DESIGN AND DEVELOPMENT OF
MALWARE DETECTION MODELS FOR
ANDROID SMARTPHONES

A Thesis Submitted
In Partial Fulfillment of the Requirements for the
Degree of

DOCTOR OF PHILOSOPHY

m
Mathematics

by

Yash Sharma
(Roll No. 2K21/PHDAM/08)

Under the Supervision of
Dr. Anshul Arora

%)
CHNoLoGICR

Department of Applied Mathematics
DELHI TECHNOLOGICAL UNIVERSITY

(Formerly Delhi College of Engineering)
Shahbad Daulatpur, Main Bawana Road, Delhi-110042, India

October, 2025

© Delhi Technological University—2025
All rights reserved.

CANDIDATE’S DECLARATION

I, Yash Sharma, hereby certify that the work which is being presented in the thesis entitled
“Design and Development of Malware Detection Models for Android Smartphones” in partial
fulfillment of the requirements for the award of the Degree of Doctor of Philosophy in Mathe-
matics, submitted in the Department of Applied Mathematics, Delhi Technological University
is an authentic record of my own work carried out during the period from 22" June 2021 to

15" April 2025 under the supervision of Dr. Anshul Arora.

The matter presented in the thesis has not been submitted by me for the award of any other

degree of this or any other Institute.

Wi

Yash Sharma
Roll No: 2K21/PHDAM/08

CERTIFICATE

Certified that Mr. Yash Sharma (2K21/PHDAM/08) has carried out their research work pre-
sented in this thesis entitled “Design and Development of Malware Detection Models for Android
Smartphones” for the award of Doctor of Philosophy from Department of Applied Mathemat-
ics, Delhi Technological University, Delhi, under my supervision. The thesis embodies results
of original work, and studies are carried out by the student himself and the contents of the
thesis do not form the basis for the award of any other degree to the candidate or to anybody

else from this or any other University/Institution.

Tbay”

Dr. Anshul Arora

Supervisor

Department of Applied Mathematics
Delhi Technological University
Delhi.

iii

ACKNOWLEDGEMENT

I express my sincere gratitude to my supervisor Dr. Anshul Arora, for his motivation and
unconditional support during my research. It has been a great pleasure to work under his

guidance, and I am deeply thankful for his invaluable assistance in making this work possible.

I am thankful to DRC Chairperson, Prof. Sangita Kansal, Head of the department, Prof. R.
Srivastava and all DRC members for extending their support and providing all the facilities
necessary for my research. I am also thankful to the Dean PG and her office staff for their

prolonged support.

I extend my gratitude to my fellow research scholars, who have consistently engaged in
discussions, provided support, and taken the time to read my work. I am also grateful to CSIR,

Government of India, for providing a fellowship that made my Ph.D. work possible.

Finally, I am deeply indebted to my family for their unconditional support, patience, and

encouragement. Without their love and belief in me, I would not be where I am today.

Above all, I express my heartfelt gratitude to the Lord Hanuman for guiding me on the right

path and giving me the strength and perseverance to complete this journey.

Date: October 19, 2025 YASH SHARMA
Place: Delhi, India.

This Thesis is dedicated to
Lord Hanuman,
My Teachers,
&
My Family Members.

Abstract

This thesis addresses significant challenges in Android malware detection by proposing inno-
vative solutions that enhance detection accuracy, optimize feature selection, and address the
limitations of the existing approaches. The research begins with a thorough review of the
current state of Android malware detection, highlighting the critical need for effective feature-
ranking mechanisms to overcome the problem of overlapping features, such as permissions
and intents, between benign and malicious applications. This review identified a major gap in
the existing literature—while many studies applied feature ranking algorithms, few achieved
both optimal feature selection and high detection accuracy. To fill this gap, we developed
two static analysis-based models: PHIGrader and PHIAnalyzer. PHIGrader utilizes a frequency-
based Multi-Criteria Decision-Making (MCDM) approach to rank the most commonly used static
features, namely permissions, intents, and hardware components. In contrast, PHIAnalyzer em-
ploys a frequency-based Chi-Square statistical test to evaluate the effectiveness of combining
the above-mentioned three features. Both models demonstrated improved accuracy in detect-
ing malware and provided a more refined selection of features. However, static analysis alone

often proves to be insufficient in detecting more sophisticated, runtime-dependent malware.

Building on the limitations identified in static analysis, the thesis transitions to dynamic anal-
ysis, specifically focusing on CorrNetDroid, a novel dynamic analysis-based malware detection
system. This model ranks network traffic features using two key statistical measures, crRele-
vance and Normalized Mean Residue Similarity (NMRS), to assess feature-class and feature-feature
correlations, respectively. By applying these rankings, CorrNetDroid efficiently reduces the
feature set while maintaining high detection accuracy. The model successfully addresses the
challenge of detecting runtime malware. However, certain malware types, such as SMS-based
malware, operate silently in the background without generating network traffic, underscoring

the need for a comprehensive solution that combines static and dynamic analysis.

To address these limitations, the thesis introduces AndroV-Rank, a hybrid analysis frame-

iX

work that combines static permissions with dynamic system calls for more robust malware
detection. The VIKOR ranking method is employed to rank and select the most discriminative
features, leading to a refined set of just 65 features, which improves both classification accu-
racy and efficiency compared to traditional static or dynamic analysis models. This hybrid
approach effectively overcomes the challenges posed by standalone methods, as it can detect
malware that relies on both static and dynamic behavior. Building on this concept, we then
propose PattMatch, an instance-based pattern-matching classifier that utilizes Average Weighted
Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR) to predict malware class labels
with exceptional accuracy. This model further improves upon hybrid analysis by addressing
the complexities of machine learning algorithms and achieving superior performance in both
balanced and imbalanced datasets, with a remarkably high accuracy of 99.93% using only 10

attributes.

Finally, the thesis extends its scope to malware multicategory classification, where two mod-
els are developed to classify Android malware into four distinct categories: Adware, Fraudware
Trojans, Ransomware, and Spyware. The first model relies on dynamic analysis, utilizing sys-
tem calls for classification, while the second, AndroMultiCat, adopts a hybrid approach that
combines static and dynamic features to improve classification performance. Both models
demonstrate significant improvements in classification accuracy and efficiency, with the hybrid
approach yielding superior results. The research concludes with a summary of the findings,
highlighting the contributions of the proposed models in advancing Android malware detec-
tion, while also discussing potential future directions for the field, including the exploration of
more sophisticated ranking algorithms and the integration of additional behavioral features to

further enhance detection capabilities.

Contents

CANDIDATE’S DECLARATION i
CERTIFICATE BY THE SUPERVISOR iii
Acknowledgement v
Abstract ix
List of Abbreviations xxiii
1 Introduction 1
[.1 Preliminaries e e e 3

1.2 Android Malware 4

1.3 ResearchGaps i 7

1.4 Problem Statement e 8

1.5 Objectives and Contributions o 8

1.6 Organization of the thesis 11

2 Literature Review 13
2.1 Static Detection Model 14
2.1.1 Permissions-based 0. 16

2.1.2 Permissions with Manifest file components 20

2.1.3 APIcalls based Detection 22

2.1.4 Limitations of Static Analysis 25

2.2 Dynamic Detection Model, 25
22.1 OS-baseddetection 26

2.2.2 Network Traffic-Based Detection 28

2.2.3 Limitations of Dynamic Analysis 30

2.3 Hybrid Detection Model oL 31
2.3.1 Limitations of Hybrid Analysis 33

2.4 Multi-Category Malware Detection Model 33

X1

3

4

25 Summary ... L e e e 35

PHIGrader: Evaluating the effectiveness of Manifest file components in Android

malware detection using Multi Criteria Decision Making techniques 37
3.1 Introduction 38
3.2 SystemDesign e e e e 42
32.1 Dataset e 43
3.2.2 Feature Extraction, 44
3.2.3 Feature Representation 44
324 FeaturesRanking, 45
3.2.5 Machine Learning and Deep Learning Classifiers 52
3.2.6 Proposed Malware Detection Algorithm 53
3.3 Feature RankingResults 55
3.3.1 Allotting Weights To The Features 55
33.2 FeaturesRanking 57
3.4 Detection Results on DATASET-1 62
3.4.1 Detection Results with TOPSIS 62
3.4.2 Detection Results with EDAS 65
3.4.3 Detection Results with WASPAS 69
3.4.4 Comparison with other feature ranking techniques 73
3.4.5 Comparison with other statistical tests 75
3.5 Detection Results on DATASET-2 78
3.5.1 Detection Results with TOPSIS 79
3.5.2 Detection Results with EDAS 81
3.5.3 Detection Results with WASPAS 85
3.6 DISCUSSION v v v i e e e e e e e e e e 89
3.6.1 Comparison with other related works 89
3.6.2 Limitations 89
3.7 Conclusion and Futurework 90

PHIAnalyzer: A novel Android malware detection system using ranked Manifest

file components 93
4.1 Introduction e 94
4.1.1 Drawbacks of existing approaches 94
4.1.2 Objectives and Need of Proposed Approach 95
4.2 SystemDesign 97
4.2.1 Data Acquisition and Representation. 97
422 PFeaturesRanking 98
4.2.3 Machine Learning and Deep Learning Classifiers 99

X11

4.3

4.4

4.2.4 Proposed Malware Detection Algorithm 100

Results and Discussion L oo 101
4.3.1 Allotting Weights To The Features 102
432 FeaturesRanking oL 103
4.3.3 Detection Results on DATASET-1 104
4.3.4 Detection Results on DATASET-2 117
4.3.5 Comparison with other related works 122
43.6 Limitations e e e e e 122
Conclusion and Future Work, 123

CorrNetDroid: Android Malware Detector leveraging a Correlation-based Fea-

ture Selection for Network Traffic features 125
5.1 Introduction L 125
5.2 SystemDesign e 130
5.2.1 DatasetCollection 131
522 TrafficSplit 132
5.2.3 Features Aggregation 132
5.2.4 Feature Selection 132
5.2.5 Proposed Detection Algorithm 136
5.2.6 Machine Learning and Deep Learning Classifiers 137
5.3 Resultsand Discussion e 138
5.3.1 PFeaturesRanking, 138
5.3.2 Detection Results on Testing Dataset 140
5.3.3 Comparison with other statistical tests 141
5.3.4 Comparison of NMRS with other Correlation Measures 145
5.3.5 Comparsion with other related works 147
54 Limitations oLl e e e e e e e e e e e 149
5.5 Conclusion and Future Work 0oL, 150

Hybrid Android Malware Detection leveraging Static Permissions and Dynamic

System Calls 151
6.1 Introduction 151
6.2 Proposed Hybrid Model -1 153
6.2.1 Dataset Accumulationo 153
6.2.2 FeaturesRanking 154
6.2.3 Machine Learning and Deep Learning Classifiers 156
6.2.4 Proposed Malware Detection Algorithm 156
6.3 Results and Discussion: Hybrid Model -1 157
6.3.1 Feature Rankingusing VIKOR 157

Xiii

6.3.2 Detection results on the Testing Dataset 158

6.4 Proposed Hybrid Model -1I.. 160
6.4.1 Dataset Accumulation Lo 161
6.4.2 Methodology 163
6.5 Results and Discussions: Hybrid Model -1I 169
6.5.1 Attribute Score-based Ranking (ASR) results 169
6.5.2 Classification results on 7Testing dataset 171
6.5.3 Comparison with other classifiers 175
6.5.4 Comparison with other related works 177
6.6 Conclusion and Future Work 179

7 Android Malware Multi-Category Classification via Highly Discriminative Fea-

ture Ranking 181
7.1 Introduction L e 181
7.2 Proposed Multi-Category Detectionmodel-1 183
7.2.1 Datacollection 183

7.2.2 Feature Ranking 184

7.2.3 Machine Learning and Deep Learning Classifiers 185

7.2.4 Proposed Malware Multi-Category Classification Algorithm 185

7.3 Results and Discussion: Multi-Category Model -1 186
7.3.1 ReliefF RankingResults 186

7.3.2 Classification Results on the Testing Dataset 186

7.4 Proposed Multi-Category Detectionmodel -1 187
7.4.1 Dataset Accumulation L Lo 189

7.42 Feature Ranking 190

7.4.3 Machine Learning and Deep Learning Classifiers 191

7.4.4 Proposed Malware Multi-Category classification Algorithm 191

7.5 Results and Discussion: Multi-Category Detection model -1I 191
7.5.1 Discrimination Score-based Ranking results 192

7.5.2 Classification results on the Testing dataset 193

7.6 Conclusion and Future Work, 196
8 Conclusion, Future Scope, and Social Impact 197
8.1 Conclusion e 197
82 Future Scope e e 200
8.3 Social Impact of the proposedresearch 202
Bibliography 204

X1V

List of Tables

1.1

3.1

3.2

33

34

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

3.14

3.15

Threats posed by Android malware 7

Top 20 most frequently requested permissions from both normal and malware

datasets with their corresponding frequency. 39

Top 20 most frequently requested intents from both normal and malware datasets

with their corresponding frequency. oo oL 39

Top 20 most frequently requested hardware components from both normal and

malware datasets with their corresponding frequency. 40

Top 10 normal dominant and malware dominant permissions with their corre-

sponding weights L e e e 56

Top 10 normal dominant and malware dominant intents with their correspond-

ingweights 56

Top 10 normal dominant and malware dominant hardware components with

their corresponding weightso Lo oL 57
Top 10 permissions ranked using TOPSIS 58
Top 10 intents ranked using TOPSIS« . oo 58
Top 10 hardware components ranked using TOPSIS 59
Top 10 permissions ranked using EDAS 59
Top 10 intents ranked using EDAS« oo e 60
Top 10 hardware components ranked using EDAS 60
Top 10 permissions ranked using WASPAS 61
Top 10 intents ranked using WASPAS 61
Top 10 hardware components ranked using WASPAS 62

XV

3.16

3.17
3.18

3.19

3.20

3.21

3.22
3.23
3.24
3.25

3.26

3.27

3.28

3.29

4.1
4.2
4.3

4.4

Compiled Detection results (in %) on applying the proposed algorithm on

DATASET -1 o e e e e e e e 72
Top 10 features ranked using PCA 73
Top 10 features ranked using ECCD 73

Comparison of best detection results (in %) from MCDM techniques with Prin-
cipal Component Analysis (PCA) and Entropy-based Category Coverage Dif-

ference (ECCD) on permissionso v v v v v v v v e 74

Comparison of best detection results (in %) from MCDM techniques with Prin-
cipal Component Analysis (PCA) and Entropy-based Category Coverage Dif-
ference (ECCD)onintents v v i v it 75

Comparison of best detection results (in %) from MCDM techniques with Prin-

cipal Component Analysis (PCA) and Entropy-based Category Coverage Dif-

ference (ECCD) on hardware components 75
Top 10 features ranked using Mutual Information 76
Top 10 features ranked using Pearson Correlation Coefficient 76
Top 10 features ranked using T-Test 76

Comparison of best detection results (in %) from MCDM techniques with Mu-

tual Information, Pearson Coefficient, and T-Test on permissions 77

Comparison of best detection results (in %) from MCDM techniques with Mu-

tual Information, Pearson Coefficient, and T-Test on intents 78

Comparison of best detection results (in %) from MCDM techniques with Mu-

tual Information, Pearson Coefficient, and T-Test on hardware components . . 78

Compiled Detection results (in %) on applying the proposed algorithm on
DATASET -2 o oo e e e e e e e e 88

Comparison of proposed work with the existing literature based on malware

detection using permissions, intents or hardware components. 90
Top 10 permissions along with their corresponding weights. 102
Top 10 intents along with their corresponding weights. 102
Top 10 hardware components along with their corresponding weights. 103
Top 10 permissions with their corresponding F-scores 104

XVvi

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

Top 10 intents with their corresponding F-scores
Top 10 hardware components with their corresponding F-scores
Detection results with proposed approach considering only permissions
Detection results with proposed approach considering only intents

Detection results with proposed approach considering only hardware compo-

Detection results with proposed approach considering the combination of per-

mission and INtENES e e e e e e

Detection results with proposed approach considering the combination of in-

tents and hardware components 0L oo

Detection results with proposed approach considering the combination of per-

missions and hardware components

Detection results with proposed approach considering the combination of per-

missions, intents and hardware components

Comparison of proposed frequency-based Chi-Square test in terms of detection

accuracy upon using different combinations of features.

Detection results considering all features for DATASET-1 without applying the
proposed approach e e

Top 10 permissions, intents and hardware components ranked using Mutual

Information e e

Top 10 permissions, intents, and hardware components ranked using Correla-

tion Coefficient e e

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficient on permissions

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficienton Intents v v v v v v v e e

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficient on hardware components

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficient on the combination of permission and intents

XVvil

4.22

4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

5.1

5.2

53

54

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficient on the combination of intents and hardware components .

Comparison of frequency-based Chi-Square test with Mutual Information and

Pearson Coefficient on the combination of permissions and hardware compo-

Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permissions, intents and hardware

COMPONENLS .« .« v v vt ettt e e e e e e e e e e e e e e e e e
Detection results with proposed approach considering only permissions
Detection results with proposed approach considering only intents

Detection results with proposed approach considering only hardware compo-

Detection results with proposed approach considering the combination of per-

missions and INtENES e e e e e e e e e e e

Detection results with proposed approach considering the combination of in-

tents and hardware components

Detection results with proposed approach considering the combination of per-

missions and hardware components 000,

Detection results with proposed approach considering the combination of per-

missions, intents and hardware components

Comparison of proposed work with the existing literature based on malware

detection using permissions and intents.

Some traffic features and their range for malware and normal mobile traffic on

SMartphones e e e
List of network traffic features

Traffic features ranked using crRelevance and their correspoding difference be-

tween category SCOIES v v vt e e e e e e e e

20 traffic feature pairs, top and bottom each, ranked using NMRS and their

corresponding correlation sCores Lo

115

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

Detection results when we apply our NMRS-based proposed algorithm on cr-

Relevance featureranking
Traffic features ranked using various statistical tests

Comparsion of NMRS-based proposed algorithm on crRelevance rankings with

various statistical tests when we apply the same algorithm applied on them . .

Top 10 Traffic feature pairs ranked using Pearson’s correlation coefficient and

their corresponding correlation scoreso oo oo .

Detection results when we apply Pearson’s correlation coefficient-based algo-

rithm on crRelevance feature ranking
Traffic features ranked based on their deviation from normal traffic behavior .
Detection results when we implement other related work

Comparison of proposed work with the existing literature based on malware

detectionusing TCPflows

Top 10 features ranked according to their preference scores using VIKOR for

the static and dynamic category datasets

Top 30 features ranked according to their preference scores using VIKOR for the

hybrid category datasets L

Compiled detection results obtained by applying the ML and DL classifiers to

the static, dynamic, and hybrid category datasets

Top 10 permissions ranked with ASR along with their corresponding attribute

scoresand rank weights oL o

Top 10 system calls ranked with ASR along with their corresponding attribute

scoresandrank weights o Lo oo

Top 10 permissions and system calls ranked with ASR along with their corre-

sponding attribute scores and rank weights

Classification results obtained by applying the proposed classifier to the static

category dataset e e e e e e

Classification results obtained by applying the proposed classifier to the dy-

namic category dataseto

X1X

145

6.9 Classification results obtained by applying the proposed classifier to the hybrid

category dataset e e e e e

6.10 Compiled detection results to compare the performance of the proposed clas-

sifier with other related works across the three dataset categories

6.11 Comparison of proposed work with the existing literature based on hybrid mal-

ware detection models e

7.1 Details of the dataset including malware categories and the families compris-

ingeachcategory.
7.2 Top 10 system calls ranked in order of their ReliefF Score
7.3 Classification Accuracy Across Iterations of Feature Reduction

7.4 Top 10 features ranked according to their Discrimination scores for the static

and dynamic Category oo e e e e e e e e e e e e e e e

7.5 Top 20 features ranked according to their Discrimination scores for the Hybrid

CACZOTY o v v v e

7.6 Compiled classification results obtained by applying the ML and DL classifiers

to the static, dynamic, and hybrid category datasets

XX

List of Figures

1.1
1.2

1.3

2.1

22

2.3

24

2.5

3.1
32
33
3.4
3.5
3.6
3.7
3.8

39

Android platform architecture o L.,
Number of Android Malware Recorded Every Year from 2010- 2024.

Overview of the proposed works of thisthesis

Taxonomy of Android malware detection techniques
Snapshot of permissions requested by WhatsApp Messengerapp
Snapshot of intents requested by WhatsApp Messengerapp.

Snapshot of hardware components requested by Microsoft Edge Web Browser

Snapshot of TCP flows from the network traffic of CRIDEX malware application.

PHIGrader System Design
Detection results with TOPSIS using permissions
Detection results with TOPSIS usingintents
Detection results with TOPSIS using hardware components
Detection results with EDAS using permissions
Detection results with EDAS using intents
Detection results with EDAS using hardware components
Detection results with WASPAS using permissions

Detection results with WASPAS using intents

3.10 Detection results with WASPAS using hardware components

3.11 Detection results with TOPSIS using permissions

3.12 Detection results with TOPSIS using intents

XX1

14

15

16

16

3.13
3.14
3.15
3.16
3.17
3.18

3.19

5.1

6.1

6.2
6.3

6.4

6.5

6.6

7.1

7.2

Detection results with TOPSIS using hardware components 82
Detection results with EDAS using permissions 83
Detection results with EDAS using intents 84
Detection results with EDAS using hardware components 85
Detection results with WASPAS using permissions 86
Detection results with WASPAS using intents 87
Detection results with WASPAS using hardware components 88
CorrNetDroid System Design 131
Detection results obtained by applying the ML and DL classifiers to the static,

dynamic, and hybrid category datasets 158
PattMatch System Design 162

Classification results obtained by applying the proposed classifier to the static

category dataset e 173

Classification results obtained by applying the proposed classifier to the dy-

namic category dataset 174

Classification results obtained by applying the proposed classifier to the hybrid
category dataset e e e e e e e e e e e e e e e 174

Comparison of our proposed classifier with other ML and DL algorithms when

applied to the static, dynamic, and hybrid category datasets 176

AndroMultiCar System Design 188

Classification results obtained by applying the ML and DL classifiers to the

static, dynamic, and hybrid category datasets 194

XXii

List of Abbreviations

Abbreviation Description

AAPT2 Android Asset Packaging Tool

ANN Artificial Neural Network

ANOVA Analysis of Variance

APK Android Application Package

APIs Application Programming Interfaces

ARFO Adaptive Red Fox Optimization

ART Android Runtime

ASR Attribute Score-Based Ranking

AWPS Average Weighted Pattern Scoring

BC Bagging Classifier

BOAWES Bat Optimization Algorithm for Wrapper-Based Feature
Selection

CIL Class Imbalanced Learning

CNN Convolutional Neural Network

CPPM Contrast Permission Pattern Mining

DBN Deep Belief Network

DNN Dense Neural Network

DL Deep Learning

DNS Domain Name System

DT Decision Trees

EDAS Evaluation Based on Distance from Average Solution

ECCD Entropy-Based Category Coverage Difference

ELM Extreme Learning Machine

EMFO Enhanced Moth Flame Optimized

xXxiii

List of Abbreviations (continued)

Abbreviation Description

eSNN Evolving Spiking Neural Network

GNN Graphical Neural Network

HHO Harris Hawks Optimization

HTTP Hypertext Transfer Protocol

IWD Intelligent Water Drop Algorithm

KCD Keywords Correlation Distance

LR Logistic Regression

LSTM Long Short-Term Memory

MCDM Multi-Criteria Decision-Making

MLP Multilayer Perceptron

MSer Multi-Head Squeeze and Excitation Residual Block
MSB Mean Square Between

MSW Mean Square Within

NB Naive Bayes

NIS Negative Ideal Solution

NMRS Normalized Mean Residue Similarity

NLP Natural Language Processing

OS Operating System

PCA Principal Component Analysis

PDME Program Dissimilarity Measure Based on Entropy
PIS Positive Ideal Solution

PL-SAE Pseudo-Label Stacked Auto-Encoder
POPNet Prototypical Nets

PSA Particle Swarm Optimization

RBFN Radial Basis Function Network

RF Random Forest

SA Simulated Annealing

SBRBM Subspace-Based Restricted Boltzmann Machine
SEL Stacking Ensemble Learning

SFS Sequential Forward Selection

SMOTE Synthetic Minority Oversampling Technique

XXiv

List of Abbreviations (continued)

Abbreviation Description

SOM Self-Organizing Map

SSA Social Spider Algorithm

STG State Transition Graphs

TAN Tree Augmented Naive Bayes

TCP Transmission Control Protocol

TCN Temporal Convolutional Network

TF-IDFCF Term Frequency-Inverse Document Frequency Class Fre-
quency

TOPSIS Technique for Order of Preference by Similarity to Ideal
Solution

UI User Interface

UDP User Datagram Protocol

VP Voted Perceptron

WASPAS Weighted Aggregated Sum Product Assessment

WI Weighted Mutual Information

WPM Weighted Product Model

WSM Weighted Sum Model

XGBoost Extreme Gradient Boosting

XXV

Chapter 1

Introduction

Early telephones, dated back to the late 19th century, were primarily used for business com-
munications and connecting individuals over vast distances, revolutionizing the concept of
communication. The first generation of phones was simple, designed only to transmit voice.
They were bulky, wired devices with limited functionality. Over time, these devices evolved
to include features such as rotary dials and push buttons, yet their core purpose remained un-
changed for decades: voice communication [1]. Phones of that era were confined to fixed
locations, often in homes or offices, with no portability. Thus, the utility of phones was pre-

dominantly in fixed, professional, or emergency scenarios.

The advent of smartphones in the early 21st century marked a transformative shift, turning
the humble phone into a powerful multifunctional device. A smartphone is a mobile device
that combines telecommunication features with advanced computing capabilities, offering in-
ternet access, touchscreen navigation, and support for apps and multimedia. The introduction
of smartphones changed not only the design and capabilities of phones but also the way people
interact with technology and the world around them. With the inclusion of internet connec-
tivity, cameras, GPS, and mobile applications, the smartphone became an indispensable tool
for personal, social, and professional use [2]. What started as a communication device rapidly
evolved into a pocket-sized computer, capable of handling a wide range of tasks from banking
to entertainment, from social networking to navigation. This transformation has drastically

altered everyday life, making smartphones essential for billions of users worldwide. Statistics

indicate as of 2025, a little over 4.88 billion people use smartphones around the world'. Today,
people are reliant on their phones for a variety of functions that extend far beyond communi-

cation—these devices now serve as our planners, wallets, and even personal assistants.

Among the diverse smartphone operating systems (OS) available, Android stands as the
most dominant. While competitors such as Apple’s i0S, Microsoft’s Windows Phone, and
BlackBerry’s OS had their market shares, Android, developed by Google, has emerged as the
clear leader [3]. Statistics from leading industry reports demonstrate that Android commands
a substantial portion of the global mobile market. For instance, recent studies suggest that
over 70% of mobile devices globally run on Android, leaving iOS as a distant second”. This
dominance is even more pronounced in emerging markets, where Android’s affordability and
flexibility make it the preferred choice for both consumers and manufacturers. Other operating
systems, such as Windows Phone and BlackBerry OS, have gradually lost relevance, leaving

Android and i0S as the primary contenders in the smartphone industry.

Several factors contribute to Android’s popularity. Firstly, Android’s open-source nature al-
lows manufacturers to modify the operating system, leading to a wide range of devices catering
to different price points and user preferences’. This flexibility has enabled Android to be im-
plemented in everything from high-end flagship phones to low-cost, budget-friendly models.
Furthermore, Android offers a vast ecosystem of applications through the Google Play Store,
providing users with access to millions of apps across various categories, from productivity
tools to entertainment®. Its customizable interface allows users to tailor their devices accord-
ing to personal preferences, a feature that has appealed to a large audience. Additionally, An-
droid’s integration with Google’s suite of services, such as Gmail, Google Drive, and Google
Maps, further enhances its utility, making it a highly functional and user-friendly platform®.
Android’s multitasking capabilities, wide range of hardware support, and constant updates

ensure that it remains the preferred choice for a large portion of the global population®.

Thttps://backlinko.com/smartphone-usage-statistics
Zhttps://gs.statcounter.com/os-market-share/mobile/worldwide
3https://source.android.com/
“https://www.appbrain.com/stats/google-play-store-stats
Shttps://developers.google.com/services
®https://developer.android.com/about/versions

1.1 Preliminaries

The Android operating system, depicted in Figure 1.1, adopts a layered architecture, based
on the Linux kernel, arranged as follows: Linux kernel, hardware abstraction layer (HAL),
native libraries, Android Runtime (ART), Java API framework, and the application layer’.

This hierarchical structure is designed to provide flexibility and stability across different device

types.

Applications (Java)

m m Medlaplaye '

Application Services (Java)
Activity Window Vibrator WiFi Battery
Service Service Service Service Service
Packages Telephony Resource Location Notification
Service Service Manager Service Service
Native Layer (C / C++ / Java)
i Surface Audio
prictiad - - Stage':rlght m Java AP
@ OpenAL OpenMAX OpenSSL Dalvik VM
C Library (Bionic) Hardware Abstraction Layer (HAL): libhardware

Linux Kernel

" . . . Power Management
Audio, Video, Network, 10 drivers ... Binder IPC (Wakelozks)

Figure 1.1: Android platform architecture

At the core of Android is the Linux kernel, responsible for managing low-level tasks such
as process management, memory handling, and hardware interaction. By leveraging the ro-
bust foundation of Linux, Android benefits from proven security and resource management
capabilities [4]. The Android Runtime (ART) replaced the Dalvik Virtual Machine from An-
droid 5.0 onwards, improving performance through ahead-of-time (AOT) compilation. This
enhances app execution efficiency, particularly for devices with limited resources®. ART is re-
sponsible for optimized memory usage, garbage collection, and thread management. The Java
API framework serves as an interface between application code and underlying system com-

ponents, simplifying the development of Android apps. This layer provides developers with

"https://developer.android.com/guide/platform
8https://developer.android.com/guide/platform

reusable modules for common tasks such as user interface (UI) design and inter-application

communication.

At the top, the application layer comprises apps written in Java or Kotlin, which utilize An-
droid’s extensive APIs to interact with device hardware and system resources. These apps
are packaged in Android application package (APK) files and deployed within the Android
ecosystem. Permissions, services, and activities are configured in the critical AndroidMani-
fest.xml file, which ensures the proper allocation of system resources while maintaining strict
security protocols’. Android applications are versatile and range from utilities to complex

games, benefiting from Android’s layered system design and resource management.

1.2 Android Malware

Malware, short for malicious software, refers to any program or code designed to perform
unauthorized or harmful actions on computing devices. Android malware specifically targets
devices running the Android operating system, exploiting its vulnerabilities for malicious pur-

poses, leading to data breaches, financial loss, and unauthorized access.

The first Android malware, AndroidOS. FakePlayer, emerged in 2010, disguising itself as a me-
dia player app [5]. Once installed, it sent premium-rate SMS messages without user consent,
marking the start of a wave of malware targeting Android devices. Since then, cybercriminals
have developed increasingly sophisticated methods to compromise Android systems, affecting

both personal data and financial transactions.

One of the most notable incidents is the outbreak of the Judy adware in 2017. Embedded in
over 40 apps on the Google Play Store, Judy bypassed security mechanisms and was down-
loaded more than 36 million times. It generated fraudulent ad clicks and harvested sensitive
data, including credit card details and passwords, becoming one of the most impactful Android

malware incidents'".

Another significant malware, ExpensiveWall, was discovered in 2017. Hidden inside wallpa-
per apps, it sent fraudulent premium SMS messages, charging users for fake services. These

apps, downloaded over a million times, led to considerable financial damage for users''.

Looking at the global scale of Android malware, it has grown exponentially over the past

“https://developer.android.com/guide/topics/manifest/manifest-intro

Ohttps://www.forbes.com/sites/thomasbrewster/2017/massive-google-android-malware-
expensivewall/?sh=7a91664c477f

https://portal.av-atlas.org/malware

decade. As cleary depicted by Figure 1.2, in 2012, there were 22,088 known variants, and by
the end of 2024, the number skyrocketed to 35,386,293!?. This dramatic rise highlights the

need for advanced Android security solutions.

40000000

30000000

20000000

10000000 I
210

2010 2012 2014 2016 2018 2020 2022 2024

Years

Number of Android malware

o

m Android Malware samples

Figure 1.2: Number of Android Malware Recorded Every Year from 2010- 2024.

Real-time threat analysis further highlights the necessity of improving Android’s security
defenses. Google has made efforts to address these challenges by introducing services like
Bouncer, which offers a dynamic emulated environment to detect malicious applications be-
fore they reach the Play Store [6]. However, while Bouncer has mitigated some risks, it has
proven to be insufficient in analyzing all potential vulnerabilities. Sophisticated malware often
uses dynamic code loading techniques—where malicious code is downloaded during updates,
evading detection. Moreover, malware that detects the presence of emulated environments
can easily bypass Bouncer’s safeguards. Consequently, attackers continue to find ways to cir-
cumvent security measures, making the Android platform a prime target for malware attacks.
This is one of the reasons for a large number of malware attacks on the Android platform.

Additionally, several other factors fuel this increase:

» The vast global Android user base often stores sensitive information on their devices,

providing an opportunity for malware developers to profit from identity theft.

* Android’s open-source kernel policy allows malware creators to gain insights into po-

tential vulnerabilities within the architecture.

2https://portal.av-atlas.org/malware

 The availability of app markets, particularly third-party ones, offers a convenient medium

for distributing malicious software.

* The structural similarity between desktop operating systems and Android makes it easier

for attackers to transition from targeting desktops to mobile devices.

Next, we outline the various methods through which malware infiltrates smartphones. Below

are key entry points for Android malware, explained concisely:

» App markets: App markets serve as a convenient entry point for attackers to disseminate
malware. A significant proportion of Android malware is introduced into mobile devices
through these platforms. Attackers often utilize a repackaging technique, where they
decompile legitimate applications, embed malicious components, and then reassemble
the app. Notable malware families such as jSMSHider, DroidDream, and BgServ have

exploited this repackaging method to compromise the Android ecosystem.

* Phishing Links: Cybercriminals use deceptive links, often embedded in emails or mes-
sages, to trick users into granting access or downloading malicious software. A common
example is the Svpeng banking trojan, which gains access to financial credentials through

fake websites.

* Drive-by Downloads: Simply visiting a compromised website can trigger automatic

downloads of malicious software without the user’s knowledge.

» Network Attacks: Malware can infiltrate devices via insecure public Wi-Fi networks,
exploiting vulnerabilities in data transmission. An example is the HummingBad malware,

which roots the device and generates fraudulent ad revenue.

Table 1.1 summarizes the various threats posed by smartphone malware to the users and the
devices [7]. The threats include system damage, financial loss to the users, and information
leakage from the device, etc. Apart from them, mobile devices can also be misused by malware
developers for the purpose of cyberbullying and sending spam messages on Online Social

Networks (OSNs).

Table 1.1: Threats posed by Android malware

Threats

Malware Example

System Damage

Disable system functions (e.g.,
block calling service)

Fakebank

Change system configuration (e.g., | ExpensiveWall
wallpaper)
Financial Loss Send SMS / MMS FakePlayer, HippoSMS

Dialing premium numbers

BaseBridge, BeanBot

Information Leakage

Privacy breach

BaseBridge

Stealing banking information

EventBot

Remote Control

Mobile botnet

ADRD, AnserverBot

1.3 Research Gaps

In this section, we describe the research gaps in the existing literature for Android malware

detection.

1. Features such as permissions, intents and hardware components are found to be overlap-

ping in normal and malware datasets. Hence some feature ranking using a ranking-based
algorithm is essential to identify the distinguishing features to obtain relatively good ac-
curacy. Unfortunately, several works in the literature missed the critical aspect of feature
ranking and, thus, failed to obtain the best features. Though some researchers applied
a ranking algorithm to choose the best set of features, at the same time were unable to

produce optimum accuracy.

Research Question 1 : How to design and develop a static detection model with ranked
manifest file components such as permissions, intents, and hardware components, to

identify the best set of static features that can give relatively better accuracy.

. The static analysis aims to investigate malware without executing the application but
by collecting basic information about the app, such as manifest file components or its
source code. However, it has been observed that some stealthier malware rely on the
runtime events, i.e., calling a phone, sending SMS, etc., to get activated; hence, such

malicious apps may evade static detection.

. In case of dynamic analysis, network traffic has been extensively used for intrusion
detection on desktop systems with high accuracy [8] [9], however, it is not that explored

in case of mobile malware.

4. Network traffic flows have high similarity in case of normal and malware traffic in mo-
bile environment. For instance, values of the feature Flow duration ranges from 0 to
1537.4 in normal mobile traffic and O to 1687.6 in malware traffic and Time interval be-
tween packets received ranges from 0 to 181.5 in normal mobile traffic and 0 to 378.2 in
malware traffic. Such overlapping ranges in network traffic again highlight the impor-
tance of ranking the traffic features to identify the distinguishing ones, which has not

been explored much in the existing literature.

Research Question 2 : How to design and develop a dynamic Android malware detector
using ranked network traffic features to detect stealthier Android malware samples that

may evade static detection?

5. Not all malware samples generate network traffic; for instance, malware might only send
SMS in the background without generating any network traffic. Hence, network traffic-
based detection mechanisms cannot detect such samples, and we can argue that static
and dynamic analysis have their limitations. We aim to target these limitations with our

proposed objectives.

Research Question 3 : How to combine static and dynamic analysis and propose a hybrid
Android malware detection model that combines static with dynamic features such as

static permissions with dynamic system calls.

1.4 Problem Statement

We aim to develop efficient Android malware detection models utilizing traditional analy-
sis techniques—static, dynamic, and hybrid—while addressing their limitations to accurately
classify testing applications as benign or malicious. Additionally, we incorporate novel feature
ranking/selection methods to extract features with optimal class-distinguishing capabilities,
ensuring superior detection/classification accuracy. Figure 1.3 provides a brief yet complete

idea of the proposed models of this theis.

1.5 Objectives and Contributions

1. To review the existing related work proposed in the field of Android malware detection.

Contribution 1 - Our review of existing research on Android malware detection classifies

studies into three primary categories based on their analysis techniques: static, dynamic,

DETECTION MODELS

'
' S ——
| STATIC ANALYSIS DYNAMIC ANALYSIS HYBRID ANALYSIS |

i
! (I’ermicsianr:;, Intents (Network Traffic

]
]
1
1
'
]
:
] Flows) combined with Dynamic |
\ Hardware Components) System calls) i ﬂ
!
'
‘
]
i
1
]
'
]
]
i
1
]
1
'
]
]
'
|
'

(Static Permissions

Collection of Applications
(Normal and Malware)

Roanli Colorginm Tor

|

Malware Applications

Figure 1.3: Overview of the proposed works of this thesis

and hybrid detection models. For each model, we address the limitations present in cur-
rent Android malware detection methods. Furthermore, we highlight significant studies
that have advanced multi-category classification approaches within the field of Android

malware detection.

. To design and develop a static detection model with ranked manifest file components
such as permissions, intents, etc., to identify the best set of static features that can give

relatively better accuracy.

Contribution 2 - We propose PHIGrader, an advanced Android malware detection system
that ranks and assesses three critical static feature types—permissions, intents, and hard-
ware components—using frequency-based multi-criteria decision-making (MCDM) tech-
niques. By leveraging these ranked features with machine learning and deep learning
classifiers, PHIGrader achieves optimal detection performance. Specifically, when the
top 46 features are selected using the TOPSIS method, PHIGrader attains an impressive
99.10% detection accuracy, outperforming models based on any single feature type or

alternative MCDM techniques.

With a belief that further combining these features leverages their unique strengths and
mitigates their individual limitations, creating a more comprehensive detection frame-
work, we introduce PHIAnalyzer that explores seven distinct combinations of these three
feature types to identify the most optimal feature subset achieving higher detection ac-
curacy. This system ranks the features and their combinations using a frequency-based
test Chi-square, followed by a novel detection algorithm applied to the ranked features.
The result is an efficient model achieving 98.49% accuracy using only 12 features—a
balanced combination of the top six permissions and top six intents—yielding better

accuracy than any single feature set or other feature combinations.

10

3. To design and develop a dynamic Android malware detector using ranked network traffic

features to detect stealthier Android malware samples that may evade static detection.

Contribution 3 - We propose a dynamic analysis-based Android malware detection sys-
tem, termed as CorrNetDroid, in which we rank the traffic features using two statistical
measures, namely crRelevance and Normalized Mean Residue Similarity (NMRS), to find
feature-class and feature-feature correlation respectively. We further incorporate them
into our novel detection algorithm with an aim to select the best subset of features.
The experimental results highlight that our NMRS-based proposed detection algorithm
on crRelevance rankings can effectively reduce the feature set while detecting Android
malware with 99.50% accuracy on considering two network traffic features, namely

Packet _size_received and Time_interval_between_ packets_received.

. To combine static and dynamic analysis in order to propose a hybrid Android malware

detection model that utilizes static with dynamic features such as static permissions with

dynamic system calls.

Contribution 4 - Our proposed model introduces PattMatch, an instance-based pattern-
matching classifier that employs Average Weighted Pattern Scoring (AWPS) and Attribute
Score-based Ranking (ASR) to accurately predict class labels by matching the patterns of
test samples with training patterns. Additionally, by reducing the feature set to the most
relevant attributes, we achieve optimal classification accuracy. Experimental results
show our model outperforms both static and dynamic approaches, achieving 99.93%

accuracy with just 10 attributes.

Unlike traditional machine learning and deep learning classifiers, our classifier demon-
strated superior detection accuracy on the same dataset highlighting the robustness and

efficiency of the proposed hybrid detection model.

11

1.6 Organization of the thesis

Chapter 1: This chapter provides an overview of the emergence of Android as an operating
system, followed by a discussion on Android malware, including its historical background, in-
fection methods, and associated risks. Additionally, it presents the motivation behind selecting
the research problem, identifying relevant gaps in existing literature. The chapter concludes

by outlining the technical contributions of our proposed approach.

Chapter 2: This chapter reviews existing research on Android malware detection, catego-
rized into static, dynamic, and hybrid detection models. For each model, we highlight current
limitations in detecting Android malware. Additionally, we review multi-category classifica-
tion methods developed by other researchers that identify specific malware types using static
and dynamic features, focusing on notable studies that have advanced this approach in Android
malware detection. The chapter concludes with insights and suggestions for future research

directions.

Chapter 3: This chapter introduces PHIGrader, an innovative Android malware detection
system that ranks and assesses the effectiveness of the most commonly used static features—
permissions, intents, and hardware components—using a frequency-based multi-criteria decision-
making (MCDM) approach. This system incorporates a novel detection algorithm with individ-
ual feature rankings involving various machine learning and deep learning classifiers to detect
malware. The proposed system, as an output, gives the best set of features as well as the feature
type.

Chapter 4: In this chapter, we present PHIAnalyzer, a novel Android malware detection
system that ranks permissions, intents, and hardware components using a frequency-based
Chi-square test. The detection algorithm then evaluates seven possible feature combinations—
permissions alone, intents alone, hardware components alone, as well as all pairwise combina-
tions to identify the best set of features achieving higher detection accuracy. Our experiments
demonstrate that the proposed frequency-based Chi-square ranking is better than other various

statistical tests when applied to the same datasets.

Chapter 5: In this chapter, we propose a network traffic-based Android malware detection
system, termed as CorrNetDroid, in which we rank the traffic features using two statistical
measures, namely crRelevance and Normalized Mean Residue Similarity (NMRS), to find feature-

class and feature-feature correlation respectively. We further incorporate them into our novel

12

detection algorithm with an aim to select the best and inversely correlated features. The ex-
perimental results highlight that our NMRS-based proposed detection algorithm on crRelevance
rankings can effectively reduce the feature set while detecting Android malware with remark-

able detection accuracy.

Chapter 6: This chapter firstly presents AndroV-Rank, a robust hybrid analysis framework
for Android malware detection that integrates static permissions and dynamic system calls to
extract a refined set of class-distinguishing features. By employing the VIKOR method for
feature ranking, our approach not only enhances detection accuracy but also streamlines the

feature set to a mere 65 attributes while maintaining remarkably high detection accuracy.

Building upon this foundation and addressing the limitations of machine learning classifiers
also, we further propose PattMatch, an instance-based pattern-matching classifier that employs
Average Weighted Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR) to accurately
predict class labels by matching the patterns of test samples with training patterns without the
dependance over conventional classifiers. Additionally, by reducing the feature set to the most
relevant attributes, we achieve optimal classification accuracy. Unlike traditional machine and
deep learning algorithms, our classifier demonstrated superior detection accuracy, highlighting

the robustness and efficiency of the proposed hybrid detection model.

Chapter 7: This chapter introduces two models designed for multi-category classification
of Android malware into four distinct categories: Adware, Fraudware Trojans, Ransomware, and
Spyware. Both models aim to achieve high classification accuracy while minimizing the num-
ber of features required. The first model is based on dynamic analysis and utilizes system
calls for the classification task. In contrast, the second model, AndroMultiCat, adopts a hy-
brid analysis approach, combining static permissions with dynamic system calls for enhanced

performance.

Chapter 8: In this chapter, we summarize our findings, discuss the main conclusions, analyze
the contributions of this thesis and the achieved results. We also present a discussion on the

open research problems in this field and the future work that we plan to focus on.

Chapter 2

Literature Review

This chapter reviews existing research on Android malware detection, as summarized in
Figure 2.1. The related work is organized into three main categories based on the analy-
sis techniques employed: static, dynamic, and hybrid detection models. Section 2.1 covers
research focused on static detection models, followed by a discussion of dynamic detection
models in Section 2.2, and hybrid detection models in Section 2.3. For each detection model,
we also outline the limitations of current approaches to Android malware detection. Binary
classification, which differentiates between benign and malicious samples, serves as an essen-
tial initial step. However, multi-category classification, which further identifies the specific
type of malware is also an additional step taken up by many researchers using a range of static
and dynamic features. Section 2.4 reviews notable studies that have contributed to advanc-
ing multi-category classification in Android malware detection. The chapter concludes with

insights and future directions in Section 2.5.

13

14

ANDROID MALWARE DETECTION
TECHNIQUES

STATIC ANALYSIS DYNAMIC ANALYSIS HYBRID ANALYSIS

Permissions Network Traffic

Combination of Static

and Dynamic features

API calls System calls

Intents Dynamic API calls

Hardware
components

Other manifest file
components

(O

Figure 2.1: Taxonomy of Android malware detection techniques

2.1 Static Detection Model

The static analysis investigates malware without real code or instructions being executed.
It provides basic information about app functionality and collects technical indicators from
AndroidManifest.xml and other resource files. In other words, it can be defined as a source code
review of an Android application file. Several reverse engineering tools like Apktool' or AAPT2
% can be used to decompile an apk and extract the required features. Features that can perform
static analysis of applications are called static features. Some commonly used examples of

static features are explained in brief below, with Android permission being the most popular.

1. Permissions- Android permissions are security features that regulate an application’s ac-
cess to certain device resources or sensitive data. These permissions are declared in the
AndroidManifest.xml file and are crucial for maintaining user privacy and ensuring the se-
curity of the Android ecosystem. Permission is declared using the <uses-permission>tag
within the manifest file. For example, as shown in Figure 2.2, which is a snapshot of the
AndroidManifest.xml file of the WhatsApp Messenger app, requires permissions such as {

READ_PHONE_STATE, READ_PHONE_NUMBERS, RECEIVE_SMS, VIBRATE and AUTHEN-

Thttps://apktool.en.lo4d.com/windows
Zhttps://developer.Android.com/studio/command-line/aapt2

15

TICATE_ACCOUNTS } to execute on Android smartphones.

<uses-permission android:name="android.permission.READ_PHOME_STATE"/>
<uses-permission android:name="android.permission.READ_PHOME_ NUMBERS"/:>
<uses-permission android:name="android.permission.RECEIVE_SMS"/>
{uses-permission android:name="android.permission.VIBRATE"/>
{uses-permission android:name="android.permission.AUTHENTICATE_ACCOUNTS" />

Figure 2.2: Snapshot of permissions requested by WhatsApp Messenger app

Permissions in Android play an integral part in creating a secure and privacy-respecting
ecosystem. They empower users with control, enable developers to build trustworthy
applications, and contribute to the overall security of the Android platform. Some per-
missions fall under the category of install-time permissions, i.e., they are automatically
granted upon the installation of the app, whereas some permissions are known as runtime
permissions, which are further requested at runtime. Install-time permissions permit the
app limited access to restricted data or actions that can affect the user to a minimal

amount. Install-time permissions can be further divided into the following types:

» Normal permissions - These permissions present minimal risk to the user’s privacy

and the functionality of other apps.

* Signature permissions - These permissions are granted by the permission check
system only when the requesting app is signed by the same certificate as the one

that declared the permission.

Runtime permissions, often addressed as dangerous permissions, are requested at run-
time by the application to request access to view restricted data or perform any prohib-

ited action by presenting a runtime permission request prompt.

. API calls- Application Programming Interfaces (APIs) act as a medium for one program
to interact with another, and an API call or request can be defined as a message sent to
a server asking an API to provide a service or information. After traveling from a client
to an API endpoint and being received by the server, the request is processed, and the

response is executed.

. Intent: An intent is a messaging object that a developer can use to request an action from
another app component. For example, as shown in Figure 2.3, which is the snapshot
of the AndroidManifest.xml file of the WhatsApp Messenger app, which requires intents
such as REQUEST and DEFAULT to execute on Android smartphones. The three main

16

fundamental use cases of intent are starting an activity, starting a service, and delivering

a broadcast.

<intent-filter:
<action android:name="com.whatsapp.instrumentation.REQUEST"/>
<category android:name="android.intent.category.DEFAULT"/>
</intent-filter:

Figure 2.3: Snapshot of intents requested by WhatsApp Messenger app

4. Hardware components- The hardware components, declared using the <uses-feature>tag,
allow the declaration of the hardware components that an app needs. For example, as
shown in Figure 2.4, which is a snapshot of the AndroidManifest.xml file of the Microsoft
Edge Web Browser app, hardware components such as { location.gps, camera, microphone

and touchscreen } are required to execute on Android smartphones.

<uses-feature android:name="android.hardware.location.gps” android:required="false"/>
<uses-feature android:name="android.hardware.camera” android:required="false"/>
<uses-feature android:name="android.hardware.microphcne™ android:required="false"/>
<uses-feature android:name="android.hardware.touchscreen" android:required="false"/>

Figure 2.4: Snapshot of hardware components requested by Microsoft Edge Web Browser app

Other static features include activities, services, broadcast receivers [10], opcode sequences
[11], libraries, content providers, Resource names, .dex codes [12], source codes, and other
metadata [13]. Among these, permissions are the most extensively used, followed by API calls
and intents. These related studies can be further classified into three categories: permissions-
based detection, permissions with manifest file components-based detection, and API call-

based detection.

2.1.1 Permissions-based

In this section, we review the works that have used entirely permissions for malware analysis
or detection. The authors in [14] worked on improving an existing frequency-based method
by adding the criteria of adding the class frequency of a particular feature and named it Term
Frequency-Inverse Document Frequency Class Frequency (TF-IDFCF). Finally, they used multiple
ML classifiers to verify the working of their proposed model. Sahin et al. [15] presented
a method that relies on the utilization of permissions. The researchers presented two linear
regression classifiers and conducted a comparative analysis of the detection outcomes between

their proposed classifiers and conventional machine learning classifiers. Furthermore, they

17

implemented two ensemble classifiers utilizing the bagging technique. The authors in [16]
proposed a permission identification model called SigPid. Initially, permissions frequently and
rarely requested by malware were identified through a pruning process. After normalizing the
data, they calculated each permission’s rate based on its support value, ranging from -1 to 1.
Two ranked lists were created—one in ascending order, the other in descending order. The
top values from both lists were used to compute metrics such as TPR, FPR, recall, precision,
and F-measure. This process was repeated, considering the top three values and refining the
metrics until the optimal set of permissions was identified. The work proposed in [17] analyzed
a permission-based Android malware system in which they proposed a permission weight
approach, namely Relevance Frequency. They applied their proposed approach to various
machine learning algorithms and concluded by comparing the results of their study with the

existing or previous methods.

Talha et al. [18] introduced APK Auditor, a permission-based system for Android malware
detection. It comprises three main elements: an APK auditor client, a signature database, and a
central server. The client submits requests to assess application trustworthiness. The signature
database manages permissions, services, and receivers, while the central server computes the
malware score based on these permissions. The authors in [19] extracted a set of 123 dynamic
permissions from 11000 Android applications. These collected apk packages were made to run
with the emulator bluestack. Finally, permissions were extracted by running a Java code and
were divided into safe and unsafe permissions. Ultimately, they evaluated the performance of
machine learning classifiers on the dataset. In [20], the AppPerm analyzer assessed manifest
and code permissions separately. Manifest permissions were retrieved from the AndroidMani-
fest.xml file, while code permissions were identified from the decoded APK source code. The
authors constructed a feature vector and evaluated six score types. Thresholds were set based
on accuracy, sensitivity, and specificity, classifying apps below the threshold as benign and
those at or above it as malware.

The authors in [21] proposed an Android malware detection model based on improved Naive
Bayes classification. They determined the value of Pearson Correlation Coefficient “7” and
deleted the permissions whose value “r” was less than the threshold “p” and derived the new
permission set. Further, they got the improved detection model by clustering based on in-
formation theory. The authors in [22] discussed an approach based on sequence alignment.
This work took a DNA element as permission and determined permission patterns for normal

and malicious samples. It is a technique related to bioinformatics used to identify similarities

18

between applications by evaluating a similarity score and setting up a threshold. In [23], the
authors described a monitoring tool to keep track of permission requests from various appli-
cations. The monitoring system took the help of the Broadcast Receiver and intent object to
detect update events. The app’s name and installation time were saved along with the requested
permissions; hence, when a new file was generated asking for a new set of permissions, they
could be easily identified. Ultimately, they used the pattern of permission sets for known mal-
ware applications to match up with the testing dataset permission sets to classify applications

as malicious.

Ilham et al. [24] described a novel approach based on permissions. The authors applied
filter feature selection algorithms and machine learning algorithms to classify applications in
WEKA. In [25], the authors claimed to introduce a new approach called permission maps
(Perm- maps) that could combine information related to the Android permissions with their
severity level. In the end, (Convolutional Neural Network) CNN techniques were used to
classify several malware types. Xiong et al. [26] utilized the dominant permission patterns
in either malware dataset or clean dataset to work as a weak classifier in the proposed En-
clamald, an ensemble classifier. The permission patterns defined in both datasets were also
used but only with significant differences in their support degrees. An unknown application is
fed to the classifier, and after computing the score of the weak classifier with a discrimination
coefficient, the application is categorized into normal or malware. The authors in [27] intro-
duced a two-layered malware security and detection model by improving the Random Forest
Algorithm in the first layer after submitting the fuzzy sets. In the second layer, they mined
the sensitive cluster of permissions to analyze the fuzzy sets using the Apriori Algorithm. The
work proposed in [28] mainly used a couple of feature extraction algorithms called Sequential
Forward selection (SFS) and Principal component Analysis (PCA) to identify the type of per-
missions and took down the malicious application detection by limiting the permissions that

seemed dangerous using the centralized algorithm.

Amer [29] worked on creating an ensemble model based upon multiple machine learning
classifiers to train and test the given data. They were subsequently categorizing the apps as
malware or benign. The authors emphasized the efficiency of their model as their robustness
feature, and it outperformed the previous works in terms of accuracy. The authors in [30] used
feature reduction techniques such as Information gain, Relief, and Gain Ratio to take only the
most influential set of permissions out of the entire collection. Further, to detect malware from

the used dataset, supervised classifiers were used. Sirisha et al. [31] built a sequential neural

19

network model for training and later tested the permission data with three hidden layers to
classify the applications. First, a threshold was set in the sigmoid output in the output layer.

Then, all the applications exceeding that threshold were considered malware.

The authors in [32] focused on risk scoring the applications using the Naive Bayes method
and its advanced modifications and mixture models. According to the authors, their approach
can be used as a feedback mechanism for the developers as they might get an idea of which
permission to keep or lose to make their app less risky. To report their results, they used
the Radius of Curvature Curves to compare a randomly selected app with a particular risk
value being used as an indicator of a malicious app. They concluded the paper by stating that
Naive Bayes with Informative Priors works best while ranking the apps and risk scoring. In
[33], the authors introduced a framework that utilized Natural Language Processing (NLP)
techniques called WHYPER, which reads application descriptions to inform the user why the
application needs particular permission. For this, they performed analysis over snapshots of
the Android application’s descriptions, parsed them using an NLP parser, and produced the
Annotated description with the help of a semantic engine. Samra et al. [34] worked on making
clusters of two categories of Android applications, namely business, and tool, using the K-
means Clustering algorithm. The clustering algorithm uses permissions as features extracted
from the XML files of the applications. The detection results indicated that their clustering

technique could efficiently detect malware.

The authors in [35], after extracting permissions as features from various applications, used
Information gained to select k best features. Then on the extracted features, they further ap-
plied the K-means clustering algorithm, classified it using a decision tree, and concluded the
paper by showing their detection results after using several machine learning algorithms. In
[36], the authors extracted permissions from various applications, studied their frequency, and
observed that the chances of malware asking for a single permission are comparatively higher
than the normal apps. Further, they applied various machine learning algorithms with different
values of k in k fold cross validation to note down the accuracy values and called their whole
approach Permission Usage to detect Malware in Android (PUMA). Moonsamy et al. [37]
emphasized the importance of promoting the utility of “Used” as well as “Required” permis-
sions. They used the Biclustering method in the first step to visualize the permissions, later
to use the rare yet unique as well as frequently asked permissions; they proposed the Contrast
Permission Pattern Mining (CPPM) method in which they reduced the dataset to contrasting

permissions pattern by taking the support score for each feature. Finally, they selected the

20

permissions with the maximum support difference between the normal and malicious datasets.
The authors in [38] presented the Appguard system, which has proven helpful in customizing
security policies on untrusted applications. Whenever a new app gets installed, its proposed
model asks the client to secure it, and then it installs a new modified app after rewriting its
policies and deleting the old app. In [39], the authors divided the permission into four groups:
Android, custom, dangerous, and all permissions. Further, they used this division to calculate
eight permission pair scores, four each for normal and malicious. In the end, per-pair scores
for normal and malware apps were used to classify the app as benign or dangerous. Finally,
they concluded their paper by stating the detection results with machine learning algorithms

such as Random Forest and Stacking Ensemble Learning (SEL).

2.1.2 Permissions with Manifest file components

Few studies analyzed, in addition to the permissions, other manifest file components as well,
such as intents, hardware components, opcode sequences, .dex code etc. In this section, we
review the works that have used manifest file components for malware analysis or detection in

combination with permissions.

The work done by the authors in [40] was threefold. In the first step, they filtered out
the most relevant features from the entire set using mutual information gain. Then, they did
the same for another feature set with top code-based features. Finally, they repeated this
step with a combination of permissions and code-based features. Their conclusion proved
that the hybrid features provided the best detection accuracy. Seyfari and Meimandi [41]
tackled the issue of many features by employing an ensemble approach that combined the
Simulated Annealing (SA) algorithm with fuzzy logic. This approach, which was assessed
using conventional machine learning classifiers, exhibited efficacy in exploring the solution

neighborhood.

In a different study, [42] the authors built a detection system utilizing the LSSVM learn-
ing approach, incorporating ten unique feature selections and ranking techniques. Chaudhary
and Masood [43] employed a comparative methodology by utilizing both the entire dataset
and a diminished set obtained by the Chi-square feature reduction technique. By utilizing
the Convolutional Neural Networks (CNN) method with the entire dataset of permissions and
intents, researchers noticed improved performance and decreased overhead while using the

smaller dataset as opposed to the complete one. Rahima Manzil and Naik [44] introduced a

21

novel method for feature selection, where they utilized Hamming distance and threshold tech-
niques to identify the most relevant set of permissions and intents. Afterward, they utilized
various classifiers, including machine learning, deep learning, and ensemble learning, to iden-
tify Android malware. Bai et al. [45] chose permissions and opcode sequences to feed into
their CatBoost classifier for malware detection and family classification. In the first step, they
extracted the permissions, followed by using the N-gram algorithm on the opcode sequences.
Furthermore, for the feature selection method, the FCBF algorithm was used before the testing
phase. Alazab et al. [46] innovated an algorithm based on scoring and grouping techniques
to identify similar repackaged applications by comparing the frequency distributions of API
calls and permissions between two applications. They even used feature selection techniques,
such as information gain, along with machine learning classifiers to choose the best features

and obtain the highest accuracy.

Bhat and Dutta [47] extracted permissions and various other features in the data collection
step. To reduce the feature set, infrequent features or common features in both classes were
removed because they were insufficiently informative. Moreover, they ranked the features
based on their information gain scores to choose the optimum set. Finally, they used machine
learning classifiers to showcase their detection results. Song et al. [48] matched the dangerous
permissions, their combinations, and other malicious features with permissions requested by
unknown applications to generate a detection report and submit it to the user. Based on these

results, they built a threat degree threshold model for detecting malicious behavior.

Dehkordy and Rasoolzadegan [49] addressed the issue of balancing the dataset before de-
tection using techniques such as the synthetic minority oversampling technique (SMOTE),
random undersampling, and a hybrid method involving both to balance the huge dataset of ten
types of features. In addition, they reduced the dataset using frequency ranking-based methods
and further used machine learning classifiers for detection after balancing the dataset. Nguyen
et al. [50] extracted 12 types of features, categorized them into three groups, and further re-
duced the feature set using a support vector machine (SVM), deep neural network (DNN),
and analysis of variance (ANOVA). After reducing the set, the authors fed the group results
individually as multiple inputs to the DNN to later combine into one final DNN to learn the

abstract of each feature vector before making the final decision.

