following contributions are made in the thesis:

1. Two robust Density-based Picture Fuzzy clustering models with spatial in-
formation, are proposed, to segment the affected regions/hotspots from ab-
normal thermal images. Hyper-parameters are automatically initialized us-
ing a density-based heuristic, requiring minimum hyper-parameter tuning.
Incorporating Spatial information in the model has eliminated the requisite
of smoothing the thermal image and retained fine image structures.

2. The optimization problem is formulated by combining Density-based PcFS
method with regularized and modified Renyi’s Entropy to obtain a good par-
tition matrix and appropriate number of clusters. The complete optimization
problem is solved using Lagrangian method of multiplier [37] and obtained
their cluster prototypes.

3. The robustness of the proposed segmentation methods is validated statisti-
cally over other methods using the Friedman Test. Also, the time complexity
is investigated in comparison to other related methods.

4. Research has yet to give a course to develop a robust segmentation method
for analyzing and segmenting noisy and low-resolution human thermal im-
ages. To address this research gap, a separate dataset - DB-NOISE-IR, is
created, wherein three types of artificial noise - Salt and Pepper Noise, Gaus-
sian Noise, and Mixed Noise are introduced. We thoroughly performed the
comparative performance analysis of our method with that of other methods.
We found that the our methods have performed significantly better particu-
larly for the noisy dataset.

1.4 Organization of the Thesis

The content of this thesis is systematically organized as follows. The chapter 2
discusses the existing approaches related to classification of the medical thermal
images using traditional Machine Learning and Deep Learning methods. Also,
it compares the existing techniques for segmentation of inflamed regions from
thermal images. It also finds the research objectives.

Rest of the thesis is divided in two parts (Figure 1.3)- Part 1 covers the Classi-
fication of thermal images as Normal/Abnormal in chapter 3 and chapter 4 and
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Part 2 covers the segmentation framework of abnormal thermal images using Pic-
ture Fuzzy clustering approach in Chapter 5. Further, the chapter 6 presents
important conclusions drawn from the proposed work and it also gives the details
of future works/applications for thermal images in medical domain.
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Chapter 2
Literature Review

This chapter conducts a thorough and systematic review of state-of-the-art meth-
ods for feature extraction, classification, and hot-spot segmentation in medical
thermal imaging for various diseases using traditional Machine and Deep Learning
approaches, while also highlighting their limitations. The chapter includes discus-
sion of merits and demerits of existing methods and finally proposes the research
objectives for the thesis.

2.1 Background on Medical Thermal Imaging

Researchers have thoroughly investigated the capability of Thermal Imaging com-
plemented with Computer-Aided Diagnosis (CAD) for detecting/screening various
diseases like breast cancer, skin cancer, arthritis, cardiovascular diseases, ulcers,
and diabetes [38, 39, 40, 41, 42, 43] as a classification problem. Digital Infrared
technology evolved during 1900-1920. It was first used and documented in medi-
cal research for examining breast cancer in 1956 [44]. He discovered that cancer-
ous tissues lay higher temperature on the skin surface than non-cancerous ones. In
the early ’70s, a mass-ranging study, breast cancer Detection and Demonstration
Project (BCDDP), was conducted in the United States to evaluate thermography’s
diagnostic ability for breast cancer. However, poor study design, lack of trained
technicians, and unsuitable environmental controls and protocols led to the failure
of the project [16, 45].

The research work [46] presented a study on 85,000 subjects with 90% sen-
sitivity and 88% specificity. In their investigation, to attain thermal equilibrium,
they included two cooling mechanisms- fan and ice water. This methodology de-
creased the false-positive rate by 3.5%, leading to 96.5% sensitivity. The potential
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of thermography has also been studied concerning inflammatory pain[47, 48]. The
works [49, 50] employed an Otsu thresholding technique to segment the thyroid-
based ROI from its thermal images.

Research studies have established a direct correlation between increasing tem-
perature and foot complications in individuals with diabetes [51, 52]. Notably,
temperature elevation can occur up to a week before the development of a foot
ulcer [53]. Additionally, [54] explored the potential of thermography for home
monitoring and the early detection of warning signs of abnormalities. Researchers
claimed that being a contactless and user-friendly technology, thermography offers
a convenient solution for at-home monitoring.

2.2 Traditional Machine Learning Methods for Ther-
mal Pattern Analysis

This section reviews the related work for classifying inflammation in medical ther-
mal images using traditional Machine Learning approaches. The method proposed
in the research work [23] extracted 37 asymmetry-based descriptors from a skewed
and private dataset of 146 breast thermal images (29 malignant and 117 benign)
and classified them using a fuzzy classifier. A classification accuracy of 79.53%
was obtained with 14 fuzzy partitions per attribute on the test dataset.

The research work [55] used Hough transform to automatically segment left
and right breasts and performed an asymmetry-based analysis using first-order
statistics on a small dataset of 6 normal and 18 cancerous thermal images. They
concluded that higher-order statistics detect asymmetry effectively. Texture-based
features [2], were extracted from Gray Level Co-occurrence Matrix (GLCM) and
Gray Level Run Length Matrix (GLRLM) of breast thermal images. These fea-
tures were extracted from 50 samples and fed to the Support Vector Machine
(SVM) classifier with a 3-fold cross validation sampling approach. The proposed
system produced an accuracy of 88.10%, sensitivity, and specificity of 85.71% and
90.48%, respectively, on their private dataset.

The research work [24] proposed 11 energy-based features for asymmetry anal-
ysis. They computed features from modified Local Binary Pattern (LBP) Colour
and Edge matrices. These matrices were computed from gray-scale images of
left and right breasts. They used a heterogeneous dataset of 65 breast thermog-
raphy images and classified the extracted features using Hidden Markov Model
(HMM) Classifier. They achieved an accuracy of 93.75%. The research work [25]
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2.2. Traditional Machine Learning Methods for Thermal Pattern Analysis

extracted 144 features from Wavelet Transform of normalized and segmented tem-
perature matrices of breast thermal images. Then asymmetry-based features were
computed from the local energy matrices for 24 sub-bands. They used a publicly
available DB-DMR-IR dataset [20] with 100 frontal views of static breast thermal
images. Then they used Random Subspace Feature selection (RSFS) for selecting
relevant features, followed by 5-fold cross validation with SVM using Gaussian
Kernel. They achieved an accuracy of 91%.

The research work [56] extracted asymmetry based 24 discriminating features
- 7 statistical and 17 texture features from two datasets (DBT-TU-JU, a private
dataset and DB-DMR-IR dataset [20]). Then, Mann-Whitney-Wilcoxon statistical
test was used to select significant features (with p ≤ 0.05). The authors used six
classifiers to detect thermography-based breast irregularity for efficient diagnosis.
The results showed that Artificial Neural Network and SVM classifiers provided
the best accuracy of 87.50% for the DB-DMR-IR database and 84.29% for the
DBT-TU-JU dataset. The research works [57, 28] applied Curvelet Transform to
segment a breast thermal image and extract GLCM-based features. [57] obtained
an accuracy rate of 90.91% with SVM classifier and Gaussian kernel with Leave-
one-Out Cross Validation (LOOCV). An accuracy of 93.33% using SVM with
20-fold cross validation was obtained[28].

The authors [58] used thermography complemented with other imaging modal-
ities to diagnose thyroid-related problems. The authors in the research work [15]
analyzed Rheumatoid Arthritis disease. They extracted texture-based features from
the knee thermograms and inflamed ROIs. They obtained an accuracy of 73% us-
ing SVM with 3-fold cross validation.

The research work [59] performed experiments on average temperatures values
for neuropathy patients Vs. diabetic patients without neuropathy. They concluded
that the former has a higher average temperature than the latter. A study [41, 60]
also confirmed the above remark that diabetic neuropathy patients’ foot tempera-
tures were significantly higher than that of subjects without neuropathy. Infrared
thermography has been successfully used to detect complications like foot ulcers
related to diabetic feet.

The authors [27] extracted asymmetric 12 texture and 2 temperature-based fea-
tures from 11 ROIs, which are prone to ulceration in both left and right foot, ther-
mal images, and temperature profiles of 60 subjects. They performed an asymmetry-
based analysis between the ipsi-lateral and contra-lateral regions of the foot. The
features are classified into normal and ulcerated using SVM classifier with an ac-
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Table 2.1: The State-Of-The-Art research work for classifying abnormality in thermal images using traditional Machine Learning Ap-
proaches.

Reference Number
of
features

Features Description Dataset and Disease Considered Feature Selection Classifier Metrics and Result on
Test data

[23]
(SCH)

37 Features were computed from polar coordinate representation of left and bright gray-scale images
- Mean, Standard Deviation, Median, 90-Percentile, Moments m01 and m10, Centre of Gravity
(CoG), Distance between CoG and Geometrical Centre, Cross-Correlation, Difference Histogram,
Absolute Value of its Maximum, Number of Bins Exceeding 0.01, number of zero crossings, energy,
difference of positive and negative (from Normalised Histograms) Homogeneity, Energy, Contrast,
Symmetry (from Gray Level Cross Co-occurrence Matrix), Difference of absolute values, Distance
of difference maximum from the centre (from Fourier Spectrum of left and right breast), Mutual In-
formation, Cross Co-occurrence Features, Mutual Information, Fourier Descriptors from the Laplace
filter applied images

Breast Cancer analysis - Private
Dataset - 146 cases (29 Malignant,
117 Benign )

- 10-fold cross
validation with
Fuzzy Classi-
fier (14 fuzzy
partitions) using
KEEL software

Acc - 79.53, Sens - 79.86,
Spec- 79.49

[2]
(ACH)

16 Texture-based analysis - Features from Normalized GLCM and GLRLM (in directions θ = 0◦, 45◦,
90◦ and 135◦) were computed - Homogeneity, Energy, Entropy, Moment 1, Moment 2, Moment 3,
Moment 4, Entropy, Angular Second Moment, Contrast, Mean, Short Runs Emphasis, Long Runs
Emphasis, Run Percentage, Gray Level Non-Uniformity, and Run Length Non-Uniformity

Breast Cancer analysis - Private
Dataset - 50 cases (25 Normal , 25
Malignant (15 patients had stage III
cancer and rest had stage II cancer)

selected with p-
Values (≤ 0.05)

3-fold stratified
cross validation
using SVM

Acc - 85.71, AUC-88.10,
Sens - 85.71, Spec - 90.48

[24]
(RAS)

11 Asymmetry-based analysis - Modified LBP Colour and Edge matrices were computed using Clique
Matrices from gray-scale images of left and right breast - Tsallis-Entropy, GLCM-based Energy, Dif-
ference between Co-occurrence levels-based energy, Euclidean distance of histograms, sum (from
Modified LBP Colour and Edge matrices), Difference of GLCM Matrices(4 different directions 0◦,
45◦, 90◦ and 135◦)

Breast Cancer analysis - Private
Dataset - 65 breast thermography
images collected heterogeneously
(40 Malignant and 25 Normal)

- HMM Classifier
with LOO cross
validation

Acc - 93.75, Sens - 95.00,
Spec - 92.00

[25]
(SAT)

144 Asymmetry-based analysis - Temperature matrices of the corresponding breast thermogram were
normalized and segmented automatically into left and right breast. The Discrete Wavelet Trans-
form was applied using different digital filters (Daubechies-1, Daubechies-10, Coiflet-1, Coiflet-5,
Symlet-2, and Symlet-8) at different scales. Asymmetry based Features were computed from the
Local energy matrices, calculated for 24 sub-bands - Energy, Mean, Variance, Skewness, Kurtosis,
Entropy (from Local energy matrices, calculated for 24 sub-bands)

Breast Cancer analysis - DB-DMR-
IR Dataset -100 frontal view static
breast thermogram (47 abnormal,
53 normal)

RSFS Method -
33 features were
selected

5-fold cross vali-
dation with SVM
using Gaussian
Kernel

Acc - 91, Sens - 87.23,
Spec - 94.34

[26]
(CRZ)

5 Texture based analysis - 5 features - number of pixels, mean value, variance, maximum entropy
and index value - are extracted from automatically segmented ROI using threshold values (up to 4)
optimized by the Differential Evolutionary method (by maximizing the total fuzzy entropy measure)

Diabetic Foot Plantar analysis -
DB-Foot-Plantar Database - 167
samples (122- Abnormal and 45
Normal)

- 10-fold cross val-
idation with SVM
using Linear Ker-
nel

Acc - 99.2857

[27]
(SAM)

14 Asymmetry Based analysis- 2 Statistical features were extracted from segmented temperature pro-
files - Mean temperature and Standard Deviation of temperature. 12 Haralick’s Texture based fea-
tures were extracted from normalized GLCM (in direction 0) of the same segmented grayscale im-
ages - Auto Correlation, Contrast, Correlation, Dissimilarity, Energy, Entropy, Homogeneity, Maxi-
mum Probability, Sum of Squares- Variance, Sum Average, Sum Variance, Sum Entropy

Diabetic Foot analysis - Private
dataset - 660 samples (60 subjects
* 11 ROI samples from each sub-
ject) (264 Normal and 396 Abnor-
mal samples)

- SVM with (140
samples for train-
ing and 520 sam-
ples for Testing)

Acc-95.61, Sens-96.5,
Spec-92.41

[15]
(BAR)

119 Texture Based analysis - Various Texture based Features were extracted from Knee thermogram
and inflamed ROI automatically segmented from Knee Thermogram - First order statistical fea-
tures (Mean, variance, median, mode, skewness, kurtosis, energy, entropy, standard deviation), 13
Haralick features from each of Mean and difference based (energy, contrast, correlation, variance,
homogeneity, sum average, sum of variance, sum entropy, entropy, difference variance, difference
entropy, information measures of correlation (from x axis and y axis individually), Gray level differ-
ence statistics based features (Homogeneity, contrast, energy, entropy, mean), Neighbourhood Gray-
tone Difference matrix based features (Coarseness, contrast, busyness, complexity, texture strength),
Statistical feature matrix based features (Coarseness, contrast, periodicity, regularity/roughness),
Texture energy measure (Texture energy using LL, EE,SS, LE,ES, LS kernel), Frequency level fea-
tures from Fourier power spectrum(Radial sum, angular sum) and shape based features (Area, Euler
number, perimeter, convexity, eccentricity, orientation, solidity

Rheumatoid Arthritis - Private
Dataset - 110 samples of Knee
thermograms (60 samples with
Arthritis and 50 samples from
Control group)

Accuracy based se-
lection of Feature
groups - 6 feature
groups (50 features)

3-fold cross vali-
dation with SVM

Acc - 73

[28]
(KAR)

20 Texture based analysis - Images are semi-automatically segmented and enhanced using morpholog-
ical operators. Then three sets of features (GLCM-based, regional-based, and Statistics based) are
extracted from curvelet Transformed images - Contrast, Correlation, Energy, Homogeneity, Area,
Major Axis Length, Minor Axis Length, Eccentricity, Orientation, EquivDiameter, Perimeter, Min
Value, Max Value, Skewness, Kurtosis Norm Value Mean, Variance, Median, Entropy

Breast Cancer analysis - Private
Dataset - 60 samples (30 positive
and 30 negative samples)

P-Test with 5% level
of significance - 16
Features

20-fold cross val-
idation with SVM
(cubic kernel)

Acc- 93.33
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curacy of 95.61%, sensitivity of 96.5%, and specificity of 92.41%. In most diabetic
patients, symptoms of ulcers are not observed until the ulcer is infected [61, 62].

Table 2.1 summarizes the research work done to diagnose abnormality/inflammation
due to various diseases using thermography. The table lists the datasets used, the
classification model, and the best results obtained in the respective papers.

2.3 Deep Learning-based Thermal Image Analysis

This section reviews the related research work concerning the classification and
segmentation of inflammation in medical thermal images using Deep Learning
approaches. The authors [63] addressed the problem of sinusitis detection using
thermal images with the help of an enhanced Deep Learning-based approach. They
used 1080 face thermal images. They used the InceptionV3 model to classify the
data into four classes - normal, unilateral left and right maxillary sinusitis and
bilateral maxillary sinusitis. They obtained an accuracy of 99.5% with 99% as
sensitivity.

The research work [64] classified abnormal breast cancer thermal images us-
ing deep learning in two phases. In the first phase, they automatically segmented
the breast region using U-Net architecture. They designed their network for breast
cancer thermal image classification in the second phase. They employed 1000 im-
ages of DB-DMR-IR dataset and obtained an accuracy of 99.33% using Adaptive
Moment Estimation Optimizer.

The authors [65] used enhanced deep convolutional neural networks for the
prognosis of breast cancer. They used 1000 samples from DB-DMR-IR dataset and
achieved an accuracy of 96.8%. In the research work [66], the authors diagnosed
the fatty liver problem using machine learning and deep learning techniques. They
investigated 123 Normal and 44 Abnormal thermal images from 32 volunteers and
obtained an accuracy of 94% using features extracted from Inception-ResNet-v2
architecture and a fully connected layer classifier.

The authors [67] explored Vision transformer-based models to detect inflam-
mation in the joints using thermal imaging. They used 600 thermal images of
hands. The proposed method classified the healthy and arthritis patients with an
accuracy of 90%. The research work [68] collected RGB and thermal images
from 270 participants and identified 225 as abnormal and the rest as normal. They
employed EfficientNetb3-UNet model to classify active diabetic foot ulcers and
obtained an F1 score of 0.79.
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The research work [69] investigated deep learning approaches for classifying
breast tumors using thermal images. They proposed Mask Region Based Convo-
lution Neural Network (MR-CNN) architecture along with transfer learning mod-
els for breast tumour diagnosis. For transfer learning, they used ResNet-50 and
ResNet-101. In their work, they used breast images of 56 women (19 normal and
37 abnormal) and obtained %97.1 as the accuracy on the test dataset with ResNet-
50. However, the model used could be lighter and appropriate for mobile devices.

The authors [70] used a thermal imaging dataset of 41 cancerous and 155
healthy participants for classification using autoencoders. They obtained a perfor-
mance of 94.87% as accuracy, 87.5% as sensitivity and 96.77% as specificity. The
authors[43] employed deep learning approaches to precisely locate and segment
the region for massage during physiotherapy, enhancing musculoskeletal health-
care.

The authors[71] proposed to combine multiple views of the breast from dif-
ferent angles for a given subject. They use transfer learning using architectures -
DenseNet121, EfficientNetB0 and VGG19 to classify the subject as normal/ ab-
normal. They obtained an accuracy of 93% using VGG16 model. The research
work [72] proposed a two-stage approach for breast cancer detection. They used
VGG16 architecture to extract the features and then selected the subset of features
using the Grunwald–Letnikov Dragonfly Algorithm. They finally used the SVM
classifier on the DB-DMR-IR dataset, having 900 thermal images, 596 abnormal
and 304 normal. They achieved an ideal performance.

2.4 Related Work on Image Segmentation

Image segmentation forms an integral part of precise medical image analysis.
Image segmentation techniques/methods can be broadly classified/categorized as
Threshold-based techniques[73, 74], Region-based [75, 76], Clustering-Based [77,
78, 79], Deformable models [80], Semantic Segmentation techniques [81, 82]. Ta-
ble 2.2 briefly compares the various methods for image segmentation.

Further, clustering-based techniques for image segmentation can be catego-
rized as Partition-based, Density-based, and Hierarchical-based Clustering meth-
ods. Centroid-based techniques are one of the most explored Partition-based clus-
tering techniques for medical image segmentation and analysis[83]. K-Means is
one of the simplest Centroid-based hard clustering method[84]. The crisp na-
ture of K-Means allows a data point to belong to only one cluster. On the other
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hand, Fuzzy C-Means (FCM) is a soft clustering method based on fuzzy sets. It
allows data points to represent their affinity with all the clusters in the form of
membership/belongingness[85, 86]. The concept of Intuitionistic Fuzzy C- Means
(IFCM) Clustering Method [87] was introduced, wherein the hesitance degree was
merged with FCM. Also, the clustering using Picture Fuzzy Sets (PFS)[88] was
introduced in the research works [89, 90], which integrated the refusal degree with
Intuitionistic Fuzzy Sets. Picture Fuzzy C- Means (PFCM) is based on PFS. How-
ever, these methods require initializing the number of clusters and membership
matrices. It is susceptible to this initialization and affected by the noise/outliers
present in the data.

Table 2.2: Comparison of various image segmentation techniques

S.
No

Image Segmentation Tech-
nique

References Advantages Disadvantages

1. Thresholding method [73, 74] Simple and fast method; Effective for im-
ages with uniform and distinct intensity
values in a contrasting background; Re-
duces the impact of noise

Sensitive to threshold values, noise and
other artifacts like low resolution, low
contrast, shading; Inefficient for multi-
modal images.

2. Region-Growing method [75, 76] Segmentation performance is better for
images with precise edges

Manual interaction to choose the seed
points, similarity criterion between pix-
els; Performance is poor in the presence
of noise and other artifacts like low reso-
lution, shading, in-homogeneous lighting,
etc.

3. Deformable model [80] Can represent a broad range of shapes and
incorporate their constraints; Robust to
noise and spurious edges;

Requires manual interaction to choose a
tailored model with appropriate specifica-
tions, which is computationally intensive.

4. Semantic Segmentation tech-
niques

[81, 82] Detailed information like objects labels
and associations among them in an image
can be extracted; Generates suitable fea-
ture representations.

Computationally expensive for high-
resolution images; Sensitive to quality
and quantity of labeled training data;
Model generated may be over-fitted due
to tuning of parameters.

5. Clustering-Based method [77, 78, 79] Fast and simple to implement; Labelled
data is not required for training

Sensitive to initialization of number of
clusters, Vulnerable to outliers and other
imaging artifacts

Though the variants of FCM, IFCM, and PFCM ([83, 91, 92, 93, 94, 95, 96])
exist that perform better than FCM, IFCM and PFCM, respectively, but they also
fail to produce optimal segmentation in the presence of noise, outliers, and other
non-linear structures present in the image[83]. Initializing the membership matrix
as the distance between the data points and a cluster centroid may lead to inaccu-
rate results due to the imprecision in capturing the images and defining the initial
cluster center points. This poor adaptability is because the algorithms still depend
on fuzzy membership degrees.
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Table 2.3: The State-Of-The-Art research works for Medical Thermal Image Segmentation.

S. No Reference Approach used Dataset and Disease Considered Result obtained Limitation

1. [30] Adaptive Thresholding method followed
by Level set method

DBT1(100 Samples) and DMR
(240 healthy samples and 47 un-
healthy samples)

DBT - [DSC - 0.78± 0.004], DMR
- [DSC - 0.802± 0.004]

Initial placement of contour, embedding of the object and gaps in the
boundaries

2. [31] Ensemble of various segmentations from
a clustering method followed by min-
imization of information-theoretic mea-
sure for consensus Segmentation in the
ensemble

Knee-joint Dataset (50 samples) JI - 0.98 Sensitive to the size of ensemble used

3. [32] Modified Region Growing Method along
with Entropy parameter

DBT (40 samples), DMR (44 sam-
ples), and Knee-joint Dataset (50
samples)

DBT - [JI - 0.68], DMR - [JI - 0.62],
Knee-joint Dataset - [JI - 0.80]

Improper selection of threshold may increase over-segmentation and
under-segmentation, Manual selection of seed points, Selection of stop-
ping criteria, Noise and intensity in-homogeneity results in holes or
over-segmentation

4. [33] Thresholding method with Modified Re-
gion Shrinking

DMR (44 samples), Knee-joint
Dataset (50 samples)

DMR - [DSC - 0.576], Knee-joint
Dataset - [DSC - 0.805]

Selection of threshold value and stopping criteria, Not considered the
spatial details, Improper selection of threshold may increase over-
segmentation and under-segmentation, Manual selection of seed points,
Noise and variation of intensity results in holes or over-segmentation

5. [36] Lazy Snapping method Different human body parts thermal
images (39 samples)

Overall Sensitivity - 0.7 Highly sensitive to the initial seed points

6. [98] Modified Region Growing Method DBT (40 samples), DMR (44 sam-
ples), and Knee-joint Dataset (50
samples)

DBT - [JI - 0.54, DSC - 0.66], DMR
- [JI - 0.56, DSC - 0.69], Knee-joint
Dataset - [JI - 0.68, DSC - 0.79]

Improper selection of threshold may increase over-segmentation and
under-segmentation, Manual selection of seed points and stopping
criteria, Noise and variation of intensity results in holes or over-
segmentation

7. [97] Thresholding method followed by Mor-
phological analysis

DBT (100 Samples) and DMR (240
healthy samples and 47 unhealthy
samples)

DBT - [DSC - 0.84 ± 0.11, JI -
0.86± 0.13] DMR - [DSC - 0.70±
0.17, JI - 0.56± 0.18]

Performance may differ if different palettes of pseudo-colours are used
to represent breast thermograms.

8. [99] Snakes algorithm followed by FCM Human plantar surface thermal Im-
ages (59 samples)

This approach performed well for
all the current images.

Sensitive to initialization of number of clusters, membership matrix,
and cluster centers, Selection of parameters (e.g. bandwidth), and Com-
putationally expensive.

9. [100] K-Means and FCM Medical thermal Images (6 sam-
ples)

FCM performed better and can find
the first and the second hottest re-
gions.

Sensitive to initialization of number of clusters and membership matrix
and is affected by the noise/outliers present in the data.

10. [101] K-Means 20 Subjects - 10 subjects suffering
from Orofacial Pain and 10 normal
subjects

Left and right face profiles gave
3.78 and 3.97% as percentage tem-
perature differences

Sensitive to initialization of number of clusters and membership matrix
Selection of parameters (e.g. bandwidth in MS) and is affected by the
noise/outliers present in the data.

11. [102] Colour-based K-Means clustering fol-
lowed by Statistical features extraction
and classification using Quantum-based
classifiers like QSVM

Hand thermal images (240 samples
- Dorsal and ventral view for both
right and left hand of 30 healthy and
30 unhealthy subjects)

QSVM Classification Accuracy -
92.7%

Sensitive to initialization of number of clusters and is affected by the
noise/outliers present in the data.

2Datasets - DBT - DBT-TU-JU, DMR - DB-DMR-IR[20], Performance Metrics - DSC- Dice Similarity score, JI - Jaccard Index
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2.4.1 Segmentation of Medical Thermal Images

The State-of-the-art work done for segmentation of affected regions in diseased
human body’s thermal images is limited [15, 30, 31, 32, 33, 34, 36]. Table 2.3
briefly states and compares the various state-of-the-art research for segmenting
thermal images.

The research work [36] proposed using lazy snapping for segmenting the ab-
normality from the medical thermal images. The overall sensitivity of the system
was 70%. The proposed algorithm is sensitive to the initialization of seed points.

The authors [30] characterized the suspicious regions in the thermal breast im-
ages and developed an adaptive thresholding method. For evaluating segmentation
of suspicious regions, they obtained the Dice Similarity scores on two datasets -
one private dataset (DBT-TU-JU) and one public dataset (DB-DMR-IR [20]) as
0.78± 0.004 and 0.80± 0.004, respectively.

The authors [97] proposed a novel model to grade the severity of Suspicious
Hyperthermic Regions (SHR)in breasts thermal images as mild or severely abnor-
mal. They segmented SHRs from the Intensity Contrast Map (ICM) of the normal-
ized blue channel of the breast’s thermal RGB image. Basically, the SHRs contrast
with their surrounding regions in color and intensity. The SHRs were partitioned
into five levels, each level having intensity values [(i−1)×L, (i×L)−1], L = 50.
Further, the morphology of partitioned SHRs was analyzed using Relative Suspi-
cious Area, Fractal dimension, Convex Area, Area, and Equivalent diameter to
grade its severity. They obtained an accuracy of 91% with a sensitivity of 91.30%
and specificity of 90.32% for grading the severity of thermograms in the DBT-TU-
JU dataset. The method’s performance will differ if different pseudo-color palettes
are used to represent breast thermograms.

The authors [31] applied a clustering method by varying the number of clus-
ters and generated m segmented thermal images having i segments, i ∈ [1,m].
Then, minimization of the information-theoretic measure was used to fuse infor-
mation from these segments for consensus segmentation, and finally, the inflamed
region from 50 knee thermograms was extracted. They obtained an accuracy of
96.06%. Also, they graded their severity of arthritis using this ensemble method.
This method is highly sensitive to the size of the ensemble and clustering meth-
ods used. Finally, using its average intensity value, they categorized the extracted
inflamed region as mild or moderate.

The research work [32] modified the Region Growing method to extract the
inflamed region. They used entropy parameters to overcome the problem of over
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2.4. Related Work on Image Segmentation

and under-segmentation. The Region Growing algorithm is applied to the original
image and entropy-applied image. Then, the intersection of the two outputs is
taken as the actual result. They experimented with their approach on three datasets.
They obtained the over-segmentation (Oseg) and under-segmentation (Useg) values
less than 0.1. They obtained the Jaccard Index of 0.68, 0.62, and 0.80 for DBT-
TU-JU, DB-DMR-IR, and Knee-joint Datasets, respectively.

The research work [103] performed a comparative study of the state-of-the-art
methods for image segmentation on DB-DMR-IR[20]. They concluded that Parti-
cle Swarm Optimization (PSO) algorithm and Multi-Seed Region-Growing tech-
nique provided the optimal segmentation results. The authors [34] used Anisotropic
Diffusion Filter to remove noise and increase the sharpness of tissue boundaries
from the segmented 18 neck thermograms (10 healthy and 8 cancerous cases) for
Thyroid cancer assessment. Then, they divided the temperature profile, in the
ROI, into five equal intervals between the Maximum and average temperature of
the ROI and represented them with a specific color. They found that a rise in local
temperature(1◦C−1.5◦C) could be observed as a hot spot, and it interferes with the
symmetry of the gland’s thermal balance. They concluded that dynamic thermal
imaging aided with computer vision techniques stipulate thyroid gland disorders.

The research work [98] also used a similar approach wherein the modified
RG method was applied on log-transformed image in place of entropy-applied
image. Also, they extended the RG method and defined their Automatic multi-
seed selection method wherein the pixels with the highest gray value are selected
as the seed points for the first epoch. After ith epoch, pixels with the highest
gray values, not included in the first epoch and satisfying the given conditions,
are selected. They obtained an accuracy of 98.07% and 96.40% on their private
datasets - DBT-TU-JU and Knee-joint datasets, respectively, and 98.25% on the
publicly available dataset - DB-DMR-IR[20]. The research work [33] proposed a
Region Shrinking-based method using Electrostatic Force Image (EFI) for extract-
ing inflamed regions from medical thermal images. After computing the values of
EFI, the intensity values are adjusted. After that, the weighted threshold is gen-
erated automatically. Finally, the inflamed region is extracted based on computed
thresholds. They experimented with the methodology on their private dataset -
Knee-joint dataset, and publicly available dataset - DB-DMR-IR[20]. The aver-
age accuracy obtained by the proposed method for both datasets are 98.2% and
96.98%, respectively.

The research work [35] performed segmentation of 4 breast thermograms using
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various unsupervised methods (Expectation Maximization, FCM, and K-Means)
and analyzed the result qualitatively. They observed that segmentation output from
K-Means resulted in empty clusters, and FCM gave a better indication of the dis-
ease. The research work [102] segments the thermal images and then classifies the
segmented thermal images as normal or abnormal.

Table 2.3 briefly states and compares the various state-of-the-art research works
for segmenting medical thermal images.

2.5 Multi-Modal fusion with Thermal Imaging

This section reviews the related work on the fusion of thermal imaging with other
medical imaging modalities. Each imaging technique offers distinct types of di-
agnostic information for instance MRI reports displays the pathological changes
in soft tissues, CT scans reveal dense structures such as bones, and X-rays detects
fractures and bone mis-alignments, etc[104]. The authors [105] proposes an in-
novative Multi-Mode Fused Recursive Neural Network (MMF-RvNN) framework
designed to significantly improve early breast cancer detection. The core of this
method involves fusing thermal imaging with MRI, enabling the capture of both
metabolic and anatomical details of potential tumors. They obtained a high rate
of peak signal-to-noise ratio (45.9 dB), structural similarity index measure (0.98),
and entropy(8.7) on their private data set of 1522 thermal images and 700 MRI
scans[105].

The research work [106] introduces an adaptive multi-modal hybrid model that
combines ultrasound and infrared thermal images to classify thyroid nodules. The
model extracts features from both image types, fuses them, and achieves high ac-
curacy in distinguishing between benign and malignant nodules. This approach
offers a non-invasive, radiation-free, and cost-effective screening tool. On their
private data set, their AmmH model achieved an F1 and F2 scores of 97.17% and
97.38%, respectively. The proposed multi-modal model extracts features from var-
ious modal images, thereby enhancing the comprehensiveness of thyroid nodules
descriptions. The research work[107] integrated infrared thermal imaging with
various other modalities of medical imaging intelligent sensing agents such as ter-
ahertz imaging. They employed fractional Fourier transform to filter imaging data
followed by Laplacian pyramid for image fusion. The authors [108] introduced a
method to fuse thermal and visible images. Their objective is to create a single im-
age that benefits from the thermal radiation information of the infrared image and
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the rich texture details of the visible image. This function ensures the fused image
maintains pixel intensity similar to the infrared image and gradient information
similar to the visible image.

2.6 Research Gaps

From the discussion in Section 2.2, we found that numerous feature extraction
methods have been proposed but not compared with the existing work in the liter-
ature. Researchers have claimed the results on their private datasets. To the best
of our knowledge, no experimental comparison of the state-of-the-art methods ex-
ists on a platform using a common data set, classifier, or cross validation strategy.
Also, datasets used for analysis are very small or skewed in most research works.
Hence, it is not appropriate to comment on the suitability of a feature extraction
method for detecting abnormal thermal patterns due to various diseases.

The deep learning models used to detect abnormality are very heavy, having
millions of parameters and are incompatible with mobile devices, requiring less
memory- and computation-based models.

In the context of medical thermal image segmentation, the majority of existing
models have been evaluated using private datasets with limited sample sizes, which
are not accessible to the research community for further validation and analysis.
As a result, the reported performance metrics lack reliability and reproducibil-
ity. Furthermore, only a limited number of studies have assessed their methodolo-
gies on publicly available datasets; however, the corresponding in-house generated
ground truth data is often not made available, rendering the results highly subjec-
tive. Also, the performance obtained is not satisfactory, suggesting a potential for
improvement. To the best of our knowledge, research has yet to give a course to
develop a robust segmentation method for analyzing and segmenting noisy and
low-resolution human thermal images.

2.7 Proposed Research Objectives

Based on the analysis and discussion of the existing algorithms for feature ex-
traction, classification, and hot-spot segmentation from thermal images, we have
formulated the following objectives for the thesis:

• Review and empirical comparison of feature extraction methods proposed
in significant literature for analyzing thermal patterns on a uniform platform
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using publicly available datasets, feature selection mechanism, and classi-
fiers.

