KWG-RFE: A Tri-Stage Hybrid
Feature Reduction Framework for
Android Malware Detection

A DISSERTATION

Submitted in partial fulfillment of the requirements
for the award of the degree

MASTER OF SCIENCE (M.Sc.)
n

MATHEMATICS

Submitted by
Kunikaa Dwivedi
(2K23/MSCMAT/29)

Under the supervision of
Dr. Anshul Arora

r/d #)
. $
/
1

DELTECH,
Worrr Ry
%, o """ﬁ“'&

“INOLoGICH

DEPARTMENT OF APPLIED MATHEMATICS
DELHI TECHNOLOGICAL UNIVERSITY
(Formerly Delhi College of Engineering)

Bawana Road, Delhi-110042

MAY, 2025

Candidate’s Declaration

I, Kunikaa Dwivedi, a student of Master of Science (Mathematics) with roll number
2K23/MSCMAT /29, state that the dissertation I turned in to Delhi Technological Uni-
versity’s Department of Applied Mathematics, with the title KWG-RFE: A Tri-Stage
Hybrid Feature Reduction Framework for Android Malware Detection, is com-
pletely authentic and free of any copies of other sources without the required citation.
Part of the prerequisites for earning a Master of Science in Mathematics degree are met
by this.

Place: Delhi
Date: May 26, 2025

Kunikaa Dwivedi
2K23/MSCMAT /29

Certificate

I certify that the project dissertation KWG-RFE: A Tri-Stage Hybrid Feature
Reduction Framework for Android Malware Detection, which was turned in by
Kunikaa Dwivedi, Roll No. 2K23/MSCMAT /29 of the Department of Applied Mathe-
matics at Delhi Technological University, Delhi, as a partial fulfilment of the requirements
for the award of the Masters of Science in Mathematics degree, is a record of the work
completed by the student under my guidance. To the best of my knowledge, neither
this university nor any other has accepted this work in whole or in part for a degree or
diploma.

Place: Delhi
Date: May 26, 2025

Dr. Anshul Arora

Supervisor

i

Acknowledgement

My supervisor, Dr. Anshul Arora of the Department of Applied Mathematics at Delhi
Technological University, has my sincere gratitude for his meticulous guidance, profound
expertise, constructive criticism, attentive listening, and amiable demeanor have been
invaluable throughout the process of composing this report. I will always be appreciative
of his kind and encouraging demeanour as well as his wise advice, which were crucial to the
accomplishment of my project. Furthermore, I would like to express my appreciation to
all my classmates who have played a pivotal role in aiding me to complete this endeavour
by offering assistance and facilitating the exchange of pertinent information.

Kunikaa Dwivedi
2K23/MSCMAT /29

il

Abstract

Mobile computing has been transformed by the quick development and broad use of An-
droid smartphones, but this has also given cybercriminals a larger attack surface. Among
these, mobile malware poses the greatest threat to data, privacy, and system integrity
for both individuals and companies. As a result, reliable, effective, and precise malware
detection techniques that are exclusive to the Android ecosystem are desperately needed.
This thesis introduces KWG-RFE, a hybrid feature selection strategy that offers a fresh
approach to Android malware detection. This strategy combines three complementing
techniques: Recursive Feature Elimination (RFE), Graph-based feature analysis, and the
Kruskal-Wallis statistical test. These elements function in concert to filter and rank fea-
tures according to their significance and effect on classification performance.

The proposed method was validated using a large dataset of over 111,000 Android appli-
cations, which included both malicious and benign samples. Each program had a num-
ber of components removed, including hardware-related parts, intent filters, permissions,
and API calls. In order to reduce dimensionality while maintaining crucial information
pertinent to malware identification, these features were subsequently put through the
KWG-RFE selection procedure.

Both the full and reduced feature sets were used to train and assess a number of ma-
chine learning classifiers, such as Random Forests, Decision Trees, and Support Vector
Machines. With a full feature set of 97.75% and a competitive 94.50% accuracy after ap-
plying the KWG-RFE feature reduction, the Random Forest classifier showed the highest
detection accuracy among them. The findings show that, without compromising classi-
fication performance, the suggested hybrid feature selection approach is quite successful
at removing superfluous and unnecessary characteristics.

All things considered, this study shows how effective it is to combine algorithmic, struc-
tural, and statistical feature selection methods when it comes to Android malware de-
tection. The suggested KWG-RFE approach is a useful addition to the field of mobile
cybersecurity since it maintains a high level of accuracy while increasing detection effi-
ciency by lowering computational overhead.

v

Contents

[Abstract] iv
I__Introductionl 1
(1.1 Background| 2
[L2 Motivationl 2
(.3 Contributionl. 3
(1.3.1 Why This is a Novel Approach| 4

[L4 Thesis Structurel. 4

2 Foundations of Android Malware Detection using Hybrid Feature Se- |
| lection (KWG-RFE)| 5
2.1 What is Android Malware?|.o o 5
[2.2 Android Features: Permissions, Intents, and Hardware| 6
2.3 Feature Selection in Malware Detectionl 6
2.4 The KWG-RFE Methodl o oo 6
3 Related workl 7
[3.1 Static vs Dynamic Analysis| L. 7
3.2 Permission-Based Malware Detection| 7
[3.3 Hybrid Feature-Based Approaches. 8
[3.4 Feature Selection Techniques|. 8
[3.5 Summaryl 9

[4 Dataset and Preprocessing] 10
4.1 Feature Bixtractionlo 10
4.2 Preprocessing Steps|. 10

[> Methodology| 11
[>.1 Hybrid Feature Selection Pipeline| 11
.2 Hybrid Feature Selection Pipeline (KWG-RFE)[. 12
.3~ Classification Modeld 13
6__Results and Discussionl 14
[6.1 Feature Combination Comparison| 14
6.2 Feature Set Combinations| oL 15
6.3 Key Observations| 16
(6.4 Summary|l 19
[7__Conclusion| 21

8 Future Scope and Social Impact]
(8.1 Future Scopel
(8.2 Social Impact|

vi

List of Tables

(6.1 Individual Accuracies of Top 10 RFE Permission Features| 14
(6.2 Individual Accuracies of Top 10 RFE Hardware Features| 14
(6.3 Individual Accuracies of Top 10 RFE Intent Features|. 16
6.4 Feature Reduction Across Combinations 17
[6.5 Accuracy Across Feature Reduction Stages| 18
(6.6 Individual Accuracies of Top 10 RFE Combined Features| 18

vil

List of Figures

(6.1 Individual Accuracies of Top 10 RFE Permission Features| 15
(6.2 Individual Accuracies of Top 10 RFE Hardware Features| 15
(6.3 Individual Accuracies of Top 10 RFE Intent Features 16
[6.4 Hybrid Feature Selection Pipeline| 17
[6.5 Cross-validated accuracy of top 10 features selected using RFE[. 19

viii

Introduction

The digital landscape has been completely transformed by the widespread use of An-
droid smartphones, which give billions of users access to business, entertainment, and
communication apps at their fingertips. According to recent statistics, Android is the
most popular mobile operating system worldwide, powering more than 70% of mobile
devices. Although this open-source platform gives developers flexibility and scalability,
there are serious security issues with it. The exponential growth in malware specifically
designed to target Android is one of the most urgent issues, as it jeopardises the avail-
ability, confidentiality, and integrity of user data.

