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Machines in Wireless Communication Systems 

 
Shravya Pravallika Potturi 

 
ABSTRACT 

 

 
Tsetlin machines offer a captivating approach to machine learning by balancing 
interpretability with performance in pattern recognition. Such regulation-based models 
learn from data by processing individual features through building rules that combine 
them using logic operators. Unlike complex models with opaque inner workings, 
Tsetlin machines achieve interpretability through their reliance on well-understood 
propositional logic. 
 
The motivation behind Tsetlin machines arises from the desire to overpass the gap 
between high-performance models and interpretability. While powerful models excel 
at tasks, their internal decision-making processes can be difficult to comprehend. 
Tsetlin machines strive to offer precise results while providing insights into the 
reasoning behind their classifications. 
 
This exploration bifurcates into various aspects of Tsetlin machines, including how 
multiple rules learn unanimously without a central controller, how different feedback 
mechanisms (Recognize, Erase, Reject) shape the understanding of target classes, and 
the impact of hyperparameters like Forget Value and Memorize Value on the learning 
process. 
 
In general, Tsetlin machines present a paramount tool for tasks where interpretability 
is crucial alongside performance. They offer an alternative to black-box models, 
allowing users to assimilate the reasoning behind classifications by effectively 
utilizing logical rules and distributed learning, Tsetlin machines provide a promising 
approach for various pattern recognition applications 
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CHAPTER 1 

 
 

INTRODUCTION 

Complex machine learning algorithms often produce curious results without 
revealing the thought processes involved in the final product. This is why Tsetlin 
machines stand out as a breath of fresh air. These models prioritize 
interpretability while achieving outstanding performance in pattern recognition 
tasks. Human beings categorize things, and Tsetlin machines do the same by 
learning to build rules. This is a profound idea behind Tsetlin machines: they 
process data by individually analyzing features and then combining them using 
logical operators like AND, OR, and NOT. This approach led to the creation of 
clear, comprehensible rules that define what makes something belong to a 
specific class. 

 

1.1 Motivation 

 

Machine learning often faces a commutation between complex models achieving 
majestic results and comprehensible how they arrive at those results. Models such as 
Support Vector machines have a good grip over performance but a mute when it comes 
to interpretation. Decision Trees and Ks nearest neighbors lack the reasoning behind 
why it has come to a certain conclusion or result. Tsetlin machines aim to bridge this 
gap. Powerful models like deep neural networks might excel at image recognition, 
however, their inner workings are opaque. Tsetlin machines aim to bridge this gap. 
Powerful models like deep neural networks might excel at image recognition, 
however, their inner workings are opaque. Tsetlin machines solve this by creating 
logically interpretable rules (such as "Four Wheels AND Has Engine" for cars). Unlike 
black-box models, these rules are simple to comprehend. While interpretability is a 
primary concern, Tsetlin machines also aim for high performance using feedback 
mechanisms such as "Reject" (learning differentiating features from other classes), 
"Erase" (weakening rules for inconsistent features), and "Recognize" (strengthening 
rules for consistent features). Around the world, Tsetlin machines are designed to 
produce accurate models with clear justifications for their choices, which makes them 
useful for jobs where knowing the "why" is just as important as knowing the "what." 
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1.2 Tsetlin Structure 
 
 

 

             Fig 1.1: Overview of Tsetlin Machine 
 
 

The first step is to learn how to get the data ready for the machine. The machine 
transforms the raw data into propositional logic, which is made up of distinct features 
that can be classified as True or False. The chapter then delves deeply into the profound 
idea of rules! In order to determine which class an object belongs to, these machines 
create "if-then" rules that combine these features using logic (AND, OR, NOT). For 
instance, "If Has Four Wheels AND Not Has Wings then Car" could be a rule for 
"Car." The machine's application of these rules to identify patterns in the data will be 
further explained in this chapter. It examines instances and reinforces rules that often 
correspond to data in a particular category (e.g., "Car"). Additionally, the chapter 
describes how the machine polishes the different categories apart.  
 
It weakens or eliminates rules that don't effectively showcase the difference between 
things. For example, a rule like "if Has Wheels then Car" might be weakened because it 
also applies to bicycles, trains, and planes. Ultimately, the chapter digs deep into how 
the machine works. This involves how it learns and adapts over time, positively using 
feedback from the data to amend its rules. It also explains how the machine uses 
multiple "if-then" rules together to make final classifications. By grasping these steps, 
you gain a heavy understanding of how Tsetlin machines function and achieve pattern 
recognition with clear, logical rules. 
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1.2.1 Data Booleanization 
 
 

As studied earlier, data is transformed into Boolean features (True or False values) 
with an example: 
Imagine a dataset classifying fruits based on color and size. Raw Data is an Avocado 
which represents "Green" and "Large", while a banana might be "Yellow" 
and “Medium".  
 
The Booleanization process is as follows: 
1. Define Features: We identify individual characteristics as features. In this 

case, features are "Color" and "Size". 
 

2. Assign Boolean Values: For each feature, we create a set of Boolean values 
representing all possible conditions. Here is an example: 
 

 Color: 
Green = True 
Not Green (e.g., Yellow, Orange) = False 
 

 Size 
Large = True 
Not Large (e.g., Medium, Small) = False 
 

3. Applying Booleanization: 
 

 Apple Example: The Green Avocado with "Green" and "Large" 
features would be transformed into Boolean format: 

                          Color (Green) = True  
  Size (Large) = True 

 Banana Example: The yellow banana with "Yellow" and "Medium" 
features would be transformed into: 

 
                                          Color (Green) = False (because it's not Green) 
                                           Size (Large) = False (because it's not large) 
 
Benefits of Booleanization: 

 
 Simple Representation: By converting data into propositional logic, 

Tsetlin machines can easily integrate them into logical rules using 
operators like AND, OR, and NOT. 

 Focus on Specific Characteristics: Booleanization allows the 
machine to focus on the presence or absence of specific features 
within each data point. 

 
In essence, booleanization transforms data into a binary format suitable for the rule  
Based learning approach of Tsetlin machines. 
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if (condition) then class 
) 

 
1.2.2 Pattern Construction with AND and NOT 
 
 

Pattern recognition problems are solved easily by Tsetlin machines using if-then rules 
By analyzing the object. Every rule has the following standard form: 

 
 

      

 
Table 1.1 table of three cars and three planes, with five Boolean features. The table 
showcases one column per feature, each entry taking the value (•) or 
False (·). The final column decides the type of vehicle. 

 
The condition holds the place for boolean expression which outlines the pattern in the 
data which is learned by the Tsetlin machine. Refer to the vehicle information from 
Table 1.1 which makes it evident, that the condition 

 
Four Wheels and Transports People 
 

Observe how a Tsetlin machine makes use of the and-operator to merge several 
features. Every feature needs to be true if we need the entire condition to be true which 
is implemented by AND operation. In this example, the condition matches the features 
of the object under observation. If even one of the features is not true, the overall 
condition falls apart because the rule is not a match to the object’s condition. predicts 
a Car when it sees an object with Four Wheels that Transports People. 
 
Negation: The NOT operator plays a crucial role as it figures out the features that do 
not belong to the class. For example, a plane is not blue.  
 
Literals: The features or the properties of an object are called literals. Also, the 
properties that are not of the object are called negated features. Literals are a 
combination of features and negated features.   
  

1 
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1.2.3 Learning Frequent Patterns with Recognize and Erase 
Feedback 

 
Steps to learn a single rule: 
 
One can comprehend a Tsetlin machine if the machine can figure out how to learn a 
single rule itself. Through this independent learning, rules are free-standing and subtle 
to comprehend. It also processes independently which acts as a side benefit 
independent learning. 
 
Rule Initialization:  
 
All the literals take the memory position of 5 as their starting position. This makes sure 
that all the literals are neutral and at the brink of being memorized or forgotten. We 
can make and change rules according to our own will and it will not affect the result 
as it is a self-aligning system. 
Other machine learning algorithms such as deep neural networks are more 
sensitive to initialization. 
 