Firdaus et al. [51] took a different approach by extracting permissions and rare features such
as directory paths and telephony. Furthermore, after ranking and reducing the feature set using

information gain and frequency-based methods, the results were fed to various bio-inspired

22

artificial neural network classifiers, namely multilayer perceptron (MLP), voted perceptron
(VP), and radial basis function network (RBFN). Varsha et al. [52] extracted permissions, op-
code, and various other manifest file features to build a detection model. The authors used
various feature ranking and selection techniques, such as naive Bayes (NB), weight calcula-
tion, entropy-based Category Coverage Difference (ECCD), and Weighted Mutual Informa-
tion (WI), to reduce the feature set, choose the most relevant features, and fed them to various

machine learning classifiers.

Sun et al. [53] proposed a non-parametric learning framework using the positive and un-
labeled (PU) learning method to learn and detect malware after removing irrelevant features
using frequency ratio criteria and PCA techniques. Finally, they compared the results of their
PU learning approach with those of other machine learning classifiers and approaches. Rathore
et al. [54] underscored the significance of feature reduction and ranking by employing an ex-
tensive array of feature sets. They proposed a robust feature reduction method that employs
diverse classifiers and feature sets, encompassing permissions, intents, opcode sequences, and
mutually exclusive and merged feature spaces. Despite a reduction of up to 90% in feature
size, this impacted the original detection accuracy to some extent, but concurrently, it effec-

tively streamlined test and training times.

2.1.3 API calls based Detection

In this section, we review the works that have used API calls, within the Java source code
of the app, to detect Android malware. Almahmoud et al. [55] moved forward with their ap-
proach by performing a static analysis of four features, permissions, API calls, monitoring
system events, and permission rates. They aimed to compare the detection results of recurrent
neural networks with those of traditional machine learning classifiers. Mahindru and San-
gal [56] opted for Artificial Neural Networks (ANN), more especially self-organizing maps
(SOMs), as their classifier of choice. The researchers employed six feature selection strategies
to identify malware behavior, utilizing permissions, API calls, user rating, and the quantity of
user-downloaded apps as the features. Taheri et al. [57] calculated hamming distance between
features, performed static analysis, and built four new KNN-based classifiers. The features
extracted were permissions, API calls, and intents. They used the random forest as a feature
selection algorithm and concluded their work by comparing it with various state-of-the-art

techniques such as mixed and separate solutions, the program dissimilarity measure based on

23

entropy (PDME), and FalDroid algorithms. Mohamed et al. [58] proposed an Android mal-
ware detection system that uses only the most common permissions and API calls and feeds
them to machine learning classifiers. Sheen et al. [59] proposed a multi-feature collaborative
decision fusion method to club the decisions predicted by various classifiers and for various
features such as permissions and API calls. The authors also used several feature ranking
methods, such as chi-square, relief, and information gain, to reduce the feature set before the

testing phase.

Mahindru and Sangal [60] extracted features such as permissions and API calls to build a
detection system using various machine learning algorithms, including supervised, unsuper-
vised, semi-supervised, and hybrid learning classifiers. The authors used ten distinct feature
selection and ranking techniques to deal with the dimensionality issue and reduced the fea-
ture set. Taheri et al. [61] proposed a couple of defense methods, particularly for adversarial
attacks, using robust-NN and C4N CNN algorithms and feature sets including API and per-
missions. Mahindru and Sangal [62] extracted features such as permissions and API calls,
rating, and the number of users downloading the app to build a detection system using various
unsupervised machine learning algorithms. The authors used ten distinct feature selection and

ranking techniques to deal with the dimensionality issue and reduced the feature set.

Xie et al. [63] proposed an analysis-based approach to fingerprint Android malware families
to describe their different behaviors. For this, they extracted permissions, API calls, and hard-
ware components, ranked them based on Fisher score and frequency-based methods, and chose
the top 20 features to be used for fingerprinting. Lastly, they used an SVM machine learning
classifier to check the efficiency of their proposed approach. AlJarrah et al. [64] extracted
permissions, API calls, and contextual information, tackled the dimensionality problem using
Information Gain, and fed the features to various machine learning algorithms. Mahesh and
Hemalatha [65] combined the CNN classifier with an Adaptive Red Fox Optimization (ARFO)
technique to propose a new approach for malware detection. To conduct their research, they

extracted permissions and API calls and reduced the dataset using the Minmax technique.

Keyvanpour et al. [66] mainly used three feature selection techniques on their extracted fea-
tures, namely, permissions, API calls, intents, and hardware components, and reduced the set
with the help of frequency-based, RF weigh-based, and feature group frequency-based meth-
ods and further fed the results to various machine learning classifiers. Mahindru and Sangal
[67] proposed a static analysis approach that extracts permissions and API call features for de-

tection. The authors further used the t-test and multivariate linear regression stepwise forward

24

selection and cross-correlation methods to reduce the feature set. Finally, the results were
fed to various machine learning and ensemble classifiers, such as radial basis function neural
networks, using three different ensemble methods. Sun et al. [68] extracted permissions, API
calls, intents, and package names as keyword features and determined the correlation between
them using the Keywords Correlation Distance(KCD) technique. The smaller the KCD, the
closer the keywords. The extracted features are then utilized by the SVM classifier. Arp et al.
[69] performed static analysis using various features such as intents, permissions, hardware
components, network addresses, app components, and API calls to build a detection model
and address the limitations of static analysis. They proposed a detection system that could
provide efficient runtime performance and worked on many malware datasets by mapping fea-
tures to a joint vector space, where patterns and combinations were analyzed. Zhu et al. [70]
opted for static analysis in the development of their detection model. They leveraged permis-
sions, API calls, and hardware features as inputs for their CNN-based multi-head Squeeze and

Excitation Residual block (MSer).

Ibrahim et al. [71] used various static features, including permissions, API calls, receivers,
and services. They proposed new features, such as file size and fuzzy hash values, and pro-
cessed them using a deep learning model, comparing its efficiency with that of several other
machine learning classifiers. Kabakus [72] proposed a neural network-based model that uses
one-dimensional data as input for training and testing. The features included intents, API
calls, and permissions. Yuan et al. [73] introduced a broad learning approach similar to a flat
neural network with two hidden layers for lightweight on-device detection. They used fea-
tures such as permissions, intent actions, and API calls, outperforming both shallow and some
deep learning models in on-device training. The authors in proposed a privacy-preserving
framework that leveraged federated learning (FL) to collaboratively train Android malware
detection models across distributed user devices without sharing local data. The authors in
[74] employed a deep neural network within the Federated Learning framework to improve
detection accuracy while addressing the privacy and scalability limitations of centralized sys-
tems. Their experimental results indicated that the FL-based approach achieved performance
comparable to centralized training while maintaining data confidentiality and adaptability to
distributed environments. This research demonstrated the potential of federated learning as a

secure and scalable paradigm for Android malware detection.

25
2.1.4 Limitations of Static Analysis

Static analysis, while widely used in malware detection, has several inherent limitations.
Since static analysis focuses on examining the code without executing it, it often misses crit-
ical context-dependent actions such as code obfuscation, dynamic code loading, and runtime
permissions modifications. Furthermore, static methods struggle with evaluating interdepen-
dencies between different application components that interact dynamically, which can limit

their effectiveness in detecting complex, multi-stage attacks.

When focusing on permissions, static analysis faces limitations due to the overly broad na-
ture of permission requests. Android applications often request a wide range of permissions
that may not be fully utilized, making it difficult to determine the true intent behind the per-
mission usage. This can result in false assumptions regarding an app’s behavior. Similarly,
analysis of the manifest file is limited, as it only provides a high-level overview of declared
components, such as activities, services, and intents, without reflecting how these components
are actually used during execution. Malicious apps can declare benign-looking components
while hiding harmful actions in less obvious parts of the code. The limitation with API calls
based detection is that often if the APIs used are not related to any manifest file component,

they act as noise in the detection process. Hence, it may lead to lower detection accuracy.

2.2 Dynamic Detection Model

Dynamic analysis opts for a different approach than static analysis. Instead of examining the
code, it relies upon monitoring an application’s behavior while it is running over any virtual
or real CPU. As the name suggests, dynamic analysis is performed by analyzing the runtime
behavior of applications, and the features analyzed during this process are called dynamic

features, such as -

1. Network traffic- Network traffic refers to the flow of data across a network, encom-
passing all the communication that occurs between devices, servers, and other network
elements. It includes data packets transmitted through various protocols, such as Trans-
mission Control Protocol (TCP), User Datagram Protocol (UDP), Hypertext Transfer
Protocol (HTTP), Domain Name System (DNS), and others.

In mobile network traffic, Transmission Control Protocol (TCP) flows play a crucial role

in ensuring reliable and efficient communication between devices. TCP is a connection-

26

oriented protocol that facilitates the orderly and error-checked delivery of data between
applications. TCP connections begin with a three-way handshake, where the sender and
receiver exchange synchronization (SYN) and acknowledgment (ACK) packets to es-
tablish a connection. TCP connections are gracefully terminated using a four-way hand-
shake, involving FIN (finish) and ACK flags. For example, Figure 2.5 is a snapshot
of Wireshark-extracted TCP flows from the network traffic of CRIDEX malware applica-
tion. Six flows out of over five thousand are displayed in the figure depicting the duration

and movement of packets/bytes from source to destination.

TCP. 5223

Address A Port A Address B PortB Packets Bytes Stre;m ID Packets A —B BytesA—B PacketsB —+ A BytesB - A Rel Start Duration Bits/sA—B Bits/sB — A
10.0.2.108 54851 93.189.29.82 8080 10 3kB 54827 5 TkB 5 2 kB 6328830697094 0.0955 95 kbps 129 kbps
10.0.2.108 54852 62.75.18470 8080 3 194 bytes 54828 3 194 bytes 0 0 bytes 638831.750195 8.9986 172 bits/s 0 bits/s
10.0.2.108 54853 93.189.89.83 8080 12 3kB 54829 6 1kB 6 2 kB £38853.761407 0.1434 68 kbps 94 kbps
10.0.2.108 54854 62.75.184.70 8080 3 194 bytes 54830 3 194 bytes 0 0 bytes 638854.863812 8.9987 172 bits/s 0 bits/s
10.0.2.108 54855 93.189.89.83 8080 12 3kB 54831 6 1kB 6 2 kB 638876.865093 0.1433 66 kbps 88 kbps
10.0.2.108 54856 62.75.184.70 8080 3 194 bytes 54832 3 194 bytes 0 0 bytes 638877.968479 9.0069 172 bits/s 0 bits/s

Figure 2.5: Snapshot of TCP flows from the network traffic of CRIDEX malware application.

2. System calls - In Android, system calls are essential functions that allow applications to
interact with the underlying operating system kernel. These calls are typically denoted
by unique identifiers or numbers, which correspond to specific operations or services
provided by the kernel. System calls are found within the Android Runtime (ART) en-
vironment and are invoked by applications to perform various tasks such as file I/O op-
erations, network communication, process management, and hardware interaction. For
example, the open() system call is used by applications to open files, while the socket()
system call is utilized for network socket creation. System calls allow real-time moni-

toring of app behavior, enabling the detection of malware activities as they happen.

Researchers have used other dynamic features also such as function call graphs [75], teleme-
try channels [76] and URL’s [77] etc. for Android malware detection. These related studies
can be further classified into two categories namely OS-based features, and Network Traffic

features, which we explore in detail further.

2.2.1 OS-based detection

In this section, we review the works that have used features like system calls, CPU logs, user

interaction, etc., for Android malware detection.

27

Dimjasevi€ et al. [78] were driven by the goal of demonstrating that semantic information
exists in system call sequences. They treated each system call sequence as a sentence in a
language, constructing a classifier based on the Long Short-Term Memory (LSTM) language
model. The authors in [79] highlighted the fact that feature selection improves the performance
of existing approaches. Subsequently, they proposed a two-step approach based on the Rough
set and another statistical test to extract the refined form of system calls. Chew et al. [80]
focused on presenting a ransomware detection technique based on behaviors observed in the
system calls performed by the malware. They then improved upon their initial approach to de-
tect crypto-ransomware in real-time using a 2-layer token-based finite state machine streaming

approach.

In [81], the authors introduced EnDroid, an innovative dynamic analysis framework that
autonomously extracts various types of dynamic behavior features such as cryptographic op-
erations, system calls, etc. to enhance malware detection. They utilized the chi-square feature
selection algorithm to eliminate irrelevant or noisy features and identify crucial ones. Further,
their proposed model employed Stacking to achieve effective malware detection. TaintDroid
[82] model, based on dynamic taint analysis, analyzed the system calls sequences and tracked
the flow of privacy-sensitive information through third-party apps. The authors, with system
calls sequences, observed that many normal apps can leak the private information stored on
the mobile device. Many systems such as ([83], [84]) are built on the TaintDroid model to
detect the privacy leakage from the apps on the Android platform. Yang et al. [85] extended
the TaintDroid model to detect the data leaks from the apps and also determine whether the
leak is due to user intention or not. All these works focused on analyzing data-leaks from the
apps, rather than detecting malicious apps. CopperDroid [86] model analyzed system calls of
malware samples and described whether the malicious behavior is initiated from Java, JNI, or

native code execution.

Afonso et al. [87] analyzed the combination of the dynamic API calls and system calls to
detect malicious apps. CrowDroid [88] model extracted the system calls and made use of
partitional clustering techniques to distinguish malicious apps from the normal ones. Droid-
Trace model [89], based on ptrace, monitored various dynamic features such as system calls
sequences, file operations, network connections, etc., for malware detection. [90] analyzed run
time traces of the apps like system calls, network traffic behavior, and real-time user inputs like
users’ interactions with the apps, etc. to evaluate the risk associated with the applications. Jang

et al. [91] leveraged volatile memory acquisition to detect malicious Android applications.

28

2.2.2 Network Traffic-Based Detection

In the literature, several authors have focused on Android malware detection using network

traffic features, this section reviews all such related works proposed in the literature.

In their study, Arora and Peddoju [92] opted to gather network traffic features using real
smartphones instead of emulators. They highlighted the advantages of this approach, as it al-
lowed them to obtain a comprehensive set of 22 network traffic features, which proved to be
more than enough to achieve optimal detection accuracy. In order to further decrease the num-
ber of features and identify the most optimal set of characteristics, they employed information
gain and statistical methods like chi-square to rank the feature set. The authors of the study
[93] conducted their research by analyzing the network flow of applications. They discovered
that certain network traffic features have distinct value ranges when comparing malware traffic
to normal traffic. As a result, they selected the most significant and distinguishing network

traffic features to develop a model for detecting malware.

In their study, Lashkari et al. [94] introduced nine novel flow-based network traffic char-
acteristics. These features were used to develop an Android malware detection model that
demonstrated high efficiency by utilizing only a minimal amount of features. The model was
able to successfully detect unknown malware instances and accurately classify the type of
malware. In order to determine the most optimal set of features from both existing and newly
introduced ones, the researchers employed algorithms such as information gain, CFS subset,

and SVM.

Shabtai et al. [95] tried to understand the reason behind the deviations in the application’s
network traffic behavior from the normal flow by observing the network traffic flows. The
authors focus on the server side of the system and believe that a strong correlation exists be-
tween normal behavior patterns that can be used to detect abnormal activities. To conduct their

research , the authors used eight Android devices, real malware, and self-developed malware.

Wang et al. [96] proposed an approach analyzing the text semantics of HTTP request headers
and believed that it could be used to distinguish between normal and malware applications. To
use the HTTP request header text as features, the authors used a natural language processing
algorithm called N-gram and tried to reduce the feature set to only the most influential ones
using a statistical chi-square test. For their testing phase, they used the SVM machine learning

algorithm and varied the value of N in the N-gram to determine the best set of parameters.

29

Li et al. [97] aimed at mapping the network traffic features onto a high-dimensional matrix
space for few-shot Android malware-encrypted network traffic classification. Simultaneously,
to perform feature reduction, they carefully compressed the searching space using a metric
learning framework called path optimization prototypical nets (POPNet). Hossain et al. [98]
focused mainly on finding a robust solution to deal with the growing ransomware attacks
using network traffic features. To deal with the huge dataset problem, they exploited particle
swarm optimization to select only the optimal traffic characteristics. Furthermore, they used
two machine learning classifiers to verify the detection accuracy of their proposed approach
using a reduced set of features. The proposed PSO-assisted feature selection enabled the
classifier to significantly improve detection accuracy. The authors in [99] devised a DL-based
malware classification system using raw payload and CNNs. They concentrated on the raw
payload of malware network traffic, leveraging the byte information to represent the behavioral
patterns of malware and further treated the window selection algorithm’s filtered (SWS) flows

as documents to be processed by NLP methods.

The authors in [100] divided their work into two parts: creating a training model and a real-
time detection model. For training , they incorporated several third-party scanning services
to observe malicious behavior and train their model. They based their training and real-time
detection model on DNS queries and HTTP requests and proved that their model produced
better results than the integrated scanning services upon considering only DNS queries alone.
Zulkifli et al. [101] directed their approach towards dynamic detection techniques based on
network traffic, where traffic flows were extracted during application runtime. For the testing
phase, they used the J48 decision tree machine learning algorithm to classify applications as

normal or malware for two datasets.

Pang et al. [102] worked on creating an efficient and convenient network traffic collection
system. The authors observed that the malware applications produced a negligible amount of
network traffic data; hence, to tackle the irregularity issue in the two datasets, they tried to
combine imbalance algorithms with the classical machine learning algorithms for their testing
methods. Malik and Kaushal [103] proposed a detection system called CREDROID based on
pattern-based detection, which analyzes the DNS queries and the information being transmit-
ted to the remote server by an application to classify them as normal or malware. They consid-
ered four parameters: putting the app through VirusTotal to calculate an apk score, analyzing
the reliability of the website the application is communicating with, the kind of information

being sent, and the type of communication channel being used.

30

Wang et al. [104] analyzed multiple levels of network traffic features and emphasized that
combining 2 levels, namely HTTP packet and TCP flow, can be successfully employed to
create a lightweight server-based malware detection model. Lastly, on the belief that ma-
chine learning can be used to automatically discover the rules by analyzing the data, they
applied machine learning algorithms on the training set and performed the testing experi-
ments. Chen et al. [105] extracted a combination of time-related network flow and packet
features and further used supervised machine learning algorithms to classify traffic as mal-
ware or normal. Mahdavifar et al. [106] emphasized the concern regarding the difficulty in
accumulating well-labeled datasets and hence proposed a Deep Neural Network (DNN) based
work to perform dynamic analysis for malware category classification. They further compared
the detection results of their approach with those of a well-known semi-supervised machine

learning technique called label propagation.

Liu et al. [107] suggested a Graphical Neural Network (GNN) model based on mobile net-
work traffic that focused not only on node characteristics but also on edge attributes. After
extracting the network traffic information, they updated the hidden state of each node and
combined adjacency data with node attributes to construct the GNN model to further classify
applications as normal or malware. Hamouda et al. [108] utilized the FDL to propose a deep
learning-based malware detection model, in particular a convolutional neural network model

to detect Android malware based on network behavior.

2.2.3 Limitations of Dynamic Analysis

Dynamic analysis, while a powerful tool for detecting malware through real-time behavior
monitoring, presents several limitations that hinder its universal applicability. One primary
shortcoming is its resource-intensive nature. Analyzing programs dynamically requires sig-
nificant computational resources and time, making it less efficient for large-scale or real-time
malware detection. Moreover, sophisticated malware variants can detect when they are be-
ing analyzed in a controlled environment, such as virtual machines or emulators, and alter
their behavior to avoid detection. Furthermore, not all malware samples generate observable
network traffic. Some malicious programs operate in more covert ways, such as by sending
text messages or manipulating local files, without establishing connections to remote servers.

Consequently, network traffic-based detection mechanisms fail to capture these activities.

At the same time, system call-based detection mechanisms, commonly employed in dynamic

31

analysis, face challenges in terms of platform and version dependency. The effectiveness of
these methods can vary significantly across different operating system versions, making it

difficult to generalize detection strategies.

Overall, dynamic analysis, while valuable in detecting real-time malware activity, is ham-
pered by its resource demands, susceptibility to evasion techniques, and limited generalizabil-

ity across platforms and malware types.

2.3 Hybrid Detection Model

Given the limitations of both static and dynamic analysis, hybrid analysis has emerged
as a comprehensive approach to Android malware detection. Hybrid analysis combines the
strengths of both static and dynamic methods, providing a more robust and resilient detection
framework. Merging the two techniques, hybrid analysis enhances detection coverage, allow-

ing for the identification of both known and zero-day threats while minimizing false positives.

Lastly, we now discuss some studies that have based their research on combining static and
dynamic analysis techniques to propose a hybrid detection model. Wang et al. [109] analyzed
permission sequences to build a static detection model for text-based binary classification.
They further classified malware families by extracting memory features and constructing ob-
ject reference graphs, demonstrating high-accuracy resistance to obfuscation attacks. Kang
et al. [110] tried to overcome the limitations of using just permissions as a part of detection
by using other features too such as API calls, Intents, serial number, file hash and system
commands to carry out application classification. Further to classify the malware family too,
they calculated the similarity score by using Needleman-Wunsch algorithm for the feature
strings. The number of malware families are around a several hundred which poses as a lim-
itation for detection to tackle with the zero day malware. Hence, Qiu et al. [111] used the
security/privacy-related capabilities for each malware sample, which exists in around dozens
only, to annotate the applications and build a feature vector table instead of using the malware

family information while incorporating the TF-IDF technique.

The work done by the authors in [40] was threefold. In the first step, they filtered out the
most relevant features from the entire set using mutual information gain. Then, they did the
same for another feature set with top code-based features. Finally, they repeated this step
with a combination of permissions and code-based features. Their conclusion proved that the

hybrid features provided the best detection accuracy. The authors in [112] used a variety of

32

features such as permissions API calls and system commands to evaluate a machine learning
based problem utilising the Bayesian classifier to analyse and detect malicious behaviour in
unknown applications. To carry out the detection process they ranked the features on the basis
of Mutual information score and lastly they computed their work by showcasing their detec-
tion results to prove that their approach produced optimum results. Zhu et al. [113] described
their approach as a complete machine learning-based random forest approach, extracting four
groups of features, namely permissions, permission rate, API calls, and system monitoring
events. Finally, they compared the detection results of the RF classifier with those of the SVM
classifier. Zhang et al. [114] performed a dynamic taint analysis technique to completely iden-
tify both explicit and implicit permissions use points to further build a permission use graph
with the behavior profiler module of the proposed system. The profiled permission graphs
were later used to capture the behaviors of using permissions inside an application. Yang
etal. [115] proposed a method involving static analysis of permission-related API invocations
and dynamic exploration to analyze permission-related behavior of the app using a locally
exhaustive permission combination strategy that is also capable of simultaneously modifying
permission combinations at runtime. The authors first constructed the State Transition Graphs
(STGs) using the permissions and further fed them to the dynamic exploration module to im-
plement the breadth-first search for UI exploration. Zhou et al. [116] extracted static features
such as permissions, API calls and network addresses to feed the features into GRU model
and improve the traditional GRU model to SimGRU which is based on the similarity princi-
ple, and propose three different GRU structures namely InputSimGRU, HiddenSimGRU and
InputHiddenSimGRU.

Qaisar and Li [117] proposed a hybrid approach to extract and store features in a case base
using case-based reasoning, which is a lazy learning approach capable of continuously learn-
ing. They used k means clustering to find similarities between features and detect malware
behavior. Wang et al. [118] proposed a detection model using an ensemble of string-based and
structural-based features, such as permissions, API calls, intents, hardware components, code
patterns, and functional call graphs. To showcase the proposed model’s detection results, they
used various machine learning classifiers with a single feature type and an ensemble of both
feature types. Arshad et al. [119] exploited the benefits of both static and dynamic analysis
by proposing a hybrid detection model using permissions, hardware components, and various
other features, including system calls and network addresses. The authors used both local and

remote hosts to detect the malicious behavior of applications using several machine-learning

33

algorithms. Anupama et al. [120] proposed a hybrid methodology that combined permissions
and system calls to create a detection model utilizing a range of machine learning and deep
learning classifiers. Later, they aimed to analyze the working of classifiers in the case of ad-
versarial samples. Surendran et al. [121] proposed a hybrid approach considering permissions
and API calls from the static feature set and system calls from the dynamic feature set to study
the co-dependency between the static and dynamic features. Lu et al. [122] extracted a bunch
of resource features and semantic features as a part of static analysis and extracted a variety of
dynamic features to build a hybrid deep-learning malware detection model. Due to the binary
nature of static features, they were used as input for the Deep belief Network (DBN), and

dynamic features were used as input for the Gated Recurrent Unit (GRU).

2.3.1 Limitations of Hybrid Analysis

As discussed earlier, both static and dynamic analysis have their inherent limitations. Since
most of the hybrid works extract the OS-based dynamic features such as system calls, CPU
logs, user logs, etc., high computation overhead is involved in the processing. Additionally,
not all Android malware samples generate network traffic. It has been observed that certain
types of malware may transmit text messages discreetly in the background, without producing
any noticeable network traffic. Hence, network traffic-based detection mechanisms cannot

detect such samples.

2.4 Multi-Category Malware Detection Model

While the threat of Android malware is well-recognized, it extends beyond basic detection.
Malware can be categorized into distinct types, such as Adware, Fraudware Trojans, Spyware, and
Ransomware. Thus, binary classification, which differentiates between benign and malicious
samples, serves as an essential initial step. However, multi-category classification, which
further identifies the specific type of malware is also an additional step taken up by many
researchers using a range of static and dynamic features. This section reviews notable studies

that have contributed to advancing multi-category classification in Android malware detection.

Abuthawabeh and Mahmoud [123] extracted the conversation-level network traffic features
to build an Android malware detection system that was capable of not only binary and malware

categorization but also classification of the detected malware family. For this, after cleaning

34

the data to remove the unwanted redundancies, they used the ensemble learning technique to
choose the best set of features, followed by training and testing the data using the machine

learning classifiers.

Feng et al. [124] divided their whole approach into two layers, wherein the first layer they
focused mainly on the static features such as permissions, intent, etc. whereas, in the second
layer, they focused on the dynamic features, i.e., the network traffic features of the appli-
cations. After the extraction of static features in the first layer, they fed them to the fully
connected neural network and used the benign output applications for the next layer of ex-
tracting network traffic features. Results indicate the second layer which was a combination
of convolutional autoencoder and neural network, was capable of classifying applications as
normal or malware with the added benefit of detecting their corresponding malware category
and family too. Imtiaz et al. [125] put forward a hybrid approach using static features in the
first phase of their model and dynamic features in the second phase. They extracted permis-
sions, intents, and API calls and fed the results to their proposed deep-learning artificial neural
network model for malware classification and used network traffic flows for malware fam-
ily classification. Feldman et al. [126] worked on using static features such as permissions,
high-priority intent filter, and version numbers from the manifest file to build their detection
model to classify nature and app’s specific category, namely adware, spyware, and SMS mal-
ware. Their experimental results indicate that only permissions requests aren’t sufficient to
detect malware, hence, they extended their study to network traffic features by analyzing some

malware applications such as HGSpy, Simplocker, and a Minimob variant.

The authors in [127] combined permissions with more than a single type of network traffic
features to build their binary as well as family classification detection model. They mainly
used DNS queries, TCP flows, HTTP packets, and other packet contents in addition to several
machine learning classifiers. Ding et al. [128] proposed a hybrid approach combining static
and dynamic analysis. For the first part of their approach, they extracted permissions and in-
tents, followed by obtaining the best subset of static features using various feature selection and
machine learning methods. For the second part, they shifted to dynamic analysis, converted
the network traffic data into Mnist format, and fed it into their Res7LSTM model which com-
bined residual network and a long short-term memory model. Their approach had the added
advantage of not only binary classification but category and malware family classification as

well.

35

2.5 Summary

In this chapter, we described the state of the art approaches for malware detection specif-
ically Android-based smartphones. Regarding Android malware detection, we discussed the
approaches in three categories namely: Static Detection, Dynamic Detection, and Hybrid De-
tection. Additionally, we reviewed some notable studies that have contributed to advancing
multi-category classification in Android malware detection. We also highlighted the limita-
tions of the existing works in each of the three categories. To overcome the aforementioned
limitations, we proposed some solutions which are discussed subsequently in the upcoming
chapters. Feature ranking over combinations of permissions and other manifest file compo-
nents using a ranking-based algorithm is essential to identify the distinguishing features to
obtain relatively good accuracy. The next problem addressed in the thesis is on prioritizing
the network traffic features, among a large number of features, for Android malware detection.
Lastly, we propose some hybrid detection models that efficiently overcome the limitations of

standalone static and dynamic analysis methods.

Chapter 3

PHIGrader: Evaluating the effectiveness
of Manifest file components in Android
malware detection using Multi Criteria

Decision Making techniques

Among the components in the AndroidManifest file, the most significant are permissions,
intents, and hardware components. This chapter introduces PHIGrader, an Android malware
detection system using a frequency-based Multi-Criteria Decision-Making (MCDM) approach to
rank these static features. The aim is to identify the most effective feature type and feature set
for Android malware detection. Section 3.1 outlines the motivation and methodology. Section
3.2 details the proposed methodology, while Section 3.3 discusses feature ranking results.
Detection results for two datasets are presented in Sections 3.4 and 3.5. A comparison with
existing literature, along with limitations, is covered in Section 3.6. The chapter concludes

with future work directions in Section 3.7.

37

38

3.1 Introduction

Permissions, intents, and hardware components serve as critical static features within the
AndroidManifest file, offering significant value for Android malware detection. Permissions
regulate app access to sensitive data and system functionalities, making them pivotal in distin-
guishing benign from malicious applications. Intents capture inter-process communications,
revealing app interactions that may signal malicious behavior. Hardware components indicate
the device’s capabilities the app can leverage, thus suggesting risk levels based on required
resources. These features are widely employed in the literature, as their static nature pro-
vides insights without requiring app execution, making faster analysis. Although API calls
are another frequently used static feature, their limitations arise from contextual ambiguity,
where an API call alone may not reliably indicate intent without dynamic contextual analysis.
This limitation underscores the advantage of permissions, intents, and hardware components

as foundational features in static Android malware detection frameworks.

Motivation: Among all the components present within the manifest file of an Android appli-
cation, the most important and influential are permissions, intents, and hardware components.
These static features have been widely used in the literature for Android malware detection.
However, there are many similarities in the feature usage patterns of normal and malicious
apps. Tables 3.1 , 3.2 and 3.3 respectively, summarize the top 20 permissions, intents, and

hardware components based on their frequency in the normal and malware datasets.

We collected 77,000 normal apps and an equal number of malware apps from Androzoo.
More details about the dataset are discussed in the upcoming sections. Furthermore, we ex-
tracted permissions, intents, and hardware components from the manifest files of the corre-
sponding applications. As shown in Table 3.1, 13 of the top 20 permissions are common in
normal and malware datasets. Similarly, Table 3.2 and Table 3.3 highlights that seven out of the
top 20 intents and 16 out of the 20 hardware components are common in both datasets. Such
similarity in these features across both datasets motivates us to rank the features to propose an
efficient detection model with distinguishing features. For instance, the Android operating sys-
tem has more than 150 permissions; if we use all of them as features, irrelevant features may
hamper detection accuracy. Hence, feature ranking is a key process in developing a detection

algorithm.

Several related works, such as [70] , [129], and [118], have used static features to frame

their Android malware detection models. If we take a closer look at them, we observe that Zhu

39

Table 3.1: Top 20 most frequently requested permissions from both normal and malware
datasets with their corresponding frequency.

PERMISSIONS Normal PERMISSIONS Malware
Frequency Frequency
INTERNET 55063 INTERNET 55684
ACCESS_NETWORK_STATE 52391 ACCESS_NETWORK_STATE 55252
WRITE_EXTERNAL_STORAGE 38934 WRITE_EXTERNAL_STORAGE 54759
WAKE_LOCK 32527 ACCESS_WIFI_STATE 53886
ACCESS_WIFI_STATE 28554 READ_PHONE_STATE 53586
RECEIVE 23875 READ_EXTERNAL_STORAGE 46646
READ_EXTERNAL_STORAGE 22516 WAKE_LOCK 44003
VIBRATE 20472 GET_TASKS 43399
ACCESS_FINE_LOCATION 16968 CHANGE_WIFI_STATE 43165
ACCESS_COARSE_LOCATION 16650 ACCESS_COARSE_LOCATION 42425
RECEIVE_BOOT_COMPLETED 16519 VIBRATE 42325
CAMERA 14993 MOUNT_UNMOUNT_FILESYSTEMS 41324
READ_PHONE_STATE 14176 ACCESS_FINE_LOCATION 40720
C2D_MESSAGE 12342 WRITE_SETTINGS 39497
BIND_GET_INSTALL_REFERRER_SERVICE 10593 SYSTEM_ALERT_WINDOW 38594
BILLING 9905 CAMERA 36115
FOREGROUND_SERVICE 9587 CHANGE_NETWORK_STATE 30874
GET_ACCOUNTS 7806 RECEIVE_BOOT_.COMPLETED 29441
WRITE_SETTINGS 7258 READ_LOGS 29112
BLUETOOTH 5820 RECORD_AUDIO 27010

et al. [70] chose static analysis to build their detection model using permissions and hardware
components. They applied Convolutional Neural Network (CNN)-based multi-Head Squeeze
and Excitation Residual block (MSer) on static features for malware detection. Rana and Sung
[129] focused on static features such as permissions, intents, and other hardware components
to create functions based on features that extract the most useful information to facilitate de-

tection. Consequently, they developed a dictionary of these most useful features to generate a

Table 3.2: Top 20 most frequently requested intents from both normal and malware datasets
with their corresponding frequency.

INTENTS Normal INTENTS Malware
Frequency Frequency
MAIN 55919 MAIN 55832
LAUNCHER 55902 LAUNCHER 55769
RECEIVE 22667 DEFAULT 45689
DEFAULT 21291 VIEW 35548
VIEW 18922 BROWSABLE 33915
BROWSABLE 17545 USER_PRESENT 33108
BOOT-COMPLETED 16510 PACKAGE_REMOVED 26806
REGISTRATION 8256 BOOT-COMPLETED 26645
ACTION_POWER _DISCONNECTED 7318 PACKAGE_ADDED 21111
ACTION_POWER_CONNECTED 6690 REGISTRATION 16609
LEANBACK_LAUNCHER 6171 REGISTER 14419
TIME_SET 5989 NOTIFICATION_RECEIVED_PROXY 14139
TIMEZONE_CHANGED 5937 PushService 14004
BATTERY_LOW 5798 REPORT 13998
BATTERY_OKAY 5788 PUSH_TIME 13998
DEVICE_STORAGE_LOW 5750 NOTIFICATION_OPENED 13019
DEVICE_STORAGE_OK 5748 MESSAGE_RECEIVED 13016
MEDIA BUTTON 4932 NOTIFICATION_RECEIVED 12957
QUICKBOOT-POWERON 4730 DaemonService 12488
MY _PACKAGE_REPLACED 4131 CONNECTION 12252

40

Table 3.3: Top 20 most frequently requested hardware components from both normal and
malware datasets with their corresponding frequency.

Hardware components Normal fre- | Hardware components Malware fre-
quency quency
camera 12337 camera 21063
touchscreen 12147 Camera.autofocus 19080
Camera.autofocus 10446 camera.flash 3288
touchscreen.multitouch 8999 nfc.hce 2324
touchscreen.multitouch.distinct 8765 touchscreen 2101
location.GPS 7468 camera.front 2040
location.network 7103 wifi 1694
location 6223 touchscreen.multitouch 1334
screen.landscape 5002 location.GPS 1262
telephony 4725 touchscreen.multitouch.distinct 1256
wifi 4484 microphone 1219
screen.portrait 4136 screen.landscape 1196
sensor.accelerometer 3892 sensor.accelerometer 1111
vulkan 3235 bluetooth_le 855
camera.flash 2892 location.network 825
camera.front 2722 telephony 674
microphone 2216 autofocus 567
bluetooth 2194 location 413
bluetooth_le 1087 camera?2.full 297
NFC 811 usb.action.USB_STATE 264

feature vector that could be fed into various classifiers. Wang et al. [118] proposed a detection
model using an ensemble of string-based and structural-based features such as permissions,
intents, hardware components, and code patterns. To showcase the detection results of the
proposed model, various machine learning classifiers with a single feature type and an ensem-

ble of both feature types were used.

None of the above works used the key concept of ranking the features and hence, missed
the feature reduction step, which could have enhanced the quality of their results. However,
in some works such as [63] and [130], the authors did rank the features and even the com-
bination of features in some cases. Xie et al. [63] proposed an analysis-based approach to
fingerprint Android malware families for describing the different behaviors. They extracted
permissions, API calls, and hardware components, ranked them on the basis of the Fisher
score and frequency-based methods, and chose the top 20 features to be used for fingerprint-
ing. Wang et al. [130] ranked the features using the absolute frequency rate difference between
the malware and benign datasets. In particular, they used permissions and hardware compo-
nents to create a feature vector. However, both studies were implemented on a smaller set
of applications compared with the huge dataset in our proposed work. More importantly, our

work outperforms both in terms of detection accuracy.

Using static features such as permissions, intents, and hardware components has always been

a simple yet effective approach to detect malicious applications. However, it all comes down

41

to choosing the right set of features and the feature type. Hence, in this chapter, we aim to
analyze the effectiveness of the above-mentioned three most commonly used static features in
Android malware detection while taking their frequency as weight inputs and further ranking
them using a couple of Multi-Criteria Decision Making (MCDM) techniques. The following
research questions emerge considering the proposed detection model based on the ranking of

features:

* RQ1 Where does the need for ranking the features arise and subsequently, what is the
significance of feature reduction compared with feeding all the features as inputs at

once?
* RQ2 How to rank features, i.e., how to incorporate feature ranking?
* RQ3 How to devise a detection approach using the ranked features?

* RQ4 Which feature among the most commonly used AndroidManifest file components

gives the best detection accuracy?

We are driven by the goal of answering the research questions mentioned above and at the
same time forming an Android malware detector, named PHIGrader. We used a frequency-
based Multi-Criteria Decision-Making (MCDM) approach to rank the three most commonly used
static feature types, namely permissions, intents, and hardware components. We identified the
best feature type and the best feature set for Android malware detection among the commonly
used AndroidManifest file components. For this purpose, we applied three MCDM techniques
individually to all three feature types. We attempted to implement the MCDM techniques be-
cause of their numerous advantages, such as a simple yet quick computing process and the
ability to work with a vast dataset such as ours. Moreover, these techniques have a ratio-
nal and comprehensive logic that works best when a fundamental ranking of alternatives is
needed. Furthermore, we have proposed a novel detection algorithm that uses feature rankings
formulated from frequency-based MCDM techniques and applies various machine learning
and deep learning techniques to detect Android malware effectively. The work proposed in
this chapter uses a mix of old and recent datasets for evaluation. Our detection results out-
perform several state-of-the-art techniques proposed in related areas of research. Moreover,
our experiments indicate that the proposed frequency-based MCDM approach gives us bet-
ter accuracy than the popularly used feature ranking methods such as Principal Component

Analysis (PCA), Entropy-based Category Coverage Difference (ECCD) and also better than

42

other statistical tests such as mutual information, Pearson correlation coefficient, and T-test,
which have been used in [131], when we evaluate them against the same dataset of normal and

malware apps.

Contributions: The major contributions of this chapter are as follows:

* Initially, we ranked the three feature sets of permissions, intents, and hardware com-
ponents individually in order of their frequency difference between the malware and

normal training datasets to assign frequency-based weights to each feature.

» Next, we apply three MCDM techniques to the three weighted feature sets and rank them

according to their preference score.

» We proposed a novel algorithm that uses the individual rankings of permissions, intents,
and hardware components described by MCDM techniques to develop an efficient An-

droid malware detection system.

» We recognized that the detection results of the proposed approach are better than those
of various state-of-the-art techniques existing in the literature for Android malware de-

tection.

3.2 System Design

In this section, we explain our proposed methodology in detail. Figure 3.1 summarizes a
brief yet complete idea of our proposed model PHIGrader, which is divided mainly into two
modules. We refer to the first module as the Ranking Module, which includes extracting features
from the training dataset and ranking them using three Multi-Criteria Decision-Making (MCDM)
techniques. Such a feature ranking eliminates irrelevant features and filters out only the in-
fluential ones. In the Detection Module, we propose a novel algorithm that applies machine
learning and deep learning classifiers to obtain the best features that can provide higher detec-

tion accuracy. The following subsections discuss in detail both modules of the proposed model.

43

FREQUENCY BASED
T~ MCDM methods

T Permissions FEATURE VECTOR
Normal Dataset | Intents with
Hardware components ONE HOT ENCODING

v
i i // Feature Extraction Feature Representation

RANKING MODULE

Permissions, Intents &
Hardware components
RANKINGS

Ranked Features

Malware Dataset

Permissions, Intents &
Hardware Components
TR . MACHINE LEARNING /

- DEEP LEARNING z
Ranked Features ~
B &® | .
A m
f :

Detection Approach Detection Accuracy

Best set & Best type
of
Features

Best Feature Set

Test Data

DETECTION MODULE

Figure 3.1: PHIGrader System Design

Ranking Module

3.2.1 Dataset

To begin with, we needed a vast dataset of normal and malware applications to conduct our
research. For this purpose, we downloaded 77,000 normal and 77,000 malware applications
from Androzoo [132] dated between 2012 and 2020. Of these, we used 56,000 normal apps
and 56,000 malware apps in the Ranking Module. The remaining 21,000 normal and 21,000
malware apps were used in the Detection Module. We term this dataset as DATASET-1. In
addition, we tested our approach on another unknown dataset containing more recent and
stealthier malware samples detected between 2021 and 2022, named DATASET-2. The market
used by Androzoo for normal applications is the Google Play Store, whereas the malware apps
are from various sources such as PlayDrone , appchina , anzhi, and VirusShare. To create the
normal dataset from Androzoo, we filtered out those apps that had VirusTotal ' detection score
of zero, i.e., the apps that were detected as malware by none of the antiviruses on VirusTotal.
Furthermore, for the malware dataset, we filtered out those applications with a detection score
of at least five, i.e., the apps detected as malware by at least five antiviruses on VirusTotal. With
regard to the sizes of applications to be used, we settled on a range of APK sizes spanning from

1 byte to 8 GB to include applications of varying sizes and functionalities.

Thttps://www.virustotal.com/gui/home/upload

44
3.2.2 Feature Extraction

Android OS uses the Android Package Kit (APK) file format, which contains several sub-
files and folders that further include essential information such as the application’s permissions
and. The most commonly used language for writing the source code of an Android applica-
tion is Java. Subsequently, the Java source codes are compiled and converted into executable
Dalvik bytecodes. Among the several important files present inside the bundle, one is the
AndroidManifest.xml file, which contains three of the most important features used in our detec-
tion model: permissions, intents, and hardware components. The process of extracting such

information from the kit is called decompilation.

We used the Android Asset Packaging Tool (AAPT2) tool ? to extract the list of permissions,
intents and hardware components from normal and malware applications. Finally, these three
extracted lists of features, i.e., 129 permissions, 79 intents, and 88 hardware components were
further used to generate a feature vector for each application in the feature representation

process.

3.2.3 Feature Representation

After extracting the list of features from the applications of our dataset, we create feature
vector tables for their representation. The extracted features are represented using the One
Hot Encoding method * to generate a feature vector for each app in both normal and malware
datasets separately. The feature vector developed for each app is of the binary type, with a /
for the features that the application requests and a 0 for the features that are not present within
that app. In this way, we create six separate vector tables, normal and malware, for permis-
sions, intents, and hardware components represented by Pnyr , Pmyr , Inyr , Imyr , Hnyr and
Hmyr, respectively. For instance, if there are a total of five permissions, say <P,Ps> and
five intents say <Ij,Is> in the system, and any application A; has permissions P;, P, Ps
and intents I3, I4, Is, then the app A; is represented as 71/00/ and 00111 in Pnyr and Inyr

respectively.

We observe that some features have a high frequency in normal or malware datasets. The

frequency difference (Af) between the malware (M) and normal datasets (N) for any feature

Zhttps://developer.android.com/studio/command-line/aapt2
3https://scikit-learn.org/stable/modules/generated/sklearn. preprocessing.OneHotEncoder.html

45

(f) can provide valuable insights for feature ranking. Therefore, before applying the MCDM
techniques to rank the features, we initially assign weights (w(f)) to all permissions, intents,
and hardware components separately based on their frequency difference in malware and nor-
mal datasets. We subtract the frequency count of every feature type separately in the normal
dataset from that of the malware set, as highlighted in equation 3.2.1, and sort them in de-

scending order.

Af =Freqy(f) — Freqy(f) (3.2.1)

Next, we take the newly assigned weights based on the frequency difference for each feature

in the malware and normal datasets.

For instance, if there are N number of features, the top one-third of N, after ranking based
on the frequency difference between malware and normal datasets, will be assigned a weight
of 1 and considered as malware-dominant features. Similarly, the bottom one-third of N will
be assigned a weight of 3 and considered as normal dominant features. The remaining one-
third will be given a weight of 2 as they show neutral dominance or preference. Equation 3.2.3

depicts this relationship below -

1 if fis in top one-third of N
w(f) =42 if fisin middle one-third of N (3.2.2)

3 if fis in bottom one-third of N

where N is the total number of ranked features.

After assigning weights to all features, for every occurrence of / for any feature, we replace
I with its corresponding weight in all six vector tables. For instance, consider the same app
Aj, which was initially represented as /1001 and 00111 in Pnyt and Inyt respectively. Suppose
the weights for P, P, and Ps are 1, 2, and 3, respectively, and the weights for Iz, I4 and Is are
3,2, and 1, then A; is represented as 712003 and 00321 in Pnyr and Inyt respectively. These

vector tables function as decision matrices for our MCDM methods.

3.2.4 Features Ranking

Multi-Criteria Decision Making (MCDM) is one of the most accurate methods of decision mak-
ing. MCDM considers different qualitative and quantitative criteria that need to be fixed to find

the best alternative or choose the best feature. In simple words, MCDM deals with structur-

46

ing and decision making when the data has manifold criteria and the decider needs to find
the best alternative according to his/her preferences. The main steps of all MCDM problems
are as follows: identifying the criteria, determining the weights for the criteria, and ranking
the alternatives or features available in order of preference, followed by choosing the best or
even opting for a subset from them. Furthermore, the goal of all MCDM problems is to define
the alternatives or features as nondominant or influential. Several types of MCDM techniques
work with a similar goal but differ in the complexity level of algorithms, weighting methods
for criteria, way of representing preferences evaluation criteria, uncertain data possibility, and
finally, data aggregation type. In our study, we used three different MCDM techniques to rank
the extracted features individually in order of preference to depict the application of MCDM
in Android malware detection. More information about the techniques used in this chapter is

given below:

1. TOPSIS - The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [133]
is a multi-criteria decision analysis method based on the assumption that the best alter-
native should have the least geometric distance from the Positive Ideal Solution (PIS)
and the longest geometric distance from the Negative Ideal Solution (NIS). TOPSIS is
used for comparing a set of alternatives by normalizing scores for each criterion, de-
scribing the geometric distance between each alternative and the ideal alternative, and
finally, giving out the best alternative as the final result. The complete steps in a typical
TOPSIS application are described below for an MCDM problem defined on m alternatives

and n decision criteria:

Step 1 - The normalization method to produce the normalized decision matrix r;;.

n
rij =x/ 1| L% (3.2.3)
1

where x;; s the performance value of alternative i when evaluated in terms of criterion j.
Step 2 - The weights w;; are assigned to various criteria according to their respective

importance or contribution.

Wij, J:1,2}’l (324)

47

Ywi=1 j=12.n (3.2.5)

Step 3 - The weighted normalized value v;; can be computed by calculating the prod-
uct of the normalized decision matrix r;; and the associated weights w;; with the formula

shown in equation 3.2.6.

Vij = Wij X Tijj (326)

Step 4 - Determine the positive-ideal solution and negative-ideal solution.
A* = {(maxv;; | j€J),(minv;; | j€J)} (3.2.7)

A” ={(minv;; | j€J), (maxv;; | j€J)} (3.2.8)

for J =1,2,3...,n, where J is associated with the benefit criteria. J' = 1,2,3...,n where

J' is associated with the cost criteria.

Step 5 - Calculate the separation measure. The separation of each alternative from the

positive ideal is given by equation 3.2.9:

Si = \/Z (vij—v}*>2j=1 (3.2.9)

where 1=1,2, ..., m.
Similarly, the separation of each alternative from the negative ideal is given by equation

3.2.10:

Si:\/Z(vij—vj>2j:1 (3.2.10)

where i=1,2, ..., m.
Step 6 - Calculate the relative closeness to the ideal solution. The relative closeness of

Ai with respect to A * is defined as follows:

Ci=S8/(S+587),0<cCi* <1 (3.2.11)

48

where 1=1,2, ..., m.

We assumed permissions as i (alternatives) and applications as j (criteria). Because each
application contributes equally to the decision-making process, we assign equal weights
(w;) to all applications. To ensure that the summation of all weights is 1, each application
is assigned a weight of 1 divided by the total number of applications, as highlighted in
equation 3.2.12. This means that each application now contributes proportionally to the
overall assessment, reflecting their equal significance in the problem domain.

1
wj=—
’n

n

;Y wi=1 (3.2.12)
J=1

The larger the C; value (preference score), the better the performance of the alternatives.

Performance(i) e C; (3.2.13)

1

In our case, we applied TOPSIS on Pnyr and Pmyr vector tables separately using the
weights w to compute the normal preference score (Crn} values) and malware preference

score (Cm; values) for each permission feature.
Cn! = TOPSIS(Pnyr,w), i=1,2,....m (3.2.14)

Cm; = TOPSIS(Pmyr,w), i=1,2,....m (3.2.15)

Further, we calculate the difference (D;) between the malware and normal preference

scores for each permission.
Di=Cm; —Cn;, i=12,....m (3.2.16)

Note that the permission with the highest difference between malware and normal pref-
erence score will be the best and most preferred feature. Hence, in the last step, we rank
the permissions in decreasing order of D; values to obtain the TOPSIS-ranked permis-
sions list.

Rank(i) = sort(D;, descending) (3.2.17)

We apply all the above-mentioned steps on Inyr and Imy7 too in order to compute the

49

TOPSIS-ranked intents list and similarly on Hnyr and Hmyr to compute the TOPSIS-

ranked hardware components list.

. EDAS - Evaluation based on Distance from Average Solution (EDAS) [134] is another com-
monly used MCDM technique. The output, i.e., the best alternative, of the EDAS is
determined on the basis of the distances of the alternatives from an average solution.
Moreover, as the average solution is determined with the help of the arithmetic mean,
the EDAS method proves to be quite efficient in dealing with stochastic problems. The
highest final normalized score ASi gives the best alternative of the proposed ones. The
complete steps for an EDAS application are as follows:

Step 1 - After developing the decision matrix, determine the average solution according

to all criteria as follows:

AV = AV}, ., (3.2.18)
where,
m .
AV = 2= 00 (3.2.19)
m

Step 2 - Calculate the positive distance matrix [PDA;;|.x, from average and the negative
distance matrix [NDA;j]mx» from the average matrices according to the type of criteria

(benefit or cost) as follows:

if j th criterion is beneficial,

max (0, (xij —AV]'))

PDA;; = , (3.2.20)
Y AV;
max (0, (AVj —xij))
NDA;; = , (3.2.21)
! AVj
if j th criterion is cost,
0, (AV; — x;;
PDA;j; = max ’ixv-] i) (3.2.22)
J
0, (x;j — AV,
NDA, — M0, (i) = AV))) (3.2.23)

AV,
where PDA;; and NDA;; denote the positive and negative distance of i th alternative from

the average solution in terms of j th criterion, respectively.

50

Step 3 - Determine the weighted sum of PDA and NDA (SP; and SN;) for all alternatives
as follows:
n
SP, =) w;PDA;; (3.2.24)
j=1
SN; =Y w;NDA;; (3.2.25)
j=1
where w; 1s the weight of j th criterion.

Step 4 - Normalize the values of SP and SN for all alternatives, shown as follows:

SP;
NSP = — 2> 3.2.26
S max; (SP) ()
SN;
NSNj=1-— 21 3.2.27
max; (SN;) ()

Step 5 - Calculate the appraisal score or preference score (AS) for all alternatives as
follows:

1
AS; = 5 (NSPi+NSN:). (3.2.28)

where 0 < AS; < 1.

The larger the AS; value (preference score), the better the performance of the alternatives.
Performance(i) < AS; (3.2.29)

In our case, we applied EDAS on Pnyr and Pmyr vector tables separately using the
weights w to compute the normal preference score (ASn; values) and malware prefer-
ence score (ASm; values) for each permission feature while taking the same assumptions

as TOPSIS, i.e., permissions as i (alternatives) and applications as j (criteria).
ASn; = EDAS(Pnyr,w), i=12,....m (3.2.30)

ASm; = EDAS(Pmyr,w), i=1,2,....m (3.2.31)

Further, we calculate the difference (D;) between the malware and normal preference

51

scores for each permission.
Dl' :ASmi—ASI’l,', i= 1,2,...,1’)’1 (3232)

Note that the permission with the highest difference between malware and normal pref-
erence score will be the best and most preferred feature. Hence, in the last step, we rank
the permissions in decreasing order of D; values to obtain the EDAS-ranked permissions
list.

Rank(i) = sort(D;, descending) (3.2.33)

We apply all the above-mentioned steps on Inyr and Imy7 too in order to compute the
EDAS-ranked intents list and similarly on Hny7 and Hmy7 to compute the EDAS-ranked

hardware components list.

. WASPAS - The Weighted Aggregated Sum Product Assessment (WASPAS) method is a unique
combination of the Weighted Sum Model (WSM) and weighted product model (WPM). WAS-
PAS integrates the merits of both WSM and WPM, yet proves to be mathematically simple,
due to which it is now widely accepted as an efficient decision-making tool. A ranking
of alternatives is performed based on the value of combined optimality criteria com-
puted according to the results of these two models. The method, by making a sensitivity
analysis within its functioning, can check the consistency of alternative rankings. The
complete steps in a typical WASPAS application are described below for a MCDM prob-

lem defined on m alternatives and »n decision criteria.:

Step 1 - The total relative importance of alternative i (where x;; is it’s performance value
when it is evaluated in terms of criterion j)

as per the WSM method, denoted by Q,m, is defined as:
ol =Y wyw; (3.2.34)
i=1

where

Xij . .
if max;x;; is preferable
By= g M P (3.2.35)

min;;x;; . . .
— = if min, x;; is preferable
1

This is defined as the linearization of initial criteria values.

Step 2 - The total relative importance of alternative i as per the WPM method, denoted

52

by Ql(z), is defined as:

o = [TGE)", (3.2.36)

j=1

where ¥;; 1s the linearization of initial criteria values as explained above.

Step 3 - The Weighted Aggregated Sum Product Assessment (WASPAS) method for ranking

of alternatives is defined as:

0i=2A Z)Eijo + (1 - l) (f,'j)wj , (3.2.37)
=1

J J=1

where A =0,0.1,0.2,...,1

The larger the Q; value (preference score), the better the performance of the alternatives.
In our case, we applied WASPAS on Pnyr and Pmyr vector tables separately with an aim
to compute the benign preference score (Q; values) and malware preference score (Q;
values) for each permission feature. We assumed permissions as i (alternatives) and ap-
plications as criteria. Since each application contributes equally to the decision-making
process, we give equal weights to all the applications. Moreover, we treat benign appli-
cations as benefit criteria whereas malware applications as non-beneficial or cost criteria.
Consequently, after following Steps 1- 3, we successfully manage to compute two sets of
Q; values in the case of WASPAS using permissions, i.e, one for the benign dataset (Be-
nign Preference score) and another for the malware dataset (Malware Preference score).
Note that the permission with the highest difference between malware and benign pref-
erence score will be the best and most preferred feature. Hence, in the last step, we
rank the permissions in decreasing order of difference value between preference scores
(Malware Preference score - Benign Preference score) to give out the WASPAS-ranked
permissions list.

We apply all the above-mentioned steps on Iny7 and Imyr too in order to compute WAS-
PAS-ranked intents list and similarly, on Hnyy and Hmy7 to compute WASPAS-ranked

hardware components list.

3.2.5 Machine Learning and Deep Learning Classifiers

We used several machine learning and deep learning classifiers [135] in our detection ap-

proach. We applied ten widely used techniques, namely Decision Trees (DT), Random Forest

53

Algorithm 1 Proposed Malware Detection Algorithm

—_

Input: F7;; < Ranked feature List
Output: Best set of features with a higher detection rate
BFj i < Initialized as a copy of Fyg
F; « i ranked feature in Fj
N < Number of features in Fy;y
F,;; < List of all features from testing dataset (non unique)
Dy <+ Maximum accuracy obtained, initialized to zero.
Dycc < Accuracy obtained after each iteration.
fori< 1 to Ndo
Copy Fy—iy11in Fpig
11: Fu\{Fy upto Fy_i11} // Delete all {Fy upto Fy_;11} from Fy,
12: Find D4, using ML algorithms for features present in Fyy;
13: if Do > Dpyjax then
14: Dsce = Dyax
15: BFy s \{Fy upto Fy_;+1} // Delete all {Fy upto Fy_;11} from BFyq
16: else exit
17: end if
18: end for
19: return Dy,
20: return BFj

e RERD

H
il

(RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR), Sup-
port Vector Machine (SVM) as machine learning classifiers and Multilayer Perceptron (MLP),
Convolutional Neural Network (CNN), Artificial Neural Networks (ANN), Dense Neural Net-
work (DNN) as deep learning classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].
The code concludes by printing the cross-validation results, including the accuracy scores for
each fold and the mean accuracy across all folds. This provides insights into the model’s con-

sistency and overall performance across diverse subsets of the dataset.

Detection Module

3.2.6 Proposed Malware Detection Algorithm

In response to our RQ3, i.e., how to devise a detection approach using the ranked features,
this section describes our proposed detection algorithm termed Algorithm 1. As discussed in
the previous subsection, we use the feature preference score computed separately for malware

and normal datasets from a particular MCDM technique to further rank them in order of rele-

54

vance. The higher the difference between the preference score values, the higher the relevancy.
We aim to find the best set of features to provide better detection accuracy. Fp;, represents the
ranked features, i.e., permissions, intents, or hardware components in decreasing order of their

computed difference.

Fris = {f1.f2s-- -, [n} (3.2.33)

Since, we will need to modify the F;, based on the performance of the test set, we intro-
duce another validation list with the name BFy;;, which will be initialized as a copy of Fpy
only. Eventually, after all iterations BFy;; will give us the best set of features to provide better
detection accuracy.

BFpiss = FList (3239)

In the first iteration of the algorithm, we select the bottom-ranked feature from Fy;;,. We then
execute machine learning and deep learning algorithms on the testing data after eliminating the
bottom-ranked feature and considering only the rest of the features from the Fy;;, and observe
the detection accuracy, say Ds... The maximum accuracy, say Dy, 1s initialized to zero. At
every iteration, we compare Da.. and Dy,,. If the accuracy at the current iteration, i.e., Dy,
is higher than Dy,,,, we proceed towards the next iteration and we set Dy, as D4 and at the
same iteration only, we delete the bottom-ranked feature from the BFy;; leaving N-1 features

in it. The following equations summarize the above-mentioned procedure.

if Dace > Daax (3.2.40)
then Dysqr = Dace (3.2.41)
and BFris = {f1,f2,-- -, fn—1} (3.2.42)

In the next iteration, we select the bottom two ranked features and find the detection accuracy
on the testing data by eliminating these two and considering the rest N-2 features only, i.e.,
Dy for the current iteration. Again, we compare the Dy, and Dac., and if D4, is higher
than Dy, we delete the bottom two ranked features from the BFy;, and proceed to the next
iteration to select the bottom three ranked features. The following equations summarize the
above-mentioned procedure.

if Dgce > Dpygax (3.2.43)

55
then Dyax = Dace (3.2.44)

and BFiis = {f1, f2,---, [n—2} (3.2.45)

The algorithm continues in the same manner and terminates when the detection accuracy does
not improve further. At a stage when Dy, is not higher than D,,,,, we return the Dy, and BFy;
containing only the best set of ranked features. The overall computational complexity of the
proposed algorithm can be approximated as O(N * (N + M + f(n))), where N is the number of
features in the Fy;y, M is the size of the F; list, and f(n) represents the time complexity of the

ML algorithms used for training and evaluation.

Algorithm 1 answers research question three, i.e., how to frame a detection approach based on
the ranking of features. We describe the results obtained from the proposed approach in the

next section.

3.3 Feature Ranking Results

In this section, we present and discuss the feature ranking results obtained using the proposed
PHIGrader model. We point out that we have separate datasets for training and testing. As
described in Section 3.2.1, there are 77,000 applications, each in the normal and malware
categories. Of these, we used 56,000 normal apps and 56,000 malware apps in the ranking
module. The remaining 21,000 normal and 21,000 malware apps were used in the detection
module. We term this dataset DATASET-1. In addition, we tested our approach on another
unknown dataset containing more recent and stealthier malware samples detected between
2021 and 2022, named DATASET-2. In the upcoming subsections, we first discuss the ranking
obtained from the three MCDM techniques individually, namely TOPSIS, EDAS and WASPAS,
after allotting weights to all three feature types. Thereafter, in the subsequent sections, we

discuss the detection results of DATASET-1 and DATASET-2.

3.3.1 Allotting Weights To The Features

As discussed in Section 3.2.3, we first assign weights to features based on their frequency
difference in the malware and normal training datasets. We note that we have three sep-
arate rankings, one each for permissions, intents, and hardware components. Tables 3.4 ,
3.5 and 3.6 summarize the top ten normal dominant and malware dominant features along

with their assigned weights. As seen from Table 3.4, the normal dominant permission named

56

RECEIVE is assigned a weight of three because it has the lowest frequency difference be-
tween the malware and normal datasets, whereas the malware dominant permission named
MOUNT_UNMOUNT _FILESYSTEMS had the highest frequency difference between the malware
and normal datasets; hence, it was weighted one. Similarly, we can acknowledge the weights

of the other top 10 normal dominant and malware dominant permissions from the table.

