
Delhi Technological University

test.docx

Document Details

Submission ID

trn:oid:::27535:98416473

Submission Date

May 29, 2025, 11:37 PM GMT+5:30

Download Date

May 29, 2025, 11:38 PM GMT+5:30

File Name

test.docx

File Size

582.7 KB

38 Pages

8,827 Words

51,371 Characters

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98416473

Page 1 of 44 - Cover Page Submission ID trn:oid:::27535:98416473

8% Overall Similarity
The combined total of all matches, including overlapping sources, for each database.

Filtered from the Report

Bibliography

Quoted Text

Cited Text

Small Matches (less than 8 words)

Match Groups

67 Not Cited or Quoted 8%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

4% Internet sources

2% Publications

6% Submitted works (Student Papers)

Integrity Flags
0 Integrity Flags for Review

No suspicious text manipulations found.
Our system's algorithms look deeply at a document for any inconsistencies that
would set it apart from a normal submission. If we notice something strange, we flag
it for you to review.

A Flag is not necessarily an indicator of a problem. However, we'd recommend you
focus your attention there for further review.

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 2 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Match Groups

67 Not Cited or Quoted 8%
Matches with neither in-text citation nor quotation marks

0 Missing Quotations 0%
Matches that are still very similar to source material

0 Missing Citation 0%
Matches that have quotation marks, but no in-text citation

0 Cited and Quoted 0%
Matches with in-text citation present, but no quotation marks

Top Sources

4% Internet sources

2% Publications

6% Submitted works (Student Papers)

Top Sources
The sources with the highest number of matches within the submission. Overlapping sources will not be displayed.

1 Internet

tsetlinmachine.org 1%

2 Submitted works

The University of Manchester on 2013-08-29 <1%

3 Internet

real.mtak.hu <1%

4 Publication

Dimitrios Sargiotis. "MATLAB for Civil Engineers", Springer Science and Business … <1%

5 Internet

d197for5662m48.cloudfront.net <1%

6 Submitted works

Ghana Technology University College on 2023-07-25 <1%

7 Internet

assets-eu.researchsquare.com <1%

8 Submitted works

Edith Cowan University on 2024-05-24 <1%

9 Submitted works

Florida International University on 2023-10-12 <1%

10 Submitted works

Kingston University on 2025-04-25 <1%

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 3 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

http://tsetlinmachine.org/wp-content/uploads/2022/11/Tsetlin_Machine_Book_Chapter_One_Revised.pdf
https://real.mtak.hu/217528/1/InfocomJournal_2025_1_3_.pdf
https://doi.org/10.1007/978-3-031-84673-1
https://d197for5662m48.cloudfront.net/documents/publicationstatus/171971/preprint_pdf/2a71d9e4d334ce639cc4944879fbb3cf.pdf
https://assets-eu.researchsquare.com/files/rs-3584273/v1_covered_37a0c2ff-3d75-413f-81a3-de80e4090546.pdf?c=1722847588

11 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

12 Submitted works

University of West Attica on 2025-04-25 <1%

13 Submitted works

Lappeenrannan teknillinen yliopisto on 2025-04-22 <1%

14 Submitted works

University of Newcastle upon Tyne on 2025-01-16 <1%

15 Submitted works

West Herts College on 2024-03-03 <1%

16 Submitted works

Coventry University on 2024-08-09 <1%

17 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

18 Submitted works

University of Lancaster on 2024-12-16 <1%

19 Submitted works

University of Newcastle upon Tyne on 2024-08-03 <1%

20 Internet

arxiv.org <1%

21 Submitted works

University of Newcastle upon Tyne on 2023-08-17 <1%

22 Internet

123dok.net <1%

23 Submitted works

Queensland University of Technology on 2024-05-20 <1%

24 Submitted works

Curtin University of Technology on 2022-06-03 <1%

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 4 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

https://arxiv.org/html/2406.19289v1
https://123dok.net/document/y961m4oj-deep-learning-based-channel-estimation-schemes-ieee-standard.html

25 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

26 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

27 Submitted works

University of Wollongong on 2025-05-25 <1%

28 Internet

www.researchgate.net <1%

29 Internet

eprints.soton.ac.uk <1%

30 Publication

Kolaei, Soheil Ahmadi Vosta. "KianNet: An Attention-Based CNN-RNN Model for Vi… <1%

31 Submitted works

University of Lancaster on 2024-08-30 <1%

32 Submitted works

University of Newcastle upon Tyne on 2009-09-02 <1%

33 Submitted works

University of Newcastle upon Tyne on 2011-08-31 <1%

34 Submitted works

University of Surrey on 2023-05-03 <1%

35 Internet

ris.utwente.nl <1%

36 Publication

Lathi, B.P.. "Modern Digital and Analog Communications Systems", Oxford Univer… <1%

37 Submitted works

Ohio University on 2007-04-12 <1%

38 Submitted works

University of Newcastle upon Tyne on 2025-01-06 <1%

Page 5 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 5 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

https://www.researchgate.net/publication/321614558_Applications_of_Chaos_and_Nonlinear_Dynamics_in_Engineering_-_Vol_1
https://eprints.soton.ac.uk/271413/1/VTC_2010_Spring_Jiankang.pdf
https://gateway.proquest.com/openurl?res_dat=xri%3Apqm&rft_dat=xri%3Apqdiss%3A31883120&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Adissertation&url_ver=Z39.88-2004
https://ris.utwente.nl/ws/files/276635107/Phd_Thesis_Paolo_Fracas_final_.pdf

39 Submitted works

University of Newcastle upon Tyne on 2025-01-17 <1%

40 Internet

eprints.whiterose.ac.uk <1%

41 Internet

iris.polito.it <1%

42 Internet

www.ijecs.in <1%

Page 6 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

Page 6 of 44 - Integrity Overview Submission ID trn:oid:::27535:98416473

http://eprints.whiterose.ac.uk/143332/8/sensors-19-01191.pdf
https://iris.polito.it/retrieve/e384c434-727f-d4b2-e053-9f05fe0a1d67/AWPL_letter__Hyperparameter_Forcasting_DNN_R1_nocol.pdf
https://www.ijecs.in/index.php/ijecs/article/download/2343/2166/4223

CHAPTER 1

INTRODUCTION

Complex machine learning algorithms often produce curious results without

revealing the thought processes involved in the final product. This is why Tsetlin

machines stand out as a breath of fresh air. These models prioritize

interpretability while achieving outstanding performance in pattern recognition

tasks. Human beings categorize things, and Tsetlin machines do the same by

learning to build rules. This is a profound idea behind Tsetlin machines: they

process data by individually analyzing features and then combining them using

logical operators like AND, OR, and NOT. This approach led to the creation of

clear, comprehensible rules that define what makes something belong to a

specific class.

1.1 Motivation
Machine learning often faces a commutation between complex models achieving majestic

results and comprehensible how they arrive at those results. Models such as Support Vector

machines have a good grip over performance but a mute when it comes to interpretation.

Decision Trees and Ks nearest neighbors lack the reasoning behind why it has come to a

certain conclusion or result. Tsetlin machines aim to bridge this gap. Powerful models like

deep neural networks might excel at image recognition, however, their inner workings are

opaque. Tsetlin machines aim to bridge this gap. Powerful models like deep neural networks

might excel at image recognition, however, their inner workings are opaque. Tsetlin

machines solve this by creating logically interpretable rules (such as "Four Wheels AND Has

Engine" for cars). Unlike black-box models, these rules are simple to comprehend. While

interpretability is a primary concern, Tsetlin machines also aim for high performance using

feedback mechanisms such as "Reject" (learning differentiating features from other classes),

"Erase" (weakening rules for inconsistent features), and "Recognize" (strengthening rules for

consistent features). Around the world, Tsetlin machines are designed to produce accurate

models with clear justifications for their choices, which makes them useful for jobs where

knowing the "why" is just as important as knowing the "

Page 7 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 7 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

1.2 Tsetlin Structure

 Fig 1.1: Overview of Tsetlin Machine

The first step is to learn how to get the data ready for the machine. The machine transforms

the raw data into propositional logic, which is made up of distinct features that can be classified

as True or False. The chapter then delves deeply into the profound idea of rules! In order to

determine which class an object belongs to, these machines create "if-then" rules that combine

these features using logic (AND, OR, NOT). For instance, "If Has Four Wheels AND Not Has

Wings then Car" could be a rule for "Car." The machine's application of these rules to identify

patterns in the data will be further explained in this chapter. It examines instances and

reinforces rules that often correspond to data in a particular category (e.g., "Car").