 
      

 
                         Figure 1.2 Initializing of example rule for predicting the class 

 
 
The single-rule construction algorithm is as follows: 
It consists of three steps and case 1 is when the rule comes across an object which 
belongs to its class. 
 
The single-rule construction algorithm is as follows: 
It consists of three steps and case 1 is when the rule comes across an object which 
belongs to its class. 
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1. Rule Evaluation: Observe the features of the object. 
 
2. Recognize Feedback: If the features match the condition, memorize the literal by 
incrementing its position in the memory. Forget the false literals towards maximally 
forgotten by decrementing their position in the memory.  
 
3. Erase Feedback: If the features do not match the condition, forget all the literals 
by decrementing their position. 
 
Randomization: 

 Learning should be flexible because coincidence can happen and events sometimes 
occur by chance. Randomization is one simple way to achieve flexibility in 
randomization. Therefore, to randomize increments and decrements, we draw a 
random value between 0.0 and 1.0 is drawn. If the value is above 0.5, we skip the 
increment. The value of 0.5 is known as the Memorize Value. Again, we draw a value 
before decrementing. If the value is above 0.5, we skip the decrement. This second 0.5 
value is coined Forget Value. Randomization further diversifies the rules and boosts 
exploration. 
 
 

1.2.4 Increasing Discrimination Power with Reject Feedback 
 

The use of Reject Feedback arises when we come across a condition where Tsetlin 
encounters data points from a different class. 
Algorithm – Increasing Discrimination Power: A rule increases its discrimination 
power when it faces an object of a class different from its own. Learning then skips 
Recognize and Erase Feedback, going directly to the fourth step: 
 

4. Reject Feedback: If the object's features match the condition but do not belong 
to the same class, then all forgotten features are memorized. Randomization is 
not performed. 
 
 

1.2.5 Overall Coordination 
 

Tsetlin machine constructs multiple rules that interact by memorizing the features 
inspired by humans. Just the way humans categorize things. 
 
A Tsetlin Machine is similar to a group of logic builders (Tsetlin automata) that 
use AND/OR/NOT logic to create straightforward, understandable rules in order 
to identify patterns. It is a strong substitute for more intricate black-box models 
because it is intelligent, resource-light, and simple to comprehend. 

 



 

The procedure of Classification:  Voting classifies the input for Tsetlin. Only a single 
rule will not decide the result or which class the object belongs to. A vote is cast for 
each class and the class with the maximum number of votes is fed to the Tsetlin. In 
simple words, the majority wins. 
 

Learning coordination: 
 
Vote Margin: Tsetlin learns coordination of multiple rules with the help of Vote 
margin. It is an integer number that creates a margin between the winner and the 
loser(classes).   
 

Complete Learning Algorithm:  The Tsetlin machine learns complementary rules as 
follows: 

1. Analyse the new object's features and its class. 
2. Evaluate the truth values of the literal.  
3. Calculate the sum of the votes. 
4. Analyze each rule and assign feedback: 

            a) Categorize it as Recognize or Erase Feedback if the rule belongs to the 
object’s class  
            b) Give the rule Reject Feedback if it belongs to another class. 
      5. Go to 1.  

Because of the frequent changes in the updation of the rules, Tsetlins moderately 
assign themselves for classification of the different kinds of objects they face. Amidst 
this, prioritization of objects that are further away from the vote Margin is a 
paramount. This help to achieve Resource Allocation Effect. 
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CHAPTER 2 
 
 

LITERATURE SURVEY 
 

 
2.1 Introduction 
 
In the realm of wireless communication, the ability to accurately estimate the channel 
is indispensable In the end, channel estimation enables dependable demodulation and 
decoding of received signals by modeling the effects of multipath fading, interference, 
and noise. In the past, mathematically modeled methods like Least Squares (LS) and 
Minimum Mean Square Error (MMSE) have been used in communication systems. 
Although these models work well in controlled situations, they frequently fall short in 
dynamically changing environments because they presume prior knowledge of the 
channel. Researchers have started looking into the potential of machine learning (ML) 
in channel estimation due to its recent popularity and use in a variety of signal 
processing domains. Because it can model intricate and nonlinear channel behaviors, 
deep learning (DL) in particular has shown itself to be an effective tool. 
 
Simultaneously, a new method that strikes a balance between interpretability and 
computational efficiency is provided by the Tsetlin Machine (TM), a logic-based, low-
complexity machine learning model. With a focus on Tsetlin Machines and their 
potential in real-time wireless applications, this chapter provides a thorough analysis 
of 30 scholarly articles that examine the development from conventional estimators to 
modern machine learning techniques. 
 
 
2.2 Traditional Channel Estimation Techniques 
 
Matrix algebra and statistical modelling are the fundamental techniques in channel 
estimation. For example, LS estimation reduces the squared error between the channel 
coefficients that were observed and those that were predicted. Comprehensive 
simulations in OFDM environments were carried out by Goyal and Singh [13], who 
showed that although LS is straightforward and efficient, noise degrades its 
performance. MMSE, on the other hand, leverages channel statistics to minimize the 
mean square error, yielding improved performance when the noise variance is known. 
However, its dependency on statistical knowledge makes it less adaptable to non-
stationary conditions. 
 
R. Zhang and H. Zhang [17] evaluated estimation strategies for mmWave MIMO 
systems. They emphasized hybrid precoding, a technique where analog and digital 
precoders are combined, to reduce the hardware complexity associated with fully 
digital solutions. Their work underscored the growing need for estimators that can 
scale with increasing antenna array sizes. 
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Tse and Viswanath’s textbook [7] laid the theoretical groundwork for most modern 
communication techniques. It covers the mathematical modeling of fading channels, 
time/frequency selectivity, and optimal estimation strategies. Their work remains a 
touchstone for performance analysis in both classical and ML-based estimators. 
 
A. H. Sakr and E. Hossain [18] provided a thorough comparison of pilot-based and 
blind estimation methods in MIMO systems. They discussed the implications of pilot 
contamination, a problem that occurs when the same pilot sequences are reused in 
neighboring cells — a challenge especially relevant in massive MIMO deployments. 
 
2.3 Deep Learning-Based Channel Estimation 
 
With the introduction of models that could learn straight from data without the need 
for manually created features, deep learning completely changed the field of signal 
processing. One of the first deep learning architectures for OFDM systems was 
introduced by Ye et al. [14]. Their network outperformed LS and MMSE in terms of 
Bit Error Rate (BER) when performing joint channel estimation and signal detection. 
This method simplified receiver design and decreased error propagation.  
 
An AI-assisted OFDM receiver was developed and tested on a physical testbed by 
Zhang et al. [12]. Their findings confirmed that deep learning can be used in practical 
systems, which is a crucial step in moving from theory to implementation. 
Convolutional layers were incorporated into their architecture to extract spatial 
patterns from channel state information (CSI). 
 
Kim and Lee [8] used neural networks to optimize pilot placement to address the pilot 
overhead problem. Their model improved spectral efficiency by accurately predicting 
the channel with fewer pilot symbols. This work was expanded by Choi et al. [9] to 
massive MIMO systems, where conventional techniques are unable to handle the 
dimensionality of CSI. Their DNN method significantly decreased high-dimensional 
estimation's computational complexity. Their DNN approach drastically reduced the 
computational complexity of high-dimensional estimation. 
 
Chen et al. [10] proposed an attention-driven estimator where the model learns to focus 
on the most relevant parts of the input features, dynamically adjusting to time-varying 
channels. This mimics human cognitive processes and proved to be more effective in 
high-mobility environments. 
 