• Build novel indicators for differentiating abnormal thermal patterns from
normal ones.

• Develop a Deep Learning model that understands thermal biomarkers and
differentiates the abnormal thermal patterns from normal ones.

• Build a framework for pre-processing the thermal images and segment the
inflamed regions
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Chapter 3
Statistical Indicators for Thermal
Pattern Differentiation

This chapter introduces two statistical models designed to differentiate between
normal and abnormal medical thermal images. The first model employs a set
of hand-crafted features extracted from three publicly available medical thermal
imaging datasets. The second model systematically evaluates the performance of
first model in comparison with state-of-the-art feature extraction methods for ana-
lyzing human body thermal patterns. It assesses these approaches individually and
in combination on a defined uniform platform, identifying a set of relevant and
non-redundant features for distinguishing thermal patterns. The chapter includes
experimental results and analysis for both the methods followed by the chapter
summary at the end.

3.1 Introduction

The researchers have explored Thermal Imaging based CAD extensively for di-
agnosing various diseases in the last two decades [16, 40, 36]. Different research
works have proposed their features extraction methods for identifying abnormal
thermal patterns [109, 25, 24, 15, 27, 26, 28, 23, 2]. Also, researchers have used
different classifiers and cross validation strategies to evaluate the proposed model.
A few research work [109, 26, 25] have evaluated their method on a publicly avail-
able dataset. However, most of them [24, 15, 27, 28, 23, 2] evaluated their pro-
posed features on the respective/private datasets, which is very small in size and
not available for further evaluation by the research community.

To the best of our knowledge, no experimental comparison of the state-of-the-
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art methods exists on a platform using a common dataset, classifier, or cross valida-
tion/ sampling strategy. Hence, it is not appropriate to comment on the suitability
of a feature extraction method for diagnosing abnormality/inflammation in the hu-
man body using Thermography. Also, the guidelines of the U.S. Food and Drug
Administration1 states that there does not exist any valid scientific statement/data
that shows thermography to be an effective screening tool for any medical con-
dition, including the early detection of breast cancer or other diseases and health
conditions. Driven by this motivation, thermography’s effectiveness and feasibil-
ity for diagnosing various diseases is assessed. This work proposes a novel set of
hand-crafted features extracted from publicly available medical thermal imaging
datasets targeted for breast cancer, diabetes, and thyroid cancer detection. In ad-
dition, this work systematically compares eight state-of-the-art feature extraction
methods alongside the proposed feature-set on a platform using publicly available
Datasets, Feature Selection mechanisms, Classifiers, and a 2-level sampling strat-
egy. Thereafter, the union of feature sets proposed in the nine research works is
proposed and evaluated on the same platform.

However, the features extracted from the image by a given feature extraction
method may contain irrelevant and redundant features. Also, it has been observed
that feature selection methods are recommended when the dataset size (i.e. the
number of instances) is smaller than the number of features. Evaluation of a small
dataset with a large number of features can lead to degradation in the model’s
performance. To our knowledge, limited work is done towards exploring relevant
features using feature selection techniques [25, 15, 2]. Most of the research works
[24, 27, 109, 23, 26, 58, 41, 61, 62] have not utilized feature selection methods to
find a subset of relevant features from thermography images. Therefore, there is a
need to investigate feature selection methods to overcome the problem of a small
sample size dataset. With this, we will compare whether the model’s performance
improves. Also, a reduced set of relevant features will enhance the visualization,
reduce the over-fitting problem, and improve generalization accuracy.

The key contributions of the chapter are listed below as:

• In this study, a novel set of hand-crafted features are developed and extracted
from publicly available medical thermal imaging datasets for temperature’s
asymmetry analysis, specifically aimed at detecting breast cancer, diabetes,

1https://www.fda.gov/medical-devices/safety-communications/fda-warns-
thermography-should-not-be-used-place-mammography-detect-diagnose-
or-screen-breast-cancer#::̃text=There%20is%20no%20valid%20scientific,
other%20diseases%20and%20health%20conditions.
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and thyroid cancer. This work aims to evaluate the effectiveness and feasi-
bility of thermography as a diagnostic tool for various diseases.

• Then, eight state-of-the-art feature extraction methods[23, 2, 24, 25, 26, 27,
15, 28] alongside the proposed feature extraction method is statistically com-
pared and analyzed the performance to distinguish an abnormal thermal im-
age from a normal one on a uniform platform.

• We also aim to develop a unified model capable of identifying abnormal
thermal patterns due to inflammation caused by diseases and detected by a
thermal cameras. The model is evaluated on the same platform.

• The above objectives are investigated using four well-known feature selec-
tion methods to select relevant features from the ten features-sets. Also, the
four well-known classifiers are used for a fair performance comparison of the
selected set of relevant features. We used three publicly available datasets of
Medical Thermal Imaging for the entire investigation, having different dis-
eases. The publicly available datasets are skewed (i.e. difference in classes
frequency in the dataset is high), so a 2-level sampling strategy is developed
and used to conduct the experiments.

This chapter is structured as follows: Section 3.2 details the methodology, cover-
ing feature extraction approaches in section 3.2.1, feature selection methods, clas-
sification techniques, and sampling strategies in section 3.2.2. The experimental
framework is described in section 3.3. The exhaustive analysis of the proposed ap-
proach with state-of-the-art approaches on various datasets using quantitative and
visual analysis done in section 3.4. The chapter is concluded with its summary in
section 3.5.

3.2 Methodology

This section describes the novel set of hand-crafted features, developed and ex-
tracted to detect abnormality in the form of inflammation from medical thermal
images of human body. This work aims to assess the effectiveness and feasibil-
ity of thermography as a diagnostic tool for various diseases. Also, this section
describes the methodology for systematic and empirical review of the feature-sets
proposed in the research works[23, 2, 24, 25, 26, 27, 15, 28], both individually and
in combination. Finally, a unified set of features from these nine research works is
compiled and evaluated on the same platform.
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3.2.1 Features Extraction

The human body typically exhibits symmetrical temperature distribution. A tem-
perature asymmetry between the left and right sides of the body may indicate an
abnormality. Leveraging this principle, along with insights into inflammatory ac-
tivities provided by temperature matrices, the abnormalities in human body can be
detected. The pre-processed images are divided into two equal parts of same size
for thermal asymmetry analysis (Figure 3.1). Then, following three sets of fea-
tures - Local Binary Pattern (LBP)-based statistical features, GLCM-based, and
LBP-Otsu threshold are extracted, from both the parts.

Fig. 3.1: Division of Breast Thermal image in two equal parts for asymmetry analysis.

• Gray-Level Co-Occurrence Matrix (GLCM)-based Features - 10 Har-
alick features[110] (Entropy, contrast, Correlation, Energy, Sum variance,
Sum entropy, Difference variance, Information measure of correlation, Ho-
mogeneity, Sum average) are computed from the normalized GLCM sub-
matrix.The matrix is obtained for the image in four directions (0°, 45°,
90°and 135°) with an offset of 1. The sub-matrix range is chosen empiri-
cally, for each dataset, using the histogram that depicts the significant range
where the probability of having sick region/intensities is higher than that of
a healthy region, (figure 3.2) ([121, 157] for DB-DMR-IR, [127, 154] for
DB-FOOT-IR, and [124, 165] for DB-THY-IR,). Particularly, this range dis-
criminates healthy regions/sample from an abnormal region/sample. There-
after, an average of four feature-sets (along 4 directions - 0°, 45°, 90° and
135°) was calculated.
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(a) (b) (c)

Fig. 3.2: Probability distribution of intensities in normal and abnormal subjects for DB-DMR-IR
(a), DB-FOOT-IR (b), and DB-THY-IR (c) datasets.

• Local Binary Patterns (LBP)-based Statistical Features - The Rotation
Invariant LBP were computed for both the parts in the image. The image
was sub-divided into 18 grids, of equal dimensions. Then five statistical
features- mean, variance, Skewness, Kurtosis, and entropy were computed
from each grid for both parts of the image.

• LBP-Otsu Threshold - The Otsu-threshold value was computed from the
Rotation Invariant LBPs of the complete image. The optimum threshold
value th∗ was obtained, which maximizes the variance of intensities between
classes var2(th), from the LBP of the original image using the expression -

th∗ = argmax
0<th<L−1

var2(th) (3.1)

To analyze temperature based asymmetry in the body, the absolute difference of
the extracted features from both parts of the image is determined. Finally, a set
of 101 features are attained and the feature set is renamed as GUP. The obtained
features are normalized in the range [0,1]

Additionally, eight state-of-the-art feature extraction methods, detailed in Ta-
ble 2.1, are extracted with the exact line of detail from three datasets, described
in Chapter 1. The extracted features were normalized to a range of [0,1]. A com-
bined feature set, named UnionFeature_Set, was created by taking union of all
eight feature sets with the previously extracted feature-set. The duplicate features
were removed. The resulting UnionFeature_Set comprises 467 features, arranged
as outlined in Table 2.1.

The UnionFeature_Set is prepared to analyze the behavior and performance
of the features with each other and on the proposed platform. Also, this is done
to investigate that whether combining features complements each other to give
better results and find the most relevant feature set for characterizing inflammation
in human body captured using a thermal sensitive camera. All the 10 feature-
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sets, obtained, are investigated on a common platform using a combination of four
feature selection, four classification approaches, and 2-level sampling strategies
for comparing their performance.

3.2.2 Machine Learning Platform

This work defines the uniform platform as a Machine Learning (ML) pipeline of
all possible combinations of four well-known feature selection strategies (Pearson
Correlation (PC), Minimum Redundancy Maximum Relevance (mRMR), ReliefF
(ReF), and Chi-Squared (ChiSq)), four classifiers (k-Nearest Neighbor (k-NN),
SVM, Decision Trees Classifier (DTC) and Random Forest Classifier(RFC)) on
three publicly available Thermal imaging based medical datasets (DB-DMR-IR,
DB-FOOT-IR, and DB-THY-IR). Also, each pipeline is assessed using a 2-level
sampling strategy. With this, the strength of feature selection methods, classifiers,
and 2-level sampling strategy will be evaluated for the various state-of-the-art ap-
proaches for detecting abnormality characterized by inflammation in human body.
This subsection describes and contrasts the components of the uniform platform
used for comparing various feature extraction approaches.

3.2.2.1 Feature Selection (FS) Methods

The feature sets proposed/extracted in the literature may contain redundant or irrel-
evant features for the study. In either scenario, it may degrade the predictability of
the decision system. Using more/redundant features may consume a considerable
amount of memory and training time. A limited number of studies [15, 25, 2] have
used the feature selection method to assess the relevance of features for identifying
abnormality/inflammation in human body.

This study applies four well-known FS methods to rank the extracted and nor-
malized features. A feature is included (based on its rank) incrementally to the
set until the best performance is achieved. The following FS methods are used to
evaluate the relevance.

• Pearson Correlation Score (PC) - PC Score[111], is a uni-variate approach
that selects a subset of features highly correlated with the classification. The
Pearson correlation coefficient is calculated as

PC_Score(fi) =
cov(fi, Y )√

var(fi)
√
var(Y )

(3.2)
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where fi is the feature whose PC score is evaluated with respect to the class
label Y (output), cov is the covariance, and var defines the variance. The
absolute value of correlation value closer to 1 indicates a stronger correla-
tion among the prescribed variables, while zero value implies no correlation
between the variables.

• Chi-Squared Score (ChiSq) - ChiSq Score [112] is another uni-variate FS
method that evaluates the association of a feature with the class label. The
ChiSq score for a feature fi, with r different values and binary classification
problem, is calculated as-

ChiSq_Score(fi) =
r∑

j=1

2∑
c=1

(njc − ujc)
2

ujc

(3.3)

ujc =
n∗c × nj

n
(3.4)

where njc defines the number of samples with jth feature of class c, nj de-
fines the number of samples with the jth feature value, and n∗c denotes the
number of samples in class c. A higher ChiSq score indicates high relevance
of a feature and its high ability to distinguish the class.

• ReliefF Score (ReF) - ReF Score [113] is an instance-based and sixth vari-
ation of Relief FS family [114]. It computes the discriminating strength of a
sample’s feature value with its K nearest neighbors. This approach awards
high weight-age to the features that give diverging values to their neighbors
of different classes and penalizes the ones that give different values to neigh-
bors of the same class. It basically searches for k near misses from each
class and averages their contributions for updating weights, weighted with
the prior probability of each class. ReF score for a feature fi is computed as

ReF_Score(fi) =
l∑

j=1

(− 1

l ×K

∑
xr∈NH(j)

dist(xj(i), xr(i))

+
∑
y ̸=yj

h(y)

l ×K × (1− h(y))

∑
xr∈NM(j,y)

dist(xj(i), xr(i)))

(3.5)

where l is the number of samples randomly selected from n samples, NH(j)

and NM(j, y) define the set of nearest samples of xj in the same class and
in other class y, respectively, both of size K. The function h(y) defines the
instances ratio in class y. Higher the score, more relevant the feature is.
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• Minimum Redundancy Maximum Relevance Score (mRMR) - mRMR
Score, is multivariate FS method [115], based on Mutual Information (MI).
The relevance of features with the class and the redundancy of features with
each other is considered simultaneously. The mRMR algorithm measures
the redundancy by taking the MI of features pairwise. Simultaneously, it
quantifies relevance using the MI of attribute A with class variable Y. It
selects and ranks the feature according to the Mutual Information Quotient
(MIQ) value in the forward selection scheme. The MIQ value is computed
as follows:

MIQA =
VA

WA

(3.6)

where VA and WA are the relevance and redundancy of feature A, respec-
tively, and is computed as:

VA = MI(A, Y ) (3.7)

and
WA =

1

|S|
∑
Z∈S

MI(A,Z). (3.8)

where |S| is the number of features in the dataset and MI(·), between two
variables X and Z, defines the non-linear correlation between two variables
and is computed as

MI(X,Z) =
∑
i,j

P (X = xi, Z = zj) log
P (X = xi, Z = zj)

P (X = xi)P (Z = zj)
(3.9)

Three uni-variate and one multivariate state-of-the-art FS methods are imple-
mented for the study. Uni-variate feature selection methods evaluate and rank a
single feature concerning the class variable. PC is a low-cost and straightforward
method. It does not consider the mean values and is invariant to linear transfor-
mations of the given feature but assumes linear dependencies between the variable
and response variable, which may not always be accurate. Perfectly correlated
features are genuinely redundant as no additional information is gained by adding
them to the feature set. Chi-Sq is another statistical FS method that is unbiased but
not discriminating to an informative level of features. The Chi-Sq FS method eval-
uates the continuous features after their discretization. The number of bins needs
to be specified. The ReF FS method is not dependent on any heuristics. Though
ReF is not considered a multivariate FS method but it is noise-tolerant and robust
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to feature interactions. It depends on the number of nearest neighbors K.
Since the uni-variate FS method evaluates features individually, it may contain

highly correlated features during the selection phase. mRMR provides a feature-
set with maximal dependency on the target value and minimal dependency among
each other. As mRMR considers the MI among features, better behavior is ob-
tained even when noise is present in data. Continuous variables require discretiza-
tion pre-processing before applying mRMR.

3.2.2.2 Classifiers

The problem under consideration is a binary classification problem. The features
were fed iteratively to four classifiers: k-NN, SVM, DTC, and RFC, in an incre-
mental manner, in the order of ranks provided by the respective feature selection
methods. Following oulines the classifiers used:

• k-Nearest Neighbor (k-NN) - k-NN [116] is a famous instance-based method
for classification and regression. It is a non-parametric classifier, simple to
implement and interpret. In k-NN, an unlabeled instance is assigned a class
belonging to most of its k neighbors. This algorithm is sensitive to the choice
of k.

• Support Vector Machine (SVM) - SVM [117] is, originally, a binary
classification approach that finds an optimal hyperplane to discriminate the
instances belonging to two classes. The optimal hyperplane maximizes
the margin around itself. A kernel function (Φ : RD → RHS) may be
used to project the data into a higher space so that the resulting data can
be separated by a linear classifier (hyperplane). The optimal hyperplane
f(x) = ⟨w,Φ(x)⟩+ b can be obtained by solving the quadratic optimization
problem

minimize
1

2
∥ w ∥22 +Co(

N∑
i=1

∆i) (3.10)

with respect to w ∈ RHS,∆ ∈ RN
+ , b ∈ R (3.11)

subject to yi(⟨w,Φ(xi)⟩+ b) ≥ 1−∆i, ∀i (3.12)

where w is the weight coefficients vector, Co is a positive trade-off parameter
between model simplicity and classification error, ∆ is the slack variable
vector, and b corresponds to the bias in the hyperplane equation.
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• Decision Trees Classifier (DTC) - DTC [118] summarize the data in form
of a decision tree. Nodes in the tree represent features selected for branching
further on its values, and the tree’s leaves indicate the class label. The DTC
employs a greedy approach to choose an attribute for the split at every node.
If the purity of the class labels in the resulting sub-nodes is less than the
parent node’s purity, it implies that information has been gained, and the
split must be maintained. The algorithm is applied recursively to form sub-
trees, terminating when a given subset contains instances of only one class.

• Random Forest Classifier (RFC) - The general framework of the RFC[119]
uses an ensemble of more than one DTC. An unlabeled instance is classified
to the mode of the classes (classification) or average prediction (regression)
of the individual trees.

This study considers four above-stated state-of-the-art classifiers for the exper-
iments. k-NN[116] is a straightforward algorithm but has a high cost (computation
and storage) of classifying new instances [119, 120]. Also, it is biased by the value
of k. The smaller values of k may miss-classify due to noise in the data. The larger
value of k reduces the effect of noise on the classification but makes the experi-
ments computationally expensive. It is also sensitive to the choice of similarity
function due to many or irrelevant features. If the dataset is skewed, then k-NN
must not be chosen [119, 120]. It may be a choice if the dataset is small and the
relationship between the dependent and independent variables is unknown. SVM
[117, 119, 120] is based on a robust theory and avoids estimating probabilities on
the given dataset. It is highly effective in applications with dimensions more than
the number of samples. Generally, it is not sensitive to over-fitting and is not biased
by outliers. A non-linearly separable data can be transformed to a higher dimen-
sion that is linearly separable by applying the kernel trick. Selecting the appropri-
ate kernel function and its hyper-parameters is a tricky task. SVM performs bet-
ter when dealing with multi-dimensions and continuous features[117, 119, 120].
The major drawback of SVM is the lack of transparency and interpret-ability of
results[119, 120].

The DTC[118] is another powerful classifier that handles datasets with qual-
itative features[119, 120]. Numeric data has to be discretized beforehand. The
learning speed concerning a high number of attributes and instances is fair. It is
relatively tolerant of irrelevant attributes and missing values. It provides trans-
parency in the model but may result in an over-fitted model for small datasets.
One approach to tackle over-fitting is to pre-prune the decision tree. Also, a minor
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change in the dataset can change the tree entirely.
In contrast, RFC is robust and accurate for many problems with skewed datasets

or datasets with high dimensionality and instances[119, 120]. If the data is changed
a little (or noise is added), the individual trees may change, but the forest is rela-
tively stable as it is an ensemble of many trees and gives stable results. The model
generated is less over-fitted comparatively. A grid search of different parameters
and random seeds is required to obtain the best results, but it is computationally
expensive[119, 120]. Individual trees need to be uncorrelated/independent to get
an unbiased result. RFC can easily tackle the problem of highly correlated fea-
tures.

3.2.2.3 Sampling Strategies and Performance Metrics

This work considers Accuracy and F-Measure as primary criteria for evaluating the
performance. Accuracy defines the probability of correctly classifying an instance
in the test sample. It is an optimal metric when the dataset is balanced regarding
the class’s instances frequency. F-Measure is calculated as the harmonic mean of
sensitivity and specificity. The corresponding classifier parameters were optimal
if they yielded the most considerable accuracy and F- measure.

A 2-level sampling method for performing the experiments is developed. In
the first level, given a dataset D, if D is a skewed dataset (i.e. difference of class
frequency in the dataset is high), two datasets - D1 and D2 are formed randomly
such that the frequency of samples in both the classes in D1 and D2 is the same.
In dataset D, the class with higher frequency is divided into two parts (P1 and P2)
randomly such that the intersection of P1 and P2 is NULL. Finally, two subsets
D1 and D2 are generated by appending minority class data to both P1 and P2,
respectively.

In the second level, for each dataset (D1 and D2) formed, a standard re-sampling
method that is k-fold cross validation for k=5, 10, and Leave-One-Out Cross Val-
idation (LOOCV) is performed, independently, to obtain a more reliable estimate
of the factual accuracy. The Accuracy and F-Measure values of K-fold cross vali-
dation (K = 5, 10 and LOOCV) of a model are obtained by averaging them across
each fold of k-fold cross validation and then over subsets (D1 and D2) of dataset
D. For instance, the average of D1’s and D2’s 5-fold cross validation results (for
instance) was taken as the final result of D’s 5-fold cross validation results for a
given classifier and parameter values. This sampling strategy is illustrated in fig-
ure 3.3. Finally, the optimal model parameters are selected based on their best
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Fig. 3.3: 2-level sampling strategy used.

performance.

3.3 Experimental Design

The experiments were conducted on a computer using Windows 10 operating sys-
tem with 16GB RAM and i7 (9th generation) Processor. MATLAB 2020 (64-
bit) was used for conducting the entire experiment. Figure 3.4 illustrates the ML
framework followed for conducting the experiments. Statistics of the datasets used
in the chapter are mentioned in Table 3.1. The pre-processing steps for the three
datasets are described in Chapter 1, section 1.2.1.

Table 3.1: Size of the datasets used in the study

DataSets Subsets formed Abnormal Samples Normal Samples Total Cases
DB-DMR-IR Database D1 40 40 80

D2 40 40 80
Total samples 40 80 120

DB-FOOT-IR Database D1 45 45 90
D2 45 45 90

Total samples 90 45 135
DB-THY-IR Database - 18 16 34

Table 3.2: Description of Feature Selection Method’s parameters and their settings
in the experiment.

Algorithm Parameters Parameters Values Description of these parameters
ReF K [5− 15] The number of nearest neighbors from

each class to be used.
ChiSq
Score

Number of bins [10− 20] The number of bins for discretization of
numerical features.
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Fig. 3.4: The Machine Learning Framework/Uniform Platform for the Experiments conducted.

With the exact line of detail, the features extractions methods mentioned in Ta-
ble 2.1 are implemented and extracted features from transformed and segmented
gray-scale images. Alongside a novel feature-set is created to perform tempera-
ture’s asymmetry analysis in medical thermal images. Also, a feature-set is pre-
pared by taking a union of all the feature-sets - UnionFeature_Set, for further
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analysis and obtained a total of 467 distinct features (UnionFeature_Set). All the
feature-sets generated were normalized.

Table 3.3: Description of classifier’s parameters and their settings in the experi-
ment.

AlgorithmParameters Parameters Values Description of these parameters
k-NN k [1− 20] The number of neighbors to be used.

Distance Metric Euclidean Distance The distance function for finding proxim-
ity with neighbors.

SVM Cost [1− 1024] The cost parameter C.
Kernel Type Linear, RBF The type of kernel functions, used.
Gamma [2−4 − 24] The parameter of kernels functions (RBF,

Polynomial, and Sigmoid).
DTC Splitting criteria Gini’s Diversity Index,

Cross Entropy
Criteria used for selecting an attribute for
further splitting

Pruning criteria Enabled, Disabled Pruning the tree limits over-fitting of
training data.

Minimum leaf
size

[4, 8, 12, 16, 20] The minimum number of instances per
leaf.

RFC Ensemble size [3-50] The number of weak classifiers/trees used
in the ensemble.

We applied four well-known feature selection approaches to evaluate the rele-
vance of all the features in feature sets, independently of the classifier. Table 3.2
summarizes the parameters and their values used for grid search for feature selec-
tion methods. K is a crucial tuning parameter of ReF. It is ranged in [5 - 15] with
a step size of 4 and used Manhattan distance as the similarity measure. In the Chi-
Sq method, the number of bins for discretization of the numeric attributes ranged
over [10- 20]. The T-Test is applied to the proposed GUP and UnionFeature_Set
feature-sets to select the features and evaluate their effectiveness incrementally.
The features were fed iteratively to the classifier in the order of ranks provided by
the respective feature selection methods (section 3.2.2.1) for each classifier param-
eter stated in table 4 and all the datasets. Also, the features are fed incrementally
as per their rank to the classifier and best performance is recorded in terms of
accuracy and F-Measure.

This work uses four commonly used classifiers (k-NN, SVM, DTC, and RFC).
Also grid search is performed with the respective parameters of the classifiers to
achieve the best results. The classifier parameters for grid search are summarized
in Table 3.3. k is a crucial tuning parameter of k-NN and is ranged in [1 - 20] with
a step size of 2. Euclidean distance is used as the similarity measure.

The LIBSVM2 implementation of SVM is used with two kernel functions -

2https://www.csie.ntu.edu.tw/cjlin/libsvm/
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Linear and Radial Basis function (RBF). The RBF is used to handle the non-
linearity between the features and class labels. Grid search is performed to op-
timize the hyper-parameters - Cost Parameter, C, for linear and RBF kernel func-
tions, γ parameter for RBF kernel. To determine optimal hyper-parameters, the
study considered the values of C as [1− 1024] and the smoothing parameter value,
γ, for RBF kernel was considered in the range [2−4 − 24] in multiples of 2.

The parameters considered for DTC to achieve the best results are Splitting
Criteria, Pruning Criteria, and Minimum Leaf Size. Gini’s Diversity Index and
Cross-Entropy are used as the splitting criteria. The experiments are performed
with pruning enabled and disabled, and the minimum leaf size is ranged over [4,
8, 12, 16, 20]. In the Random Forest Classifier (RFC) framework, the number of
weak classifiers (DTCs) is varied over the range [3 - 50], with a step size of 4. A
Random Forest is constructed with a template of a DTC with the exact parameter
specifications as stated for DTC.

The dataset used in most of the literature is skewed [23, 24, 26, 27]. This
study has performed 2-level sampling to get the datasets having a balanced number
of samples from each class. The 2-level Sampling for all the datasets was done
only once for all the pipelines; that is, each of DB-DMR-IR and DB-FOOT-IR
datasets is divided into two subsets, D1 and D2, and further generated 5 and 10
random stratified partitions from each subset, respectively, only once. It was done
to eliminate any randomness in the experiments. That is, the partitions were kept
the same for all the pipelines. Along with 5-fold and 10-fold cross validation,
LOOCV was also done to contrast the behavior of data. All the results are recorded
along with the parameters for which the best accuracy and F-Measure are achieved.

3.4 Results and Discussion

The performance of experimental results is compared based on classification Ac-
curacy and F-Measure. Also, Accuracy and F-Measure values of a model are
obtained by averaging them across each fold of k-fold cross validation and all
subsets (D1 and D2) of dataset D(= DB-DMR-IR and DB-FOOT-IR). The exper-
iments conducted on three datasets are independent and not related to each other
in any respect. Figures 3.5, 3.6 and 3.7 illustrate the visual comparison of classi-
fication accuracy values for a given combination of feature extraction method, FS
methods, classifiers, and cross validation approaches.

We can observe from Figures 3.5, 3.6 and 3.7 that among the three re-sampling
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(a) RAS [24] (b) SCH[23]

(c) SAM[27] (d) ACH[2]

(e) SAT[25] (f) KAR[28]

(g) CRZ[26] (h) BAR[15]

(i) GUP (j) UnionFeature_Set

Fig. 3.5: Comparison of classification accuracy values for a given combination of feature extrac-
tion, feature selection methods, and cross validation strategies on DB-DMR-IR dataset.
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(a) RAS [24] (b) SCH[23]

(c) SAM[27] (d) ACH[2]

(e) SAT[25] (f) KAR[28]

(g) CRZ[26] (h) BAR[15]

(i) GUP (j) UnionFeature_Set

Fig. 3.6: Comparison of classification accuracy values for a given combination of feature extrac-
tion, feature selection methods, and cross validation strategies on DB-FOOT-IR dataset.
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(a) RAS [24] (b) SCH[23]

(c) SAM[27] (d) ACH[2]

(e) SAT[25] (f) KAR[28]

(g) CRZ[26] (h) BAR[15]

(i) GUP (j) UnionFeature_Set

Fig. 3.7: Comparison of classification accuracy values for a given combination of feature extrac-
tion, feature selection methods, and cross validation strategies on DB-THY-IR dataset.
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strategies (5-fold, 10-fold, and LOOCV), LOOCV strategy (green line) gave the
best results for all the nine feature extraction methods, individually and on their
union. The best performance is achieved using LOOCV as the maximum number
of samples for training is available. Henceforth, all the analysis is done on results
obtained with LOOCV, shown in Table 3.5 for DB-DMR-IR, DB-FOOT-IR, and
DB-THY-IR datasets, respectively.

Broadly, following are observed from Table 3.5 corresponding to DB-DMR-
IR, DB-FOOT-IR and DB-THY-IR datasets:

• The union of features, (UnionFeature_Set), from the existing eight research
works alongside a proposed GUP feature-set, provided better results in com-
parison to each of the research work individually for all the combinations of
4 FS methods and 4 classifiers across all the datasets. Table 3.4 states the
best-performing models along with their accuracy and F-Measure for all the
datasets considered.

Table 3.4: The classification accuracy(%) and F-measure values (%) obtained
from the best performing model using LOOCV strategy on DB-DMR-IR, DB-
FOOT-IR, and DB-THY-IR datasets.

DataSets FE Method Classification Model Feature-subset Accuracy (%) F-Measure (%)
DB-DMR-IR UnionFeature_Set SVM+mRMR 45 94.75 93.80
DB-FOOT-IR UnionFeature_Set SVM+mRMR 57 93.14 92.55
DB-THY-IR UnionFeature_Set RF+ReF 39 92.06 91.42

• The classification accuracy for all the nine feature extraction methods, in-
dividually and in their union, improves with the use of all four FS methods
(PC, ChiSq, mRMR, and ReF). In some cases, a reduced feature set gave
the same performance as that with all features of a given feature extraction
method. Hence, better visualization may be achieved with a reduced subset
of features without losing performance.

Sections 3.4.1 and 3.4.3 introspect the performance of nine feature extraction
methods, considered individually and in combination, respectively. Also, the per-
formance comparison of all the 40 combinations of feature extraction (FE) and FS
methods is done in section 3.4.2.

3.4.1 Comparison of Feature Extraction (FE) Methods

This subsection introspects the performance of state-of-the-art feature extraction
methods based on the results in Table 3.5. The following can be observed:
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Table 3.5: The accuracy (%) and F-Measure values (%) obtained from various combinations of feature extraction methods, feature
selection methods, classifiers, and LOOCV strategy on three datasets.

