
Delhi Technological University

test.docx

 

Document Details

Submission ID

trn:oid:::27535:98416473

Submission Date

May 29, 2025, 11:37 PM GMT+5:30

Download Date

May 29, 2025, 11:38 PM GMT+5:30

File Name

test.docx

File Size

582.7 KB

38 Pages

8,827 Words

51,371 Characters

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98416473

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98416473



8% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Cited Text

Small Matches (less than 8 words)

Match Groups

67 Not Cited or Quoted 8%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

4% Internet sources

2% Publications

6% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that 
would set it apart from a normal submission. If we notice something strange, we flag 
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you 
focus your attention there for further review.

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473



Match Groups

67 Not Cited or Quoted 8%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

4% Internet sources

2% Publications

6% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Internet

tsetlinmachine.org 1%

2 Submitted works

The University of Manchester on 2013-08-29 <1%

3 Internet

real.mtak.hu <1%

4 Publication

Dimitrios Sargiotis. "MATLAB for Civil Engineers", Springer Science and Business … <1%

5 Internet

d197for5662m48.cloudfront.net <1%

6 Submitted works

Ghana Technology University College on 2023-07-25 <1%

7 Internet

assets-eu.researchsquare.com <1%

8 Submitted works

Edith Cowan University on 2024-05-24 <1%

9 Submitted works

Florida International University on 2023-10-12 <1%

10 Submitted works

Kingston University on 2025-04-25 <1%

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

http://tsetlinmachine.org/wp-content/uploads/2022/11/Tsetlin_Machine_Book_Chapter_One_Revised.pdf
https://real.mtak.hu/217528/1/InfocomJournal_2025_1_3_.pdf
https://doi.org/10.1007/978-3-031-84673-1
https://d197for5662m48.cloudfront.net/documents/publicationstatus/171971/preprint_pdf/2a71d9e4d334ce639cc4944879fbb3cf.pdf
https://assets-eu.researchsquare.com/files/rs-3584273/v1_covered_37a0c2ff-3d75-413f-81a3-de80e4090546.pdf?c=1722847588


11 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

12 Submitted works

University of West Attica on 2025-04-25 <1%

13 Submitted works

Lappeenrannan teknillinen yliopisto on 2025-04-22 <1%

14 Submitted works

University of Newcastle upon Tyne on 2025-01-16 <1%

15 Submitted works

West Herts College on 2024-03-03 <1%

16 Submitted works

Coventry University on 2024-08-09 <1%

17 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

18 Submitted works

University of Lancaster on 2024-12-16 <1%

19 Submitted works

University of Newcastle upon Tyne on 2024-08-03 <1%

20 Internet

arxiv.org <1%

21 Submitted works

University of Newcastle upon Tyne on 2023-08-17 <1%

22 Internet

123dok.net <1%

23 Submitted works

Queensland University of Technology on 2024-05-20 <1%

24 Submitted works

Curtin University of Technology on 2022-06-03 <1%

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

https://arxiv.org/html/2406.19289v1
https://123dok.net/document/y961m4oj-deep-learning-based-channel-estimation-schemes-ieee-standard.html


25 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

26 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

27 Submitted works

University of Wollongong on 2025-05-25 <1%

28 Internet

www.researchgate.net <1%

29 Internet

eprints.soton.ac.uk <1%

30 Publication

Kolaei, Soheil Ahmadi Vosta. "KianNet: An Attention-Based CNN-RNN Model for Vi… <1%

31 Submitted works

University of Lancaster on 2024-08-30 <1%

32 Submitted works

University of Newcastle upon Tyne on 2009-09-02 <1%

33 Submitted works

University of Newcastle upon Tyne on 2011-08-31 <1%

34 Submitted works

University of Surrey on 2023-05-03 <1%

35 Internet

ris.utwente.nl <1%

36 Publication

Lathi, B.P.. "Modern Digital and Analog Communications Systems", Oxford Univer… <1%

37 Submitted works

Ohio University on 2007-04-12 <1%

38 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

Page 5 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 5 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

https://www.researchgate.net/publication/321614558_Applications_of_Chaos_and_Nonlinear_Dynamics_in_Engineering_-_Vol_1
https://eprints.soton.ac.uk/271413/1/VTC_2010_Spring_Jiankang.pdf
https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31883120&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004
https://ris.utwente.nl/ws/files/276635107/Phd_Thesis_Paolo_Fracas_final_.pdf


39 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

40 Internet

eprints.whiterose.ac.uk <1%

41 Internet

iris.polito.it <1%

42 Internet

www.ijecs.in <1%

Page 6 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 6 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

http://eprints.whiterose.ac.uk/143332/8/sensors-19-01191.pdf
https://iris.polito.it/retrieve/e384c434-727f-d4b2-e053-9f05fe0a1d67/AWPL_letter__Hyperparameter_Forcasting_DNN_R1_nocol.pdf
https://www.ijecs.in/index.php/ijecs/article/download/2343/2166/4223


 

   

CHAPTER 1 

 

 

INTRODUCTION 

 

Complex machine learning algorithms often produce curious results without 

revealing the thought processes involved in the final product. This is why Tsetlin 

machines stand out as a breath of fresh air. These models prioritize 

interpretability while achieving outstanding performance in pattern recognition 

tasks. Human beings categorize things, and Tsetlin machines do the same by 

learning to build rules. This is a profound idea behind Tsetlin machines: they 

process data by individually analyzing features and then combining them using 

logical operators like AND, OR, and NOT. This approach led to the creation of 

clear, comprehensible rules that define what makes something belong to a 

specific class. 

 

1.1 Motivation 
Machine learning often faces a commutation between complex models achieving majestic 

results and comprehensible how they arrive at those results. Models such as Support Vector 

machines have a good grip over performance but a mute when it comes to interpretation. 

Decision Trees and Ks nearest neighbors lack the reasoning behind why it has come to a 

certain conclusion or result. Tsetlin machines aim to bridge this gap. Powerful models like 

deep neural networks might excel at image recognition, however, their inner workings are 

opaque. Tsetlin machines aim to bridge this gap. Powerful models like deep neural networks 

might excel at image recognition, however, their inner workings are opaque. Tsetlin 

machines solve this by creating logically interpretable rules (such as "Four Wheels AND Has 

Engine" for cars). Unlike black-box models, these rules are simple to comprehend. While 

interpretability is a primary concern, Tsetlin machines also aim for high performance using 

feedback mechanisms such as "Reject" (learning differentiating features from other classes), 

"Erase" (weakening rules for inconsistent features), and "Recognize" (strengthening rules for 

consistent features). Around the world, Tsetlin machines are designed to produce accurate 

models with clear justifications for their choices, which makes them useful for jobs where 

knowing the "why" is just as important as knowing the " 
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1.2 Tsetlin Structure 

 

 

 
             Fig 1.1: Overview of Tsetlin Machine 

 

 
 

The first step is to learn how to get the data ready for the machine. The machine transforms 

the raw data into propositional logic, which is made up of distinct features that can be classified 

as True or False. The chapter then delves deeply into the profound idea of rules! In order to 

determine which class an object belongs to, these machines create "if-then" rules that combine 

these features using logic (AND, OR, NOT). For instance, "If Has Four Wheels AND Not Has 

Wings then Car" could be a rule for "Car." The machine's application of these rules to identify 

patterns in the data will be further explained in this chapter. It examines instances and 

reinforces rules that often correspond to data in a particular category (e.g., "Car"). 

Additionally, the chapter describes how the machine polishes the different categories apart.  

 

It weakens or eliminates rules that don't effectively showcase the difference between things. 

For example, a rule like "if Has Wheels then Car" might be weakened because it also applies to 

bicycles, trains, and planes. Ultimately, the chapter digs deep into how the machine works.This 

involves how it learns and adapts over time, positively using feedback from the data to amend 

its rules. It also explains how the machine uses multiple "if-then" rules together to make final 

classifications. By grasping these steps, you gain a heavy understanding of how Tsetlin 

machines function and achieve pattern recognition with clear, logical rules. 
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1.2.1 Data Booleanization 

 

As studied earlier, data is transformed into Boolean features (True or False values) 

to prepare it for the rule-based learning system. Here is a breakdown of the process 

with an example: 

Imagine a dataset classifyinfruits based on color and size. Raw Data is an Avocado 

which represents "Green" and "Large", while a banana might be "Yellow" 

and “Medium".  