Additionally, the chapter describes how the machine polishes the different categories apart.

It weakens or eliminates rules that don't effectively showcase the difference between things.

For example, a rule like "if Has Wheels then Car" might be weakened because it also applies to

bicycles, trains, and planes. Ultimately, the chapter digs deep into how the machine works.This

involves how it learns and adapts over time, positively using feedback from the data to amend

its rules. It also explains how the machine uses multiple "if-then" rules together to make final

classifications. By grasping these steps, you gain a heavy understanding of how Tsetlin

machines function and achieve pattern recognition with clear, logical rules.

Page 8 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 8 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

1.2.1 Data Booleanization

As studied earlier, data is transformed into Boolean features (True or False values)

to prepare it for the rule-based learning system. Here is a breakdown of the process

with an example:

Imagine a dataset classifyinfruits based on color and size. Raw Data is an Avocado

which represents "Green" and "Large", while a banana might be "Yellow"

and “Medium".

The Booleanization process is as follows:

1. Define Features: We identify individual characteristics as features. In this case,

features are "Color" and "Size".

2. Assign Boolean Values: For each feature, we create a set of Boolean values

representing all possible conditions. Here is an examp

 Color:

Green = True

Not Green (e.g., Yellow, Orange) = False

 Size

Large = True

Not Large (e.g., Medium, Small) = False

3. Applying Booleanization:

 Apple Example: The Green Avocado with "Green" and "Large" features would

be transformed into Boolean format:

 Color (Green) = True

 Size (Large) = True

 Banana Example: The yellow banana with "Yellow" and "Medium" features

would be transformed into:

Page 9 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 9 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

if (condition) then class
(class)

 Color (Green) = False (because it's not Green)

 Size (Large) = False (because it's not large)

Benefits of Booleanization:

 Simple Representation: By converting data into propositional logic, Tsetlin

machines can easily integrate them into logical rules using operators like AND,

OR, and NOT.

 Focus on Specific Characteristics: Booleanization allows the machine to focus

on the presence or absence of specific features within each data point.

In essence, booleanization transforms data into a binary format suitable for the rule-

based learning approach of Tsetlin machines.

1.2.2 Pattern Construction with AND and NOT

Pattern recognition problems are solved easily by Tsetlin machines using if-then

rules by analyzing the object. Every rule has the following standard form:

Table 1.1 table of three cars and three planes, with five Boolean features. The table

showcases one column per feature, each entry taking the value (•) or

False (·). The final column decides the type of vehicle.

1 1

1

Page 10 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 10 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

The condition holds the place for boolean expression which outlines the pattern in

the data which is learned by the Tsetlin machine. Refer to the vehicle information

from Table 1.1 which makes it evident, that the condition

Four Wheels and Transports People

Observe how a Tsetlin machine makes use of the and-operator to merge several

features. Every feature needs to be true if we need the entire condition to be true which

is implemented by AND operation. In this example, the condition matches the features

of the object under observation. If even one of the features is not true, the overall

condition falls apart because the rule is not a match to the object’s condition. predicts

a Car when it sees an object with Four Wheels that Transports People.

Negation: The NOT operator plays a crucial role as it figures out the features that do

not belong to the class. For example, a plane is not blue.

Literals: The features or the properties of an object are called literals. Also, the

properties that are not of the object are called negated features. Literals are a

combination of features and negated features.

1.2.2 Learning Frequent Patterns with Recognize and Erase Feedback

Steps to learn a single rule:

One can comprehend a Tsetlin machine if the machine can figure out how to learn a

single rule itself. Through this independent learning, rules are free-standing and subtle

to comprehend. It also processes independently which acts as a side benefit

independent learning.

Rule Initialization:

All the literals take the memory position of 5 as their starting position. This makes sure

that all the literals are neutral and at the brink of being memorized or forgotten. We

can make and change rules according to our own will and it will not affect the result

as it is a self-aligning system.

Other machine learning algorithms such as deep neural networks are more

sensitive to initialization.

1

1

1

Page 11 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 11 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

 Figure 1.2 Initializing of example rule for predicting the class

The single-rule construction algorithm is as follows:

It consists of three steps and case 1 is when the rule comes across an object which

belongs to its class.

The single-rule construction algorithm is as follows:

It consists of three steps and case 1 is when the rule comes across an object which

belongs to its class.

1. Rule Evaluation: Observe the features of the object.

2. Recognize Feedback: If the features match the condition, memorize the literal by

incrementing its position in the memory. Forget the false literals towards maximally

forgotten by decrementing their position in the memory.

3. Erase Feedback: If the features do not match the condition, forget all the literals

by decrementing their position

Randomization:

 Learning should be flexible because coincidence can happen and events sometimes

occur by chance. Randomization is one simple way to achieve flexibility in

randomization. Therefore, to randomize increments and decrements, we draw a

random value between 0.0 and 1.0 is drawn. If the value is above 0.5, we skip the

increment. The value of 0.5 is known as the Memorize Value. Again, we draw a value

before decrementing. If the value is above 0.5, we skip the decrement. This second 0.5

value is coined Forget Value. Randomization further diversifies the rules and boosts

exploration.

1.2.3 Increasing Discrimination Power with Reject Feedback

Page 12 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 12 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

The use of Reject Feedback arises when we come across a condition where Tsetlin

encounters data points from a different class.

Algorithm – Increasing Discrimination Power: A rule increases its discrimination

power when it faces an object of a class different from its own. Learning then skips

Recognize and Erase Feedback, going directly to the fourth step:

4. Reject Feedback: If the object's features match the condition but do not belong

to the same class then all forgotten features are memorized. Randomization is

not performed.

1.2.4 Overall Coordination

Tsetlin machine constructs multiple rules that interact by memorizing the features

inspired by humans. Just the way humans categorize things.

The procedure of Classification: Voting classifies the input for Tsetlin. Only a single

rule will not decide the result or which class the object belongs to. A vote is cast for

each class and the class with the maximum number of votes is fed to the Tsetlin. In

simple words, the majority wins.

Learning coordination:

Vote Margin: Tsetlin learns coordination of multiple rules with the help of Vote

margin. It is an integer number that creates a margin between the winner and the

loser(classes).

Complete Learning Algorithm: The Tsetlin machine learns complementary rules as

follows:

1. Analyse the new object's features and its class.

2. Evaluate the truth values of the literal.

3. Calculate the sum of the votes.

4. Analyze each rule and assign feedback:

 a) Categorize it as Recognize or Erase Feedback if the rule belongs to the

object’s class

 b) Give the rule Reject Feedback if it belongs to another class.

 5. Go to 1.

Because of the frequent changes in the updation of the rules, Tsetlins moderately

assign themselves for classification of the different kinds of objects they face.

Amidst this, prioritization of objects that are further away from the vote Margin is a

paramount. This help to achieve Resource Allocation Effect.

1

1

1

1

Page 13 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 13 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

In the realm of wireless communication, the ability to accurately estimate the channel

is indispensable In the end, channel estimation enables dependable demodulation and

decoding of received signals by modeling the effects of multipath fading, interference,

and noise. In the past, mathematically modeled methods like Least Squares (LS) and

Minimum Mean Square Error (MMSE) have been used in communication systems.