Table 3.4: Top 10 normal dominant and malware dominant permissions with their correspond-
ing weights

Normal dominant Permissions Weights Malware dominant Permissions Weights
alloted alloted

RECEIVE 3 MOUNT_UNMOUNT_FILESYSTEMS 1
BIND_GET_INSTALL. REFER- | 3 READ_PHONE_STATE 1
RER_SERVICE

C2D_MESSAGE 3 GET_TASKS 1
FOREGROUND_SERVICE 3 CHANGE_WIFI_STATE 1
BILLING 3 SYSTEM_ALERT_WINDOW 1
USE_FINGERPRINT 3 WRITE_SETTINGS 1
READ_GSERVICES 3 CHANGE_NETWORK_STATE 1
USE_BIOMETRIC 3 READ_LOGS 1
UPDATE_SHORTCUT 3 ACCESS_COARSE_LOCATION 1
BROADCAST_BADGE 3 ACCESS_WIFI_STATE 1

As seen from Table 3.5, the normal dominant intent named RECEIVE 1is assigned a weight of
three because it has the lowest frequency difference between the malware and normal datasets,
whereas the malware dominant intent named USER_PRESENT had the highest frequency dif-
ference between the malware and normal datasets; hence, it had a weight of one. Similarly,
we can acknowledge the weights of the other top 10 normal dominant and malware dominant

intents from the table.

Table 3.5: Top 10 normal dominant and malware dominant intents with their corresponding
weights

Normal dominant Intents Weights Malware dominant Intents Weights
alloted alloted
RECEIVE 3 USER_PRESENT 1
DEVICE_STORAGE_LOW 3 PACKAGE_REMOVED 1
DEVICE_STORAGE_OK 3 DEFAULT 1
LEANBACK_LAUNCHER 3 PACKAGE_ADDED 1
BATTERY_OKAY 3 VIEW 1
BATTERY_LOW 3 BROWSABLE 1
MEDIA _BUTTON 3 REGISTER 1
MY _PACKAGE_REPLACED 3 NOTIFICATION_RECEIVED. PROXY 1
TIMEZONE_CHANGED 3 PushService 1
QUICKBOOT_-POWERON 3 PUSH_TIME 1

Similarly, it can be seen from Table 3.6, the normal dominant hardware component named
touchscreen is assigned a weight of three because it has the lowest frequency difference between
the malware and normal datasets, whereas the malware dominant component named camera

had the highest frequency difference between the malware and normal dataset, hence, had a

57
weight of one. Similarly, we can acknowledge the weights of the other top 10 normal-dominant
and malware-dominant hardware components from the table.

Table 3.6: Top 10 normal dominant and malware dominant hardware components with their
corresponding weights

Normal dominant Hardware components Weights Malware dominant Hardware components | Weights
alloted alloted
touchscreen 3 camera

touchscreen.multitouch
touchscreen.multitouch.distinct
location.network

location.GPS

location

telephony

screen.portrait
screen.landscape

vulkan

Camera.autofocus
nfc.hce
autofocus

camera.flash

camera?2.full
usb.action.USB_STATE
sensor.stepcounter
sensor.stepdetector
camera.setParameters

W[W L] LI W] W W W W
e e e e e e e e e

3.3.2 Features Ranking

In response to our RQ?2, i.e., how to incorporate feature ranking, this section presents the
various techniques chosen by us to rank the features in order of relevance. To obtain the
preference score of each feature, we separately applied the three MCDM techniques, TOPSIS,
EDAS, and WASPAS, to the six vector tables (two for each feature type) developed for permis-
sions, intents, and hardware components. Furthermore, we used the difference between the
preference score of the features obtained using the malware and normal datasets to identify the
most distinguishing features.

Using the frequency-based MCDM approach mentioned above, we answer research question two,
i.e., how to rank the features to recognize the most distinguishing and influential ones among

them.

Feature ranking using TOPSIS

In this section, we discuss the ranking obtained on applying TOPSIS over permissions, intents,
and hardware components individually. Tables 3.7, 3.8 and 3.9 summarize the top ten permis-
sions, intents, and hardware components respectively according to the ranking done using the

preference score obtained by TOPSIS.

Table 3.7 highlights that the permission named UPDATE_APP_OPS_STATS is the most distin-
guishing permission with the highest difference between the malware and normal preference

score according to TOPSIS. Similarly, we can infer rankings of other permissions based on

58

their scores from the table. The permission named INTERNET had the lowest preference score

difference value of -0.9945 amongst all permissions and hence, is the least distinguishing per-

mission.
Table 3.7: Top 10 permissions ranked using TOPSIS

Permissions Malware Preference score Normal Preference score Difference
UPDATE_APP_OPS_ STATS 0.995640016 0.994700764 0.000939252
USE_BIOMETRIC 0.999710875 0.999859006 -0.000148131
MAPS_RECEIVE 0.999401252 0.99984433 -0.000443078
READ_OWNER_DATA 0.997612157 0.998838311 -0.001226154
READ_USER_ DICTIONARY 0.997566566 0.999204898 -0.001638332
SEND_DOWNLOAD._ COM- | 0.995754181 0.997521968 -0.001767787
PLETED_INTENTS
QUERY _ALL_ PACKAGES 0.99792082 0.999770741 -0.001849921
RECEIVE_WAP_PUSH 0.996069212 0.998509435 -0.002440223
BIND_GET_INSTALL. REFER- 0.996692437 0.999937243 -0.003244807
RER_SERVICE
READ_SYNC_STATS 0.995959198 0.999400858 -0.00344166

Table 3.8 highlights that the intent named UNREGISTRATION is the most distinguishing in-
tent with the highest difference between the malware and normal preference score according
to TOPSIS. Similarly, we can infer rankings of other intents based on their scores from the
table. The intent named MAIN had the lowest preference score difference value of -0.9362 and

hence, is the least distinguishing intent.

Table 3.8: Top 10 intents ranked using TOPSIS

Intents Malware Preference score Normal Preference score Difference
UNREGISTRATION 0.932365913 0.002912326 0.929454
ELECTION_RESULT_ V4 0.928431158 0 0.928431
webview 0.932733054 0.007804123 0.924929
PING_V4 0.921531166 0.002528772 0.919002
MEDIA_CHECKING 0.927302209 0.008587014 0.918715
COCKROACH 0.922930032 0.005779095 0917151
action 0.921980242 0.006800472 091518
ACTION_RICHPUSH_CALLBACK | 0.91729704 0.004018638 0.913278
ACTION_VIEW_DOWNLOADS 1 0.087523518 0.912476
ELECTION 0.919571962 0.007494131 0.912078

In a similar manner, Table 3.9 highlights that the hardware component named faketouch.
multitouch. jazzhand is the most distinguishing hardware component with the highest difference
between the malware and normal preference score according to TOPSIS. Similarly, we can infer
rankings of other hardware components based on their scores from the table. The hardware
component named camera had the lowest preference score difference value of 0.0470 amongst

all hardware components and hence, is the least distinguishing one.

59

Table 3.9: Top 10 hardware components ranked using TOPSIS

Hardware components Malware Preference score Normal Preference score Difference
faketouch.multitouch. jazzhand 1 0.000760768 0.999239
sensor.ambient_ temperature 1 0.000760768 0.999239
sensor.heartrate.ecg 1 0.000760768 0.999239
sensor.relative_humidity 1 0.000760768 0.999239
type.automotive 1 0.000760768 0.999239
portrait 1 0.001923007 0.998077
BLUETOOTH_-ADMIN 1 0.002172686 0.997827
sensor.heartrate 1 0.002221286 0.997779
sensor. ACCELEROMETER 0.996798316 0 0.996798
type.watch 0.99626415 0 0.996264

Feature ranking using EDAS

In this section, we discuss the ranking obtained on applying EDAS over permissions, intents
and hardware components individually. Tables 3.10 , 3.11 and 3.12 summarize the top ten
permissions, intents, and hardware components respectively according to the ranking done
using the preference score obtained by EDAS. Table 3.10 highlights that the permission named
READ_OWNER _DATA is the most distinguishing permission with the highest difference between
the malware and normal preference score according to EDAS. Similarly, we can infer rankings
of other permissions based on their scores from the table. The permission named INTERNET
had the lowest preference score difference value of -0.9949 amongst all permissions and hence,

is the least distinguishing permission.

Table 3.10: Top 10 permissions ranked using EDAS

Permissions Malware Preference score Normal Preference score Difference
READ_OWNER _DATA 0.988485224 0.000817483 0.987667742
SEND_DOWNLOAD_ COM- | 0.987399804 0.000148769 0.987251036
PLETED_INTENTS

WRITE_OWNER _DATA 0.988159244 0.001161826 0.986997418
UPDATE_APP_OPS_ STATS 0.986864022 7.69131E-05 0.986787109
READ_USER_ DICTIONARY 0.987964382 0.001516245 0.986448136
DEVICE_POWER 0.987416607 0.001680802 0.985735805
READ_SYNC_STATS 0.987797896 0.002401552 0.985396344
RECEIVE_WAP_PUSH 0.985181748 0.000569173 0.984612576
RECEIVE_MCS_MESSAGE 0.985653997 0.001409919 0.984244078
QUERY_ALL_ PACKAGES 0.996960967 0.012767359 0.984193608

Table 3.11 highlights that the intent named SEND_MULTIPLE is the most distinguishing in-
tent with the highest difference between the malware and normal preference score according
to EDAS. Similarly, we can infer rankings of other intents based on their scores from the table.
The intent named MAIN had the lowest preference score difference value of -0.9993 and hence,

is the least distinguishing intent.

In a similar manner, Table 3.12 highlights that the hardware component named faketouch.

multitouch. jazzhand is the most distinguishing hardware component with the highest difference

60

Table 3.11: Top 10 intents ranked using EDAS

Intents Malware Preference score Normal Preference score Difference
SEND_MULTIPLE 0.994820911 0.008634884 0.986186
webview 0.986137754 0.000184527 0.985953
MESSAGE_CLICKED 0.986222594 0.000342747 0.98588
MESSAGE_ARRIVED 0.986208426 0.000342747 0.985866
ELECTION_RESULT. V4 0.984945278 0 0.984945
DATE_.CHANGED 0.985482814 0.001746364 0.983736
action 0.983561978 0.000130295 0.983432
BATTERY_CHANGED 0.984495175 0.001219489 0.983276
MEDIA_CHECKING 0.983434556 0.000225724 0.983209
COCKROACH 0.982778387 8.94315E-05 0.982689

between the malware and normal preference score according to EDAS. Similarly, we can infer
rankings of other hardware components based on their scores from the table. The hardware
component named camera had the lowest preference score difference value of -0.5659 amongst

all hardware components and hence, is the least distinguishing one.

Table 3.12: Top 10 hardware components ranked using EDAS

Hardware components Malware Preference score Normal Preference score Difference
faketouch.multitouch. jazzhand 1 2.56585E-05 0.999974342
sensor.ambient_ temperature 1 2.56585E-05 0.999974342
sensor.heartrate.ecg 1 2.56585E-05 0.999974342
sensor.relative_humidity 1 2.56585E-05 0.999974342
type.automotive 1 2.56585E-05 0.999974342
type.watch 0.999961715 0 0.999961715
sensor. ACCELEROMETER 0.999948631 0 0.999948631
BLUETOOTH_ADMIN 1 5.26423E-05 0.999947358
portrait 1 6.60416E-05 0.999933958
sensor.heartrate 1 7.62598E-05 0.99992374

Feature ranking using WASPAS

In this section, we discuss the ranking obtained on applying WASPAS over permissions, intents,
and hardware components individually. Tables 3.13 , 3.14 and 3.15 summarize the top ten
permissions, intents, and hardware components respectively according to the ranking done

using the preference score obtained by WASPAS.

Table 3.13 highlights that the permission named READ_OWNER_DATA is the most distin-
guishing permission with the highest difference between the malware and normal preference
score according to WASPAS. Similarly, we can infer rankings of other permissions based on
their scores from the table. The permission named INTERNET had the lowest preference score
difference value of -0.0125 amongst all permissions and hence, is the least distinguishing per-

mission.

Table 3.14 highlights that the intent named MESSAGE_ARRIVED is the most distinguishing

intent with the highest difference between the malware and normal preference score according

61

Table 3.13: Top 10 permissions ranked using WASPAS

Permissions Malware Preference | Normal Preference score | Difference
score

READ_OWNER_DATA 0.996748521 0.000165107 0.996583414
READ_USER_DICTIONARY | 0.996582966 0.00031986 0.996263106
SEND_DOWNLOAD. COM- | 0.9955652 3.78087E-05 0.995527391
PLETED_INTENTS

UPDATE_APP_OPS_ STATS 0.995327441 1.53057E-05 0.995312135
RECEIVE_WAP_PUSH 0.99538727 0.000113697 0.995273572
QUERY _ALL_PACKAGES 0.998449011 0.003227937 0.995221074
WRITE_.OWNER _DATA 0.995397982 0.000315789 0.995082193
READ_SYNC_STATS 0.995485714 0.000564408 0.994921306
DEVICE_POWER 0.994571291 0.000457666 0.994113625
WRITE_CALL_LOG 0.994184062 0.00017898 0.994005082

to EDAS. Similarly, we can infer rankings of other intents based on their scores from the table.
The intent named BATTERY_CHANGED had the lowest preference score difference value of

0.2245 and hence, is the least distinguishing intent.

Table 3.14: Top 10 intents ranked using WASPAS

Intents Malware Preference | Normal Preference score | Difference
score

MESSAGE_ARRIVED 0.999450188 9.7658E-05 0.99935253
ELECTION_RESULT. V4 0.998899696 0 0.998899696
SCREEN_ON 0.998930943 0.000607229 0.998323714
webview 0.998205727 4.08075E-05 0.99816492
HOME 0.99806392 0.001219068 0.996844852
PUSH_TIME 0.996837919 0.000104389 0.996733531
NOTIFICATION. OPENED 0.996030541 5.25256E-05 0.995978015
PushService 0.993311291 0.000104389 0.993206902
DATE_CHANGED 0.993531221 0.000346466 0.993184755
action 0.992930463 2.93376E-05 0.992901125

In a similar manner, Table 3.15 highlights that the hardware component named faketouch.
multitouch. jazzhand is the most distinguishing hardware component with the highest differ-
ence between the malware and normal preference score according to WASPAS. Similarly, we
can infer rankings of other hardware components based on their scores from the table. The
hardware component named sensor.compass had the lowest preference score difference value

of -0.0004 amongst all hardware components and hence, is the least distinguishing one.

In the subsequent sections, we present the detection results obtained using the proposed

model.

62

Table 3.15: Top 10 hardware components ranked using WASPAS

Hardware components Malware Preference | Normal Preference score | Difference
score
faketouch.multitouch. jazzhand | 1 2.04694E-06 0.999998
sensor.ambient_ temperature 1 2.04694E-06 0.999998
sensor.heartrate.ecg 1 2.04694E-06 0.999998
sensor.relative_humidity 1 2.04694E-06 0.999998
type.automotive 1 2.04694E-06 0.999998
BLUETOOTH-ADMIN 1 5.81445E-06 0.999994
portrait 1 6.34124E-06 0.999994
sensor.heartrate 1 7.67137E-06 0.999992
faketouch.multitouch. distinct 1 1.90371E-05 0.999981
touchscreen.multitouch. jazz- | 1 2.04244E-05 0.99998
hand

3.4 Detection Results on DATASET-1

In this section, we discuss the detection results, i.e., the accuracy obtained from our pro-
posed approach over DATASET-1. To check the efficiency of the three most commonly used
features present in the AndroidManifest file, we performed three experiments, considering 1)
permissions, 2) intents, and 3) hardware components, by applying the three MCDM techniques
individually. We will discuss these results in the upcoming subsections, followed by a com-

parison of our proposed work with other statistical tests.

3.4.1 Detection Results with TOPSIS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed
approach over the DATASET-1 while using the rankings given by TOPSIS. Figures 3.2 , 3.3
and 3.4 summarize the detection results when we consider permissions, intents, and hardware
components for detection, respectively. We note that in the figures mentioned above, we do
not mention the names of all the ranked features because the accuracy upon eliminating them

lies within similar ranges to the mentioned ones.

Detection Results with permissions

Figure 3.2 summarizes the detection results when we rank the permissions using the TOPSIS
technique and further apply the proposed detection algorithm. The figure can be understood as

follows. While simultaneously considering all permissions without using the TOPSIS ranking,

63

we achieve 74.64% accuracy with the DT classifier. In the first iteration, on eliminating the

least ranked permission named INTERNET from the DATASET-1, we observe that we get 75.46%

accuracy with several machine learning classifiers. We call this the first iteration and move on

to the next iteration when we eliminate the bottom two ranked permissions, i.e., INTERNET

and ACCESS_NETWORK STATE from the DATASET-1. In this iteration, we obtain an accuracy

of 76.47% with DT and RF classifiers. As discussed in Algorithm 1, we proceed to the next it-

eration whenever the detection accuracy increases from the previous iteration. Hence, we elim-

inate the bottom three ranked permissions and repeat the entire procedure. The procedure is

terminated until we observe a potential decrease in the detection accuracy. As shown in Figure

3.

2, we achieved the highest detection accuracy of 98.01% with DT classifier upon eliminating

114 permissions out of the total lot of 129, i.e., upon considering only the top 15 permissions

namely {UPDATE_APP_OPS_STATS , USE_BIOMETRIC , MAPS_RECEIVE , READ_OWNER _DATA

, READ_USER_DICTIONARY ,SEND_DOWNLOAD_COMPLETED_INTENTS , QUERY ALL_PACK-

AGES , RECEIVE_WAP_PUSH , BIND_GET_INSTALL_ REFERRER _SERVICE , READ_SYNC_STATS

, MESSAGE , WRITE_CALL_LOG , BAIDU_LOCATION _SERVICE , WRITE_OWNER DATA, and

BADGE_COUNT_READ }, highest detection accuracy can be achieved. From the next iteration,

we observe that the detection accuracy starts decreasing. Finally, we conclude that we obtain

the highest accuracy of 98.01% when we apply the proposed Algorithm 1 to permissions.

Accuracy (in %)

100.00 98.01
95.00

90.00

85.00
80.00
75.00
70.00 I
65.00
& & & S ° SO P S E P S ©
F X

» & & & © o O & & & & & & S & O @ ¥ & © L SRR
S S S e st T e s o S N e S e S s
NSRS 9 T O F L S ol T 93 F RO N RILN T F TS OEF o &
o S & (% FLE T T 9 & LD TR Y LR O NI Q) PR ARV
ST FTVELITE GO TS S EE SE ST T F S S PO 0% @ TS S R
FEEFE FTET LI R SN AR Ry & 757 & TP S SN ST
S & W E P & & € & - T TES ST 3
W& 7 & S o < o & & F ¥ > N Q!
&S © ¥ 9 < ¥ < SV O IR N
\?&% <« & &7 ? o Q¥ v <&
© & & N
¥ & S

PERMISSIONS

Figure 3.2: Detection results with TOPSIS using permissions

Detection Results with intents

Next, we apply the proposed detection algorithm (Algorithm 1) with intents ranked by TOPSIS.

The algorithm provides the best intents with higher accuracy as an output. Figure 3.3 can be

understood as follows. While simultaneously considering all intents without using the TOPSIS

ranking, we achieve 67.19% accuracy with several machine learning classifiers. In the first it-

64

eration, after eliminating the least ranked intent named MAIN from the DATASET-1, we observe
that we obtain the same 67.19% accuracy. We call this the first iteration and move on to the
next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER
from the DATASET-1. In this iteration, we obtain an accuracy of 68.79% with DT, RF, and NB
classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-
tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three
ranked intents and repeat the entire procedure. The procedure is terminated until we observe a
potential decrease in the detection accuracy. As shown in Figure 3.3, we achieved the highest
detection accuracy of 99.10% with DT classifier upon eliminating 33 intents out of the total lot
of 79, i.e., upon considering the top 46 intents, some top ranked intents being { UNREGISTRA-
TION , ELECTION_RESULT_V4 , WEBVIEW |, PING_V4 , MEDIA_CHECKING....... PUSH_TIME ,
PUSHSERVICE , REPORT , NOTIFICATION_RECEIVED_PROXY , REGISTER }, the highest de-
tection accuracy can be achieved. From the next iteration, we observe that the detection ac-
curacy starts decreasing. Finally, we conclude that we obtain the highest accuracy of 99.10%

when we apply the proposed Algorithm 1 to the intents.

100.00 99.10 %

90.00
85.00
80.00
75.00
70.00
ol
S & S

Accuracy (in %)

“ & O N S & O & § 4.* g S & & L &S o) B ¥ &

5 < & & & @ ‘r & \& & TSRO gNG) &

& & E KRS & ? & S ©F e S z S P
& & F FEFGE S & &éou & @é‘«\ &* F IS T EF o F o o
& yq@&"?é‘*@‘&ﬁ@@*@* P SIS IS I EE TS T E FT T TS

& ’\"Jmoev “‘&& éea&,é}/ & %‘g < 69@4\ * évjo“? o dv ¥ QO#\'@ ,\\o‘\"@ S (’Dé&’ & 4\9Dq°'$ & e \dg?‘&@
& & & @ N
& EE o Rt & & T d DY &
- S < N 4
& E & < ?(55

N
S

INTENTS

Figure 3.3: Detection results with TOPSIS using intents

Detection Results with hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-
nents ranked by TOPSIS. The algorithm provides the best hardware components with higher
accuracy as an output. Figure 3.4 can be understood as follows. While considering all the
hardware components simultaneously without using the TOPSIS ranking, we achieve 71.84%

accuracy with several machine learning classifiers. In the first iteration, after eliminating the

65

least ranked hardware component named camera from the DATASET-1, we observe that we
get 73.93% accuracy with the RF and BC classifiers. We call this the first iteration and
move on to the next iteration when we eliminate the bottom two ranked hardware com-
ponents, i.e., camera and Camera.autofocus from the DATASET-1. In this iteration, we ob-
tained an accuracy of 75.55% with DT, RF, and BC classifiers. As discussed in Algorithm
1, we proceed to the next iteration whenever the detection accuracy increases from the pre-
vious iteration. Hence, we eliminate the bottom three ranked hardware components and
repeat the entire procedure. The procedure is terminated until we observe a potential de-
crease in the detection accuracy. As shown in Figure 3.4, we achieved the highest detec-
tion accuracy of 91.67% with NB and LR classifiers upon eliminating 69 hardware com-
ponents out of the total lot of 88, i.e., upon considering only the top 19 hardware compo-
nents namely {faketouch.multitouch.jazzhand , sensor.ambient_temperature , sensor.heartrate.ecg
, sensor.relative_humidity , type.automotive , portrait , BLUETOOTH_ADMIN , sensor.heartrate ,
sensorACCELEROMETER , type.watch , sensor.hifi_sensors , faketouch.multitouch.distinct , touch-
screen.multitouch.jazzhand , camera.capability.manual_post_processing , camera.capability.manual
sensor , READ_EXTERNAL STORAGE , RECORD_AUDIO , camera.external and opengles.aep },
highest detection accuracy can be achieved. From the next iteration, we observe that the de-
tection accuracy starts decreasing. Finally, we conclude that we obtain the highest accuracy of

91.67% when we apply the proposed Algorithm 1 to hardware components.

100.00
95.00 91.67
90.00
85.00

80.00
75.00
70.00
65.00 I
60.00
?\} o‘ & e‘\ Q\O

Accuracy (in %)

o
o o & 9 > e 'z;\’) & H @
@7} Ko"o \\5*’\ N ~¢° @ ‘\‘(3"\0 o2 é° S qYG v"z c\ .a,x (éé& Q® \"5’0 & e & %‘& ,\,5&
& & & @' SO <° \.@ P S P O G @"’ & R £ © o o& & & &
RS L SN AR > & & o & &R YT QQ/ 0 ‘\e > T & &S
o &S TE LI HTIT IS S P & &
& & & O LFELESTF P ITE S & & O FF &
@ & < R R E R RS D R A @7 O LSS
< S AR AR 53 » PR NN
o Vv 22 & @& & Y S L &
o Q4 & & < Ny & & < &
§ NS
< &K & F S & ° N 255’0 @

HARDWARE COMPONENTS

Figure 3.4: Detection results with TOPSIS using hardware components

3.4.2 Detection Results with EDAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed
approach over DATASET-1 using the EDAS rankings. Figure 3.5 , 3.6, and 3.7 summarize

the detection results when we consider permissions, intents, and hardware components for

66

detection. We note that in the figures mentioned above, we do not mention the names of all
the ranked features because the accuracy upon eliminating them lies within similar ranges to

the mentioned ones.
Detection Results with permissions

Figure 3.5 summarizes the detection results when we apply the proposed algorithm to permis-
sions ranked using the EDAS technique. The figure can be understood as follows. While con-
sidering all permissions simultaneously without using the EDAS ranking, we achieve 74.64%
accuracy with the DT classifier. In the first iteration, on eliminating the least ranked per-
mission named INTERNET from the DATASET-1, we observe that we get 75.46% accuracy
with several machine learning classifiers. We call this the first iteration and move on to the
next iteration when we eliminate the bottom two ranked permissions, i.e., INTERNET and
ACCESS_NETWORK STATE from the DATASET-1. In this iteration, we obtain an accuracy of
76.47% with DT and RF classifiers. As discussed in Algorithm 1, we proceed to the next
iteration whenever the detection accuracy increases from the previous iteration. Hence, we
eliminate the bottom three ranked permissions and repeat the entire procedure. The proce-
dure is terminated until we observe a potential decrease in the detection accuracy. As shown
in Figure 3.5, we achieved the highest detection accuracy of 87.34% with BC classifier upon
eliminating 120 permissions out of the total lot of 129, i.e., upon considering only the top
nine permissions namely {READ_OWNER_DATA , SEND_DOWNLOAD_COMPLETED_INTENTS ,
WRITE_OWNER _DATA , UPDATE_APP_OPS_STATS , READ _USER_DICTIONARY , DEVICE_POWER
, READ_SYNC_STATS , RECEIVE_WAP_PUSH and RECEIVE_MCS_MESSAGE }, the highest detec-
tion accuracy was achieved. From the next iteration, we observe that the detection accuracy
starts decreasing. Finally, we conclude that we obtain the highest accuracy of 87.34% when

we apply the proposed Algorithm 1 to permissions.
Detection Results with intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using
EDAS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.6
can be understood as follows. While simultaneously considering all intents without using the
EDAS ranking, we achieve 67.19% accuracy with several machine learning classifiers. In the
first iteration, after eliminating the least ranked intent named MAIN from the DATASET-1, we
observe that we obtain the same 67.19% accuracy. We call this the first iteration and move on to

the next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER

Accuracy (in %)

67

90.00

85.00
65.00
> & S & S & L L LS SRS Cz@c

~ I3
a =}
Q Q
5} S

& S o ° & O < IR R R A R DO ¢ &
B O S S T e L S I s
& Q/,;\ <<\/‘{~/<;\ I M & K & & R O/\/e//\/\, TNV L&Y Q7 Y& S & N e R 67 &7 &7
N NG NSERNSIN) EESIN S ST P T L L FLSE R TR NSNS 2N ONPC RPN
QIR R\ R R Q N OIS O W7 R R LSO > NI ™
N Ul SN N O F o/ ST ¥ ¥ \a ¥ N 9 NI
é‘:\’\‘&i&%/ 4\‘8§ ové:&\% @00«/%«? < e‘;\‘?\ S é,%\)\f‘ G S %L}& @'VQ@%/ \&&Q}Q 2 ‘/?:‘;\ &\\x&o,oé <& ‘?QQ«;S)&@@/
O & 2 O AN & < N 7
2 A AP & Wl & ¢ & & SPEFF € RIAOIE
&% $7 S B R® < K Q)
FI P& S 2 SN Y
<7 Q7 & EXEIN WV
Y& & © & Q\é‘" 3 & N N
& &> $
X & &’
£
PERMISSIONS

Figure 3.5: Detection results with EDAS using permissions

from the DATASET-1. In this iteration, we obtain an accuracy of 68.79% with DT, RF, and NB

classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-

tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked intents and repeat the entire procedure. The procedure is terminated until we observe a

potential decrease in the detection accuracy. As shown in Figure 3.6, we achieved the highest

detection accuracy of 90.82% with DT classifier upon eliminating 60 intents out of the total lot

of

79, i.e., upon considering only the top 19 intents namely {SEND_MULTIPLE , webview , MES-

SAGE_CLICKED , MESSAGE_ARRIVED , ELECTION_RESULT_V4 , DATE_CHANGED , action ,

BATTERY_CHANGED , MEDIA_CHECKING , COCKROACH , PING_V4 , WALLPAPER_CHANGED

, ACTION_VIEW_DOWNLOADS , NEW_OUTGOING_CALL , SCREEN_ON , HEART_BEAT , HEAD-

SET_PLUG , FEEDBACK and MESSAGE }, highest detection accuracy can be achieved. From

the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-

clude that we obtain the highest accuracy of 90.82% when we apply the proposed Algorithm

1 to the intents.

Accuracy (in %)

100.00
95.00
90.82
90.00
85.00
80.00
75.00
70.00
ssoo m m [
N > & “ O KO RO T EFLA TP OTRL OO DO &
v 3\1&“‘” & A\%\iv‘"\ &’&é& & é\‘oiz“% \véod% C\b cq%&&“(' & %‘3@9 S eéeef FFEF T é\é\é@
< < & & € L5 &7 S0l & L EX P EFES
\?\b © %?9$90®) & & 3& » ,'\\é\ é&oé’o /?%5(3& O\e O*s 9€~ Q\god_ Cei\/ Sﬁ\é&b ;r(;('%) 4

& ROy & ¥ LI E N & S

° % T OV P Q¥ © XL & &

S S F & S8 WL & ¢

® & & © 7 A o Q

Qs K 2 Q
$ <®
Ko
INTENTS

Figure 3.6: Detection results with EDAS using intents

68

Detection Results with hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware components
ranked by EDAS. The algorithm provides the best hardware components with higher accuracy
as an output. Figure 3.7 can be understood as follows. While considering all the hardware
components simultaneously without using the EDAS ranking, we achieve 71.84% accuracy
with several machine learning classifiers. In the first iteration, after eliminating the least ranked
hardware component named camera from the DATASET-1, we observe that we get 73.93%
accuracy with the RF and BC classifiers. We call this the first iteration and move on to the
next iteration when we eliminate the bottom two ranked hardware components, i.e., camera
and Camera.autofocus from the DATASET-1. In this iteration, we obtain an accuracy of 75.55%
with DT, RF, and BC classifiers. As discussed in Algorithm 1, we proceed to the next iteration
whenever the detection accuracy increases from the previous iteration. Hence, we eliminate the
bottom three ranked hardware components and repeat the entire procedure. The procedure is
terminated until we observe a potential decrease in the detection accuracy. As shown in Figure
3.7, we achieved the highest detection accuracy of 91.67% with RF, NB, and LR classifiers
by eliminating 70 hardware components out of the total lot of 88, i.e., upon considering only
the top 18 hardware components, the highest detection accuracy can be achieved. From the
next iteration, we observe that the detection accuracy starts decreasing. Finally, we conclude
that we obtain the highest accuracy of 91.66% when we apply the proposed Algorithm 1

to hardware components.

100.00

— 95.00 91.67
¥ 90.00
c
£ 85.00
3 80.00
S 75.00
65.00 I I I
20,00 il
S I N N S R SRS S g G O SR gy
vfo“& TN ,\(&/é‘:}c‘,‘é s & g QQQQ} & & o&\\"’"‘\o RS @é & é\do & ‘7’&0‘5@
PO IR N O A L7 TR SN ¢ @ QO & & F R P PLTY e NI
TS & L ® N S SR A S A I IR PR FE TS LS
O T Y e T T ST S S 6&@‘6 S P
¥ & N »© S FES F LS TS <O & K& &
¢ & R Vg e S E ST SRS F
9 o 9 ~ e DO X L o & L
o 9 o & & 4+ 8 S S $ £ .8
& S o3 Q7 & & & & & (@
& § Q&\?. 0@ && o .&o‘)\@‘@ C & & &
<2 &

HARDWARE COMPONENTS

Figure 3.7: Detection results with EDAS using hardware components

69

3.4.3 Detection Results with WASPAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed
approach over the DATASET-1 while using the rankings given by WASPAS. Figures 3.8, 3.9 and
3.10 summarize the detection results when we consider permissions, intents, and hardware
components for detection respectively. We note that in the figures mentioned above, we don’t
mention the names of all the ranked features as the accuracy upon eliminating them lie within

similar ranges to the mentioned ones.

Detection Results using permissions

Figure 3.8 can be understood as follows. While considering all the permissions simultane-
ously without utilizing the WASPAS ranking, we achieve 74.64% accuracy with the DT classi-
fier. At the first iteration, on eliminating the least ranked permission named INTERNET from
the DATASET-1, we observe that we get 75.46% accuracy with several machine learning clas-
sifiers. We call this the first iteration and move on to the next iteration when we eliminate
the bottom two ranked permissions, i.e., INTERNET and WRITE_EXTERNAL_STORAGE from
the DATASET-1. In this iteration, we get an accuracy of 76.13% with DT and RF classi-
fiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the detec-
tion accuracy increases from the previous iteration. Hence, we eliminate the bottom three
ranked permissions and repeat the entire procedure. The procedure terminates until we ob-
serve a potential decrease in the detection accuracy. As shown in Figure 3.8, we achieved
the highest detection accuracy of 87.73% with DT classifier upon eliminating 111 permis-
sions out of the total lot of 129, i.e., upon considering only the top 18 permissions namely {
READ_OWNER_DATA , READ_USER _DICTIONARY , SEND_DOWNLOAD_COMPLETED_INTENTS
, UPDATE_APP_OPS_STATS , RECEIVE_ WAP_PUSH , QUERY ALL_PACKAGES , WRITE_OWNER_
DATA , READ _SYNC_STATS , DEVICE_POWER , WRITE_CALL _LOG , MESSAGE , INSTALL_PACKAGES
, WRITE_HISTORY BOOKMARKS , MANAGE_DOCUMENTS , MAPS_RECEIVE , WRITE_MEDIA _
STORAGE , RECEIVE_MCS_MESSAGE and ACTIVITY_RECOGNITION }, highest detection accu-
racy can be achieved. From the next iteration, we observe that the detection accuracy starts
decreasing. Finally, we conclude that we get the highest accuracy of 87.73% when we apply

the proposed Algorithm 1 on permissions.

70

100.00
95.00
90.00 87.73

85.00
80.00
75.00
Z
65.00
> & & St RS E S
g

Accuracy (in%)

v & 5 N O & & e & & & AT & © O o 5 O &7 4@
> PR < O & L § I $ & & & & © 6 & & & &P)
S S S T S S F N S T P 2 S T TS ST T T & TS T
S O S e R I T & o O o o T S o £ o S e 8 P B o

O 3 Q RSN CN) O L7 S8 GRS, RN

A &I L W r & N &2 Q7 K OO R S o \a PN R TR
& AN O Q NS C© N\ SRS X e, 9
.\‘<'}§ g (’é‘? & oéﬂ)g\ Q&O & Q&v<\®®> &7 4\36«,&' @‘WOQ"-\«’%‘} < W 03? @g‘ N Yé}* ‘(/‘fq ‘\\/Ov\)c;&;g/
& &&/ é.,,v. 3 f_,(;éﬁa O‘i‘l Q/é\ A\Q Gv %§§, & Y AN (:‘\\\4& X Qg'oé\o$ Q/Q&’
& & & L & & FONCIEE RS I AR Y SRSy
& S \s &6 N T & Q7
v e < &

PERMISSIONS

Figure 3.8: Detection results with WASPAS using permissions

Detection Results using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents by WAS-
PAS. The algorithm will give the best intents with higher accuracy as an output. Figure 3.9 can
be understood as follows. While considering all the intents simultaneously without utilizing
the EDAS ranking, we achieve 67.19% accuracy with several machine learning classifiers. At
the first iteration, on eliminating the least ranked intent named BATTERY_CHANGED from the
DATASET-1, we observe that we get the same 67.19% accuracy. We call this the first iteration
and move on to the next iteration when we eliminate the bottom two ranked intents, i.e., BAT-
TERY_CHANGED and MEDIA_REMOVED from the DATASET-1. As discussed in Algorithm 1,
we proceed to the next iteration whenever the detection accuracy increases from the previous
iteration. Hence, we eliminate the bottom three ranked intents and repeat the entire procedure.
The procedure terminates until we observe a potential decrease in the detection accuracy. As
shown in Figure 3.9, we achieved the highest detection accuracy of 93.75% with DT and RF
classifiers upon eliminating 53 intents out of the total lot of 79, i.e., upon considering only the
top 26 intents namely {MESSAGE_ARRIVED , ELECTION_RESULT_V4 , SCREEN_ON , webview
, HOME , PUSH_TIME , NOTIFICATION_OPENED , PushService....PHONE _STATE , REGISTER
, PACKAGE_REMOVED , SERVICE , MEDIA_EJECT and HEADSET_PLUG } , highest detection
accuracy can be achieved. From the next iteration, we observe that the detection accuracy
starts decreasing. Finally, we conclude that we get the highest accuracy of 93.75% when we

apply the proposed Algorithm 1 on intents.

Detection Results using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked hardware compo-

nents by WASPAS. The algorithm will give the best hardware components with higher accuracy

71

100

95 93.75
K 90
£
‘U; 85
£ 80
3
g
70
s W momEN
N &
v\&&d\&@\%‘%&o@%é&é\oe (Q&&&&%@o@&é&&oﬂ\& ‘§@$é& &L\S\"&O«z&o \@@\&Op\ &S &@0\/\» o"‘é\\s"& é\&é& St ST
Q?j§é &§v§§<§,é§y s&§?$§képC§<§§1§§é§1§§k§$/é°4§2§?/é“c§}>%§§bé& & %dy‘$¥<§Sgd Q~$§‘éi§y &
QO PN X QS NSRS O) Y O ¥
<<§/ D& 4 @&/ éé)xé&;&/é&\oévq&b ?’5\0\% 9&{(\0 W“Y\‘y N © é&;‘?&/ o‘{“\‘w Qv/\\o) 50%13’?6
& S S S
Na E A N 4 &L S N &S
NN N N S 907) <
QO 4 < X <~
P S
v O
&P

INTENTS

Figure 3.9: Detection results with WASPAS using intents

as an output. Figure 3.10 can be understood as follows. While considering all the hardware
components simultaneously without utilizing the WASPAS ranking, we achieve 71.84% accu-
racy with several machine learning classifiers. At the first iteration, on eliminating the least
ranked hardware component named sensor.compass from the DATASET-1, we observe that we
get the same 71.84% accuracy. We call this the first iteration and move on to the next it-
eration when we eliminate the bottom two ranked hardware components, 1.e., sensor.compass
and camera.ar from the DATASET-1. In this iteration, we get an accuracy of 72.02% with DT,
RF, and BC classifiers. As discussed in Algorithm 1, we proceed to the next iteration when-
ever the detection accuracy increases from the previous iteration. Hence, we eliminate the
bottom three ranked hardware components and repeat the entire procedure. The procedure
terminates until we observe a potential decrease in the detection accuracy. As shown in Fig-
ure 3.10, we achieved the highest detection accuracy of 93.75% with several classifiers upon
eliminating 66 hardware components out of the total lot of 88, i.e., upon considering only the
top 22 hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient_temperature
, sensor.heartrate.ecg , sensor.relative_humidity , type.automotive , BLUETOOTH _ADMIN , portrait
, sensor.heartrate , faketouch.multitouch.distinct......... moxx.mobility.android. hardwareplatform. fire-
baseinitprovider , READ_EXTERNAL STORAGE , RECORD_AUDIO , vrheadtracking , opengles.aep
, camera.external and biometrics }, highest detection accuracy can be achieved. From the next
iteration, we observe that the detection accuracy starts decreasing. Finally, we conclude that
we get the highest accuracy of 93.75% when we apply the proposed Algorithm 1 on hardware

components.

The compiled detection results when we apply the proposed algorithm to DATASET 1 are

summarized in Table 3.16. From the table, we observe that we obtain the highest accuracy

72

100.00
95.00 93.75
90.00

Accuracy (in %)

85.00
80.00
75.00
70.00
65.00 I I I
60.00
& v 7;& &

S ©
v S & F S ERL e & & ° & & L & & NI &
’b S S S SN et & d‘ 2§ ‘9 PN & & & SF
@Q & & & ‘,O © & TS & TGS LSS 7‘9 z& @:\ \‘;‘\ SEEAESNPORRS & «
S F CFITT T FTF LT o F T s IS ¢ FE g‘(\p & TIT S8 @Q?'
- Q0 Q O > O Q 3 h o
& O T T ET T T IS ST E T FT S T F
£ & & S LS & THES LTI LEFT T FEE S
5 ¢ 5 <
5 & SR O FE S > &S
& & &ow O/ K L L & & & &
& & & Q7 F S & F O
S $ T LK NG & &
& & F & L & 7@
& & -&‘"& & K <
B 02 5 @
& < <&

HARDWARE COMPONENTS

Figure 3.10: Detection results with WASPAS using hardware components

of 98.01% on using 15 permissions when we apply the proposed Algorithm 1 to the ranking
described by TOPSIS. Similarly, the highest accuracy of 99.10% can be achieved using 46
intents when we apply the proposed Algorithm 1 to the ranking described by TOPSIS, whereas
the ranking given by WASPAS results in the highest detection accuracy of 93.75% on using
22 hardware components. Hence, in response to research question four, we conclude that the

TOPSIS’ top-ranked 46 intents, i.e. intents give the best detection accuracy results amongst the

top three most commonly used AndroidManifest file features.

Table 3.16: Compiled Detection results (in %) on applying the proposed algorithm on

DATASET -1

HARDWARE
Feature Ranking PERMISSIONS INTENTS

COMPONENTS
Method used Number | Accuracy Number | Accuracy | Number | Accuracy

used (in %) used (in %) used (in %)

TOPSIS 15 98.01 46 99.10 19 91.67
EDAS 09 87.34 19 90.82 18 91.67
WASPAS 18 87.73 26 93.75 22 93.75
No Ranking (All | 129 74.64 79 67.19 88 71.84
features used)

At the same time, when no feature ranking of any type is used and all the features are fed
to the classifiers at once, i.e., on considering the large initial vector of all the permissions, in-
tents, or hardware components simultaneously, we observe that the highest detection accuracy
obtained is merely 74.64%, 67.19%, and 71.84% respectively. Based on the results and the

low detection accuracy depicted by Table 3.16, we answer our first research question that feature

ranking helps us eliminate irrelevant features that can hamper detection accuracy.

73
3.4.4 Comparison with other feature ranking techniques

We applied various MCDM techniques to rank the features. However, feature ranking tech-
niques such as Principal Component Analysis (PCA) [137] and Entropy-based Category Cov-
erage Difference (ECCD) [52] have been used in other studies for Android malware detection.
Next, we compare the performance of the ranking obtained using various MCDM techniques
with the Principal Component Analysis (PCA) and Entropy-based Category Coverage Differ-
ence (ECCD). Tables 3.17 and 3.18 highlight the top 10 permissions, intents, and hardware
components ranked using Principal Component Analysis (PCA) and Entropy-based Category
Coverage Difference (ECCD), respectively.

Table 3.17: Top 10 features ranked using PCA

PERMISSIONS INTENTS HARDWARE COMPONENTS
READ_SYNC_STATS NOTIFICATION. RECEIVED. | sensor.heartrate.ecg
PROXY
WRITE_.OWNER_DATA PUSH_.TIME type.automotive
CHANGE_WIFI_STATE REPORT sensor.ambient _temperature
READ_OWNER_DATA PushService sensor.relative _humidity
WRITE_CALL_LOG REGISTER faketouch. multitouch. jazzhand
READ_USER _DICTIONARY NOTIFICATION _.OPENED sensor.hifi _sensors
WRITE_SETTINGS MESSAGE _RECEIVED camera. capability. manual_post
_processing
READ_SYNC_SETTINGS NOTIFICATION _RECEIVED camera. capability. man-
ual_sensor
GET_TASKS CONNECTION camera.external
RECEIVE_WAP_PUSH DaemonService opengles.aep

Table 3.18: Top 10 features ranked using ECCD

PERMISSIONS INTENTS HARDWARE COMPONENTS
MOUNT_UNMOUNT _FILESYSTEMS USER _PRESENT autofocus
READ_PHONE_STATE PACKAGE REMOVED service. GwBroadcast Moni-

torService
CHANGE_WIFI_STATE NOTIFICATION _RECEIVED | camera

_PROXY

GET_TASKS PushService screen.portrait
SYSTEM_ALERT -WINDOW PUSH_TIME fingerprint
READ_LOGS REPORT location
CHANGE_NETWORK _STATE REGISTER service. DevTransferService
WRITE_SETTINGS MESSAGE _RECEIVED touchscreen
ACCESS_WIFI_STATE NOTIFICATION _-OPENED audio.pro
JPUSH_MESSAGE NOTIFICATION _RECEIVED location.network

For comparison, we ranked all three feature types, i.e., permissions, intents, and hardware
components, using Principal Component Analysis (PCA) and Entropy-Based Category Cover-
age Difference (ECCD) and further applied the proposed Algorithm 1 to DATASET-1 to obtain
their corresponding detection accuracies. First, we apply the proposed detection algorithm to
permissions after ranking them using Principal Component Analysis (PCA), and Entropy-

based Category Coverage Difference (ECCD). The proposed algorithm, i.e., Algorithm 1,

74

will provide the best set of permissions with higher accuracy as an output. As we can see
from Table 3.19, we obtain the highest accuracy of 87.56% with five permissions, namely
{READ_SYNC_STATS , WRITE_OWNER_DATA , CHANGE _WIFI_STATE , READ_OWNER _DATA,
and WRITE_CALL_LOG }, when we rank the permissions with PCA. Similarly, we obtained the
highest accuracy of 89.68% with only one permission namely MOUNT_-UNMOUNT_FILESYSTEMS
ranked using ECCD. Simultaneously, with our proposed approach on the permission ranking
given by TOPSIS, we obtained the highest accuracy of 98.01% with 15 permissions.

Table 3.19: Comparison of best detection results (in %) from MCDM techniques with Principal

Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
permissions

Approach Number of | Detection accuracy using various machine learning and deep learning classifiers (in %)
used PERMIS-
SIONS used

DT RF BC NB LR SvC ANN MLP DNN CNN
TOPSIS (Our | 15 98.01 88.73 88.73 68.28 69.66 73.12 | 6370 | 41.54 | 60.86 74.25
approach)
PCA [137] 05 87.56 87.54 87.53 78.76 | 78.76 78.76 | 74.61 75.43 78.50 78.54
ECCD [52] 01 89.68 86.66 89.61 80.12 80.12 80.2 79.87 72.08 79.95 76.65

Next, we apply the proposed detection algorithm to intents, after ranking them using Princi-
pal Component Analysis (PCA), and Entropy-based Category Coverage Difference (ECCD).
The proposed algorithm, i.e., Algorithm 1, will provide the best set of intents with higher ac-
curacy as an output. The results are summarized in Table 3.20, as it can be observed that we ob-
tain the highest accuracy of 95.43% with nine intents, namely { NOTIFICATION_RECEIVED_PROXY
, PUSH_TIME , REPORT , PushService , REGISTER , NOTIFICATION_OPENED , MESSAGE_RECEIVED
, NOTIFICATION _RECEIVED, and CONNECTION }, when we rank the intents using PCA. Sim-
ilarly, we obtain the highest accuracy of 96% with 19 intents, namely {USER_PRESENT PACK-
AGE_REMOVED , NOTIFICATION _RECEIVED_PROXY , PushService , PUSH_TIME......, UNREG-
ISTRATION , SERVICE , START_FROM_AGOO , ELECTION and PING_V4 } , when we rank the
intents with ECCD. At the same time, with our proposed approach on the intents ranking given
by TOPSIS, we obtain the highest accuracy of 99.10% with 46 intents. Hence, our model using
the MCDM techniques outperforms the Principal Component Analysis (PCA), and Entropy-
based Category Coverage Difference (ECCD) on intents.

Now, we apply the proposed detection algorithm to hardware components, after ranking
them using Principal Component Analysis (PCA) and Entropy-based Category Coverage Dif-
ference (ECCD). The proposed algorithm, i.e., Algorithm 1, will provide the best set of hard-
ware components with higher accuracy as an output. The results are summarized in Table

3.21, as it can be observed that we obtain the highest accuracy of 88.88% with 11 hard-

75

Table 3.20: Comparison of best detection results (in %) from MCDM techniques with Principal
Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
intents

Approach Number of IN- | Detection accuracy using various machine learning and deep learning classifiers (in %)
used TENTS used

DT RF BC NB LR SvC ANN MLP DNN CNN
TOPSIS (our | 46 99.10 95.43 94.71 95.45 88.20 88.59 88.26 74.19 88.68 88.45
approach)
PCA [137] 09 95.43 95.41 95.41 88.93 88.54 88.50 88.61 88.40 88.40 89.33
ECCD [52] 19 96.00 96.00 | 95.98 90.42 | 90.42 88.65 90.8 89.5 90.76 85.54

ware components, namely {sensorheartrate.ecg , type.automotive , sensor.ambient_temperature
, sensor.relative_humidity , faketouch.multitouch.jazzhand , sensorhifi_sensors , camera. capabil-
ity.manual _post_processing , camera.capability.manual_sensor , camera.external , opengles.aep and
camera.capability.raw }, when we rank the hardware components with PCA. Similarly, we ob-
tain the highest accuracy of 90.50% with 15 hardware components, namely {autofocus , ser-
vice.GwBroadcastMonitorService , camera , screen.portrait,.....vulkan , telephony , vibrate , touch-
screen.multitouch.distinct }, when we rank the hardware components with ECCD. At the same
time, with our proposed approach on the hardware components ranking given by WASPAS, we
obtain the highest accuracy of 93.78% with 22 hardware components. Hence, our model using
the MCDM techniques outperforms the Principal Component Analysis (PCA) and Entropy-
based Category Coverage Difference (ECCD) on hardware components too.

Table 3.21: Comparison of best detection results (in %) from MCDM techniques with Principal

Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
hardware components

Approach Number of HARD- | Detection accuracy using various machine learning and deep learning classifiers (in %)
used WARE COMPO-
NENTS used

DT RF BC NB LR SvC ANN MLP DNN CNN
WASPAS 22 93.75 93.75 90.00 93.75 93.75 78.57 78.05 72.54 | 78.85 78.78
(Our ap-
proach)
PCA [137] 11 66.66 66.66 | 88.88 | 44.44 | 4444 58 55.49 56.5 58.5 71.77
ECCD [52] 15 90.50 90.50 90.50 86.89 90.42 82.64 85.82 80.53 84.44 84.44

3.4.5 Comparison with other statistical tests

We applied various MCDM techniques to rank the features. However, statistical tests such as
Mutual Information, Pearson Correlation Coefficient, and T-Test have been used in other stud-
ies such as [131] for Android malware detection. Hence, next, we compare the performance
of the ranking obtained using various MCDM techniques with the mutual information, Pearson

correlation coefficient, and T-test. Tables 3.22 , 3.23 and 3.24 highlight the top ten permis-

76

sions, intents, and hardware components ranked with mutual information, Pearson Correlation

Coefficient, and T-Test, respectively.

Table 3.22: Top 10 features ranked using Mutual Information

PERMISSIONS INTENTS HARDWARE COMPONENTS

MOUNT. UNMOUNT. FILESYSTEMS USER_PRESENT touchscreen

READ_PHONE. STATE PACKAGE. REMOVED camera

CHANGE_WIFI. STATE DEFAULT Camera.autofocus

GET_TASKS REGISTER touchscreen. multitouch. distinct

SYSTEM_ALERT_ WINDOW NOTIFICATION_ RECEIVED. | touchscreen. multitouch
PROXY

READ_LOGS PACKAGE_ ADDED location

WRITE_SETTINGS PushService location.network

CHANGE_ NETWORK_ STATE PUSH_TIME location.GPS

ACCESS_WIFI_ STATE REPORT screen.portrait

ACCESS_COARSE_ LOCATION MESSAGE_ RECEIVED telephony

Table 3.23: Top 10 features ranked using Pearson Correlation Coefficient

PERMISSIONS INTENTS HARDWARE COMPONENTS
ACCESS action action. NEW_ PICTURE
BADGE_COUNT-READ ACTION. RICHPUSH. CALL- | type.watch

BACK
ACCESS_ BACKGROUND._ LOCATION LAUNCHER audio.low _latency
ACCESS_COARSE_LOCATION ACTION. SHUTDOWN biometrics
REQUEST_IGNORE.- BATTERY. OPTI- | DAYDREAM moxx.mobility. android.hardware
MIZATIONS platform. firebaseinitprovider
ACCESS_COARSE._ UPDATES BATTERY_. CHANGED camera.ar
BROADCAST.- PACKAGE_ ADDED CREATE_ SHORTCUT autofocus
ACCESS_GPS COCKROACH BLUETOOTH- ADMIN
ACCESS_NETWORK_ STATE CLICK portrait
GOOGLE_PHOTOS SEND vibrate

Table 3.24: Top 10 features ranked using T-Test

PERMISSIONS INTENTS HARDWARE COMPONENTS
SEND_DOWNLOAD._ COM- | webview action.NEW_PICTURE
PLETED_INTENTS

UPDATE_APP_ OPS_STATS UNREGISTER type.watch

READ_OWNER_ DATA ELECTION_ RESULT_V4 BLUETOOTH. ADMIN
READ_USER_ DICTIONARY action sensor. ACCELEROMETER
BAIDU_LOCATION._ SERVICE WALLPAPER_ CHANGED faketouch.multitouch. jazzhand
RECEIVE_WAP_PUSH DATE_-CHANGED portrait

MESSAGE MEDIA_ CHECKING sensor.ambient_ temperature
INSTALL- PACKAGES COCKROACH sensor.heartrate.ecg
WRITE_MEDIA_ STORAGE PING_V4 sensor.relative_ humidity
WRITE_CALL_LOG NEW_OUTGOING. CALL type.automotive

For comparison, we ranked all three feature types, i.e., permissions, intents, and hardware
components, using mutual information, Pearson Correlation Coefficient, and T-Test and fur-
ther applied the proposed Algorithm 1 on DATASET-1 to obtain their corresponding detection
accuracies. First, we apply the proposed detection algorithm to permissions after ranking
them using mutual information, Pearson’s correlation coefficient, and T-test. The proposed

algorithm, i.e., Algorithm 1, will provide the best set of permissions with higher accuracy as

77

an output. As we can see from Table 3.25, we obtain the highest accuracy of 89.68% with
only one permission, namely MOUNT_-UNMOUNT_FILESYSTEMS, when we rank the permis-
sions with Mutual Information. With Pearson’s correlation coefficient, we obtain the highest
accuracy of 85.48% again with only one permission, namely ACCESS. Similarly, we obtained
the highest accuracy of 88.93% with 65 permissions ranked using the T-test. Simultaneously,
with our proposed approach on the permission ranking given by TOPSIS, we obtain the highest

accuracy of 98.01% with 15 permissions.

Table 3.25: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on permissions

Approach Number of | Detection accuracy using various machine learning and deep learning classifiers (in %)
used PERMIS-
SIONS used

DT RF BC NB LR SvC ANN MLP DNN CNN
TOPSIS (Our | 15 98.01 88.73 88.73 68.28 69.66 73.12 63.70 | 41.54 | 60.86 74.25
approach)
Mutual Infor- | 01 89.68 89.67 89.62 80.12 80.12 80.20 | 79.87 72.08 79.95 79.65
mation [131]
Correlation 01 85.48 85.42 85.43 72.66 | 72.66 72.66 | 73.26 65.49 73.1 72.76
Coefficient
[131]
T-Test [131] 65 88.93 88.92 88.92 83.45 83.45 83.60 83.15 82.86 83.26 83.08

Next, we apply the proposed detection algorithm to intents, after ranking them using mu-
tual information, Pearson’s correlation coefficient, and T-Test. The proposed algorithm, i.e.,
Algorithm 1, will provide the best set of intents with higher accuracy as an output. The re-
sults are summarized in Table 3.26, as it can be observed that we obtain the highest accuracy
of 92.18% with only two intents, namely USER_PRESENT and PACKAGE_REMOVED when
we rank the intents with Mutual Information. However, with Pearson’s correlation coeffi-
cient, we obtain the highest accuracy of 89.27% with two intents, namely action and AC-
TION_RICHPUSH_CALLBACK. Similarly, we obtain the highest accuracy of 94.57% with 51
intents, namely {webview , UNREGISTRATION , ELECTION RESULT V4 , action , WALLPA-
PER_CHANGED.,...NOTIFICATION_OPENED , PUSH _TIME , REPORT , PushService, and NOTI-
FICATION_RECEIVED_PROXY }, when we rank the intents with T-test. At the same time, with
our proposed approach on the intents ranking given by TOPSIS, we obtain the highest accuracy
of 99.10% with 46 intents. Hence, our model using the MCDM techniques outperforms the

Mutual Information, Pearson Correlation Coefficient, and T-Test on intents.

Now, we apply the proposed detection algorithm to hardware components, after ranking
them using mutual information, Pearson’s correlation coefficient, and T-Test. The proposed

algorithm, i.e., Algorithm 1, will provide the best set of hardware components with higher

78

Table 3.26: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on intents

Approach used Number of IN- | Detection accuracy using various machine learning and deep learning classifiers (in %)
TENTS used

DT RF BC NB LR SvcC ANN MLP DNN CNN
TOPSIS (Our ap- | 46 99.10 95.43 94.71 95.45 88.20 88.59 88.26 74.19 88.68 88.45
proach)
Mutual Informa- | 02 92.17 92.18 92.12 80.24 79.58 80.90 79.36 80.46 80.51 80.75
tion [131]
Correlation Coef- | 02 89.27 89.24 89.11 63.67 63.67 63.66 63.02 60.81 60.87 63.38
ficient [131]
T-Test [131] 51 94.56 94.57 94.54 87.44 87.44 85.69 85.99 80.80 60.87 87.30

accuracy as an output. The results are summarized in Table 3.27, as it can be observed that

we obtain the highest accuracy of 76.49% with only one hardware component, namely fouch-

screen when we rank the hardware components with mutual information. With both Pearson’s

correlation coefficient and the T-test, we obtained the highest accuracy of 91.67% with seven

and two hardware components respectively. At the same time, with our proposed approach on

the hardware components ranking given by WASPAS, we obtain the highest accuracy of 93.75%

with 22 hardware components. Hence, our model using the MCDM techniques outperforms the

Mutual Information, Pearson Correlation Coefficient, and T-Test on hardware components.

Table 3.27: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on hardware components

Approach Number of HARD- | Detection accuracy using various machine learning and deep learning classifiers (in %)
used WARE COMPO-
NENTS used

DT RF BC NB LR SvC ANN MLP DNN CNN
WASPAS 22 93.75 93.75 90.00 93.75 93.75 78.57 78.05 72.54 78.85 78.78
(Our ap-
proach)
Mutual In- | 01 74.05 74.05 74.05 73.56 74.05 74.04 74.64 74.48 74.49 76.49
formation
[131]
Correlation | 07 91.67 91.67 91.67 48.92 86.02 91.67 54.84 5491 63.04 53.69
Coefficient
[131]
T-Test 02 91.66 91.66 91.66 83.33 83.33 83.33 57.58 67.99 57.00 66.66
[131]

3.5 Detection Results on DATASET-2

The applications in DATASET-1 are dated from 2016 to 2022. In the following subsections,

we discuss the results obtained by testing our proposed Algorithm 1 over a new and more

recent dataset, i.e., 2000 malicious applications downloaded from Androzoo that were detected

between 2021 and 2022. To check the efficiency of the three most commonly used features

in the AndroidManifest file, we again perform three experiments, considering 1) permissions,

79

2) intents, and 3) hardware components, by applying the three MCDM techniques individually,

but this time on DATASET-2. We discuss these results in upcoming subsections.

3.5.1 Detection Results with TOPSIS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed
approach over DATASET-2 while using the rankings given by TOPSIS. Figures 3.11 , 3.12 and
3.13 summarize the detection results when we consider permissions, intents, and hardware
components for detection. We note that in the figures mentioned above, we do not mention
the names of all the ranked features because the accuracy upon eliminating them lies within

similar ranges to the mentioned ones.

Detection Results with TOPSIS using permissions

Figure 3.11 can be understood as follows. While simultaneously considering all permissions
without using the TOPSIS ranking, we achieve 70.79% accuracy with the DT and RF clas-
sifiers. In the first iteration, on eliminating the least ranked permission named INTERNET
from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first iter-
ation and move on to the next iteration when we eliminate the bottom two ranked permis-
sions, i.e., INTERNET and ACCESS_NETWORK_STATE from DATASET-2. In this iteration, we
obtain an accuracy of 72.33% with the RF classifier. As discussed in Algorithm 1, we proceed
to the next iteration whenever the detection accuracy increases from the previous iteration.
Hence, we eliminate the bottom three ranked permissions and repeat the entire procedure. The
procedure is terminated until we observe a potential decrease in the detection accuracy. As
shown in Figure 3.11, we achieved the highest detection accuracy of 87.89% with BC classi-
fier upon eliminating 123 permissions out of the total lot of 129, i.e., by considering only the
top six permissions namely {UPDATE_APP_OPS_STATS , USE_BIOMETRIC , MAPS_RECEIVE ,
READ_OWNER_DATA , READ_USER _DICTIONARY , SEND_DOWNLOAD_COMPLETED_INTENTS
and QUERY ALL_PACKAGES }, the highest detection accuracy was achieved. From the next it-
eration, we observe that the detection accuracy starts decreasing. Finally, we conclude that we
obtain the highest accuracy of 87.89% when we apply the proposed Algorithm | to permis-

sions.