The Booleanization process is as follows: 

1. Define Features: We identify individual characteristics as features. In this case, 

features are "Color" and "Size". 

 

2. Assign Boolean Values: For each feature, we create a set of Boolean values 

representing all possible conditions. Here is an examp 

 Color: 

Green = True 

Not Green (e.g., Yellow, Orange) = False 

 

 Size 

Large = True 

Not Large (e.g., Medium, Small) = False 

 

3. Applying Booleanization: 

 

 Apple Example: The Green Avocado with "Green" and "Large" features would 

be transformed into Boolean format: 

                          Color (Green) = True  

  Size (Large) = True 

 Banana Example: The yellow banana with "Yellow" and "Medium" features 

would be transformed into: 
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if (condition) then class 
(class) 
 

 

                                          Color (Green) = False (because it's not Green) 

                                           Size (Large) = False (because it's not large) 

 

Benefits of Booleanization: 

 

 Simple Representation: By converting data into propositional logic, Tsetlin 

machines can easily integrate them into logical rules using operators like AND, 

OR, and NOT. 

 Focus on Specific Characteristics: Booleanization allows the machine to focus 

on the presence or absence of specific features within each data point. 

 

In essence, booleanization transforms data into a binary format suitable for the rule-

based learning approach of Tsetlin machines. 

  

1.2.2 Pattern Construction with AND and NOT 

 

Pattern recognition problems are solved easily by Tsetlin machines using if-then 

rules by analyzing the object. Every rule has the following standard form: 

 

      

 
Table 1.1 table of three cars and three planes, with five Boolean features. The table 

showcases one column per feature, each entry taking the value (•) or 

False (·). The final column decides the type of vehicle. 

1 1

1
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The condition holds the place for boolean expression which outlines the pattern in 

the data which is learned by the Tsetlin machine. Refer to the vehicle information 

from Table 1.1 which makes it evident, that the condition 

 

Four Wheels and Transports People 

 
Observe how a Tsetlin machine makes use of the and-operator to merge several 

features. Every feature needs to be true if we need the entire condition to be true which 

is implemented by AND operation. In this example, the condition matches the features 

of the object under observation. If even one of the features is not true, the overall 

condition falls apart because the rule is not a match to the object’s condition. predicts 

a Car when it sees an object with Four Wheels that Transports People. 

 

Negation: The NOT operator plays a crucial role as it figures out the features that do 

not belong to the class. For example, a plane is not blue.  

 

Literals: The features or the properties of an object are called literals. Also, the 

properties that are not of the object are called negated features. Literals are a 

combination of features and negated features.   

 

1.2.2 Learning Frequent Patterns with Recognize and Erase Feedback 

 
Steps to learn a single rule: 

 

One can comprehend a Tsetlin machine if the machine can figure out how to learn a 

single rule itself. Through this independent learning, rules are free-standing and subtle 

to comprehend. It also processes independently which acts as a side benefit 

independent learning. 

Rule Initialization:  

 

All the literals take the memory position of 5 as their starting position. This makes sure 

that all the literals are neutral and at the brink of being memorized or forgotten. We 

can make and change rules according to our own will and it will not affect the result 

as it is a self-aligning system. 

Other machine learning algorithms such as deep neural networks are more 

sensitive to initialization. 

 

 

       

1

1

1
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                         Figure 1.2 Initializing of example rule for predicting the class 

 

 

The single-rule construction algorithm is as follows: 

It consists of three steps and case 1 is when the rule comes across an object which 

belongs to its class. 

 

The single-rule construction algorithm is as follows: 

It consists of three steps and case 1 is when the rule comes across an object which 

belongs to its class. 

1. Rule Evaluation: Observe the features of the object. 

 

2. Recognize Feedback: If the features match the condition, memorize the literal by 

incrementing its position in the memory. Forget the false literals towards maximally 

forgotten by decrementing their position in the memory.  

 

3. Erase Feedback: If the features do not match the condition, forget all the literals 

by decrementing their position 

 

Randomization: 

 Learning should be flexible because coincidence can happen and events sometimes 

occur by chance. Randomization is one simple way to achieve flexibility in 

randomization. Therefore, to randomize increments and decrements, we draw a 

random value between 0.0 and 1.0 is drawn. If the value is above 0.5, we skip the 

increment. The value of 0.5 is known as the Memorize Value. Again, we draw a value 

before decrementing. If the value is above 0.5, we skip the decrement. This second 0.5 

value is coined Forget Value. Randomization further diversifies the rules and boosts 

exploration. 

 

 

1.2.3 Increasing Discrimination Power with Reject Feedback 
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The use of Reject Feedback arises when we come across a condition where Tsetlin 

encounters data points from a different class. 

Algorithm – Increasing Discrimination Power: A rule increases its discrimination 

power when it faces an object of a class different from its own. Learning then skips 

Recognize and Erase Feedback, going directly to the fourth step: 
 

4. Reject Feedback: If the object's features match the condition but do not belong 

to the same class then all forgotten features are memorized. Randomization is 

not performed. 

 

 

1.2.4 Overall Coordination 

 
Tsetlin machine constructs multiple rules that interact by memorizing the features 

inspired by humans. Just the way humans categorize things. 

 

The procedure of Classification:  Voting classifies the input for Tsetlin. Only a single 

rule will not decide the result or which class the object belongs to. A vote is cast for 

each class and the class with the maximum number of votes is fed to the Tsetlin. In 

simple words, the majority wins. 

 

Learning coordination: 

 

Vote Margin: Tsetlin learns coordination of multiple rules with the help of Vote 

margin. It is an integer number that creates a margin between the winner and the 

loser(classes).   

 

Complete Learning Algorithm:  The Tsetlin machine learns complementary rules as 

follows: 

1. Analyse the new object's features and its class. 

2. Evaluate the truth values of the literal.  

3. Calculate the sum of the votes. 

4. Analyze each rule and assign feedback: 

            a) Categorize it as Recognize or Erase Feedback if the rule belongs to the 

object’s class  

            b) Give the rule Reject Feedback if it belongs to another class. 

      5. Go to 1.  

Because of the frequent changes in the updation of the rules, Tsetlins moderately 

assign themselves for classification of the different kinds of objects they face. 

Amidst this, prioritization of objects that are further away from the vote Margin is a 

paramount. This help to achieve Resource Allocation Effect. 

 

 

 

 

 

1

1

1

1
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CHAPTER 2 

 

 

LITERATURE SURVEY 

 
 

2.1 Introduction 

 

In the realm of wireless communication, the ability to accurately estimate the channel 

is indispensable In the end, channel estimation enables dependable demodulation and 

decoding of received signals by modeling the effects of multipath fading, interference, 

and noise. In the past, mathematically modeled methods like Least Squares (LS) and 

Minimum Mean Square Error (MMSE) have been used in communication systems. 

Although these models work well in controlled situations, they frequently fall short in 

dynamically changing environments because they presume prior knowledge of the 

channel. Researchers have started looking into the potential of machine learning (ML) 

in channel estimation due to its recent popularity and use in a variety of signal 

processing domains. Because it can model intricate and nonlinear channel behaviors, 

deep learning (DL) in particular has shown itself to be an effective tool. 

 

Simultaneously, a new method that strikes a balance between interpretability and 

computational efficiency is provided by the Tsetlin Machine (TM), a logic-based, low-

complexity machine learning model. With a focus on Tsetlin Machines and their 

potential in real-time wireless applications, this chapter provides a thorough analysis 

of 30 scholarly articles that examine the development from conventional estimators to 

modern machine learning techniques. 