By incorporating malicious code into applications that appear to be harmless and are
frequently shared via third-party app stores or even the official Google Play Store, cy-
bercriminals take advantage of the Android ecosystem. These malicious apps have the
ability to track user behaviour, install more malware, and steal private data, leading to
serious privacy violations and monetary losses. Intelligent, data-driven approaches must
be adopted because traditional signature-based detection techniques are frequently insuf-
ficient to detect new or evolving malware.

In cybersecurity, machine learning (ML) has become a potent tool, especially for mal-
ware detection. ML models are capable of efficiently differentiating between malicious
and benign applications by identifying patterns in vast amounts of labelled data. The
high dimensionality of the input data, however, presents a significant obstacle to this
strategy. Large feature spaces created by static features like intents, hardware access,
permissions, and API calls add noise and redundancy, which lowers the classifiers’ accu-
racy and efficiency.

This thesis proposes a novel tri-stage feature selection framework, KWG-RFE (Kruskal-
Wallis, Graph-based filtering, and Recursive Feature Elimination), to address this prob-
lem. By keeping only the most pertinent and discriminative features, the framework
seeks to decrease the dimensionality of Android application data. KWG-RFE efficiently
reduces big feature sets into a compact subset appropriate for classification by succes-
sively implementing statistical, structural, and classifier-based selection techniques.
This thesis’s experimental investigation combines malicious samples from publicly acces-
sible malware repositories with benign samples from the Google Play Store, utilising a
large dataset of more than 111,000 Android applications. Permissions, hardware indi-
cators, and intents were among the features that were statically extracted and fed into
the hybrid feature selection framework. To assess the detection performance on both the
full and reduced feature sets, several classifiers were used, such as Decision Tree, Naive
Bayes, and Random Forest.

When trained on the entire feature set, the Random Forest classifier had the highest
accuracy of any of the tested models (97.75%), and it continued to maintain a strong

accuracy of 94.50% even after applying KWG-RFE for dimensionality reduction. These
outcomes demonstrate how well the suggested feature reduction framework works to pre-
serve a high level of malware detection accuracy while greatly increasing computational
efficiency.

In conclusion, this study advances the field of Android malware detection by putting
forth a feature selection framework that is highly accurate, computationally efficient, and
statistically supported. In addition to improving detection capabilities, KWG-RFE pro-
vides a scalable solution that can be integrated into mobile security platforms and used
for real-time malware analysis.

1.1 Background

In the last few years, smartphones have become a key element in everyday life, chang-
ing the way we communicate, entertain ourselves, be productive, and connect to one
another. As we become more reliant upon smartphones to interact with banking, health-
care, shopping, and governmental services, security is of increasing concern.As of January
2025, there were about 2.06 million apps available on the Google Play Store, the main
marketplace for Android apps. Due to its dominating 72.15% market share for smart-
phones worldwide, Android has emerged as a top target for cybercriminals looking to
take advantage of security flaws. Concerns regarding malware threats have increased as
a result of the growing reliance on mobile devices for sensitive tasks like banking and
payments. A substantial number of new apps were added to the Google Play Store in
2024; in December alone, about 41,000 new apps were released.These dangers, which at
first frequently result in illegal access, financial fraud, and data breaches, range from
basic adware and spyware to more complex attacks involving ransomware, trojans, and
botnets.

Researchers have created a number of detection techniques that can be broadly di-
vided into static, dynamic, and hybrid analysis in order to combat mobile malware. Static
analysis provides a rapid and resource-efficient way to detect malware by examining an
application’s code and metadata without running it. In contrast, dynamic analysis uses
a controlled environment to observe how the application behaves. To improve detection
accuracy, hybrid analysis blends the two methods. Permissions, intents, and hardware
components are among the static features that are frequently examined in Android mal-
ware detection because they are important markers of potentially harmful activity. It is
difficult to effectively distinguish malware because, as prior research has demonstrated,
many of these characteristics are shared by malicious and benign applications. To find the
most distinctive qualities, a thorough feature selection and ranking procedure is required
due to this overlap.

1.2 Motivation

The shortcomings and difficulties of the current static analysis-based malware detection
methods served as the catalyst for this investigation. First off, there are over a hundred
different permissions in the Android permission infrastructure, which quickly introduces
high dimensionality. This results in overfitting, longer training times, and poor detection
model generalisation. Additionally, some permissions depend on the context; for instance,
a permission that might seem unwanted in one kind of application (like READ_CONTACTS

in a game) might be perfectly acceptable in another (like a messaging app). Adopting a
more sophisticated feature selection methodology that permits nuance in feature selection
is therefore imperative.

This paper proposes a hybrid feature selection model that uses three feature selection

methodologies: the classifiers” Recursive Feature Elimination (RFE) technique, Graph-
based filtering to evaluate structure and relational attributes among features, and the
Kruskal-Wallis test to evaluate relevant statistical relevance. By combining these tech-
niques, the hybrid model will be able to identify the best subset of permissions and other
characteristics that distinguish malicious and benign applications.
Following the removal of features which are redundant or carry little informative signif-
icance, overall model performance should be enhanced while maintaining computational
complexity at an acceptable level. The outcome of this study will produce a lightweight,
interpretable and accurate Android malware classifier model capable of deployment across
existing mobile security products.

1.3 Contribution

This thesis presents the following significant contributions:

e Presents a novel hybrid feature selection framework that sequentially uses the
Kruskal-Wallis statistical test for filtering the features, Graph-based correlation
analysis is used for removing redundant features, and finally, Recursive Feature
Elimination (RFE) is used for refining the feature set under classifier instruction.

e Provides the building blocks for a feature pruning pipeline that is capable of lever-
aging features in a systematic manner while smartly balancing the three axes of rel-
evance, diversity and predictive power, overcoming the challenges associated with
a single-stage approach to feature selection.

e The feature extraction of a comprehensive feature set of static characteristics, in-
cluding permissions, hardware components and intents, from over 112,000 Android
applications, demonstrates a significant coverage of the endless static characteris-
tics.

e Provides compelling evidence based on the analysis of multiple static malware de-
tection models that the inclusion of as few as 10 selected features provides a level of
classification accuracy that is strong and in line with what could be achieved using
a full feature set, thereby allowing the possibility for lightweight malware detection.

e Provides a comprehensive contextual evaluation of the hybrid method in comparison
to selecting features using individual and combined feature selection methods all
using a number of machine learning models.

e Provides a clear understanding that using a reduced hybrid-selected feature set, the
Random Forest model, achieved a peak accuracy of 94.50%.