/\‘v

£

= 85.00

)

£ 80.00

5

3

£ 75.00

65.00
N N N RIS L O O L &

&Q & ™ ‘S Q@ & QF &
&7

> & & /\‘V & SIS RLEE > & & e S X &P D& &
V&‘&iév/\&:év@qy@ &Qy(?\oty &Qéo c°°$$§<§ s\&&v €) “’vé:*ol\ »‘ﬁoég eotié\\v %v?o‘&% S »\“’ﬁ DOQQ@‘(T VJL:&\\&&&?@V\ %Qvé“&w@s 5
RSN NARGINNE D) s’ (yo@oc;\/$0\>~*/{w/§v F ol ¥ Lol &7
S v ¥ W LY RS @ oS T T S S S > & T L O
B PR § A7 & S DR IR S A S I AR SR SIS
Q& R s S NI LR L O & QU W 9 S/ R
LS & 8 S FTFFTSY ¢S d I SIS E TS 68 Ty
57 & X % QAN SRS &Y Q7o & X
& & & & 7L & E o O SRCERE S N3
&7 & o7 & P o N SEOSIRAIS o Q
T & ¥ «° @0 X D7 & & & & $
< N <> S
& « & oo
S
S

PERMISSIONS

Figure 3.11: Detection results with TOPSIS using permissions

Detection Results with TOPSIS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using
TOPSIS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.12
can be understood as follows. While considering all intents simultaneously without using the
TOPSIS ranking, we achieve 65.35% accuracy with RF. In the first iteration, after eliminating
the least ranked intent named MAIN from the DATASET-2, we observe that we get 65.97%
accuracy with several machine learning classifiers. We call this the first iteration and move
on to the next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and
LAUNCHER from the DATASET-2. In this iteration, we obtain an accuracy of 67.05% with DT,
RF, and NB classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever
the detection accuracy increases from the previous iteration. Hence, we eliminate the bottom
three ranked intents and repeat the entire procedure. The procedure is terminated until we
observe a potential decrease in the detection accuracy. As shown in Figure 3.12, we achieved
the highest detection accuracy of 95.85% with RF classifier upon eliminating 33 intents out
of the total lot of 79, i.e., upon considering only the top 46 intents, the highest detection
accuracy can be achieved. From the next iteration, we observe that the detection accuracy
starts decreasing. Finally, we conclude that we obtain the highest accuracy of 95.85% when

we apply the proposed Algorithm 1 to the intents.

Detection Results with TOPSIS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-
nents ranked by TOPSIS. The algorithm provides the best hardware components with higher
accuracy as an output. Figure 3.13 can be understood as follows. While considering all the

hardware components simultaneously without using the TOPSIS ranking, we achieve 65.39%

81

100.00

95.00

90.00

85.00

80.00

75.00

70.00

65.00 I I I I
60.00 I

AN &\@\ QLS & RO S RS

Accuracy (in %)

F S & S NS SO S S S
C X 3 7 Q¥ v < \e) S A A & O Ar KR
T Sl \Y&o‘@ o (x}\@ & &}(Jo*“q Q&@O “%V@\io$z\<§ o *&cﬁ& & vév:@« «@9 & @‘}<z~ & Qiéf‘ S &v‘\‘ & Q@VO (y\\? Q’dspdi& & ESE
> ¥ O O O & & N 9 o Y %
TP T NE ol g s S L LK S & S & P& S\ N &
&vg X “;\ov d_‘,o o&é’o S ‘2’19\334\(5”) & & 0 F I & e
BN LR S R T & & « &
N Ky ®~\/ & S g QO 9 S
$/§© QV N Céc§
69 IS K ¥
¥ 3

INTENTS

Figure 3.12: Detection results with TOPSIS using intents

accuracy with the BC machine learning classifier. In the first iteration, after eliminating the
least ranked hardware component named camera from the DATASET-2, we observe that we get
66.45% accuracy with the BC classifier. We call this the first iteration and move on to the
next iteration when we eliminate the bottom two ranked hardware components, i.e., camera
and Camera.autofocus from the DATASET-2. In this iteration, we obtain an accuracy of 67.90%
with the RF classifier. As discussed in Algorithm 1, we proceed to the next iteration whenever
the detection accuracy increases from the previous iteration. Hence, we eliminate the bottom
three ranked hardware components and repeat the entire procedure. The procedure is termi-
nated until we observe a potential decrease in the detection accuracy. As shown in Figure 3.13,
we achieved the highest detection accuracy of 94.44% with DT, BC and RF classifiers upon
eliminating 72 hardware components out of the total lot of 88, i.e., upon considering only the
top 16 hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient_temperature
, sensor.heartrate.ecg , sensor.relative_humidity , type.automotive , portrait , BLUETOOTH_ADMIN |,
sensor.heartrate , sensorACCELEROMETER , type.watch..... faketouch.multitouch.distinct , touch-
screen.multitouch.jazzhand , camera.capability.manual_post_processing , camera.capability.manual
_sensor and READ_EXTERNAL_STORAGE }, highest detection accuracy can be achieved. From
the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-
clude that we obtain the highest accuracy of 94.44% when we apply the proposed Algorithm

1 to hardware components.

3.5.2 Detection Results with EDAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over DATASET-2 while using the rankings given by EDAS. Figures 3.14 , 3.15 and

82

100.00

05.00 94.44
K 90.00
£ 85.00
& 80.00
e
5 75.00
65.00 I
60.00 [I
S PN Q<& > O & & % S e QA & @ DO
vﬁ@e} & ‘\62 “o\"? Qé\o @‘\0 o&\\/g@o @?,v ‘;\‘;\ & @o N o®e &;,e SO @@0‘ @b & &éo o&'&@o@ \«'\\\&@‘é @c"‘ &
ox"-@@'@(‘@\oc)q}'ge/@e:*//\o\‘&'&?w've-o &Y O F & F P
m-"’\) 0@‘ P SN & & & & & Kol & o<29 2 & e S & O,st/ %\g&'&‘j‘ zbé Q@Q o5
& ¥ & ¢ & & S E XN QL FE & & &0 G S Sl g
& <&) X LN AR R AN NI G SIS
%) s & FFTE LT T EF S & R RO
Q%Q/b O @Q'b @Q,b (\\(‘\) é\é\ © & Lo o & ((p\\\@\)
< > 3 > g
({YQ/ R ey o & s &
S S & &
¢ F K @

HARDWARE COMPONENTS

Figure 3.13: Detection results with TOPSIS using hardware components

3.16 summarize the detection results when we consider permissions, intents, and hardware
components for detection. We note that in the figures mentioned above, we do not mention
the names of all the ranked features because the accuracy upon eliminating them lies within

similar ranges to the mentioned ones.

Detection Results with EDAS using permissions

Figure 3.14 can be understood as follows. While simultaneously considering all permis-
sions without using the EDAS ranking, we achieve 70.79% accuracy with the DT and RF
classifiers. In the first iteration, on eliminating the least ranked permission named INTER-
NET from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first
iteration and move on to the next iteration when we eliminate the bottom two ranked per-
missions, i.e., INTERNET and ACCESS_NETWORK_STATE from the DATASET-2. In this it-
eration, we obtain an accuracy of 72.33% with the RF classifier. As discussed in Algo-
rithm 1, we proceed to the next iteration whenever the detection accuracy increases from
the previous iteration. Hence, we eliminate the bottom three ranked permissions and re-
peat the entire procedure. The procedure is terminated until we observe a potential decrease
in the detection accuracy. As shown in Figure 3.14, we achieved the highest detection ac-
curacy of 88.67% with DT classifier upon eliminating 120 permissions out of the total lot
of 129, i.e., upon considering only the top nine permissions namely {READ_OWNER_DATA ,
SEND_DOWNLOAD_COMPLETED_INTENTS , WRITE_OWNER _DATA , UPDATE APP_OPS_STATS
, READ_USER _DICTIONARY , DEVICE_POWER , READ_SYNC_STATS , RECEIVE_WAP_PUSH and
RECEIVE_MCS_MESSAGE }, the highest detection accuracy was achieved. From the next iter-

ation, we observe that the detection accuracy starts decreasing. Finally, we conclude that we

83

obtain the highest accuracy of 88.67% when we apply the proposed Algorithm 1 to permis-

& &

AR
\\V%é\‘;()é \é\ S

’

sions.

100
95
90 88.67

85
80
75
vt
65
S & & & S

& S < &
2 o

Accuracy (in%)

N

<(\ s
& & S

PERMISSIONS

Figure 3.14: Detection results with EDAS using permissions

Detection Results with EDAS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using
EDAS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.15
can be understood as follows. While considering all intents simultaneously without using the
EDAS ranking, we achieve 65.35% accuracy with RF. In the first iteration, after eliminating the
least ranked intent named MAIN from the DATASET-2, we observe that we get 65.97% accuracy
with several machine learning classifiers. We call this the first iteration and move on to the
next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER
from the DATASET-2. In this iteration, we obtain an accuracy of 67.05% with DT, RF, and NB
classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-
tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three
ranked intents and repeat the entire procedure. The procedure is terminated until we observe a
potential decrease in the detection accuracy. As shown in Figure 3.15, we achieved the highest
detection accuracy of 93.72% with DT classifier upon eliminating 60 intents out of the total lot
of 79, 1.e., upon considering only the top 19 intents namely {SEND_MULTIPLE , webview , MES-
SAGE_CLICKED , MESSAGE_ARRIVED , ELECTION_RESULT_V4 , DATE_CHANGED , action ,
BATTERY CHANGED , MEDIA_CHECKING , COCKROACH , PING V4 , WALLPAPER CHANGED
,ACTION _VIEW_DOWNLOADS , NEW_OUTGOING _CALL , SCREEN_ON , HEART BEAT , HEAD-
SET_PLUG , FEEDBACK and MESSAGE }, highest detection accuracy can be achieved. From
the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-

clude that we obtain the highest accuracy of 93.72% when we apply the proposed Algorithm

84

1 on intents.

100.00

95.00 93.72
£ 90.00
£ 85.00
2 80.00
©
5 75.00
g
2 70.00
65.00 I
60.00 I I I
N AL QA O ELEL OO N R TN OO AL O™ FESTLOCRL O LO D™D O &
T XY > &Y &Y & XN\ RO C - N N
FENERELEFE EEEL T P & O F TSI F S E O FE
& F FEL P I IO N YO&E FSLEE L EF T FNMNE S
$ S TS EFOLEEFTE S TF IS S FVELETEX S TS
S8 FEFS FFL S (&Y Oy & O St 7
oY RO) VEe? L Y ¥ L FLE ¢ &
o 4;‘9 <) \CF éq\(’ c;\vo/ & * N N
Oy & N v v ©
S &
S &
< S

INTENTS

Figure 3.15: Detection results with EDAS using intents

Detection Results with EDAS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-
nents ranked by EDAS. The algorithm provides the best hardware components with higher
accuracy as an output. Figure 3.16 can be understood as follows. While considering all the
hardware components simultaneously without using the EDAS ranking, we achieve 65.39%
accuracy with BC machine learning classifiers. In the first iteration, after eliminating the
least ranked hardware component named camera from the DATASET-2, we observe that we get
66.45% accuracy with the BC classifier. We call this the first iteration and move on to the next
iteration when we eliminate the bottom two ranked hardware components, i.e., camera and
Camera.autofocus from the DATASET-2. In this iteration, we obtain an accuracy of 67.90% with
the RF classifier. As discussed in Algorithm 1, we proceed to the next iteration whenever the
detection accuracy increases from the previous iteration. Hence, we eliminate the bottom three
ranked hardware components and repeat the entire procedure. The procedure is terminated un-
til we observe a potential decrease in the detection accuracy. As shown in Figure 3.16, we
achieved the highest detection accuracy of 94.44% with DT, RF and BC classifiers upon elimi-
nating 71 hardware components out of the total lot of 88, i.e., upon considering only the top 17
hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient_temperature , sen-
sor.heartrate.ecg , sensor.relative_humidity , type.automotive , type.watch , sensorACCELEROMETER
, BLUETOOTH _ADMIN , portrait , sensorheartrate , faketouch.multitouch.distinct , touchscreen.
multitouch.jazzhand , moxx.mobility.android.hardwareplatform. firebaseinitprovider , sensor.hifi_sensors
, camera.capability.manual_post_processing , camera.capability.manual_sensor and READ_EXTERNAL
_STORAGE }, highest detection accuracy can be achieved. From the next iteration, we observe

that the detection accuracy starts decreasing. Finally, we conclude that we obtain the highest

85

accuracy of 94.44% when we apply the proposed Algorithm | to hardware components.

100.00
95.00

90.00

85.00

80.00

75.00

70.00

65.00 I I I I
60.00 |

’b "2
S

94.44

Accuracy (in %)

\ < N o <& o 25\ 2 D e e
v & & & N *\ Q x C‘ & & S OIS * & &
N F W S Q & \° 23 & S S N
"?’é\\i"c‘)\ & 5{;\ ﬂ°® < @& \OQ'&O&&O%‘? ‘é‘oq\(& /oé’\o ‘é‘;‘)obé& 6‘&0\? '\0<b m°&q,°\)% £° o‘j‘\\ '5\ %\& <€ VQ 0® @"A o@o s \5& Qz\’b"z;\:\‘:\\
F O ° SN o TES LR L ELEL LT QXS F TS
@ O @ N R A R R N R S N » L @ ©
S F © & e’ DL FESTHEITITAITE P g F S
@ 4\\)\ s & > P Tt E & & S o @& ° NG N @& LS
& L EUre PG K & & & & & RIS
O 7 ey N CaERe)
& % INAGOAES 45 X8 0 & @ £ S
9 X 9 O
S B K L Q oF ™ & &L <O
& SR &S I T A

HARDWARE COMPONENTS

Figure 3.16: Detection results with EDAS using hardware components

3.5.3 Detection Results with WASPAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed
approach over the DATASET-2 while using the rankings given by WASPAS. Figure 3.17 , 3.18
and 3.19 summarize the detection results when we consider permissions, intents, and hardware
components for detection respectively. We note that in the figures mentioned above, we don’t
mention the names of all the ranked features as the accuracy upon eliminating them lie within

similar ranges to the mentioned ones.
Detection Results with WASPAS using permissions

Figure 3.17 can be understood as follows. While considering all the permissions simultane-
ously without utilising the WASPAS ranking, we achieve 70.79% accuracy with DT and RF
classifiers. At the first iteration, on eliminating the least ranked permission named INTER-
NET from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first
iteration and move on to the next iteration when we eliminate the bottom two ranked permis-
sions, 1.e., INTERNET and WRITE_EXTERNAL _STORAGE from the DATASET-2. In this iteration,
we get an accuracy of 72.61% with DT and RF classifiers. As discussed in Algorithm 1,
we proceed to the next iteration whenever the detection accuracy increases from the previ-
ous iteration. Hence, we eliminate the bottom three ranked permissions and repeat the entire
procedure. The procedure terminates until we observe a potential decrease in the detection ac-
curacy. As shown in Figure 3.17, we achieved the highest detection accuracy of 89.28% with
DT classifier upon eliminating 99 permissions out of the total lot of 129, i.e., upon consid-

ering only the top 30 permissions namely {READ_OWNER _DATA , READ _USER_DICTIONARY ,

86

SEND_DOWNLOAD_COMPLETED_INTENTS , UPDATE_APP_OPS_STATS , RECEIVE_WAP_PUSH
, QUERY ALL_PACKAGES , WRITE_OWNER_DATA , READ_SYNC_STATS,.....ACCESS _BACKGROUND _
LOCATION , RECEIVE_MMS , RUN_INSTRUMENTATION , RECORD_VIDEO , USE_BIOMETRIC
, WRITE_APN _SETTINGS , SET_WALLPAPER _HINTS and SET_ALARM } , highest detection accu-
racy can be achieved. From the next iteration, we observe that the detection accuracy starts
decreasing. Finally, we conclude that we get the highest accuracy of 89.28% when we apply

the proposed Algorithm 1 on permissions.

100.00

95.00
90.00 89.28

85.00
80.00
75.00
= ottt |
65.00
‘gé e Q L Q S

Accuracy (in %)

O & & RIS < O S S SRRy > & o O (&
eSS &%‘25&4‘:\4\‘;\6?09\0 ’\\oe«@:c@;@Q@&@&«vé ° s‘$%v‘§$°%oo$oéké¢g‘§ oS é{‘&& «\V“\«\&\?&o“‘%éé V&:vév TS
Q& XF R L FF LS AN S F LTS S L L &7 L7 62L&
N N9 N Fo? TP F Y FUT T S AL Fh e FE W EE
AN UOV/<¢/<<// O o T 45 e T & KSR P & &P OQ\, PSRN
S £ QS o7 S v KO & B GO DR QY TR "@ 07 S W RN o
S P& FE K S & LK T FFTFE Tl FEF o VR’ AL ST & & 97

& SIS EE F € CFELoi & FTEIP NGRS
& S L S PR o7 8 ¢ e
N & ¢ s v LY N
S O K2
7 53 o @/
163 ¥ B

PERMISSIONS

Figure 3.17: Detection results with WASPAS using permissions

Detection Results with WASPAS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents by WAS-
PAS. The algorithm will give the best intents with higher accuracy as an output. Figure 3.18
can be understood as follows. While considering all the intents simultaneously without uti-
lizing the WASPAS ranking, we achieve 65.35% accuracy with RF. At the first iteration, on
eliminating the least ranked intent named BATTERY_CHANGED from the DATASET-2, we ob-
serve that we get the same 65.54% accuracy with RF and BC classifiers. We call this the first
iteration and move on to the next iteration when we eliminate the bottom two ranked intents,
1.e., BATTERY_CHANGED and MEDIA_REMOVED from the DATASET-2. As discussed in Algo-
rithm 1, we proceed to the next iteration whenever the detection accuracy increases from the
previous iteration. Hence, we eliminate the bottom three ranked intents and repeat the entire
procedure. The procedure terminates until we observe a potential decrease in the detection
accuracy. As shown in Figure 3.18, we achieved the highest detection accuracy of 95.58%
with RF classifier upon eliminating 53 intents out of the total lot of 79, i.e., upon considering

only the top 26 intents namely {MESSAGE_ARRIVED , ELECTION RESULT_V4 , SCREEN_ON

87

, webview , HOME , PUSH_TIME , NOTIFICATION_OPENED , PushService.....PHONE _STATE ,
REGISTER , PACKAGE_REMOVED , SERVICE , MEDIA EJECT and HEADSET_PLUG } , highest
detection accuracy can be achieved. From the next iteration, we observe that the detection
accuracy starts decreasing. Finally, we conclude that we get the highest accuracy of 95.58%

when we apply the proposed Algorithm 1 on intents.

100.00
95.00

90.00

85.00

80.00

75.00

70.00

65.00 I I I
60.00 I

N & % N C\ N &

95.58

Accuracy (in %)

3 & 3
0& Qio &5 ,\\o & Qi& o*qpe,\\oe Qg & Q,C\ & €L s o@ K o S
= f—, W« 20N SR & & q, % v g 3 Q\ Q\(’ & L0 SN ‘%\
TS N ,& g S w\ @ <&/<§ S é/\w & (J S &S Q\v ,§v g 4@&% &
ST & ¥ \‘? & TN F L& O » RN S s
& %\:Q & 0@ AT S 6\/@9 FEFE A /v(a I S
< I X Q‘?‘ W e @9 Re < & <& & Q Kea N
& NS S &8 N W &€ &
> & QOQS\ N
3
’\\O\k@v
WS

INTENTS

Figure 3.18: Detection results with WASPAS using intents

Detection Results with WASPAS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked hardware compo-
nents by WASPAS. The algorithm will give the best hardware components with higher accuracy
as an output. Figure 3.19 can be understood as follows. While considering all the hardware
components simultaneously without utilizing the WASPAS ranking, we achieve 65.39% ac-
curacy with BC machine learning classifiers. At the first iteration, on eliminating the least
ranked hardware component named sensor.compass from the DATASET-2, we observe that we
get 64.93% accuracy with DT and RF classifiers. We call this the first iteration and move on
to the next iteration when we eliminate the bottom two ranked hardware components, i.e., sen-
sor.compass and camera.ar from the DATASET-2. As discussed in Algorithm 1, we proceed to the
next iteration whenever the detection accuracy increases from the previous iteration. Hence,
we eliminate the bottom three ranked hardware components and repeat the entire procedure.
The procedure terminates until we observe a potential decrease in the detection accuracy. As
shown in Figure 3.19, we achieved the highest detection accuracy of 94.44% with DT, BC, and
RF classifiers upon eliminating 71 hardware components out of the total lot of 88, i.e., upon
considering only the top 17 hardware components namely {faketouch.multitouch.jazzhand sen-
sor.ambient_temperature , sensor.heartrate.ecg , sensor.relative_humidity , type.automotive , BLUE-

TOOTH_ADMIN , portrait,.....sensor ACCELEROMETER , camera.capability.manual_post_processing

88

, camera.capability.manual_sensor , moxx.mobility.android.hardwareplatform. firebaseinitprovider ,

READ_EXTERNAL _STORAGE }, highest detection accuracy can be achieved. From the next it-

eration, we observe that the detection accuracy starts decreasing. Finally, we conclude that

we get the highest accuracy of 94.44% when we apply the proposed Algorithm 1 on hardware

components.

100.00
95.00

Accuracy (in %)

90.00
85.00
80.00
75.00
70.00
= il
60.00
& & & ¥ S &

NS o & x Q Qo < & o D> e B @ O
T L L <& e QS & &S NN S &£ & o< o & &
T ST FFFEFEE E E FF S E S F G E T
o & &f O L & O PAENAESS S & G P & R S & - @
o & S O PP SN S Q7T 28 NI A SRS Y &L X
s & ¢ & & SE S TS L P& K ET S NN AN
9o & & & & P &y C TSI A GESIRCAN SRS KRN N
& : <N @« N S 9) S €O
£ e T T EITS S FEEE IS
S & P P o © & F
N W KL L SN & &7
& & X oL X & & £ 8
&° FE L o 5 £
v + S @ N <€
& S &
Ny &

HARDWARE COMPONENTS

Figure 3.19: Detection results with WASPAS using hardware components

The compiled detection results when we apply the proposed algorithm to DATASET-2 are

summarized in Table 3.28. From the table, we observe that we obtain the highest accuracy

of 89.28% using 30 permissions when we apply the proposed Algorithm 1 to the ranking

formulated by WASPAS. Similarly, the highest accuracy of 95.85% can be achieved using 46

intents when we apply the proposed Algorithm 1 to the ranking formulated by TOPSIS, whereas

the ranking given by TOPSIS results in the highest detection accuracy of 94.44% using 16

hardware components. At the same time, when no feature ranking of any type is used and all

features are fed to the classifiers at once, i.e., on simultaneously considering all permissions,

intents, or hardware components, we observe that the highest detection accuracy obtained is

merely 70.79%, 65.35%, and 65.39% respectively.

Table 3.28: Compiled Detection results (in %) on applying the proposed algorithm on

DATASET -2

HARDWARE
Feature Ranking PERMISSIONS INTENTS

COMPONENTS
Method used Number | Accuracy Number | Accuracy | Number | Accuracy

used (in %) used (in %) used (in %)

TOPSIS 06 87.89 46 95.85 16 94.44
EDAS 09 88.67 19 93.72 17 94.44
WASPAS 30 89.28 26 95.58 17 94.44
No Ranking (All fea- | 129 70.79 79 65.35 88 65.39
tures used)

89

Hence, in response to research question four, we conclude that TOPSIS’ top-ranked 46 intents,

i.e., intents, give the best detection accuracy of 95.85% in the case of the unknown dataset.

3.6 Discussion

In the upcoming subsections, we compare the performance of our proposed model with some
existing literature works in the field of Android malware detection, followed by discussing a

few limitations of our proposed approach.

3.6.1 Comparison with other related works

Table 3.29 annotates the performance of our proposed model with some existing literature
works in the field of Android malware detection that have used permissions, intents, or hard-
ware components as features. As shown in the table, our work outperforms all these studies
in terms of detection accuracy. If we take a closer look at some of the studies, we observe
that researchers have ranked the features based on frequency or with tests such as Mutual In-
formation and Pearson Correlation Coefficient in the past. Other studies have used ML-based
feature selection techniques, whereas some authors have formed permission pairs for Android
malware detection. Only three studies, Li et al. [16], Arp et al. [69] and Wang et al. [131],
have used a larger number of normal applications in their analysis than ours. However, the
dataset size for malware apps is still relatively small. Moreover, our work outperforms them
in terms of detection accuracy. Hence, our proposed model is better than many state-of-the-art

techniques presented in the literature for Android malware detection.

3.6.2 Limitations

In this section, we elucidate a few limitations of the proposed approach. In simple words,
our model aims and successfully ranks features such as permissions, intents, and hardware
components to detect Android malware without actually executing the code of an application;
hence, the model falls under the category of static detection. Consequently, our model has
the same shortcomings as any static detection model. Although static techniques prove to be
quite efficient in terms of ease during the extraction of features as well as in terms of expenses,
they still fall short when dealing with advanced malware behaviors such as code obfuscation

and dynamic code loading. Application collusion is an emerging threat to Android-based

90

Table 3.29: Comparison of proposed work with the existing literature based on malware de-

tection using permissions, intents or hardware components.

Related Work Feature selection/Feature Dataset Size Detection ac-

ranking technique used curacy (in %)
Normal Malware

Wang et al. [131] Permissions ranking with | 310,926 4,868 94.62
Mutual Information, Correla-
tion Coefficient and T-test

Lietal. [16] Permissions ranking basedon | 310,926 62,838 93.62
frequency

Mahindru and Sangal | Feature selection using Gain | 5,00,000 - 98.2

[56] Ratio, Filtered Subset selec-
tion, Information feature, LR
analysis, PCA

Arp et al. [69] Pattern analyzing via joint | 123,453 5,560 94
vector space

Feldman et al. [126] ML-based classification | 307 307 90
model

Arora et al. [138] Normal and malicious graphs | 7,533 7,533 95.44
of permission pairs

Talha et al. [18] Risk score calculated for | 1,853 6,909 88.28
each app

Shang et al. [21] Naive Bayes and Pearson | 945 1,725 86.54
Correlation Coefficient

Tchakounté et al. [22] Sequence alignment based | 534 534 79.58
similarity score

Khariwal et al. [139] Raked features using Infor- 1,414 1,714 94.73
mation gain

PHIGrader (Proposed | Feature Ranking with | 77,000 77,000 99.10

Model) Frequency-based TOPSIS
method

devices that seem almost immune to static feature-based detection systems. In app collusion,
two or more Android apps collude to perform a malicious action that they cannot accomplish
independently. In this way, they perform malicious tasks without displaying malware behavior.
As aresult, some stealthier malware might evade the kind of detection proposed by our model.
Hence, we will work on combining the merits of dynamic analysis and some safe systems for
colluding apps with the shortcomings of static analysis to form a much more efficient malware
detection system in our future work. Additionally, some of the techniques in the literature
have focused on Android malware family/category classification such as [140] , [141] , [142]
, [143], [144] , [145], [146] and [147]. In this work, however, we did not aim for malware
family classification. Hence, we will aim to enhance the capabilities of our model in our future

work by including malware family classification in addition to malware detection.

3.7 Conclusion and Future work

In this chapter, we aimed to evaluate the efficiency of the top three most commonly used

static features from the AndroidManifest file when used for Android malware detection. We first

91

assigned weights to features based on their frequency difference in the malware and normal
training datasets. Subsequently, we ranked the three weighted feature sets, i.e., permissions,
intents, and hardware components, by applying TOPSIS, EDAS and WASPAS, Multi-Criteria
Decision-Making techniques in order of preference. Finally, we proposed a novel algorithm
to identify the best set of features and the best type of feature among them. Our experimental
results indicate that intents rank first in terms of performance as a feature for Android malware
detection. Furthermore, the results showed that TOPSIS, among the three proposed frequency-
based MCDM techniques, gives an adequate detection accuracy of 99.10% with 46 intents.
Moreover, our experiments indicate that the proposed frequency-based MCDM approach gives
us better accuracy than the popularly used feature ranking methods such as Principal Com-
ponent Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) and also
better than other statistical tests such as Mutual Information, Pearson Correlation Coefficient,
and T-test. In addition, we proved that our proposed method is better than many state-of-the-
art techniques for Android malware detection in terms of detection accuracy. In our future
work, we will address the limitations of static analysis by incorporating some dynamic analy-
sis techniques. Additionally, we will aim to assess the effectiveness of the MCDM techniques

across other tasks such as malware family detection.

Chapter 4

PHIAnalyzer: A novel Android malware
detection system using ranked Manifest

file components

In this chapter, we present PHIAnalyzer, a novel Android malware detection system that ranks
permissions, intents, and hardware components using a frequency-based Chi-Square test. The
detection algorithm then evaluates seven possible feature combinations—permissions alone,
intents alone, hardware components alone, as well as all combinations to identify the best
set of features achieving higher detection accuracy. Our experiments demonstrate that the
proposed frequency-based Chi-Square ranking is better than other various statistical tests when
applied to the same datasets. In Section 4.1, we explain the motivation behind the work done
and a brief overview of the proposed methodology. The rest of the chapter is structured as
follows. We explain in detail the proposed methodology in Section 4.2. Subsequently, we
discuss the feature ranking, detection and comparison results of our proposed model in Section

4.3. Finally, we conclude the paper with future work directions in Section 4.4.

93

94

4.1 Introduction

Among all the components present within the AndroidManifest file of an application, the most
important, influential, and widely used are permissions, intents, and hardware components. As
clearly depicted by the detection results shown in Chapter 3, these features individually have
demonstrated significant potential in achieving high detection accuracy. But simultaneously
historical evidence underscores that combining different types of indicators has proven use-
ful, as seen in multi-factor security approaches, where layering security measures helps catch
threats that single-factor methods may overlook. An example of this synergy can be seen in
location-tracking malware: by combining GPS permissions, messaging intents, and hardware
access to sensors, this kind of malware can covertly track and transmit a user’s location, an

operation unlikely to be flagged when only one feature type is considered.

Theoretically, permissions focus on application-level access controls, which may overlook
certain interactions that intents, responsible for inter-component communication, can capture.
Similarly, hardware components provide insights into the physical capabilities accessed by the
application, which may complement or reveal gaps left by permissions and intents. Therefore,
combining these features leverages their unique strengths and mitigates their individual limi-
tations, creating a more comprehensive detection framework. In this work, we aim to explore
seven distinct combinations of these three feature types to identify the most optimal feature

subset achieving higher detection accuracy.

4.1.1 Drawbacks of existing approaches

Several related works, such as [15] , [148], and [149], have used permissions as the main
feature in the process of detecting Android malware. To talk about them in a bit of detail, Sahin
et al. [15] used multiple linear regression methods while feeding permissions as inputs for their
calculations and concluded their paper by comparing the results of their proposed permission-
based classifiers with the machine learning ones. Alsoghyer and Almomani [148] worked
on developing a detection model based upon the frequently used permissions in both normal
and malware datasets, followed by applying the machine learning algorithms. In contrast,
Shrivastava and Kumar [149] started with the same approach of using permission frequency
but instead used it to calculate a particular risk score to classify applications as normal or

malware. The authors in [150] and [151] worked on combining the two features, permissions,

95

and intents. More specifically, the authors in [150] developed a malware classification system
that classified applications as normal or malware by observing the feature frequency, whereas
in [151], the authors started with a similar approach of monitoring the frequency of most
requested features but later used it to make a detection matrix as a part of the malware detection
system.

None of the above works used the key concept of ranking the features and hence missed the
feature reduction step, which could have enhanced the quality of their results. In several other
related works, such as [16] and [139], the authors built a detection system using the ranking
of features, be it permissions or permissions and intents combined. More specifically, Li et al.
[16] worked on ranking the permissions that are being used in one type of dataset only, either
normal or malware applications set by using the frequency method. Khariwal et al. [139] also
worked on ranking the features, but they took it a step further by including the ranking of
intents and the combined ranking of intents and permissions obtained from the Information
Gain score in their research work. However, both works were implemented on a smaller set of
malware applications as compared to the huge malware dataset in our proposed work. More
importantly, our work outperforms both of them in terms of detection accuracy while using a

lesser number of ranked features.

4.1.2 Objectives and Need of Proposed Approach

We aim to build a robust and efficient static analysis-based Android malware detection sys-
tem capable of identifying malicious behavior of applications on Android smartphones. At the
same time, we are driven to fulfill this objective using the least as well as the best combination
of features only amongst the top three most commonly used static feature types, i.e., permis-
sions, intents, and hardware components. Instead of using just one feature type, we have opted
for a hybrid approach to choose the best feature combination, the reasons of which are twofold.
Firstly, we believe generalizing a theory needs more than one tested scenario before it can to
be called a fact. Similarly, to prove the robustness of our proposed algorithm, we checked it on
seven possible feature combinations—permissions alone, intents alone, hardware components
alone, as well as on all possible combinations. Secondly, experimental results indicate that
combining different feature types can lead to elevated detection accuracy instead of using any
of them individually, and as mentioned earlier, a malware detection model is as good as its

detection accuracy.

96

Combining features can be a simple yet effective approach to detecting malicious applica-
tions. Therefore, this work aims to analyze permissions, intents, and hardware components
while taking their frequency as input, ranking them using a statistical Chi-Square test, and fur-
ther combining them to find the best subset of features achieving higher detection accuracy.
The following research questions emerge in the light of proposing a detection model based on

the ranking of manifest file features:

* RQ1 Why do we need to rank the permissions, intents, and hardware components, and
subsequently, why is feature reduction needed instead of feeding all the features as in-

puts?

* RQ2 How to incorporate feature ranking, i.e., how to rank the permissions, intents, and

hardware components?

* RQ3 How to frame a detection approach based on the ranking of the three feature types

used in this study?

We are motivated to answer these questions with a vision to develop an Android malware
detector, named PHIAnalyzer, based on the combinations of ranked permissions, intents, and
hardware components. We have used a frequency-based Chi-Square test to rank the three fea-
ture types. We have used the Chi-Square test because of its numerous advantages, such as its
robust nature to the data distribution and comparatively more straightforward computation.
Moreover, the Chi-Square test can handle data whose parametric assumptions cannot be met,
irrespective of two-group or multiple-group studies. Further, we have proposed a novel de-
tection algorithm that uses ranked permissions, intents, and hardware components and applies
various machine learning and deep learning techniques to detect Android malware effectively.
The work proposed in this chapter employs a mix of old and recent datasets for evaluation.
Our detection results are better than many state-of-the-art techniques proposed in the existing
literature. Moreover, our experiments demonstrate that the proposed Chi-Square-based feature
ranking gives us better accuracy than the Mutual Information and Pearson Correlation Coef-
ficient, which have been used in [131], which we evaluate against the same dataset of normal

and malicious apps.

Contributions: The main contributions of this research are highlighted below:

« Firstly, we ranked the permissions, intents, and hardware components in order of their

absolute frequency difference between the malware and normal dataset and used the

97

values as pre-requisite in the Chi-Square test.

» Next, we applied the frequency-based Chi-Square test on the permissions, intents, and
hardware components and ranked them based on the F-score given as an output by the

test.

» We proposed a novel algorithm to merge the individual rankings of permissions, intents,

and hardware components to develop an efficient Android malware detection system.

» We observed that the detection results of the proposed approach are relatively better
than various state-of-the-art techniques existing in the literature for Android malware

detection.

4.2 System Design

In this section, we explain our proposed methodology in detail. Our proposed model PHIAn-
alyzer 1s divided mainly into two modules. In the first module, named as Ranking Module, we
extract the permissions, intents, and hardware components from the training dataset and aim
to rank them using a frequency-based Chi-Square test. Such a ranking will help us eliminate
irrelevant features that negatively affect the detection accuracy. In the Detection Module, we
propose a novel algorithm that applies machine learning and deep learning techniques to get
the best features that can provide higher detection accuracy. The following subsections discuss

in detail both modules of the proposed model.

RANKING MODULE

4.2.1 Data Acquisition and Representation

The datasets used for the validation of the proposed model PHIAnalyzer in this chapter,
namely DATASET-1 and DATASET-2, are the same as those detailed earlier in Subsection 3.2.1
of the Chapter 3. Following the extraction of the three features—permissions, intents, and
hardware components, as detailed in 3.2.2—feature vector tables were constructed for repre-
sentation. Each feature vector, formulated for individual applications, adopts a binary format,
where 7 indicates the presence of a requested feature (permissions, intents, or hardware com-

ponents), and 0 signifies its absence. In this way, we create three separate vector tables, one

98

each for permissions, intents, and hardware components, represented by Py, Iyr and Hyr,
respectively. For instance, if there are a total of five permissions, say <P,Ps> and five
intents say <Ii,Js> in the system, and any application A; has permissions P;, P>, Ps and

intents I3, I, Is, then the app A; is represented as /71001 and 00111 in Py and Iyt respectively.

We observe that some features have a high frequency in normal or malware datasets. The
frequency difference between the malware and normal dataset for any feature can give us valu-
able insights for feature ranking. Therefore, before applying the Chi-Square method to rank the
features, we initially assign weights to all the permissions, intents, and hardware components,
based on their absolute frequency difference in normal and malware datasets. Then, we take
the absolute frequency difference for each feature in normal and malware datasets. For in-
stance, if there are an x number of features, the feature with the highest absolute frequency
difference will be assigned a weight of one, and the feature with the lowest frequency differ-
ence will be given a weight of x. The process is repeated separately for permissions, intents ,

and hardware components.

After assigning the weights to all the features, for every occurrence of / for each permission,
intent, and hardware component, we replace / by its corresponding weight in Py7, Iyr and
Hyr. For instance, again, consider the same app A;, which was initially represented as 71001
and 00111 in Pyr and Iyr respectively. Suppose the weights for Pi, P, and Ps are i, 0, 05
respectively, and weights for I3, I3 and Is are B3, Ba, Bs, then A; is now represented as o 00000t

and 00B3B4Bs in Pyr and Iy7 respectively.

4.2.2 Features Ranking

We have used a statistical Chi-Square test to rank the features. Such a ranking helps elim-
inate irrelevant features, and their removal will help improve detection accuracy. The Chi-
Square statistic is used to determine whether the variables of different categories defined are
independent of each other. It can also be used to measure the significant difference between
variables and their expected values. The Chi-Square test is specifically designed to assess the
independence between two categorical variables. This makes it particularly suitable for feature
ranking/selection when dealing with categorical or discrete data, similar to the dataset used in
our work. Moreover, Chi-Square does not require equality of variances among the study groups
or homoscedasticity in the data, nor does it form any prior assumptions about the distribution,

making it a suitable method for feature ranking even in the presence of data with missing

99

values or measurement errors. The Chi-Square formula [152] is defined in the below equation.

=y 2B ;iEi)z 4.2.1)
where:
c=Degrees of freedom,
O=Observed value(s), and
E=Expected value(s)

This test’s null hypothesis says there is no link between the original and expected data.
The alternate hypothesis states that the actual and expected data depend on each other. For a
basic Chi-Square test of independence, where n denotes the number of observations and % is
the number of categories, the computational complexity is generally considered to be O(nk).
We apply the Chi-Square test on the three feature vector tables we have formulated for our
training dataset, i.e., Pyr, Iyr and Hyr. The F score ! that comes after applying the Chi-Square
test on a categorical type data can be very efficiently used to select the best set of features,
amongst all features, by ranking them from highest to lowest F score value. The feature that
can better distinguish normal and malware datasets will have a higher F-score value. We apply
this ranking technique separately on permissions, intents, and hardware components, and we
get, as an output of this module, three ranked lists, Py, I1;; and Hy;, one each for permissions,

intents, and hardware components, respectively.

4.2.3 Machine Learning and Deep Learning Classifiers

We have used several machine learning and deep learning classifiers [135] in our detection
approach. We applied nine widely used techniques, namely Decision Trees (DT), Random
Forest (RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR),
Support Vector Machine (SVM) as machine learning classifiers and Multilayer Perceptron
(MLP), Artificial Neural Networks (ANN), Dense Neural Network (DNN) as deep learning

classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].

The code concludes by printing the cross-validation results, including the accuracy scores for

Thttps://scikit-learn.org/stable/modules/generated/ sklearn.feature_selection.chi2.html

100

Algorithm 2 Proposed Malware Detection Algorithm

. Input: Py <, Ranked Permissions List I1;s < Ranked Intent List, Hpis < Ranked Hardware component List
. Output: Best set of features with higher detection rate

. BestFeatures < Blank List

Comby ;s < Blank List

. NP < Number of Permissions in Py

. NIy < Number of Intents in Iy ;s

: NHjiy < Number of Hardware components in Hy ;s

: P,y < List of all permissions from testing dataset (non unique)

. I < List of all intents from testing dataset (non unique)

10: H,y; + List of all Hardware components from testing dataset (non unique)
11: Dysac < Maximum accuracy obtained, initialized to zero.

12: Dyee < Accuracy obtained after each iteration.

13: fori«1 to NPy do

14: Insert P; in BestFeatures

15: FindAll 2, in P,;;, CopyAll

16: Insert P; in Comby g

17: for j < 1 to NIy do

D00 TN LN —

18: when j=i do

19: Insert /; in BestFeatures

20: FindAll /; in I,;;, CopyAll

21: Insert /; in Comb iy

22: for k< 1 to NHpy do

23: when k=j do

24: Insert Hy in BestFeatures
25: FindAll H in H,;;, CopyAll
26: Insert Hy in Comby ;g

27: Find Dy, using ML algorithms for features present in CombList
28: if Djce > Dyrar then

29: DA(?(? = Dprax

30: else exit

31: end if

32: end for

33: end for

34: end for

35: return BestFeatures
36: return Dy,

each fold and the mean accuracy across all folds. This provides insights into the model’s con-

sistency and overall performance across diverse subsets of the dataset.

DETECTION MODULE

4.2.4 Proposed Malware Detection Algorithm

This section describes our detection algorithm, summarized in Algorithm 2. As discussed in
the previous subsection, we compute the F score and determine the features’ relevance. The
higher the F score value, the higher the relevancy. Hence, we rank the features in decreasing
order of their F score values. We aim to find the best subset of features to give better de-
tection accuracy. Py, I1is, and Hy;, represent the ranked permissions, intents, and hardware

components in decreasing order of their F score values.

In the first iteration of the algorithm, we select the top-ranked permission, intent, and hard-

ware component from Py, I1;y, and Hp;, respectively. We then execute machine learning

101

algorithms on the testing data by considering only these three features, i.e., top-ranked per-
mission, intent, and hardware component and observe the detection accuracy, say Da... The
maximum accuracy, say Dy, 1S initialized to zero. At every iteration, we compare D4, and
Dyqx. If the accuracy at the current iteration, i.e., D, 1s higher than Dy,,,, we proceed towards

the next iteration, and we set Dy, @S Dace.

In the next iteration, we select the top two ranked permissions, intents, and hardware com-
ponents and find the detection accuracy on the testing data by considering these six features,
i.e., D4, for the current iteration. Again, we compare the Dy, and Dy, and if D4, is higher
than Dy, we proceed toward the next iteration to select top three ranked permissions, intents,
and hardware components. The algorithm continues the same way and terminates when the
detection accuracy does not improve further. At a stage when Dy, is not higher than D,,,,, we
return the Dy, and the best set of permissions, intents, and hardware components. From the
proposed approach, the best set of features will always contain the equal number of feature
types. Overall, the computational complexity of the proposed malware detection algorithm
can be expressed as O((NPpisy + Nl + NHpiy) * M * f(N)), where NP, is the number of
permissions in Py, Nl is the number of intents in Ir;,, NHy;; is the number of hardware
components in Hy;;, M is the maximum number of permissions or intents or hardware compo-
nents in the testing dataset, and f(N) is the time complexity of the machine learning algorithm
used. This answers our research question three, i.e, how to frame a detection approach based on
the ranking of permissions, intents, and hardware components. We describe the results obtained

from the proposed approach in the next section.

4.3 Results and Discussion

In this section, we showcase and discuss the experimental results obtained from the proposed
PHIAnalyzer model. We point out that we have separate datasets for training and testing. As
described in Section 4.2.1, we have 77,000 applications, each in the normal and malware
category. Out of them, we use 56,000 normal apps and 56,000 malware apps in the ranking
module. The remaining 21,000 normal and 21,000 malware apps are used in the detection
module. We name this dataset DATASET-1. Additionally, considered a second dataset called
DATASET-2, which contains recent and stealthier malware samples detected in 2021 and 2022.
In the upcoming subsections, first, we discuss the ranking obtained from the frequency-based

Chi-Square test, and after that, we describe the detection results on DATASET-1 and DATASET-2.

102

Further, we also compare our proposed work with similar works in Android malware detection.

4.3.1 Allotting Weights To The Features

Firstly, we assign weights to the three feature types based on their absolute frequency dif-
ference in the normal and malware training dataset. We note that we have three separate
rankings, one each for permissions, intents, and hardware components. Tables 4.1 , 4.2 and
4.3 summarize the top ten permissions, intents, and hardware components respectively, along
with their frequency difference and weights. As seen from Table 4.1, permission named
MOUNT_UNMOUNT _FILESYSTEMS 1is assigned the weight of one as it has the highest fre-
quency difference in both datasets. Similarly, we can acknowledge the weights of other top
permissions from the table. The permission named SET_-WALLPAPER had the lowest frequency
difference of 10 and hence, had the highest weight of 129, amongst all 129 permissions.

Table 4.1: Top 10 permissions along with their corresponding weights.

PERMISSIONS Weights allotted ac- | Normal Malware Absolute
cording to ranking frequency | frequency difference
MOUNT_UNMOUNT_ FILESYSTEMS 1 1264 41324 40060
READ_PHONE_STATE 2 14176 53586 39410
GET_TASKS 3 4527 43399 38872
CHANGE_WIFI_STATE 4 4337 43165 38828
SYSTEM_ALERT_WINDOW 5 4561 38594 34033
WRITE_SETTINGS 6 7258 39497 32239
CHANGE_NETWORK_ STATE 7 2745 30874 28129
READ_LOGS 8 1071 29112 28041
ACCESS_COARSE_ LOCATION 9 16650 42425 25775
ACCESS_WIFI_STATE 10 28554 53886 25332

As can be seen from Table 4.2, the intent named USER_PRESENT is assigned the weight of
one as it has the highest frequency difference in both datasets. Similarly, we can acknowl-
edge the weights of other top intents from the table. The intent named MAIN had the lowest

frequency difference of 87 and hence, had the highest weight of 79, amongst all 79 intents.

Table 4.2: Top 10 intents along with their corresponding weights.

INTENTS Weights allotted ac- | Malware Normal fre- | Absolute
cording to ranking frequency quency difference

USER_PRESENT 1 33108 1894 31214
PACKAGE_REMOVED 2 26806 963 25843
DEFAULT 3 45689 21291 24398
PACKAGE_ADDED 4 21111 2689 18422
VIEW 5 35548 18922 16626
BROWSABLE 6 33915 17545 16370
REGISTER 7 14419 134 14285
NOTIFICATION_RECEIVED 8 14139 91 14048
_PROXY

PushService 9 14004 84 13920
PUSH_-TIME 10 13998 84 13914

103

As can be seen from Table 4.3, the hardware component named touchscreen is assigned
the weight of one as it has the highest frequency difference in both datasets. Similarly, we
can acknowledge the weights of other top features from the table. The hardware component
named type.watch had the lowest frequency difference of 1 and hence, had the highest weight

of 88, amongst all 88 intents.

Table 4.3: Top 10 hardware components along with their corresponding weights.

HARDWARE COMPONENTS Weights allotted ac- | Normal Malware Absolute
cording to ranking frequency | frequency difference

touchscreen 1 12147 2101 10046
camera 2 12337 21063 8726
Camera.autofocus 3 10446 19080 8634
touchscreen.multitouch 4 8999 1334 7665
touchscreen.multitouch.distinct 5 8765 1256 7509
location.network 6 7103 825 6278
location.GPS 7 7468 1262 6206
location 8 6223 413 5810
telephony 9 4725 674 4051
screen.portrait 10 4136 160 3976

4.3.2 Features Ranking

To identify the distinguishing features, we separately applied the statistical Chi-Square test
on Pyr, Iyr and Hyy . The Chi-Square test, as its output, calculates the corresponding F score
values for all the features. Further, we used these F score values to rank the features such
that the feature with the highest F score value is the top-ranked feature and hence, the most
distinguishing one. Tables 4.4 , 4.5 and 4.6 summarize the top ten permissions, intents, and
hardware components respectively according to their F-scores obtained from the Chi-Square
test. Using the frequency-based Chi-Square method, we answer our research question two, i.e.,

how to rank the features to identify the distinguishing ones among them.

Table 4.4 highlights that the permission named BIND_GET_INSTALL_REFERRER SERVICE is
the most distinguishing permission with the highest F-score. Similarly, we can infer rank-
ings of other permissions based on their F-scores from the table. The permission named
SET_WALLPAPER had the lowest F score value of 13.803 amongst all permissions and hence,

is the least distinguishing permission.

Similarly, Table 4.5 highlights that the intent named CONNECTION is the most distinguish-
ing intent with the highest F-score. Similarly, we can infer rankings of other intents based on
their F-scores from the table. The intent named MAIN had the lowest F-score value of 0.9848

and hence, is the least distinguishing intent.

104

Table 4.4: Top 10 permissions with their corresponding F-scores

PERMISSIONS F Score

BIND_GET_INSTALL_REFERRER_SERVICE 232552.1
JPUSH_MESSAGE 232152

RESTART_PACKAGES 229418.5
SEND_SMS 228428.9
RECEIVE_SMS 217999.7
READ_SMS 216163.5
CHANGE_CONFIGURATION 213456.9
RECEIVE_USER_PRESENT 213214.9
BROADCAST PACKAGE_INSTALL 211856.9
BROADCAST_PACKAGE_REPLACED 211465.4

Table 4.5: Top 10 intents with their corresponding F-scores

INTENTS F Score
CONNECTION 136262.7
DaemonService 129391.5

NOTIFICATION_RECEIVED | 125791.8
NOTIFICATION_OPENED 117317.9

MESSAGE_RECEIVED 108364.1
START_FROM_AGOO 107091.5
REPORT 105758.9
COMMAND 101132.6
SERVICE 98767.32
ELECTION 98598.16

Table 4.6 highlights that the hardware component named location is the most distinguishing
one with the highest F-score. Similarly, we can infer rankings of other features based on their
F-scores from the table. The hardware component named type.watch had the lowest F-score

value and hence, is the least distinguishing one.

Table 4.6: Top 10 hardware components with their corresponding F-scores

HARDWARE COMPONENTS | F Score

location 28691.51
screen.portrait 25523.57
vulkan 22279.86
location.GPS 21811.74
location.network 20900.12
touchscreen.multitouch.distinct 20024.67
telephony 19259.59
bluetooth 17616.42
screen.lanscape 17395.16
nfc.hce 16804.3

In the following subsection, we present the detection results obtained with the proposed

model.

4.3.3 Detection Results on DATASET-1

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over the DATASET-1. For comparison, we perform seven experiments, considering 1)

105

permissions alone, 2) intents alone, 3) hardware components alone, 4) permissions and intents
combined, 5) intents and hardware components, 6) permissions and hardware components,
and 7) permissions, intents and hardware components, all three of them combined. We discuss

these results in upcoming subsections.
Detection with Permissions Alone

First, we apply the proposed detection algorithm (Algorithm 2) with permissions alone. The
algorithm will give the best permissions with higher accuracy as an output. Table 4.7 sum-
marizes the detection results when we use permissions alone for detection. The table can be
understood as follows. With the top-ranked permission, i.e., BIND_GET_INSTALL_REFERRER_
SERVICE, we get 95.55% accuracy with several machine learning classifiers. We call this
the first iteration, then we move to the next iteration when we consider the top two ranked
permissions, i.e., combining BIND_GET_INSTALL_REFERRER _SERVICE with JPUSH_MESSAGE
for detection and repeat the process mentioned above. In this iteration, we get an accu-
racy of 96.96% from several machine learning classifiers. As discussed in Algorithm 2,
we proceed to the next iteration whenever the detection accuracy increases from the previ-
ous iteration. Hence, we consider the top three permissions and repeat the entire procedure.
The procedure terminates until we observe a potential decrease in the detection accuracy.
As shown in Table 4.7, we achieved the highest detection accuracy on the tenth iteration,
i.e., upon adding the top ten permissions, namely { BIND_GET_INSTALL REFERRER_ SER-
VICE , JPUSH_ MESSAGE , RESTART_PACKAGES , SEND_SMS , RECEIVE_SMS , READ_SMS ,
CHANGE_CONFIGURATION , RECEIVE_ USER_PRESENT , BROADCAST_PACKAGE_INSTALL ,
BROADCAST_PACKAGE REPLACED }, we get the highest accuracy of 97.70%. From the next
iteration, we observe that the detection accuracy starts decreasing. Finally, we observe that
we get the highest accuracy of 97.70% when we apply the proposed Algorithm 2 only on

permissions.
Detection with Intents Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with intents alone. The al-
gorithm will give the best intents with higher accuracy as an output. Table 4.8 summarizes
the detection results when we use intents alone for detection. With the top-ranked intent, i.e.,
CONNECTION, we get 95.27% accuracy with all the classifiers. We call this the first iteration,
then we move to the next iteration when we consider the top two ranked intents, i.e., combining

CONNECTION with DaemonService for detection and repeating the above-mentioned process.

106

Table 4.7: Detection results with proposed approach considering only permissions

PERMISSIONS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_ REFER- | 95.55 95.55 94.29 95.55 95.55 95.55 94.60 94.60 94.60
RER_SERVICE
JPUSH_MESSAGE 96.69 96.69 51.71 96.69 96.69 96.69 96.96 96.96 96.96
RESTART_PACKAGES 96.86 96.86 60.68 96.86 96.86 96.86 96.79 96.79 96.79
SEND_SMS 97.06 97.06 66.59 97.06 97.06 97.06 97.05 97.05 97.25
RECEIVE_SMS 97.42 97.42 70.83 97.42 97.42 97.42 97.25 97.25 97.25
READ_SMS 97.42 97.42 74.46 97.42 97.42 97.42 97.46 97.46 97.46
CHANGE_CONFIGURATION 97.29 97.29 717.15 97.29 97.29 97.29 97.27 97.27 97.27
RECEIVE_USER_PRESENT 97.39 97.39 70.16 97.39 97.39 97.39 97.41 97.41 97.41
BROADCAST_PACKAGE._ IN- | 97.60 97.60 71.63 97.60 91.65 97.60 97.50 97.50 97.50
STALL
BROADCAST PACKAGE. RE- | 97.70 97.70 74.54 97.70 92.16 97.70 97.58 97.58 97.58
PLACED
BROADCAST_STICKY 97.20 97.20 91.70 97.20 91.91 97.20 97.14 97.14 97.14
PROCESS_OUTGOING_CALLS 97.32 97.32 78.10 97.32 92.55 97.32 97.22 97.22 97.22

In this iteration, we note that we get an accuracy of 95.35% from all the machine learning
classifiers. The procedure terminates until we observe a potential decrease in the detection
accuracy. As shown in Table 4.8, we achieved the highest detection accuracy on the second
iteration, i.e., upon adding the top two intents, namely CONNECTION and DaemonService, we
get the highest accuracy of 95.35%. From the next iteration, we observe that the detection
accuracy starts decreasing. Finally, we observe that we get the highest accuracy of 95.35%

when we apply the proposed Algorithm 2 only on intents.

Table 4.8: Detection results with proposed approach considering only intents

INTENTS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN
CONNECTION 95.27 95.27 94.33 95.27 95.27 95.27 95.21 95.21 95.21
DaemonService 95.35 95.35 65.32 95.35 95.35 95.35 95.30 95.30 95.30
NOTIFICATION_RECEIVED 95.27 95.27 72.99 95.27 95.27 95.27 95.32 95.32 95.32
NOTIFICATION_OPENED 95.20 95.20 75.78 95.20 95.20 95.20 95.05 95.05 95.05

Detection with Hardware components Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with hardware components
alone. Table 4.9 summarizes the detection results when we use hardware components alone
for detection. With the top-ranked hardware component, i.e., location, we get 92.78% accuracy
with all the classifiers. We call this the first iteration, then we move to the next iteration
when we consider the top two ranked hardware components, i.e., combining location with
screen.portrait for detection and repeating the above mentioned process. In this iteration, we
note that we get an accuracy of 89.87% from all the machine learning classifiers. As shown

in Table 4.9, we achieved the highest detection accuracy on the first iteration itself, i.e., upon

107

adding the top hardware component, namely location. From the next iteration, we observe that
the detection accuracy starts decreasing. Finally, we observe that we get the highest accuracy

of 92.78% when we apply the proposed Algorithm 2 only on hardware components.

Table 4.9: Detection results with proposed approach considering only hardware components

HARDWARE COMPONENTS | Detection accuracy using various machine learning and deep learning classifiers (in
used %)

DT RF ANN BC NB LR MLP SVM DNN
location 92.78 92.78 92.78 92.78 92.78 92.78 92.78 92.78 92.78
screen.portrait 89.87 89.87 89.87 89.87 89.87 89.87 89.87 89.87 89.87
vulkan 89.01 89.01 89.01 89.01 89.01 89.01 89.01 89.01 89.01

Detection with Combination of Permissions and Intents

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-
missions and intents. Table 4.10 summarizes the detection results when we use permissions
and intents for detection. With the top-ranked pair, i.e., BIND _GET_INSTALL_REFERRER_ SER-
VICE and CONNECTION, we get 96.56% accuracy with several classifiers. In the second it-
eration, we get an accuracy of 97.92% from several classifiers. Hence, next, we consider
the top three pairs of permissions and intents and repeat the entire procedure. The procedure
terminates until we observe a potential decrease in the detection accuracy, and as shown in Ta-
ble 4.10, we achieved the highest detection accuracy on the sixth iteration, i.e., upon adding six
permissions, namely { BIND_GET_INSTALL_REFERRER _SERVICE , JPUSH_MESSAGE, RESTART -
PACKAGES , SEND_SMS , RECEIVE_SMS , READ_SMS and six intents namely CONNECTION |,
DaemonService , NOTIFICATION_RECEIVED , NOTIFICATION_OPENED , MESSAGE_RECEIVED
and START_FROM_AGOO } ,we get the highest accuracy of 98.49%. From the next iteration,
we observe that the detection accuracy starts decreasing. We observe that we get the highest
accuracy of 98.49% when we apply the proposed Algorithm 2 on the set of 12 features that

contains six permissions and six intents.
Detection with combination of Intents and Hardware components

Next, we apply the proposed detection algorithm (Algorithm 2) on the combination of intents
and hardware components. Table 4.11 summarizes the detection results when we use intents
and hardware components for detection. With the top-ranked pair, i.e., CONNECTION and
location, we get 97.21% accuracy with several classifiers. In the second iteration, we get an
accuracy of 97.09% from several classifiers. Hence, next, we consider the top three pairs of
intents and hardware components and repeat the entire procedure. Subsequently, as shown in

Table 4.11, we achieved the highest detection accuracy on the third iteration, i.e., upon adding

108

Table 4.10: Detection results with proposed approach considering the combination of permis-
sion and intents

PERMISSIONS and INTENTS | Detection accuracy using various machine learning and deep learning classifiers (in
used %)

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_ REFER- | 96.56 96.56 56.65 96.56 96.56 96.56 96.55 96.55 96.55
RER_SERVICE and CONNECTION
JPUSH_MESSAGE and DaemonSer- | 97.90 97.90 70.34 97.90 97.90 97.90 97.92 97.92 97.92
vice
RESTART_PACKAGES And NOTI- | 98.02 98.02 97.90 98.02 98.02 98.02 97.92 97.92 97.92
FICATION_RECEIVED
SEND_SMS and NOTIFICA- | 98.32 98.32 82.65 98.32 98.32 98.32 98.14 90.84 98.14
TION_OPENED
RECEIVE_SMS and MES- | 98.41 98.41 85.38 98.41 98.41 98.41 98.29 98.29 98.29
SAGE_RECEIVED
READ_SMS and | 98.49 98.49 86.84 98.49 98.49 98.49 98.35 98.35 98.35
START_FROM_AGOO
CHANGE_CONFIGURATION and | 98.27 98.27 88.37 98.27 88.92 98.27 88.26 88.26 98.26
REPORT
RECEIVE_USER_ PRESENT and | 98.26 98.26 90.18 98.26 90.32 98.26 90.21 90.21 98.29
COMMAND

three intents, namely { CONNECTION , DaemonService and NOTIFICATION_RECEIVED and
three hardware components namely location , screen.portrait and vulkan } ,we get the highest
accuracy of 97.43%. From the next iteration, we observe that the detection accuracy starts de-
creasing. We observe that we get the highest accuracy of 97.43% when we apply the proposed

Algorithm 2 on the set of 6 features that contains three intents and three hardware components.

Table 4.11: Detection results with proposed approach considering the combination of intents
and hardware components

INTENTS and HARDWARE COM- | Detection accuracy using various machine learning and deep learning classifiers (in
PONENTS used %)

DT RF ANN BC NB LR MLP SVM DNN
CONNECTION and location 97.21 97.21 97.21 97.21 97.21 97.21 97.21 97.21 | 97.21
DaemonService and screen.portrait 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09
NOTIFICATION_RECEIVED and | 97.43 97.43 9743 | 9743 97.43 97.43 9743 | 9743 97.43
vulkan
NOTIFICATION_OPENED and loca- | 96.34 96.34 96.34 96.34 96.34 96.34 96.34 96.34 96.34
tion.GPS
MESSAGE_RECEIVED and loca- | 96.5 96.5 96.5 96.5 96.5 90.75 96.5 90.75 96.5
tion.network

Detection with Combination of Permissions and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of
permissions and hardware components. Table 4.12 summarizes the detection results when
we use permissions and hardware components for detection. With the top-ranked pair, i.e.,
BIND_GET_INSTALL_REFERRER SERVICE and location, we get 94.15% accuracy with several
classifiers. In the second iteration, we get an accuracy of 95.41% from several classifiers.