 

 

2.2 Traditional Channel Estimation Techniques 

 

Matrix algebra and statistical modelling are the fundamental techniques in channel 

estimation. For example, LS estimation reduces the squared error between the channel 

coefficients that were observed and those that were predicted. Comprehensive 

simulations in OFDM environments were carried out by Goyal and Singh [13], who 

showed that although LS is straightforward and efficient, noise degrades its 

performance. MMSE, on the other hand, leverages channel statistics to minimize the 

mean square error, yielding improved performance when the noise variance is known. 

However, its dependency on statistical knowledge makes it less adaptable to non-

stationary conditions. 

 

R. Zhang and H. Zhang [17] evaluated estimation strategies for mmWave MIMO 

systems. They emphasized hybrid precoding, a technique where analog and digital 

2

3
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precoders are combined, to reduce the hardware complexity associated with fully 

digital solutions. Their work underscored the growing need for estimators that can 

scale with increasing antenna array sizes. 

 

Tse and Viswanath’s textbook [7] laid the theoretical groundwork for most modern 

communication techniques. It covers the mathematical modeling of fading channels, 

time/frequency selectivity, and optimal estimation strategies. Their work remains a 

touchstone for performance analysis in both classical and ML-based estimators. 

 

A. H. Sakr and E. Hossain [18] provided a thorough comparison of pilot-based and 

blind estimation methods in MIMO systems. They discussed the implications of pilot 

contamination, a problem that occurs when the same pilot sequences are reused in 

neighboring cells — a challenge especially relevant in massive MIMO deployments. 

 

2.3 Deep Learning-Based Channel Estimation 

 

With the introduction of models that could learn straight from data without the need 

for manually created features, deep learning completely changed the field of signal 

processing. One of the first deep learning architectures for OFDM systems was 

introduced by Ye et al. [14]. Their network outperformed LS and MMSE in terms of 

Bit Error Rate (BER) when performing joint channel estimation and signal detection. 

This method simplified receiver design and decreased error propagation.  

 

An AI-assisted OFDM receiver was developed and tested on a physical testbed by 

Zhang et al. [12]. Their findings confirmed that deep learning can be used in practical 

systems, which is a crucial step in moving from theory to implementation. 

Convolutional layers were incorporated into their architecture to extract spatial 

patterns from channel state information (CSI). 

 

Kim and Lee [8] used neural networks to optimize pilot placement to address the pilot 

overhead problem. Their model improved spectral efficiency by accurately predicting 

the channel with fewer pilot symbols. This work was expanded by Choi et al. [9] to 

massive MIMO systems, where conventional techniques are unable to handle the 

dimensionality of CSI. Their DNN method significantly decreased high-dimensional 

estimation's computational complexity. Their DNN approach drastically reduced the 

computational complexity of high-dimensional estimation. 

 

Chen et al. [10] proposed an attention-driven estimator where the model learns to focus 

on the most relevant parts of the input features, dynamically adjusting to time-varying 

channels. This mimics human cognitive processes and proved to be more effective in 

high-mobility environments. 

 

Wu et al. [15] developed a low-complexity neural network tailored for the uplink 

channel estimation in massive MIMO. Their architecture used shallow layers to reduce 

latency and energy consumption, making it suitable for edge deployment. Wahab et al. 

[16] and Singh [4] published comprehensive surveys categorizing DL models based 

on architecture (CNN, RNN, transformer), use-case, and complexity. 

27

30
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Farsad and Goldsmith [22] explored sequence learning for communication systems 

using recurrent neural networks (RNNs). Their work focused on symbol detection but 

demonstrated that sequence models could also be leveraged for time-correlated 

channel estimation. 

 

 

Ma and Gao [24] addressed sparse channel estimation in mmWave by integrating DL 

with compressive sensing. Their method took advantage of the sparsity in the angular 

domain, significantly improving estimation accuracy while reducing pilot overhead. 

 

 

2.4 Hybrid and Federated Learning Methods 

 

Elbir and Coleri [28] introduced federated learning (FL) as a decentralized training 

method for channel estimation, enabling model training across multiple devices 

without sharing raw data. This approach preserves privacy and is suitable for IoT or 

vehicular networks. Their findings showed that FL can match centralized learning in 

terms of performance while reducing communication costs.  

 

Huang et al. [21] offered a panoramic view of DL techniques at the physical layer of 

5G, covering not just channel estimation but also modulation recognition, detection, 

and resource allocation. They emphasized the need for lightweight DL models that can 

be deployed on hardware-constrained systems. 

 

Kim and Lee [23] applied hybrid DNN models that combine convolutional and fully 

connected layers to improve estimation accuracy without increasing inference time. 

This fusion strategy enhances spatial and temporal feature extraction. 

Lu et al. [25] discussed massive MIMO challenges in channel estimation, particularly 

the curse of dimensionality and pilot contamination. Their suggestions include 

leveraging statistical models, hybrid DL techniques, and hierarchical estimation 

structures. 

 

Soltani et al. [29] provided a meta-survey, covering over 100 papers related to DL-

based channel estimation. Their review highlighted emerging trends such as 

reinforcement learning, unsupervised learning, and domain adaptation, all of which 

aim to reduce dependency on labeled training data. 

 

 

2.5 Tsetlin Machine-Based Channel Estimation 

 

Unlike data-intensive neural networks, Tsetlin Machines rely on finite-state automata 

that learn logical clauses based on propositional feedback. Granmo [6] introduced this 

paradigm, emphasizing its simplicity and efficiency. The TM’s ability to operate with 

binary input data makes it ideal for embedded systems. 

 

Tanskanen et al. [5] expanded on this by evaluating TMs in signal processing contexts, 

31
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demonstrating competitive accuracy in classification tasks with minimal memory 

footprint. This makes TM a strong candidate for real-time, low-power applications. 

Tesema and Granmo [19] applied TM to MIMO detection and found that it achieved 

comparable BER to conventional algorithms while using significantly fewer resources. 

Unlike DNNs, which rely heavily on hyperparameter optimization, their model needed 

little tuning. 

 

For OFDM systems, Gaikwad et al. [30] introduced a hybrid machine learning model 

that combines TM and Support Vector Machines (SVM). While the TM recorded 

comprehensible logical patterns, the SVM dealt with high-dimensional projections. 

Improved convergence speed and noise resilience were the results of the combination. 

 

 

By combining TM with embedded hardware, Granmo et al. [27] demonstrated its 

potential in real-time signal processing applications. The ability of TM to satisfy the 

exacting timing and resource requirements of wireless communication systems was 

validated by their demonstration on FPGA platforms. 

 

 

2.6 Channel Modelling and Theoretical Foundations 

 

LeCun, Bengio, and Hinton [1] provided the seminal work on deep learning, laying 

the conceptual foundation for its widespread adoption in signal processing. Their 

discussion of hierarchical feature learning underpins many neural channel estimators 

today. 

 

Berardinelli et al. [2] outlined channel estimation challenges specific to 5G New Radio 

(NR), such as support for massive MIMO, low-latency requirements, and frequency 

diversity. Their insights guide the practical implementation constraints that any 

estimation algorithm must address. 

 

Heath et al. [3] focused on mmWave MIMO systems, where high-frequency 

propagation poses unique challenges. Their review of hybrid beamforming and sparse 

estimation laid the groundwork for many DL and TM-based innovations in channel 

modeling. 

 

Cotton and Scanlon [26] examined body area networks operating in the mmWave 

spectrum. They emphasized the importance of modeling human-body-induced fading, 

which is critical for healthcare and wearable systems — potential domains for TM 

deployment due to energy constraints. 

 

 

The exploration in this thesis is motivated by these findings. By implementing Tsetlin 

Machines for channel estimation and benchmarking them against LS and DNN 

methods, we aim to highlight their viability for real-world wireless communication 

systems. 
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This table categorizes each work by the proposed model or author, year of publication, 

employed methodology, and a brief description of the contribution. The objective is to 

highlight the evolution of channel estimation techniques — from traditional statistical 

approaches to advanced machine learning-based estimators, including the emerging 

Tsetlin Machine framework. 