1.3.1 Why This is a Novel Approach

What is novel about this approach is that it brings together three independent, but
complementary feature selection approaches into one cohesive pipeline that can be ap-
plied in an Android malware detection setting. Each of the individual approaches, the
Kruskal-Wallis test (statistical classification), graph-based filtering (topological) and RFE
(classifier-based elimination) have been used in isolates in the past literature but have
not yet been studied together in a mobile malware detection study.

This paper establishes:

e a sequential application of these approaches to ensure both statistical significance
and independence of the features;

e a process that reduces over 297 features to just 10 while maintaining classification
accuracy; and

e adapts this tri-stage feature selection process to an exhaustive Android dataset of
over 112,000 applications. The hybrid engineered engineered model presented here
allows for improved performance, while ensuring both interpretability, scalability,
and deployability throughout lightweight mobile security application development.

1.4 Thesis Structure

The remainder of this thesis is structured as follows:

e An overview of the suggested KWG-RFE hybrid feature selection method is given in
Chapter 2, along with an introduction to the fundamental ideas of Android malware
and important features like permissions, intents, and hardware components.

e A review of related work is given in Chapter 3, which covers permission-based
detection, hybrid approaches, feature selection strategies, and static and dynamic
analysis techniques.

e The dataset and the pre-processing procedures used to extract and prepare features
from Android applications are covered in detail in Chapter 4.

e The suggested methodology is described in Chapter 5, which also goes into detail
about the machine learning classifiers used for detection and each step of the hybrid
feature selection pipeline (KWG-RFE).

e A thorough analysis of the experimental findings is given in Chapter 6, which also
compares different feature combinations and highlights important model perfor-
mance findings.

e A summary of the results and research contributions is provided in Chapter 7, which
brings the thesis to a close.

e The future scope of the work and its possible social impact are examined in Chapter
8, especially as it relates to improving Android security.

Foundations of Android Malware De-

tection using Hybrid Feature Selec-
tion (KWG-RFE)

It is essential to have a basic understanding of the fundamental ideas pertaining to An-
droid malware detection before diving into the technical implementation and outcomes
of our suggested approach. This chapter presents:

1. What is Android Malware?
2. What are Permissions, Intents, and Hardware Features in Android?
3. What is Feature Selection and Why is it Important?

4. What are the Kruskal-Wallis Test, Graph-based Feature Analysis, and Recursive
Feature Elimination?

2.1 What is Android Malware?

Malware, which stands for "malicious software,” is any software that is purposefully
made to harm a client, server, network, or device. Malware frequently infiltrates Android
devices through untrusted apps, taking advantage of security flaws in the system or
abusing permissions that have been granted.

Types of Android Malware

e Trojans: Appear authentic while carrying out nefarious activities in the back-
ground.

e Ransomware: Locks or encrypts data until a ransom is paid.

Spyware: Secretly collects sensitive user data.

Adware: Shows intrusive advertisements, frequently with ulterior motives.

e Worms and Botnets: Malware that replicates itself and is used to remotely
control devices.

Android is a prime target for these threats due to its openness and broad adoption.

2.2 Android Features: Permissions, Intents, and Hard-
ware

Permissions

Android permissions control who can access private information and hardware. Ap-
plications that want to access a user’s contacts, location, or microphone must ask for
permission. For instance:

e READ_CONTACTS
e ACCESS_FINE_LOCATION

e RECORD_AUDIO

Intents

Components communicate with one another using intents, which are messaging objects.
Intent filters can be used by malicious apps to intercept or reroute operations.

Hardware Components

If device hardware (such as the camera, GPS, and accelerometer) is not properly con-
trolled, it can be misused for surveillance or data leakage.

2.3 Feature Selection in Malware Detection

Many of the thousands of features in a dataset are redundant or unimportant. Feature
selection improves interpretability, boosts model performance, and decreases dimension-
ality.

2.4 The KWG-RFE Method

KWG-RFE is a hybrid feature selection framework combining:

e Kruskal-Wallis Test: A statistical test that is non-parametric and ranks features
according to how well they can differentiate between classes.

e Graph-Based Feature Analysis: Constructs a feature affinity graph to find
features that are influential and highly connected.

e Recursive Feature Elimination (RFE): Based on the performance of a trained
model, iteratively eliminates the least significant features.

This hybrid method reduces the amount of high-dimensional Android app data (hard-
ware, intents, and permissions) to a manageable subset for classification.
Further chapters detail the application of KWG-RFE in Android malware detection.

Related work

Android malware detection has been largely investigated using static and dynamic anal-
ysis approaches. A classified review of the primary areas of research into the prominent
avenues is presented, emphasizing permission-based detection, feature extraction using
the hybrid approach, and feature selection techniques.

3.1 Static vs Dynamic Analysis

Over the past ten years, mobile security research has placed a lot of emphasis on detecting
Android malware. Static, dynamic, and hybrid analysis techniques are the three main
categories into which approaches can be separated; each has unique advantages and
disadvantages.

Static analysis is a fast and highly scalable method of analysing applications without
actually running them. Permissions, manifest components, opcodes, control flow graphs,
and API calls are among the features that are frequently extracted [I, 6, 25]. For instance,
it was shown by DREBIN [I] that highly interpretable malware classification using linear
SVMs could be accomplished with lightweight static features. Similarly, to find zero-
day vulnerabilities in Android apps, RiskRanker [6] created a scalable static framework.
Compact and semantically rich feature spaces for detection are also provided by opcode-
based methods [25] and manifest analysis [23].

On the other hand, dynamic analysis runs programs in sandbox settings to watch
for runtime events like network activity, file system changes, and system calls. Such be-
havioural traces are captured by programs like DroidScope and ANDRUBIS [4]. Dynamic
analysis has scalability problems and is vulnerable to evasion if the malicious payload is
only activated under certain circumstances, even though it frequently provides higher
resistance to code obfuscation.

Numerous researchers have suggested hybrid approaches that combine static and
dynamic features to achieve balanced detection capabilities because of the trade-offs in-
volved. These methods seek to improve resilience against evasion techniques by combining
complementary perspectives on app behavior [I3, 22]. Due to its effectiveness, ease of
use, and compatibility with current antivirus software and app stores, static analysis is
still the most widely used technique in large-scale frameworks in practice [20], 4].