Although these models work well in controlled situations, they frequently fall short in

dynamically changing environments because they presume prior knowledge of the

channel. Researchers have started looking into the potential of machine learning (ML)

in channel estimation due to its recent popularity and use in a variety of signal

processing domains. Because it can model intricate and nonlinear channel behaviors,

deep learning (DL) in particular has shown itself to be an effective tool.

Simultaneously, a new method that strikes a balance between interpretability and

computational efficiency is provided by the Tsetlin Machine (TM), a logic-based, low-

complexity machine learning model. With a focus on Tsetlin Machines and their

potential in real-time wireless applications, this chapter provides a thorough analysis

of 30 scholarly articles that examine the development from conventional estimators to

modern machine learning techniques.

2.2 Traditional Channel Estimation Techniques

Matrix algebra and statistical modelling are the fundamental techniques in channel

estimation. For example, LS estimation reduces the squared error between the channel

coefficients that were observed and those that were predicted. Comprehensive

simulations in OFDM environments were carried out by Goyal and Singh [13], who

showed that although LS is straightforward and efficient, noise degrades its

performance. MMSE, on the other hand, leverages channel statistics to minimize the

mean square error, yielding improved performance when the noise variance is known.

However, its dependency on statistical knowledge makes it less adaptable to non-

stationary conditions.

R. Zhang and H. Zhang [17] evaluated estimation strategies for mmWave MIMO

systems. They emphasized hybrid precoding, a technique where analog and digital

2

3

Page 14 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 14 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

precoders are combined, to reduce the hardware complexity associated with fully

digital solutions. Their work underscored the growing need for estimators that can

scale with increasing antenna array sizes.

Tse and Viswanath’s textbook [7] laid the theoretical groundwork for most modern

communication techniques. It covers the mathematical modeling of fading channels,

time/frequency selectivity, and optimal estimation strategies. Their work remains a

touchstone for performance analysis in both classical and ML-based estimators.

A. H. Sakr and E. Hossain [18] provided a thorough comparison of pilot-based and

blind estimation methods in MIMO systems. They discussed the implications of pilot

contamination, a problem that occurs when the same pilot sequences are reused in

neighboring cells — a challenge especially relevant in massive MIMO deployments.

2.3 Deep Learning-Based Channel Estimation

With the introduction of models that could learn straight from data without the need

for manually created features, deep learning completely changed the field of signal

processing. One of the first deep learning architectures for OFDM systems was

introduced by Ye et al. [14]. Their network outperformed LS and MMSE in terms of

Bit Error Rate (BER) when performing joint channel estimation and signal detection.

This method simplified receiver design and decreased error propagation.

An AI-assisted OFDM receiver was developed and tested on a physical testbed by

Zhang et al. [12]. Their findings confirmed that deep learning can be used in practical

systems, which is a crucial step in moving from theory to implementation.

Convolutional layers were incorporated into their architecture to extract spatial

patterns from channel state information (CSI).

Kim and Lee [8] used neural networks to optimize pilot placement to address the pilot

overhead problem. Their model improved spectral efficiency by accurately predicting

the channel with fewer pilot symbols. This work was expanded by Choi et al. [9] to

massive MIMO systems, where conventional techniques are unable to handle the

dimensionality of CSI. Their DNN method significantly decreased high-dimensional

estimation's computational complexity. Their DNN approach drastically reduced the

computational complexity of high-dimensional estimation.

Chen et al. [10] proposed an attention-driven estimator where the model learns to focus

on the most relevant parts of the input features, dynamically adjusting to time-varying

channels. This mimics human cognitive processes and proved to be more effective in

high-mobility environments.

Wu et al. [15] developed a low-complexity neural network tailored for the uplink

channel estimation in massive MIMO. Their architecture used shallow layers to reduce

latency and energy consumption, making it suitable for edge deployment. Wahab et al.

[16] and Singh [4] published comprehensive surveys categorizing DL models based

on architecture (CNN, RNN, transformer), use-case, and complexity.

27

30

Page 15 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 15 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Farsad and Goldsmith [22] explored sequence learning for communication systems

using recurrent neural networks (RNNs). Their work focused on symbol detection but

demonstrated that sequence models could also be leveraged for time-correlated

channel estimation.

Ma and Gao [24] addressed sparse channel estimation in mmWave by integrating DL

with compressive sensing. Their method took advantage of the sparsity in the angular

domain, significantly improving estimation accuracy while reducing pilot overhead.

2.4 Hybrid and Federated Learning Methods

Elbir and Coleri [28] introduced federated learning (FL) as a decentralized training

method for channel estimation, enabling model training across multiple devices

without sharing raw data. This approach preserves privacy and is suitable for IoT or

vehicular networks. Their findings showed that FL can match centralized learning in

terms of performance while reducing communication costs.

Huang et al. [21] offered a panoramic view of DL techniques at the physical layer of

5G, covering not just channel estimation but also modulation recognition, detection,

and resource allocation. They emphasized the need for lightweight DL models that can

be deployed on hardware-constrained systems.

Kim and Lee [23] applied hybrid DNN models that combine convolutional and fully

connected layers to improve estimation accuracy without increasing inference time.

This fusion strategy enhances spatial and temporal feature extraction.

Lu et al. [25] discussed massive MIMO challenges in channel estimation, particularly

the curse of dimensionality and pilot contamination. Their suggestions include

leveraging statistical models, hybrid DL techniques, and hierarchical estimation

structures.

Soltani et al. [29] provided a meta-survey, covering over 100 papers related to DL-

based channel estimation. Their review highlighted emerging trends such as

reinforcement learning, unsupervised learning, and domain adaptation, all of which

aim to reduce dependency on labeled training data.

2.5 Tsetlin Machine-Based Channel Estimation

Unlike data-intensive neural networks, Tsetlin Machines rely on finite-state automata

that learn logical clauses based on propositional feedback. Granmo [6] introduced this

paradigm, emphasizing its simplicity and efficiency. The TM’s ability to operate with

binary input data makes it ideal for embedded systems.

Tanskanen et al. [5] expanded on this by evaluating TMs in signal processing contexts,

31

Page 16 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 16 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

demonstrating competitive accuracy in classification tasks with minimal memory

footprint. This makes TM a strong candidate for real-time, low-power applications.

Tesema and Granmo [19] applied TM to MIMO detection and found that it achieved

comparable BER to conventional algorithms while using significantly fewer resources.

Unlike DNNs, which rely heavily on hyperparameter optimization, their model needed

little tuning.

For OFDM systems, Gaikwad et al. [30] introduced a hybrid machine learning model

that combines TM and Support Vector Machines (SVM). While the TM recorded

comprehensible logical patterns, the SVM dealt with high-dimensional projections.

Improved convergence speed and noise resilience were the results of the combination.

By combining TM with embedded hardware, Granmo et al. [27] demonstrated its

potential in real-time signal processing applications. The ability of TM to satisfy the

exacting timing and resource requirements of wireless communication systems was

validated by their demonstration on FPGA platforms.

2.6 Channel Modelling and Theoretical Foundations

LeCun, Bengio, and Hinton [1] provided the seminal work on deep learning, laying

the conceptual foundation for its widespread adoption in signal processing. Their

discussion of hierarchical feature learning underpins many neural channel estimators

today.

Berardinelli et al. [2] outlined channel estimation challenges specific to 5G New Radio

(NR), such as support for massive MIMO, low-latency requirements, and frequency

diversity. Their insights guide the practical implementation constraints that any

estimation algorithm must address.

Heath et al. [3] focused on mmWave MIMO systems, where high-frequency

propagation poses unique challenges. Their review of hybrid beamforming and sparse

estimation laid the groundwork for many DL and TM-based innovations in channel

modeling.