S.No. Reference Evaluation of Reference on the
Dataset

Feature
Selection
(FS)
method

DB-DMR-IR DB-FOOT-IR DB-THY-IR

Accuracy F-Measure Accuracy F-Measure Accuracy F-Measure

SVM k-NN DTC RFC SVM k-NN DTC RFC SVM k-NN DTC RFC SVM k-NN DTC RFC SVM k-NN DTC RFC SVM k-NN DTC RFC

1 RAS[24]

DB-DMR-IR- Acc-72.5%,
F-Meas-70%, DB-FOOT-IR-
Acc-61.5%, F-Meas-60%,
DB-THY-IR- Acc-57.5%,
F-Meas-55%

WFS 70 69.6 66.3 69.6 70 67.5 66.23 68.50 66.64 69.66 65 69.37 65.74 70 65 68.50 67.1 65.5 61.6 64.6 66.72 64.07 63.6 62.50
PC 88 90.29 80.86 86.57 85 90.35 80.59 85.04 84.53 86.31 80.73 82.76 83.87 85.71 80 82.31 84.17 84.37 78.5 80.64 83.24 83.44 78.78 80.00
ChiSq 86.5 87.5 75.71 82.86 85.89 87.97 75.8 81.78 85.05 85.84 74.66 83.52 86.19 84.61 73.71 84.00 79.16 83.17 72.07 85.53 80 83.18 73.1 84.61
mRMR 90.5 89.43 81.67 89.43 87.5 90.62 80.27 89.81 87.91 83.28 80.78 87.49 86.8 84.58 79.14 87.12 87.9 83.1 82.41 83.4 87.05 81.61 82.32 83.54
ReF 88 90 83.71 90.35 92.07 90 85.51 91.92 87.07 87.93 83.21 89.67 86.09 87.43 81.92 91.54 85.4 84.2 80.19 87.9 84.38 85.97 81.73 88.49

2 SCH[23]

DB-DMR-IR- Acc-65.5%,
F-Meas-65.0%, DB-FOOT-IR-
Acc-60%, F-Meas-60%,
DB-THY-IR- Acc-60%,
F-Meas-60%

WFS 66.57 68 65.6 70 67.99 66.74 64.18 69.96 67.29 67.65 65.37 70.49 66.14 66.99 64.76 69.01 65 63.3 60.7 70 65 62.87 59.57 68.27
PC 80 73.71 76.57 86.57 80 72.39 76.5 88.31 76.43 72.64 74.31 84.29 78.1 72.23 72.74 82.32 75.4 71.51 72.57 81.97 73.86 69.88 72.43 83.33
ChiSq 79.5 86.57 79.43 85.14 77.5 88.33 79.16 85.93 78.94 83.04 80.72 81.16 80 82.43 80.14 79.88 78.3 83.67 77.53 81.14 77.08 82.02 76.27 80.00
mRMR 88.57 75.14 76.57 87.12 83.6 76.62 75.96 87.59 88.38 76.13 77.4 84.96 87.06 74.56 76.51 85.46 85.77 73.84 73.57 82.42 83.85 74.58 73.77 81.32
ReF 86.17 75.83 76.29 88.5 84.6 76.3 75 89.69 83.74 75.15 72.82 89.82 82.66 73.25 71.52 89.3 82.27 74.83 72.29 86.7 82.26 74.94 70.3 87.37

3 SAM[27]

DB-DMR-IR- Acc-60%,
F-Meas-60%, DB-FOOT-IR-
Acc-58.75%, F-Meas-55%,
DB-THY-IR- Acc-55%,
F-Meas-55%

WFS 66.57 69.43 66.6 70 65.13 67.66 68.38 69.56 66.04 70.28 64.08 70 64.71 69.65 63.3 72.09 64.77 67.93 61.9 68.6 63.24 66.61 62.87 69.45
PC 78 77.5 76.57 80 77.9 76.24 75 80.00 76.14 74.56 73.99 76.04 76.49 73.53 72.31 77.15 73 75.1 74.37 76.83 74.4 75.31 74.5 74.91
ChiSq 77.5 78.57 79.43 79.43 77.5 77.93 80 79.05 77.16 77.4 75.27 76.34 75.46 76.28 76.16 75.54 74.9 76.87 76.5 77.23 73.32 78.02 76.5 79.12
mRMR 80.86 72.29 76.57 79.43 80 70 74.83 78.91 80.58 72.02 74.68 78.39 81.88 71.61 73.91 79.85 78.86 72.39 72.77 77.73 77.19 70.4 72.51 76.52
ReF 79.5 82.71 80.14 80 78.18 82.64 81.16 80.00 79.28 80.19 76.88 80.19 80.33 81.76 74.94 78.68 77.6 78.61 76.34 80 79.28 78.5 76.23 80

4 ACH[2]

DB-DMR-IR- Acc-58.55%,
F-Meas-56.76%, DB-FOOT-IR-
Acc-58.5%, F-Meas-56.6%,
DB-THY-IR- Acc-56.5%,
F-Meas-55%

WFS 68 70 65.5 70 69.76 70 65.5 69.56 68.11 70 62.17 69.5 69.58 72.01 61.13 69.53 64 68.19 62.9 67.5 62.07 67.4 64.31 66.64
PC 75 75.14 78.57 81.67 75 76.16 80 83.05 74.74 74.17 78.64 80 73.96 73.06 79.97 80.00 72.24 73.74 76.37 77.07 73.26 72.62 75.57 76.55
ChiSq 73.71 75.83 72.29 76.57 74.18 75.61 70.65 74.63 74.41 75.32 71.29 73.55 72.63 76.97 70.47 73.11 71.91 73.53 72.59 74.17 70.34 74.47 71.28 74.25
mRMR 78 76.57 79.43 77.5 78 76.69 77.55 77.50 80.53 74.62 78.46 80 81.42 75.62 77 80.00 82.3 72.57 76.43 75 81.41 72.19 75.03 75.00
ReF 80 84.5 75 80 80 85.76 75 80.00 80.58 80 71.94 80 80 80 71.58 80.00 80.2 77.34 70.14 80 80 77.17 69.94 80.00

5 SAT[25]

DB-DMR-IR- Acc-77.5%,
F-Meas-76.53%, DB-FOOT-IR-
Acc-75%, F-Meas-73.75%,
DB-THY-IR- Acc-74.5%,
F-Meas-73.5%

WFS 70 66 65 70 66.6 65 65 70.00 69.34 65.61 65.03 69.84 67.36 64.67 63.48 68.14 66.2 64.1 63.9 70.1 64.42 63.64 61.91 68.65
PC 80 82.5 76.57 82.29 81.58 82.5 75.99 83.88 77.09 82.5 74.88 79.93 75.5 82.5 75.02 80.05 76.4 77.9 75.57 79.99 75.46 78.64 75.4 81.55
ChiSq 80.86 72.29 72.5 75 80.43 72.91 72.5 75.00 77.75 75 73.68 73.67 79.25 75 73.1 72.25 78.36 75 73.8 72.54 76.61 75 73.34 74.37
mRMR 88.35 78 81.67 85 87.55 76.59 80.59 85.00 89.77 73.34 76.99 85.29 91.53 73.79 75.98 86.93 86.9 73.3 76.77 83.8 88.33 74.46 74.93 83.82
ReF 86.67 76.67 80.86 87.5 86.72 75 80.99 87.50 84.87 76.51 78.46 85.5 84.14 76.51 76.74 84.10 82.67 74.47 79.36 86.5 81.5 74.34 78.68 85.00

6 KAR[28]

DB-DMR-IR- Acc-63.5%,
F-Meas-60%, DB-FOOT-IR-
Acc-54.5%, F-Meas-52%,
DB-THY-IR- Acc-50%,
F-Meas-50%

WFS 62.29 63.33 63.33 65 61.65 62.47 64.54 65.00 60.41 63.24 63.67 64.74 61.63 63.89 61.82 64.61 58.79 62.13 61.43 63.7 57.68 63.47 62.18 63.42
PC 70 77 72.5 73.71 70 78.53 72.5 72.14 81.05 76.79 73.09 74.86 80.31 75.76 74.4 73.94 79.66 72.7 72.8 72.71 81.56 71.45 72.49 73.88
ChiSq 73.55 72.29 72.5 75 71.66 70.65 72.5 75.00 79.97 73.64 74.22 74.87 79.03 72.5 74.12 76.57 76.86 73.99 71.5 73.64 76.83 73.44 71.5 73.06
mRMR 80 69.4 70.86 73.71 80 68.63 71.81 72.46 83.19 76.02 72.25 76.68 82.17 77.56 72.34 75.35 81.6 78.4 73.86 76.61 80.49 77.4 73.53 77.67
ReF 72 83.58 75.83 80.5 70 84.05 75.79 80.60 81.72 81.05 75 81.05 79.84 80 75 82.29 77.86 82.081 72.93 79.1 78.7 82.621 74.92 78.47

7 CRZ[26]

DB-DMR-IR- Acc-70.13%,
F-Meas-70%, DB-FOOT-IR-
Acc-67.6%, F-Meas-66.6%,
DB-THY-IR- Acc-63.75%,
F-Meas-62.5%

WFS 68 70.83 71.57 70 65 68.5 66 70.00 69.68 67.55 68.71 70 70.71 67.02 66.94 70.00 68.6 67.93 68.77 68.4 69.26 68.88 70.62 67.13
PC 75 80 80 80.48 73.54 80 80 82.80 78.83 81.77 76.59 83.58 77.7 81.36 76.02 83.91 77.7 78.7 77.9 81.14 78.13 76.83 77.32 80.69
ChiSq 72 75.83 77.5 78 70 75.75 77.5 77.19 75.27 74.89 78.16 77.83 76.32 74.28 79.26 77.66 72.24 73.73 75.6 76.4 71.91 73.17 74.76 76.29
mRMR 80 75.2 75 80 80 76.98 75 80.00 83.82 75 72.7 76.81 84.97 75 71.21 75.24 80.9 77.8 72.54 78.1 79.67 76.95 72.01 77.56
ReF 70 77.5 76.57 85.14 80.51 77.65 76.35 83.50 78.28 82.45 75.52 84.08 76.79 81.91 75.33 83.698 78.4 79.14 72.27 81.14 77.33 80.77 70.95 80.62

8 BAR[15]

DB-DMR-IR- Acc-69.5%,
F-Meas-66.66%,
DB-FOOT-IR-Acc-53.5%, F-
Meas-52%, DB-THY-IR-
Acc-51%, F-Meas-50%

WFS 68.5 72.5 66.5 67 69.34 70 65 67.00 72 71.5 62.81 65.74 70 66.36 61.48 66.03 71.5 65.5 63.7 65.5 70 65.5 64.09 64.16
PC 86.57 86.57 80 85.14 85.65 85.91 80 85.49 84.94 85 79.2 83.65 83.61 87.87 78.13 84.22 82.9 88.89 78.66 81.97 83.69 87.98 78.22 83.04
ChiSq 80.86 86.57 76.57 87.43 80.54 84.95 75.43 88.45 83.97 86.18 74.01 83.2 83.75 84.27 73.82 83.80 83.8 85.2 74.01 80.46 84.16 83.4 74.19 78.75
mRMR 91.86 89.43 83.71 88 91.71 87.79 83.3 87.78 90 83.09 82.58 87.7 90 82.11 81.82 86.15 89.1 81.43 78.67 84.53 87.2 81.55 77.65 83.04
ReF 89.5 88 82.29 92.28 89.3 88 81.68 91.72 86.5 84.74 80.8 91.5 86.14 82.79 81.17 90.07 86.09 85.7 81.41 88.45 84.18 87.69 80 86.47

9 GUP

DB-DMR-IR- Acc-80%,
FMeas-80%, DB-FOOT-IR-
Acc-75%, FMeas-72.8%,
DB-THY-IR- Acc-88.57%,
F-Meas-88.46%

WFS 68.5 71.5 71.5 71.66 68.5 72.06 70 70.00 69.68 73.04 68.57 73.95 68.78 71.17 66.62 75.29 67.3 70.77 70 70.1 67.76 70.42 70 68.52
PC 85.14 88.86 76.57 87.5 84.67 87.29 75.99 89.09 82.5 85.6 75.49 85.28 82.79 83.69 73.62 84.88 80.84 84.16 75.57 86.2 80 82.63 76.47 85.76
ChiSq 86.57 86.57 79.43 85.14 85.51 86 80 85.94 83.29 82.27 77.65 85.7 81.76 82.56 75.74 86.63 81.87 81.67 74.73 83.64 81.55 80 75.13 82.81
mRMR 90.71 88 77.6 87.5 92.5 88 77.18 87.50 88.41 81.38 77.36 84.08 86.5 82.66 79.08 83.87 88.51 82.5 74.2 83 87.96 82.5 74.58 83.76
ReF 90 87.5 75.71 90.86 90 88 74.98 90.53 86.83 84.93 79.15 90.30 86.18 85.53 79 88.835 87.5 82.9 71.91 89.56 87.5 83.72 72.9 87.87

10 UnionFeature_Set-

WFS 65.14 63.5 62 70 66.06 68 67.59 67.00 55 60 55 66.5 55 55 50 60.00 61.24 63.6 67.33 70.9 59.58 63.39 66.08 72.32
PC 89.6 93.16 87.5 91.66 92.5 92.65 87.5 92.28 88 90 88.58 90.5 86.18 90.51 86.87 91.67 86.37 91.23 86.1 89.46 84.46 90.24 85.94 90.78
ChiSq 92.17 90.29 87.5 91.5 93.88 91.51 87.5 92.36 89.85 89.48 90 88.48 91.07 89.07 87.54 86.74 90.15 86.5 87.57 86.6 88.28 88.18 86.08 87.70
mRMR 94.75 90 88.5 90 93.8 90 85 90.00 93.14 92.38 88.68 92.95 92.55 90 89.03 90.21 90.07 88.39 86.4 88.8 89.85 86.3 87.55 88.32
ReF 90 90.29 90 93.67 90.98 91.92 90.85 95.69 88.37 90.23 90 92.5 86.55 88.66 90 91.16 89.5 85.99 85.8 92.06 88.84 86.39 84.17 91.42
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• Without feature selection and among nine individual research works, the
feature-set suggested in the work BAR[15] gave the best result for DB-
DMR-IR with k-NN and DB-THY-IR with SVM. The features set suggested
in the feature-set GUP gave the best performance for DB-FOOT-IR with k-
NN and RFC. With feature selection also and all the datasets, the feature-set
suggested in work BAR[15] gave better performance than the other eight
research works.

• Finally, the combination of features (UnionFeature_Set) provides maximum
classification accuracy of 94.75% for DB-DMR-IR and 93.14% for DB-
FOOT-IR datasets with the combination of mRMR and SVM. The dataset
DB-THY-IR gave an accuracy of 92.06% with the combination of RFC and
ReF. The F-Measure obtained are 93.80%, 92.55%, and 91.42% for DB-
DMR-IR, DB-FOOT-IR, and DB-THY-IR datasets, respectively. Similar re-
sults on DB-DMR-IR and DB-FOOT-IR are obtained with the combination
of ReF and RFC.

• Majority of the FE methods (RAS[24], SCH[23], SAT[25], GUP and CRZ[26])
performed better with the combination of [mRMR and SVM] and [Ref and
RFC] for DB-DMR-IR dataset. All the feature extraction methods gave the
best results with the same combinations ([mRMR and SVM] and [Ref and
RFC]) for DB-FOOT-IR and DB-THY-IR datasets.

• GLCM and GLRM-based features suggested in research works ACH[2],
CRZ[26], and KAR[28], have not yielded satisfactory results for all the
datasets with and Without FS (WFS) methods. Amongst the nine FE meth-
ods, the worst performance is shown by the feature-set suggested in KAR[28]
for all the datasets, without using any FS method. With feature selection,
the average performance of the feature extraction methods KAR[28] and
CRZ[26] is minimum for all the datasets.

• Amongst four classifiers, the best performance is achieved with SVM or
RFC for most of the feature-sets on all the datasets.

• The combinations of [mRMR and SVM] and [Ref and RFC] performed bet-
ter in the majority of the ten feature-sets for all the datasets.

• DTC did not perform effectively for most of the research works and datasets.
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3.4.2 Comparison of Combinations of FE and FS Methods

This subsection investigates the performance of four FS methods in conjunction
with the nine feature extraction methods suggested in the literature individually
and their combination (UnionFeature_Set). The results are validated statistically
also.

Figure 3.8 illustrates the comparison of average classification accuracy (over 4
different classifiers) for a combination of feature extraction and selection method
on three datasets, respectively. The following can be observed from Figure 3.8,
about the various combinations:

• For each FS method, the average performance improved significantly com-
pared to Without FS, in terms of accuracy and F-Measure, for each feature
extraction method.

• The average performance achieved with all the four FS methods on Union-
Feature_Set is better than feature selection on all of the individual nine
feature-sets suggested in the literature.

• On average, the performance of ReF and mRMR is similar and better than
PC and ChiSq for the majority of the feature extraction methods and all the
datasets.

The relative performance of 40 combinations of 10 feature extraction and 4
FS methods for all the datasets separately is investigated with the help of a ro-
bust ranking mechanism[121]. This method ranks the combinations based on their
net improvement in performance with reference to the worst performance (mWFS

c )
obtained among 10 FE methods and without any feature selection and best perfor-
mance (Mc). Let N and nc denote the number of combinations (= 40) of feature
extraction and selection methods and the number of classifiers (= 4). The average
percentage improvement in accuracy, (gi, i = {1, 2, ..., N}), of a combination i, is
calculated as follows:

gi =
1

nc

nc∑
c=1

aic −mWFS
c

Mc −mWFS
c

× 100 (3.13)

where aic is the accuracy achieved for the model with combination i and classifier
c. The rank of a combination i, ri , is assigned as ra ≤ rb if ga ≥ gb.
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(a) (b)

(c)

Fig. 3.8: Comparison of the average classification accuracy values for a given combination of
feature extraction and selection method for DB-DMR-IR (a), DB-FOOT-IR (b), and DB-THY-IR
(c) datasets.

Table 3.6 shows net percentage improvement in accuracy for all combinations
of feature extraction and selection methods for all the datasets. Figure 3.9 illus-
trate ranking of the combinations obtained by sorting the improvement in accuracy
values in descending order for all the datasets, respectively. Following is observed
from Table 3.6 and Figure 3.9:

• The improvement in relative accuracy (%) with the combination of Union-
Feature_Set and any feature selection is higher than any other combination
for all the datasets. The maximum improvement in accuracy is achieved
with the ReF and mRMR for all the datasets, respectively.

• The improvement in performance with feature-set used in the research work
KAR[28], SAM[27] and ACH[2] is worse for all the datasets.

• ReF and mRMR FS methods achieved higher net profit/improvement in ac-
curacy compared to PC and ChiSq, for most of the research works, in indi-
vidual and in combination, and all the datasets. ReF and mRMR both take
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care of the correlation between the features and minimize the redundancy in
the feature set.

Table 3.6: Performance Improvement (%) in Accuracy for all the combinations of
feature extraction and selection methods.

S. No Combinations of FE and FS Methods DMR-IR DB-FOOT-IR DB-THY-IR S. No Combinations of FE and FS
Methods

DMR-IR DB-FOOT-IR DB-THY-IR

1 UnionFeature_Set+ReF(FUN+ReF) 93.93 94.82 93.33 21 [23]+ReF(SCH+ReF) 62.12 65.49 60.69
2 UnionFeature_Set+mRMR(FUN+mRMR) 92.81 99.05 93.53 22 [27]+ReF(SAM+ReF) 58.78 60.82 58.08
3 UnionFeature_Set+PC(FUN+PC) 92.05 91.61 93.32 23 [25]+PC(SAT+PC) 57.79 59.51 55.78
4 UnionFeature_Set+C2Sq(FUN+C2Sq) 91.48 91.64 91.12 24 [2]+ReF(ACH+ReF) 56.07 57.84 53.29
5 [15]+mRMR(BAR+mRMR) 84.09 80.82 75.82 25 [23]+PC(SCH+PC) 54.16 54.92 48.45
6 [24]+ReF(RAS+ReF) 83.65 84.83 79.64 26 [26]+PC(CRZ+PC) 53.33 64.54 60.69
7 [15]+ReF(BAR+ReF) 83.54 81.89 83.10 27 [27]+C2Sq(SAM+C2Sq) 52.63 52.71 52.13
8 [24]+mRMR(RAS+mRMR) 82.46 78.12 78.79 28 [28]+ReF(KAR+ReF) 50.32 62.50 57.30
9 [24]+PC(RAS+PC) 78.04 74.01 70.84 29 [27] +PC(SAM+PC) 50.07 48.67 46.76

10 GUP + ReF 76.39 80.01 73.96 30 [2]+mRMR(ACH+mRMR) 49.66 58.31 52.31
11 GUP+mRMR 76.12 71.51 70.77 31 [2]+PC(ACH+PC) 49.02 54.29 47.06
12 [15]+PC(BAR+PC) 71.81 72.97 75.02 32 [26]+ReF(CRZ+ReF) 48.39 64.35 56.39
13 GUP+PC 71.63 70.62 70.18 33 [26]+mRMR(CRZ+mRMR) 48.27 53.81 54.80
14 GUP+C2Sq(GUP+C2Sq) 71.30 70.49 65.82 34 [27] +mRMR(SAM+mRMR) 47.40 52.20 48.41
15 [25]+mRMR(SAT+mRMR) 67.36 67.00 64.67 35 [26]+C2Sq(CRZ+C2Sq) 43.13 52.92 45.75
16 [24]+C2Sq(RAS+C2Sq) 66.72 70.32 64.14 36 [25]+C2Sq(SAT+C2Sq) 39.90 47.74 46.64
17 [25]+ReF(SAT+ReF) 66.41 67.48 67.09 37 [2]+C2Sq(ACH+C2Sq) 38.55 43.99 40.55
18 [15]+C2Sq(BAR+C2Sq) 66.35 69.13 66.92 38 [28]+PC(KAR+PC) 34.37 51.93 44.92
19 [23]+C2Sq(SCH+C2Sq) 65.86 66.40 65.09 39 [28]+C2Sq(KAR+C2Sq) 34.27 49.60 43.40
20 [23]+mRMR(SCH+mRMR) 62.44 68.25 60.05 40 [28]+mRMR(KAR+mRMR) 34.23 53.75 55.79

(a) (b)

(c)

Fig. 3.9: Ranking of combinations of feature extraction and selection methods based on Perfor-
mance Improvement (%) for DB-DMR-IR (a), DB-FOOT-IR (b) and DB-THY-IR (c) datasets.
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3.4.3 Comparison of Features (GUP and UnionFeature_Set)

This section introspects the performance of proposed feature sets - UnionFea-
ture_Set and GUP, having a total of 467 and 101, respectively, distinct features,
quantitatively and qualitatively. The accuracy and F-Measure values of the exper-
iments with UnionFeature_Set and GUP on the proposed framework are stated in
the last two rows of Table 3.5.

Table 3.7: The Features (GUP feature-set) and their p-Values with which the best
result is obtained for all the datasets.

Feature Name DB-DMR-IR DB-FOOT-IR DB-THY-IR

Mean 0.051 0.0611 0.0217
Variance 0.059 0.0756 0.0267
Skewness 0.046 0.0593 0.0185
Kurtosis 0.041 0.0588 0.0122
EntropyLBP 0.024 0.0365 0.0763
Otsu Threshold 0.023 0.0294 0.0222
EntropyGLCM 0.071 0.0337 0.0291
contrast 0.042 0.0471 0.0522
Correlation 0.0034 0.0058 0.0002
Energy 0.014 0.0089 0.5771
Sum variance 0.027 0.0310 0.0246
Sum entropy 0.0241 0.0304 0.0234
Difference variance 0.0044 0.0087 0.0020
Homogeneity 0.0151 0.0686 0.0760
Sum average 0.0625 0.0555 0.0527
Information measure of cor-
relation

0.022 0.0010 0.0151

Table 3.7 presents the features in the GUP feature set along with their corre-
sponding p-values across all datasets. The reported p-values for DB-DMR-IR and
DB-FOOT-IR are obtained by averaging them over both subsets (D1 and D2). Ad-
ditionally, the statistical features derived from LBP are averaged across all 18 grids
to compute the p-values. The table indicates that Energy and Correlation are statis-
tically significant for analyzing thermal patterns at a 1% significance level across
all health conditions. Meanwhile, the Otsu-Threshold exhibits a marginally signif-
icant difference between normal and abnormal thermal images across all datasets.

The Table 3.8 displays the subset of features for which the best result is ob-
tained for all the datasets, along with their p-values using the T-Test. Tables 3.9,
3.10, and 3.11 present the color map of correlation matrices of the features with
which the best performance is achieved for the three datasets, respectively. The
absolute value of the correlation between a feature pair is considered. Following
observations are made from Tables 3.8, 3.9, 3.10, and 3.11 for the experiments
conducted on UnionFeature_Set:
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• UnionFeature_Set performed best with a reduced set of 45 and 57 features
for DB-DMR-IR, DB-FOOT-IR selected with mRMR and 39 features for
DB-THY-IR selected using ReF, wherein the features are from the research
works, SCH[23], RAS[24], SAT[25], BAR[15], GUP, and ACH[2].

• Majority of the features in feature subset (Table 3.8) that gave the best re-
sults are found to be relevant at the significance level, α = 0.01, for all the
datasets. Also, most of them (RAS[24], BAR[15], GUP, and ACH[2]) are
common for the datasets considered.

• Most of the best-performing features (Table 3.8) are minimally correlated to
each other for all the datasets (cell colors are lighter red in shade(orange),
Tables 3.9, 3.10 and 3.11).

• Features proposed by BAR[15] are found to be the most prominent features
for discriminating against abnormal thermal patterns.

• The thermal patterns for abnormality due to inflammation are best distin-
guished when the features (Histogram-based features, First Order Statisti-
cal features, Texture-based features, and LBP-based features) are computed
from the segmented region of interest (BAR[15] and CRZ[26]).

Also, the qualitative analysis of the best-performing models (stated in table 3.4)
is performed using Explainable AI with SHapley Additive exPlanation (SHAP)
[122, 123, 124]. SHAP explains the prediction given by a classification model
using a game theory-based approach. It uses Shapley values to measure the con-
tribution of features in predicting the outcome of the model. The Python SHAP
library is used to understand the feature’s importance in predicting abnormality
in the human body, captured in thermal images. To analyze the importance of
the features in UnionFeature_Set, all the 467 features with the model (with tuned
parameters) are passed to SHAP Explainer to analyze their importance.
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Table 3.9: The colour map of the correlation matrix for the features with which the best result is obtained for DB-DMR-IR dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
1 9.7 · 10−2 0.72 7.5 · 10−2 0.37 1.4 · 10−2 0.67 0.44 0.62 0.62 3 · 10−3 3 · 10−2 0.15 5.3 · 10−2 6.6 · 10−2 0.1 5.3 · 10−2 8 · 10−2 2.3 · 10−2 5.6 · 10−2 0.23 1.9 · 10−2 0.15 3.2 · 10−2 1.9 · 10−2 5.2 · 10−2 2.7 · 10−2 1.3 · 10−2 4 · 10−3 0.24 0.24 5.1 · 10−2 3.9 · 10−2 0.17 8.5 · 10−2 1.6 · 10−2 9.4 · 10−2 4.8 · 10−2 0.12 3 · 10−2 9.3 · 10−2 3 · 10−2 3 · 10−2 0.11 4.4 · 10−2

9.7 · 10−2 1 7.6 · 10−2 0.8 7.3 · 10−2 0.46 2.4 · 10−2 0.51 2.2 · 10−2 6.9 · 10−2 7 · 10−3 3 · 10−2 5.6 · 10−2 3.9 · 10−2 1.5 · 10−2 2.7 · 10−2 5.4 · 10−2 4.9 · 10−2 3 · 10−2 2.3 · 10−2 0.14 2 · 10−2 7.1 · 10−2 0.11 2 · 10−2 0.11 8 · 10−2 0.17 0.13 7.1 · 10−2 2.7 · 10−2 2.2 · 10−2 5.5 · 10−2 3.7 · 10−2 5.4 · 10−2 5.4 · 10−2 6.6 · 10−2 4 · 10−2 5.8 · 10−2 0.14 0.14 0.11 0.14 9.3 · 10−2 0.14
0.72 7.6 · 10−2 1 3.8 · 10−2 0.67 0.18 0.67 0.47 0.53 0.55 2.7 · 10−2 2 · 10−2 7.6 · 10−2 4 · 10−2 2.3 · 10−2 0.13 2.4 · 10−2 3.7 · 10−2 6.3 · 10−2 6 · 10−2 9.2 · 10−2 8.9 · 10−2 5.7 · 10−2 2.1 · 10−2 8.9 · 10−2 8.1 · 10−2 7.2 · 10−2 7 · 10−3 6.8 · 10−2 0.14 0.19 2.8 · 10−2 6.9 · 10−2 9.2 · 10−2 4.3 · 10−2 3.7 · 10−2 6.9 · 10−2 7.7 · 10−2 3.9 · 10−2 9.9 · 10−2 3.3 · 10−2 9.2 · 10−2 9.9 · 10−2 1.5 · 10−2 9.6 · 10−2

7.5 · 10−2 0.8 3.8 · 10−2 1 8.3 · 10−2 0.69 4 · 10−3 0.5 7.4 · 10−2 1.2 · 10−2 1 · 10−3 8.7 · 10−2 8 · 10−2 8.7 · 10−2 7.3 · 10−2 7.5 · 10−2 5 · 10−3 1.3 · 10−2 8 · 10−3 2.7 · 10−2 0.14 5.1 · 10−2 2.1 · 10−2 8.6 · 10−2 5.1 · 10−2 0.1 0.12 0.14 0.16 7.4 · 10−2 1.8 · 10−2 6.5 · 10−2 0.13 1 · 10−3 9.8 · 10−2 5 · 10−3 0.13 1.9 · 10−2 7.5 · 10−2 0.23 0.21 2.6 · 10−2 0.23 2.4 · 10−2 0.23
0.37 7.3 · 10−2 0.67 8.3 · 10−2 1 0.13 0.36 0.17 0.17 0.26 9.2 · 10−2 5.8 · 10−2 9.7 · 10−2 5.3 · 10−2 9.3 · 10−2 5.8 · 10−2 8 · 10−3 2.2 · 10−2 1.9 · 10−2 4.2 · 10−2 7.5 · 10−2 3.5 · 10−2 9.8 · 10−2 5 · 10−2 3.5 · 10−2 4.8 · 10−2 5.2 · 10−2 1 · 10−2 0 2.9 · 10−2 1.5 · 10−2 5.8 · 10−2 8.4 · 10−2 7.8 · 10−2 1.3 · 10−2 4.8 · 10−2 1.5 · 10−2 2.4 · 10−2 5.6 · 10−2 8.1 · 10−2 4.4 · 10−2 6 · 10−3 8.1 · 10−2 8.1 · 10−2 7.9 · 10−2

1.4 · 10−2 0.46 0.18 0.69 0.13 1 0.17 0.42 3.6 · 10−2 1 · 10−3 6.4 · 10−2 1.8 · 10−2 2.8 · 10−2 4 · 10−3 4 · 10−3 5.4 · 10−2 1.2 · 10−2 2.1 · 10−2 2.1 · 10−2 3.9 · 10−2 8.6 · 10−2 5.9 · 10−2 7.7 · 10−2 0.16 5.9 · 10−2 0.21 8 · 10−3 8 · 10−3 5.3 · 10−2 9.1 · 10−2 1 · 10−3 6.2 · 10−2 1.8 · 10−2 3.9 · 10−2 9 · 10−2 0.12 0.19 2.3 · 10−2 2 · 10−2 0.12 1.7 · 10−2 8.4 · 10−2 0.12 3.3 · 10−2 0.14
0.67 2.4 · 10−2 0.67 4 · 10−3 0.36 0.17 1 0.62 0.74 0.6 0.11 0.15 0.26 0.16 0.21 0.18 3.3 · 10−2 5.4 · 10−2 6 · 10−3 9.3 · 10−2 3.7 · 10−2 7 · 10−3 0.28 4.8 · 10−2 7 · 10−3 7 · 10−3 6 · 10−2 2.7 · 10−2 4.5 · 10−2 0.11 0.2 0.25 3.8 · 10−2 0.15 9.9 · 10−2 4 · 10−3 3 · 10−3 9.2 · 10−2 2.8 · 10−2 2.3 · 10−2 0.12 2.3 · 10−2 2.3 · 10−2 2.3 · 10−2 1.3 · 10−2

0.44 0.51 0.47 0.5 0.17 0.42 0.62 1 0.49 0.5 8 · 10−2 1.5 · 10−2 8.7 · 10−2 9 · 10−3 4.1 · 10−2 2.8 · 10−2 4 · 10−2 2.4 · 10−2 1.2 · 10−2 7 · 10−3 8.5 · 10−2 5 · 10−3 9.1 · 10−2 5.1 · 10−2 5 · 10−3 1.6 · 10−2 3.8 · 10−2 0.13 0.14 5.1 · 10−2 2.9 · 10−2 3.4 · 10−2 1.1 · 10−2 3.5 · 10−2 3.1 · 10−2 8.9 · 10−2 7.7 · 10−2 2.6 · 10−2 5 · 10−2 2 · 10−3 5.6 · 10−2 6.3 · 10−2 2 · 10−3 4.7 · 10−2 0
0.62 2.2 · 10−2 0.53 7.4 · 10−2 0.17 3.6 · 10−2 0.74 0.49 1 0.61 6.4 · 10−2 0.14 0.29 0.13 0.23 0.15 1 · 10−3 4.5 · 10−2 3.2 · 10−2 3.8 · 10−2 0.11 8.2 · 10−2 0.24 5 · 10−2 8.2 · 10−2 4.9 · 10−2 2.5 · 10−2 6.4 · 10−2 3.3 · 10−2 0.19 0.22 0.21 0.13 0.18 6.1 · 10−2 6.7 · 10−2 7.1 · 10−2 5.9 · 10−2 6.1 · 10−2 0.12 0.19 7.2 · 10−2 0.12 9.1 · 10−2 0.12
0.62 6.9 · 10−2 0.55 1.2 · 10−2 0.26 1 · 10−3 0.6 0.5 0.61 1 1.3 · 10−2 3.8 · 10−2 0.13 5.4 · 10−2 8.4 · 10−2 7.1 · 10−2 1 · 10−3 6 · 10−3 9.7 · 10−2 3.4 · 10−2 0 7.6 · 10−2 0.12 7.8 · 10−2 7.6 · 10−2 3 · 10−3 9.8 · 10−2 4.4 · 10−2 0.11 0.1 8.3 · 10−2 0.12 6.4 · 10−2 4.6 · 10−2 5.7 · 10−2 5.2 · 10−2 5 · 10−2 1.6 · 10−2 1.3 · 10−2 9.1 · 10−2 3.6 · 10−2 7.4 · 10−2 9.1 · 10−2 1.3 · 10−2 8.9 · 10−2

3 · 10−3 7 · 10−3 2.7 · 10−2 1 · 10−3 9.2 · 10−2 6.4 · 10−2 0.11 8 · 10−2 6.4 · 10−2 1.3 · 10−2 1 0.72 0.62 0.75 0.63 0.65 0.52 2.3 · 10−2 8.7 · 10−2 0.46 0.27 0.51 0.7 2.7 · 10−2 0.51 0.19 0.2 9.1 · 10−2 0.18 0.45 0.51 0.67 0.44 0.67 1.6 · 10−2 0.39 0.18 5.4 · 10−2 0.13 0.34 0.29 7.1 · 10−2 0.34 7.5 · 10−2 0.33
3 · 10−2 3 · 10−2 2 · 10−2 8.7 · 10−2 5.8 · 10−2 1.8 · 10−2 0.15 1.5 · 10−2 0.14 3.8 · 10−2 0.72 1 0.7 0.87 0.83 0.8 0.55 0 8.7 · 10−2 0.55 8.8 · 10−2 0.58 0.68 0.19 0.58 0.4 0.15 1.1 · 10−2 7.1 · 10−2 0.36 0.38 0.65 0.45 0.67 4 · 10−3 0.6 0.12 4.2 · 10−2 8 · 10−3 0.25 0.24 6.4 · 10−2 0.25 2.6 · 10−2 0.22
0.15 5.6 · 10−2 7.6 · 10−2 8 · 10−2 9.7 · 10−2 2.8 · 10−2 0.26 8.7 · 10−2 0.29 0.13 0.62 0.7 1 0.71 0.77 0.6 0.52 3.8 · 10−2 4.5 · 10−2 0.43 0.25 0.55 0.61 8.4 · 10−2 0.55 0.27 0.21 0.1 3 · 10−2 0.5 0.49 0.57 0.42 0.69 4.6 · 10−2 0.43 0.13 8.4 · 10−2 0.11 0.31 0.3 4.7 · 10−2 0.31 2.8 · 10−2 0.29

5.3 · 10−2 3.9 · 10−2 4 · 10−2 8.7 · 10−2 5.3 · 10−2 4 · 10−3 0.16 9 · 10−3 0.13 5.4 · 10−2 0.75 0.87 0.71 1 0.77 0.78 0.53 3.2 · 10−2 8 · 10−2 0.54 0.12 0.55 0.66 0.24 0.55 0.42 0.11 1.4 · 10−2 5.4 · 10−2 0.39 0.42 0.64 0.4 0.69 4 · 10−3 0.59 5.1 · 10−2 8.3 · 10−2 4.4 · 10−2 0.21 0.2 5.3 · 10−2 0.21 2.5 · 10−2 0.18
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3.4. Results and Discussion

Table 3.8: The Features (UnionFeature_Set) and their p-Values with which the
best result is obtained for all the datasets.