 

 

 
Sr Model Year Method Description 

1 LeCun et al. [1] 2015 Deep Learning Pioneering work 

establishing the 

foundations of 

deep learning. 

2 Berardinelli et 

al. [2] 

2019 Model-Based + 

ML 

Survey of 

channel 

estimation 

techniques for 

5G NR. 

3 Heath et al. [3] 2016 Sparse + Hybrid 

Beamforming 

mmWave 

MIMO signal 

processing 

techniques. 

4 Singh [4] 2021 Survey Review of ML-

based channel 

estimation in 

wireless 

systems. 

5 Tanskanen et al. 

[5] 

2018 Tsetlin Machine Introduction of 

TM in signal 

classification 

applications. 

6 Granmo [6] 2018 Tsetlin Machine Bandit-based 

propositional 

logic model for 

learning. 

7 Tse & 

Viswanath [7] 

2005 Analytical Fundamental 

textbook 

covering 

channel 

modeling 

theories. 

8 Kim & Lee [8] 2018 DNN + Pilot 

Design 

Pilot 

optimization 

using deep 

learning for 

MIMO. 

9 Choi et al. [9] 2017 DNN Neural networks 

for large-scale 

6
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MIMO 

estimation. 

10 Chen et al. [10] 2021 Attention Dynamic 

attention 

mechanism for 

adaptive channel 

estimation. 

11 Diniz [11] 2012 DSP Covers channel 

estimation and 

filtering 

algorithms. 

12 Zhang et al. 

[12] 

2020 AI-Aided 

Receiver 

Hardware-

validated AI 

receiver for 

OFDM. 

13 Goyal & Singh 

[13] 

2012 LS, MMSE Comparative 

analysis of LS 

and MMSE 

estimators. 

14 Ye et al. [14] 2018 End-to-End DL Joint channel 

estimation and 

detection using 

DNN. 

15 Wu et al. [15] 2020 Lightweight 

DNN 

Uplink channel 

estimation in 

massive MIMO. 

16 Wahab et al. 

[16] 

2021 Survey Survey on DL 

techniques for 

OFDM channel 

estimation. 

17 R. Zhang & H. 

Zhang [17] 

2017 Hybrid 

Precoding 

Channel 

estimation in 

mmWave 

massive MIMO. 

18 Sakr & Hossain 

[18] 

2013 Pilot-based Evaluation of 

pilot 

contamination in 

MIMO 

estimation. 

19 Tesema & 

Granmo [19] 

2021 TM for MIMO Tsetlin Machine 

applied to 

MIMO 

detection. 

20 Ahmed & 

Eltawil [20] 

2021 ML in 6G Future direction 

of ML in 6G 

networks. 

21 Huang et al. 

[21] 

2020 DL Survey Review of DL 

for 5G physical 

layer. 

22 Farsad & 

Goldsmith [22] 

2018 RNN Sequence 

detection with 
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neural networks. 

23 Kim & Lee [23] 2020 Hybrid DNN DNN 

architecture 

combining CNN 

and FC layers. 

24 Ma & Gao [24] 2019 Sparse DL DL with 

compressive 

sensing for 

mmWave. 

25 Lu et al. [25] 2014 Massive MIMO Overview of 

benefits and 

limitations of 

massive MIMO. 

26 Cotton & 

Scanlon [26] 

2010 Body Area 

Models 

Channel 

modeling in 

wearable 

mmWave 

systems. 

27 Granmo et al. 

[27] 

2020 TM on FPGA Demonstration 

of TM on 

embedded 

hardware. 

28 Elbir & Coleri 

[28] 

2022 Federated 

Learning 

FL for 

distributed 

wireless 

communication 

systems. 

29 Soltani et al. 

[29] 

2021 DL Meta 

Survey 

Extensive DL 

review across 

estimation 

techniques. 

30 Gaikwad et al. 

[30] 

2022 TM + SVM Hybrid ML 

model for 

OFDM channel 

estimation. 

 

 
2.7 Summary 

 

This literature survey reveals a clear trajectory: from statistical models like LS and 

MMSE to sophisticated learning-based models and logic-driven alternatives. Deep 

learning dominates current research due to its high accuracy, especially in non-

stationary and sparse channel environments. However, its complexity, training 

requirements, and interpretability limitations hinder real-time application. 

 

Tsetlin Machines offer a compelling alternative. Their low-resource demands, rule-

based structure, and fast convergence make them attractive for embedded wireless 

systems. While they are relatively new in communication applications, early studies 

show strong potential, especially when combined with other ML models. 
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The exploration in this thesis is motivated by these findings. By implementing Tsetlin 

Machines for channel estimation and benchmarking them against LS and DNN 

methods, we aim to highlight their viability for real-world wireless communication 

systems. 
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CHAPTER 3 

 

Channel Estimation 

 

 

3.1 INTRODUCTION 

 
Channel estimation represents a pivotal principle in the domain of wireless 

communications, denoting the procedure of elucidating the attributes of a 

communication channel that exists between a transmitter and a receiver. Precise 

channel estimation is imperative for the development of efficient communication 

systems, as it facilitates the receiver's ability to mitigate distortions and interferences 

that are imparted by the channel. 

 

Key Concepts in Channel Estimation: 

 

1. Communication Channel - A communication channel refers to the medium 

through which a signal travels from the transmitter to the receiver. This 

medium could be free space, cables, or any other physical medium. During 

transmission, the signal is affected by factors like: 

o Fading (variations in signal amplitude due to multipath propagation) 

o Noise (unwanted disturbances) 

o Interference (signals from other sources) 

o Delay (time it takes for the signal to arrive) 

 

2. Purpose of Channel Estimation - The goal is to estimate the channel's 

impulse response or frequency response, which describes how the channel 

alters the transmitted signal. This information is used to: 

o Equalize the channel effects. 

o Improve data recovery at the receiver. 

o Enhance system performance in terms of bit error rate (BER) and 

spectral efficiency. 

3. Techniques for Channel Estimation- Channel estimation methods can be 

classified into three broad categories: 

o Pilot-based estimation: Known pilot signals are transmitted, and the 

channel is estimated using these known values. 

o Blind estimation: No explicit pilot signals are used; instead, the 

channel is estimated based on the statistical properties of the received 

signal. 

o Semi-blind estimation: Combines both pilot-based and blind 

techniques to achieve better performance. 

 

4. Mathematical Models Channel estimation involves mathematical models of 

the channel: 

o Time-domain models: Represent the channel using impulse responses. 
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o Frequency-domain models: Use the channel's frequency response. 

o Parametric models: Assume the channel follows a specific statistical 

distribution, such as Rayleigh or Rician fading. 

 

5. Applications Channel estimation is widely used in modern wireless 

technologies, such as: 

o 4G LTE and 5G NR 

o Wi-Fi (IEEE 802.11) 

o Satellite communication 

o IoT (Internet of Things) networks 

 

6. Challenges 

o Rapid channel variations in mobile environments. 

o Balancing accuracy with computational complexity. 

o Limited resources (e.g., bandwidth and power) for sending pilot 

signals. 

The process opted for channel estimation is Pilot-Based which has several methods 

as follows: 

 

3.2 LEAST SQUARES 

 
Least Squares (LS) Estimation is a widely used method for channel estimation in 

wireless communication systems. It minimizes the squared error between the observed 

(received) data and the modeled data based on known transmitted pilot symbols. 

 

The LS method assumes a linear model: 

Y = Hx + n 

 

Where: 

 Y is the received signal vector. 

 H is the channel matrix (to be estimated). 

 x is the known transmitted pilot symbol vector. 

 n is the noise vector (assumed to be additive white Gaussian noise) 

 

The LS estimate of H minimizes the squared error 

Error=∥ 𝐲 − 𝐇𝐱 ∥𝟐 

The solution is obtained as: 

                                                                H^=𝒚𝒙 † (𝒙𝒙 †)−𝟏 

Where: 

 H^ is the LS estimate of the channel. 

 x† is the Hermitian (conjugate transpose) of x. 