As shown in Table 4.10, we achieved the highest detection accuracy on the second itera-

109

tion, i.e., upon adding two permissions, namely BIND_GET_INSTALL_REFERRER_SERVICE and
JPUSH _MESSAGE and two hardware components namely location and screen.portrait. From the
next iteration, we observe that the detection accuracy starts decreasing. We observe that we
get the highest accuracy of 95.41% when we apply the proposed Algorithm 2 on the set of four
features that contains two permissions and two hardware components.

Table 4.12: Detection results with proposed approach considering the combination of permis-
sions and hardware components

PERMISSIONS and HARDWARE | Detection accuracy using various machine learning and deep learning classifiers (in
COMPONENTS used %)

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_REFERRER 94.15 94.15 94.15 94.15 94.15 94.15 94.15 94.15 94.15
_SERVICE and location
JPUSH_MESSAGE and | 95.41 9541 9541 | 9541 95.41 94.05 95.41 94.05 95.41
screen.portrait
RESTART_PACKAGES and vulkan 95.37 95.37 95.36 95.37 95.36 83.23 95.36 80.32 95.36
SEND_SMS and location.GPS 94.56 94.56 94.55 94.56 71.22 71.22 94.55 90.54 94.55

Detection with Combination of Permissions, Intents and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-
missions, intents, and hardware components. Table 4.13 summarizes the detection results
when we use permissions, intents, and hardware components for detection. With the top-
ranked trio, i.e., BIND_GET_INSTALL_REFERRER _SERVICE , CONNECTION and location, we
get 95.93% accuracy with several classifiers. We call this the first iteration and then move
to the next iteration when we consider the top two ranked trio of permissions, intents, and
hardware components, i.e., combining BIND GET_INSTALL REFERRER_SERVICE , CONNEC-
TION and location with JPUSH_MESSAGE , DaemonService and screen.portrait for detection
and repeat the process mentioned above. In this iteration, we get an accuracy of 96.89%
from several classifiers. Hence, next, we consider the top three pairs of permissions and
intents and repeat the entire procedure. As shown in Table 4.13, we achieved the high-
est detection accuracy on the third iteration, i.e., upon adding three permissions, namely
{ BIND_GET_INSTALL_REFERRER SERVICE , JPUSH_MESSAGE and RESTART_PACKAGES },
three intents namely { CONNECTION , DaemonService and NOTIFICATION_RECEIVED } and
three hardware components namely, { location , screen.portrait and vulkan }, we get the highest
accuracy of 96.99%. From the next iteration, we observe that the detection accuracy starts

decreasing.

On comparing the highest accuracies obtained with permissions alone (97.70%), intents

alone (95.35%), hardware components alone (92.78%), combination of intents and hardware

110

Table 4.13: Detection results with proposed approach considering the combination of permis-
sions, intents and hardware components

PERMISSIONS, INTENTS and HARD- | Detection accuracy using various machine learning and deep learning classifiers (in
WARE COMPONENTS used %)

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_REFERRER 95.93 95.93 95.93 95.93 95.93 88.09 95.93 89.54 95.93
_SERVICE, CONNECTION and loca-
tion
JPUSH_MESSAGE, DaemonService and | 96.86 96.86 96.86 96.86 89.06 88.03 96.86 86.52 96.86
screen.portrait
RESTART_PACKAGES, NOTIFICA- | 96.99 96.99 96.99 96.99 91.34 72.34 96.99 75.85 96.99
TION_RECEIVED and vulkan
SEND_SMS, NOTIFICATION_OPENED | 96.73 96.73 94.61 96.73 82.67 73.66 96.73 72.82 96.73
and location.GPS
RECEIVE_.SMS, MESSAGE_RECEIVED | 96.33 96.33 94.69 96.33 83.92 75.97 96.33 70.68 96.04
and location.network

components (97.43%), combination of permissions and hardware components (95.41%), com-
bination of permissions, intents and hardware components (96.99%) we find that the combi-
nation of permissions and intents (98.49%) gives us better detection accuracy as compared to

all three features when used alone or in other possible combinations.

Note that, according to our detection approach, we consider one pair or permission and in-
tent in each iteration while performing the experiments to identify the best combination of
features, which subsequently leads to the case of only an equal number of permissions and
intents irrespective of the number of iterations. For instance, from Table 4.10, we get the
highest accuracy of 98.49% with the combination of six permissions and six intents, i.e., 12
features. Hence, to cross-check our approach, we compare the detection accuracy of features
in other combinations of 12, such as five permissions with seven intents, four permissions with
eight intents, three permissions with nine intents, and two permissions with ten intents, and
vice versa. Moreover, we consider other combinations when the total number of features used
differs from 12, i.e., 10, 11, 13, 14, and 15. Finally, we summarize all these results in Table
4.14. From the table, we observe that the best set of six permissions and six intents obtained
from our proposed approach proves to be better in terms of detection accuracy than other com-
binations of permissions and intents. Hence, our model outperforms different combinations of
permissions and intents, and we find that we get the highest accuracy of 98.49% with the top

six permissions and top six intents combined.
Comparison with other statistical tests

Table 4.15 summarizes the detection results when we use all permissions and intents for detec-
tion without applying any feature ranking technique. The table can be understood as follows.

On considering all the permissions simultaneously without utilizing frequency-based Chi-Square

111

Table 4.14: Comparison of proposed frequency-based Chi-Square test in terms of detection
accuracy upon using different combinations of features.

Combination of features Total number of | Detection accu-
features used racy (in %)

6 permissions - 4 intents 10 98.16
4 permissions - 6 intents 10 98.42
5 permissions - 6 intents 11 98.38
6 permissions - 5 intents 11 98.31
5 permissions - 7 intents 12 98.48
7 permissions - 5 intents 12 98.18
4 permissions — 8 intents 12 98.36
8 permissions- 4 intents 12 98.10
3 permissions - 9 intents 12 98.36
9 permissions - 3 intents 12 97.93
2 permissions - 10 intents 12 98.40
10 permissions -2 intents 12 97.89
Proposed approach | 12 98.49
6 permissions - 6 intents

7 permissions - 6 intents 13 98.23
6 permissions - 7 intents 13 98.44
6 permissions - 8 intents 14 98.39
8 permissions - 6 intents 14 98.24
10 permissions - 5 intents 15 98.37
5 permissions - 10 intents 15 98.47

feature ranking, we observe that the highest detection accuracy obtained is 78.64 %, whereas the
highest detection accuracy obtained while considering all intents is 67.18 %. The highest detection
accuracy recorded while considering all hardware components is 71.84%. Such a low detection
accuracy highlights the importance of ranking permissions and intents because such ranking
helps us eliminate the irrelevant features that can hamper detection accuracy. This answers our

research question one, i.e., why do we need to rank the features.

We have applied the frequency-based Chi-Square test to rank permissions, intents, and hard-
ware components in this chapter. However, statistical tests such as Mutual Information and
Pearson Correlation Coefficient have been used in other works such as [131] for Android mal-
ware detection. Hence, next, we compare the performance of the proposed frequency-based
Chi-Square test with the Mutual Information and Pearson correlation Coefficient. Table 4.16
and 4.17 highlight the top ten permissions, intents and hardware components highlight ranked
with Mutual Information and Pearson Correlation Coefficient.

Table 4.15: Detection results considering all features for DATASET-1 without applying the
proposed approach

FEATURES used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN
All Permissions 74.64 74.64 69.55 78.64 69.60 69.60 44.95 69.80 69.71
All Intents 67.18 67.18 55.11 67.18 54.28 55.15 50.25 64.26 50.26
All Hardware components 71.84 71.84 65.88 71.84 66.28 60.25 65.88 65.88 65.88

For the comparison, we ranked permissions, intents, and hardware components using Mu-

112

Table 4.16: Top 10 permissions, intents and hardware components ranked using Mutual Infor-
mation

PERMISSIONS INTENTS HARDWARE COMPONENTS
MOUNT_UNMOUNT_FILESYSTEMS | USER_PRESENT touchscreen
READ_PHONE_STATE PACKAGE_REMOVED touchscreen.multitouch.distinct
CHANGE_WIFI_STATE DEFAULT touchscreen.multitouch
GET_TASKS PUSH_TIME location
SYSTEM_ALERT_WINDOW NOTIFICATION_RECEIVED_PROXY | location.network
READ_LOGS REGISTER location.GPS
WRITE_SETTINGS PushService screen.portrait
CHANGE_NETWORK _STATE PACKAGE_ADDED telephony
ACCESS_WIFI_STATE REPORT Camera.autofocus
ACCESS_COARSE_LOCATION NOTIFICATION_OPENED camera

Table 4.17: Top 10 permissions, intents, and hardware components ranked using Correlation
Coefficient

PERMISSIONS INTENTS HARDWARE COMPONENTS
RECEIVE_SMS MAIN touchscreen

QUERY _ALL_PACKAGES DEFAULT touchscreen.multitouch
INTERNET ACTION_SHUTDOWN touchscreen.multitouch.distinct
CHANGE_BADGE SEND location

MAPS_RECEIVE PHONE_STATE location.network
SYSTEM_OVERLAY_WINDOW CREATE_SHORTCUT location.GPS
REQUEST_IGNORE_BATTERY_OPTIMIZATIONS | DOWNLOAD_COMPLETE | screen.portrait
RUN_NSTRUMENTATION SCREEN_ON Camera.autofocus
READ_EXTERNAL_STORAGE LEANBACK_LAUNCHER telephony

ACCESS MEDIA_BUTTON camera

tual Information and Pearson’s Correlation Coefficient and further applied Algorithm 2 on
DATASET-1 to obtain their corresponding detection accuracies. First, we apply the proposed
detection algorithm (Algorithm 2), only on permissions, after ranking them using Mutual In-
formation and Pearson’s Correlation Coefficient. The proposed algorithm, i.e., Algorithm 2,
will give the best set of permissions with higher accuracy as an output. The results are sum-
marized in Table 4.18. From the table, we observe that we get the highest accuracy of 97.61%
with only one permission, namely MOUNT_UNMOUNT _FILESYSTEMS, when we rank the per-
missions with Mutual Information. With Pearson’s Correlation Coefficient, we get the highest
accuracy of 96.02% again with only one permission, namely RECEIVE_SMS. With our pro-
posed frequency-based Chi-Square test on permissions, we get the highest accuracy of 97.70%
with ten permissions. Therefore, on DATASET-1, the frequency-based Chi-Square test is better
than both Mutual Information and Pearson Correlation Coefficient when we rank permissions
with these techniques. Moreover, as seen in Table 4.10, we get the highest accuracy of 98.49%
from the proposed model with the frequency-based Chi-Square test on the combination of per-
missions and intents, which is higher than the accuracy obtained from Pearson Coefficient and
Mutual Information. Hence, our model outperforms Mutual Information and Pearson Correla-

tion Coefficient on permissions.

113

Table 4.18: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on permissions

Approach used Number of | Detection accuracy using various machine learning and deep learning classifiers (in

Permissions %)

used

DT RF ANN BC NB LR MLP SVM DNN

Frequency-based 10 97.70 97.70 74.54 97.70 92.16 97.70 97.58 97.58 97.58
Chi-Square test (our
approach)
Mutual Information | 01 97.43 97.43 95.67 97.43 25.6 97.43 97.61 97.61 97.61
[131]
Correlation Coeffi- | 01 96.02 96.02 94.52 96.02 19.75 96.02 95.46 95.46 95.46
cient [131]

Next, we apply the proposed detection algorithm (Algorithm 2), only on intents, after rank-
ing them using Mutual Information and Pearson’s Correlation Coefficient. The proposed al-
gorithm, i.e., Algorithm 2, will give the best set of intents with higher accuracy as an output.
The results are summarized in Table 4.19. From the table, we observe that we get the highest
accuracy of 95.35% with only two intents, namely USER_PRESENT and PACKAGE_REMOVED
when we rank the intents with Mutual Information. Whereas, with Pearson’s Correlation Co-
efficient, we get the highest accuracy of 63.45% with only one intent, namely Main. With
our proposed frequency-based Chi-Square test on intents, we get an accuracy of 95.35% with
two intents, the same as that obtained from Mutual Information and better than that from the
Pearson Coefficient.

Table 4.19: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on intents

Approach used Number of In- | Detection accuracy using various machine learning and deep learning classifiers (in
tents used %)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based 02 95.35 95.35 65.32 95.35 95.35 95.35 95.30 95.30 95.30
Chi-Square (our
approach)
Mutual Information | 02 95.35 95.35 95.13 95.35 95.35 95.35 96.12 96.12 96.12
[131]
Correlation Coeffi- | 01 61.96 61.96 63.45 61.96 38.04 61.96 62.12 62.12 62.12
cient [131]

Next, we apply the proposed detection algorithm (Algorithm 2), only on hardware com-
ponents, after ranking them using Mutual Information and Pearson’s Correlation Coefficient.
The proposed algorithm, i.e., Algorithm 2, will give the best set of hardware components with
higher accuracy as an output. The results are summarized in Table 4.20. From the table, we
observe that we get the highest accuracy of 83.42% with six hardware components, namely
{ touchscreen , touchscreen.multitouch.distinct , touchscreen.multitouch , location , location.network

and location.GP } when we rank the hardware components with Mutual Information. Whereas,

114

with Pearson’s Correlation Coefficient also, we get the same highest accuracy of 83.42% with
the same six hardware components. With our proposed frequency-based Chi-Square test on
hardware components, we get an accuracy of 92.78% with 01 hardware components, better
than that obtained from Mutual Information and Pearson Coefficient.

Table 4.20: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on hardware components

Approach used Number of | Detection accuracy using various machine learning and deep learning classifiers (in

Hardware %)

Components

used

DT RF ANN BC NB LR MLP SVM DNN

Frequency-based 01 92.78 92.78 92.78 92.78 92.78 92.78 92.78 90.75 92.78
Chi-Square (our
approach)
Mutual Information | 06 83.42 83.42 83.21 83.42 83.42 83.42 83.42 83.14 83.21
[131]
Correlation Coeffi- | 06 83.42 83.42 83.21 83.42 83.42 83.42 83.42 83.14 83.21
cient [131]

Moreover, as seen in Table 4.10, we get the highest accuracy of 98.49% from the proposed
model with the frequency-based Chi-Square test on the combination of permissions and intents,
which is higher than the accuracy obtained from Pearson Coefficient and Mutual Information

applied on intents.

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-
missions and intents, after ranking them using Mutual Information and Pearson’s Correlation
Coefficient. The proposed algorithm, i.e., Algorithm 2, will give the combined best set of per-
missions and intents with higher accuracy as an output. The results are summarized in Table
4.21. From the table, we observe that we get the highest accuracy of 96.82% with only one
pair of permission and intent, namely MOUNT _UNMOUNT_FILESYSTEMS and USER_PRESENT
when we rank permissions and intents with Mutual Information. Whereas, with Pearson’s Cor-
relation Coefficient, we get the highest accuracy of 63.86% again with only one pair, namely
RECEIVE_SMS and MAIN. With our proposed frequency-based Chi-Square test on the combina-
tion of permissions and intents, we get the highest accuracy of 98.49% with six permissions
and six intents. Hence, our model outperforms Mutual Information and the Pearson Correla-

tion Coefficient on the combination of permissions and intents.

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of
intents and hardware components, after ranking them using Mutual Information and Pear-
son’s Correlation Coefficient. The results are summarized in Table 4.22. From the table,

we observe that we get the highest accuracy of 92.82% with two pairs of intents and hard-

115

Table 4.21: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permission and intents

Approach used Number of | Detection accuracy using various machine learning and deep learning classifiers (in

Permission-Intent %)

pairs used

DT RF ANN BC NB LR MLP SVM DNN

Frequency-based 06 98.49 | 98.49 86.84 98.49 98.49 98.49 | 98.35 98.35 98.35
Chi-Square
Mutual Information | 01 96.82 | 96.82 96.59 96.82 96.82 96.82 | 96.64 96.64 96.64
[131]
Correlation Coeffi- | 01 63.86 | 63.86 39.88 63.86 39.88 63.86 | 63.55 63.55 63.55
cient [131]

ware components, namely USER_PRESENT and touchscreen , PACKAGE_REMOVED and touch-
screen.multitouch.distinct when we rank intents and hardware components with Mutual Informa-
tion. Whereas, with Pearson’s Correlation Coefficient, we get the highest accuracy of 62.64%
again with only one pair, namely MAIN and touchscreen. With our proposed frequency-based
Chi-Square test on the combination of intents and hardware components, we get the highest
accuracy of 97.43% with three intents and three hardware components. Hence, our model out-
performs Mutual Information and the Pearson Correlation Coefficient on the combination of

intents and hardware components.

Table 4.22: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of intents and hardware components

Approach used Number of Intent - | Detection accuracy using various machine learning and deep learning classifiers (in

Hardware compo- | %)

nent pairs used

DT RF ANN BC NB LR MLP SVM DNN

Frequency-based 03 9743 | 9743 97.43 97.43 97.43 97.43 | 97.43 97.43 97.43
Chi-Square
Mutual Information | 02 92.82 | 92.82 92.81 92.82 92.82 92.27 | 92.82 92.25 92.81
[131]
Correlation Coeffi- | 01 62.64 | 62.64 62.62 62.64 62.62 62.62 | 62.62 62.21 62.61
cient [131]

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-
missions and hardware components, after ranking them using Mutual Information and Pear-
son’s Correlation Coefficient. The results are summarized in Table 4.23. From the table, we
observe that we get the highest accuracy of 92.96% with only one pair of permission and hard-
ware component, namely MOUNT_-UNMOUNT _FILESYSTEMS and touchscreen when we rank
permissions and intents with Mutual Information. Whereas, with Pearson’s Correlation Coef-
ficient, we get the highest accuracy of 86.19% again with only one pair, namely RECEIVE_SMS
and touchscreen. With our proposed frequency-based Chi-Square test on the combination of
permissions and hardware components, we get the highest accuracy of 95.41% with three per-

missions and three hardware components. Hence, our model outperforms Mutual Information

116

and the Pearson Correlation Coefficient on the combination of permissions and intents.

Table 4.23: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permissions and hardware components

Approach used Number of | Detection accuracy using various machine learning and deep learning classifiers (in

Permission- Hard- %)

ware Component

pairs used

DT RF ANN BC NB LR MLP SVM DNN

Frequency-based 03 95.41 95.41 95.41 95.41 95.41 90.05 | 95.41 90.05 95.41
Chi-Square
Mutual Information | 01 92.96 | 92.96 92.96 92.96 92.96 92.96 | 92.96 92.96 92.96
[131]
Correlation Coeffi- | 01 86.19 | 86.19 83.91 86.19 86.19 86.19 | 86.19 84.25 83.91
cient [131]

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-
missions and hardware components, after ranking them using Mutual Information and Pear-
son’s Correlation Coefficient. The results are summarized in Table 4.24. From the table,
we observe that we get the highest accuracy of 94.25% with only one trio of permission, in-
tents and hardware component, namely { MOUNT_-UNMOUNT _FILESYSTEMS, USER_PRESENT
and touchscreen } when we rank permissions, intents and hardware components with Mutual
Information. Whereas, with Pearson’s Correlation Coefficient, we get the highest accuracy
of 63.99% again with only one trio, namely { RECEIVE_SMS, MAIN and touchscreen }. With
our proposed frequency-based Chi-Square test on the combination of permissions, intents and
hardware components, we get the highest accuracy of 96.99% with three permissions, three in-
tents, and three hardware components. Hence, our model outperforms Mutual Information and
the Pearson Correlation Coefficient on the combination of permissions, intents and hardware

components.

Table 4.24: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permissions, intents and hardware components

Approach used Number of | Detection accuracy using various machine learning and deep learning classifiers (in
Permission- In- %)

tents - Hardware
Component trios

used

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based 03 96.99 | 96.99 96.99 96.99 91.34 72.34 | 96.99 70.34 96.99
Chi-Square
Mutual Information | 01 94.25 | 94.25 94.24 94.25 88.91 9424 | 94.24 88.91 94.24
[131]
Correlation Coeffi- | 01 63.99 | 63.99 63.99 63.99 63.97 63.97 | 63.99 63.97 63.99
cient [131]

117

4.3.4 Detection Results on DATASET-2

The applications in the DATASET-1 were collected over the period from 2016 to 2022. In
this subsection, we discuss the results obtained from testing our proposed approach over a
new and more recent dataset, i.e., on malicious applications downloaded from Androzoo that
were detected in 2021 and 2022. Again, we perform seven experiments, considering 1) per-
missions alone, 2) intents alone, 3) hardware components alone, 4) permissions and intents
combined, 5) intents and hardware components, 6) permissions and hardware components,

and 7) permissions, intents and hardware components, all three of them combined.

Detection with Permissions alone

First, we apply the proposed detection algorithm (Algorithm 2) with permissions alone. Table
4.25 summarizes the detection results when we use permissions alone for detection on the re-
cent dataset. With the top-ranked permission, i.e., BIND_GET_INSTALL REFERRER SERVICE,
we get the highest accuracy of 96.84% accuracy with one of the classifier. Then we move to the
next iteration when considering the top two ranked permissions, i.e., combining BIND_GET_
INSTALL REFERRER SERVICE with JPUSH _MESSAGE for detection. In this iteration, we get an
increased accuracy of 97.02 %. Next, we consider the top three permissions and repeat the en-
tire procedure. The procedure terminates until we observe a potential decrease in the detection
accuracy. As shown in Table 4.25, we achieved the highest detection accuracy on the third it-
eration, i.e., upon adding the top three permissions, namely { BIND_GET_INSTALL REFERRER _
SERVICE , JPUSH_MESSAGE and RESTART- PACKAGES }, we get the highest accuracy of
97.13%. From the next iteration, we observe that the detection accuracy starts decreasing.
Finally, we observe that we get the highest accuracy of 97.13% when we apply the proposed

Algorithm 2 on the recent dataset with permissions alone.

Table 4.25: Detection results with proposed approach considering only permissions

PERMISSIONS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_ REFERRER_ | 96.06 96.06 96.84 96.06 96.06 96.06 96.66 96.66 96.65
SERVICE
JPUSH_-MESSAGE 97.02 97.02 60.93 97.02 97.02 97.02 96.65 96.65 96.65
RESTART_PACKAGES 97.13 97.13 53.28 97.13 97.13 97.13 96.51 96.51 96.51
SEND_SMS 94.50 94.50 52.10 94.50 94.50 94.50 95.76 95.76 95.77
RECEIVE_SMS 95.50 95.50 51.30 95.50 95.50 95.50 95.02 95.02 95.03
READ_SMS 92.85 92.85 50.90 92.85 92.85 92.85 94.60 94.60 94.62

118

Detection with Intents alone

Next, we apply the proposed approach to the recent dataset, with intents alone. Table 4.26
summarizes the detection results when we use intents alone for detection. With the top-ranked
intent, i.e., CONNECTION, we get 96.03% accuracy. Then we move to the next iteration; when
we consider the top two ranked intents, i.e., combining CONNECTION with DaemonService for
detection and repeating the process, we get an accuracy of 96.26%. As shown in Table 4.26,
we achieved the highest detection accuracy on the sixth iteration, i.e., upon adding the top
six intents, namely { CONNECTION , DaemonService , NOTIFICATION_RECEIVED , NOTIFICA-
TION_OPENED , MESSAGE RECEIVED, and START FROM AGOO }, we get the highest accuracy
of 97.89%. From the next iteration, we observe that the detection accuracy starts decreasing.
Finally, we observe that we get the highest accuracy of 97.89% when we apply the proposed

Algorithm 2 on the recent dataset with intents.

Table 4.26: Detection results with proposed approach considering only intents

Intents used Detection accuracy using various machine learning and deep learning classifiers (in

%)

DT RF ANN BC NB LR MLP SVM DNN
CONNECTION 96.03 96.03 85.32 96.03 96.03 96.03 84.32 92.50 84.32
DaemonService 96.26 96.26 91.23 96.26 96.26 96.26 90.05 95.80 90.05
NOTIFICATION_RECEIVED 97.19 97.19 94.66 97.19 97.19 97.19 94.76 96.50 94.76
NOTIFICATION_OPENED 97.42 97.42 95.30 97.42 97.42 97.42 95.22 96.46 95.22
MESSAGE_RECEIVED 97.55 97.55 95.44 97.55 97.55 97.55 95.40 95.40 95.40
START_FROM_AGOO 97.89 97.89 88.97 97.89 97.89 97.89 89.21 90.20 89.21
REPORT 97.40 97.40 84.14 97.51 97.40 97.40 84.04 84.04 84.04
COMMAND 97.27 97.27 81.22 97.29 97.27 97.26 80.45 80.45 80.45

Detection with Hardware components Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with hardware components
alone. Table 4.27 summarizes the detection results when we use hardware components alone
for detection. With the top-ranked hardware component, i.e., location, we get 86.93% accuracy
with all the classifiers. We call this the first iteration, then we move to the next iteration
when we consider the top two ranked hardware components, i.e., combining location with
screen.portrait for detection and repeating the above mentioned process. In this iteration, we
note that we get an accuracy of 89.68% from all the machine learning classifiers. As shown
in Table 4.27, we achieved the highest detection accuracy on the second iteration itself, i.e.,
upon adding the top two hardware components, namely location and screen.portrait. From the
next iteration, we observe that the detection accuracy starts decreasing. Finally, we observe

that we get the highest accuracy of 89.68% when we apply the proposed Algorithm 2 only on

119

hardware components.

Table 4.27: Detection results with proposed approach considering only hardware components

HARDWARE COMPONENTS | Detection accuracy using various machine learning and deep learning classifiers (in
used %)

DT RF ANN BC NB LR MLP SVM DNN
location 86.93 86.93 86.93 86.93 80.89 86.93 86.93 81.69 86.93
screen.portrait 89.68 89.68 89.68 89.68 85.1 89.68 89.68 86.57 89.68
vulkan 89.68 89.68 89.68 89.68 89.68 89.68 89.68 89.68 89.68
location.GPS 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4

Detection with Combination of Permissions and Intents

Further, we apply the proposed approach to the recent dataset with the combination of permis-
sions and intents. Table 4.28 summarizes the detection results. With the top-ranked pair, i.e.,
BIND_GET_INSTALL REFERRER SERVICE and CONNECTION, we get 96.19% accuracy. Then
we move to the next iteration when considering the top two ranked pairs of permissions and
intents, i.e., combining., BIND_GET_INSTALL_REFERRER_SERVICE and CONNECTION with
JPUSH _MESSAGE and DaemonService and we get an increased accuracy of 98.42%. Next,
we consider the top three pairs of permissions and intents and repeat the entire procedure.
We achieved the highest detection accuracy on the third iteration, i.e., upon adding the top
three permissions, namely { BIND_GET_INSTALL_REFERRER SERVICE , JPUSH_MESSAGEand
RESTART_PACKAGES }, and top three intents namely { CONNECTION , DaemonService and NO-
TIFICATION _RECEIVED }, we get the highest accuracy of 98.74%. Hence, we can conclude
that the proposed approach in this work can detect recent malware samples with an efficient

accuracy of 98.74%.

Table 4.28: Detection results with proposed approach considering the combination of permis-
sions and intents

PERMISSIONS and INTENTS | Detection accuracy using various machine learning and deep learning classifiers (in
used %)

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_ REFER- | 96.19 96.19 73.09 96.19 96.19 96.19 97.42 97.42 97.42
RER_SERVICE and CONNECTION
JPUSH_MESSAGE and DaemonSer- | 97.35 97.35 72.78 97.35 97.35 97.35 98.42 98.42 98.42
vice
RESTART PACKAGES And NO- | 98.74 98.74 67.42 98.74 89.37 98.74 97.60 97.60 97.60
TIFICATION_RECEIVED
SEND_SMS and NOTIFICA- | 98.17 98.17 70.14 98.17 87.24 98.17 97.26 97.26 97.26
TION_OPENED
RECEIVE_SMS and MES- | 96.75 96.75 73.60 96.75 96.75 96.75 97.05 97.05 97.05
SAGE_RECEIVED

120

Detection with combination of Intents and Hardware components

Next, we apply the proposed detection algorithm (Algorithm 2) on the combination of intents
and hardware components. Table 4.29 summarizes the detection results when we use intents
and hardware components for detection. With the top-ranked pair, 1.e., CONNECTION and
location, we get 92.94% accuracy with several classifiers. In the second iteration, we get an
accuracy of 95.96% from DNN classifier. Hence, next, we consider the top three pairs of
intents and hardware components and repeat the entire procedure. Subsequently, as shown
in Table 4.29, we achieved the highest detection accuracy on the fourth iteration, i.e., upon
adding four intents, namely { CONNECTION , DaemonService , NOTIFICATION_RECEIVED and
NOTIFICATION_OPENED } and four hardware components namely { location , screen.portrait
, vulkan and location.GPS } ,we get the highest accuracy of 96.55%. From the next iteration,
we observe that the detection accuracy starts decreasing. We observe that we get the highest
accuracy of 96.55% when we apply the proposed Algorithm 2 on the set of 8 features that

contains four intents and four hardware components.

Table 4.29: Detection results with proposed approach considering the combination of intents
and hardware components

INTENTS and HARDWARE COM- | Detection accuracy using various machine learning and deep learning classifiers (in
PONENTS used %)

DT RF ANN BC NB LR MLP SVM DNN
CONNECTION and location 92.94 92.94 92.94 92.94 90.29 90.29 92.94 90.29 92.94
DaemonService and screen.portrait 92.94 92.94 62.01 92.94 90.29 90.29 92.94 90.29 95.96
NOTIFICATION_RECEIVED and | 95.96 95.96 83.96 95.96 94.56 94.56 94.87 94.56 92.11
vulkan
NOTIFICATION_OPENED and lo- | 96.55 96.55 71.86 96.55 95.45 95.45 95.45 94.95 82.18
cation.GPS
MESSAGE_RECEIVED and loca- | 95.36 95.36 78.75 95.36 94.48 94.48 94.48 92.25 91.45
tion.network
START_FROM_AGOO and touch- | 94.93 94.93 78.96 94.93 94.26 86.57 93.28 91.58 90.76
screen.multitouch.distinct

Detection with Combination of Permissions and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of
permissions and hardware components. Table 4.30 summarizes the detection results when
we use permissions and hardware components for detection. With the top-ranked pair, i.e.,
BIND_GET_INSTALL REFERRER SERVICE and location, we get 94.06% accuracy with several
classifiers. In the second iteration, we get an accuracy of 95.9% from several classifiers and
as shown in Table 4.30, we achieved the highest detection accuracy on the second iteration it-
self, i.e., upon adding two permissions, namely BIND_GET_INSTALL REFERRER _SERVICE and

JPUSH_MESSAGE and two hardware components namely location and screen.portrait. From the

121

next iteration, we observe that the detection accuracy starts decreasing. We observe that we
get the highest accuracy of 95.9% when we apply the proposed Algorithm 2 on the set of four

features that contains two permissions and two hardware components.

Table 4.30: Detection results with proposed approach considering the combination of permis-
sions and hardware components

PERMISSIONS and HARDWARE | Detection accuracy using various machine learning and deep learning classifiers (in
COMPONENTS used %)

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_REFERRER 94.06 94.06 94.06 94.06 94.06 94.06 94.06 94.06 94.06
_SERVICE and location
JPUSH_MESSAGE and | 95.9 95.9 67.56 95.9 95.9 67.56 95.04 67.56 92.94
screen.portrait
RESTART_PACKAGES and vulkan 95.17 95.17 83.46 95.17 83.13 55.28 94.43 80.32 83.21
SEND_SMS and location.GPS 93.73 93.73 75.62 93.73 63.46 63.79 93.01 70.54 80.65

Detection with Combination of Permissions, Intents and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-
missions, intents, and hardware components. Table 4.31 summarizes the detection results
when we use permissions, intents, and hardware components for detection. With the top-
ranked trio, i.e., BIND_GET_INSTALL_REFERRER SERVICE , CONNECTION and location, we
get 95.16% accuracy with several classifiers. We call this the first iteration and then move to
the next iteration when we consider the top two ranked trio of permissions, intents, and hard-
ware components, i.e., combining BIND_GET_INSTALL_ REFERRER_SERVICE , CONNECTION
and location with JPUSH_MESSAGE , DaemonService and screen.portrait for detection and repeat
the process mentioned above. In this iteration, we get an accuracy of 96.96% from several
classifiers. As shown in Table 4.31, we achieved the highest detection accuracy on the second
iteration, i.e., upon adding two permissions, namely BIND_GET_INSTALL REFERRER SERVICE
and JPUSH_MESSAGE, two intents namely CONNECTION and DaemonService and two hard-
ware components namely, location and screen.portrait, we get the highest accuracy of 96.96%.

From the next iteration, we observe that the detection accuracy starts decreasing.

On comparing the highest accuracies obtained with permissions alone (97.40%), intents
alone (95.78%), hardware components alone (89.68%), combination of intents and hardware
components (96.55%), combination of permissions and hardware components (95.9%), com-
bination of permissions, intents and hardware components (96.96%) we find that the combi-
nation of permissions and intents (98.18%) gives us better detection accuracy as compared to

all three features when used alone or in other possible combinations.

122

Table 4.31: Detection results with proposed approach considering the combination of permis-
sions, intents and hardware components

PERMISSIONS, INTENTS and | Detection accuracy using various machine learning and deep learning classifiers (in
HARDWARE COMPONENTS | %)
used

DT RF ANN BC NB LR MLP SVM DNN
BIND_GET_INSTALL_REFERRER 95.16 95.16 76.62 95.16 76.62 76.62 94.1 76.62 80.15
_SERVICE, CONNECTION and
location
JPUSH_MESSAGE, DaemonSer- | 96.96 96.96 96.96 86.27 96.96 72.88 96.34 85.91 91.17
vice and screen.portrait
RESTART_PACKAGES, NOTIFICA- | 96.53 96.53 85.58 96.53 96.03 68.89 96.03 80.24 86.35
TION_RECEIVED and vulkan
SEND_SMS, NOTIFICA- | 96.55 96.55 87.96 95.55 73.19 65.56 95.06 75.86 92.11
TION_OPENED and location.GPS

4.3.5 Comparison with other related works

In this section, we compare the performance of our proposed model with other similar works
of Android malware detection that have used permissions or intents as features. Table 4.32
summarizes this comparison. As seen from the table, our work outperforms all these works
in terms of detection accuracy. Some works have ranked the permissions based on frequency
or with tests like Mutual Information and Pearson Correlation Coefficient. Some other works
have applied feature selection techniques with Linear Regressions or Naive Bayes, whereas
some authors have used permissions in pairs for Android malware detection. Only two works,
i.e., Lietal. [16] and Wang et al. [131], have used a larger number of normal applications in
their analysis than ours. However, their dataset size for malware apps is smaller than ours.
Moreover, our work outperforms them in terms of detection accuracy. Hence, our proposed
model is better than many state-of-the-art techniques presented in the literature for Android

malware detection.

4.3.6 Limitations

Now, we describe a few limitations of the proposed approach. The proposed model ranks
permissions and intents for malware detection, and hence, the model is a static detection. Static
techniques are generally inexpensive in terms of complexity compared to dynamic approaches,
as static features can be more easily extracted than dynamic ones. However, static methods
have a few disadvantages, such as their inability to recognize stealthier behavior of code ob-
fuscation and dynamic code loading. As a result, some malicious apps may incorporate such

stealthy behavior and evade detection by the proposed static model. Hence, we will integrate

123

Table 4.32: Comparison of proposed work with the existing literature based on malware de-
tection using permissions and intents.

posed Model)

Hardware components
ranking with Frequency-
based Chi-Square

Related Work Feature selection/Feature | Dataset Size Detection ac- | Number of

ranking technique used curacy (in %) best features
Normal Malware

Lietal. [16] Permissions ranking basedon | 310,926 62,838 93.62 22 permissions
frequency

Khariwal et al. [139] Raked features using Infor- 1,414 1,714 94.73 37 features
mation gain

Wang et al. [131] Permissions ranking with | 310,926 4,868 94.62 40 permissions
Mutual Information, Correla-
tion Coefficient and T-test

Yerima et al. [40] Mutual Information gain 1,000 1,000 97.7 15 permissions
based permissions and code
based features

Chaudhary and Masood | Chi-Square as a feature re- | 5065 426 96.4 -

[43] duction technique

Mahindru and Sangal | Feature selection using Chi- 5,00,000 98.2

[56] Square, Gain Ratio, Filtered
Subset selection, Information
feature, LR analysis, PCA

Sahin et al. [153] Feature selection with Linear 1,000 1,000 96.1 27 permissions
regression

Talha et al. [18] Risk score calculated for | 1,853 6,909 88.28 -
each app

Dogru and Onder [20] Permission groups score cal- | 5,554 5,554 96.19 -
culated, to sum up, app’s risk
Score

Shang et al. [21] Naive Bayes and Pearson | 945 1,725 86.54 -
Correlation Coefficient

Tchakounté et al. [22] Sequence alignment based | 534 534 79.58 -
similarity score

Kato et al. [39] Similarity score between 11,500 19,000 97.3 -
malware and normal permis-
sion pairs

Arora et al. [138] Normal and malicious graphs | 7,533 7,533 95.44 -
of permission pairs

PHIAnalyzer (Pro- | Permissions, Intents, and | 77,000 77,000 98.49 12 features

dynamic analysis with static features to detect stealthy malware samples in our future work.

Moreover, some mobile attacks can be because of colluding apps, i.e., malicious behavior is

distributed across several apps rather than one. However, the proposed model, in its current

form, does not target colluding apps. Therefore, to further enhance the detection capability of

the proposed model, we aim to target colluding apps in our future work.

4.4 Conclusion and Future Work

In this work, we proposed a novel static technique to detect Android malware using seven

possible combinations of ranked permissions, intents, and hardware components. Initially,

we ranked the permissions, intents, and hardware components separately based on their fre-

quency difference in normal and malware datasets. Subsequently, we ranked the features using

124

a frequency-based statistical Chi-Square test. Finally, we proposed a novel algorithm with ma-
chine learning and deep learning techniques to merge the three ranked lists and find the best
subset of features. Our experimental results demonstrate that the proposed model gives ade-
quate detection accuracy of 98.49% with 12 features, i.e., the top six permissions combined
with the top six intents. Furthermore, results showed that our proposed method is better than
many state-of-the-art techniques for Android malware detection in terms of detection accu-
racy and the number of features used. In our future work, we will expand the analysis on other
manifest file components such as broadcast receivers, activities, services, etc. We will also

aim to integrate dynamic analysis to detect stealthier malware and colluding apps.

Chapter 5

CorrNetDroid: Android Malware Detector
leveraging a Correlation-based Feature

Selection for Network Traffic features

In this chapter, we present CorrNetDroid, a model designed to detect Android malware by
analyzing network traffic from malicious and benign apps. Numerous traffic features can be
extracted from captured data; however, using all features can reduce detection accuracy. Ef-
fective feature ranking is essential to address this, while avoiding redundancy among vari-
ables. This work manages both feature—class and feature—feature correlations to eliminate
redundancy among ranked features. In Section 5.1, we outline the motivation and provide an
overview of the proposed methodology. Section 5.2 details the methodology, while Section 5.3
presents the results and their analysis. Limitations are discussed in Section 5.4, and Section

5.5 concludes with future research directions.

5.1 Introduction

Over the years, static analysis has proved to be quite efficient in terms of extraction of
features, cost, and detection accuracy. Investigating malware without executing the actual

code but by collecting basic information about an app’s functionality seemed to be profitable.

125

126

Hence, our previous works were primarily based on static analysis ([154], [155]). In static
analysis, all the static features of an application can be scrutinized, such as the permissions,
intents, hardware features, or other AndroidManifest file components. However, some stealthier
malware functions without showing malicious behavior, i.e., they might even evade static de-
tection techniques such as permission check systems. Although the results might come faster
using static analysis, they are found to be incapable of detecting malware using advanced
techniques such as code obfuscation, polymorphism, and encryption. Dynamic analysis, in
which applications are monitored at runtime by actually executing their code, overcomes the
shortcomings of static analysis. Therefore, in this chapter, we focus on creating a system-level

lightweight malware identification framework using dynamic analysis.

Some malware are more dangerous than others because they connect to a remote server
in the background to obtain commands or to leak/send private information of users or the
device itself to the server. Hence, our work in this chapter aims to detect malware that con-
nects to a server in the background without the user’s knowledge. Because of this behavior,
they produce network traffic. Keeping the seriousness of detection in mind, this work ana-
lyzed their network traffic behavior and compared it with normal mobile traffic to determine
the deviations in the behavior of malware. The aim of the proposed work in this chapter is
to detect Android malware remotely controlled by a server and obtain commands from that
server or leak private user information. There are some other malware that initially do not
contain any malicious code, but after installation on the device, they inject malicious code dur-
ing the update. Both of these categories of malware have one thing in common: they connect
to a network. Around 93% of Android malware samples have network connectivity. Because
these types of malware are controlled by a remote server, they convert the mobile device into

a mobile bot, which can pose a serious threat to the user community.

In the context of Android malware detection using network traffic , the most commonly
used dynamic features are HTTP request headers, UDP flows, and TCP flows, which refer
to the network communication patterns associated with different types of network protocols.
Analyzing these flows can be crucial for identifying potential malicious behavior or communi-
cation patterns indicative of malware. Among these, we choose and handle TCP connections
as our preferred network traffic feature for the proposed work. TCP (Transmission Control
Protocol) is a connection-oriented protocol that ensures reliable and ordered delivery of data
between devices. Malicious activities often involve the establishment of more persistent and

reliable connections, which makes TCP a common choice for malware communication. Mon-

127

Table 5.1: Some traffic features and their range for malware and normal mobile traffic on

smartphones

Feature Name

Range in normal traffic

Range in malware traffic

Flow_duration

0 - 49560.3403

0-52122.128886

Packets_sent_per_flow

1-110985

1 - 48265

Packets_received_per_flow

0-215014

0-104312

Bytes_sent

40 - 82771640

54 - 16288912

Bytes_received

0-1217408141

0- 157283100

itoring TCP flows can help detect unusual connection patterns, such as connections to known
malicious servers, multiple connections to different servers, or connections to non-standard

ports.

Some dynamic Android malware detection techniques have been proposed in the literature
using features such as cryptographic and network operation [81]. However, we chose net-
work traffic flows as the preferred feature to perform dynamic analysis because they provide
a comprehensive and real-time view of an application’s external communication, making it

particularly effective in the context of Android malware detection.

Motivation: Analyzing network traffic usage patterns is an effective way to detect the pres-
ence of malware. Therefore, network traffic flows have been widely used in the literature for
Android malware detection. However, similar to permissions or intents, there are many simi-
larities between the network traffic feature patterns of normal and malicious apps. Tables 5.1
summarize the network traffic ranges of several features extracted from a binary class dataset,
i.e., benign and malware types. We extracted over 9 lakh network traffic flows of the normal
class and an equal number for the malware class by combining the datasets from various repos-
itories. More details about the dataset are provided in upcoming sections. Furthermore, we
developed 16 network traffic features from the network traffic data. As seen in Table 5.1,
commonly used features, namely Flow_Duration, Packets_sent/received, Bytes_sent/received from
the source to destination or vise versa, are present in significantly overlapping ranges when

observed in both normal and malware traffic data.

Such similarity in these features across both datasets motivates us to rank the features to pro-
pose an efficient detection model with distinguishing features. Moreover, experimental results
indicate, as depicted in the upcoming sections , that if we use all of the available features as
input for malware detection, irrelevant features will hamper detection accuracy. Hence, feature
reduction is a key process in developing a detection algorithm. More importantly, the field of
Android security revolves around accuracy; the better the accuracy of detecting malware, the

better the detection system, and the best accuracy can only be obtained by using the best set of

128

features. Hence, feature ranking and selection are the key aspects of our research.
Drawbacks of existing approaches

Several related studies have used the dynamic features of TCP flows or HTTP packets as
their base for the detection of Android malware. For instance, Wang et al. [104] analyzed
multiple levels of network traffic features and emphasized that combining 2 levels, namely
HTTP packet and TCP flow, can successfully lead to the creation of a lightweight server-based
malware detection model. Lastly, on the belief that machine learning can be used to auto-
matically discover the rules by analyzing the data, they applied machine learning algorithms
on the training set and performed the testing experiments. However, they did not use the key
concept of ranking the features and hence missed the feature reduction step, which could have

enhanced the quality of their results.

In several other related works, such as [92] and [95], the authors built a detection system
using the best subset of features by ranking or selection. More specifically, Arora and Peddoju
[92] were able to obtain 22 network traffic features. Consequently, they aimed to reduce the
feature set and used information gain and statistical techniques such as chi-square to rank the
feature set. The results indicated that their approach was successful in reducing the training
and testing time while keeping the detection accuracy at maximum. Shabtai et al. [95] tried to
understand the reason behind the deviations in the application’s network traffic behavior from
the normal flow by observing the network traffic flows. Hence, they computed the probability
scores depicting the deviation of features’ behaviors from normal traffic patterns and later
used the threshold approach to select the best subset of features. However, both studies were
implemented on a smaller set of network traffic flows compared with the huge dataset in our

proposed study. More importantly, our work outperforms both in terms of detection accuracy.
Objective of our Proposed Approach

We aim to build a robust and efficient dynamic analysis-based Android Malware detection
system that is capable of identifying malicious behavior of applications on Android smart-
phones. At the same time, we are driven to fulfill this objective using only the least and the
best features, aggregated using the TCP flows of the application’s network data. Feature rank-
ing methods are mainly criticized for their poor handling of redundant variables. Hence, in this
work, we attempt to handle both feature— class and feature— feature correlations by ranking the
features first using the statistical measure crRelevance and then further deploying another sta-

tistical technique called Normalized Mean Residue Similarity (NMRS) in our proposed approach to

129

remove the redundancy between the ranked features. The following research questions emerge
in the light of proposing a dynamic detection model based on the ranking of network traffic

features:

* RQ1 Where does the need for ranking network traffic features arise and subsequently,
what is the significance of feature reduction compared with feeding all the features as

inputs at once?

* RQ2 How to incorporate feature ranking while eliminating redundant features, i.e., how

to rank network traffic features and select the least correlated subset?

* RQ3 How to frame a detection approach while considering both feature— class and fea-

ture— feature correlations?

We are motivated to answer these questions with the vision to develop an Android malware
detector, named CorrNetDroid, based on dynamic analysis using TCP flows via developed fea-
tures. We ranked the features using a statistical technique called crRelevance to find the best
feature— class correlated subset, i.e., features having the optimum ability to distinguish be-
tween normal and malware class labels. We used crRelevance because of its simple working
and most suitable logic. The functioning of crRelevance prioritizes the feature showing steady
network traffic patterns for prolonged durations, be it the normal pattern or malware. There-
fore, the feature showing the least deviation from one class pattern is placed at the top of the
table. Moreover, unlike crRelevance, several other statistical tests have specific assumptions
that need to be met for the results to be valid. For instance, ANOVA assumes normality and
homogeneity of variances, and chi-square and Mann—Whitney tests assume independence of
observations with mutually exclusive categories. Most such tests are also found to be sensitive

to outliers. These limitations make crRelevance the most appropriate choice for our study.

Next, it was observed that features that are closely related to each other often produce sim-
ilar results or have a similar impact on the output data. Hence, we incorporated the crite-
ria of feature— feature correlation to select the best and negatively correlated features from
the crRelevance rankings. To do this, we have chosen another statistical measure called Nor-
malized Mean Residue Similarity (NMRS) because of its simple yet effective working compared
with other statistical measures such as Pearson’s correlation coefficient or Spearman correla-

tion coefficient, which often lead to the inclusion of some undesired features. After finding

130

the feature— feature correlation for all possible pairs, we proposed a novel NMRS-based de-
tection algorithm that uses crRelevance-ranked features and applies various machine learning
and deep learning techniques to effectively detect Android malware. Our detection results
are better than many state-of-the-art techniques proposed in the existing literature. Moreover,
our experiments demonstrate that the proposed NMRS-based detection algorithm with crRele-
vance rankings gives us better accuracy than other statistical tests such as chi-square, ANOVA,
Mann— Whitney U test, Kruskal-Wallis test, and Pearson correlation coefficient. In addition,
our proposed work outperforms other similar works on Android malware detection, which we

evaluate against the same dataset of normal and malicious apps.

Contributions: The main contributions of this chapter are highlighted below:

First, we ranked the TCP flow-based network traffic features according to their ability
to distinguish between normal and malicious class labels using the statistical measure

crRelevance.

» Next, we applied another statistical technique known as NMRS to analyze the feature—

feature correlation.

» We proposed a novel correlation-based feature selection algorithm to deploy NMRS on
the ranking given by crRelevance to filter out only the best as well as a redundancy-free

subset of network traffic features optimal for building an Android malware detector.

» We observed that the detection results of the proposed approach are relatively better than
various statistical and state-of-the-art techniques existing in the literature for Android

malware detection.

5.2 System Design

In this section, we explain our proposed methodology in detail. Figure 5.1 summarizes a
brief yet complete idea of our proposed model CorrNetDroid, which is divided mainly into two
modules. In the first module, named as Selection Module, we compute the network traffic fea-
tures from the training dataset’s TCP flows and rank them using a statistical measure called
crRelevance. Such a ranking will help us grade them according to their ability to distinguish be-
tween the two class labels, normal and malware. Simultaneously, we also rank the features on
the basis of their inter-correlation score using another statistical technique called NMRS, which

would help us eliminate the redundancy between the ranked features. In the Detection Module,

131

we propose a novel NMRS-based algorithm that applies machine learning and deep learning
techniques to crRelevance rankings to obtain the best subset of features that can provide higher

detection accuracy.

The following subsections discuss in detail both modules of the proposed model.

Traffic Feature Network Traffic
Extraction Features

Dataset Accumulation ‘ Feature Aggregation

crRelevance | NMRS

Feature Selection

SELECTION MODULE

MACHINE LEARNING /

DEEP LEARNING :

Detection Approach Detection Accuracy

Best set of Network
traffic features

Best Feature Set

Test Data

DETECTION MODULE

Figure 5.1: CorrNetDroid System Design

SELECTION MODULE

5.2.1 Dataset Collection

To begin with, we needed a vast dataset of mobile network traffic generated by both nor-
mal and malware applications to conduct our research. For this purpose, we rely on the
well-defined in-the-wild type datasets provided by the Canadian Institute for Cybersecurity
(CIC). The network traffic data used for training and testing were acquired from four datasets,
namely CICAndMal2017 [156], CIC-InvesAndMal2019 [157], CIC-AAGM2017 [158] and
USTC-TFC2016 [159]. Combining these datasets, we managed to gather 9,88,280 network
traffic flows for normal and malware, which were further divided into training and testing sets.
These datasets include a variety of both static and dynamic features extracted from normal and
malware applications; however, for our work, we keep our focus limited to mobile network

traffic already extracted and well-labeled in the form of pcap files. Moreover, among the com-

132

monly used features for malware traffic detection, such as the HTTP protocol and TCP and
UDP flows, we choose and handle the TCP connection as the main interaction between the

applications and the network.

5.2.2 Traffic Split

In mobile network traffic, Transmission Control Protocol (TCP) flows play a crucial role
in ensuring reliable and efficient communication between devices. TCP is a connection-
oriented protocol that facilitates the orderly and error-checked delivery of data between ap-
plications. TCP connections begin with a three-way handshake, where the sender and receiver
exchange synchronization (SYN) and acknowledgment (ACK) packets to establish a connec-
tion. TCP connections are gracefully terminated using a four-way handshake, involving FIN

(finish) and ACK flags.

Using TCP flows offers several benefits, particularly in the context of network communica-
tion. TCP includes mechanisms for error detection and correction and establishes a connec-
tion before data transmission begins, ensuring a reliable and orderly communication channel.
Moreover, TCP is widely supported across different operating systems and network environ-
ments. Its ubiquity makes it suitable for diverse applications and scenarios. Since the network
traffic data used in our study is already in the form of pcap files, Wireshark is used first to filter

the pcap, and then the files are separated into the basic flow.

5.2.3 Features Aggregation

After data collection, we extracted several network traffic features from the normal and
malware traffic. Table 5.2 summarizes the 16 traffic features used in our experiments. All
such features are flow-based and can be easily extracted from the pcap flows of normal and
malware traffic. For each feature, we have also written its short notation, for instance, F1 for
Average_packet_ size, F4 for Flow_duration, etc. In the Results section, we denote the features by

their notations for easy understanding and interpretation of the results.

5.2.4 Feature Selection

Many existing techniques for feature selection often overlook the correlation among features.

However, eliminating redundant features from a dataset can reduce the time required by the

133

Table 5.2: List of network traffic features

Average_packet_size (F1) Packets_sent_per_second (F9)
Time_interval_between_packets_ sent (F2) Packets_received_per_ second (F10)
Time_interval _between_packets_ received (F3) Packets_received_per_flow (F11)
Flow _duration (F4) Packet_size_received (F12)
Ratio_of_incoming_to_outgoing_ packets (F5) Bytes_sent (F13)
Ratio_of_incoming_to_outgoing_ bytes (F6) Bytes_sent_per_second (F14)
Packet_size_sent (F7) Bytes_received (F15)
Packets_sent_per_flow (F8) Bytes_received_per- second (F16)

inducer module during classification. The removal of redundant or irrelevant features not only
contributes to a significant improvement in the time efficiency of a machine learning technique

but also aids in creating an optimal feature subset for a dataset.

When selecting an optimal feature subset, it is crucial to consider both feature— feature and
feature— class correlations. An ideal feature subset should consist of features highly correlated
with class labels while exhibiting minimal correlation with each other [160]. In contrast to
many existing methods, the proposed feature selection technique addresses both feature— fea-
ture and feature—class correlations. It employs two statistical measures, namely crRelevance
and NMRS, to achieve this goal. In the following subsections, we discuss the working of crRel-
evance and NMRS measures, which play a crucial role in the proposed feature selection method.

These measures are used to quantify feature—class and feature— feature correlation.

crRelevance: Feature-Class Correlation

crRelevance [161] is a measure used to evaluate the ability of a feature to distinguish between
various class labels. It produces a value in the range [0, 1]. The following definitions provide

the theoretical basis for crRelevance.

Definition 1 For a feature f; with values {x;,x,...x,} corresponding to n objects or instances
in the dataset, a class range can be defined as a range R = [ry,r,] such that, Vx;,x;,r <x; <
r,r1 <x;<rp and classy (x;) = classy (x;), where classy(x) is the class associated with
value x over feature f. In other words, a class range R = [r}, ;] over feature f is said to be

associated with class A, if Vx,r; <x <ry,classf(x) = A.

Definition 2 Cardinality of a class range R = [ry,r;], denoted as rcard¢(R) is defined as the
cardinality of the set {x|x € V,r; <x<r,}, where V is the set of values of all the objects for

feature f.

Definition 3 Class-cardinality of a class A, ccard(A), can be defined as the cardinality of the
set {x | class(x) =A}.

134

Definition 4 Core class range of class A denoted as ccrange(A), can be defined as the highest
class range associated with the class A in terms of class range cardinality. A range R; associated
with class A is called the core class range of A if there is no R; in F, such that rcard (R;)

> rcard (R;).

Now, core range-based relevance of a class A for feature f;, denoted by chelevancelEilass (A),

is defined as follows.

d A
chelevanceglaSS (A) = = c(s:rr(??i;:(:

i

(5.2.1)

For a dataset D, the core class relevance of a feature f; € F can be defined as the highest crRel-
evance for a given class A;. Mathematically, crRelevance of a feature f;, denoted by crRelevance

(f;), for a dataset with n classes Ay, A,,...,A,, can be defined as follows.

crRelevance (f;) = lrgjaén chelevance}iaSS (Aj) (5.2.2)

In our case, we had two numerical-type continuous datasets comprising 16 features for two
classes, namely normal and malware. Each of them consisted of 6,94, 261 flows or instances
extracted from the TCP flows training dataset. Upon applying the above definitions to both
the training datasets individually, we managed to obtain the crRelevance normal and crRele-
vance_malware scores for each feature. To place the most distinguishing features at the top of
the ranked list irrespective of their preference for either class, we compute the absolute dif-
ference between the crRelevance_normal and crRelevance_malware scores for each feature. We
would like to point out that the absolute difference was taken instead of just the difference to
avoid the accumulation of the best features on the endpoints of the ranked list rather than on
the top. These scores were further used to rank the features such that the feature with the high-
est crRelevance score is the top-ranked feature and hence holds the best ability to distinguish

between class labels.

NMRS- Feature-Feature Correlation

The above-mentioned technique ranks features according to their relevance to the output vari-
able. However, it does not consider redundant features. It has been observed that features
that are closely related to each other often produce similar results or have a similar impact
on the output data. Hence, to determine whether two features have similar patterns, an ap-
propriate similarity measure must be chosen. In other words, to find the correlation between

features, we use an effective method called Normalized Mean Residue Similarity (NMRS) [162].

135

The level of concordance between feature d; = (aj,as,..., a,) with respect to another feature

dy = (b1,by,...,by) is defined by the following formula :

—1_ Z?:] |ai — amean — bi + bmean ‘
2 X max {Z?:l ‘(ai — Amean)| ,ZLl |(bl — bmean)|}

(5.2.3)

where amean 1S the mean of all the elements of feature d;;

Amean = {a1+ax+...+ay}/n,

and bpean 1S the mean of all the elements of feature d ;

bmean = {b1+by+...+b,} /n.

In our proposed work, because we wish to find the feature— feature correlation between all
possible pairs without any relation to their classes, we concatenate the normal and malware
traffic feature values, i.e., we combine the flows of both class labels for each feature and then
compute the NMRS scores. In this way, we iteratively compute the NMRS score for each feature
pair by taking them as d; and d, variables in the given NMRS formula. The most widely used
similarity/correlation measures in the field of Android malware are the Pearson correlation
coefficient, Spearman correlation coefficient, and mean squared residue. However, all of these
methods are lacking in some way or another. For instance, along with shifting patterns, the
Pearson correlation coefficient also detects scaling and other patterns that are normally not
desired and may lead to the inclusion of features that have a considerable amount of differ-
ence between their expression levels. The Spearman Rank correlation coefficient uses ranks
to calculate correlation, which can not detect shifting patterns or scaling patterns. The mean
squared residue is sufficient to detect shifting patterns, but the aggregate measure can not op-
erate in a mutual mode, i.e., it can not find the correlation between a pair of features. Due to
the above-mentioned reasons, we have chosen NMRS as our preferred choice for the feature—

feature correlation extractor.

136

Algorithm 3 Proposed Malware Detection Algorithm

1: Input: FCp;s < crRelevance ranked list, FFpis < NMRS ranked list

2: Output: Best set of features with higher detection rate

3: BestFeatures < Initialized with all 16 traffic features

4: p(F;) + Ranking of a feature in FCrg

5: TestData + Concatenated 16 traffic features’ normal and malware class values kept for testing.
6: Dpay <+ Maximum accuracy obtained, initialized to zero.

7: Dycc + Accuracy obtained after each iteration.

8: while FF; # ¢ do // While feature pairs exist in F Fp g

9: Select (F;-F}) € FFpis

10: if p(F;) < p(F;) then

11: TestData = TestData \ F; /] Delete F; from TestData

12: Find D .. using ML algorithms for features present in TestData

13: if Dycc > Digax then

14: Dptax = Dace

15: BestFeatures = BestFeatures \ F; /] Delete F; from BestFeatures

16: FFrig = FFpig \ {Fx-F, : Fyor F, = F;} // Delete all pairs having instance of F; from F Fp ;g
17: end if

18: end if

19: end while
20: return BestFeatures
21: return Dy,

DETECTION MODULE

5.2.5 Proposed Detection Algorithm

This section presents our proposed detection algorithm, termed Algorithm 3, which answers
research question three, i.e., how to frame a detection approach while considering both feature—

class and feature— feature correlations.

The goal is to find features that are not strongly correlated with each other but have high
predictive and class-distinguishing abilities compared with their peers in the entire ranked set
to provide better detection accuracy. We aim to find the best set of features to provide better
detection accuracy. The proposed method starts with the computation of crRelevance scores
for each feature and pairwise correlation between features using NMRS. Once these scores
are computed and sorted in descending order, the processing starts from the feature pair with
the highest NMRS score. FCr;; and FFp; represent the feature— class correlation rankings
computed by crRelevance and the feature— feature correlation rankings computed by NMRS,

respectively, in Algorithm 3.

In the first iteration, we selected the top-ranked feature pair from FFy;;. Next, we compared
the individual rankings of both features from the FCy;, and eliminated the feature with a lower
ranking in FCy;, from the testing dataset, which was initialized to all 16 traffic feature values.
We then execute the machine learning and deep learning classifiers on the testing data by
considering only these 15 features, i.e., after eliminating the lower-ranked feature, and observe

the detection accuracy, say Ds... The maximum accuracy, say Dy, 1s initialized to zero. At

137

each iteration, we compare Dy.. and Dy,,. If the accuracy at the current iteration, i.e., D,
is higher than Dy, we proceed to the next iteration and set Dy, as Da... In addition, we
eliminated the same lower-ranked feature from the set of Best Features, which was initialized

to all 16 features, and all its instances from F Fy;; list as well.

In the next iteration, we again select the top-ranked pair from F Fy;;;, compare the individual
rankings of both features from the FCy;; and find the detection accuracy on the testing data
after eliminating the lower ranked feature, i.e., D4 for the current iteration considering 14
features out of 16. Again, we compare the Dy, and Da.., and if Dy, is higher than Dy,
the value of Dy, gets updated to Dy, . Similarly, we eliminate the lower-ranked feature
from the set of Best Features as well as from FFp;;. The algorithm continues the same way
and terminates till there exists a single pair in the FFy;,. Finally, we return the Dy, and the
best set of features. The primary factor influencing this complexity is the time taken by the
embedded machine-learning algorithm and the number of feature pairs in FFy;,. If the total
number of features is denoted by n, then the total number of feature pairs in FFj;; comes out to
be (5). As aresult, the computational complexity of the proposed algorithm becomes O(n*- M),

where M is the time taken by the ML algorithms.

Using the NMRS-based proposed feature selection method that further uses crRelevance de-
veloped rankings as mentioned above, we answer research question two, i.e., how to rank the

features to recognize the most distinguishing as well as least correlated ones among them.