S. No. Reference Feature Name p-Value
for DB-
DMR-IR
Dataset

p-Value
for DB-
FOOT-IR
Dataset

p-Value
for DB-
THY-IR
Dataset

S. No. Reference Feature Name p-Value
for DB-
DMR-IR
Dataset

p-Value
for DB-
FOOT-IR
Dataset

p-Value
for DB-
THY-IR
Dataset

F1 BAR[15] Texture energy using LS ker-
nel

9.54E-06 0.000736465 - F34 SAT[25] Mean (from Local energy
matrices, calculated for sub-
band 6)

0.036016195 - -

F2 BAR[15] Contrast(Neighborhood gray-
tone difference matrix based)

3.46088E-
05

0.000232748 2.15761E-
05

F35 RAS[24] GLCM based Energy (from
Modified LBP Colour matrix)

0.036059195 0.046864998 0.024161069

F3 BAR[15] Contrast(Gray level differ-
ence statistics based)

5.19114E-
05

0.000261966 3.89146E-
05

F36 RAS[24] GLCM based Energy (from
Modified LBP Edge matrix)

0.036136696 0.047042847 0.000972879

F4 BAR[15] Coarseness(Neighborhood
gray-tone difference matrix
based)

6.09136E-
05

7.73816E-
05

0.000301748 F37 RAS[24] Sum from Modified LBP
Colour matrix

0.036277198 0.051967651 -

F5 BAR[15] Busyness (Neighborhood
gray-tone difference matrix
based)

6.86098E-
05

6.47659E-
05

0.000231966 F38 RAS[24] Sum from Modified LBP
Edge matrix

0.03639456 0.053655003 -

F6 BAR[15] Texture energy using LE ker-
nel

0.000276149 0.00526576 0.008670024 F39 SCH[23] Contrast (Gray Level Cross
co-occurrence matrix from
Laplace filter applied images)

0.036920254 0.030455145 0.031042951

F7 BAR[15] Eccentricity 0.000321131 0.000414763 - F40 SCH[23] Contrast (Gray Level Cross
co-occurrence matrix)

0.038373094 - -

F8 BAR[15] Regularity/roughness(Statistical
feature matrix based)

0.000352973 - - F41 SAT[25] Variance (from Local energy
matrices, calculated for sub-
band 12)

0.056953143 0.001364869 0.075566216

F9 BAR[15] Euler number
0.000471395

0.001101846 - F42 SCH[23] Symmetry (Gray Level Cross
co-occurrence matrix from
Laplace filter applied images)

0.066294345 0.118365239 -

F10 BAR[15] Convexity 0.000502856 0.000353501 1.9523E-
05

F43 SAT[25] Entropy (from Local energy
matrices, calculated for sub-
band 7)

0.069901974 0.122022261 -

F11 BAR[15] Texture energy using ES ker-
nel

0.001455341 0.001712522 0.001762114 F44 SCH[23] Difference Histogram, 0.083531184 0.09977041 0.090448805

F12 ACH[2] Moment 3 0.001557873 0.003381957 0.006502389 F45 SCH[23] Difference of positive and
negative (from Normalized
Histograms)

0.0852041 0.107557706 0.000670753

F13 CRZ[26] Number of pixels (segmented
using Differential Evolution)

0.001719172
0.000356737

0.008154521 F46 BAR[15] Angular sum from Fourier
power spectrum

- 4.29E-06 0.000114174

F14 KAR[28] Kurtosis(from Curvelet trans-
formed)

0.001733792 0.000955772 0.000222863 F47 BAR[15] Coarseness(Statistical feature
matrix based)

- 2.80144E-
05

0.000349501

F15 ACH[2] Moment 4 0.002101889 0.004432993 0.001562873 F48 BAR[15] Complexity(Neighborhood
gray-tone difference matrix
based)

- 8.25699E-
05

0.000438763

F16 ACH[2] Angular Second Moment 0.003475957 0.000263501 - F49 BAR[15] Energy (Gray level difference
statistics based)

- 0.000957879 -

F17 GUP Correlation from GLCM Sub-
Matrix

0.003475957 0.005187852 - F50 BAR[15] Entropy (Gray level differ-
ence statistics based)

- 0.000993772 -

F18 GUP Difference variance from
GLCM Sub-Matrix

0.004481993 0.008749024 0.002048889 F51 BAR[15] Homogeneity(Gray level dif-
ference statistics based)

- 0.001426869 -

F19 ACH[2] Entropy 0.006473389 0.004462993 - F52 BAR[15] Mean (Gray level difference
statistics based)

- 0.001433341 -

F20 BAR[15] Texture energy using LL ker-
nel

0.006486389 0.000616753 0.00902678 F53 BAR[15] Periodicity(Statistical feature
matrix based)

- 0.000838435 0.000529959

F21 GUP Energy from GLCM Sub-
Matrix

0.014647123 0.00899278 - F54 BAR[15] Radial sum from Fourier
power spectrum

- 0.000934663 -

F22 GUP Homogeneity from GLCM
Sub-Matrix

0.015107258 - - F55 BAR[15] Solidity - 0.001122531 -

F23 GUP Information measure of cor-
relation from GLCM Sub-
Matrix

0.022027663 0.001099846 0.015121258 F56 BAR[15] Texture energy using EE ker-
nel

- 0.00121398 0.005243872

F24 GUP Otsu Threshold 0.023440631 0.029550677 0.022001663 F57 BAR[15] Texture energy using SS ker-
nel

- 0.00058523 -

F25 GUP Sum entropy from GLCM
Sub-Matrix

0.024172069 0.030451145 0.023452631 F58 BAR[15] Texture
strength(Neighborhood
gray-tone difference matrix
based)

- 0.001730656 -

F26 GUP Sum variance from GLCM
Sub-Matrix

0.027386128 0.031046951 0.024097069 F59 ACH[2] Long Runs Emphasis - - 0.00522876

F27 RAS[24] Difference between Co-
occurrence levels based
energy (from Modified LBP
Colour matrix)

0.027408579 0.032323166 0.027390128 F60 SCH[23] Distance of difference max-
imum from the centre(from
Fourier Spectrum of left and
right breast),

- 0.109284161 0.00167705

F28 SAT[25] Skewness (from Local energy
matrices, calculated for sub
band 12)

0.027454128 - - F61 SCH[23] Energy (Gray Level Cross
co-occurrence matrix from
Laplace filter applied images)

- 0.114465656 0.001557873

F29 RAS[24] Difference between Co-
occurrence levels based
energy (from Modified LBP
Edge matrix)

0.030428145 0.0352833 5.89856E-
05

F62 SCH[23] Mutual Information, - 0.117180514 0.008740024

F30 RAS[24] Difference of GLCM Matri-
ces

0.030987951 0.036041195 0.021953663 F63 SAT[25] Kurtosis (from Local energy
matrices, calculated for sub
band 20)

- - 0.000233966

F31 SAT[25] Kurtosis (from Local energy
matrices, calculated for sub
band 12)

0.032310166 0.131642063 0.014568123 F64 SAT[25] Skewness (from Local energy
matrices, calculated for sub
band 2)

- - 0.000250748

F32 RAS[24] Euclidean distance of his-
tograms (from Modified LBP
Color matrix)

0.032340166 0.040762057 0.027479579 F65 SAT[25] Variance (from Local energy
matrices, calculated for sub
band 9)

- 0.023478631 -

F33 RAS[24] Euclidean distance of his-
tograms (from Modified LBP
Edge matrix)

0.0353093 0.044455997 -
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Table 3.10: The colour map of correlation matrix for the features with which the best result is obtained for DB-FOOT-IR dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
1 0.35 0.18 0.13 0.76 0.38 0.25 0.52 0.44 0.76 0.72 0.73 0.76 4.6 · 10−2 0.61 0.99 0.11 0.11 0.16 3 · 10−2 1.3 · 10−2 0.26 1 · 10−2 0.3 0.13 0.67 0.99 0.18 0.23 0.17 1.6 · 10−2 8.1 · 10−2 0.99 0.18 0.83 0.21 0.14 0.27 0.27 0.57 3.8 · 10−2 2.9 · 10−2 0.5 0.51 0.51 3 · 10−2 0.33 8.8 · 10−2 3.7 · 10−2 8.9 · 10−2 0.17 3 · 10−2 0.23 0.53 0.36 0.44 0.28

0.35 1 0.17 0.37 0.33 0.27 0.74 0.24 0.38 0.33 0.66 0.3 0.35 9.2 · 10−2 0.73 0.38 0.13 0.25 8.3 · 10−2 4.7 · 10−2 0.19 0.44 0.34 0.49 0.29 0.3 0.33 0.18 0.73 8.8 · 10−2 5.3 · 10−2 0.16 0.33 0.13 0.15 0.59 0.38 0.58 0.44 0.27 0.11 0.14 2.3 · 10−2 9 · 10−3 3.1 · 10−2 2.7 · 10−2 2.8 · 10−2 4.2 · 10−2 1.5 · 10−2 4.2 · 10−2 2.1 · 10−2 2.7 · 10−2 3.8 · 10−2 2.8 · 10−2 5.6 · 10−2 7.5 · 10−2 6.1 · 10−2

0.18 0.17 1 0.73 6.9 · 10−2 0.18 0.39 0.57 0.23 6.7 · 10−2 8.5 · 10−2 0.21 0.19 0.74 6.7 · 10−2 0.16 0.23 0.3 0.21 0.11 8 · 10−3 0.28 7.3 · 10−2 0.35 0.25 0.15 0.15 1 0.31 0.92 7.7 · 10−2 5.4 · 10−2 0.15 0.23 0.23 5.9 · 10−2 0.7 0.35 0.28 0.42 0.19 6.2 · 10−2 0.35 0.35 0.37 0.1 1.5 · 10−2 4 · 10−3 0.12 1 · 10−3 0.13 0.1 9.9 · 10−2 0.38 0.24 0.41 0.29
0.13 0.37 0.73 1 0.11 0.33 0.64 0.44 0.15 0.11 0.14 0.19 0.13 0.4 0.16 0.11 0.15 0.32 0.16 7.4 · 10−2 1.3 · 10−2 0.42 0.18 0.53 0.4 0.12 0.11 0.73 0.62 0.52 5.4 · 10−2 9.3 · 10−2 0.11 0.33 0.23 8 · 10−3 0.99 0.62 0.43 0.38 7.7 · 10−2 0.13 0.3 0.28 0.29 9 · 10−2 0.12 0.12 8.4 · 10−2 0.12 0.24 9 · 10−2 0.24 0.34 0.29 0.23 7.9 · 10−2

0.76 0.33 6.9 · 10−2 0.11 1 0.24 0.25 0.45 0.47 1 0.62 0.77 0.78 4.7 · 10−2 0.54 0.77 1.6 · 10−2 9.9 · 10−2 5.7 · 10−2 5.5 · 10−2 2.9 · 10−2 0.24 4.3 · 10−2 0.25 0.12 0.82 0.75 5.9 · 10−2 0.24 2.5 · 10−2 3.4 · 10−2 4.5 · 10−2 0.75 0.21 0.59 0.25 0.13 0.24 0.21 0.58 0.1 0.19 0.44 0.4 0.43 4.3 · 10−2 0.33 0.1 3.6 · 10−2 0.1 0.21 4.3 · 10−2 0.26 0.5 0.37 0.37 0.21
0.38 0.27 0.18 0.33 0.24 1 0.36 0.29 0.18 0.24 0.36 0.17 0.16 7.1 · 10−2 0.31 0.37 6 · 10−2 9.2 · 10−2 3.4 · 10−2 2.1 · 10−2 6.6 · 10−2 0.27 0.13 0.3 0.18 0.22 0.38 0.19 0.38 5.8 · 10−2 0.15 6.2 · 10−2 0.38 4 · 10−2 0.36 0.19 0.35 0.33 0.23 0.32 8 · 10−2 5.2 · 10−2 0.34 0.34 0.33 3.4 · 10−2 0.15 0.18 3.2 · 10−2 0.18 0.2 3.4 · 10−2 0.25 0.37 0.31 0.27 0.11
0.25 0.74 0.39 0.64 0.25 0.36 1 0.18 0.2 0.25 0.39 0.26 0.23 0.28 0.44 0.24 5.6 · 10−2 0.36 5 · 10−3 0.12 0.17 0.5 0.3 0.66 0.43 0.1 0.26 0.39 0.95 0.2 0.13 0.12 0.26 0.19 0.27 0.25 0.65 0.84 0.58 0.29 5.8 · 10−2 0.13 0.21 0.16 0.18 0.15 0.12 0.13 0.15 0.13 0.23 0.15 0.24 0.23 0.26 0.13 1 · 10−3

0.52 0.24 0.57 0.44 0.45 0.29 0.18 1 0.76 0.45 0.48 0.42 0.42 0.3 0.44 0.53 0.19 2.6 · 10−2 0.18 6.5 · 10−2 1.2 · 10−2 0.1 9.2 · 10−2 0.14 4 · 10−2 0.53 0.5 0.57 0.14 0.57 0.11 3.6 · 10−2 0.5 0.26 0.43 0.11 0.44 0.16 0.1 0.47 7.9 · 10−2 0.32 0.39 0.41 0.42 0.12 0.11 8 · 10−2 0.13 8.5 · 10−2 3.8 · 10−2 0.12 6.8 · 10−2 0.42 0.2 0.39 0.3
0.44 0.38 0.23 0.15 0.47 0.18 0.2 0.76 1 0.47 0.54 0.35 0.39 0.11 0.52 0.47 4.2 · 10−2 0.13 4.9 · 10−2 0.11 5.5 · 10−2 2.7 · 10−2 8.3 · 10−2 3.3 · 10−2 0.19 0.5 0.42 0.22 0.19 0.23 0.12 8.6 · 10−2 0.42 0.24 0.25 0.33 0.14 0.12 2.9 · 10−2 0.36 0 0.26 0.24 0.23 0.25 9.9 · 10−2 1.5 · 10−2 1.8 · 10−2 0.12 1.6 · 10−2 2 · 10−2 9.9 · 10−2 6 · 10−3 0.25 8.9 · 10−2 0.27 0.24
0.76 0.33 6.7 · 10−2 0.11 1 0.24 0.25 0.45 0.47 1 0.62 0.77 0.77 4.6 · 10−2 0.54 0.76 1.7 · 10−2 9.9 · 10−2 5.6 · 10−2 5.5 · 10−2 2.9 · 10−2 0.24 4.3 · 10−2 0.25 0.12 0.82 0.75 5.7 · 10−2 0.24 2.4 · 10−2 3.5 · 10−2 4.4 · 10−2 0.75 0.21 0.58 0.25 0.13 0.24 0.2 0.58 0.1 0.19 0.44 0.39 0.43 4.3 · 10−2 0.33 0.1 3.7 · 10−2 0.1 0.21 4.3 · 10−2 0.26 0.5 0.37 0.37 0.21
0.72 0.66 8.5 · 10−2 0.14 0.62 0.36 0.39 0.48 0.54 0.62 1 0.46 0.54 5.3 · 10−2 0.98 0.77 6 · 10−3 9.5 · 10−2 4.7 · 10−2 8.6 · 10−2 2.1 · 10−2 0.33 0.15 0.35 0.13 0.56 0.7 8.4 · 10−2 0.38 7.2 · 10−2 0.15 0.11 0.7 0.17 0.35 0.47 0.15 0.38 0.34 0.37 3.1 · 10−2 0.13 0.18 0.14 0.18 6.3 · 10−2 0.24 9.6 · 10−2 4.8 · 10−2 9.6 · 10−2 8.7 · 10−2 6.3 · 10−2 0.16 0.23 0.2 0.17 8.9 · 10−2

0.73 0.3 0.21 0.19 0.77 0.17 0.26 0.42 0.35 0.77 0.46 1 0.97 0.13 0.39 0.71 0.11 6.9 · 10−2 0.17 4.8 · 10−2 7.8 · 10−2 0.18 2.7 · 10−2 0.27 0.14 0.66 0.71 0.21 0.22 0.17 8 · 10−2 0.1 0.71 0.22 0.66 0.12 0.21 0.27 0.2 0.68 5.3 · 10−2 8.1 · 10−2 0.55 0.59 0.61 0.16 0.21 0.12 0.17 0.12 0.11 0.16 0.14 0.54 0.32 0.56 0.42
0.76 0.35 0.19 0.13 0.78 0.16 0.23 0.42 0.39 0.77 0.54 0.97 1 0.12 0.46 0.76 0.13 7.1 · 10−2 0.18 2 · 10−2 8 · 10−2 0.18 3.5 · 10−2 0.24 0.12 0.72 0.74 0.18 0.2 0.16 8.1 · 10−2 0.11 0.74 0.15 0.61 0.17 0.15 0.23 0.18 0.65 7.6 · 10−2 4.3 · 10−2 0.49 0.52 0.55 0.15 0.2 6.8 · 10−2 0.15 7.2 · 10−2 0.1 0.15 0.13 0.5 0.3 0.52 0.4

4.6 · 10−2 9.2 · 10−2 0.74 0.4 4.7 · 10−2 7.1 · 10−2 0.28 0.3 0.11 4.6 · 10−2 5.3 · 10−2 0.13 0.12 1 4.2 · 10−2 2.6 · 10−2 0.19 0.43 0.17 0.35 1 · 10−3 0.33 0.12 0.37 0.32 0.11 1.7 · 10−2 0.73 0.19 0.61 1.9 · 10−2 4 · 10−3 1.7 · 10−2 0.14 0.13 7 · 10−2 0.38 0.23 0.32 0.38 0.19 1.4 · 10−2 0.32 0.32 0.33 7.7 · 10−2 7.6 · 10−2 2.7 · 10−2 8.7 · 10−2 2.6 · 10−2 0.18 7.7 · 10−2 0.11 0.35 0.24 0.38 0.26
0.61 0.73 6.7 · 10−2 0.16 0.54 0.31 0.44 0.44 0.52 0.54 0.98 0.39 0.46 4.2 · 10−2 1 0.67 3.5 · 10−2 0.11 1.8 · 10−2 8.3 · 10−2 3 · 10−2 0.35 0.18 0.37 0.16 0.49 0.58 6.7 · 10−2 0.43 4.2 · 10−2 0.16 0.13 0.58 0.18 0.25 0.52 0.17 0.41 0.36 0.31 2 · 10−3 0.18 0.12 7.4 · 10−2 0.12 7.5 · 10−2 0.22 8.6 · 10−2 6 · 10−2 8.7 · 10−2 6.1 · 10−2 7.5 · 10−2 0.13 0.15 0.15 0.1 4.4 · 10−2

0.99 0.38 0.16 0.11 0.77 0.37 0.24 0.53 0.47 0.76 0.77 0.71 0.76 2.6 · 10−2 0.67 1 0.11 9.9 · 10−2 0.15 3 · 10−3 1.3 · 10−2 0.26 1.5 · 10−2 0.29 0.12 0.69 0.98 0.16 0.22 0.16 3.7 · 10−2 7.6 · 10−2 0.98 0.17 0.76 0.23 0.12 0.26 0.27 0.55 4.8 · 10−2 2.8 · 10−2 0.45 0.45 0.47 2.5 · 10−2 0.32 8.6 · 10−2 3.3 · 10−2 8.7 · 10−2 0.16 2.5 · 10−2 0.22 0.49 0.35 0.42 0.27
0.11 0.13 0.23 0.15 1.6 · 10−2 6 · 10−2 5.6 · 10−2 0.19 4.2 · 10−2 1.7 · 10−2 6 · 10−3 0.11 0.13 0.19 3.5 · 10−2 0.11 1 2.4 · 10−2 0.9 2.7 · 10−2 0.56 7.6 · 10−2 0.61 7.8 · 10−2 0.17 9.3 · 10−2 0.11 0.24 7.5 · 10−2 0.2 1.5 · 10−2 0.14 0.11 3 · 10−3 0.1 0.26 0.15 6.1 · 10−2 9.5 · 10−2 0.22 3.4 · 10−2 3.3 · 10−2 0.18 0.2 0.19 7 · 10−2 0.22 4.7 · 10−2 8.2 · 10−2 5.1 · 10−2 2.6 · 10−2 7 · 10−2 9 · 10−2 0.14 1.7 · 10−2 0.15 0.16
0.11 0.25 0.3 0.32 9.9 · 10−2 9.2 · 10−2 0.36 2.6 · 10−2 0.13 9.9 · 10−2 9.5 · 10−2 6.9 · 10−2 7.1 · 10−2 0.43 0.11 9.9 · 10−2 2.4 · 10−2 1 6.2 · 10−2 0.77 0.28 0.77 0.57 0.63 0.65 7.3 · 10−2 0.12 0.3 0.33 0.15 2.8 · 10−2 9.4 · 10−2 0.12 2 · 10−2 0.18 6.6 · 10−2 0.31 0.32 0.59 7.8 · 10−2 0.2 0.1 2.2 · 10−2 2 · 10−3 9 · 10−3 0.23 9.7 · 10−2 0.14 0.23 0.13 0.28 0.23 0.25 0.12 0.23 1 · 10−3 0.13
0.16 8.3 · 10−2 0.21 0.16 5.7 · 10−2 3.4 · 10−2 5 · 10−3 0.18 4.9 · 10−2 5.6 · 10−2 4.7 · 10−2 0.17 0.18 0.17 1.8 · 10−2 0.15 0.9 6.2 · 10−2 1 1.7 · 10−2 0.79 9.6 · 10−2 0.6 2.6 · 10−2 0.11 0.1 0.15 0.22 2.6 · 10−2 0.17 4.8 · 10−2 8.1 · 10−2 0.15 0.11 0.16 0.17 0.16 1.8 · 10−2 4.8 · 10−2 0.29 1.9 · 10−2 2 · 10−3 0.26 0.28 0.28 0.15 0.18 8.4 · 10−2 0.16 9 · 10−2 5 · 10−2 0.15 9.7 · 10−2 0.2 7 · 10−3 0.25 0.25

3 · 10−2 4.7 · 10−2 0.11 7.4 · 10−2 5.5 · 10−2 2.1 · 10−2 0.12 6.5 · 10−2 0.11 5.5 · 10−2 8.6 · 10−2 4.8 · 10−2 2 · 10−2 0.35 8.3 · 10−2 3 · 10−3 2.7 · 10−2 0.77 1.7 · 10−2 1 0.23 0.46 0.27 0.27 0.36 8 · 10−3 4.2 · 10−2 0.1 9.6 · 10−2 8 · 10−3 9.7 · 10−2 8.6 · 10−2 4.2 · 10−2 6.1 · 10−2 0.18 0 7.9 · 10−2 1.5 · 10−2 0.22 1.2 · 10−2 0.14 8 · 10−2 8.4 · 10−2 6.8 · 10−2 4.6 · 10−2 0.14 3.3 · 10−2 1.9 · 10−2 0.13 2.3 · 10−2 0.15 0.14 0.12 9.7 · 10−2 0.12 0 6.5 · 10−2

1.3 · 10−2 0.19 8 · 10−3 1.3 · 10−2 2.9 · 10−2 6.6 · 10−2 0.17 1.2 · 10−2 5.5 · 10−2 2.9 · 10−2 2.1 · 10−2 7.8 · 10−2 8 · 10−2 1 · 10−3 3 · 10−2 1.3 · 10−2 0.56 0.28 0.79 0.23 1 0.27 0.52 0.14 9.9 · 10−2 3.6 · 10−2 2.7 · 10−2 1.2 · 10−2 0.17 3.5 · 10−2 1.8 · 10−2 8 · 10−2 2.7 · 10−2 0.11 3.3 · 10−2 8.9 · 10−2 1.6 · 10−2 3.7 · 10−2 0.14 0.15 8.6 · 10−2 3.2 · 10−2 0.11 0.13 0.15 0.17 0.19 0.13 0.17 0.13 0.13 0.17 0.16 3.3 · 10−2 9.6 · 10−2 0.12 0.16
0.26 0.44 0.28 0.42 0.24 0.27 0.5 0.1 2.7 · 10−2 0.24 0.33 0.18 0.18 0.33 0.35 0.26 7.6 · 10−2 0.77 9.6 · 10−2 0.46 0.27 1 0.72 0.84 0.7 0.21 0.26 0.28 0.46 9.4 · 10−2 0.11 0.15 0.26 0.12 0.23 0.26 0.41 0.59 0.82 0.28 0.12 0.17 0.14 0.1 0.11 0.18 0.2 6.2 · 10−2 0.17 5.6 · 10−2 0.24 0.18 0.26 0.2 0.27 0.1 2.6 · 10−2

1 · 10−2 0.34 7.3 · 10−2 0.18 4.3 · 10−2 0.13 0.3 9.2 · 10−2 8.3 · 10−2 4.3 · 10−2 0.15 2.7 · 10−2 3.5 · 10−2 0.12 0.18 1.5 · 10−2 0.61 0.57 0.6 0.27 0.52 0.72 1 0.59 0.6 2 · 10−2 2.1 · 10−2 7.6 · 10−2 0.28 3 · 10−2 6.2 · 10−2 0.16 2.1 · 10−2 2.6 · 10−2 1.1 · 10−2 0.29 0.17 0.36 0.59 1.4 · 10−2 0.13 0.12 0.1 0.12 0.11 0.14 0.19 5.3 · 10−2 0.13 4.8 · 10−2 0.12 0.14 0.16 3.3 · 10−2 0.11 5.9 · 10−2 0.11
0.3 0.49 0.35 0.53 0.25 0.3 0.66 0.14 3.3 · 10−2 0.25 0.35 0.27 0.24 0.37 0.37 0.29 7.8 · 10−2 0.63 2.6 · 10−2 0.27 0.14 0.84 0.59 1 0.71 0.16 0.3 0.35 0.62 0.14 3.5 · 10−2 9.9 · 10−2 0.3 0.2 0.3 0.19 0.52 0.82 0.96 0.34 9 · 10−2 0.11 0.21 0.18 0.2 0.13 0.17 0.18 0.13 0.17 0.25 0.13 0.26 0.26 0.3 0.18 3.4 · 10−2

0.13 0.29 0.25 0.4 0.12 0.18 0.43 4 · 10−2 0.19 0.12 0.13 0.14 0.12 0.32 0.16 0.12 0.17 0.65 0.11 0.36 9.9 · 10−2 0.7 0.6 0.71 1 8.7 · 10−2 0.12 0.24 0.38 8.8 · 10−2 3.3 · 10−2 4.6 · 10−2 0.12 9.8 · 10−2 0.16 9.4 · 10−2 0.38 0.54 0.67 0.18 0.15 9 · 10−2 4.8 · 10−2 1.8 · 10−2 1.9 · 10−2 0.24 0.19 0.15 0.24 0.14 0.31 0.24 0.32 0.16 0.29 1 · 10−3 0.16
0.67 0.3 0.15 0.12 0.82 0.22 0.1 0.53 0.5 0.82 0.56 0.66 0.72 0.11 0.49 0.69 9.3 · 10−2 7.3 · 10−2 0.1 8 · 10−3 3.6 · 10−2 0.21 2 · 10−2 0.16 8.7 · 10−2 1 0.65 0.14 9.4 · 10−2 0.13 4.2 · 10−2 0.12 0.65 0.16 0.41 0.24 0.13 0.13 0.13 0.62 1.6 · 10−2 9.6 · 10−2 0.38 0.34 0.38 2 · 10−2 0.25 8 · 10−3 2.6 · 10−2 8 · 10−3 0.19 2 · 10−2 0.22 0.47 0.35 0.43 0.27
0.99 0.33 0.15 0.11 0.75 0.38 0.26 0.5 0.42 0.75 0.7 0.71 0.74 1.7 · 10−2 0.58 0.98 0.11 0.12 0.15 4.2 · 10−2 2.7 · 10−2 0.26 2.1 · 10−2 0.3 0.12 0.65 1 0.15 0.24 0.13 8 · 10−3 6.4 · 10−2 1 0.2 0.85 0.21 0.13 0.27 0.27 0.56 4.6 · 10−2 2.1 · 10−2 0.51 0.51 0.52 2 · 10−2 0.34 0.1 2.7 · 10−2 0.1 0.17 2 · 10−2 0.23 0.53 0.37 0.44 0.28
0.18 0.18 1 0.73 5.9 · 10−2 0.19 0.39 0.57 0.22 5.7 · 10−2 8.4 · 10−2 0.21 0.18 0.73 6.7 · 10−2 0.16 0.24 0.3 0.22 0.1 1.2 · 10−2 0.28 7.6 · 10−2 0.35 0.24 0.14 0.15 1 0.32 0.92 8.5 · 10−2 4.9 · 10−2 0.15 0.22 0.23 5.6 · 10−2 0.71 0.36 0.28 0.42 0.19 5.2 · 10−2 0.36 0.37 0.38 0.11 2 · 10−3 5 · 10−3 0.12 1 · 10−3 0.13 0.11 0.11 0.39 0.24 0.42 0.3
0.23 0.73 0.31 0.62 0.24 0.38 0.95 0.14 0.19 0.24 0.38 0.22 0.2 0.19 0.43 0.22 7.5 · 10−2 0.33 2.6 · 10−2 9.6 · 10−2 0.17 0.46 0.28 0.62 0.38 9.4 · 10−2 0.24 0.32 1 0.13 0.19 8 · 10−2 0.24 0.19 0.24 0.25 0.64 0.8 0.54 0.26 1.2 · 10−2 0.16 0.16 0.12 0.14 0.16 0.14 0.18 0.16 0.18 0.23 0.16 0.25 0.21 0.26 9 · 10−2 3.4 · 10−2

0.17 8.8 · 10−2 0.92 0.52 2.5 · 10−2 5.8 · 10−2 0.2 0.57 0.23 2.4 · 10−2 7.2 · 10−2 0.17 0.16 0.61 4.2 · 10−2 0.16 0.2 0.15 0.17 8 · 10−3 3.5 · 10−2 9.4 · 10−2 3 · 10−2 0.14 8.8 · 10−2 0.13 0.13 0.92 0.13 1 8.5 · 10−2 6.3 · 10−2 0.13 0.18 0.16 0.12 0.5 0.16 9.6 · 10−2 0.32 0.2 2 · 10−2 0.24 0.27 0.28 0.17 5.1 · 10−2 4 · 10−2 0.18 3.4 · 10−2 9 · 10−3 0.17 1.2 · 10−2 0.27 0.11 0.35 0.3
1.6 · 10−2 5.3 · 10−2 7.7 · 10−2 5.4 · 10−2 3.4 · 10−2 0.15 0.13 0.11 0.12 3.5 · 10−2 0.15 8 · 10−2 8.1 · 10−2 1.9 · 10−2 0.16 3.7 · 10−2 1.5 · 10−2 2.8 · 10−2 4.8 · 10−2 9.7 · 10−2 1.8 · 10−2 0.11 6.2 · 10−2 3.5 · 10−2 3.3 · 10−2 4.2 · 10−2 8 · 10−3 8.5 · 10−2 0.19 8.5 · 10−2 1 2.5 · 10−2 8 · 10−3 4 · 10−3 7.7 · 10−2 2.7 · 10−2 5.9 · 10−2 5.7 · 10−2 0.13 0.1 4.5 · 10−2 7 · 10−2 0.2 0.15 0.16 4.4 · 10−2 9.4 · 10−2 4.5 · 10−2 5.6 · 10−2 4.2 · 10−2 0.18 4.4 · 10−2 0.16 0.25 0.21 0.17 6.7 · 10−2

8.1 · 10−2 0.16 5.4 · 10−2 9.3 · 10−2 4.5 · 10−2 6.2 · 10−2 0.12 3.6 · 10−2 8.6 · 10−2 4.4 · 10−2 0.11 0.1 0.11 4 · 10−3 0.13 7.6 · 10−2 0.14 9.4 · 10−2 8.1 · 10−2 8.6 · 10−2 8 · 10−2 0.15 0.16 9.9 · 10−2 4.6 · 10−2 0.12 6.4 · 10−2 4.9 · 10−2 8 · 10−2 6.3 · 10−2 2.5 · 10−2 1 6.4 · 10−2 6.3 · 10−2 7.7 · 10−2 0.11 8.6 · 10−2 8.5 · 10−2 8.4 · 10−2 1.9 · 10−2 8.3 · 10−2 2.8 · 10−2 1.9 · 10−2 1.9 · 10−2 2.6 · 10−2 5 · 10−3 0.19 4.6 · 10−2 4 · 10−3 4.5 · 10−2 7 · 10−3 5 · 10−3 4.1 · 10−2 1.7 · 10−2 4.4 · 10−2 2.9 · 10−2 4 · 10−3

0.99 0.33 0.15 0.11 0.75 0.38 0.26 0.5 0.42 0.75 0.7 0.71 0.74 1.7 · 10−2 0.58 0.98 0.11 0.12 0.15 4.2 · 10−2 2.7 · 10−2 0.26 2.1 · 10−2 0.3 0.12 0.65 1 0.15 0.24 0.13 8 · 10−3 6.4 · 10−2 1 0.2 0.85 0.21 0.13 0.27 0.27 0.56 4.6 · 10−2 2.1 · 10−2 0.51 0.51 0.52 2 · 10−2 0.34 0.1 2.7 · 10−2 0.1 0.17 2 · 10−2 0.23 0.53 0.37 0.44 0.28
0.18 0.13 0.23 0.33 0.21 4 · 10−2 0.19 0.26 0.24 0.21 0.17 0.22 0.15 0.14 0.18 0.17 3 · 10−3 2 · 10−2 0.11 6.1 · 10−2 0.11 0.12 2.6 · 10−2 0.2 9.8 · 10−2 0.16 0.2 0.22 0.19 0.18 4 · 10−3 6.3 · 10−2 0.2 1 0.22 4 · 10−2 0.31 0.28 0.16 0.32 7.2 · 10−2 4.5 · 10−2 0.4 0.27 0.35 8.5 · 10−2 0.34 6.7 · 10−2 8.3 · 10−2 6.3 · 10−2 0.23 8.5 · 10−2 0.29 0.36 0.36 0.26 9.5 · 10−2

0.83 0.15 0.23 0.23 0.59 0.36 0.27 0.43 0.25 0.58 0.35 0.66 0.61 0.13 0.25 0.76 0.1 0.18 0.16 0.18 3.3 · 10−2 0.23 1.1 · 10−2 0.3 0.16 0.41 0.85 0.23 0.24 0.16 7.7 · 10−2 7.7 · 10−2 0.85 0.22 1 8.8 · 10−2 0.24 0.27 0.24 0.55 3.2 · 10−2 9 · 10−3 0.66 0.69 0.66 3 · 10−2 0.35 0.11 3.1 · 10−2 0.11 0.2 3 · 10−2 0.26 0.63 0.41 0.48 0.3
0.21 0.59 5.9 · 10−2 8 · 10−3 0.25 0.19 0.25 0.11 0.33 0.25 0.47 0.12 0.17 7 · 10−2 0.52 0.23 0.26 6.6 · 10−2 0.17 0 8.9 · 10−2 0.26 0.29 0.19 9.4 · 10−2 0.24 0.21 5.6 · 10−2 0.25 0.12 2.7 · 10−2 0.11 0.21 4 · 10−2 8.8 · 10−2 1 1.4 · 10−2 0.17 0.16 0.2 0.1 2.6 · 10−2 7 · 10−3 2.1 · 10−2 4 · 10−3 6.6 · 10−2 2 · 10−3 7.5 · 10−2 7.6 · 10−2 7.4 · 10−2 6.3 · 10−2 6.6 · 10−2 4.4 · 10−2 1.2 · 10−2 2.4 · 10−2 8 · 10−2 0.11
0.14 0.38 0.7 0.99 0.13 0.35 0.65 0.44 0.14 0.13 0.15 0.21 0.15 0.38 0.17 0.12 0.15 0.31 0.16 7.9 · 10−2 1.6 · 10−2 0.41 0.17 0.52 0.38 0.13 0.13 0.71 0.64 0.5 5.9 · 10−2 8.6 · 10−2 0.13 0.31 0.24 1.4 · 10−2 1 0.62 0.42 0.39 6.7 · 10−2 0.13 0.31 0.3 0.3 7.7 · 10−2 0.13 0.14 7.3 · 10−2 0.14 0.23 7.7 · 10−2 0.24 0.34 0.3 0.24 8.8 · 10−2

