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Abstract

This thesis addresses significant challenges in Android malware detection by proposing inno-

vative solutions that enhance detection accuracy, optimize feature selection, and address the

limitations of the existing approaches. The research begins with a thorough review of the

current state of Android malware detection, highlighting the critical need for effective feature-

ranking mechanisms to overcome the problem of overlapping features, such as permissions

and intents, between benign and malicious applications. This review identified a major gap in

the existing literature—while many studies applied feature ranking algorithms, few achieved

both optimal feature selection and high detection accuracy. To fill this gap, we developed

two static analysis-based models: PHIGrader and PHIAnalyzer. PHIGrader utilizes a frequency-

based Multi-Criteria Decision-Making (MCDM) approach to rank the most commonly used static

features, namely permissions, intents, and hardware components. In contrast, PHIAnalyzer em-

ploys a frequency-based Chi-Square statistical test to evaluate the effectiveness of combining

the above-mentioned three features. Both models demonstrated improved accuracy in detect-

ing malware and provided a more refined selection of features. However, static analysis alone

often proves to be insufficient in detecting more sophisticated, runtime-dependent malware.

Building on the limitations identified in static analysis, the thesis transitions to dynamic anal-

ysis, specifically focusing on CorrNetDroid, a novel dynamic analysis-based malware detection

system. This model ranks network traffic features using two key statistical measures, crRele-

vance and Normalized Mean Residue Similarity (NMRS), to assess feature-class and feature-feature

correlations, respectively. By applying these rankings, CorrNetDroid efficiently reduces the

feature set while maintaining high detection accuracy. The model successfully addresses the

challenge of detecting runtime malware. However, certain malware types, such as SMS-based

malware, operate silently in the background without generating network traffic, underscoring

the need for a comprehensive solution that combines static and dynamic analysis.

To address these limitations, the thesis introduces AndroV-Rank, a hybrid analysis frame-
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work that combines static permissions with dynamic system calls for more robust malware

detection. The VIKOR ranking method is employed to rank and select the most discriminative

features, leading to a refined set of just 65 features, which improves both classification accu-

racy and efficiency compared to traditional static or dynamic analysis models. This hybrid

approach effectively overcomes the challenges posed by standalone methods, as it can detect

malware that relies on both static and dynamic behavior. Building on this concept, we then

propose PattMatch, an instance-based pattern-matching classifier that utilizes Average Weighted

Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR) to predict malware class labels

with exceptional accuracy. This model further improves upon hybrid analysis by addressing

the complexities of machine learning algorithms and achieving superior performance in both

balanced and imbalanced datasets, with a remarkably high accuracy of 99.93% using only 10

attributes.

Finally, the thesis extends its scope to malware multicategory classification, where two mod-

els are developed to classify Android malware into four distinct categories: Adware, Fraudware

Trojans, Ransomware, and Spyware. The first model relies on dynamic analysis, utilizing sys-

tem calls for classification, while the second, AndroMultiCat, adopts a hybrid approach that

combines static and dynamic features to improve classification performance. Both models

demonstrate significant improvements in classification accuracy and efficiency, with the hybrid

approach yielding superior results. The research concludes with a summary of the findings,

highlighting the contributions of the proposed models in advancing Android malware detec-

tion, while also discussing potential future directions for the field, including the exploration of

more sophisticated ranking algorithms and the integration of additional behavioral features to

further enhance detection capabilities.
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Chapter 1

Introduction

Early telephones, dated back to the late 19th century, were primarily used for business com-

munications and connecting individuals over vast distances, revolutionizing the concept of

communication. The first generation of phones was simple, designed only to transmit voice.

They were bulky, wired devices with limited functionality. Over time, these devices evolved

to include features such as rotary dials and push buttons, yet their core purpose remained un-

changed for decades: voice communication [1]. Phones of that era were confined to fixed

locations, often in homes or offices, with no portability. Thus, the utility of phones was pre-

dominantly in fixed, professional, or emergency scenarios.

The advent of smartphones in the early 21st century marked a transformative shift, turning

the humble phone into a powerful multifunctional device. A smartphone is a mobile device

that combines telecommunication features with advanced computing capabilities, offering in-

ternet access, touchscreen navigation, and support for apps and multimedia. The introduction

of smartphones changed not only the design and capabilities of phones but also the way people

interact with technology and the world around them. With the inclusion of internet connec-

tivity, cameras, GPS, and mobile applications, the smartphone became an indispensable tool

for personal, social, and professional use [2]. What started as a communication device rapidly

evolved into a pocket-sized computer, capable of handling a wide range of tasks from banking

to entertainment, from social networking to navigation. This transformation has drastically

altered everyday life, making smartphones essential for billions of users worldwide. Statistics

1
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indicate as of 2025, a little over 4.88 billion people use smartphones around the world1. Today,

people are reliant on their phones for a variety of functions that extend far beyond communi-

cation—these devices now serve as our planners, wallets, and even personal assistants.

Among the diverse smartphone operating systems (OS) available, Android stands as the

most dominant. While competitors such as Apple’s iOS, Microsoft’s Windows Phone, and

BlackBerry’s OS had their market shares, Android, developed by Google, has emerged as the

clear leader [3]. Statistics from leading industry reports demonstrate that Android commands

a substantial portion of the global mobile market. For instance, recent studies suggest that

over 70% of mobile devices globally run on Android, leaving iOS as a distant second2. This

dominance is even more pronounced in emerging markets, where Android’s affordability and

flexibility make it the preferred choice for both consumers and manufacturers. Other operating

systems, such as Windows Phone and BlackBerry OS, have gradually lost relevance, leaving

Android and iOS as the primary contenders in the smartphone industry.

Several factors contribute to Android’s popularity. Firstly, Android’s open-source nature al-

lows manufacturers to modify the operating system, leading to a wide range of devices catering

to different price points and user preferences3. This flexibility has enabled Android to be im-

plemented in everything from high-end flagship phones to low-cost, budget-friendly models.

Furthermore, Android offers a vast ecosystem of applications through the Google Play Store,

providing users with access to millions of apps across various categories, from productivity

tools to entertainment4. Its customizable interface allows users to tailor their devices accord-

ing to personal preferences, a feature that has appealed to a large audience. Additionally, An-

droid’s integration with Google’s suite of services, such as Gmail, Google Drive, and Google

Maps, further enhances its utility, making it a highly functional and user-friendly platform5.

Android’s multitasking capabilities, wide range of hardware support, and constant updates

ensure that it remains the preferred choice for a large portion of the global population6.

1https://backlinko.com/smartphone-usage-statistics
2https://gs.statcounter.com/os-market-share/mobile/worldwide
3https://source.android.com/
4https://www.appbrain.com/stats/google-play-store-stats
5https://developers.google.com/services
6https://developer.android.com/about/versions
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1.1 Preliminaries

The Android operating system, depicted in Figure 1.1, adopts a layered architecture, based

on the Linux kernel, arranged as follows: Linux kernel, hardware abstraction layer (HAL),

native libraries, Android Runtime (ART), Java API framework, and the application layer7.

This hierarchical structure is designed to provide flexibility and stability across different device

types.

Figure 1.1: Android platform architecture

At the core of Android is the Linux kernel, responsible for managing low-level tasks such

as process management, memory handling, and hardware interaction. By leveraging the ro-

bust foundation of Linux, Android benefits from proven security and resource management

capabilities [4]. The Android Runtime (ART) replaced the Dalvik Virtual Machine from An-

droid 5.0 onwards, improving performance through ahead-of-time (AOT) compilation. This

enhances app execution efficiency, particularly for devices with limited resources8. ART is re-

sponsible for optimized memory usage, garbage collection, and thread management. The Java

API framework serves as an interface between application code and underlying system com-

ponents, simplifying the development of Android apps. This layer provides developers with
7https://developer.android.com/guide/platform
8https://developer.android.com/guide/platform
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reusable modules for common tasks such as user interface (UI) design and inter-application

communication.

At the top, the application layer comprises apps written in Java or Kotlin, which utilize An-

droid’s extensive APIs to interact with device hardware and system resources. These apps

are packaged in Android application package (APK) files and deployed within the Android

ecosystem. Permissions, services, and activities are configured in the critical AndroidMani-

fest.xml file, which ensures the proper allocation of system resources while maintaining strict

security protocols9. Android applications are versatile and range from utilities to complex

games, benefiting from Android’s layered system design and resource management.

1.2 Android Malware

Malware, short for malicious software, refers to any program or code designed to perform

unauthorized or harmful actions on computing devices. Android malware specifically targets

devices running the Android operating system, exploiting its vulnerabilities for malicious pur-

poses, leading to data breaches, financial loss, and unauthorized access.

The first Android malware, AndroidOS.FakePlayer, emerged in 2010, disguising itself as a me-

dia player app [5]. Once installed, it sent premium-rate SMS messages without user consent,

marking the start of a wave of malware targeting Android devices. Since then, cybercriminals

have developed increasingly sophisticated methods to compromise Android systems, affecting

both personal data and financial transactions.

One of the most notable incidents is the outbreak of the Judy adware in 2017. Embedded in

over 40 apps on the Google Play Store, Judy bypassed security mechanisms and was down-

loaded more than 36 million times. It generated fraudulent ad clicks and harvested sensitive

data, including credit card details and passwords, becoming one of the most impactful Android

malware incidents10.

Another significant malware, ExpensiveWall, was discovered in 2017. Hidden inside wallpa-

per apps, it sent fraudulent premium SMS messages, charging users for fake services. These

apps, downloaded over a million times, led to considerable financial damage for users11.

Looking at the global scale of Android malware, it has grown exponentially over the past

9https://developer.android.com/guide/topics/manifest/manifest-intro
10https://www.forbes.com/sites/thomasbrewster/2017/massive-google-android-malware-

expensivewall/?sh=7a91664c477f
11https://portal.av-atlas.org/malware
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decade. As cleary depicted by Figure 1.2, in 2012, there were 22,088 known variants, and by

the end of 2024, the number skyrocketed to 35,386,29312. This dramatic rise highlights the

need for advanced Android security solutions.
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Figure 1.2: Number of Android Malware Recorded Every Year from 2010- 2024.

Real-time threat analysis further highlights the necessity of improving Android’s security

defenses. Google has made efforts to address these challenges by introducing services like

Bouncer, which offers a dynamic emulated environment to detect malicious applications be-

fore they reach the Play Store [6]. However, while Bouncer has mitigated some risks, it has

proven to be insufficient in analyzing all potential vulnerabilities. Sophisticated malware often

uses dynamic code loading techniques—where malicious code is downloaded during updates,

evading detection. Moreover, malware that detects the presence of emulated environments

can easily bypass Bouncer’s safeguards. Consequently, attackers continue to find ways to cir-

cumvent security measures, making the Android platform a prime target for malware attacks.

This is one of the reasons for a large number of malware attacks on the Android platform.

Additionally, several other factors fuel this increase:

• The vast global Android user base often stores sensitive information on their devices,

providing an opportunity for malware developers to profit from identity theft.

• Android’s open-source kernel policy allows malware creators to gain insights into po-

tential vulnerabilities within the architecture.
12https://portal.av-atlas.org/malware
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• The availability of app markets, particularly third-party ones, offers a convenient medium

for distributing malicious software.

• The structural similarity between desktop operating systems and Android makes it easier

for attackers to transition from targeting desktops to mobile devices.

Next, we outline the various methods through which malware infiltrates smartphones. Below

are key entry points for Android malware, explained concisely:

• App markets: App markets serve as a convenient entry point for attackers to disseminate

malware. A significant proportion of Android malware is introduced into mobile devices

through these platforms. Attackers often utilize a repackaging technique, where they

decompile legitimate applications, embed malicious components, and then reassemble

the app. Notable malware families such as jSMSHider, DroidDream, and BgServ have

exploited this repackaging method to compromise the Android ecosystem.

• Phishing Links: Cybercriminals use deceptive links, often embedded in emails or mes-

sages, to trick users into granting access or downloading malicious software. A common

example is the Svpeng banking trojan, which gains access to financial credentials through

fake websites.

• Drive-by Downloads: Simply visiting a compromised website can trigger automatic

downloads of malicious software without the user’s knowledge.

• Network Attacks: Malware can infiltrate devices via insecure public Wi-Fi networks,

exploiting vulnerabilities in data transmission. An example is the HummingBad malware,

which roots the device and generates fraudulent ad revenue.

Table 1.1 summarizes the various threats posed by smartphone malware to the users and the

devices [7]. The threats include system damage, financial loss to the users, and information

leakage from the device, etc. Apart from them, mobile devices can also be misused by malware

developers for the purpose of cyberbullying and sending spam messages on Online Social

Networks (OSNs).
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Table 1.1: Threats posed by Android malware

Threats Malware Example
System Damage Disable system functions (e.g.,

block calling service)
Fakebank

Change system configuration (e.g.,
wallpaper)

ExpensiveWall

Financial Loss Send SMS / MMS FakePlayer, HippoSMS
Dialing premium numbers BaseBridge, BeanBot

Information Leakage Privacy breach BaseBridge
Stealing banking information EventBot

Remote Control Mobile botnet ADRD, AnserverBot

1.3 Research Gaps

In this section, we describe the research gaps in the existing literature for Android malware

detection.

1. Features such as permissions, intents and hardware components are found to be overlap-

ping in normal and malware datasets. Hence some feature ranking using a ranking-based

algorithm is essential to identify the distinguishing features to obtain relatively good ac-

curacy. Unfortunately, several works in the literature missed the critical aspect of feature

ranking and, thus, failed to obtain the best features. Though some researchers applied

a ranking algorithm to choose the best set of features, at the same time were unable to

produce optimum accuracy.

Research Question 1 : How to design and develop a static detection model with ranked

manifest file components such as permissions, intents, and hardware components, to

identify the best set of static features that can give relatively better accuracy.

2. The static analysis aims to investigate malware without executing the application but

by collecting basic information about the app, such as manifest file components or its

source code. However, it has been observed that some stealthier malware rely on the

runtime events, i.e., calling a phone, sending SMS, etc., to get activated; hence, such

malicious apps may evade static detection.

3. In case of dynamic analysis, network traffic has been extensively used for intrusion

detection on desktop systems with high accuracy [8] [9], however, it is not that explored

in case of mobile malware.
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4. Network traffic flows have high similarity in case of normal and malware traffic in mo-

bile environment. For instance, values of the feature Flow duration ranges from 0 to

1537.4 in normal mobile traffic and 0 to 1687.6 in malware traffic and Time interval be-

tween packets received ranges from 0 to 181.5 in normal mobile traffic and 0 to 378.2 in

malware traffic. Such overlapping ranges in network traffic again highlight the impor-

tance of ranking the traffic features to identify the distinguishing ones, which has not

been explored much in the existing literature.

Research Question 2 : How to design and develop a dynamic Android malware detector

using ranked network traffic features to detect stealthier Android malware samples that

may evade static detection?

5. Not all malware samples generate network traffic; for instance, malware might only send

SMS in the background without generating any network traffic. Hence, network traffic-

based detection mechanisms cannot detect such samples, and we can argue that static

and dynamic analysis have their limitations. We aim to target these limitations with our

proposed objectives.

Research Question 3 : How to combine static and dynamic analysis and propose a hybrid

Android malware detection model that combines static with dynamic features such as

static permissions with dynamic system calls.

1.4 Problem Statement

We aim to develop efficient Android malware detection models utilizing traditional analy-

sis techniques—static, dynamic, and hybrid—while addressing their limitations to accurately

classify testing applications as benign or malicious. Additionally, we incorporate novel feature

ranking/selection methods to extract features with optimal class-distinguishing capabilities,

ensuring superior detection/classification accuracy. Figure 1.3 provides a brief yet complete

idea of the proposed models of this theis.

1.5 Objectives and Contributions

1. To review the existing related work proposed in the field of Android malware detection.

Contribution 1 - Our review of existing research on Android malware detection classifies

studies into three primary categories based on their analysis techniques: static, dynamic,
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Figure 1.3: Overview of the proposed works of this thesis

and hybrid detection models. For each model, we address the limitations present in cur-

rent Android malware detection methods. Furthermore, we highlight significant studies

that have advanced multi-category classification approaches within the field of Android

malware detection.

2. To design and develop a static detection model with ranked manifest file components

such as permissions, intents, etc., to identify the best set of static features that can give

relatively better accuracy.

Contribution 2 - We propose PHIGrader, an advanced Android malware detection system

that ranks and assesses three critical static feature types—permissions, intents, and hard-

ware components—using frequency-based multi-criteria decision-making (MCDM) tech-

niques. By leveraging these ranked features with machine learning and deep learning

classifiers, PHIGrader achieves optimal detection performance. Specifically, when the

top 46 features are selected using the TOPSIS method, PHIGrader attains an impressive

99.10% detection accuracy, outperforming models based on any single feature type or

alternative MCDM techniques.

With a belief that further combining these features leverages their unique strengths and

mitigates their individual limitations, creating a more comprehensive detection frame-

work, we introduce PHIAnalyzer that explores seven distinct combinations of these three

feature types to identify the most optimal feature subset achieving higher detection ac-

curacy. This system ranks the features and their combinations using a frequency-based

test Chi-square, followed by a novel detection algorithm applied to the ranked features.

The result is an efficient model achieving 98.49% accuracy using only 12 features—a

balanced combination of the top six permissions and top six intents—yielding better

accuracy than any single feature set or other feature combinations.
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3. To design and develop a dynamic Android malware detector using ranked network traffic

features to detect stealthier Android malware samples that may evade static detection.

Contribution 3 - We propose a dynamic analysis-based Android malware detection sys-

tem, termed as CorrNetDroid, in which we rank the traffic features using two statistical

measures, namely crRelevance and Normalized Mean Residue Similarity (NMRS), to find

feature-class and feature-feature correlation respectively. We further incorporate them

into our novel detection algorithm with an aim to select the best subset of features.

The experimental results highlight that our NMRS-based proposed detection algorithm

on crRelevance rankings can effectively reduce the feature set while detecting Android

malware with 99.50% accuracy on considering two network traffic features, namely

Packet size received and Time interval between packets received.

4. To combine static and dynamic analysis in order to propose a hybrid Android malware

detection model that utilizes static with dynamic features such as static permissions with

dynamic system calls.

Contribution 4 - Our proposed model introduces PattMatch, an instance-based pattern-

matching classifier that employs Average Weighted Pattern Scoring (AWPS) and Attribute

Score-based Ranking (ASR) to accurately predict class labels by matching the patterns of

test samples with training patterns. Additionally, by reducing the feature set to the most

relevant attributes, we achieve optimal classification accuracy. Experimental results

show our model outperforms both static and dynamic approaches, achieving 99.93%

accuracy with just 10 attributes.

Unlike traditional machine learning and deep learning classifiers, our classifier demon-

strated superior detection accuracy on the same dataset highlighting the robustness and

efficiency of the proposed hybrid detection model.
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1.6 Organization of the thesis

Chapter 1: This chapter provides an overview of the emergence of Android as an operating

system, followed by a discussion on Android malware, including its historical background, in-

fection methods, and associated risks. Additionally, it presents the motivation behind selecting

the research problem, identifying relevant gaps in existing literature. The chapter concludes

by outlining the technical contributions of our proposed approach.

Chapter 2: This chapter reviews existing research on Android malware detection, catego-

rized into static, dynamic, and hybrid detection models. For each model, we highlight current

limitations in detecting Android malware. Additionally, we review multi-category classifica-

tion methods developed by other researchers that identify specific malware types using static

and dynamic features, focusing on notable studies that have advanced this approach in Android

malware detection. The chapter concludes with insights and suggestions for future research

directions.

Chapter 3: This chapter introduces PHIGrader, an innovative Android malware detection

system that ranks and assesses the effectiveness of the most commonly used static features—

permissions, intents, and hardware components—using a frequency-based multi-criteria decision-

making (MCDM) approach. This system incorporates a novel detection algorithm with individ-

ual feature rankings involving various machine learning and deep learning classifiers to detect

malware. The proposed system, as an output, gives the best set of features as well as the feature

type.

Chapter 4: In this chapter, we present PHIAnalyzer, a novel Android malware detection

system that ranks permissions, intents, and hardware components using a frequency-based

Chi-square test. The detection algorithm then evaluates seven possible feature combinations—

permissions alone, intents alone, hardware components alone, as well as all pairwise combina-

tions to identify the best set of features achieving higher detection accuracy. Our experiments

demonstrate that the proposed frequency-based Chi-square ranking is better than other various

statistical tests when applied to the same datasets.

Chapter 5: In this chapter, we propose a network traffic-based Android malware detection

system, termed as CorrNetDroid, in which we rank the traffic features using two statistical

measures, namely crRelevance and Normalized Mean Residue Similarity (NMRS), to find feature-

class and feature-feature correlation respectively. We further incorporate them into our novel
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detection algorithm with an aim to select the best and inversely correlated features. The ex-

perimental results highlight that our NMRS-based proposed detection algorithm on crRelevance

rankings can effectively reduce the feature set while detecting Android malware with remark-

able detection accuracy.

Chapter 6: This chapter firstly presents AndroV-Rank, a robust hybrid analysis framework

for Android malware detection that integrates static permissions and dynamic system calls to

extract a refined set of class-distinguishing features. By employing the VIKOR method for

feature ranking, our approach not only enhances detection accuracy but also streamlines the

feature set to a mere 65 attributes while maintaining remarkably high detection accuracy.

Building upon this foundation and addressing the limitations of machine learning classifiers

also, we further propose PattMatch, an instance-based pattern-matching classifier that employs

Average Weighted Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR) to accurately

predict class labels by matching the patterns of test samples with training patterns without the

dependance over conventional classifiers. Additionally, by reducing the feature set to the most

relevant attributes, we achieve optimal classification accuracy. Unlike traditional machine and

deep learning algorithms, our classifier demonstrated superior detection accuracy, highlighting

the robustness and efficiency of the proposed hybrid detection model.

Chapter 7: This chapter introduces two models designed for multi-category classification

of Android malware into four distinct categories: Adware, Fraudware Trojans, Ransomware, and

Spyware. Both models aim to achieve high classification accuracy while minimizing the num-

ber of features required. The first model is based on dynamic analysis and utilizes system

calls for the classification task. In contrast, the second model, AndroMultiCat, adopts a hy-

brid analysis approach, combining static permissions with dynamic system calls for enhanced

performance.

Chapter 8: In this chapter, we summarize our findings, discuss the main conclusions, analyze

the contributions of this thesis and the achieved results. We also present a discussion on the

open research problems in this field and the future work that we plan to focus on.



Chapter 2

Literature Review

This chapter reviews existing research on Android malware detection, as summarized in

Figure 2.1. The related work is organized into three main categories based on the analy-

sis techniques employed: static, dynamic, and hybrid detection models. Section 2.1 covers

research focused on static detection models, followed by a discussion of dynamic detection

models in Section 2.2, and hybrid detection models in Section 2.3. For each detection model,

we also outline the limitations of current approaches to Android malware detection. Binary

classification, which differentiates between benign and malicious samples, serves as an essen-

tial initial step. However, multi-category classification, which further identifies the specific

type of malware is also an additional step taken up by many researchers using a range of static

and dynamic features. Section 2.4 reviews notable studies that have contributed to advanc-

ing multi-category classification in Android malware detection. The chapter concludes with

insights and future directions in Section 2.5.

.
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ANDROID MALWARE DETECTION
TECHNIQUES

STATIC ANALYSIS DYNAMIC ANALYSIS HYBRID ANALYSIS

Permissions

Intents

Hardware 
components

Other manifest file
components

API calls

Network Traffic

Dynamic API calls

System calls

Combination of Static
and Dynamic features

Figure 2.1: Taxonomy of Android malware detection techniques

2.1 Static Detection Model

The static analysis investigates malware without real code or instructions being executed.

It provides basic information about app functionality and collects technical indicators from

AndroidManifest.xml and other resource files. In other words, it can be defined as a source code

review of an Android application file. Several reverse engineering tools like Apktool1 or AAPT2

2 can be used to decompile an apk and extract the required features. Features that can perform

static analysis of applications are called static features. Some commonly used examples of

static features are explained in brief below, with Android permission being the most popular.

1. Permissions- Android permissions are security features that regulate an application’s ac-

cess to certain device resources or sensitive data. These permissions are declared in the

AndroidManifest.xml file and are crucial for maintaining user privacy and ensuring the se-

curity of the Android ecosystem. Permission is declared using the <uses-permission>tag

within the manifest file. For example, as shown in Figure 2.2, which is a snapshot of the

AndroidManifest.xml file of the WhatsApp Messenger app, requires permissions such as {

READ PHONE STATE, READ PHONE NUMBERS, RECEIVE SMS, VIBRATE and AUTHEN-

1https://apktool.en.lo4d.com/windows
2https://developer.Android.com/studio/command-line/aapt2
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TICATE ACCOUNTS } to execute on Android smartphones.

Figure 2.2: Snapshot of permissions requested by WhatsApp Messenger app

Permissions in Android play an integral part in creating a secure and privacy-respecting

ecosystem. They empower users with control, enable developers to build trustworthy

applications, and contribute to the overall security of the Android platform. Some per-

missions fall under the category of install-time permissions, i.e., they are automatically

granted upon the installation of the app, whereas some permissions are known as runtime

permissions, which are further requested at runtime. Install-time permissions permit the

app limited access to restricted data or actions that can affect the user to a minimal

amount. Install-time permissions can be further divided into the following types:

• Normal permissions - These permissions present minimal risk to the user’s privacy

and the functionality of other apps.

• Signature permissions - These permissions are granted by the permission check

system only when the requesting app is signed by the same certificate as the one

that declared the permission.

Runtime permissions, often addressed as dangerous permissions, are requested at run-

time by the application to request access to view restricted data or perform any prohib-

ited action by presenting a runtime permission request prompt.

2. API calls- Application Programming Interfaces (APIs) act as a medium for one program

to interact with another, and an API call or request can be defined as a message sent to

a server asking an API to provide a service or information. After traveling from a client

to an API endpoint and being received by the server, the request is processed, and the

response is executed.

3. Intent: An intent is a messaging object that a developer can use to request an action from

another app component. For example, as shown in Figure 2.3, which is the snapshot

of the AndroidManifest.xml file of the WhatsApp Messenger app, which requires intents

such as REQUEST and DEFAULT to execute on Android smartphones. The three main
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fundamental use cases of intent are starting an activity, starting a service, and delivering

a broadcast.

Figure 2.3: Snapshot of intents requested by WhatsApp Messenger app

4. Hardware components- The hardware components, declared using the <uses-feature>tag,

allow the declaration of the hardware components that an app needs. For example, as

shown in Figure 2.4, which is a snapshot of the AndroidManifest.xml file of the Microsoft

Edge Web Browser app, hardware components such as { location.gps, camera, microphone

and touchscreen } are required to execute on Android smartphones.

Figure 2.4: Snapshot of hardware components requested by Microsoft Edge Web Browser app

Other static features include activities, services, broadcast receivers [10], opcode sequences

[11], libraries, content providers, Resource names, .dex codes [12], source codes, and other

metadata [13]. Among these, permissions are the most extensively used, followed by API calls

and intents. These related studies can be further classified into three categories: permissions-

based detection, permissions with manifest file components-based detection, and API call-

based detection.

2.1.1 Permissions-based

In this section, we review the works that have used entirely permissions for malware analysis

or detection. The authors in [14] worked on improving an existing frequency-based method

by adding the criteria of adding the class frequency of a particular feature and named it Term

Frequency-Inverse Document Frequency Class Frequency (TF-IDFCF). Finally, they used multiple

ML classifiers to verify the working of their proposed model. Şahın et al. [15] presented

a method that relies on the utilization of permissions. The researchers presented two linear

regression classifiers and conducted a comparative analysis of the detection outcomes between

their proposed classifiers and conventional machine learning classifiers. Furthermore, they
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implemented two ensemble classifiers utilizing the bagging technique. The authors in [16]

proposed a permission identification model called SigPid. Initially, permissions frequently and

rarely requested by malware were identified through a pruning process. After normalizing the

data, they calculated each permission’s rate based on its support value, ranging from -1 to 1.

Two ranked lists were created—one in ascending order, the other in descending order. The

top values from both lists were used to compute metrics such as TPR, FPR, recall, precision,

and F-measure. This process was repeated, considering the top three values and refining the

metrics until the optimal set of permissions was identified. The work proposed in [17] analyzed

a permission-based Android malware system in which they proposed a permission weight

approach, namely Relevance Frequency. They applied their proposed approach to various

machine learning algorithms and concluded by comparing the results of their study with the

existing or previous methods.

Talha et al. [18] introduced APK Auditor, a permission-based system for Android malware

detection. It comprises three main elements: an APK auditor client, a signature database, and a

central server. The client submits requests to assess application trustworthiness. The signature

database manages permissions, services, and receivers, while the central server computes the

malware score based on these permissions. The authors in [19] extracted a set of 123 dynamic

permissions from 11000 Android applications. These collected apk packages were made to run

with the emulator bluestack. Finally, permissions were extracted by running a Java code and

were divided into safe and unsafe permissions. Ultimately, they evaluated the performance of

machine learning classifiers on the dataset. In [20], the AppPerm analyzer assessed manifest

and code permissions separately. Manifest permissions were retrieved from the AndroidMani-

fest.xml file, while code permissions were identified from the decoded APK source code. The

authors constructed a feature vector and evaluated six score types. Thresholds were set based

on accuracy, sensitivity, and specificity, classifying apps below the threshold as benign and

those at or above it as malware.

The authors in [21] proposed an Android malware detection model based on improved Naı̈ve

Bayes classification. They determined the value of Pearson Correlation Coefficient “r” and

deleted the permissions whose value “r” was less than the threshold “ρ” and derived the new

permission set. Further, they got the improved detection model by clustering based on in-

formation theory. The authors in [22] discussed an approach based on sequence alignment.

This work took a DNA element as permission and determined permission patterns for normal

and malicious samples. It is a technique related to bioinformatics used to identify similarities
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between applications by evaluating a similarity score and setting up a threshold. In [23], the

authors described a monitoring tool to keep track of permission requests from various appli-

cations. The monitoring system took the help of the Broadcast Receiver and intent object to

detect update events. The app’s name and installation time were saved along with the requested

permissions; hence, when a new file was generated asking for a new set of permissions, they

could be easily identified. Ultimately, they used the pattern of permission sets for known mal-

ware applications to match up with the testing dataset permission sets to classify applications

as malicious.

Ilham et al. [24] described a novel approach based on permissions. The authors applied

filter feature selection algorithms and machine learning algorithms to classify applications in

WEKA. In [25], the authors claimed to introduce a new approach called permission maps

(Perm- maps) that could combine information related to the Android permissions with their

severity level. In the end, (Convolutional Neural Network) CNN techniques were used to

classify several malware types. Xiong et al. [26] utilized the dominant permission patterns

in either malware dataset or clean dataset to work as a weak classifier in the proposed En-

clamald, an ensemble classifier. The permission patterns defined in both datasets were also

used but only with significant differences in their support degrees. An unknown application is

fed to the classifier, and after computing the score of the weak classifier with a discrimination

coefficient, the application is categorized into normal or malware. The authors in [27] intro-

duced a two-layered malware security and detection model by improving the Random Forest

Algorithm in the first layer after submitting the fuzzy sets. In the second layer, they mined

the sensitive cluster of permissions to analyze the fuzzy sets using the Apriori Algorithm. The

work proposed in [28] mainly used a couple of feature extraction algorithms called Sequential

Forward selection (SFS) and Principal component Analysis (PCA) to identify the type of per-

missions and took down the malicious application detection by limiting the permissions that

seemed dangerous using the centralized algorithm.

Amer [29] worked on creating an ensemble model based upon multiple machine learning

classifiers to train and test the given data. They were subsequently categorizing the apps as

malware or benign. The authors emphasized the efficiency of their model as their robustness

feature, and it outperformed the previous works in terms of accuracy. The authors in [30] used

feature reduction techniques such as Information gain, Relief, and Gain Ratio to take only the

most influential set of permissions out of the entire collection. Further, to detect malware from

the used dataset, supervised classifiers were used. Sirisha et al. [31] built a sequential neural
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network model for training and later tested the permission data with three hidden layers to

classify the applications. First, a threshold was set in the sigmoid output in the output layer.

Then, all the applications exceeding that threshold were considered malware.

The authors in [32] focused on risk scoring the applications using the Naı̈ve Bayes method

and its advanced modifications and mixture models. According to the authors, their approach

can be used as a feedback mechanism for the developers as they might get an idea of which

permission to keep or lose to make their app less risky. To report their results, they used

the Radius of Curvature Curves to compare a randomly selected app with a particular risk

value being used as an indicator of a malicious app. They concluded the paper by stating that

Naı̈ve Bayes with Informative Priors works best while ranking the apps and risk scoring. In

[33], the authors introduced a framework that utilized Natural Language Processing (NLP)

techniques called WHYPER, which reads application descriptions to inform the user why the

application needs particular permission. For this, they performed analysis over snapshots of

the Android application’s descriptions, parsed them using an NLP parser, and produced the

Annotated description with the help of a semantic engine. Samra et al. [34] worked on making

clusters of two categories of Android applications, namely business, and tool, using the K-

means Clustering algorithm. The clustering algorithm uses permissions as features extracted

from the XML files of the applications. The detection results indicated that their clustering

technique could efficiently detect malware.

The authors in [35], after extracting permissions as features from various applications, used

Information gained to select k best features. Then on the extracted features, they further ap-

plied the K-means clustering algorithm, classified it using a decision tree, and concluded the

paper by showing their detection results after using several machine learning algorithms. In

[36], the authors extracted permissions from various applications, studied their frequency, and

observed that the chances of malware asking for a single permission are comparatively higher

than the normal apps. Further, they applied various machine learning algorithms with different

values of k in k fold cross validation to note down the accuracy values and called their whole

approach Permission Usage to detect Malware in Android (PUMA). Moonsamy et al. [37]

emphasized the importance of promoting the utility of “Used” as well as “Required” permis-

sions. They used the Biclustering method in the first step to visualize the permissions, later

to use the rare yet unique as well as frequently asked permissions; they proposed the Contrast

Permission Pattern Mining (CPPM) method in which they reduced the dataset to contrasting

permissions pattern by taking the support score for each feature. Finally, they selected the
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permissions with the maximum support difference between the normal and malicious datasets.

The authors in [38] presented the Appguard system, which has proven helpful in customizing

security policies on untrusted applications. Whenever a new app gets installed, its proposed

model asks the client to secure it, and then it installs a new modified app after rewriting its

policies and deleting the old app. In [39], the authors divided the permission into four groups:

Android, custom, dangerous, and all permissions. Further, they used this division to calculate

eight permission pair scores, four each for normal and malicious. In the end, per-pair scores

for normal and malware apps were used to classify the app as benign or dangerous. Finally,

they concluded their paper by stating the detection results with machine learning algorithms

such as Random Forest and Stacking Ensemble Learning (SEL).

2.1.2 Permissions with Manifest file components

Few studies analyzed, in addition to the permissions, other manifest file components as well,

such as intents, hardware components, opcode sequences, .dex code etc. In this section, we

review the works that have used manifest file components for malware analysis or detection in

combination with permissions.

The work done by the authors in [40] was threefold. In the first step, they filtered out

the most relevant features from the entire set using mutual information gain. Then, they did

the same for another feature set with top code-based features. Finally, they repeated this

step with a combination of permissions and code-based features. Their conclusion proved

that the hybrid features provided the best detection accuracy. Seyfari and Meimandi [41]

tackled the issue of many features by employing an ensemble approach that combined the

Simulated Annealing (SA) algorithm with fuzzy logic. This approach, which was assessed

using conventional machine learning classifiers, exhibited efficacy in exploring the solution

neighborhood.

In a different study, [42] the authors built a detection system utilizing the LSSVM learn-

ing approach, incorporating ten unique feature selections and ranking techniques. Chaudhary

and Masood [43] employed a comparative methodology by utilizing both the entire dataset

and a diminished set obtained by the Chi-square feature reduction technique. By utilizing

the Convolutional Neural Networks (CNN) method with the entire dataset of permissions and

intents, researchers noticed improved performance and decreased overhead while using the

smaller dataset as opposed to the complete one. Rahima Manzil and Naik [44] introduced a
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novel method for feature selection, where they utilized Hamming distance and threshold tech-

niques to identify the most relevant set of permissions and intents. Afterward, they utilized

various classifiers, including machine learning, deep learning, and ensemble learning, to iden-

tify Android malware. Bai et al. [45] chose permissions and opcode sequences to feed into

their CatBoost classifier for malware detection and family classification. In the first step, they

extracted the permissions, followed by using the N-gram algorithm on the opcode sequences.

Furthermore, for the feature selection method, the FCBF algorithm was used before the testing

phase. Alazab et al. [46] innovated an algorithm based on scoring and grouping techniques

to identify similar repackaged applications by comparing the frequency distributions of API

calls and permissions between two applications. They even used feature selection techniques,

such as information gain, along with machine learning classifiers to choose the best features

and obtain the highest accuracy.

Bhat and Dutta [47] extracted permissions and various other features in the data collection

step. To reduce the feature set, infrequent features or common features in both classes were

removed because they were insufficiently informative. Moreover, they ranked the features

based on their information gain scores to choose the optimum set. Finally, they used machine

learning classifiers to showcase their detection results. Song et al. [48] matched the dangerous

permissions, their combinations, and other malicious features with permissions requested by

unknown applications to generate a detection report and submit it to the user. Based on these

results, they built a threat degree threshold model for detecting malicious behavior.

Dehkordy and Rasoolzadegan [49] addressed the issue of balancing the dataset before de-

tection using techniques such as the synthetic minority oversampling technique (SMOTE),

random undersampling, and a hybrid method involving both to balance the huge dataset of ten

types of features. In addition, they reduced the dataset using frequency ranking-based methods

and further used machine learning classifiers for detection after balancing the dataset. Nguyen

et al. [50] extracted 12 types of features, categorized them into three groups, and further re-

duced the feature set using a support vector machine (SVM), deep neural network (DNN),

and analysis of variance (ANOVA). After reducing the set, the authors fed the group results

individually as multiple inputs to the DNN to later combine into one final DNN to learn the

abstract of each feature vector before making the final decision.

Firdaus et al. [51] took a different approach by extracting permissions and rare features such

as directory paths and telephony. Furthermore, after ranking and reducing the feature set using

information gain and frequency-based methods, the results were fed to various bio-inspired
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artificial neural network classifiers, namely multilayer perceptron (MLP), voted perceptron

(VP), and radial basis function network (RBFN). Varsha et al. [52] extracted permissions, op-

code, and various other manifest file features to build a detection model. The authors used

various feature ranking and selection techniques, such as naive Bayes (NB), weight calcula-

tion, entropy-based Category Coverage Difference (ECCD), and Weighted Mutual Informa-

tion (WI), to reduce the feature set, choose the most relevant features, and fed them to various

machine learning classifiers.

Sun et al. [53] proposed a non-parametric learning framework using the positive and un-

labeled (PU) learning method to learn and detect malware after removing irrelevant features

using frequency ratio criteria and PCA techniques. Finally, they compared the results of their

PU learning approach with those of other machine learning classifiers and approaches. Rathore

et al. [54] underscored the significance of feature reduction and ranking by employing an ex-

tensive array of feature sets. They proposed a robust feature reduction method that employs

diverse classifiers and feature sets, encompassing permissions, intents, opcode sequences, and

mutually exclusive and merged feature spaces. Despite a reduction of up to 90% in feature

size, this impacted the original detection accuracy to some extent, but concurrently, it effec-

tively streamlined test and training times.

2.1.3 API calls based Detection

In this section, we review the works that have used API calls, within the Java source code

of the app, to detect Android malware. Almahmoud et al. [55] moved forward with their ap-

proach by performing a static analysis of four features, permissions, API calls, monitoring

system events, and permission rates. They aimed to compare the detection results of recurrent

neural networks with those of traditional machine learning classifiers. Mahindru and San-

gal [56] opted for Artificial Neural Networks (ANN), more especially self-organizing maps

(SOMs), as their classifier of choice. The researchers employed six feature selection strategies

to identify malware behavior, utilizing permissions, API calls, user rating, and the quantity of

user-downloaded apps as the features. Taheri et al. [57] calculated hamming distance between

features, performed static analysis, and built four new KNN-based classifiers. The features

extracted were permissions, API calls, and intents. They used the random forest as a feature

selection algorithm and concluded their work by comparing it with various state-of-the-art

techniques such as mixed and separate solutions, the program dissimilarity measure based on
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entropy (PDME), and FalDroid algorithms. Mohamed et al. [58] proposed an Android mal-

ware detection system that uses only the most common permissions and API calls and feeds

them to machine learning classifiers. Sheen et al. [59] proposed a multi-feature collaborative

decision fusion method to club the decisions predicted by various classifiers and for various

features such as permissions and API calls. The authors also used several feature ranking

methods, such as chi-square, relief, and information gain, to reduce the feature set before the

testing phase.

Mahindru and Sangal [60] extracted features such as permissions and API calls to build a

detection system using various machine learning algorithms, including supervised, unsuper-

vised, semi-supervised, and hybrid learning classifiers. The authors used ten distinct feature

selection and ranking techniques to deal with the dimensionality issue and reduced the fea-

ture set. Taheri et al. [61] proposed a couple of defense methods, particularly for adversarial

attacks, using robust-NN and C4N CNN algorithms and feature sets including API and per-

missions. Mahindru and Sangal [62] extracted features such as permissions and API calls,

rating, and the number of users downloading the app to build a detection system using various

unsupervised machine learning algorithms. The authors used ten distinct feature selection and

ranking techniques to deal with the dimensionality issue and reduced the feature set.

Xie et al. [63] proposed an analysis-based approach to fingerprint Android malware families

to describe their different behaviors. For this, they extracted permissions, API calls, and hard-

ware components, ranked them based on Fisher score and frequency-based methods, and chose

the top 20 features to be used for fingerprinting. Lastly, they used an SVM machine learning

classifier to check the efficiency of their proposed approach. AlJarrah et al. [64] extracted

permissions, API calls, and contextual information, tackled the dimensionality problem using

Information Gain, and fed the features to various machine learning algorithms. Mahesh and

Hemalatha [65] combined the CNN classifier with an Adaptive Red Fox Optimization (ARFO)

technique to propose a new approach for malware detection. To conduct their research, they

extracted permissions and API calls and reduced the dataset using the Minmax technique.