Cotton and Scanlon [26] examined body area networks operating in the mmWave

spectrum. They emphasized the importance of modeling human-body-induced fading,

which is critical for healthcare and wearable systems — potential domains for TM

deployment due to energy constraints.

The exploration in this thesis is motivated by these findings. By implementing Tsetlin

Machines for channel estimation and benchmarking them against LS and DNN

methods, we aim to highlight their viability for real-world wireless communication

systems.

Page 17 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 17 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

This table categorizes each work by the proposed model or author, year of publication,

employed methodology, and a brief description of the contribution. The objective is to

highlight the evolution of channel estimation techniques — from traditional statistical

approaches to advanced machine learning-based estimators, including the emerging

Tsetlin Machine framework.

Sr Model Year Method Description

1 LeCun et al. [1] 2015 Deep Learning Pioneering work

establishing the

foundations of

deep learning.

2 Berardinelli et

al. [2]

2019 Model-Based +

ML

Survey of

channel

estimation

techniques for

5G NR.

3 Heath et al. [3] 2016 Sparse + Hybrid

Beamforming

mmWave

MIMO signal

processing

techniques.

4 Singh [4] 2021 Survey Review of ML-

based channel

estimation in

wireless

systems.

5 Tanskanen et al.

[5]

2018 Tsetlin Machine Introduction of

TM in signal

classification

applications.

6 Granmo [6] 2018 Tsetlin Machine Bandit-based

propositional

logic model for

learning.

7 Tse &

Viswanath [7]

2005 Analytical Fundamental

textbook

covering

channel

modeling

theories.

8 Kim & Lee [8] 2018 DNN + Pilot

Design

Pilot

optimization

using deep

learning for

MIMO.

9 Choi et al. [9] 2017 DNN Neural networks

for large-scale

6

Page 18 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 18 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

MIMO

estimation.

10 Chen et al. [10] 2021 Attention Dynamic

attention

mechanism for

adaptive channel

estimation.

11 Diniz [11] 2012 DSP Covers channel

estimation and

filtering

algorithms.

12 Zhang et al.

[12]

2020 AI-Aided

Receiver

Hardware-

validated AI

receiver for

OFDM.

13 Goyal & Singh

[13]

2012 LS, MMSE Comparative

analysis of LS

and MMSE

estimators.

14 Ye et al. [14] 2018 End-to-End DL Joint channel

estimation and

detection using

DNN.

15 Wu et al. [15] 2020 Lightweight

DNN

Uplink channel

estimation in

massive MIMO.

16 Wahab et al.

[16]

2021 Survey Survey on DL

techniques for

OFDM channel

estimation.

17 R. Zhang & H.

Zhang [17]

2017 Hybrid

Precoding

Channel

estimation in

mmWave

massive MIMO.

18 Sakr & Hossain

[18]

2013 Pilot-based Evaluation of

pilot

contamination in

MIMO

estimation.

19 Tesema &

Granmo [19]

2021 TM for MIMO Tsetlin Machine

applied to

MIMO

detection.

20 Ahmed &

Eltawil [20]

2021 ML in 6G Future direction

of ML in 6G

networks.

21 Huang et al.

[21]

2020 DL Survey Review of DL

for 5G physical

layer.

22 Farsad &

Goldsmith [22]

2018 RNN Sequence

detection with

Page 19 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 19 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

neural networks.

23 Kim & Lee [23] 2020 Hybrid DNN DNN

architecture

combining CNN

and FC layers.

24 Ma & Gao [24] 2019 Sparse DL DL with

compressive

sensing for

mmWave.

25 Lu et al. [25] 2014 Massive MIMO Overview of

benefits and

limitations of

massive MIMO.

26 Cotton &

Scanlon [26]

2010 Body Area

Models

Channel

modeling in

wearable

mmWave

systems.

27 Granmo et al.

[27]

2020 TM on FPGA Demonstration

of TM on

embedded

hardware.

28 Elbir & Coleri

[28]

2022 Federated

Learning

FL for

distributed

wireless

communication

systems.

29 Soltani et al.

[29]

2021 DL Meta

Survey

Extensive DL

review across

estimation

techniques.

30 Gaikwad et al.

[30]

2022 TM + SVM Hybrid ML

model for

OFDM channel

estimation.

2.7 Summary

This literature survey reveals a clear trajectory: from statistical models like LS and

MMSE to sophisticated learning-based models and logic-driven alternatives. Deep

learning dominates current research due to its high accuracy, especially in non-

stationary and sparse channel environments. However, its complexity, training

requirements, and interpretability limitations hinder real-time application.

Tsetlin Machines offer a compelling alternative. Their low-resource demands, rule-

based structure, and fast convergence make them attractive for embedded wireless

systems. While they are relatively new in communication applications, early studies

show strong potential, especially when combined with other ML models.

Page 20 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 20 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

The exploration in this thesis is motivated by these findings. By implementing Tsetlin

Machines for channel estimation and benchmarking them against LS and DNN

methods, we aim to highlight their viability for real-world wireless communication

systems.

Page 21 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 21 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

CHAPTER 3

Channel Estimation

3.1 INTRODUCTION

Channel estimation represents a pivotal principle in the domain of wireless

communications, denoting the procedure of elucidating the attributes of a

communication channel that exists between a transmitter and a receiver. Precise

channel estimation is imperative for the development of efficient communication

systems, as it facilitates the receiver's ability to mitigate distortions and interferences

that are imparted by the channel.

Key Concepts in Channel Estimation:

1. Communication Channel - A communication channel refers to the medium

through which a signal travels from the transmitter to the receiver. This

medium could be free space, cables, or any other physical medium. During

transmission, the signal is affected by factors like:

o Fading (variations in signal amplitude due to multipath propagation)

o Noise (unwanted disturbances)

o Interference (signals from other sources)

o Delay (time it takes for the signal to arrive)

2. Purpose of Channel Estimation - The goal is to estimate the channel's

impulse response or frequency response, which describes how the channel

alters the transmitted signal. This information is used to:

o Equalize the channel effects.

o Improve data recovery at the receiver.

o Enhance system performance in terms of bit error rate (BER) and

spectral efficiency.

3. Techniques for Channel Estimation- Channel estimation methods can be

classified into three broad categories:

o Pilot-based estimation: Known pilot signals are transmitted, and the

channel is estimated using these known values.

o Blind estimation: No explicit pilot signals are used; instead, the

channel is estimated based on the statistical properties of the received

signal.

o Semi-blind estimation: Combines both pilot-based and blind

techniques to achieve better performance.

4. Mathematical Models Channel estimation involves mathematical models of

the channel:

o Time-domain models: Represent the channel using impulse responses.

2

8

15

29

40

Page 22 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 22 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

o Frequency-domain models: Use the channel's frequency response.

o Parametric models: Assume the channel follows a specific statistical

distribution, such as Rayleigh or Rician fading.

5. Applications Channel estimation is widely used in modern wireless

technologies, such as:

o 4G LTE and 5G NR

o Wi-Fi (IEEE 802.11)

o Satellite communication

o IoT (Internet of Things) networks

6. Challenges

o Rapid channel variations in mobile environments.

o Balancing accuracy with computational complexity.

o Limited resources (e.g., bandwidth and power) for sending pilot

signals.

The process opted for channel estimation is Pilot-Based which has several methods

as follows:

3.2 LEAST SQUARES

Least Squares (LS) Estimation is a widely used method for channel estimation in

wireless communication systems. It minimizes the squared error between the observed

(received) data and the modeled data based on known transmitted pilot symbols.

The LS method assumes a linear model:

Y = Hx + n

Where:

 Y is the received signal vector.