 

3.3 Deep Neural Network 

 
Deep Neural Networks (DNNs) for Channel Estimation represent a modern 

approach to tackling the complexities of wireless communication channels. Instead of 
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relying solely on traditional methods (e.g., LS or MMSE), DNNs leverage data-driven 

learning to model the channel and estimate its parameters effectively, even in 

challenging scenarios. 

 

3.3.1 Architecture for DNN-based Channel Estimation 

1. Input Layer: 

 Takes in raw received data (y) or processed data (e.g., pilot 

observations). 

2. Hidden Layers: 

 Use fully connected layers, convolutional layers (CNNs), or recurrent 

layers (RNNs/LSTMs) depending on the channel type: 

 CNNs: For spatially correlated or structured data (e.g., MIMO 

channels). 

 RNNs: For time-varying channels to capture temporal 

dependencies. 

 Autoencoders: For feature extraction and dimensionality 

reduction. 

3. Output Layer: 

 Produces the estimated channel matrix (H^). 

4. Loss Function: 

 Mean Squared Error (MSE):  

𝑳 =∥ 𝑯 −𝑯 ∥𝟐 

 Can also include task-specific objectives for end-to-end optimization. 

 

We compare the two methods—Least Squares (LS) and Deep Neural Network 

(DNN)—by analyzing two key metrics: Normalized Mean Squared Error (NMSE) and 

Bit Error Rate (BER) to give the best possible channel estimates. 

To determine which method is better: 

 DNN is better if it has lower NMSE and BER compared to LS. 

 LS is better if its NMSE and BER are consistently lower than DNN’s. 

Typically, DNN-based methods tend to perform better at higher SNR values due to 

their ability to learn more complex models. 

 

3.4 Physical (PHY) layer of an OFDM communication system 

 

 
Fig 3.1 Block diagram of an OFDM-based transceiver PHY 5

22
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This diagram illustrates the architecture of an OFDM-based transceiver, delineating 

the physical (PHY) layer within an OFDM communication framework. It comprises 

the functionalities of both the transmitter and receiver compartments, in addition to the 

intervening wireless channel. The subsequent section provides a detailed elucidation 

of each distinct block: 

 

3.4.1 Transmitter Section 

 
1. Data Generation: 

This segment is responsible for the production of data intended for transmission. The 

data is conventionally expressed in binary format (0s and 1s) and encapsulates user-

related information, which may include text, images, or other forms of digital 

content. 

 

2. QAM Modulation: 

The binary data transforms symbols through the application of a modulation 

technique known as QAM (Quadrature Amplitude Modulation). Each symbol 

encapsulates multiple bits of information, and QAM effectively modulates a carrier 

signal's amplitude and phase. 

 

 

3. Pilot Insertion: 

Pilot symbols, which are defined as known reference signals, are strategically 

integrated into designated subcarriers within the frequency domain. The inclusion of 

these pilot signals facilitates effective channel estimation and compensation at the 

receiving end. 

 

4.  IFFT (Inverse Fast Fourier Transform): 

The data (including pilots) is converted from the frequency domain to the time domain 

using IFFT. This process generates the OFDM signal by summing up multiple 

subcarrier waveforms. 

 

 

1. CP Addition (Cyclic Prefix Addition): 

A cyclic prefix is added to the beginning of each OFDM symbol. The CP is a copy of 

the last portion of the symbol and helps in mitigating inter-symbol interference (ISI) 

caused by multipath propagation in the wireless channel. 

2. Wireless Channel: 

The OFDM signal is transmitted over a wireless channel. The channel introduces 

impairments such as noise, fading, and interference, which distort the signal. 

 

3.4.2 Receiver Section 

1. CP Removal: The cyclic prefix is eliminated at the receiver. This preserves the 

advantages of lower ISI while restoring the original OFDM symbol. 
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2. Fast Fourier Transform, or FFT: FFT is used to transform the received signal 

back from the time domain to the frequency domain. Pilots and barrier data are 

recovered in this way. 

 

3. Pilot Extraction: From the received data, the receiver extracts the pilot symbols. 

The purpose of these pilots is channel estimate. 

 

4. Channel Estimation: Methods such as LMMSE (Linear Minimum Mean Square 

Error) and LS (Least Squares) are used to estimate the channel.  The received signal is 

equalized using the estimated channel response. 

 

5.Equalization: By dividing the subcarriers of the received data by the estimated 

channel response, the equalization procedure accounts for the channel effects. The sent 

data symbols are restored as a result. 

 

6. QAM Demodulation: To get the original binary data, the equalized symbols are 

demodulated. This entails mapping each received symbol back to the appropriate 

binary bits by determining its amplitude and phase. 

 

7. BER Calculation: The broadcast and received data are compared to get the Bit 

Error Rate (BER). The system's performance under specific channel conditions is 

gauged by BER. 

 

3.4.3 Key Features of the System 

 

• OFDM (Orthogonal Frequency Division Multiplexing): OFDM splits the available 

bandwidth into multiple subcarriers, which are orthogonal to each other. Each 

subcarrier carries a part of the data, improving robustness to multipath fading and 

interference. 

• Pilot-Based Channel Estimation: Pilots are known symbols used to estimate the 

channel's effect, enabling accurate equalization and data recovery. 

 

•  CP for Multipath Mitigation: The cyclic prefix prevents ISI by ensuring that delayed 

versions of the signal fall within the guard interval. 

 

2.4.4 Practical Applications 

 

This transceiver architecture is extensively employed in contemporary communication 

frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G 

(New Radio) DVB (Digital Video Broadcasting) 

This schematic representation offers an elevated perspective on the methodologies 

through which OFDM systems proficiently manage data transmission and reception 

within wireless contexts. 

 

5. BER Calculation: 

The broadcast and received data are compared to get the Bit Error Rate (BER). 

The system's performance under specific channel conditions is gauged by BER. 
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3.4.3 Key Features of the System 
 OFDM (Orthogonal Frequency Division Multiplexing): 

o OFDM splits the available bandwidth into multiple subcarriers, which 

are orthogonal to each other. Each subcarrier carries a part of the data, 

improving robustness to multipath fading and interference. 

 Pilot-Based Channel Estimation: 

o Pilots are known symbols used to estimate the channel's effect, enabling 

accurate equalization and data recovery. 

 CP for Multipath Mitigation: 

o The cyclic prefix prevents ISI by ensuring that delayed versions of the 

signal fall within the guard interval. 

 

3.4.4 Practical Applications 

 
This transceiver architecture is extensively employed in contemporary communication 

frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G 

(New Radio) DVB (Digital Video Broadcasting) 

This schematic representation offers an elevated perspective on the methodologies 

through which OFDM systems proficiently manage data transmission and reception 

within wireless contexts 
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CHAPTER 4 

 

 

Mid-Stage Experimental Analysis 

 
4.1 Introduction 

 

The experimental results from the mid-stage of the study are presented in this chapter. 

These findings are the outcome of  MATLAB-based simulation work comparing 

learning-based and conventional channel estimation techniques. This phase's goal was 

to compare the performance of machine learning, specifically Deep Neural Networks 

(DNNs), with the well-known Least Squares (LS) method for wireless channel 

estimation in an OFDM system. 

 

 

4.2 Experimental Setup and Tools 

 

 Modulation Technique: Binary Phase Shift Keying (BPSK) 

 System Model: OFDM with 64 subcarriers and 52 active carriers 

 Channel Model: Simulated Rayleigh fading channel 

 Platform Used: MATLAB R2023a 

 Performance Metrics: Normalized Mean Squared Error (NMSE), Bit Error 

Rate (BER), Signal-to-Noise Ratio (SNR) 

 

 

4.3 Overview of the Methodology 

 

For every OFDM symbol, the simulation starts by producing a random binarydata 

symbol. These are converted into the time domain using IFFT, mapped to subcarriers, 

and then sent through a Rayleigh fading channel. For varying SNR levels, Additive 

White Gaussian Noise (AWGN) is used. Data symbols are extracted and demodulation 

is done using FFT at the receiver end. 

