MACHINE LEARNING FOR CHANNEL
ESTIMATION: EXPLORING TSETLIN
MACHINES IN WIRELESS

COMMUNICATION SYSTEMS
A Thesis Submitted

in Partial Fulfillment of the Requirements for the
Degree of

MASTER OF TECHNOLOGY

m
Signal Processing and Digital Design
by

Shravya Pravallika Potturi
(Roll No. 23/SPD/10)

Under the Supervision of
Dr. Rohit Kumar Dr. Pankaj Dahiya
Assistant Professor, ECE, DTU Assistant Professor, ECE, DTU

&~ 4\
INEFN
*\DeLTECH) *

Department of Electronics and Communication Engineering

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042. India

May, 2025

ACKNOWLEDGEMENTS

A s_ucm.?ssful' project can never be prepared by the efforts of the person to whom the
project i1s assigned, but it also demands the help and guardianship of people who helped

in the completion of the project. I would like to thank all those people who have helped
us in this research and inspired us during our study.

With a profound sense of gratitude, T thank Dr. Rohit Kumar and Dr. Pankaj Dahiya
our Research Supervisors, for their encouragement, support, patience, and guidance in
this project work. I heartily appreciate the guidance given by them in the project :
presentation that has improved our presentation skills with his comments and advice.

Most importantly, I owe everything to my family. From putting aside their own needs
to provide me with the best opportunities, to standing by me through all the highs and
lows. Their unwavering faith in me, countless sacrifices, and quiet endurance thmugp
difficult times have made this journey possible. This thesis is as much their
achievement as it is mine, and I will always remain indebted to them

f didatn!ls Signature

an
Shravya Pravallika

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering) .
Shahbad Daulatpur, Main Bawana Road, Delhi-42

'S DECL

I, Shravya Pravallika Potturi, Roll No. 2K23/SPD/10 student of M. Tech (Signal
Processing and Digital Design), hereby declare that the innovative project titled
“MACHINE LEARNING FOR CHANNEL ESTIMATION: EXPLORING
TSETLIN MACHINES IN WIRELESS COMMUNICATION SYSTEMS” which
is submitted by us to the Department of Electronics and Communication Engineering,
Delhi Technological University, Delhi in partial fulfiliment of the requirement for the
award of the degree of Master of Technology, is original and not copied from any

source without proper citation. This work has not previously formed the basis for
awarding any Degree, Diploma, Associateship, Fellowship, or other similar title or

£
andidate’s Signature

v

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

CERTIFICATE BY THE SUPERVISOR

We hereby certify that the Innovative Project Report “MACHINE LEARNING FOR
CHANNEL ESTIMATION: EXPLORING TSETLIN MACHINES IN
WIRELESS COMMUNICATION SYSTEMS” which is submitted by Shravya
Pravallika Potturi, Roll No. 23/SPD/10 of Electronics and Communication
Department, Delhi Technological University, Delhi in partial fulfillment of the
requirement for the award of the degree of Master of Technology, is a record of the
Minor project work carried out by the students under my supervision. To the best of my
knowledge, this work has not been submitted in part or full for any Degree or Diploma

to this University or elsewhere.

ignature

Dr. Rohit Kumar

Assistant Professor, Dept. of ECE
DTU, Shahbad Daulatpur,

Main Bawana Road, Delhi-42

4&.‘- =1 7&k‘ ‘:/
\ o! "a"' i
Signature

Dr. Pankaj Dahiya
Assistant Professor, Dept. of ECE

DTU, Shahbad Daulatpur,
Main Bawana Road, Delhi-42

Machine Learning for Channel Estimation: Exploring TSETLIN
Machines in Wireless Communication Systems

Shravya Pravallika Potturi

ABSTRACT

Tsetlin machines offer a captivating approach to machine learning by balancing
interpretability with performance in pattern recognition. Such regulation-based models
learn from data by processing individual features through building rules that combine
them using logic operators. Unlike complex models with opaque inner workings,
Tsetlin machines achieve interpretability through their reliance on well-understood
propositional logic.

The motivation behind Tsetlin machines arises from the desire to overpass the gap
between high-performance models and interpretability. While powerful models excel
at tasks, their internal decision-making processes can be difficult to comprehend.
Tsetlin machines strive to offer precise results while providing insights into the
reasoning behind their classifications.

This exploration bifurcates into various aspects of Tsetlin machines, including how
multiple rules learn unanimously without a central controller, how different feedback
mechanisms (Recognize, Erase, Reject) shape the understanding of target classes, and
the impact of hyperparameters like Forget Value and Memorize Value on the learning
process.

In general, Tsetlin machines present a paramount tool for tasks where interpretability
is crucial alongside performance. They offer an alternative to black-box models,
allowing users to assimilate the reasoning behind classifications by effectively
utilizing logical rules and distributed learning, Tsetlin machines provide a promising
approach for various pattern recognition applications

vi

TABLE OF CONTENTS
ACKNOWLEDGMENTS ..ottt il
CANDIDATE’S DECLARATIONoooviiiiiiiieeeieeeeeeete ettt iii
CERTIFICATE BY THE SUPERVISOR(S) ..cveeviiieiieiiniieiereeeeie e v
ABSTRACT ..ottt ettt ettt ettt et s ae et e beeseensesteeneesseeseensansaensens v
TABLE OF CONTENTS ..ottt vi
LIST OF TABLES ..ottt sttt sse et sneenae s viii
LIST OF FIGURES ..ottt sttt ix
LIST OF ABBREVIATIONS ..ottt sttt X
CHAPTER 1 INTRODUCTION ...c.uiiiiiiieiieiesieeieie ettt sne e 1
L1 IMIOBIVATION ..ottt ettt et sttt e bt e st e b e ebe et e nseeneenee 2
1.2 TSELHIN SEIUCLUTE ...ttt sttt ettt st 3
1.2.1 Data BOOICANIZAtION........c.eevuieieieeiiieeiieieecieeieesieeetteeeeeveereebeesteeseeesenessseesseenseens 4
1.2.2 Pattern Construction with AND and NOTcccccoieviiiieriieriieieeieeie e 5
1.2.3 Learning Frequent Patternscccccviervieiierieiiecie et seens 6
1.2.4 Increasing Discrimination POWETc..ccvevvieiiiiiiiiieiieeeeesee e 7
1.2.5 Overall Coordination...........ccueveeeiieiiesieesieeieeseeseeeteeseesseesreesseeseeesenessseesseeseens 8
CHAPTER 2 LITERATURE SURVEY ...t 9
2.1 INEEOAUCHION ...ttt sttt st 10
2.2 Traditional Channel Estimation Techniques..........cccccevvveeciieciieriieniecreecee e 11
2.3 Deep Learning-Based Channel EStimationc.ocveveeveeeieeieecieeieeieeseeseeene 13
2.4 Hybrid and Federated Learning Methodscccceeeviiviieviieciieniieneeeecie e 15
2.5 Tsetlin Machine-Based Channel EStimation............cccoceeveeeiencieeieecieesieeieeseeenes 17
2.6 Channel Modelling and Theoretical Foundations..........cc.cceeeevieeieeiiesiceieenee 19
2.7 SUITIIIATY ..o iuttteitteette ettt et e ettt ettt e et e e bt e e s at e e sabeeebeeesabeesabeeeabteesabeesbeeenneeesbeeanns 21
CHAPTER 3 CHANNEL ESTIMATIONoociiiiieieeeeeeeeeeeee e 22
3.1 INErOAUCTION ..ottt sttt ettt et sb e et saeeneentea 23
3.2 @St SQUATES ...uvveeeveeeiiieriieeeiieesteesteeetreessseessteeessseessseeessseesssaesseessssesssseesssseennns 24
3.3 Deep Neural NetWOTKocviiciieiiiiiecie ettt 25
3.4 Physical Layer of OFDM SyStemcccceecviieiiiiieiiesieeiieie e e eseee e sene v e 26
CHAPTER 4 MID-STAGE EXPERIMENTAL ANALYSISccooiiiiiieeeeee, 30

.1 INEEOAUCTION ..ottt e ettt e e e e e e e et e e e e e e e e s e eraaeeeeeessseesaaeees 31

vii

4.2 Experimental Setup and TOOISccceevirriiieiieieieeeee e 32
Za I\, 1511 1 Lo (o) [Y. R 33
4.4 Results and ODSETVALIONSccueevieriieiieeierie ettt et siee st e saeeeeeeeeseesseenns 34
CHAPTER 5 FINAL RESULTS AND COMPARATIVE ANALYSIS.......ccccc....... 38
5.1 INErOAUCTION ..ttt ettt et st sae et esbeenteneeas 39
5.2 Dataset Preparationccccccveeeuieeiienieesieeneeseesee e ereeseeseesseesteessnesssessseesseessens 40
5.3 Least SqQUAares Classifierccvevuiirierieiiieieeie ettt ere e eeseennas 41
5.4 Tsetlin-Voting ClasSifier........ccoccuiiiiiriierieriesierte ettt sve e enees 42
5.5 Deep Neural NEetWOTKocvieciieiiiiieiie ettt 43
5.6 Comparative Analysis Table.........cccevieriierieiiiiiecie et 44
5.7 Personal INSIZHLScocviiiuiiiiiee e 45
5.8 CONCIUSION ..eeiieiiiiieieeiee et ettt ettt e st e et e et e st e bt e seesneesnaesmseenseennean 46
CHAPTER 6 CONCLUSION AND FUTURE WORKcccccctvviiiiniiniininieeneenien 47
0.1 CONCIUSION ...ttt sttt ettt st b e et e e sbe e e e neeeneen 48
6.2 FULUTE WOTK ...ttt st e e eneas 49
6.3 CloSING REMATKSeouiieiiiiieeie ettt e eeas 50

CHAPTER 7 REFERENCESc.oiiiiiiieeece ettt 51

viii

LIST OF TABLES

Title Page No.
Table 2.1 Comparative analysis of surveyed papers on channel estimation 21
Table 5.1 Evaluation results for Least Squares, Tsetlin, and DNN classifiers 46
Table 5.2 Resource comparison for different ML methods 45

Table 5.3 Performance metrics of the classifiers (Accuracy, BER) 44

LIST OF FIGURES

Title

Figure 1.1 Architecture of Tsetlin Machine

Figure 1.2 Initializing example rule for Predicting class

Figure 3.1 Block diagram of an OFDM-based transceiver PHY
Figure 4.1 DNN Training Curve

Figure 4.2 Channel Estimation Plot (True vs. LS vs. DNN)
Figure 4.3 BER vs. SNR

Figure 4.4 NMSE vs. SNR (DNN vs. LS)

Figure 5.1 Tsetlin classifier training log

Figure 5.2 Accuracy and BER comparison

X

Page No.