 H is the channel matrix (to be estimated).

 x is the known transmitted pilot symbol vector.

 n is the noise vector (assumed to be additive white Gaussian noise)

The LS estimate of H minimizes the squared error

Error=∥ 𝐲 − 𝐇𝐱 ∥𝟐

The solution is obtained as:

 H^=𝒚𝒙 † (𝒙𝒙 †)−𝟏

Where:

 H^ is the LS estimate of the channel.

 x† is the Hermitian (conjugate transpose) of x.

3.3 Deep Neural Network

Deep Neural Networks (DNNs) for Channel Estimation represent a modern

approach to tackling the complexities of wireless communication channels. Instead of

2

3

5

7

32

35

Page 23 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 23 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

relying solely on traditional methods (e.g., LS or MMSE), DNNs leverage data-driven

learning to model the channel and estimate its parameters effectively, even in

challenging scenarios.

3.3.1 Architecture for DNN-based Channel Estimation

1. Input Layer:

 Takes in raw received data (y) or processed data (e.g., pilot

observations).

2. Hidden Layers:

 Use fully connected layers, convolutional layers (CNNs), or recurrent

layers (RNNs/LSTMs) depending on the channel type:

 CNNs: For spatially correlated or structured data (e.g., MIMO

channels).

 RNNs: For time-varying channels to capture temporal

dependencies.

 Autoencoders: For feature extraction and dimensionality

reduction.

3. Output Layer:

 Produces the estimated channel matrix (H^).

4. Loss Function:

 Mean Squared Error (MSE):

𝑳 =∥ 𝑯 −𝑯 ∥𝟐

 Can also include task-specific objectives for end-to-end optimization.

We compare the two methods—Least Squares (LS) and Deep Neural Network

(DNN)—by analyzing two key metrics: Normalized Mean Squared Error (NMSE) and

Bit Error Rate (BER) to give the best possible channel estimates.

To determine which method is better:

 DNN is better if it has lower NMSE and BER compared to LS.

 LS is better if its NMSE and BER are consistently lower than DNN’s.

Typically, DNN-based methods tend to perform better at higher SNR values due to

their ability to learn more complex models.

3.4 Physical (PHY) layer of an OFDM communication system

Fig 3.1 Block diagram of an OFDM-based transceiver PHY 5

22

Page 24 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 24 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

This diagram illustrates the architecture of an OFDM-based transceiver, delineating

the physical (PHY) layer within an OFDM communication framework. It comprises

the functionalities of both the transmitter and receiver compartments, in addition to the

intervening wireless channel. The subsequent section provides a detailed elucidation

of each distinct block:

3.4.1 Transmitter Section

1. Data Generation:

This segment is responsible for the production of data intended for transmission. The

data is conventionally expressed in binary format (0s and 1s) and encapsulates user-

related information, which may include text, images, or other forms of digital

content.

2. QAM Modulation:

The binary data transforms symbols through the application of a modulation

technique known as QAM (Quadrature Amplitude Modulation). Each symbol

encapsulates multiple bits of information, and QAM effectively modulates a carrier

signal's amplitude and phase.

3. Pilot Insertion:

Pilot symbols, which are defined as known reference signals, are strategically

integrated into designated subcarriers within the frequency domain. The inclusion of

these pilot signals facilitates effective channel estimation and compensation at the

receiving end.

4. IFFT (Inverse Fast Fourier Transform):

The data (including pilots) is converted from the frequency domain to the time domain

using IFFT. This process generates the OFDM signal by summing up multiple

subcarrier waveforms.

1. CP Addition (Cyclic Prefix Addition):

A cyclic prefix is added to the beginning of each OFDM symbol. The CP is a copy of

the last portion of the symbol and helps in mitigating inter-symbol interference (ISI)

caused by multipath propagation in the wireless channel.

2. Wireless Channel:

The OFDM signal is transmitted over a wireless channel. The channel introduces

impairments such as noise, fading, and interference, which distort the signal.

3.4.2 Receiver Section

1. CP Removal: The cyclic prefix is eliminated at the receiver. This preserves the

advantages of lower ISI while restoring the original OFDM symbol.

6

10

16

21

28

37

38

Page 25 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 25 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

2. Fast Fourier Transform, or FFT: FFT is used to transform the received signal

back from the time domain to the frequency domain. Pilots and barrier data are

recovered in this way.

3. Pilot Extraction: From the received data, the receiver extracts the pilot symbols.

The purpose of these pilots is channel estimate.

4. Channel Estimation: Methods such as LMMSE (Linear Minimum Mean Square

Error) and LS (Least Squares) are used to estimate the channel. The received signal is

equalized using the estimated channel response.

5.Equalization: By dividing the subcarriers of the received data by the estimated

channel response, the equalization procedure accounts for the channel effects. The sent

data symbols are restored as a result.

6. QAM Demodulation: To get the original binary data, the equalized symbols are

demodulated. This entails mapping each received symbol back to the appropriate

binary bits by determining its amplitude and phase.

7. BER Calculation: The broadcast and received data are compared to get the Bit

Error Rate (BER). The system's performance under specific channel conditions is

gauged by BER.

3.4.3 Key Features of the System

• OFDM (Orthogonal Frequency Division Multiplexing): OFDM splits the available

bandwidth into multiple subcarriers, which are orthogonal to each other. Each

subcarrier carries a part of the data, improving robustness to multipath fading and

interference.

• Pilot-Based Channel Estimation: Pilots are known symbols used to estimate the

channel's effect, enabling accurate equalization and data recovery.

• CP for Multipath Mitigation: The cyclic prefix prevents ISI by ensuring that delayed

versions of the signal fall within the guard interval.

2.4.4 Practical Applications

This transceiver architecture is extensively employed in contemporary communication

frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G

(New Radio) DVB (Digital Video Broadcasting)

This schematic representation offers an elevated perspective on the methodologies

through which OFDM systems proficiently manage data transmission and reception

within wireless contexts.

5. BER Calculation:

The broadcast and received data are compared to get the Bit Error Rate (BER).

The system's performance under specific channel conditions is gauged by BER.

2

3

11

11

19

25

33

39

Page 26 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 26 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

3.4.3 Key Features of the System
 OFDM (Orthogonal Frequency Division Multiplexing):

o OFDM splits the available bandwidth into multiple subcarriers, which

are orthogonal to each other. Each subcarrier carries a part of the data,

improving robustness to multipath fading and interference.

 Pilot-Based Channel Estimation:

o Pilots are known symbols used to estimate the channel's effect, enabling

accurate equalization and data recovery.

 CP for Multipath Mitigation:

o The cyclic prefix prevents ISI by ensuring that delayed versions of the

signal fall within the guard interval.

3.4.4 Practical Applications

This transceiver architecture is extensively employed in contemporary communication

frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G

(New Radio) DVB (Digital Video Broadcasting)

This schematic representation offers an elevated perspective on the methodologies

through which OFDM systems proficiently manage data transmission and reception

within wireless contexts

6

42

Page 27 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 27 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

CHAPTER 4

Mid-Stage Experimental Analysis

4.1 Introduction

The experimental results from the mid-stage of the study are presented in this chapter.

These findings are the outcome of MATLAB-based simulation work comparing

learning-based and conventional channel estimation techniques. This phase's goal was

to compare the performance of machine learning, specifically Deep Neural Networks

(DNNs), with the well-known Least Squares (LS) method for wireless channel

estimation in an OFDM system.

4.2 Experimental Setup and Tools

 Modulation Technique: Binary Phase Shift Keying (BPSK)

 System Model: OFDM with 64 subcarriers and 52 active carriers

 Channel Model: Simulated Rayleigh fading channel

 Platform Used: MATLAB R2023a

 Performance Metrics: Normalized Mean Squared Error (NMSE), Bit Error

Rate (BER), Signal-to-Noise Ratio (SNR)

4.3 Overview of the Methodology

For every OFDM symbol, the simulation starts by producing a random binarydata

symbol. These are converted into the time domain using IFFT, mapped to subcarriers,

and then sent through a Rayleigh fading channel. For varying SNR levels, Additive

White Gaussian Noise (AWGN) is used. Data symbols are extracted and demodulation

is done using FFT at the receiver end.