First, the LS technique is used to estimate the channel. In order to forecast actual 

channel responses, a DNN model is then trained using both real and imaginary portions 

of the estimated channel values. After that, both estimators are assessed using BER 

and NMSE as SNR increases. 

 

 

4.4 Results and Observations 

 

The following code describes a channel estimation implementation in an OFDM 

framework using both traditional Least Squares (LS) estimation and a Deep Neural 

Network (DNN)-based approach. This code's goal is to evaluate and compare the 

effectiveness of these two approaches in terms of Normalized Mean Squared Error 

(NMSE) and Bit Error Rate (BER) under various Signal-to-Noise Ratio (SNR) 

conditions. 
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% Clear workspace 

clc; 

clear all; 

close all; 

 

%% OFDM Parameters 

N = 64; % Number of subcarriers 

L = 16; % Length of cyclic prefix 

K = 52; % Number of active subcarriers (excluding nulls) 

numSymbols = 10000; % Number of symbols in the dataset 

SNR_dB = 0:5:50; % SNR range for evaluation 

 

%% Step 1: Transmitter - Generate OFDM Symbols 

% Generate random BPSK symbols for LTS (Long Training Sequence) 

LTS = 2 * randi([0, 1], K, 1) - 1; 

 

% Generate random data symbols for OFDM 

dataSymbols = randi([0, 1], K, numSymbols); 

dataSymbols = 2 * dataSymbols - 1; % BPSK Modulation 

 

% Map to OFDM subcarriers (insert nulls and pilots) 

ofdmSymbols = [zeros(6, numSymbols); dataSymbols(1:6, :); zeros(1, numSymbols);  

dataSymbols(7:26, :); zeros(11, numSymbols); ... 

dataSymbols(27:46, :); zeros(1, numSymbols); ... 

dataSymbols(47:52, :); zeros(5, numSymbols)]; 

 

% IFFT to create time-domain signal 

ifftSymbols = ifft(ofdmSymbols, N); 

 

% Add cyclic prefix 

txSignal = [ifftSymbols(N-L+1:N, :); ifftSymbols]; 

 

% Display Transmitter Output 

disp('Transmitter Output (txSignal):'); 

disp(txSignal(:, 1:5)); % Display first 5 symbols 

 

%% Initialize result storage 

nmse_ls_all = zeros(1, length(SNR_dB)); 

nmse_dnn_all = zeros(1, length(SNR_dB)); 

ber_all = zeros(1, length(SNR_dB)); 

 

%% Loop over SNR values 

for snrIdx = 1:length(SNR_dB) 

%% Step 2: Channel - Pass Through OFDM Channel 

% Define a simple Rayleigh fading channel 
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h = (randn(N, 1) + 1j * randn(N, 1)) / sqrt(2); 

 

% Pass the signal through the channel using 1D convolution 

rxSignal = filter(h, 1, txSignal); 

 

% Add AWGN noise to the received signal 

rxSignal = awgn(rxSignal, SNR_dB(snrIdx), 'measured'); 

 

% Display Channel Output (check if columns exist before display) 

numColsToDisplay = min(size(rxSignal, 2), 5); 

disp(['Channel Output (rxSignal) for SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']); 
disp(rxSignal(:, 1:numColsToDisplay)); % Display available columns 

 

%% Step 3: Receiver - Perform OFDM Demodulation 

% Remove cyclic prefix 

rxSignal = rxSignal(L+1:end, :); 

 

% Perform FFT 

rxSymbols = fft(rxSignal, N); 

 

% Extract the data subcarriers 

rxDataSymbols = rxSymbols([7:32, 34:59], :); % Assuming the same mapping 

 

% Display Receiver Input 

disp(['Receiver Input (rxDataSymbols) for SNR = ', num2str(SNR_dB(snrIdx)), ' 

dB:']); 

disp(rxDataSymbols(:, 1:numColsToDisplay)); % Display available columns 

 

%% Step 4: LS Channel Estimation 

% LS Channel Estimation 

H_LS = rxDataSymbols ./ repmat(LTS, 1, numSymbols); 

 

%% Step 5: DNN Training (Only once, use for all SNRs) 

if snrIdx == 1 

% Generate the training dataset 

X_train = [real(H_LS); imag(H_LS)]'; % Input features for DNN (real and imaginary 

parts) 

Y_train = repmat([real(h([7:32, 34:59])); imag(h([7:32, 34:59]))]', numSymbols, 1); 

% Target channel response 

 

% Ensure Y_train is correctly shaped (104 in this case) 

Y_train = Y_train(:, 1:2*K); % Ensure Y_train matches output size 

 

% DNN Model Setup 

layers = [ 

featureInputLayer(2*K) % Input layer 
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fullyConnectedLayer(128) % Hidden layer with 128 neurons 

reluLayer % Activation function 

fullyConnectedLayer(2*K) % Output layer (Real and Imaginary components) 

regressionLayer % For MSE loss calculation 

]; 

 

% Training options 

options = trainingOptions('adam', ... 

'MaxEpochs', 500, ... 

'MiniBatchSize', 128, ... 

'Shuffle', 'every-epoch', ... 

'Plots', 'training-progress'); 

 

% Train the DNN 

net = trainNetwork(X_train, Y_train, layers, options); 

end 

%% Step 6: Inference Using DNN 

% Perform inference on new data (after training) 

X_test = [real(H_LS); imag(H_LS)]'; % New input features 

Y_pred = predict(net, X_test); % DNN prediction 

% Convert back to complex domain 

H_DNN = Y_pred(:, 1:K).' + 1j * Y_pred(:, K+1:end).'; 

 

%% Step 7: Equalization and Performance Evaluation 

% Ensure H_DNN and rxDataSymbols have compatible sizes 

eqSymbols = rxDataSymbols ./ H_DNN; 

 

% Demodulation and BER calculation 

receivedBits = real(eqSymbols) > 0; 

originalBits = dataSymbols; % Assuming we know the original bits 

 

BER = sum(sum(receivedBits ~= originalBits)) / numel(originalBits); 

ber_all(snrIdx) = BER; 

 

 

%% NMSE Calculation 

% Initialize NMSE values for LS and DNN 

nmse_ls = 0; 

nmse_dnn = 0; 

 

% Compute NMSE for LS 

for colIdx = 1:numSymbols 

H_LS_col = H_LS(:, colIdx); 

nmse_ls = nmse_ls + mean(abs(H_LS_col - h([7:32, 34:59])).^2) / mean(abs(h([7:32, 

34:59])).^2); 
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end 

nmse_ls_all(snrIdx) = nmse_ls / numSymbols; 

 

% Compute NMSE for DNN 

for colIdx = 1:numSymbols 

H_DNN_col = H_DNN(:, colIdx); 

nmse_dnn = nmse_dnn + mean(abs(H_DNN_col - h([7:32, 34:59])).^2) / 

mean(abs(h([7:32, 34:59])).^2); 

end 

 

nmse_dnn_all(snrIdx) = nmse_dnn / numSymbols; 

 

%% Comparison: Determine which method is better 

disp(['At SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']); 

% Compare NMSE 

if nmse_dnn_all(snrIdx) < nmse_ls_all(snrIdx) 

disp('DNN has lower NMSE than LS.'); 

else 

disp('LS has lower NMSE than DNN.'); 

end   

 

% Compare BER 

if ber_all(snrIdx) < ber_all(snrIdx) % Ideally you would compare DNN BER if 

available, using ber_dnn_all(snrIdx) 

disp('DNN has lower BER than LS (assuming same demodulation method).'); 

else 

disp('LS has lower BER than DNN.'); 

end 

end 

 

%% Plotting Results 

% Plot NMSE vs SNR 

figure; 

plot(SNR_dB, nmse_ls_all, 'b-o', 'LineWidth', 2); hold on; 

plot(SNR_dB, nmse_dnn_all, 'r-s', 'LineWidth', 2); 

xlabel('SNR (dB)'); 

ylabel('NMSE'); 

legend('LS', 'DNN'); 

title('NMSE vs SNR'); 

grid on; 

 