Wu et al. [15] developed a low-complexity neural network tailored for the uplink 
channel estimation in massive MIMO. Their architecture used shallow layers to reduce 
latency and energy consumption, making it suitable for edge deployment. Wahab et 
al. [16] and Singh [4] published comprehensive surveys categorizing DL models based 
on architecture (CNN, RNN, transformer), use-case, and complexity. 
 
Farsad and Goldsmith [22] explored sequence learning for communication systems 
using recurrent neural networks (RNNs). Their work focused on symbol detection but 
demonstrated that sequence models could also be leveraged for time-correlated 
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channel estimation. 
 
 
Ma and Gao [24] addressed sparse channel estimation in mmWave by integrating DL 
with compressive sensing. Their method took advantage of the sparsity in the angular 
domain, significantly improving estimation accuracy while reducing pilot overhead. 
 
 
2.4 Hybrid and Federated Learning Methods 
 
Elbir and Coleri [28] introduced federated learning (FL) as a decentralized training 
method for channel estimation, enabling model training across multiple devices 
without sharing raw data. This approach preserves privacy and is suitable for IoT or 
vehicular networks. Their findings showed that FL can match centralized learning in 
terms of performance while reducing communication costs.  
 
Huang et al. [21] offered a panoramic view of DL techniques at the physical layer of 
5G, covering not just channel estimation but also modulation recognition, detection, 
and resource allocation. They emphasized the need for lightweight DL models that can 
be deployed on hardware-constrained systems. 
 
Kim and Lee [23] applied hybrid DNN models that combine convolutional and fully 
connected layers to improve estimation accuracy without increasing inference time. 
This fusion strategy enhances spatial and temporal feature extraction. 
Lu et al. [25] discussed massive MIMO challenges in channel estimation, particularly 
the curse of dimensionality and pilot contamination. Their suggestions include 
leveraging statistical models, hybrid DL techniques, and hierarchical estimation 
structures. 
 
Soltani et al. [29] provided a meta-survey, covering over 100 papers related to DL-
based channel estimation. Their review highlighted emerging trends such as 
reinforcement learning, unsupervised learning, and domain adaptation, all of which 
aim to reduce dependency on labeled training data. 
 
 
2.5 Tsetlin Machine-Based Channel Estimation 
 
Unlike data-intensive neural networks, Tsetlin Machines rely on finite-state automata 
that learn logical clauses based on propositional feedback. Granmo [6] introduced this 
paradigm, emphasizing its simplicity and efficiency. The TM’s ability to operate with 
binary input data makes it ideal for embedded systems. 
 
Tanskanen et al. [5] expanded on this by evaluating TMs in signal processing contexts, 
demonstrating competitive accuracy in classification tasks with minimal memory 
footprint. This makes TM a strong candidate for real-time, low-power applications. 
Tesema and Granmo [19] applied TM to MIMO detection and found that it achieved 
comparable BER to conventional algorithms while using significantly fewer resources. 
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Unlike DNNs, which rely heavily on hyperparameter optimization, their model needed 
little tuning. 
 
For OFDM systems, Gaikwad et al. [30] introduced a hybrid machine learning model 
that combines TM and Support Vector Machines (SVM). While the TM recorded 
comprehensible logical patterns, the SVM dealt with high-dimensional projections. 
Improved convergence speed and noise resilience were the results of the combination. 
 
 
By combining TM with embedded hardware, Granmo et al. [27] demonstrated its 
potential in real-time signal processing applications. The ability of TM to satisfy the 
exacting timing and resource requirements of wireless communication systems was 
validated by their demonstration on FPGA platforms. 
 
 
2.6 Channel Modelling and Theoretical Foundations 
 
LeCun, Bengio, and Hinton [1] provided the seminal work on deep learning, laying 
the conceptual foundation for its widespread adoption in signal processing. Their 
discussion of hierarchical feature learning underpins many neural channel estimators 
today. 
 
Berardinelli et al. [2] outlined channel estimation challenges specific to 5G New Radio 
(NR), such as support for massive MIMO, low-latency requirements, and frequency 
diversity. Their insights guide the practical implementation constraints that any 
estimation algorithm must address. 
 
Heath et al. [3] focused on mmWave MIMO systems, where high-frequency 
propagation poses unique challenges. Their review of hybrid beamforming and sparse 
estimation laid the groundwork for many DL and TM-based innovations in channel 
modeling. 
 
Cotton and Scanlon [26] examined body area networks operating in the mmWave 
spectrum. They emphasized the importance of modeling human-body-induced fading, 
which is critical for healthcare and wearable systems — potential domains for TM 
deployment due to energy constraints. 
 
 
The exploration in this thesis is motivated by these findings. By implementing Tsetlin 
Machines for channel estimation and benchmarking them against LS and DNN 
methods, we aim to highlight their viability for real-world wireless communication 
systems. 
 
This table categorizes each work by the proposed model or author, year of publication, 
employed methodology, and a brief description of the contribution. The objective is to 
highlight the evolution of channel estimation techniques — from traditional statistical 
approaches to advanced machine learning-based estimators, including the emerging 
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Tsetlin Machine framework. 
 
 
    Table 2.1 Comparative analysis of surveyed papers on channel estimation 

Sr Model Year Method Description 
1 LeCun et al. [1] 2015 Deep Learning Pioneering work 

establishing the 
foundations of 
deep learning. 

2 Berardinelli et 
al. [2] 

2019 Model-Based + 
ML 

Survey of 
channel 
estimation 
techniques for 
5G NR. 

3 Heath et al. [3] 2016 Sparse + Hybrid 
Beamforming 

mmWave 
MIMO signal 
processing 
techniques. 

4 Singh [4] 2021 Survey Review of ML-
based channel 
estimation in 
wireless 
systems. 

5 Tanskanen et al. 
[5] 

2018 Tsetlin Machine Introduction of 
TM in signal 
classification 
applications. 

6 Granmo [6] 2018 Tsetlin Machine Bandit-based 
propositional 
logic model for 
learning. 

7 Tse & 
Viswanath [7] 

2005 Analytical Fundamental 
textbook 
covering 
channel 
modeling 
theories. 

8 Kim & Lee [8] 2018 DNN + Pilot 
Design 

Pilot 
optimization 
using deep 
learning for 
MIMO. 

9 Choi et al. [9] 2017 DNN Neural networks 
for large-scale 
MIMO 
estimation. 

10 Chen et al. [10] 2021 Attention Dynamic 
attention 
mechanism for 
adaptive channel 
estimation. 
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11 Diniz [11] 2012 DSP Covers channel 
estimation and 
filtering 
algorithms. 

12 Zhang et al. 
[12] 

2020 AI-Aided 
Receiver 

Hardware-
validated AI 
receiver for 
OFDM. 

13 Goyal & Singh 
[13] 

2012 LS, MMSE Comparative 
analysis of LS 
and MMSE 
estimators. 

14 Ye et al. [14] 2018 End-to-End DL Joint channel 
estimation and 
detection using 
DNN. 

15 Wu et al. [15] 2020 Lightweight 
DNN 

Uplink channel 
estimation in 
massive MIMO. 

16 Wahab et al. 
[16] 

2021 Survey Survey on DL 
techniques for 
OFDM channel 
estimation. 

17 R. Zhang & H. 
Zhang [17] 

2017 Hybrid 
Precoding 

Channel 
estimation in 
mmWave 
massive MIMO. 

18 Sakr & Hossain 
[18] 

2013 Pilot-based Evaluation of 
pilot 
contamination in 
MIMO 
estimation. 

19 Tesema & 
Granmo [19] 

2021 TM for MIMO Tsetlin Machine 
applied to 
MIMO 
detection. 

20 Ahmed & 
Eltawil [20] 

2021 ML in 6G Future direction 
of ML in 6G 
networks. 

21 Huang et al. 
[21] 

2020 DL Survey Review of DL 
for 5G physical 
layer. 

22 Farsad & 
Goldsmith [22] 

2018 RNN Sequence 
detection with 
neural networks. 

23 Kim & Lee [23] 2020 Hybrid DNN DNN 
architecture 
combining CNN 
and FC layers. 

24 Ma & Gao [24] 2019 Sparse DL DL with 
compressive 
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sensing for 
mmWave. 