First, the LS technique is used to estimate the channel. In order to forecast actual

channel responses, a DNN model is then trained using both real and imaginary portions

of the estimated channel values. After that, both estimators are assessed using BER

and NMSE as SNR increases.

4.4 Results and Observations

The following code describes a channel estimation implementation in an OFDM

framework using both traditional Least Squares (LS) estimation and a Deep Neural

Network (DNN)-based approach. This code's goal is to evaluate and compare the

effectiveness of these two approaches in terms of Normalized Mean Squared Error

(NMSE) and Bit Error Rate (BER) under various Signal-to-Noise Ratio (SNR)

conditions.

2

2

20

Page 28 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 28 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

% Clear workspace

clc;

clear all;

close all;

%% OFDM Parameters

N = 64; % Number of subcarriers

L = 16; % Length of cyclic prefix

K = 52; % Number of active subcarriers (excluding nulls)

numSymbols = 10000; % Number of symbols in the dataset

SNR_dB = 0:5:50; % SNR range for evaluation

%% Step 1: Transmitter - Generate OFDM Symbols

% Generate random BPSK symbols for LTS (Long Training Sequence)

LTS = 2 * randi([0, 1], K, 1) - 1;

% Generate random data symbols for OFDM

dataSymbols = randi([0, 1], K, numSymbols);

dataSymbols = 2 * dataSymbols - 1; % BPSK Modulation

% Map to OFDM subcarriers (insert nulls and pilots)

ofdmSymbols = [zeros(6, numSymbols); dataSymbols(1:6, :); zeros(1, numSymbols);

dataSymbols(7:26, :); zeros(11, numSymbols); ...

dataSymbols(27:46, :); zeros(1, numSymbols); ...

dataSymbols(47:52, :); zeros(5, numSymbols)];

% IFFT to create time-domain signal

ifftSymbols = ifft(ofdmSymbols, N);

% Add cyclic prefix

txSignal = [ifftSymbols(N-L+1:N, :); ifftSymbols];

% Display Transmitter Output

disp('Transmitter Output (txSignal):');

disp(txSignal(:, 1:5)); % Display first 5 symbols

%% Initialize result storage

nmse_ls_all = zeros(1, length(SNR_dB));

nmse_dnn_all = zeros(1, length(SNR_dB));

ber_all = zeros(1, length(SNR_dB));

%% Loop over SNR values

for snrIdx = 1:length(SNR_dB)

%% Step 2: Channel - Pass Through OFDM Channel

% Define a simple Rayleigh fading channel

14

14

17

18

Page 29 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 29 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

h = (randn(N, 1) + 1j * randn(N, 1)) / sqrt(2);

% Pass the signal through the channel using 1D convolution

rxSignal = filter(h, 1, txSignal);

% Add AWGN noise to the received signal

rxSignal = awgn(rxSignal, SNR_dB(snrIdx), 'measured');

% Display Channel Output (check if columns exist before display)

numColsToDisplay = min(size(rxSignal, 2), 5);

disp(['Channel Output (rxSignal) for SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']);
disp(rxSignal(:, 1:numColsToDisplay)); % Display available columns

%% Step 3: Receiver - Perform OFDM Demodulation

% Remove cyclic prefix

rxSignal = rxSignal(L+1:end, :);

% Perform FFT

rxSymbols = fft(rxSignal, N);

% Extract the data subcarriers

rxDataSymbols = rxSymbols([7:32, 34:59], :); % Assuming the same mapping

% Display Receiver Input

disp(['Receiver Input (rxDataSymbols) for SNR = ', num2str(SNR_dB(snrIdx)), '

dB:']);

disp(rxDataSymbols(:, 1:numColsToDisplay)); % Display available columns

%% Step 4: LS Channel Estimation

% LS Channel Estimation

H_LS = rxDataSymbols ./ repmat(LTS, 1, numSymbols);

%% Step 5: DNN Training (Only once, use for all SNRs)

if snrIdx == 1

% Generate the training dataset

X_train = [real(H_LS); imag(H_LS)]'; % Input features for DNN (real and imaginary

parts)

Y_train = repmat([real(h([7:32, 34:59])); imag(h([7:32, 34:59]))]', numSymbols, 1);

% Target channel response

% Ensure Y_train is correctly shaped (104 in this case)

Y_train = Y_train(:, 1:2*K); % Ensure Y_train matches output size

% DNN Model Setup

layers = [

featureInputLayer(2*K) % Input layer

23

26

34

Page 30 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 30 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

fullyConnectedLayer(128) % Hidden layer with 128 neurons

reluLayer % Activation function

fullyConnectedLayer(2*K) % Output layer (Real and Imaginary components)

regressionLayer % For MSE loss calculation

];

% Training options

options = trainingOptions('adam', ...

'MaxEpochs', 500, ...

'MiniBatchSize', 128, ...

'Shuffle', 'every-epoch', ...

'Plots', 'training-progress');

% Train the DNN

net = trainNetwork(X_train, Y_train, layers, options);

end

%% Step 6: Inference Using DNN

% Perform inference on new data (after training)

X_test = [real(H_LS); imag(H_LS)]'; % New input features

Y_pred = predict(net, X_test); % DNN prediction

% Convert back to complex domain

H_DNN = Y_pred(:, 1:K).' + 1j * Y_pred(:, K+1:end).';

%% Step 7: Equalization and Performance Evaluation

% Ensure H_DNN and rxDataSymbols have compatible sizes

eqSymbols = rxDataSymbols ./ H_DNN;

% Demodulation and BER calculation

receivedBits = real(eqSymbols) > 0;

originalBits = dataSymbols; % Assuming we know the original bits

BER = sum(sum(receivedBits ~= originalBits)) / numel(originalBits);

ber_all(snrIdx) = BER;

%% NMSE Calculation

% Initialize NMSE values for LS and DNN

nmse_ls = 0;

nmse_dnn = 0;

% Compute NMSE for LS

for colIdx = 1:numSymbols

H_LS_col = H_LS(:, colIdx);

nmse_ls = nmse_ls + mean(abs(H_LS_col - h([7:32, 34:59])).^2) / mean(abs(h([7:32,

34:59])).^2);

4

13

Page 31 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 31 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

end

nmse_ls_all(snrIdx) = nmse_ls / numSymbols;

% Compute NMSE for DNN

for colIdx = 1:numSymbols

H_DNN_col = H_DNN(:, colIdx);

nmse_dnn = nmse_dnn + mean(abs(H_DNN_col - h([7:32, 34:59])).^2) /

mean(abs(h([7:32, 34:59])).^2);

end

nmse_dnn_all(snrIdx) = nmse_dnn / numSymbols;

%% Comparison: Determine which method is better

disp(['At SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']);

% Compare NMSE

if nmse_dnn_all(snrIdx) < nmse_ls_all(snrIdx)

disp('DNN has lower NMSE than LS.');

else

disp('LS has lower NMSE than DNN.');

end

% Compare BER

if ber_all(snrIdx) < ber_all(snrIdx) % Ideally you would compare DNN BER if

available, using ber_dnn_all(snrIdx)

disp('DNN has lower BER than LS (assuming same demodulation method).');

else

disp('LS has lower BER than DNN.');

end

end

%% Plotting Results

% Plot NMSE vs SNR

figure;

plot(SNR_dB, nmse_ls_all, 'b-o', 'LineWidth', 2); hold on;

plot(SNR_dB, nmse_dnn_all, 'r-s', 'LineWidth', 2);

xlabel('SNR (dB)');

ylabel('NMSE');

legend('LS', 'DNN');

title('NMSE vs SNR');

grid on;