5.2.6 Machine Learning and Deep Learning Classifiers

We have used several machine learning and deep learning classifiers [135] in our detection
approach. We applied nine widely used techniques, namely Decision Trees (DT), Random
Forest (RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR),
as machine learning classifiers and Multilayer Perceptron (MLP), Artificial Neural Networks
(ANN), Dense Neural Network (DNN) and Convolutional Neural Network (CNN) as deep

learning classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].
The code concludes by printing the cross-validation results, including the accuracy scores for
each fold and the mean accuracy across all folds. This provides insights into the model’s

consistency and overall performance across diverse subsets of the dataset.

138

5.3 Results and Discussion

In this section, we present and discuss the experimental results obtained using the proposed
CorrNetDroid model. We point out that we have separate datasets for training and testing. As
described in Section 5.2.1, we accumulated 9,88,280 TCP flows, each from the normal and
malware categories, by compiling four datasets from various repositories. Of these, we use
6,94,261 flows of each category for training. The remaining 2,94,019 flows were used for
testing. We named this as Testing Dataset. In the upcoming subsections, we first discuss the
ranking obtained from the two statistical measures used in our study, crRelevance and NMRS.
Next, we describe the detection results on the Testing Dataset. Furthermore, we compared our

proposed model with similar models for Android malware detection.

5.3.1 Features Ranking

To identify the features having the best ability to distinguish between class labels, we
applied the statistical measure crRelevance on the normal and malware TCP-based features
individually kept for training. As an output, the technique produces a pair of feature-class
correlation scores for each feature. Furthermore, the sorted absolute differences between the
crRelevance normal and crRelevance_malware of features were used to give the ranking. Table
5.3 summarizes the network features ranked according to the difference between the category
scores. Table 5.3 highlights that the feature Packet_size_received (F12) has the best ability to
distinguish between normal and malware class labels and thus sits at the top of the table with
the highest absolute difference between category scores. Similarly, it can be seen that the
feature Bytes_sent_per_second (F14) has the worst absolute difference, and it can be inferred that

it has the worst distinguishing characteristics trait.

As described in subsection 5.2.5, our proposed feature selection and detection algorithm uses
both feature— class and feature— feature correlation, i.e., both crRelevance and NMRS rankings,
to choose the best subset of features. Hence, in the next step, we applied NMRS to all possible
feature pairs (120 to be precise) and ranked them in such a way that the pair that is found to be
the most correlated resides at the top of the table. Table 5.4 summarizes 20 traffic feature pairs,
from the top and bottom , ranked on the basis of their NMRS correlation scores. The table can
be understood as follows: The features Average_packet_size (FI1) and Packet_size_received (F12)

are found to have the best correlation score and thus have the best correlation between them.

139

Table 5.3: Traffic features ranked using crRelevance and their correspoding difference between
category scores

Traffic Feature name crRelevance Normal | crRelevance Absolute Difference
score Malware score
Packet_size_received (F12) 0.26596232 0.012590384 0.253371936
Ratio_of_incoming_to_ outgoing_packets (F5) 0.296365915 0.130850114 0.165515801
Average_packet_size (F1) 0.12240083 0.009480598 0.112920232
Bytes_received (F15) 0.126547691 0.03779996 0.088747731
Packets_received_per_flow (F11) 0.111917725 0.05154409 0.060373635
Time_interval_between_ packets_received (F3) 0.036142079 0.084497162 0.048355083
Packet_size_sent (F7) 0.021238441 0.055827788 0.034589347
Packets_sent_per_flow (F8) 0.080901968 0.063568404 0.017333564
Bytes_sent (F13) 0.02805145 0.016737245 0.011314205
Packets_received_per_second (F10) 0.000396105 0.009657765 0.00926166
Bytes_received_per_second (F16) 0.001100452 0.010035145 0.008934693
Ratio_of_incoming_to_ outgoing_bytes (F6) 0.024832195 0.020339642 0.004492553
Packets_sent_per_second (F9) 0.000162763 0.001974764 0.001812001
Flow_Duration (F4) 0.000331288 0.001971884 0.001640596
Time_interval_between_ packets_sent (F2) 0.000162763 0.001748624 0.001585861
Bytes_sent_per_second (F14) 0.000193011 0.001627632 0.001434621

Similarly, the features Time_interval_between_ packets_sent (F2) and Packets_received_per_second

(F10) have the worst correlation between them and are listed at the end of the table.

Table 5.4: 20 traffic feature pairs, top and bottom each, ranked using NMRS and their corre-
sponding correlation scores

Feature pairs (Top | NMRS Correlation scores | Feature pairs (Bot- | NMRS Correlation scores
20) tom 20)

F1-FI12 0.759744419 F3-F4 0.492246708
F8 - F11 0.757228415 F3 -F12 0.491129541
F9 - F10 0.688153793 F6 - F7 0.490277257
F6 - F8 0.552430678 F4 - F12 0.490246288
F3-Fl4 0.54525236 F7 - F10 0.488841839
F6 - F11 0.537300131 F2-Fll1 0.488644157
F2-F4 0.534887165 F8 - F10 0.488640907
F1-F7 0.534729436 F4 - F10 0.486058046
F15 - F16 0.527539689 F9 - F11 0.480918693
F14 - F16 0.520365838 F7 - F8 0.475437864
F13 - F14 0.517503603 F4 - F9 0.474087994
F3 -Fl16 0.516788742 F1-F4 0.473606551
F10 - F11 0.516232597 F2 - F8 0.472189992
F1-F8 0.515903675 F7-F9 0.469414718
F4 - F8 0.514681773 F2-F9 0.447610523
F1-Fll1 0.513675549 F7-Fl11 0.434838592
F5 - F6 0.513187313 F8 - F9 0.405520241
F6 - F10 0.509712683 F2 - F6 0.40035683
F11-F12 0.509375491 F4 - F7 0.36976355
F1-F6 0.509328369 F2 - F10 0.328580529

In the following subsection, we present the detection results obtained using the proposed

model.

140

5.3.2 Detection Results on Zesting Dataset

In this section, we discuss the detection results, i.e., the accuracy obtained from our pro-
posed approach over the Testing Dataset. We apply the proposed NMRS-based algorithm to the
crRelevance rankings. The algorithm provides the best set of negatively correlated features
with higher detection accuracy as an output. Table 5.5 summarizes the detection results at
each iteration. The table can be understood as follows: In the first iteration of eliminating the
lower crRelevance ranked feature named F1 out of the highest correlated pair, we observe that
we obtain the highest detection accuracy of 81.67% with RF classifier, i.e., on considering
15 features now out of the total lot of 16, the highest detection accuracy of 81.67% can be
achieved. We call this the first iteration and move on to the next iteration, where we eliminate
the lower crRelevance ranked feature from the second highest correlated pair, i.e., F8 from the
Testing Dataset. In this iteration, we obtain an accuracy of 80.97% on considering 14 features
out of 16. As discussed in Algorithm-3, we proceed to the next iteration whenever the de-
tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three
ranked network traffic features and repeat the entire procedure. The procedure is terminated
until we observe a potential decrease in the detection accuracy. As highlighted in the table
5.5, we achieved the highest detection accuracy of 99.55% with DT classifier upon eliminat-
ing 14 of the total 16 traffic features, i.e., upon considering only the top two features, namely
Packet_size_received (F12) and Time_interval_between _ packets_received (F3), the highest detection
accuracy can be achieved. From the next iteration, we observe that the detection accuracy

starts decreasing.

Finally, we conclude that we obtain the highest accuracy of 99.55% when we apply the
proposed Algorithm-3 to the Testing Dataset. 1t can be seen from Table 5.3 that the feature F3
has been ranked lower than {F5, FI, F15 and F11} according to crRelevance, yet our proposed
feature selection algorithm filters out the top-ranked feature F12 with F3 as the best subset.
This can be justified with the help of the NMRS rankings in Table 5.4. We would like to
highlight that the correlation between the crRelevance top-ranked feature F12 and F3 is found
to be much lesser than the correlation between FI12 and other features such as F5, F1, FI5
or F11. Hence, the elimination of such highly correlated features by our proposed feature

selection algorithm to reduce the redundancy between the entire set is justified.

At the same time, when no feature ranking /statistical or correlation technique of any type

is used and all the features are fed to the classifiers at once, i.e., on considering all the 16 net-

141

Table 5.5: Detection results when we apply our NMRS-based proposed algorithm on crRele-
vance feature ranking

Feature elimi- | Features used Detection accuracy using various machine learning and deep learning
nated classifiers (in %)
DT RF BC NB GB AB MLP | DNN | CNN

None (Using all | F1, F2, F3, F4, F5, F6, F7, F8, F9, | 81.12 | 81.12 | 80.09 | 55.34 | 79.18 | 80.10 | 58.75 | 72.32 | 59.5

features) F10, F11, F12, F13, F14, F15, F16

F1 F2, F3, F4, F5, F6, F7, F8, F9, F10, | 81.62 | 81.67 | 81.46 | 55.58 | 79.14 | 80.19 | 58.26 | 73.41 | 59.42
F11, F12,F13,F14, F15, F16

F8 F2, F3,F4, F5,F6,F7,F9,F10,F11, | 80.97 | 80.97 | 80.88 | 55.93 | 83.33 | 82.55| 63.44 | 71.44 | 61.44
F12, F13, F14, F15, F16

F9 F2, F3, F4, F5, F6, F7, F10, F11, | 83.39 | 83.39 | 83.38 | 56.89 | 82.40 | 79.45 | 56.98 | 70.89 | 56.55
F12, F13, F14, F15, F16

F14 F2, F3, F4, F5, F6, F7, F10, F11, | 78.17 | 78.20 | 78.04 | 50.93 | 77.90 | 76.25 | 50.23 | 69.77 | 56.55
F12, F13, F15, F16

F6 F2, F3, F4, F5, F7, F10, F11, F12, | 78.57 | 78.54 | 78.44 | 48.30 | 78.50 | 78.65 | 52.68 | 69.38 | 57.45
F13, F15, F16

F2 F3, F4, F5, F7, F10, F11, F12, F13, | 77.75 | 77.93 | 77.81 | 46.99 | 78.72 | 79.65 | 55.8 73.23 | 58.15
F15,F16

Fl16 F3, F4, F5, F7, F10, F11, F12, F13, | 78.57 | 78.59 | 78.57 | 46.75 | 78.75 | 77.57 | 51.05 | 62.45 | 53.51
F15

F10 F3, F4, F5, F7, F11, F12, F13, F15 81.04 | 80.76 | 80.94 | 46.34 | 80.11 | 77.65 | 54.59 | 69.12 | 54.96

F4 F3,F5,F7,F11, F12, F13, F15 72.82 | 75.54 | 72.79 | 49.59 | 71.57 | 70.20 | 64.03 | 76.82 | 56.51

F11 F3, F5, F7, F12, F13, F15 77.64 | 7732 | 77.62 | 48.70 | 73.71 | 67.79 | 61.80 | 60.41 | 51.17

F7 F3, F5,F12, F13, F15 5436 | 5.99 5440 | 46.67 | 51.10 | 49.68 | 62.56 | 63.36 | 51.49

F13 F3, F5, F12, F15 87.18 | 87.17 | 87.082 52.45 | 83.50 | 72.22 | 61.07 | 80.13 | 52.23

F15 F3, F5, F12 85.30 | 85.31 | 84.87 | 43.15 | 83.87 | 80.72 | 56.85 | 77.04 | 65.62

F5 F3,F12 99.50 | 9595 | 95.85 | 53.84 | 97.44 | 9439 | 5232 | 75.13 | 73.34

work traffic features simultaneously, we observe that the highest detection accuracy obtained
is merely 81.12%. Based on the results and the low detection accuracy depicted by Table 5.5, we
answer our research question one that feature ranking helps us eliminate irrelevant features that

can hamper detection accuracy.

5.3.3 Comparison with other statistical tests

In this subsection, we compare the performance of our proposed model with that of some
commonly used statistical tests for Android malware detection. Our proposed approach in-
volved computing the feature— class correlation, i.e., crRelevance ranking, and further deploy-
ing an NMRS-based detection algorithm to select the best set of features that produce higher
detection accuracy. Hence, to compare our model’s performance, we deploy the same NMRS-

based detection algorithm on the following statistical measures:

1. Chi-square - The chi-square test measures the difference between the expected and ob-

served values and determines whether the deviation between the observed and expected

142

values is acceptable or not. The chi-square formula [152] is defined by equation 5.3.1:

0, —E)*
%2227(=) (5.3.1)

where:

c=Degrees of freedom,

O=0Observed value(s), and

E=Expected value(s)

This test is applied separately to malware traffic and the normal feature set. For any
particular feature, say F;, we have its range for malware samples. From these values,
we calculate the average of the feature value to serve as the expected value for our
experiments. We then measure how the values for that feature deviate from the expected
value using the chi-square formula. The procedure is repeated for normal traffic and all
features. The closer the values are to the average value, the lower the chi-square score
and the higher the priority of the feature. Therefore, unlike the statistical measure used
in our study, i.e., crRelevance, where a higher score leads to a higher ranking of the
feature, a lower chi-square value leads to a higher ranking of the feature. Moreover,
applying chi-square gives two separate rankings for features, i.e., one for the normal and

another for the malware class.

ANOVA - ANOVA, or Analysis of Variance [163], is a statistical method used to analyze
the differences among group means in a sample. It is often used to test the null hypoth-
esis that the means of three or more groups are equal. In our case, normal and malware
values of the same feature from the training dataset are taken as the two groups. The

one-way ANOVA F-statistic is calculated using the following formula:

_ Between-Group Variance (MSB)

5.3.2
Within-Group Variance (MSW) ()

where:

MSB (Mean Square Between) is the variance among the group means and MSW (Mean
Square Within) is the average of the variances within each group. Lastly, the features
are ranked in order of their F-statistic value such that the feature with the highest score

is the most distinguishing one.

3. Mann-Whitney - The Mann-Whitney U test [164], also known as the Wilcoxon rank-sum

143

test, is a non-parametric test used to determine whether there is a difference between
two independent and randomly selected groups. The U statistic is calculated using the

following formula:

: 1

U =R — 2T (”21+) (5.3.3)
- 1

Up=R,— 212700 (”22+) (5.3.4)

where:

- Uy and U, are the U statistics for Group 1 and Group 2, respectively.

- Ry and R; are the sums of ranks for Group 1 and Group 2, respectively.

- n1 and ny are the sample sizes for Group 1 and Group 2, respectively.

In our case, normal and malware features from the training dataset are considered Group
1 and Group 2, and the sample size for each group is taken as the number of flows.
Lastly, the features are ranked in order of their U statistic value such that the feature

with the highest score is the most distinguishing one.

. Kruskal-Wallis - The Kruskal-Wallis test [165] is a non-parametric test used to determine
whether there are statistically significant differences between three or more independent
groups. The test assesses whether the samples originate from the same distribution or if
at least one of the samples is different from the others. The formula for the test statistic
is given by equation 5.3.5.

2 KR

where:

- N is the total number of observations across all groups.

- k 1s the number of groups.

- R; is the sum of ranks for group i.

- n; 1s the number of observations in group i.

In our case, normal and malware features from the training dataset are considered as the
two groups and the sample size for each group is taken as the number of flows. Lastly,
the features are ranked in order of their H statistic value such that the feature with the

highest score is the most distinguishing feature.

Table 5.6 summarizes the individual test rankings when we apply chi-square on the nor-

mal feature set and chi-square on the malware feature set along with other measures such

144

as ANOVA, Mann—Whitney U test, and Kruskal- Wallis test. As can be seen from the
table, Ratio_of incoming to_ outgoing packets (F5) has been ranked as the most distinguish-
ing feature by Mann— Whitney as well as both rankings of the chi-square test, whereas,
according to ANOVA and Kruskal- Wallis, the feature named Time_interval_between_

packets_received (F3) resides at the top of the table as the best feature.

Table 5.6: Traffic features ranked using various statistical tests

chi-square chi-square on | ANOVA Mann- Kruskal-
on normal malware Whitney Wallis
F5 F5 F3 F5 F3

F2 F6 F4 F7 F5

F3 F7 F7 F14 F12
F6 F1 F5 F10 F12
F9 F2 F2 F11 F6
F10 F12 F16 F9 F8

F7 F10 Fl1 F2 F15

Fl1 F4 F10 F13 F7

F4 F8 F8 F16 F4
F12 F11 F11 F4 F14
F8 F3 F13 F15 F10
Fl1 F9 F6 F8 F16
Fl14 F13 F15 F6 Fl1
F16 F16 F9 F1 F13
F13 F15 F12 F12 F9
F15 F14 F14 F13 F2

For comparison, we ranked network traffic features using the four statistical tests described
above and further applied our proposed NMRS-based proposed algorithm on the Testing Dataset
to obtain their corresponding accuracies. The results are summarized in Table 5.7 and it can
be understood as follows. When we apply the NMRS-based proposed approach on chi-square
rankings expressed on a normal training dataset as well as on Kruskal- Wallis rankings, we
achieve the highest detection accuracy of 96.22% after eliminating 14 features out of the to-
tal lot of 16 traffic features, i.e., upon considering two features, namely Ratio_of.incoming to_
outgoing _packets (F5) and Time_interval - between_ packets_received (F3), the highest detection ac-
curacy can be achieved. At the same time, the highest detection accuracy of 96.37% can be
achieved upon considering two features, namely Ratio_of_incoming_to_ outgoing_packets (F5) and
Time_interval_between_ packets_sent (F2) when we apply the NMRS-based proposed algorithm on
Mann— Whitney test rankings as well as chi-square test rankings for malware dataset. Simi-
larly, when we apply the NMRS-based proposed algorithm to ANOVA test rankings, we obtain
the highest detection accuracy of 98.10% while considering two features, namely Time_interval -
between_ packets_received (F3) and Flow_Duration (F4). When we apply the NMRS-based pro-
posed algorithm to the crRelevance rankings used in our work, we obtain an accuracy of 99.5%

with two features, namely Packet_size_received (F12) and Time_interval_between _ packets_received

145

(F3). Hence, our model outperforms other similar statistical tests when we apply our proposed

NMRS algorithm to their developed rankings.

Table 5.7: Comparsion of NMRS-based proposed algorithm on crRelevance rankings with
various statistical tests when we apply the same algorithm applied on them

Statistical test used Features Detection accuracy using various machine learning and deep learning
used classifiers (in %)

DT RF BC NB GB AB MLP | DNN | CNN
crRelevance (our ap- | F12,F3 99.5 | 9595 | 95.88 | 53.84 | 97.44 | 9439 | 52.32 | 75.13 | 73.34
proach)
chi-square on normal F5, F3 96.22 | 85.60 | 84.64 | 51.22 | 86.20 | 84.50 | 38.96 | 66.88 | 51.05
chi-square on malware | F5, F2 96.37 | 86.13 | 86.12 | 59.42 | 86.64 | 84.86 | 44.58 | 78.41 | 59.28
ANOVA F3,F4 98.10 | 96.46 | 96.381) 72.54 | 9591 | 95.71 | 55.62 | 85.05 | 62.93
Mann-Whitney F5, F2 96.37 | 86.13 | 86.12 | 59.42 | 86.64 | 84.86 | 44.58 | 78.41 | 59.28
Kruskal-Wallis F3,F5 96.22 | 85.60 | 84.64 | 51.22 | 86.20 | 84.50 | 38.96 | 66.88 | 51.05

5.3.4 Comparison of NMRS with other Correlation Measures

In the previous subsection, we compared the performance of our proposed NMRS-based
algorithm with that of other statistical tests when we applied the same NMRS-based algorithm
to their rankings. In this section, we compare the performance of NMRS as an algorithm itself
with a similar correlation measure called Pearson’s correlation coefficient, i.e., we compute
the feature— feature correlation score for all feature pairs using Pearson’s correlation test and
replace NMRS with Pearson’s correlation coefficient as our chosen algorithm base to be applied
upon the crRelevance feature rankings. Next, we briefly describe the working of Pearson’s

correlation coefficient.

The Pearson correlation coefficient, often denoted by r, is a measure of the linear relationship
between two variables. It quantifies the degree to which a pair of variables change together.
The formula for the Pearson correlation coefficient between two variables X and Y with » data

points is as follows:

YXi—-X)(¥i—Y)
\/):X XYy, —-7)*

(5.3.6)
Where:

- X; and Y; are the individual data points for variables X and Y,

- X and Y are means of variables X and Y respectively.

In our case, because we wish to find the feature— feature correlation between all possible

146

pairs without any relation to their classes, we concatenate the normal and malware traffic
feature values, i.e., we combine the flows of both class labels for each feature and then compute
the Pearson correlation scores. In this way, we iteratively compute the Pearson’s correlation
coefficient score for each feature pair by considering them as X and Y variables in the above-
mentioned formula. Hence, in the next step, we applied Pearson’s correlation coefficient on
all possible feature pairs (120 to be precise) and ranked them in such a way that the pair that
is found to be the most correlated resides at the top of the table. Table 5.8 summarizes the top
ten traffic feature pairs ranked on the basis of their Pearson correlation scores. The table can
be understood as follows: The features Packets_sent_per_second (F9) and Bytes_sent_per_second
(F14) are found to have the best correlation score and thus have the best correlation between
them. Similarly, the features Packets_sent_per_second (F9) and Packet_size_received (F12) have the

worst correlation between them and are listed at the end of the table.

Table 5.8: Top 10 Traffic feature pairs ranked using Pearson’s correlation coefficient and their
corresponding correlation scores

Feature Pair Pearson’s correlation
coefficient scores
F9 - F14 0.989299
F8 - Fl11 0.938651
F1 -F12 0.918476
F11-FI15 0.817451
F10 - F16 0.764166
F1 - F6 0.732062
F6 -F12 0.729424
F8 - F15 0.728135
F2 - F4 0.466446
F6 - F16 0.436238

Next, we deploy Pearson correlation pairwise rankings instead of NMRS in our proposed al-
gorithm and apply it to the ranked feature list given by crRelevance. The table 5.9 summarizes
the detection results for the same. When we applied Pearson’s correlation coefficient-based
algorithm to our crRelevance rankings, we achieved the highest detection accuracy of 99.3%
on considering two features, namely Packets_sent_per_second (F9) and Packet_size_received (F12).
However, with our proposed NMRS-based algorithm applied to crRelevance rankings, the high-
est detection accuracy of 99.5% can be achieved. Hence, we can conclude that NMRS is the best
choice for calculating the feature— feature correlation and reducing the redundancy between

them.

147

Table 5.9: Detection results when we apply Pearson’s correlation coefficient-based algorithm
on crRelevance feature ranking

Statistical test used Features Detection accuracy using various machine learning and deep learning
used classifiers (in %)
DT RF BC NB GB AB MLP | DNN | CNN
NMRS-based pro- | F12,F3 99.5 9595 | 95.88 | 53.84 | 97.44 | 9439 | 5232 | 75.13 | 73.34

posed algorithm on
crRelevance rank-
ings

Pearson’s correlation | F12, F9 99.3 | 9533 | 95.27 | 70.26 | 85.41 | 93.70 | 94.97 | 95.61 | 71.44
coefficient based algo-
rithm on crRelevance
rankings

5.3.5 Comparsion with other related works

In this subsection, we compare the performance of our proposed NMRS-based algorithm on
crRelevance rankings with another similar work incorporating TCP flows. We do so by imple-
menting the approach followed by the authors in [95]. Similar to the working of their proposed
model, we chose Decision Table and REPTree classifiers as the base learners for the local learn-
ing model. These classifiers were trained for each of the 16 features. The authors stated that
when a feature vector representing a normal event is tested against the models generated dur-
ing the learning phase, there is a higher probability that the predicted value will match or be
very similar to the observed value. The more the predictions differ from the true values of the
corresponding features, the more likely it is that the observed vector comes from a distribu-
tion different from that of the training set. Therefore, we ranked the features in order of their
probability of deviation from the pattern of normal traffic features. Table 5.10 summarizes the
traffic features ranked in order of their deviation from normal traffic behavior. As can be seen
from the table, the feature Packets_sent_per flow (F8) shows the highest probability of coming
from an abnormal event. At the same time, the feature Ratio_of_incoming_to_ outgoing_packets
(F5) scored the lowest relating to the least probability of coming from an abnormal event, and
thus was situated at the end of the table. We would like to point out that we did not multiply
all the individual probabilities following the approach used by the authors because of our vast

dataset; instead, we added all the individual probabilities.

After ranking the network traffic features in order of their probability of deviation from
normal traffic features’ pattern, we move on to find the best feature set with higher detection
accuracy. To do so, a threshold needs to be decided to filter out the best features capable of
distinguishing between normal and anomalous vectors that are learned during the algorithm

calibration phase. Table 5.11 summarizes the detection results using Decision Table and Rep-

148

Table 5.10: Traffic features ranked based on their deviation from normal traffic behavior

Traffic feature names | Probability scores
F8 248988.163
F15 248987.688
Fl11 248986.1281
F4 248970.6183
F13 248970.0707
F9 248955.3305
F14 248951.6604
F2 248867.7914
Fl16 248761.2274
F3 248747.6066
F10 248700.7806
F6 247767.6992
F12 244789.8246
F7 232428.8028
F1 230456.9791
F5 228989.9963

Tree classifiers as base learners. As it can be seen, upon eliminating four features out of the
total set of 16 features, we managed to achieve the highest detection accuracy of 95.85% while
using both Decision Table and RepTree classifiers as base learners, i.e., on considering the top
12 features, namely {FS, Fi5, Fll, F4, Fi13, F9, Fl14, F2, Fi16, F3, FI0, and F6}, both display
the same highest detection accuracy of 95.85%. Whereas, with our NMRS-based proposed al-
gorithm applied to crRelevance rankings highest detection accuracy of 99.5% can be achieved.
Hence, we can conclude that our proposed approach outperforms the similar work of Android

malware detection performing feature selection on TCP-based network traffic features.

Table 5.11: Detection results when we implement other related work

Statistical test used Features Detection accuracy using various machine learning and deep learning
used classifiers (in %)
DT RF BC NB GB AB MLP | DNN | CNN
NMRS-based pro- | F12,F3 99.5 | 9595 | 95.88 | 53.84 | 97.44 | 94.39 | 52.32 | 75.13 | 73.34

posed algorithm on
crRelevance rank-
ings

Shabtai et al. [95] ap- | F8,F15,F11, | 95.85| 81.20 | 80.72 | 56.89 | 80.35 | 76.62 | 61.88 | 68.65 | 59.42
proach (DT as the base | F4, F13, F9,
learner) F14, F2, F16,
F3, F10, F6,
Shabtai et al. [95] ap- | F8,F15,F11, | 95.85| 81.20 | 80.72 | 56.89 | 80.35 | 76.62 | 61.88 | 68.65 | 59.42
proach (RepTree as | F4, F13, F9,
the base learner) F14, F2, F16,
F3, F10, F6,

Furthermore, we compare some other similar works of Android malware detection that use
TCP flows in terms of detection accuracy. Table 5.12 summarizes this comparison. Some
studies have attempted to determine the probability of deviation from normal traffic features’
patterns, whereas others have ranked the features using tests such as chi-square, information

gain, and frequency ranges to select the best subset of features. As shown in the table, our

149

model outperforms all these studies in terms of detection accuracy. Hence, we can conclude
that our proposed model is better than many state-of-the-art techniques presented in the litera-

ture for Android malware detection.

Table 5.12: Comparison of proposed work with the existing literature based on malware de-
tection using TCP flows

Related Work Methodology Detection ac-
curacy (in %)
Wang et al. [104] ML- based malware detection using TCP | 97.89
and HTTP features
Arora and Peddoju [92] Features ranked using IG and Chi square | 97.3
Arora and Peddoju [166] Calculated similarity scores between FP- | 94.25
Growth algorithm generated patterns and
testing features
Upadhayay et al. [167] Thresholds are set for testing on Fre- | 95.96
quency based rankings of permissions
merged with network traffic rankings
Zulkifli et al. [101] ML-based malware detection using | 98.4%
TCP-based network traffic features
Sihag et al. [168] DL-based system using image form of | 98.44
features for binary classification
Alshehri [169] Devised flow similarity using the Euclid- | 97.32

ian Algorithm
GNN model using node characteristics | 97
as well as the edge attributes of mobile
traffic features

Correlation-based Feature selection
using crRelevance and NMRS

Liu et al. [107]

NMRS-based proposed algo- 99.50
rithm on crRelevance rankings

(our approach)

5.4 Limitations

Now, we describe a few limitations of the proposed approach. The proposed model ranks
TCP-based network traffic features for detection; hence, it falls under the category of dynamic
analysis. The path of dynamic analysis overcomes several limitations of static analysis but
also poses some barriers. Not all malware samples generate network traffic. It has been no-
ticed that some malware might only send text messages in the background without generating
any network traffic. Hence, network traffic-based detection mechanisms cannot detect such
samples. Dynamic analysis tools can introduce performance overhead as they monitor and
analyze the execution of the program. This overhead may affect the timing and behavior of
the software, potentially masking certain performance-related issues. Moreover, some mobile
attacks can be due to colluding apps, i.e., malicious behavior is distributed across several apps
rather than one. However, the proposed model, in its current form, does not target colluding
apps. Therefore, to further enhance the detection capability of the proposed model, we aim to

target colluding apps in our future work.

150

5.5 Conclusion and Future Work

In this chapter, we ranked the network traffic features in order of their correlation with the
class and amongst themselves using two statistical measures, namely crRelevance and NMRS.
Subsequently, we proposed a novel NMRS-based detection algorithm to select the best and
inversely correlated features by applying various machine learning and deep learning tech-
niques. The experimental results highlight that our proposed NMRS-based detection algorithm
on crRelevance rankings can effectively reduce the feature set while detecting Android malware
with 99.50% accuracy on considering two network traffic features, namely Packet_size_received
and Time_interval_between _ packets_received. Furthermore, our results showed that our proposed
method is better than other statistical tests such as chi-square, ANOVA, Mann—Whitney U test,
Kruskal-Wallis test, Pearson’s correlation coefficient, and at the same time from other simi-
lar works of Android malware detection. Moreover, the proposed model can detect Android
malware with better accuracy than various state-of-the-art techniques. In our future work, we
aim to enhance the capabilities of our model by including malware category and family clas-
sification along with the binary classification performed in this study. We also aim to integrate
static features to deal with the limitations of dynamic analysis and possibly build a robust

hybrid detection model.

Chapter 6

Hybrid Android Malware Detection
leveraging Static Permissions and

Dynamic System Calls

In this chapter, we propose two hybrid detection models leveraging the merits of both static
permissions and dynamic system calls. In Section 6.1, we explain the motivation behind
proposing a hybrid Android malware detector model and a brief overview of the two mod-
els proposed. In Section 6.2, we explain in detail the methodology behind our first model
named AndroVRank. Section 6.3 explains the results obtained from the proposed model - I.
In Section 6.4, we explain the methodology behind our proposed hybrid model - II. Section
6.5 discusses the results obtained from the second hybrid model and finally, we conclude the

chapter in Section 6.6.

6.1 Introduction

Static analysis, though fast and efficient for processing large-scale applications, has critical
weaknesses. Malware developers can easily bypass it through techniques like code obfusca-
tion, polymorphism, and encryption, and it struggles to detect runtime behaviors. Dynamic

analysis addresses these gaps by monitoring application behavior in a controlled execution

151

152

environment, revealing malicious activities that static analysis may miss, such as network
interactions or file system modifications. Yet, dynamic analysis also has limitations—it is
resource-heavy, time-consuming, and can be fooled by malware that alters its behavior when
sensing an analysis environment. Additionally, if a malicious app does not rely on network
traffic, dynamic analysis using network-based features can fail. To mitigate these issues, hy-
brid analysis offers a more comprehensive solution by blending static and dynamic methods
for stronger, more reliable detection. This study focuses on hybrid analysis integrating static
code inspection with dynamic behavior tracking to create two hybrid malware detection mod-

els, aiming to boost detection accuracy and address the shortcomings of each technique.

With the first model AndroV-Rank, we aim to enhance Android malware detection by ex-
amining and ranking static permissions and dynamically extracted system calls. Our analysis
revealed considerable overlap in commonly utilized features between the normal and malicious
app classes. This result highlighted the importance of effective feature selection in enhancing
detection accuracy. To achieve this, we utilized a Multi-Criteria Decision-Making (MCDM) ap-
proach, employing the VIKOR method to rank features according to their ability to distinguish

between classes.

Classification involves assigning class labels to unlabeled test samples using a trained model.
Various algorithms are widely employed in data mining and machine learning, including ea-
ger learners like Artificial Neural Networks (ANN), Decision Trees (DT), Naive Bayes (NB),
and statistical approaches like Linear and Logistic Regression (LR). Ensemble methods such
as Random Forest (RF), AdaBoost, and Support Vector Machine (SVM) are also frequently
used. Although these methods are common, they face challenges. Traditional approaches
often suffer from low classification accuracy, while more complex techniques can lead to mis-

classification or be hindered by computational demands despite their higher accuracy.

Such limitations of static and dynamic analysis, along with the challenges faced while ap-
plying the traditional ML classifiers in the context of Android malware detection motivate
us to build another simple yet effective hybrid detection model capable of producing optimal
detection results without the use of any ML or DL algorithm. Hence, next, we propose an
instance-based classifier PattMatch, that utilizes an Average Weighted Pattern Score (AWPS) tech-
nique in conjunction with Artribute Score-based Ranking (ASR) to accurately predict the class

labels for unlabeled test samples.

Contributions - The major contributions of this chapter are as follows-

153

* We developed two hybrid Android malware detection systems that overcome the limita-
tions of static and dynamic analysis by integrating both methods, thereby enhancing the

detection performance.

* We implemented VIKOR, a Multi-Criteria Decision-Making (MCDM) technique in the first
model, to rank features based on their preference scores, effectively measuring their abil-

ity to distinguish between malware and benign apps.

* We introduce a novel algorithm that utilizes the individual rankings of static, dynamic,
and hybrid datasets derived from VIKOR to develop a robust malware detection system

capable of achieving higher accuracy with fewer features.

» Additionally, we discuss another model introducing a simple yet efficient instance-based
pattern-matching classifier capable of predicting the class labels for test samples without

relying on traditional data mining algorithms.

* We advanced the field by employing an attribute rank-based feature selection method,

which significantly improved the detection accuracy.

6.2 Proposed Hybrid Model - 1

This section outlines the methodology of our first proposed model, AndroV-Rank, which is
divided into two main parts: the Ranking and Detection segments. . First, we construct a com-
prehensive dataset incorporating static features (permissions) and dynamic features (system
calls). This dataset is then divided into two parts: the Training set and the Testing set. In the
Ranking segment, we process the Training set to rank features using the VIKOR method, where
a preference score is computed for each feature. In the Detection segment, we introduce an
innovative algorithm that utilizes both Machine Learning (ML) and Deep Learning (DL) tech-

niques to select optimal features, enhancing detection accuracy.

Ranking Segment

6.2.1 Dataset Accumulation

To begin our research, we needed a comprehensive hybrid dataset that combined both static

and dynamic features for detailed analysis. We chose the publicly available Kronodroid dataset

154

[170], which covers Android’s evolution from 2008 to 2020, making it highly relevant for our
study. The malware applications are gathered from repositories like Drebin, AMD, VirusTo-
tal, and VirusShare whereas the benign applications come from F-droid, MARVIN, and AP-
KMirror. The dataset includes numerous static permissions and dynamically extracted system
calls, where permissions were represented in binary (1 for requested, O for not), and system
calls recorded the frequency of their occurrence, with zeros indicating no call was made. The
dataset comprised 78,137 applications, of which 41,382 were classified as malware and 36,755
as benign. For our analysis, we selected 20,000 applications (10,000 benign and 10,000 mal-
ware) as the Testing dataset, while the remaining 58,137 applications were used for Training.
After preprocessing, 137 distinct permissions and 124 unique system calls were identified and

retained as features in the dataset.

Our objective is to create a model that utilizes hybrid features for Android malware de-
tection, aiming to overcome the limitations present in both static and dynamic analysis ap-
proaches. To enable a comprehensive comparison of the three analysis techniques, we divided
the dataset into three distinct categories for both the Training and Testing sets: static, dynamic,
and hybrid. The static category includes datasets with 137 permissions, the dynamic category
comprises datasets with 124 system calls, and the hybrid category combines both, yielding a

total of 261 features.

6.2.2 Features Ranking

Multi-Criteria Decision Making (MCDM) [171] is recognized as a highly effective approach
for decision-making. This method incorporates a range of qualitative and quantitative criteria
that must be clearly defined to determine the best alternative or feature. The fundamental
steps in MCDM involve identifying criteria, assigning weights to them, ranking the available
alternatives or features based on preferences, and ultimately selecting the best choice or a

subset thereof.

The primary goal of MCDM is to categorize attributes as either preferrable or non preferrable.
In our study, we applied VIKOR, a widely used MCDM technique to rank features from the
static, dynamic, and hybrid datasets according to their preference. Further information on the

technique used in our research is provided below:

VIKOR - VIKOR stands for “VIekriterijjumsko KOmpromisno Rangiranje”, a Serbian term

for “multi-criteria optimization and compromise solution”. This method reaches the final de-

155

cision of choosing the best alternative after forming the compromised ranking from the ag-
gregating function called L_p metric. The series of steps involved in a VIKOR application is
described below for a MCDM problem defined on m alternatives denoted as Ay, A,,...,An and
n decision criteria:

Step 1 - For the alternative A, the evaluation of the jth criterion is represented by f;;. Identify
the optimal f7 and the minimal f;~ values for all criterion functions where j=1,2,...,n [171].

If the jth function indicates a benefit, then:

f; =max fij, f; =minf;

if non-benefit, then vice versa.

Step 2 - Compute the values S; and R;;i = 1,2,...,m [171], by these relations:
S—Z% T i)/ (£ - 17)]

w5501 (5-17)

where w; are the weights of criteria, expressing their relative importance.

Step 3 - Compute the values Q;i =1,2,...,m [171], by the following relation:

Qi =v[(Si=5")/(S™ =8+ (1 -V)[(R —R")/ (R” —R")]

where

S* =min; §;, S =max;S;,
R* =min;R;, R~ = max;R;,
v 1s introduced as the weight of the strategy of “the majority of criteria”, here suppose that

v=0.5.

We applied VIKOR to the permissions vector tables of the static dataset, which contains in-
formation on both benign and malware applications, along with their requested permissions,
aiming to compute preference scores (Q;) for all the attributes. Permissions were treated as alter-
natives (i), and applications as criteria (), with equal weights assigned to all applications since
they contribute equally to the decision-making process. Benign applications were considered

as benefit criteria, while malware applications were treated as cost criteria.

156

After completing Steps 1- 3, we successfully computed Q; values for each permission. To
evaluate the class-distinguishing ability of these permissions, we ranked them in decreasing

order of preference scores, generating a VIKOR-ranked list of permissions.

The same steps were applied to the dynamic Training dataset for ranking system calls and to

the hybrid dataset to compute combined rankings of permissions and system calls.

6.2.3 Machine Learning and Deep Learning Classifiers

In our detection strategy, we employed a variety of algorithms from both machine learning
(ML) and deep learning (DL). The ML classifiers included, but were not limited to, Support
Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), while the DL
methods featured architectures such as Dense Neural Network (DNN) and Multilayer Percep-
tron (MLP). This diverse set of techniques, encompassing Bagging Classifier (BC), Gaussian
Naive Bayes (NB), Decision Trees (DT), and Artificial Neural Networks (ANN) also, allowed
us to effectively analyze the datasets [135].

Detection Segment

6.2.4 Proposed Malware Detection Algorithm

This section details our detection algorithm for identifying the most effective features for
malware classification. We begin by ranking the features from the Training dataset using the
VIKOR method, which assigns preference scores based on their ability to distinguish between
malware and benign apps. Starting with the top-ranked feature, we evaluate its detection
accuracy on the Testing dataset using both ML and DL techniques. The maximum accuracy
is updated whenever a higher value is reached. In each iteration, the next highest-ranked
feature is added, and classification accuracy is re-evaluated with the expanded feature set.
This process continues until there is no further improvement in accuracy. The algorithm stops
when no new features lead to higher accuracy, outputting the highest achieved accuracy and

the set of features that contributed to it, optimizing malware detection performance.

The following section presents a discussion of the results obtained from the proposed ap-

proach.

157

6.3 Results and Discussion: Hybrid Model - I

In this section, we present the experimental results from applying our proposed malware
detection model to the three dataset types: static, dynamic, and hybrid. As outlined earlier, the
VIKOR method was employed on the Training dataset to calculate the preference scores of the
features. Following this, in the Detection segment, we used several ML and DL classifiers on

the Testing dataset to evaluate performance.

6.3.1 Feature Ranking using VIKOR

In this subsection, we discuss the rankings obtained using the proposed method, VIKOR,
when applied to the three dataset categories. Tables 6.1 and 6.2 illustrate the top ranked fea-

tures and their corresponding preference scores.

Table 6.1 presents the top 10 permissions ranked using our proposed method for the static
category datasets. Notably, the permission READ_PHONE _STATE achieved the highest pref-
erence score of 0.5, placing it at the top of the table. Conversely, FOREGROUND_SERVICE
received the lowest preference score, ranking last among all 137 permissions. Similarly, the
system call ioctl ranked highest with a score of 0.5, while sigaction obtained the lowest score

among the total of 124 system calls.

Table 6.1: Top 10 features ranked according to their preference scores using VIKOR for the
static and dynamic category datasets

Static Category Dynamic Category
Permissions Preference scores | System Calls | Preference scores
READ_PHONE_STATE 0.5 ioctl 0.5
ACCESS_WIFI_STATE 0.398538961 clock_gettime | 0.477343173
WRITE_EXTERNAL_STORAGE | 0.364966631 mprotect 0.310328142
RECEIVE_.BOOT_-COMPLETED | 0.334573413 futex 0.209853072
SEND_SMS 0.326569264 mmap2 0.202570002
ACCESS_NETWORK_STATE 0.306479978 write 0.157811795
ACCESS_COARSE_LOCATION 0.291486291 getuid32 0.151138712
WAKE_LOCK 0.288825758 read 0.148676708
RECEIVE_SMS 0.270269661 SYS_310 0.139770505
ACCESS_FINE_LOCATION 0.268984488 munmap 0.121863244

Table 6.2 presents the top 30 permissions and system calls when the proposed ranking
method using VIKOR was applied to the hybrid category Training dataset. The system call
ioctl again ranks highest with a score of 0.5, while sigaction is at the bottom of the list compris-
ing 261 attributes. The rankings and the scores of the other attributes can be understood from

the table.

158

Table 6.2: Top 30 features ranked according to their preference scores using VIKOR for the

hybrid category datasets

Features Preference scores | Features Preference scores
ioctl 0.5 SYS317 0.088036
clock_gettime 0.476491 gettimeofday 0.086151
mprotect 0.310389 pretl 0.085812
futex 0.209874 READ_PHONE_STATE 0.079389
mmap2 0.20258 WRITE_EXTERNAL_STORAGE | 0.074338
write 0.157857 ACCESS_.NETWORK_STATE 0.069696
getuid32 0.150976 madvise 0.065325
read 0.148896 RECEIVE_.BOOT_COMPLETED | 0.064888
SYS_310 0.139958 getpid 0.06471
munmap 0.121839 ACCESS_WIFI_STATE 0.063018
pread 0.117367 SEND_SMS 0.058569
close 0.117344 WAKE_LOCK 0.056827
SYS_305 0.111424 writev 0.053507
rt_sigprocmask | 0.107207 GET_TASKS 0.052355
fstat64 0.093932 READ_SMS 0.050868

6.3.2 Detection results on the Testing Dataset

This subsection presents the detection results obtained by applying ML and DL algorithms
to the Testing datasets for the three categories considered in this study. Figure 6.1 displays the
maximum detection accuracy achieved as the number of features in each category is adjusted.
Although accuracies were recorded for the full set of features, the figure highlights the range
from five to 120 features, as further iterations did not result in significant improvements in

classification accuracy beyond this point.

100
65 features — 96.55%
1

(o]
a1

e 0
A 75 permissions - 94.1%

o
50 sys calls — 92.55%

(o]
o

Accuracy (in%o)

~
(6]

]
o

65

5 15 25 35 45 55 65 75 85 95 105

—Dynamic —Hybrid Number of features used

115
Static

Figure 6.1: Detection results obtained by applying the ML and DL classifiers to the static,
dynamic, and hybrid category datasets

159

Figure 6.1 presents the detection outcomes. We first applied ML and DL classifiers to the
static Testing dataset, ranking the features using the VIKOR method. As additional features were
incorporated, detection accuracy improved. Using only the top five permissions, most classi-
fiers achieved an accuracy of 90.06%. As more permissions were added, accuracy continued to
rise, reaching a maximum of 94.1% when 75 permissions were used with the Random Forest
(RF) classifier. This marked the optimal point, with 75 out of 137 permissions (approximately

54.7%) yielding the best performance.

Next, we applied the classifiers to the dynamic 7esting dataset, which contained system calls.
With just five system calls, an accuracy of 87.62% was achieved. As the number of system
calls increased, accuracy peaked at 92.55% using 50 system calls, reducing the set upto 40.3%
of the total 124 system calls.

Finally, we evaluated the hybrid dataset, combining both permissions and system calls,
ranked through the VIKOR method. Initially, the top five features produced an accuracy of
87.6%. As more features were incorporated, the highest accuracy reached 96.55% with 65

features, which constitutes approximately 24.9% of the total 261 features used in the study.

To summarize the classification results, Table 6.3 provides the detection performance of
ML and DL classifiers across the three Testing datasets. The data indicate that static analysis,
using 75 permissions, achieved a peak accuracy of 94.1%, while dynamic analysis, utilizing

50 system calls, reached a maximum accuracy of 92.55%.

Table 6.3: Compiled detection results obtained by applying the ML and DL classifiers to the
static, dynamic, and hybrid category datasets

Number of features used Detection accuracy using various machine learning

and deep learning classifiers (in %)

DT RF SVM | BC NB LR MLP | ANN | DNN
75 permissions 93.16 | 94.1 93.18 | 93.36 | 72.21 | 90.89 | 93.52 | 90.66 | 90.66
50 system calls 88.36 | 92.55 | 70.94 | 91.38 | 67.53 | 72.63 | 83.8 85.82 | 86.95
65 permissions and system calls | 93.69 | 96.55 | 7091 | 95.58 | 67.04 | 77.85 | 90.55 | 81.16 | 82.74

These results underscore the fact that, while static and dynamic analyses each have their ad-
vantages, they are limited when employed in isolation. Static analysis may fail to capture runtime
behaviors, whereas dynamic analysis can miss essential static features. In contrast, a hybrid ap-
proach that integrates both techniques harnesses their combined strengths. The proposed model
demonstrated this by achieving a superior accuracy of 96.55% with just 65 features, highlighting

its effectiveness in precisely classifying the datasets.

160

6.4 Proposed Hybrid Model - II

With our second proposed work, we aim to build a simple and robust hybrid analysis-based
Android malware detection model capable of categorizing the test applications as benign or
malware by matching them with the patterns of the training samples. Simultaneously, our goal
is to achieve this objective by utilizing only the least and the best features amongst the total lot
of the two feature types used for this study, i.e., permissions and system calls. Therefore, this
work introduces an instance-based pattern-matching classifier, PattMatch, that utilizes an Aver-
age Weighted Pattern Score (AWPS) technique in conjunction with Artribute Score-based Ranking

(ASR) to accurately predict the class labels for test samples.

The following research questions arise while considering the proposal of a hybrid detection

model centering on a novel classifier.

* RQ1 How can a classifier be constructed from the ground up to distinguish between be-

nign and malicious applications without employing traditional data mining techniques?

* RQ2 What necessitates the selection of relevant features, and why is feature reduction

more advantageous than using all features as inputs simultaneously?

* RQ3 How can feature ranking be utilized to eliminate irrelevant features, and what meth-

ods can be employed to rank them?

Our motivation is in the pursuit of tackling the limitations of both static and dynamic analysis
by developing an Android malware classifier, PattMatch. Additionally, an Artribute Score-based
Ranking (ASR) [172] algorithm has been presented to choose relevant features. This method
calculates the attribute rank by considering the number of unique values in the set of train-
ing samples. The classification accuracy, or detection accuracy, is measured by comparing
the predicted class labels generated by the classifier with the original class labels of the test
samples in the end. By evaluating the degree of correspondence between these original and
predicted labels, we can determine how accurately the model has performed in classifying the
test samples. The major advantage of the proposed classifier is its simple working and ability
to overcome most shortcomings of the existing classifiers. For instance, neural networks and
AdaBoost are known to be prone to overfitting [173], the splitting process in the Decision trees
may lead to loss of information [174], and the performance of algorithms like Naive Bayes,

Linear regression, and Support Vector Machines is affected by the number of training samples,

161

output variables or the missing values [175]. These limitations make the combinations of AWPS
and ASR the most appropriate choice for our study. This method is straightforward and doesn’t
require the use of any fancy data mining technique; nonetheless, it yields superior classifica-
tion accuracy compared to other conventional classifiers such as the most commonly used ML
and DL algorithms. Moreover, our experiments demonstrate that the proposed instance-based
pattern-matching classifier outperforms other similar works on Android malware detection,

which we evaluate against the same dataset of normal and malicious apps.

Figure 6.2 provides a concise and comprehensive overview of our proposed hybrid Android
malware detection model revolving around our instance-based pattern-matching classifier. In
the first step, we gather a vast dataset of the static permissions and the dynamic system calls
for our study. In the next step, we divide the dataset into two parts namely, Training and Test-
ing dataset. Both datasets are fed into our proposed classifier, PartMatch, which operates in
two stages: the Classification stage and the Feature Selection stage. In the Classification stage,
the classifier combines Average Weighted Pattern Score (AWPS) and Attribute Score-based Ranking
(ASR) techniques to generate initial classification results and observe the detection accuracy.
Following this, the process moves to the Feature Selection stage, where ASR ranking is utilized
to iteratively select and retain only the most relevant features from both datasets. The reduced
datasets, now with fewer features, are then reprocessed through the Classification stage to eval-
uate any improvements in classification accuracy. This iterative process of alternating between
the Classification and Feature Selection stages continues until the optimal classification accuracy

is achieved.

The subsequent subsections provide a comprehensive analysis of all the steps mentioned

above.

6.4.1 Dataset Accumulation

To begin our research, we required a comprehensive hybrid dataset that included both static
and dynamic features, meticulously organized for optimal use. For this purpose, we utilized the
same publicly available Kronodroid [170] dataset utilized for the first proposed model AndroV-
Rank. As discussed in Subsection 6.2.1, the Kronodroid dataset was extensive, encompassing
numerous static permissions and dynamically extracted system calls. The permissions dataset
was already in binary form, where a value of one indicated that the application requested cer-

tain permission, and zero denoted its absence. The system call dataset, on the other hand,

162

Testing Dataset

Collection of Normal and
Malware applications

PattMatch Classifier

Classification Stage Feature Selection Stage

Average Weighted
Pattern Score

(AWPS) ¥r

&

Attribute Score- ASR based

based Ranking Clasmﬁclatlon Feature Selection
(ASR) Results

~N
m

DELETE

Delete the
features from
both datasets

Figure 6.2: PattMatch System Design

was initially constructed with zeros representing the absence of a system call and non-zero
values indicating the frequency of requests made by the application. To maintain a consis-
tent approach for both permissions and system calls, we converted the system call dataset
into binary form as well. This conversion ensured a uniform data structure, facilitating more
straightforward analysis and comparison between the two types of data. The dataset consists
of 78,137 rows representing applications, with 41,382 classified as malware and 36,755 as
benign. From the total dataset, we selected 20,000 applications (10,000 benign and 10,000
malware) to serve as the Testing dataset. The remaining 58,137 applications were designated
as the Training dataset. After some initial preprocessing, we identified 137 distinct permissions

and 124 unique system calls, retained as columns in the dataset.

In order to carry out a comprehensive comparison between the three analysis techniques, we
further processed the dataset to create three distinct categories for both the Testing and Training
datasets, namely static, dynamic, and hybrid. The static category includes datasets comprised
solely of 137 permissions, the dynamic category includes datasets comprised solely of 124
system calls, and the hybrid category includes datasets that combine both permissions and

system calls, summing up to a total of 261 features.

163

Permissions provide a high-level overview, while system calls offer granular details. This
multi-faceted approach helps in building more robust and precise detection systems by cross-
validating suspicious behaviors from different perspectives. Permissions can be analyzed be-
fore an app is installed, providing an opportunity to flag potentially malicious apps early based
on their permission requests. System calls, on the other hand, allow real-time monitoring of
app behavior, enabling the detection of malware activities as they happen. This combination
allows for both proactive and reactive malware detection. These benefits make permissions

and system calls a perfect choice for our hybrid detection model.

6.4.2 Methodology

This section presents a detailed discussion of the Pattmatch classifier introduced in our study
along with its working in Algorithm 4, which answers research question one, i.e., how to construct
a classifier from scratch capable of distinguishing between benign and malicious applications

without employing traditional data mining techniques.

The proposed classifier operates in two stages. In the Classification stage, we initially use the
complete feature set and employ a method called Average Weighted Pattern Score (AWPS) com-
bined with Artribute Score-based Ranking (ASR) [172] to generate match scores. These scores are
then used to predict the category label of the test samples as either benign or malware. Given
that the Kronodroid dataset used in our study is already labeled, we compare the predicted
labels with the original ones to count the number of correct predictions. The classification
accuracy at this stage is calculated as the ratio of correct predictions to the total number of test
samples, multiplied by 100. To enhance the classification accuracy and reduce the number of
false predictions, we proceed to the Feature Selection stage of the proposed classifier, which
involves feature selection based on the rankings provided by the ASR method. In this stage, we
reduce the number of features in both the Testing and Training datasets by omitting the lower-
ranked irrelevant features of the ASR list. Next, we will discuss in detail the working of the

methods used in the two stages.

Classification Stage

The proposed PartMatch classifier employs an Average Weighted Pattern Scoring (AWPS) mecha-
nism in combination with Attribute Score-based Ranking (ASR). This method improves upon the

PMC algorithm proposed by Sreeja and Sankar [176] by including weights and rank weights

164

Algorithm 4 Hybrid Detection Model

Input: Training set D, unlabeled test sample X5 from Testing dataset

Output: Predicted class labels, Classification accuracy

Classification Stage

000 U R W=

12

: m < number of attributes

: n < number of instances

. k < number of distinct classes

: Let C={C1,Cs,...,Cy} be the set of all distinct classes.
: Score(D) < Dataset’s overall score

. Agcore < Attribute score

w (a j) < Attribute weights

. G, < The set of training samples belonging to class C;

ny (xic) for each x;. € G, < Attribute match count.

: Crest ¢ Predicted class label for xieg.

Score(D)=Avg(YX_, pP')

fori=1toninD do
_ Number of instances belonging to C;

Pi=""Total number of instances in D
. end for
: for j=1tominD do

fori=1toninD do
Agcore = Score(D) — Avg(?:1 Pnj X Score(G))
// Sort the attribute scores and rank the attributes
end for
. end for
. for j=1tondo

w (a j) = % // Assigning weights to attributes
. end for
. for j=1tomdo

fori=1tondo
if a; € xiest = aj € xp then
s(aj) 1
else
s(aj) <0
end if
end for

n s (m) < n s (m) -+ s(a;) // Matching patterns to calculate match count
. end for

o € G iff n;(k) = maximum and i; € C;
. for each selected instance in the group do

for j=1tondo
PS(xi)=X1 S(a;i) x w(a;)
end for

. end for
* Xeest € Cj iff PS(x.) = max(PS(x.))
. Predict the class labels for all instances in the Testing dataset and calculate classification accuracy

Feature Selection Stage

1:
2:

Nk

Initialize n = initial number of features
while n > 0 do
n<n—x

Remove x lower-ranked features from Training and Testing datasets

Execute Classification Stage with reduced features
Record accuracy for current n
end while

165

for attributes. Let’s consider a training dataset, denoted as D consisting of » attributes labeled
as ay,ap,as,...,a, and m instances labeled as iy, i, i3, ...,iy, it is represented in the matrix form

shown in (6.4.1).

Attributes
ap a an
ir | X X2 o X
" (6.4.1)
S i | Xy X o Xop
S
3
S
im | Xm1 X2 o X
The values Xm1,Xm2, ..., Xmn in the given matrix represent the attributes of the m" instance,

where n is the number of attributes. Each instance is assigned to a certain class Cx, where k

ranges from 1 to p.

Prior to categorization, the importance of each attribute is established as a pre-processing
step. Attributes are prioritized based on their significance using the ASR method. In order to
do so, firstly the database’s overall score is determined by the count of unique classes, which

is calculated according to equation (6.4.2).

k
Score(D) = Avg (2 i) (6.4.2)
=1

where p; is the probability that an arbitrary instance in D that belongs to class Cx [172]. The

formula to calculate p; is shown in (6.4.3).

_ Number of instances belonging to C;

pi= (6.4.3)

Total number of instances in D

In order to determine the attribute score for each attribute, when there are a total of »n dis-
tinct values, the tuples with n distinct values {n;,n;,n3,...,n;} are grouped together as {Gi,
Gy,... ,Gj} [172]. The formula for calculating the attribute score, denoted as Agcore 1S given in

(6.4.4).

Ascore = Score(D) — Avg (i p(nj) *Score (G j)> (6.4.4)
Jj=1

where the variable p (n;) represents the probability of an arbitrary instance in G; belonging

166

to class Cj. The score for each attribute is computed and the ranking is determined for all
attributes using the ASR method, sorting them in order of relevance such that the attribute

having the highest relevance is given rank 1.

Within the initial stage, the complete feature set ay,as,as,...,a,, without performing any
feature selection, is given rankings ranging from 1 to n. Then, each attribute is assigned a
weight using the rank sum weight method [172]. This approach computes and standardizes
the weights so that the total weight of all the ranked features combined is equal to 1, as depicted

in the formula in equation (6.4.5).

(6.4.5)

The main objective of the proposed classifier is to ascertain the class label for test instances
that do not have a label. The approach uses the PMC algorithm [176] to detect the instances
with the greatest count of matching attributes. This is done by comparing the attribute values
of the training instances and test instances, as shown in equations (6.4.6) and (6.4.7). The
number of matches for the m'" instance is represented as n,(m), and its computation is given

in (6.4.6)

n
ng(m) =Y s(a;) (6.4.6)

i=1
In this context, s (a;) denotes the attribute match score, which has a binary value of either O or
1. The score is 1 if the value of attribute ¢; in the test sample is identical to the corresponding
attribute value in the training sample; otherwise, the score is O [172]. This is stated in equation

(6.4.7).

1, if the value of a; matches
s(ai) = with the training sample a;y, (6.4.7)

0, Otherwise

The approach subsequently selects the training samples that exhibit the highest number of
attribute matches with the provided test sample [176]. The chosen training samples are further

categorized according on their class labels, as depicted in (6.4.8).

ix € G iff ny (k) = maximum and i € C; (6.4.8)

167

In Ge, ¢ denotes the number of classes in the chosen training set samples. All instances with
the maximum na’ and belonging to class Cj are grouped together. The rank weights of the
selected attributes are then applied to these chosen training instances to determine the pattern
score of the test sample ¢ concerning the training samples x;, denoted as PS (x;) [172], with the

formula shown as:

PS(x;) =Y s(a;)*w(a) (6.4.9)

i=1
The average pattern score PS (x;.) for class ¢ is computed by finding the mean score within
each group of the chosen training set samples. The pattern score of the test sample, denoted
as PSis, 1 the highest score obtained by averaging the pattern scores of groups G.. In the

end, the predicted class label for the test sample is determined by the class group that has the

greatest average pattern score [172], as described in equations (6.4.10) and (6.4.11).

PSiest = max (PS (x.)) (6.4.10)

itest € Cjiff PS(x;) = PSiest (6.4.11)

In case multiple groups attain the maximum average pattern score, the class label is predicted
based on the number of training instances with the highest attribute match count. Specifically,
the class label for the test sample is determined by the class with the greatest number of training

instances exhibiting the highest attribute match count and the expression is shown in (6.4.12).

et =argmaxq Y ng(xic) (6.4.12)
¢ Xic€Ge
where ¢ represents the predicted class label for the test sample, and G, denotes the set of

training samples belonging to class c.

In our case, the features, be it the set of permissions, system calls, or permissions-system
calls combined, form the attributes in columns whereas the application samples are the in-
stances in rows. In the first iteration, AWPS combined with ASR is applied to the complete set

of n features, and classification accuracy is noted down.

168

Feature Selection stage

Attribute selection is a crucial stage that enhances the accuracy of classification. With the
belief that feature selection reduces the total number of false predictions, instead of using n
features, we reduce the feature set to a lower value of n by omitting the lower-ranked features
of the ASR list from both the Testing and Training datasets. Consequently, the lower-ranked
feature columns are eliminated from both the Training and Testing datasets before feeding them
into the classifier for pattern matching. After this, the complete Classification Stage was again
executed using the reduced value of n, and classification accuracy was observed. We denote
this as the second iteration. Feature selection is an additional step designed to rectify falsely
predicted test samples. Hence, only the test samples whose class labels have not yet been

correctly predicted are subjected to the Classification stage in subsequent iterations.

In our research, the feature selection process was conducted by eliminating 20 features at
a time after rounding off the total number of features to a convenient starting point. For
instance, with an initial total of 137 permissions we execute the Classification stage and mark
it as the first iteration. Then we rounded it down to 130 by removing seven features, giving
us the new reduced value of n to be 130. This was followed by executing the Classification
Stage and classification accuracy was observed. This constituted the second iteration. In the
third iteration, we eliminate 20 features at a time, reducing the total lot to 110 permissions.
Classification accuracy is duly noted for the reduced feature set. In subsequent iterations the
value of n is reduced by intervals of 20, reducing the total to 90 for the fourth iteration and to
70 for the fifth iteration, and so on, till the value of n becomes 10. This process continued until
the total number of features in both the Training and Testing datasets reached 10. At this point,
the interval was adjusted to one, and one feature was eliminated at a time in each iteration.
This iterative process continued until no features remained in either dataset. The classification

accuracy, calculated at each iteration, was analyzed at the end of the process.