Keyvanpour et al. [66] mainly used three feature selection techniques on their extracted fea-

tures, namely, permissions, API calls, intents, and hardware components, and reduced the set

with the help of frequency-based, RF weigh-based, and feature group frequency-based meth-

ods and further fed the results to various machine learning classifiers. Mahindru and Sangal

[67] proposed a static analysis approach that extracts permissions and API call features for de-

tection. The authors further used the t-test and multivariate linear regression stepwise forward
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selection and cross-correlation methods to reduce the feature set. Finally, the results were

fed to various machine learning and ensemble classifiers, such as radial basis function neural

networks, using three different ensemble methods. Sun et al. [68] extracted permissions, API

calls, intents, and package names as keyword features and determined the correlation between

them using the Keywords Correlation Distance(KCD) technique. The smaller the KCD, the

closer the keywords. The extracted features are then utilized by the SVM classifier. Arp et al.

[69] performed static analysis using various features such as intents, permissions, hardware

components, network addresses, app components, and API calls to build a detection model

and address the limitations of static analysis. They proposed a detection system that could

provide efficient runtime performance and worked on many malware datasets by mapping fea-

tures to a joint vector space, where patterns and combinations were analyzed. Zhu et al. [70]

opted for static analysis in the development of their detection model. They leveraged permis-

sions, API calls, and hardware features as inputs for their CNN-based multi-head Squeeze and

Excitation Residual block (MSer).

İbrahim et al. [71] used various static features, including permissions, API calls, receivers,

and services. They proposed new features, such as file size and fuzzy hash values, and pro-

cessed them using a deep learning model, comparing its efficiency with that of several other

machine learning classifiers. Kabakus [72] proposed a neural network-based model that uses

one-dimensional data as input for training and testing. The features included intents, API

calls, and permissions. Yuan et al. [73] introduced a broad learning approach similar to a flat

neural network with two hidden layers for lightweight on-device detection. They used fea-

tures such as permissions, intent actions, and API calls, outperforming both shallow and some

deep learning models in on-device training. The authors in proposed a privacy-preserving

framework that leveraged federated learning (FL) to collaboratively train Android malware

detection models across distributed user devices without sharing local data. The authors in

[74] employed a deep neural network within the Federated Learning framework to improve

detection accuracy while addressing the privacy and scalability limitations of centralized sys-

tems. Their experimental results indicated that the FL-based approach achieved performance

comparable to centralized training while maintaining data confidentiality and adaptability to

distributed environments. This research demonstrated the potential of federated learning as a

secure and scalable paradigm for Android malware detection.
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2.1.4 Limitations of Static Analysis

Static analysis, while widely used in malware detection, has several inherent limitations.

Since static analysis focuses on examining the code without executing it, it often misses crit-

ical context-dependent actions such as code obfuscation, dynamic code loading, and runtime

permissions modifications. Furthermore, static methods struggle with evaluating interdepen-

dencies between different application components that interact dynamically, which can limit

their effectiveness in detecting complex, multi-stage attacks.

When focusing on permissions, static analysis faces limitations due to the overly broad na-

ture of permission requests. Android applications often request a wide range of permissions

that may not be fully utilized, making it difficult to determine the true intent behind the per-

mission usage. This can result in false assumptions regarding an app’s behavior. Similarly,

analysis of the manifest file is limited, as it only provides a high-level overview of declared

components, such as activities, services, and intents, without reflecting how these components

are actually used during execution. Malicious apps can declare benign-looking components

while hiding harmful actions in less obvious parts of the code. The limitation with API calls

based detection is that often if the APIs used are not related to any manifest file component,

they act as noise in the detection process. Hence, it may lead to lower detection accuracy.

2.2 Dynamic Detection Model

Dynamic analysis opts for a different approach than static analysis. Instead of examining the

code, it relies upon monitoring an application’s behavior while it is running over any virtual

or real CPU. As the name suggests, dynamic analysis is performed by analyzing the runtime

behavior of applications, and the features analyzed during this process are called dynamic

features, such as -

1. Network traffic- Network traffic refers to the flow of data across a network, encom-

passing all the communication that occurs between devices, servers, and other network

elements. It includes data packets transmitted through various protocols, such as Trans-

mission Control Protocol (TCP), User Datagram Protocol (UDP), Hypertext Transfer

Protocol (HTTP), Domain Name System (DNS), and others.

In mobile network traffic, Transmission Control Protocol (TCP) flows play a crucial role

in ensuring reliable and efficient communication between devices. TCP is a connection-
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oriented protocol that facilitates the orderly and error-checked delivery of data between

applications. TCP connections begin with a three-way handshake, where the sender and

receiver exchange synchronization (SYN) and acknowledgment (ACK) packets to es-

tablish a connection. TCP connections are gracefully terminated using a four-way hand-

shake, involving FIN (finish) and ACK flags. For example, Figure 2.5 is a snapshot

of Wireshark-extracted TCP flows from the network traffic of CRIDEX malware applica-

tion. Six flows out of over five thousand are displayed in the figure depicting the duration

and movement of packets/bytes from source to destination.

Figure 2.5: Snapshot of TCP flows from the network traffic of CRIDEX malware application.

2. System calls - In Android, system calls are essential functions that allow applications to

interact with the underlying operating system kernel. These calls are typically denoted

by unique identifiers or numbers, which correspond to specific operations or services

provided by the kernel. System calls are found within the Android Runtime (ART) en-

vironment and are invoked by applications to perform various tasks such as file I/O op-

erations, network communication, process management, and hardware interaction. For

example, the open() system call is used by applications to open files, while the socket()

system call is utilized for network socket creation. System calls allow real-time moni-

toring of app behavior, enabling the detection of malware activities as they happen.

Researchers have used other dynamic features also such as function call graphs [75], teleme-

try channels [76] and URL’s [77] etc. for Android malware detection. These related studies

can be further classified into two categories namely OS-based features, and Network Traffic

features, which we explore in detail further.

2.2.1 OS-based detection

In this section, we review the works that have used features like system calls, CPU logs, user

interaction, etc., for Android malware detection.
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Dimjašević et al. [78] were driven by the goal of demonstrating that semantic information

exists in system call sequences. They treated each system call sequence as a sentence in a

language, constructing a classifier based on the Long Short-Term Memory (LSTM) language

model. The authors in [79] highlighted the fact that feature selection improves the performance

of existing approaches. Subsequently, they proposed a two-step approach based on the Rough

set and another statistical test to extract the refined form of system calls. Chew et al. [80]

focused on presenting a ransomware detection technique based on behaviors observed in the

system calls performed by the malware. They then improved upon their initial approach to de-

tect crypto-ransomware in real-time using a 2-layer token-based finite state machine streaming

approach.

In [81], the authors introduced EnDroid, an innovative dynamic analysis framework that

autonomously extracts various types of dynamic behavior features such as cryptographic op-

erations, system calls, etc. to enhance malware detection. They utilized the chi-square feature

selection algorithm to eliminate irrelevant or noisy features and identify crucial ones. Further,

their proposed model employed Stacking to achieve effective malware detection. TaintDroid

[82] model, based on dynamic taint analysis, analyzed the system calls sequences and tracked

the flow of privacy-sensitive information through third-party apps. The authors, with system

calls sequences, observed that many normal apps can leak the private information stored on

the mobile device. Many systems such as ([83], [84]) are built on the TaintDroid model to

detect the privacy leakage from the apps on the Android platform. Yang et al. [85] extended

the TaintDroid model to detect the data leaks from the apps and also determine whether the

leak is due to user intention or not. All these works focused on analyzing data-leaks from the

apps, rather than detecting malicious apps. CopperDroid [86] model analyzed system calls of

malware samples and described whether the malicious behavior is initiated from Java, JNI, or

native code execution.

Afonso et al. [87] analyzed the combination of the dynamic API calls and system calls to

detect malicious apps. CrowDroid [88] model extracted the system calls and made use of

partitional clustering techniques to distinguish malicious apps from the normal ones. Droid-

Trace model [89], based on ptrace, monitored various dynamic features such as system calls

sequences, file operations, network connections, etc., for malware detection. [90] analyzed run

time traces of the apps like system calls, network traffic behavior, and real-time user inputs like

users’ interactions with the apps, etc. to evaluate the risk associated with the applications. Jang

et al. [91] leveraged volatile memory acquisition to detect malicious Android applications.
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2.2.2 Network Traffic-Based Detection

In the literature, several authors have focused on Android malware detection using network

traffic features, this section reviews all such related works proposed in the literature.

In their study, Arora and Peddoju [92] opted to gather network traffic features using real

smartphones instead of emulators. They highlighted the advantages of this approach, as it al-

lowed them to obtain a comprehensive set of 22 network traffic features, which proved to be

more than enough to achieve optimal detection accuracy. In order to further decrease the num-

ber of features and identify the most optimal set of characteristics, they employed information

gain and statistical methods like chi-square to rank the feature set. The authors of the study

[93] conducted their research by analyzing the network flow of applications. They discovered

that certain network traffic features have distinct value ranges when comparing malware traffic

to normal traffic. As a result, they selected the most significant and distinguishing network

traffic features to develop a model for detecting malware.

In their study, Lashkari et al. [94] introduced nine novel flow-based network traffic char-

acteristics. These features were used to develop an Android malware detection model that

demonstrated high efficiency by utilizing only a minimal amount of features. The model was

able to successfully detect unknown malware instances and accurately classify the type of

malware. In order to determine the most optimal set of features from both existing and newly

introduced ones, the researchers employed algorithms such as information gain, CFS subset,

and SVM.

Shabtai et al. [95] tried to understand the reason behind the deviations in the application’s

network traffic behavior from the normal flow by observing the network traffic flows. The

authors focus on the server side of the system and believe that a strong correlation exists be-

tween normal behavior patterns that can be used to detect abnormal activities. To conduct their

research , the authors used eight Android devices, real malware, and self-developed malware.

Wang et al. [96] proposed an approach analyzing the text semantics of HTTP request headers

and believed that it could be used to distinguish between normal and malware applications. To

use the HTTP request header text as features, the authors used a natural language processing

algorithm called N-gram and tried to reduce the feature set to only the most influential ones

using a statistical chi-square test. For their testing phase, they used the SVM machine learning

algorithm and varied the value of N in the N-gram to determine the best set of parameters.
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Li et al. [97] aimed at mapping the network traffic features onto a high-dimensional matrix

space for few-shot Android malware-encrypted network traffic classification. Simultaneously,

to perform feature reduction, they carefully compressed the searching space using a metric

learning framework called path optimization prototypical nets (POPNet). Hossain et al. [98]

focused mainly on finding a robust solution to deal with the growing ransomware attacks

using network traffic features. To deal with the huge dataset problem, they exploited particle

swarm optimization to select only the optimal traffic characteristics. Furthermore, they used

two machine learning classifiers to verify the detection accuracy of their proposed approach

using a reduced set of features. The proposed PSO-assisted feature selection enabled the

classifier to significantly improve detection accuracy. The authors in [99] devised a DL-based

malware classification system using raw payload and CNNs. They concentrated on the raw

payload of malware network traffic, leveraging the byte information to represent the behavioral

patterns of malware and further treated the window selection algorithm’s filtered (SWS) flows

as documents to be processed by NLP methods.

The authors in [100] divided their work into two parts: creating a training model and a real-

time detection model. For training , they incorporated several third-party scanning services

to observe malicious behavior and train their model. They based their training and real-time

detection model on DNS queries and HTTP requests and proved that their model produced

better results than the integrated scanning services upon considering only DNS queries alone.

Zulkifli et al. [101] directed their approach towards dynamic detection techniques based on

network traffic, where traffic flows were extracted during application runtime. For the testing

phase, they used the J48 decision tree machine learning algorithm to classify applications as

normal or malware for two datasets.

Pang et al. [102] worked on creating an efficient and convenient network traffic collection

system. The authors observed that the malware applications produced a negligible amount of

network traffic data; hence, to tackle the irregularity issue in the two datasets, they tried to

combine imbalance algorithms with the classical machine learning algorithms for their testing

methods. Malik and Kaushal [103] proposed a detection system called CREDROID based on

pattern-based detection, which analyzes the DNS queries and the information being transmit-

ted to the remote server by an application to classify them as normal or malware. They consid-

ered four parameters: putting the app through VirusTotal to calculate an apk score, analyzing

the reliability of the website the application is communicating with, the kind of information

being sent, and the type of communication channel being used.
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Wang et al. [104] analyzed multiple levels of network traffic features and emphasized that

combining 2 levels, namely HTTP packet and TCP flow, can be successfully employed to

create a lightweight server-based malware detection model. Lastly, on the belief that ma-

chine learning can be used to automatically discover the rules by analyzing the data, they

applied machine learning algorithms on the training set and performed the testing experi-

ments. Chen et al. [105] extracted a combination of time-related network flow and packet

features and further used supervised machine learning algorithms to classify traffic as mal-

ware or normal. Mahdavifar et al. [106] emphasized the concern regarding the difficulty in

accumulating well-labeled datasets and hence proposed a Deep Neural Network (DNN) based

work to perform dynamic analysis for malware category classification. They further compared

the detection results of their approach with those of a well-known semi-supervised machine

learning technique called label propagation.

Liu et al. [107] suggested a Graphical Neural Network (GNN) model based on mobile net-

work traffic that focused not only on node characteristics but also on edge attributes. After

extracting the network traffic information, they updated the hidden state of each node and

combined adjacency data with node attributes to construct the GNN model to further classify

applications as normal or malware. Hamouda et al. [108] utilized the FDL to propose a deep

learning-based malware detection model, in particular a convolutional neural network model

to detect Android malware based on network behavior.

2.2.3 Limitations of Dynamic Analysis

Dynamic analysis, while a powerful tool for detecting malware through real-time behavior

monitoring, presents several limitations that hinder its universal applicability. One primary

shortcoming is its resource-intensive nature. Analyzing programs dynamically requires sig-

nificant computational resources and time, making it less efficient for large-scale or real-time

malware detection. Moreover, sophisticated malware variants can detect when they are be-

ing analyzed in a controlled environment, such as virtual machines or emulators, and alter

their behavior to avoid detection. Furthermore, not all malware samples generate observable

network traffic. Some malicious programs operate in more covert ways, such as by sending

text messages or manipulating local files, without establishing connections to remote servers.

Consequently, network traffic-based detection mechanisms fail to capture these activities.

At the same time, system call-based detection mechanisms, commonly employed in dynamic
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analysis, face challenges in terms of platform and version dependency. The effectiveness of

these methods can vary significantly across different operating system versions, making it

difficult to generalize detection strategies.

Overall, dynamic analysis, while valuable in detecting real-time malware activity, is ham-

pered by its resource demands, susceptibility to evasion techniques, and limited generalizabil-

ity across platforms and malware types.

2.3 Hybrid Detection Model

Given the limitations of both static and dynamic analysis, hybrid analysis has emerged

as a comprehensive approach to Android malware detection. Hybrid analysis combines the

strengths of both static and dynamic methods, providing a more robust and resilient detection

framework. Merging the two techniques, hybrid analysis enhances detection coverage, allow-

ing for the identification of both known and zero-day threats while minimizing false positives.

Lastly, we now discuss some studies that have based their research on combining static and

dynamic analysis techniques to propose a hybrid detection model. Wang et al. [109] analyzed

permission sequences to build a static detection model for text-based binary classification.

They further classified malware families by extracting memory features and constructing ob-

ject reference graphs, demonstrating high-accuracy resistance to obfuscation attacks. Kang

et al. [110] tried to overcome the limitations of using just permissions as a part of detection

by using other features too such as API calls, Intents, serial number, file hash and system

commands to carry out application classification. Further to classify the malware family too,

they calculated the similarity score by using Needleman-Wunsch algorithm for the feature

strings. The number of malware families are around a several hundred which poses as a lim-

itation for detection to tackle with the zero day malware. Hence, Qiu et al. [111] used the

security/privacy-related capabilities for each malware sample, which exists in around dozens

only, to annotate the applications and build a feature vector table instead of using the malware

family information while incorporating the TF-IDF technique.

The work done by the authors in [40] was threefold. In the first step, they filtered out the

most relevant features from the entire set using mutual information gain. Then, they did the

same for another feature set with top code-based features. Finally, they repeated this step

with a combination of permissions and code-based features. Their conclusion proved that the

hybrid features provided the best detection accuracy. The authors in [112] used a variety of
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features such as permissions API calls and system commands to evaluate a machine learning

based problem utilising the Bayesian classifier to analyse and detect malicious behaviour in

unknown applications. To carry out the detection process they ranked the features on the basis

of Mutual information score and lastly they computed their work by showcasing their detec-

tion results to prove that their approach produced optimum results. Zhu et al. [113] described

their approach as a complete machine learning-based random forest approach, extracting four

groups of features, namely permissions, permission rate, API calls, and system monitoring

events. Finally, they compared the detection results of the RF classifier with those of the SVM

classifier. Zhang et al. [114] performed a dynamic taint analysis technique to completely iden-

tify both explicit and implicit permissions use points to further build a permission use graph

with the behavior profiler module of the proposed system. The profiled permission graphs

were later used to capture the behaviors of using permissions inside an application. Yang

et al. [115] proposed a method involving static analysis of permission-related API invocations

and dynamic exploration to analyze permission-related behavior of the app using a locally

exhaustive permission combination strategy that is also capable of simultaneously modifying

permission combinations at runtime. The authors first constructed the State Transition Graphs

(STGs) using the permissions and further fed them to the dynamic exploration module to im-

plement the breadth-first search for UI exploration. Zhou et al. [116] extracted static features

such as permissions, API calls and network addresses to feed the features into GRU model

and improve the traditional GRU model to SimGRU which is based on the similarity princi-

ple, and propose three different GRU structures namely InputSimGRU, HiddenSimGRU and

InputHiddenSimGRU.

Qaisar and Li [117] proposed a hybrid approach to extract and store features in a case base

using case-based reasoning, which is a lazy learning approach capable of continuously learn-

ing. They used k means clustering to find similarities between features and detect malware

behavior. Wang et al. [118] proposed a detection model using an ensemble of string-based and

structural-based features, such as permissions, API calls, intents, hardware components, code

patterns, and functional call graphs. To showcase the proposed model’s detection results, they

used various machine learning classifiers with a single feature type and an ensemble of both

feature types. Arshad et al. [119] exploited the benefits of both static and dynamic analysis

by proposing a hybrid detection model using permissions, hardware components, and various

other features, including system calls and network addresses. The authors used both local and

remote hosts to detect the malicious behavior of applications using several machine-learning
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algorithms. Anupama et al. [120] proposed a hybrid methodology that combined permissions

and system calls to create a detection model utilizing a range of machine learning and deep

learning classifiers. Later, they aimed to analyze the working of classifiers in the case of ad-

versarial samples. Surendran et al. [121] proposed a hybrid approach considering permissions

and API calls from the static feature set and system calls from the dynamic feature set to study

the co-dependency between the static and dynamic features. Lu et al. [122] extracted a bunch

of resource features and semantic features as a part of static analysis and extracted a variety of

dynamic features to build a hybrid deep-learning malware detection model. Due to the binary

nature of static features, they were used as input for the Deep belief Network (DBN), and

dynamic features were used as input for the Gated Recurrent Unit (GRU).

2.3.1 Limitations of Hybrid Analysis

As discussed earlier, both static and dynamic analysis have their inherent limitations. Since

most of the hybrid works extract the OS-based dynamic features such as system calls, CPU

logs, user logs, etc., high computation overhead is involved in the processing. Additionally,

not all Android malware samples generate network traffic. It has been observed that certain

types of malware may transmit text messages discreetly in the background, without producing

any noticeable network traffic. Hence, network traffic-based detection mechanisms cannot

detect such samples.

2.4 Multi-Category Malware Detection Model

While the threat of Android malware is well-recognized, it extends beyond basic detection.

Malware can be categorized into distinct types, such as Adware, Fraudware Trojans, Spyware, and

Ransomware. Thus, binary classification, which differentiates between benign and malicious

samples, serves as an essential initial step. However, multi-category classification, which

further identifies the specific type of malware is also an additional step taken up by many

researchers using a range of static and dynamic features. This section reviews notable studies

that have contributed to advancing multi-category classification in Android malware detection.

Abuthawabeh and Mahmoud [123] extracted the conversation-level network traffic features

to build an Android malware detection system that was capable of not only binary and malware

categorization but also classification of the detected malware family. For this, after cleaning
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the data to remove the unwanted redundancies, they used the ensemble learning technique to

choose the best set of features, followed by training and testing the data using the machine

learning classifiers.

Feng et al. [124] divided their whole approach into two layers, wherein the first layer they

focused mainly on the static features such as permissions, intent, etc. whereas, in the second

layer, they focused on the dynamic features, i.e., the network traffic features of the appli-

cations. After the extraction of static features in the first layer, they fed them to the fully

connected neural network and used the benign output applications for the next layer of ex-

tracting network traffic features. Results indicate the second layer which was a combination

of convolutional autoencoder and neural network, was capable of classifying applications as

normal or malware with the added benefit of detecting their corresponding malware category

and family too. Imtiaz et al. [125] put forward a hybrid approach using static features in the

first phase of their model and dynamic features in the second phase. They extracted permis-

sions, intents, and API calls and fed the results to their proposed deep-learning artificial neural

network model for malware classification and used network traffic flows for malware fam-

ily classification. Feldman et al. [126] worked on using static features such as permissions,

high-priority intent filter, and version numbers from the manifest file to build their detection

model to classify nature and app’s specific category, namely adware, spyware, and SMS mal-

ware. Their experimental results indicate that only permissions requests aren’t sufficient to

detect malware, hence, they extended their study to network traffic features by analyzing some

malware applications such as HGSpy, Simplocker, and a Minimob variant.

The authors in [127] combined permissions with more than a single type of network traffic

features to build their binary as well as family classification detection model. They mainly

used DNS queries, TCP flows, HTTP packets, and other packet contents in addition to several

machine learning classifiers. Ding et al. [128] proposed a hybrid approach combining static

and dynamic analysis. For the first part of their approach, they extracted permissions and in-

tents, followed by obtaining the best subset of static features using various feature selection and

machine learning methods. For the second part, they shifted to dynamic analysis, converted

the network traffic data into Mnist format, and fed it into their Res7LSTM model which com-

bined residual network and a long short-term memory model. Their approach had the added

advantage of not only binary classification but category and malware family classification as

well.
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2.5 Summary

In this chapter, we described the state of the art approaches for malware detection specif-

ically Android-based smartphones. Regarding Android malware detection, we discussed the

approaches in three categories namely: Static Detection, Dynamic Detection, and Hybrid De-

tection. Additionally, we reviewed some notable studies that have contributed to advancing

multi-category classification in Android malware detection. We also highlighted the limita-

tions of the existing works in each of the three categories. To overcome the aforementioned

limitations, we proposed some solutions which are discussed subsequently in the upcoming

chapters. Feature ranking over combinations of permissions and other manifest file compo-

nents using a ranking-based algorithm is essential to identify the distinguishing features to

obtain relatively good accuracy. The next problem addressed in the thesis is on prioritizing

the network traffic features, among a large number of features, for Android malware detection.

Lastly, we propose some hybrid detection models that efficiently overcome the limitations of

standalone static and dynamic analysis methods.





Chapter 3

PHIGrader: Evaluating the effectiveness

of Manifest file components in Android

malware detection using Multi Criteria

Decision Making techniques

Among the components in the AndroidManifest file, the most significant are permissions,

intents, and hardware components. This chapter introduces PHIGrader, an Android malware

detection system using a frequency-based Multi-Criteria Decision-Making (MCDM) approach to

rank these static features. The aim is to identify the most effective feature type and feature set

for Android malware detection. Section 3.1 outlines the motivation and methodology. Section

3.2 details the proposed methodology, while Section 3.3 discusses feature ranking results.

Detection results for two datasets are presented in Sections 3.4 and 3.5. A comparison with

existing literature, along with limitations, is covered in Section 3.6. The chapter concludes

with future work directions in Section 3.7.

37
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3.1 Introduction

Permissions, intents, and hardware components serve as critical static features within the

AndroidManifest file, offering significant value for Android malware detection. Permissions

regulate app access to sensitive data and system functionalities, making them pivotal in distin-

guishing benign from malicious applications. Intents capture inter-process communications,

revealing app interactions that may signal malicious behavior. Hardware components indicate

the device’s capabilities the app can leverage, thus suggesting risk levels based on required

resources. These features are widely employed in the literature, as their static nature pro-

vides insights without requiring app execution, making faster analysis. Although API calls

are another frequently used static feature, their limitations arise from contextual ambiguity,

where an API call alone may not reliably indicate intent without dynamic contextual analysis.

This limitation underscores the advantage of permissions, intents, and hardware components

as foundational features in static Android malware detection frameworks.

Motivation: Among all the components present within the manifest file of an Android appli-

cation, the most important and influential are permissions, intents, and hardware components.

These static features have been widely used in the literature for Android malware detection.

However, there are many similarities in the feature usage patterns of normal and malicious

apps. Tables 3.1 , 3.2 and 3.3 respectively, summarize the top 20 permissions, intents, and

hardware components based on their frequency in the normal and malware datasets.

We collected 77,000 normal apps and an equal number of malware apps from Androzoo.

More details about the dataset are discussed in the upcoming sections. Furthermore, we ex-

tracted permissions, intents, and hardware components from the manifest files of the corre-

sponding applications. As shown in Table 3.1, 13 of the top 20 permissions are common in

normal and malware datasets. Similarly, Table 3.2 and Table 3.3 highlights that seven out of the

top 20 intents and 16 out of the 20 hardware components are common in both datasets. Such

similarity in these features across both datasets motivates us to rank the features to propose an

efficient detection model with distinguishing features. For instance, the Android operating sys-

tem has more than 150 permissions; if we use all of them as features, irrelevant features may

hamper detection accuracy. Hence, feature ranking is a key process in developing a detection

algorithm.

Several related works, such as [70] , [129], and [118], have used static features to frame

their Android malware detection models. If we take a closer look at them, we observe that Zhu
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Table 3.1: Top 20 most frequently requested permissions from both normal and malware
datasets with their corresponding frequency.

PERMISSIONS Normal
Frequency

PERMISSIONS Malware
Frequency

INTERNET 55063 INTERNET 55684
ACCESS NETWORK STATE 52391 ACCESS NETWORK STATE 55252
WRITE EXTERNAL STORAGE 38934 WRITE EXTERNAL STORAGE 54759
WAKE LOCK 32527 ACCESS WIFI STATE 53886
ACCESS WIFI STATE 28554 READ PHONE STATE 53586
RECEIVE 23875 READ EXTERNAL STORAGE 46646
READ EXTERNAL STORAGE 22516 WAKE LOCK 44003
VIBRATE 20472 GET TASKS 43399
ACCESS FINE LOCATION 16968 CHANGE WIFI STATE 43165
ACCESS COARSE LOCATION 16650 ACCESS COARSE LOCATION 42425
RECEIVE BOOT COMPLETED 16519 VIBRATE 42325
CAMERA 14993 MOUNT UNMOUNT FILESYSTEMS 41324
READ PHONE STATE 14176 ACCESS FINE LOCATION 40720
C2D MESSAGE 12342 WRITE SETTINGS 39497
BIND GET INSTALL REFERRER SERVICE 10593 SYSTEM ALERT WINDOW 38594
BILLING 9905 CAMERA 36115
FOREGROUND SERVICE 9587 CHANGE NETWORK STATE 30874
GET ACCOUNTS 7806 RECEIVE BOOT COMPLETED 29441
WRITE SETTINGS 7258 READ LOGS 29112
BLUETOOTH 5820 RECORD AUDIO 27010

et al. [70] chose static analysis to build their detection model using permissions and hardware

components. They applied Convolutional Neural Network (CNN)-based multi-Head Squeeze

and Excitation Residual block (MSer) on static features for malware detection. Rana and Sung

[129] focused on static features such as permissions, intents, and other hardware components

to create functions based on features that extract the most useful information to facilitate de-

tection. Consequently, they developed a dictionary of these most useful features to generate a

Table 3.2: Top 20 most frequently requested intents from both normal and malware datasets
with their corresponding frequency.

INTENTS Normal
Frequency

INTENTS Malware
Frequency

MAIN 55919 MAIN 55832
LAUNCHER 55902 LAUNCHER 55769
RECEIVE 22667 DEFAULT 45689
DEFAULT 21291 VIEW 35548
VIEW 18922 BROWSABLE 33915
BROWSABLE 17545 USER PRESENT 33108
BOOT COMPLETED 16510 PACKAGE REMOVED 26806
REGISTRATION 8256 BOOT COMPLETED 26645
ACTION POWER DISCONNECTED 7318 PACKAGE ADDED 21111
ACTION POWER CONNECTED 6690 REGISTRATION 16609
LEANBACK LAUNCHER 6171 REGISTER 14419
TIME SET 5989 NOTIFICATION RECEIVED PROXY 14139
TIMEZONE CHANGED 5937 PushService 14004
BATTERY LOW 5798 REPORT 13998
BATTERY OKAY 5788 PUSH TIME 13998
DEVICE STORAGE LOW 5750 NOTIFICATION OPENED 13019
DEVICE STORAGE OK 5748 MESSAGE RECEIVED 13016
MEDIA BUTTON 4932 NOTIFICATION RECEIVED 12957
QUICKBOOT POWERON 4730 DaemonService 12488
MY PACKAGE REPLACED 4131 CONNECTION 12252
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Table 3.3: Top 20 most frequently requested hardware components from both normal and
malware datasets with their corresponding frequency.

Hardware components Normal fre-
quency

Hardware components Malware fre-
quency

camera 12337 camera 21063
touchscreen 12147 Camera.autofocus 19080
Camera.autofocus 10446 camera.flash 3288
touchscreen.multitouch 8999 nfc.hce 2324
touchscreen.multitouch.distinct 8765 touchscreen 2101
location.GPS 7468 camera.front 2040
location.network 7103 wifi 1694
location 6223 touchscreen.multitouch 1334
screen.landscape 5002 location.GPS 1262
telephony 4725 touchscreen.multitouch.distinct 1256
wifi 4484 microphone 1219
screen.portrait 4136 screen.landscape 1196
sensor.accelerometer 3892 sensor.accelerometer 1111
vulkan 3235 bluetooth le 855
camera.flash 2892 location.network 825
camera.front 2722 telephony 674
microphone 2216 autofocus 567
bluetooth 2194 location 413
bluetooth le 1087 camera2.full 297
NFC 811 usb.action.USB STATE 264

feature vector that could be fed into various classifiers. Wang et al. [118] proposed a detection

model using an ensemble of string-based and structural-based features such as permissions,

intents, hardware components, and code patterns. To showcase the detection results of the

proposed model, various machine learning classifiers with a single feature type and an ensem-

ble of both feature types were used.

None of the above works used the key concept of ranking the features and hence, missed

the feature reduction step, which could have enhanced the quality of their results. However,

in some works such as [63] and [130], the authors did rank the features and even the com-

bination of features in some cases. Xie et al. [63] proposed an analysis-based approach to

fingerprint Android malware families for describing the different behaviors. They extracted

permissions, API calls, and hardware components, ranked them on the basis of the Fisher

score and frequency-based methods, and chose the top 20 features to be used for fingerprint-

ing. Wang et al. [130] ranked the features using the absolute frequency rate difference between

the malware and benign datasets. In particular, they used permissions and hardware compo-

nents to create a feature vector. However, both studies were implemented on a smaller set

of applications compared with the huge dataset in our proposed work. More importantly, our

work outperforms both in terms of detection accuracy.

Using static features such as permissions, intents, and hardware components has always been

a simple yet effective approach to detect malicious applications. However, it all comes down
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to choosing the right set of features and the feature type. Hence, in this chapter, we aim to

analyze the effectiveness of the above-mentioned three most commonly used static features in

Android malware detection while taking their frequency as weight inputs and further ranking

them using a couple of Multi-Criteria Decision Making (MCDM) techniques. The following

research questions emerge considering the proposed detection model based on the ranking of

features:

• RQ1 Where does the need for ranking the features arise and subsequently, what is the

significance of feature reduction compared with feeding all the features as inputs at

once?

• RQ2 How to rank features, i.e., how to incorporate feature ranking?

• RQ3 How to devise a detection approach using the ranked features?

• RQ4 Which feature among the most commonly used AndroidManifest file components

gives the best detection accuracy?

We are driven by the goal of answering the research questions mentioned above and at the

same time forming an Android malware detector, named PHIGrader. We used a frequency-

based Multi-Criteria Decision-Making (MCDM) approach to rank the three most commonly used

static feature types, namely permissions, intents, and hardware components. We identified the

best feature type and the best feature set for Android malware detection among the commonly

used AndroidManifest file components. For this purpose, we applied three MCDM techniques

individually to all three feature types. We attempted to implement the MCDM techniques be-

cause of their numerous advantages, such as a simple yet quick computing process and the

ability to work with a vast dataset such as ours. Moreover, these techniques have a ratio-

nal and comprehensive logic that works best when a fundamental ranking of alternatives is

needed. Furthermore, we have proposed a novel detection algorithm that uses feature rankings

formulated from frequency-based MCDM techniques and applies various machine learning

and deep learning techniques to detect Android malware effectively. The work proposed in

this chapter uses a mix of old and recent datasets for evaluation. Our detection results out-

perform several state-of-the-art techniques proposed in related areas of research. Moreover,

our experiments indicate that the proposed frequency-based MCDM approach gives us bet-

ter accuracy than the popularly used feature ranking methods such as Principal Component

Analysis (PCA), Entropy-based Category Coverage Difference (ECCD) and also better than
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other statistical tests such as mutual information, Pearson correlation coefficient, and T-test,

which have been used in [131], when we evaluate them against the same dataset of normal and

malware apps.

Contributions: The major contributions of this chapter are as follows:

• Initially, we ranked the three feature sets of permissions, intents, and hardware com-

ponents individually in order of their frequency difference between the malware and

normal training datasets to assign frequency-based weights to each feature.

• Next, we apply three MCDM techniques to the three weighted feature sets and rank them

according to their preference score.

• We proposed a novel algorithm that uses the individual rankings of permissions, intents,

and hardware components described by MCDM techniques to develop an efficient An-

droid malware detection system.

• We recognized that the detection results of the proposed approach are better than those

of various state-of-the-art techniques existing in the literature for Android malware de-

tection.

3.2 System Design

In this section, we explain our proposed methodology in detail. Figure 3.1 summarizes a

brief yet complete idea of our proposed model PHIGrader, which is divided mainly into two

modules. We refer to the first module as the Ranking Module, which includes extracting features

from the training dataset and ranking them using three Multi-Criteria Decision-Making (MCDM)

techniques. Such a feature ranking eliminates irrelevant features and filters out only the in-

fluential ones. In the Detection Module, we propose a novel algorithm that applies machine

learning and deep learning classifiers to obtain the best features that can provide higher detec-

tion accuracy. The following subsections discuss in detail both modules of the proposed model.
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Figure 3.1: PHIGrader System Design

Ranking Module

3.2.1 Dataset

To begin with, we needed a vast dataset of normal and malware applications to conduct our

research. For this purpose, we downloaded 77,000 normal and 77,000 malware applications

from Androzoo [132] dated between 2012 and 2020. Of these, we used 56,000 normal apps

and 56,000 malware apps in the Ranking Module. The remaining 21,000 normal and 21,000

malware apps were used in the Detection Module. We term this dataset as DATASET-1. In

addition, we tested our approach on another unknown dataset containing more recent and

stealthier malware samples detected between 2021 and 2022, named DATASET-2. The market

used by Androzoo for normal applications is the Google Play Store, whereas the malware apps

are from various sources such as PlayDrone , appchina , anzhi, and VirusShare. To create the

normal dataset from Androzoo, we filtered out those apps that had VirusTotal 1 detection score

of zero, i.e., the apps that were detected as malware by none of the antiviruses on VirusTotal.

Furthermore, for the malware dataset, we filtered out those applications with a detection score

of at least five, i.e., the apps detected as malware by at least five antiviruses on VirusTotal. With

regard to the sizes of applications to be used, we settled on a range of APK sizes spanning from

1 byte to 8 GB to include applications of varying sizes and functionalities.

1https://www.virustotal.com/gui/home/upload
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3.2.2 Feature Extraction

Android OS uses the Android Package Kit (APK) file format, which contains several sub-

files and folders that further include essential information such as the application’s permissions

and. The most commonly used language for writing the source code of an Android applica-

tion is Java. Subsequently, the Java source codes are compiled and converted into executable

Dalvik bytecodes. Among the several important files present inside the bundle, one is the

AndroidManifest.xml file, which contains three of the most important features used in our detec-

tion model: permissions, intents, and hardware components. The process of extracting such

information from the kit is called decompilation.

We used the Android Asset Packaging Tool (AAPT2) tool 2 to extract the list of permissions,

intents and hardware components from normal and malware applications. Finally, these three

extracted lists of features, i.e., 129 permissions, 79 intents, and 88 hardware components were

further used to generate a feature vector for each application in the feature representation

process.

3.2.3 Feature Representation

After extracting the list of features from the applications of our dataset, we create feature

vector tables for their representation. The extracted features are represented using the One

Hot Encoding method 3 to generate a feature vector for each app in both normal and malware

datasets separately. The feature vector developed for each app is of the binary type, with a 1

for the features that the application requests and a 0 for the features that are not present within

that app. In this way, we create six separate vector tables, normal and malware, for permis-

sions, intents, and hardware components represented by PnV T , PmV T , InV T , ImV T , HnV T and

HmV T , respectively. For instance, if there are a total of five permissions, say <P1, . . . ..P5> and

five intents say <I1, . . . ..I5> in the system, and any application A j has permissions P1, P2, P5

and intents I3, I4, I5, then the app A j is represented as 11001 and 00111 in PnV T and InV T

respectively.

We observe that some features have a high frequency in normal or malware datasets. The

frequency difference (∆ f ) between the malware (M) and normal datasets (N) for any feature

2https://developer.android.com/studio/command-line/aapt2
3https://scikit-learn.org/stable/modules/generated/sklearn. preprocessing.OneHotEncoder.html
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( f ) can provide valuable insights for feature ranking. Therefore, before applying the MCDM

techniques to rank the features, we initially assign weights (w( f )) to all permissions, intents,

and hardware components separately based on their frequency difference in malware and nor-

mal datasets. We subtract the frequency count of every feature type separately in the normal

dataset from that of the malware set, as highlighted in equation 3.2.1, and sort them in de-

scending order.

∆ f = FreqM( f )−FreqN( f ) (3.2.1)

Next, we take the newly assigned weights based on the frequency difference for each feature

in the malware and normal datasets.

For instance, if there are N number of features, the top one-third of N, after ranking based

on the frequency difference between malware and normal datasets, will be assigned a weight

of 1 and considered as malware-dominant features. Similarly, the bottom one-third of N will

be assigned a weight of 3 and considered as normal dominant features. The remaining one-

third will be given a weight of 2 as they show neutral dominance or preference. Equation 3.2.3

depicts this relationship below -

w( f ) =


1 if f is in top one-third of N

2 if f is in middle one-third of N

3 if f is in bottom one-third of N

(3.2.2)

where N is the total number of ranked features.

After assigning weights to all features, for every occurrence of 1 for any feature, we replace

1 with its corresponding weight in all six vector tables. For instance, consider the same app

A j, which was initially represented as 11001 and 00111 in PnV T and InV T respectively. Suppose

the weights for P1, P2, and P5 are 1, 2, and 3, respectively, and the weights for I3, I4 and I5 are

3, 2, and 1, then A j is represented as 12003 and 00321 in PnV T and InV T respectively. These

vector tables function as decision matrices for our MCDM methods.

3.2.4 Features Ranking

Multi-Criteria Decision Making (MCDM) is one of the most accurate methods of decision mak-

ing. MCDM considers different qualitative and quantitative criteria that need to be fixed to find

the best alternative or choose the best feature. In simple words, MCDM deals with structur-
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ing and decision making when the data has manifold criteria and the decider needs to find

the best alternative according to his/her preferences. The main steps of all MCDM problems

are as follows: identifying the criteria, determining the weights for the criteria, and ranking

the alternatives or features available in order of preference, followed by choosing the best or

even opting for a subset from them. Furthermore, the goal of all MCDM problems is to define

the alternatives or features as nondominant or influential. Several types of MCDM techniques

work with a similar goal but differ in the complexity level of algorithms, weighting methods

for criteria, way of representing preferences evaluation criteria, uncertain data possibility, and

finally, data aggregation type. In our study, we used three different MCDM techniques to rank

the extracted features individually in order of preference to depict the application of MCDM

in Android malware detection. More information about the techniques used in this chapter is

given below:

1. TOPSIS - The Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) [133]

is a multi-criteria decision analysis method based on the assumption that the best alter-

native should have the least geometric distance from the Positive Ideal Solution (PIS)

and the longest geometric distance from the Negative Ideal Solution (NIS). TOPSIS is

used for comparing a set of alternatives by normalizing scores for each criterion, de-

scribing the geometric distance between each alternative and the ideal alternative, and

finally, giving out the best alternative as the final result. The complete steps in a typical

TOPSIS application are described below for an MCDM problem defined on m alternatives

and n decision criteria:

Step 1 - The normalization method to produce the normalized decision matrix ri j.

ri j = x2
i j/

√
n

∑
1

x2
i j (3.2.3)

where xi j is the performance value of alternative i when evaluated in terms of criterion j.

Step 2 - The weights wi j are assigned to various criteria according to their respective

importance or contribution.

wi j, j = 1,2 . . .n (3.2.4)
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n

∑
1

w j = 1 j = 1,2 . . .n (3.2.5)

Step 3 - The weighted normalized value vi j can be computed by calculating the prod-

uct of the normalized decision matrix ri j and the associated weights wi j with the formula

shown in equation 3.2.6.

vi j = wi j× ri j (3.2.6)

Step 4 - Determine the positive-ideal solution and negative-ideal solution.

A∗ =
{
(maxvi j | j ∈ J) ,

(
minvi j | j ∈ J′

)}
(3.2.7)

A− =
{
(minvi j | j ∈ J) ,

(
maxvi j | j ∈ J′

)}
(3.2.8)

for J = 1,2,3 . . . ,n, where J is associated with the benefit criteria. J′ = 1,2,3 . . . ,n where

J′ is associated with the cost criteria.

Step 5 - Calculate the separation measure. The separation of each alternative from the

positive ideal is given by equation 3.2.9:

S∗i =

√
n

∑
1

(
vi j− v∗j

)2
j = 1 (3.2.9)

where i=1,2, . . . , m.

Similarly, the separation of each alternative from the negative ideal is given by equation

3.2.10:

S−i =

√
∑

(
vi j− v−j

)2
j = 1 (3.2.10)

where i=1,2, . . . , m.