3.2 Permission-Based Malware Detection

Application permissions stand out among the many static features used in malware detec-
tion because they are present in the manifest file and have obvious privacy and security

implications.

Permissions like READ_SMS, WRITE_EXTERNAL_STORAGE, and ACCESS_FINE_LOCATION are
strongly associated with malicious activity, according to a number of studies [I], 8 26].
These permissions allow dangerous actions like changing files and accessing location data,
or they grant access to private user information. Rule-based analysis was employed by
early systems such as Kirin [2] to identify risky permission combinations.

These concepts were expanded upon in later work. In their analysis of permission
abuse in practical applications, Grace et al. [6] underlined the necessity of more precise
control mechanisms. VetDroid [14] used policy analysis and selective permission tracking
to shed light on app behaviour. Subsequent research used statistical models and graph-
based representations to investigate permission correlation. For example, GNN-based
models like the one in [I8] captured the structural relationships between permissions and
behaviour patterns, while PermPair [7] identified collusive permission requests.

Permissions are now modelled in conjunction with other features using sophisticated
hybrid techniques to improve accuracy. These include integrating permissions with con-
textual app metadata [24] 27, 28], intent filters [3], and API call graphs [10]. Detecting
implicit permission leaks that might not be apparent from direct usage patterns is another
benefit of multilevel permission modelling.

3.3 Hybrid Feature-Based Approaches

While specific features, like permissions or API calls, provide insightful information, com-
bining different feature types improves robustness and generalisation. Hybrid methods
combine behavioural and static data to create detection models that are more thorough.

Systems such as DroidAPIMiner [3] and IPDroid [3] have shown how useful it is to
combine static features like manifest declarations, app metadata, and API usage. To
create enriched feature sets, DroidMalwareDetector [9] used both static and dynamic
analysis.

Semantic feature extraction using control flow graphs and data dependency analysis
was introduced by deep learning frameworks like DroidSieve [10] and Apposcopy [11].
MalPat [5] and Andro-profiler [I2] concentrated on context-aware modelling and sensitive
API patterns, providing behavioural fingerprints that are challenging to obfuscate.

While hybrid detection pipelines [22] [30] use convolutional and recurrent neural net-
works to capture both spatial and sequential patterns in app behaviour, multi-view learn-
ing frameworks [I3], [19] align multiple feature sets to learn joint representations. These
systems achieve superior detection accuracy on a variety of malware datasets and provide
improved resistance to popular obfuscation techniques.

3.4 Feature Selection Techniques

Feature selection has become a crucial preprocessing step to improve classifier efficiency
and interpretability as feature sets become more dimensional.

Statistical filters such as Information Gain and Chi-square tests are examples of clas-
sical techniques that rank features according to their discriminative power [4, [I7]. These
filters perform well on big datasets and are computationally efficient. Although they
require more computing power, wrapper techniques like Recursive Feature Elimination
(RFE) [19} 21] use classifier feedback to iteratively evaluate subsets of features.

Mutual information and feature correlation are incorporated into structural feature
selection methods. To identify redundant and irrelevant features, for example, [16] inves-
tigated contrasting permission patterns. In order to balance performance and computa-
tional efficiency, hybrid selection strategies, like those in [17, 24] 13], combine multiple
criteria (filter + wrapper, for example).

Semi-supervised techniques and graph-based feature selection have been investigated
recently [29]. By combining RFE for optimal subset selection, graph-based filtering for
redundancy reduction, and Kruskal-Wallis statistical tests, our suggested KWG-RFE
framework expands on these concepts. This pipeline minimises overhead while guaran-
teeing interpretability and generalisation.

3.5 Summary

To sum up, the literature on Android malware detection covers a broad range of ap-
proaches, from deep learning models that make use of hybrid representations to static
analysis that employs manifest-based features. Multi-view learning, API usage mining,
and permission analysis have all helped to increase detection accuracy.

Choosing features is still a crucial step in creating effective and scalable models.
Although a number of filter, wrapper, and hybrid approaches have been put forth, in-
terpretable and computationally balanced methods are still required. In order to close
this gap, we present a unified selection framework (KWG-RFE) that improves perfor-
mance and transparency by combining recursive elimination, redundancy pruning, and
statistical significance testing into a single pipeline.

Dataset and Preprocessing

Two different sources were used to create a balanced dataset: malicious samples were
taken from the AndroZoo project, and benign Android apps were gathered from the
Google Play Store. 111,010 APK files in all, equally divided between 55,505 samples of
malware and 55,505 samples of benign software, were used.

To extract its manifest file (AndroidManifest.xml), each APK file was processed
using Apktool. To determine the requested permissions, <uses-permission> tags were
parsed from this file. Throughout the dataset, 129 distinct permissions were found. The
first feature matrix was created by encoding the existence or lack of a permission as
binary values (1 or 0) for every application.

e Benign Apps: 56,000 apps from the Google Play Store
e Malware Apps: 56,00 apps from the AndroZoo dataset.

4.1 Feature Extraction

Features were extracted statically from the AndroidManifest.xml of each application. The
extracted categories were:

e Permissions: 129 unique permissions
e Intent Filters: Event-driven components

e Hardware Features: GPS, Camera, Bluetooth, etc.

Each feature was expressed in binary, where 1 represents the feature being present and 0
represents it absent.

4.2 Preprocessing Steps

e To facilitate the analysis of the APK files, we initially employed a series of decom-
pilation tools, including Apktool and Androguard.

e We then processed the extracted code into feature matrices using scripts written in
Python.

e A straightforward label encoding scheme assigned 1 to malware and 0 to benign
samples.

e Finally, the extracted dataset was normalized, and the data was split into training
and separate testing datasets for evaluation purposes.

10

Methodology

This section presents an overview of the end-to-end methodology implemented in Python
using Google Colab notebooks. The workflow encompasses the following stages: data
loading, cleaning, merging, hybrid feature selection, and model performance evaluation
using various machine learning algorithms. The implementation of these steps lever-
ages the following Python libraries: pandas, scikit-learn, seaborn, matplotlib, and
networkx.