Using the ASR-based feature selection algorithm as mentioned above, we answer research ques-

tion three, i.e., how to rank the features to eliminate the irrelevant ones.

169

6.5 Results and Discussions: Hybrid Model - 11

In this section, we present and discuss the experimental results obtained using the proposed
PattMatch classifier. As discussed in subsection 6.4.2, the proposed classifier employs a method
called Average Weighted Pattern Score (AWPS) combined with Attribute Score-based Ranking (ASR)
[172]. If the following subsections, we first discuss the rankings derived from the ASR method.
We then describe the classification results on the Testing dataset when the proposed classifier
is executed for each of the three categories, namely static, dynamic, and hybrid. Finally, we

compare our proposed model with similar models for Android malware detection.

6.5.1 Attribute Score-based Ranking (ASR) results

The dataset’s overall score is calculated in each case using the formula given in equation
(6.4.2). The attribute score for each feature is calculated using equation (6.4.4). After sorting
the features based on these scores, the rank weights are determined according to their ranks

using the formula provided in equation (6.4.5).

Tables 6.4 and 6.5 provide a comprehensive summary of the top 10 permissions and system
calls ranked using ASR for static and dynamic categories respectively, including their corre-
sponding attribute scores, attribute ranks, and rank weights. In a similar manner, Table 6.6
showcases the top 10 ranked features when ASR is applied to the hybrid dataset of permissions
and system calls, along with their attribute scores, attribute ranks, and rank weights. As shown
in Table 6.4, the permission SET_PREFERRED_APPLICATIONS holds the top position with the
highest attribute score, a rank of one, and a rank weight of 0.014492754. The scores and
weights of the subsequent ranked permissions are detailed in the table. Conversely, the per-
mission READ_PHONE _STATE is identified as the least relevant, with the lowest attribute score
of 0.30804777, a rank of 137, and a rank weight of 0.000105787. Similarly, Table 6.5 shows
that the system call named pipe achieves the highest attribute score using the ASR method, earn-
ing it the top rank and a rank weight of 0.016. The details for other system calls are provided
in the table. The system call SYS_333 has the lowest attribute score of 0.327097242134042, a
rank of 137, and a rank weight of 0.000129032258064516.

The total number of permissions considered for our study is 137 whereas the total num-
ber of system calls is 124. When combining permissions and system calls as a part of the

hybrid model, the total number of features becomes 261. As shown in Table 6.6, the per-

170

Table 6.4: Top 10 permissions ranked with ASR along with their corresponding attribute scores
and rank weights

Permissions Attribute Score Rank Weight
SET_PREFERRED_APPLICATIONS 0.354140277 0.014492754
READ_SYNC_STATS 0.354140266 0.014386967
SET_PROCESS _LIMIT 0.354140239 0.014281181
CONTROL_LOCATION_UPDATES 0.354140047 0.014175394
REBOOT 0.354139987 0.014069608
SET_TIME 0.354139609 0.013963821
ACCESS_CHECKIN_PROPERTIES 0.354139253 0.013858034
SET_ALARM 0.354139215 0.013752248
WRITE_.CALENDAR 0.354139086 0.013646461
READ_INPUT_STATE 0.354139032 0.013540675

Table 6.5: Top 10 system calls ranked with ASR along with their corresponding attribute scores
and rank weights

System calls Attribute Score Rank Weight
pipe 0.35414 0.016
SYS_341 0.35414 0.015871
shutdown 0.35414 0.015742
listen 0.35414 0.015613
getgid32 0.354139 0.015484
nanosleep 0.354139 0.015355
getegid32 0.354139 0.015226
ptrace 0.354139 0.015097
SYS_318 0.354138 0.014968
sendfile64 0.354138 0.014839

mission SET_PREFERRED _APPLICATIONS is identified as the most relevant feature among all
permissions and system calls according to the ASR method, placing it at the top of the ta-
ble. This top rank corresponds to a rank weight of 0.007633588. Conversely, the feature
READ_PHONE STATE is ranked last, at position 261, with an attribute score of 0.308047769601107
and a rank weight of 0.0000292474627826036.

Table 6.6: Top 10 permissions and system calls ranked with ASR along with their correspond-
ing attribute scores and rank weights

Features Attribute Score Rank Weight
SET_PREFERRED_APPLICATIONS 0.354140277 0.007633588
READ_SYNC_STATS 0.354140266 0.00760434

pipe 0.354140264 0.007575093
SYS_341 0.354140263 0.007545845
SET_PROCESS_LIMIT 0.354140239 0.007516598
shutdown 0.354140217 0.00748735

CONTROL_LOCATION_UPDATES 0.354140047 0.007458103
REBOOT 0.354139987 0.007428856
listen 0.35413972 0.007399608
SET_TIME 0.354139609 0.007370361

In the following subsection, we present the classification results obtained using the proposed

classifier.

171
6.5.2 Classification results on ZTesting dataset

This section focuses on presenting the classification results achieved by our proposed clas-
sifier when applied to the three dataset categories: static, dynamic, and hybrid. Tables 6.7,
6.8, and 6.9 summarize the number of features used, the number of correct predictions, and
the classification accuracy whereas the Figures 6.3, 6.4, and 6.5 illustrate the decrease in the
number of false predictions as irrelevant features were omitted and only relevant features were

utilized for each category.

Classification results for static category

We applied the proposed PattMatch classifier to the static category Training and Testing datasets
first, each containing 137 permissions. Table 6.7 displays the total number of correct predic-
tions made by our classifier out of the 20,000 testing samples, alongside the classification

accuracy results for each iteration.

In the initial iteration, where the complete set of permissions was utilized, the proposed clas-
sifier correctly predicted the class labels for 18,769 test samples, resulting in a classification
accuracy of 93.84%. In the second iteration, with the number of features reduced to 130, there
was an increase in correct predictions, raising the classification accuracy to 95.53%. Details of
subsequent iterations are provided in the table. Notably, the highest number of correct predic-
tions was observed when the static feature set was reduced to only 10 permissions, achieving

an accuracy of 99.57% with 19,915 correct predictions out of 20,000 test samples.

Table 6.7: Classification results obtained by applying the proposed classifier to the static cate-
gory dataset

Number of permissions | Number of correct predictions | Classification ac-
used (out of 20,000) curacy (in %)

137 (All permissions) 18769 93.84

130 19107 95.53

110 19377 96.88

90 19889 99.44

70 19893 99.46

50 19908 99.54

30 19913 99.56

10 19915 99.57

Classification results for dynamic category

Moving on with our research plan, we then applied the proposed classifier to the dynamic

category Training and Testing datasets, each containing 124 system calls. Table 6.8 displays the

172

total number of correct predictions made by our classifier out of the 20,000 testing samples,

alongside the classification accuracy results for each iteration.

In the initial iteration, where the complete set of system calls was utilized, the proposed
classifier correctly predicted the class labels for 16,906 test samples, resulting in a classifica-
tion accuracy of 84.53%. In the second iteration, with the number of features reduced to 110,
there was an increase in correct predictions, raising the classification accuracy to 88.22%. De-
tails of subsequent iterations are provided in the table. Notably, the highest number of correct
predictions was observed when the dynmaic feature set was reduced to only 10 system calls,

achieving an accuracy of 98.90% with 19,781 correct predictions out of 20,000 test samples.

Table 6.8: Classification results obtained by applying the proposed classifier to the dynamic
category dataset

Number of system calls used Number of correct predictions | Classification ac-
(out of 20,000) curacy (in %)

124 (All system calls) 16906 84.53

110 17644 88.22

90 18704 93.52

70 19092 95.46

50 19689 98.44

30 19780 98.9

10 19781 98.90

Classification results for hybrid category

Lastly, with an aim to further elevate the detection accuracy by combining the static and
dynamic features, we applied the proposed classifier to the hybrid category Training and Test-
ing datasets, each containing a total of 261 features. Table 6.9 displays the total number of
correct predictions made by our classifier out of the 20,000 testing samples, alongside the

classification accuracy results for each iteration.

In the initial iteration, where the complete set of features was utilized, the proposed clas-
sifier correctly predicted the class labels for 19,185 test samples, resulting in a classification
accuracy of 95.92%. In the second iteration, with the number of features reduced to 250, there
was an increase in correct predictions, raising the classification accuracy to 96.97%. Details
of subsequent iterations are provided in the table. Notably, the highest number of correct pre-
dictions was observed when the hybrid feature set was reduced to only 10 features, achieving

a remarkable accuracy of 99.93% with 19,987 correct predictions out of 20,000 test samples.

Furthermore, the significance of feature selection is demonstrated in Figures 6.3, 6.4, and

6.5, where a gradual decrease in the frequency of false predictions is observed in all three

173

Table 6.9: Classification results obtained by applying the proposed classifier to the hybrid
category dataset

Number of features used Number of correct predictions | Classification ac-
(out of 20,000) curacy (in %)

261 (All permissions and sys- | 19185 95.92

tem calls)

250 19394 96.97

230 19582 97.91

210 19708 98.54

190 19790 98.95

170 19822 99.11

150 19861 99.30

130 19966 99.83

110 19975 99.87

90 19977 99.88

70 19983 99.91

50 19983 99.91

30 19984 99.92

10 19987 99.93

categories as irrelevant features were iteratively omitted. Figure 6.3 illustrates that utilizing
the entire set of 137 permissions leads to 1231 false predictions. By excluding the seven least
important permissions, the value of n decreases to 130, resulting in a significant reduction in
the number of false predictions to 893. The figure clearly illustrates a substantial decrease.
As we decrease the value of n and provide fewer permissions to the classifier, the number of
false predictions continues to decrease. The frequency of false predictions is minimized when
only 10 permissions are utilized for detection. According to the classification method, we now
decrease the value of n by one instead of 20. However, no subsequent alteration in the number
of false predictions was noted. Therefore, the optimal classification accuracy with minimal
false predictions is attained by utilizing 10 permissions.

1400
1231

[N
N
o
o

1000 -
800
23
600

400

Number of false predictions

200 11 107 92 87 85

137 130 110 90 70 50 30 10

Number of permissions used

Figure 6.3: Classification results obtained by applying the proposed classifier to the static
category dataset

174

A similar trend can be observed for the cases of dynamic and hybrid categories. For in-
stance, it can be seen in Figure 6.4, when all system calls were used, the number of false
predictions was 3,094. By iteratively omitting the least relevant system calls, the number of

false predictions was reduced to a minimum of 219.

3500

3094
3000
2500
2000
1500

1000

Number of false predictions

500

0
124 110 90 70 50 30 10

Number of system calls used

Figure 6.4: Classification results obtained by applying the proposed classifier to the dynamic
category dataset

Similarly, in the hybrid category, as shown in Figure 6.5, using all 261 features resulted in
815 false predictions. However, when only the top 10 permissions and system calls were used,

the number of false predictions decreased significantly to just 13.

900
800
700
600
500
400
300
200
100

0

815

Number of false predictions

23 17 17 16 13

261 250 230 210 190 170 150 130 110 90 70 50 30 10
Number of permissions and system calls
used

Figure 6.5: Classification results obtained by applying the proposed classifier to the hybrid
category dataset

Discussion - We would like to emphasize that the classification accuracy was notably low

175

when no feature ranking or selection was applied, and all features were simultaneously fed
into the classifier. As evidenced in Tables 6.7 and 6.8, utilizing all 137 permissions or 124
system calls resulted in significantly reduced classification accuracies such as 93.84% and
84.53% respectively. Based on the results and the low detection accuracy depicted by Tables 6.7
and 6.8, we answer our research question two that feature selection helps us eliminate irrelevant

features that can hamper detection accuracy.

The motivation behind the proposed research was to address the limitations inherent in both
static analysis and dynamic analysis by combining them into a hybrid detection model, aiming
for a more robust approach to detection. It was hypothesized that some test samples might not
be accurately classified based solely on permissions but could be correctly predicted using only
system calls, and vice versa. This hypothesis was confirmed when preliminary results showed
that even with the most relevant 10 permissions, there were 85 incorrect predictions. However,
when these test samples were put through our proposed classifier as a part of dynamic category
datasets, a majority of these misclassifications were corrected in the second iteration of using

system calls.

These findings underscored that static analysis alone lacks certain insights that dynamic
analysis can provide, and vice versa. By combining these approaches, a more effective and
efficient detection model can be developed. Experimental results demonstrated that the hybrid
approach significantly outperformed using static or dynamic analysis alone. Specifically, the
hybrid model led to only 13 false predictions, compared to 85 and 219 when using static
analysis or dynamic analysis alone, respectively. This highlights the capability of the hybrid

detection model to accurately classify benign and malicious software more reliably.

6.5.3 Comparison with other classifiers

In this subsection, we compare the performance of our proposed classifier with some widely
used classification algorithms used in the literature. In particular, we computed the detection
accuracy using ML classifiers [135] such as Decision Tree (DT), Random Forest (RF), Sup-
port Vector Machines (SVM), Bagging (BC), Naive Bayes (NB), Logistic Regression (LR)
and simultaneously using some DL classifiers namely, Multilayer Perceptron (MLP), Convo-
lutional Neural Network (CNN), Artificial Neural Network (ANN), and fully connected Deep
Neural Network (DNN) were evaluated against the same dataset of normal and malicious apps

as ours. We would like to highlight that we did not utilize any feature ranking or selection

176

techniques before applying the ML and DL classifiers, i.e., the complete testing dataset was
fed to the classification algorithms for detection for each category. Figures 6.6 summarize the
comparison results when we apply the ML and DL algorithms for the classification of mal-
ware along with our proposed classifier in case of static, dynamic, and hybrid category Testing
datasets respectively. When applying ML and DL classifiers, we observed that the Random
Forest (RF) classifier achieved the highest detection accuracy of 94.18% while using permis-
sions. In contrast, our proposed classifier significantly outperformed these methods, achieving

the highest classification accuracy of 99.57% with only 10 permissions.

100

95
90
85
80
75
70
65
60
55
50
DT RF SVM BC NB LR MLP CNN ANN

DNN Proposed
Classifier

Accuracy (in %)

Static = Dynamic B Hybrid Classification Algorithms

Figure 6.6: Comparison of our proposed classifier with other ML and DL algorithms when
applied to the static, dynamic, and hybrid category datasets

Among the ML and DL classifiers, the highest accuracy is again achieved by the Random
Forest (RF) classifier for the case of dynamic category datasets. However, our proposed clas-
sifier attains a maximum accuracy of 98.9% using 10 system calls, demonstrating superior

performance.

In a similar manner, the CNN classifier achieves the highest accuracy among the conven-
tional classifiers with 96.95% when applied to the hybrid category datasets, whereas our pro-
posed classifier achieves an impressive accuracy of 99.93%, easily surpassing the other meth-
ods. This indicates that our proposed classifier PattMatch consistently outperforms the other
conventional classification algorithms across all three categories in terms of detection accu-

racy.

177
6.5.4 Comparison with other related works

In this section, we compare the performance of our proposed classifier with other methodolo-
gies that incorporate permissions or system calls for Android malware detection. Specifically,

we implement the approaches adapted in studies [120], [177] and [178]

Anupama et al. [120] proposed a hybrid methodology that combined permissions and sys-
tem calls to create a detection model utilizing a range of machine learning and deep learn-
ing classifiers. Feature reduction was carried out using a customized Fisher score algorithm.
The selected features were then used to train various machine learning classifiers, including
Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Logistic Re-
gression (LR). We applied their proposed approach to all three category datasets used in our

study.

Another study that we implemented was centered on a dynamic analysis detection model
utilizing system calls presented by Bhat et al. [177]. This study employed enhanced classi-
fication algorithm techniques such as Bagging (BC), AdaBoost (AdaB), and Stacking, along
with individual classifiers like Decision Tree (DT), Support Vector Machines (SVM), Logistic
Regression (LR), and Naive Bayes (NB). As a preprocessing step to reduce feature set di-
mensionality, they omitted features with low chi-square scores, deeming them irrelevant. In a
similar manner to the previous study, we meticulously adhered to their methodology, utilizing
the same classifiers across all three categories of our datasets. Consequently, we ranked the
features based on their chi-square scores. The authors specifically selected the top 30 fea-
tures from these rankings for their classifiers, discarding the rest, and we adopted the same

approach.

Lastly, we implemented the approach described in [178]. The authors presented an Android
malware detection system that utilized only the relevant permissions, reduced using a tech-
nique called Principal Component Analysis (PCA). The number of components to be selected
is determined by the total variance value to be preserved which was set at 80-90%. Following
these steps, they obtained a reduced feature vector which was then used as input for seven ma-
chine learning algorithms such as K-Nearest Neighbors (KNN), Naive Bayes (NB), Sequential
Minimal Optimization (SMO), Multi-Layer Perceptron (MLP), Random Forest (RF), Decision
Tree (DT), and Logistic Regression (LR). Following their approach step by step, in the first
step, we ranked the three category datasets using PCA. After that, we set the threshold between

the range of 80-90% and fed the transformed feature set to the above-mentioned classifiers.

178

Table 6.10: Compiled detection results to compare the performance of the proposed classifier

with other related works across the three dataset categories

Dataset cat- | Approach used Number of features | Detection accuracy
egory used (in %)
Anupama et al. [120] 50 permissions 93.93
Static Bhat et al. [177] 30 permissions 94.44
Sahin et al. [178] 68 permissions 95.52
Our proposed classifier 10 permissions 99.57
Anupama et al. [120] 68 system calls 86.3
Dynamic Bhatetal. [177] 30 system calls 88.78
Sahin et al. [178] 39 system calls 87.04
Our proposed classifier 10 system calls 98.9
Anupama et al. [120] 128 permissions and | 96.67
Hybrid system calls
Bhat et al. [177] 30 permissions and | 94.19
system calls
Sahin et al. [178] 100 permissions and | 97.15
system calls
Our proposed classifier 10 permissions and | 99.93
system calls

Table 6.10 presents the comparative results of our proposed classifier against related works
across the three dataset categories. As can be seen from the table, for the static category, when
we followed the approach in [120], we managed to achieve a detection accuracy of 93.93%
using 50 permissions, following [177], we reported 94.44% with 30 permissions and follow-
ing [178], we observed the maximum accuracy of 95.52 using 68 permissions. Whereas, our
proposed method significantly outperforms these, achieving 99.57% with just 10 permissions.
In the dynamic category, applying [120] we attained 86.3% accuracy with 68 system calls,
with [177], we achieved 88.78% using 30 system calls, and with [178], we observed the high-
est detection accuracy of 87.04% considering 39 system calls. Our method surpasses these
results with a detection accuracy of 98.9% using only 10 system calls. Similarly, for the hy-
brid category, while using the methodology in [120], we reported 96.67% accuracy using 128
permissions and system calls, with that of [177] we achieved 94.19% using 30 permissions
and system calls and while following [178], we observed the highest detection accuracy of
97.15% considering 100 permissions and system calls. Simultaneously, our classifier demon-
strates superior performance, achieving 99.93% accuracy with only 10 permissions and system
calls, underscoring its efficiency and effectiveness. Hence, we can conclude that our proposed
approach outperforms the similar work of Android malware detection performing feature se-

lection on permissions or system calls.

Furthermore, we compare some other similar works of Android malware detection utilizing
hybrid analysis in terms of detection accuracy. Table 6.11 summarizes this comparison. Most
studies have attempted to detect malware using conventional ML or DL classifiers, whereas

some have ranked the features using tests such as chi-square or information gain. As shown in

179

the table, our model outperforms all these studies in terms of detection accuracy. Hence, we
can conclude that our proposed model is better than many state-of-the-art techniques presented
in the literature for Android malware detection.

Table 6.11: Comparison of proposed work with the existing literature based on hybrid malware
detection models

Related Work Methodology Detection accu-
racy (in %)

Surendran et al. [121] TAN (Tree Augmented naive Bayes) based malware detection | 97
model by employing the conditional dependencies features

Luetal. [122] Hybrid detection model employing Deep belief Network | 96.82
(DBN) and Gated Recurrent Unit (GRU) algorithms

Zhang et al. [179] Utilized subgraph isomorphism matching for malware detec- | 95
tion using hybrid features

Taher et al. [180] Feature reduction using fuzzy and meta-heuristic optimiza- | 98.1
tion techniques followed by using the Harris Hawks Opti-
mization (HHO) algorithm

Sharma and Agrawal | Adapted a meta-heuristic swarm-based algorithm to reduce | 99.12

[181] the feature set, followed by using Intelligent Water Drop Al-
gorithm (IWD) for detection

Mahdavifar et al. | Utilized Pseudo-Label Stacked Auto-Encoder (PLSAE) for | 97.7

[182] detection

Ficco [183] Ensemble approach combing multiple algorithms and fea- | 93.28
tures

PattMatch classifier | Classifier employing the combination of an Average | 99.93

(our proposed ap- | Weighted Pattern Score (AWPS) technique with Attribute

proach) Score-based Ranking (ASR) for feature selection

6.6 Conclusion and Future Work

In conclusion, this chapter discussed two hybrid detection models leveraging the merits of
both static and dynamic features. First, we introduced AndroV-Rank, a robust framework for
Android malware detection that integrates permissions and system calls to extract a refined set
of class-distinguishing features. By employing the VIKOR method for feature ranking, our ap-
proach not only enhances detection accuracy but also streamlines the feature set to a mere 65
attributes, resulting in a remarkable accuracy of 96.55%. Additionally, we proposed another
novel hybrid detection model for Android malware that even bypasses the use of conven-
tional data mining algorithms. Our approach centered on PartMatch, an instance-based pattern-
matching classifier that combines Average Weighted Pattern Scoring (AWPS) with Attribute Score-
based Ranking (ARS). This model effectively identifies the class labels of unlabeled test samples
by focusing on a reduced feature set, achieving optimal classification accuracy. Experimental
results have demonstrated the superiority of our hybrid detection model. The hybrid model,
which integrates both static and dynamic features, achieved an impressive accuracy of 99.93%
using just 10 attributes. Unlike traditional data mining, machine learning, and deep learning

algorithms, our classifier demonstrated superior detection accuracy on the same dataset, high-

180

lighting the robustness and efficiency of the proposed hybrid detection model. Additionally,
our model surpasses various state-of-the-art Android malware detection techniques in terms of
detection accuracy. The performance of both models significantly exceed traditional static and
dynamic analysis methods in terms of detection accuracy, underscoring the limitations of these
standalone techniques. In our future work, we aim to enhance the capabilities of our model
by including malware category and family classification along with the binary classification

performed in this study.

Chapter 7

Android Malware Multi-Category
Classification via Highly Discriminative

Feature Ranking

In this chapter, we discuss two models for Android malware multi-category classification
into the four categories: Adware, Fraudware Trojans, Ransomware, and Spyware, by using the least
number of features while simultaneously ensuring higher classification accuracy. In Section
7.1, we explain the motivation behind proposing a Android malware multi-category classifi-
cation model and a brief overview of the two models proposed. In Section 7.2, we explain
in detail the methodology behind our first model. Section 7.3 explains the results obtained
from the proposed model - I. In Section 7.4, we explain the methodology behind our second
proposed multi-category classification model named AndroMultiCat. Section 7.5 discusses the

results obtained from the second model and finally, we conclude the chapter in Section 7.6.

7.1 Introduction

Android malware has emerged as a significant threat, compromising user privacy, device
functionality, and overall security. The pervasive adoption of Android devices, coupled with

their open architecture, makes them particularly susceptible to malicious software. These

181

182

threats, collectively referred to as Android malware, not only disrupt device operations but

also endanger sensitive user data.

Android malware is broadly classified into categories such as Adware, Fraudware, Ransomware,
and Spyware. Each type poses distinct risks, ranging from financial exploitation to data breaches.
Among these, malware that exploits root privileges is of particular concern. Such variants fa-
cilitate extortion, as seen in ransomware attacks, or enable persistent access and data theft,

exemplified by spyware.

1. Adware: This category displays intrusive advertisements on user devices, often without
consent. Adware generates revenue for developers by coercing users to view or interact

with unwanted ads, thereby degrading the user experience.

2. Fraudware Trojans: Fraudware, or Trojans, masquerades as legitimate applications to de-
ceive users into installation. Once active, these programs steal sensitive information,
send premium SMS messages, or download additional malicious software, causing fur-

ther harm.

3. Ransomware: Ransomware encrypts data or locks devices, demanding payment to restore
access. These attacks cause significant distress and financial loss for affected users,

making ransomware a particularly insidious threat.

4. Spyware: Operating covertly, Spyware captures sensitive user data, including keystrokes,
browsing activity, and communications. The collected information is often used for

identity theft or financial fraud, amplifying its impact.

The increasing sophistication of Android malware requires robust detection mechanisms to

effectively mitigate these threats.

As discussed in Chapter 2, binary classification, which differentiates between benign and
malicious samples, serves as an essential initial step. However, multi-category classification,
which further identifies the specific type of malware is also an additional step taken up by many
researchers using a range of static and dynamic features. Hence, in this chapter, we present
two Android malware multi-category detection models aimed at performing multi-category
classification of malware into the four categories: Adware, Fraudware trojans, Ransomware, and
Spyware, by using the least number of features that exhibit higher distinguishing power between

different malware categories while simultaneously ensuring higher classification accuracy.

183

7.2 Proposed Multi-Category Detection model-1

Despite the advantages of static analysis, its limitations have led researchers to explore dy-
namic analysis as a solution to overcome these challenges. Hence, in this work we propose a
dynamic Android malware detection model that leverages system call monitoring to accurately
detect and classify malware into the four categories: Adware, Fraudware trojans, Ransomware,
and Spyware, by using the least number of features while simultaneously ensuring higher clas-
sification accuracy. To achieve this, we employ the ReliefF algorithm as a feature ranking and
selection technique, which formulates a ReliefF Score that assesses the contribution of each fea-
ture to the classification task. This method is particularly suited for categorical datasets, such
as ours, as it effectively evaluates the relevance of features in distinguishing between multiple
malware categories. By identifying and ranking features based on their ability to differentiate
between classes, ReliefF enables us to select the most impactful features that enhance classifi-
cation accuracy while discarding irrelevant or lower-ranked features. This approach not only
streamlines the feature set but also improves the overall robustness of our malware category

classification model.

The proposed model’s methodology is primarily divided into two modules, Ranking and
Classification. Initially, we compile an extensive dataset that includes dynamic features (system
calls). Subsequently, we split this dataset into two segments: the Training dataset and the
Testing dataset. In the Ranking module, we begin by inputting the Training dataset and ranking
the features based on their ReliefF scores. In the Classification module, we propose a novel
algorithm that applies Machine Learning (ML) and Deep Learning (DL) techniques to get the

best features that can provide higher classification accuracy.

RANKING MODULE

7.2.1 Data collection

To initiate this research, we employed the Kronodroid dataset [170] also used in chapter
6. More details about the dataset have been discussed in 6.2.1. In order to build a dynamic
analysis-based Android multi-category classification model, we focused only on dynamically
extracted system calls, where call frequency data records non-zero values for occurrences and
zero for absences. The dataset categorizes samples into Adware, Fraudware, Ransomware, and

Spyware. For training, we used 50% of each category (10,000 samples), with the remaining

184

50% for testing (10,000 samples). This approach aims to leverage dynamic features for a
robust multi-category classification of Android malware, addressing the limitations inherent
to static analysis. We processed the dataset into Training and Testing, with each encompassing
289 system calls. Details of the dataset composition are presented in Table 7.1.

Table 7.1: Details of the dataset including malware categories and the families comprising
each category.

Malware Category Families comprising the category

Adware Airpush, Agent, FakeApp, Kuguo, Dowgin and Youmi
Fraudware Boxer, Fakelnst and SMSreg

Ransomware Slocker

Spyware DroidKungFu, GinMaster, BankBot, Simhosy and Malap

7.2.2 Feature Ranking

In this study, we applied the ReliefF algorithm to rank features based on their relevance for
multi-category malware classification. ReliefF is a feature selection technique designed to esti-
mate the importance of each feature by assessing how well it distinguishes between instances
from different classes. For a given multiclass dataset with n applications and p attributes,
where samples belong to m classes, ReliefF evaluates each feature’s ability to separate samples
by iteratively selecting instances and calculating feature weights based on intra- and inter-class

distances.

The algorithm operates as follows: for each randomly selected instance i, ReliefF finds its
nearest neighbors within the same class (nearest hits) and from different classes (nearest misses).
The weight W(A) of each attribute A is updated to reflect its ability to distinguish between

classes. The update rule for feature weights is given by:

1

k
Kon—1) Y Y P()diff(A, i, miss;,) (7.2.1)

I#£class(i) j=1

W(A)=W(A)— (diff(A,i,hit;)) +

1/<
=1

k J
where:

- k is the number of nearest neighbors considered,

- diff(A, i, j) represents the difference between instances i and j on attribute A,

- P(1) is the prior probability of class I,

- hit; is the j-th nearest neighbor within the same class as i,

- miss;; is the j-th nearest neighbor from a different class /.

185

Using ReliefF with our multiclass dataset of Android malware, the algorithm ranks features,
i.e. system calls, by prioritizing those that contribute most to distinguishing between categories
namely Adware, Fraudware, Ransomware, and Spyware. This ranking allows our model to focus

on the most discriminatory features for improved classification accuracy.

7.2.3 Machine Learning and Deep Learning Classifiers

We used several ML and DL algorithms in our classification approach. We applied five
widely used techniques, namely Decision Trees (DT), Random Forest (RF), Bagging classi-
fier (BC), Gaussian Naive Bayes (NB) as ML classifiers and Multilayer Perceptron (MLP)
as DL classifier. All experiments with these classifiers were performed using ten-fold cross-

validation.

Classification Module

7.2.4 Proposed Malware Multi-Category Classification Algorithm

Following the ranking of features using the ReliefF algorithm, we obtained a sorted list of
system calls based on their effectiveness in distinguishing between various malware categories.
Our objective now is to identify the optimal subset of features that maintains the highest clas-

sification accuracy while minimizing the number of features used.

We begin by incorporating all available features in the first iteration and recording the classi-
fication accuracy achieved by the classifiers utilized in this study. Subsequently, we eliminate
the lowest-ranked ten features from the Testing dataset and assess the resulting accuracy. In
the next iteration, we remove an additional ten features, continuing this process iteratively by
excluding the next ten lowest-ranked features in each round. This procedure is repeated until

we observe a decline in classification accuracy.

Ultimately, the output will yield the minimal feature set that achieves the best classification
performance, thereby optimizing the feature selection for our multi-category malware classifi-

cation model.

186

7.3 Results and Discussion: Multi-Category Model - I

In this section, we present the experimental results obtained by applying the proposed mal-
ware multi-category classification model to the dynamic category dataset. As previously dis-
cussed, we utilized the ranking method on the Training dataset to compute the ReliefF scores of
the system calls. Subsequently, within the Classification module, we applied various ML and

DL classifiers to the Testing dataset.

7.3.1 ReliefF Ranking Results

In this section, we present the results of the ReliefF ranking applied to the system calls
dataset. Table 7.2 displays the top ten system calls, sorted by their effectiveness in distin-
guishing between malware classes. Notably, the system call eventfd2 ranks highest in the table,
achieving the ReliefF score of 0.0920. The rankings of the remaining system calls are de-
tailed in the table. With getpid coming out to be the least scored, indicating its relatively low

capability to differentiate between malware classes.

Table 7.2: Top 10 system calls ranked in order of their ReliefFF Score

System Call | ReliefF Score
eventfd2 0.0920
epoll_createl | 0.0920
fstatfs64 0.0739
flock 0.0690
readlinkat 0.0687
fchmod 0.0643
ugetrlimit 0.0568
socketpair 0.0555
mkdirat 0.0541
sendmsg 0.0494

7.3.2 Classification Results on the Testing Dataset

In this section, we present the classification results obtained on the 7esting dataset by itera-
tively reducing the feature set based on system call rankings given by the ReliefF algorithm.
Initially, with all 289 system calls included, we achieved an accuracy of 94.01%. In subsequent
iterations, system calls were removed in increments of ten, beginning with the least important

features, as determined by the ReliefF ranking.

With each iteration, the classification accuracy was evaluated to identify the optimal subset

of features. By the 23rd iteration, reducing the feature set to the top 70 system calls yielded

187

the highest observed accuracy of 94.50%. Beyond this point, further reduction in features led
to a decline in accuracy. Thus, the optimal subset of features was determined to be 70 system

calls, achieving the highest accuracy while reducing the feature set by approximately 75.6%.
Table 7.3 below summarizes the classification accuracy across iterations.

Table 7.3: Classification Accuracy Across Iterations of Feature Reduction

Features used | Accuracy (%) | Features used | Accuracy (%)
50 88.39 170 94.05
60 93.94 180 94.07
70 94.50 190 94.20
80 94.11 200 94.12
90 94.05 210 94.07
100 94.05 220 94.01
110 94.10 230 94.06
120 94.10 240 93.99
130 94.14 250 94.08
140 94.10 260 94.02
150 94.10 270 94.08
160 94.11 280 94.03

7.4 Proposed Multi-Category Detection model - 11

Static analysis examines application code without execution, efficiently identifying known
malware signatures and patterns but struggles with obfuscated or polymorphic malware. Dy-
namic analysis executes applications to observe behavior, revealing hidden malicious activi-
ties like network communication, yet it is resource-intensive for large-scale screening. Hybrid
analysis combines static code examination with dynamic behavioral analysis, offering a bal-
anced approach to enhance detection accuracy and overcome evasion tactics. In this research,
we propose a hybrid classification model, integrating static permissions and dynamic system
calls, aimed at performing multi-category classification of malware into the four categories:
Adware, Fraudware trojans, Ransomware, and Spyware, by using the least number of features that
exhibit higher discriminative power between different malware categories while simultane-

ously ensuring higher classification accuracy.

To accomplish this, we implement a ranking technique that formulates a Class Discrimina-
tion Strength vector [184], which is used to sort individual features based on their ability to
differentiate between classes. This ranking process enables the selection of the top features

that contribute to the best classification accuracy, while irrelevant lower-ranked features are

188

omitted. Our approach combines permissions from the static feature set and system calls from
the dynamic feature set to improve the robustness of malware category classification.

Contributions - The major contributions of this study are highlighted below:

» We designed a hybrid detection model that harnesses the benefits of both static and

dynamic analysis, mitigating the shortcomings of each method.

» We employed a ranking technique centering around the Class Discrimination Strength vec-
tor and a new metric, the Discrimination Score, to sort features based on their ability to

distinguish between malware classes.

* We proposed a novel algorithm that leverages attribute rankings to develop an efficient
Android malware multi-category classification system, achieving higher accuracy with

minimal features.

RANKING MODULE
Malware
Training Dataset
0 r~ Static,
Permissions Dynamic and
and Hybrid Feature
System calls Rankings
Adware + Fraudware + FeatuTe Ranked
Ransomware+Spyware Extraction Features
Ranked Features ﬁ Best set of
features with
higher
classification
Malware Testing , Classification accuracy
Dataset Accuracy

Figure 7.1: AndroMultiCat System Design

The proposed model AndroMultiCat’s methodology is primarily divided into two modules,
Ranking and Classification module as shown in Figure 7.1. Initially, we compile an extensive
dataset that includes static features (permissions) and dynamic features (system calls). Sub-
sequently, we split this dataset into two segments: the Training dataset and the Testing dataset.
In the Ranking module, we begin by inputting the Training dataset and ranking the features

based on their discrimination strength. This is achieved by calculating the class discrimination

189

strength vector for each individual feature. In the Classification module, we propose a novel
algorithm that applies Machine Learning (ML) and Deep Learning (DL) techniques to get the

best features that can provide higher classification accuracy.

The subsequent subsections provide a detailed discussion of both modules in the proposed

model.

Ranking Module

7.4.1 Dataset Accumulation

To initiate our research, we utilized the Kronodroid dataset [170], the largest hybrid-feature
Android dataset spanning from 2008 to 2020. This dataset uniquely includes both static fea-
tures like permissions, intents, and metadata, and dynamic features represented by system
calls. Malware samples were sourced from repositories such as Drebin, AMD, VirusTotal, and
VirusShare. The permissions dataset uses a binary format where ‘1’ indicates permission re-
quests, and ‘0’ indicates absence. Similarly, the system call dataset records the frequency of
calls with non-zero values, and ‘O’ for absence. The dataset comprises 34,335 rows catego-
rized into Adware, Fraudware, Ransomware, and Spyware. For training, 70% of each category
was selected, leaving 30% for testing, resulting in 24,033 samples for training and 10,302 for

testing. After preprocessing, we retained 167 permissions and 289 system calls for analysis.

Our goal is to develop a model leveraging hybrid features, capable of performing Android
malware multi-category classification, that addresses the limitations of both static and dynamic
analysis models. To enable a comprehensive comparison among the three analysis techniques,
we further processed the dataset to create three distinct categories for both the Testing and
Training datasets: static, dynamic, and hybrid. The static category includes datasets with 167
permissions, the dynamic category includes datasets with 289 system calls, and the hybrid

category combines both permissions and system calls, totaling 456 features.

Permissions provide an overview, while system calls offer detailed insights. This enhances
detection system robustness by scrutinizing suspicious activities comprehensively. Permis-
sions assess app requests pre-installation, identifying potentially malicious apps early. Real-
time system call monitoring detects malware activities as they occur, optimizing our hybrid

detection model.

190
7.4.2 Feature Ranking

Assume in the given multi-class Training dataset there are n samples or applications, each
with p attributes, and these n samples belong to m classes. In the following, we define and
employ a vector representation for attributes, which can differentiate their class recognition

strength [184].

Let F;; denote whether the j-th attribute is requested by the i-th application. That is, in the
application attribute matrix, each column represents an attribute, F; = Fy j, >, ..., F,;, indicating

if the attribute is requested (1) or not (0) by each application.

For the j-th feature, its mean request level in the k-th class is denoted as Fj fork=1,2,...,m.
The value |Fj, — F;;| captures the difference between the mean request levels of the j-th feature
in the k-th class and in the /-th class. Obviously, if this value is small, then the j-th feature
would not be effective in discriminating samples from these two classes, but it could be effec-
tive otherwise. Therefore, we define the Class Discrimination Strength vector, (Fj) , for the j-th

feature as

Fj =|Fji = Fpl|,|Fjy = Fjal,-... |Fji = Fju|, |Fjo = Fial,. [Fjp = Fjml - | Fjm—1 = Fjm| -~ (7:4.1)

After defining the Class Discrimination Strength vector, F;, we compute the Discrimination
Score for each attribute by taking the absolute modulus of the vector with each having w
entries. This process ensures that the discrimination power of each attribute is accurately
quantified, facilitating the identification of features that are most effective in distinguishing
between different classes. In our study, which aims to classify malware into four distinct cate-
gories—Adware, Fraudware, Ransomware, and Spyware—the value of m is defined as 4. With the
Training dataset comprising a total of 24,033 applications, the value of » is therefore 24,033.
For the static category datasets, the value of p is set to 167, corresponding to the total number
of permissions in the dataset. For the dynamic category, p is 289, reflecting the number of

system calls. In the hybrid category, the value of p is established as 456, representing the sum

of both permissions and system calls.

191
7.4.3 Machine Learning and Deep Learning Classifiers

We used several ML and DL classifiers [135] in our classification approach. We applied nine
widely used techniques, namely Decision Trees (DT), Random Forest (RF), Support Vector
Machine (SVM), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression
(LR), as ML classifiers and Multilayer Perceptron (MLP), Artificial Neural Networks (ANN),
Dense Neural Network (DNN) as DL classifiers. All experiments with these classifiers were

performed using ten-fold cross-validation.

Classification Module

7.4.4 Proposed Malware Multi-Category classification Algorithm

This section outlines our classification algorithm for identifying effective features in mal-
ware classification. We start by ranking features from our Training dataset based on their
Discrimination Scores, which indicate how well they differentiate between malware types. Ini-
tially, we select the top-ranked feature and evaluate only its classification accuracy using ML
and DL methods on the Testing dataset. We update the maximum accuracy whenever a higher
accuracy is achieved in subsequent iterations. Each iteration involves adding the next highest-
ranked feature to our set and assessing classification accuracy with the expanded feature set.
We continue this process until no further improvement in accuracy is observed. The algo-
rithm terminates when the classification accuracy no longer exceeds the current maximum. It
then outputs the highest achieved accuracy along with the set of features that contributed to it,

optimizing our approach to malware classification.

The results derived from the proposed approach are discussed in the subsequent section.

7.5 Results and Discussion: Multi-Category Detection model

-1I

In this section, we present the experimental results obtained by applying the proposed mal-
ware multi-category classification model to the three types of datasets: static, dynamic, and

hybrid. As previously discussed, we utilized the ranking method on the Training dataset to

192

compute the discrimination scores of the attributes. Subsequently, within the Classification

module, we applied various ML and DL classifiers to the Testing dataset.

7.5.1 Discrimination Score-based Ranking results

In this subsection, we discuss the rankings obtained using the proposed Class Discrimination
Score-based ranking method when applied to the three dataset categories. Tables 7.4 and 7.5

illustrate the ranked features and their corresponding Discrimination Scores.

As shown in Table 7.4, the top 10 permissions ranked using the proposed method for the
static category datasets are presented. The permission READ_PHONE_STATE ranks highest
with a discrimination score of 6.904831664, indicating its superior capability to distinguish
between malware categories. Conversely, the permission WRITE_VOICEMAIL is the lowest
ranked among the total lot of 167 permissions. The rankings of the other permissions are
also depicted in the table. Similarly, the top 10 system calls when the discrimination strength
ranking method was applied to the dynamic category Training dataset are shown alongside.
The system call sysinfo resides at the top of the table with the highest discrimination score of

3.431581, while SYS_369 is the lowest ranked amongst the other 289 attributes.

Table 7.4: Top 10 features ranked according to their Discrimination scores for the static and
dynamic category

Static Category Dynamic Category
Permissions Discrimination Score | System calls Discrimination Score
READ_PHONE_STATE 6.904831664 sysinfo 3.431581
INTERNET 6.264180883 getpriority 3.203326
SEND_SMS 6.089840222 SYS_333 3.1282
ACCESS_NETWORK_STATE 5.850882026 setrlimit 3.04046
RECEIVE_SMS 5.431887402 socketpair 3.024955
READ_SMS 4.272869115 getrlimit 2.943412
ACCESS_COARSE_LOCATION | 4.141156216 uname 2.881312
ACCESS_WIFI_STATE 3.833775255 setsockopt 2.571311
CALL_PHONE 3.76863352 SYS_312 2.190685
ACCESS_FINE_LOCATION 3.731631844 SYS-339 2.053392

Table 7.5 presents the top 20 permissions and system calls when the proposed ranking
method was applied to the hybrid category Training dataset. The permission READ_PHONE_STATE
again ranks highest with a score of 6.904832, while WRITE_VOICEMAIL is at the bottom of the

list comprising 456 attributes.

193

Table 7.5: Top 20 features ranked according to their Discrimination scores for the Hybrid
category

Permissions and System calls Discrimination Score
READ_PHONE_STATE 6.904832
INTERNET 6.264181
SEND_SMS 6.08984
ACCESS_NETWORK_STATE 5.850882
RECEIVE_SMS 5.431887
READ_SMS 4.272869
ACCESS_COARSE_LOCATION 4.141156
ACCESS_WIFI_STATE 3.833775
CALL_PHONE 3.768634
ACCESS_FINE_LOCATION 3.731632
sysinfo 3.431581
KILL_.BACKGROUND_PROCESSES 3.223883
getpriority 3.203326
SYSTEM_ALERT_WINDOW 3.176393
SYS_333 3.1282
setrlimit 3.04046
socketpair 3.024955
BIND_DEVICE_ADMIN 2.970807
getrlimit 2.943412
nr_permissions 2.925607

7.5.2 Classification results on the Testing dataset

In this subsection, we present the classification results obtained by applying ML and DL
algorithms to the Testing datasets for three categories analyzed in our study. Figure 7.2 illus-
trates the highest classification accuracy obtained as the number of features used in the three
category datasets is varied. It is important to note that classification accuracies were recorded
for the entire set of features. However, the figure only displays the range from five to 130
features to highlight that no significant improvement in classification accuracy was observed

beyond a certain number of iterations.

Figure 7.2 illustrates our classification results. Initially, we applied ML and DL classifiers
to the static Testing dataset, ranking features by the Discrimination Score-based ranking method.
Starting with the top-ranked feature, we measured classification accuracy for identifying mal-
ware categories. As more features were added, accuracy improved. Using the top five per-
missions yielded 78.58% accuracy with the Bagging Classifier (BC). Accuracy increased with
additional permissions, reaching a peak of 94% with 45 permissions using the Random For-
est (RF) classifier. Thus, 45 permissions were deemed optimal, achieving 94% accuracy with
27% of the total 167 permissions. Next, for the dynamic 7esting dataset, ML and DL algo-
rithms were applied to system calls. With 5 system calls, we achieved 56.1% accuracy using
the Support Vector Machine (SVM) classifier. Accuracy improved with more system calls,

peaking at 90.99% with 115 system calls, using 40% of the total 289 system calls.

194

100
65 features - 95.6 %

[{e]
a

45 permissions — 94 %

©
o

—&
115 sys calls - 90.99%

[o¢]
al

Accuracy (in%o)

~
o

65
60

55
5 15 25 35 45 55 65 75 85 95 105 115 125

Static —Dynamic —Hybrid Number of features used

Figure 7.2: Classification results obtained by applying the ML and DL classifiers to the static,
dynamic, and hybrid category datasets

Lastly, we evaluated the hybrid dataset with both permissions and system calls using the
Discrimination Score-based method. Initially, the top five features yielded 78.58% accuracy
with the BC classifier. As more features were added, the highest accuracy reached 95.6% with

65 combined features, utilizing 14% of the total 456 features in our study.

To provide a concise understanding of the classification results, Table 7.6 presents the multi-
category classification outcomes using ML and DL classifiers on the three-category Testing
datasets. The results show that using 45 permissions achieves the highest accuracy of 94% for

static analysis, while dynamic analysis with 115 system calls reaches a maximum accuracy of

90.99%.

Table 7.6: Compiled classification results obtained by applying the ML and DL classifiers to
the static, dynamic, and hybrid category datasets

Number of features | Classfication accuracy using various machine learning and deep learning classifiers

used (in %)

DT RF SVM BC NB LR MLP ANN DNN
45 permissions 92.86 94 85.21 93.47 72.67 86.72 93.15 41.7 41.7
115 system calls 85.67 90.99 54.75 89.64 30.49 64.98 71.97 40.66 40.66

65 permissions and | 93.52 95.6 55.85 94.79 67.35 76.91 84.41 45.64 45.84
system calls

These findings highlight that while static and dynamic analyses each have their strengths, they
also have limitations when used independently. Static analysis may miss dynamic behaviors, and
dynamic analysis can overlook critical static attributes. However, a hybrid approach combining
both techniques leverages their strengths. The proposed model achieved a higher accuracy of

95.6% with only 65 features, demonstrating its superior efficacy in accurately classifying the

195

datasets.

To further demonstrate the applicability and robustness of the proposed hybrid detection
framework, an additional experiment was conducted to explore malware family classifica-
tion. Although the primary focus of this research remains on multi-category classification, this
extended analysis aimed to assess whether the proposed model could also capture finer dis-
tinctions among malware belonging to different families, such as Agent, FakeApp, Fakeinst, and
Boxer. Family-level classification represents a more granular task, where malware samples are
grouped according to shared traits such as code structure, behavioural signatures, or propaga-
tion methods. In practical cybersecurity scenarios, this level of analysis is highly valuable, as
it provides deeper insights into the lineage, intent, and operational mechanisms of malicious

applications.

While binary and multi-category classification identify whether an application is harmful
and the general type of threat it poses, family classification enables a more context-aware un-
derstanding of malware behaviour. Recognizing that two samples belong to the same family
often reveals shared attack strategies, persistence techniques, or common origins, which aids in
threat intelligence, forensic analysis, and targeted mitigation. Such information allows security
professionals to design more precise countermeasures and track the evolution of malware cam-
paigns over time. However, it must also be acknowledged that the Android malware ecosystem
contains a vast and continuously expanding set of families, making exhaustive family-level de-

tection an extensive and challenging research problem.

In this study, a preliminary attempt was made to classify a limited set of eight representative
malware families—namely Airpush, Agent, FakeApp, Kuguo, Dowgin, Youmi, Fakeinst, and Boxer.
The experiment employed the same testing dataset and the top 65 ranked hybrid features used
in the primary classification framework. The proposed model achieved a maximum accuracy
of 86% in distinguishing between these families, indicating that the selected hybrid features
retained strong discriminative capability even at a finer level of granularity. Although this
experiment does not represent comprehensive family classification, it effectively demonstrates
the scalability and adaptability of the proposed hybrid approach. Future research may expand
on this direction by incorporating larger and more diverse malware family datasets, thereby
further enhancing the practical relevance and generalization ability of the framework in real-

world Android malware detection environments.

196

7.6 Conclusion and Future Work

In conclusion, our research highlights the effectiveness of an Android malware multi-category
classification model centering on Discrimination Score-based ranking that integrates static and
dynamic features for superior classification accuracy. Static analysis achieved 94% accuracy
using 45 permissions (27% of 167 permissions), while dynamic analysis reached 90.99% with
115 system calls (40% of 289 system calls). However, our hybrid model outperformed both,
achieving 95.6% accuracy with just 65 features (14% of 456 permissions and system calls).
This significant reduction in features while improving accuracy underscores the advantage of
combining static and dynamic methods. Introducing the Class Discrimination Strength vector and
Discrimination Score-based ranking methods have been crucial in enhancing feature selection
and model efficiency. Our findings advocate strongly for hybrid models in malware detection
to combat evolving cyber threats. Future work will focus on expanding our model to include

comprehensive malware family classification alongside multi-category classification.

Chapter 8

Conclusion, Future Scope, and Social

Impact

Smartphones have surpassed desktop systems in popularity due to their feature-rich applica-
tions, offering a wide range of services from online shopping and gaming to location-based
functionalities. They have become integral to daily life, often considered more powerful than
early personal computers. However, the increasing reliance on smartphones has led to a signif-
icant surge in malware attacks, particularly targeting Android devices. Malicious applications
can infiltrate smartphones through SMS, MMS, Bluetooth, internet downloads, or app stores,
including both official and third-party platforms. These attacks pose serious risks such as sys-
tem damage, financial loss, and data breaches. Consequently, Android malware detection has
garnered substantial attention within the research community in recent years, driven by the

escalating frequency of attacks.

This chapter concludes the thesis by summarizing its key contributions, reviewing the pro-
posed models for Android malware detection, and demonstrating their alignment with the
established objectives. Additionally, it highlights several open challenges in the literature,
underscoring critical areas that require further investigation in future research. Finally, it con-
cludes with a subsection on the social impact of this work, emphasizing its significance in

fostering a safer digital environment in today’s malware-prone world.”

8.1 Conclusion

In this section, we summarize the findings and contributions made in this thesis:

197

198

1. Features in the AndroidManifest file, such as permissions, intents, and hardware com-

ponents, often overlap between benign and malicious applications. For instance, the
INTERNET permission is widely used across both classes, making it difficult to distin-
guish malicious behavior. To address this challenge, Chapter 3 introduced PHIGrader, a
system that ranks and evaluates static features—permissions, intents, and hardware com-
ponents—using frequency-based Multi-Criteria Decision-Making (MCDM) techniques, in-
cluding TOPSIS, EDAS, and WASPAS. First, features are ranked to identify the most dis-
criminative ones. Leveraging these ranked features with machine learning and deep
learning classifiers, PHIGrader achieved optimal detection performance. Notably, se-
lecting the top 46 features via TOPSIS yielded a detection accuracy of 99.10%, outper-
forming models based on single feature types or other MCDM methods. Building on the
idea of combining feature strengths to mitigate individual limitations, Chapter 4 intro-
duced PHIAnalyzer, which explores seven distinct combinations of the three feature types
to identify the most effective subset. The proposed model employs a frequency-based
Chi-square ranking test followed by a novel detection algorithm. PHIAnalyzer achieved
98.49% accuracy using only 12 features—a balanced combination of six permissions
and six intents—demonstrating better accuracy and efficiency compared to state-of-the-

art methods.

Despite their success, both approaches were limited by static analysis, which struggles
with the inability to capture runtime behavior. To overcome these drawbacks, the sub-
sequent chapter proposed a dynamic, network traffic-based detection mechanism. This
approach offers deeper behavioral insights, addressing the limitations of static analysis

and improving malware detection.

Analyzing network traffic usage patterns has proven to be an effective approach for de-
tecting malware, making network traffic flows a key resource in Android malware detec-
tion. However, significant similarities exist in traffic feature patterns between benign and
malicious applications. Chapter 5 introduced a robust and efficient Android malware de-
tection system based on dynamic analysis, leveraging critical features derived from the
TCP flows of application network data. To address feature-class and feature-feature
correlations, we rank features using the statistical measure crRelevance and reduce re-
dundancy through Normalized Mean Residue Similarity (NMRS). The experimental results
highlighted that our NMRS-based detection algorithm, applied to crRelevance rankings,

effectively reduced the feature set while achieving 99.50% accuracy by considering two

199

network traffic features: Packet_size_received and Time_interval_between_packets_received.
Moreover, the proposed algorithm outperforms various state-of-the-art Android mal-
ware detection techniques. While dynamic analysis addresses many limitations of static
analysis, it introduces challenges of itself too. For instance, not all malware samples

generate detectable network traffic, as some discreetly transmit data in the background.

Hence, we can say both static and dynamic analyses have demonstrated significant mer-
its, as evidenced by their widespread adoption among researchers and practitioners for
Android malware detection. However, each method, when used in isolation, suffers from
inherent limitations. In order to integrate the strengths of both methods, the next chapter

proposed a hybrid detection approach.

. Chapter 6 emphasized the importance of hybrid detection models by introducing two hy-
brid analysis-based methods. Firstly, we introduced AndroV-Rank, a novel Android mal-
ware detection framework leveraging the VIKOR MCDM approach based on frequency,
attributes, and criteria. This approach ranked static permissions and dynamically ex-
tracted system calls to identify optimal class-distinguishing features for enhanced detec-
tion accuracy. The proposed hybrid algorithm, combining machine learning (ML) and
deep learning (DL) techniques, further optimized feature selection. Experimental results
demonstrated a detection accuracy of 96.55% using only 65 features, reducing the fea-
ture set to approximately 24.9% of the original size. In our prior works, we employed
various machine and deep learning algorithms, widely adopted in Android malware de-
tection for their advantages. However, traditional methods often face challenges, such
as being hindered by computational demands despite their higher accuracy. Moreover,
for machine learning models like Decision Trees, SVM, and Naive Bayes, imbalanced
data—where one class significantly outweighs others—can lead to the underrepresenta-

tion of minority classes.

These limitations in static and dynamic analysis, coupled with challenges in ML-based
approaches, motivated the development of a simple yet robust hybrid detection model.
Hence, we further introduced PattMatch, an instance-based pattern-matching classifier
utilizing Average Weighted Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR).
This model predicted class labels by matching test sample patterns with training pat-
terns, significantly reducing the feature set to the most relevant attributes. Experimental
results validated its performance, achieving 99.93% accuracy with only 10 attributes.

Unlike conventional ML and DL classifiers, PartMatch demonstrated superior detection

200

accuracy, underscoring the robustness and efficiency of the proposed hybrid framework.
Binary classification is crucial for distinguishing Android apps as benign or malicious,
laying the foundation for malware detection. However, modern malware, including Ad-
ware, Fraudware Trojans, Spyware, and Ransomware, varies widely in signatures and at-
tack methods. Researchers have moved beyond binary classification to explore multi-
category classification to address these complexities. The next chapter focuses on this

advanced approach to categorize malware types more effectively.

Chapter 7 presented two models developed for the multicategory classification of An-
droid malware into four distinct categories: Adware, Fraudware Trojans, Ransomware, and
Spyware. These models focused on achieving high classification accuracy while reducing
the feature set size. The first model, leveraging dynamic analysis, utilized system calls
ranked through the ReliefF algorithm. Experimental results demonstrated that the opti-
mal feature subset included 70 system calls out of 289, yielding an accuracy of 94.50%

and reducing the feature set by approximately 75.6%.

In contrast, the second model, AndroMultiCat, employed a hybrid analysis approach by
integrating static permissions with dynamic system calls for improved performance.
The model prioritized features based on a Discrimination Score-based ranking. In-
dividually, static analysis achieved 94% accuracy with 45 permissions (27% of 167),
and dynamic analysis achieved 90.99% accuracy with 115 system calls (40% of 289).
However, the hybrid model surpassed both, attaining 95.6% accuracy with just 65 fea-
tures—comprising 14% of the combined 456 permissions and system calls. This high-
lights the efficacy of hybrid analysis in optimizing feature usage while enhancing detec-

tion accuracy.

8.2 Future Scope

Recent and stealthier Android Malware still poses many challenges for the research commu-

nity that need to be further studied. This section identifies some future research scope where

research is needed.

1. In this thesis, we primarily focused on classification tasks, including a decent attempt

at multi-category classification of Android malware. However, malware also exists in
various families, each with distinct characteristics and attack patterns, such as the Droid-

KungFu, DroidDream, and BankBot families. These families represent groups of malware

201

with shared behaviors or origins, making their detection and accurate classification cru-
cial for devising targeted defense mechanisms. In our future work, we aim to expand the
capabilities of our model by incorporating malware family classification ([140], [141],
[142]) alongside the binary and multi-category classification explored in this thesis .
This enhancement will enable more comprehensive malware analysis and facilitate bet-
ter understanding of familial traits, thereby improving detection and mitigation strate-

gies.

. At the current stage, the proposed detection frameworks have been developed and eval-
uated as a standalone model rather than a fully deployed Android application or web-
based system. Hence, the present work primarily focuses on classification accuracy
and feature optimization, without extending the analysis to real-time operational aspects
such as processing latency, memory footprint, or energy consumption. These factors are
crucial for practical deployment, as excessive processing time, memory usage, or battery

drain can reduce system performance and user acceptance.

Future research will therefore aim to integrate the proposed model within an actual An-
droid environment or emulator to quantitatively evaluate these metrics under real device
conditions. Assessing processing speed will ensure responsiveness during detection,
memory evaluation will confirm compatibility with resource-constrained devices, and
energy analysis will determine long-term usability. Such evaluation, combined with real-
world testing on physical or emulated devices, will strengthen the framework’s practical
relevance and ensure that it performs efficiently not only in offline analysis but also in

real-world Android ecosystems.

. Another important direction for future research involves evaluating the robustness of the
proposed detection framework against adversarial malware and evasion techniques. Ad-
versarial malware refers to malicious applications that are intentionally modified to de-
ceive machine learning classifiers by altering features such as permissions, API calls, or
network behaviors without changing their harmful intent. Similarly, evasion techniques
enable malware to disguise its behavior or structure to avoid detection, using methods
such as code obfuscation, dynamic code loading, or mimicry of benign applications.
These techniques pose significant challenges to static, dynamic, and hybrid detection
models, as they can effectively bypass conventional analysis mechanisms. Investigating

how the proposed model performs when exposed to such adversarial or evasive samples

202

will be essential for assessing its real-world resilience. Incorporating adversarial training
and robust evaluation strategies in future work can therefore enhance the framework’s
capability to withstand evolving Android malware that deliberately adapts to evade de-

tection.

4. The models proposed in this thesis, in their current form, do not address the detection
of colluding apps. Colluding apps refer to a group of malicious applications that com-
municate covertly to share permissions or data, bypassing security measures to execute
malicious activities collectively. As this poses a significant threat to Android security,
future work will focus on extending our models to identify and mitigate such collusion
by incorporating inter-app communication patterns and advanced contextual analysis

techniques.

5. The research community typically identifies Android malware only after it has emerged
in the market and infected numerous mobile devices globally. To address this, detection
mechanisms must be designed to identify stealthier malware as soon as it enters official
or third-party app stores. Existing anti-malware solutions, including Google’s Bouncer,
have consistently struggled to mitigate new or zero-day malicious applications. There-
fore, robust and proactive solutions are essential to detect Android malware before it

compromises mobile devices.

8.3 Social Impact of the proposed research

The rapid adoption of Android as the dominant mobile operating system has revolutionized
connectivity, communication, and productivity. However, this ubiquity has also made An-
droid devices a prime target for malware developers, leading to an alarming rise in malicious
applications. The increasing dependency on Android devices for sensitive activities, such as
financial transactions, health monitoring, and personal communication, amplifies the societal
risks posed by malware. Our work addresses this pressing challenge by developing advanced

detection models that improve malware identification and safeguard users’ digital lives.

The hybrid detection models proposed in this research combine static and dynamic analysis
techniques, ensuring comprehensive coverage against a diverse range of malware. By lever-
aging cutting-edge algorithms and feature-ranking methods, these models enhance detection

accuracy, enabling early identification and prevention of malware attacks. This contributes

203

not only to the protection of individual devices but also strengthens the broader cybersecurity

infrastructure, which is critical in today’s interconnected digital ecosystem.

The societal relevance of this work extends beyond technical advancements, as it promotes
user trust in digital technologies. By mitigating threats posed by malicious entities, this re-
search helps ensure the continuity of secure and efficient mobile applications, benefiting busi-
nesses, institutions, and individuals alike. In a world increasingly reliant on mobile devices,
these contributions are pivotal in fostering a safer digital environment, protecting personal

privacy, and enabling equitable access to technology without fear of exploitation.

References

[1]

(2]

(3]

[9]

[10]

Tom Farley. Mobile telephone history. Privateline. com, http://www. privateline. com/wp-

content/uploads/2016/01/TelenorPage_022-034. pdf, 2005.

Muhammad Sarwar and Tariqg Rahim Soomro. Impact of smartphone’s on society. European

Jjournal of scientific research, 98(2):216-226, 2013.

John Callaham. The history of android: The evolution of the biggest mobile os in the world.
Android Authority, 2021.