26
34
34
35
35
46
46

LIST OF ABBREVIATIONS

Abbreviations Full Form

ACC Accuracy

AWGN Additive White Gaussian Noise
BER Bit Error Rate

BPSK Binary Phase Shift Keying

CSI Channel State Information
DNN Deep Neural Network

DL Deep Learning

FPGA Field Programmable Gate Array
FFT Fast Fourier Transform

LS Least Squares

LTS Long Training Sequence
MIMO Multiple-Input Multiple-Output
ML Machine Learning

MSE Mean Squared Error

NMSE Normalized Mean Squared Error
PHY Physical Layer

SNR Signal-to-Noise Ratio

SVM Support Vector Machine

™ Tsetlin Machine

11

CHAPTER 1

INTRODUCTION

Complex machine learning algorithms often produce curious results without
revealing the thought processes involved in the final product. This is why Tsetlin
machines stand out as a breath of fresh air. These models prioritize
interpretability while achieving outstanding performance in pattern recognition
tasks. Human beings categorize things, and Tsetlin machines do the same by
learning to build rules. This is a profound idea behind Tsetlin machines: they
process data by individually analyzing features and then combining them using
logical operators like AND, OR, and NOT. This approach led to the creation of
clear, comprehensible rules that define what makes something belong to a
specific class.

1.1 Motivation

Machine learning often faces a commutation between complex models achieving
majestic results and comprehensible how they arrive at those results. Models such as
Support Vector machines have a good grip over performance but a mute when it comes
to interpretation. Decision Trees and Ks nearest neighbors lack the reasoning behind
why it has come to a certain conclusion or result. Tsetlin machines aim to bridge this
gap. Powerful models like deep neural networks might excel at image recognition,
however, their inner workings are opaque. Tsetlin machines aim to bridge this gap.
Powerful models like deep neural networks might excel at image recognition,
however, their inner workings are opaque. Tsetlin machines solve this by creating
logically interpretable rules (such as "Four Wheels AND Has Engine" for cars). Unlike
black-box models, these rules are simple to comprehend. While interpretability is a
primary concern, Tsetlin machines also aim for high performance using feedback
mechanisms such as "Reject" (learning differentiating features from other classes),
"Erase" (weakening rules for inconsistent features), and "Recognize" (strengthening
rules for consistent features). Around the world, Tsetlin machines are designed to
produce accurate models with clear justifications for their choices, which makes them
useful for jobs where knowing the "why" is just as important as knowing the "what."

12

1.2 Tsetlin Structure

—
. Rule Coordination
Sectlion 1.5-1.6
f Rule Learning
\ Section 1.3-1.4

X4 Q/ ~

if Four Wheels anc.l Transports People if H;mgs then Plane ,:i.fhgn Ruffs
and not Wings then Car Section 1.2

i 1

Four Wheels, Transports People, Blue, Wings

Boolean Features
Section 1.1

>

Observation
b

Fig 1.1: Overview of Tsetlin Machine

The first step is to learn how to get the data ready for the machine. The machine
transforms the raw data into propositional logic, which is made up of distinct features
that can be classified as True or False. The chapter then delves deeply into the profound
idea of rules! In order to determine which class an object belongs to, these machines
create "if-then" rules that combine these features using logic (AND, OR, NOT). For
instance, "If Has Four Wheels AND Not Has Wings then Car" could be a rule for
"Car." The machine's application of these rules to identify patterns in the data will be
further explained in this chapter. It examines instances and reinforces rules that often
correspond to data in a particular category (e.g., "Car"). Additionally, the chapter
describes how the machine polishes the different categories apart.

It weakens or eliminates rules that don't effectively showcase the difference between
things. For example, a rule like "if Has Wheels then Car" might be weakened because it
also applies to bicycles, trains, and planes. Ultimately, the chapter digs deep into how
the machine works. This involves how it learns and adapts over time, positively using
feedback from the data to amend its rules. It also explains how the machine uses
multiple "if-then" rules together to make final classifications. By grasping these steps,
you gain a heavy understanding of how Tsetlin machines function and achieve pattern
recognition with clear, logical rules.

13

1.2.1 Data Booleanization

As studied earlier, data is transformed into Boolean features (True or False values)
with an example:

Imagine a dataset classifying fruits based on color and size. Raw Data is an Avocado
which represents "Green" and "Large", while a banana might be "Yellow"

and “Medium".

The Booleanization process is as follows:

1.

Define Features: We identify individual characteristics as features. In this
case, features are "Color" and "Size".

Assign Boolean Values: For each feature, we create a set of Boolean values
representing all possible conditions. Here is an example:

e Color:
Green = True
Not Green (e.g., Yellow, Orange) = False

o Size
Large = True
Not Large (e.g., Medium, Small) = False

Applying Booleanization:

e Apple Example: The Green Avocado with "Green" and "Large"
features would be transformed into Boolean format:
Color (Green) = True
Size (Large) = True

e Banana Example: The yellow banana with "Yellow" and "Medium"
features would be transformed into:

Color (Green) = False (because it's not Green)
Size (Large) = False (because it's not large)

Benefits of Booleanization:

e Simple Representation: By converting data into propositional logic,
Tsetlin machines can easily integrate them into logical rules using
operators like AND, OR, and NOT.

e Focus on Specific Characteristics: Booleanization allows the
machine to focus on the presence or absence of specific features
within each data point.

In essence, booleanization transforms data into a binary format suitable for the rule
Based learning approach of Tsetlin machines.

®0
=

1.2.2 Pattern Construction with AND and NOT

14

Pattern recognition problems are solved easily by Tsetlin machines using if-then rules
By analyzing the object. Every rule has the following standard form:

if (condition) then class

| Four Wheels Transports People Wings Yellow Blue | Car
1. ° ° °
2. ° ° °
3. ° ° °
1 ° ° ® °

5. B ° °

6. . o ° °

Table 1.1 table of three cars and three planes, with five Boolean features. The table
showcases one column per feature, each entry taking the value (¢) or

False (). The final column decides the type of vehicle.

The condition holds the place for boolean expression which outlines the pattern in the
data which is learned by the Tsetlin machine. Refer to the vehicle information from

Table 1.1 which makes it evident, that the condition

Four Wheels and Transports People

Observe how a Tsetlin machine makes use of the and-operator to merge several
features. Every feature needs to be true if we need the entire condition to be true which
is implemented by AND operation. In this example, the condition matches the features
of the object under observation. If even one of the features is not true, the overall
condition falls apart because the rule is not a match to the object’s condition. predicts
a Car when it sees an object with Four Wheels that Transports People.

Negation: The NOT operator plays a crucial role as it figures out the features that do
not belong to the class. For example, a plane is not blue.

Literals: The features or the properties of an object are called literals. Also, the
properties that are not of the object are called negated features. Literals are a

combination of features and negated features.

15

1.2.3 Learning Frequent Patterns with Recognize and Erase
Feedback

Steps to learn a single rule:

One can comprehend a Tsetlin machine if the machine can figure out how to learn a
single rule itself. Through this independent learning, rules are free-standing and subtle
to comprehend. It also processes independently which acts as a side benefit
independent learning.

Rule Initialization:

All the literals take the memory position of 5 as their starting position. This makes sure
that all the literals are neutral and at the brink of being memorized or forgotten. We
can make and change rules according to our own will and it will not affect the result
as it is a self-aligning system.

Other machine learning algorithms such as deep neural networks are more
sensitive to initialization.

Maximally 104
Memorized

Memorized 6

Four Wheels Transport People Wings not Wings Yellow not Yellow Blue not Blue

FOT— 2 not Four Wheels not T'ransport People

Maximally
Forgotten

Figure 1.2 Initializing of example rule for predicting the class

The single-rule construction algorithm is as follows:
It consists of three steps and case 1 is when the rule comes across an object which
belongs to its class.

The single-rule construction algorithm is as follows:
It consists of three steps and case 1 is when the rule comes across an object which
belongs to its class.

16

1. Rule Evaluation: Observe the features of the object.

2. Recognize Feedback: If the features match the condition, memorize the literal by
incrementing its position in the memory. Forget the false literals towards maximally
forgotten by decrementing their position in the memory.

3. Erase Feedback: If the features do not match the condition, forget all the literals
by decrementing their position.

Randomization:

Learning should be flexible because coincidence can happen and events sometimes
occur by chance. Randomization is one simple way to achieve flexibility in
randomization. Therefore, to randomize increments and decrements, we draw a
random value between 0.0 and 1.0 is drawn. If the value is above 0.5, we skip the
increment. The value of 0.5 is known as the Memorize Value. Again, we draw a value
before decrementing. If the value is above 0.5, we skip the decrement. This second 0.5
value is coined Forget Value. Randomization further diversifies the rules and boosts
exploration.

1.2.4 Increasing Discrimination Power with Reject Feedback

The use of Reject Feedback arises when we come across a condition where Tsetlin
encounters data points from a different class.

Algorithm — Increasing Discrimination Power: A rule increases its discrimination
power when it faces an object of a class different from its own. Learning then skips
Recognize and Erase Feedback, going directly to the fourth step:

4. Reject Feedback: If the object's features match the condition but do not belong
to the same class, then all forgotten features are memorized. Randomization is
not performed.

1.2.5 Overall Coordination

Tsetlin machine constructs multiple rules that interact by memorizing the features
inspired by humans. Just the way humans categorize things.

A Tsetlin Machine is similar to a group of logic builders (Tsetlin automata) that
use AND/OR/NOT logic to create straightforward, understandable rules in order
to identify patterns. It is a strong substitute for more intricate black-box models
because it is intelligent, resource-light, and simple to comprehend.