Step 6 - Calculate the relative closeness to the ideal solution. The relative closeness of

Ai with respect to A * is defined as follows:

C∗i = S−i /
(
S∗i +S−i

)
,0≤Ci∗ ≤ 1 (3.2.11)
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where i=1,2, . . . , m.

We assumed permissions as i (alternatives) and applications as j (criteria). Because each

application contributes equally to the decision-making process, we assign equal weights

(w j) to all applications. To ensure that the summation of all weights is 1, each application

is assigned a weight of 1 divided by the total number of applications, as highlighted in

equation 3.2.12. This means that each application now contributes proportionally to the

overall assessment, reflecting their equal significance in the problem domain.

w j =
1
n
,

n

∑
j=1

w j = 1 (3.2.12)

The larger the C∗i value (preference score), the better the performance of the alternatives.

Performance(i) ∝ C∗i (3.2.13)

In our case, we applied TOPSIS on PnV T and PmV T vector tables separately using the

weights w to compute the normal preference score (Cn∗i values) and malware preference

score (Cm∗i values) for each permission feature.

Cn∗i = TOPSIS(PnV T ,w), i = 1,2, . . . ,m (3.2.14)

Cm∗i = TOPSIS(PmV T ,w), i = 1,2, . . . ,m (3.2.15)

Further, we calculate the difference (Di) between the malware and normal preference

scores for each permission.

Di =Cm∗i −Cn∗i , i = 1,2, . . . ,m (3.2.16)

Note that the permission with the highest difference between malware and normal pref-

erence score will be the best and most preferred feature. Hence, in the last step, we rank

the permissions in decreasing order of Di values to obtain the TOPSIS-ranked permis-

sions list.

Rank(i) = sort(Di,descending) (3.2.17)

We apply all the above-mentioned steps on InV T and ImV T too in order to compute the
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TOPSIS-ranked intents list and similarly on HnV T and HmV T to compute the TOPSIS-

ranked hardware components list.

2. EDAS - Evaluation based on Distance from Average Solution (EDAS) [134] is another com-

monly used MCDM technique. The output, i.e., the best alternative, of the EDAS is

determined on the basis of the distances of the alternatives from an average solution.

Moreover, as the average solution is determined with the help of the arithmetic mean,

the EDAS method proves to be quite efficient in dealing with stochastic problems. The

highest final normalized score ASi gives the best alternative of the proposed ones. The

complete steps for an EDAS application are as follows:

Step 1 - After developing the decision matrix, determine the average solution according

to all criteria as follows:

AV = [AVj]l.:n (3.2.18)

where,

AVj =
∑

m
i=1 xi j

m
(3.2.19)

Step 2 - Calculate the positive distance matrix [PDAi j]m×n from average and the negative

distance matrix [NDAi j]m×n from the average matrices according to the type of criteria

(benefit or cost) as follows:

if j th criterion is beneficial,

PDAi j =
max(0,(xi j−AVj))

AVj
, (3.2.20)

NDAi j =
max(0,(AVj− xi j))

AVj
, (3.2.21)

if j th criterion is cost,

PDAi j =
max(0,(AVj− xi j))

AVj
, (3.2.22)

NDAi j =
max(0,(xi j−AVj))

AVj
(3.2.23)

where PDAi j and NDAi j denote the positive and negative distance of i th alternative from

the average solution in terms of j th criterion, respectively.
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Step 3 - Determine the weighted sum of PDA and NDA ( SPi and SNi ) for all alternatives

as follows:

SPi =
n

∑
j=1

w jPDAi j (3.2.24)

SNi =
n

∑
j=1

w jNDAi j (3.2.25)

where w j is the weight of j th criterion.

Step 4 - Normalize the values of SP and SN for all alternatives, shown as follows:

NSPi =
SPi

maxi (SPi)
, (3.2.26)

NSNi = 1− SNi

maxi (SNi)
, (3.2.27)

Step 5 - Calculate the appraisal score or preference score (AS) for all alternatives as

follows:

ASi =
1
2
(NSPi +NSNi) , (3.2.28)

where 0≤ ASi ≤ 1.

The larger the ASi value (preference score), the better the performance of the alternatives.

Performance(i) ∝ ASi (3.2.29)

In our case, we applied EDAS on PnV T and PmV T vector tables separately using the

weights w to compute the normal preference score (ASni values) and malware prefer-

ence score (ASmi values) for each permission feature while taking the same assumptions

as TOPSIS, i.e., permissions as i (alternatives) and applications as j (criteria).

ASni = EDAS(PnV T ,w), i = 1,2, . . . ,m (3.2.30)

ASmi = EDAS(PmV T ,w), i = 1,2, . . . ,m (3.2.31)

Further, we calculate the difference (Di) between the malware and normal preference
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scores for each permission.

Di = ASmi−ASni, i = 1,2, . . . ,m (3.2.32)

Note that the permission with the highest difference between malware and normal pref-

erence score will be the best and most preferred feature. Hence, in the last step, we rank

the permissions in decreasing order of Di values to obtain the EDAS-ranked permissions

list.

Rank(i) = sort(Di,descending) (3.2.33)

We apply all the above-mentioned steps on InV T and ImV T too in order to compute the

EDAS-ranked intents list and similarly on HnV T and HmV T to compute the EDAS-ranked

hardware components list.

3. WASPAS - The Weighted Aggregated Sum Product Assessment (WASPAS) method is a unique

combination of the Weighted Sum Model (WSM) and weighted product model (WPM). WAS-

PAS integrates the merits of both WSM and WPM, yet proves to be mathematically simple,

due to which it is now widely accepted as an efficient decision-making tool. A ranking

of alternatives is performed based on the value of combined optimality criteria com-

puted according to the results of these two models. The method, by making a sensitivity

analysis within its functioning, can check the consistency of alternative rankings. The

complete steps in a typical WASPAS application are described below for a MCDM prob-

lem defined on m alternatives and n decision criteria.:

Step 1 - The total relative importance of alternative i (where xi j is it’s performance value

when it is evaluated in terms of criterion j)

as per the WSM method, denoted by Q(1)
i , is defined as:

Q(1)
i =

n

∑
j=1

x̄i jw j (3.2.34)

where

x̄i j =


xi j

maxi xi j
if maxi xi j is preferable

mini j xi j
xi j

if mini xi j is preferable
(3.2.35)

This is defined as the linearization of initial criteria values.

Step 2 - The total relative importance of alternative i as per the WPM method, denoted
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by Q(2)
i , is defined as:

Q(2)
i =

n

∏
j=1

(x̄i j)
w j , (3.2.36)

where x̄i j is the linearization of initial criteria values as explained above.

Step 3 - The Weighted Aggregated Sum Product Assessment (WASPAS) method for ranking

of alternatives is defined as:

Qi = λ

n

∑
j=1

x̄i jw j +(1−λ )
n

∏
j=1

(x̄i j)
w j , (3.2.37)

where λ = 0,0.1,0.2, . . . ,1

The larger the Qi value (preference score), the better the performance of the alternatives.

In our case, we applied WASPAS on PnV T and PmV T vector tables separately with an aim

to compute the benign preference score (Qi values) and malware preference score (Qi

values) for each permission feature. We assumed permissions as i (alternatives) and ap-

plications as criteria. Since each application contributes equally to the decision-making

process, we give equal weights to all the applications. Moreover, we treat benign appli-

cations as benefit criteria whereas malware applications as non-beneficial or cost criteria.

Consequently, after following Steps 1- 3, we successfully manage to compute two sets of

Qi values in the case of WASPAS using permissions, i.e, one for the benign dataset (Be-

nign Preference score) and another for the malware dataset (Malware Preference score).

Note that the permission with the highest difference between malware and benign pref-

erence score will be the best and most preferred feature. Hence, in the last step, we

rank the permissions in decreasing order of difference value between preference scores

(Malware Preference score - Benign Preference score) to give out the WASPAS-ranked

permissions list.

We apply all the above-mentioned steps on InV T and ImV T too in order to compute WAS-

PAS-ranked intents list and similarly, on HnV T and HmV T to compute WASPAS-ranked

hardware components list.

3.2.5 Machine Learning and Deep Learning Classifiers

We used several machine learning and deep learning classifiers [135] in our detection ap-

proach. We applied ten widely used techniques, namely Decision Trees (DT), Random Forest
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Algorithm 1 Proposed Malware Detection Algorithm
1: Input: FList ← Ranked feature List
2: Output: Best set of features with a higher detection rate
3: BFList ← Initialized as a copy of FList
4: Fi← ith ranked feature in FList
5: N ← Number of features in FList
6: Fall ← List of all features from testing dataset (non unique)
7: DMax←Maximum accuracy obtained, initialized to zero.
8: DAcc← Accuracy obtained after each iteration.
9: for i← 1 to N do

10: Copy FN−i+1 in FList
11: Fall\{FN upto FN−i+1} // Delete all {FN upto FN−i+1} from Fall
12: Find DAcc using ML algorithms for features present in Fall
13: if DAcc > DMax then
14: DAcc = DMax
15: BFList\{FN upto FN−i+1} // Delete all {FN upto FN−i+1} from BFList
16: else exit
17: end if
18: end for
19: return DMax
20: return BFList

(RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR), Sup-

port Vector Machine (SVM) as machine learning classifiers and Multilayer Perceptron (MLP),

Convolutional Neural Network (CNN), Artificial Neural Networks (ANN), Dense Neural Net-

work (DNN) as deep learning classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].

The code concludes by printing the cross-validation results, including the accuracy scores for

each fold and the mean accuracy across all folds. This provides insights into the model’s con-

sistency and overall performance across diverse subsets of the dataset.

Detection Module

3.2.6 Proposed Malware Detection Algorithm

In response to our RQ3, i.e., how to devise a detection approach using the ranked features,

this section describes our proposed detection algorithm termed Algorithm 1. As discussed in

the previous subsection, we use the feature preference score computed separately for malware

and normal datasets from a particular MCDM technique to further rank them in order of rele-
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vance. The higher the difference between the preference score values, the higher the relevancy.

We aim to find the best set of features to provide better detection accuracy. FList represents the

ranked features, i.e., permissions, intents, or hardware components in decreasing order of their

computed difference.

FList = { f1, f2, . . . , fN} (3.2.38)

Since, we will need to modify the FList based on the performance of the test set, we intro-

duce another validation list with the name BFList which will be initialized as a copy of FList

only. Eventually, after all iterations BFList will give us the best set of features to provide better

detection accuracy.

BFList = FList (3.2.39)

In the first iteration of the algorithm, we select the bottom-ranked feature from FList . We then

execute machine learning and deep learning algorithms on the testing data after eliminating the

bottom-ranked feature and considering only the rest of the features from the FList and observe

the detection accuracy, say DAcc. The maximum accuracy, say DMax, is initialized to zero. At

every iteration, we compare DAcc and DMax. If the accuracy at the current iteration, i.e., DAcc,

is higher than DMax, we proceed towards the next iteration and we set DMax as DAcc and at the

same iteration only, we delete the bottom-ranked feature from the BFList leaving N-1 features

in it. The following equations summarize the above-mentioned procedure.

if DAcc > DMax (3.2.40)

then DMax = DAcc (3.2.41)

and BFList = { f1, f2, . . . , fN−1} (3.2.42)

In the next iteration, we select the bottom two ranked features and find the detection accuracy

on the testing data by eliminating these two and considering the rest N-2 features only, i.e.,

DAcc for the current iteration. Again, we compare the DMax and DAcc, and if DAcc is higher

than DMax, we delete the bottom two ranked features from the BFList and proceed to the next

iteration to select the bottom three ranked features. The following equations summarize the

above-mentioned procedure.

if DAcc > DMax (3.2.43)
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then DMax = DAcc (3.2.44)

and BFList = { f1, f2, . . . , fN−2} (3.2.45)

The algorithm continues in the same manner and terminates when the detection accuracy does

not improve further. At a stage when DAcc is not higher than Dmax, we return the DMax and BFList

containing only the best set of ranked features. The overall computational complexity of the

proposed algorithm can be approximated as O(N * (N + M + f(n))), where N is the number of

features in the FList , M is the size of the Fall list, and f(n) represents the time complexity of the

ML algorithms used for training and evaluation.

Algorithm 1 answers research question three, i.e., how to frame a detection approach based on

the ranking of features. We describe the results obtained from the proposed approach in the

next section.

3.3 Feature Ranking Results

In this section, we present and discuss the feature ranking results obtained using the proposed

PHIGrader model. We point out that we have separate datasets for training and testing. As

described in Section 3.2.1, there are 77,000 applications, each in the normal and malware

categories. Of these, we used 56,000 normal apps and 56,000 malware apps in the ranking

module. The remaining 21,000 normal and 21,000 malware apps were used in the detection

module. We term this dataset DATASET-1. In addition, we tested our approach on another

unknown dataset containing more recent and stealthier malware samples detected between

2021 and 2022, named DATASET-2. In the upcoming subsections, we first discuss the ranking

obtained from the three MCDM techniques individually, namely TOPSIS, EDAS and WASPAS,

after allotting weights to all three feature types. Thereafter, in the subsequent sections, we

discuss the detection results of DATASET-1 and DATASET-2.

3.3.1 Allotting Weights To The Features

As discussed in Section 3.2.3, we first assign weights to features based on their frequency

difference in the malware and normal training datasets. We note that we have three sep-

arate rankings, one each for permissions, intents, and hardware components. Tables 3.4 ,

3.5 and 3.6 summarize the top ten normal dominant and malware dominant features along

with their assigned weights. As seen from Table 3.4, the normal dominant permission named



56

RECEIVE is assigned a weight of three because it has the lowest frequency difference be-

tween the malware and normal datasets, whereas the malware dominant permission named

MOUNT UNMOUNT FILESYSTEMS had the highest frequency difference between the malware

and normal datasets; hence, it was weighted one. Similarly, we can acknowledge the weights

of the other top 10 normal dominant and malware dominant permissions from the table.

Table 3.4: Top 10 normal dominant and malware dominant permissions with their correspond-
ing weights

Normal dominant Permissions Weights
alloted

Malware dominant Permissions Weights
alloted

RECEIVE 3 MOUNT UNMOUNT FILESYSTEMS 1
BIND GET INSTALL REFER-
RER SERVICE

3 READ PHONE STATE 1

C2D MESSAGE 3 GET TASKS 1
FOREGROUND SERVICE 3 CHANGE WIFI STATE 1
BILLING 3 SYSTEM ALERT WINDOW 1
USE FINGERPRINT 3 WRITE SETTINGS 1
READ GSERVICES 3 CHANGE NETWORK STATE 1
USE BIOMETRIC 3 READ LOGS 1
UPDATE SHORTCUT 3 ACCESS COARSE LOCATION 1
BROADCAST BADGE 3 ACCESS WIFI STATE 1

As seen from Table 3.5, the normal dominant intent named RECEIVE is assigned a weight of

three because it has the lowest frequency difference between the malware and normal datasets,

whereas the malware dominant intent named USER PRESENT had the highest frequency dif-

ference between the malware and normal datasets; hence, it had a weight of one. Similarly,

we can acknowledge the weights of the other top 10 normal dominant and malware dominant

intents from the table.

Table 3.5: Top 10 normal dominant and malware dominant intents with their corresponding
weights

Normal dominant Intents Weights
alloted

Malware dominant Intents Weights
alloted

RECEIVE 3 USER PRESENT 1
DEVICE STORAGE LOW 3 PACKAGE REMOVED 1
DEVICE STORAGE OK 3 DEFAULT 1
LEANBACK LAUNCHER 3 PACKAGE ADDED 1
BATTERY OKAY 3 VIEW 1
BATTERY LOW 3 BROWSABLE 1
MEDIA BUTTON 3 REGISTER 1
MY PACKAGE REPLACED 3 NOTIFICATION RECEIVED PROXY 1
TIMEZONE CHANGED 3 PushService 1
QUICKBOOT POWERON 3 PUSH TIME 1

Similarly, it can be seen from Table 3.6, the normal dominant hardware component named

touchscreen is assigned a weight of three because it has the lowest frequency difference between

the malware and normal datasets, whereas the malware dominant component named camera

had the highest frequency difference between the malware and normal dataset, hence, had a
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weight of one. Similarly, we can acknowledge the weights of the other top 10 normal-dominant

and malware-dominant hardware components from the table.

Table 3.6: Top 10 normal dominant and malware dominant hardware components with their
corresponding weights

Normal dominant Hardware components Weights
alloted

Malware dominant Hardware components Weights
alloted

touchscreen 3 camera 1
touchscreen.multitouch 3 Camera.autofocus 1
touchscreen.multitouch.distinct 3 nfc.hce 1
location.network 3 autofocus 1
location.GPS 3 camera.flash 1
location 3 camera2.full 1
telephony 3 usb.action.USB STATE 1
screen.portrait 3 sensor.stepcounter 1
screen.landscape 3 sensor.stepdetector 1
vulkan 3 camera.setParameters 1

3.3.2 Features Ranking

In response to our RQ2, i.e., how to incorporate feature ranking, this section presents the

various techniques chosen by us to rank the features in order of relevance. To obtain the

preference score of each feature, we separately applied the three MCDM techniques, TOPSIS,

EDAS, and WASPAS, to the six vector tables (two for each feature type) developed for permis-

sions, intents, and hardware components. Furthermore, we used the difference between the

preference score of the features obtained using the malware and normal datasets to identify the

most distinguishing features.

Using the frequency-based MCDM approach mentioned above, we answer research question two,

i.e., how to rank the features to recognize the most distinguishing and influential ones among

them.

Feature ranking using TOPSIS

In this section, we discuss the ranking obtained on applying TOPSIS over permissions, intents,

and hardware components individually. Tables 3.7 , 3.8 and 3.9 summarize the top ten permis-

sions, intents, and hardware components respectively according to the ranking done using the

preference score obtained by TOPSIS.

Table 3.7 highlights that the permission named UPDATE APP OPS STATS is the most distin-

guishing permission with the highest difference between the malware and normal preference

score according to TOPSIS. Similarly, we can infer rankings of other permissions based on
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their scores from the table. The permission named INTERNET had the lowest preference score

difference value of -0.9945 amongst all permissions and hence, is the least distinguishing per-

mission.

Table 3.7: Top 10 permissions ranked using TOPSIS

Permissions Malware Preference score Normal Preference score Difference
UPDATE APP OPS STATS 0.995640016 0.994700764 0.000939252
USE BIOMETRIC 0.999710875 0.999859006 -0.000148131
MAPS RECEIVE 0.999401252 0.99984433 -0.000443078
READ OWNER DATA 0.997612157 0.998838311 -0.001226154
READ USER DICTIONARY 0.997566566 0.999204898 -0.001638332
SEND DOWNLOAD COM-
PLETED INTENTS

0.995754181 0.997521968 -0.001767787

QUERY ALL PACKAGES 0.99792082 0.999770741 -0.001849921
RECEIVE WAP PUSH 0.996069212 0.998509435 -0.002440223
BIND GET INSTALL REFER-
RER SERVICE

0.996692437 0.999937243 -0.003244807

READ SYNC STATS 0.995959198 0.999400858 -0.00344166

Table 3.8 highlights that the intent named UNREGISTRATION is the most distinguishing in-

tent with the highest difference between the malware and normal preference score according

to TOPSIS. Similarly, we can infer rankings of other intents based on their scores from the

table. The intent named MAIN had the lowest preference score difference value of -0.9362 and

hence, is the least distinguishing intent.

Table 3.8: Top 10 intents ranked using TOPSIS

Intents Malware Preference score Normal Preference score Difference
UNREGISTRATION 0.932365913 0.002912326 0.929454
ELECTION RESULT V4 0.928431158 0 0.928431
webview 0.932733054 0.007804123 0.924929
PING V4 0.921531166 0.002528772 0.919002
MEDIA CHECKING 0.927302209 0.008587014 0.918715
COCKROACH 0.922930032 0.005779095 0.917151
action 0.921980242 0.006800472 0.91518
ACTION RICHPUSH CALLBACK 0.91729704 0.004018638 0.913278
ACTION VIEW DOWNLOADS 1 0.087523518 0.912476
ELECTION 0.919571962 0.007494131 0.912078

In a similar manner, Table 3.9 highlights that the hardware component named faketouch.

multitouch. jazzhand is the most distinguishing hardware component with the highest difference

between the malware and normal preference score according to TOPSIS. Similarly, we can infer

rankings of other hardware components based on their scores from the table. The hardware

component named camera had the lowest preference score difference value of 0.0470 amongst

all hardware components and hence, is the least distinguishing one.
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Table 3.9: Top 10 hardware components ranked using TOPSIS

Hardware components Malware Preference score Normal Preference score Difference
faketouch.multitouch. jazzhand 1 0.000760768 0.999239
sensor.ambient temperature 1 0.000760768 0.999239
sensor.heartrate.ecg 1 0.000760768 0.999239
sensor.relative humidity 1 0.000760768 0.999239
type.automotive 1 0.000760768 0.999239
portrait 1 0.001923007 0.998077
BLUETOOTH ADMIN 1 0.002172686 0.997827
sensor.heartrate 1 0.002221286 0.997779
sensor. ACCELEROMETER 0.996798316 0 0.996798
type.watch 0.99626415 0 0.996264

Feature ranking using EDAS

In this section, we discuss the ranking obtained on applying EDAS over permissions, intents

and hardware components individually. Tables 3.10 , 3.11 and 3.12 summarize the top ten

permissions, intents, and hardware components respectively according to the ranking done

using the preference score obtained by EDAS. Table 3.10 highlights that the permission named

READ OWNER DATA is the most distinguishing permission with the highest difference between

the malware and normal preference score according to EDAS. Similarly, we can infer rankings

of other permissions based on their scores from the table. The permission named INTERNET

had the lowest preference score difference value of -0.9949 amongst all permissions and hence,

is the least distinguishing permission.

Table 3.10: Top 10 permissions ranked using EDAS

Permissions Malware Preference score Normal Preference score Difference
READ OWNER DATA 0.988485224 0.000817483 0.987667742
SEND DOWNLOAD COM-
PLETED INTENTS

0.987399804 0.000148769 0.987251036

WRITE OWNER DATA 0.988159244 0.001161826 0.986997418
UPDATE APP OPS STATS 0.986864022 7.69131E-05 0.986787109
READ USER DICTIONARY 0.987964382 0.001516245 0.986448136
DEVICE POWER 0.987416607 0.001680802 0.985735805
READ SYNC STATS 0.987797896 0.002401552 0.985396344
RECEIVE WAP PUSH 0.985181748 0.000569173 0.984612576
RECEIVE MCS MESSAGE 0.985653997 0.001409919 0.984244078
QUERY ALL PACKAGES 0.996960967 0.012767359 0.984193608

Table 3.11 highlights that the intent named SEND MULTIPLE is the most distinguishing in-

tent with the highest difference between the malware and normal preference score according

to EDAS. Similarly, we can infer rankings of other intents based on their scores from the table.

The intent named MAIN had the lowest preference score difference value of -0.9993 and hence,

is the least distinguishing intent.

In a similar manner, Table 3.12 highlights that the hardware component named faketouch.

multitouch. jazzhand is the most distinguishing hardware component with the highest difference
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Table 3.11: Top 10 intents ranked using EDAS

Intents Malware Preference score Normal Preference score Difference
SEND MULTIPLE 0.994820911 0.008634884 0.986186
webview 0.986137754 0.000184527 0.985953
MESSAGE CLICKED 0.986222594 0.000342747 0.98588
MESSAGE ARRIVED 0.986208426 0.000342747 0.985866
ELECTION RESULT V4 0.984945278 0 0.984945
DATE CHANGED 0.985482814 0.001746364 0.983736
action 0.983561978 0.000130295 0.983432
BATTERY CHANGED 0.984495175 0.001219489 0.983276
MEDIA CHECKING 0.983434556 0.000225724 0.983209
COCKROACH 0.982778387 8.94315E-05 0.982689

between the malware and normal preference score according to EDAS. Similarly, we can infer

rankings of other hardware components based on their scores from the table. The hardware

component named camera had the lowest preference score difference value of -0.5659 amongst

all hardware components and hence, is the least distinguishing one.

Table 3.12: Top 10 hardware components ranked using EDAS

Hardware components Malware Preference score Normal Preference score Difference
faketouch.multitouch. jazzhand 1 2.56585E-05 0.999974342
sensor.ambient temperature 1 2.56585E-05 0.999974342
sensor.heartrate.ecg 1 2.56585E-05 0.999974342
sensor.relative humidity 1 2.56585E-05 0.999974342
type.automotive 1 2.56585E-05 0.999974342
type.watch 0.999961715 0 0.999961715
sensor. ACCELEROMETER 0.999948631 0 0.999948631
BLUETOOTH ADMIN 1 5.26423E-05 0.999947358
portrait 1 6.60416E-05 0.999933958
sensor.heartrate 1 7.62598E-05 0.99992374

Feature ranking using WASPAS

In this section, we discuss the ranking obtained on applying WASPAS over permissions, intents,

and hardware components individually. Tables 3.13 , 3.14 and 3.15 summarize the top ten

permissions, intents, and hardware components respectively according to the ranking done

using the preference score obtained by WASPAS.

Table 3.13 highlights that the permission named READ OWNER DATA is the most distin-

guishing permission with the highest difference between the malware and normal preference

score according to WASPAS. Similarly, we can infer rankings of other permissions based on

their scores from the table. The permission named INTERNET had the lowest preference score

difference value of -0.0125 amongst all permissions and hence, is the least distinguishing per-

mission.

Table 3.14 highlights that the intent named MESSAGE ARRIVED is the most distinguishing

intent with the highest difference between the malware and normal preference score according
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Table 3.13: Top 10 permissions ranked using WASPAS

Permissions Malware Preference
score

Normal Preference score Difference

READ OWNER DATA 0.996748521 0.000165107 0.996583414

READ USER DICTIONARY 0.996582966 0.00031986 0.996263106

SEND DOWNLOAD COM-

PLETED INTENTS

0.9955652 3.78087E-05 0.995527391

UPDATE APP OPS STATS 0.995327441 1.53057E-05 0.995312135

RECEIVE WAP PUSH 0.99538727 0.000113697 0.995273572

QUERY ALL PACKAGES 0.998449011 0.003227937 0.995221074

WRITE OWNER DATA 0.995397982 0.000315789 0.995082193

READ SYNC STATS 0.995485714 0.000564408 0.994921306

DEVICE POWER 0.994571291 0.000457666 0.994113625

WRITE CALL LOG 0.994184062 0.00017898 0.994005082

to EDAS. Similarly, we can infer rankings of other intents based on their scores from the table.

The intent named BATTERY CHANGED had the lowest preference score difference value of

0.2245 and hence, is the least distinguishing intent.

Table 3.14: Top 10 intents ranked using WASPAS

Intents Malware Preference
score

Normal Preference score Difference

MESSAGE ARRIVED 0.999450188 9.7658E-05 0.99935253

ELECTION RESULT V4 0.998899696 0 0.998899696

SCREEN ON 0.998930943 0.000607229 0.998323714

webview 0.998205727 4.08075E-05 0.99816492

HOME 0.99806392 0.001219068 0.996844852

PUSH TIME 0.996837919 0.000104389 0.996733531

NOTIFICATION OPENED 0.996030541 5.25256E-05 0.995978015

PushService 0.993311291 0.000104389 0.993206902

DATE CHANGED 0.993531221 0.000346466 0.993184755

action 0.992930463 2.93376E-05 0.992901125

In a similar manner, Table 3.15 highlights that the hardware component named faketouch.

multitouch. jazzhand is the most distinguishing hardware component with the highest differ-

ence between the malware and normal preference score according to WASPAS. Similarly, we

can infer rankings of other hardware components based on their scores from the table. The

hardware component named sensor.compass had the lowest preference score difference value

of -0.0004 amongst all hardware components and hence, is the least distinguishing one.

In the subsequent sections, we present the detection results obtained using the proposed

model.
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Table 3.15: Top 10 hardware components ranked using WASPAS

Hardware components Malware Preference
score

Normal Preference score Difference

faketouch.multitouch. jazzhand 1 2.04694E-06 0.999998

sensor.ambient temperature 1 2.04694E-06 0.999998

sensor.heartrate.ecg 1 2.04694E-06 0.999998

sensor.relative humidity 1 2.04694E-06 0.999998

type.automotive 1 2.04694E-06 0.999998

BLUETOOTH ADMIN 1 5.81445E-06 0.999994

portrait 1 6.34124E-06 0.999994

sensor.heartrate 1 7.67137E-06 0.999992

faketouch.multitouch. distinct 1 1.90371E-05 0.999981

touchscreen.multitouch. jazz-

hand

1 2.04244E-05 0.99998

3.4 Detection Results on DATASET-1

In this section, we discuss the detection results, i.e., the accuracy obtained from our pro-

posed approach over DATASET-1. To check the efficiency of the three most commonly used

features present in the AndroidManifest file, we performed three experiments, considering 1)

permissions, 2) intents, and 3) hardware components, by applying the three MCDM techniques

individually. We will discuss these results in the upcoming subsections, followed by a com-

parison of our proposed work with other statistical tests.

3.4.1 Detection Results with TOPSIS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over the DATASET-1 while using the rankings given by TOPSIS. Figures 3.2 , 3.3

and 3.4 summarize the detection results when we consider permissions, intents, and hardware

components for detection, respectively. We note that in the figures mentioned above, we do

not mention the names of all the ranked features because the accuracy upon eliminating them

lies within similar ranges to the mentioned ones.

Detection Results with permissions

Figure 3.2 summarizes the detection results when we rank the permissions using the TOPSIS

technique and further apply the proposed detection algorithm. The figure can be understood as

follows. While simultaneously considering all permissions without using the TOPSIS ranking,
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we achieve 74.64% accuracy with the DT classifier. In the first iteration, on eliminating the

least ranked permission named INTERNET from the DATASET-1, we observe that we get 75.46%

accuracy with several machine learning classifiers. We call this the first iteration and move on

to the next iteration when we eliminate the bottom two ranked permissions, i.e., INTERNET

and ACCESS NETWORK STATE from the DATASET-1. In this iteration, we obtain an accuracy

of 76.47% with DT and RF classifiers. As discussed in Algorithm 1, we proceed to the next it-

eration whenever the detection accuracy increases from the previous iteration. Hence, we elim-

inate the bottom three ranked permissions and repeat the entire procedure. The procedure is

terminated until we observe a potential decrease in the detection accuracy. As shown in Figure

3.2, we achieved the highest detection accuracy of 98.01% with DT classifier upon eliminating

114 permissions out of the total lot of 129, i.e., upon considering only the top 15 permissions

namely {UPDATE APP OPS STATS , USE BIOMETRIC , MAPS RECEIVE , READ OWNER DATA

, READ USER DICTIONARY , SEND DOWNLOAD COMPLETED INTENTS , QUERY ALL PACK-

AGES , RECEIVE WAP PUSH , BIND GET INSTALL REFERRER SERVICE , READ SYNC STATS

, MESSAGE , WRITE CALL LOG , BAIDU LOCATION SERVICE , WRITE OWNER DATA, and

BADGE COUNT READ }, highest detection accuracy can be achieved. From the next iteration,

we observe that the detection accuracy starts decreasing. Finally, we conclude that we obtain

the highest accuracy of 98.01% when we apply the proposed Algorithm 1 to permissions.

Figure 3.2: Detection results with TOPSIS using permissions

Detection Results with intents

Next, we apply the proposed detection algorithm (Algorithm 1) with intents ranked by TOPSIS.

The algorithm provides the best intents with higher accuracy as an output. Figure 3.3 can be

understood as follows. While simultaneously considering all intents without using the TOPSIS

ranking, we achieve 67.19% accuracy with several machine learning classifiers. In the first it-
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eration, after eliminating the least ranked intent named MAIN from the DATASET-1, we observe

that we obtain the same 67.19% accuracy. We call this the first iteration and move on to the

next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER

from the DATASET-1. In this iteration, we obtain an accuracy of 68.79% with DT, RF, and NB

classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-

tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked intents and repeat the entire procedure. The procedure is terminated until we observe a

potential decrease in the detection accuracy. As shown in Figure 3.3, we achieved the highest

detection accuracy of 99.10% with DT classifier upon eliminating 33 intents out of the total lot

of 79, i.e., upon considering the top 46 intents, some top ranked intents being { UNREGISTRA-

TION , ELECTION RESULT V4 , WEBVIEW , PING V4 , MEDIA CHECKING.......PUSH TIME ,

PUSHSERVICE , REPORT , NOTIFICATION RECEIVED PROXY , REGISTER }, the highest de-

tection accuracy can be achieved. From the next iteration, we observe that the detection ac-

curacy starts decreasing. Finally, we conclude that we obtain the highest accuracy of 99.10%

when we apply the proposed Algorithm 1 to the intents.

Figure 3.3: Detection results with TOPSIS using intents

Detection Results with hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-

nents ranked by TOPSIS. The algorithm provides the best hardware components with higher

accuracy as an output. Figure 3.4 can be understood as follows. While considering all the

hardware components simultaneously without using the TOPSIS ranking, we achieve 71.84%

accuracy with several machine learning classifiers. In the first iteration, after eliminating the
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least ranked hardware component named camera from the DATASET-1, we observe that we

get 73.93% accuracy with the RF and BC classifiers. We call this the first iteration and

move on to the next iteration when we eliminate the bottom two ranked hardware com-

ponents, i.e., camera and Camera.autofocus from the DATASET-1. In this iteration, we ob-

tained an accuracy of 75.55% with DT, RF, and BC classifiers. As discussed in Algorithm

1, we proceed to the next iteration whenever the detection accuracy increases from the pre-

vious iteration. Hence, we eliminate the bottom three ranked hardware components and

repeat the entire procedure. The procedure is terminated until we observe a potential de-

crease in the detection accuracy. As shown in Figure 3.4, we achieved the highest detec-

tion accuracy of 91.67% with NB and LR classifiers upon eliminating 69 hardware com-

ponents out of the total lot of 88, i.e., upon considering only the top 19 hardware compo-

nents namely {faketouch.multitouch.jazzhand , sensor.ambient temperature , sensor.heartrate.ecg

, sensor.relative humidity , type.automotive , portrait , BLUETOOTH ADMIN , sensor.heartrate ,

sensor.ACCELEROMETER , type.watch , sensor.hifi sensors , faketouch.multitouch.distinct , touch-

screen.multitouch.jazzhand , camera.capability.manual post processing , camera.capability.manual

sensor , READ EXTERNAL STORAGE , RECORD AUDIO , camera.external and opengles.aep },

highest detection accuracy can be achieved. From the next iteration, we observe that the de-

tection accuracy starts decreasing. Finally, we conclude that we obtain the highest accuracy of

91.67% when we apply the proposed Algorithm 1 to hardware components.

Figure 3.4: Detection results with TOPSIS using hardware components

3.4.2 Detection Results with EDAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over DATASET-1 using the EDAS rankings. Figure 3.5 , 3.6, and 3.7 summarize

the detection results when we consider permissions, intents, and hardware components for
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detection. We note that in the figures mentioned above, we do not mention the names of all

the ranked features because the accuracy upon eliminating them lies within similar ranges to

the mentioned ones.

Detection Results with permissions

Figure 3.5 summarizes the detection results when we apply the proposed algorithm to permis-

sions ranked using the EDAS technique. The figure can be understood as follows. While con-

sidering all permissions simultaneously without using the EDAS ranking, we achieve 74.64%

accuracy with the DT classifier. In the first iteration, on eliminating the least ranked per-

mission named INTERNET from the DATASET-1, we observe that we get 75.46% accuracy

with several machine learning classifiers. We call this the first iteration and move on to the

next iteration when we eliminate the bottom two ranked permissions, i.e., INTERNET and

ACCESS NETWORK STATE from the DATASET-1. In this iteration, we obtain an accuracy of

76.47% with DT and RF classifiers. As discussed in Algorithm 1, we proceed to the next

iteration whenever the detection accuracy increases from the previous iteration. Hence, we

eliminate the bottom three ranked permissions and repeat the entire procedure. The proce-

dure is terminated until we observe a potential decrease in the detection accuracy. As shown

in Figure 3.5, we achieved the highest detection accuracy of 87.34% with BC classifier upon

eliminating 120 permissions out of the total lot of 129, i.e., upon considering only the top

nine permissions namely {READ OWNER DATA , SEND DOWNLOAD COMPLETED INTENTS ,

WRITE OWNER DATA , UPDATE APP OPS STATS , READ USER DICTIONARY , DEVICE POWER

, READ SYNC STATS , RECEIVE WAP PUSH and RECEIVE MCS MESSAGE }, the highest detec-

tion accuracy was achieved. From the next iteration, we observe that the detection accuracy

starts decreasing. Finally, we conclude that we obtain the highest accuracy of 87.34% when

we apply the proposed Algorithm 1 to permissions.

Detection Results with intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using

EDAS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.6

can be understood as follows. While simultaneously considering all intents without using the

EDAS ranking, we achieve 67.19% accuracy with several machine learning classifiers. In the

first iteration, after eliminating the least ranked intent named MAIN from the DATASET-1, we

observe that we obtain the same 67.19% accuracy. We call this the first iteration and move on to

the next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER
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Figure 3.5: Detection results with EDAS using permissions

from the DATASET-1. In this iteration, we obtain an accuracy of 68.79% with DT, RF, and NB

classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-

tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked intents and repeat the entire procedure. The procedure is terminated until we observe a

potential decrease in the detection accuracy. As shown in Figure 3.6, we achieved the highest

detection accuracy of 90.82% with DT classifier upon eliminating 60 intents out of the total lot

of 79, i.e., upon considering only the top 19 intents namely {SEND MULTIPLE , webview , MES-

SAGE CLICKED , MESSAGE ARRIVED , ELECTION RESULT V4 , DATE CHANGED , action ,

BATTERY CHANGED , MEDIA CHECKING , COCKROACH , PING V4 , WALLPAPER CHANGED

, ACTION VIEW DOWNLOADS , NEW OUTGOING CALL , SCREEN ON , HEART BEAT , HEAD-

SET PLUG , FEEDBACK and MESSAGE }, highest detection accuracy can be achieved. From

the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-

clude that we obtain the highest accuracy of 90.82% when we apply the proposed Algorithm

1 to the intents.

Figure 3.6: Detection results with EDAS using intents
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Detection Results with hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware components

ranked by EDAS. The algorithm provides the best hardware components with higher accuracy

as an output. Figure 3.7 can be understood as follows. While considering all the hardware

components simultaneously without using the EDAS ranking, we achieve 71.84% accuracy

with several machine learning classifiers. In the first iteration, after eliminating the least ranked

hardware component named camera from the DATASET-1, we observe that we get 73.93%

accuracy with the RF and BC classifiers. We call this the first iteration and move on to the

next iteration when we eliminate the bottom two ranked hardware components, i.e., camera

and Camera.autofocus from the DATASET-1. In this iteration, we obtain an accuracy of 75.55%

with DT, RF, and BC classifiers. As discussed in Algorithm 1, we proceed to the next iteration

whenever the detection accuracy increases from the previous iteration. Hence, we eliminate the

bottom three ranked hardware components and repeat the entire procedure. The procedure is

terminated until we observe a potential decrease in the detection accuracy. As shown in Figure

3.7, we achieved the highest detection accuracy of 91.67% with RF, NB, and LR classifiers

by eliminating 70 hardware components out of the total lot of 88, i.e., upon considering only

the top 18 hardware components, the highest detection accuracy can be achieved. From the

next iteration, we observe that the detection accuracy starts decreasing. Finally, we conclude

that we obtain the highest accuracy of 91.66% when we apply the proposed Algorithm 1

to hardware components.

Figure 3.7: Detection results with EDAS using hardware components
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3.4.3 Detection Results with WASPAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over the DATASET-1 while using the rankings given by WASPAS. Figures 3.8, 3.9 and

3.10 summarize the detection results when we consider permissions, intents, and hardware

components for detection respectively. We note that in the figures mentioned above, we don’t

mention the names of all the ranked features as the accuracy upon eliminating them lie within

similar ranges to the mentioned ones.

Detection Results using permissions

Figure 3.8 can be understood as follows. While considering all the permissions simultane-

ously without utilizing the WASPAS ranking, we achieve 74.64% accuracy with the DT classi-

fier. At the first iteration, on eliminating the least ranked permission named INTERNET from

the DATASET-1, we observe that we get 75.46% accuracy with several machine learning clas-

sifiers. We call this the first iteration and move on to the next iteration when we eliminate

the bottom two ranked permissions, i.e., INTERNET and WRITE EXTERNAL STORAGE from

the DATASET-1. In this iteration, we get an accuracy of 76.13% with DT and RF classi-

fiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the detec-

tion accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked permissions and repeat the entire procedure. The procedure terminates until we ob-

serve a potential decrease in the detection accuracy. As shown in Figure 3.8, we achieved

the highest detection accuracy of 87.73% with DT classifier upon eliminating 111 permis-

sions out of the total lot of 129, i.e., upon considering only the top 18 permissions namely {

READ OWNER DATA , READ USER DICTIONARY , SEND DOWNLOAD COMPLETED INTENTS

, UPDATE APP OPS STATS , RECEIVE WAP PUSH , QUERY ALL PACKAGES , WRITE OWNER

DATA , READ SYNC STATS , DEVICE POWER , WRITE CALL LOG , MESSAGE , INSTALL PACKAGES

, WRITE HISTORY BOOKMARKS , MANAGE DOCUMENTS , MAPS RECEIVE , WRITE MEDIA

STORAGE , RECEIVE MCS MESSAGE and ACTIVITY RECOGNITION }, highest detection accu-

racy can be achieved. From the next iteration, we observe that the detection accuracy starts

decreasing. Finally, we conclude that we get the highest accuracy of 87.73% when we apply

the proposed Algorithm 1 on permissions.
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Figure 3.8: Detection results with WASPAS using permissions

Detection Results using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents by WAS-

PAS. The algorithm will give the best intents with higher accuracy as an output. Figure 3.9 can

be understood as follows. While considering all the intents simultaneously without utilizing

the EDAS ranking, we achieve 67.19% accuracy with several machine learning classifiers. At

the first iteration, on eliminating the least ranked intent named BATTERY CHANGED from the

DATASET-1, we observe that we get the same 67.19% accuracy. We call this the first iteration

and move on to the next iteration when we eliminate the bottom two ranked intents, i.e., BAT-

TERY CHANGED and MEDIA REMOVED from the DATASET-1. As discussed in Algorithm 1,

we proceed to the next iteration whenever the detection accuracy increases from the previous

iteration. Hence, we eliminate the bottom three ranked intents and repeat the entire procedure.