25 Lu et al. [25] 2014 Massive MIMO Overview of 
benefits and 
limitations of 
massive MIMO. 

26 Cotton & 
Scanlon [26] 

2010 Body Area 
Models 

Channel 
modeling in 
wearable 
mmWave 
systems. 

27 Granmo et al. 
[27] 

2020 TM on FPGA Demonstration 
of TM on 
embedded 
hardware. 

28 Elbir & Coleri 
[28] 

2022 Federated 
Learning 

FL for 
distributed 
wireless 
communication 
systems. 

29 Soltani et al. 
[29] 

2021 DL Meta Survey Extensive DL 
review across 
estimation 
techniques. 

30 Gaikwad et al. 
[30] 

2022 TM + SVM Hybrid ML 
model for 
OFDM channel 
estimation. 

 

 
2.7 Summary 
 
This literature survey reveals a clear trajectory: from statistical models like LS and 
MMSE to sophisticated learning-based models and logic-driven alternatives. Deep 
learning dominates current research due to its high accuracy, especially in non-
stationary and sparse channel environments. However, its complexity, training 
requirements, and interpretability limitations hinder real-time application. 
 
Tsetlin Machines offer a compelling alternative. Their low-resource demands, rule-
based structure, and fast convergence make them attractive for embedded wireless 
systems. While they are relatively new in communication applications, early studies 
show strong potential, especially when combined with other ML models. 
 
The exploration in this thesis is motivated by these findings. By implementing Tsetlin 
Machines for channel estimation and benchmarking them against LS and DNN 
methods, we aim to highlight their viability for real-world wireless communication 
systems. 
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CHAPTER 3 

Channel Estimation 

 
 

3.1 INTRODUCTION 
 

Channel estimation represents a pivotal principle in the domain of wireless 
communications, denoting the procedure of elucidating the attributes of a 
communication channel that exists between a transmitter and a receiver. Precise 
channel estimation is imperative for the development of efficient communication 
systems, as it facilitates the receiver's ability to mitigate distortions and interferences 
that are imparted by the channel. 
 
Key Concepts in Channel Estimation: 
 

1. Communication Channel - A communication channel refers to the medium 
through which a signal travels from the transmitter to the receiver. This 
medium could be free space, cables, or any other physical medium. During 
transmission, the signal is affected by factors like: 

o Fading (variations in signal amplitude due to multipath propagation) 
o Noise (unwanted disturbances) 
o Interference (signals from other sources) 
o Delay (time it takes for the signal to arrive) 

 
2. Purpose of Channel Estimation - The goal is to estimate the channel's 

impulse response or frequency response, which describes how the channel 
alters the transmitted signal. This information is used to: 

o Equalize the channel effects. 
o Improve data recovery at the receiver. 
o Enhance system performance in terms of bit error rate (BER) and 

spectral efficiency. 
3. Techniques for Channel Estimation- Channel estimation methods can be 

classified into three broad categories: 
o Pilot-based estimation: Known pilot signals are transmitted, and the 

channel is estimated using these known values. 
o Blind estimation: No explicit pilot signals are used; instead, the 

channel is estimated based on the statistical properties of the received 
signal. 

o Semi-blind estimation: Combines both pilot-based and blind 
techniques to achieve better performance. 

 
4. Mathematical Models Channel estimation involves mathematical models of 
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the channel: 
o Time-domain models: Represent the channel using impulse responses. 
o Frequency-domain models: Use the channel's frequency response. 
o Parametric models: Assume the channel follows a specific statistical 

distribution, such as Rayleigh or Rician fading. 
 

5. Applications Channel estimation is widely used in modern wireless 
technologies, such as: 

o 4G LTE and 5G NR 
o Wi-Fi (IEEE 802.11) 
o Satellite communication 
o IoT (Internet of Things) networks 

 
6. Challenges 

o Rapid channel variations in mobile environments. 
o Balancing accuracy with computational complexity. 
o Limited resources (e.g., bandwidth and power) for sending pilot 

signals. 
The process opted for channel estimation is Pilot-Based which has several methods 
as follows: 
 
3.2 LEAST SQUARES 
 
Least Squares (LS) Estimation is a widely used method for channel estimation in 
wireless communication systems. It minimizes the squared error between the observed 
(received) data and the modeled data based on known transmitted pilot symbols. 
 
The LS method assumes a linear model: 

Y = Hx + n 
 
Where: 

 Y is the received signal vector. 
 H is the channel matrix (to be estimated). 
 x is the known transmitted pilot symbol vector. 
 n is the noise vector (assumed to be additive white Gaussian noise) 

 
The LS estimate of H minimizes the squared error 

Error=∥ 𝐲 − 𝐇𝐱 ∥𝟐 
The solution is obtained as: 
                                                                H^=𝒚𝒙 † (𝒙𝒙 †)ି𝟏 
Where: 

 H^ is the LS estimate of the channel. 
 x† is the Hermitian (conjugate transpose) of x. 
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3.3 Deep Neural Network 

 
Deep Neural Networks (DNNs) for Channel Estimation represent a modern 
approach to tackling the complexities of wireless communication channels. Instead of 
relying solely on traditional methods (e.g., LS or MMSE), DNNs leverage data-driven 
learning to model the channel and estimate its parameters effectively, even in 
challenging scenarios. 
 
3.3.1 Architecture for DNN-based Channel Estimation 

1. Input Layer: 
 Takes in raw received data (y) or processed data (e.g., pilot 

observations). 
2. Hidden Layers: 

 Use fully connected layers, convolutional layers (CNNs), or recurrent 
layers (RNNs/LSTMs) depending on the channel type: 

 CNNs: For spatially correlated or structured data (e.g., MIMO 
channels). 

 RNNs: For time-varying channels to capture temporal 
dependencies. 

 Autoencoders: For feature extraction and dimensionality 
reduction. 

3. Output Layer: 
 Produces the estimated channel matrix (H^). 

4. Loss Function: 
 Mean Squared Error (MSE):  

𝑳 =∥ 𝑯 − 𝑯 ∥𝟐 
 Can also include task-specific objectives for end-to-end optimization. 

 
We compare the two methods—Least Squares (LS) and Deep Neural Network 
(DNN)—by analyzing two key metrics: Normalized Mean Squared Error (NMSE) and 
Bit Error Rate (BER) to give the best possible channel estimates. 
To determine which method is better: 

 DNN is better if it has lower NMSE and BER compared to LS. 
 LS is better if its NMSE and BER are consistently lower than DNN’s. 

Typically, DNN-based methods tend to perform better at higher SNR values due to 
their ability to learn more complex models. 
 
A neural network model's training progress over several iterations is depicted in Figure 
4.1. The training loss variation with each iteration is depicted in the top graph, which 
initially shows a steep decline, suggesting rapid learning in the early stages. The curve 
flattens as training goes on, indicating that learning has stabilized and the model is 
convergent. The validation loss, displayed in the bottom graph, exhibits a similar 
pattern, demonstrating that the model is not overfitting and that it generalizes well to 
new data. 
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This graph although Deep Neural Networks (DNNs) are frequently praised for their 
exceptional accuracy on a variety of challenging tasks, their dependence on implicit 
feature extraction is a less well-known feature. DNNs internally learn abstract 
representations layer by layer, converting raw inputs into high-level concepts without 
the need for explicit programming, in contrast to traditional models that need 
handcrafted features. Although strong, this "black box" behavior also obscures the 
reasoning behind their choices. It's interesting to note that some neurons in deeper 
layers develop a high degree of specialization, reacting only to particular facial 
features, visual patterns, or frequency components, even though they are never 
explicitly instructed to do so. One of the most mysterious yet intriguing characteristics 
of DNNs is their emergent behavior, which adds to both their power and 
interpretability difficulty.  
 