0.27 0.58 0.35 0.62 0.24 0.33 0.84 0.16 0.12 0.24 0.38 0.27 0.23 0.23 0.41 0.26 6.1 · 10−2 0.32 1.8 · 10−2 1.5 · 10−2 3.7 · 10−2 0.59 0.36 0.82 0.54 0.13 0.27 0.36 0.8 0.16 5.7 · 10−2 8.5 · 10−2 0.27 0.28 0.27 0.17 0.62 1 0.78 0.35 4.4 · 10−2 1.5 · 10−2 0.24 0.19 0.22 0.12 0.18 0.14 0.12 0.14 0.24 0.12 0.27 0.26 0.3 0.17 2.4 · 10−2

0.27 0.44 0.28 0.43 0.21 0.23 0.58 0.1 2.9 · 10−2 0.2 0.34 0.2 0.18 0.32 0.36 0.27 9.5 · 10−2 0.59 4.8 · 10−2 0.22 0.14 0.82 0.59 0.96 0.67 0.13 0.27 0.28 0.54 9.6 · 10−2 0.13 8.4 · 10−2 0.27 0.16 0.24 0.16 0.42 0.78 1 0.28 6.8 · 10−2 0.13 0.14 0.12 0.14 0.13 0.21 0.17 0.12 0.17 0.2 0.13 0.24 0.19 0.25 0.12 5 · 10−3

0.57 0.27 0.42 0.38 0.58 0.32 0.29 0.47 0.36 0.58 0.37 0.68 0.65 0.38 0.31 0.55 0.22 7.8 · 10−2 0.29 1.2 · 10−2 0.15 0.28 1.4 · 10−2 0.34 0.18 0.62 0.56 0.42 0.26 0.32 0.1 1.9 · 10−2 0.56 0.32 0.55 0.2 0.39 0.35 0.28 1 1 · 10−2 0.13 0.77 0.76 0.8 0.14 0.28 0.11 0.15 0.11 0.24 0.14 0.27 0.76 0.5 0.75 0.52
3.8 · 10−2 0.11 0.19 7.7 · 10−2 0.1 8 · 10−2 5.8 · 10−2 7.9 · 10−2 0 0.1 3.1 · 10−2 5.3 · 10−2 7.6 · 10−2 0.19 2 · 10−3 4.8 · 10−2 3.4 · 10−2 0.2 1.9 · 10−2 0.14 8.6 · 10−2 0.12 0.13 9 · 10−2 0.15 1.6 · 10−2 4.6 · 10−2 0.19 1.2 · 10−2 0.2 4.5 · 10−2 8.3 · 10−2 4.6 · 10−2 7.2 · 10−2 3.2 · 10−2 0.1 6.7 · 10−2 4.4 · 10−2 6.8 · 10−2 1 · 10−2 1 4.9 · 10−2 1.1 · 10−2 3.2 · 10−2 0 9.7 · 10−2 0.18 0.14 0.1 0.13 5.8 · 10−2 9.7 · 10−2 7.4 · 10−2 1 · 10−3 5.2 · 10−2 5.5 · 10−2 7 · 10−2

2.9 · 10−2 0.14 6.2 · 10−2 0.13 0.19 5.2 · 10−2 0.13 0.32 0.26 0.19 0.13 8.1 · 10−2 4.3 · 10−2 1.4 · 10−2 0.18 2.8 · 10−2 3.3 · 10−2 0.1 2 · 10−3 8 · 10−2 3.2 · 10−2 0.17 0.12 0.11 9 · 10−2 9.6 · 10−2 2.1 · 10−2 5.2 · 10−2 0.16 2 · 10−2 7 · 10−2 2.8 · 10−2 2.1 · 10−2 4.5 · 10−2 9 · 10−3 2.6 · 10−2 0.13 1.5 · 10−2 0.13 0.13 4.9 · 10−2 1 5.3 · 10−2 5.7 · 10−2 6.6 · 10−2 5.6 · 10−2 3.8 · 10−2 0.13 5.3 · 10−2 0.13 4 · 10−2 5.6 · 10−2 4.6 · 10−2 6.3 · 10−2 4.8 · 10−2 2 · 10−3 2.6 · 10−2

0.5 2.3 · 10−2 0.35 0.3 0.44 0.34 0.21 0.39 0.24 0.44 0.18 0.55 0.49 0.32 0.12 0.45 0.18 2.2 · 10−2 0.26 8.4 · 10−2 0.11 0.14 0.1 0.21 4.8 · 10−2 0.38 0.51 0.36 0.16 0.24 0.2 1.9 · 10−2 0.51 0.4 0.66 7 · 10−3 0.31 0.24 0.14 0.77 1.1 · 10−2 5.3 · 10−2 1 0.93 0.95 4 · 10−2 0.43 5.8 · 10−2 4.4 · 10−2 6 · 10−2 0.38 4 · 10−2 0.42 0.91 0.66 0.79 0.48
0.51 9 · 10−3 0.35 0.28 0.4 0.34 0.16 0.41 0.23 0.39 0.14 0.59 0.52 0.32 7.4 · 10−2 0.45 0.2 2 · 10−3 0.28 6.8 · 10−2 0.13 0.1 0.12 0.18 1.8 · 10−2 0.34 0.51 0.37 0.12 0.27 0.15 1.9 · 10−2 0.51 0.27 0.69 2.1 · 10−2 0.3 0.19 0.12 0.76 3.2 · 10−2 5.7 · 10−2 0.93 1 0.98 0.27 0.37 5 · 10−2 0.27 5.4 · 10−2 0.18 0.27 0.24 0.85 0.51 0.86 0.62
0.51 3.1 · 10−2 0.37 0.29 0.43 0.33 0.18 0.42 0.25 0.43 0.18 0.61 0.55 0.33 0.12 0.47 0.19 9 · 10−3 0.28 4.6 · 10−2 0.15 0.11 0.11 0.2 1.9 · 10−2 0.38 0.52 0.38 0.14 0.28 0.16 2.6 · 10−2 0.52 0.35 0.66 4 · 10−3 0.3 0.22 0.14 0.8 0 6.6 · 10−2 0.95 0.98 1 0.28 0.38 4.1 · 10−2 0.28 4.5 · 10−2 0.19 0.28 0.25 0.86 0.52 0.89 0.66

3 · 10−2 2.7 · 10−2 0.1 9 · 10−2 4.3 · 10−2 3.4 · 10−2 0.15 0.12 9.9 · 10−2 4.3 · 10−2 6.3 · 10−2 0.16 0.15 7.7 · 10−2 7.5 · 10−2 2.5 · 10−2 7 · 10−2 0.23 0.15 0.14 0.17 0.18 0.14 0.13 0.24 2 · 10−2 2 · 10−2 0.11 0.16 0.17 4.4 · 10−2 5 · 10−3 2 · 10−2 8.5 · 10−2 3 · 10−2 6.6 · 10−2 7.7 · 10−2 0.12 0.13 0.14 9.7 · 10−2 5.6 · 10−2 4 · 10−2 0.27 0.28 1 0.32 0.17 1 0.15 0.79 1 0.76 0.12 0.55 0.53 0.84
0.33 2.8 · 10−2 1.5 · 10−2 0.12 0.33 0.15 0.12 0.11 1.5 · 10−2 0.33 0.24 0.21 0.2 7.6 · 10−2 0.22 0.32 0.22 9.7 · 10−2 0.18 3.3 · 10−2 0.19 0.2 0.19 0.17 0.19 0.25 0.34 2 · 10−3 0.14 5.1 · 10−2 9.4 · 10−2 0.19 0.34 0.34 0.35 2 · 10−3 0.13 0.18 0.21 0.28 0.18 3.8 · 10−2 0.43 0.37 0.38 0.32 1 0.14 0.34 0.13 0.42 0.32 0.63 0.5 0.63 0.19 0.12

8.8 · 10−2 4.2 · 10−2 4 · 10−3 0.12 0.1 0.18 0.13 8 · 10−2 1.8 · 10−2 0.1 9.6 · 10−2 0.12 6.8 · 10−2 2.7 · 10−2 8.6 · 10−2 8.6 · 10−2 4.7 · 10−2 0.14 8.4 · 10−2 1.9 · 10−2 0.13 6.2 · 10−2 5.3 · 10−2 0.18 0.15 8 · 10−3 0.1 5 · 10−3 0.18 4 · 10−2 4.5 · 10−2 4.6 · 10−2 0.1 6.7 · 10−2 0.11 7.5 · 10−2 0.14 0.14 0.17 0.11 0.14 0.13 5.8 · 10−2 5 · 10−2 4.1 · 10−2 0.17 0.14 1 0.18 1 0.18 0.17 0.21 0.12 0.17 5 · 10−2 0.15
3.7 · 10−2 1.5 · 10−2 0.12 8.4 · 10−2 3.6 · 10−2 3.2 · 10−2 0.15 0.13 0.12 3.7 · 10−2 4.8 · 10−2 0.17 0.15 8.7 · 10−2 6 · 10−2 3.3 · 10−2 8.2 · 10−2 0.23 0.16 0.13 0.17 0.17 0.13 0.13 0.24 2.6 · 10−2 2.7 · 10−2 0.12 0.16 0.18 5.6 · 10−2 4 · 10−3 2.7 · 10−2 8.3 · 10−2 3.1 · 10−2 7.6 · 10−2 7.3 · 10−2 0.12 0.12 0.15 0.1 5.3 · 10−2 4.4 · 10−2 0.27 0.28 1 0.34 0.18 1 0.15 0.8 1 0.79 0.13 0.57 0.53 0.85
8.9 · 10−2 4.2 · 10−2 1 · 10−3 0.12 0.1 0.18 0.13 8.5 · 10−2 1.6 · 10−2 0.1 9.6 · 10−2 0.12 7.2 · 10−2 2.6 · 10−2 8.7 · 10−2 8.7 · 10−2 5.1 · 10−2 0.13 9 · 10−2 2.3 · 10−2 0.13 5.6 · 10−2 4.8 · 10−2 0.17 0.14 8 · 10−3 0.1 1 · 10−3 0.18 3.4 · 10−2 4.2 · 10−2 4.5 · 10−2 0.1 6.3 · 10−2 0.11 7.4 · 10−2 0.14 0.14 0.17 0.11 0.13 0.13 6 · 10−2 5.4 · 10−2 4.5 · 10−2 0.15 0.13 1 0.15 1 0.16 0.15 0.18 0.11 0.16 4 · 10−2 0.13

0.17 2.1 · 10−2 0.13 0.24 0.21 0.2 0.23 3.8 · 10−2 2 · 10−2 0.21 8.7 · 10−2 0.11 0.1 0.18 6.1 · 10−2 0.16 2.6 · 10−2 0.28 5 · 10−2 0.15 0.13 0.24 0.12 0.25 0.31 0.19 0.17 0.13 0.23 9 · 10−3 0.18 7 · 10−3 0.17 0.23 0.2 6.3 · 10−2 0.23 0.24 0.2 0.24 5.8 · 10−2 4 · 10−2 0.38 0.18 0.19 0.79 0.42 0.18 0.8 0.16 1 0.79 0.96 0.59 0.91 6 · 10−3 0.48
3 · 10−2 2.7 · 10−2 0.1 9 · 10−2 4.3 · 10−2 3.4 · 10−2 0.15 0.12 9.9 · 10−2 4.3 · 10−2 6.3 · 10−2 0.16 0.15 7.7 · 10−2 7.5 · 10−2 2.5 · 10−2 7 · 10−2 0.23 0.15 0.14 0.17 0.18 0.14 0.13 0.24 2 · 10−2 2 · 10−2 0.11 0.16 0.17 4.4 · 10−2 5 · 10−3 2 · 10−2 8.5 · 10−2 3 · 10−2 6.6 · 10−2 7.7 · 10−2 0.12 0.13 0.14 9.7 · 10−2 5.6 · 10−2 4 · 10−2 0.27 0.28 1 0.32 0.17 1 0.15 0.79 1 0.76 0.12 0.55 0.53 0.84
0.23 3.8 · 10−2 9.9 · 10−2 0.24 0.26 0.25 0.24 6.8 · 10−2 6 · 10−3 0.26 0.16 0.14 0.13 0.11 0.13 0.22 9 · 10−2 0.25 9.7 · 10−2 0.12 0.16 0.26 0.16 0.26 0.32 0.22 0.23 0.11 0.25 1.2 · 10−2 0.16 4.1 · 10−2 0.23 0.29 0.26 4.4 · 10−2 0.24 0.27 0.24 0.27 7.4 · 10−2 4.6 · 10−2 0.42 0.24 0.25 0.76 0.63 0.21 0.79 0.18 0.96 0.76 1 0.62 0.94 2 · 10−2 0.48
0.53 2.8 · 10−2 0.38 0.34 0.5 0.37 0.23 0.42 0.25 0.5 0.23 0.54 0.5 0.35 0.15 0.49 0.14 0.12 0.2 9.7 · 10−2 3.3 · 10−2 0.2 3.3 · 10−2 0.26 0.16 0.47 0.53 0.39 0.21 0.27 0.25 1.7 · 10−2 0.53 0.36 0.63 1.2 · 10−2 0.34 0.26 0.19 0.76 1 · 10−3 6.3 · 10−2 0.91 0.85 0.86 0.12 0.5 0.12 0.13 0.11 0.59 0.12 0.62 1 0.83 0.73 0.32
0.36 5.6 · 10−2 0.24 0.29 0.37 0.31 0.26 0.2 8.9 · 10−2 0.37 0.2 0.32 0.3 0.24 0.15 0.35 1.7 · 10−2 0.23 7 · 10−3 0.12 9.6 · 10−2 0.27 0.11 0.3 0.29 0.35 0.37 0.24 0.26 0.11 0.21 4.4 · 10−2 0.37 0.36 0.41 2.4 · 10−2 0.3 0.3 0.25 0.5 5.2 · 10−2 4.8 · 10−2 0.66 0.51 0.52 0.55 0.63 0.17 0.57 0.16 0.91 0.55 0.94 0.83 1 0.34 0.17
0.44 7.5 · 10−2 0.41 0.23 0.37 0.27 0.13 0.39 0.27 0.37 0.17 0.56 0.52 0.38 0.1 0.42 0.15 1 · 10−3 0.25 0 0.12 0.1 5.9 · 10−2 0.18 1 · 10−3 0.43 0.44 0.42 9 · 10−2 0.35 0.17 2.9 · 10−2 0.44 0.26 0.48 8 · 10−2 0.24 0.17 0.12 0.75 5.5 · 10−2 2 · 10−3 0.79 0.86 0.89 0.53 0.19 5 · 10−2 0.53 4 · 10−2 6 · 10−3 0.53 2 · 10−2 0.73 0.34 1 0.86
0.28 6.1 · 10−2 0.29 7.9 · 10−2 0.21 0.11 1 · 10−3 0.3 0.24 0.21 8.9 · 10−2 0.42 0.4 0.26 4.4 · 10−2 0.27 0.16 0.13 0.25 6.5 · 10−2 0.16 2.6 · 10−2 0.11 3.4 · 10−2 0.16 0.27 0.28 0.3 3.4 · 10−2 0.3 6.7 · 10−2 4 · 10−3 0.28 9.5 · 10−2 0.3 0.11 8.8 · 10−2 2.4 · 10−2 5 · 10−3 0.52 7 · 10−2 2.6 · 10−2 0.48 0.62 0.66 0.84 0.12 0.15 0.85 0.13 0.48 0.84 0.48 0.32 0.17 0.86 1
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Table 3.11: The colour map of correlation matrix for the features with which the best result is obtained for DB-THY-IR dataset.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
1 0.7 0.31 0.26 0.62 8 · 10−2 0.18 6.6 · 10−2 9.6 · 10−2 0.13 0.37 0.29 5.6 · 10−2 0.37 8.7 · 10−2 0.38 0.19 0.32 0.21 0.38 0.27 0.32 0.15 0.38 4.6 · 10−2 0.28 4 · 10−2 0.32 1.3 · 10−2 7.2 · 10−2 0.27 0.16 0.32 0.16 0.51 0.51 0.2 8.9 · 10−2 0.38
0.7 1 0.41 0.24 0.65 8.6 · 10−2 0.14 0 6 · 10−2 9.3 · 10−2 0.38 0.3 1 · 10−2 0.38 4.2 · 10−2 0.38 0.21 0.32 0.23 0.33 0.29 0.34 0.17 0.33 4.7 · 10−2 0.32 5 · 10−2 0.34 1 · 10−2 4.8 · 10−2 0.25 0.15 0.34 0.16 0.45 0.48 0.34 9.3 · 10−2 0.34
0.31 0.41 1 0.49 0.5 3 · 10−2 0.19 0.19 8.8 · 10−2 6.9 · 10−2 0.37 0.34 2 · 10−2 0.37 6.8 · 10−2 0.35 0.32 0.26 0.13 0.35 0.55 0.58 0.17 0.35 4.4 · 10−2 1.3 · 10−2 4.5 · 10−2 0.58 7.3 · 10−2 1 · 10−3 0.19 0.15 0.58 0.21 0.47 0.46 5 · 10−3 0.15 0.35
0.26 0.24 0.49 1 0.3 2.4 · 10−2 0.24 7.1 · 10−2 0.13 8.5 · 10−2 0.6 0.53 6 · 10−3 0.6 9 · 10−3 0.58 0.51 0.47 0.35 0.35 0.35 0.45 0.18 0.35 2.3 · 10−2 1.8 · 10−2 7.8 · 10−2 0.45 0.15 7.5 · 10−2 0.16 0.13 0.45 9.7 · 10−2 0.49 0.42 7 · 10−3 4.8 · 10−2 0.31
0.62 0.65 0.5 0.3 1 6 · 10−3 0.32 9 · 10−2 3.2 · 10−2 6.4 · 10−2 0.34 0.27 9.6 · 10−2 0.34 3.2 · 10−2 0.33 0.2 0.32 0.21 0.54 0.58 0.61 0.18 0.54 0.17 0.18 3.4 · 10−2 0.61 3.2 · 10−2 0.1 0.38 0.3 0.61 0.41 0.56 0.6 8 · 10−2 0.32 0.56

8 · 10−2 8.6 · 10−2 3 · 10−2 2.4 · 10−2 6 · 10−3 1 5.7 · 10−2 9 · 10−2 4.7 · 10−2 5 · 10−2 6.4 · 10−2 2.8 · 10−2 0.12 6.4 · 10−2 0.16 5 · 10−2 8.2 · 10−2 2.9 · 10−2 1.9 · 10−2 3.8 · 10−2 0.1 7.3 · 10−2 7.2 · 10−2 3.8 · 10−2 9.2 · 10−2 6.3 · 10−2 2 · 10−3 7.2 · 10−2 2.5 · 10−2 6.7 · 10−2 6.7 · 10−2 5.7 · 10−2 7.3 · 10−2 7.5 · 10−2 1.3 · 10−2 3.5 · 10−2 3.6 · 10−2 9.9 · 10−2 4.3 · 10−2

0.18 0.14 0.19 0.24 0.32 5.7 · 10−2 1 3.9 · 10−2 6.3 · 10−2 3.4 · 10−2 8.3 · 10−2 0.14 4.4 · 10−2 8.3 · 10−2 0.21 6.7 · 10−2 1.5 · 10−2 0.33 5.8 · 10−2 0.33 0.49 0.5 4.4 · 10−2 0.33 0.1 5 · 10−3 5 · 10−3 0.5 6.4 · 10−2 0.11 4.3 · 10−2 7.8 · 10−2 0.5 0.19 0.34 0.35 1.4 · 10−2 0.13 0.32
6.6 · 10−2 0 0.19 7.1 · 10−2 9 · 10−2 9 · 10−2 3.9 · 10−2 1 6.8 · 10−2 2.4 · 10−2 0.19 6 · 10−2 8 · 10−3 0.19 0.13 0.17 0.1 6 · 10−3 7.1 · 10−2 6.2 · 10−2 1.7 · 10−2 4.4 · 10−2 0 6.2 · 10−2 4.5 · 10−2 9.4 · 10−2 9.9 · 10−2 4.4 · 10−2 5.6 · 10−2 9.5 · 10−2 3.9 · 10−2 6.3 · 10−2 4.5 · 10−2 1.6 · 10−2 1.5 · 10−2 3 · 10−3 5.2 · 10−2 3 · 10−2 4.8 · 10−2
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3.4. Results and Discussion

(a) DB-DMR-IR

(b) DB-FOOT-IR

(c) DB-THY-IR

Fig. 3.10: The absolute summary plot of the best performing models using UnionFeature_Set for
the three datasets.

Figure 3.10 displays the absolute summary plot of the models(3.4) for the three
datasets – DB-DMR-IR, DB-FOOT-IR, and DB-THY-IR. The figure also demon-
strates the relative importance of features by class. In this figure, the average
absolute value of the SHAP values for each variable is taken in order to obtain
a bar chart as a function of the contribution of each variable to the prediction of
the model. The features are ordered from being most (top) to least (bottom) in-
fluential.The graphs are plotted for the five most significant features (out of 467
features) that contribute to the model’s prediction. The following is observed from
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figure 3.10 and Table 3.8.

• Feature F1 (Texture energy using LS kernel BAR[15]) is the most influen-
tial feature for predicting the abnormality in DB-DMR-IR dataset. Features
F3 (Contrast of Gray level difference statistics BAR[15]) and F29 (Differ-
ence between Co-occurrence levels based energy from Modified LBP Edge
matrix RAS[24]) are the most influential for DB-FOOT-IR and DB-THY-IR
datasets respectively.

• Features F3 (Contrast of Gray level difference statistics BAR[15]) and F18
(Difference variance from GLCM Sub-Matrix GUP) are significant features
in all the models for predicting abnormality in the human body.

• Texture and Energy-based Features extracted from the ROI are observed to
be more influential compared to the ones extracted from the entire thermal
image for all the datasets.

Thus, a feature subset is obtained from UnionFeature_Set (Table 3.8) that is
most relevant and not redundant for diagnosing inflammation using Thermogra-
phy. Also, the respective feature-sets effectively distinguish normal and abnormal
thermal patterns for the datasets.

3.5 Chapter Summary

This chapter introduces two statistical models aimed at differentiating normal and
abnormal thermal patterns in medical thermal imaging. The first model utilizes a
novel set of hand-crafted features extracted from three publicly available datasets,
focusing on detecting abnormalities related to breast cancer, diabetes, and thyroid
disorders. The methodology involves asymmetry-based features extraction tech-
niques, including GLCM-based texture features, LBP-based statistical features,
and LBP-Otsu threshold features, which are used to detect temperature asymmetry
in the human body. The second model systematically evaluates the performance of
this proposed feature set in comparison with eight state-of-the-art feature extrac-
tion techniques, establishing a standardized methodology for analyzing thermal
images. In this model, a total of 467 distinct features were compiled by integrat-
ing features from multiple existing studies into a unified feature set (UnionFea-
ture_Set). Feature selection was performed using four widely used methods —
PC, mRMR, ReF, and ChiSq, to refine the feature space, while classification was
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conducted using k-NN, SVM, DTC, and RFC. To ensure unbiased evaluation, a
two-level sampling strategy was employed to address dataset imbalance, and cross
validation techniques, including 5-fold, 10-fold, and LOOCV were used to assess
model generalization.

The results of the study demonstrated that without feature selection, the BAR
feature set performed best for DB-DMR-IR and DB-THY-IR datasets, while the
GUP feature set yielded the highest accuracy for DB-FOOT-IR. However, when
feature selection methods were applied, the UnionFeature_Set consistently out-
performed individual feature extraction methods, significantly improving classifi-
cation accuracy. Among the feature selection techniques, ReF and mRMR proved
to be the most effective in selecting relevant features while reducing redundancy.
In terms of classifier performance, SVM and RFC emerged as the most effective
models, particularly when combined with mRMR and ReF feature selection tech-
niques, whereas Decision Trees showed relatively lower performance, especially
for datasets with high-dimensional feature spaces. Finally, we obtained a feature-
subset of 45, 57, and 39 features (from UnionFeature_Set) filtered by mRMR fea-
ture selection method for DB-DMR-IR and DB-FOOT-IR, and ReF FS method
for DB-THY-IR, respectively. The feature-subset obtained for all the datasets are
relevant, non-redundant, and distinguishes normal and abnormal thermal patterns
with an accuracy of 94.75% on the DB-DMR-IR, 93.14% on DB-FOOT-IR, and
92.06% on DB-THY-IR dataset. The findings establish a standardized and statis-
tically validated approach for thermal pattern differentiation using machine learn-
ing, highlighting the potential of thermography as a diagnostic tool. The study
addresses critical challenges in feature redundancy and dataset imbalance, offer-
ing a robust framework for future research in automated thermal image analysis,
with promising applications in disease screening and early detection in clinical
settings.
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Chapter 4
Deep Learning-based Thermal
Biomarker Analysis

This chapter proposes a light weight deep learning-based classification model that
can be deployed on mobile devices for characterizing and detecting abnormality
due to inflammation in human thermal images.

4.1 Introduction

This chapter proposes an automated and computational intelligence-aided diag-
nostic system that can be used for precise and timely detection of abnormality due
to inflammation in human body. For the proposed statement, a lightweight model
is presented that can be deployed on mobile devices for ease of human use. For the
proposed statement, UnionFeature_Set, various hand-crafted and Deep Learning-
based feature-sets are extracted from two thermal imaging based datasets and their
performance is compared using four state-of-the-art classifiers and 10-fold cross
validation sampling strategy. Also, light weight pre-trained Deep Learning mod-
els are proposed to characterize and classify abnormal patterns in medical thermal
images.

This chapter describes the various Hand-crafted Features in section 4.2.1 and
deep learning-based models for features extraction in section 4.2.2. The classi-
fiers used for comparing the performance of UnionFeature_Set, hand-crafted, and
deep learning-based feature-sets are discussed in section 4.2.3. The section 4.3 de-
scribes the experimental setup for the study, followed by results analysis in section
4.4. The chapter is summarized in section 4.5.
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4.2 Methodology

Characteristics of a pattern in an image are extracted in the form of features. It
is a crucial phase in a machine learning pipeline. Features may be manually ex-
tracted as Hand-crafted Features(section 4.2.1) or automatically using Deep Lean-
ing Models (section 4.2.2). This section describes and contrasts various Hand-
crafted and Deep Learning-based feature-sets extracted for classifying abnormal
biomarkers in the medical thermal images. Also, the state-of-the-art classification
methods used for evaluation in the study are stated in section 4.2.3.

4.2.1 Traditional Hand-crafted Feature-sets

The 12 hand-crafted feature-sets are extracted for the study (detailed in Table 4.1).
They are categorized as Textural features (FOS, GLDS-based features, NGTDM-
based features, GLRM-based features, SFM-based features, TEM, LBP, GLCM-
based features), Multi-scale Features (WT-based features, features from FPS),
SHAPE-based features, HOG-based features. The Table 4.1 briefly describes and
compares the various texture based-hand-crafted feature sets. Also, the UnionFea-
ture_Set obtained in Chapter3, section 3.4.3 are extracted for investigation. The
features generated are normalized in the range [0,1] before applying the classifier.

4.2.2 Deep Learning-based Feature-sets

Deep Learning (DL) has redefined the task of image processing, wherein high-
level features may be extracted using convolutional Neural Networks (CNN). Fig-
ure 4.1 illustrates the fundamental architecture of a CNN Model. A CNN model
comprises multiple Convolutional layers, pooling layers and fully connected lay-
ers at the end. In convolutional layers, the filters convolve with the input thermal
image, followed by activation functions, and intermediate feature maps are gener-
ated. The pooling layers scale down the feature map’s dimensions, reducing the
impact of overlapping receptive fields and improving the computational efficiency.
The fully connected layers, along with the Soft-Max layer, operate as its classifier
and finally generate the output. DL-based models require a vast amount of training
data to learn the network parameters.
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Table 4.1: Comparison of the hand-crafted feature-sets.

Feature Extraction Method Number of
Features

Feature Names Description

First Order Statistics[FOS] 8 Mean, variance, median, mode, skewness, kurtosis, standard deviation, entropy First Order Statistics are computed from the empirical probability density function
denoted as image histogram.

Gray Level Co-Occurrence Matrix
based features[GLCM] [110, 125,
126]

20 Contrast, Cluster Shade, Homogeneity, Sum Variance, Inverse Difference Normal-
ized, Information Measure of Correlation 2, Angular Second Moment, Sum En-
tropy, Entropy, Difference Variance, Information Measure of Correlation 1, Sum
Average, Variance, Correlation, Auto-correlation, Dissimilarity, Cluster, Promi-
nence, Difference Entropy, Maximum Probability, Inverse Difference Moment Nor-
malized

Gray Level Co-Occurrence Matrix based features are computed from second-order
joint conditional probability density functions defining the co-occurrences of the
pixel in given direction in the image.

Uniform Local Binary
Patterns[LBP][127]

59 - Uniform Local Binary Patterns based features encode the information in the equidis-
tant neighbourhood around a pixel as local texture information as a binary Pattern.
In uniform LBP, a centre pixel is labelled as uniform if the number of bit transitions
in the circular bit-stream is less than or equal to 2.

Gray Level Run-length Matrix
based features[GLRM][128]

11 Gray-Level and Run-Length Non-Uniformity, Non-Uniformity, Run Percentage,
Low and High Gray-Level Run Emphasis, Short and Long Run Emphasis, Short
Low Gray-Level Emphasis, Short Run High Gray-Level and Long Run Low Gray-
Level emphasis, Long Run High-Level emphasis.

Gray-Level Run-length Matrix-based features are computed from the matrix indi-
cating the set of consecutive runs of a pixel. Run Length denotes the pixel count
with same gray-level in the run.

Histogram of Oriented Gradients
based features[HOG][129]

5 - Histogram of Oriented Gradients based features computes the frequency of gradi-
ent orientation occurrences in localized portions of an image. It returns the shape
information of the region.

Wavelet Transform based
features[WT][130]

120 Mean, Variance, Skewness, Kurtosis, Entropy are calculated from Wavelet Trans-
formed component of images using wavelets - Daubechies- 3, Daubechies-10,
Coiflet-1, Coiflet-5, Symlet-2, and Symlet-8.

Discrete Wavelet Transform-based features of an image include Mean, Variance,
Skewness, Kurtosis, and Entropy calculated over four sub-images obtained by ap-
plying a family of wavelet functions on the input image.

Shape-Based features [SHAPE] 7 Area, Euler number, perimeter, convexity, eccentricity, orientation, solidity Shape-based features highlight the region covered by the region in an image.

Gray-Level Difference Statistics
based features[GLDS][131]

5 Homogeneity, contrast, energy, entropy, mean Gray-Level Difference Statistics based features are computed from the first order
statistics of local attributes based on absolute differences between pairs of gray-
levels or of average gray-levels.

Neighborhood Gray-Tone
Difference Matrix based
features[NGTDM][132]

5 Contrast, Coarseness, Busyness, Texture Strength, Complexity Neighborhood Gray-Tone Difference Matrix based features indicates the visual
properties of texture in the image

Statistical Feature Matrix-based
features[SFM][133]

4 Coarseness, contrast, periodicity, and regularity/roughness Statistical Feature Matrix-based features are computed as the statistical properties
of pixel pairs occurring at multiple distances within an image

Texture Energy Measure[TE][134] 6 Texture energy from LL (Level-Level Mask), EE (Edge-Edge Mask), and SS
(Spot-Spot Mask) kernels and Average Texture Energy from LE (Level-Edge) and
EL(Edge-Level), ES (Edge-Spot) and SE(Spot-Edge), and LS (Level-Spot) and SL
(Spot-Level) kernels.

Law’s texture Energy Measures are computed as statistics obtained from convoluted
images of masks of length L × L and the image. Masks are obtained by self-
convolution of vectors followed by multiplication of same-length row vectors

Fourier Power Spectrum-based fea-
tures[FPS]

2 Radial sum and Angular sum Fourier Power Spectrum-based features are extracted from Discrete Fourier trans-
formed images.
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Fig. 4.1: A basic architecture of CNN Model.

Due to the paucity of large medical thermal imaging datasets to train a DL
model from scratch, pre-trained CNN models are used as a feature extractor by pre-
serving their initial architecture and network weights. The features from ten state-
of-the-art CNN models - VGG16, Alexnet, GoogleNet, Resnet-18, EfficientNet-
b0, Inception-Resnetv2, Mobilenet-V2, Nasnet-Mobile, Shufflenet, and Squeezenet,
are extracted and investigated. The Table 4.2 briefly presents a comparison the
stated CNN architectures.

4.2.3 Classifiers

The 12 hand-crafted, UnionFeature_Set and 10 DL-based feature-sets obtained
are fed to the four state-of-the-art classifiers - DTC[118], RFC, SVM[117], and
k-NN[116] along with 10fold cross validation sampling strategy..

DTC is a powerful classifier that presents the data in a decision tree form. DTC
is greedy in nature while choosing attributes for splitting. It can handle datasets
with categorical attributes only. To apply DTC on the numeric data, it has to be
discretized. DTC provides a transparent model for a given dataset. A little addition
or removal in the dataset may modify the tree entirely. Also, it may result in an
over-fitted model for small datasets. In contrast, RFC uses an ensemble of two or
more DTCs. An unlabeled instance is classified as a mode of the classes given by
an individual DTC in the ensemble. It results in a reliable and precise ensemble of
trees for problems with unbalanced datasets or datasets with large feature spaces.
A slight modification in the dataset may change a tree, but the ensemble generated
will be stable, comparatively. RFCs tend to generate less over-fitted ensembles.
Computing an RFC-based model is a computationally expensive task.

k-NN is the most popular and straightforward instance-based method for clas-
sification, highly sensitive to the value of k (number of neighbors in k-NN)and
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Table 4.2: Comparison of the most commonly used CNN Architectures.

Feature Extrac-
tion Method

Depth Number of
Parameters
(Millions)

Layer Name Number of
Features
Used

Network Details

Alexnet [ANET]
[135]

8 61 ’drop7’ 4096 Alexnet is made up of 5 convolutional layers (with activation function as a Rectified linear
unit (ReLU) and 3 connected layers. With the help of dropout layers, the over-fitting problem
is handled, but the number of iterations required for convergence is huge. The number of
parameters is also large in fully connected layers.

VGG16
[VGG16] [136]

16 138 ’drop7’ 4096 VGG-16 comprises of 13 convolutional layers with activation function as ReLU, 5 pooling
layers, and 3 dense layers. Convolving and maxpool kernel sizes are 3× 3 and 2× 2 with a
stride of two, respectively. The time complexity of VGGNet is high, and accuracy is reduced.