The procedure terminates until we observe a potential decrease in the detection accuracy. As

shown in Figure 3.9, we achieved the highest detection accuracy of 93.75% with DT and RF

classifiers upon eliminating 53 intents out of the total lot of 79, i.e., upon considering only the

top 26 intents namely {MESSAGE ARRIVED , ELECTION RESULT V4 , SCREEN ON , webview

, HOME , PUSH TIME , NOTIFICATION OPENED , PushService.....PHONE STATE , REGISTER

, PACKAGE REMOVED , SERVICE , MEDIA EJECT and HEADSET PLUG } , highest detection

accuracy can be achieved. From the next iteration, we observe that the detection accuracy

starts decreasing. Finally, we conclude that we get the highest accuracy of 93.75% when we

apply the proposed Algorithm 1 on intents.

Detection Results using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked hardware compo-

nents by WASPAS. The algorithm will give the best hardware components with higher accuracy
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Figure 3.9: Detection results with WASPAS using intents

as an output. Figure 3.10 can be understood as follows. While considering all the hardware

components simultaneously without utilizing the WASPAS ranking, we achieve 71.84% accu-

racy with several machine learning classifiers. At the first iteration, on eliminating the least

ranked hardware component named sensor.compass from the DATASET-1, we observe that we

get the same 71.84% accuracy. We call this the first iteration and move on to the next it-

eration when we eliminate the bottom two ranked hardware components, i.e., sensor.compass

and camera.ar from the DATASET-1. In this iteration, we get an accuracy of 72.02% with DT,

RF, and BC classifiers. As discussed in Algorithm 1, we proceed to the next iteration when-

ever the detection accuracy increases from the previous iteration. Hence, we eliminate the

bottom three ranked hardware components and repeat the entire procedure. The procedure

terminates until we observe a potential decrease in the detection accuracy. As shown in Fig-

ure 3.10, we achieved the highest detection accuracy of 93.75% with several classifiers upon

eliminating 66 hardware components out of the total lot of 88, i.e., upon considering only the

top 22 hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient temperature

, sensor.heartrate.ecg , sensor.relative humidity , type.automotive , BLUETOOTH ADMIN , portrait

, sensor.heartrate , faketouch.multitouch.distinct.........moxx.mobility.android.hardwareplatform. fire-

baseinitprovider , READ EXTERNAL STORAGE , RECORD AUDIO , vr.headtracking , opengles.aep

, camera.external and biometrics }, highest detection accuracy can be achieved. From the next

iteration, we observe that the detection accuracy starts decreasing. Finally, we conclude that

we get the highest accuracy of 93.75% when we apply the proposed Algorithm 1 on hardware

components.

The compiled detection results when we apply the proposed algorithm to DATASET 1 are

summarized in Table 3.16. From the table, we observe that we obtain the highest accuracy
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Figure 3.10: Detection results with WASPAS using hardware components

of 98.01% on using 15 permissions when we apply the proposed Algorithm 1 to the ranking

described by TOPSIS. Similarly, the highest accuracy of 99.10% can be achieved using 46

intents when we apply the proposed Algorithm 1 to the ranking described by TOPSIS, whereas

the ranking given by WASPAS results in the highest detection accuracy of 93.75% on using

22 hardware components. Hence, in response to research question four, we conclude that the

TOPSIS’ top-ranked 46 intents, i.e. intents give the best detection accuracy results amongst the

top three most commonly used AndroidManifest file features.

Table 3.16: Compiled Detection results (in %) on applying the proposed algorithm on
DATASET -1

Feature Ranking

Method used

PERMISSIONS INTENTS
HARDWARE

COMPONENTS
Number

used

Accuracy

(in %)

Number

used

Accuracy

(in %)

Number

used

Accuracy

(in %)
TOPSIS 15 98.01 46 99.10 19 91.67
EDAS 09 87.34 19 90.82 18 91.67
WASPAS 18 87.73 26 93.75 22 93.75
No Ranking (All
features used)

129 74.64 79 67.19 88 71.84

At the same time, when no feature ranking of any type is used and all the features are fed

to the classifiers at once, i.e., on considering the large initial vector of all the permissions, in-

tents, or hardware components simultaneously, we observe that the highest detection accuracy

obtained is merely 74.64%, 67.19%, and 71.84% respectively. Based on the results and the

low detection accuracy depicted by Table 3.16, we answer our first research question that feature

ranking helps us eliminate irrelevant features that can hamper detection accuracy.
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3.4.4 Comparison with other feature ranking techniques

We applied various MCDM techniques to rank the features. However, feature ranking tech-

niques such as Principal Component Analysis (PCA) [137] and Entropy-based Category Cov-

erage Difference (ECCD) [52] have been used in other studies for Android malware detection.

Next, we compare the performance of the ranking obtained using various MCDM techniques

with the Principal Component Analysis (PCA) and Entropy-based Category Coverage Differ-

ence (ECCD). Tables 3.17 and 3.18 highlight the top 10 permissions, intents, and hardware

components ranked using Principal Component Analysis (PCA) and Entropy-based Category

Coverage Difference (ECCD), respectively.

Table 3.17: Top 10 features ranked using PCA

PERMISSIONS INTENTS HARDWARE COMPONENTS
READ SYNC STATS NOTIFICATION RECEIVED

PROXY
sensor.heartrate.ecg

WRITE OWNER DATA PUSH TIME type.automotive
CHANGE WIFI STATE REPORT sensor.ambient temperature
READ OWNER DATA PushService sensor.relative humidity
WRITE CALL LOG REGISTER faketouch. multitouch. jazzhand
READ USER DICTIONARY NOTIFICATION OPENED sensor.hifi sensors
WRITE SETTINGS MESSAGE RECEIVED camera. capability. manual post

processing
READ SYNC SETTINGS NOTIFICATION RECEIVED camera. capability. man-

ual sensor
GET TASKS CONNECTION camera.external
RECEIVE WAP PUSH DaemonService opengles.aep

Table 3.18: Top 10 features ranked using ECCD

PERMISSIONS INTENTS HARDWARE COMPONENTS
MOUNT UNMOUNT FILESYSTEMS USER PRESENT autofocus
READ PHONE STATE PACKAGE REMOVED service. GwBroadcast Moni-

torService
CHANGE WIFI STATE NOTIFICATION RECEIVED

PROXY
camera

GET TASKS PushService screen.portrait
SYSTEM ALERT WINDOW PUSH TIME fingerprint
READ LOGS REPORT location
CHANGE NETWORK STATE REGISTER service. DevTransferService
WRITE SETTINGS MESSAGE RECEIVED touchscreen
ACCESS WIFI STATE NOTIFICATION OPENED audio.pro
JPUSH MESSAGE NOTIFICATION RECEIVED location.network

For comparison, we ranked all three feature types, i.e., permissions, intents, and hardware

components, using Principal Component Analysis (PCA) and Entropy-Based Category Cover-

age Difference (ECCD) and further applied the proposed Algorithm 1 to DATASET-1 to obtain

their corresponding detection accuracies. First, we apply the proposed detection algorithm to

permissions after ranking them using Principal Component Analysis (PCA), and Entropy-

based Category Coverage Difference (ECCD). The proposed algorithm, i.e., Algorithm 1,
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will provide the best set of permissions with higher accuracy as an output. As we can see

from Table 3.19, we obtain the highest accuracy of 87.56% with five permissions, namely

{READ SYNC STATS , WRITE OWNER DATA , CHANGE WIFI STATE , READ OWNER DATA,

and WRITE CALL LOG }, when we rank the permissions with PCA. Similarly, we obtained the

highest accuracy of 89.68% with only one permission namely MOUNT UNMOUNT FILESYSTEMS

ranked using ECCD. Simultaneously, with our proposed approach on the permission ranking

given by TOPSIS, we obtained the highest accuracy of 98.01% with 15 permissions.

Table 3.19: Comparison of best detection results (in %) from MCDM techniques with Principal
Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
permissions

Approach
used

Number of
PERMIS-
SIONS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
TOPSIS (Our
approach)

15 98.01 88.73 88.73 68.28 69.66 73.12 63.70 41.54 60.86 74.25

PCA [137] 05 87.56 87.54 87.53 78.76 78.76 78.76 74.61 75.43 78.50 78.54
ECCD [52] 01 89.68 86.66 89.61 80.12 80.12 80.2 79.87 72.08 79.95 76.65

Next, we apply the proposed detection algorithm to intents, after ranking them using Princi-

pal Component Analysis (PCA), and Entropy-based Category Coverage Difference (ECCD).

The proposed algorithm, i.e., Algorithm 1, will provide the best set of intents with higher ac-

curacy as an output. The results are summarized in Table 3.20, as it can be observed that we ob-

tain the highest accuracy of 95.43% with nine intents, namely {NOTIFICATION RECEIVED PROXY

, PUSH TIME , REPORT , PushService , REGISTER , NOTIFICATION OPENED , MESSAGE RECEIVED

, NOTIFICATION RECEIVED, and CONNECTION }, when we rank the intents using PCA. Sim-

ilarly, we obtain the highest accuracy of 96% with 19 intents, namely {USER PRESENT PACK-

AGE REMOVED , NOTIFICATION RECEIVED PROXY , PushService , PUSH TIME......, UNREG-

ISTRATION , SERVICE , START FROM AGOO , ELECTION and PING V4 } , when we rank the

intents with ECCD. At the same time, with our proposed approach on the intents ranking given

by TOPSIS, we obtain the highest accuracy of 99.10% with 46 intents. Hence, our model using

the MCDM techniques outperforms the Principal Component Analysis (PCA), and Entropy-

based Category Coverage Difference (ECCD) on intents.

Now, we apply the proposed detection algorithm to hardware components, after ranking

them using Principal Component Analysis (PCA) and Entropy-based Category Coverage Dif-

ference (ECCD). The proposed algorithm, i.e., Algorithm 1, will provide the best set of hard-

ware components with higher accuracy as an output. The results are summarized in Table

3.21, as it can be observed that we obtain the highest accuracy of 88.88% with 11 hard-



75

Table 3.20: Comparison of best detection results (in %) from MCDM techniques with Principal
Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
intents

Approach
used

Number of IN-
TENTS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
TOPSIS (our
approach)

46 99.10 95.43 94.71 95.45 88.20 88.59 88.26 74.19 88.68 88.45

PCA [137] 09 95.43 95.41 95.41 88.93 88.54 88.50 88.61 88.40 88.40 89.33
ECCD [52] 19 96.00 96.00 95.98 90.42 90.42 88.65 90.8 89.5 90.76 85.54

ware components, namely {sensor.heartrate.ecg , type.automotive , sensor.ambient temperature

, sensor.relative humidity , faketouch.multitouch.jazzhand , sensor.hifi sensors , camera. capabil-

ity.manual post processing , camera.capability.manual sensor , camera.external , opengles.aep and

camera.capability.raw }, when we rank the hardware components with PCA. Similarly, we ob-

tain the highest accuracy of 90.50% with 15 hardware components, namely {autofocus , ser-

vice.GwBroadcastMonitorService , camera , screen.portrait,.....vulkan , telephony , vibrate , touch-

screen.multitouch.distinct }, when we rank the hardware components with ECCD. At the same

time, with our proposed approach on the hardware components ranking given by WASPAS, we

obtain the highest accuracy of 93.78% with 22 hardware components. Hence, our model using

the MCDM techniques outperforms the Principal Component Analysis (PCA) and Entropy-

based Category Coverage Difference (ECCD) on hardware components too.

Table 3.21: Comparison of best detection results (in %) from MCDM techniques with Principal
Component Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) on
hardware components

Approach
used

Number of HARD-
WARE COMPO-
NENTS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
WASPAS
(Our ap-
proach)

22 93.75 93.75 90.00 93.75 93.75 78.57 78.05 72.54 78.85 78.78

PCA [137] 11 66.66 66.66 88.88 44.44 44.44 58 55.49 56.5 58.5 77.77
ECCD [52] 15 90.50 90.50 90.50 86.89 90.42 82.64 85.82 80.53 84.44 84.44

3.4.5 Comparison with other statistical tests

We applied various MCDM techniques to rank the features. However, statistical tests such as

Mutual Information, Pearson Correlation Coefficient, and T-Test have been used in other stud-

ies such as [131] for Android malware detection. Hence, next, we compare the performance

of the ranking obtained using various MCDM techniques with the mutual information, Pearson

correlation coefficient, and T-test. Tables 3.22 , 3.23 and 3.24 highlight the top ten permis-
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sions, intents, and hardware components ranked with mutual information, Pearson Correlation

Coefficient, and T-Test, respectively.

Table 3.22: Top 10 features ranked using Mutual Information

PERMISSIONS INTENTS HARDWARE COMPONENTS
MOUNT UNMOUNT FILESYSTEMS USER PRESENT touchscreen
READ PHONE STATE PACKAGE REMOVED camera
CHANGE WIFI STATE DEFAULT Camera.autofocus
GET TASKS REGISTER touchscreen. multitouch. distinct
SYSTEM ALERT WINDOW NOTIFICATION RECEIVED

PROXY
touchscreen. multitouch

READ LOGS PACKAGE ADDED location
WRITE SETTINGS PushService location.network
CHANGE NETWORK STATE PUSH TIME location.GPS
ACCESS WIFI STATE REPORT screen.portrait
ACCESS COARSE LOCATION MESSAGE RECEIVED telephony

Table 3.23: Top 10 features ranked using Pearson Correlation Coefficient

PERMISSIONS INTENTS HARDWARE COMPONENTS
ACCESS action action.NEW PICTURE
BADGE COUNT READ ACTION RICHPUSH CALL-

BACK
type.watch

ACCESS BACKGROUND LOCATION LAUNCHER audio.low latency
ACCESS COARSE LOCATION ACTION SHUTDOWN biometrics
REQUEST IGNORE BATTERY OPTI-
MIZATIONS

DAYDREAM moxx.mobility. android.hardware
platform. firebaseinitprovider

ACCESS COARSE UPDATES BATTERY CHANGED camera.ar
BROADCAST PACKAGE ADDED CREATE SHORTCUT autofocus
ACCESS GPS COCKROACH BLUETOOTH ADMIN
ACCESS NETWORK STATE CLICK portrait
GOOGLE PHOTOS SEND vibrate

Table 3.24: Top 10 features ranked using T-Test

PERMISSIONS INTENTS HARDWARE COMPONENTS
SEND DOWNLOAD COM-
PLETED INTENTS

webview action.NEW PICTURE

UPDATE APP OPS STATS UNREGISTER type.watch
READ OWNER DATA ELECTION RESULT V4 BLUETOOTH ADMIN
READ USER DICTIONARY action sensor. ACCELEROMETER
BAIDU LOCATION SERVICE WALLPAPER CHANGED faketouch.multitouch. jazzhand
RECEIVE WAP PUSH DATE CHANGED portrait
MESSAGE MEDIA CHECKING sensor.ambient temperature
INSTALL PACKAGES COCKROACH sensor.heartrate.ecg
WRITE MEDIA STORAGE PING V4 sensor.relative humidity
WRITE CALL LOG NEW OUTGOING CALL type.automotive

For comparison, we ranked all three feature types, i.e., permissions, intents, and hardware

components, using mutual information, Pearson Correlation Coefficient, and T-Test and fur-

ther applied the proposed Algorithm 1 on DATASET-1 to obtain their corresponding detection

accuracies. First, we apply the proposed detection algorithm to permissions after ranking

them using mutual information, Pearson’s correlation coefficient, and T-test. The proposed

algorithm, i.e., Algorithm 1, will provide the best set of permissions with higher accuracy as
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an output. As we can see from Table 3.25, we obtain the highest accuracy of 89.68% with

only one permission, namely MOUNT UNMOUNT FILESYSTEMS, when we rank the permis-

sions with Mutual Information. With Pearson’s correlation coefficient, we obtain the highest

accuracy of 85.48% again with only one permission, namely ACCESS. Similarly, we obtained

the highest accuracy of 88.93% with 65 permissions ranked using the T-test. Simultaneously,

with our proposed approach on the permission ranking given by TOPSIS, we obtain the highest

accuracy of 98.01% with 15 permissions.

Table 3.25: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on permissions

Approach
used

Number of
PERMIS-
SIONS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
TOPSIS (Our
approach)

15 98.01 88.73 88.73 68.28 69.66 73.12 63.70 41.54 60.86 74.25

Mutual Infor-
mation [131]

01 89.68 89.67 89.62 80.12 80.12 80.20 79.87 72.08 79.95 79.65

Correlation
Coefficient
[131]

01 85.48 85.42 85.43 72.66 72.66 72.66 73.26 65.49 73.1 72.76

T-Test [131] 65 88.93 88.92 88.92 83.45 83.45 83.60 83.15 82.86 83.26 83.08

Next, we apply the proposed detection algorithm to intents, after ranking them using mu-

tual information, Pearson’s correlation coefficient, and T-Test. The proposed algorithm, i.e.,

Algorithm 1, will provide the best set of intents with higher accuracy as an output. The re-

sults are summarized in Table 3.26, as it can be observed that we obtain the highest accuracy

of 92.18% with only two intents, namely USER PRESENT and PACKAGE REMOVED when

we rank the intents with Mutual Information. However, with Pearson’s correlation coeffi-

cient, we obtain the highest accuracy of 89.27% with two intents, namely action and AC-

TION RICHPUSH CALLBACK. Similarly, we obtain the highest accuracy of 94.57% with 51

intents, namely {webview , UNREGISTRATION , ELECTION RESULT V4 , action , WALLPA-

PER CHANGED,...NOTIFICATION OPENED , PUSH TIME , REPORT , PushService, and NOTI-

FICATION RECEIVED PROXY }, when we rank the intents with T-test. At the same time, with

our proposed approach on the intents ranking given by TOPSIS, we obtain the highest accuracy

of 99.10% with 46 intents. Hence, our model using the MCDM techniques outperforms the

Mutual Information, Pearson Correlation Coefficient, and T-Test on intents.

Now, we apply the proposed detection algorithm to hardware components, after ranking

them using mutual information, Pearson’s correlation coefficient, and T-Test. The proposed

algorithm, i.e., Algorithm 1, will provide the best set of hardware components with higher
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Table 3.26: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on intents

Approach used Number of IN-
TENTS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
TOPSIS (Our ap-
proach)

46 99.10 95.43 94.71 95.45 88.20 88.59 88.26 74.19 88.68 88.45

Mutual Informa-
tion [131]

02 92.17 92.18 92.12 80.24 79.58 80.90 79.36 80.46 80.51 80.75

Correlation Coef-
ficient [131]

02 89.27 89.24 89.11 63.67 63.67 63.66 63.02 60.81 60.87 63.38

T-Test [131] 51 94.56 94.57 94.54 87.44 87.44 85.69 85.99 80.80 60.87 87.30

accuracy as an output. The results are summarized in Table 3.27, as it can be observed that

we obtain the highest accuracy of 76.49% with only one hardware component, namely touch-

screen when we rank the hardware components with mutual information. With both Pearson’s

correlation coefficient and the T-test, we obtained the highest accuracy of 91.67% with seven

and two hardware components respectively. At the same time, with our proposed approach on

the hardware components ranking given by WASPAS, we obtain the highest accuracy of 93.75%

with 22 hardware components. Hence, our model using the MCDM techniques outperforms the

Mutual Information, Pearson Correlation Coefficient, and T-Test on hardware components.

Table 3.27: Comparison of best detection results (in %) from MCDM techniques with Mutual
Information, Pearson Coefficient, and T-Test on hardware components

Approach
used

Number of HARD-
WARE COMPO-
NENTS used

Detection accuracy using various machine learning and deep learning classifiers (in %)

DT RF BC NB LR SVC ANN MLP DNN CNN
WASPAS
(Our ap-
proach)

22 93.75 93.75 90.00 93.75 93.75 78.57 78.05 72.54 78.85 78.78

Mutual In-
formation
[131]

01 74.05 74.05 74.05 73.56 74.05 74.04 74.64 74.48 74.49 76.49

Correlation
Coefficient
[131]

07 91.67 91.67 91.67 48.92 86.02 91.67 54.84 54.91 63.04 53.69

T-Test
[131]

02 91.66 91.66 91.66 83.33 83.33 83.33 57.58 67.99 57.00 66.66

3.5 Detection Results on DATASET-2

The applications in DATASET-1 are dated from 2016 to 2022. In the following subsections,

we discuss the results obtained by testing our proposed Algorithm 1 over a new and more

recent dataset, i.e., 2000 malicious applications downloaded from Androzoo that were detected

between 2021 and 2022. To check the efficiency of the three most commonly used features

in the AndroidManifest file, we again perform three experiments, considering 1) permissions,
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2) intents, and 3) hardware components, by applying the three MCDM techniques individually,

but this time on DATASET-2. We discuss these results in upcoming subsections.

3.5.1 Detection Results with TOPSIS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over DATASET-2 while using the rankings given by TOPSIS. Figures 3.11 , 3.12 and

3.13 summarize the detection results when we consider permissions, intents, and hardware

components for detection. We note that in the figures mentioned above, we do not mention

the names of all the ranked features because the accuracy upon eliminating them lies within

similar ranges to the mentioned ones.

Detection Results with TOPSIS using permissions

Figure 3.11 can be understood as follows. While simultaneously considering all permissions

without using the TOPSIS ranking, we achieve 70.79% accuracy with the DT and RF clas-

sifiers. In the first iteration, on eliminating the least ranked permission named INTERNET

from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first iter-

ation and move on to the next iteration when we eliminate the bottom two ranked permis-

sions, i.e., INTERNET and ACCESS NETWORK STATE from DATASET-2. In this iteration, we

obtain an accuracy of 72.33% with the RF classifier. As discussed in Algorithm 1, we proceed

to the next iteration whenever the detection accuracy increases from the previous iteration.

Hence, we eliminate the bottom three ranked permissions and repeat the entire procedure. The

procedure is terminated until we observe a potential decrease in the detection accuracy. As

shown in Figure 3.11, we achieved the highest detection accuracy of 87.89% with BC classi-

fier upon eliminating 123 permissions out of the total lot of 129, i.e., by considering only the

top six permissions namely {UPDATE APP OPS STATS , USE BIOMETRIC , MAPS RECEIVE ,

READ OWNER DATA , READ USER DICTIONARY , SEND DOWNLOAD COMPLETED INTENTS

and QUERY ALL PACKAGES }, the highest detection accuracy was achieved. From the next it-

eration, we observe that the detection accuracy starts decreasing. Finally, we conclude that we

obtain the highest accuracy of 87.89% when we apply the proposed Algorithm 1 to permis-

sions.
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Figure 3.11: Detection results with TOPSIS using permissions

Detection Results with TOPSIS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using

TOPSIS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.12

can be understood as follows. While considering all intents simultaneously without using the

TOPSIS ranking, we achieve 65.35% accuracy with RF. In the first iteration, after eliminating

the least ranked intent named MAIN from the DATASET-2, we observe that we get 65.97%

accuracy with several machine learning classifiers. We call this the first iteration and move

on to the next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and

LAUNCHER from the DATASET-2. In this iteration, we obtain an accuracy of 67.05% with DT,

RF, and NB classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever

the detection accuracy increases from the previous iteration. Hence, we eliminate the bottom

three ranked intents and repeat the entire procedure. The procedure is terminated until we

observe a potential decrease in the detection accuracy. As shown in Figure 3.12, we achieved

the highest detection accuracy of 95.85% with RF classifier upon eliminating 33 intents out

of the total lot of 79, i.e., upon considering only the top 46 intents, the highest detection

accuracy can be achieved. From the next iteration, we observe that the detection accuracy

starts decreasing. Finally, we conclude that we obtain the highest accuracy of 95.85% when

we apply the proposed Algorithm 1 to the intents.

Detection Results with TOPSIS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-

nents ranked by TOPSIS. The algorithm provides the best hardware components with higher

accuracy as an output. Figure 3.13 can be understood as follows. While considering all the

hardware components simultaneously without using the TOPSIS ranking, we achieve 65.39%
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Figure 3.12: Detection results with TOPSIS using intents

accuracy with the BC machine learning classifier. In the first iteration, after eliminating the

least ranked hardware component named camera from the DATASET-2, we observe that we get

66.45% accuracy with the BC classifier. We call this the first iteration and move on to the

next iteration when we eliminate the bottom two ranked hardware components, i.e., camera

and Camera.autofocus from the DATASET-2. In this iteration, we obtain an accuracy of 67.90%

with the RF classifier. As discussed in Algorithm 1, we proceed to the next iteration whenever

the detection accuracy increases from the previous iteration. Hence, we eliminate the bottom

three ranked hardware components and repeat the entire procedure. The procedure is termi-

nated until we observe a potential decrease in the detection accuracy. As shown in Figure 3.13,

we achieved the highest detection accuracy of 94.44% with DT, BC and RF classifiers upon

eliminating 72 hardware components out of the total lot of 88, i.e., upon considering only the

top 16 hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient temperature

, sensor.heartrate.ecg , sensor.relative humidity , type.automotive , portrait , BLUETOOTH ADMIN ,

sensor.heartrate , sensor.ACCELEROMETER , type.watch..... faketouch.multitouch.distinct , touch-

screen.multitouch.jazzhand , camera.capability.manual post processing , camera.capability.manual

sensor and READ EXTERNAL STORAGE }, highest detection accuracy can be achieved. From

the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-

clude that we obtain the highest accuracy of 94.44% when we apply the proposed Algorithm

1 to hardware components.

3.5.2 Detection Results with EDAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over DATASET-2 while using the rankings given by EDAS. Figures 3.14 , 3.15 and
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Figure 3.13: Detection results with TOPSIS using hardware components

3.16 summarize the detection results when we consider permissions, intents, and hardware

components for detection. We note that in the figures mentioned above, we do not mention

the names of all the ranked features because the accuracy upon eliminating them lies within

similar ranges to the mentioned ones.

Detection Results with EDAS using permissions

Figure 3.14 can be understood as follows. While simultaneously considering all permis-

sions without using the EDAS ranking, we achieve 70.79% accuracy with the DT and RF

classifiers. In the first iteration, on eliminating the least ranked permission named INTER-

NET from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first

iteration and move on to the next iteration when we eliminate the bottom two ranked per-

missions, i.e., INTERNET and ACCESS NETWORK STATE from the DATASET-2. In this it-

eration, we obtain an accuracy of 72.33% with the RF classifier. As discussed in Algo-

rithm 1, we proceed to the next iteration whenever the detection accuracy increases from

the previous iteration. Hence, we eliminate the bottom three ranked permissions and re-

peat the entire procedure. The procedure is terminated until we observe a potential decrease

in the detection accuracy. As shown in Figure 3.14, we achieved the highest detection ac-

curacy of 88.67% with DT classifier upon eliminating 120 permissions out of the total lot

of 129, i.e., upon considering only the top nine permissions namely {READ OWNER DATA ,

SEND DOWNLOAD COMPLETED INTENTS , WRITE OWNER DATA , UPDATE APP OPS STATS

, READ USER DICTIONARY , DEVICE POWER , READ SYNC STATS , RECEIVE WAP PUSH and

RECEIVE MCS MESSAGE }, the highest detection accuracy was achieved. From the next iter-

ation, we observe that the detection accuracy starts decreasing. Finally, we conclude that we
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obtain the highest accuracy of 88.67% when we apply the proposed Algorithm 1 to permis-

sions.

Figure 3.14: Detection results with EDAS using permissions

Detection Results with EDAS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents using

EDAS. The algorithm provides the best intents with higher accuracy as an output. Figure 3.15

can be understood as follows. While considering all intents simultaneously without using the

EDAS ranking, we achieve 65.35% accuracy with RF. In the first iteration, after eliminating the

least ranked intent named MAIN from the DATASET-2, we observe that we get 65.97% accuracy

with several machine learning classifiers. We call this the first iteration and move on to the

next iteration when we eliminate the bottom two ranked intents, i.e., MAIN and LAUNCHER

from the DATASET-2. In this iteration, we obtain an accuracy of 67.05% with DT, RF, and NB

classifiers. As discussed in Algorithm 1, we proceed to the next iteration whenever the de-

tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked intents and repeat the entire procedure. The procedure is terminated until we observe a

potential decrease in the detection accuracy. As shown in Figure 3.15, we achieved the highest

detection accuracy of 93.72% with DT classifier upon eliminating 60 intents out of the total lot

of 79, i.e., upon considering only the top 19 intents namely {SEND MULTIPLE , webview , MES-

SAGE CLICKED , MESSAGE ARRIVED , ELECTION RESULT V4 , DATE CHANGED , action ,

BATTERY CHANGED , MEDIA CHECKING , COCKROACH , PING V4 , WALLPAPER CHANGED

, ACTION VIEW DOWNLOADS , NEW OUTGOING CALL , SCREEN ON , HEART BEAT , HEAD-

SET PLUG , FEEDBACK and MESSAGE }, highest detection accuracy can be achieved. From

the next iteration, we observe that the detection accuracy starts decreasing. Finally, we con-

clude that we obtain the highest accuracy of 93.72% when we apply the proposed Algorithm
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1 on intents.

Figure 3.15: Detection results with EDAS using intents

Detection Results with EDAS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with the hardware compo-

nents ranked by EDAS. The algorithm provides the best hardware components with higher

accuracy as an output. Figure 3.16 can be understood as follows. While considering all the

hardware components simultaneously without using the EDAS ranking, we achieve 65.39%

accuracy with BC machine learning classifiers. In the first iteration, after eliminating the

least ranked hardware component named camera from the DATASET-2, we observe that we get

66.45% accuracy with the BC classifier. We call this the first iteration and move on to the next

iteration when we eliminate the bottom two ranked hardware components, i.e., camera and

Camera.autofocus from the DATASET-2. In this iteration, we obtain an accuracy of 67.90% with

the RF classifier. As discussed in Algorithm 1, we proceed to the next iteration whenever the

detection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked hardware components and repeat the entire procedure. The procedure is terminated un-

til we observe a potential decrease in the detection accuracy. As shown in Figure 3.16, we

achieved the highest detection accuracy of 94.44% with DT, RF and BC classifiers upon elimi-

nating 71 hardware components out of the total lot of 88, i.e., upon considering only the top 17

hardware components namely {faketouch.multitouch.jazzhand , sensor.ambient temperature , sen-

sor.heartrate.ecg , sensor.relative humidity , type.automotive , type.watch , sensor.ACCELEROMETER

, BLUETOOTH ADMIN , portrait , sensor.heartrate , faketouch.multitouch.distinct , touchscreen.

multitouch.jazzhand , moxx.mobility.android.hardwareplatform. firebaseinitprovider , sensor.hifi sensors

, camera.capability.manual post processing , camera.capability.manual sensor and READ EXTERNAL

STORAGE }, highest detection accuracy can be achieved. From the next iteration, we observe

that the detection accuracy starts decreasing. Finally, we conclude that we obtain the highest
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accuracy of 94.44% when we apply the proposed Algorithm 1 to hardware components.

Figure 3.16: Detection results with EDAS using hardware components

3.5.3 Detection Results with WASPAS

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over the DATASET-2 while using the rankings given by WASPAS. Figure 3.17 , 3.18

and 3.19 summarize the detection results when we consider permissions, intents, and hardware

components for detection respectively. We note that in the figures mentioned above, we don’t

mention the names of all the ranked features as the accuracy upon eliminating them lie within

similar ranges to the mentioned ones.

Detection Results with WASPAS using permissions

Figure 3.17 can be understood as follows. While considering all the permissions simultane-

ously without utilising the WASPAS ranking, we achieve 70.79% accuracy with DT and RF

classifiers. At the first iteration, on eliminating the least ranked permission named INTER-

NET from the DATASET-2, we observe that we get 71.75% accuracy. We call this the first

iteration and move on to the next iteration when we eliminate the bottom two ranked permis-

sions, i.e., INTERNET and WRITE EXTERNAL STORAGE from the DATASET-2. In this iteration,

we get an accuracy of 72.61% with DT and RF classifiers. As discussed in Algorithm 1,

we proceed to the next iteration whenever the detection accuracy increases from the previ-

ous iteration. Hence, we eliminate the bottom three ranked permissions and repeat the entire

procedure. The procedure terminates until we observe a potential decrease in the detection ac-

curacy. As shown in Figure 3.17, we achieved the highest detection accuracy of 89.28% with

DT classifier upon eliminating 99 permissions out of the total lot of 129, i.e., upon consid-

ering only the top 30 permissions namely {READ OWNER DATA , READ USER DICTIONARY ,
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SEND DOWNLOAD COMPLETED INTENTS , UPDATE APP OPS STATS , RECEIVE WAP PUSH

, QUERY ALL PACKAGES , WRITE OWNER DATA , READ SYNC STATS,.....ACCESS BACKGROUND

LOCATION , RECEIVE MMS , RUN INSTRUMENTATION , RECORD VIDEO , USE BIOMETRIC

, WRITE APN SETTINGS , SET WALLPAPER HINTS and SET ALARM } , highest detection accu-

racy can be achieved. From the next iteration, we observe that the detection accuracy starts

decreasing. Finally, we conclude that we get the highest accuracy of 89.28% when we apply

the proposed Algorithm 1 on permissions.

Figure 3.17: Detection results with WASPAS using permissions

Detection Results with WASPAS using intents

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked intents by WAS-

PAS. The algorithm will give the best intents with higher accuracy as an output. Figure 3.18

can be understood as follows. While considering all the intents simultaneously without uti-

lizing the WASPAS ranking, we achieve 65.35% accuracy with RF. At the first iteration, on

eliminating the least ranked intent named BATTERY CHANGED from the DATASET-2, we ob-

serve that we get the same 65.54% accuracy with RF and BC classifiers. We call this the first

iteration and move on to the next iteration when we eliminate the bottom two ranked intents,

i.e., BATTERY CHANGED and MEDIA REMOVED from the DATASET-2. As discussed in Algo-

rithm 1, we proceed to the next iteration whenever the detection accuracy increases from the

previous iteration. Hence, we eliminate the bottom three ranked intents and repeat the entire

procedure. The procedure terminates until we observe a potential decrease in the detection

accuracy. As shown in Figure 3.18, we achieved the highest detection accuracy of 95.58%

with RF classifier upon eliminating 53 intents out of the total lot of 79, i.e., upon considering

only the top 26 intents namely {MESSAGE ARRIVED , ELECTION RESULT V4 , SCREEN ON
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, webview , HOME , PUSH TIME , NOTIFICATION OPENED , PushService.....PHONE STATE ,

REGISTER , PACKAGE REMOVED , SERVICE , MEDIA EJECT and HEADSET PLUG } , highest

detection accuracy can be achieved. From the next iteration, we observe that the detection

accuracy starts decreasing. Finally, we conclude that we get the highest accuracy of 95.58%

when we apply the proposed Algorithm 1 on intents.

Figure 3.18: Detection results with WASPAS using intents

Detection Results with WASPAS using hardware components

Next, we apply the proposed detection algorithm (Algorithm 1) with ranked hardware compo-

nents by WASPAS. The algorithm will give the best hardware components with higher accuracy

as an output. Figure 3.19 can be understood as follows. While considering all the hardware

components simultaneously without utilizing the WASPAS ranking, we achieve 65.39% ac-

curacy with BC machine learning classifiers. At the first iteration, on eliminating the least

ranked hardware component named sensor.compass from the DATASET-2, we observe that we

get 64.93% accuracy with DT and RF classifiers. We call this the first iteration and move on

to the next iteration when we eliminate the bottom two ranked hardware components, i.e., sen-

sor.compass and camera.ar from the DATASET-2. As discussed in Algorithm 1, we proceed to the

next iteration whenever the detection accuracy increases from the previous iteration. Hence,

we eliminate the bottom three ranked hardware components and repeat the entire procedure.

The procedure terminates until we observe a potential decrease in the detection accuracy. As

shown in Figure 3.19, we achieved the highest detection accuracy of 94.44% with DT, BC, and

RF classifiers upon eliminating 71 hardware components out of the total lot of 88, i.e., upon

considering only the top 17 hardware components namely {faketouch.multitouch.jazzhand sen-

sor.ambient temperature , sensor.heartrate.ecg , sensor.relative humidity , type.automotive , BLUE-

TOOTH ADMIN , portrait,.....sensor.ACCELEROMETER , camera.capability.manual post processing
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, camera.capability.manual sensor , moxx.mobility.android.hardwareplatform. firebaseinitprovider ,

READ EXTERNAL STORAGE }, highest detection accuracy can be achieved. From the next it-

eration, we observe that the detection accuracy starts decreasing. Finally, we conclude that

we get the highest accuracy of 94.44% when we apply the proposed Algorithm 1 on hardware

components.

Figure 3.19: Detection results with WASPAS using hardware components

The compiled detection results when we apply the proposed algorithm to DATASET-2 are

summarized in Table 3.28. From the table, we observe that we obtain the highest accuracy

of 89.28% using 30 permissions when we apply the proposed Algorithm 1 to the ranking

formulated by WASPAS. Similarly, the highest accuracy of 95.85% can be achieved using 46

intents when we apply the proposed Algorithm 1 to the ranking formulated by TOPSIS, whereas

the ranking given by TOPSIS results in the highest detection accuracy of 94.44% using 16

hardware components. At the same time, when no feature ranking of any type is used and all

features are fed to the classifiers at once, i.e., on simultaneously considering all permissions,

intents, or hardware components, we observe that the highest detection accuracy obtained is

merely 70.79%, 65.35%, and 65.39% respectively.

Table 3.28: Compiled Detection results (in %) on applying the proposed algorithm on
DATASET -2

Feature Ranking

Method used

PERMISSIONS INTENTS
HARDWARE

COMPONENTS
Number

used

Accuracy

(in %)

Number

used

Accuracy

(in %)

Number

used

Accuracy

(in %)
TOPSIS 06 87.89 46 95.85 16 94.44
EDAS 09 88.67 19 93.72 17 94.44
WASPAS 30 89.28 26 95.58 17 94.44
No Ranking (All fea-
tures used)

129 70.79 79 65.35 88 65.39
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Hence, in response to research question four, we conclude that TOPSIS’ top-ranked 46 intents,

i.e., intents, give the best detection accuracy of 95.85% in the case of the unknown dataset.

3.6 Discussion

In the upcoming subsections, we compare the performance of our proposed model with some

existing literature works in the field of Android malware detection, followed by discussing a

few limitations of our proposed approach.

3.6.1 Comparison with other related works

Table 3.29 annotates the performance of our proposed model with some existing literature

works in the field of Android malware detection that have used permissions, intents, or hard-

ware components as features. As shown in the table, our work outperforms all these studies

in terms of detection accuracy. If we take a closer look at some of the studies, we observe

that researchers have ranked the features based on frequency or with tests such as Mutual In-

formation and Pearson Correlation Coefficient in the past. Other studies have used ML-based

feature selection techniques, whereas some authors have formed permission pairs for Android

malware detection. Only three studies, Li et al. [16], Arp et al. [69] and Wang et al. [131],

have used a larger number of normal applications in their analysis than ours. However, the

dataset size for malware apps is still relatively small. Moreover, our work outperforms them

in terms of detection accuracy. Hence, our proposed model is better than many state-of-the-art

techniques presented in the literature for Android malware detection.

3.6.2 Limitations

In this section, we elucidate a few limitations of the proposed approach. In simple words,

our model aims and successfully ranks features such as permissions, intents, and hardware

components to detect Android malware without actually executing the code of an application;

hence, the model falls under the category of static detection. Consequently, our model has

the same shortcomings as any static detection model. Although static techniques prove to be

quite efficient in terms of ease during the extraction of features as well as in terms of expenses,

they still fall short when dealing with advanced malware behaviors such as code obfuscation

and dynamic code loading. Application collusion is an emerging threat to Android-based
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Table 3.29: Comparison of proposed work with the existing literature based on malware de-
tection using permissions, intents or hardware components.

Related Work Feature selection/Feature
ranking technique used

Dataset Size Detection ac-
curacy (in %)

Normal Malware
Wang et al. [131] Permissions ranking with

Mutual Information, Correla-
tion Coefficient and T-test

310,926 4,868 94.62

Li et al. [16] Permissions ranking based on
frequency

310,926 62,838 93.62

Mahindru and Sangal
[56]

Feature selection using Gain
Ratio, Filtered Subset selec-
tion, Information feature, LR
analysis, PCA

5,00,000 - 98.2

Arp et al. [69] Pattern analyzing via joint
vector space

123,453 5,560 94

Feldman et al. [126] ML-based classification
model

307 307 90

Arora et al. [138] Normal and malicious graphs
of permission pairs

7,533 7,533 95.44

Talha et al. [18] Risk score calculated for
each app

1,853 6,909 88.28

Shang et al. [21] Naive Bayes and Pearson
Correlation Coefficient

945 1,725 86.54

Tchakounté et al. [22] Sequence alignment based
similarity score

534 534 79.58

Khariwal et al. [139] Raked features using Infor-
mation gain

1,414 1,714 94.73

PHIGrader (Proposed
Model)

Feature Ranking with
Frequency-based TOPSIS
method

77,000 77,000 99.10

devices that seem almost immune to static feature-based detection systems. In app collusion,

two or more Android apps collude to perform a malicious action that they cannot accomplish

independently. In this way, they perform malicious tasks without displaying malware behavior.

As a result, some stealthier malware might evade the kind of detection proposed by our model.

Hence, we will work on combining the merits of dynamic analysis and some safe systems for

colluding apps with the shortcomings of static analysis to form a much more efficient malware

detection system in our future work. Additionally, some of the techniques in the literature

have focused on Android malware family/category classification such as [140] , [141] , [142]

, [143] , [144] , [145] , [146] and [147]. In this work, however, we did not aim for malware

family classification. Hence, we will aim to enhance the capabilities of our model in our future

work by including malware family classification in addition to malware detection.

3.7 Conclusion and Future work

In this chapter, we aimed to evaluate the efficiency of the top three most commonly used

static features from the AndroidManifest file when used for Android malware detection. We first
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assigned weights to features based on their frequency difference in the malware and normal

training datasets. Subsequently, we ranked the three weighted feature sets, i.e., permissions,

intents, and hardware components, by applying TOPSIS, EDAS and WASPAS, Multi-Criteria

Decision-Making techniques in order of preference. Finally, we proposed a novel algorithm

to identify the best set of features and the best type of feature among them. Our experimental

results indicate that intents rank first in terms of performance as a feature for Android malware

detection. Furthermore, the results showed that TOPSIS, among the three proposed frequency-

based MCDM techniques, gives an adequate detection accuracy of 99.10% with 46 intents.