 
3.4 Physical (PHY) layer of an OFDM communication system 
 

 
Fig 3.1 Block diagram of an OFDM-based transceiver PHY 
 

This diagram illustrates the architecture of an OFDM-based transceiver, delineating 
the physical (PHY) layer within an OFDM communication framework. It comprises 
the functionalities of both the transmitter and receiver compartments, in addition to the 
intervening wireless channel. The subsequent section provides a detailed elucidation 
of each distinct block: 
 
3.4.1 Transmitter Section 
 
1. Data Generation: 
This segment is responsible for the production of data intended for transmission. The 
data is conventionally expressed in binary format (0s and 1s) and encapsulates user-
related information, which may include text, images, or other forms of digital 
content. 
 
2. QAM Modulation: 
The binary data transforms symbols through the application of a modulation 
technique known as QAM (Quadrature Amplitude Modulation). Each symbol 
encapsulates multiple bits of information, and QAM effectively modulates a carrier 
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signal's amplitude and phase. 
 
 
3. Pilot Insertion: 
Pilot symbols, which are defined as known reference signals, are strategically 
integrated into designated subcarriers within the frequency domain. The inclusion of 
these pilot signals facilitates effective channel estimation and compensation at the 
receiving end. 
 
4.  IFFT (Inverse Fast Fourier Transform): 
The data (including pilots) is converted from the frequency domain to the time domain 
using IFFT. This process generates the OFDM signal by summing up multiple 
subcarrier waveforms. 
 

1. CP Addition (Cyclic Prefix Addition): 
A cyclic prefix is added to the beginning of each OFDM symbol. The CP is a copy of 
the last portion of the symbol and helps in mitigating inter-symbol interference (ISI) 
caused by multipath propagation in the wireless channel. 
 

2. Wireless Channel: 
The OFDM signal is transmitted over a wireless channel. The channel introduces 
impairments such as noise, fading, and interference, which distort the signal. 
 

3.4.2 Receiver Section 

1. CP Removal: The cyclic prefix is eliminated at the receiver. This preserves the 
advantages of lower ISI while restoring the original OFDM symbol. 
 
2. Fast Fourier Transform, or FFT: FFT is used to transform the received signal 
back from the time domain to the frequency domain. Pilots and barrier data are 
recovered in this way. 
 
3. Pilot Extraction: From the received data, the receiver extracts the pilot symbols. 
The purpose of these pilots is channel estimate. 
 
4. Channel Estimation: Methods such as LMMSE (Linear Minimum Mean Square 
Error) and LS (Least Squares) are used to estimate the channel.  The received signal is 
equalized using the estimated channel response. 
 
5.Equalization: By dividing the subcarriers of the received data by the estimated 
channel response, the equalization procedure accounts for the channel effects. The sent 
data symbols are restored as a result. 
 
6. QAM Demodulation: To get the original binary data, the equalized symbols are 
demodulated. This entails mapping each received symbol back to the appropriate 
binary bits by determining its amplitude and phase. 
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7. BER Calculation: The broadcast and received data are compared to get the Bit 
Error Rate (BER). The system's performance under specific channel conditions is 
gauged by BER. 
 
3.4.3 Key Features of the System 
 
• OFDM (Orthogonal Frequency Division Multiplexing): OFDM splits the available 
bandwidth into multiple subcarriers, which are orthogonal to each other. Each 
subcarrier carries a part of the data, improving robustness to multipath fading and 
interference. 
• Pilot-Based Channel Estimation: Pilots are known symbols used to estimate the 
channel's effect, enabling accurate equalization and data recovery. 
 
•  CP for Multipath Mitigation: The cyclic prefix prevents ISI by ensuring that delayed 
versions of the signal fall within the guard interval. 
 
3.4.4 Practical Applications 
 
This transceiver architecture is extensively employed in contemporary communication 
frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G 
(New Radio) DVB (Digital Video Broadcasting) 
This schematic representation offers an elevated perspective on the methodologies 
through which OFDM systems proficiently manage data transmission and reception 
within wireless contexts. 
 

5. BER Calculation: 
The broadcast and received data are compared to get the Bit Error Rate (BER). 
The system's performance under specific channel conditions is gauged by BER. 

3.4.3 Key Features of the System 
 OFDM (Orthogonal Frequency Division Multiplexing): 

o OFDM splits the available bandwidth into multiple subcarriers, which 
are orthogonal to each other. Each subcarrier carries a part of the data, 
improving robustness to multipath fading and interference. 

 Pilot-Based Channel Estimation: 
o Pilots are known symbols used to estimate the channel's effect, enabling 

accurate equalization and data recovery. 
 CP for Multipath Mitigation: 

o The cyclic prefix prevents ISI by ensuring that delayed versions of the 
signal fall within the guard interval. 
 

3.4.4 Practical Applications 
 
This transceiver architecture is extensively employed in contemporary communication 
frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G 
(New Radio) DVB (Digital Video Broadcasting) 
This schematic representation offers an elevated perspective on the methodologies 
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through which OFDM systems proficiently manage data transmission and reception 
within wireless contexts 
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CHAPTER 4 

Mid-Stage Experimental Analysis 

 
4.1 Introduction 

 
The experimental results from the mid-stage of the study are presented in this chapter. 
These findings are the outcome of MATLAB-based simulation work comparing 
learning-based and conventional channel estimation techniques. This phase's goal was 
to compare the performance of machine learning, specifically Deep Neural Networks 
(DNNs), with the well-known Least Squares (LS) method for wireless channel 
estimation in an OFDM system. 
 
 
4.2 Experimental Setup and Tools 
 

 Modulation Technique: Binary Phase Shift Keying (BPSK) 
 System Model: OFDM with 64 subcarriers and 52 active carriers 
 Channel Model: Simulated Rayleigh fading channel 
 Platform Used: MATLAB R2023a 
 Performance Metrics: Normalized Mean Squared Error (NMSE), Bit Error 

Rate (BER), Signal-to-Noise Ratio (SNR) 
 

 
4.3 Overview of the Methodology 
 
For every OFDM symbol, the simulation starts by producing a random binarydata 
symbol. These are converted into the time domain using IFFT, mapped to subcarriers, 
and then sent through a Rayleigh fading channel. For varying SNR levels, Additive 
White Gaussian Noise (AWGN) is used. Data symbols are extracted and demodulation 
is done using FFT at the receiver end. 
First, the LS technique is used to estimate the channel. In order to forecast actual 
channel responses, a DNN model is then trained using both real and imaginary portions 
of the estimated channel values. After that, both estimators are assessed using BER 
and NMSE as SNR increases. 
 
 
4.4  Results and Observations 

 
The following code describes a channel estimation implementation in an OFDM 
framework using both traditional Least Squares (LS) estimation and a Deep Neural 
Network (DNN)-based approach. This code's goal is to evaluate and compare the 
effectiveness of these two approaches in terms of Normalized Mean Squared Error 
(NMSE) and Bit Error Rate (BER) under various Signal-to-Noise Ratio (SNR) 
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conditions. 
 