The procedure of Classification: Voting classifies the input for Tsetlin. Only a single
rule will not decide the result or which class the object belongs to. A vote is cast for
each class and the class with the maximum number of votes is fed to the Tsetlin. In
simple words, the majority wins.

Learning coordination:

Vote Margin: Tsetlin learns coordination of multiple rules with the help of Vote
margin. It is an integer number that creates a margin between the winner and the
loser(classes).

Complete Learning Algorithm: The Tsetlin machine learns complementary rules as
follows:
1. Analyse the new object's features and its class.
2. Evaluate the truth values of the literal.
3. Calculate the sum of the votes.
4. Analyze each rule and assign feedback:
a) Categorize it as Recognize or Erase Feedback if the rule belongs to the
object’s class
b) Give the rule Reject Feedback if it belongs to another class.
5.Goto 1.

Because of the frequent changes in the updation of the rules, Tsetlins moderately
assign themselves for classification of the different kinds of objects they face. Amidst
this, prioritization of objects that are further away from the vote Margin is a
paramount. This help to achieve Resource Allocation Effect.

41

CHAPTER 2

LITERATURE SURVEY

2.1 Introduction

In the realm of wireless communication, the ability to accurately estimate the channel
is indispensable In the end, channel estimation enables dependable demodulation and
decoding of received signals by modeling the effects of multipath fading, interference,
and noise. In the past, mathematically modeled methods like Least Squares (LS) and
Minimum Mean Square Error (MMSE) have been used in communication systems.
Although these models work well in controlled situations, they frequently fall short in
dynamically changing environments because they presume prior knowledge of the
channel. Researchers have started looking into the potential of machine learning (ML)
in channel estimation due to its recent popularity and use in a variety of signal
processing domains. Because it can model intricate and nonlinear channel behaviors,
deep learning (DL) in particular has shown itself to be an effective tool.

Simultaneously, a new method that strikes a balance between interpretability and
computational efficiency is provided by the Tsetlin Machine (TM), a logic-based, low-
complexity machine learning model. With a focus on Tsetlin Machines and their
potential in real-time wireless applications, this chapter provides a thorough analysis
of 30 scholarly articles that examine the development from conventional estimators to
modern machine learning techniques.

2.2 Traditional Channel Estimation Techniques

Matrix algebra and statistical modelling are the fundamental techniques in channel
estimation. For example, LS estimation reduces the squared error between the channel
coefficients that were observed and those that were predicted. Comprehensive
simulations in OFDM environments were carried out by Goyal and Singh [13], who
showed that although LS is straightforward and efficient, noise degrades its
performance. MMSE, on the other hand, leverages channel statistics to minimize the
mean square error, yielding improved performance when the noise variance is known.
However, its dependency on statistical knowledge makes it less adaptable to non-
stationary conditions.

R. Zhang and H. Zhang [17] evaluated estimation strategies for mmWave MIMO
systems. They emphasized hybrid precoding, a technique where analog and digital
precoders are combined, to reduce the hardware complexity associated with fully
digital solutions. Their work underscored the growing need for estimators that can
scale with increasing antenna array sizes.

42

Tse and Viswanath’s textbook [7] laid the theoretical groundwork for most modern
communication techniques. It covers the mathematical modeling of fading channels,
time/frequency selectivity, and optimal estimation strategies. Their work remains a
touchstone for performance analysis in both classical and ML-based estimators.

A. H. Sakr and E. Hossain [18] provided a thorough comparison of pilot-based and
blind estimation methods in MIMO systems. They discussed the implications of pilot
contamination, a problem that occurs when the same pilot sequences are reused in
neighboring cells — a challenge especially relevant in massive MIMO deployments.

2.3 Deep Learning-Based Channel Estimation

With the introduction of models that could learn straight from data without the need
for manually created features, deep learning completely changed the field of signal
processing. One of the first deep learning architectures for OFDM systems was
introduced by Ye et al. [14]. Their network outperformed LS and MMSE in terms of
Bit Error Rate (BER) when performing joint channel estimation and signal detection.
This method simplified receiver design and decreased error propagation.

An Al-assisted OFDM receiver was developed and tested on a physical testbed by
Zhang et al. [12]. Their findings confirmed that deep learning can be used in practical
systems, which is a crucial step in moving from theory to implementation.
Convolutional layers were incorporated into their architecture to extract spatial
patterns from channel state information (CSI).

Kim and Lee [8] used neural networks to optimize pilot placement to address the pilot
overhead problem. Their model improved spectral efficiency by accurately predicting
the channel with fewer pilot symbols. This work was expanded by Choi et al. [9] to
massive MIMO systems, where conventional techniques are unable to handle the
dimensionality of CSI. Their DNN method significantly decreased high-dimensional
estimation's computational complexity. Their DNN approach drastically reduced the
computational complexity of high-dimensional estimation.

Chen et al. [10] proposed an attention-driven estimator where the model learns to focus
on the most relevant parts of the input features, dynamically adjusting to time-varying
channels. This mimics human cognitive processes and proved to be more effective in
high-mobility environments.

Wu et al. [15] developed a low-complexity neural network tailored for the uplink
channel estimation in massive MIMO. Their architecture used shallow layers to reduce
latency and energy consumption, making it suitable for edge deployment. Wahab et
al. [16] and Singh [4] published comprehensive surveys categorizing DL models based
on architecture (CNN, RNN, transformer), use-case, and complexity.

Farsad and Goldsmith [22] explored sequence learning for communication systems
using recurrent neural networks (RNNs). Their work focused on symbol detection but
demonstrated that sequence models could also be leveraged for time-correlated

43

channel estimation.

Ma and Gao [24] addressed sparse channel estimation in mmWave by integrating DL
with compressive sensing. Their method took advantage of the sparsity in the angular
domain, significantly improving estimation accuracy while reducing pilot overhead.

2.4 Hybrid and Federated Learning Methods

Elbir and Coleri [28] introduced federated learning (FL) as a decentralized training
method for channel estimation, enabling model training across multiple devices
without sharing raw data. This approach preserves privacy and is suitable for IoT or
vehicular networks. Their findings showed that FL can match centralized learning in
terms of performance while reducing communication costs.

Huang et al. [21] offered a panoramic view of DL techniques at the physical layer of
5@, covering not just channel estimation but also modulation recognition, detection,
and resource allocation. They emphasized the need for lightweight DL models that can
be deployed on hardware-constrained systems.

Kim and Lee [23] applied hybrid DNN models that combine convolutional and fully
connected layers to improve estimation accuracy without increasing inference time.
This fusion strategy enhances spatial and temporal feature extraction.

Lu et al. [25] discussed massive MIMO challenges in channel estimation, particularly
the curse of dimensionality and pilot contamination. Their suggestions include
leveraging statistical models, hybrid DL techniques, and hierarchical estimation
structures.

Soltani et al. [29] provided a meta-survey, covering over 100 papers related to DL-
based channel estimation. Their review highlighted emerging trends such as
reinforcement learning, unsupervised learning, and domain adaptation, all of which
aim to reduce dependency on labeled training data.

2.5 Tsetlin Machine-Based Channel Estimation

Unlike data-intensive neural networks, Tsetlin Machines rely on finite-state automata
that learn logical clauses based on propositional feedback. Granmo [6] introduced this
paradigm, emphasizing its simplicity and efficiency. The TM’s ability to operate with
binary input data makes it ideal for embedded systems.

Tanskanen et al. [5] expanded on this by evaluating TMs in signal processing contexts,
demonstrating competitive accuracy in classification tasks with minimal memory
footprint. This makes TM a strong candidate for real-time, low-power applications.

Tesema and Granmo [19] applied TM to MIMO detection and found that it achieved
comparable BER to conventional algorithms while using significantly fewer resources.

44

Unlike DNNs, which rely heavily on hyperparameter optimization, their model needed
little tuning.

For OFDM systems, Gaikwad et al. [30] introduced a hybrid machine learning model
that combines TM and Support Vector Machines (SVM). While the TM recorded
comprehensible logical patterns, the SVM dealt with high-dimensional projections.
Improved convergence speed and noise resilience were the results of the combination.

By combining TM with embedded hardware, Granmo et al. [27] demonstrated its
potential in real-time signal processing applications. The ability of TM to satisfy the
exacting timing and resource requirements of wireless communication systems was
validated by their demonstration on FPGA platforms.

2.6 Channel Modelling and Theoretical Foundations

LeCun, Bengio, and Hinton [1] provided the seminal work on deep learning, laying
the conceptual foundation for its widespread adoption in signal processing. Their
discussion of hierarchical feature learning underpins many neural channel estimators
today.

Berardinelli et al. [2] outlined channel estimation challenges specific to 5G New Radio
(NR), such as support for massive MIMO, low-latency requirements, and frequency
diversity. Their insights guide the practical implementation constraints that any
estimation algorithm must address.

Heath et al. [3] focused on mmWave MIMO systems, where high-frequency
propagation poses unique challenges. Their review of hybrid beamforming and sparse
estimation laid the groundwork for many DL and TM-based innovations in channel
modeling.

Cotton and Scanlon [26] examined body area networks operating in the mmWave
spectrum. They emphasized the importance of modeling human-body-induced fading,
which is critical for healthcare and wearable systems — potential domains for TM
deployment due to energy constraints.

The exploration in this thesis is motivated by these findings. By implementing Tsetlin
Machines for channel estimation and benchmarking them against LS and DNN
methods, we aim to highlight their viability for real-world wireless communication
systems.

This table categorizes each work by the proposed model or author, year of publication,
employed methodology, and a brief description of the contribution. The objective is to
highlight the evolution of channel estimation techniques — from traditional statistical
approaches to advanced machine learning-based estimators, including the emerging

Tsetlin Machine framework.

Table 2.1 Comparative analysis of surveyed

45

apers on channel estimation

Sr

Model

Year

Method

Description

1

LeCun et al. [1]

2015

Deep Learning

Pioneering work
establishing the
foundations of
deep learning.

Berardinelli et
al. [2]

2019

Model-Based +
ML

Survey of
channel
estimation
techniques for
5G NR.

Heath et al. [3]

2016

Sparse + Hybrid
Beamforming

mmWave
MIMO signal
processing
techniques.