5.1 Hybrid Feature Selection Pipeline
The key logic from the implementation included:

e Merging Datasets: The permissions, intents, and hardware datasets were loaded
from .xlsx files and merged on a common apk identifier. Data were checked for
duplicates and null values.

e Label Creation: A binary label Malware_Label was generated by checking whether
the APK ID started with ’1’. This indicated malware, while all other cases were
considered benign.

e Step 1: Kruskal-Wallis Test: A custom function iterated over each feature and
applied the Kruskal-Wallis H-test to compare the distributions between benign and
malware groups. Features with p-values < 0.01 were selected.

e Step 2: Graph-Based Filtering: A correlation matrix was computed among
selected features. Features with correlations > 0.7 were connected as nodes in a
graph. For each connected component, only one representative feature was retained.

e Step 3: Recursive Feature Elimination (RFE): The reduced feature set was
passed through RFE using a RandomForestClassifier to select the top 10 features
that most contributed to classification accuracy.

The entire process was implemented in a series of modular functions, and visualiza-
tions, such as confusion matrices and accuracy bar plots, were provided to better compare
models. To enhance detection capability while alleviating dimensionality, we applied a
hybrid feature selection pipeline featuring:

e Kruskal-Wallis Test: A non-parametric statistical test for assessing feature rele-
vance across the malware and benign cohorts,

11

12

e Graph-Based Feature Filtering: A method that constructs a correlation graph
of all features, retaining central-node features.

e Recursive Feature Elimination (RFE): A backward feature selection method
to iteratively remove at least useful features based on the model’s performance
measurements.

The hybrid pipeline allows for selecting the top 10-50 features, based on the combination
being tested.

5.2 Hybrid Feature Selection Pipeline (KWG-RFE)

In order to mitigate redundancy while maximizing model performance, a three-stage
hybrid feature selection process was applied:

1. Kruskal-Wallis Test:

e To identify features which have the most significant distributional differences
between the malware and benign classes, we performed a non-parametric sta-
tistical test. We selected features that resulted in a p-value < 0.01 for further
analysis.

e The test statistic H is given by:

H = 3(N+1
N—I—lzn +1)

i=1 v

where:
— N = total number of observations,
— k = number of groups (in this case, 2),
— R; = sum of ranks in group ¢,

— n; = number of observations in group <.
2. Graph-Based Filtering:
e A correlation matrix C' is computed:

cov(X;, X;
Ci7j — (1])
0x, UXj
e Feature pairs with Pearson’s correlation > 0.7 were clustered into groups using
graphical representation, and for each group, we selected one feature based on
centrality.

3. Recursive Feature Elimination (RFE):

e The features from the previous steps were passed to RFE using Random Forest
as the underlying estimator, followed by selecting a final group of 10 features
using variable importance weights.

13

e The accuracy A of the model is evaluated using:

B TP +TN
 TP+TN+FP+FN

where TP = True Positives, TN = True Negatives, FP = False Positives, and
FN = False Negatives.

This pipeline allowed us to confirm statistical relevance, reduce multicollinearity, and
maintain features with the highest predictive power, which overall helped to improve
model performance.

5.3 Classification Models

To evaluate model robustness and consistency across feature subsets, the following clas-
sifiers were trained using 5-fold Stratified Cross Validation:

e Decision Tree: Creates interpretable decision paths by dividing data according to
feature importance.

e Logistic Regression: Models the probability that an app is malware based on a
linear combination of selected features.

e Random Forest (n=50 estimators):An ensemble model that improves accuracy by
reducing overfitting by combining several decision trees.

e K-Nearest Neighbors (KNN): Classifies based on the majority label of nearest train-
ing samples in feature space.

e Gaussian Naive Bayes: Applies Bayes’ theorem assuming feature independence and
Gaussian distributions.

Mean accuracy, standard deviation, and confusion matrices were used as evaluation met-
rics. Results were displayed both in tabular form and as bar plots using Seaborn and
Matplotlib libraries.

Results and Discussion

6.1 Feature Combination Comparison

Table 6.1: Individual Accuracies of Top 10 RFE Permission Features

Feature Accuracy
MOUNT_UNMOUNT_FILESYSTEMS 0.8577
READ_PHONE_STATE 0.8519
GET_TASKS 0.8471
CHANGE_WIFI_STATE 0.8467
SYSTEM_ALERT WINDOW 0.8039
WRITE_SETTINGS 0.7878
READ_LOGS 0.7504
RECEIVE 0.6030
BIND_GET_INSTALL_REFERRER_SERVICE 0.5919
FOREGROUND_SERVICE 0.5686

Table 6.2: Individual Accuracies of Top 10 RFE Hardware Features

Feature Accuracy
touchscreen 0.5897
camera 0.5761
location.network 0.5560
telephony 0.5362
screen.portrait 0.5355
screen.landscape 0.5340
vulkan 0.5269
bluetooth 0.5181
nfc.hce 0.5179
NFC 0.5055

Combinations of the three fundamental static feature groups— permissions, intents,
and hardware — were assessed with and without the hybrid feature selection pipeline
(KWG-RFE). The number of features prior to and after each selection phase is presented
in the table below: The models were evaluated in combinations of feature groups (Intents,
Permissions, Hardware) with and without feature selection.

14

15

Accuracy of Each Top Feature Selected by RFE

BIND_GET_INSTALL_REFERRER_SERVICE

RECEIVE

READ_LOGS

CHANGE_NETWORK_STATE

WRITE_SETTINGS

Feature

SYSTEM_ALERT_WINDOW

CHANGE_WIFI_STATE

GET_TASKS

READ_PHONE_STATE

MOUNT_UNMOUNT_FILESYSTEMS

T
0.4 0.6 0.8
Cross-Validated Accuracy

Figure 6.1: Individual Accuracies of Top 10 RFE Permission Features

Accuracy of Each Top Feature Selected by RFE

NFC

nfc.hce

bluetooth

vulkan

screen.lanscape

screen.portrait

telephony

location.network

camera

touchscreen

F T T T T T

0.0 0.1 0.2 0:3 0.4 0.5 0.6
Cross-Validated Accuracy

Figure 6.2: Individual Accuracies of Top 10 RFE Hardware Features

6.2 Feature Set Combinations

We have analyzed the various combinations of the three primary static feature cat-
egories—permissions, intents, and hardware—using both the hybrid feature selection
pipeline, KWG-RFE, and without it. Below we show the original number of features, in

16

Table 6.3: Individual Accuracies of Top 10 RFE Intent Features

Feature Accuracy
DEFAULT 0.7178
DaemonService 0.6109
RECEIVE 0.6030
BOOT_COMPLETED 0.5905
MEDIA_MOUNTED 0.5647
LEANBACK_LAUNCHER 0.5493
START_FROM_AGOO 0.5477
MY _PACKAGE_REPLACED 0.5348
PUSH 0.5274
ELECTION_RESULT_V4 0.5116

Accuracy of Each Top Feature Selected by RFE

ELECTION_RESULT_V4

PUSH

MY_PACKAGE_REPLACED

START_FROM_AGOO

LEANBACK_LAUNCHER

Feature

MEDIA_MOUNTED

BOOT_COMPLETED

RECEIVE

DaemonService

DEFAULT

I T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Cross-Validated Accuracy

Figure 6.3: Individual Accuracies of Top 10 RFE Intent Features

addition to the number of features derived from each selection technique stage:

6.3 Key Observations

The accuracy rates across feature selection stages and classifiers are summarized below:

We assessed the stand-alone accuracy of the top 10 features in order to gain a better
understanding of the predictive power of each feature chosen by RFE. Table lists
the accuracies of a Random Forest classifier that was trained independently using each
feature. The most important characteristics influencing the overall model performance
are highlighted by these findings.