 

% Clear workspace 
clc; 
clear all; 
close all; 
 
%% OFDM Parameters 
N = 64; % Number of subcarriers 
L = 16; % Length of cyclic prefix 
K = 52; % Number of active subcarriers (excluding nulls) 
numSymbols = 10000; % Number of symbols in the dataset 
SNR_dB = 0:5:50; % SNR range for evaluation 
 
%% Step 1: Transmitter - Generate OFDM Symbols 
% Generate random BPSK symbols for LTS (Long Training Sequence) 
LTS = 2 * randi([0, 1], K, 1) - 1; 
 
% Generate random data symbols for OFDM 
dataSymbols = randi([0, 1], K, numSymbols); 
dataSymbols = 2 * dataSymbols - 1; % BPSK Modulation 
 
% Map to OFDM subcarriers (insert nulls and pilots) 
ofdmSymbols = [zeros(6, numSymbols); dataSymbols(1:6, :); zeros(1, numSymbols);  
dataSymbols(7:26, :); zeros(11, numSymbols); ... 
dataSymbols(27:46, :); zeros(1, numSymbols); ... 
dataSymbols(47:52, :); zeros(5, numSymbols)]; 
 
% IFFT to create time-domain signal 
ifftSymbols = ifft(ofdmSymbols, N); 
 
% Add cyclic prefix 
txSignal = [ifftSymbols(N-L+1:N, :); ifftSymbols]; 
 
% Display Transmitter Output 
disp('Transmitter Output (txSignal):'); 
disp(txSignal(:, 1:5)); % Display first 5 symbols 
 
%% Initialize result storage 
nmse_ls_all = zeros(1, length(SNR_dB)); 
nmse_dnn_all = zeros(1, length(SNR_dB)); 
ber_all = zeros(1, length(SNR_dB)); 
 
%% Loop over SNR values 
for snrIdx = 1:length(SNR_dB) 
%% Step 2: Channel - Pass Through OFDM Channel 
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% Define a simple Rayleigh fading channel 
h = (randn(N, 1) + 1j * randn(N, 1)) / sqrt(2); 
 
% Pass the signal through the channel using 1D convolution 
rxSignal = filter(h, 1, txSignal); 
 
% Add AWGN noise to the received signal 
rxSignal = awgn(rxSignal, SNR_dB(snrIdx), 'measured'); 
 
% Display Channel Output (check if columns exist before display) 
numColsToDisplay = min(size(rxSignal, 2), 5); 
disp(['Channel Output (rxSignal) for SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']); 
disp(rxSignal(:, 1:numColsToDisplay)); % Display available columns 
 
%% Step 3: Receiver - Perform OFDM Demodulation 
% Remove cyclic prefix 
rxSignal = rxSignal(L+1:end, :); 
 
% Perform FFT 
rxSymbols = fft(rxSignal, N); 
 
% Extract the data subcarriers 
rxDataSymbols = rxSymbols([7:32, 34:59], :); % Assuming the same mapping 
 
% Display Receiver Input 
disp(['Receiver Input (rxDataSymbols) for SNR = ', num2str(SNR_dB(snrIdx)), ' 
dB:']); 
disp(rxDataSymbols(:, 1:numColsToDisplay)); % Display available columns 
 
%% Step 4: LS Channel Estimation 
% LS Channel Estimation 
H_LS = rxDataSymbols ./ repmat(LTS, 1, numSymbols); 
 
%% Step 5: DNN Training (Only once, use for all SNRs) 
if snrIdx == 1 
% Generate the training dataset 
X_train = [real(H_LS); imag(H_LS)]'; % Input features for DNN (real and imaginary 
parts) 
Y_train = repmat([real(h([7:32, 34:59])); imag(h([7:32, 34:59]))]', numSymbols, 1); 
% Target channel response 
 
% Ensure Y_train is correctly shaped (104 in this case) 
Y_train = Y_train(:, 1:2*K); % Ensure Y_train matches output size 
 
% DNN Model Setup 
layers = [ 
featureInputLayer(2*K) % Input layer 
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fullyConnectedLayer(128) % Hidden layer with 128 neurons 
reluLayer % Activation function 
fullyConnectedLayer(2*K) % Output layer (Real and Imaginary components) 
regressionLayer % For MSE loss calculation 
]; 
 
% Training options 
options = trainingOptions('adam', ... 
'MaxEpochs', 500, ... 
'MiniBatchSize', 128, ... 
'Shuffle', 'every-epoch', ... 
'Plots', 'training-progress'); 
 
% Train the DNN 
net = trainNetwork(X_train, Y_train, layers, options); 
end 
%% Step 6: Inference Using DNN 
% Perform inference on new data (after training) 
X_test = [real(H_LS); imag(H_LS)]'; % New input features 
Y_pred = predict(net, X_test); % DNN prediction 
% Convert back to complex domain 
H_DNN = Y_pred(:, 1:K).' + 1j * Y_pred(:, K+1:end).'; 
 
%% Step 7: Equalization and Performance Evaluation 
% Ensure H_DNN and rxDataSymbols have compatible sizes 
eqSymbols = rxDataSymbols ./ H_DNN; 
 
% Demodulation and BER calculation 
receivedBits = real(eqSymbols) > 0; 
originalBits = dataSymbols; % Assuming we know the original bits 
 
BER = sum(sum(receivedBits ~= originalBits)) / numel(originalBits); 
ber_all(snrIdx) = BER; 
 
 
%% NMSE Calculation 
% Initialize NMSE values for LS and DNN 
nmse_ls = 0; 
nmse_dnn = 0; 
 
% Compute NMSE for LS 
for colIdx = 1:numSymbols 
H_LS_col = H_LS(:, colIdx); 
nmse_ls = nmse_ls + mean(abs(H_LS_col - h([7:32, 34:59])).^2) / mean(abs(h([7:32, 
34:59])).^2); 
end 
nmse_ls_all(snrIdx) = nmse_ls / numSymbols 
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% Compute NMSE for DNN 
for colIdx = 1:numSymbols 
H_DNN_col = H_DNN(:, colIdx); 
nmse_dnn = nmse_dnn + mean(abs(H_DNN_col - h([7:32, 34:59])).^2) / 
mean(abs(h([7:32, 34:59])).^2); 
end 
 
nmse_dnn_all(snrIdx) = nmse_dnn / numSymbols; 
 
%% Comparison: Determine which method is better 
disp(['At SNR = ', num2str(SNR_dB(snrIdx)), ' dB:']); 
% Compare NMSE 
if nmse_dnn_all(snrIdx) < nmse_ls_all(snrIdx) 
disp('DNN has lower NMSE than LS.'); 
else 
disp('LS has lower NMSE than DNN.'); 
end   
 
% Compare BER 
if ber_all(snrIdx) < ber_all(snrIdx) % Ideally you would compare DNN BER if 
available, using ber_dnn_all(snrIdx) 
disp('DNN has lower BER than LS (assuming same demodulation method).'); 
else 
disp('LS has lower BER than DNN.'); 
end 
end 
 
%% Plotting Results 
% Plot NMSE vs SNR 
figure; 
plot(SNR_dB, nmse_ls_all, 'b-o', 'LineWidth', 2); hold on; 
plot(SNR_dB, nmse_dnn_all, 'r-s', 'LineWidth', 2); 
xlabel('SNR (dB)'); 
ylabel('NMSE'); 
legend('LS', 'DNN'); 
title('NMSE vs SNR'); 
grid on; 
 
% Plot BER vs SNR 
figure; 
plot(SNR_dB, ber_all, 'k-*', 'LineWidth', 2); 
xlabel('SNR (dB)'); 
ylabel('BER'); 
title('BER vs SNR'); 
grid on; 
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% Plot channel magnitude response for a specific SNR 
figure; 
snrIdx = 3; % For example, choose SNR at index 3 (you can change this) 
plot(abs(h), 'k-', 'LineWidth', 2); hold on; 
plot(abs(H_LS(:, 1)), 'b-o', 'LineWidth', 2); 
plot(abs(H_DNN(:, 1)), 'r-s', 'LineWidth', 2); 
 
xlabel('Subcarrier Index'); 
ylabel('Magnitude'); 
legend('True Channel', 'LS Estimate', 'DNN Estimate'); 
title(['Channel Estimation (SNR = ', num2str(SNR_dB(snrIdx)), ' dB)']); 
grid on; 
 
4.3  Graphs   

 

 

Fig 4.1 Training Progress 

 

A neural network model's training progress over several iterations is depicted in Figure 
4.1. The training loss variation with each iteration is depicted in the top graph, which 
initially shows a steep decline, suggesting rapid learning in the early stages. The curve 
flattens as training goes on, indicating that learning has stabilized and the model is 
convergent. The validation loss, displayed in the bottom graph, exhibits a similar 
pattern, demonstrating that the model is not overfitting and that it generalizes well to 
new data. 
Additional training information is shown on the right-hand side, including 
This graphing: 
 
* Training status: successfully finished. 
* Training duration and iteration count. 
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* Execution environment: probably CPU-based, as mentioned. 
* Accuracy rates and final loss values are performance metrics. 
 