Parvez Faruki, Ammar Bharmal, Vijay Laxmi, Vijay Ganmoor, Manoj Singh Gaur, Mauro Conti,
and Muttukrishnan Rajarajan. Android security: a survey of issues, malware penetration, and

defenses. IEEE communications surveys & tutorials, 17(2):998-1022, 2014.

Sancheng Peng, Shui Yu, and Aimin Yang. Smartphone malware and its propagation modeling:

A survey. IEEE Communications Surveys & Tutorials, 16(2):925-941, 2013.

Jon Oberheide and Charlie Miller. Dissecting the android bouncer. SummerCon2012, New York,
95:110, 2012.

Yajin Zhou and Xuxian Jiang. Dissecting android malware: Characterization and evolution. In

2012 IEEE symposium on security and privacy, pages 95-109. IEEE, 2012.

Jonathan J Davis and Andrew J Clark. Data preprocessing for anomaly based network intrusion

detection: A review. computers & security, 30(6-7):353-375, 2011.

Muhammad Fahad Umer, Muhammad Sher, and Yaxin Bi. Flow-based intrusion detection:

Techniques and challenges. Computers & Security, 70:238-254, 2017.

Nir Nissim, Robert Moskovitch, Oren BarAd, Lior Rokach, and Yuval Elovici. Aldroid: efficient
update of android anti-virus software using designated active learning methods. Knowledge and

Information Systems, 49:795-833, 2016.

205

206

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Alejandro Martin, Radl Lara-Cabrera, and David Camacho. Android malware detection through
hybrid features fusion and ensemble classifiers: The andropytool framework and the omnidroid

dataset. Information Fusion, 52:128-142, 2019.

Tao Peng, Bochao Hu, Junping Liu, Junjie Huang, Zili Zhang, Ruhan He, and Xinrong Hu. A
lightweight multi-source fast android malware detection model. Applied Sciences, 12(11):5394,
2022.

Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Machine learning aided
android malware classification. Computers & Electrical Engineering, 61:266-274, 2017.

Abdirashid Ahmed Sahal, Shahid Alam, and Ibrahim Sogukpinar. Mining and detection of
android malware based on permissions. In 2018 3rd International Conference on Computer

Science and Engineering (UBMK), pages 264-268. IEEE, 2018.

Durmus Ozkan Sahin, Sedat Akleylek, and Erdal Kilic. Linregdroid: Detection of android
malware using multiple linear regression models-based classifiers. IEEE Access, 10:14246—

14259, 2022.

Jin Li, Lichao Sun, Qiben Yan, Zhigiang Li, Witawas Srisa-An, and Heng Ye. Significant
permission identification for machine-learning-based android malware detection. IEEE Trans-

actions on Industrial Informatics, 14(7):3216-3225, 2018.

Durmus Ozkan Sahin, Oguz Emre Kural, Sedat Akleylek, and Erdal Kilic. New results on
permission based static analysis for android malware. In 2018 6th International Symposium on

Digital Forensic and Security (ISDFS), pages 1-4. IEEE, 2018.

Kabakus Abdullah Talha, Dogru Ibrahim Alper, and Cetin Aydin. Apk auditor: Permission-

based android malware detection system. Digital Investigation, 13:1-14, 2015.

Arvind Mahindru and Paramvir Singh. Dynamic permissions based android malware detection
using machine learning techniques. In Proceedings of the 10th innovations in software engi-

neering conference, pages 202-210, 2017.

Ibrahim Alper Dogru and Murat Onder. Appperm analyzer: malware detection system based on
android permissions and permission groups. International Journal of Software Engineering and

Knowledge Engineering, 30(03):427-450, 2020.

Fengjun Shang, Yalin Li, Xiaolin Deng, and Dexiang He. Android malware detection method
based on naive bayes and permission correlation algorithm. Cluster Computing, 21(1):955-966,

2018.

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

207

Franklin Tchakounté, A Djakene Wandala, and Yélémou Tiguiane. Detection of android mal-

ware based on sequence alignment of permissions. Int. J. Comput.(1JC), 35(1):26-36, 2019.

Seung-hwan Ju, Hee-suk Seo, and Jin Kwak. Research on android malware permission pattern
using permission monitoring system. Multimedia Tools and Applications, 75:14807-14817,
2016.

Soussi ITham, Ghadi Abderrahim, and Boudhir Anouar Abdelhakim. Permission based malware
detection in android devices. In Proceedings of the 3rd International Conference on Smart City

Applications, pages 1-6, 2018.

Gianni D’ Angelo, Francesco Palmieri, and Antonio Robustelli. A federated approach to android

malware classification through perm-maps. Cluster Computing, 25(4):2487-2500, 2022.

Ping Xiong, Xiaofeng Wang, Wenjia Niu, Tianqing Zhu, and Gang Li. Android malware detec-

tion with contrasting permission patterns. China Communications, 11(8):1-14, 2014.

Tianliang Lu and Su Hou. A two-layered malware detection model based on permission for
android. In 2018 IEEFE International Conference on Computer and Communication Engineering

Technology (CCET), pages 239-243. IEEE, 2018.

K Kavitha, P Salini, and V Ilamathy. Exploring the malicious android applications and reducing
risk using static analysis. In 2016 International Conference on Electrical, Electronics, and

Optimization Techniques (ICEEOT), pages 1316-1319. IEEE, 2016.

Eslam Amer. Permission-based approach for android malware analysis through ensemble-based
voting model. In 2021 International Mobile, Intelligent, and Ubiquitous Computing Conference
(MIUCC), pages 135-139. IEEE, 2021.

Sujata Chakravarty et al. Feature selection and evaluation of permission-based android mal-
ware detection. In 2020 4th International Conference on Trends in Electronics and Informatics

(ICOEI)(48184), pages 795-799. IEEE, 2020.

P Sirisha, T Anuradha, et al. Detection of permission driven malware in android using deep
learning techniques. In 2019 3rd International conference on Electronics, Communication and

Aerospace Technology (ICECA), pages 941-945. IEEE, 2019.

Hao Peng, Chris Gates, Bhaskar Sarma, Ninghui Li, Yuan Qi, Rahul Potharaju, Cristina Nita-
Rotaru, and Ian Molloy. Using probabilistic generative models for ranking risks of android apps.

In Proceedings of the 2012 ACM conference on Computer and communications security, pages

241-252,2012.

208

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. {WHYPER}: To-
wards automating risk assessment of mobile applications. In 22nd USENIX Security Symposium

(USENIX Security 13), pages 527-542, 2013.

Aiman A Abu Samra, Kangbin Yim, and Osama A Ghanem. Analysis of clustering technique
in android malware detection. In 2013 Seventh International Conference on Innovative Mobile

and Internet Services in Ubiquitous Computing, pages 729-733. IEEE, 2013.

Win Zaw Zarni Aung. Permission-based android malware detection. International Journal of

Scientific & Technology Research, 2(3):228-234, 2013.

Borja Sanz, Igor Santos, Carlos Laorden, Xabier Ugarte-Pedrero, Pablo Garcia Bringas, and
Gonzalo Alvarez. Puma: Permission usage to detect malware in android. In International joint

conference CISIS’I12-ICEUTE 12-SOCO 12 special sessions, pages 289-298. Springer, 2013.

Veelasha Moonsamy, Jia Rong, and Shaowu Liu. Mining permission patterns for contrasting
clean and malicious android applications. Future Generation Computer Systems, 36:122—132,

2014.

Michael Backes, Sebastian Gerling, Christian Hammer, Matteo Maffei, and Philipp von Styp-
Rekowsky. Appguard—enforcing user requirements on android apps. In Tools and Algorithms for
the Construction and Analysis of Systems: 19th International Conference, TACAS 2013, Held
as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2013,
Rome, Italy, March 16-24, 2013. Proceedings 19, pages 543—548. Springer, 2013.

Hiroya Kato, Takahiro Sasaki, and Iwao Sasase. Android malware detection based on composi-

tion ratio of permission pairs. IEEE Access, 9:130006-130019, 2021.

Suleiman Y Yerima, Sakir Sezer, and Gavin McWilliams. Analysis of bayesian classification-

based approaches for android malware detection. IET Information Security, 8(1):25-36, 2014.

Yousef Seyfari and Akbar Meimandi. A new approach to android malware detection using
fuzzy logic-based simulated annealing and feature selection. Multimedia Tools and Applications,

pages 1-25, 2023.

Arvind Mahindru and AL Sangal. Fsdroid:-a feature selection technique to detect malware from
android using machine learning techniques: Fsdroid. Multimedia Tools and Applications, 80:

13271-13323, 2021.

Maham Chaudhary and Ammar Masood. Realmalsol: real-time optimized model for android
malware detection using efficient neural networks and model quantization. Neural Computing

and Applications, 35(15):11373-11388, 2023.

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

209

Hashida Haidros Rahima Manzil and S Manohar Naik. Android ransomware detection using
a novel hamming distance based feature selection. Journal of Computer Virology and Hacking

Techniques, pages 1-23, 2023.

Hongpeng Bai, Nannan Xie, Xiaogiang Di, and Qing Ye. Famd: A fast multifeature android
malware detection framework, design, and implementation. IEEE Access, 8:194729-194740,
2020.

Moutaz Alazab, Mamoun Alazab, Andrii Shalaginov, Abdelwadood Mesleh, and Albara Awa-
jan. Intelligent mobile malware detection using permission requests and api calls. Future Gen-

eration Computer Systems, 107:509-521, 2020.

Parnika Bhat and Kamlesh Dutta. A multi-tiered feature selection model for android malware de-
tection based on feature discrimination and information gain. Journal of King Saud University-

Computer and Information Sciences, 34(10):9464-9477, 2022.

Jun Song, Chunling Han, Kaixin Wang, Jian Zhao, Rajiv Ranjan, and Lizhe Wang. An integrated
static detection and analysis framework for android. Pervasive and Mobile Computing, 32:15—

25, 2016.

Diyana Tehrany Dehkordy and Abbas Rasoolzadegan. A new machine learning-based method
for android malware detection on imbalanced dataset. Multimedia Tools and Applications, 80:

24533-24554, 2021.

Duc V Nguyen, Giang L. Nguyen, Thang T Nguyen, Anh H Ngo, and Giang T Pham. Minad:
Multi-inputs neural network based on application structure for android malware detection. Peer-

to-Peer Networking and Applications, pages 1-15, 2022.

Ahmad Firdaus, Nor Badrul Anuar, Mohd Faizal Ab Razak, and Arun Kumar Sangaiah. Bio-
inspired computational paradigm for feature investigation and malware detection: interactive

analytics. Multimedia Tools and Applications, 77:17519-17555, 2018.

MYV Varsha, P Vinod, and KA Dhanya. Identification of malicious android app using manifest
and opcode features. Journal of Computer Virology and Hacking Techniques, 13:125-138, 2017.

Lichao Sun, Xiaokai Wei, Jiawei Zhang, Lifang He, S Yu Philip, and Witawas Srisa-an. Contam-
inant removal for android malware detection systems. In 2017 IEEE International Conference

on Big Data (Big Data), pages 1053—-1062. IEEE, 2017.

Hemant Rathore, Adarsh Nandanwar, Sanjay K Sahay, and Mohit Sewak. Adversarial superi-
ority in android malware detection: Lessons from reinforcement learning based evasion attacks

and defenses. Forensic Science International: Digital Investigation, 44:301511, 2023.

210

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

Mothanna Almahmoud, Dalia Alzu’bi, and Qussai Yaseen. Redroiddet: android malware detec-

tion based on recurrent neural network. Procedia Computer Science, 184:841-846, 2021.

Arvind Mahindru and AL Sangal. Somdroid: Android malware detection by artificial neural

network trained using unsupervised learning. Evolutionary Intelligence, 15(1):407—437, 2022.

Rahim Taheri, Meysam Ghahramani, Reza Javidan, Mohammad Shojafar, Zahra Pooranian, and
Mauro Conti. Similarity-based android malware detection using hamming distance of static

binary features. Future Generation Computer Systems, 105:230-247, 2020.

Seif ElDein Mohamed, Mostafa Ashaf, Amr Ehab, Omar Shereef, Haytham Metwaie, and Eslam
Amer. Detecting malicious android applications based on api calls and permissions using ma-
chine learning algorithms. In 2021 International Mobile, Intelligent, and Ubiquitous Computing
Conference (MIUCC), pages 1-6. IEEE, 2021.

Shina Sheen, R Anitha, and V Natarajan. Android based malware detection using a multifeature

collaborative decision fusion approach. Neurocomputing, 151:905-912, 2015.

Arvind Mahindru and AL Sangal. Mldroid—framework for android malware detection using

machine learning techniques. Neural Computing and Applications, 33(10):5183-5240, 2021.

Rahim Taheri, Reza Javidan, and Zahra Pooranian. Adversarial android malware detection for
mobile multimedia applications in iot environments. Multimedia Tools and Applications, 80:

16713-16729, 2021.

Arvind Mahindru and AL Sangal. Semidroid: a behavioral malware detector based on unsuper-
vised machine learning techniques using feature selection approaches. International Journal of

Machine Learning and Cybernetics, 12:1369-1411, 2021.

Nannan Xie, Xing Wang, Wei Wang, and Jigiang Liu. Fingerprinting android malware families.

Frontiers of Computer Science, 13:637-646, 2019.

Mohammed N AlJarrah, Qussai M Yaseen, and Ahmad M Mustafa. A context-aware android

malware detection approach using machine learning. Information, 13(12):563, 2022.

PC Senthil Mahesh and S Hemalatha. An efficient android malware detection using adaptive red

fox optimization based cnn. Wireless Personal Communications, 126(1):679-700, 2022.

Mohammad Reza Keyvanpour, Mehrnoush Barani Shirzad, and Farideh Heydarian. Android
malware detection applying feature selection techniques and machine learning. Multimedia

Tools and Applications, 82(6):9517-9531, 2023.

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

211

Arvind Mahindru and AL Sangal. Hybridroid: an empirical analysis on effective malware detec-
tion model developed using ensemble methods. The Journal of Supercomputing, 77:8209-8251,
2021.

Junmei Sun, Kai Yan, Xuejiao Liu, Chunlei Yang, and Yaoyin Fu. Malware detection on android
smartphones using keywords vector and svm. In 2017 IEEE/ACIS 16th International Conference
on Computer and Information Science (ICIS), pages 833-838. IEEE, 2017.

Daniel Arp, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck, and CERT
Siemens. Drebin: Effective and explainable detection of android malware in your pocket. In

Ndss, volume 14, pages 23-26, 2014.

Hui-juan Zhu, Wei Gu, Liang-min Wang, Zhi-cheng Xu, and Victor S Sheng. Android malware
detection based on multi-head squeeze-and-excitation residual network. Expert Systems with

Applications, 212:118705, 2023.

Miilhem Ibrahim, Bayan Issa, and Muhammed Basheer Jasser. A method for automatic android
malware detection based on static analysis and deep learning. IEEE Access, 10:117334-117352,
2022.

Abdullah Talha Kabakus. Droidmalwaredetector: A novel android malware detection frame-
work based on convolutional neural network. Expert Systems with Applications, 206:117833,
2022.

Wei Yuan, Yuan Jiang, Heng Li, and Minghui Cai. A lightweight on-device detection method
for android malware. [EEE transactions on systems, man, and cybernetics: systems, 51(9):

5600-5611, 2019.

Wenbo Fang, Junjiang He, Wenshan Li, Xiaolong Lan, Yang Chen, Tao Li, Jiwu Huang, and
Linlin Zhang. Comprehensive android malware detection based on federated learning architec-

ture. IEEE Transactions on Information Forensics and Security, 18:3977-3990, 2023.

Cuiying Gao, Minghui Cai, Shuijun Yin, Gaozhun Huang, Heng Li, Wei Yuan, and Xiapu Luo.
Obfuscation-resilient android malware analysis based on complementary features. IEEE Trans-
actions on Information Forensics and Security, 18:5056-5068, 2023. doi: 10.1109/TIFS.2023.
3302509.

Harshit Kumar, Biswadeep Chakraborty, Sudarshan Sharma, and Saibal Mukhopadhyay. Xmd:
An expansive hardware-telemetry-based mobile malware detector for endpoint detection. IEEE
Transactions on Information Forensics and Security, 18:5906-5919, 2023. doi: 10.1109/TTFS.
2023.3318969.

212

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

Ankit Kumar Jain, Ninmoy Debnath, and Arvind Kumar Jain. Apuml: An efficient approach to
detect mobile phishing webpages using machine learning. Wireless Personal Communications,

125(4):3227-3248, 2022.

Marko Dimjasevié, Simone Atzeni, Ivo Ugrina, and Zvonimir Rakamaric. Evaluation of android
malware detection based on system calls. In Proceedings of the 2016 ACM on international

workshop on security and privacy analytics, pages 1-8, 2016.

D Kumar, G Radhamani, P Vinod, M Shojafar, N Kumar, and M Conti. Identification of android

malware using refined system calls. Concurr. Comput. Pract. Exp, 31:e5311, 2019.

Christopher Jun Wen Chew, Vimal Kumar, Panos Patros, and Robi Malik. Real-time system
call-based ransomware detection. International Journal of Information Security, pages 1-20,

2024.

Pengbin Feng, Jianfeng Ma, Cong Sun, Xinpeng Xu, and Yuwan Ma. A novel dynamic android
malware detection system with ensemble learning. /IEEE Access, 6:30996-31011, 2018.

William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-Gon Chun, Landon P
Cox, Jaeyeon Jung, Patrick McDaniel, and Anmol N Sheth. Taintdroid: an information-flow
tracking system for realtime privacy monitoring on smartphones. ACM Transactions on Com-

puter Systems (TOCS), 32(2):1-29, 2014.

Vaibhav Rastogi, Yan Chen, and William Enck. Appsplayground: automatic security analysis of
smartphone applications. In Proceedings of the third ACM conference on Data and application

security and privacy, pages 209-220, 2013.

Mingshen Sun, Tao Wei, and John CS Lui. Taintart: A practical multi-level information-flow
tracking system for android runtime. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 331-342, 2016.

Zhemin Yang, Min Yang, Yuan Zhang, Guofei Gu, Peng Ning, and X Sean Wang. Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security, pages 1043—
1054, 2013.

Alessandro Reina, Aristide Fattori, and Lorenzo Cavallaro. A system call-centric analysis and
stimulation technique to automatically reconstruct android malware behaviors. EuroSec, April,

2013.

Vitor Monte Afonso, Matheus Favero de Amorim, André Ricardo Abed Grégio, Glauco Barroso
Junquera, and Paulo Licio de Geus. Identifying android malware using dynamically obtained

features. Journal of Computer Virology and Hacking Techniques, 11:9-17, 2015.

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

213

Iker Burguera, Urko Zurutuza, and Simin Nadjm-Tehrani. Crowdroid: behavior-based malware
detection system for android. In Proceedings of the 1st ACM workshop on Security and privacy

in smartphones and mobile devices, pages 15-26, 2011.

Min Zheng, Mingshen Sun, and John CS Lui. Droidtrace: A ptrace based android dynamic anal-
ysis system with forward execution capability. In 20714 international wireless communications

and mobile computing conference (IWCMC), pages 128—133. IEEE, 2014.

Mario Almeida, Muhammad Bilal, Alessandro Finamore, Ilias Leontiadis, Yan Grunenberger,
Matteo Varvello, and Jeremy Blackburn. Chimp: Crowdsourcing human inputs for mobile

phones. In Proceedings of the 2018 World Wide Web Conference, pages 45-54, 2018.

Jae-wook Jang, Hyunjae Kang, Jiyoung Woo, Aziz Mohaisen, and Huy Kang Kim. Andro-
dumpsys: Anti-malware system based on the similarity of malware creator and malware centric

information. computers & security, 58:125-138, 2016.

Anshul Arora and Sateesh K Peddoju. Minimizing network traffic features for android mobile
malware detection. In Proceedings of the 18th international conference on distributed computing

and networking, pages 1-10, 2017.

Anshul Arora, Shree Garg, and Sateesh K Peddoju. Malware detection using network traffic
analysis in android based mobile devices. In 2014 Eighth International Conference on Next

Generation Mobile Apps, Services and Technologies, pages 66—71. IEEE, 2014.

Arash Habibi Lashkari, Andi Fitriah A Kadir, Hugo Gonzalez, Kenneth Fon Mbah, and Ali A
Ghorbani. Towards a network-based framework for android malware detection and characteri-
zation. In 2017 15th Annual conference on privacy, security and trust (PST), pages 233-23309.
IEEE, 2017.

Asaf Shabtai, Lena Tenenboim-Chekina, Dudu Mimran, Lior Rokach, Bracha Shapira, and Yu-
val Elovici. Mobile malware detection through analysis of deviations in application network

behavior. Computers & Security, 43:1-18, 2014.

Shanshan Wang, Qiben Yan, Zhenxiang Chen, Bo Yang, Chuan Zhao, and Mauro Conti. De-
tecting android malware leveraging text semantics of network flows. IEEE Transactions on

Information Forensics and Security, 13(5):1096-1109, 2017.

Wenhao Li, Xiao-Yu Zhang, Huaifeng Bao, Qiang Wang, Haichao Shi, and Zhaoxuan Li. A
glimpse of the whole: Detecting few-shot android malware encrypted network traffic. In 2022
IEEE 24th Int Conf on High Performance Computing & Communications; 8th Int Conf on Data
Science & Systems; 20th Int Conf on Smart City, 8th Int Conf on Dependability in Sensor, Cloud

214

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

& Big Data Systems & Application (HPCC/DSS/SmartCity/DependSys), pages 635-644, 2022.
doi: 10.1109/HPCC-DSS-SmartCity-DependSys57074.2022.00111.

Md. Sakir Hossain, Naim Hasan, Md. Abdus Samad, Hossain Md. Shakhawat, Joydeep
Karmoker, Foysol Ahmed, K. F. M. Nafiz Fuad, and Kwonhue Choi. Android ransomware

detection from traffic analysis using metaheuristic feature selection. /IEEE Access, 10:128754—

128763, 2022. doi: 10.1109/ACCESS.2022.3227579.

Tingting Lu and Junfeng Wang. F2dc: Android malware classification based on raw traffic and

neural networks. Computer Networks, 217:109320, 2022.

Hongbo Han, Zhenxiang Chen, Qiben Yan, Lizhi Peng, and Lei Zhang. A real-time android mal-
ware detection system based on network traffic analysis. In Algorithms and Architectures for
FParallel Processing: 15th International Conference, ICA3PP 2015, Zhangjiajie, China, Novem-
ber 18-20, 2015, Proceedings, Part Il 15, pages 504-516. Springer, 2015.

Aqil Zulkifli, Isredza Rahmi A Hamid, Wahidah Md Shah, and Zubaile Abdullah. Android
malware detection based on network traffic using decision tree algorithm. In Recent Advances
on Soft Computing and Data Mining: Proceedings of the Third International Conference on
Soft Computing and Data Mining (SCDM 2018), Johor, Malaysia, February 06-07, 2018, pages
485-494. Springer, 2018.

Ying Pang, Zhenxiang Chen, Xiaomei Li, Shanshan Wang, Chuan Zhao, Lin Wang, Ke Ji, and
Zicong Li. Finding android malware trace from highly imbalanced network traffic. In 2017
IEEE International Conference on Computational Science and Engineering (CSE) and IEEE
International Conference on Embedded and Ubiquitous Computing (EUC), volume 1, pages
588-595. IEEE, 2017.

Jyoti Malik and Rishabh Kaushal. Credroid: Android malware detection by network traffic

analysis. In Proceedings of the 1st acm workshop on privacy-aware mobile computing, pages

28-36, 2016.

Shanshan Wang, Zhenxiang Chen, Qiben Yan, Bo Yang, Lizhi Peng, and Zhongtian Jia. A
mobile malware detection method using behavior features in network traffic. Journal of Network

and Computer Applications, 133:15-25, 2019.

Rong Chen, Yangyang Li, and Weiwei Fang. Android malware identification based on traffic
analysis. In International conference on artificial intelligence and security, pages 293-303.

Springer, 2019.

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

215

Samaneh Mahdavifar, Andi Fitriah Abdul Kadir, Rasool Fatemi, Dima Alhadidi, and Ali A.
Ghorbani. Dynamic android malware category classification using semi-supervised deep learn-
ing. In 2020 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on
Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf
on Cyber Science and Technology Congress, pages 515-522, 2020.

Tianyue Liu, Zhenwan Li, Haixia Long, and Anas Bilal. Nt-gnn: Network traffic graph for 5g

mobile iot android malware detection. Electronics, 12(4):789, 2023.

Djallel Hamouda, Mohamed Amine Ferrag, Nadjette Benhamida, Zine Eddine Kouahla, and
Hamid Seridi. Android malware detection based on network analysis and federated learning. In

Cyber Malware: Offensive and Defensive Systems, pages 23—39. Springer, 2023.

Huanran Wang, Weizhe Zhang, and Hui He. You are what the permissions told me! android
malware detection based on hybrid tactics. Journal of Information Security and Applications,

66:103159, 2022.

Hyunjae Kang, Jae-wook Jang, Aziz Mohaisen, and Huy Kang Kim. Detecting and classifying
android malware using static analysis along with creator information. International Journal of

Distributed Sensor Networks, 11(6):479174, 2015.

Junyang Qiu, Jun Zhang, Wei Luo, Lei Pan, Surya Nepal, Yu Wang, and Yang Xiang. A3cm:
automatic capability annotation for android malware. IEEE Access, 7:147156-147168, 2019.

Suleiman Y Yerima, Sakir Sezer, Gavin McWilliams, and Igor Muttik. A new android malware
detection approach using bayesian classification. In 2013 IEEE 27th international conference

on advanced information networking and applications (AINA), pages 121-128. IEEE, 2013.

Hui-Juan Zhu, Tong-Hai Jiang, Bo Ma, Zhu-Hong You, Wei-Lei Shi, and Li Cheng. Hemd: a
highly efficient random forest-based malware detection framework for android. Neural Com-

puting and Applications, 30:3353-3361, 2018.

Yuan Zhang, Min Yang, Bingquan Xu, Zhemin Yang, Guofei Gu, Peng Ning, X Sean Wang,
and Binyu Zang. Vetting undesirable behaviors in android apps with permission use analysis.
In Proceedings of the 2013 ACM SIGSAC conference on Computer & communications security,
pages 611-622, 2013.

Shuaihao Yang, Zigang Zeng, and Wei Song. Permdroid: automatically testing permission-
related behaviour of android applications. In Proceedings of the 31st ACM SIGSOFT Interna-
tional Symposium on Software Testing and Analysis, pages 593-604, 2022.

Hanxun Zhou, Xinlin Yang, Hong Pan, and Wei Guo. An android malware detection approach

based on simgru. IEEE Access, 8:148404-148410, 2020.

216

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

Zahid Hussain Qaisar and Ruixuan Li. Multimodal information fusion for android malware

detection using lazy learning. Multimedia Tools and Applications, pages 1-15, 2022.

Wei Wang, Zhenzhen Gao, Meichen Zhao, Yidong Li, Jigiang Liu, and Xiangliang Zhang.
Droidensemble: Detecting android malicious applications with ensemble of string and struc-

tural static features. /EEE Access, 6:31798-31807, 2018.

Saba Arshad, Munam A Shah, Abdul Wahid, Amjad Mehmood, Houbing Song, and Hongnian
Yu. Samadroid: a novel 3-level hybrid malware detection model for android operating system.
IEEE Access, 6:4321-4339, 2018.

ML Anupama, P Vinod, Corrado Aaron Visaggio, MA Arya, Josna Philomina, Rincy Raphael,
Anson Pinhero, KS Ajith, and P Mathiyalagan. Detection and robustness evaluation of android
malware classifiers. Journal of Computer Virology and Hacking Techniques, 18(3):147-170,
2022.

Roopak Surendran, Tony Thomas, and Sabu Emmanuel. A tan based hybrid model for android

malware detection. Journal of Information Security and Applications, 54:102483, 2020.

Tianliang Lu, Yanhui Du, Li Ouyang, Qiuyu Chen, and Xirui Wang. Android malware detection
based on a hybrid deep learning model. Security and Communication Networks, 2020:1-11,
2020.

Mohammad Abuthawabeh and Khaled W Mahmoud. Enhanced android malware detection and

family classification, using conversation-level network traffic features. Int. Arab J. Inf. Technol.,
17(4A):607-614, 2020.

Jiayin Feng, Limin Shen, Zhen Chen, Yuying Wang, and Hui Li. A two-layer deep learning
method for android malware detection using network traffic. IEEE Access, 8:125786—125796,
2020.

Syed Ibrahim Imtiaz, Saif ur Rehman, Abdul Rehman Javed, Zunera Jalil, Xuan Liu, and
Waleed S Alnumay. Deepamd: Detection and identification of android malware using high-
efficient deep artificial neural network. Future Generation computer systems, 115:844-856,

2021.

Stephen Feldman, Dillon Stadther, and Bing Wang. Manilyzer: automated android malware
detection through manifest analysis. In 2014 IEEE 11th International Conference on Mobile Ad
Hoc and Sensor Systems, pages 767-772. IEEE, 2014.

Yung-Ching Shyong, Tzung-Han Jeng, and Yi-Ming Chen. Combining static permissions and
dynamic packet analysis to improve android malware detection. In 2020 2nd International

Conference on Computer Communication and the Internet (ICCCI), pages 75-81, 2020.

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

217

Chao Ding, Nurbol Luktarhan, Bei Lu, and Wenhui Zhang. A hybrid analysis-based approach
to android malware family classification. Entropy, 23(8):1009, 2021.

Md Shohel Rana and Andrew H Sung. Evaluation of advanced ensemble learning techniques

for android malware detection. Vietnam Journal of Computer Science, 7(02):145-159, 2020.

Kun Wang, Tao Song, and Alei Liang. Mmda: Metadata based malware detection on android.
In 2016 12th International Conference on Computational Intelligence and Security (CIS), pages
598-602. IEEE, 2016.

Wei Wang, Xing Wang, Dawei Feng, Jigiang Liu, Zhen Han, and Xiangliang Zhang. Explor-
ing permission-induced risk in android applications for malicious application detection. /EEE

Transactions on Information Forensics and Security, 9(11):1869-1882, 2014.

Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon. Androzoo: Collecting
millions of android apps for the research community. In Proceedings of the 13th international

conference on mining software repositories, pages 468—471, 2016.

Jason Papathanasiou, Nikolaos Ploskas, Jason Papathanasiou, and Nikolaos Ploskas. Topsis.
Multiple Criteria Decision Aid: Methods, Examples and Python Implementations, pages 1-30,
2018.

Nese Yal¢in and UNCU Nusin. Applying edas as an applicable mcdm method for industrial
robot selection. Sigma Journal of Engineering and Natural Sciences, 37(3):779-796, 2019.

Ian H Witten and Eibe Frank. Data mining: practical machine learning tools and techniques

with java implementations. Acm Sigmod Record, 31(1):76-77, 2002.

Tadayoshi Fushiki. Estimation of prediction error by using k-fold cross-validation. Statistics

and Computing, 21:137-146, 2011.

Janani Thiyagarajan, A Akash, and Brindha Murugan. Improved real-time permission based
malware detection and clustering approach using model independent pruning. /ET Information

Security, 14(5):531-541, 2020.

Anshul Arora, Sateesh K Peddoju, and Mauro Conti. Permpair: Android malware detection
using permission pairs. IEEE Transactions on Information Forensics and Security, 15:1968—

1982, 2019.

Kartik Khariwal, Jatin Singh, and Anshul Arora. Ipdroid: Android malware detection using
intents and permissions. In 2020 Fourth World Conference on Smart Trends in Systems, Security

and Sustainability (WorldS4), pages 197-202. IEEE, 2020.

218

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Tanmoy Chakraborty, Fabio Pierazzi, and VS Subrahmanian. Ec2: Ensemble clustering and
classification for predicting android malware families. IEEE Transactions on Dependable and

Secure Computing, 17(2):262-277, 2017.

Karim O Elish, Mahmoud O Elish, and Hussain MJ Almohri. Lightweight, effective detection
and characterization of mobile malware families. [EEE Transactions on Computers, T1(11):

2982-2995, 2022.

Ming Fan, Jun Liu, Xiapu Luo, Kai Chen, Zhenzhou Tian, Qinghua Zheng, and Ting Liu. An-
droid malware familial classification and representative sample selection via frequent subgraph

analysis. IEEE Transactions on Information Forensics and Security, 13(8):1890-1905, 2018.

Bo Sun, Takeshi Takahashi, Tao Ban, and Daisuke Inoue. Detecting android malware and clas-
sifying its families in large-scale datasets. ACM Transactions on Management Information Sys-

tems (TMIS), 13(2):1-21, 2021.

Yao Li, Dawei Yuan, Tao Zhang, Haipeng Cai, David Lo, Cuiyun Gao, Xiapu Luo, and He Jiang.
Meta-learning for multi-family android malware classification. ACM Transactions on Software

Engineering and Methodology, 2024.

Francesco Mercaldo and Antonella Santone. Formal equivalence checking for mobile malware
detection and family classification. IEEE Transactions on Software Engineering, 48(7):2643—
2657, 2021.

Qijing Qiao, Ruitao Feng, Sen Chen, Fei Zhang, and Xiaohong Li. Multi-label classification
for android malware based on active learning. IEEE Transactions on Dependable and Secure

Computing, 2022.

Yueming Wu, Shihan Dou, Deqing Zou, Wei Yang, Weizhong Qiang, and Hai Jin. Contrastive
learning for robust android malware familial classification. IEEE Transactions on Dependable

and Secure Computing, 2022.

Samah Alsoghyer and Iman Almomani. On the effectiveness of application permissions for
android ransomware detection. In 2020 6th conference on data science and machine learning

applications (CDMA), pages 94-99. IEEE, 2020.

Gulshan Shrivastava and Prabhat Kumar. Sensdroid: analysis for malicious activity risk of

android application. Multimedia Tools and Applications, 78(24):35713-35731, 2019.

Fauzia Idrees, Muttukrishnan Rajarajan, Thomas M Chen, Yogachandran Rahulamathavan, and
Ayesha Naureen. Andropin: Correlating android permissions and intents for malware detection.
In 2017 8th IEEE Annual Information Technology, Electronics and Mobile Communication Con-
ference (IEMCON), pages 394-399. IEEE, 2017.

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

219

Fauzia Idrees and Muttukrishnan Rajarajan. Investigating the android intents and permissions
for malware detection. In 2014 IEEE [0th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), pages 354-358. IEEE, 2014.

Todd Michael Franke, Timothy Ho, and Christina A Christie. The chi-square test: Often used

and more often misinterpreted. American journal of evaluation, 33(3):448-458, 2012.

Durmus Ozkan Sahin, Oguz Emre Kural, Sedat Akleylek, and Erdal Kilic. A novel permission-
based android malware detection system using feature selection based on linear regression. Neu-

ral Computing and Applications, pages 1-16, 2021.

Yash Sharma and Anshul Arora. Phigrader: Evaluating the effectiveness of manifest file com-
ponents in android malware detection using multi-criteria decision making techniques. Journal

of Network and Computer Applications, 232:104021, 2024.

Yash Sharma and Anshul Arora. Ipanalyzer: A novel android malware detection system using

ranked intents and permissions. Multimedia Tools and Applications, 83:78957—-79008, 2024.

Arash Habibi Lashkari, Andi Fitriah A. Kadir, Laya Taheri, and Ali A. Ghorbani. Toward devel-
oping a systematic approach to generate benchmark android malware datasets and classification.
In the proceedings of the 52nd IEEE International Carnahan Conference on Security Technology
(ICCST), Montreal, Quebec, Canada, 2018.

Laya Taheri, Andi F Abdulkadir, and Arash Habibi Lashkari. Extensible android malware detec-
tion and family classification using network-flows and api-calls. The IEEE (53rd) International

Carnahan Conference on Security Technology, India, 2019.

Arash Habibi Lashkari, Andi Fitriah A. Kadir, Hugo Gonzalez, Kenneth Fon Mbah, and Ali A.
Ghorbani. Towards a network-based framework for android malware detection and characteri-
zation. In In the proceeding of the 15th International Conference on Privacy, Security and Trust,

PST, Calgary, Canada,, pages —, 2017.

Wei Wang, Ming Zhu, Xuewen Zeng, Xiaozhou Ye, and Yigiang Sheng. Malware traffic clas-
sification using convolutional neural network for representation learning. In 2077 International

conference on information networking (ICOIN), pages 712-717. IEEE, 2017.

Mark A Hall. Correlation-based feature selection for machine learning. PhD thesis, The Uni-
versity of Waikato, 1999.

Pallabi Borah, Hasin A Ahmed, and Dhruba K Bhattacharyya. A statistical feature selection
technique. Network Modeling Analysis in Health Informatics and Bioinformatics, 3:1-13, 2014.

220

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

[170]

[171]

[172]

Priyakshi Mahanta, Hasin A Ahmed, Dhruba K Bhattacharyya, and Jugal K Kalita. An effective
method for network module extraction from microarray data. BMC bioinformatics, 13(13):1-11,
2012.

Lars St, Svante Wold, et al. Analysis of variance (anova). Chemometrics and intelligent labo-

ratory systems, 6(4):259-272, 1989.

Patrick E McKnight and Julius Najab. Mann-whitney u test. The Corsini encyclopedia of
psychology, pages 1-1, 2010.

Patrick E McKight and Julius Najab. Kruskal-wallis test. The corsini encyclopedia of psychol-
ogy, pages 1-1, 2010.

Anshul Arora and Sateesh K Peddoju. Ntpdroid: a hybrid android malware detector using
network traffic and system permissions. In 2018 17th IEEE international conference on trust,
security and privacy in computing and communications/12th IEEE international conference on

big data science and engineering (TrustCom/BigDataSE), pages 808—813. IEEE, 2018.

Madan Upadhayay, Ashutosh Sharma, Gourav Garg, and Anshul Arora. Rpndroid: android
malware detection using ranked permissions and network traffic. In 2021 Fifth World Conference

on Smart Trends in Systems Security and Sustainability (WorldS4), pages 19-24. IEEE, 2021.

Vikas Sihag, Surya Prakash, Gaurav Choudhary, Nicola Dragoni, and Ilsun You. Dimda: Deep
learning and image-based malware detection for android. In Futuristic Trends in Networks and
Computing Technologies: Select Proceedings of Fourth International Conference on FTNCT
2021, pages 895-906. Springer, 2022.

Mohammed Alshehri. App-nts: a network traffic similarity-based framework for repacked an-
droid apps detection. Journal of Ambient Intelligence and Humanized Computing, 13(3):1537—
1546, 2022.

Alejandro Guerra-Manzanares, Hayretdin Bahsi, and Sven Nomm. Kronodroid: Time-based
hybrid-featured dataset for effective android malware detection and characterization. Computers

& Security, 110:102399, 2021.

Jitesh J Thakkar. Multi-criteria decision making, volume 336. Springer, 2021.

S Sathya Bama and A Saravanan. Efficient classification using average weighted pattern score
with attribute rank based feature selection. International Journal of Intelligent Systems and

Applications, 10(7):29, 2019.

[173]

[174]

[175]

[176]

[177]

[178]

[179]

[180]

[181]

[182]

[183]

[184]

221

Jack V Tu. Advantages and disadvantages of using artificial neural networks versus logistic
regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11):1225-
1231, 1996.

Stephan Dreiseitl and Lucila Ohno-Machado. Logistic regression and artificial neural network
classification models: a methodology review. Journal of biomedical informatics, 35(5-6):352—

359, 2002.

Sagar S Nikam. A comparative study of classification techniques in data mining algorithms.

Oriental Journal of Computer Science and Technology, 8(1):13-19, 2015.

NK Sreeja and A Sankar. Pattern matching based classification using ant colony optimization

based feature selection. Applied Soft Computing, 31:91-102, 2015.

Parnika Bhat, Sunny Behal, and Kamlesh Dutta. A system call-based android malware detec-
tion approach with homogeneous & heterogeneous ensemble machine learning. Computers &

Security, 130:103277, 2023.

Durmus Ozkan Sahin, Oguz Emre Kural, Sedat Akleylek, and Erdal Kilig. Permission-based
android malware analysis by using dimension reduction with pca and 1da. Journal of Information

Security and Applications, 63:102995, 2021.

Weizhe Zhang, Huanran Wang, Hui He, and Peng Liu. Damba: detecting android malware by
orgb analysis. IEEE Transactions on Reliability, 69(1):55-69, 2020.

Fatma Taher, Omar AlFandi, Mousa Al-kfairy, Hussam Al Hamadi, and Saed Alrabaee. Droid-
detectmw: A hybrid intelligent model for android malware detection. Applied Sciences, 13(13):
7720, 2023.

Ravi Mohan Sharma and Chaitanya P Agrawal. Mh-dldroid: A meta-heuristic and deep learning-
based hybrid approach for android malware detection. Int. J. Intell. Eng. Syst, 15:425-435,2022.

Samaneh Mahdavifar, Dima Alhadidi, and Ali A Ghorbani. Effective and efficient hybrid an-
droid malware classification using pseudo-label stacked auto-encoder. Journal of network and

systems management, 30:1-34, 2022.

Massimo Ficco. Malware analysis by combining multiple detectors and observation windows.

IEEE Transactions on Computers, 71(6):1276—1290, 2021.

Zhipeng Cai, Randy Goebel, Mohammad R Salavatipour, and Guohui Lin. Selecting dissimilar
genes for multi-class classification, an application in cancer subtyping. BMC bioinformatics, 8:

1-15, 2007.

List of Publications

Journals Published

1. Yash Sharma and Anshul Arora. “PHIGrader: Evaluating the effectiveness of Manifest
file components in Android malware detection using Multi Criteria Decision Making
techniques.” Journal of Network and Computer Applications, 232:104021, 2024.

(SCIE, Impact Factor - 7.7)

2. Yash Sharma and Anshul Arora. “A comprehensive review on permissions-based An-
droid malware detection.” International Journal of Information Security, 23:1877-1912,
2024.

(SCIE, Impact Factor — 2.5)

3. Yash Sharma and Anshul Arora. “IPAnalyzer: A novel Android malware detection sys-
tem using ranked Intents and Permissions.” Multimedia Tools and Applications, 83:8957-79008,
2024. (SCOPUS, Impact Factor - 3)*

x - SCIE at the time of publishing

Manuscripts Communicated

1. Yash Sharma and Anshul Arora. “CorrNetDroid: Android Malware Detector leveraging

a Correlation-based Feature Selection for Network Traffic features.” (Communicated)

2. Yash Sharma and Anshul Arora. “PattMatch: An Instance-based Pattern- Matching

classifier for detecting Android malware using hybrid features.” (Communicated)

223

224

Papers presented in Conferences

1. Yash Sharma and Anshul Arora. “AndroV-Rank: Optimized Android Malware Detec-
tion through VIKOR-Ranked Hybrid Features”, 2nd International Intelligent Computing
and Technology Conference (ICTCon 2024) at Central Institute of Technology Kokrajhar,

Assam, India.

2. Yash Sharma and Anshul Arora. “Android Malware Categories through Dynamic Sys-
tem Calls Ranked via ReliefF”, International Conference on Deep Learning, Artificial In-
telligence and Robotics, (ICDLAIR) 2024 at National Institute of Technology Kurukshetra,

India.

Journal of Network and Computer Applications 232 (2024) 104021

Contents lists available at ScienceDirect
NETWORK &

COMPUTER
APPLICATIONS

Journal of Network and Computer Applications

oy 2

journal homepage: www.elsevier.com/locate/jnca

Research paper

PHIGrader: Evaluating the effectiveness of Manifest file components in
Android malware detection using Multi Criteria Decision Making techniques

Yash Sharma's*, Anshul Arora!

Department of Applied Mathematics, Delhi Technological University, Delhi, 110042, India

ARTICLE INFO ABSTRACT
Keywords: The popularity of the Android operating system has itself become a reason for privacy concerns. To deal
Android security with such malware threats, researchers have proposed various detection approaches using static and dynamic

Malware detection features. Static analysis approaches are the most convenient for practical detection. However, several patterns

of feature usage were found to be similar in the normal and malware datasets. Such high similarity in both
datasets’ feature patterns motivates us to rank and select only the distinguishing set of features. Hence, in this
study, we present a novel Android malware detection system, termed as PHIGrader for ranking and evaluating
the efficiency of the three most commonly used static features, namely permissions, intents, and hardware
components, when used for Android malware detection. To meet our goals, we individually rank the three
feature types using frequency-based Multi-Criteria Decision Making (MCDM) techniques, namely TOPSIS and
EDAS. Then, the system applies a novel detection algorithm to the rankings involving machine learning and
deep learning classifiers to present the best set of features and feature type with higher detection accuracy
as an output. The experimental results highlight that our proposed approach can effectively detect Android
malware with 99.10% detection accuracy, achieved with the top 46 intents when ranked using TOPSIS, which
is better than permissions, hardware components, or even the case where other popular MCDM techniques
are used. Furthermore, our experiments demonstrate that the proposed system with frequency-based MCDM
rankings is better than other statistical tests such as mutual information, Pearson correlation coefficient, and
t-test. In addition, our proposed model outperforms various popularly used feature ranking methods such as
Chi-square, Principal Component Analysis (PCA), Entropy-based Category Coverage Difference (ECCD), and
other state-of-the-art Android malware detection techniques in terms of detection accuracy.

Permissions

Intents

Hardware components
Feature ranking

1. Introduction private information, transfer credit into their account by subscribing
to premium services, start unwarranted premium-rate subscriptions of
In the present age and time, there exists an app for almost every SMS services, or even commit advanced frauds.
diversified service required by man, such as online shopping, social
networking, positioning, and navigation. As the statistics report, the
Google Play Store, which now serves as an official app store for the

Android operating system, has witnessed a huge rise in the number

Requirement of Android Malware Detection Systems
In simple words, mobile malware can be defined as any type of
malicious code designed specifically to disrupt the functionality and

of applications over the span of 14 years. If we take a closer look at
the numbers, it has grown from 16 thousand applications in 2009 to
3.553 million applications until 2023, i.e., a huge increase of 3.537
million.> Android dominates the market share with a whooping 68.79%
of the total smartphones being used worldwide, followed by Apple
iOS with around 30% share.® The openness and popularity of Android
makes it the primary target of malicious attackers who attempt to steal

* Corresponding author.

integrity of a mobile system without the user’s consent. The “Quick
Heal Annual Threat Report 2022” shows that there were 1,11,894
malware detections in 2022, which accounts for 1 malware per minute*
and these numbers are expected to steadily grow in the coming years,
especially due to the trend of mobile banking and electronic payment,
to perform various illegal acts such as malicious charges, system dam-
ages, and privacy breaches. The most common malware types include

E-mail addresses: ysharma2098@gmail.com (Y. Sharma), anshull5arora@gmail.com (A. Arora).

1 These authors contributed equally to this work.

2 https://www.bankmycell.com/blog/number-of-google-play-store-apps/
3 https://gs.statcounter.com/os-market-share/mobile/worldwide

4 https://www.quickheal.co.in/documents/threat-report/

https://doi.org/10.1016/j.jnca.2024.104021

Received 30 October 2023; Received in revised form 5 August 2024; Accepted 4 September 2024

Available online 6 September 2024

1084-8045/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, Al training, and similar technologies.

P Refine Your Search Results

‘ Journal of network and computer applications ‘ S¢

Search Results

Found 2,651 results (Page 1) < Share These Results

Exact Match Found

JOURNAL OF NETWORK AND COMPUTER APPLICATIONS

Publisher: ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD , 24-28 OVAL RD, LONDON, ENGLAND, NW1 7DX
ISSN / elSSN: 1084-8045 [1095-8592

Web of Science Core Collection: Science Citation Index Expanded

Additional Web of Science Indexes: Essential Science Indicators

< Share This Jot

International Journal of Information Security
https://doi.org/10.1007/5s10207-024-00822-2

REGULAR CONTRIBUTION o‘)

Check for
updates

A comprehensive review on permissions-based Android malware
detection

1

Yash Sharma'® - Anshul Arora’

© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE 2024

Abstract

The first Android-ready “G1” phone debuted in late October 2008. Since then, the growth of Android malware has been
explosive, analogous to the rise in the popularity of Android. The major positive aspect of Android is its open-source nature,
which empowers app developers to expand their work. However, authors with malicious intentions pose grave threats to
users. In the presence of such threats, Android malware detection is the need of an hour. Consequently, researchers have
proposed various techniques involving static, dynamic, and hybrid analysis to address such threats to numerous features in
the last decade. However, the feature that most researchers have extensively used to perform malware analysis and detection
in Android security is Android permission. Hence, to provide a clarified overview of the latest and past work done in Android
malware analysis and detection, we perform a comprehensive literature review using permissions as a central feature or in
combination with other components by collecting and analyzing 205 studies from 2009 to 2023. We extracted information
such as the choice opted by researchers between analysis or detection, techniques used to select or rank the permissions feature
set, features used along with permissions, detection models employed, malware datasets used by researchers, and limitations
and challenges in the field of Android malware detection to propose some future research directions. In addition, on the basis
of the information extracted, we answer the six research questions designed considering the above factors.

Keywords Android security - Android malware - Permissions based detection - Static detection - Mobile security - Literature
review

1 Introduction

In the last decade, we have witnessed exponential growth of
the Android operating system in the mobile market. Accord-
ing to a recent report, the Android system constitutes more
than 80% of the entire market of smart phones.! The main
reason behind Android’s success is its free, open-source code,
which empowers smartphone manufacturers to transform
their devices with pre-installed applications and customized
user interfaces for a beautiful customer experience. How-
ever, Android’s open-source nature is both a boon and a bane.
Although it brings the benefits of technological broadband

! https://www.tenda.com.cn.

Yash Sharma
ysharma2098 @ gmail.com

Anshul Arora
anshull5arora@gmail.com

Department of Applied Mathematics, Delhi Technological
University, Delhi 110042, India

Published online: 04 March 2024

and updates, it also allows criminals to use it for ill practices.
Nowadays, mobile phones are not only used for communica-
tion purposes, but they have gradually become a crucial part
of our lives, containing the smallest to the most critical and
private user data.

The Android OS was released in 2008, and the first
Android malware was spotted in 2010, which targeted users
by subscribing to premium SMS services. Since then, mal-
ware attacks have been on the rise, and security attempts have
been made to keep up with the ever-increasing and constantly
changing malicious attacks. The total amount of Android
malware worldwide has already increased from 22,088 in
2012 to 33,237,653 in January 2023.2 Looking closer at
the real-time threat analysis and statistics of Android mal-
ware worldwide, we will understand how desperately the
Android Market needs Android security and malware detec-
tion systems. For instance, the Judy auto-clicking adware
stands out as a significant incident that affected the Google

2 https://portal.av-atlas.org/malware.

@ Springer

Refine Your Search Results

International Journal of information security

Search Results

Found 3,741 results (Page 1) «; Share These Results

Exact Match Found

INTERNATIONAL JOURNAL OF INFORMATION SECURITY

Publisher: SPRINGER , ONE NEW YORK PLAZA, SUITE 4600 , NEW YORK, United States, NY, 10004
ISSN / elSSN: 1615-5262 [1615-5270

Web of Science Core Collection: Science Citation Index Expanded

Additional Web of Science Indexes: Current Contents Engineering, Computing & Technology | Essential Science Indicators

< Share This Jou

Multimedia Tools and Applications
https://doi.org/10.1007/511042-024-18511-6

®

Check for
updates

IPAnalyzer: A novel Android malware detection system using
ranked Intents and Permissions

Yash Sharma'@® - Anshul Arora’

Received: 31 July 2023 / Revised: 2 October 2023 / Accepted: 29 January 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2024

Abstract

Android malware has been growing in scale and complexity, spurred by the unabated uptake
of smartphones worldwide. Millions of malicious Android applications have been detected
in the past few years, posing severe threats like system damage, information leakage, etc.
This calls for novel approaches to mitigate the growing threat of Android malware. Among
various detection schemes, permission and intent-based ones have been widely proposed in
the literature. However, many permissions and intents patterns are similar in normal and
malware datasets. Such high similarity in both datasets’ permissions and intents patterns
motivates us to rank them to find the distinguishing features. Hence, we have proposed a
novel Android malware detection system named IPAnalyzer that first ranks the permissions
and intents with a frequency-based Chi-square test. Then, the system applies a novel detec-
tion algorithm that combines ranked permissions and intents and involves various machine
learning and deep learning classifiers. As a result, the proposed system gives the best set
of permissions and intents with higher detection accuracy as an output. The experimental
results highlight that our proposed approach can effectively detect Android malware with
98.49% detection accuracy, achieved with the combination of the top six permissions and
top six intents. Furthermore, our experiments demonstrate that the proposed system with the
Chi-square ranking is better than other statistical tests like Mutual Information and Pearson
Correlation Coefficient. Moreover, the proposed model can detect Android malware with bet-
ter accuracy and less number of features than various state-of-the-art techniques for Android
malware detection.

Keywords Android security - Mobile malware - Malware detection - Permissions - Intents -
Feature selection

Anshul Arora contributed equally to this work.

Yash Sharma
ysharma2098 @ gmail.com

Anshul Arora
anshull5arora@gmail.com

Department of Applied Mathematics, Delhi Technological University, Delhi -110042, India

Published online: 01 March 2024 @ Springer

4/15/25, 2:32 PM Home | Multimedia Tools and Applications

SPRINGER NATURE Link

— Menu Q search

Login

b Cart

Submit your manuscript =

WV Journal menu

Overview

Multimedia Tools and Applications publishes
original research on multimedia development
and system support tools as well as case studies
of multimedia applications.

Recognized as the first journal in the field of
multimedia.

Boasts the highest Google h5-index scorein
the field of multimedia.

Features case studies alongside

experimental and survey articles.

https://link.springer.com/journal/11042

Journal metrics

v

T

3

[©)

Journal Impact Factor
3.0(2023)

5-year Journal Impact Factor
2.9(2023)

Submission to first decision (median)
66 days

Downloads
4.1M (2024)

1/6

4/15/25, 2:32 PM Home | Multimedia Tools and Applications

Guest Editors: Lucia Cimmino, Matteo Polsinelli, David Freire-Obregon, Giuseppe Placidi

(View allupdates -)

Journal information

Electronic ISSN
1573-7721

Abstracted and indexed in
ACM Digital Library
ANVUR

BFI List

Baidu

CLOCKSS

CNKI

CNPIEC

DBLP

Dimensions

EBSCO

El Compendex

Google Scholar

INSPEC

Japanese Science and Technology Agency (JST)
Naver

OCLC WorldCat Discovery Service
Portico

ProQuest

SClmago

SCOPUS

TD Net Discovery Service

Wanfang

Copyright information

Rights and permissions

Editorial policies

https://link.springer.com/journal/11042 5/6

Yash Sharma

&9 ysharma2098@gmail.com

o/ +91-9013562595

-15:- https://scholar.google.com/citations?user=b__PpOIAAAAJ&hl=

en
Education
2021 — 2025 M Ph.D. in Android Malware Detection from Delhi Technological University, Bawana,

Delhi, India
Thesis title: Design and Development of malware detection models for Android smartphones

2019 — 2021 M M.Sc. Mathematics from Delhi Technological University DTU, Delhi, India
7.51 CGPA - 75.10%

2016 — 2019 M B.Sc.(Hons.) Mathematics from Keshav Mahavidyalaya, University of Delhi, India
7.203 CGPA - 68.42 %

2002 — 2016 M Schooling from CBSE board (Batch - 2016) Greenfields Public School Delhi, India
Sr Secondary : 87.8 %
Secondary : 10 CGPA - 95 %

Achievements

2021 M Qualified CSIR- UGC NET JRF 2021 in Mathematical Sciences with AIR 110
M Qualified GATE Exam 2021 in MA with AIR 67 (Gate score -677)

Research Publications
Journal Articles

Y. Sharma and A. Arora, “Phigrader: Evaluating the effectiveness of manifest file components in
android malware detection using multi criteria decision making techniques,” Journal of Network and
Computer Applications, Elsevier (SCIE), vol. 232, p. 104 021, 2024

Y. Sharma and A. Arora, “A comprehensive review on permissions-based android malware detection,”
International Journal of Information Security, Springer, (SCIE), vol. 23, pp. 1877-1912, 2024.

e Y. Sharma and A. Arora, “Ipanalyzer: A novel android malware detection system using ranked intents
and permissions,” Multimedia Tools and Applications, Springer, (SCIE), vol. 83, pp. 78 957—79 008, 2024.

Conference Proceedings

Y. Sharma and A. Arora, “Classifying android malware categories through dynamic system calls ranked
via relieff,” in Proceedings of the 6th International Conference on Deep Learning, Artificial Intelligence and
Robotics (ICDLAIR z2024), Springer Nature, vol. 193, 2025, p. 53.

a Y. Sharma and A.

Arora, “Androv-rank: Optimized android malware detection through vikor-ranked

hybrid features,” in accepted for publication in proceedings of the 2nd International Intelligent Computing
and Technology Conference ICTCON 2z024), Springer, 2024.

o Y. Sharma, S. Sha

rma, and A. Arora, “Feature ranking using statistical techniques for computer

networks intrusion detection,” in 202z 7th International Conference on Communication and Electronics

Systems (ICCES),

Skills

Data Curation [|

Languages [

IEEE, 2022, pp. 761-765.

Extensive experience in curating large-scale Android application datasets (over 150,000
apps), including collection, preprocessing, and extraction of both static features (per-
missions, intents, hardware components) and dynamic features (network traffic, TCP
packet flows).

Strong reading, writing, and speaking competencies for English and Hindi

Coding M Python, ¢, C++,, java, BIEX, Excel
Misc. M Academic research, teaching, BIEX typesetting and publishing.

References
Dr. Anshul Arora Prof. Aditya Kaushik
Assistant Professor Professor
Department of Applied Mathematics Department of Applied Mathematics
Delhi Technological University, Delhi, India Delhi Technological University, Delhi, India
Email: anshulisarora@gmail.com Email: akaushik@dtu.ac.in

Phone: +91-94165-48025

Phone: +91-84275-80104

	CANDIDATE'S DECLARATION
	CERTIFICATE BY THE SUPERVISOR
	Acknowledgement
	Abstract
	List of Abbreviations
	Introduction
	Preliminaries
	Android Malware
	Research Gaps
	Problem Statement
	Objectives and Contributions
	Organization of the thesis

	Literature Review
	Static Detection Model
	Permissions-based
	Permissions with Manifest file components
	API calls based Detection
	Limitations of Static Analysis

	Dynamic Detection Model
	OS-based detection
	Network Traffic-Based Detection
	Limitations of Dynamic Analysis

	Hybrid Detection Model
	Limitations of Hybrid Analysis

	Multi-Category Malware Detection Model
	Summary

	PHIGrader: Evaluating the effectiveness of Manifest file components in Android malware detection using Multi Criteria Decision Making techniques
	Introduction
	System Design
	Dataset
	Feature Extraction
	Feature Representation
	Features Ranking
	Machine Learning and Deep Learning Classifiers
	Proposed Malware Detection Algorithm

	Feature Ranking Results
	Allotting Weights To The Features
	Features Ranking

	Detection Results on DATASET-1
	Detection Results with TOPSIS
	Detection Results with EDAS
	Detection Results with WASPAS
	Comparison with other feature ranking techniques
	Comparison with other statistical tests

	Detection Results on DATASET-2
	Detection Results with TOPSIS
	Detection Results with EDAS
	Detection Results with WASPAS

	Discussion
	Comparison with other related works
	Limitations

	Conclusion and Future work

	PHIAnalyzer: A novel Android malware detection system using ranked Manifest file components
	Introduction
	Drawbacks of existing approaches
	Objectives and Need of Proposed Approach

	System Design
	Data Acquisition and Representation
	Features Ranking
	Machine Learning and Deep Learning Classifiers
	Proposed Malware Detection Algorithm

	Results and Discussion
	Allotting Weights To The Features
	Features Ranking
	Detection Results on DATASET-1
	Detection Results on DATASET-2
	Comparison with other related works
	Limitations

	Conclusion and Future Work

	CorrNetDroid: Android Malware Detector leveraging a Correlation-based Feature Selection for Network Traffic features
	Introduction
	System Design
	Dataset Collection
	Traffic Split
	Features Aggregation
	Feature Selection
	Proposed Detection Algorithm
	Machine Learning and Deep Learning Classifiers

	Results and Discussion
	Features Ranking
	Detection Results on Testing Dataset
	Comparison with other statistical tests
	Comparison of NMRS with other Correlation Measures
	Comparsion with other related works

	Limitations
	Conclusion and Future Work

	Hybrid Android Malware Detection leveraging Static Permissions and Dynamic System Calls
	Introduction
	Proposed Hybrid Model - I
	Dataset Accumulation
	Features Ranking
	Machine Learning and Deep Learning Classifiers
	Proposed Malware Detection Algorithm

	Results and Discussion: Hybrid Model - I
	Feature Ranking using VIKOR
	Detection results on the Testing Dataset

	Proposed Hybrid Model - II
	Dataset Accumulation
	Methodology

	Results and Discussions: Hybrid Model - II
	Attribute Score-based Ranking (ASR) results
	Classification results on Testing dataset
	Comparison with other classifiers
	Comparison with other related works

	Conclusion and Future Work

	Android Malware Multi-Category Classification via Highly Discriminative Feature Ranking
	Introduction
	Proposed Multi-Category Detection model-1
	Data collection
	Feature Ranking
	Machine Learning and Deep Learning Classifiers
	Proposed Malware Multi-Category Classification Algorithm

	Results and Discussion: Multi-Category Model - I
	ReliefF Ranking Results
	Classification Results on the Testing Dataset

	Proposed Multi-Category Detection model - II
	Dataset Accumulation
	Feature Ranking
	Machine Learning and Deep Learning Classifiers
	Proposed Malware Multi-Category classification Algorithm

	Results and Discussion: Multi-Category Detection model - II
	Discrimination Score-based Ranking results
	Classification results on the Testing dataset

	Conclusion and Future Work

	Conclusion, Future Scope, and Social Impact
	Conclusion
	Future Scope
	Social Impact of the proposed research

	Bibliography