Random Forest was used to assess each RFE-selected feature separately. Their cross-
validated malware detection accuracy is displayed in the figure below.

17

[Raw Feature Matrix(Permissions, Intents, Hardware)}

Kruskal-Wallis Test(Statistical Ranking)

Graph-Based Filtering(Redundancy Elimination)

Recursive Feature Elimination (RFE)(Classifier-Based Selection)

[Selected Top-K Features(e.g., Top 10)}

ML Classifiers(RF, DT, NB)

Figure 6.4: Hybrid Feature Selection Pipeline

The findings suggest that the KWG-RFE strategy maintained strong detection accu-
racy across a variety of models, while significantly reducing feature dimensionality. The
Random Forest classifier yielded the highest performance, with other models following
closely behind.

e Robust Accuracy Across Models: Random Forest maintained an impressive de-
tection accuracy of 94.50% using only the top 10 features chosen by KWG-RFE.
Decision Tree (94.49%), Logistic Regression (94.16%), and K-Nearest Neighbors
(94.16%) were the next closest contenders.

e Dimensionality reduction: Up to 297 features (combined Permissions, Intents, Hard-
ware) were included in the full feature set without feature selection. This was re-
duced to just 10 features after using the KWG-RFE pipeline, and the classification

Table 6.4: Feature Reduction Across Combinations

Feature Set Raw | Kruskal | Graph | RFE
Intents + Permissions 209 206 138 10
Intents + Hardware 168 143 86 10
Permissions + Hardware | 218 191 151 10
All Combined 297 270 184 10

Table 6.5: Accuracy Across Feature Reduction Stages

18

Features Used | Feature Count Model Mean Acc. (%) | Std Dev
All Features 297 Naive Bayes 90.78 0.0041
Decision Tree 96.93 0.0011
Random Forest 97.75 0.0010
KNN 96.87 0.0017
Logistic Regression 96.00 0.0014
After Kruskal 270 Naive Bayes 89.18 0.0038
Decision Tree 96.78 0.0010
Random Forest 97.73 0.0007
KNN 96.96 0.0008
Logistic Regression 96.02 0.0011
After Graph 184 Naive Bayes 90.04 0.0036
Decision Tree 96.67 0.0006
Random Forest 97.64 0.0006
KNN 96.94 0.0013
Logistic Regression 95.85 0.0008
After RFE 10 Naive Bayes 93.93 0.0015
Decision Tree 94.49 0.0012
Random Forest 94.50 0.0013
KNN 94.16 0.0013
Logistic Regression 94.16 0.0016

Table 6.6: Individual Accuracies of Top 10 RFE Combined Features

Feature Accuracy
MOUNT_UNMOUNT _FILESYSTEMS 0.8577
READ_PHONE_STATE 0.8519
GET_TASKS 0.8471
CHANGE_WIFI_STATE 0.8467
SYSTEM_ALERT WINDOW 0.8039
WRITE_SETTINGS 0.7878
READ_LOGS 0.7504
RECEIVE 0.6030
BIND _GET_INSTALL REFERRER_SERVICE 0.5919
FOREGROUND SERVICE 0.5686

performance was barely affected.

e Stage-wise Feature Pruning:

— The Kruskal-Wallis Test found statistically significant features that distinguish
between malicious and benign applications, reducing the original feature set
by roughly 10-30

— By eliminating highly correlated features, graph-based filtering removed re-

19

Accuracy of Each Top Feature Selected by RFE

FOREGROUND_SERVICE

BIND_GET_INSTALL_REFERRER_SERVICE

RECEIVE

READ_LOGS

WRITE_SETTINGS

Feature

SYSTEM_ALERT_WINDOW

CHANGE_WIFI_STATE

GET_TASKS

READ_PHONE_STATE

MOUNT_UNMOUNT_FILESYSTEMS

0.0 0.2 0.4 0.6 0.8
Cross-Validated Accuracy

Figure 6.5: Cross-validated accuracy of top 10 features selected using RFE

dundancy.

— The most predictive features were selected using Recursive Feature Elimination
(RFE).

e Consistency and Generalization: Even after vigorous feature reduction, the KWG-
RFE method demonstrated good generalization across all classifiers with little loss
in accuracy.

e Effectiveness in Practice: Google Colab experiment results verified that the ap-
proach maintained interpretability and robustness while lowering computational
complexity.

e For the entire feature set (permissions + intents + hardware), an example reduction
would be:
(Kruskal-Wallis) — (Graph-Based) — (RFE) — resulting in 94.50% accuracy using
Random Forest.

6.4 Summary

In order to reduce noise, remove redundant features, and keep only the most informative
features, the suggested KWG-RFE (Kruskal-Wallis, Graph-based filtering, and Recursive
Feature Elimination) method worked incredibly well. This technique achieved high de-
tection accuracy with a significantly smaller set of features by drastically reducing the
feature space while maintaining critical classification power. In addition to speeding up
the model training process, the final reduced feature set showed remarkable suitability
for real-time malware detection on resource-constrained environments, like embedded sys-
tems and smartphones. The method strikes a balance between efficiency, interpretability,

20

and accuracy, making it a workable option for scalable implementation in actual Android
malware detection systems.

Conclusion

Here, we present a scalable and reliable framework for detecting Android malware. It
is based on a hybrid feature selection pipeline called KWG-RFE, which combines three
potent methods: Recursive Feature Elimination (RFE), graph-based correlation analysis,
and the Kruskal-Wallis statistical test. By ensuring that only the least redundant and
statistically significant features are kept for classification, this multifaceted approach
enhances the model’s interpretability and efficiency.

To find the most informative subset, the suggested approach methodically reduces a
large number of static features, such as hardware components, intents, and permissions.
Our model maintains a high level of accuracy while drastically reducing computational
overhead by narrowing the feature space to just 10 highly discriminative features. An
extensive dataset of 112,000 Android applications, balanced between benign and malicious
samples, was used to create this optimised subset.