 

 
Fig 4.2 Channel Estimation 

 

 

Fig 4.3 SNR vs BER 
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    Fig 4.4 NMSE vs SNR 

The purpose: 
Evaluate the Feasibility of DNNs: Investigate the capacity of Deep Neural Networks 
(DNNs) to surpass conventional Least Squares (LS) estimation concerning channel 
estimation precision as measured by Normalized Mean Square Error (NMSE) and 
communication dependability as indicated by Bit Error Rate (BER). 
Comparison Under Noise: Examine the efficacy of each methodology when subjected 
to varying levels of noise, specifically focusing on differing Signal-to-Noise Ratios 
(SNR). 
Applicability in Real Systems: Illustrate the potential applications of machine learning 
techniques in the domain of channel estimation within contemporary wireless 
communication networks, such as those utilized in 5G and Wi-Fi technologies. 

 
4.4.1 NMSE Comparison 

 The DNN-based channel estimator exhibited improved NMSE performance 
compared to LS, particularly at higher SNR values. 

 This suggests that the DNN was able to capture underlying channel patterns 
better as noise diminished. 
 

4.4.2 BER Comparison 
 The LS method showed better performance in terms of BER across most SNR 

levels. 
 This can be attributed to the stability of LS when the training data for the DNN 

is not sufficiently diverse. 
 

4.4.3 Visualizations 
• Fig 4.1: DNN Training Curve 
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• Fig 4.2: Channel Estimation Plot (True vs. LS vs. DNN) 
• Fig 4.3: BER vs. SNR 
• Fig 4.4: NMSE vs. SNR (DNN vs. LS) 
 

4.5  Distinction from Base Paper 
 

The results obtained in this stage differ significantly from the implementation shown 
in the base paper titled "Low Complexity Deep Learning Augmented Wireless Channel 
Estimation for Pilot-Based OFDM on Zynq System on Chip." While the base paper 
targets a hardware-software co-design on a Zynq SoC using advanced interpolation 
methods and fixed-point models, the current study restricts itself to MATLAB-based 
floating-point simulations. 
Moreover, the base paper integrates iResNet and LMMSE estimators optimized for 
FPGA deployment, while this phase evaluates LS and DNN estimators solely in 
software. Therefore, this work lays the groundwork for future extensions toward logic-
based learning models (like the Tsetlin Machine) and possibly embedded 
implementations. 
 
4.6  Summary 

 
The results presented in this chapter mark the halfway point in the research. While the 
DNN model demonstrated lower NMSE compared to LS, it still lagged behind LS in 
terms of BER. These findings validate the feasibility of deep learning in wireless 
channel estimation but also highlight the need for further optimization. The next phase 
of the work will focus on incorporating rule-based estimators like the Tsetlin Machine 
and preparing the system for real-time applicability. 
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CHAPTER 5 

 

Final Results and Comparative Analysis 

 
 

5.1 Introduction 
 
The final results of the study, which developed and assessed three different machine 
learning-based classifiers for binary classification on a wireless communication 
dataset, are presented in this chapter. The classifiers consist of a Deep Neural Network 
(DNN), a simplified voting model inspired by the Tsetlin Machine, and the Least 
Squares (LS) method. This stage's main goal was to evaluate and contrast each 
algorithm's performance in terms of accuracy, Bit Error Rate (BER), and resource 
usage. The analysis clearly identifies the advantages and disadvantages of each 
approach and proves that the DNN is the best and most economical option for the given 
problem.  
 
As part of this thesis's larger goal, the goal was not only to determine which model 
performs the best, but also this chapter integrates both experimental outcomes and 
technical reflections drawn from iterative implementation and debugging. 
 
5.2 Dataset Preparation and Preprocessing 
 
The dataset used for this analysis was loaded from a MATLAB .mat file containing 
30,000 samples, each with 1024 features. The target labels, initially continuous in 
nature, were thresholded to obtain a binary classification task. The source data is 
typical of synthetic datasets used in channel estimation studies, mimicking real-world 
variations seen in noisy wireless environments. 
The preprocessing steps included: 

 Normalizing the feature matrix by dividing each value by the global maximum. 
 Flattening the target variable to a 1D binary array. 
 Shuffling the dataset to ensure randomness. 
 Splitting the data into training (80%) and testing (20%) sets. 

 
The class distribution in the training and test sets was also checked to confirm a 
reasonable number of positive and negative samples for fair evaluation. 
This preparation step was crucial, especially for neural networks, which tend to 
perform better when feature values are on a consistent scale. For the Tsetlin Machine, 
binarization was applied during the classifier stage itself. 
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5.3 Least Squares Classifier 

 
Methodology: 
 
The Least Squares method, traditionally used for signal estimation tasks, was applied 
here to classify binary outcomes. It works by fitting a linear relationship between the 
input features and the output labels by minimizing the squared difference between 
actual and predicted values. The solution is derived using the normal equation, and a 
binary decision is made by applying a threshold to the predicted output. 
 
This method assumes a linear relationship between input variables and the decision 
boundary. While it lacks the sophistication of modern ML algorithms, it has been 
widely used for its speed and analytical solution. 
 
Characteristics: 

 Computationally light, making it feasible for real-time applications 
 Relies on linearity assumptions, which may limit its adaptability to complex 

data distributions 
 Straightforward to implement and interpret 
 Poor handling of feature interactions unless explicitly modeled 

Performance: 
 Accuracy: 81.83% 
 Bit Error Rate (BER): 0.1817 
 Resource Utilization: Low; does not require GPU or specialized hardware 

 
This model performed as expected: it provided a reliable benchmark and required 
minimal tuning. However, its inability to model non-linear decision boundaries 
became apparent during analysis. 
 
5.4 Tsetlin-Voting Classifier 
 
Methodology: 
 
Inspired by the Tsetlin Machine, this model employs a simplified rule-based 
methodology in which binary features are used to vote on a decision. By examining 
their distributions across positive and negative samples, it determines the vote weights 
for each feature. After that, votes are counted and compared to a threshold that has 
been learned for classification. 
 
To maximize classification accuracy, this threshold was calibrated using a sweep on 
the training set, which allowed the model to slightly adjust to different data 
distributions. 
 
Characteristics: 

 Fully interpretable, rule-based system 
 Extremely lightweight and suitable for constrained devices 
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 Can be rapidly trained and deployed without specialized environments 
 Easily ported to logic-based hardware (FPGAs, microcontrollers) 

Performance: 
 *Optimal threshold (t)**: 5 
 Training Accuracy: 75.99% 
 Test Accuracy: 76.53% 
 Bit Error Rate (BER): 0.2347 
• Resource Utilization: Minimal resource usage; only simple logic operations are 
needed.  
This model has a clear trade-off: explainability and efficiency are provided at the 
expense of overall predictive performance. It would be perfect in situations where 
processing power is constrained or interpretability is crucial. 