% Plot BER vs SNR

figure;

plot(SNR_dB, ber_all, 'k-*', 'LineWidth', 2);

xlabel('SNR (dB)');

ylabel('BER');

title('BER vs SNR');

9

12

Page 32 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 32 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

grid on;

% Plot channel magnitude response for a specific SNR

figure;

snrIdx = 3; % For example, choose SNR at index 3 (you can change this)

plot(abs(h), 'k-', 'LineWidth', 2); hold on;

plot(abs(H_LS(:, 1)), 'b-o', 'LineWidth', 2);

plot(abs(H_DNN(:, 1)), 'r-s', 'LineWidth', 2);

xlabel('Subcarrier Index');

ylabel('Magnitude');

legend('True Channel', 'LS Estimate', 'DNN Estimate');

title(['Channel Estimation (SNR = ', num2str(SNR_dB(snrIdx)), ' dB)']);

grid on;

4.3 Graphs

Fig 4.1 Training Progress

Page 33 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 33 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Fig 4.2 Channel Estimation

Fig 4.3 SNR vs BER

Page 34 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 34 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

 Fig 4.4 NMSE vs SNR

The purpose:

Evaluate the Feasibility of DNNs: Investigate the capacity of Deep Neural Networks

(DNNs) to surpass conventional Least Squares (LS) estimation concerning channel

estimation precision as measured by Normalized Mean Square Error (NMSE) and

communication dependability as indicated by Bit Error Rate (BER).

Comparison Under Noise: Examine the efficacy of each methodology when subjected

to varying levels of noise, specifically focusing on differing Signal-to-Noise Ratios

(SNR).

Applicability in Real Systems: Illustrate the potential applications of machine learning

techniques in the domain of channel estimation within contemporary wireless

communication networks, such as those utilized in 5G and Wi-Fi technologies.

4.4.1 NMSE Comparison

 The DNN-based channel estimator exhibited improved NMSE performance

compared to LS, particularly at higher SNR values.

 This suggests that the DNN was able to capture underlying channel patterns

better as noise diminished.

4.4.2 BER Comparison

 The LS method showed better performance in terms of BER across most SNR

levels.

 This can be attributed to the stability of LS when the training data for the DNN

is not sufficiently diverse.

4.4.3 Visualizations

• Fig 4.1: DNN Training Curve

• Fig 4.2: Channel Estimation Plot (True vs. LS vs. DNN)

• Fig 4.3: BER vs. SNR

16

Page 35 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 35 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

• Fig 4.4: NMSE vs. SNR (DNN vs. LS)

4.5 Distinction from Base Paper

The results obtained in this stage differ significantly from the implementation shown

in the base paper titled "Low Complexity Deep Learning Augmented Wireless Channel

Estimation for Pilot-Based OFDM on Zynq System on Chip." While the base paper

targets a hardware-software co-design on a Zynq SoC using advanced interpolation

methods and fixed-point models, the current study restricts itself to MATLAB-based

floating-point simulations.

Moreover, the base paper integrates iResNet and LMMSE estimators optimized for

FPGA deployment, while this phase evaluates LS and DNN estimators solely in

software. Therefore, this work lays the groundwork for future extensions toward logic-

based learning models (like the Tsetlin Machine) and possibly embedded

implementations.

4.6 Summary

The results presented in this chapter mark the halfway point in the research. While

the DNN model demonstrated lower NMSE compared to LS, it still lagged behind

LS in terms of BER. These findings validate the feasibility of deep learning in

wireless channel estimation but also highlight the need for further optimization. The

next phase of the work will focus on incorporating rule-based estimators like the

Tsetlin Machine and preparing the system for real-time applicability.

5

Page 36 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 36 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

CHAPTER 5

Final Results and Comparative Analysis

5.1 Introduction

The final results of the study, which developed and assessed three different machine

learning-based classifiers for binary classification on a wireless communication

dataset, are presented in this chapter. The classifiers consist of a Deep Neural Network

(DNN), a simplified voting model inspired by the Tsetlin Machine, and the Least

Squares (LS) method. This stage's main goal was to evaluate and contrast each

algorithm's performance in terms of accuracy, Bit Error Rate (BER), and resource

usage. The analysis clearly identifies the advantages and disadvantages of each

approach and proves that the DNN is the best and most economical option for the given

problem.

As part of this thesis's larger goal, the goal was not only to determine which model

performs the best, but also this chapter integrates both experimental outcomes and

technical reflections drawn from iterative implementation and debugging.

5.2 Dataset Preparation and Preprocessing

The dataset used for this analysis was loaded from a MATLAB .mat file containing

30,000 samples, each with 1024 features. The target labels, initially continuous in

nature, were thresholded to obtain a binary classification task. The source data is

typical of synthetic datasets used in channel estimation studies, mimicking real-world

variations seen in noisy wireless environments.

The preprocessing steps included:

 Normalizing the feature matrix by dividing each value by the global maximum.

 Flattening the target variable to a 1D binary array.

 Shuffling the dataset to ensure randomness.

 Splitting the data into training (80%) and testing (20%) sets.

The class distribution in the training and test sets was also checked to confirm a

reasonable number of positive and negative samples for fair evaluation.

This preparation step was crucial, especially for neural networks, which tend to

perform better when feature values are on a consistent scale. For the Tsetlin Machine,

binarization was applied during the classifier stage itself.

5.3 Least Squares Classifier

Methodology:

The Least Squares method, traditionally used for signal estimation tasks, was applied

here to classify binary outcomes. It works by fitting a linear relationship between the

input features and the output labels by minimizing the squared difference between

4

4

8

36

41

Page 37 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 37 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

actual and predicted values. The solution is derived using the normal equation, and a

binary decision is made by applying a threshold to the predicted output.

This method assumes a linear relationship between input variables and the decision

boundary. While it lacks the sophistication of modern ML algorithms, it has been

widely used for its speed and analytical solution.

Characteristics:

 Computationally light, making it feasible for real-time applications

 Relies on linearity assumptions, which may limit its adaptability to complex

data distributions

 Straightforward to implement and interpret

 Poor handling of feature interactions unless explicitly modeled

Performance:

 Accuracy: 81.83%

 Bit Error Rate (BER): 0.1817

 Resource Utilization: Low; does not require GPU or specialized hardware

This model performed as expected: it provided a reliable benchmark and required

minimal tuning. However, its inability to model non-linear decision boundaries

became apparent during analysis.

5.4 Tsetlin-Voting Classifier

Methodology:

Inspired by the Tsetlin Machine, this model employs a simplified rule-based

methodology in which binary features are used to vote on a decision. By examining

their distributions across positive and negative samples, it determines the vote weights

for each feature. After that, votes are counted and compared to a threshold that has

been learned for classification.

To maximize classification accuracy, this threshold was calibrated using a sweep on

the training set, which allowed the model to slightly adjust to different data

distributions.

Characteristics:

 Fully interpretable, rule-based system

 Extremely lightweight and suitable for constrained devices

 Can be rapidly trained and deployed without specialized environments

 Easily ported to logic-based hardware (FPGAs, microcontrollers)

Performance:

 *Optimal threshold (t)**: 5

 Training Accuracy: 75.99%

 Test Accuracy: 76.53%

 Bit Error Rate (BER): 0.2347

4

Page 38 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 38 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

• Resource Utilization: Minimal resource usage; only simple logic operations are

needed.

This model has a clear trade-off: explainability and efficiency are provided at the

expense of overall predictive performance. It would be perfect in situations where

processing power is constrained or interpretability is crucial.