Moreover, our experiments indicate that the proposed frequency-based MCDM approach gives

us better accuracy than the popularly used feature ranking methods such as Principal Com-

ponent Analysis (PCA) and Entropy-based Category Coverage Difference (ECCD) and also

better than other statistical tests such as Mutual Information, Pearson Correlation Coefficient,

and T-test. In addition, we proved that our proposed method is better than many state-of-the-

art techniques for Android malware detection in terms of detection accuracy. In our future

work, we will address the limitations of static analysis by incorporating some dynamic analy-

sis techniques. Additionally, we will aim to assess the effectiveness of the MCDM techniques

across other tasks such as malware family detection.





Chapter 4

PHIAnalyzer: A novel Android malware

detection system using ranked Manifest

file components

In this chapter, we present PHIAnalyzer, a novel Android malware detection system that ranks

permissions, intents, and hardware components using a frequency-based Chi-Square test. The

detection algorithm then evaluates seven possible feature combinations—permissions alone,

intents alone, hardware components alone, as well as all combinations to identify the best

set of features achieving higher detection accuracy. Our experiments demonstrate that the

proposed frequency-based Chi-Square ranking is better than other various statistical tests when

applied to the same datasets. In Section 4.1, we explain the motivation behind the work done

and a brief overview of the proposed methodology. The rest of the chapter is structured as

follows. We explain in detail the proposed methodology in Section 4.2. Subsequently, we

discuss the feature ranking, detection and comparison results of our proposed model in Section

4.3. Finally, we conclude the paper with future work directions in Section 4.4.

93
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4.1 Introduction

Among all the components present within the AndroidManifest file of an application, the most

important, influential, and widely used are permissions, intents, and hardware components. As

clearly depicted by the detection results shown in Chapter 3, these features individually have

demonstrated significant potential in achieving high detection accuracy. But simultaneously

historical evidence underscores that combining different types of indicators has proven use-

ful, as seen in multi-factor security approaches, where layering security measures helps catch

threats that single-factor methods may overlook. An example of this synergy can be seen in

location-tracking malware: by combining GPS permissions, messaging intents, and hardware

access to sensors, this kind of malware can covertly track and transmit a user’s location, an

operation unlikely to be flagged when only one feature type is considered.

Theoretically, permissions focus on application-level access controls, which may overlook

certain interactions that intents, responsible for inter-component communication, can capture.

Similarly, hardware components provide insights into the physical capabilities accessed by the

application, which may complement or reveal gaps left by permissions and intents. Therefore,

combining these features leverages their unique strengths and mitigates their individual limi-

tations, creating a more comprehensive detection framework. In this work, we aim to explore

seven distinct combinations of these three feature types to identify the most optimal feature

subset achieving higher detection accuracy.

4.1.1 Drawbacks of existing approaches

Several related works, such as [15] , [148], and [149], have used permissions as the main

feature in the process of detecting Android malware. To talk about them in a bit of detail, Şahın

et al. [15] used multiple linear regression methods while feeding permissions as inputs for their

calculations and concluded their paper by comparing the results of their proposed permission-

based classifiers with the machine learning ones. Alsoghyer and Almomani [148] worked

on developing a detection model based upon the frequently used permissions in both normal

and malware datasets, followed by applying the machine learning algorithms. In contrast,

Shrivastava and Kumar [149] started with the same approach of using permission frequency

but instead used it to calculate a particular risk score to classify applications as normal or

malware. The authors in [150] and [151] worked on combining the two features, permissions,
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and intents. More specifically, the authors in [150] developed a malware classification system

that classified applications as normal or malware by observing the feature frequency, whereas

in [151], the authors started with a similar approach of monitoring the frequency of most

requested features but later used it to make a detection matrix as a part of the malware detection

system.

None of the above works used the key concept of ranking the features and hence missed the

feature reduction step, which could have enhanced the quality of their results. In several other

related works, such as [16] and [139], the authors built a detection system using the ranking

of features, be it permissions or permissions and intents combined. More specifically, Li et al.

[16] worked on ranking the permissions that are being used in one type of dataset only, either

normal or malware applications set by using the frequency method. Khariwal et al. [139] also

worked on ranking the features, but they took it a step further by including the ranking of

intents and the combined ranking of intents and permissions obtained from the Information

Gain score in their research work. However, both works were implemented on a smaller set of

malware applications as compared to the huge malware dataset in our proposed work. More

importantly, our work outperforms both of them in terms of detection accuracy while using a

lesser number of ranked features.

4.1.2 Objectives and Need of Proposed Approach

We aim to build a robust and efficient static analysis-based Android malware detection sys-

tem capable of identifying malicious behavior of applications on Android smartphones. At the

same time, we are driven to fulfill this objective using the least as well as the best combination

of features only amongst the top three most commonly used static feature types, i.e., permis-

sions, intents, and hardware components. Instead of using just one feature type, we have opted

for a hybrid approach to choose the best feature combination, the reasons of which are twofold.

Firstly, we believe generalizing a theory needs more than one tested scenario before it can to

be called a fact. Similarly, to prove the robustness of our proposed algorithm, we checked it on

seven possible feature combinations—permissions alone, intents alone, hardware components

alone, as well as on all possible combinations. Secondly, experimental results indicate that

combining different feature types can lead to elevated detection accuracy instead of using any

of them individually, and as mentioned earlier, a malware detection model is as good as its

detection accuracy.
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Combining features can be a simple yet effective approach to detecting malicious applica-

tions. Therefore, this work aims to analyze permissions, intents, and hardware components

while taking their frequency as input, ranking them using a statistical Chi-Square test, and fur-

ther combining them to find the best subset of features achieving higher detection accuracy.

The following research questions emerge in the light of proposing a detection model based on

the ranking of manifest file features:

• RQ1 Why do we need to rank the permissions, intents, and hardware components, and

subsequently, why is feature reduction needed instead of feeding all the features as in-

puts?

• RQ2 How to incorporate feature ranking, i.e., how to rank the permissions, intents, and

hardware components?

• RQ3 How to frame a detection approach based on the ranking of the three feature types

used in this study?

We are motivated to answer these questions with a vision to develop an Android malware

detector, named PHIAnalyzer, based on the combinations of ranked permissions, intents, and

hardware components. We have used a frequency-based Chi-Square test to rank the three fea-

ture types. We have used the Chi-Square test because of its numerous advantages, such as its

robust nature to the data distribution and comparatively more straightforward computation.

Moreover, the Chi-Square test can handle data whose parametric assumptions cannot be met,

irrespective of two-group or multiple-group studies. Further, we have proposed a novel de-

tection algorithm that uses ranked permissions, intents, and hardware components and applies

various machine learning and deep learning techniques to detect Android malware effectively.

The work proposed in this chapter employs a mix of old and recent datasets for evaluation.

Our detection results are better than many state-of-the-art techniques proposed in the existing

literature. Moreover, our experiments demonstrate that the proposed Chi-Square-based feature

ranking gives us better accuracy than the Mutual Information and Pearson Correlation Coef-

ficient, which have been used in [131], which we evaluate against the same dataset of normal

and malicious apps.

Contributions: The main contributions of this research are highlighted below:

• Firstly, we ranked the permissions, intents, and hardware components in order of their

absolute frequency difference between the malware and normal dataset and used the
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values as pre-requisite in the Chi-Square test.

• Next, we applied the frequency-based Chi-Square test on the permissions, intents, and

hardware components and ranked them based on the F-score given as an output by the

test.

• We proposed a novel algorithm to merge the individual rankings of permissions, intents,

and hardware components to develop an efficient Android malware detection system.

• We observed that the detection results of the proposed approach are relatively better

than various state-of-the-art techniques existing in the literature for Android malware

detection.

4.2 System Design

In this section, we explain our proposed methodology in detail. Our proposed model PHIAn-

alyzer is divided mainly into two modules. In the first module, named as Ranking Module, we

extract the permissions, intents, and hardware components from the training dataset and aim

to rank them using a frequency-based Chi-Square test. Such a ranking will help us eliminate

irrelevant features that negatively affect the detection accuracy. In the Detection Module, we

propose a novel algorithm that applies machine learning and deep learning techniques to get

the best features that can provide higher detection accuracy. The following subsections discuss

in detail both modules of the proposed model.

RANKING MODULE

4.2.1 Data Acquisition and Representation

The datasets used for the validation of the proposed model PHIAnalyzer in this chapter,

namely DATASET-1 and DATASET-2, are the same as those detailed earlier in Subsection 3.2.1

of the Chapter 3. Following the extraction of the three features—permissions, intents, and

hardware components, as detailed in 3.2.2—feature vector tables were constructed for repre-

sentation. Each feature vector, formulated for individual applications, adopts a binary format,

where 1 indicates the presence of a requested feature (permissions, intents, or hardware com-

ponents), and 0 signifies its absence. In this way, we create three separate vector tables, one
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each for permissions, intents, and hardware components, represented by PV T , IV T and HV T ,

respectively. For instance, if there are a total of five permissions, say <P1, . . . ..P5> and five

intents say <I1, . . . ..I5> in the system, and any application A j has permissions P1, P2, P5 and

intents I3, I4, I5, then the app A j is represented as 11001 and 00111 in PV T and IV T respectively.

We observe that some features have a high frequency in normal or malware datasets. The

frequency difference between the malware and normal dataset for any feature can give us valu-

able insights for feature ranking. Therefore, before applying the Chi-Square method to rank the

features, we initially assign weights to all the permissions, intents, and hardware components,

based on their absolute frequency difference in normal and malware datasets. Then, we take

the absolute frequency difference for each feature in normal and malware datasets. For in-

stance, if there are an x number of features, the feature with the highest absolute frequency

difference will be assigned a weight of one, and the feature with the lowest frequency differ-

ence will be given a weight of x. The process is repeated separately for permissions, intents ,

and hardware components.

After assigning the weights to all the features, for every occurrence of 1 for each permission,

intent, and hardware component, we replace 1 by its corresponding weight in PV T , IV T and

HV T . For instance, again, consider the same app A j, which was initially represented as 11001

and 00111 in PV T and IV T respectively. Suppose the weights for P1, P2, and P5 are α1, α2, α5

respectively, and weights for I3, I4 and I5 are β3, β4, β5, then A j is now represented as α1α200α5

and 00β3β4β5 in PV T and IV T respectively.

4.2.2 Features Ranking

We have used a statistical Chi-Square test to rank the features. Such a ranking helps elim-

inate irrelevant features, and their removal will help improve detection accuracy. The Chi-

Square statistic is used to determine whether the variables of different categories defined are

independent of each other. It can also be used to measure the significant difference between

variables and their expected values. The Chi-Square test is specifically designed to assess the

independence between two categorical variables. This makes it particularly suitable for feature

ranking/selection when dealing with categorical or discrete data, similar to the dataset used in

our work. Moreover, Chi-Square does not require equality of variances among the study groups

or homoscedasticity in the data, nor does it form any prior assumptions about the distribution,

making it a suitable method for feature ranking even in the presence of data with missing
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values or measurement errors. The Chi-Square formula [152] is defined in the below equation.

χc
2 = ∑

(Oi−Ei)
2

Ei
(4.2.1)

where:

c=Degrees of freedom,

O=Observed value(s), and

E=Expected value(s)

This test’s null hypothesis says there is no link between the original and expected data.

The alternate hypothesis states that the actual and expected data depend on each other. For a

basic Chi-Square test of independence, where n denotes the number of observations and k is

the number of categories, the computational complexity is generally considered to be O(nk).

We apply the Chi-Square test on the three feature vector tables we have formulated for our

training dataset, i.e., PV T , IV T and HV T . The F score 1 that comes after applying the Chi-Square

test on a categorical type data can be very efficiently used to select the best set of features,

amongst all features, by ranking them from highest to lowest F score value. The feature that

can better distinguish normal and malware datasets will have a higher F-score value. We apply

this ranking technique separately on permissions, intents, and hardware components, and we

get, as an output of this module, three ranked lists, PList , IList and HList , one each for permissions,

intents, and hardware components, respectively.

4.2.3 Machine Learning and Deep Learning Classifiers

We have used several machine learning and deep learning classifiers [135] in our detection

approach. We applied nine widely used techniques, namely Decision Trees (DT), Random

Forest (RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR),

Support Vector Machine (SVM) as machine learning classifiers and Multilayer Perceptron

(MLP), Artificial Neural Networks (ANN), Dense Neural Network (DNN) as deep learning

classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].

The code concludes by printing the cross-validation results, including the accuracy scores for

1https://scikit-learn.org/stable/modules/generated/ sklearn.feature selection.chi2.html
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Algorithm 2 Proposed Malware Detection Algorithm
1: Input: PList ← , Ranked Permissions List IList ← Ranked Intent List, HList ← Ranked Hardware component List
2: Output: Best set of features with higher detection rate
3: BestFeatures← Blank List
4: CombList ← Blank List
5: NPList ← Number of Permissions in PList
6: NIList ← Number of Intents in IList
7: NHList ← Number of Hardware components in HList
8: Pall ← List of all permissions from testing dataset (non unique)
9: Iall ← List of all intents from testing dataset (non unique)
10: Hall ← List of all Hardware components from testing dataset (non unique)
11: DMax ←Maximum accuracy obtained, initialized to zero.
12: DAcc ← Accuracy obtained after each iteration.
13: for i← 1 to NPList do
14: Insert Pi in BestFeatures
15: FindAll Pi in Pall , CopyAll
16: Insert Pi in CombList
17: for j← 1 to NIList do
18: when j=i do
19: Insert I j in BestFeatures
20: FindAll I j in Iall , CopyAll
21: Insert I j in CombList
22: for k← 1 to NHList do
23: when k=j do
24: Insert Hk in BestFeatures
25: FindAll Hk in Hall , CopyAll
26: Insert Hk in CombList
27: Find DAcc using ML algorithms for features present in CombList
28: if DAcc > DMax then
29: DAcc = DMax
30: else exit
31: end if
32: end for
33: end for
34: end for
35: return BestFeatures
36: return DMax

each fold and the mean accuracy across all folds. This provides insights into the model’s con-

sistency and overall performance across diverse subsets of the dataset.

DETECTION MODULE

4.2.4 Proposed Malware Detection Algorithm

This section describes our detection algorithm, summarized in Algorithm 2. As discussed in

the previous subsection, we compute the F score and determine the features’ relevance. The

higher the F score value, the higher the relevancy. Hence, we rank the features in decreasing

order of their F score values. We aim to find the best subset of features to give better de-

tection accuracy. PList , IList , and HList represent the ranked permissions, intents, and hardware

components in decreasing order of their F score values.

In the first iteration of the algorithm, we select the top-ranked permission, intent, and hard-

ware component from PList , IList , and HList respectively. We then execute machine learning
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algorithms on the testing data by considering only these three features, i.e., top-ranked per-

mission, intent, and hardware component and observe the detection accuracy, say DAcc. The

maximum accuracy, say DMax, is initialized to zero. At every iteration, we compare DAcc and

DMax. If the accuracy at the current iteration, i.e., DAcc, is higher than DMax, we proceed towards

the next iteration, and we set DMax as DAcc.

In the next iteration, we select the top two ranked permissions, intents, and hardware com-

ponents and find the detection accuracy on the testing data by considering these six features,

i.e., DAcc for the current iteration. Again, we compare the DMax and DAcc, and if DAcc is higher

than DMax, we proceed toward the next iteration to select top three ranked permissions, intents,

and hardware components. The algorithm continues the same way and terminates when the

detection accuracy does not improve further. At a stage when DAcc is not higher than Dmax, we

return the DMax and the best set of permissions, intents, and hardware components. From the

proposed approach, the best set of features will always contain the equal number of feature

types. Overall, the computational complexity of the proposed malware detection algorithm

can be expressed as O((NPList + NIList + NHList) * M * f(N)), where NPList is the number of

permissions in PList , NIList is the number of intents in IList , NHList is the number of hardware

components in HList , M is the maximum number of permissions or intents or hardware compo-

nents in the testing dataset, and f(N) is the time complexity of the machine learning algorithm

used. This answers our research question three, i.e, how to frame a detection approach based on

the ranking of permissions, intents, and hardware components. We describe the results obtained

from the proposed approach in the next section.

4.3 Results and Discussion

In this section, we showcase and discuss the experimental results obtained from the proposed

PHIAnalyzer model. We point out that we have separate datasets for training and testing. As

described in Section 4.2.1, we have 77,000 applications, each in the normal and malware

category. Out of them, we use 56,000 normal apps and 56,000 malware apps in the ranking

module. The remaining 21,000 normal and 21,000 malware apps are used in the detection

module. We name this dataset DATASET-1. Additionally, considered a second dataset called

DATASET-2, which contains recent and stealthier malware samples detected in 2021 and 2022.

In the upcoming subsections, first, we discuss the ranking obtained from the frequency-based

Chi-Square test, and after that, we describe the detection results on DATASET-1 and DATASET-2.
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Further, we also compare our proposed work with similar works in Android malware detection.

4.3.1 Allotting Weights To The Features

Firstly, we assign weights to the three feature types based on their absolute frequency dif-

ference in the normal and malware training dataset. We note that we have three separate

rankings, one each for permissions, intents, and hardware components. Tables 4.1 , 4.2 and

4.3 summarize the top ten permissions, intents, and hardware components respectively, along

with their frequency difference and weights. As seen from Table 4.1, permission named

MOUNT UNMOUNT FILESYSTEMS is assigned the weight of one as it has the highest fre-

quency difference in both datasets. Similarly, we can acknowledge the weights of other top

permissions from the table. The permission named SET WALLPAPER had the lowest frequency

difference of 10 and hence, had the highest weight of 129, amongst all 129 permissions.

Table 4.1: Top 10 permissions along with their corresponding weights.

PERMISSIONS Weights allotted ac-
cording to ranking

Normal
frequency

Malware
frequency

Absolute
difference

MOUNT UNMOUNT FILESYSTEMS 1 1264 41324 40060
READ PHONE STATE 2 14176 53586 39410
GET TASKS 3 4527 43399 38872
CHANGE WIFI STATE 4 4337 43165 38828
SYSTEM ALERT WINDOW 5 4561 38594 34033
WRITE SETTINGS 6 7258 39497 32239
CHANGE NETWORK STATE 7 2745 30874 28129
READ LOGS 8 1071 29112 28041
ACCESS COARSE LOCATION 9 16650 42425 25775
ACCESS WIFI STATE 10 28554 53886 25332

As can be seen from Table 4.2, the intent named USER PRESENT is assigned the weight of

one as it has the highest frequency difference in both datasets. Similarly, we can acknowl-

edge the weights of other top intents from the table. The intent named MAIN had the lowest

frequency difference of 87 and hence, had the highest weight of 79, amongst all 79 intents.

Table 4.2: Top 10 intents along with their corresponding weights.

INTENTS Weights allotted ac-
cording to ranking

Malware
frequency

Normal fre-
quency

Absolute
difference

USER PRESENT 1 33108 1894 31214
PACKAGE REMOVED 2 26806 963 25843
DEFAULT 3 45689 21291 24398
PACKAGE ADDED 4 21111 2689 18422
VIEW 5 35548 18922 16626
BROWSABLE 6 33915 17545 16370
REGISTER 7 14419 134 14285
NOTIFICATION RECEIVED
PROXY

8 14139 91 14048

PushService 9 14004 84 13920
PUSH TIME 10 13998 84 13914
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As can be seen from Table 4.3, the hardware component named touchscreen is assigned

the weight of one as it has the highest frequency difference in both datasets. Similarly, we

can acknowledge the weights of other top features from the table. The hardware component

named type.watch had the lowest frequency difference of 1 and hence, had the highest weight

of 88, amongst all 88 intents.

Table 4.3: Top 10 hardware components along with their corresponding weights.

HARDWARE COMPONENTS Weights allotted ac-
cording to ranking

Normal
frequency

Malware
frequency

Absolute
difference

touchscreen 1 12147 2101 10046
camera 2 12337 21063 8726
Camera.autofocus 3 10446 19080 8634
touchscreen.multitouch 4 8999 1334 7665
touchscreen.multitouch.distinct 5 8765 1256 7509
location.network 6 7103 825 6278
location.GPS 7 7468 1262 6206
location 8 6223 413 5810
telephony 9 4725 674 4051
screen.portrait 10 4136 160 3976

4.3.2 Features Ranking

To identify the distinguishing features, we separately applied the statistical Chi-Square test

on PV T , IV T and HV T . The Chi-Square test, as its output, calculates the corresponding F score

values for all the features. Further, we used these F score values to rank the features such

that the feature with the highest F score value is the top-ranked feature and hence, the most

distinguishing one. Tables 4.4 , 4.5 and 4.6 summarize the top ten permissions, intents, and

hardware components respectively according to their F-scores obtained from the Chi-Square

test. Using the frequency-based Chi-Square method, we answer our research question two, i.e.,

how to rank the features to identify the distinguishing ones among them.

Table 4.4 highlights that the permission named BIND GET INSTALL REFERRER SERVICE is

the most distinguishing permission with the highest F-score. Similarly, we can infer rank-

ings of other permissions based on their F-scores from the table. The permission named

SET WALLPAPER had the lowest F score value of 13.803 amongst all permissions and hence,

is the least distinguishing permission.

Similarly, Table 4.5 highlights that the intent named CONNECTION is the most distinguish-

ing intent with the highest F-score. Similarly, we can infer rankings of other intents based on

their F-scores from the table. The intent named MAIN had the lowest F-score value of 0.9848

and hence, is the least distinguishing intent.
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Table 4.4: Top 10 permissions with their corresponding F-scores

PERMISSIONS F Score
BIND GET INSTALL REFERRER SERVICE 232552.1
JPUSH MESSAGE 232152
RESTART PACKAGES 229418.5
SEND SMS 228428.9
RECEIVE SMS 217999.7
READ SMS 216163.5
CHANGE CONFIGURATION 213456.9
RECEIVE USER PRESENT 213214.9
BROADCAST PACKAGE INSTALL 211856.9
BROADCAST PACKAGE REPLACED 211465.4

Table 4.5: Top 10 intents with their corresponding F-scores

INTENTS F Score
CONNECTION 136262.7
DaemonService 129391.5
NOTIFICATION RECEIVED 125791.8
NOTIFICATION OPENED 117317.9
MESSAGE RECEIVED 108364.1
START FROM AGOO 107091.5
REPORT 105758.9
COMMAND 101132.6
SERVICE 98767.32
ELECTION 98598.16

Table 4.6 highlights that the hardware component named location is the most distinguishing

one with the highest F-score. Similarly, we can infer rankings of other features based on their

F-scores from the table. The hardware component named type.watch had the lowest F-score

value and hence, is the least distinguishing one.

Table 4.6: Top 10 hardware components with their corresponding F-scores

HARDWARE COMPONENTS F Score
location 28691.51
screen.portrait 25523.57
vulkan 22279.86
location.GPS 21811.74
location.network 20900.12
touchscreen.multitouch.distinct 20024.67
telephony 19259.59
bluetooth 17616.42
screen.lanscape 17395.16
nfc.hce 16804.3

In the following subsection, we present the detection results obtained with the proposed

model.

4.3.3 Detection Results on DATASET-1

In this section, we discuss the detection results, i.e., the accuracy obtained from our proposed

approach over the DATASET-1. For comparison, we perform seven experiments, considering 1)
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permissions alone, 2) intents alone, 3) hardware components alone, 4) permissions and intents

combined, 5) intents and hardware components, 6) permissions and hardware components,

and 7) permissions, intents and hardware components, all three of them combined. We discuss

these results in upcoming subsections.

Detection with Permissions Alone

First, we apply the proposed detection algorithm (Algorithm 2) with permissions alone. The

algorithm will give the best permissions with higher accuracy as an output. Table 4.7 sum-

marizes the detection results when we use permissions alone for detection. The table can be

understood as follows. With the top-ranked permission, i.e., BIND GET INSTALL REFERRER

SERVICE, we get 95.55% accuracy with several machine learning classifiers. We call this

the first iteration, then we move to the next iteration when we consider the top two ranked

permissions, i.e., combining BIND GET INSTALL REFERRER SERVICE with JPUSH MESSAGE

for detection and repeat the process mentioned above. In this iteration, we get an accu-

racy of 96.96% from several machine learning classifiers. As discussed in Algorithm 2,

we proceed to the next iteration whenever the detection accuracy increases from the previ-

ous iteration. Hence, we consider the top three permissions and repeat the entire procedure.

The procedure terminates until we observe a potential decrease in the detection accuracy.

As shown in Table 4.7, we achieved the highest detection accuracy on the tenth iteration,

i.e., upon adding the top ten permissions, namely { BIND GET INSTALL REFERRER SER-

VICE , JPUSH MESSAGE , RESTART PACKAGES , SEND SMS , RECEIVE SMS , READ SMS ,

CHANGE CONFIGURATION , RECEIVE USER PRESENT , BROADCAST PACKAGE INSTALL ,

BROADCAST PACKAGE REPLACED }, we get the highest accuracy of 97.70%. From the next

iteration, we observe that the detection accuracy starts decreasing. Finally, we observe that

we get the highest accuracy of 97.70% when we apply the proposed Algorithm 2 only on

permissions.

Detection with Intents Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with intents alone. The al-

gorithm will give the best intents with higher accuracy as an output. Table 4.8 summarizes

the detection results when we use intents alone for detection. With the top-ranked intent, i.e.,

CONNECTION, we get 95.27% accuracy with all the classifiers. We call this the first iteration,

then we move to the next iteration when we consider the top two ranked intents, i.e., combining

CONNECTION with DaemonService for detection and repeating the above-mentioned process.
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Table 4.7: Detection results with proposed approach considering only permissions

PERMISSIONS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFER-
RER SERVICE

95.55 95.55 94.29 95.55 95.55 95.55 94.60 94.60 94.60

JPUSH MESSAGE 96.69 96.69 51.71 96.69 96.69 96.69 96.96 96.96 96.96
RESTART PACKAGES 96.86 96.86 60.68 96.86 96.86 96.86 96.79 96.79 96.79
SEND SMS 97.06 97.06 66.59 97.06 97.06 97.06 97.05 97.05 97.25
RECEIVE SMS 97.42 97.42 70.83 97.42 97.42 97.42 97.25 97.25 97.25
READ SMS 97.42 97.42 74.46 97.42 97.42 97.42 97.46 97.46 97.46
CHANGE CONFIGURATION 97.29 97.29 77.15 97.29 97.29 97.29 97.27 97.27 97.27
RECEIVE USER PRESENT 97.39 97.39 70.16 97.39 97.39 97.39 97.41 97.41 97.41
BROADCAST PACKAGE IN-
STALL

97.60 97.60 71.63 97.60 91.65 97.60 97.50 97.50 97.50

BROADCAST PACKAGE RE-
PLACED

97.70 97.70 74.54 97.70 92.16 97.70 97.58 97.58 97.58

BROADCAST STICKY 97.20 97.20 91.70 97.20 91.91 97.20 97.14 97.14 97.14
PROCESS OUTGOING CALLS 97.32 97.32 78.10 97.32 92.55 97.32 97.22 97.22 97.22

In this iteration, we note that we get an accuracy of 95.35% from all the machine learning

classifiers. The procedure terminates until we observe a potential decrease in the detection

accuracy. As shown in Table 4.8, we achieved the highest detection accuracy on the second

iteration, i.e., upon adding the top two intents, namely CONNECTION and DaemonService, we

get the highest accuracy of 95.35%. From the next iteration, we observe that the detection

accuracy starts decreasing. Finally, we observe that we get the highest accuracy of 95.35%

when we apply the proposed Algorithm 2 only on intents.

Table 4.8: Detection results with proposed approach considering only intents

INTENTS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

CONNECTION 95.27 95.27 94.33 95.27 95.27 95.27 95.21 95.21 95.21
DaemonService 95.35 95.35 65.32 95.35 95.35 95.35 95.30 95.30 95.30
NOTIFICATION RECEIVED 95.27 95.27 72.99 95.27 95.27 95.27 95.32 95.32 95.32
NOTIFICATION OPENED 95.20 95.20 75.78 95.20 95.20 95.20 95.05 95.05 95.05

Detection with Hardware components Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with hardware components

alone. Table 4.9 summarizes the detection results when we use hardware components alone

for detection. With the top-ranked hardware component, i.e., location, we get 92.78% accuracy

with all the classifiers. We call this the first iteration, then we move to the next iteration

when we consider the top two ranked hardware components, i.e., combining location with

screen.portrait for detection and repeating the above mentioned process. In this iteration, we

note that we get an accuracy of 89.87% from all the machine learning classifiers. As shown

in Table 4.9, we achieved the highest detection accuracy on the first iteration itself, i.e., upon



107

adding the top hardware component, namely location. From the next iteration, we observe that

the detection accuracy starts decreasing. Finally, we observe that we get the highest accuracy

of 92.78% when we apply the proposed Algorithm 2 only on hardware components.

Table 4.9: Detection results with proposed approach considering only hardware components

HARDWARE COMPONENTS
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

location 92.78 92.78 92.78 92.78 92.78 92.78 92.78 92.78 92.78
screen.portrait 89.87 89.87 89.87 89.87 89.87 89.87 89.87 89.87 89.87
vulkan 89.01 89.01 89.01 89.01 89.01 89.01 89.01 89.01 89.01

Detection with Combination of Permissions and Intents

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-

missions and intents. Table 4.10 summarizes the detection results when we use permissions

and intents for detection. With the top-ranked pair, i.e., BIND GET INSTALL REFERRER SER-

VICE and CONNECTION, we get 96.56% accuracy with several classifiers. In the second it-

eration, we get an accuracy of 97.92% from several classifiers. Hence, next, we consider

the top three pairs of permissions and intents and repeat the entire procedure. The procedure

terminates until we observe a potential decrease in the detection accuracy, and as shown in Ta-

ble 4.10, we achieved the highest detection accuracy on the sixth iteration, i.e., upon adding six

permissions, namely { BIND GET INSTALL REFERRER SERVICE , JPUSH MESSAGE, RESTART

PACKAGES , SEND SMS , RECEIVE SMS , READ SMS and six intents namely CONNECTION ,

DaemonService , NOTIFICATION RECEIVED , NOTIFICATION OPENED , MESSAGE RECEIVED

and START FROM AGOO } ,we get the highest accuracy of 98.49%. From the next iteration,

we observe that the detection accuracy starts decreasing. We observe that we get the highest

accuracy of 98.49% when we apply the proposed Algorithm 2 on the set of 12 features that

contains six permissions and six intents.

Detection with combination of Intents and Hardware components

Next, we apply the proposed detection algorithm (Algorithm 2) on the combination of intents

and hardware components. Table 4.11 summarizes the detection results when we use intents

and hardware components for detection. With the top-ranked pair, i.e., CONNECTION and

location, we get 97.21% accuracy with several classifiers. In the second iteration, we get an

accuracy of 97.09% from several classifiers. Hence, next, we consider the top three pairs of

intents and hardware components and repeat the entire procedure. Subsequently, as shown in

Table 4.11, we achieved the highest detection accuracy on the third iteration, i.e., upon adding
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Table 4.10: Detection results with proposed approach considering the combination of permis-
sion and intents

PERMISSIONS and INTENTS
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFER-
RER SERVICE and CONNECTION

96.56 96.56 56.65 96.56 96.56 96.56 96.55 96.55 96.55

JPUSH MESSAGE and DaemonSer-
vice

97.90 97.90 70.34 97.90 97.90 97.90 97.92 97.92 97.92

RESTART PACKAGES And NOTI-
FICATION RECEIVED

98.02 98.02 97.90 98.02 98.02 98.02 97.92 97.92 97.92

SEND SMS and NOTIFICA-
TION OPENED

98.32 98.32 82.65 98.32 98.32 98.32 98.14 90.84 98.14

RECEIVE SMS and MES-
SAGE RECEIVED

98.41 98.41 85.38 98.41 98.41 98.41 98.29 98.29 98.29

READ SMS and
START FROM AGOO

98.49 98.49 86.84 98.49 98.49 98.49 98.35 98.35 98.35

CHANGE CONFIGURATION and
REPORT

98.27 98.27 88.37 98.27 88.92 98.27 88.26 88.26 98.26

RECEIVE USER PRESENT and
COMMAND

98.26 98.26 90.18 98.26 90.32 98.26 90.21 90.21 98.29

three intents, namely { CONNECTION , DaemonService and NOTIFICATION RECEIVED and

three hardware components namely location , screen.portrait and vulkan } ,we get the highest

accuracy of 97.43%. From the next iteration, we observe that the detection accuracy starts de-

creasing. We observe that we get the highest accuracy of 97.43% when we apply the proposed

Algorithm 2 on the set of 6 features that contains three intents and three hardware components.

Table 4.11: Detection results with proposed approach considering the combination of intents
and hardware components

INTENTS and HARDWARE COM-
PONENTS used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

CONNECTION and location 97.21 97.21 97.21 97.21 97.21 97.21 97.21 97. 21 97.21
DaemonService and screen.portrait 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09 97.09
NOTIFICATION RECEIVED and
vulkan

97.43 97.43 97.43 97.43 97.43 97.43 97.43 97.43 97.43

NOTIFICATION OPENED and loca-
tion.GPS

96.34 96.34 96.34 96.34 96.34 96.34 96.34 96.34 96.34

MESSAGE RECEIVED and loca-
tion.network

96.5 96.5 96.5 96.5 96.5 90.75 96.5 90.75 96.5

Detection with Combination of Permissions and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of

permissions and hardware components. Table 4.12 summarizes the detection results when

we use permissions and hardware components for detection. With the top-ranked pair, i.e.,

BIND GET INSTALL REFERRER SERVICE and location, we get 94.15% accuracy with several

classifiers. In the second iteration, we get an accuracy of 95.41% from several classifiers.

As shown in Table 4.10, we achieved the highest detection accuracy on the second itera-
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tion, i.e., upon adding two permissions, namely BIND GET INSTALL REFERRER SERVICE and

JPUSH MESSAGE and two hardware components namely location and screen.portrait. From the

next iteration, we observe that the detection accuracy starts decreasing. We observe that we

get the highest accuracy of 95.41% when we apply the proposed Algorithm 2 on the set of four

features that contains two permissions and two hardware components.

Table 4.12: Detection results with proposed approach considering the combination of permis-
sions and hardware components

PERMISSIONS and HARDWARE
COMPONENTS used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFERRER
SERVICE and location

94.15 94.15 94.15 94.15 94.15 94.15 94.15 94.15 94.15

JPUSH MESSAGE and
screen.portrait

95.41 95.41 95.41 95.41 95.41 94.05 95.41 94.05 95.41

RESTART PACKAGES and vulkan 95.37 95.37 95.36 95.37 95.36 83.23 95.36 80.32 95.36
SEND SMS and location.GPS 94.56 94.56 94.55 94.56 71.22 71.22 94.55 90.54 94.55

Detection with Combination of Permissions, Intents and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-

missions, intents, and hardware components. Table 4.13 summarizes the detection results

when we use permissions, intents, and hardware components for detection. With the top-

ranked trio, i.e., BIND GET INSTALL REFERRER SERVICE , CONNECTION and location, we

get 95.93% accuracy with several classifiers. We call this the first iteration and then move

to the next iteration when we consider the top two ranked trio of permissions, intents, and

hardware components, i.e., combining BIND GET INSTALL REFERRER SERVICE , CONNEC-

TION and location with JPUSH MESSAGE , DaemonService and screen.portrait for detection

and repeat the process mentioned above. In this iteration, we get an accuracy of 96.89%

from several classifiers. Hence, next, we consider the top three pairs of permissions and

intents and repeat the entire procedure. As shown in Table 4.13, we achieved the high-

est detection accuracy on the third iteration, i.e., upon adding three permissions, namely

{ BIND GET INSTALL REFERRER SERVICE , JPUSH MESSAGE and RESTART PACKAGES },

three intents namely { CONNECTION , DaemonService and NOTIFICATION RECEIVED } and

three hardware components namely, { location , screen.portrait and vulkan }, we get the highest

accuracy of 96.99%. From the next iteration, we observe that the detection accuracy starts

decreasing.

On comparing the highest accuracies obtained with permissions alone (97.70%), intents

alone (95.35%), hardware components alone (92.78%), combination of intents and hardware



110

Table 4.13: Detection results with proposed approach considering the combination of permis-
sions, intents and hardware components

PERMISSIONS, INTENTS and HARD-
WARE COMPONENTS used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFERRER
SERVICE, CONNECTION and loca-

tion

95.93 95.93 95.93 95.93 95.93 88.09 95.93 89.54 95.93

JPUSH MESSAGE, DaemonService and
screen.portrait

96.86 96.86 96.86 96.86 89.06 88.03 96.86 86.52 96.86

RESTART PACKAGES, NOTIFICA-
TION RECEIVED and vulkan

96.99 96.99 96.99 96.99 91.34 72.34 96.99 75.85 96.99

SEND SMS, NOTIFICATION OPENED
and location.GPS

96.73 96.73 94.61 96.73 82.67 73.66 96.73 72.82 96.73

RECEIVE SMS, MESSAGE RECEIVED
and location.network

96.33 96.33 94.69 96.33 83.92 75.97 96.33 70.68 96.04

components (97.43%), combination of permissions and hardware components (95.41%), com-

bination of permissions, intents and hardware components (96.99%) we find that the combi-

nation of permissions and intents (98.49%) gives us better detection accuracy as compared to

all three features when used alone or in other possible combinations.

Note that, according to our detection approach, we consider one pair or permission and in-

tent in each iteration while performing the experiments to identify the best combination of

features, which subsequently leads to the case of only an equal number of permissions and

intents irrespective of the number of iterations. For instance, from Table 4.10, we get the

highest accuracy of 98.49% with the combination of six permissions and six intents, i.e., 12

features. Hence, to cross-check our approach, we compare the detection accuracy of features

in other combinations of 12, such as five permissions with seven intents, four permissions with

eight intents, three permissions with nine intents, and two permissions with ten intents, and

vice versa. Moreover, we consider other combinations when the total number of features used

differs from 12, i.e., 10, 11, 13, 14, and 15. Finally, we summarize all these results in Table

4.14. From the table, we observe that the best set of six permissions and six intents obtained

from our proposed approach proves to be better in terms of detection accuracy than other com-

binations of permissions and intents. Hence, our model outperforms different combinations of

permissions and intents, and we find that we get the highest accuracy of 98.49% with the top

six permissions and top six intents combined.

Comparison with other statistical tests

Table 4.15 summarizes the detection results when we use all permissions and intents for detec-

tion without applying any feature ranking technique. The table can be understood as follows.

On considering all the permissions simultaneously without utilizing frequency-based Chi-Square
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Table 4.14: Comparison of proposed frequency-based Chi-Square test in terms of detection
accuracy upon using different combinations of features.

Combination of features Total number of
features used

Detection accu-
racy (in %)

6 permissions - 4 intents 10 98.16
4 permissions - 6 intents 10 98.42
5 permissions - 6 intents 11 98.38
6 permissions - 5 intents 11 98.31
5 permissions - 7 intents 12 98.48
7 permissions - 5 intents 12 98.18
4 permissions – 8 intents 12 98.36
8 permissions- 4 intents 12 98.10
3 permissions - 9 intents 12 98.36
9 permissions - 3 intents 12 97.93
2 permissions - 10 intents 12 98.40
10 permissions -2 intents 12 97.89
Proposed approach
6 permissions - 6 intents

12 98.49

7 permissions - 6 intents 13 98.23
6 permissions - 7 intents 13 98.44
6 permissions - 8 intents 14 98.39
8 permissions - 6 intents 14 98.24
10 permissions - 5 intents 15 98.37
5 permissions - 10 intents 15 98.47

feature ranking, we observe that the highest detection accuracy obtained is 78.64%, whereas the

highest detection accuracy obtained while considering all intents is 67.18%. The highest detection

accuracy recorded while considering all hardware components is 71.84%. Such a low detection

accuracy highlights the importance of ranking permissions and intents because such ranking

helps us eliminate the irrelevant features that can hamper detection accuracy. This answers our

research question one, i.e., why do we need to rank the features.

We have applied the frequency-based Chi-Square test to rank permissions, intents, and hard-

ware components in this chapter. However, statistical tests such as Mutual Information and

Pearson Correlation Coefficient have been used in other works such as [131] for Android mal-

ware detection. Hence, next, we compare the performance of the proposed frequency-based

Chi-Square test with the Mutual Information and Pearson correlation Coefficient. Table 4.16

and 4.17 highlight the top ten permissions, intents and hardware components highlight ranked

with Mutual Information and Pearson Correlation Coefficient.