GoogleNet
[GNET] [137]

22 7 ’pool5-
drop_7x7_s1’

1024 GoogleNet uses Network-in-network. It basically replaces convolution filters with an ap-
proximation function and uses global average pooling in place of dense layers. This in-
creased the network’s width and depth without a huge computational complexity and perfor-
mance.

Resnet-18
[RSN18] [138]

18 11.7 ’pool5’ 512 It comprises convolution layers with filters of size 3 × 3 with 2 pooling layers. It uses
Residual blocks, repeated throughout the network, to solve the vanishing gradient problem.
Residual blocks constitute skip-connections between convolutional and pooling layers. This
model has fewer filters and lower complexity but suffers from over-fitting.

EfficientNet-b0
[EFF-b0] [139]

82 5.3 EfficientNet-
b0|model-
|head|global_average-
_pooling2d|GlobAvgPool’

1280 EfficientNet, comparatively, has fewer parameters and FLOPs along with low time complex-
ity and better performance for classification tasks. It uses compound dimension scaling to
find the best combination of image resolution and network’s depth and width.

Inception-
Resnetv2 [IN-
RESV2] [140]

164 55.9 ’avg_pool’ 1536 Inception-ResNet-V2 has a total of 164 layers including 4 and 160 pooling and convolutional
layers, respectively, with better better performance at shorter epochs. Its architecture uses a
combination of Residual blocks with Inception’s architecture.

MobileNet-V2
[MOBNETV2]
[141]

53 3.5 ’global_a-
verage_pool-
ing2d_1’

1280 MobileNet is a mobile suitable model, consisting of depthwise separable convolution -, sepa-
rable into depth wise convolution and pointwise convolution. It comprises 19 inverted resid-
ual structures between thin bottleneck layers followed by a convolution layer with 32 filters.

Nasnet-Mobile
[NAS-MOB]
[142]

* 5.3 ’global_a-
verage_pool-
ing2d_1’

1056 NasNet architecture uses a regularization technique - Scheduled Drop Path to improve the
generalization capability of the model. It uses a Neural Architecture search method to iden-
tify a network’s architectural building block on a small dataset and then use it for the larger
dataset.

ShuffleNet
[SHUF] [143]

50 1.4 ’node_200’ 544 ShuffleNet is designed for mobile devices requiring low computing power. ShuffleNet is
made up of pointwise group convolution and channel shuffling.

SqueezeNet
[SQZN] [144]

18 1.24 ’pool10’ 1000 SqueezeNet comprises of - Squeeze part and Expand part, wherein, Squeeze part has 1 × 1
filters channelling its output into expand layer, having a mix of filters of size 1×1 and 3×3.
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choice of similarity function(for finding proximity with neighbors). It is consider-
ably costly for computation and storage of classifying new instances. The lower
values of k tend to incorrectly classify due to data inconsistencies, whereas the
higher value minimizes the impact of noise but makes the experiments computa-
tionally expensive. Based on robust theory, SVM proposes to build an optimal
hyperplane that separates two classes, with a maximum margin around the hyper-
plane. This approach does not cause the model to be over-fitted, even with the
limited number of samples in the dataset. A fundamental limitation of SVM based
model is its poor transparency and capability to interpret the model.

Also, five light weight pre-trained DL models(EfficientNet-b0[139], MobileNet-
V2[141], Nasnet-Mobile[142], ShuffleNet[143], and SqueezeNet[144]) are used to
characterize and classify abnormal patterns in medical thermal images.

4.3 Experimental Setup

The experiments are performed on a computer system having a Windows 10 op-
erating system with an i7 (9th generation) Processor and 32GB primary memory.
The experiments are performed and analyzed using MATLAB 2024 (64-bit).The
figure 4.2 elaborates the steps and experimental framework used for the study.

Fig. 4.2: The Experimental Framework used in the study.

In this study, two publicly available medical thermography-based datasets -
DB-DMR-IR[20] and DB-FOOT-IR[21] are considered. DB-THY-IR is not used
for the study as number of samples in the dataset is very less to be applied with a
DL model. The pre-processing steps for the three datasets are described in Chapter
1, section 1.2.1. Table 4.3 states the number of patients/volunteers and the samples
used in the study. DB-DMR-IR dataset is augmented with images acquired during
the last 2 minutes of dynamic acquisition procedure to construct a larger dataset.

Altogether 23 various feature-sets are extracted from the transformed and seg-
mented gray-scale thermal images(Table 4.3). All the feature-sets generated are
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Table 4.3: Datasets size used for the analysis

DataSets No. Of Par-
ticipants

Normal
Thermal
Images

Abnormal
Thermal
Images

Total
Thermal
Images

DB-FOOT-IR 90 45 45 90
DB-DMR-IR 200 500 500 1000

Table 4.4: Parameters and their values used for model tuning.

AlgorithmParameters Parameters Values
k-NN k [11− 200]

Distance Metric [Cosine, Euclidean, Jaccard, Hamming]
SVM Cost [2−10 − 210]

Kernel Type [Linear, RBF]
Gamma [2−12 − 212]

DTC Splitting criteria Gini’s Diversity Index, Cross Entropy
Pruning criteria Enabled, Disabled
Minimum leaf size [50− 200].

RFC Ensemble size [3-50]

normalized.
The analysis with four promising classifiers - DTC, k-NN, SVM, and RFC

is performed along with a grid search on the respective classifier’s parameters
(Table 4.4) to achieve the best results. LIBSVM1 implementation of SVM is
used in the study. The grid search for SVM is performed over the cost parame-
ter, C, and two kernel functions. Various optimization parameters of DTC used
are Minimum Leaf Size (minimum count of instances per leaf), Pruning Crite-
ria (for pruning the tree to limit over-fitting of training data), and Splitting Cri-
teria (for selecting an attribute for further splitting). The ensemble size (num-
ber of weak classifiers/trees in ensemble) used in RFC framework varies over the
range [3 - 50]. A Random Forest is constructed using a Decision Tree template
with parameters identical to those specified for the DTC. In addition, five light
weight pre-trained DL models(EfficientNet-b0[139], Mobilenet-V2[141], Nasnet-
Mobile[142], ShuffleNet[143], and SqueezeNet[144]) are used to characterize and
classify abnormal patterns in medical thermal images.

Accuracy and F-measure are used as primary indicators to assess the perfor-
mance of classification models. Also, K-fold cross validation (K = 10) is used
as the sampling strategy. The values of Accuracy and F-Measure for a model are
obtained by averaging them across each of its folds.

1https://www.csie.ntu.edu.tw/cjlin/libsvm/
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4.4 Results and Discussion

This section discusses the performance of various hand-crafted and DL-based fea-
ture extraction methods on two datasets - DB-FOOT-IR and DB-DMR-IR using 4
classifiers - SVM, k-NN, DTC, and RFC. Also the performance light weight pre-
trained DL Models is analyzed for both the datasets. The experiments conducted
on both the datasets are independent and not related to each other in any respect.
Accuracy and F-Measure are used as performance measures. The model param-
eters are considered to be optimal if the corresponding performance obtained is
best for a classifier. Table 4.5 states classification performance of hand-crafted,
UnionFeature_Set, and DL-based state-of-the-art feature extraction methods on
two datasets - DB-FOOT-IR and DB-DMR-IR using SVM, k-NN, DTC, and RFC
and 10-fold cross validation sampling Strategy. The Table 4.7 states the classifica-
tion accuracy obtained from light-weight pre-trained DL models for DB-DMR-IR
and DB-FOOT-IR datasets. Following observations are made from the tables 4.5
and 4.7 and figures 4.3 and 4.4-

• As classifiers, the DL models ShuffleNet and SqueezeNet performed well
with an accuracy of 93.67% on DB-DMR-IR and 91.33% on DB-FOOT-IR,
respectively (Table 4.7).

• The performance of DL-based feature-sets is considerably better than that of
all the hand-crafted feature-sets for both the datasets, except for than that of
UnionFeature_Set, for both the datasets.

• The best performance is obtained with accuracy as 99.3% with SVM and
Nasnet-Mobile-based features for DB-DMR-IR. A comparable performance
(accuracy = 99.2%) is achieved with ShuffleNet and SqueezeNet based fea-
tures and SVM. Also, the number of parameters to be learned is 5.3 Mil-
lions in Nasnet-Mobile architecture which is significantly greater than that
of ShuffleNet and SqueezeNet (Table 4.2).

• For DB-FOOT-IR, the best performance of accuracy score as 93.46% is ob-
tained with k-NN and ShuffleNet-based features. Also, similar performance
with accuracy = 93.4% is achieved with EfficientNet-b0 and SVM.

• On an average across the classifiers, the performance of features extracted
from ShuffleNet and Nasnet-Mobile architectures is better than that of other
DL-based models for both the datasets.

64



4.4.
R

esults
and

D
iscussion

Table 4.5: Classification performance of various Hand-Crafted and DL-based feature extraction methods on two datasets - DB-FOOT-IR
and DB-DMR-IR using SVM, k-NN, DTC, and RFC and 10-fold cross validation sampling Strategy.

Hand-Crafted Feature Extraction Methods

DB-FOOT-IR DB-DMR-IR

Accuracy F-Measure Accuracy F-Measure

Feature Extrac-
tion Method

DTC k-NN SVM RFC DTC k-NN SVM RFC DTC k-NN SVM RFC DTC k-NN SVM RFC

FOS 70.13 75.5 58.4 81.23 81.8 77.73 58.07 86.2 83.8 80.5 63.4 86.7 81.8 83.6 63.54 86.2
GLCM 74.5 76.37 58.33 77.8 78.6 74.73 58.14 86.6 80.1 81.5 63.4 83.2 78.6 80.4 63.54 86.6
LBP 63.53 79.3 81.53 71.93 63 77.4 79.33 79 69.2 95.5 95.8 77.2 63 93.2 95.2 79
GLRM 70.73 83 57.6 77.67 69.4 82.67 60.5 86.4 81.4 88.8 63.4 83.2 81.4 88.4 66.1 86.4
HOG 65.3 63.33 57.43 67.27 74.2 60.6 63.67 71.6 70.9 69.4 63.5 73.2 74.2 66.4 69.6 71.6
WT 70.87 85.1 57.4 77.17 73.4 84.13 57.6 82.8 76.8 91.1 63.4 83.1 73.4 90 63.54 82.8
SHAPE 62.2 82.67 76.77 68.97 69.8 81.93 87.47 81.2 69.2 88.8 82.9 75.1 69.8 88 93.6 81.2
GLDS 52.73 80.56 58.76 53.67 58.6 79.13 60.52 63.8 58.8 87.3 65.5 59.8 58.6 85.2 66.52 63.8
NGTDM 49.57 65.47 54.57 49.23 54.6 65.41 54.31 54.19 55.3 72.4 61.5 55.3 54.6 71.28 60.38 54.19
SFM 55.2 60.87 59.97 66.03 49 51 70.33 70.95 61 66.8 65.9 72.1 49 57.2 76.4 70.95
TE 53.62 63.32 57.42 49.99 61 62.32 56.42 54.65 59.7 69.4 63.5 55.8 61 68.14 62.24 54.65
FPS 60 75.2 72.7 56.1 63 73.9 71.4 54.96 60 75.2 72.7 56.1 63 73.9 71.4 54.96
UnionFeature_Set 85.2 83.33 88.25 86.72 84.75 82.5 87.5 85 89.5 92.27 96.33 93.5 88.5 92.5 95.45 92.50

Deep Learning Feature Extraction Methods

DB-FOOT-IR DB-DMR-IR

Accuracy F-Measure Accuracy F-Measure

Feature Extrac-
tion Method

DTC k-NN SVM RFC DTC k-NN SVM RFC DTC k-NN SVM RFC DTC k-NN SVM RFC

VGG16 75.6 90.69 90.99 84 75.51 91.17 92.46 83.01 83.2 98.1 98.4 90.5 82.82 98.05 98.36 90.4
ANET 75.66 92.44 90.16 82.39 74.88 84.89 90.06 81.64 82.2 96.2 98.3 88.6 81.71 96.16 98.26 88.39
GNET 81.86 90.6 91.21 84.92 78.37 91.12 93.15 84.14 85.6 97.7 99 91.1 85.39 97.68 98.99 91.01
RSN18 73.68 91.04 92.74 81.35 72.76 91.33 92.01 81.59 84.2 98.1 98.5 89.4 84.5 98.08 98.46 89.29
EFF-b0 73.84 87 93.4 82.79 75 92.2 92.95 84.61 82.6 97.1 99.09 92.4 82.25 97.03 99.4 92.3
INRESV2 76.58 87.08 92.73 81.36 74.8 92.77 91.62 84.52 84.7 97.4 98.1 91.3 84.27 97.34 98.07 91.2
MOBNETV2 77.21 90.45 93.36 85.41 75.91 91.22 92.14 86.26 84.1 98.3 98.8 92.7 83.53 98.27 98.79 92.64
NAS-MOB 81.44 90.36 91.36 86.83 77.14 92.31 93.84 88.65 85.2 98.5 99.3 92.53 84.29 98.48 99.29 95.6
SHUF 79.73 93.46 92.1 85.02 79.49 89.64 92.54 82.39 86.8 97.2 99.2 90.9 86.72 97.12 99.18 90.76
SQZN 74.79 91.88 92.04 83.64 75.59 90.93 90.97 81.04 84.4 98.4 99.1 91.6 84.12 98.39 99.08 91.36
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• On an average across the classifiers, the performance of UnionFeature_Set is
better than that of 12 hand-crafted feature-sets for the augmented DB-DMR-
IR dataset.

• On an average across the performance of DL-based feature-sets and hand-
crafted feature-sets, SVM have performed best with DL-based feature-sets
for both the datasets.

• The performance of all the feature-sets from DB-FOOT-IR is lesser than that
of DB-DMR-IR due the scarcity of samples in the available datasets.

• Among 12 Hand-crafted feature-sets, LBP-based features have performed
better than that of any other feature-set with SVM for both the datasets.

The Table 4.6 states the inference time and memory requirements for predict-
ing the class for a given thermal image of DB-DMR-IR dataset using the model.
The analysis is performed for the best performing models only.

Table 4.6: The inference time and memory requirements on mobile device for best
performing Light Weight Pre-trained DL features-based models for DB-DMR-IR
dataset

Feature Extractor Classifier Inference time (in ms) Memory require-
ments (RAM) in MB

NAS-MOB SVM 93 25.8
SQZN SVM 37 7.1
SHUF SVM 23 11.3

Table 4.7: Classification accuracy obtained from Light Weight Pre-trained DL
Models for DB-DMR-IR and DB-FOOT-IR datasets

Pre-Trained DL
Models

DB-DMR-IR DB-FOOT-IR

EFF-b0 85.39 85.41
MOBNETV2 82.82 91.1
NAS-MOB 92.53 82.82
SHUF 92.7 91.33
SQZN 93.67 81.36
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Fig. 4.3: Performance comparison of the average classification accuracy values(%) for the various
Feature-sets and datasets - DB-DMR-IR and DB-FOOT-IR

(a) (b)

Fig. 4.4: Performance comparison for the various classifiers, averaged over Hand-Crafted and
DL-Based Feature-sets in terms of classification accuracy values(%), for DB-DMR-IR (a) and DB-
FOOT-IR (b) datasets.

4.5 Chapter Summary

This chapter presents a lightweight deep learning-based classification model de-
signed for mobile deployment to detect and characterize abnormalities caused by
inflammation in human thermal images. Various hand-crafted and DL-based fea-
ture sets are extracted from two publicly available thermal imaging datasets, DB-
DMR-IR and DB-FOOT-IR, and their classification performance is compared us-
ing four state-of-the-art classifiers — DTC, RFC, SVM, and k-NN, along with a
10-fold cross validation sampling strategy. Additionally, lightweight pre-trained
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deep learning models are investigated to improve characterization and classifica-
tion accuracy. The UnionFeature_Set from the previous chapter is also utilized for
comparison. DL-based features are extracted using ten pre-trained CNNs, includ-
ing VGG16, AlexNet, GoogleNet, ResNet-18, EfficientNet-b0, Inception-ResNet-
v2, MobileNet-V2, NASNet-Mobile, ShuffleNet, and SqueezeNet. Five of these
lightweight models are optimized for mobile devices to facilitate real-time appli-
cation.

The results indicate that DL-based feature extraction methods outperform tra-
ditional hand-crafted approaches and classification using UnionFeature_Set. Among
the classifiers, SVM achieved the highest accuracy for deep learning-based fea-
tures across both datasets. ShuffleNet and SqueezeNet demonstrated the best clas-
sification performance, achieving 93.67% accuracy on DB-DMR-IR and 91.33%
on DB-FOOT-IR, respectively. The NASNet-Mobile-based feature set, when com-
bined with SVM, yielded the highest accuracy of 99.3% for DB-DMR-IR, whereas
ShuffleNet with k-NN provided the best accuracy of 93.46% for DB-FOOT-IR.
The results also highlight that the UnionFeature_Set outperforms individual hand-
crafted feature sets for the augmented DB-DMR-IR dataset. However, the overall
performance on DB-FOOT-IR was lower due to the limited number of available
samples.

The ShuffleNet + SVM pipeline is highly efficient, achieving inference in <30
ms with <12 MB memory use, and is therefore scalable for screening large pop-
ulation. The urban and rural environments would benefit from high-throughput
batch processing using GPUs and low-power CPUs, respectively. This pipeline is
well-suited for real-time screening in constrained environments, offering a strong
balance between speed, accuracy, and scalability.

In conclusion, this study demonstrates that deep learning-based feature extrac-
tion, particularly using lightweight CNN architectures, significantly improves the
accuracy and reliability of thermal biomarker classification. The findings establish
the feasibility of deploying mobile-friendly deep learning models for real-time de-
tection of inflammation-related abnormalities, bridging the gap between medical
diagnostics and accessible AI-driven healthcare solutions.
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Chapter 5
Framework for Inflamed Region
Segmentation

This chapter presents two enhanced density-based modified Picture Fuzzy Cluster-
ing techniques for identifying and segmenting affected regions in abnormal ther-
mal images. The optimization problem is formulated and solved to determine clus-
ter prototypes. The proposed methods are evaluated using three publicly available
medical thermal imaging datasets. Additionally, the chapter presents experimental
results, analysis, and statistical validation for both the methods.

5.1 Introduction

Image segmentation is a prominent step in error-free medical image analysis in
modern medicine. To our knowledge, limited work is done towards segmentation
of affected regions in the diseased human body’s thermal images ([15, 29, 30, 31,
32, 33, 34, 35, 36]). Also, most of the segmentation models proposed are eval-
uated on private datasets having fewer samples which is not available for further
consideration and analysis by the research community. Hence, the performances
obtained are not reputable.

Also, only a few research works [30, 32, 33, 98, 97] have evaluated their
method on a publicly available dataset, wherein the in house-created ground truth
is not available to the community for further analysis and thus makes the results
highly subjective. Therefore, due to the inconsistency and variability in the evalu-
ation procedures used in existing studies, selecting a suitable segmentation model,
to identify inflammation/abnormality in the human body using thermography in
practical-use, is not appropriate. Additionally, only a limited number of studies
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have experimented with their segmentation models on thermal imaging datasets
involving multiple diseases [32, 33, 36]. The performance obtained is not satis-
factory, suggesting a potential for improvement (Table 2.3). Also, the approaches
proposed in literature are sensitive (Table 2.3), primarily due to manual selection
of seed points and other hyper-parameters [32, 33, 100].

This chapter introduces two novel and robust Density-based modified Picture
Fuzzy Clustering methods to identify and segment affected regions in abnormal
thermal images. Picture Fuzzy sets are utilized for their enhanced representational
capability, incorporating [Membership, Non-Membership, and Neutrality] matri-
ces, which effectively manage uncertainty in complex real-world structures.

Based on Picture Fuzzy Sets, the Picture Fuzzy C-Means clustering method
(FC-PcFS) is proposed[90]. It is sensitive to the initialization of initial cluster
centers, fuzzifier, membership partition matrix, and neutrality matrix. Moreover,
this initialization may result in undesirable outcomes and affect the time taken for
the results to converge.

To overcome this problem, the notion of density is used to automatically initial-
ize the number of clusters, initial cluster centers, and positive membership matrix.
To handle the noise and other imaging artifacts present in thermal images, the spa-
tial information in the neighborhood of a data point is incorporated in the model.
Also, the robustness of the proposed framework is investigated in contrast to other
related methods on three publicly available thermal imaging datasets having dif-
ferent diseases, with and without artificial noise incorporated in them. The critical
contributions of the chapter includes following-

1. Two robust Density-based Picture Fuzzy clustering models with spatial in-
formation, are proposed, to segment the affected regions/hotspots from ab-
normal thermal images. Hyper-parameters are automatically initialized us-
ing a density-based heuristic, requiring minimum hyper-parameter tuning.
Incorporating Spatial information in the model has eliminated the requisite
of smoothing the thermal image and retained fine image structures.

2. The optimization problem is formulated by combining Density-based PcFS
method with regularized and modified Renyi’s Entropy to obtain a good par-
tition matrix and appropriate number of clusters. The complete optimization
problem is solved using Lagrangian method of multiplier [37] and obtained
their cluster prototypes.

3. The robustness of the proposed segmentation methods is validated statisti-
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cally over other methods using the Friedman Test. Also, the time complexity
is investigated in comparison to other related methods.

4. To the best of our knowledge, research has yet to give a course to develop
a robust segmentation method for analyzing and segmenting noisy and low-
resolution human thermal images. To address this research gap, a separate
dataset - DB-NOISE-IR, is created, wherein three types of artificial noise -
Salt and Pepper Noise, Gaussian Noise, and Mixed Noise are introduced. We
thoroughly performed the comparative performance analysis of our method
with that of other methods. We found that the our methods have performed
significantly better particularly for the noisy dataset.

This chapter is organized as follows. The section 5.2 describes the notations
and preliminary concepts based on picture fuzzy sets used in our work. The section
5.3 describes the proposed density-based Picture Fuzzy Clustering methods for
segmentation. The experimental setup for the proposed framework is described in
section 5.4. The results are discussed in sections 5.5 and concluded in section 5.6.

5.2 Preliminaries and Notations

The research work [88] proposed and built theory on Picture Fuzzy Sets (PcFS).
A PcFS S on a universe Z is defined as S = {(z, µS(z), ηS(z), νS(z)) : µS(z) ∈
[0, 1], ηS(z) ∈ [0, 1] and µS(z) + ηS(z) + νS(z) ≤ 1, ∀z ∈ Z}, Where µS(z),
ηS(z), and νS(z) are the degree of positive, neutrality, and negative membership
for a z ∈ Z, respectively. Also, ξS(z) = 1− (µS(z)+ ηS(z)+ νS(z)) is defined as
the degree of refusal membership of the z ∈ Z. Using Yager generalized Negation
function([145, 146]), νS(z) can be expressed as (1− (µS(z) + ηS(z))

ω)
1
ω ∀z ∈ Z.

Here, the uncertainty of a sample is defined using three parameters - its positive,
neutral, and refusal degree.

A PcFS is the direct generalization of Intuitionistic Fuzzy Sets (IFS) [147] and
Fuzzy Sets (FS) [85]. A PcFS S reduces to an IFS S when ξS(z) = 0 ∀z ∈ Z.
Further, a PcFS S reduces to a FS S when ξS(z) = 0 and ηS(z) = 0 ∀z ∈ Z. For
the sake of simplicity µS(zj), ηS(zj), νS(zj), and ξS(zj) is denoted as µSj , ηSj , νSj
and ξSj , respectively, in rest of the chapter.
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5.2.1 Picture Fuzzy Clustering Method (FC-PcFS)

The K-Means[84] clustering allows a data point (zj), j = 1, 2, 3...N , to belong to
only one cluster (Cp), p = 1, 2, 3...C, with the objective to minimize the average
distance from the points to the closest cluster center. Whereas, Fuzzy clustering
methods allows each instance zj , j = 1, 2, 3...N , to belong to all the C clusters
[C1, C2, C3...CC] with membership value as [µ1j , µ2j , µ3j ,... µCj] respectively,
and

∑C
p=1 µpj = 1. The item Cp is a cluster with center vp, p = 1, 2, 3...C and C

is the number of clusters.
The matrix M denotes the fuzzy partition matrix of size N×C with the positive

membership values for each zj , j = 1, 2, 3...N , to belong to all C clusters i.e.
M = [µpj]N×C , p = 1, 2, 3...C and j = 1, 2, 3...N .

The research work [90] proposed a generalized model of the Fuzzy clustering
method based on PcFS and called it FC-PcFS. For this, matrices H and Ξ are de-
fined, each of size N ×C, as Neutrality and Refusal degree matrices, respectively.
The optimization problem for FC-PcFS is given as equation 5.1.

Minimize:

Jm,ω(M,H, V,Ξ : Z) =
C∑

p=1

N∑
j=1

(µpj(2− ξpj))
m∥zj − vp∥2 +

C∑
p=1

N∑
j=1

ηpj(log ηpj + ξpj)

subject to

(1) 0 ≤ µpj, ηpj, ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(2) 0 ≤ µpj + ηpj + ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(3)
C∑

p=1

µpj(2− ξpj) = 1, j = 1, 2, 3...N

(4)
C∑

p=1

(ηpj +
ξpj
C

) = 1, j = 1, 2, 3...N

(5.1)

The constraints 1 and 2 in equation 5.1 are obtained from the definition of PcFS,
and constraint 3 satisfies the sum-row constraint in the traditional FCM model
with [µpj(2− ξpj)] as the true membership of zj for cluster Cp with center vp. The
model is guaranteed to work when at least one of the neutral or refusal degree exist
in the model. Constraint 4 in equation 5.1 takes care of this. Also, the FC-PcFS
clustering model [90] generalizes IFCM clustering model[87] when ξpj = 0 ∀zj ∈
Z, j = 1, 2, 3...N and constraint 4 of equation 5.1 is removed. In addition, this
model generalizes FCM[86] when ηpj = 0 ∀zj ∈ Z, j = 1, 2, 3...N .
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The authors [90] solved the optimization problem using the Lagrangian method
of multiplier [37] to determine the model’s cluster prototype at every iteration
(equations 5.2-5.5) for p = 1, 2, 3...C and j = 1, 2, 3...N .

ξpj = 1− (µpj + ηpj)− (1− (µpj + ηpj)
ω)

1
ω (5.2)

µpj =
1

C∑
i=1

(2− ξpj)(
∥zj−vp∥
∥zj−vi∥ )

2
m−1

(5.3)

ηpj =
e−ξpj

C∑
i=1

e−ξij

[
1− 1

C

C∑
i=1

ξij

]
(5.4)

vp =

N∑
j=1

(µpj(2− ξpj))
mzj

N∑
j=1

(µpj(2− ξpj))m
, p = 1, 2, 3...C (5.5)

The above model is expressed as FC-PcFS algorithm (Algorithm 1).

5.2.2 Kernel-based distance function

Transforming the data from a lower-dimensional space to a higher-dimensional
space using a kernel function, ϕ, makes the samples linearly separable in the
higher-dimensional space that is kernel space [148]. The benefit of the trans-
formation is that the dot product in kernel space can be rewritten using Mercer
Equation as K(xi, xj) = ⟨ϕ(xi)

Tϕ(xj)⟩, where xi and xj are the data points and
ϕ(xi) and ϕ(xj) represents the data points in the higher dimensional space or ker-
nel space.

κij = ∥ϕ(xi)− ϕ(xj)∥2 =∥ϕ(xi)− ϕ(xj)∥T∥ϕ(xi)− ϕ(xj)∥

=ϕ(xi)
Tϕ(xi) + ϕ(xj)

Tϕ(xj)− 2ϕ(xi)
Tϕ(xj)

=K(xi, xi) +K(xj, xj)− 2K(xi, xj)

=2(1−K(xi, xj))

=2 tanh(
−∥xi − xj∥2

σ2
)

(5.6)

This work uses Hyper Tangent Kernel Function (K(xi, xj) = 1−tanh(−∥xi−xj∥2
σ2 )
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Algorithm 1 FC-PcFS algorithm [90]
Input: Image I of size P ×Q, C: Number of clusters, ϵ: Threshold, m: fuzzifier,

ω: exponent, maxSteps: Maximal number of iterations.
Output: Matrices M,H,Ξ, V

1: procedure FC-PcFS
2: i← 0
3: Z ← vectorize(I) //size of Z is N(= P ×Q)
4: [M (0), H(0)]← Random Values in the range [0, 1]
5: Calculate Ξ(0) using equation 5.2
6: repeat
7: i← i+ 1
8: Calculate V (i) using equation 5.5
9: Calculate M (i) using equation 5.3

10: Calculate H(i) using equation 5.4
11: Calculate Ξ(i) using equation 5.2
12: until (∥M (i)−M (i−1)∥+ ∥H(i)−H(i−1)∥+ ∥Ξ(i)−Ξ(i−1)∥) < ϵ or (i ≥

maxSteps)
13: return Matrices M,H,Ξ, V
14: end procedure

where σ is the width controlling parameter; σ > 0). The choice of this kernel is
due to the robustness of the kernel towards noise and nonlinear structures present
in data. The distance function based on kernel between data points xi and xj ,
[κij = ∥ϕ(xi)− ϕ(xj)∥2], is expressed as equation 5.6.

5.3 Methodology

This section describes the proposed approaches for segmenting the affected ROIs
from abnormal thermograms - Density-based FC-PcFS with Spatial Information
(DSIFC-PcFS) and Density-based Modified FC-PcFS with Spatial Information
(DSIMFC-PcFS).

An image I , of size P × Q, is transformed to a matrix of local energy levels
using the equation 5.7. Further, this matrix normalized in the range [0, 1] is called
Entropy Image (I∗).

Î(u, v) = −
1∑

k=−1

1∑
l=−1

I(u+ k, v + l)log(I(u+ k, v + l)) (5.7)

Finally, the vector Z is defined, on matrix I∗, as the vector of normalized Local
Energy values, with element zj , where j = 1, 2, 3...N,N = P ×Q. The proposed
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DSIFC-PcFS and DSIMFC-PcFS methods are defined as follows.

5.3.1 Density-based FC-PcFS with Spatial Information Method

The research works [91, 92] have proposed density-based FCM and IFCM meth-
ods, - DFCM and DIFCM, respectively. They initialized the initial cluster centers
and partition matrix based on density information. However, the number of param-
eters - cutoff density, cutoff distance, and distance rate to be tuned is high[91, 92].
Also, they did not consider intra- and inter-cluster similarity simultaneously in
their model.

In the Density-based FC-PcFS with Spatial Information method (DSIFC-PcFS)
for segmenting the inflamed ROI, the density decision parameter γj for each local
energy sample zj, zj ∈ Z is defined as ρj × δj , where ρj and δj are the density
and minimum distance parameters of sample zj , respectively. The parameter γj
indicates the importance of a sample zj as a potential cluster center. It takes care
of both intra-cluster and inter-cluster similarity with the help of parameters ρj and
δj , respectively. The parameters ρj and δj segment the image into dense regions
with their central points at large distances. The density parameter, ρj , for each
local energy sample zj, zj ∈ Z is defined as

ρj =

∑N
i=1,i̸=j e

−
d2ji

ς2

N − 1
(5.8)

where N is the number of samples in Z(= P × Q), dji represents the Euclidean
distance between zi and zj , and ς2 is the measure of scatteredness of energy levels
in I∗ and is computed as ς2 = 1

N

∑N
i=1 ∥zi − z̄∥2 and z̄ = 1

N

∑N
k=1 zk. The mini-

mum distance parameter, δj , for each local energy sample zj , zj ∈ Z is calculated
as

δj =

min {dji}, ∀i where ρi > ρj

max {dji}, ∄i where ρi > ρj
(5.9)

A sample zj with a higher value of ρj indicates that zj is concentrated with a
large number of similar samples. A higher value of δj signifies the degree of
dissimilarity for zj with a sample zi having the next higher density. So, samples
with lower ρj but higher δj will be considered outliers. Removing such points can
improve the performance and enhance the method’s stability.

The density decision parameter values γj obtained are sorted in descending
order to define the potential initial clusters. To choose the potential cluster centers,
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a Decision cutoff parameter, dc, is computed as dc = (
N∑
j=1

γj)×τ , where τ ∈ (0, 1),

is a cutoff parameter and is adjustable. The set of C potential cluster centers is
defined as the data points having larger values of γj as

C = {zi|
C−1∑
i=1

γi < dc and
C∑
i=1

γi > dc}, 1 ≤ i ≤ C (5.10)

Fig. 5.1: An example to illustrate that how potential initial cluster centers are selected heuristically.

This set of potential cluster centers forms the set of initial cluster center points
in FC-PcFS. The figure 5.1 illustrates an example that may be heuristically se-
lected as potential initial cluster centers. The random approach to selecting initial
cluster centers may result in corner points as initial cluster centers. Also, leverag-
ing the knowledge of density decision parameters obtained for each sample zj , the
membership and neutrality matrices (M and H) are not assigned randomly. The
membership values µpj is initialized using γj for sample zj as:

µpj =


0.5, zj ∈ C and p = k

0, zj ∈ C and p ̸= k
γj/γ1
2k

, zj /∈ C, ρvk+1
≤ ρj ≤ ρvk and p ≤ k

1−(γj/γ1)

2(C−k)
, zj /∈ C, ρvk+1

≤ ρj ≤ ρvk and p > k

(5.11)

where k = 1, 2, 3...C. The values ηpj is calculated for sample zj as:
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ηpj =


0.5, zj ∈ C and p = k

0, zj ∈ C and p ̸= k
1−|zj−zp|

2
, zj /∈ C and zp ∈ C

(5.12)

where k = 1, 2, 3...C.
The optimization problem for DSIFC-PcFS is defined below:

Minimize:

J1ω(M,H, V,Ξ : Z) =
C∑

p=1

N∑
j=1

[µpj(2− ξpj)]
2Dpj︸ ︷︷ ︸

I

+
C∑

p=1

N∑
j=1

[ηpj(log ηpj + ξpj)]︸ ︷︷ ︸
II

subject to

(1) 0 ≤ µpj, ηpj, ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(2) 0 ≤ µpj + ηpj + ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(3)
C∑

p=1

[µpj(2− ξpj)] = 1, j = 1, 2, 3...N

(4)
C∑

p=1

(ηpj +
ξpj
C

) = 1, j = 1, 2, 3...N

(5.13)

Where Dpj = κpj + ζpj and ζpj =
∑

zk∈Nzj

[µpk(2−ξpk)]κpk∑
zl∈Nzj

[µpl(2−ξpl)]
, is the Spatial Infor-

mation in the neighborhood of zj towards cluster center vp. Nzj is the immediate
w × w neighborhood of the zj . The term κpj is defined in equation 5.6. The pa-
rameter σ2 in Hyper Tangent Kernel Function is defined as the dataset’s degree
of separation and computed as σ2 = 1

N

∑N
i=1 ∥zi − z̄∥2 and z̄ = 1

N

∑N
k=1 zk. The

term [µpj(2− ξpj)] denotes the true membership of a data point zj for cluster Cp as
in FC-PcFS and constraint 3 in equation 5.13 maintains the sum of zj’s true mem-
bership values for all the clusters(Cp, p = 1 · · ·C) to 1. Constraint 4 in equation
5.13 guarantees the existence of at least one of neutral or refusal degree.