Our system demonstrated its effectiveness and practicality for large-scale malware
detection by achieving a detection accuracy of 94.50% despite this significant reduction
in dimensionality. The findings demonstrate that rigorous feature selection, informed
by graph theory and statistical testing, can produce malware detection systems that are
both lightweight and highly effective, making them appropriate for implementation in
actual mobile security frameworks.

21

Future Scope and Social Impact

8.1 Future Scope

The suggested KWG-RFE framework has shown great promise in raising the precision
and effectiveness of Android malware detection. Nonetheless, there are still a number of
encouraging avenues for further study:

1.

Deployment on Mobile Devices: Improving Android devices’ real-time malware
detection framework can provide users with proactive security. Mobile deployment
will require optimisation for computational efficiency and battery consumption.

. Integration of Dynamic Analysis: Future research can include dynamic be-

havioural features (such as runtime behaviour and network activity) to increase
resilience against advanced malware techniques like code obfuscation and polymor-
phism, even though this study is based on static features.

Cross-Dataset Validation: The model should be validated using malware sam-
ples from various datasets and sources, such as zero-day exploits and emerging
threats, in order to evaluate generalisability.

Deep Learning and Transfer Learning: To further improve detection perfor-
mance, particularly in identifying malware variants that have not yet been discov-
ered, future research may investigate deep learning techniques or transfer learning.

Explainable AI (XAI): Security analysts will gain a better understanding of
model decisions and increase confidence in automated malware detection systems
by incorporating explainability into the detection framework.

Adversarial Robustness: Future studies should concentrate on strengthening
the system’s resilience against hostile inputs and changing threat landscapes as
attackers create ways to avoid detection.

8.2 Social Impact

The KWG-RFE framework offers substantial advantages to society in addition to ad-
vancing technology:

1.

Enhanced User Security: The framework helps shield users from identity theft,
financial fraud, data theft, and unauthorised surveillance by enhancing malware
detection on Android devices.

22

23

. Preservation of Digital Trust: Since smartphones are becoming essential for
banking, healthcare, education, and communication, accurate and effective malware
detection helps to maintain public confidence in mobile technologies.

. Reduced Economic Loss: Effective detection systems can help people, compa-
nies, and governments reduce the billions of dollars in economic losses caused by
mobile malware every year.

. Contribution to Cybersecurity Research: This work offers a new and repro-
ducible hybrid feature selection technique that strikes a balance between efficiency
and performance, which supports cybersecurity efforts in academia and industry.

. Support for Law Enforcement and Policy: Reliable malware detection tools
help law enforcement and the creation of public policy by helping cybercrime units
identify malicious apps and track down the origins of attacks.

Bibliography

1]

[10]

S. Arp, M. Spreitzenbarth, M. H"ubner, H. Gascon, K. Rieck, and C. Siemens,
"DREBIN: Effective and explainable detection of Android malware in your pocket,”
in NDSS, 2014.

Enck, William & Ongtang, Machigar & McDaniel, Patrick. (2009). ”On Lightweight
Mobile Phone Application Certification”. Proceedings of the ACM Conference on
Computer and Communications Security. 235-245.

Y. Aafer, W. Du, and H. Yin, ”Droid APIMiner: Mining API-level features for robust
malware detection in Android,” in International Con- ference on Security and Privacy
in Communication Systems, Springer, 2013.

M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. v. d. Veen
and C. Platzer, "ANDRUBIS — 1,000,000 Apps Later: A View on Current An-
droid Malware Behaviors,” 2014 Third International Workshop on Building Analy-
sis Datasets and Gathering Experience Returns for Security (BADGERS), Wroclaw,
Poland, 2014, pp. 3-17

A. Shabtai, U. Kanonov, Y. Elovici, C. Glezer, and Y. Weiss, ” Andromaly: A be-
havioral malware detection framework for Android devices,” Journal of Intelligent
Information Systems, vol. 38, no. 1, pp. 161-190, 2012.

Grace, Michael & Zhou, Yajin & Zhang, Qiang & Zou, Shihong & Jiang,
Xuxian. (2012). RiskRanker: Scalable and Accurate Zero-day Android. Proc.
of the 10Th International Conference on Mobile Systems, Applications, And.
10.1145/2307636.2307663.

Amalina, Fairuz & Feizollah, Ali & Anuar, Nor & Gani, Abdullah. (2014). Evaluation
of machine learning classifiers for mobile malware detection. Soft Computing. 20.
10.1007/s00500-014-1511-6.

Odat, Esraa & Yaseen, Qussai. (2023). A Novel Machine Learning Approach for
Android Malware Detection Based on the Co-Existence of Features. IEEE Access.
PP. 1-1. 10.1109/ACCESS.2023.3244656.

Wu, Wen-Chiech & Hung, Shih-Hao. (2014). DroidDolphin. 247-252.
10.1145/2663761.2664223.

Suarez-Tangil, Guillermo & Dash, Santanu & Ahmadi, Mansour & Kinder, Johannes
& Giacinto, Giorgio & Cavallaro, Lorenzo. (2017). DroidSieve: Fast and Accurate
Classification of Obfuscated Android Malware. 10.1145/3029806.3029825.

24

[11]

[12]

[13]

[16]

[17]

[19]

[20]

[21]

[22]

25

Feng, Yu & Anand, Saswat & Dillig, Isil & Aiken, Alex. (2014). Apposcopy:
Semantic-based detection of android malware through static analysis. 576-587.
10.1145/2635868.2635869.

S. H. Moghaddam and M. Abbaspour, ”Sensitivity analysis of static features for
Android malware detection,” 2014 22nd Iranian Conference on Electrical Engineering
(ICEE), Tehran, Iran, 2014.

Ibrahim, Mohammed & Abdullahi, Abdullahi & Ahmad, Muhammad Aminu &
Mustapha, Rabi & Ng, & Ibrahim, Mohammed. (2023). ”A Comparative Analysis
of Android Malware Detection with and without Feature Selection Techniques using
Machine Learning”. SLU Journal of Science and Technology. 10.56471 /slujst.v6i.371.

J. Zhang, M. Yang, B. Xu, Z. Wang, and Y. Liu, ”VetDroid: A selective permission
analysis tool for smartphone applications,” in Proceedings of ACM CCS, 2013.

S. Zhang, J. Yan, L. Chen, H. Xu, and G. Gu, ”Vetting Undesirable Behaviors in
Android Apps with Permission Use Analysis,” in Proceedings of the 21st USENIX
Security Symposium, 2012.

P. Xiong, X. Wang, W. Niu, T. Zhu and G. Li, ” Android malware detection with
contrasting permission patterns,” in China Communications, vol. 11, no. 8, pp. 1-14,
Aug. 2014.