Table 4.15: Detection results considering all features for DATASET-1 without applying the
proposed approach

FEATURES used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

All Permissions 74.64 74.64 69.55 78.64 69.60 69.60 44.95 69.80 69.71
All Intents 67.18 67.18 55.11 67.18 54.28 55.15 50.25 64.26 50.26
All Hardware components 71.84 71.84 65.88 71.84 66.28 60.25 65.88 65.88 65.88

For the comparison, we ranked permissions, intents, and hardware components using Mu-
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Table 4.16: Top 10 permissions, intents and hardware components ranked using Mutual Infor-
mation

PERMISSIONS INTENTS HARDWARE COMPONENTS
MOUNT UNMOUNT FILESYSTEMS USER PRESENT touchscreen
READ PHONE STATE PACKAGE REMOVED touchscreen.multitouch.distinct
CHANGE WIFI STATE DEFAULT touchscreen.multitouch
GET TASKS PUSH TIME location
SYSTEM ALERT WINDOW NOTIFICATION RECEIVED PROXY location.network
READ LOGS REGISTER location.GPS
WRITE SETTINGS PushService screen.portrait
CHANGE NETWORK STATE PACKAGE ADDED telephony
ACCESS WIFI STATE REPORT Camera.autofocus
ACCESS COARSE LOCATION NOTIFICATION OPENED camera

Table 4.17: Top 10 permissions, intents, and hardware components ranked using Correlation
Coefficient

PERMISSIONS INTENTS HARDWARE COMPONENTS
RECEIVE SMS MAIN touchscreen
QUERY ALL PACKAGES DEFAULT touchscreen.multitouch
INTERNET ACTION SHUTDOWN touchscreen.multitouch.distinct
CHANGE BADGE SEND location
MAPS RECEIVE PHONE STATE location.network
SYSTEM OVERLAY WINDOW CREATE SHORTCUT location.GPS
REQUEST IGNORE BATTERY OPTIMIZATIONS DOWNLOAD COMPLETE screen.portrait
RUN INSTRUMENTATION SCREEN ON Camera.autofocus
READ EXTERNAL STORAGE LEANBACK LAUNCHER telephony
ACCESS MEDIA BUTTON camera

tual Information and Pearson’s Correlation Coefficient and further applied Algorithm 2 on

DATASET-1 to obtain their corresponding detection accuracies. First, we apply the proposed

detection algorithm (Algorithm 2), only on permissions, after ranking them using Mutual In-

formation and Pearson’s Correlation Coefficient. The proposed algorithm, i.e., Algorithm 2,

will give the best set of permissions with higher accuracy as an output. The results are sum-

marized in Table 4.18. From the table, we observe that we get the highest accuracy of 97.61%

with only one permission, namely MOUNT UNMOUNT FILESYSTEMS, when we rank the per-

missions with Mutual Information. With Pearson’s Correlation Coefficient, we get the highest

accuracy of 96.02% again with only one permission, namely RECEIVE SMS. With our pro-

posed frequency-based Chi-Square test on permissions, we get the highest accuracy of 97.70%

with ten permissions. Therefore, on DATASET-1, the frequency-based Chi-Square test is better

than both Mutual Information and Pearson Correlation Coefficient when we rank permissions

with these techniques. Moreover, as seen in Table 4.10, we get the highest accuracy of 98.49%

from the proposed model with the frequency-based Chi-Square test on the combination of per-

missions and intents, which is higher than the accuracy obtained from Pearson Coefficient and

Mutual Information. Hence, our model outperforms Mutual Information and Pearson Correla-

tion Coefficient on permissions.
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Table 4.18: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on permissions

Approach used Number of
Permissions
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square test (our
approach)

10 97.70 97.70 74.54 97.70 92.16 97.70 97.58 97.58 97.58

Mutual Information
[131]

01 97.43 97.43 95.67 97.43 25.6 97.43 97.61 97.61 97.61

Correlation Coeffi-
cient [131]

01 96.02 96.02 94.52 96.02 19.75 96.02 95.46 95.46 95.46

Next, we apply the proposed detection algorithm (Algorithm 2), only on intents, after rank-

ing them using Mutual Information and Pearson’s Correlation Coefficient. The proposed al-

gorithm, i.e., Algorithm 2, will give the best set of intents with higher accuracy as an output.

The results are summarized in Table 4.19. From the table, we observe that we get the highest

accuracy of 95.35% with only two intents, namely USER PRESENT and PACKAGE REMOVED

when we rank the intents with Mutual Information. Whereas, with Pearson’s Correlation Co-

efficient, we get the highest accuracy of 63.45% with only one intent, namely Main. With

our proposed frequency-based Chi-Square test on intents, we get an accuracy of 95.35% with

two intents, the same as that obtained from Mutual Information and better than that from the

Pearson Coefficient.

Table 4.19: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on intents

Approach used Number of In-
tents used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

Frequency-based
Chi-Square (our
approach)

02 95.35 95.35 65.32 95.35 95.35 95.35 95.30 95.30 95.30

Mutual Information
[131]

02 95.35 95.35 95.13 95.35 95.35 95.35 96.12 96.12 96.12

Correlation Coeffi-
cient [131]

01 61.96 61.96 63.45 61.96 38.04 61.96 62.12 62.12 62.12

Next, we apply the proposed detection algorithm (Algorithm 2), only on hardware com-

ponents, after ranking them using Mutual Information and Pearson’s Correlation Coefficient.

The proposed algorithm, i.e., Algorithm 2, will give the best set of hardware components with

higher accuracy as an output. The results are summarized in Table 4.20. From the table, we

observe that we get the highest accuracy of 83.42% with six hardware components, namely

{ touchscreen , touchscreen.multitouch.distinct , touchscreen.multitouch , location , location.network

and location.GP } when we rank the hardware components with Mutual Information. Whereas,
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with Pearson’s Correlation Coefficient also, we get the same highest accuracy of 83.42% with

the same six hardware components. With our proposed frequency-based Chi-Square test on

hardware components, we get an accuracy of 92.78% with 01 hardware components, better

than that obtained from Mutual Information and Pearson Coefficient.

Table 4.20: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on hardware components

Approach used Number of
Hardware
Components
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square (our
approach)

01 92.78 92.78 92.78 92.78 92.78 92.78 92.78 90.75 92.78

Mutual Information
[131]

06 83.42 83.42 83.21 83.42 83.42 83.42 83.42 83.14 83.21

Correlation Coeffi-
cient [131]

06 83.42 83.42 83.21 83.42 83.42 83.42 83.42 83.14 83.21

Moreover, as seen in Table 4.10, we get the highest accuracy of 98.49% from the proposed

model with the frequency-based Chi-Square test on the combination of permissions and intents,

which is higher than the accuracy obtained from Pearson Coefficient and Mutual Information

applied on intents.

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-

missions and intents, after ranking them using Mutual Information and Pearson’s Correlation

Coefficient. The proposed algorithm, i.e., Algorithm 2, will give the combined best set of per-

missions and intents with higher accuracy as an output. The results are summarized in Table

4.21. From the table, we observe that we get the highest accuracy of 96.82% with only one

pair of permission and intent, namely MOUNT UNMOUNT FILESYSTEMS and USER PRESENT

when we rank permissions and intents with Mutual Information. Whereas, with Pearson’s Cor-

relation Coefficient, we get the highest accuracy of 63.86% again with only one pair, namely

RECEIVE SMS and MAIN. With our proposed frequency-based Chi-Square test on the combina-

tion of permissions and intents, we get the highest accuracy of 98.49% with six permissions

and six intents. Hence, our model outperforms Mutual Information and the Pearson Correla-

tion Coefficient on the combination of permissions and intents.

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of

intents and hardware components, after ranking them using Mutual Information and Pear-

son’s Correlation Coefficient. The results are summarized in Table 4.22. From the table,

we observe that we get the highest accuracy of 92.82% with two pairs of intents and hard-
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Table 4.21: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permission and intents

Approach used Number of
Permission-Intent
pairs used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square

06 98.49 98.49 86.84 98.49 98.49 98.49 98.35 98.35 98.35

Mutual Information
[131]

01 96.82 96.82 96.59 96.82 96.82 96.82 96.64 96.64 96.64

Correlation Coeffi-
cient [131]

01 63.86 63.86 39.88 63.86 39.88 63.86 63.55 63.55 63.55

ware components, namely USER PRESENT and touchscreen , PACKAGE REMOVED and touch-

screen.multitouch.distinct when we rank intents and hardware components with Mutual Informa-

tion. Whereas, with Pearson’s Correlation Coefficient, we get the highest accuracy of 62.64%

again with only one pair, namely MAIN and touchscreen. With our proposed frequency-based

Chi-Square test on the combination of intents and hardware components, we get the highest

accuracy of 97.43% with three intents and three hardware components. Hence, our model out-

performs Mutual Information and the Pearson Correlation Coefficient on the combination of

intents and hardware components.

Table 4.22: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of intents and hardware components

Approach used Number of Intent -
Hardware compo-
nent pairs used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square

03 97.43 97.43 97.43 97.43 97.43 97.43 97.43 97.43 97.43

Mutual Information
[131]

02 92.82 92.82 92.81 92.82 92.82 92.27 92.82 92.25 92.81

Correlation Coeffi-
cient [131]

01 62.64 62.64 62.62 62.64 62.62 62.62 62.62 62.21 62.61

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-

missions and hardware components, after ranking them using Mutual Information and Pear-

son’s Correlation Coefficient. The results are summarized in Table 4.23. From the table, we

observe that we get the highest accuracy of 92.96% with only one pair of permission and hard-

ware component, namely MOUNT UNMOUNT FILESYSTEMS and touchscreen when we rank

permissions and intents with Mutual Information. Whereas, with Pearson’s Correlation Coef-

ficient, we get the highest accuracy of 86.19% again with only one pair, namely RECEIVE SMS

and touchscreen. With our proposed frequency-based Chi-Square test on the combination of

permissions and hardware components, we get the highest accuracy of 95.41% with three per-

missions and three hardware components. Hence, our model outperforms Mutual Information
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and the Pearson Correlation Coefficient on the combination of permissions and intents.

Table 4.23: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permissions and hardware components

Approach used Number of
Permission- Hard-
ware Component
pairs used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square

03 95.41 95.41 95.41 95.41 95.41 90.05 95.41 90.05 95.41

Mutual Information
[131]

01 92.96 92.96 92.96 92.96 92.96 92.96 92.96 92.96 92.96

Correlation Coeffi-
cient [131]

01 86.19 86.19 83.91 86.19 86.19 86.19 86.19 84.25 83.91

Now, we apply the proposed detection algorithm (Algorithm 2), on the combination of per-

missions and hardware components, after ranking them using Mutual Information and Pear-

son’s Correlation Coefficient. The results are summarized in Table 4.24. From the table,

we observe that we get the highest accuracy of 94.25% with only one trio of permission, in-

tents and hardware component, namely { MOUNT UNMOUNT FILESYSTEMS, USER PRESENT

and touchscreen } when we rank permissions, intents and hardware components with Mutual

Information. Whereas, with Pearson’s Correlation Coefficient, we get the highest accuracy

of 63.99% again with only one trio, namely { RECEIVE SMS, MAIN and touchscreen }. With

our proposed frequency-based Chi-Square test on the combination of permissions, intents and

hardware components, we get the highest accuracy of 96.99% with three permissions, three in-

tents, and three hardware components. Hence, our model outperforms Mutual Information and

the Pearson Correlation Coefficient on the combination of permissions, intents and hardware

components.

Table 4.24: Comparison of frequency-based Chi-Square test with Mutual Information and
Pearson Coefficient on the combination of permissions, intents and hardware components

Approach used Number of
Permission- In-
tents - Hardware
Component trios
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
Frequency-based
Chi-Square

03 96.99 96.99 96.99 96.99 91.34 72.34 96.99 70.34 96.99

Mutual Information
[131]

01 94.25 94.25 94.24 94.25 88.91 94.24 94.24 88.91 94.24

Correlation Coeffi-
cient [131]

01 63.99 63.99 63.99 63.99 63.97 63.97 63.99 63.97 63.99
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4.3.4 Detection Results on DATASET-2

The applications in the DATASET-1 were collected over the period from 2016 to 2022. In

this subsection, we discuss the results obtained from testing our proposed approach over a

new and more recent dataset, i.e., on malicious applications downloaded from Androzoo that

were detected in 2021 and 2022. Again, we perform seven experiments, considering 1) per-

missions alone, 2) intents alone, 3) hardware components alone, 4) permissions and intents

combined, 5) intents and hardware components, 6) permissions and hardware components,

and 7) permissions, intents and hardware components, all three of them combined.

Detection with Permissions alone

First, we apply the proposed detection algorithm (Algorithm 2) with permissions alone. Table

4.25 summarizes the detection results when we use permissions alone for detection on the re-

cent dataset. With the top-ranked permission, i.e., BIND GET INSTALL REFERRER SERVICE,

we get the highest accuracy of 96.84% accuracy with one of the classifier. Then we move to the

next iteration when considering the top two ranked permissions, i.e., combining BIND GET

INSTALL REFERRER SERVICE with JPUSH MESSAGE for detection. In this iteration, we get an

increased accuracy of 97.02 %. Next, we consider the top three permissions and repeat the en-

tire procedure. The procedure terminates until we observe a potential decrease in the detection

accuracy. As shown in Table 4.25, we achieved the highest detection accuracy on the third it-

eration, i.e., upon adding the top three permissions, namely { BIND GET INSTALL REFERRER

SERVICE , JPUSH MESSAGE and RESTART PACKAGES }, we get the highest accuracy of

97.13%. From the next iteration, we observe that the detection accuracy starts decreasing.

Finally, we observe that we get the highest accuracy of 97.13% when we apply the proposed

Algorithm 2 on the recent dataset with permissions alone.

Table 4.25: Detection results with proposed approach considering only permissions

PERMISSIONS used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFERRER
SERVICE

96.06 96.06 96.84 96.06 96.06 96.06 96.66 96.66 96.65

JPUSH MESSAGE 97.02 97.02 60.93 97.02 97.02 97.02 96.65 96.65 96.65
RESTART PACKAGES 97.13 97.13 53.28 97.13 97.13 97.13 96.51 96.51 96.51
SEND SMS 94.50 94.50 52.10 94.50 94.50 94.50 95.76 95.76 95.77
RECEIVE SMS 95.50 95.50 51.30 95.50 95.50 95.50 95.02 95.02 95.03
READ SMS 92.85 92.85 50.90 92.85 92.85 92.85 94.60 94.60 94.62
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Detection with Intents alone

Next, we apply the proposed approach to the recent dataset, with intents alone. Table 4.26

summarizes the detection results when we use intents alone for detection. With the top-ranked

intent, i.e., CONNECTION, we get 96.03% accuracy. Then we move to the next iteration; when

we consider the top two ranked intents, i.e., combining CONNECTION with DaemonService for

detection and repeating the process, we get an accuracy of 96.26%. As shown in Table 4.26,

we achieved the highest detection accuracy on the sixth iteration, i.e., upon adding the top

six intents, namely { CONNECTION , DaemonService , NOTIFICATION RECEIVED , NOTIFICA-

TION OPENED , MESSAGE RECEIVED, and START FROM AGOO }, we get the highest accuracy

of 97.89%. From the next iteration, we observe that the detection accuracy starts decreasing.

Finally, we observe that we get the highest accuracy of 97.89% when we apply the proposed

Algorithm 2 on the recent dataset with intents.

Table 4.26: Detection results with proposed approach considering only intents

Intents used Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

CONNECTION 96.03 96.03 85.32 96.03 96.03 96.03 84.32 92.50 84.32
DaemonService 96.26 96.26 91.23 96.26 96.26 96.26 90.05 95.80 90.05
NOTIFICATION RECEIVED 97.19 97.19 94.66 97.19 97.19 97.19 94.76 96.50 94.76
NOTIFICATION OPENED 97.42 97.42 95.30 97.42 97.42 97.42 95.22 96.46 95.22
MESSAGE RECEIVED 97.55 97.55 95.44 97.55 97.55 97.55 95.40 95.40 95.40
START FROM AGOO 97.89 97.89 88.97 97.89 97.89 97.89 89.21 90.20 89.21
REPORT 97.40 97.40 84.14 97.51 97.40 97.40 84.04 84.04 84.04
COMMAND 97.27 97.27 81.22 97.29 97.27 97.26 80.45 80.45 80.45

Detection with Hardware components Alone

Next, we apply the proposed detection algorithm (Algorithm 2) with hardware components

alone. Table 4.27 summarizes the detection results when we use hardware components alone

for detection. With the top-ranked hardware component, i.e., location, we get 86.93% accuracy

with all the classifiers. We call this the first iteration, then we move to the next iteration

when we consider the top two ranked hardware components, i.e., combining location with

screen.portrait for detection and repeating the above mentioned process. In this iteration, we

note that we get an accuracy of 89.68% from all the machine learning classifiers. As shown

in Table 4.27, we achieved the highest detection accuracy on the second iteration itself, i.e.,

upon adding the top two hardware components, namely location and screen.portrait. From the

next iteration, we observe that the detection accuracy starts decreasing. Finally, we observe

that we get the highest accuracy of 89.68% when we apply the proposed Algorithm 2 only on
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hardware components.

Table 4.27: Detection results with proposed approach considering only hardware components

HARDWARE COMPONENTS
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

location 86.93 86.93 86.93 86.93 80.89 86.93 86.93 81.69 86.93
screen.portrait 89.68 89.68 89.68 89.68 85.1 89.68 89.68 86.57 89.68
vulkan 89.68 89.68 89.68 89.68 89.68 89.68 89.68 89.68 89.68
location.GPS 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4 89.4

Detection with Combination of Permissions and Intents

Further, we apply the proposed approach to the recent dataset with the combination of permis-

sions and intents. Table 4.28 summarizes the detection results. With the top-ranked pair, i.e.,

BIND GET INSTALL REFERRER SERVICE and CONNECTION, we get 96.19% accuracy. Then

we move to the next iteration when considering the top two ranked pairs of permissions and

intents, i.e., combining., BIND GET INSTALL REFERRER SERVICE and CONNECTION with

JPUSH MESSAGE and DaemonService and we get an increased accuracy of 98.42%. Next,

we consider the top three pairs of permissions and intents and repeat the entire procedure.

We achieved the highest detection accuracy on the third iteration, i.e., upon adding the top

three permissions, namely { BIND GET INSTALL REFERRER SERVICE , JPUSH MESSAGEand

RESTART PACKAGES }, and top three intents namely { CONNECTION , DaemonService and NO-

TIFICATION RECEIVED }, we get the highest accuracy of 98.74%. Hence, we can conclude

that the proposed approach in this work can detect recent malware samples with an efficient

accuracy of 98.74%.

Table 4.28: Detection results with proposed approach considering the combination of permis-
sions and intents

PERMISSIONS and INTENTS
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFER-
RER SERVICE and CONNECTION

96.19 96.19 73.09 96.19 96.19 96.19 97.42 97.42 97.42

JPUSH MESSAGE and DaemonSer-
vice

97.35 97.35 72.78 97.35 97.35 97.35 98.42 98.42 98.42

RESTART PACKAGES And NO-
TIFICATION RECEIVED

98.74 98.74 67.42 98.74 89.37 98.74 97.60 97.60 97.60

SEND SMS and NOTIFICA-
TION OPENED

98.17 98.17 70.14 98.17 87.24 98.17 97.26 97.26 97.26

RECEIVE SMS and MES-
SAGE RECEIVED

96.75 96.75 73.60 96.75 96.75 96.75 97.05 97.05 97.05



120

Detection with combination of Intents and Hardware components

Next, we apply the proposed detection algorithm (Algorithm 2) on the combination of intents

and hardware components. Table 4.29 summarizes the detection results when we use intents

and hardware components for detection. With the top-ranked pair, i.e., CONNECTION and

location, we get 92.94% accuracy with several classifiers. In the second iteration, we get an

accuracy of 95.96% from DNN classifier. Hence, next, we consider the top three pairs of

intents and hardware components and repeat the entire procedure. Subsequently, as shown

in Table 4.29, we achieved the highest detection accuracy on the fourth iteration, i.e., upon

adding four intents, namely { CONNECTION , DaemonService , NOTIFICATION RECEIVED and

NOTIFICATION OPENED } and four hardware components namely { location , screen.portrait

, vulkan and location.GPS } ,we get the highest accuracy of 96.55%. From the next iteration,

we observe that the detection accuracy starts decreasing. We observe that we get the highest

accuracy of 96.55% when we apply the proposed Algorithm 2 on the set of 8 features that

contains four intents and four hardware components.

Table 4.29: Detection results with proposed approach considering the combination of intents
and hardware components

INTENTS and HARDWARE COM-
PONENTS used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

CONNECTION and location 92.94 92.94 92.94 92.94 90.29 90.29 92.94 90.29 92.94
DaemonService and screen.portrait 92.94 92.94 62.01 92.94 90.29 90.29 92.94 90.29 95.96
NOTIFICATION RECEIVED and
vulkan

95.96 95.96 83.96 95.96 94.56 94.56 94.87 94.56 92.11

NOTIFICATION OPENED and lo-
cation.GPS

96.55 96.55 71.86 96.55 95.45 95.45 95.45 94.95 82.18

MESSAGE RECEIVED and loca-
tion.network

95.36 95.36 78.75 95.36 94.48 94.48 94.48 92.25 91.45

START FROM AGOO and touch-
screen.multitouch.distinct

94.93 94.93 78.96 94.93 94.26 86.57 93.28 91.58 90.76

Detection with Combination of Permissions and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of

permissions and hardware components. Table 4.30 summarizes the detection results when

we use permissions and hardware components for detection. With the top-ranked pair, i.e.,

BIND GET INSTALL REFERRER SERVICE and location, we get 94.06% accuracy with several

classifiers. In the second iteration, we get an accuracy of 95.9% from several classifiers and

as shown in Table 4.30, we achieved the highest detection accuracy on the second iteration it-

self, i.e., upon adding two permissions, namely BIND GET INSTALL REFERRER SERVICE and

JPUSH MESSAGE and two hardware components namely location and screen.portrait. From the
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next iteration, we observe that the detection accuracy starts decreasing. We observe that we

get the highest accuracy of 95.9% when we apply the proposed Algorithm 2 on the set of four

features that contains two permissions and two hardware components.

Table 4.30: Detection results with proposed approach considering the combination of permis-
sions and hardware components

PERMISSIONS and HARDWARE
COMPONENTS used

Detection accuracy using various machine learning and deep learning classifiers (in
%)
DT RF ANN BC NB LR MLP SVM DNN

BIND GET INSTALL REFERRER
SERVICE and location

94.06 94.06 94.06 94.06 94.06 94.06 94.06 94.06 94.06

JPUSH MESSAGE and
screen.portrait

95.9 95.9 67.56 95.9 95.9 67.56 95.04 67.56 92.94

RESTART PACKAGES and vulkan 95.17 95.17 83.46 95.17 83.13 55.28 94.43 80.32 83.21
SEND SMS and location.GPS 93.73 93.73 75.62 93.73 63.46 63.79 93.01 70.54 80.65

Detection with Combination of Permissions, Intents and Hardware components

Further, we apply the proposed detection algorithm (Algorithm 2) on the combination of per-

missions, intents, and hardware components. Table 4.31 summarizes the detection results

when we use permissions, intents, and hardware components for detection. With the top-

ranked trio, i.e., BIND GET INSTALL REFERRER SERVICE , CONNECTION and location, we

get 95.16% accuracy with several classifiers. We call this the first iteration and then move to

the next iteration when we consider the top two ranked trio of permissions, intents, and hard-

ware components, i.e., combining BIND GET INSTALL REFERRER SERVICE , CONNECTION

and location with JPUSH MESSAGE , DaemonService and screen.portrait for detection and repeat

the process mentioned above. In this iteration, we get an accuracy of 96.96% from several

classifiers. As shown in Table 4.31, we achieved the highest detection accuracy on the second

iteration, i.e., upon adding two permissions, namely BIND GET INSTALL REFERRER SERVICE

and JPUSH MESSAGE, two intents namely CONNECTION and DaemonService and two hard-

ware components namely, location and screen.portrait, we get the highest accuracy of 96.96%.

From the next iteration, we observe that the detection accuracy starts decreasing.

On comparing the highest accuracies obtained with permissions alone (97.40%), intents

alone (95.78%), hardware components alone (89.68%), combination of intents and hardware

components (96.55%), combination of permissions and hardware components (95.9%), com-

bination of permissions, intents and hardware components (96.96%) we find that the combi-

nation of permissions and intents (98.18%) gives us better detection accuracy as compared to

all three features when used alone or in other possible combinations.
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Table 4.31: Detection results with proposed approach considering the combination of permis-
sions, intents and hardware components

PERMISSIONS, INTENTS and
HARDWARE COMPONENTS
used

Detection accuracy using various machine learning and deep learning classifiers (in
%)

DT RF ANN BC NB LR MLP SVM DNN
BIND GET INSTALL REFERRER
SERVICE, CONNECTION and

location

95.16 95.16 76.62 95.16 76.62 76.62 94.1 76.62 80.15

JPUSH MESSAGE, DaemonSer-
vice and screen.portrait

96.96 96.96 96.96 86.27 96.96 72.88 96.34 85.91 91.17

RESTART PACKAGES, NOTIFICA-
TION RECEIVED and vulkan

96.53 96.53 85.58 96.53 96.03 68.89 96.03 80.24 86.35

SEND SMS, NOTIFICA-
TION OPENED and location.GPS

96.55 96.55 87.96 95.55 73.19 65.56 95.06 75.86 92.11

4.3.5 Comparison with other related works

In this section, we compare the performance of our proposed model with other similar works

of Android malware detection that have used permissions or intents as features. Table 4.32

summarizes this comparison. As seen from the table, our work outperforms all these works

in terms of detection accuracy. Some works have ranked the permissions based on frequency

or with tests like Mutual Information and Pearson Correlation Coefficient. Some other works

have applied feature selection techniques with Linear Regressions or Naive Bayes, whereas

some authors have used permissions in pairs for Android malware detection. Only two works,

i.e., Li et al. [16] and Wang et al. [131], have used a larger number of normal applications in

their analysis than ours. However, their dataset size for malware apps is smaller than ours.

Moreover, our work outperforms them in terms of detection accuracy. Hence, our proposed

model is better than many state-of-the-art techniques presented in the literature for Android

malware detection.

4.3.6 Limitations

Now, we describe a few limitations of the proposed approach. The proposed model ranks

permissions and intents for malware detection, and hence, the model is a static detection. Static

techniques are generally inexpensive in terms of complexity compared to dynamic approaches,

as static features can be more easily extracted than dynamic ones. However, static methods

have a few disadvantages, such as their inability to recognize stealthier behavior of code ob-

fuscation and dynamic code loading. As a result, some malicious apps may incorporate such

stealthy behavior and evade detection by the proposed static model. Hence, we will integrate
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Table 4.32: Comparison of proposed work with the existing literature based on malware de-
tection using permissions and intents.

Related Work Feature selection/Feature
ranking technique used

Dataset Size Detection ac-
curacy (in %)

Number of
best features

Normal Malware
Li et al. [16] Permissions ranking based on

frequency
310,926 62,838 93.62 22 permissions

Khariwal et al. [139] Raked features using Infor-
mation gain

1,414 1,714 94.73 37 features

Wang et al. [131] Permissions ranking with
Mutual Information, Correla-
tion Coefficient and T-test

310,926 4,868 94.62 40 permissions

Yerima et al. [40] Mutual Information gain
based permissions and code
based features

1,000 1,000 97.7 15 permissions

Chaudhary and Masood
[43]

Chi-Square as a feature re-
duction technique

5065 426 96.4 -

Mahindru and Sangal
[56]

Feature selection using Chi-
Square, Gain Ratio, Filtered
Subset selection, Information
feature, LR analysis, PCA

5,00,000 98.2

Şahin et al. [153] Feature selection with Linear
regression

1,000 1,000 96.1 27 permissions

Talha et al. [18] Risk score calculated for
each app

1,853 6,909 88.28 -

Doğru and Önder [20] Permission groups score cal-
culated, to sum up, app’s risk
Score

5,554 5,554 96.19 -

Shang et al. [21] Naive Bayes and Pearson
Correlation Coefficient

945 1,725 86.54 -

Tchakounté et al. [22] Sequence alignment based
similarity score

534 534 79.58 -

Kato et al. [39] Similarity score between
malware and normal permis-
sion pairs

11,500 19,000 97.3 -

Arora et al. [138] Normal and malicious graphs
of permission pairs

7,533 7,533 95.44 -

PHIAnalyzer (Pro-
posed Model)

Permissions, Intents, and
Hardware components
ranking with Frequency-
based Chi-Square

77,000 77,000 98.49 12 features

dynamic analysis with static features to detect stealthy malware samples in our future work.

Moreover, some mobile attacks can be because of colluding apps, i.e., malicious behavior is

distributed across several apps rather than one. However, the proposed model, in its current

form, does not target colluding apps. Therefore, to further enhance the detection capability of

the proposed model, we aim to target colluding apps in our future work.

4.4 Conclusion and Future Work

In this work, we proposed a novel static technique to detect Android malware using seven

possible combinations of ranked permissions, intents, and hardware components. Initially,

we ranked the permissions, intents, and hardware components separately based on their fre-

quency difference in normal and malware datasets. Subsequently, we ranked the features using
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a frequency-based statistical Chi-Square test. Finally, we proposed a novel algorithm with ma-

chine learning and deep learning techniques to merge the three ranked lists and find the best

subset of features. Our experimental results demonstrate that the proposed model gives ade-

quate detection accuracy of 98.49% with 12 features, i.e., the top six permissions combined

with the top six intents. Furthermore, results showed that our proposed method is better than

many state-of-the-art techniques for Android malware detection in terms of detection accu-

racy and the number of features used. In our future work, we will expand the analysis on other

manifest file components such as broadcast receivers, activities, services, etc. We will also

aim to integrate dynamic analysis to detect stealthier malware and colluding apps.



Chapter 5

CorrNetDroid: Android Malware Detector

leveraging a Correlation-based Feature

Selection for Network Traffic features

In this chapter, we present CorrNetDroid, a model designed to detect Android malware by

analyzing network traffic from malicious and benign apps. Numerous traffic features can be

extracted from captured data; however, using all features can reduce detection accuracy. Ef-

fective feature ranking is essential to address this, while avoiding redundancy among vari-

ables. This work manages both feature–class and feature–feature correlations to eliminate

redundancy among ranked features. In Section 5.1, we outline the motivation and provide an

overview of the proposed methodology. Section 5.2 details the methodology, while Section 5.3

presents the results and their analysis. Limitations are discussed in Section 5.4, and Section

5.5 concludes with future research directions.

5.1 Introduction

Over the years, static analysis has proved to be quite efficient in terms of extraction of

features, cost, and detection accuracy. Investigating malware without executing the actual

code but by collecting basic information about an app’s functionality seemed to be profitable.

125
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Hence, our previous works were primarily based on static analysis ([154], [155]). In static

analysis, all the static features of an application can be scrutinized, such as the permissions,

intents, hardware features, or other AndroidManifest file components. However, some stealthier

malware functions without showing malicious behavior, i.e., they might even evade static de-

tection techniques such as permission check systems. Although the results might come faster

using static analysis, they are found to be incapable of detecting malware using advanced

techniques such as code obfuscation, polymorphism, and encryption. Dynamic analysis, in

which applications are monitored at runtime by actually executing their code, overcomes the

shortcomings of static analysis. Therefore, in this chapter, we focus on creating a system-level

lightweight malware identification framework using dynamic analysis.

Some malware are more dangerous than others because they connect to a remote server

in the background to obtain commands or to leak/send private information of users or the

device itself to the server. Hence, our work in this chapter aims to detect malware that con-

nects to a server in the background without the user’s knowledge. Because of this behavior,

they produce network traffic. Keeping the seriousness of detection in mind, this work ana-

lyzed their network traffic behavior and compared it with normal mobile traffic to determine

the deviations in the behavior of malware. The aim of the proposed work in this chapter is

to detect Android malware remotely controlled by a server and obtain commands from that

server or leak private user information. There are some other malware that initially do not

contain any malicious code, but after installation on the device, they inject malicious code dur-

ing the update. Both of these categories of malware have one thing in common: they connect

to a network. Around 93% of Android malware samples have network connectivity. Because

these types of malware are controlled by a remote server, they convert the mobile device into

a mobile bot, which can pose a serious threat to the user community.

In the context of Android malware detection using network traffic , the most commonly

used dynamic features are HTTP request headers, UDP flows, and TCP flows, which refer

to the network communication patterns associated with different types of network protocols.

Analyzing these flows can be crucial for identifying potential malicious behavior or communi-

cation patterns indicative of malware. Among these, we choose and handle TCP connections

as our preferred network traffic feature for the proposed work. TCP (Transmission Control

Protocol) is a connection-oriented protocol that ensures reliable and ordered delivery of data

between devices. Malicious activities often involve the establishment of more persistent and

reliable connections, which makes TCP a common choice for malware communication. Mon-
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Table 5.1: Some traffic features and their range for malware and normal mobile traffic on
smartphones

Feature Name Range in normal traffic Range in malware traffic
Flow duration 0 - 49560.3403 0 - 52122.128886
Packets sent per flow 1 - 110985 1 - 48265
Packets received per flow 0 - 215014 0 - 104312
Bytes sent 40 - 82771640 54 - 16288912
Bytes received 0 - 1217408141 0 - 157283100

itoring TCP flows can help detect unusual connection patterns, such as connections to known

malicious servers, multiple connections to different servers, or connections to non-standard

ports.

Some dynamic Android malware detection techniques have been proposed in the literature

using features such as cryptographic and network operation [81]. However, we chose net-

work traffic flows as the preferred feature to perform dynamic analysis because they provide

a comprehensive and real-time view of an application’s external communication, making it

particularly effective in the context of Android malware detection.

Motivation: Analyzing network traffic usage patterns is an effective way to detect the pres-

ence of malware. Therefore, network traffic flows have been widely used in the literature for

Android malware detection. However, similar to permissions or intents, there are many simi-

larities between the network traffic feature patterns of normal and malicious apps. Tables 5.1

summarize the network traffic ranges of several features extracted from a binary class dataset,

i.e., benign and malware types. We extracted over 9 lakh network traffic flows of the normal

class and an equal number for the malware class by combining the datasets from various repos-

itories. More details about the dataset are provided in upcoming sections. Furthermore, we

developed 16 network traffic features from the network traffic data. As seen in Table 5.1,

commonly used features, namely Flow Duration, Packets sent/received, Bytes sent/received from

the source to destination or vise versa, are present in significantly overlapping ranges when

observed in both normal and malware traffic data.

Such similarity in these features across both datasets motivates us to rank the features to pro-

pose an efficient detection model with distinguishing features. Moreover, experimental results

indicate, as depicted in the upcoming sections , that if we use all of the available features as

input for malware detection, irrelevant features will hamper detection accuracy. Hence, feature

reduction is a key process in developing a detection algorithm. More importantly, the field of

Android security revolves around accuracy; the better the accuracy of detecting malware, the

better the detection system, and the best accuracy can only be obtained by using the best set of
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features. Hence, feature ranking and selection are the key aspects of our research.

Drawbacks of existing approaches

Several related studies have used the dynamic features of TCP flows or HTTP packets as

their base for the detection of Android malware. For instance, Wang et al. [104] analyzed

multiple levels of network traffic features and emphasized that combining 2 levels, namely

HTTP packet and TCP flow, can successfully lead to the creation of a lightweight server-based

malware detection model. Lastly, on the belief that machine learning can be used to auto-

matically discover the rules by analyzing the data, they applied machine learning algorithms

on the training set and performed the testing experiments. However, they did not use the key

concept of ranking the features and hence missed the feature reduction step, which could have

enhanced the quality of their results.

In several other related works, such as [92] and [95], the authors built a detection system

using the best subset of features by ranking or selection. More specifically, Arora and Peddoju

[92] were able to obtain 22 network traffic features. Consequently, they aimed to reduce the

feature set and used information gain and statistical techniques such as chi-square to rank the

feature set. The results indicated that their approach was successful in reducing the training

and testing time while keeping the detection accuracy at maximum. Shabtai et al. [95] tried to

understand the reason behind the deviations in the application’s network traffic behavior from

the normal flow by observing the network traffic flows. Hence, they computed the probability

scores depicting the deviation of features’ behaviors from normal traffic patterns and later

used the threshold approach to select the best subset of features. However, both studies were

implemented on a smaller set of network traffic flows compared with the huge dataset in our

proposed study. More importantly, our work outperforms both in terms of detection accuracy.

Objective of our Proposed Approach

We aim to build a robust and efficient dynamic analysis-based Android Malware detection

system that is capable of identifying malicious behavior of applications on Android smart-

phones. At the same time, we are driven to fulfill this objective using only the least and the

best features, aggregated using the TCP flows of the application’s network data. Feature rank-

ing methods are mainly criticized for their poor handling of redundant variables. Hence, in this

work, we attempt to handle both feature– class and feature– feature correlations by ranking the

features first using the statistical measure crRelevance and then further deploying another sta-

tistical technique called Normalized Mean Residue Similarity (NMRS) in our proposed approach to
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remove the redundancy between the ranked features. The following research questions emerge

in the light of proposing a dynamic detection model based on the ranking of network traffic

features:

• RQ1 Where does the need for ranking network traffic features arise and subsequently,

what is the significance of feature reduction compared with feeding all the features as

inputs at once?

• RQ2 How to incorporate feature ranking while eliminating redundant features, i.e., how

to rank network traffic features and select the least correlated subset?

• RQ3 How to frame a detection approach while considering both feature– class and fea-

ture– feature correlations?

We are motivated to answer these questions with the vision to develop an Android malware

detector, named CorrNetDroid, based on dynamic analysis using TCP flows via developed fea-

tures. We ranked the features using a statistical technique called crRelevance to find the best

feature– class correlated subset, i.e., features having the optimum ability to distinguish be-

tween normal and malware class labels. We used crRelevance because of its simple working

and most suitable logic. The functioning of crRelevance prioritizes the feature showing steady

network traffic patterns for prolonged durations, be it the normal pattern or malware. There-

fore, the feature showing the least deviation from one class pattern is placed at the top of the

table. Moreover, unlike crRelevance, several other statistical tests have specific assumptions

that need to be met for the results to be valid. For instance, ANOVA assumes normality and

homogeneity of variances, and chi-square and Mann–Whitney tests assume independence of

observations with mutually exclusive categories. Most such tests are also found to be sensitive

to outliers. These limitations make crRelevance the most appropriate choice for our study.

Next, it was observed that features that are closely related to each other often produce sim-

ilar results or have a similar impact on the output data. Hence, we incorporated the crite-

ria of feature– feature correlation to select the best and negatively correlated features from

the crRelevance rankings. To do this, we have chosen another statistical measure called Nor-

malized Mean Residue Similarity (NMRS) because of its simple yet effective working compared

with other statistical measures such as Pearson’s correlation coefficient or Spearman correla-

tion coefficient, which often lead to the inclusion of some undesired features. After finding
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the feature– feature correlation for all possible pairs, we proposed a novel NMRS-based de-

tection algorithm that uses crRelevance-ranked features and applies various machine learning

and deep learning techniques to effectively detect Android malware. Our detection results

are better than many state-of-the-art techniques proposed in the existing literature. Moreover,

our experiments demonstrate that the proposed NMRS-based detection algorithm with crRele-

vance rankings gives us better accuracy than other statistical tests such as chi-square, ANOVA,

Mann– Whitney U test, Kruskal–Wallis test, and Pearson correlation coefficient. In addition,

our proposed work outperforms other similar works on Android malware detection, which we

evaluate against the same dataset of normal and malicious apps.

Contributions: The main contributions of this chapter are highlighted below:

• First, we ranked the TCP flow-based network traffic features according to their ability

to distinguish between normal and malicious class labels using the statistical measure

crRelevance.

• Next, we applied another statistical technique known as NMRS to analyze the feature–

feature correlation.

• We proposed a novel correlation-based feature selection algorithm to deploy NMRS on

the ranking given by crRelevance to filter out only the best as well as a redundancy-free

subset of network traffic features optimal for building an Android malware detector.

• We observed that the detection results of the proposed approach are relatively better than

various statistical and state-of-the-art techniques existing in the literature for Android

malware detection.

5.2 System Design

In this section, we explain our proposed methodology in detail. Figure 5.1 summarizes a

brief yet complete idea of our proposed model CorrNetDroid, which is divided mainly into two

modules. In the first module, named as Selection Module, we compute the network traffic fea-

tures from the training dataset’s TCP flows and rank them using a statistical measure called

crRelevance. Such a ranking will help us grade them according to their ability to distinguish be-

tween the two class labels, normal and malware. Simultaneously, we also rank the features on

the basis of their inter-correlation score using another statistical technique called NMRS, which

would help us eliminate the redundancy between the ranked features. In the Detection Module,



131

we propose a novel NMRS-based algorithm that applies machine learning and deep learning

techniques to crRelevance rankings to obtain the best subset of features that can provide higher

detection accuracy.

The following subsections discuss in detail both modules of the proposed model.

Figure 5.1: CorrNetDroid System Design

SELECTION MODULE

5.2.1 Dataset Collection

To begin with, we needed a vast dataset of mobile network traffic generated by both nor-

mal and malware applications to conduct our research. For this purpose, we rely on the

well-defined in-the-wild type datasets provided by the Canadian Institute for Cybersecurity

(CIC). The network traffic data used for training and testing were acquired from four datasets,

namely CICAndMal2017 [156], CIC-InvesAndMal2019 [157], CIC-AAGM2017 [158] and

USTC-TFC2016 [159]. Combining these datasets, we managed to gather 9,88,280 network

traffic flows for normal and malware, which were further divided into training and testing sets.

These datasets include a variety of both static and dynamic features extracted from normal and

malware applications; however, for our work, we keep our focus limited to mobile network

traffic already extracted and well-labeled in the form of pcap files. Moreover, among the com-
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monly used features for malware traffic detection, such as the HTTP protocol and TCP and

UDP flows, we choose and handle the TCP connection as the main interaction between the

applications and the network.

5.2.2 Traffic Split

In mobile network traffic, Transmission Control Protocol (TCP) flows play a crucial role

in ensuring reliable and efficient communication between devices. TCP is a connection-

oriented protocol that facilitates the orderly and error-checked delivery of data between ap-

plications. TCP connections begin with a three-way handshake, where the sender and receiver

exchange synchronization (SYN) and acknowledgment (ACK) packets to establish a connec-

tion. TCP connections are gracefully terminated using a four-way handshake, involving FIN

(finish) and ACK flags.

Using TCP flows offers several benefits, particularly in the context of network communica-

tion. TCP includes mechanisms for error detection and correction and establishes a connec-

tion before data transmission begins, ensuring a reliable and orderly communication channel.

Moreover, TCP is widely supported across different operating systems and network environ-

ments. Its ubiquity makes it suitable for diverse applications and scenarios. Since the network

traffic data used in our study is already in the form of pcap files, Wireshark is used first to filter

the pcap, and then the files are separated into the basic flow.

5.2.3 Features Aggregation

After data collection, we extracted several network traffic features from the normal and

malware traffic. Table 5.2 summarizes the 16 traffic features used in our experiments. All

such features are flow-based and can be easily extracted from the pcap flows of normal and

malware traffic. For each feature, we have also written its short notation, for instance, F1 for

Average packet size, F4 for Flow duration, etc. In the Results section, we denote the features by

their notations for easy understanding and interpretation of the results.

5.2.4 Feature Selection

Many existing techniques for feature selection often overlook the correlation among features.

However, eliminating redundant features from a dataset can reduce the time required by the
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Table 5.2: List of network traffic features

Average packet size (F1) Packets sent per second (F9)
Time interval between packets sent (F2) Packets received per second (F10)
Time interval between packets received (F3) Packets received per flow (F11)
Flow duration (F4) Packet size received (F12)
Ratio of incoming to outgoing packets (F5) Bytes sent (F13)
Ratio of incoming to outgoing bytes (F6) Bytes sent per second (F14)
Packet size sent (F7) Bytes received (F15)
Packets sent per flow (F8) Bytes received per second (F16)

inducer module during classification. The removal of redundant or irrelevant features not only

contributes to a significant improvement in the time efficiency of a machine learning technique

but also aids in creating an optimal feature subset for a dataset.