Singh [4]

2021

Survey

Review of ML-
based channel
estimation in
wireless
systems.

Tanskanen et al.

[5]

2018

Tsetlin Machine

Introduction of
TM in signal
classification
applications.

Granmo [6]

2018

Tsetlin Machine

Bandit-based
propositional
logic model for
learning.

Tse &
Viswanath [7]

2005

Analytical

Fundamental
textbook
covering
channel
modeling
theories.

Kim & Lee [8]

2018

DNN + Pilot
Design

Pilot
optimization
using deep
learning for
MIMO.

Choi et al. [9]

2017

DNN

Neural networks
for large-scale
MIMO
estimation.

10

Chen et al. [10]

2021

Attention

Dynamic
attention
mechanism for
adaptive channel
estimation.

46

11 Diniz [11] 2012 DSP Covers channel
estimation and
filtering
algorithms.

12 Zhang et al. 2020 Al-Aided Hardware-

[12] Receiver validated Al
receiver for
OFDM.
13 Goyal & Singh | 2012 LS, MMSE Comparative
[13] analysis of LS
and MMSE
estimators.

14 Ye et al. [14] 2018 End-to-End DL | Joint channel
estimation and
detection using
DNN.

15 Wuetal. [15] 2020 Lightweight Uplink channel

DNN estimation in
massive MIMO.

16 Wahab et al. 2021 Survey Survey on DL

[16] techniques for
OFDM channel
estimation.

17 R. Zhang & H. | 2017 Hybrid Channel

Zhang [17] Precoding estimation in
mmWave
massive MIMO.

18 Sakr & Hossain | 2013 Pilot-based Evaluation of

[18] pilot
contamination in
MIMO
estimation.

19 Tesema & 2021 TM for MIMO | Tsetlin Machine

Granmo [19] applied to
MIMO
detection.

20 Ahmed & 2021 ML in 6G Future direction

Eltawil [20] of ML in 6G
networks.

21 Huang et al. 2020 DL Survey Review of DL

[21] for 5G physical
layer.

22 Farsad & 2018 RNN Sequence

Goldsmith [22] detection with
neural networks.

23 Kim & Lee [23] | 2020 Hybrid DNN DNN
architecture
combining CNN
and FC layers.

24 Ma & Gao [24] | 2019 Sparse DL DL with

compressive

47

sensing for
mmWave.

25 Lu et al. [25] 2014 Massive MIMO | Overview of
benefits and
limitations of
massive MIMO.
26 Cotton & 2010 Body Area Channel
Scanlon [26] Models modeling in
wearable
mmWave
systems.

27 Granmo et al. 2020 TM on FPGA Demonstration
[27] of TM on
embedded
hardware.

28 Elbir & Coleri 2022 Federated FL for

[28] Learning distributed
wireless
communication
systems.

29 Soltani et al. 2021 DL Meta Survey | Extensive DL
[29] review across
estimation
techniques.

30 Gaikwad etal. | 2022 ™ + SVM Hybrid ML
[30] model for
OFDM channel
estimation.

2.7 Summary

This literature survey reveals a clear trajectory: from statistical models like LS and
MMSE to sophisticated learning-based models and logic-driven alternatives. Deep
learning dominates current research due to its high accuracy, especially in non-
stationary and sparse channel environments. However, its complexity, training
requirements, and interpretability limitations hinder real-time application.

Tsetlin Machines offer a compelling alternative. Their low-resource demands, rule-
based structure, and fast convergence make them attractive for embedded wireless
systems. While they are relatively new in communication applications, early studies
show strong potential, especially when combined with other ML models.

The exploration in this thesis is motivated by these findings. By implementing Tsetlin
Machines for channel estimation and benchmarking them against LS and DNN
methods, we aim to highlight their viability for real-world wireless communication
systems.

48

CHAPTER 3

Channel Estimation

3.1 INTRODUCTION

Channel estimation represents a pivotal principle in the domain of wireless
communications, denoting the procedure of elucidating the attributes of a
communication channel that exists between a transmitter and a receiver. Precise
channel estimation is imperative for the development of efficient communication
systems, as it facilitates the receiver's ability to mitigate distortions and interferences
that are imparted by the channel.

Key Concepts in Channel Estimation:

1.

Communication Channel - A communication channel refers to the medium
through which a signal travels from the transmitter to the receiver. This
medium could be free space, cables, or any other physical medium. During
transmission, the signal is affected by factors like:

o Fading (variations in signal amplitude due to multipath propagation)

o Noise (unwanted disturbances)

o Interference (signals from other sources)

o Delay (time it takes for the signal to arrive)

Purpose of Channel Estimation - The goal is to estimate the channel's
impulse response or frequency response, which describes how the channel
alters the transmitted signal. This information is used to:

o Equalize the channel effects.

o Improve data recovery at the receiver.

o Enhance system performance in terms of bit error rate (BER) and
spectral efficiency.

Techniques for Channel Estimation- Channel estimation methods can be
classified into three broad categories:

o Pilot-based estimation: Known pilot signals are transmitted, and the
channel is estimated using these known values.

o Blind estimation: No explicit pilot signals are used; instead, the
channel is estimated based on the statistical properties of the received
signal.

o Semi-blind estimation: Combines both pilot-based and blind
techniques to achieve better performance.

4. Mathematical Models Channel estimation involves mathematical models of

49

the channel:
o Time-domain models: Represent the channel using impulse responses.
o Frequency-domain models: Use the channel's frequency response.
o Parametric models: Assume the channel follows a specific statistical
distribution, such as Rayleigh or Rician fading.

5. Applications Channel estimation is widely used in modern wireless
technologies, such as:
o 4G LTE and 5G NR
Wi-Fi (IEEE 802.11)
Satellite communication
IoT (Internet of Things) networks

o O O

6. Challenges
o Rapid channel variations in mobile environments.
o Balancing accuracy with computational complexity.
o Limited resources (e.g., bandwidth and power) for sending pilot
signals.
The process opted for channel estimation is Pilot-Based which has several methods
as follows:

3.2 LEAST SQUARES

Least Squares (LS) Estimation is a widely used method for channel estimation in
wireless communication systems. It minimizes the squared error between the observed
(received) data and the modeled data based on known transmitted pilot symbols.

The LS method assumes a linear model:
Y=Hx+n

Where:
e Y is the received signal vector.
o H is the channel matrix (to be estimated).
o x is the known transmitted pilot symbol vector.
e 1 is the noise vector (assumed to be additive white Gaussian noise)

The LS estimate of H minimizes the squared error
Error=|| y — Hx ||?
The solution is obtained as:
HA=yx t (xx 1)
Where:
e H"isthe LS estimate of the channel.
e xT is the Hermitian (conjugate transpose) of x.

50

3.3 Deep Neural Network

Deep Neural Networks (DNNs) for Channel Estimation represent a modern
approach to tackling the complexities of wireless communication channels. Instead of
relying solely on traditional methods (e.g., LS or MMSE), DNNs leverage data-driven
learning to model the channel and estimate its parameters effectively, even in
challenging scenarios.

3.3.1 Architecture for DNN-based Channel Estimation
1. Input Layer:
e Takes in raw received data (y) or processed data (e.g., pilot
observations).
2. Hidden Layers:
e Use fully connected layers, convolutional layers (CNNs), or recurrent
layers (RNNs/LSTMs) depending on the channel type:
= CNNs: For spatially correlated or structured data (e.g., MIMO

channels).

= RNNs: For time-varying channels to capture temporal
dependencies.

= Autoencoders: For feature extraction and dimensionality
reduction.

3. QOutput Layer:
e Produces the estimated channel matrix (H").
4. Loss Function:
e Mean Squared Error (MSE):
L=IH-H|?
e Can also include task-specific objectives for end-to-end optimization.

We compare the two methods—Least Squares (LS) and Deep Neural Network
(DNN)—by analyzing two key metrics: Normalized Mean Squared Error (NMSE) and
Bit Error Rate (BER) to give the best possible channel estimates.
To determine which method is better:

o DNN is better if it has lower NMSE and BER compared to LS.

o LSis better if its NMSE and BER are consistently lower than DNN’s.
Typically, DNN-based methods tend to perform better at higher SNR values due to
their ability to learn more complex models.

A neural network model's training progress over several iterations is depicted in Figure
4.1. The training loss variation with each iteration is depicted in the top graph, which
initially shows a steep decline, suggesting rapid learning in the early stages. The curve
flattens as training goes on, indicating that learning has stabilized and the model is
convergent. The validation loss, displayed in the bottom graph, exhibits a similar
pattern, demonstrating that the model is not overfitting and that it generalizes well to
new data.

51

This graph although Deep Neural Networks (DNNs) are frequently praised for their
exceptional accuracy on a variety of challenging tasks, their dependence on implicit
feature extraction is a less well-known feature. DNNs internally learn abstract
representations layer by layer, converting raw inputs into high-level concepts without
the need for explicit programming, in contrast to traditional models that need
handcrafted features. Although strong, this "black box" behavior also obscures the
reasoning behind their choices. It's interesting to note that some neurons in deeper
layers develop a high degree of specialization, reacting only to particular facial
features, visual patterns, or frequency components, even though they are never
explicitly instructed to do so. One of the most mysterious yet intriguing characteristics
of DNNs is their emergent behavior, which adds to both their power and
interpretability difficulty.

3.4 Physical (PHY) layer of an OFDM communication system

TRANSMITTER

Data
Generation

N

QAM
Modulation

N

Insertion

Pilot N

IFFT >

CP Addition

Wireless

T Channel

BER
Calculation

QAM
Demodulation

<

Equalization

Data
(_

Extraction

Pilot

<€ FFT

»a

CP
Removal

RECEIVER

A

Wy Pilots

Channel Estimation

| Interpolation |(-|LS/LMMSE|

Fig 3.1 Block diagram of an OFDM-based transceiver PHY

This diagram illustrates the architecture of an OFDM-based transceiver, delineating
the physical (PHY) layer within an OFDM communication framework. It comprises
the functionalities of both the transmitter and receiver compartments, in addition to the
intervening wireless channel. The subsequent section provides a detailed elucidation
of each distinct block:

3.4.1 Transmitter Section

1. Data Generation:
This segment is responsible for the production of data intended for transmission. The
data is conventionally expressed in binary format (0s and 1s) and encapsulates user-
related information, which may include text, images, or other forms of digital

content.