5.5 Deep Neural Network (DNN)

Methodology:

The backpropagation algorithm was used to train the DNN model, which had two

hidden layers. Through iterative weight adjustments based on gradient descent, this

model learns nonlinear mappings between input features and output labels. The Adam

optimizer was used for training over a number of epochs, using a combination of real

and imaginary feature parts as input.

Significant preprocessing was needed for this model, including output normalization

and one-hot encoding. Hyperparameter adjustment, such as batch size, number of

neurons, for stable training and convergence, size, and learning rate, were crucial.

Characteristics:

 Can capture complex, nonlinear dependencies in data

 Highly flexible and adaptable to diverse input conditions

 Requires significant computational resources for training but can generalize

well once trained

 Training stability depends on data balance, regularization, and initialization

Performance:

 Accuracy: 99.42%

 Bit Error Rate (BER): 0.0058

 Resource Utilization: Moderate to high; performs best with GPU or multicore

processors



The DNN's near-perfect accuracy validates its capacity for capturing subtle patterns in

data that are invisible to linear models or thresholding schemes. It serves as proof that

deep learning can bring substantial gains in wireless communication problems.

5.6 Comparative Analysis Table

Metric Least Squares Tsetlin-Inspired Deep Neural

Network

Accuracy (%) 81.83 76.53 99.42

Bit Error Rate

(BER)

0.1817 0.2347 0.0058

Interpretability Moderate High Low

Training Time Fast Very Fast Moderate

Adaptability Low Medium High

Complexity Low Low High

Resource

Utilization

Low Very Low Moderate/High

Page 39 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 39 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Suitable Use Case Quick Baseline Lightweight

Devices

High-performance

Systems

5.6 Results:

Fig 6.1: Tsetlin classifier training log showing class distribution and optimal

threshold selection. threshold selection.

Fig 6.2 Accuracy and BER comparison of LS, Tsetlin-like, and DNN classifiers.

5.7 Personal Insights and Reflections

While working with these three classification methods, I observed not only their

numerical performance but also practical aspects such as ease of implementation,

interpretability, and adaptability. The Least Squares method is undoubtedly the easiest

to implement and can deliver surprisingly good results for linearly separable problems.

It serves well as a benchmark and is suitable when computational simplicity is a

priority.

The Tsetlin-inspired model intrigued me due to its rule-based logic and negligible

resource demand. It provided me with a new perspective on binary learning

mechanisms that don’t rely on traditional weight updates but on count-based logical

reinforcement. Despite its lower accuracy, its strength lies in its clarity and hardware

compatibility.

As anticipated, the DNN showed the strongest performance. But in terms of tuning and

training time, it was also the most taxing. To get consistent results, I discovered that

careful network design, learning rate selection, and normalization were needed. The

benefit of non-linear function approximation is demonstrated by its high accuracy, but

at the expense of transparency and computational demand.

According to my observations, fusing the expressive capabilities of neural networks

with aspects of interpretability from rule-based models may be a promising avenue for

future research, particularly in resource-constrained settings like embedded systems or

edge devices.

Page 40 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 40 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

5.8 Conclusion

This comparative analysis demonstrates the performance of each approach on a range

of metrics. Despite its simplicity, the LS approach offers dependable performance in

environments with limited resources. The interpretability and computational efficiency

of the Tsetlin-inspired model are excellent, but its predictive accuracy is lacking.

Although the DNN uses more resources, it performs noticeably better than the other

two in terms of accuracy and error rate.

In conclusion, DNN works best when computational resources are available and

accuracy is the top concern.

• The Tsetlin-inspired model is perfect for situations that call for speed,

transparency, and simplicity.

• For linear tasks with constrained hardware, Least Squares offers a robust,

quick baseline.

The benefits of employing deep learning methods for channel estimation tasks are

validated in this last stage, which also raises the possibility of integrating neural

networks and logical rule-based models for future systems' optimal performance.

This comparative framework offers a basis for implementing machine learning models

in the wider wireless communications context, where system-level limitations like

latency, memory consumption, or real-time inference become crucial. The

implementation techniques can readily be extended to future channel estimation tasks

across 5G, 6G, and beyond, and the insights obtained here can help practitioners select

the best tool for particular deployment scenarios.

Page 41 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 41 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Chapter – 6

Conclusion and Future Work

6.1 Conclusion

Investigating the performance and suitability of machine learning algorithms for

the channel estimation task in wireless communication systems was the main goal

of this thesis. This study has provided both a technical and comparative

evaluation based on actual experimentation by concentrating on three

classification approaches: a Deep Neural Network (DNN), a simplified voting

model inspired by Tsetlin Machine, and Least Squares (LS).

Every approach showed distinct advantages and disadvantages. Because of its

ease of use and low processing overhead, the Least Squares method was a reliable

starting point, but it was insufficient for simulating intricate, nonlinear channel

properties. Although the rule-based logical structure introduced by the Tsetlin-

inspired approach is very interpretable and hardware-friendly, its accuracy was

not as high as that of the more sophisticated models. However, the DNN showed

Through these implementations, the thesis has provided evidence that machine

learning, particularly deep learning, can play a pivotal role in enhancing channel

estimation techniques. Moreover, it has highlighted the importance of trade-off

analysis in selecting a method suitable to the system's constraints, such as

hardware limitations, latency requirements, and power consumption.

This research has not only achieved its immediate objectives—implementing and

comparing LS, TM-like, and DNN approaches—but has also laid the groundwork

for further investigation into logic-based learning systems and hybrid models.

6.2 Future Work

While the findings of this thesis are promising, they also open the door to several

directions for future exploration:

1. Hardware Implementation and Benchmarking:

The current models were implemented and evaluated in MATLAB. A natural

extension of this work would be to deploy these models on embedded platforms

(e.g., ARM Cortex, Zynq SoC, or NVIDIA Jetson) and measure real-time

performance, latency, memory consumption, and power usage.

2. Improving the Tsetlin Machine:

24

Page 42 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 42 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

The simplified TM-inspired model can be replaced with a full Tsetlin Machine

framework that includes clauses, automata, and feedback mechanisms. This

would allow a more competitive comparison with the DNN in terms of accuracy

while retaining interpretability.

3. Hybrid Model Design:

A promising path would be to develop a hybrid model that combines the

transparency of rule-based logic (Tsetlin) with the feature extraction power of

neural networks. Such a model could adaptively switch between modes based on

computational resources or prediction confidence.

4. Robustness Under Channel Variations:

The models evaluated here used synthetic data with idealized channel

assumptions. Testing these classifiers under more realistic conditions (e.g., multi-

path fading, Doppler spread, and non-stationary noise) would further validate

their utility in live systems.

5. Extension to Multi-Class or Regression Tasks:

While this work focused on binary classification, real-world channel estimation

may require predicting a continuous-valued impulse response or handling

multiple modulation types. Extending the models to regression or multi-class

settings would broaden their applicability.

6. Dataset Expansion and Augmentation:

The current dataset, though useful for baseline validation, was synthetically

generated. Applying the same models to datasets captured from software-defined

radio (SDR) experiments or real-world testbeds would enhance relevance and

reliability.

7. Integration with End-to-End Communication Pipelines:

Finally, integrating ML-based channel estimation into a complete OFDM-based

receiver chain—covering synchronization, demodulation, decoding, and

equalization—would offer a more holistic understanding of their contribution to

overall system performance.

6.3 Closing Remarks

This thesis has provided a comparative lens into how different machine learning

paradigms can be applied to a foundational problem in wireless communication.

It underscores that no single method is universally superior, but rather, each

Page 43 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 43 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

serves a specific niche depending on performance, interpretability, and resource

constraints.

With the rapid development of AI-enabled 6G networks and edge intelligence,

the integration of efficient and accurate learning-based channel estimators will

likely become a standard design component. This work is a small but significant

contribution toward that direction.

Page 44 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

Page 44 of 44 - Integrity Submission Submission ID trn:oid:::27535:98416473