When selecting an optimal feature subset, it is crucial to consider both feature– feature and

feature– class correlations. An ideal feature subset should consist of features highly correlated

with class labels while exhibiting minimal correlation with each other [160]. In contrast to

many existing methods, the proposed feature selection technique addresses both feature– fea-

ture and feature–class correlations. It employs two statistical measures, namely crRelevance

and NMRS, to achieve this goal. In the following subsections, we discuss the working of crRel-

evance and NMRS measures, which play a crucial role in the proposed feature selection method.

These measures are used to quantify feature–class and feature– feature correlation.

crRelevance: Feature-Class Correlation

crRelevance [161] is a measure used to evaluate the ability of a feature to distinguish between

various class labels. It produces a value in the range [0,1]. The following definitions provide

the theoretical basis for crRelevance.

Definition 1 For a feature fk with values {x1,x2 . . .xn} corresponding to n objects or instances

in the dataset, a class range can be defined as a range R = [r1,r2] such that, ∀xi,x j,r1 ≤ xi ≤

r2,r1 ≤ x j ≤ r2 and class fk (xi) = class fk (x j), where class f (x) is the class associated with

value x over feature f. In other words, a class range R = [r1,r2] over feature f is said to be

associated with class A, if ∀x,r1 ≤ x≤ r2,class f (x) = A.

Definition 2 Cardinality of a class range R = [r1,r2], denoted as rcardf(R) is defined as the

cardinality of the set {x | x ∈V,r1 ≤ x≤ r2}, where V is the set of values of all the objects for

feature f .

Definition 3 Class-cardinality of a class A, ccard(A), can be defined as the cardinality of the

set {x | class(x) = A}.



134

Definition 4 Core class range of class A denoted as ccrange(A), can be defined as the highest

class range associated with the class A in terms of class range cardinality. A range Ri associated

with class A is called the core class range of A if there is no R j in F , such that rcard(R j)

> rcard(Ri).

Now, core range-based relevance of a class A for feature fi, denoted by crRelevanceclass
fi

(A),

is defined as follows.

crRelevanceclass
fi

(A) =
rcard(ccrange(A))

ccard(A)
(5.2.1)

For a dataset D, the core class relevance of a feature fi ∈ F can be defined as the highest crRel-

evance for a given class Ai. Mathematically, crRelevance of a feature fi, denoted by crRelevance

(fi), for a dataset with n classes A1, A2, . . . ,An, can be defined as follows.

crRelevance( fi) = max
1≤ j≤n

crRelevanceclass
fi (A j) (5.2.2)

In our case, we had two numerical-type continuous datasets comprising 16 features for two

classes, namely normal and malware. Each of them consisted of 6,94, 261 flows or instances

extracted from the TCP flows training dataset. Upon applying the above definitions to both

the training datasets individually, we managed to obtain the crRelevance normal and crRele-

vance malware scores for each feature. To place the most distinguishing features at the top of

the ranked list irrespective of their preference for either class, we compute the absolute dif-

ference between the crRelevance normal and crRelevance malware scores for each feature. We

would like to point out that the absolute difference was taken instead of just the difference to

avoid the accumulation of the best features on the endpoints of the ranked list rather than on

the top. These scores were further used to rank the features such that the feature with the high-

est crRelevance score is the top-ranked feature and hence holds the best ability to distinguish

between class labels.

NMRS- Feature-Feature Correlation

The above-mentioned technique ranks features according to their relevance to the output vari-

able. However, it does not consider redundant features. It has been observed that features

that are closely related to each other often produce similar results or have a similar impact

on the output data. Hence, to determine whether two features have similar patterns, an ap-

propriate similarity measure must be chosen. In other words, to find the correlation between

features, we use an effective method called Normalized Mean Residue Similarity (NMRS) [162].
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The level of concordance between feature d1 = (a1,a2, . . . , an) with respect to another feature

d2 = (b1,b2, . . . ,bn) is defined by the following formula :

= 1− ∑
n
i=1 |ai−amean −bi +bmean |

2×max{∑n
i=1 |(ai−amean )| ,∑n

i=1 |(bi−bmean )|}
(5.2.3)

where amean is the mean of all the elements of feature d1;

amean = {a1 +a2 + . . .+an}/n,

and bmean is the mean of all the elements of feature d2 ;

bmean = {b1 +b2 + . . .+bn}/n.

In our proposed work, because we wish to find the feature– feature correlation between all

possible pairs without any relation to their classes, we concatenate the normal and malware

traffic feature values, i.e., we combine the flows of both class labels for each feature and then

compute the NMRS scores. In this way, we iteratively compute the NMRS score for each feature

pair by taking them as d1 and d2 variables in the given NMRS formula. The most widely used

similarity/correlation measures in the field of Android malware are the Pearson correlation

coefficient, Spearman correlation coefficient, and mean squared residue. However, all of these

methods are lacking in some way or another. For instance, along with shifting patterns, the

Pearson correlation coefficient also detects scaling and other patterns that are normally not

desired and may lead to the inclusion of features that have a considerable amount of differ-

ence between their expression levels. The Spearman Rank correlation coefficient uses ranks

to calculate correlation, which can not detect shifting patterns or scaling patterns. The mean

squared residue is sufficient to detect shifting patterns, but the aggregate measure can not op-

erate in a mutual mode, i.e., it can not find the correlation between a pair of features. Due to

the above-mentioned reasons, we have chosen NMRS as our preferred choice for the feature–

feature correlation extractor.



136

Algorithm 3 Proposed Malware Detection Algorithm
1: Input: FCList ← crRelevance ranked list, FFList ← NMRS ranked list
2: Output: Best set of features with higher detection rate
3: BestFeatures← Initialized with all 16 traffic features
4: ρ(Fi)← Ranking of a feature in FCList
5: TestData← Concatenated 16 traffic features’ normal and malware class values kept for testing.
6: DMax ←Maximum accuracy obtained, initialized to zero.
7: DAcc ← Accuracy obtained after each iteration.
8: while FFList ̸= φ do // While feature pairs exist in FFList
9: Select (Fi-Fj) ∈ FFList
10: if ρ(Fi)< ρ(Fj) then
11: TestData = TestData \ Fi // Delete Fi from TestData
12: Find DAcc using ML algorithms for features present in TestData
13: if DAcc > DMax then
14: DMax = DAcc
15: BestFeatures = BestFeatures \ Fi // Delete Fi from BestFeatures
16: FFList = FFList \ {Fx-Fy : Fx or Fy = Fi} // Delete all pairs having instance of Fi from FFList
17: end if
18: end if
19: end while
20: return BestFeatures
21: return DMax

DETECTION MODULE

5.2.5 Proposed Detection Algorithm

This section presents our proposed detection algorithm, termed Algorithm 3, which answers

research question three, i.e., how to frame a detection approach while considering both feature–

class and feature– feature correlations.

The goal is to find features that are not strongly correlated with each other but have high

predictive and class-distinguishing abilities compared with their peers in the entire ranked set

to provide better detection accuracy. We aim to find the best set of features to provide better

detection accuracy. The proposed method starts with the computation of crRelevance scores

for each feature and pairwise correlation between features using NMRS. Once these scores

are computed and sorted in descending order, the processing starts from the feature pair with

the highest NMRS score. FCList and FFList represent the feature– class correlation rankings

computed by crRelevance and the feature– feature correlation rankings computed by NMRS,

respectively, in Algorithm 3.

In the first iteration, we selected the top-ranked feature pair from FFList . Next, we compared

the individual rankings of both features from the FCList and eliminated the feature with a lower

ranking in FCList from the testing dataset, which was initialized to all 16 traffic feature values.

We then execute the machine learning and deep learning classifiers on the testing data by

considering only these 15 features, i.e., after eliminating the lower-ranked feature, and observe

the detection accuracy, say DAcc. The maximum accuracy, say DMax, is initialized to zero. At
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each iteration, we compare DAcc and DMax. If the accuracy at the current iteration, i.e., DAcc,

is higher than DMax, we proceed to the next iteration and set DMax as DAcc. In addition, we

eliminated the same lower-ranked feature from the set of Best Features, which was initialized

to all 16 features, and all its instances from FFList list as well.

In the next iteration, we again select the top-ranked pair from FFList , compare the individual

rankings of both features from the FCList and find the detection accuracy on the testing data

after eliminating the lower ranked feature, i.e., DAcc for the current iteration considering 14

features out of 16. Again, we compare the DMax and DAcc, and if DAcc is higher than DMax,

the value of DMax gets updated to DAcc . Similarly, we eliminate the lower-ranked feature

from the set of Best Features as well as from FFList . The algorithm continues the same way

and terminates till there exists a single pair in the FFList . Finally, we return the DMax and the

best set of features. The primary factor influencing this complexity is the time taken by the

embedded machine-learning algorithm and the number of feature pairs in FFList . If the total

number of features is denoted by n, then the total number of feature pairs in FFList comes out to

be
(n

2

)
. As a result, the computational complexity of the proposed algorithm becomes O(n2 ·M),

where M is the time taken by the ML algorithms.

Using the NMRS-based proposed feature selection method that further uses crRelevance de-

veloped rankings as mentioned above, we answer research question two, i.e., how to rank the

features to recognize the most distinguishing as well as least correlated ones among them.

5.2.6 Machine Learning and Deep Learning Classifiers

We have used several machine learning and deep learning classifiers [135] in our detection

approach. We applied nine widely used techniques, namely Decision Trees (DT), Random

Forest (RF), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression (LR),

as machine learning classifiers and Multilayer Perceptron (MLP), Artificial Neural Networks

(ANN), Dense Neural Network (DNN) and Convolutional Neural Network (CNN) as deep

learning classifiers.

All experiments with these classifiers were performed using ten-fold cross-validation [136].

The code concludes by printing the cross-validation results, including the accuracy scores for

each fold and the mean accuracy across all folds. This provides insights into the model’s

consistency and overall performance across diverse subsets of the dataset.
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5.3 Results and Discussion

In this section, we present and discuss the experimental results obtained using the proposed

CorrNetDroid model. We point out that we have separate datasets for training and testing. As

described in Section 5.2.1, we accumulated 9,88,280 TCP flows, each from the normal and

malware categories, by compiling four datasets from various repositories. Of these, we use

6,94,261 flows of each category for training. The remaining 2,94,019 flows were used for

testing. We named this as Testing Dataset. In the upcoming subsections, we first discuss the

ranking obtained from the two statistical measures used in our study, crRelevance and NMRS.

Next, we describe the detection results on the Testing Dataset. Furthermore, we compared our

proposed model with similar models for Android malware detection.

5.3.1 Features Ranking

To identify the features having the best ability to distinguish between class labels, we

applied the statistical measure crRelevance on the normal and malware TCP-based features

individually kept for training. As an output, the technique produces a pair of feature-class

correlation scores for each feature. Furthermore, the sorted absolute differences between the

crRelevance normal and crRelevance malware of features were used to give the ranking. Table

5.3 summarizes the network features ranked according to the difference between the category

scores. Table 5.3 highlights that the feature Packet size received (F12) has the best ability to

distinguish between normal and malware class labels and thus sits at the top of the table with

the highest absolute difference between category scores. Similarly, it can be seen that the

feature Bytes sent per second (F14) has the worst absolute difference, and it can be inferred that

it has the worst distinguishing characteristics trait.

As described in subsection 5.2.5, our proposed feature selection and detection algorithm uses

both feature– class and feature– feature correlation, i.e., both crRelevance and NMRS rankings,

to choose the best subset of features. Hence, in the next step, we applied NMRS to all possible

feature pairs (120 to be precise) and ranked them in such a way that the pair that is found to be

the most correlated resides at the top of the table. Table 5.4 summarizes 20 traffic feature pairs,

from the top and bottom , ranked on the basis of their NMRS correlation scores. The table can

be understood as follows: The features Average packet size (F1) and Packet size received (F12)

are found to have the best correlation score and thus have the best correlation between them.
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Table 5.3: Traffic features ranked using crRelevance and their correspoding difference between
category scores

Traffic Feature name crRelevance Normal
score

crRelevance
Malware score

Absolute Difference

Packet size received (F12) 0.26596232 0.012590384 0.253371936
Ratio of incoming to outgoing packets (F5) 0.296365915 0.130850114 0.165515801
Average packet size (F1) 0.12240083 0.009480598 0.112920232
Bytes received (F15) 0.126547691 0.03779996 0.088747731
Packets received per flow (F11) 0.111917725 0.05154409 0.060373635
Time interval between packets received (F3) 0.036142079 0.084497162 0.048355083
Packet size sent (F7) 0.021238441 0.055827788 0.034589347
Packets sent per flow (F8) 0.080901968 0.063568404 0.017333564
Bytes sent (F13) 0.02805145 0.016737245 0.011314205
Packets received per second (F10) 0.000396105 0.009657765 0.00926166
Bytes received per second (F16) 0.001100452 0.010035145 0.008934693
Ratio of incoming to outgoing bytes (F6) 0.024832195 0.020339642 0.004492553
Packets sent per second (F9) 0.000162763 0.001974764 0.001812001
Flow Duration (F4) 0.000331288 0.001971884 0.001640596
Time interval between packets sent (F2) 0.000162763 0.001748624 0.001585861
Bytes sent per second (F14) 0.000193011 0.001627632 0.001434621

Similarly, the features Time interval between packets sent (F2) and Packets received per second

(F10) have the worst correlation between them and are listed at the end of the table.

Table 5.4: 20 traffic feature pairs, top and bottom each, ranked using NMRS and their corre-
sponding correlation scores

Feature pairs (Top
20)

NMRS Correlation scores Feature pairs (Bot-
tom 20)

NMRS Correlation scores

F1 - F12 0.759744419 F3 - F4 0.492246708
F8 - F11 0.757228415 F3 - F12 0.491129541
F9 - F10 0.688153793 F6 - F7 0.490277257
F6 - F8 0.552430678 F4 - F12 0.490246288
F3 - F14 0.54525236 F7 - F10 0.488841839
F6 - F11 0.537300131 F2 - F11 0.488644157
F2 - F4 0.534887165 F8 - F10 0.488640907
F1 - F7 0.534729436 F4 - F10 0.486058046
F15 - F16 0.527539689 F9 - F11 0.480918693
F14 - F16 0.520365838 F7 - F8 0.475437864
F13 - F14 0.517503603 F4 - F9 0.474087994
F3 - F16 0.516788742 F1 - F4 0.473606551
F10 - F11 0.516232597 F2 - F8 0.472189992
F1 - F8 0.515903675 F7 - F9 0.469414718
F4 - F8 0.514681773 F2 - F9 0.447610523
F1 - F11 0.513675549 F7 - F11 0.434838592
F5 - F6 0.513187313 F8 - F9 0.405520241
F6 - F10 0.509712683 F2 - F6 0.40035683
F11 - F12 0.509375491 F4 - F7 0.36976355
F1 - F6 0.509328369 F2 - F10 0.328580529

In the following subsection, we present the detection results obtained using the proposed

model.
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5.3.2 Detection Results on Testing Dataset

In this section, we discuss the detection results, i.e., the accuracy obtained from our pro-

posed approach over the Testing Dataset. We apply the proposed NMRS-based algorithm to the

crRelevance rankings. The algorithm provides the best set of negatively correlated features

with higher detection accuracy as an output. Table 5.5 summarizes the detection results at

each iteration. The table can be understood as follows: In the first iteration of eliminating the

lower crRelevance ranked feature named F1 out of the highest correlated pair, we observe that

we obtain the highest detection accuracy of 81.67% with RF classifier, i.e., on considering

15 features now out of the total lot of 16, the highest detection accuracy of 81.67% can be

achieved. We call this the first iteration and move on to the next iteration, where we eliminate

the lower crRelevance ranked feature from the second highest correlated pair, i.e., F8 from the

Testing Dataset. In this iteration, we obtain an accuracy of 80.97% on considering 14 features

out of 16. As discussed in Algorithm-3, we proceed to the next iteration whenever the de-

tection accuracy increases from the previous iteration. Hence, we eliminate the bottom three

ranked network traffic features and repeat the entire procedure. The procedure is terminated

until we observe a potential decrease in the detection accuracy. As highlighted in the table

5.5, we achieved the highest detection accuracy of 99.55% with DT classifier upon eliminat-

ing 14 of the total 16 traffic features, i.e., upon considering only the top two features, namely

Packet size received (F12) and Time interval between packets received (F3), the highest detection

accuracy can be achieved. From the next iteration, we observe that the detection accuracy

starts decreasing.

Finally, we conclude that we obtain the highest accuracy of 99.55% when we apply the

proposed Algorithm-3 to the Testing Dataset. It can be seen from Table 5.3 that the feature F3

has been ranked lower than {F5, F1, F15 and F11} according to crRelevance, yet our proposed

feature selection algorithm filters out the top-ranked feature F12 with F3 as the best subset.

This can be justified with the help of the NMRS rankings in Table 5.4. We would like to

highlight that the correlation between the crRelevance top-ranked feature F12 and F3 is found

to be much lesser than the correlation between F12 and other features such as F5, F1, F15

or F11. Hence, the elimination of such highly correlated features by our proposed feature

selection algorithm to reduce the redundancy between the entire set is justified.

At the same time, when no feature ranking /statistical or correlation technique of any type

is used and all the features are fed to the classifiers at once, i.e., on considering all the 16 net-



141

Table 5.5: Detection results when we apply our NMRS-based proposed algorithm on crRele-
vance feature ranking

Feature elimi-
nated

Features used Detection accuracy using various machine learning and deep learning
classifiers (in %)
DT RF BC NB GB AB MLP DNN CNN

None (Using all
features)

F1, F2, F3, F4, F5, F6, F7, F8, F9,
F10, F11, F12, F13, F14, F15, F16

81.12 81.12 80.09 55.34 79.18 80.10 58.75 72.32 59.5

F1 F2, F3, F4, F5, F6, F7, F8, F9, F10,
F11, F12, F13, F14, F15, F16

81.62 81.67 81.46 55.58 79.14 80.19 58.26 73.41 59.42

F8 F2, F3, F4, F5, F6, F7, F9, F10, F11,
F12, F13, F14, F15, F16

80.97 80.97 80.88 55.93 83.33 82.55 63.44 71.44 61.44

F9 F2, F3, F4, F5, F6, F7, F10, F11,
F12, F13, F14, F15, F16

83.39 83.39 83.38 56.89 82.40 79.45 56.98 70.89 56.55

F14 F2, F3, F4, F5, F6, F7, F10, F11,
F12, F13, F15, F16

78.17 78.20 78.04 50.93 77.90 76.25 50.23 69.77 56.55

F6 F2, F3, F4, F5, F7, F10, F11, F12,
F13, F15, F16

78.57 78.54 78.44 48.30 78.50 78.65 52.68 69.38 57.45

F2 F3, F4, F5, F7, F10, F11, F12, F13,
F15, F16

77.75 77.93 77.81 46.99 78.72 79.65 55.8 73.23 58.15

F16 F3, F4, F5, F7, F10, F11, F12, F13,
F15

78.57 78.59 78.57 46.75 78.75 77.57 51.05 62.45 53.51

F10 F3, F4, F5, F7, F11, F12, F13, F15 81.04 80.76 80.94 46.34 80.11 77.65 54.59 69.12 54.96
F4 F3, F5, F7, F11, F12, F13, F15 72.82 75.54 72.79 49.59 71.57 70.20 64.03 76.82 56.51
F11 F3, F5, F7, F12, F13, F15 77.64 77.32 77.62 48.70 73.71 67.79 61.80 60.41 51.17
F7 F3, F5, F12, F13, F15 54.36 5.99 54.40 46.67 51.10 49.68 62.56 63.36 51.49
F13 F3, F5, F12, F15 87.18 87.17 87.082 52.45 83.50 72.22 61.07 80.13 52.23
F15 F3, F5, F12 85.30 85.31 84.87 43.15 83.87 80.72 56.85 77.04 65.62
F5 F3, F12 99.50 95.95 95.85 53.84 97.44 94.39 52.32 75.13 73.34

work traffic features simultaneously, we observe that the highest detection accuracy obtained

is merely 81.12%. Based on the results and the low detection accuracy depicted by Table 5.5, we

answer our research question one that feature ranking helps us eliminate irrelevant features that

can hamper detection accuracy.

5.3.3 Comparison with other statistical tests

In this subsection, we compare the performance of our proposed model with that of some

commonly used statistical tests for Android malware detection. Our proposed approach in-

volved computing the feature– class correlation, i.e., crRelevance ranking, and further deploy-

ing an NMRS-based detection algorithm to select the best set of features that produce higher

detection accuracy. Hence, to compare our model’s performance, we deploy the same NMRS-

based detection algorithm on the following statistical measures:

1. Chi-square - The chi-square test measures the difference between the expected and ob-

served values and determines whether the deviation between the observed and expected
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values is acceptable or not. The chi-square formula [152] is defined by equation 5.3.1:

χc
2 = ∑

(Oi−Ei)
2

Ei
(5.3.1)

where:

c=Degrees of freedom,

O=Observed value(s), and

E=Expected value(s)

This test is applied separately to malware traffic and the normal feature set. For any

particular feature, say Fi, we have its range for malware samples. From these values,

we calculate the average of the feature value to serve as the expected value for our

experiments. We then measure how the values for that feature deviate from the expected

value using the chi-square formula. The procedure is repeated for normal traffic and all

features. The closer the values are to the average value, the lower the chi-square score

and the higher the priority of the feature. Therefore, unlike the statistical measure used

in our study, i.e., crRelevance, where a higher score leads to a higher ranking of the

feature, a lower chi-square value leads to a higher ranking of the feature. Moreover,

applying chi-square gives two separate rankings for features, i.e., one for the normal and

another for the malware class.

2. ANOVA - ANOVA, or Analysis of Variance [163], is a statistical method used to analyze

the differences among group means in a sample. It is often used to test the null hypoth-

esis that the means of three or more groups are equal. In our case, normal and malware

values of the same feature from the training dataset are taken as the two groups. The

one-way ANOVA F-statistic is calculated using the following formula:

F =
Between-Group Variance (MSB)
Within-Group Variance (MSW)

(5.3.2)

where:

MSB (Mean Square Between) is the variance among the group means and MSW (Mean

Square Within) is the average of the variances within each group. Lastly, the features

are ranked in order of their F-statistic value such that the feature with the highest score

is the most distinguishing one.

3. Mann-Whitney - The Mann-Whitney U test [164], also known as the Wilcoxon rank-sum
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test, is a non-parametric test used to determine whether there is a difference between

two independent and randomly selected groups. The U statistic is calculated using the

following formula:

U1 = R1−
n1 · (n1 +1)

2
(5.3.3)

U2 = R2−
n2 · (n2 +1)

2
(5.3.4)

where:

- U1 and U2 are the U statistics for Group 1 and Group 2, respectively.

- R1 and R2 are the sums of ranks for Group 1 and Group 2, respectively.

- n1 and n2 are the sample sizes for Group 1 and Group 2, respectively.

In our case, normal and malware features from the training dataset are considered Group

1 and Group 2, and the sample size for each group is taken as the number of flows.

Lastly, the features are ranked in order of their U statistic value such that the feature

with the highest score is the most distinguishing one.

4. Kruskal-Wallis - The Kruskal-Wallis test [165] is a non-parametric test used to determine

whether there are statistically significant differences between three or more independent

groups. The test assesses whether the samples originate from the same distribution or if

at least one of the samples is different from the others. The formula for the test statistic

is given by equation 5.3.5.

H =
12

N(N +1)

k

∑
i=1

R2
i

ni
−3(N +1) (5.3.5)

where:

- N is the total number of observations across all groups.

- k is the number of groups.

- Ri is the sum of ranks for group i.

- ni is the number of observations in group i.

In our case, normal and malware features from the training dataset are considered as the

two groups and the sample size for each group is taken as the number of flows. Lastly,

the features are ranked in order of their H statistic value such that the feature with the

highest score is the most distinguishing feature.

Table 5.6 summarizes the individual test rankings when we apply chi-square on the nor-

mal feature set and chi-square on the malware feature set along with other measures such
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as ANOVA, Mann–Whitney U test, and Kruskal– Wallis test. As can be seen from the

table, Ratio of incoming to outgoing packets (F5) has been ranked as the most distinguish-

ing feature by Mann– Whitney as well as both rankings of the chi-square test, whereas,

according to ANOVA and Kruskal– Wallis, the feature named Time interval between

packets received (F3) resides at the top of the table as the best feature.

Table 5.6: Traffic features ranked using various statistical tests

chi-square
on normal

chi-square on
malware

ANOVA Mann-
Whitney

Kruskal-
Wallis

F5 F5 F3 F5 F3
F2 F6 F4 F7 F5
F3 F7 F7 F14 F12
F6 F1 F5 F10 F12
F9 F2 F2 F11 F6
F10 F12 F16 F9 F8
F7 F10 F1 F2 F15
F1 F4 F10 F13 F7
F4 F8 F8 F16 F4
F12 F11 F11 F4 F14
F8 F3 F13 F15 F10
F11 F9 F6 F8 F16
F14 F13 F15 F6 F11
F16 F16 F9 F1 F13
F13 F15 F12 F12 F9
F15 F14 F14 F13 F2

For comparison, we ranked network traffic features using the four statistical tests described

above and further applied our proposed NMRS-based proposed algorithm on the Testing Dataset

to obtain their corresponding accuracies. The results are summarized in Table 5.7 and it can

be understood as follows. When we apply the NMRS-based proposed approach on chi-square

rankings expressed on a normal training dataset as well as on Kruskal– Wallis rankings, we

achieve the highest detection accuracy of 96.22% after eliminating 14 features out of the to-

tal lot of 16 traffic features, i.e., upon considering two features, namely Ratio of incoming to

outgoing packets (F5) and Time interval between packets received (F3), the highest detection ac-

curacy can be achieved. At the same time, the highest detection accuracy of 96.37% can be

achieved upon considering two features, namely Ratio of incoming to outgoing packets (F5) and

Time interval between packets sent (F2) when we apply the NMRS-based proposed algorithm on

Mann– Whitney test rankings as well as chi-square test rankings for malware dataset. Simi-

larly, when we apply the NMRS-based proposed algorithm to ANOVA test rankings, we obtain

the highest detection accuracy of 98.10% while considering two features, namely Time interval

between packets received (F3) and Flow Duration (F4). When we apply the NMRS-based pro-

posed algorithm to the crRelevance rankings used in our work, we obtain an accuracy of 99.5%

with two features, namely Packet size received (F12) and Time interval between packets received
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(F3). Hence, our model outperforms other similar statistical tests when we apply our proposed

NMRS algorithm to their developed rankings.

Table 5.7: Comparsion of NMRS-based proposed algorithm on crRelevance rankings with
various statistical tests when we apply the same algorithm applied on them

Statistical test used Features
used

Detection accuracy using various machine learning and deep learning
classifiers (in %)
DT RF BC NB GB AB MLP DNN CNN

crRelevance (our ap-
proach)

F12, F3 99.5 95.95 95.88 53.84 97.44 94.39 52.32 75.13 73.34

chi-square on normal F5, F3 96.22 85.60 84.64 51.22 86.20 84.50 38.96 66.88 51.05
chi-square on malware F5, F2 96.37 86.13 86.12 59.42 86.64 84.86 44.58 78.41 59.28
ANOVA F3, F4 98.10 96.46 96.381 72.54 95.91 95.71 55.62 85.05 62.93
Mann-Whitney F5, F2 96.37 86.13 86.12 59.42 86.64 84.86 44.58 78.41 59.28
Kruskal-Wallis F3, F5 96.22 85.60 84.64 51.22 86.20 84.50 38.96 66.88 51.05

5.3.4 Comparison of NMRS with other Correlation Measures

In the previous subsection, we compared the performance of our proposed NMRS-based

algorithm with that of other statistical tests when we applied the same NMRS-based algorithm

to their rankings. In this section, we compare the performance of NMRS as an algorithm itself

with a similar correlation measure called Pearson’s correlation coefficient, i.e., we compute

the feature– feature correlation score for all feature pairs using Pearson’s correlation test and

replace NMRS with Pearson’s correlation coefficient as our chosen algorithm base to be applied

upon the crRelevance feature rankings. Next, we briefly describe the working of Pearson’s

correlation coefficient.

The Pearson correlation coefficient, often denoted by r, is a measure of the linear relationship

between two variables. It quantifies the degree to which a pair of variables change together.

The formula for the Pearson correlation coefficient between two variables X and Y with n data

points is as follows:

r =
∑(Xi− X̄)(Yi− Ȳ )√

∑(Xi− X̄)
2

∑(Yi− Ȳ )2
(5.3.6)

Where:

- Xi and Yi are the individual data points for variables X and Y ,

- X̄ and Ȳ are means of variables X and Y respectively.

In our case, because we wish to find the feature– feature correlation between all possible
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pairs without any relation to their classes, we concatenate the normal and malware traffic

feature values, i.e., we combine the flows of both class labels for each feature and then compute

the Pearson correlation scores. In this way, we iteratively compute the Pearson’s correlation

coefficient score for each feature pair by considering them as X and Y variables in the above-

mentioned formula. Hence, in the next step, we applied Pearson’s correlation coefficient on

all possible feature pairs (120 to be precise) and ranked them in such a way that the pair that

is found to be the most correlated resides at the top of the table. Table 5.8 summarizes the top

ten traffic feature pairs ranked on the basis of their Pearson correlation scores. The table can

be understood as follows: The features Packets sent per second (F9) and Bytes sent per second

(F14) are found to have the best correlation score and thus have the best correlation between

them. Similarly, the features Packets sent per second (F9) and Packet size received (F12) have the

worst correlation between them and are listed at the end of the table.

Table 5.8: Top 10 Traffic feature pairs ranked using Pearson’s correlation coefficient and their
corresponding correlation scores

Feature Pair Pearson’s correlation
coefficient scores

F9 - F14 0.989299
F8 - F11 0.938651
F1 - F12 0.918476
F11 - F15 0.817451
F10 - F16 0.764166
F1 - F6 0.732062
F6 -F12 0.729424
F8 - F15 0.728135
F2 - F4 0.466446
F6 - F16 0.436238

Next, we deploy Pearson correlation pairwise rankings instead of NMRS in our proposed al-

gorithm and apply it to the ranked feature list given by crRelevance. The table 5.9 summarizes

the detection results for the same. When we applied Pearson’s correlation coefficient-based

algorithm to our crRelevance rankings, we achieved the highest detection accuracy of 99.3%

on considering two features, namely Packets sent per second (F9) and Packet size received (F12).

However, with our proposed NMRS-based algorithm applied to crRelevance rankings, the high-

est detection accuracy of 99.5% can be achieved. Hence, we can conclude that NMRS is the best

choice for calculating the feature– feature correlation and reducing the redundancy between

them.
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Table 5.9: Detection results when we apply Pearson’s correlation coefficient-based algorithm
on crRelevance feature ranking

Statistical test used Features
used

Detection accuracy using various machine learning and deep learning
classifiers (in %)
DT RF BC NB GB AB MLP DNN CNN

NMRS-based pro-
posed algorithm on
crRelevance rank-
ings

F12, F3 99.5 95.95 95.88 53.84 97.44 94.39 52.32 75.13 73.34

Pearson’s correlation
coefficient based algo-
rithm on crRelevance
rankings

F12, F9 99.3 95.33 95.27 70.26 85.41 93.70 94.97 95.61 71.44

5.3.5 Comparsion with other related works

In this subsection, we compare the performance of our proposed NMRS-based algorithm on

crRelevance rankings with another similar work incorporating TCP flows. We do so by imple-

menting the approach followed by the authors in [95]. Similar to the working of their proposed

model, we chose Decision Table and REPTree classifiers as the base learners for the local learn-

ing model. These classifiers were trained for each of the 16 features. The authors stated that

when a feature vector representing a normal event is tested against the models generated dur-

ing the learning phase, there is a higher probability that the predicted value will match or be

very similar to the observed value. The more the predictions differ from the true values of the

corresponding features, the more likely it is that the observed vector comes from a distribu-

tion different from that of the training set. Therefore, we ranked the features in order of their

probability of deviation from the pattern of normal traffic features. Table 5.10 summarizes the

traffic features ranked in order of their deviation from normal traffic behavior. As can be seen

from the table, the feature Packets sent per flow (F8) shows the highest probability of coming

from an abnormal event. At the same time, the feature Ratio of incoming to outgoing packets

(F5) scored the lowest relating to the least probability of coming from an abnormal event, and

thus was situated at the end of the table. We would like to point out that we did not multiply

all the individual probabilities following the approach used by the authors because of our vast

dataset; instead, we added all the individual probabilities.

After ranking the network traffic features in order of their probability of deviation from

normal traffic features’ pattern, we move on to find the best feature set with higher detection

accuracy. To do so, a threshold needs to be decided to filter out the best features capable of

distinguishing between normal and anomalous vectors that are learned during the algorithm

calibration phase. Table 5.11 summarizes the detection results using Decision Table and Rep-
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Table 5.10: Traffic features ranked based on their deviation from normal traffic behavior

Traffic feature names Probability scores
F8 248988.163
F15 248987.688
F11 248986.1281
F4 248970.6183
F13 248970.0707
F9 248955.3305
F14 248951.6604
F2 248867.7914
F16 248761.2274
F3 248747.6066
F10 248700.7806
F6 247767.6992
F12 244789.8246
F7 232428.8028
F1 230456.9791
F5 228989.9963

Tree classifiers as base learners. As it can be seen, upon eliminating four features out of the

total set of 16 features, we managed to achieve the highest detection accuracy of 95.85% while

using both Decision Table and RepTree classifiers as base learners, i.e., on considering the top

12 features, namely {F8, F15, F11, F4, F13, F9, F14, F2, F16, F3, F10, and F6}, both display

the same highest detection accuracy of 95.85%. Whereas, with our NMRS-based proposed al-

gorithm applied to crRelevance rankings highest detection accuracy of 99.5% can be achieved.

Hence, we can conclude that our proposed approach outperforms the similar work of Android

malware detection performing feature selection on TCP-based network traffic features.

Table 5.11: Detection results when we implement other related work

Statistical test used Features
used

Detection accuracy using various machine learning and deep learning
classifiers (in %)
DT RF BC NB GB AB MLP DNN CNN

NMRS-based pro-
posed algorithm on
crRelevance rank-
ings

F12, F3 99.5 95.95 95.88 53.84 97.44 94.39 52.32 75.13 73.34

Shabtai et al. [95] ap-
proach (DT as the base
learner)

F8, F15, F11,
F4, F13, F9,
F14, F2, F16,
F3, F10, F6,

95.85 81.20 80.72 56.89 80.35 76.62 61.88 68.65 59.42

Shabtai et al. [95] ap-
proach (RepTree as
the base learner)

F8, F15, F11,
F4, F13, F9,
F14, F2, F16,
F3, F10, F6,

95.85 81.20 80.72 56.89 80.35 76.62 61.88 68.65 59.42

Furthermore, we compare some other similar works of Android malware detection that use

TCP flows in terms of detection accuracy. Table 5.12 summarizes this comparison. Some

studies have attempted to determine the probability of deviation from normal traffic features’

patterns, whereas others have ranked the features using tests such as chi-square, information

gain, and frequency ranges to select the best subset of features. As shown in the table, our
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model outperforms all these studies in terms of detection accuracy. Hence, we can conclude

that our proposed model is better than many state-of-the-art techniques presented in the litera-

ture for Android malware detection.

Table 5.12: Comparison of proposed work with the existing literature based on malware de-
tection using TCP flows

Related Work Methodology Detection ac-
curacy (in %)

Wang et al. [104] ML- based malware detection using TCP
and HTTP features

97.89

Arora and Peddoju [92] Features ranked using IG and Chi square 97.3
Arora and Peddoju [166] Calculated similarity scores between FP-

Growth algorithm generated patterns and
testing features

94.25

Upadhayay et al. [167] Thresholds are set for testing on Fre-
quency based rankings of permissions
merged with network traffic rankings

95.96

Zulkifli et al. [101] ML-based malware detection using
TCP-based network traffic features

98.4%

Sihag et al. [168] DL-based system using image form of
features for binary classification

98.44

Alshehri [169] Devised flow similarity using the Euclid-
ian Algorithm

97.32

Liu et al. [107] GNN model using node characteristics
as well as the edge attributes of mobile
traffic features

97

NMRS-based proposed algo-
rithm on crRelevance rankings
(our approach)

Correlation-based Feature selection
using crRelevance and NMRS

99.50

5.4 Limitations

Now, we describe a few limitations of the proposed approach. The proposed model ranks

TCP-based network traffic features for detection; hence, it falls under the category of dynamic

analysis. The path of dynamic analysis overcomes several limitations of static analysis but

also poses some barriers. Not all malware samples generate network traffic. It has been no-

ticed that some malware might only send text messages in the background without generating

any network traffic. Hence, network traffic-based detection mechanisms cannot detect such

samples. Dynamic analysis tools can introduce performance overhead as they monitor and

analyze the execution of the program. This overhead may affect the timing and behavior of

the software, potentially masking certain performance-related issues. Moreover, some mobile

attacks can be due to colluding apps, i.e., malicious behavior is distributed across several apps

rather than one. However, the proposed model, in its current form, does not target colluding

apps. Therefore, to further enhance the detection capability of the proposed model, we aim to

target colluding apps in our future work.
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5.5 Conclusion and Future Work

In this chapter, we ranked the network traffic features in order of their correlation with the

class and amongst themselves using two statistical measures, namely crRelevance and NMRS.

Subsequently, we proposed a novel NMRS-based detection algorithm to select the best and

inversely correlated features by applying various machine learning and deep learning tech-

niques. The experimental results highlight that our proposed NMRS-based detection algorithm

on crRelevance rankings can effectively reduce the feature set while detecting Android malware

with 99.50% accuracy on considering two network traffic features, namely Packet size received

and Time interval between packets received. Furthermore, our results showed that our proposed

method is better than other statistical tests such as chi-square, ANOVA, Mann–Whitney U test,

Kruskal–Wallis test, Pearson’s correlation coefficient, and at the same time from other simi-

lar works of Android malware detection. Moreover, the proposed model can detect Android

malware with better accuracy than various state-of-the-art techniques. In our future work, we

aim to enhance the capabilities of our model by including malware category and family clas-

sification along with the binary classification performed in this study. We also aim to integrate

static features to deal with the limitations of dynamic analysis and possibly build a robust

hybrid detection model.



Chapter 6

Hybrid Android Malware Detection

leveraging Static Permissions and

Dynamic System Calls

In this chapter, we propose two hybrid detection models leveraging the merits of both static

permissions and dynamic system calls. In Section 6.1, we explain the motivation behind

proposing a hybrid Android malware detector model and a brief overview of the two mod-

els proposed. In Section 6.2, we explain in detail the methodology behind our first model

named AndroVRank. Section 6.3 explains the results obtained from the proposed model - I.

In Section 6.4, we explain the methodology behind our proposed hybrid model - II. Section

6.5 discusses the results obtained from the second hybrid model and finally, we conclude the

chapter in Section 6.6.

6.1 Introduction

Static analysis, though fast and efficient for processing large-scale applications, has critical

weaknesses. Malware developers can easily bypass it through techniques like code obfusca-

tion, polymorphism, and encryption, and it struggles to detect runtime behaviors. Dynamic

analysis addresses these gaps by monitoring application behavior in a controlled execution

151
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environment, revealing malicious activities that static analysis may miss, such as network

interactions or file system modifications. Yet, dynamic analysis also has limitations—it is

resource-heavy, time-consuming, and can be fooled by malware that alters its behavior when

sensing an analysis environment. Additionally, if a malicious app does not rely on network

traffic, dynamic analysis using network-based features can fail. To mitigate these issues, hy-

brid analysis offers a more comprehensive solution by blending static and dynamic methods

for stronger, more reliable detection. This study focuses on hybrid analysis integrating static

code inspection with dynamic behavior tracking to create two hybrid malware detection mod-

els, aiming to boost detection accuracy and address the shortcomings of each technique.

With the first model AndroV-Rank, we aim to enhance Android malware detection by ex-

amining and ranking static permissions and dynamically extracted system calls. Our analysis

revealed considerable overlap in commonly utilized features between the normal and malicious

app classes. This result highlighted the importance of effective feature selection in enhancing

detection accuracy. To achieve this, we utilized a Multi-Criteria Decision-Making (MCDM) ap-

proach, employing the VIKOR method to rank features according to their ability to distinguish

between classes.

Classification involves assigning class labels to unlabeled test samples using a trained model.

Various algorithms are widely employed in data mining and machine learning, including ea-

ger learners like Artificial Neural Networks (ANN), Decision Trees (DT), Naı̈ve Bayes (NB),

and statistical approaches like Linear and Logistic Regression (LR). Ensemble methods such

as Random Forest (RF), AdaBoost, and Support Vector Machine (SVM) are also frequently

used. Although these methods are common, they face challenges. Traditional approaches

often suffer from low classification accuracy, while more complex techniques can lead to mis-

classification or be hindered by computational demands despite their higher accuracy.

Such limitations of static and dynamic analysis, along with the challenges faced while ap-

plying the traditional ML classifiers in the context of Android malware detection motivate

us to build another simple yet effective hybrid detection model capable of producing optimal

detection results without the use of any ML or DL algorithm. Hence, next, we propose an

instance-based classifier PattMatch, that utilizes an Average Weighted Pattern Score (AWPS) tech-

nique in conjunction with Attribute Score-based Ranking (ASR) to accurately predict the class

labels for unlabeled test samples.

Contributions - The major contributions of this chapter are as follows-
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• We developed two hybrid Android malware detection systems that overcome the limita-

tions of static and dynamic analysis by integrating both methods, thereby enhancing the

detection performance.

• We implemented VIKOR, a Multi-Criteria Decision-Making (MCDM) technique in the first

model, to rank features based on their preference scores, effectively measuring their abil-

ity to distinguish between malware and benign apps.

• We introduce a novel algorithm that utilizes the individual rankings of static, dynamic,

and hybrid datasets derived from VIKOR to develop a robust malware detection system

capable of achieving higher accuracy with fewer features.

• Additionally, we discuss another model introducing a simple yet efficient instance-based

pattern-matching classifier capable of predicting the class labels for test samples without

relying on traditional data mining algorithms.

• We advanced the field by employing an attribute rank-based feature selection method,

which significantly improved the detection accuracy.

6.2 Proposed Hybrid Model - I

This section outlines the methodology of our first proposed model, AndroV-Rank, which is

divided into two main parts: the Ranking and Detection segments. . First, we construct a com-

prehensive dataset incorporating static features (permissions) and dynamic features (system

calls). This dataset is then divided into two parts: the Training set and the Testing set. In the

Ranking segment, we process the Training set to rank features using the VIKOR method, where

a preference score is computed for each feature. In the Detection segment, we introduce an

innovative algorithm that utilizes both Machine Learning (ML) and Deep Learning (DL) tech-

niques to select optimal features, enhancing detection accuracy.