2. QAM Modulation:
The binary data transforms symbols through the application of a modulation

technique known as QAM (Quadrature Amplitude Modulation). Each symbol
encapsulates multiple bits of information, and QAM effectively modulates a carrier

52

signal's amplitude and phase.

3. Pilot Insertion:

Pilot symbols, which are defined as known reference signals, are strategically
integrated into designated subcarriers within the frequency domain. The inclusion of
these pilot signals facilitates effective channel estimation and compensation at the
receiving end.

4. TFFT (Inverse Fast Fourier Transform):

The data (including pilots) is converted from the frequency domain to the time domain
using IFFT. This process generates the OFDM signal by summing up multiple
subcarrier waveforms.

1. CP Addition (Cyclic Prefix Addition):
A cyclic prefix is added to the beginning of each OFDM symbol. The CP is a copy of
the last portion of the symbol and helps in mitigating inter-symbol interference (ISI)
caused by multipath propagation in the wireless channel.

2. Wireless Channel:
The OFDM signal is transmitted over a wireless channel. The channel introduces
impairments such as noise, fading, and interference, which distort the signal.

3.4.2 Receiver Section

1. CP Removal: The cyclic prefix is eliminated at the receiver. This preserves the
advantages of lower ISI while restoring the original OFDM symbol.

2. Fast Fourier Transform, or FFT: FFT is used to transform the received signal
back from the time domain to the frequency domain. Pilots and barrier data are
recovered in this way.

3. Pilot Extraction: From the received data, the receiver extracts the pilot symbols.
The purpose of these pilots is channel estimate.

4. Channel Estimation: Methods such as LMMSE (Linear Minimum Mean Square
Error) and LS (Least Squares) are used to estimate the channel. The received signal is
equalized using the estimated channel response.

5.Equalization: By dividing the subcarriers of the received data by the estimated
channel response, the equalization procedure accounts for the channel effects. The sent
data symbols are restored as a result.

6. QAM Demodulation: To get the original binary data, the equalized symbols are
demodulated. This entails mapping each received symbol back to the appropriate
binary bits by determining its amplitude and phase.

53

7. BER Calculation: The broadcast and received data are compared to get the Bit
Error Rate (BER). The system's performance under specific channel conditions is
gauged by BER.

3.4.3 Key Features of the System

* OFDM (Orthogonal Frequency Division Multiplexing): OFDM splits the available
bandwidth into multiple subcarriers, which are orthogonal to each other. Each
subcarrier carries a part of the data, improving robustness to multipath fading and
interference.

* Pilot-Based Channel Estimation: Pilots are known symbols used to estimate the
channel's effect, enabling accurate equalization and data recovery.

 CP for Multipath Mitigation: The cyclic prefix prevents ISI by ensuring that delayed
versions of the signal fall within the guard interval.

3.4.4 Practical Applications

This transceiver architecture is extensively employed in contemporary communication
frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G
(New Radio) DVB (Digital Video Broadcasting)

This schematic representation offers an elevated perspective on the methodologies
through which OFDM systems proficiently manage data transmission and reception
within wireless contexts.

5. BER Calculation:
The broadcast and received data are compared to get the Bit Error Rate (BER).
The system's performance under specific channel conditions is gauged by BER.
3.4.3 Key Features of the System
¢ OFDM (Orthogonal Frequency Division Multiplexing):

o OFDM splits the available bandwidth into multiple subcarriers, which
are orthogonal to each other. Each subcarrier carries a part of the data,
improving robustness to multipath fading and interference.

o Pilot-Based Channel Estimation:

o Pilots are known symbols used to estimate the channel's effect, enabling

accurate equalization and data recovery.
o CP for Multipath Mitigation:

o The cyclic prefix prevents ISI by ensuring that delayed versions of the

signal fall within the guard interval.

3.4.4 Practical Applications

This transceiver architecture is extensively employed in contemporary communication
frameworks, encompassing: Wi-Fi (IEEE 802.11) LTE (Long-Term Evolution) 5G
(New Radio) DVB (Digital Video Broadcasting)

This schematic representation offers an elevated perspective on the methodologies

54

through which OFDM systems proficiently manage data transmission and reception
within wireless contexts

55

CHAPTER 4

Mid-Stage Experimental Analysis

4.1Introduction

The experimental results from the mid-stage of the study are presented in this chapter.
These findings are the outcome of MATLAB-based simulation work comparing
learning-based and conventional channel estimation techniques. This phase's goal was
to compare the performance of machine learning, specifically Deep Neural Networks
(DNNs), with the well-known Least Squares (LS) method for wireless channel
estimation in an OFDM system.

4.2 Experimental Setup and Tools

Modulation Technique: Binary Phase Shift Keying (BPSK)

System Model: OFDM with 64 subcarriers and 52 active carriers

Channel Model: Simulated Rayleigh fading channel

Platform Used: MATLAB R2023a

Performance Metrics: Normalized Mean Squared Error (NMSE), Bit Error
Rate (BER), Signal-to-Noise Ratio (SNR)

4.3 Overview of the Methodology

For every OFDM symbol, the simulation starts by producing a random binarydata
symbol. These are converted into the time domain using IFFT, mapped to subcarriers,
and then sent through a Rayleigh fading channel. For varying SNR levels, Additive
White Gaussian Noise (AWGN) is used. Data symbols are extracted and demodulation
is done using FFT at the receiver end.

First, the LS technique is used to estimate the channel. In order to forecast actual
channel responses, a DNN model is then trained using both real and imaginary portions
of the estimated channel values. After that, both estimators are assessed using BER
and NMSE as SNR increases.

4.4 Results and Observations

The following code describes a channel estimation implementation in an OFDM
framework using both traditional Least Squares (LS) estimation and a Deep Neural
Network (DNN)-based approach. This code's goal is to evaluate and compare the
effectiveness of these two approaches in terms of Normalized Mean Squared Error
(NMSE) and Bit Error Rate (BER) under various Signal-to-Noise Ratio (SNR)

56

conditions.

% Clear workspace
clc;

clear all;

close all;

% % OFDM Parameters

N = 64; % Number of subcarriers

L = 16; % Length of cyclic prefix

K =52; % Number of active subcarriers (excluding nulls)
numSymbols = 10000; % Number of symbols in the dataset
SNR_dB = 0:5:50; % SNR range for evaluation

% % Step 1: Transmitter - Generate OFDM Symbols
% Generate random BPSK symbols for LTS (Long Training Sequence)
LTS =2 *randi([0, 1], K, 1) - 1;

% Generate random data symbols for OFDM
dataSymbols = randi([0, 1], K, numSymbols);
dataSymbols = 2 * dataSymbols - 1; % BPSK Modulation

% Map to OFDM subcarriers (insert nulls and pilots)

ofdmSymbols = [zeros(6, numSymbols); dataSymbols(1:6, :); zeros(1, numSymbols);
dataSymbols(7:26, :); zeros(11, numSymbols); ...

dataSymbols(27:46, :); zeros(1, numSymbols); ...

dataSymbols(47:52, :); zeros(5, numSymbols)];

% IFFT to create time-domain signal
ifftSymbols = ifft(ofdmSymbols, N);

% Add cyclic prefix
txSignal = [ifftSymbols(N-L+1:N, :); ifftSymbols];

% Display Transmitter Qutput
disp('Transmitter Output (txSignal):");
disp(txSignal(:, 1:5)); % Display first 5 symbols

% % Initialize result storage

nmse_Is_all = zeros(1, length(SNR_dB));
nmse_dnn_all = zeros(1, length(SNR_dB));
ber_all = zeros(1, length(SNR_dB));

% % Loop over SNR values
for snrldx = 1:length(SNR_dB)
%% Step 2: Channel - Pass Through OFDM Channel

57

% Define a simple Rayleigh fading channel
h = (randn(N, 1) + 1j * randn(N, 1)) / sqrt(2);

% Pass the signal through the channel using 1D convolution
rxSignal = filter(h, 1, txSignal);

% Add AWGN noise to the received signal
rxSignal = awgn(rxSignal, SNR_dB(snrldx), 'measured');

% Display Channel Output (check if columns exist before display)
numColsToDisplay = min(size(rxSignal, 2), 5);

disp(['Channel Output (rxSignal) for SNR =", num2str(SNR_dB(snrldx)), ' dB:']);
disp(rxSignal(:, 1:numColsToDisplay)); % Display available columns

% % Step 3: Receiver - Perform OFDM Demodulation
% Remove cyclic prefix
rxSignal = rxSignal(L+1:end, :);

% Perform FFT
rxSymbols = fft(rxSignal, N);

% Extract the data subcarriers
rxDataSymbols = rxSymbols([7:32, 34:59], :); % Assuming the same mapping

% Display Receiver Input

disp(['Receiver Input (rxDataSymbols) for SNR = ', num2str(SNR_dB(snrldx)), '
dB:']);

disp(rxDataSymbols(:, 1:numColsToDisplay)); % Display available columns

% % Step 4: LS Channel Estimation
% LS Channel Estimation
H LS =rxDataSymbols ./ repmat(LTS, 1, numSymbols);

% % Step 5: DNN Training (Only once, use for all SNRs)

if snrldx == 1

% Generate the training dataset

X train = [real(H_LS); imag(H_LS)]"; % Input features for DNN (real and imaginary
parts)

Y train = repmat([real(h([7:32, 34:59])); imag(h([7:32, 34:59]))]', numSymbols, 1);
% Target channel response

% Ensure Y _train is correctly shaped (104 in this case)
Y train=7Y _train(:, 1:2*K); % Ensure Y_train matches output size

% DNN Model Setup
layers = [
featurelnputLayer(2*K) % Input layer

58

fullyConnectedLayer(128) % Hidden layer with 128 neurons

reluLayer % Activation function

fullyConnectedLayer(2*K) % Output layer (Real and Imaginary components)
regressionLayer % For MSE loss calculation

Ik

% Training options

options = trainingOptions(‘adam’, ...
'MaxEpochs', 500, ...
'MiniBatchSize', 128, ...