N. Tiwari, I. Gupta, D. Sethi, S. Marwaha and V. Jha, ” A Review on Ransomware
Detection in Android Using Feature Selection and Machine Learning,” 2024 Interna-
tional Conference on Intelligent Systems for Cybersecurity (ISCS), Gurugram, India,
2024, pp.

P. Feng, J. Ma, T. Li, X. Ma, N. Xi and D. Lu, ”Android Malware Detection
Based on Call Graph via Graph Neural Network,” 2020 International Conference
on Networking and Network Applications (NaNA), Haikou City, China, 2020, pp.
368-374.

Kumar, Harsh & Chopan, Aijaz. (2024). Hybrid ML-DL Approach for Android Mal-
ware Detection. 10.21203 /rs.3.rs-5358924 /v1.

H. Yin, ”Android Malware Detection Using Convolutional Neural Networks and
Light Gradient Boosting Machine: A Hybrid Method,” 2024 6th International Con-
ference on Internet of Things, Automation and Artificial Intelligence (IoTAAI),
Guangzhou, China, 2024, pp. 75-79

Srastika, N. Bhandary, S. R. S, P. Honnavalli and S. E, ” An Enhanced Malware De-
tection Approach using Machine Learning and Feature Selection,” 2022 3rd Interna-
tional Conference on Electronics and Sustainable Communication Systems (ICESC),
Coimbatore, India, 2022, pp. 909-914.

A. Prayoga, R. B. Hadiprakoso, R. N. Yasa and Girinoto, ”"Deep Learning for An-
droid Malware Detection and Classification Using Hybrid-Based Analysis: A Com-
parative Study,” 2023 IEEE International Conference on Cryptography, Informatics,
and Cybersecurity (ICoCICs), Bogor, Indonesia, 2023, pp. 309-313.

[23]

[24]

[25]

[20]

[29]

[30]

[31]

[32]

[33]

26

X. Li, J. Liu, Y. Huo, R. Zhang and Y. Yao, ” An Android malware detection method
based on AndroidManifest file,” 2016 4th International Conference on Cloud Com-
puting and Intelligence Systems (CCIS), Beijing, China, 2016, pp. 239-243.

L. Ma, Y. Yang, X. Wang and J. He, ”Ultra-Lightweight Malware Detection of
Android Using 2-Level Machine Learning,” 2016 3rd International Conference on
Information Science and Control Engineering (ICISCE), Beijing, China, 2016, pp.
729-733.

V. Sihag, A. Mitharwal, M. Vardhan and P. Singh, "Opcode n-gram based Mal-
ware Classification in Android,” 2020 Fourth World Conference on Smart Trends in
Systems, Security and Sustainability (WorldS4), London, UK, 2020, pp. 645-650, doi

S. Jadhav, T. T. Oh, J. P. Jeong, Y. H. Kim and J. N. Kim, ” An Assistive System
for Android Malware Analysis to Increase Malware Analysis Efficiency,” 2017 31st
International Conference on Advanced Information Networking and Applications
Workshops (WAINA), Taipei, Taiwan, 2017, pp. 370-374, doi

J. Wang, B. Li and Y. Zeng, " XGBoost-Based Android Malware Detection,” 2017
13th International Conference on Computational Intelligence and Security (CIS),
Hong Kong, China, 2017, pp. 268-272, doi

R. D. Prayogo and S. A. Karimah, "Hybrid Feature Selection with K-Nearest Neigh-
bors for Optimal Heart Failure Detection,” 2022 12th International Conference on

System Engineering and Technology (ICSET), Bandung, Indonesia, 2022, pp. 101-
105, doi

Shangzhi Zheng and Hualong Bu, ”A novel semi-feature selection method based
on hybrid feature selection mechanism,” 2010 2nd International Conference on Ad-
vanced Computer Control, Shenyang, China, 2010, pp. 590-593, doi

C. Ryan and M. Diviya, ”Malware Image Classification with Enhanced Feature Ex-
traction Using VGG16 and Spatial Pyramid Pooling,” 2024 IEEE 8th International
Conference on Information and Communication Technology (CICT), Prayagraj UP,
India, 2024, pp. 1-6, doi

A. Arora, S. Garg and S. K. Peddoju, ”Malware Detection Using Network Traffic
Analysis in Android Based Mobile Devices,” 2014 Eighth International Conference
on Next Generation Mobile Apps, Services and Technologies, Oxford, UK, 2014, pp.
66-71, doi

A. Arora and S. K. Peddoju, "NTPDroid: A Hybrid Android Malware Detec-
tor Using Network Traffic and System Permissions,” 2018 17th IEEE International
Conference On Trust, Security And Privacy In Computing And Communications/

12th IEEE International Conference On Big Data Science And Engineering (Trust-
Com/BigDataSE), New York, NY, USA, 2018, pp. 808-813, doi

A. Arora and Sateesh K. Peddoju, ” Minimizing Network Traffic Features for Android
Mobile Malware Detection”, In Proceedings of the 18th International Conference on
Distributed Computing and Networking (ICDCN ’17). Association for Computing
Machinery, New York, NY, USA, Article 32, 1-10, 2017.

[34]

27

A. Arora, S. K. Peddoju, V. Chouhan, and A. Chaudhary, ”Hybrid Android Malware
Detection by Combining Supervised and Unsupervised Learning”, In Proceedings
of the 24th Annual International Conference on Mobile Computing and Network-
ing (MobiCom ’18). Association for Computing Machinery, New York, NY, USA,
798-800, 2018.

A. Arora, S. K. Peddoju and M. Conti, " PermPair: Android Malware Detection Us-
ing Permission Pairs,” in IEEE Transactions on Information Forensics and Security,
vol. 15, pp. 1968-1982, 2020.

	Abstract
	Introduction
	Background
	Motivation
	Contribution
	Why This is a Novel Approach

	Thesis Structure

	Foundations of Android Malware Detection using Hybrid Feature Selection (KWG-RFE)
	What is Android Malware?
	Android Features: Permissions, Intents, and Hardware
	Feature Selection in Malware Detection
	The KWG-RFE Method

	Related work
	Static vs Dynamic Analysis
	Permission-Based Malware Detection
	Hybrid Feature-Based Approaches
	Feature Selection Techniques
	Summary

	Dataset and Preprocessing
	Feature Extraction
	Preprocessing Steps

	Methodology
	Hybrid Feature Selection Pipeline
	Hybrid Feature Selection Pipeline (KWG-RFE)
	Classification Models

	Results and Discussion
	Feature Combination Comparison
	Feature Set Combinations
	Key Observations
	Summary

	Conclusion
	Future Scope and Social Impact
	Future Scope
	Social Impact