 
 
5.5 Deep Neural Network (DNN) 
 
Methodology: 
 
The backpropagation algorithm was used to train the DNN model, which had two 
hidden layers. Through iterative weight adjustments based on gradient descent, this 
model learns nonlinear mappings between input features and output labels. The Adam 
optimizer was used for training over a number of epochs, using a combination of real 
and imaginary feature parts as input. 
Significant preprocessing was needed for this model, including output normalization 
and one-hot encoding. Hyperparameter adjustment, such as batch size, number of 
neurons, for stable training and convergence, size, and learning rate, were crucial. 
Characteristics: 

 Can capture complex, nonlinear dependencies in data 
 Highly flexible and adaptable to diverse input conditions 
 Requires significant computational resources for training but can generalize 

well once trained 
 Training stability depends on data balance, regularization, and initialization 

Performance: 
 Accuracy: 99.42% 
 Bit Error Rate (BER): 0.0058 
 Resource Utilization: Moderate to high; performs best with GPU or multicore 

processors 
  

The DNN's near-perfect accuracy validates its capacity for capturing subtle patterns in 
data that are invisible to linear models or thresholding schemes. It serves as proof that 
deep learning can bring substantial gains in wireless communication problems. 
 
5.6 Comparative Analysis Table 
Metric Least Squares Tsetlin-Inspired Deep Neural 

Network 
Accuracy (%) 81.83 76.53 99.42 
Bit Error Rate 0.1817 0.2347 0.0058 
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(BER) 
Interpretability Moderate High Low 
Training Time Fast Very Fast Moderate 
Adaptability Low Medium High 
Complexity Low Low High 
Resource 
Utilization 

Low Very Low Moderate/High 

Suitable Use Case Quick Baseline Lightweight 
Devices 

High-performance 
Systems 

  
5.6 Results: 
 

  
Fig 6.1: Tsetlin classifier training log showing class distribution and optimal 

threshold selection. threshold selection.  
 

 
Fig 6.2 Accuracy and BER comparison of LS, Tsetlin-like, and DNN classifiers. 

 
 
5.7 Personal Insights and Reflections 
 
While working with these three classification methods, I observed not only their 
numerical performance but also practical aspects such as ease of implementation, 
interpretability, and adaptability. The Least Squares method is undoubtedly the easiest 
to implement and can deliver surprisingly good results for linearly separable problems. 
It serves well as a benchmark and is suitable when computational simplicity is a 
priority. 
 
The Tsetlin-inspired model intrigued me due to its rule-based logic and negligible 
resource demand. It provided me with a new perspective on binary learning 
mechanisms that don’t rely on traditional weight updates but on count-based logical 
reinforcement. Despite its lower accuracy, its strength lies in its clarity and hardware 
compatibility. 
 
As anticipated, the DNN showed the strongest performance. But in terms of tuning 
and training time, it was also the most taxing. To get consistent results, I discovered 
that careful network design, learning rate selection, and normalization were needed. 
The benefit of non-linear function approximation is demonstrated by its high accuracy, 
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but at the expense of transparency and computational demand. 
According to my observations, fusing the expressive capabilities of neural networks 
with aspects of interpretability from rule-based models may be a promising avenue for 
future research, particularly in resource-constrained settings like embedded systems or 
edge devices. 
 
 
5.8 Conclusion  
 
This comparative analysis demonstrates the performance of each approach on a range 
of metrics. Despite its simplicity, the LS approach offers dependable performance in 
environments with limited resources. The interpretability and computational efficiency 
of the Tsetlin-inspired model are excellent, but its predictive accuracy is lacking. 
Although the DNN uses more resources, it performs noticeably better than the other 
two in terms of accuracy and error rate. 
In conclusion, DNN works best when computational resources are available and 
accuracy is the top concern. 

 
• The Tsetlin-inspired model is perfect for situations that call for speed, 
transparency, and simplicity. 
• For linear tasks with constrained hardware, Least Squares offers a robust, 
quick baseline. 
 

The benefits of employing deep learning methods for channel estimation tasks are 
validated in this last stage, which also raises the possibility of integrating neural 
networks and logical rule-based models for future systems' optimal performance.  
This comparative framework offers a basis for implementing machine learning models 
in the wider wireless communications context, where system-level limitations like 
latency, memory consumption, or real-time inference become crucial. The 
implementation techniques can readily be extended to future channel estimation tasks 
across 5G, 6G, and beyond, and the insights obtained here can help practitioners select 
the best tool for particular deployment scenarios. 
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Chapter – 6 

 

Conclusion and Future Work 

 

6.1 Conclusion 
 

Investigating the performance and suitability of machine learning algorithms for 
the channel estimation task in wireless communication systems was the main goal 
of this thesis. This study has provided both a technical and comparative 
evaluation based on actual experimentation by concentrating on three 
classification approaches: a Deep Neural Network (DNN), a simplified voting 
model inspired by Tsetlin Machine, and Least Squares (LS).  
Every approach showed distinct advantages and disadvantages. Because of its 
ease of use and low processing overhead, the Least Squares method was a reliable 
starting point, but it was insufficient for simulating intricate, nonlinear channel 
properties. Although the rule-based logical structure introduced by the Tsetlin-
inspired approach is very interpretable and hardware-friendly, its accuracy was 
not as high as that of the more sophisticated models. However, the DNN showed 

Through these implementations, the thesis has provided evidence that machine 
learning, particularly deep learning, can play a pivotal role in enhancing channel 
estimation techniques. Moreover, it has highlighted the importance of trade-off 
analysis in selecting a method suitable to the system's constraints, such as 
hardware limitations, latency requirements, and power consumption. 

This research has not only achieved its immediate objectives—implementing and 
comparing LS, TM-like, and DNN approaches—but has also laid the groundwork 
for further investigation into logic-based learning systems and hybrid models. 

 

6.2 Future Work 
 

While the findings of this thesis are promising, they also open the door to several 
directions for future exploration: 

 

1. Hardware Implementation and Benchmarking: 

The current models were implemented and evaluated in MATLAB. A natural 
extension of this work would be to deploy these models on embedded platforms 
(e.g., ARM Cortex, Zynq SoC, or NVIDIA Jetson) and measure real-time 
performance, latency, memory consumption, and power usage. 

 

2. Improving the Tsetlin Machine: 

The simplified TM-inspired model can be replaced with a full Tsetlin Machine 
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framework that includes clauses, automata, and feedback mechanisms. This 
would allow a more competitive comparison with the DNN in terms of accuracy 
while retaining interpretability. 

 

3. Hybrid Model Design: 

A promising path would be to develop a hybrid model that combines the 
transparency of rule-based logic (Tsetlin) with the feature extraction power of 
neural networks. Such a model could adaptively switch between modes based on 
computational resources or prediction confidence. 

 

4. Robustness Under Channel Variations: 

The models evaluated here used synthetic data with idealized channel 
assumptions. Testing these classifiers under more realistic conditions (e.g., multi-
path fading, Doppler spread, and non-stationary noise) would further validate 
their utility in live systems. 

 

5. Extension to Multi-Class or Regression Tasks: 

While this work focused on binary classification, real-world channel estimation 
may require predicting a continuous-valued impulse response or handling 
multiple modulation types. Extending the models to regression or multi-class 
settings would broaden their applicability. 

 

6. Dataset Expansion and Augmentation: 

The current dataset, though useful for baseline validation, was synthetically 
generated. Applying the same models to datasets captured from software-defined 
radio (SDR) experiments or real-world testbeds would enhance relevance and 
reliability. 

 

7. Integration with End-to-End Communication Pipelines: 

Finally, integrating ML-based channel estimation into a complete OFDM-based 
receiver chain—covering synchronization, demodulation, decoding, and 
equalization—would offer a more holistic understanding of their contribution to 
overall system performance. 

 

 

6.3 Closing Remarks 
 

This thesis has provided a comparative lens into how different machine learning 
paradigms can be applied to a foundational problem in wireless communication. 
It underscores that no single method is universally superior, but rather, each 
serves a specific niche depending on performance, interpretability, and resource 
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constraints. 

With the rapid development of AI-enabled 6G networks and edge intelligence, 
the integration of efficient and accurate learning-based channel estimators will 
likely become a standard design component. This work is a small but significant 
contribution toward that direction. 
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