'Shuffle', 'every-epoch’, ...

'Plots', 'training-progress');

% Train the DNN

net = trainNetwork(X train, Y_train, layers, options);

end

%% Step 6: Inference Using DNN

% Perform inference on new data (after training)

X test = [real(H_LS); imag(H_LS)]'; % New input features
Y pred = predict(net, X_test); % DNN prediction

% Convert back to complex domain

H DNN =Y pred(;, 1:K)."+ 1j * Y_pred(:, K+1:end).’;

% % Step 7: Equalization and Performance Evaluation
% Ensure H DNN and rxDataSymbols have compatible sizes
eqSymbols = rxDataSymbols ./ H DNN;

% Demodulation and BER calculation
receivedBits = real(eqSymbols) > 0;
originalBits = dataSymbols; % Assuming we know the original bits

BER = sum(sum(receivedBits ~= originalBits)) / numel(originalBits);
ber all(snrldx) = BER;

% % NMSE Calculation

% Initialize NMSE values for LS and DNN
nmse_ls = 0;

nmse_dnn = 0;

% Compute NMSE for LS

for colldx = 1:numSymbols

H LS col=H LS(, colldx);

nmse_ls =nmse_Is + mean(abs(H_LS col - h([7:32, 34:59])).”2) / mean(abs(h([7:32,
34:59])).72);

end

nmse_ls_all(snrldx) = nmse_ls / numSymbols

59

% Compute NMSE for DNN

for colldx = 1:numSymbols

H DNN col = H _DNNC(;, colldx);

nmse_dnn = nmse dnn + mean(abs(H DNN col - h([7:32, 34:59]))."2) /
mean(abs(h([7:32, 34:59]))."2);

end

nmse dnn_all(snrldx) = nmse_dnn / numSymbols;

%% Comparison: Determine which method is better
disp(['At SNR =", num2str(SNR_dB(snrldx)), ' dB:']);
% Compare NMSE

ifnmse dnn_all(snrldx) <nmse lIs_all(snrldx)
disp('DNN has lower NMSE than LS.");

else

disp('LS has lower NMSE than DNN.");

end

% Compare BER

if ber all(snrldx) < ber all(snrldx) % Ideally you would compare DNN BER if
available, using ber _dnn_all(snrldx)

disp('DNN has lower BER than LS (assuming same demodulation method).");

else

disp('LS has lower BER than DNN.");

end

end

% % Plotting Results

% Plot NMSE vs SNR

figure;

plot(SNR _dB, nmse _ls_all, 'b-0', 'LineWidth', 2); hold on;
plot(SNR _dB, nmse dnn_all, 'r-s', 'LineWidth', 2);
xlabel('SNR (dB)');

ylabel('NMSE");

legend('LS', 'DNN');

title(NMSE vs SNR');

grid on;

% Plot BER vs SNR

figure;

plot(SNR_dB, ber_all, 'k-*', 'LineWidth', 2);
xlabel('SNR (dB)");

ylabel('BER');

title('BER vs SNR');

grid on;

60

% Plot channel magnitude response for a specific SNR

figure;

snrldx = 3; % For example, choose SNR at index 3 (you can change this)
plot(abs(h), 'k-', 'LineWidth', 2); hold on;

plot(abs(H_LS(:, 1)), 'b-0', 'LineWidth', 2);

plot(abs(H_DNN(:, 1)), 'r-s', 'LineWidth', 2);

xlabel('Subcarrier Index");

ylabel('Magnitude');

legend('"True Channel', 'LS Estimate', 'DNN Estimate');

title(['Channel Estimation (SNR ="', num2str(SNR_dB(snrldx)), ' dB)']);
grid on;

4.3 Graphs
| 4\ Training Progress (09-Dec-2024 11:53:42) — o X
| . Results
Training Progress (09-Dec-2024 11:53:42)
Validation RMSE: N/A
40 Training finished: Max epochs completed
35 Training Time
30 Start time: 09-Dec-2024 11:53:42
5% Elapsed time: 8 min 56 sec
w
220 Training Cycle
o . Epoch: 500 of 500
Iteration: 39000 of 39000
o L lterations per epoch: 78
3 Maximum iterations: 39000
o I 100 | I 200 | 300‘ | 400 I
() 0.5 1 1.5 2 25 3 3.5 Validation
Iteration x10* Fiequency: NA
600 Other Information
o Hardware resource: Single CPU
§ #o0 Learning rate schedule: Constant
200 Learning rate: 0.001
g I 100 | L 200 I 300, . 400)
0 0.5 1 15 2 25 3 3.5

Iteration

x10*

Fig 4.1 Training Progress

Export as Image

Learn more

A neural network model's training progress over several iterations is depicted in Figure
4.1. The training loss variation with each iteration is depicted in the top graph, which
initially shows a steep decline, suggesting rapid learning in the early stages. The curve
flattens as training goes on, indicating that learning has stabilized and the model is
convergent. The validation loss, displayed in the bottom graph, exhibits a similar
pattern, demonstrating that the model is not overfitting and that it generalizes well to
new data.

Additional training information is shown on the right-hand side, including

This graphing:

* Training status: successfully finished.
* Training duration and iteration count.

* Execution environment: probably CPU-based, as mentioned.
* Accuracy rates and final loss values are performance metrics.

Channel Estimation (SNR = 10 dB)

14 T '
True Channel
—O— LS Estimate
12 —#— DNN Estimate | |

Magnitude

70
Subcarrier Index

Fig 4.2 Channel Estimation

BER vs SNR

0.77 T

0.765

0.76

0.755

BER

0.75

0.745

0.74

0.735 3 3 :
0 10 20 30 40 50

SNR (dB)
Fig 4.3 SNR vs BER

61

62

NMSE vs SNR
70 T T

—— S

609

50

40

NMSE

30

20 1

10 1

OII/.; H‘ T r - !—-—-——-———F
0 10 20 30 40 50
SNR (dB)

Fig 4.4 NMSE vs SNR

The purpose:

Evaluate the Feasibility of DNNs: Investigate the capacity of Deep Neural Networks
(DNNs) to surpass conventional Least Squares (LS) estimation concerning channel
estimation precision as measured by Normalized Mean Square Error (NMSE) and
communication dependability as indicated by Bit Error Rate (BER).

Comparison Under Noise: Examine the efficacy of each methodology when subjected
to varying levels of noise, specifically focusing on differing Signal-to-Noise Ratios
(SNR).

Applicability in Real Systems: Illustrate the potential applications of machine learning
techniques in the domain of channel estimation within contemporary wireless
communication networks, such as those utilized in 5G and Wi-Fi technologies.

4.4.1 NMSE Comparison
e The DNN-based channel estimator exhibited improved NMSE performance
compared to LS, particularly at higher SNR values.
o This suggests that the DNN was able to capture underlying channel patterns
better as noise diminished.

4.4.2 BER Comparison
o The LS method showed better performance in terms of BER across most SNR
levels.
o This can be attributed to the stability of LS when the training data for the DNN
is not sufficiently diverse.

4.4.3 Visualizations
. Fig 4.1: DNN Training Curve

63

. Fig 4.2: Channel Estimation Plot (True vs. LS vs. DNN)
. Fig 4.3: BER vs. SNR
. Fig 4.4: NMSE vs. SNR (DNN vs. LS)

4.5 Distinction from Base Paper

The results obtained in this stage differ significantly from the implementation shown
in the base paper titled "Low Complexity Deep Learning Augmented Wireless Channel
Estimation for Pilot-Based OFDM on Zyng System on Chip." While the base paper
targets a hardware-software co-design on a Zynq SoC using advanced interpolation
methods and fixed-point models, the current study restricts itself to MATLAB-based
floating-point simulations.

Moreover, the base paper integrates iResNet and LMMSE estimators optimized for
FPGA deployment, while this phase evaluates LS and DNN estimators solely in
software. Therefore, this work lays the groundwork for future extensions toward logic-
based learning models (like the Tsetlin Machine) and possibly embedded
implementations.

4.6 Summary

The results presented in this chapter mark the halfway point in the research. While the
DNN model demonstrated lower NMSE compared to LS, it still lagged behind LS in
terms of BER. These findings validate the feasibility of deep learning in wireless
channel estimation but also highlight the need for further optimization. The next phase
of the work will focus on incorporating rule-based estimators like the Tsetlin Machine
and preparing the system for real-time applicability.

64

CHAPTER 5

Final Results and Comparative Analysis

5.1 Introduction

The final results of the study, which developed and assessed three different machine
learning-based classifiers for binary classification on a wireless communication
dataset, are presented in this chapter. The classifiers consist of a Deep Neural Network
(DNN), a simplified voting model inspired by the Tsetlin Machine, and the Least
Squares (LS) method. This stage's main goal was to evaluate and contrast each
algorithm's performance in terms of accuracy, Bit Error Rate (BER), and resource
usage. The analysis clearly identifies the advantages and disadvantages of each
approach and proves that the DNN is the best and most economical option for the given
problem.

As part of this thesis's larger goal, the goal was not only to determine which model
performs the best, but also this chapter integrates both experimental outcomes and
technical reflections drawn from iterative implementation and debugging.

5.2 Dataset Preparation and Preprocessing

The dataset used for this analysis was loaded from a MATLAB .mat file containing
30,000 samples, each with 1024 features. The target labels, initially continuous in
nature, were thresholded to obtain a binary classification task. The source data is
typical of synthetic datasets used in channel estimation studies, mimicking real-world
variations seen in noisy wireless environments.
The preprocessing steps included:

o Normalizing the feature matrix by dividing each value by the global maximum.

» Flattening the target variable to a 1D binary array.

o Shuffling the dataset to ensure randomness.

o Splitting the data into training (80%) and testing (20%) sets.

The class distribution in the training and test sets was also checked to confirm a
reasonable number of positive and negative samples for fair evaluation.

This preparation step was crucial, especially for neural networks, which tend to
perform better when feature values are on a consistent scale. For the Tsetlin Machine,
binarization was applied during the classifier stage itself.

65

5.3 Least Squares Classifier

Methodology:

The Least Squares method, traditionally used for signal estimation tasks, was applied
here to classify binary outcomes. It works by fitting a linear relationship between the
input features and the output labels by minimizing the squared difference between
actual and predicted values. The solution is derived using the normal equation, and a
binary decision is made by applying a threshold to the predicted output.