The optimization problem J1 (equation 5.13) is composed of two terms.

• The first term represents the aggregate value of within-cluster scatteredness
for transformed data points. The objective is to minimize this within-cluster
error by assigning high membership values to pixels close to the cluster cen-
ter and vice-versa. With the help of nonlinear transformation and without
increasing the computational complexity, the kernel-based mapping of data
points will enhance their representational capability and tackle the problem
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of their nonlinear structures.

• Also, the first term consists of spatial information from the neighborhood of
data point zj , j = 1, 2, 3...N . This term indicates the weighted sum of the
kernel-based distance between the pixels in the neighborhood of zj and pth

cluster center, weighted by their normalized factual memberships towards
pth cluster. To obtain the optimal solution, the average weighted distance
of the neighboring pixels kth with the cluster center vp is also required to be
minimum. The spatial information of the neighborhood moderates the effect
of noise. Incorporating this term will eliminate the requisite of smoothing
and, therefore, retain fine image structures.

• The second term is the asymmetric logarithmic term. It is a monotonically
decreasing function in ηpj; therefore, minimizing this term reduces the en-
tropy of a PcFS. Thus, it reduces a data point’s neutrality and refusal degree
to become a cluster member and increases the chance of getting a nontrivial
solution.

• Also, the optimization problem J1 generalizes IFCM clustering model with
Spatial information [93] when ξpj = 0 ∀zj ∈ Z, j = 1, 2, 3...N and con-
straint 4 of equation 5.13 is removed.

The optimization problem J1 is solved for the cluster prototype and member-
ship values using Lagrangian method of multiplier [37].

5.3.1.1 Derivation of Cluster Prototype for J1

The Lagrangian function L1(µpj, ηpj, vp, αj, βj), (equation 5.14), for the optimiza-
tion problem J1 (equation 5.13) is represented as

L1 =
C∑

p=1

N∑
j=1

[µpj(2− ξpj)]
2Dpj +

C∑
p=1

N∑
j=1

[ηpj(log ηpj + ξpj)]

+
N∑
j=1

αj

[
1−

C∑
p=1

[µpj(2− ξpj)]

]
+

N∑
j=1

βj

[
1−

C∑
p=1

[
ηpj +

ξpj
C

]] (5.14)

where αj and βj are the Lagrange’s Multipliers for j = 1, 2, 3...N . Now, equating
the partial differential of L1 w.r.t µpj to 0 i.e. ∂L1

∂µpj
= 0 to derive the value of µpj ,

(2− ξpj)
[
2µpj(2− ξpj)Dpj − αj

]
= 0 (5.15)
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In equation 5.15, (2− ξpj) ̸= 0 because ξpj ∈ [0, 1],

µpj(2− ξpj) =
αj

2Dpj
(5.16)

Applying the summation
∑C

k=1, and then using constraint 3 of optimization prob-
lem (equation 5.13) in above equation, the value of αj

2
is obtained as αj

2
= 1∑C

k=1(1/Dkj)
.

Substituting this value of αj

2
back in equation 5.16 and solving further for µpj ,

µpj =
1

(2− ξpj)

[
(1/Dpj)∑C
k=1(1/Dkj)

]
(5.17)

Similarly, equating the partial differential of L1 w.r.t ηpj to 0 i.e. ∂L1
∂ηpj

= 0,

⇒ 1 + ξpj + log ηpj − βj = 0

⇒ ηpj = exp (βj − 1− ξpj)
(5.18)

Applying the summation
∑C

k=1 to the above equation and then using constraint 4
of the optimization problem J1 (equation 5.13) in the above equation,

1−
C∑

k=1

ξkj
C

= exp (βj − 1)
C∑

k=1

exp (−ξkj)

⇒ exp (βj − 1) =
1−

∑C
k=1

ξkj
C∑C

k=1 exp (−ξkj)

(5.19)

Substituting the value of exp (βj − 1), the value of ηpj is finally obtained as

ηpj =
exp (−ξpj)∑C
k=1 exp (−ξkj)

[
1−

C∑
k=1

ξkj
C

]
(5.20)

Now, substituting the value of Dpj in equation 5.14 and then equating its partial
differential w.r.t vp to 0 i.e. ∂L1

∂vp
= 0,

N∑
j=1

−4[µpj(2− ξpj)]

σ2

2
[
(K

′

pj∥zj−vp∥)+
∑

zk∈Nzj

[µpk(2− ξpk)]∑
zl∈Nzj

[µpl(2− ξpl)]
K

′

pk(∥zk−vp∥)

]
= 0

(5.21)
where K

′
pj = 1 − tanh2

[
−∥zj−vp∥2

σ2

]
. The term K

′
pj can be simplified as

K
′
pj =

[
1 + tanh

[
−∥zj−vp∥2

σ2

]]
K(zj, vp). The final value of vp for iteration by

simplifying equation 5.21 is obtained as

79



5.3. Methodology

vp =

N∑
j=1

[µpj(2− ξpj)]
2

[
K

′
pjzj +

∑
zk∈Nzj

[µpk(2−ξpk)]∑
zl∈Nzj

[µpl(2−ξpl)]
K

′

pkzk

]
N∑
j=1

[µpj(2− ξpj)]2

[
K

′
pj +

∑
zk∈Nzj

[µpk(2−ξpk)]∑
zl∈Nzj

[µpl(2−ξpl)]
K

′
pk

] (5.22)

The equations 5.17, 5.20, and 5.22 shows the derived prototype for J1 (equation
5.13). The value of refusal degree ξpj is computed using equation 5.2. The above-
proposed methodology - DSIFC-PcFS, is outlined as Algorithm 2.

Algorithm 2 Density-based FC-PcFS (DSIFC-PcFS) with Spatial Information Al-
gorithm
Input: Image I of size P × Q, ϵ: Threshold, ω: Exponent, maxSteps: Maximal

number of iterations, τ : Adjustable cutoff parameter.
Output: Matrices M,H,Ξ, V

1: procedure DSIFC-PcFS
2: Calculate the local energy matrix Î from I using equation 5.7.
3: I∗ ← Normalize the matrix Î in the range [0,1].
4: Z ← vectorize(I∗) //size of Z is N(= P ×Q)
5: for each zj ∈ Z do
6: Calculate ρj using using equation 5.8
7: Calculate δj using using equation 5.9
8: γj ← ρj × δj
9: end for

10: Arrange the γj values in descending order

11: dc ← (
N∑
j=1

γj)× τ

12: Initialize the cluster centers using equation 5.10
13: i← 0
14: Initialize the matrix M (0) using equation 5.11
15: Initialize the matrix H(0) using equation 5.12
16: Calculate Ξ(0) using equation 5.2
17: repeat
18: i← i+ 1
19: Calculate V (i) using equation 5.22
20: Calculate M (i) using equation 5.17
21: Calculate H(i) using equation 5.20
22: Calculate Ξ(i) using equation 5.2
23: until (∥M (i) −M (i−1)∥+ |H(i) −H(i−1)∥+ ∥Ξ(i) − Ξ(i−1)∥) < ϵ or (i ≥

maxSteps)
24: return Matrices M,H,Ξ, V
25: end procedure
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5.3.2 Density-based Modified FC-PcFS with Spatial Informa-
tion method (DSIMFC-PcFS)

This subsection presents the optimization problem and its prototype derivation for
Density-based Modified FC-PcFS with Spatial Information (DSIMFC-PcFS). The
proposed optimization problem for DSIMFC-PcFS is given as:

Minimize:

J2ω,t,λ(M,H, V,Ξ : Z) =
C∑

p=1

N∑
j=1

[µpj(2− ξpj)]
2Dpj︸ ︷︷ ︸

I

+
C∑

p=1

N∑
j=1

[ηpj(log ηpj + ξpj)]︸ ︷︷ ︸
II

+
λ

1− t
log

[
C∑

p=1

(G
′

p + 1)t

]
︸ ︷︷ ︸

III

subject to

(1) 0 ≤ µpj, ηpj, ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(2) 0 ≤ µpj + ηpj + ξpj ≤ 1, p = 1, 2, 3...C and j = 1, 2, 3...N

(3)
C∑

p=1

[µpj(2− ξpj)] = 1, j = 1, 2, 3...N

(4)
C∑

p=1

(ηpj +
ξpj
C

) = 1, j = 1, 2, 3...N

(5.23)

Where Dpj, [µpj(2− ξpj)] and the constraints represent the same information
as in optimization problem J1 (equation 5.13). The term G

′
p =

1
N

∑N
j=1

[µpj(2−ξpj)]

µ̄pj
,

µ̄pj =
1

|Nzj |
∑

zk∈Nzj
[µpk(2− ξpk)]. The parameter t (t > 1) is the order of modi-

fied Renyi’s Entropy and λ is the regularization parameter. The optimization prob-
lem J2 (equation 5.23) is composed of 3 terms.

• The first two terms are the same as in optimization problem J1 (equation
5.13).

• The third term represents the tth order modified Renyi’s Entropy. The value
of G

′
p defines the expected value of normalized factual membership (true

belongingness) vector for a cluster Cp, wherein the membership values of
zj , j = 1, 2, 3...N are normalized by the average factual membership of
its neighborhood. The term G

′
p denotes the probability of a data point, in
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a given neighborhood, belonging to cluster Cp. Gp approaching to 1 means
that cluster p dominates the whole data set while the other clusters are nearly
empty. To ensure − log

[∑C
p=1(G

′
p + 1)t

]
> 0, 1 is added to G

′
p. This term

is included in the model to overcome the limitation of [90] and obtain a
good partition matrix. Minimizing the term will result in fewer number of
clusters.

• Minimizing the first term intends to make a large number of clusters, whereas
minimizing the third term targets fewer clusters. The suitable value of the
regularization parameter λ controls the balance between the first and last
term and regulates the degree of fuzziness for overlapping clusters.

The optimization problem J2 (equation 5.23) is solved for the cluster prototype
and membership values, (µpj, ηpj, vp, αj, βj), using Lagrangian method of multi-
plier [37]. Also, the matrices M and H are initialized using equations 5.11 and
5.12, respectively, and the cluster centers are initialized using equation 5.10.

5.3.2.1 Derivation of Cluster Prototype for J2

The Lagrangian function L2(µpj, ηpj, vp, αj, βj) (equation 5.24), for the optimiza-
tion problem J2 (equation 5.23) is represented as

L2 =
C∑

p=1

N∑
j=1

[µpj(2− ξpj)]
2Dpj +

C∑
p=1

N∑
j=1

[ηpj(log ηpj + ξpj)] +
λ

1− t
log

[
C∑

p=1

(G
′

p + 1)t

]

+
N∑
j=1

αj

[
1−

C∑
p=1

[µpj(2− ξpj)]

]
+

N∑
j=1

βj

[
1−

C∑
p=1

[
ηpj +

ξpj
C

]]
(5.24)

where αj and βj are the Lagrange’s Multipliers for j = 1, 2, 3...N .
Now, equating the partial differential of L2 w.r.t µpj to 0 i.e. ∂L2

∂µpj
= 0 to derive

the value of µpj ,

(2− ξpj)

[
2µpj(2− ξpj)Dpj +

λt

N(1− t)µ̄pj

(G
′
p + 1)t−1∑C

p=1(G
′
p + 1)t

− αj

]
= 0 (5.25)

In equation 5.25, (2− ξpj) ̸= 0 because ξpj ∈ [0, 1],

µpj(2− ξpj) =
1

2Dpj

[
αj −

λt

N(1− t)µ̄pj

(G
′
p + 1)t−1∑C

p=1(G
′
p + 1)t

+

]
(5.26)
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Applying the summation
∑C

k=1, and then using constraint 3 of optimization prob-
lem (equation 5.23) in above equation,

1 =
αj

2

C∑
k=1

1

Dkj

− λt

2N(1− t)
∑C

p=1(G
′
p + 1)t

C∑
k=1

[
(G

′

k + 1)t−1

µ̄kjDkj

]
(5.27)

Solving the above equation for αj

2
,

αj

2
=

1∑C
k=1(1/Dkj)

+
λt

2N(1− t)
∑C

p=1(G
′
p + 1)t

∑C
k=1

(G
′
k+1)t−1

Dkj µ̄kj∑C
k=1(1/Dkj)

(5.28)

Now substituting the value of αj

2
back in equation 5.26 and solving further for µpj

µpj =
(1/Dpj)

(2− ξpj)

[
1∑C

k=1(1/Dkj)
− λt

2N(1− t)

1

µ̄pj

(G
′
p + 1)t−1∑C

p=1(G
′
p + 1)t

+
λt

2N(1− t)
∑C

p=1(G
′
p + 1)t

∑C
k=1

(G
′
k+1)t−1

Dkj µ̄kj∑C
k=1(1/Dkj)

] (5.29)

The Equation 5.29 is further simplified to

µpj =
(1/Dpj)

(2− ξpj)

[
1∑C

k=1(1/Dkj)
+

λt

2N(1− t)
∑C

p=1(G
′
p + 1)t

[∑C
k=1

(G
′
k+1)t−1

Dkj µ̄kj∑C
k=1(1/Dkj)

−
(G

′
p + 1)t−1

µ̄pj

]]
(5.30)

Using Taylor’s Expansion for (1+G
′
p)

t−1 = 1+(t− 1)G
′
p+

(t−2)(t−1)G
′2
p

2!
+ ... and

0 < G
′
p < 1. So, the higher powers of G′

p ≃ 0 and can be neglected. Therefore
(1 +G

′
p)

t−1 ≃ 1 + (t− 1)G
′
p. Using this, the value of µpj is finally obtained as

µpj =
(1/Dpj)

(2− ξpj)

[
1∑C

k=1(1/Dkj)︸ ︷︷ ︸
I

+
λt

2N(1− t)
C∑

p=1

(1 +G′
p)

t

[ C∑
k=1

1+(t−1)G
′
k

Dkj µ̄kj

C∑
k=1

(1/Dkj)

−
1 + (t− 1)G

′
p

µ̄pj

]
︸ ︷︷ ︸

II

]

(5.31)
The value of µpj obtained comprises two terms. The first term is the same as

the µpj value in DSIFC-PcFS optimization problem. The second term represents
the bias/partiality in the value of membership µpj for the boundary edges. For
Second order modified Renyi’s Entropy, t=2, µpj is obtained as
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µpj =
(1/Dpj)

(2− ξpj)

[
1∑C

k=1(1/Dkj)
− λ

N
∑C

p=1(1 +G′
p)

2

[ ∑C
k=1

1+G
′
k

Dkj µ̄kj∑C
k=1(1/Dkj)

−
1 +G

′
p

µ̄pj

]]
(5.32)

Similarly, solving the equation of partial differential of L2 w.r.t ηpj to 0 i.e.
∂L2
∂ηpj

= 0, the value of ηpj is finally obtained as

ηpj =
exp (−ξpj)∑C
k=1 exp (−ξkj)

[
1−

C∑
k=1

ξkj
C

]
(5.33)

Now, substituting the value Dpj in equation 5.24 and then solving the equation of
partial differential w.r.t vp to 0 i.e. ∂L2

∂vp
= 0, the final value of vp for iteration is

computed as

vp =

N∑
j=1

[µpj(2− ξpj)]
2

[
K

′
pjzj +

∑
zk∈Nzj

[µpk(2−ξpk)]∑
zl∈Nzj

[µpl(2−ξpl)]
K

′

pkzk

]
N∑
j=1

[µpj(2− ξpj)]2

[
K

′
pj +

∑
zk∈Nzj

[µpk(2−ξpk)]∑
zl∈Nzj

[µpl(2−ξpl)]
K

′
pk

] (5.34)

where K
′
pj =

[
1 + tanh

[
−∥zj−vp∥2

σ2

]]
K(zj, vp).

The equations 5.31, 5.33, and 5.34 shows the derived prototype for J2 (equa-
tion 5.23). The value of refusal degree ξpj is computed using equation 5.2. The
above optimization model, combined with the density concept used in this work,
is outlined as Algorithm 3.

5.4 Experimental Setup

The experiments are conducted on a computer system having a Windows 10 op-
erating system with an i7 (9th generation) Processor and 16GB primary memory.
The experiments are performed and statistical analyzed for the proposed frame-
work using MATLAB 2020(64-bit). Figure 5.2 displays the graphical abstract for
conducting the experiments. Figure 5.3 elaborates the mechanism and difference
between the two proposed methods.
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Algorithm 3 Density-based Modified FC-PcFS with Spatial Information method
(DSIMFC-PcFS)
Input: Image I of size P × Q, ϵ: Threshold, λ: Regularization Parameter, ω:

Exponent, maxSteps: Maximal number of iterations, τ : Adjustable cutoff pa-
rameter.

Output: Matrices M,H,Ξ, V
1: procedure DSIMFC-PcFS
2: Calculate the local energy matrix I∗from I using equation 5.7.
3: Normalize the matrix I∗in the range [0,1].
4: Z ← vectorize(I∗) //size of Z is N(= P ×Q)
5: for each zj ∈ Z do
6: Calculate ρj using using equation 5.8
7: Calculate δj using using equation 5.9
8: γj ← ρj × δj
9: end for

10: Arrange the γj values in descending order

11: dc ← (
N∑
j=1

γj)× τ

12: Initialize the cluster centers using equation 5.10
13: i← 0
14: Initialize the matrix M (0) using equation 5.11
15: Initialize the matrix H(0) using equation 5.12
16: Calculate Ξ(0) using equation 5.2
17: repeat
18: i← i+ 1
19: Calculate V (i) using equation 5.34
20: Calculate M (i) using equation 5.32
21: Calculate H(i) using equation 5.33
22: Calculate Ξ(i) using equation 5.2
23: until (∥M (i) −M (i−1)∥+ |H(i) −H(i−1)∥+ ∥Ξ(i) − Ξ(t−1)∥) < ϵ or (i ≥

maxSteps)
24: return Matrices M,H,Ξ, V
25: end procedure

Fig. 5.2: The framework of the proposed work (Graphical abstract).
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Fig. 5.3: Mechanism and difference between the two proposed methods - DSIFC-PcFS and
DSIMFC-PcFS. (Roman values written on arrows denotes the parts in equations 5.13 and 5.23,
respectively.)

Three medical thermography-based public datasets (DB-THY-IR, DB-DMR-
IR, and DB-FOOT-IR) and an artificially-created noisy dataset (DB-NOISE-IR)
are considered in the experiments. This work uses only abnormal thermal images,
with and without noise, to segment the hotspots in them. The pre-processing steps
for the three datasets are described in Chapter 1, section 1.2.1. The Table 5.1 states
the number of abnormal samples in each dataset.

Table 5.1: Size of the datasets used in the study

DataSets DB-FOOT-IR DB-THY-IR DB-DMR-IR
Number of Abnormal
Samples

45 18 40

The dataset - DB-NOISE-IR, consists of 15 subsets of five images each. The
five thermal images are randomly picked from each of the three above-stated
datasets. These images are then corrupted with three types of artificial noise -
Salt and Pepper noise (SP Noise) of 1% and 5% intensities, Gaussian Noise with
σ = 1% and 0.5%, and Mixed Noise. A thermal image is corrupted with mixed
noise by first adding the Gaussian Noise (σ = 0.5%) followed by SP noise of
1% intensity. Table 5.2 details the 15 subsets of DB-NOISE-IR dataset. Figure
5.4 demonstrates the sample original and corrupted thermal images from the three
datasets.
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Table 5.2: Details of subsets of DB-NOISE-IR dataset.

Subset Name∗ Details
XXX-N1 Corrupted with Gaussian Noise (σ = 0.5%)
XXX-N2 Corrupted with Gaussian Noise (σ = 1%)
XXX-N3 Corrupted with SP Noise (1% Intensity)
XXX-N4 Corrupted with SP Noise (5% Intensity)
XXX-N5 Corrupted with Mixed Noise

∗XXX - DMR, FOOT, and THY datasets

The approaches proposed - DSIFC-PcFS and DSIMFC-PcFS, for segment-
ing thermal images are compared with 10 State-of-the-art methods- EnMRG[32],
LSNAP[36], FC-PcFS[90], ColK-Means[102], DFCM [91], DIFCM[92], FLICM[94],
and KFCM_S[95], IFCMSNI[93], KPFCMSNI[96]. We implemented the meth-
ods with exact lines of detail in MATLAB 2020 (64-bit) for a fair comparison.

The table 5.3 describes all the notations and symbols used in this work. The
table 5.4 lists the various parameters and their values used in State-of-the-art ap-
proaches and proposed approaches for the investigation purpose.

The manually-segmented reference image does not exist for the datasets under
consideration. Therefore, the effectiveness of proposed approaches and related
methods is analyzed using unsupervised objective evaluation performance metrics.
These measures do not require a human visual comparison or comparison with the
ground-truth reference image.

For the publicly available dataset DB-DMR-IR, the research works [32, 33,
98, 97] created reference images themselves, which is intrinsically subjective. To
eliminate the subjectivity, following performance metrics are used for evaluating
the segmentation results -

1. Modified Partition Coefficient (MPC) [149]- Modified Partition Coeffi-
cient (MPC) is the modification of Partition Coefficient and retards its mono-
tonic trend with an increase in the number of clusters. An optimal value of
MPC is obtained by solving max2≤C≤N−1 MPC for possible values of C.
The value of MPC ∈ [0, 1] and is computed using equation -

MPC = 1− C

C − 1

[
1

N

C∑
p=1

N∑
j=1

U2
pj

]
(5.35)

2. Bensaid Validity index (BVI) [150] - BVI is computed as a ratio of intra-
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region compactness and inter-region separation using equation -

BV I =
C∑

p=1

∑N
j=1 U

2
pj(zj − vp)

2

np

∑C
k=1(vk − vp)2

(5.36)

where np =
∑N

j=1 Upj . It normalizes the compactness to separation ratio
with the weights 1/np. A well-defined segmentation will have a minimal
value of BVI.

3. Uniformity Index (UI) [151] - Uniformity of a region is inversely propor-
tional to variance in intensity of its pixels. The Uniformity Index (UI) quan-
tifies the intra-region uniformity based on its variance. It provides global
texture uniformity and is computed as a measure within each region, in-
dependent of its neighboring regions. The value of UI ∈ [0, 1]. A well-
segmented region would maximize the value of this criteria. Mathematically,
UI is calculated as

UI = 1− 2

N

C∑
p=1

∑
zj∈Cp

[zj − zp]
2[

max
zj∈Cp

(zj)− min
zj∈Cp

(zj)

]2 (5.37)

where zp is the average of sample points in cluster/region Cp.

4. Inter-Region Contrast Measure (IRCM) [151] - Inter-Region Contrast
Measure (IRCM) is the weighted sum of per-region contrast and is com-
puted as

IRCM =

∑C
p=1 ypcp∑C
p=1 yp

(5.38)

where the weights yp are defined as per human contrast sensitivity curve[151],
yp = 1√

2πA2
σ

exp− (Ap−Aµ)2

A2
σ

. The terms Ap, Aµ, and Aσ denote the size of

pth cluster, average of clusters’ sizes, and variation in sizes of clusters, re-
spectively. The per-region contrast, (cp), is computed for a region/cluster Cp

in relation with all its neighboring regions, as cp =
∑

Cq∈Nbd(Cp)

dpq
|zp−zq |
zp+zq

. The

weight dpq is the ratio of perimeter common to Cp and Cq to the perimeter
of Cp. Nbd(Cp) is the set of regions in the immediate neighborhood of Cp.
Note that

∑
Cq∈Nbd(Cp)

dpq = 1. The value of IRCM ∈ [0, 1]. A higher value

of IRCM denotes a good segmentation.
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(a) DB-DMR-IR -
Original Image

(b) Gaussian Noise
(σ = 1%)

(c) Gaussian Noise
(σ = 0.5%)

(d) SP Noise (1%
Intensity)

(e) SP Noise (5%
Intensity)

(f) Mixed Noise

(g) DB-FOOT-IR -
Original Image

(h) Gaussian Noise
(σ = 1%)

(i) Gaussian Noise
(σ = 0.5%)

(j) SP Noise (1%
Intensity)

(k) SP Noise (5%
Intensity)

(l) Mixed Noise

(m) DB-THY-IR -
Original Image

(n) Gaussian Noise
(σ = 1%)

(o) Gaussian Noise
(σ = 0.5%)

(p) SP Noise (1%
Intensity)

(q) SP Noise (5%
Intensity)

(r) Mixed Noise

Fig. 5.4: The sample of original thermal image and corresponding corrupted images from the three
datasets.
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Table 5.3: Notations used in the proposed work.

Notation Description Notation Description

I An image, of size N = P ×Q. dc Decision cutoff parameter
I∗ An image I transformed to a nor-

malized matrix of local energy lev-
els (Entropy Image).

ζpj Spatial Information in the neighbor-
hood of data point zj towards clus-
ter center vp.

Z A vector of data points/items
formed from I∗.

ϵ Threshold Value

zj A data point/element in Z, j =
1, 2, 3...N

λ Regularization parameter

S A PcFS defined over Z with element
sj as ⟨zj , µS(zj), ηS(zj), νS(zj)⟩
corresponding to zj ∈ Z, j =
1, 2, 3...N .

M Fuzzy partition matrix of size N×C
with the positive membership val-
ues for each zj ∈ Z to belong to
all C clusters.

H Matrix of neutrality of size N × C
with the values for each zj ∈ Z to
be neutral to C clusters.

Ξ Matrix of refusal degree, of size
N ×C with the refusal of each zj ∈
Z to C clusters.

αj&βj Lagrangian Multiplier of data point
zj ∈ Z, j = 1,2,3...N

Nzj Set of data points in the w× w
neighborhood of data point zj .

K(xi, xj) Kernel Function ϕ(zj) A data point zj in kernel space
t Order of modified Renyi’s Entropy ρj Density parameter of zj ∈ Z, j =

1,2,3...N
µpj Positive membership of zj ∈ Z to

cluster Cp, p = 1, 2, 3...C and j =
1, 2, 3...N

κij Kernel-based distance between data
points zi and zj .

ηpj Degree of neutrality of zj ∈ Z to
cluster Cp, p = 1, 2, 3...C and j =
1, 2, 3...N

G
′
p probability of a data point, in a

given neighborhood, belonging to
cluster Cp

νpj Negative membership of zj ∈ Z to
cluster Cp, p = 1, 2, 3...C and j =
1, 2, 3...N

µ̄pj Average factual membership of
neighborhood of data point zj to-
wards cluster center vp.

ξpj Degree of refusal of zj ∈ Z to
cluster Cp, p = 1, 2, 3...C and j =
1, 2, 3...N

δj Minimum distance parameters of
zj ∈ Z, j = 1,2,3...N

γj Density decision parameter of zj ∈
Z, j = 1,2,3...N

dji Euclidean distance between sam-
ples zi and zj

maxSteps or T Maximal number of iterations. ς Measure of scatter of energy levels
in I∗

ω Negation Exponent m Fuzzifier
C Number of clusters. τ Adjustable cutoff parameter
Cp pth Cluster with center vp, p =

1, 2, 3...C
C Set of potential initial cluster cen-

ters

5. Zeboudj’s Criterion (ZC) [152] - Zeboudj’s Criterion (ZC) is a composite
of maximal inter-region and minimal intra-region disparity and is a suitable
metric for a noisy image. The intra-region disparity and inter-region dispar-
ity for a region Cp are defined as CI(Cp) = 1

Ap

∑
zj∈Cp

max{(zj − zt), zt ∈

Nzj ∪ Cp} and CE(Cp) =
1
Pp

∑
zj∈Bp

max{(zj − zt), zt ∈ Nzj − Cp}, respec-

tively. The term Pp is the perimeter of Boundary Bp of cluster Cp. Then, ZC
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is computed as ZC = 1
N

∑C
p=1ApZp, where

Zp =


1− CI(Cp)

CE(Cp)
, if 0 < CI(Cp) < CE(Cp)

CE(Cp), if CI(Cp) = 0

0, otherwise.

(5.39)

The value of ZC ∈ [0, 1]. A higher value of ZC denotes a good segmenta-
tion.

Table 5.4: Parameters and their Values for various State-of-the-art and proposed
approaches for segmenting medical thermal images

S. No. Segmentation
Methods

Parameters and their Values

1. EnMRG[32] Parameter η = [0,1] with a step size of 0.1, Image Threshold = [0, 0.1]
with a step size of 0.01, Entropy Image Threshold = [0, 0.1] with a step
size of 0.01

2. LSNAP[36] -
3. ColK-

Means[102]
C=5

4. FLICM[94] m = 2, maxSteps = 1000, ϵ = 0.0001, C = [3, 4, 5, 6, 7]
5. KFCM_S[95] m = 2, Spatial Penalty Parameter = [0-4] with a step size of 0.2 maxSteps

= 1000, ϵ = 0.0001, C = [3, 4, 5, 6, 7]
6. DFCM[91] m = 2, Density Rate = 0.25, ϵ = 0.0001, maxSteps = 1000, Distance Rate

= 1.0, and Cutoff Distance = 0.45
7. DIFCM[92] m=2, Density Rate = 0.25, ϵ = 0.0001, maxSteps = 1000, Distance Rate

= 1.0, and ω = [0-2] with a step size of 0.15
8. IFCMSNI[93] ω = [0-2] with a step size of 0.15m = 2, Spatial Regularization Parameter

= [0-4] with a step size of 0.2, maxSteps = 1000, ϵ = 0.0001, C = [3, 4,
5, 6, 7]

9. FC-PcFS[90] m = 2, ω = [0-2] with a step size of 0.15, ϵ = 0.0001, maxSteps = 1000,
C = [3, 4, 5, 6, 7]

10. KPFCMSNI[96] ω = [0-2] with a step size of 0.15, m = 2, Spatial Regularization Param-
eter = [0-4] with a step size of 0.2, maxSteps = 1000, ϵ = 0.0001, C =
[3, 4, 5, 6, 7]

11. DSIFC-PcFS ω = [0-2] with a step size of 0.15, m = 2, maxSteps = 1000, ϵ = 0.0001,
τ = 0.25

12. DSIMFC-
PcFS

ω = [0-2] with a step size of 0.15, maxSteps = 1000, ϵ = 0.0001, τ =
0.25, λ = [210, 211, 212, 213, 214], and t = 2

All the performance metrics values corresponding to each hyper-parameter
value are recorded for the grid search. The performance obtained correspond-
ing to the ZC’s optimal value (among all the hyper-parameters) is considered for
analysis(Table 5.5). The value of a metric for a segmentation method is obtained
by averaging its value over all the images in a dataset.

91



5.5. Results and Discussion

5.5 Results and Discussion

This section demonstrates the effectiveness and robustness of the proposed seg-
mentation methods on three publicly available thermal medical imaging datasets
- DB-FOOT-IR, DB-THY-IR, and DB-DMR-IR and an artificially created noisy
dataset - DB-NOISE-IR. The experiments conducted on all the datasets and im-
ages are independent and not related to each other in any respect. Metrics -
MPC, BVI, UI, IRCM, and ZC are used to compare the performance of two pro-
posed segmentation techniques - DSIFC-PcFS and DSIMFC-PcFS, with 10 State-
of-the-art methods- EnMRG[32], LSNAP[36], ColK-Means[102], KFCM_S[95],
FLICM[94], DFCM [91], DIFCM[92], IFCMSNI[93], FC-PcFS[90], and KPFCMSNI[96].

We analyze the results quantitatively and statistically in subsections 5.5.1 and
5.5.2, respectively. The computational complexity of the methods is compared in
section 5.5.3.

5.5.1 Result Analysis

The table 5.5 states the results obtained for all the metrics and methods used in
this work. Figure 5.5 illustrates the visual comparison of values of ZC values for
thermal images with and without noise. To plot the graph (Figure 5.5), the ZC
score is averaged over all the different types and levels of noise (XXX-N1, XXX-
N2, XXX-N3, XXX-N4, and XXX-N5) for each dataset (XXX - DMR, FOOT,
and THY). Following observations are made from the table 5.5 and figures 5.5-

• The proposed methods DSIMFC-PcFS and DSIFC-PcFS performed better in
comparison with the related methods for all three datasets without noise for
the metrics - MPC, BVI, UI, IRCM, and ZC. Also, the proposed methods
outperformed other related methods in the presence of Gaussian, SP, and
Mixed noise at different levels (Table 5.5).

• The proposed methods -DSIMFC-PcFS and DSIFC-PcFS, are found to be
robust and effective for images corrupted with high levels of noise. It is
observed that the performance of all the stated methods has decreased with
the increase in levels of noise. However, the reduction in the performance
of the DSIMFC-PcFS and DSIFC-PcFS is significantly lesser than that of
related methods. This is due to the incorporation of combination of density-
based heuristic and spatial information with the minimization of modified

92



5.5. Results and Discussion

Renyi’s Entropy. This shows the robustness of our proposed method for
noisy images (Table 5.5).

• Segmentation Methods like EnMRG[32], LSNAP[36], ColK-Means[102],
and FC-PcFS[90] do not utilize spatial information, and therefore their per-
formance decay remarkably with increase in levels of noise (Table 5.5).

• PcFS based clustering methods like DSIMFC-PcFS, DSIFC-PcFS, KPFCMSNI[96],
and FC-PcFS[90] have performed better for all the datasets, without noise
and corrupted with noise than that of other stated methods. This is due to
the robust representational structure of PcFS (Figure 5.5).

• No significant difference is observed in the performance of DIFCM[92],
IFCMSNI[93], and FC-PcFS[90] for DB-DMR-IR dataset. For DB-THY-
IR and DB-FOOT-IR datasets, DIFCM[92] has performed better for images
with and without noise (Figure 5.5).

• Density-based methods - DFCM [91], DIFCM[92], and our proposed meth-
ods have performed better than their corresponding variants in FCM, IFCM,
and FC-PcFS, respectively, for the images corrupted with noise. This is due
to meticulously assigning the initial cluster centers and membership matri-
ces (Figure 5.5).