% Plot BER vs SNR 

figure; 

plot(SNR_dB, ber_all, 'k-*', 'LineWidth', 2); 

xlabel('SNR (dB)'); 

ylabel('BER'); 

title('BER vs SNR'); 
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grid on; 

 

% Plot channel magnitude response for a specific SNR 

figure; 

snrIdx = 3; % For example, choose SNR at index 3 (you can change this) 

plot(abs(h), 'k-', 'LineWidth', 2); hold on; 

plot(abs(H_LS(:, 1)), 'b-o', 'LineWidth', 2); 

plot(abs(H_DNN(:, 1)), 'r-s', 'LineWidth', 2); 

 

xlabel('Subcarrier Index'); 

ylabel('Magnitude'); 

legend('True Channel', 'LS Estimate', 'DNN Estimate'); 

title(['Channel Estimation (SNR = ', num2str(SNR_dB(snrIdx)), ' dB)']); 

grid on; 

 

4.3  Graphs   

 

 

Fig 4.1 Training Progress
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Fig 4.2 Channel Estimation 

 

 

Fig 4.3 SNR vs BER 
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    Fig 4.4 NMSE vs SNR 

The purpose: 

Evaluate the Feasibility of DNNs: Investigate the capacity of Deep Neural Networks 

(DNNs) to surpass conventional Least Squares (LS) estimation concerning channel 

estimation precision as measured by Normalized Mean Square Error (NMSE) and 

communication dependability as indicated by Bit Error Rate (BER). 

Comparison Under Noise: Examine the efficacy of each methodology when subjected 

to varying levels of noise, specifically focusing on differing Signal-to-Noise Ratios 

(SNR). 

Applicability in Real Systems: Illustrate the potential applications of machine learning 

techniques in the domain of channel estimation within contemporary wireless 

communication networks, such as those utilized in 5G and Wi-Fi technologies. 

 

4.4.1 NMSE Comparison 

 The DNN-based channel estimator exhibited improved NMSE performance 

compared to LS, particularly at higher SNR values. 

 This suggests that the DNN was able to capture underlying channel patterns 

better as noise diminished. 

 

4.4.2 BER Comparison 

 The LS method showed better performance in terms of BER across most SNR 

levels. 

 This can be attributed to the stability of LS when the training data for the DNN 

is not sufficiently diverse. 

 

4.4.3 Visualizations 

• Fig 4.1: DNN Training Curve 

• Fig 4.2: Channel Estimation Plot (True vs. LS vs. DNN) 

• Fig 4.3: BER vs. SNR 

16
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• Fig 4.4: NMSE vs. SNR (DNN vs. LS) 

 

4.5 Distinction from Base Paper 

 

The results obtained in this stage differ significantly from the implementation shown 

in the base paper titled "Low Complexity Deep Learning Augmented Wireless Channel 

Estimation for Pilot-Based OFDM on Zynq System on Chip." While the base paper 

targets a hardware-software co-design on a Zynq SoC using advanced interpolation 

methods and fixed-point models, the current study restricts itself to MATLAB-based 

floating-point simulations. 

Moreover, the base paper integrates iResNet and LMMSE estimators optimized for 

FPGA deployment, while this phase evaluates LS and DNN estimators solely in 

software. Therefore, this work lays the groundwork for future extensions toward logic-

based learning models (like the Tsetlin Machine) and possibly embedded 

implementations. 

 

4.6 Summary 

 

The results presented in this chapter mark the halfway point in the research. While 

the DNN model demonstrated lower NMSE compared to LS, it still lagged behind 

LS in terms of BER. These findings validate the feasibility of deep learning in 

wireless channel estimation but also highlight the need for further optimization. The 

next phase of the work will focus on incorporating rule-based estimators like the 

Tsetlin Machine and preparing the system for real-time applicability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5
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CHAPTER 5 

 

Final Results and Comparative Analysis 

 
 

5.1 Introduction 

 

The final results of the study, which developed and assessed three different machine 

learning-based classifiers for binary classification on a wireless communication 

dataset, are presented in this chapter. The classifiers consist of a Deep Neural Network 

(DNN), a simplified voting model inspired by the Tsetlin Machine, and the Least 

Squares (LS) method. This stage's main goal was to evaluate and contrast each 

algorithm's performance in terms of accuracy, Bit Error Rate (BER), and resource 

usage. The analysis clearly identifies the advantages and disadvantages of each 

approach and proves that the DNN is the best and most economical option for the given 

problem.  

 

As part of this thesis's larger goal, the goal was not only to determine which model 

performs the best, but also this chapter integrates both experimental outcomes and 

technical reflections drawn from iterative implementation and debugging. 

 

5.2 Dataset Preparation and Preprocessing 

 

The dataset used for this analysis was loaded from a MATLAB .mat file containing 

30,000 samples, each with 1024 features. The target labels, initially continuous in 

nature, were thresholded to obtain a binary classification task. The source data is 

typical of synthetic datasets used in channel estimation studies, mimicking real-world 

variations seen in noisy wireless environments. 

The preprocessing steps included: 

 Normalizing the feature matrix by dividing each value by the global maximum. 

 Flattening the target variable to a 1D binary array. 

 Shuffling the dataset to ensure randomness. 

 Splitting the data into training (80%) and testing (20%) sets. 

 

The class distribution in the training and test sets was also checked to confirm a 

reasonable number of positive and negative samples for fair evaluation. 

This preparation step was crucial, especially for neural networks, which tend to 

perform better when feature values are on a consistent scale. For the Tsetlin Machine, 

binarization was applied during the classifier stage itself. 

 

5.3 Least Squares Classifier 

 

Methodology: 

 

The Least Squares method, traditionally used for signal estimation tasks, was applied 

here to classify binary outcomes. It works by fitting a linear relationship between the 

input features and the output labels by minimizing the squared difference between 

4
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actual and predicted values. The solution is derived using the normal equation, and a 

binary decision is made by applying a threshold to the predicted output. 

 

This method assumes a linear relationship between input variables and the decision 

boundary. While it lacks the sophistication of modern ML algorithms, it has been 

widely used for its speed and analytical solution. 

 

Characteristics: 

 Computationally light, making it feasible for real-time applications 

 Relies on linearity assumptions, which may limit its adaptability to complex 

data distributions 

 Straightforward to implement and interpret 

 Poor handling of feature interactions unless explicitly modeled 

Performance: 

 Accuracy: 81.83% 

 Bit Error Rate (BER): 0.1817 

 Resource Utilization: Low; does not require GPU or specialized hardware 

 

This model performed as expected: it provided a reliable benchmark and required 

minimal tuning. However, its inability to model non-linear decision boundaries 

became apparent during analysis. 

 

5.4 Tsetlin-Voting Classifier 

 

Methodology: 

 

Inspired by the Tsetlin Machine, this model employs a simplified rule-based 

methodology in which binary features are used to vote on a decision. By examining 

their distributions across positive and negative samples, it determines the vote weights 

for each feature. After that, votes are counted and compared to a threshold that has 

been learned for classification. 

 

To maximize classification accuracy, this threshold was calibrated using a sweep on 

the training set, which allowed the model to slightly adjust to different data 

distributions. 

 

Characteristics: 

 Fully interpretable, rule-based system 

 Extremely lightweight and suitable for constrained devices 

 Can be rapidly trained and deployed without specialized environments 

 Easily ported to logic-based hardware (FPGAs, microcontrollers) 

Performance: 

 *Optimal threshold (t)**: 5 

 Training Accuracy: 75.99% 

 Test Accuracy: 76.53% 

 Bit Error Rate (BER): 0.2347 

4
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• Resource Utilization: Minimal resource usage; only simple logic operations are 

needed.  

This model has a clear trade-off: explainability and efficiency are provided at the 

expense of overall predictive performance. It would be perfect in situations where 

processing power is constrained or interpretability is crucial. 

 

 

5.5 Deep Neural Network (DNN) 

 

Methodology: 

 

The backpropagation algorithm was used to train the DNN model, which had two 

hidden layers. Through iterative weight adjustments based on gradient descent, this 

model learns nonlinear mappings between input features and output labels. The Adam 

optimizer was used for training over a number of epochs, using a combination of real 

and imaginary feature parts as input. 