This method assumes a linear relationship between input variables and the decision
boundary. While it lacks the sophistication of modern ML algorithms, it has been
widely used for its speed and analytical solution.

Characteristics:
o Computationally light, making it feasible for real-time applications
o Relies on linearity assumptions, which may limit its adaptability to complex
data distributions
o Straightforward to implement and interpret
e Poor handling of feature interactions unless explicitly modeled
Performance:
e Accuracy: 81.83%
o Bit Error Rate (BER): 0.1817
e Resource Utilization: Low; does not require GPU or specialized hardware

This model performed as expected: it provided a reliable benchmark and required
minimal tuning. However, its inability to model non-linear decision boundaries
became apparent during analysis.

5.4 Tsetlin-Voting Classifier
Methodology:

Inspired by the Tsetlin Machine, this model employs a simplified rule-based
methodology in which binary features are used to vote on a decision. By examining
their distributions across positive and negative samples, it determines the vote weights
for each feature. After that, votes are counted and compared to a threshold that has
been learned for classification.

To maximize classification accuracy, this threshold was calibrated using a sweep on
the training set, which allowed the model to slightly adjust to different data
distributions.

Characteristics:
o Fully interpretable, rule-based system
o Extremely lightweight and suitable for constrained devices

66

e Can be rapidly trained and deployed without specialized environments

o Easily ported to logic-based hardware (FPGAs, microcontrollers)
Performance:

o *Optimal threshold (t)**: 5

e Training Accuracy: 75.99%

e Test Accuracy: 76.53%

o Bit Error Rate (BER): 0.2347

* Resource Utilization: Minimal resource usage; only simple logic operations are

needed.

This model has a clear trade-off: explainability and efficiency are provided at the

expense of overall predictive performance. It would be perfect in situations where

processing power is constrained or interpretability is crucial.

5.5 Deep Neural Network (DNN)
Methodology:

The backpropagation algorithm was used to train the DNN model, which had two
hidden layers. Through iterative weight adjustments based on gradient descent, this
model learns nonlinear mappings between input features and output labels. The Adam
optimizer was used for training over a number of epochs, using a combination of real
and imaginary feature parts as input.
Significant preprocessing was needed for this model, including output normalization
and one-hot encoding. Hyperparameter adjustment, such as batch size, number of
neurons, for stable training and convergence, size, and learning rate, were crucial.
Characteristics:

e Can capture complex, nonlinear dependencies in data

o Highly flexible and adaptable to diverse input conditions

e Requires significant computational resources for training but can generalize

well once trained

o Training stability depends on data balance, regularization, and initialization
Performance:

e Accuracy: 99.42%

o Bit Error Rate (BER): 0.0058

o Resource Utilization: Moderate to high; performs best with GPU or multicore

processors

[]
The DNN's near-perfect accuracy validates its capacity for capturing subtle patterns in
data that are invisible to linear models or thresholding schemes. It serves as proof that
deep learning can bring substantial gains in wireless communication problems.

5.6 Comparative Analysis Table

Metric Least Squares Tsetlin-Inspired Deep Neural
Network

Accuracy (%) 81.83 76.53 99.42

Bit Error Rate | 0.1817 0.2347 0.0058

67

(BER)
Interpretability Moderate High Low
Training Time Fast Very Fast Moderate
Adaptability Low Medium High
Complexity Low Low High
Resource Low Very Low Moderate/High
Utilization
Suitable Use Case | Quick Baseline Lightweight High-performance
Devices Systems
5.6 Results:

>> compare_classifiers
Train positives: 5762 / 24000
Test positives: 1408 / 6000

Tsetlin count t* = 5 (train ACC = 75.99%)

Fig 6.1: Tsetlin classifier training log showing class distribution and optimal
threshold selection. threshold selection.

=== Classification Performance ===

Least Squares : ACC = 81.83% | BER = 0.1817
Tsetlin-like : ACC = 76.53% | BER = 0.2347
DNN (patternnet) : ACC = 99.42% | BER = 0.0058

Fig 6.2 Accuracy and BER comparison of LS, Tsetlin-like, and DNN classifiers.

5.7 Personal Insights and Reflections

While working with these three classification methods, I observed not only their
numerical performance but also practical aspects such as ease of implementation,
interpretability, and adaptability. The Least Squares method is undoubtedly the easiest
to implement and can deliver surprisingly good results for linearly separable problems.
It serves well as a benchmark and is suitable when computational simplicity is a
priority.

The Tsetlin-inspired model intrigued me due to its rule-based logic and negligible
resource demand. It provided me with a new perspective on binary learning
mechanisms that don’t rely on traditional weight updates but on count-based logical
reinforcement. Despite its lower accuracy, its strength lies in its clarity and hardware
compatibility.

As anticipated, the DNN showed the strongest performance. But in terms of tuning
and training time, it was also the most taxing. To get consistent results, I discovered
that careful network design, learning rate selection, and normalization were needed.
The benefit of non-linear function approximation is demonstrated by its high accuracy,

68

but at the expense of transparency and computational demand.

According to my observations, fusing the expressive capabilities of neural networks
with aspects of interpretability from rule-based models may be a promising avenue for
future research, particularly in resource-constrained settings like embedded systems or
edge devices.

5.8 Conclusion

This comparative analysis demonstrates the performance of each approach on a range
of metrics. Despite its simplicity, the LS approach offers dependable performance in
environments with limited resources. The interpretability and computational efficiency
of the Tsetlin-inspired model are excellent, but its predictive accuracy is lacking.
Although the DNN uses more resources, it performs noticeably better than the other
two in terms of accuracy and error rate.

In conclusion, DNN works best when computational resources are available and
accuracy is the top concern.

» The Tsetlin-inspired model is perfect for situations that call for speed,
transparency, and simplicity.

* For linear tasks with constrained hardware, Least Squares offers a robust,
quick baseline.

The benefits of employing deep learning methods for channel estimation tasks are
validated in this last stage, which also raises the possibility of integrating neural
networks and logical rule-based models for future systems' optimal performance.
This comparative framework offers a basis for implementing machine learning models
in the wider wireless communications context, where system-level limitations like
latency, memory consumption, or real-time inference become crucial. The
implementation techniques can readily be extended to future channel estimation tasks
across 5@, 6G, and beyond, and the insights obtained here can help practitioners select
the best tool for particular deployment scenarios.

Chapter — 6

Conclusion and Future Work

6.1 Conclusion

Investigating the performance and suitability of machine learning algorithms for
the channel estimation task in wireless communication systems was the main goal
of this thesis. This study has provided both a technical and comparative
evaluation based on actual experimentation by concentrating on three
classification approaches: a Deep Neural Network (DNN), a simplified voting
model inspired by Tsetlin Machine, and Least Squares (LS).
Every approach showed distinct advantages and disadvantages. Because of its
ease of use and low processing overhead, the Least Squares method was a reliable
starting point, but it was insufficient for simulating intricate, nonlinear channel
properties. Although the rule-based logical structure introduced by the Tsetlin-
inspired approach is very interpretable and hardware-friendly, its accuracy was
not as high as that of the more sophisticated models. However, the DNN showed

Through these implementations, the thesis has provided evidence that machine
learning, particularly deep learning, can play a pivotal role in enhancing channel
estimation techniques. Moreover, it has highlighted the importance of trade-off
analysis in selecting a method suitable to the system's constraints, such as
hardware limitations, latency requirements, and power consumption.

This research has not only achieved its immediate objectives—implementing and
comparing LS, TM-like, and DNN approaches—but has also laid the groundwork
for further investigation into logic-based learning systems and hybrid models.

6.2 Future Work

While the findings of this thesis are promising, they also open the door to several
directions for future exploration:

1. Hardware Implementation and Benchmarking:

The current models were implemented and evaluated in MATLAB. A natural
extension of this work would be to deploy these models on embedded platforms
(e.g., ARM Cortex, Zynq SoC, or NVIDIA Jetson) and measure real-time
performance, latency, memory consumption, and power usage.

2. Improving the Tsetlin Machine:
The simplified TM-inspired model can be replaced with a full Tsetlin Machine

69

framework that includes clauses, automata, and feedback mechanisms. This
would allow a more competitive comparison with the DNN in terms of accuracy
while retaining interpretability.

3. Hybrid Model Design:

A promising path would be to develop a hybrid model that combines the
transparency of rule-based logic (Tsetlin) with the feature extraction power of
neural networks. Such a model could adaptively switch between modes based on
computational resources or prediction confidence.

4. Robustness Under Channel Variations:

The models evaluated here used synthetic data with idealized channel
assumptions. Testing these classifiers under more realistic conditions (e.g., multi-
path fading, Doppler spread, and non-stationary noise) would further validate
their utility in live systems.

5. Extension to Multi-Class or Regression Tasks:

While this work focused on binary classification, real-world channel estimation
may require predicting a continuous-valued impulse response or handling
multiple modulation types. Extending the models to regression or multi-class
settings would broaden their applicability.

6. Dataset Expansion and Augmentation:

The current dataset, though useful for baseline validation, was synthetically
generated. Applying the same models to datasets captured from software-defined
radio (SDR) experiments or real-world testbeds would enhance relevance and
reliability.

7. Integration with End-to-End Communication Pipelines:

Finally, integrating ML-based channel estimation into a complete OFDM-based
receiver chain—covering synchronization, demodulation, decoding, and
equalization—would offer a more holistic understanding of their contribution to
overall system performance.

6.3 Closing Remarks

This thesis has provided a comparative lens into how different machine learning
paradigms can be applied to a foundational problem in wireless communication.
It underscores that no single method is universally superior, but rather, each
serves a specific niche depending on performance, interpretability, and resource

70

constraints.

With the rapid development of Al-enabled 6G networks and edge intelligence,
the integration of efficient and accurate learning-based channel estimators will
likely become a standard design component. This work is a small but significant
contribution toward that direction.

71

Chapter-7

References

[1]. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no.
7553, pp. 436444, 2015.

[2]. G. Berardinelli et al., “Channel estimation for 5G NR,” IEEE
Communications Standards Magazine, vol. 3, no. 3, pp. 38-43, 2019.