The qualitative results on the images corrupted with Gaussian noise (σ =1%) from
three datasets - DB-DMR-IR, DB-FOOT-IR, and DB-THY-IR are demonstrated
in figures 5.6, 5.7, and 5.8, respectively. Among all, DSIMFC-PcFS and DSIFC-
PcFS performed better than other methods, capturing all the hotspots/suspicious
regions in the thermal images. Through the quantitative and qualitative analysis,
it can be inferred that the proposed methods - DSIMFC-PcFS and DSIFC-PcFS-
are effective and can accurately identify the hotspots, especially in the presence of
noise. As the noise level increases, the proposed DSIMFC-PcFS method outper-
forms other related methods in terms of MPC, BVI, UI, IRCM, and ZC, thereby
suppressing the effect of noise. The proposed method is robust due to the incorpo-
ration of spatial information along with density information and modified Renyi’s
Entropy.
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Table 5.5: Performance comparison of various Segmentation methods for three datasets with and without noise.

Segmentation Results for DB-DMR-IR(with and without noise)

Without Noise Gaussian Noise (σ = 0.5%) (DMR-N1) Gaussian Noise (σ = 1%) (DMR-N2) SP Noise (1% Intensity) (DMR-N3) SP Noise (5% Intensity) (DMR-N4) Mixed Noise (DMR-N5)

Segmentation
Methods

MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC

LSNAP[36] 0.67 0.126 0.61 0.697 0.7 0.606 0.242 0.567 0.611 0.584 0.561 0.31 0.411 0.442 0.447 0.574 0.146 0.6 0.59 0.676 0.41 0.179 0.595 0.55 0.525 0.453 0.326 0.407 0.515 0.538
EnMRG[32] 0.565 0.218 0.596 0.601 0.632 0.499 0.292 0.561 0.57 0.556 0.461 0.333 0.408 0.399 0.425 0.469 0.229 0.596 0.55 0.59 0.43 0.261 0.58 0.533 0.453 0.429 0.357 0.404 0.474 0.478
ColK-
Means[102]

0.727 0.121 0.684 0.75 0.707 0.661 0.219 0.646 0.616 0.665 0.621 0.265 0.478 0.488 0.499 0.66 0.135 0.67 0.6 0.701 0.506 0.164 0.65 0.57 0.527 0.495 0.258 0.475 0.583 0.57

KFCM_S[95] 0.731 0.102 0.759 0.764 0.844 0.669 0.18 0.73 0.682 0.754 0.627 0.215 0.592 0.563 0.712 0.681 0.123 0.67 0.622 0.702 0.525 0.14 0.65 0.587 0.586 0.616 0.21 0.589 0.6 0.695
FLICM[94] 0.776 0.098 0.767 0.775 0.865 0.717 0.137 0.743 0.772 0.814 0.708 0.178 0.641 0.622 0.731 0.755 0.117 0.71 0.749 0.804 0.649 0.139 0.67 0.73 0.651 0.686 0.209 0.638 0.701 0.736
DFCM [91] 0.797 0.076 0.811 0.803 0.865 0.754 0.137 0.776 0.788 0.816 0.733 0.144 0.68 0.73 0.811 0.763 0.107 0.73 0.76 0.816 0.667 0.131 0.67 0.746 0.657 0.723 0.206 0.678 0.728 0.812
DIFCM[92] 0.923 0.068 0.874 0.854 0.894 0.894 0.098 0.844 0.833 0.888 0.873 0.101 0.755 0.82 0.869 0.902 0.098 0.77 0.831 0.892 0.831 0.122 0.75 0.82 0.838 0.837 0.205 0.752 0.815 0.838
IFCMSNI[93] 0.806 0.07 0.817 0.804 0.884 0.78 0.124 0.786 0.8 0.818 0.761 0.141 0.701 0.773 0.813 0.786 0.106 0.75 0.793 0.846 0.693 0.127 0.71 0.789 0.693 0.729 0.205 0.698 0.786 0.815
FC-PcFS[90] 0.818 0.069 0.851 0.833 0.893 0.8 0.105 0.822 0.8 0.823 0.769 0.133 0.751 0.8 0.819 0.814 0.101 0.76 0.796 0.857 0.772 0.124 0.73 0.79 0.715 0.74 0.2 0.748 0.794 0.82
KPFCMSNI[96] 0.925 0.058 0.887 0.882 0.9 0.9 0.097 0.865 0.856 0.893 0.878 0.099 0.808 0.852 0.879 0.904 0.086 0.78 0.869 0.9 0.852 0.115 0.75 0.85 0.892 0.842 0.2 0.775 0.833 0.885
DSIFC-PcFS 0.933 0.038 0.917 0.911 0.923 0.91 0.088 0.884 0.889 0.91 0.88 0.091 0.812 0.866 0.901 0.92 0.065 0.852 0.9 0.923 0.871 0.09 0.815 0.882 0.912 0.847 0.168 0.792 0.842 0.9
DSIMFC-PcFS 0.953 0.021 0.926 0.918 0.938 0.933 0.052 0.894 0.9 0.924 0.882 0.055 0.815 0.88 0.92 0.935 0.037 0.875 0.913 0.934 0.925 0.07 0.822 0.893 0.933 0.861 0.139 0.811 0.89 0.913

Segmentation Results for DB-FOOT-IR(with and without noise)

Without Noise Gaussian Noise (σ = 0.5%) (FOOT-N1) Gaussian Noise (σ = 1%) (FOOT-N2) SP Noise (1% Intensity) (FOOT-N3) SP Noise (5% Intensity) (FOOT-N4) Mixed Noise (FOOT-N5)

Segmentation
Methods

MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC

LSNAP[36] 0.697 0.156 0.719 0.597 0.55 0.639 0.238 0.637 0.597 0.522 0.639 0.295 0.605 0.475 0.491 0.64 0.214 0.679 0.552 0.473 0.623 0.29 0.636 0.531 0.407 0.578 0.317 0.548 0.523 0.459
EnMRG[32] 0.667 0.187 0.705 0.55 0.525 0.606 0.274 0.578 0.55 0.503 0.606 0.299 0.52 0.409 0.449 0.567 0.263 0.66 0.506 0.446 0.549 0.316 0.613 0.483 0.387 0.563 0.338 0.536 0.487 0.361
ColK-
Means[102]

0.721 0.154 0.72 0.686 0.62 0.664 0.236 0.643 0.686 0.555 0.664 0.287 0.612 0.528 0.496 0.642 0.206 0.684 0.649 0.615 0.627 0.276 0.639 0.627 0.532 0.614 0.296 0.567 0.648 0.492

KFCM_S[95] 0.737 0.097 0.729 0.778 0.753 0.672 0.22 0.68 0.778 0.585 0.672 0.224 0.653 0.599 0.517 0.654 0.17 0.695 0.741 0.633 0.632 0.23 0.649 0.718 0.545 0.629 0.292 0.587 0.734 0.522
FLICM[94] 0.741 0.091 0.747 0.808 0.776 0.688 0.208 0.699 0.808 0.645 0.688 0.221 0.692 0.634 0.531 0.655 0.164 0.712 0.779 0.653 0.637 0.222 0.668 0.756 0.596 0.64 0.261 0.646 0.775 0.583
DFCM[91] 0.825 0.089 0.764 0.831 0.803 0.735 0.201 0.701 0.831 0.665 0.735 0.213 0.695 0.745 0.625 0.765 0.148 0.725 0.801 0.672 0.751 0.218 0.683 0.777 0.611 0.67 0.258 0.646 0.795 0.602
DIFCM[92] 0.867 0.078 0.833 0.901 0.867 0.816 0.146 0.797 0.901 0.796 0.788 0.171 0.782 0.803 0.729 0.794 0.13 0.796 0.867 0.779 0.764 0.185 0.747 0.844 0.708 0.722 0.226 0.7 0.827 0.733
IFCMSNI[93] 0.833 0.08 0.775 0.875 0.832 0.757 0.178 0.733 0.875 0.732 0.757 0.203 0.718 0.766 0.629 0.771 0.142 0.735 0.818 0.681 0.758 0.202 0.689 0.792 0.614 0.706 0.252 0.667 0.814 0.669
FC-PcFS[90] 0.851 0.079 0.804 0.897 0.855 0.774 0.154 0.752 0.897 0.775 0.774 0.179 0.743 0.785 0.645 0.775 0.141 0.76 0.855 0.685 0.76 0.187 0.713 0.839 0.62 0.718 0.238 0.667 0.825 0.673
KPFCMSNI[96] 0.894 0.061 0.882 0.92 0.91 0.815 0.131 0.807 0.92 0.883 0.815 0.135 0.803 0.83 0.789 0.832 0.113 0.835 0.867 0.789 0.815 0.182 0.793 0.844 0.732 0.741 0.226 0.713 0.858 0.775
DSIFC-PcFS 0.903 0.047 0.911 0.944 0.925 0.826 0.121 0.885 0.944 0.912 0.826 0.126 0.862 0.9 0.799 0.833 0.107 0.879 0.901 0.885 0.815 0.18 0.833 0.877 0.813 0.771 0.169 0.744 0.898 0.849
DSIMFC-PcFS 0.943 0.041 0.918 0.956 0.947 0.853 0.104 0.91 0.956 0.928 0.846 0.114 0.896 0.908 0.814 0.843 0.104 0.905 0.945 0.916 0.823 0.159 0.865 0.928 0.856 0.803 0.165 0.767 0.928 0.866

Segmentation Results for DB-THY-IR(with and without noise)

Without Noise (DB-THY-IR) Gaussian Noise (σ = 0.5%) (THY-N1) Gaussian Noise (σ = 1%) (THY-N2) SP Noise (1% Intensity) (THY-N3) SP Noise (5% Intensity) (THY-N4) Mixed Noise (THY-N5)

Segmentation
Methods

MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC MPC BVI UI IRCM ZC

LSNAP[36] 0.645 0.236 0.678 0.608 0.674 0.634 0.289 0.619 0.604 0.535 0.54 0.357 0.532 0.502 0.435 0.581 0.247 0.603 0.558 0.563 0.49 0.334 0.542 0.487 0.433 0.512 0.361 0.414 0.474 0.49
EnMRG[32] 0.55 0.263 0.658 0.589 0.643 0.49 0.327 0.57 0.565 0.479 0.452 0.449 0.424 0.48 0.326 0.498 0.313 0.595 0.486 0.55 0.439 0.373 0.536 0.456 0.396 0.443 0.368 0.374 0.451 0.391
ColK-
Means[102]

0.718 0.201 0.681 0.667 0.692 0.689 0.21 0.625 0.642 0.581 0.665 0.303 0.561 0.504 0.445 0.692 0.224 0.623 0.615 0.628 0.522 0.265 0.554 0.532 0.44 0.537 0.339 0.457 0.559 0.535

KFCM_S[95] 0.731 0.177 0.69 0.792 0.709 0.693 0.189 0.657 0.738 0.641 0.676 0.243 0.593 0.535 0.592 0.71 0.182 0.639 0.624 0.659 0.595 0.222 0.556 0.572 0.572 0.599 0.33 0.618 0.601 0.578
FLICM[94] 0.764 0.153 0.723 0.82 0.777 0.705 0.179 0.68 0.763 0.659 0.703 0.198 0.634 0.593 0.643 0.735 0.17 0.676 0.752 0.684 0.607 0.215 0.67 0.684 0.618 0.668 0.294 0.638 0.714 0.637
DFCM[91] 0.79 0.141 0.783 0.825 0.841 0.758 0.161 0.703 0.782 0.721 0.727 0.188 0.684 0.641 0.646 0.737 0.152 0.763 0.788 0.738 0.665 0.168 0.718 0.715 0.641 0.674 0.294 0.655 0.774 0.648
DIFCM[92] 0.873 0.102 0.843 0.888 0.882 0.859 0.114 0.837 0.854 0.827 0.857 0.122 0.786 0.83 0.815 0.824 0.109 0.791 0.862 0.868 0.786 0.143 0.739 0.804 0.775 0.748 0.21 0.762 0.805 0.728
IFCMSNI[93] 0.791 0.116 0.803 0.852 0.845 0.77 0.138 0.735 0.799 0.755 0.741 0.154 0.73 0.689 0.739 0.767 0.124 0.768 0.797 0.831 0.673 0.147 0.732 0.759 0.654 0.699 0.283 0.719 0.795 0.679
FC-PcFS[90] 0.824 0.102 0.809 0.868 0.852 0.811 0.126 0.796 0.834 0.767 0.757 0.131 0.772 0.815 0.754 0.816 0.114 0.777 0.852 0.837 0.714 0.144 0.732 0.792 0.693 0.703 0.221 0.73 0.797 0.697
KPFCMSNI[96] 0.894 0.083 0.891 0.901 0.877 0.878 0.087 0.872 0.866 0.868 0.878 0.104 0.844 0.841 0.858 0.85 0.091 0.817 0.873 0.868 0.789 0.123 0.759 0.838 0.785 0.808 0.205 0.801 0.815 0.808
DSIFC-PcFS 0.914 0.056 0.917 0.929 0.923 0.886 0.068 0.889 0.892 0.908 0.877 0.078 0.859 0.869 0.877 0.914 0.09 0.883 0.888 0.88 0.844 0.096 0.865 0.872 0.876 0.822 0.188 0.839 0.858 0.864
DSIMFC-PcFS 0.936 0.025 0.944 0.936 0.933 0.933 0.047 0.925 0.92 0.895 0.913 0.076 0.921 0.892 0.885 0.911 0.041 0.897 0.894 0.901 0.893 0.063 0.903 0.887 0.879 0.88 0.157 0.863 0.887 0.887
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5.5. Results and Discussion

(a) DB-DMR-IR (b) DB-FOOT-IR

(c) DB-THY-IR

Fig. 5.5: Visual comparison of values of ZC values for images without noise and with noise (aver-
aged over all the noise types and levels).

(a) Original Image (b) ColK-
Means[102]

(c) LSNAP[36] (d) KFCM_S[95]

(e) FLICM[94] (f) DFCM [91] (g) DIFCM[92] (h) IFCMSNI[93]

(i) FC-PcFS[90] (j)
KPFCMSNI[96]

(k) DSIFC-PcFS (l) DSIMFC-PcFS

Fig. 5.6: Qualitative comparison of segmentation methods on abnormal thermal image corrupted
with Gaussian noise (σ =1%) from DB-NOISE-IR (DMR-N2).
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5.5. Results and Discussion

(a) Original Image (b) ColK-
Means[102]

(c) LSNAP[36] (d) KFCM_S[95]

(e) FLICM[94] (f) DFCM [91] (g) DIFCM[92] (h) IFCMSNI[93]

(i) FC-PcFS[90] (j)
KPFCMSNI[96]

(k) DSIFC-PcFS (l) DSIMFC-PcFS

Fig. 5.7: Qualitative comparison of segmentation methods on abnormal thermal image corrupted
with Gaussian noise (σ =1%) from DB-NOISE-IR(FOOT-N2).

Also, the relative increase in the performance (in terms of IRCM) of the pro-
posed and related segmentation methods is analyzed for images without noise and
corrupted with mixed noise. The relative increase in the performance is calcu-
lated with respect to the lowest performing method for all the datasets, that is,
EnMRG[32], respectively, for without noise and with mixed noise.

Table 5.6 shows the net increment in IRCM values (in %) of images without
noise and with mixed noise for all the stated segmentation methods and datasets.
Figure 5.9 illustrates the ranking of the segmentation methods in terms of % in-
crement in IRCM values (in descending order) for images without noise and with
Mixed Noise. Following are observed from Table 5.6 and Figure 5.9:

• The relative improvement (in %) is maximum in the proposed approaches
for segmenting thermal images without noise and with mixed noise in terms
of IRCM scores.
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5.5. Results and Discussion

• Though the ZC score of proposed methods over noisy images is lower than
that of images without noise, but the relative increment in the ZC (in %)
score (with respect to the control method) is better and more significant,
especially for images corrupted with mixed noise. This significant improve-
ment is due to the incorporation of spatial information along with modified
Renyi’s Entropy.

(a) Original Image (b) ColK-
Means[102]

(c) LSNAP[36] (d) KFCM_S[95]

(e) FLICM[94] (f) DFCM [91] (g) IFCMSNI[93] (h) DIFCM[92]

(i) FC-PcFS[90] (j) KPFCMSNI[96] (k) DSIFC-PcFS (l) DSIMFC-PcFS

Fig. 5.8: Qualitative comparison of segmentation methods on abnormal thermal image corrupted
with Gaussian noise (σ =1%) from DB-NOISE-IR(THY-N2).

• Density-based methods - DFCM [91], DIFCM[92], and our proposed meth-
ods have better relative percentage increments than their corresponding vari-
ants in FCM, IFCM, and FC-PcFS, respectively, for the images corrupted
with mixed noise. Also, the gain in performance of DIFCM[92] is better
than that of FC-PcFS. This shows that density-based methods are more ro-
bust than their corresponding variants.

• The relative increment in IRCM scores of LSNAP[36] and ColK-Means[102]
is minimum for images with and without noise.
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Table 5.6: Net increment in IRCM values(in %) of images without noise and
with Mixed Noise (XXX-N5, XXX-DMR, FOOT, THY) for all the segmentation
methods and all the datasets.

Segmentation
Methods

DB-DMR-IR DB-FOOT-IR DB-THY-IR

Without
Noise

Mixed Noise
(DMR-N5)

Without
Noise

Mixed Noise
(FOOT-N5)

Without
Noise

Mixed Noise
(THY-N5)

DSIMFC-PcFS 52.745 87.764 73.818 90.554 58.913 96.674
DSIFC-PcFS 51.581 77.637 71.636 84.394 57.725 90.244
KPFCMSNI[96] 46.755 75.738 67.273 76.181 52.971 80.71
DIFCM[92] 42.097 71.941 63.818 69.815 50.764 78.492
FC-PcFS[90] 38.602 67.511 63.091 69.405 47.368 76.718
IFCMSNI[93] 33.777 65.823 59.091 67.146 44.652 76.275
DFCM[91] 33.611 53.586 51.091 63.244 40.068 71.619
FLICM[94] 28.952 47.89 46.909 59.138 39.219 58.315
KFCM_S[95] 27.121 26.582 41.455 50.719 34.465 33.259
ColK-Means[102] 24.792 22.996 24.727 33.06 13.243 23.947
LSNAP[36] 15.973 8.65 8.545 7.392 3.226 5.1

(a) DB-DMR-IR (b) DB-FOOT-IR

(c) DB-THY-IR

Fig. 5.9: The ranking of segmentation methods in terms of % increment in IRCM values(in de-
scending order) for images without noise and with Mixed Noise (XXX-N5, XXX-DMR, FOOT,
THY).
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5.5.2 Statistical Analysis

This section introspects the performance of the framework statistically. Statistical
analysis is performed using Friedman test [153], a 2-way non-parametric test, to
evaluate the significant difference between the performance of proposed and re-
lated methods. The test is evaluated on the optimal value of ZC measure (among
all the hyper-parameters) obtained on two randomly chosen images from fifteen
subsets (XXX-Ni where XXX-DMR, FOOT, THY and i = 1...5) of DB-NOISE-IR
dataset. The Null and Alternate Hypothesis, H0 and H1 respectively, are formu-
lated as follows-

H0 : ZCDSIFC−PcFS = ZCDSIMFC−PcFS = ZCEnMRG = ZCLSNAP

= ZCColK−Means = ZCKFCM_S = ZCFLICM = ZCDFCM = ZCDIFCM

= ZCIFCMSNI = ZCFC−PcFS = ZCKPFCMSNI
(5.40)

H1 : ZCDSIFC−PcFS ̸= ZCDSIMFC−PcFS ̸= ZCEnMRG ̸= ZCLSNAP

̸= ZCColK−Means ̸= ZCKFCM_S ̸= ZCFLICM ̸= ZCDFCM ̸= ZCDIFCM

̸= ZCIFCMSNI ̸= ZCFC−PcFS ̸= ZCKPFCMSNI
(5.41)

where H0 indicates no significant difference between the performance of 10 meth-
ods under investigation, whereas H1 indicates that a significant difference exists
between their performances. The methods are ranked using Friedman ranking
method. The average rank Ri of the ith segmentation method is computed as
Ri = 1

S

∑S
j=1 r

i
j, i = 1, 2, 3...T , where rij denotes rank of the ith method on

jth thermal image in terms of ZC metric, S = 30 represents the number of images
used for statistical analysis, and T=12 is the number of treatments/segmentation
methods under investigation. The average Friedman ranking of all the segmen-
tation methods is mentioned in table 5.7. Lower is the rank value, better is the
segmentation method. Table 5.7 shows that the proposed methods DSIMFC-PcFS
and DSIFC-PcFS achieve the best segmentation performance.

The Friedman statistic F is calculated using average ranking Ri (equation
5.42). With 11 degrees of freedom, p-value computed is 1.427E-10. This p-value
supports the rejection of H0 at 0.05 level of significance.

F =
12S

T (T + 1)

[
T∑
i=1

R2
i −

T (T + 1)2

4

]
and FID =

(S − 1)F

S(T − 1)− F
(5.42)
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Table 5.7: Average ranking of the methods using Friedman method.

Segmentation
Method

Ranking Segmentation
Method

Ranking

DSIMFC-PcFS 1.06 DFCM[91] 7.01
DSIFC-PcFS 1.93 FLICM[94] 8.01
KPFCMSNI[96] 3.02 KFCM_S[95] 9.0
DIFCM[92] 3.98 ColK-Means[102] 10.32
FC-PcFS[90] 5.07 LSNAP[36] 11.03
IFCMSNI[93] 6.03 EnMRG[32] 12.00

The research work [154] adjusted the Friedman statistic F by proposing a new
statistic - FID which is computed using equation5.42. FID is distributed accord-
ing to F-distribution with 11 and 319 degrees of freedom. The p-value computed
according to F-distribution is 2.61E-97. This p-value also supports the rejection of
H0 at 0.05 level of significance.

5.5.3 Computational Complexity

This subsection analyzes the time complexity of state-of-the-art and proposed seg-
mentation methods. The time complexity for computing the Entropy Image is
O(Nw2) (equation 5.7). The cost of computing density decision information is
O(N2) (lines 5-9, Algorithms 2 and 3). Sorting density decision information costs
O(N logN) (line 10, Algorithms 2 and 3).

Most of the computational time is spent computing the membership values µpj .
In DSIFC-PcFS (lines 17-23, Algorithm 2), the computational cost of computing
matrices M , H and Ξ are O(NCw2), O(NC) and O(NC) and vector of cluster
centers vp, p = 1, 2, 3...C is O(NCw2), respectively. Hence, the overall computa-
tional cost1 of DSIFC-PcFS is O(N2 +NCw2T ) .

In every iteration (lines 17-23, Algorithms 3), to reduce the computational cost,
we stored the vector Gp (as C <<< N ). Then, the cost for computing a µpj is
O(Cw2). Hence, the time to compute matrix M is O(NC2w2). The computa-
tional cost of calculating the matrices H and Ξ and vector of cluster centers vp,
p = 1, 2, 3...C are O(NC) and O(NCw2), respectively. Thus, the overall time
complexity of DSIMFC-PcFS is O(N2 +NC2w2T ).

Additionally, the state-of-the-art and proposed segmentation method’s compu-
tational time is stated in table 5.8 for comparison in terms of an average number of

1Notations used here are same as mentioned in table 5.3
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Table 5.8: Comparison of computational time of state-of-the-art and proposed
segmentation methods.

Segmentation
Method

Time Complexity Average No
of Iterations

Average Execution Time (with
variance) (in Seconds)

EnMRG[32] O(Nw2 +N2T ) 47.23 4.17 (0.22)
LSNAP[36] O(N2T ) 76.34 6.66 (0.31)
ColK-Means[102] O(NCT ) 91.53 3.86 (0.15)
KFCM_S[95] O(NCw2T ) 53.48 5.67 (0.32)
FLICM[94] O(NCw2T ) 51.42 8.61 (0.48)
DFCM [91] O(N2 +NCT ) 43.69 3.97 (0.31)

DIFCM[92] O(N2 +NCT ) 38.71 8.27 (0.42)
IFCMSNI[93] O(NCw2T ) 68.51 13.45 (0.64)
FC-PcFS[90] O(NCT ) 82.55 21.25 (0.28)
KPFCMSNI[96] O(NCw2T ) 36.82 24.83 (0.66)
DSIFC-PcFS O(N2 +NCw2T ) 24.47 22.79 (0.26)
DSIMFC-PcFS O(N2 +NC2w2T ) 21.32 32.64 (0.27)

iterations and execution time for the thermal images without noise for DB-DMR-
IR dataset. The number of iterations and execution time are averaged over all the
abnormal images in the dataset. It can be observed from the table 5.8 that the
proposed methods DSIFC-PcFS and DSIMFC-PcFS take significantly lesser num-
ber of iterations than other state-of-the-art approaches and hence converge faster.
Comparatively, the execution time is higher due to the complex computation of
membership values using equations 5.32, 5.33, and 5.34.

5.6 Chapter Summary

This chapter introduces two novel density-based modified PCFS techniques, -
DSIFC-PcFS and DSIMFC-PcFS, for segmenting inflamed regions in abnormal
thermal images. Recognizing the limitations of existing segmentation models—such
as reliance on private datasets with limited samples, subjectivity in ground truth
generation, and sensitivity to parameter selection—the proposed methods aim to
improve robustness, accuracy, and reliability in medical thermal image analysis
with regard to their segmentation. These methods are evaluated using three pub-
licly available thermal imaging datasets, and an additional dataset with artificially
introduced noise is created to assess the robustness of the models. The first model
(DSIFC-PCFS) uses a density-based heuristic to automatically determine cluster
centers and membership values. Furthermore, spatial information is integrated into
the model to reduce sensitivity to noise and preserve fine image structures with-
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out requiring prior smoothing. While the second model (DSIMFC-PCFS) further
refines clustering by incorporating modified Renyi’s entropy to improve segmen-
tation accuracy and optimize cluster partitions. The models are optimized using
Lagrangian methods and validated on thermal imaging datasets covering diabetic
foot, breast cancer, and thyroid disorders, with and without artificial noise (Gaus-
sian, Salt & Pepper, and Mixed Noise).

The proposed segmentation frameworks are compared with ten state-of-the-art
segmentation methods using MPC, BVI, UI, IRCM, and ZC. The proposed meth-
ods significantly outperformed existing techniques across all datasets, demonstrat-
ing improved segmentation of inflamed regions in medical thermal images. Also,
unlike traditional approaches, which degrade in performance under noisy condi-
tions, DSIFC-PCFS and DSIMFC-PCFS maintained high segmentation accuracy
across all types of artificial noise. The introduction of modified Renyi’s entropy
in DSIMFC-PCFS enhanced clustering stability, leading to better differentiation
between normal and inflamed regions. The models demonstrated lower computa-
tional complexity and early convergence compared to existing approaches, making
them feasible for real-world medical applications. Overall the findings establish a
strong foundation for future research in automated thermography-based diagnostic
systems, particularly for early disease detection in real-world clinical settings.
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Chapter 6
Conclusion, Future Scope and Social
Impact

In this thesis, we attempted classification and segmentation of medical thermal
images. The following sections presents the important conclusions drawn from
the proposed work. Additionally it presents the details of future works and impact
of the study in society.

6.1 Conclusion

In summary, The outcomes of this study are divided in two parts. The first part
addresses proposing a refined feature set comprising relevant and non-redundant
features for distinguishing thermal patterns as normal/abnormal. We obtained a
feature-subset of 45, 57, and 39 features (from UnionFeature_Set) for DB-DMR-
IR and DB-FOOT-IR, and DB-THY-IR, that are relevant, non-redundant, and dis-
tinguishes normal and abnormal thermal patterns with an accuracy of 94.75%,
93.14%, and 92.06%, respectively. The findings establish a uniform platform-
based approach for thermal pattern differentiation using machine learning, high-
lighting the potential of thermography as a diagnostic tool. The study addresses
critical challenges in feature redundancy and dataset imbalance, offering a ro-
bust framework for future research in automated thermal image analysis, with
promising applications in disease screening and early detection in clinical set-
tings. Additionally, we developed lightweight DL-based features capable of dif-
ferentiating abnormal thermal patterns from normal ones, making them suitable
for deployment on mobile devices. The results indicate that DL-based feature
extraction methods outperform traditional hand-crafted approaches and classifica-
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tion using UnionFeature_Set. The NASNet-Mobile-based feature set, when com-
bined with SVM, yielded the highest accuracy of 99.3% for DB-DMR-IR, whereas
ShuffleNet with k-NN provided the best accuracy of 93.46% for DB-FOOT-IR.
However, the overall performance on DB-FOOT-IR was lower due to the limited
number of available samples. The findings establish the feasibility of deploying
mobile-friendly deep learning models for real-time detection of inflammation-
related abnormalities, bridging the gap between medical diagnostics and accessible
AI-driven healthcare solutions.

Furthermore, the second part designed a pre-processing framework and intro-
duced two robust picture fuzzy clustering-based methods for segmenting inflamed
regions from thermal images. Recognizing the limitations of existing segmentation
models—such as reliance on private datasets with limited samples, subjectivity
in ground truth generation, and sensitivity to parameter selection—the proposed
methods aim to improve robustness, accuracy, and reliability in medical thermal
image analysis. The proposed methods significantly outperformed existing tech-
niques across all datasets, demonstrating improved segmentation of inflamed re-
gions in medical thermal images. Also, unlike traditional approaches, which de-
grade in performance under noisy conditions, DSIFC-PCFS and DSIMFC-PCFS
maintained high segmentation performance across various types of artificial noise.
Also, the introduction of modified Renyi’s entropy in DSIMFC-PCFS enhanced
clustering stability, leading to better differentiation between normal and inflamed
regions. The models demonstrated lower computational complexity and early con-
vergence compared to existing approaches, making them feasible for real-world
medical applications. Overall the findings establish a strong foundation for fu-
ture research in automated thermography-based diagnostic systems, particularly
for early disease detection in real-world clinical settings.

6.2 Social Impact

The social impact of developing a framework for thermal patterns analysis for dis-
ease diagnosis is both significant and far-reaching. Thermal Imaging combined
with a Computer-Integrated AI Diagnosis system bears the capability of strength-
ening the human health by timely cautioning about their body’s physical condi-
tions. Thermal imaging is a non-invasive, cost-effective, and contact-free diag-
nostic tool, making it particularly valuable in resource-limited settings. By detect-
ing abnormalities in thermal patterns, this framework enables early diagnosis of
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conditions such as cancer, diabetic neuropathy, and other inflammatory diseases,
ultimately reducing mortality rates and improving patient outcomes. The non-
contact nature of thermal imaging also ensures better hygiene, preventing cross-
contamination, especially during pandemic outbreaks.

The development of an AI-driven thermal pattern analysis framework in medicine
directly and indirectly contributes to multiple United Nations SDGs by enhancing
early diagnosis, healthcare accessibility, cost efficiency, and sustainability, ulti-
mately leading to a more equitable and effective healthcare system as follows:

• SDG 3 (Ensure healthy lives and promote well-being for all at all ages.) -
The proposed framework directly supports SDG 3 by enabling timely inter-
ventions for diseases such as cancer, diabetes complications, and infections.
Its accessibility and affordability make AI-driven thermal imaging a viable
solution for improving global healthcare. Additionally, its non-invasive na-
ture ensures patient comfort and safety.

• SDG 9 (Build resilient infrastructure, promote sustainable industrializa-
tion, and foster innovation.) - Integrating AI with thermal imaging reduces
reliance on manual interpretations, enhancing efficiency, accuracy, and scal-
ability in disease diagnosis.

• SDG 10 (Reduce inequality within and among countries.) - ML-powered
thermal analysis provides a cost-effective diagnostic solution, reducing the
financial burden on low-income individuals and ensuring healthcare acces-
sibility in under-served communities.

• SDG 11 (Make cities and human settlements inclusive, safe, resilient, and
sustainable.) - AI-powered thermal screening can be deployed in public
spaces to facilitate early disease detection and enhance pandemic prepared-
ness, contributing to public health safety.

• SDG 12 (Ensure sustainable consumption and production patterns.) -
The framework serves as an eco-friendly alternative to traditional diagnostic
methods by reducing reliance on radiation-based imaging, thus minimizing
medical waste and lowering environmental hazards.

In a medical setup the proposed framework can be deployed and used in a clinical
setting through:
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• Usability Testing with Medical Staff: Radiologists or clinicians can assess
how intuitive and efficient the system is for identifying abnormal thermal
patterns. Metrics might include diagnostic accuracy, time to decision, and
ease of interpreting results.

• Clinical Workflow Integration: Evaluation can involve observing how the
tool fits into real diagnostic workflows—e.g., during breast cancer screen-
ing or diabetic foot monitoring—assessing whether it supports or disrupts
routine practice.

• Feedback from End Users: Structured interviews or surveys can capture
feedback from both clinicians and, where appropriate, patients, regarding
trust in the system, perceived usefulness, and ease of understanding outputs.

• Clinical Validation Studies: Comparative studies where thermal imaging re-
sults are evaluated against gold standards (e.g., biopsy or MRI) in real patient
cases, with clinician involvement, can validate both accuracy and practical
relevance.

The Computer-Integrated AI Diagnosis system with DITI makes a lasting con-
tribution to public health and well-being by promoting innovation, reducing envi-
ronmental impact, and supporting global health infrastructure.

6.3 Future Scope

The methods developed in this thesis represent a significant advancement in the
field of Computer-Integrated AI Diagnosis system using Thermography. How-
ever, as with any research endeavor, there are numerous opportunities for further
exploration, enhancement, and deployment. Below are several key directions for
future work:

• A standardized, large-scale dataset with ground truth for segmentation is cur-
rently unavailable. Future work will focus on developing such a dataset, en-
compassing diverse abnormalities, to facilitate bench-marking and improve
classification and segmentation models using deep learning.

• While the current methods perform robustly, further enhancements are needed
to improve computational speed and efficiency without sacrificing accuracy.
Research will explore hardware acceleration, algorithmic refinements, and
parallel processing techniques.
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• In view of the societal impact, efforts will focus on integrating the developed
models into a single framework for deployment in public spaces. Testing in
areas such as urban planning, environmental monitoring, and public health
will help quantify benefits and identify areas for improvement.

• Future research will investigate advanced methodologies, including quan-
tum computing, Generative Adversarial Networks (GANs), and novel ma-
chine learning paradigms. These approaches could lead to breakthroughs
in handling complex, noisy environments and enhancing AI-driven thermo-
graphic diagnosis.

• In future, the work may be expanded upon building the concept of multi-
modal analysis, beyond the initial framework to create an even more robust
and comprehensive diagnostic system. The integration of visual and depth
images will be a key step, providing a richer visual and spatial understand-
ing of the subject. This visual data, USG images, MRI images, etc. will
be fused with thermal data to move beyond isolated findings and build a
holistic, patient-centric view.

By tackling these challenges, future research will not only improve existing meth-
ods for the Computer-Integrated AI Diagnosis system using Thermography but
also drive groundbreaking innovations in thermal imaging. This will lead to safer,
smarter, and more efficient technologies across various thermography applications.
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