Significant preprocessing was needed for this model, including output normalization 

and one-hot encoding. Hyperparameter adjustment, such as batch size, number of 

neurons, for stable training and convergence, size, and learning rate, were crucial. 

Characteristics: 

 Can capture complex, nonlinear dependencies in data 

 Highly flexible and adaptable to diverse input conditions 

 Requires significant computational resources for training but can generalize 

well once trained 

 Training stability depends on data balance, regularization, and initialization 

Performance: 

 Accuracy: 99.42% 

 Bit Error Rate (BER): 0.0058 

 Resource Utilization: Moderate to high; performs best with GPU or multicore 

processors 

  

The DNN's near-perfect accuracy validates its capacity for capturing subtle patterns in 

data that are invisible to linear models or thresholding schemes. It serves as proof that 

deep learning can bring substantial gains in wireless communication problems. 

 

5.6 Comparative Analysis Table 

Metric Least Squares Tsetlin-Inspired Deep Neural 

Network 

Accuracy (%) 81.83 76.53 99.42 

Bit Error Rate 

(BER) 

0.1817 0.2347 0.0058 

Interpretability Moderate High Low 

Training Time Fast Very Fast Moderate 

Adaptability Low Medium High 

Complexity Low Low High 

Resource 

Utilization 

Low Very Low Moderate/High 
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Suitable Use Case Quick Baseline Lightweight 

Devices 

High-performance 

Systems 

  

5.6 Results: 

 

  
Fig 6.1: Tsetlin classifier training log showing class distribution and optimal 

threshold selection. threshold selection.  

 

 
Fig 6.2 Accuracy and BER comparison of LS, Tsetlin-like, and DNN classifiers. 

 

 

5.7 Personal Insights and Reflections 

 

While working with these three classification methods, I observed not only their 

numerical performance but also practical aspects such as ease of implementation, 

interpretability, and adaptability. The Least Squares method is undoubtedly the easiest 

to implement and can deliver surprisingly good results for linearly separable problems. 

It serves well as a benchmark and is suitable when computational simplicity is a 

priority. 

 

The Tsetlin-inspired model intrigued me due to its rule-based logic and negligible 

resource demand. It provided me with a new perspective on binary learning 

mechanisms that don’t rely on traditional weight updates but on count-based logical 

reinforcement. Despite its lower accuracy, its strength lies in its clarity and hardware 

compatibility. 

 

As anticipated, the DNN showed the strongest performance. But in terms of tuning and 

training time, it was also the most taxing. To get consistent results, I discovered that 

careful network design, learning rate selection, and normalization were needed. The 

benefit of non-linear function approximation is demonstrated by its high accuracy, but 

at the expense of transparency and computational demand. 

According to my observations, fusing the expressive capabilities of neural networks 

with aspects of interpretability from rule-based models may be a promising avenue for 

future research, particularly in resource-constrained settings like embedded systems or 

edge devices. 
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5.8 Conclusion  

 

This comparative analysis demonstrates the performance of each approach on a range 

of metrics. Despite its simplicity, the LS approach offers dependable performance in 

environments with limited resources. The interpretability and computational efficiency 

of the Tsetlin-inspired model are excellent, but its predictive accuracy is lacking. 

Although the DNN uses more resources, it performs noticeably better than the other 

two in terms of accuracy and error rate. 

In conclusion, DNN works best when computational resources are available and 

accuracy is the top concern. 

 

• The Tsetlin-inspired model is perfect for situations that call for speed, 

transparency, and simplicity. 

• For linear tasks with constrained hardware, Least Squares offers a robust, 

quick baseline. 

 

The benefits of employing deep learning methods for channel estimation tasks are 

validated in this last stage, which also raises the possibility of integrating neural 

networks and logical rule-based models for future systems' optimal performance.  

This comparative framework offers a basis for implementing machine learning models 

in the wider wireless communications context, where system-level limitations like 

latency, memory consumption, or real-time inference become crucial. The 

implementation techniques can readily be extended to future channel estimation tasks 

across 5G, 6G, and beyond, and the insights obtained here can help practitioners select 

the best tool for particular deployment scenarios. 
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Chapter – 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 

 

Investigating the performance and suitability of machine learning algorithms for 

the channel estimation task in wireless communication systems was the main goal 

of this thesis. This study has provided both a technical and comparative 

evaluation based on actual experimentation by concentrating on three 

classification approaches: a Deep Neural Network (DNN), a simplified voting 

model inspired by Tsetlin Machine, and Least Squares (LS).  

Every approach showed distinct advantages and disadvantages. Because of its 

ease of use and low processing overhead, the Least Squares method was a reliable 

starting point, but it was insufficient for simulating intricate, nonlinear channel 

properties. Although the rule-based logical structure introduced by the Tsetlin-

inspired approach is very interpretable and hardware-friendly, its accuracy was 

not as high as that of the more sophisticated models. However, the DNN showed 

Through these implementations, the thesis has provided evidence that machine 

learning, particularly deep learning, can play a pivotal role in enhancing channel 

estimation techniques. Moreover, it has highlighted the importance of trade-off 

analysis in selecting a method suitable to the system's constraints, such as 

hardware limitations, latency requirements, and power consumption. 

This research has not only achieved its immediate objectives—implementing and 

comparing LS, TM-like, and DNN approaches—but has also laid the groundwork 

for further investigation into logic-based learning systems and hybrid models. 

 

6.2 Future Work 

 

While the findings of this thesis are promising, they also open the door to several 

directions for future exploration: 

 

1. Hardware Implementation and Benchmarking: 

The current models were implemented and evaluated in MATLAB. A natural 

extension of this work would be to deploy these models on embedded platforms 

(e.g., ARM Cortex, Zynq SoC, or NVIDIA Jetson) and measure real-time 

performance, latency, memory consumption, and power usage. 

 

2. Improving the Tsetlin Machine: 

24

Page 42 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 42 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473



 

   

The simplified TM-inspired model can be replaced with a full Tsetlin Machine 

framework that includes clauses, automata, and feedback mechanisms. This 

would allow a more competitive comparison with the DNN in terms of accuracy 

while retaining interpretability. 

 

3. Hybrid Model Design: 

A promising path would be to develop a hybrid model that combines the 

transparency of rule-based logic (Tsetlin) with the feature extraction power of 

neural networks. Such a model could adaptively switch between modes based on 

computational resources or prediction confidence. 

 

4. Robustness Under Channel Variations: 

The models evaluated here used synthetic data with idealized channel 

assumptions. Testing these classifiers under more realistic conditions (e.g., multi-

path fading, Doppler spread, and non-stationary noise) would further validate 

their utility in live systems. 

 

5. Extension to Multi-Class or Regression Tasks: 

While this work focused on binary classification, real-world channel estimation 

may require predicting a continuous-valued impulse response or handling 

multiple modulation types. Extending the models to regression or multi-class 

settings would broaden their applicability. 

 

6. Dataset Expansion and Augmentation: 

The current dataset, though useful for baseline validation, was synthetically 

generated. Applying the same models to datasets captured from software-defined 

radio (SDR) experiments or real-world testbeds would enhance relevance and 

reliability. 

 

7. Integration with End-to-End Communication Pipelines: 

Finally, integrating ML-based channel estimation into a complete OFDM-based 

receiver chain—covering synchronization, demodulation, decoding, and 

equalization—would offer a more holistic understanding of their contribution to 

overall system performance. 

 

 

6.3 Closing Remarks 

 

This thesis has provided a comparative lens into how different machine learning 

paradigms can be applied to a foundational problem in wireless communication. 

It underscores that no single method is universally superior, but rather, each 

Page 43 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 43 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473



 

   

serves a specific niche depending on performance, interpretability, and resource 

constraints. 

With the rapid development of AI-enabled 6G networks and edge intelligence, 

the integration of efficient and accurate learning-based channel estimators will 

likely become a standard design component. This work is a small but significant 

contribution toward that direction. 
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