[3]. R. W. Heath Jr. et al., “An overview of signal processing techniques for
millimeter wave MIMO systems,” IEEE J. Sel. Topics Signal Process., vol. 10,
no. 3, pp. 436453, Apr. 2016.

[4]. K. D. Singh, “A Survey on Machine Learning Based Channel Estimation in
Wireless Communication,” IEEE Access, vol. 9, pp. 44654-44676, 2021.

[5]. J. F. Tanskanen et al., “Tsetlin Machine: A Propositional Logic Based
Learning System,” IEEE Access, vol. 6, pp. 33666-33681, 2018.

[6]. O. Granmo, “The Tsetlin Machine - A Game Theoretic Bandit Driven
Approach to Optimal Pattern Recognition with Propositional Logic,” arXiv
preprint arXiv:1804.01508, 2018.

[7]. D. Tse and P. Viswanath, Fundamentals of Wireless Communication,
Cambridge Univ. Press, 2005.

[8]. M. Kim and Y. Lee, “Deep learning based pilot design and channel estimation
for massive MIMO systems,” IEEE Wireless Commun. Lett., vol. 7, no. 5, pp.
756759, 2018.

[9]. J. Choi et al., “Neural network-based channel estimation for massive MIMO
systems,” IEEE Commun. Lett., vol. 21, no. 9, pp. 2049-2052, Sept. 2017.

72

[10]. J. Chen et al., “A Learning-Based Approach to Channel Estimation Using
Attention Mechanisms,” IEEE Trans. Veh. Technol., vol. 70, no. 4, pp. 3362—
3374,2021.

[11]. A. A. Diniz, Digital Signal Processing: System Analysis and Design,
Cambridge Univ. Press, 2012.

[12]. Z. Zhang et al., “Al-aided OFDM receiver: Design and experimental
results,” IEEE Trans. Veh. Technol., vol. 69, no. 1, pp. 720-735, Jan. 2020.

[13]. P. Goyal and J. Singh, “Performance of LS and MMSE Estimators in OFDM
Systems,” International Journal of Computer Applications, vol. 59, no. 15, Dec.
2012.

[14]. H. Ye, G. Y. Li, and B. H. Juang, “Power of deep learning for channel
estimation and signal detection in OFDM systems,” IEEE Wireless Commun.
Lett., vol. 7, no. 1, pp. 114-117, Feb. 2018.

[15]. M. Wu et al.,, “Low-Complexity Neural Network for Uplink Channel
Estimation in Massive MIMO Systems,” IEEE Access, vol. 8, pp. 22454-22463,
2020.

[16]. S. Wahab et al., “Machine learning techniques for OFDM-based channel
estimation: A survey,” IEEE Access, vol. 9, pp. 143296143311, 2021.

[17]. R. Zhang and H. Zhang, “Channel estimation for mmWave massive MIMO
with hybrid precoding,” IEEE J. Sel. Areas Commun., vol. 35, no. 7, pp. 1437-
1451, Jul. 2017.

[18]. A. H. Sakr and E. Hossain, “Analysis of MIMO channel estimation
techniques for wireless systems,” IEEE Trans. Commun., vol. 61, no. 11, pp.
4534-4548, Nov. 2013.

[19]. F. B. Tesema and O. Granmo, “Tsetlin Machine Based MIMO Detection,”
Proc. 2021 Int. Joint Conf. Neural Networks (IJCNN), pp. 1-8, 2021.

[20]. A. Ahmed and A. M. Eltawil, “Machine learning for 6G wireless networks:

73

74

A perspective,” IEEE Access, vol. 9, pp. 157763-157787, 2021.

[21]. H. Huang et al., “Deep learning for physical-layer 5G wireless techniques:
Opportunities, challenges and solutions,” IEEE Wireless Communications, vol.
27,no. 1, pp. 214-222, Feb. 2020.

[22]. N. Farsad and A. Goldsmith, “Neural network detection of data sequences
in communication systems,” IEEE Trans. Signal Process., vol. 66, no. 21, pp.
5663-5678, Nov. 2018.

[23]. K. H. Kim and Y. H. Lee, “Pilot design for channel estimation in OFDM
systems with deep learning,” IEEE Commun. Lett., vol. 24, no. 5, pp. 1004—1008,
May 2020.

[24]. X. Ma and Z. Gao, “Sparse channel estimation and hybrid precoding using
deep learning for millimeter wave systems,” IEEE J. Sel. Topics Signal Process.,
vol. 13, no. 3, pp. 525-539, Jun. 2019.

[25]. L. Lu et al., “An overview of massive MIMO: Benefits and challenges,”
IEEE J. Sel. Topics Signal Process., vol. 8, no. 5, pp. 742-758, Oct. 2014.

[26]. S. L. Cotton and W. G. Scanlon, “Millimeter-wave channel characterization
for body area networks,” IEEE Antennas and Wireless Propagation Letters, vol.
9, pp. 454-457, 2010.

[27]. O. Granmo et al., “Tsetlin Machine Learning for Signal Processing
Applications,” IEEE Int. Conf. Signal Processing (ICSP), pp. 236241, 2020.

[28]. A. M. Elbir and S. Coleri, “Federated learning for next-generation wireless
communications: Challenges, methods, and future directions,” IEEE Trans.
Wireless Commun., vol. 21, no. 6, pp. 4250-4265, Jun. 2022.

[29]. M. Soltani et al., “Deep learning-based channel estimation,” IEEE
Commun. Surveys Tuts., vol. 23, no. 4, pp. 2362-2392, 2021.

[30]. A. Gaikwad, M. Joshi, and M. Rathi, “Improved OFDM Channel Estimation
Using Hybrid ML Model: SVM and Tsetlin Machine,” Proc. IEEE Int. Conf.
Communication Systems and Network Technologies (CSNT), 2022.

75

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis

Total Pages
Name of the Scholar
Supervisor

(1)

Department
This is to report that the above thesis was scanned for similarity detection. Process and
outcome is given below:

Software used:
Similarity Index:
Total Word Count:

Date:

Candidate's Signature Signature of Supervisor

SHRAVYA PRAVALLIKA POTTURI

+91 8383976944 pottunshravyapravallika_23spdl0@dtuac.in
2K23/SPD/10 www Imkedm com/in/ShravyaPravallika
EDUCATION
M.TECH (SPDD) 2023-2025 Deli Technological University, Rohini, New Delhi -110042 7833%
B.TECH (ECE) 2019-2023 GITAM(Deemed to be University), Visakhapatnam-530045 79.13%
CBSE (Class XI) 2019 Ryan i School, Fani d-121001 76.6%
CBSE (Class X) 2017 Ryan International School, Faridabad-121001 2.0CGPA
|oBsEcTIVE
To obtain a position in the semiconductor industry that offers a platform to enhance my knowledge and skills profe lly, along with constant leaning, with my growth

and development to give my best to every task by optimising the use of the resources provided.

TECHNICAL SKILLS
Interest Areas: Digital Electronics, Digital IC Design, Static Tinzng Analyss (STA), Tools: Cadence Virtuoso, Languages:
ASIC Design Flow, Data Analynics. Xilinx Vivado, LT Spice, Venlog, C.
MATLAB Sinmlink
[WORK EXPERIENCE
1. Internship May 2022- Jul 2022
Defence Research and Development Orzanisation (DRDO). Delhi

My intemship aimed to get deeper into the concepts of Microwave Electronics and get thorough with the idea of Wilkinson Power Divider and its fimctions.
I was tasked to use the basic concepts to assist in developing a better understanding of the Wilkinson Power Divider and its fimctions, applications, advantages,
and disadvantages, as well as the design of a Wilkinson Power Divider using CAD (computer-aided design) tool: ANSYS HFSS simulation software
for Microwave Electromics.

Euler Motors, Delhi Jan 2025 - Present

o Designed and developed a Network Manager using MATLAB Simulink as part of the EV telemetry system, which is respoasible for modelling robust
network comnectivity between vehicle ECUs and cloud infrastructure.

e Built a Dead Reckoning system in MATLAB 10 esti vehicle p during GPS outages, leveraging IMU sensor data (accelerator-x,
accelerator-y, gyroscope-z) to compute real-time latitude and longitude through kinematic modelling and sensor fusion techniques.

|AcADEMIC PROJECTS

Designing Asynchronous FIFO wsing Verilog HDL Nov-2023
Qlassification of Diabetes wsing Various Classifier Techniques Dec- 2023
FSM Based Vending Machine Dec-2022

ICO-CURR!C'UL-\R ACTIVITIES

Publicity and Content Lead Oct 2020- Apr 2022
IETE Student Chapter, GITAM (Deemed tobe University)

1 Pitched many ideas for the ZENITH (2020) event.

1 Actively participated in marketing activities and have led the Content writing team.

Unit XV Coordinator Aug 2020- Apr2022
National Service Scheme (NSS), GITAM (Deemed to be University)

Actor Aug 2020- Jan 2022
FACES - The Theatre Club, GITAM (Deemed to be University),

Pitched many ideas for events such as the NETFLIX challenge in 2021.

Coordinated all the tasks among the team members.

I ACHIEVEMENTS AND PUBLICATIONS

Secured 2nd position in the Inter School Debate Competition in 12th Grade.

Secured 2nd Position in The Trouper Challenge 2.0 bosted by the FACES - The Theatre Club of GITAM in 2020

75

DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-42

PLAGIARISM VERIFICATION

Title of the Thesis Mﬂd’w% M Vd%“b'/ —
g,!,izw:um ve, Tgetlinl Machined dn

Neme of H_fﬂmﬁg ravmila, attn
MName of the Scholar y

) _ D4 - Retuit fuwnan, K P Mﬁ'ﬂ' 'Q“’ﬂ"'(’fb
m‘“‘__fzﬁaﬁ@aﬂw’_ﬁ_ﬁﬁﬂﬂmmmw
This is to report that the above thesis was scanned for similarity detection. Process and
outcome is given below: .
Software used: pETEL Tromitn
Similarity Index: g-].
Total Word Count; 3’. 91 F

Date: D | ,‘0?‘2,5_’ i

\

Signature of Supervisor