Ranking Segment

6.2.1 Dataset Accumulation

To begin our research, we needed a comprehensive hybrid dataset that combined both static

and dynamic features for detailed analysis. We chose the publicly available Kronodroid dataset
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[170], which covers Android’s evolution from 2008 to 2020, making it highly relevant for our

study. The malware applications are gathered from repositories like Drebin, AMD, VirusTo-

tal, and VirusShare whereas the benign applications come from F-droid, MARVIN, and AP-

KMirror. The dataset includes numerous static permissions and dynamically extracted system

calls, where permissions were represented in binary (1 for requested, 0 for not), and system

calls recorded the frequency of their occurrence, with zeros indicating no call was made. The

dataset comprised 78,137 applications, of which 41,382 were classified as malware and 36,755

as benign. For our analysis, we selected 20,000 applications (10,000 benign and 10,000 mal-

ware) as the Testing dataset, while the remaining 58,137 applications were used for Training.

After preprocessing, 137 distinct permissions and 124 unique system calls were identified and

retained as features in the dataset.

Our objective is to create a model that utilizes hybrid features for Android malware de-

tection, aiming to overcome the limitations present in both static and dynamic analysis ap-

proaches. To enable a comprehensive comparison of the three analysis techniques, we divided

the dataset into three distinct categories for both the Training and Testing sets: static, dynamic,

and hybrid. The static category includes datasets with 137 permissions, the dynamic category

comprises datasets with 124 system calls, and the hybrid category combines both, yielding a

total of 261 features.

6.2.2 Features Ranking

Multi-Criteria Decision Making (MCDM) [171] is recognized as a highly effective approach

for decision-making. This method incorporates a range of qualitative and quantitative criteria

that must be clearly defined to determine the best alternative or feature. The fundamental

steps in MCDM involve identifying criteria, assigning weights to them, ranking the available

alternatives or features based on preferences, and ultimately selecting the best choice or a

subset thereof.

The primary goal of MCDM is to categorize attributes as either preferrable or non preferrable.

In our study, we applied VIKOR, a widely used MCDM technique to rank features from the

static, dynamic, and hybrid datasets according to their preference. Further information on the

technique used in our research is provided below:

VIKOR - VIKOR stands for “VIekriterijumsko KOmpromisno Rangiranje”, a Serbian term

for “multi-criteria optimization and compromise solution”. This method reaches the final de-
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cision of choosing the best alternative after forming the compromised ranking from the ag-

gregating function called L p metric. The series of steps involved in a VIKOR application is

described below for a MCDM problem defined on m alternatives denoted as A1, A2, . . . ,Am and

n decision criteria:

Step 1 - For the alternative Al, the evaluation of the jth criterion is represented by fi j. Identify

the optimal f ∗j and the minimal f−j values for all criterion functions where j = 1,2, . . . ,n [171].

If the jth function indicates a benefit, then:

f ∗j = max
i

fi j, f−j = min
i

fi j

if non-benefit, then vice versa.

Step 2 - Compute the values Si and Ri; i = 1,2, . . . ,m [171], by these relations:

Si =
n

∑
j=1

w j[
(

f ∗j − fi j
)
/
(

f ∗j − f−j
)
]

Ri = max
j

w j[
(

f ∗j − fi j
)
/
(

f ∗j − f−j
)
],

where w j are the weights of criteria, expressing their relative importance.

Step 3 - Compute the values Q; i = 1,2, . . . ,m [171], by the following relation:

Qi = v[(Si−S∗)/
(
S−−S∗

)
]+ (1− v)[(Ri−R∗)/

(
R−−R∗

)
]

where
S∗ = mini Si, S− = maxi Si,

R∗ = mini Ri, R− = maxi Ri,

v is introduced as the weight of the strategy of “the majority of criteria”, here suppose that

v = 0.5.

We applied VIKOR to the permissions vector tables of the static dataset, which contains in-

formation on both benign and malware applications, along with their requested permissions,

aiming to compute preference scores (Qi) for all the attributes. Permissions were treated as alter-

natives (i), and applications as criteria ( j), with equal weights assigned to all applications since

they contribute equally to the decision-making process. Benign applications were considered

as benefit criteria, while malware applications were treated as cost criteria.
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After completing Steps 1- 3, we successfully computed Qi values for each permission. To

evaluate the class-distinguishing ability of these permissions, we ranked them in decreasing

order of preference scores, generating a VIKOR-ranked list of permissions.

The same steps were applied to the dynamic Training dataset for ranking system calls and to

the hybrid dataset to compute combined rankings of permissions and system calls.

6.2.3 Machine Learning and Deep Learning Classifiers

In our detection strategy, we employed a variety of algorithms from both machine learning

(ML) and deep learning (DL). The ML classifiers included, but were not limited to, Support

Vector Machine (SVM), Logistic Regression (LR), and Random Forest (RF), while the DL

methods featured architectures such as Dense Neural Network (DNN) and Multilayer Percep-

tron (MLP). This diverse set of techniques, encompassing Bagging Classifier (BC), Gaussian

Naive Bayes (NB), Decision Trees (DT), and Artificial Neural Networks (ANN) also, allowed

us to effectively analyze the datasets [135].

Detection Segment

6.2.4 Proposed Malware Detection Algorithm

This section details our detection algorithm for identifying the most effective features for

malware classification. We begin by ranking the features from the Training dataset using the

VIKOR method, which assigns preference scores based on their ability to distinguish between

malware and benign apps. Starting with the top-ranked feature, we evaluate its detection

accuracy on the Testing dataset using both ML and DL techniques. The maximum accuracy

is updated whenever a higher value is reached. In each iteration, the next highest-ranked

feature is added, and classification accuracy is re-evaluated with the expanded feature set.

This process continues until there is no further improvement in accuracy. The algorithm stops

when no new features lead to higher accuracy, outputting the highest achieved accuracy and

the set of features that contributed to it, optimizing malware detection performance.

The following section presents a discussion of the results obtained from the proposed ap-

proach.
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6.3 Results and Discussion: Hybrid Model - I

In this section, we present the experimental results from applying our proposed malware

detection model to the three dataset types: static, dynamic, and hybrid. As outlined earlier, the

VIKOR method was employed on the Training dataset to calculate the preference scores of the

features. Following this, in the Detection segment, we used several ML and DL classifiers on

the Testing dataset to evaluate performance.

6.3.1 Feature Ranking using VIKOR

In this subsection, we discuss the rankings obtained using the proposed method, VIKOR,

when applied to the three dataset categories. Tables 6.1 and 6.2 illustrate the top ranked fea-

tures and their corresponding preference scores.

Table 6.1 presents the top 10 permissions ranked using our proposed method for the static

category datasets. Notably, the permission READ PHONE STATE achieved the highest pref-

erence score of 0.5, placing it at the top of the table. Conversely, FOREGROUND SERVICE

received the lowest preference score, ranking last among all 137 permissions. Similarly, the

system call ioctl ranked highest with a score of 0.5, while sigaction obtained the lowest score

among the total of 124 system calls.

Table 6.1: Top 10 features ranked according to their preference scores using VIKOR for the
static and dynamic category datasets

Static Category Dynamic Category
Permissions Preference scores System Calls Preference scores
READ PHONE STATE 0.5 ioctl 0.5
ACCESS WIFI STATE 0.398538961 clock gettime 0.477343173
WRITE EXTERNAL STORAGE 0.364966631 mprotect 0.310328142
RECEIVE BOOT COMPLETED 0.334573413 futex 0.209853072
SEND SMS 0.326569264 mmap2 0.202570002
ACCESS NETWORK STATE 0.306479978 write 0.157811795
ACCESS COARSE LOCATION 0.291486291 getuid32 0.151138712
WAKE LOCK 0.288825758 read 0.148676708
RECEIVE SMS 0.270269661 SYS 310 0.139770505
ACCESS FINE LOCATION 0.268984488 munmap 0.121863244

Table 6.2 presents the top 30 permissions and system calls when the proposed ranking

method using VIKOR was applied to the hybrid category Training dataset. The system call

ioctl again ranks highest with a score of 0.5, while sigaction is at the bottom of the list compris-

ing 261 attributes. The rankings and the scores of the other attributes can be understood from

the table.
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Table 6.2: Top 30 features ranked according to their preference scores using VIKOR for the
hybrid category datasets

Features Preference scores Features Preference scores
ioctl 0.5 SYS 317 0.088036
clock gettime 0.476491 gettimeofday 0.086151
mprotect 0.310389 prctl 0.085812
futex 0.209874 READ PHONE STATE 0.079389
mmap2 0.20258 WRITE EXTERNAL STORAGE 0.074338
write 0.157857 ACCESS NETWORK STATE 0.069696
getuid32 0.150976 madvise 0.065325
read 0.148896 RECEIVE BOOT COMPLETED 0.064888
SYS 310 0.139958 getpid 0.06471
munmap 0.121839 ACCESS WIFI STATE 0.063018
pread 0.117367 SEND SMS 0.058569
close 0.117344 WAKE LOCK 0.056827
SYS 305 0.111424 writev 0.053507
rt sigprocmask 0.107207 GET TASKS 0.052355
fstat64 0.093932 READ SMS 0.050868

6.3.2 Detection results on the Testing Dataset

This subsection presents the detection results obtained by applying ML and DL algorithms

to the Testing datasets for the three categories considered in this study. Figure 6.1 displays the

maximum detection accuracy achieved as the number of features in each category is adjusted.

Although accuracies were recorded for the full set of features, the figure highlights the range

from five to 120 features, as further iterations did not result in significant improvements in

classification accuracy beyond this point.

75 permissions - 94.1%

50 sys calls – 92.55%

65 features – 96.55%
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Figure 6.1: Detection results obtained by applying the ML and DL classifiers to the static,
dynamic, and hybrid category datasets
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Figure 6.1 presents the detection outcomes. We first applied ML and DL classifiers to the

static Testing dataset, ranking the features using the VIKOR method. As additional features were

incorporated, detection accuracy improved. Using only the top five permissions, most classi-

fiers achieved an accuracy of 90.06%. As more permissions were added, accuracy continued to

rise, reaching a maximum of 94.1% when 75 permissions were used with the Random Forest

(RF) classifier. This marked the optimal point, with 75 out of 137 permissions (approximately

54.7%) yielding the best performance.

Next, we applied the classifiers to the dynamic Testing dataset, which contained system calls.

With just five system calls, an accuracy of 87.62% was achieved. As the number of system

calls increased, accuracy peaked at 92.55% using 50 system calls, reducing the set upto 40.3%

of the total 124 system calls.

Finally, we evaluated the hybrid dataset, combining both permissions and system calls,

ranked through the VIKOR method. Initially, the top five features produced an accuracy of

87.6%. As more features were incorporated, the highest accuracy reached 96.55% with 65

features, which constitutes approximately 24.9% of the total 261 features used in the study.

To summarize the classification results, Table 6.3 provides the detection performance of

ML and DL classifiers across the three Testing datasets. The data indicate that static analysis,

using 75 permissions, achieved a peak accuracy of 94.1%, while dynamic analysis, utilizing

50 system calls, reached a maximum accuracy of 92.55%.

Table 6.3: Compiled detection results obtained by applying the ML and DL classifiers to the
static, dynamic, and hybrid category datasets

Number of features used Detection accuracy using various machine learning
and deep learning classifiers (in %)
DT RF SVM BC NB LR MLP ANN DNN

75 permissions 93.16 94.1 93.18 93.36 72.21 90.89 93.52 90.66 90.66
50 system calls 88.36 92.55 70.94 91.38 67.53 72.63 83.8 85.82 86.95
65 permissions and system calls 93.69 96.55 70.91 95.58 67.04 77.85 90.55 81.16 82.74

These results underscore the fact that, while static and dynamic analyses each have their ad-

vantages, they are limited when employed in isolation. Static analysis may fail to capture runtime

behaviors, whereas dynamic analysis can miss essential static features. In contrast, a hybrid ap-

proach that integrates both techniques harnesses their combined strengths. The proposed model

demonstrated this by achieving a superior accuracy of 96.55% with just 65 features, highlighting

its effectiveness in precisely classifying the datasets.
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6.4 Proposed Hybrid Model - II

With our second proposed work, we aim to build a simple and robust hybrid analysis-based

Android malware detection model capable of categorizing the test applications as benign or

malware by matching them with the patterns of the training samples. Simultaneously, our goal

is to achieve this objective by utilizing only the least and the best features amongst the total lot

of the two feature types used for this study, i.e., permissions and system calls. Therefore, this

work introduces an instance-based pattern-matching classifier, PattMatch, that utilizes an Aver-

age Weighted Pattern Score (AWPS) technique in conjunction with Attribute Score-based Ranking

(ASR) to accurately predict the class labels for test samples.

The following research questions arise while considering the proposal of a hybrid detection

model centering on a novel classifier.

• RQ1 How can a classifier be constructed from the ground up to distinguish between be-

nign and malicious applications without employing traditional data mining techniques?

• RQ2 What necessitates the selection of relevant features, and why is feature reduction

more advantageous than using all features as inputs simultaneously?

• RQ3 How can feature ranking be utilized to eliminate irrelevant features, and what meth-

ods can be employed to rank them?

Our motivation is in the pursuit of tackling the limitations of both static and dynamic analysis

by developing an Android malware classifier, PattMatch. Additionally, an Attribute Score-based

Ranking (ASR) [172] algorithm has been presented to choose relevant features. This method

calculates the attribute rank by considering the number of unique values in the set of train-

ing samples. The classification accuracy, or detection accuracy, is measured by comparing

the predicted class labels generated by the classifier with the original class labels of the test

samples in the end. By evaluating the degree of correspondence between these original and

predicted labels, we can determine how accurately the model has performed in classifying the

test samples. The major advantage of the proposed classifier is its simple working and ability

to overcome most shortcomings of the existing classifiers. For instance, neural networks and

AdaBoost are known to be prone to overfitting [173], the splitting process in the Decision trees

may lead to loss of information [174], and the performance of algorithms like Naive Bayes,

Linear regression, and Support Vector Machines is affected by the number of training samples,
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output variables or the missing values [175]. These limitations make the combinations of AWPS

and ASR the most appropriate choice for our study. This method is straightforward and doesn’t

require the use of any fancy data mining technique; nonetheless, it yields superior classifica-

tion accuracy compared to other conventional classifiers such as the most commonly used ML

and DL algorithms. Moreover, our experiments demonstrate that the proposed instance-based

pattern-matching classifier outperforms other similar works on Android malware detection,

which we evaluate against the same dataset of normal and malicious apps.

Figure 6.2 provides a concise and comprehensive overview of our proposed hybrid Android

malware detection model revolving around our instance-based pattern-matching classifier. In

the first step, we gather a vast dataset of the static permissions and the dynamic system calls

for our study. In the next step, we divide the dataset into two parts namely, Training and Test-

ing dataset. Both datasets are fed into our proposed classifier, PattMatch, which operates in

two stages: the Classification stage and the Feature Selection stage. In the Classification stage,

the classifier combines Average Weighted Pattern Score (AWPS) and Attribute Score-based Ranking

(ASR) techniques to generate initial classification results and observe the detection accuracy.

Following this, the process moves to the Feature Selection stage, where ASR ranking is utilized

to iteratively select and retain only the most relevant features from both datasets. The reduced

datasets, now with fewer features, are then reprocessed through the Classification stage to eval-

uate any improvements in classification accuracy. This iterative process of alternating between

the Classification and Feature Selection stages continues until the optimal classification accuracy

is achieved.

The subsequent subsections provide a comprehensive analysis of all the steps mentioned

above.

6.4.1 Dataset Accumulation

To begin our research, we required a comprehensive hybrid dataset that included both static

and dynamic features, meticulously organized for optimal use. For this purpose, we utilized the

same publicly available Kronodroid [170] dataset utilized for the first proposed model AndroV-

Rank. As discussed in Subsection 6.2.1, the Kronodroid dataset was extensive, encompassing

numerous static permissions and dynamically extracted system calls. The permissions dataset

was already in binary form, where a value of one indicated that the application requested cer-

tain permission, and zero denoted its absence. The system call dataset, on the other hand,
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Figure 6.2: PattMatch System Design

was initially constructed with zeros representing the absence of a system call and non-zero

values indicating the frequency of requests made by the application. To maintain a consis-

tent approach for both permissions and system calls, we converted the system call dataset

into binary form as well. This conversion ensured a uniform data structure, facilitating more

straightforward analysis and comparison between the two types of data. The dataset consists

of 78,137 rows representing applications, with 41,382 classified as malware and 36,755 as

benign. From the total dataset, we selected 20,000 applications (10,000 benign and 10,000

malware) to serve as the Testing dataset. The remaining 58,137 applications were designated

as the Training dataset. After some initial preprocessing, we identified 137 distinct permissions

and 124 unique system calls, retained as columns in the dataset.

In order to carry out a comprehensive comparison between the three analysis techniques, we

further processed the dataset to create three distinct categories for both the Testing and Training

datasets, namely static, dynamic, and hybrid. The static category includes datasets comprised

solely of 137 permissions, the dynamic category includes datasets comprised solely of 124

system calls, and the hybrid category includes datasets that combine both permissions and

system calls, summing up to a total of 261 features.
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Permissions provide a high-level overview, while system calls offer granular details. This

multi-faceted approach helps in building more robust and precise detection systems by cross-

validating suspicious behaviors from different perspectives. Permissions can be analyzed be-

fore an app is installed, providing an opportunity to flag potentially malicious apps early based

on their permission requests. System calls, on the other hand, allow real-time monitoring of

app behavior, enabling the detection of malware activities as they happen. This combination

allows for both proactive and reactive malware detection. These benefits make permissions

and system calls a perfect choice for our hybrid detection model.

6.4.2 Methodology

This section presents a detailed discussion of the Pattmatch classifier introduced in our study

along with its working in Algorithm 4, which answers research question one, i.e., how to construct

a classifier from scratch capable of distinguishing between benign and malicious applications

without employing traditional data mining techniques.

The proposed classifier operates in two stages. In the Classification stage, we initially use the

complete feature set and employ a method called Average Weighted Pattern Score (AWPS) com-

bined with Attribute Score-based Ranking (ASR) [172] to generate match scores. These scores are

then used to predict the category label of the test samples as either benign or malware. Given

that the Kronodroid dataset used in our study is already labeled, we compare the predicted

labels with the original ones to count the number of correct predictions. The classification

accuracy at this stage is calculated as the ratio of correct predictions to the total number of test

samples, multiplied by 100. To enhance the classification accuracy and reduce the number of

false predictions, we proceed to the Feature Selection stage of the proposed classifier, which

involves feature selection based on the rankings provided by the ASR method. In this stage, we

reduce the number of features in both the Testing and Training datasets by omitting the lower-

ranked irrelevant features of the ASR list. Next, we will discuss in detail the working of the

methods used in the two stages.

Classification Stage

The proposed PattMatch classifier employs an Average Weighted Pattern Scoring (AWPS) mecha-

nism in combination with Attribute Score-based Ranking (ASR). This method improves upon the

PMC algorithm proposed by Sreeja and Sankar [176] by including weights and rank weights



164

Algorithm 4 Hybrid Detection Model
Input: Training set D, unlabeled test sample xtest from Testing dataset
Output: Predicted class labels, Classification accuracy

Classification Stage
1: m← number of attributes
2: n← number of instances
3: k← number of distinct classes
4: Let C= {C1,C2, . . . ,Ck} be the set of all distinct classes.
5: Score(D)← Dataset’s overall score
6: Ascore← Attribute score
7: w

(
a j
)
← Attribute weights

8: Gc← The set of training samples belonging to class C j
9: na′ (xic) for each xic ∈Gc← Attribute match count.
10: ĉtest← Predicted class label for xtest.
11: Score(D)=Avg(∑k

i=1 ppi
i )

12: for i = 1 to n in D do
13: pi=

Number of instances belonging to Ci
Total number of instances in D

14: end for
15: for j = 1 to m in D do
16: for i = 1 to n in D do
17: Ascore = Score(D)−Avg(∑n

j=1 pn j ×Score(G j))
// Sort the attribute scores and rank the attributes

18: end for
19: end for
20: for j = 1 to n do

21: w
(
a j
)
=

(n−r(a j)+1)
∑

n
i=1(n−r(ai)+1) // Assigning weights to attributes

22: end for
23: for j = 1 to m do
24: for i = 1 to n do
25: if a j ∈ xtest = a j ∈ xD then
26: s(a j)← 1
27: else
28: s(a j)← 0
29: end if
30: end for
31: na′ (m)← na′ (m)+ s(a j) // Matching patterns to calculate match count
32: end for
33: ik ∈Gc iff n

′
a(k) = maximum and ik ∈C j

34: for each selected instance in the group do
35: for j = 1 to n do
36: PS(xi)=∑

n
i=1 S(ai)×w(ai)

37: end for
38: end for
39: xtest ∈C j iff PS(xc) = max(PS(xc))
40: Predict the class labels for all instances in the Testing dataset and calculate classification accuracy

Feature Selection Stage
1: Initialize n = initial number of features
2: while n > 0 do
3: n← n− x
4: Remove x lower-ranked features from Training and Testing datasets
5: Execute Classification Stage with reduced features
6: Record accuracy for current n
7: end while
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for attributes. Let’s consider a training dataset, denoted as D consisting of n attributes labeled

as a1,a2,a3, . . . ,an and m instances labeled as i1, i2, i3, . . . , im, it is represented in the matrix form

shown in (6.4.1).

In
st

an
ce

s

Attributes

a1 a2 · · · an

i1 X11 X12 · · · X1n

i2 X21 X22 · · · X2n
...

...
... . . . ...

im Xm1 Xm2 · · · Xmn

(6.4.1)

The values xm1,xm2, . . . ,xmn in the given matrix represent the attributes of the mth instance,

where n is the number of attributes. Each instance is assigned to a certain class Ck, where k

ranges from 1 to p.

Prior to categorization, the importance of each attribute is established as a pre-processing

step. Attributes are prioritized based on their significance using the ASR method. In order to

do so, firstly the database’s overall score is determined by the count of unique classes, which

is calculated according to equation (6.4.2).

Score(D) = Avg

(
k

∑
i=1

ppi
i

)
(6.4.2)

where pi is the probability that an arbitrary instance in D that belongs to class Ck [172]. The

formula to calculate pi is shown in (6.4.3).

pi =
Number of instances belonging to Ci

Total number of instances in D
(6.4.3)

In order to determine the attribute score for each attribute, when there are a total of n dis-

tinct values, the tuples with n distinct values
{

n1,n2,n3, . . . ,nj
}

are grouped together as {G1 ,

G2, . . . ,Gj
}

[172]. The formula for calculating the attribute score, denoted as Ascore is given in

(6.4.4).

AScore = Score(D)−Avg

(
n

∑
j=1

p(n j)∗Score(G j)

)
(6.4.4)

where the variable p(n j) represents the probability of an arbitrary instance in Gj belonging
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to class Ci. The score for each attribute is computed and the ranking is determined for all

attributes using the ASR method, sorting them in order of relevance such that the attribute

having the highest relevance is given rank 1.

Within the initial stage, the complete feature set a1,a2,a3, . . . ,an, without performing any

feature selection, is given rankings ranging from 1 to n. Then, each attribute is assigned a

weight using the rank sum weight method [172]. This approach computes and standardizes

the weights so that the total weight of all the ranked features combined is equal to 1, as depicted

in the formula in equation (6.4.5).

w(a j) =
(n− r (a j)+1)

∑
n
i=1 (n− r (ai)+1)

(6.4.5)

The main objective of the proposed classifier is to ascertain the class label for test instances

that do not have a label. The approach uses the PMC algorithm [176] to detect the instances

with the greatest count of matching attributes. This is done by comparing the attribute values

of the training instances and test instances, as shown in equations (6.4.6) and (6.4.7). The

number of matches for the mth instance is represented as na′(m), and its computation is given

in (6.4.6)

na′(m) =
n

∑
i=1

s(ai) (6.4.6)

In this context, s(ai) denotes the attribute match score, which has a binary value of either 0 or

1. The score is 1 if the value of attribute ai in the test sample is identical to the corresponding

attribute value in the training sample; otherwise, the score is 0 [172]. This is stated in equation

(6.4.7).

s(ai) =


1, if the value of ai matches

with the training sample aim

0, Otherwise

(6.4.7)

The approach subsequently selects the training samples that exhibit the highest number of

attribute matches with the provided test sample [176]. The chosen training samples are further

categorized according on their class labels, as depicted in (6.4.8).

ik ∈Gc iff na′(k) = maximum and ik ∈C j (6.4.8)
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In Gc, c denotes the number of classes in the chosen training set samples. All instances with

the maximum na′ and belonging to class Cj are grouped together. The rank weights of the

selected attributes are then applied to these chosen training instances to determine the pattern

score of the test sample t concerning the training samples xi, denoted as PS (xi) [172], with the

formula shown as:

PS (xi) =
n

∑
i=1

s(ai)∗w(ai) (6.4.9)

The average pattern score PS (xic) for class c is computed by finding the mean score within

each group of the chosen training set samples. The pattern score of the test sample, denoted

as PStest, is the highest score obtained by averaging the pattern scores of groups Gc. In the

end, the predicted class label for the test sample is determined by the class group that has the

greatest average pattern score [172], as described in equations (6.4.10) and (6.4.11).

PStest = max(PS (xc)) (6.4.10)

itest ∈C j iff PS (xc) = PStest (6.4.11)

In case multiple groups attain the maximum average pattern score, the class label is predicted

based on the number of training instances with the highest attribute match count. Specifically,

the class label for the test sample is determined by the class with the greatest number of training

instances exhibiting the highest attribute match count and the expression is shown in (6.4.12).

ĉtest = argmax
c

{
∑

xic∈Gc

na′(xic)

}
(6.4.12)

where ĉtest represents the predicted class label for the test sample, and Gc denotes the set of

training samples belonging to class c.

In our case, the features, be it the set of permissions, system calls, or permissions-system

calls combined, form the attributes in columns whereas the application samples are the in-

stances in rows. In the first iteration, AWPS combined with ASR is applied to the complete set

of n features, and classification accuracy is noted down.
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Feature Selection stage

Attribute selection is a crucial stage that enhances the accuracy of classification. With the

belief that feature selection reduces the total number of false predictions, instead of using n

features, we reduce the feature set to a lower value of n by omitting the lower-ranked features

of the ASR list from both the Testing and Training datasets. Consequently, the lower-ranked

feature columns are eliminated from both the Training and Testing datasets before feeding them

into the classifier for pattern matching. After this, the complete Classification Stage was again

executed using the reduced value of n, and classification accuracy was observed. We denote

this as the second iteration. Feature selection is an additional step designed to rectify falsely

predicted test samples. Hence, only the test samples whose class labels have not yet been

correctly predicted are subjected to the Classification stage in subsequent iterations.

In our research, the feature selection process was conducted by eliminating 20 features at

a time after rounding off the total number of features to a convenient starting point. For

instance, with an initial total of 137 permissions we execute the Classification stage and mark

it as the first iteration. Then we rounded it down to 130 by removing seven features, giving

us the new reduced value of n to be 130. This was followed by executing the Classification

Stage and classification accuracy was observed. This constituted the second iteration. In the

third iteration, we eliminate 20 features at a time, reducing the total lot to 110 permissions.

Classification accuracy is duly noted for the reduced feature set. In subsequent iterations the

value of n is reduced by intervals of 20, reducing the total to 90 for the fourth iteration and to

70 for the fifth iteration, and so on, till the value of n becomes 10. This process continued until

the total number of features in both the Training and Testing datasets reached 10. At this point,

the interval was adjusted to one, and one feature was eliminated at a time in each iteration.

This iterative process continued until no features remained in either dataset. The classification

accuracy, calculated at each iteration, was analyzed at the end of the process.

Using the ASR-based feature selection algorithm as mentioned above, we answer research ques-

tion three, i.e., how to rank the features to eliminate the irrelevant ones.
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6.5 Results and Discussions: Hybrid Model - II

In this section, we present and discuss the experimental results obtained using the proposed

PattMatch classifier. As discussed in subsection 6.4.2, the proposed classifier employs a method

called Average Weighted Pattern Score (AWPS) combined with Attribute Score-based Ranking (ASR)

[172]. If the following subsections, we first discuss the rankings derived from the ASR method.

We then describe the classification results on the Testing dataset when the proposed classifier

is executed for each of the three categories, namely static, dynamic, and hybrid. Finally, we

compare our proposed model with similar models for Android malware detection.

6.5.1 Attribute Score-based Ranking (ASR) results

The dataset’s overall score is calculated in each case using the formula given in equation

(6.4.2). The attribute score for each feature is calculated using equation (6.4.4). After sorting

the features based on these scores, the rank weights are determined according to their ranks

using the formula provided in equation (6.4.5).

Tables 6.4 and 6.5 provide a comprehensive summary of the top 10 permissions and system

calls ranked using ASR for static and dynamic categories respectively, including their corre-

sponding attribute scores, attribute ranks, and rank weights. In a similar manner, Table 6.6

showcases the top 10 ranked features when ASR is applied to the hybrid dataset of permissions

and system calls, along with their attribute scores, attribute ranks, and rank weights. As shown

in Table 6.4, the permission SET PREFERRED APPLICATIONS holds the top position with the

highest attribute score, a rank of one, and a rank weight of 0.014492754. The scores and

weights of the subsequent ranked permissions are detailed in the table. Conversely, the per-

mission READ PHONE STATE is identified as the least relevant, with the lowest attribute score

of 0.30804777, a rank of 137, and a rank weight of 0.000105787. Similarly, Table 6.5 shows

that the system call named pipe achieves the highest attribute score using the ASR method, earn-

ing it the top rank and a rank weight of 0.016. The details for other system calls are provided

in the table. The system call SYS 333 has the lowest attribute score of 0.327097242134042, a

rank of 137, and a rank weight of 0.000129032258064516.

The total number of permissions considered for our study is 137 whereas the total num-

ber of system calls is 124. When combining permissions and system calls as a part of the

hybrid model, the total number of features becomes 261. As shown in Table 6.6, the per-
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Table 6.4: Top 10 permissions ranked with ASR along with their corresponding attribute scores
and rank weights

Permissions Attribute Score Rank Weight
SET PREFERRED APPLICATIONS 0.354140277 0.014492754
READ SYNC STATS 0.354140266 0.014386967
SET PROCESS LIMIT 0.354140239 0.014281181
CONTROL LOCATION UPDATES 0.354140047 0.014175394
REBOOT 0.354139987 0.014069608
SET TIME 0.354139609 0.013963821
ACCESS CHECKIN PROPERTIES 0.354139253 0.013858034
SET ALARM 0.354139215 0.013752248
WRITE CALENDAR 0.354139086 0.013646461
READ INPUT STATE 0.354139032 0.013540675

Table 6.5: Top 10 system calls ranked with ASR along with their corresponding attribute scores
and rank weights

System calls Attribute Score Rank Weight
pipe 0.35414 0.016
SYS 341 0.35414 0.015871
shutdown 0.35414 0.015742
listen 0.35414 0.015613
getgid32 0.354139 0.015484
nanosleep 0.354139 0.015355
getegid32 0.354139 0.015226
ptrace 0.354139 0.015097
SYS 318 0.354138 0.014968
sendfile64 0.354138 0.014839

mission SET PREFERRED APPLICATIONS is identified as the most relevant feature among all

permissions and system calls according to the ASR method, placing it at the top of the ta-

ble. This top rank corresponds to a rank weight of 0.007633588. Conversely, the feature

READ PHONE STATE is ranked last, at position 261, with an attribute score of 0.308047769601107

and a rank weight of 0.0000292474627826036.

Table 6.6: Top 10 permissions and system calls ranked with ASR along with their correspond-
ing attribute scores and rank weights

Features Attribute Score Rank Weight
SET PREFERRED APPLICATIONS 0.354140277 0.007633588
READ SYNC STATS 0.354140266 0.00760434
pipe 0.354140264 0.007575093
SYS 341 0.354140263 0.007545845
SET PROCESS LIMIT 0.354140239 0.007516598
shutdown 0.354140217 0.00748735
CONTROL LOCATION UPDATES 0.354140047 0.007458103
REBOOT 0.354139987 0.007428856
listen 0.35413972 0.007399608
SET TIME 0.354139609 0.007370361

In the following subsection, we present the classification results obtained using the proposed

classifier.
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6.5.2 Classification results on Testing dataset

This section focuses on presenting the classification results achieved by our proposed clas-

sifier when applied to the three dataset categories: static, dynamic, and hybrid. Tables 6.7,

6.8, and 6.9 summarize the number of features used, the number of correct predictions, and

the classification accuracy whereas the Figures 6.3, 6.4, and 6.5 illustrate the decrease in the

number of false predictions as irrelevant features were omitted and only relevant features were

utilized for each category.

Classification results for static category

We applied the proposed PattMatch classifier to the static category Training and Testing datasets

first, each containing 137 permissions. Table 6.7 displays the total number of correct predic-

tions made by our classifier out of the 20,000 testing samples, alongside the classification

accuracy results for each iteration.

In the initial iteration, where the complete set of permissions was utilized, the proposed clas-

sifier correctly predicted the class labels for 18,769 test samples, resulting in a classification

accuracy of 93.84%. In the second iteration, with the number of features reduced to 130, there

was an increase in correct predictions, raising the classification accuracy to 95.53%. Details of

subsequent iterations are provided in the table. Notably, the highest number of correct predic-

tions was observed when the static feature set was reduced to only 10 permissions, achieving

an accuracy of 99.57% with 19,915 correct predictions out of 20,000 test samples.

Table 6.7: Classification results obtained by applying the proposed classifier to the static cate-
gory dataset

Number of permissions
used

Number of correct predictions
(out of 20,000)

Classification ac-
curacy (in %)

137 (All permissions) 18769 93.84
130 19107 95.53
110 19377 96.88
90 19889 99.44
70 19893 99.46
50 19908 99.54
30 19913 99.56
10 19915 99.57

Classification results for dynamic category

Moving on with our research plan, we then applied the proposed classifier to the dynamic

category Training and Testing datasets, each containing 124 system calls. Table 6.8 displays the
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total number of correct predictions made by our classifier out of the 20,000 testing samples,

alongside the classification accuracy results for each iteration.

In the initial iteration, where the complete set of system calls was utilized, the proposed

classifier correctly predicted the class labels for 16,906 test samples, resulting in a classifica-

tion accuracy of 84.53%. In the second iteration, with the number of features reduced to 110,

there was an increase in correct predictions, raising the classification accuracy to 88.22%. De-

tails of subsequent iterations are provided in the table. Notably, the highest number of correct

predictions was observed when the dynmaic feature set was reduced to only 10 system calls,

achieving an accuracy of 98.90% with 19,781 correct predictions out of 20,000 test samples.

Table 6.8: Classification results obtained by applying the proposed classifier to the dynamic
category dataset

Number of system calls used Number of correct predictions
(out of 20,000)

Classification ac-
curacy (in %)

124 (All system calls) 16906 84.53
110 17644 88.22
90 18704 93.52
70 19092 95.46
50 19689 98.44
30 19780 98.9
10 19781 98.90

Classification results for hybrid category

Lastly, with an aim to further elevate the detection accuracy by combining the static and

dynamic features, we applied the proposed classifier to the hybrid category Training and Test-

ing datasets, each containing a total of 261 features. Table 6.9 displays the total number of

correct predictions made by our classifier out of the 20,000 testing samples, alongside the

classification accuracy results for each iteration.

In the initial iteration, where the complete set of features was utilized, the proposed clas-

sifier correctly predicted the class labels for 19,185 test samples, resulting in a classification

accuracy of 95.92%. In the second iteration, with the number of features reduced to 250, there

was an increase in correct predictions, raising the classification accuracy to 96.97%. Details

of subsequent iterations are provided in the table. Notably, the highest number of correct pre-

dictions was observed when the hybrid feature set was reduced to only 10 features, achieving

a remarkable accuracy of 99.93% with 19,987 correct predictions out of 20,000 test samples.

Furthermore, the significance of feature selection is demonstrated in Figures 6.3, 6.4, and

6.5, where a gradual decrease in the frequency of false predictions is observed in all three
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Table 6.9: Classification results obtained by applying the proposed classifier to the hybrid
category dataset

Number of features used Number of correct predictions
(out of 20,000)

Classification ac-
curacy (in %)

261 (All permissions and sys-
tem calls)

19185 95.92

250 19394 96.97
230 19582 97.91
210 19708 98.54
190 19790 98.95
170 19822 99.11
150 19861 99.30
130 19966 99.83
110 19975 99.87
90 19977 99.88
70 19983 99.91
50 19983 99.91
30 19984 99.92
10 19987 99.93

categories as irrelevant features were iteratively omitted. Figure 6.3 illustrates that utilizing

the entire set of 137 permissions leads to 1231 false predictions. By excluding the seven least

important permissions, the value of n decreases to 130, resulting in a significant reduction in

the number of false predictions to 893. The figure clearly illustrates a substantial decrease.

As we decrease the value of n and provide fewer permissions to the classifier, the number of

false predictions continues to decrease. The frequency of false predictions is minimized when

only 10 permissions are utilized for detection. According to the classification method, we now

decrease the value of n by one instead of 20. However, no subsequent alteration in the number

of false predictions was noted. Therefore, the optimal classification accuracy with minimal

false predictions is attained by utilizing 10 permissions.

1231

893

623

111 107 92 87 85

0

200

400

600

800

1000

1200

1400

137 130 110 90 70 50 30 10

N
u

m
b

e
r 

o
f 

fa
ls

e
 p

re
d

ic
ti

o
n

s 

Number of permissions used

Figure 6.3: Classification results obtained by applying the proposed classifier to the static
category dataset
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A similar trend can be observed for the cases of dynamic and hybrid categories. For in-

stance, it can be seen in Figure 6.4, when all system calls were used, the number of false

predictions was 3,094. By iteratively omitting the least relevant system calls, the number of

false predictions was reduced to a minimum of 219.
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Figure 6.4: Classification results obtained by applying the proposed classifier to the dynamic
category dataset

Similarly, in the hybrid category, as shown in Figure 6.5, using all 261 features resulted in

815 false predictions. However, when only the top 10 permissions and system calls were used,

the number of false predictions decreased significantly to just 13.
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Figure 6.5: Classification results obtained by applying the proposed classifier to the hybrid
category dataset

Discussion - We would like to emphasize that the classification accuracy was notably low
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when no feature ranking or selection was applied, and all features were simultaneously fed

into the classifier. As evidenced in Tables 6.7 and 6.8, utilizing all 137 permissions or 124

system calls resulted in significantly reduced classification accuracies such as 93.84% and

84.53% respectively. Based on the results and the low detection accuracy depicted by Tables 6.7

and 6.8, we answer our research question two that feature selection helps us eliminate irrelevant

features that can hamper detection accuracy.

The motivation behind the proposed research was to address the limitations inherent in both

static analysis and dynamic analysis by combining them into a hybrid detection model, aiming

for a more robust approach to detection. It was hypothesized that some test samples might not

be accurately classified based solely on permissions but could be correctly predicted using only

system calls, and vice versa. This hypothesis was confirmed when preliminary results showed

that even with the most relevant 10 permissions, there were 85 incorrect predictions. However,

when these test samples were put through our proposed classifier as a part of dynamic category

datasets, a majority of these misclassifications were corrected in the second iteration of using

system calls.

These findings underscored that static analysis alone lacks certain insights that dynamic

analysis can provide, and vice versa. By combining these approaches, a more effective and

efficient detection model can be developed. Experimental results demonstrated that the hybrid

approach significantly outperformed using static or dynamic analysis alone. Specifically, the

hybrid model led to only 13 false predictions, compared to 85 and 219 when using static

analysis or dynamic analysis alone, respectively. This highlights the capability of the hybrid

detection model to accurately classify benign and malicious software more reliably.

6.5.3 Comparison with other classifiers

In this subsection, we compare the performance of our proposed classifier with some widely

used classification algorithms used in the literature. In particular, we computed the detection

accuracy using ML classifiers [135] such as Decision Tree (DT), Random Forest (RF), Sup-

port Vector Machines (SVM), Bagging (BC), Naive Bayes (NB), Logistic Regression (LR)

and simultaneously using some DL classifiers namely, Multilayer Perceptron (MLP), Convo-

lutional Neural Network (CNN), Artificial Neural Network (ANN), and fully connected Deep

Neural Network (DNN) were evaluated against the same dataset of normal and malicious apps

as ours. We would like to highlight that we did not utilize any feature ranking or selection
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techniques before applying the ML and DL classifiers, i.e., the complete testing dataset was

fed to the classification algorithms for detection for each category. Figures 6.6 summarize the

comparison results when we apply the ML and DL algorithms for the classification of mal-

ware along with our proposed classifier in case of static, dynamic, and hybrid category Testing

datasets respectively. When applying ML and DL classifiers, we observed that the Random

Forest (RF) classifier achieved the highest detection accuracy of 94.18% while using permis-

sions. In contrast, our proposed classifier significantly outperformed these methods, achieving

the highest classification accuracy of 99.57% with only 10 permissions.
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Figure 6.6: Comparison of our proposed classifier with other ML and DL algorithms when
applied to the static, dynamic, and hybrid category datasets

Among the ML and DL classifiers, the highest accuracy is again achieved by the Random

Forest (RF) classifier for the case of dynamic category datasets. However, our proposed clas-

sifier attains a maximum accuracy of 98.9% using 10 system calls, demonstrating superior

performance.

In a similar manner, the CNN classifier achieves the highest accuracy among the conven-

tional classifiers with 96.95% when applied to the hybrid category datasets, whereas our pro-

posed classifier achieves an impressive accuracy of 99.93%, easily surpassing the other meth-

ods. This indicates that our proposed classifier PattMatch consistently outperforms the other

conventional classification algorithms across all three categories in terms of detection accu-

racy.
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6.5.4 Comparison with other related works

In this section, we compare the performance of our proposed classifier with other methodolo-

gies that incorporate permissions or system calls for Android malware detection. Specifically,

we implement the approaches adapted in studies [120], [177] and [178]

Anupama et al. [120] proposed a hybrid methodology that combined permissions and sys-

tem calls to create a detection model utilizing a range of machine learning and deep learn-

ing classifiers. Feature reduction was carried out using a customized Fisher score algorithm.

The selected features were then used to train various machine learning classifiers, including

Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), and Logistic Re-

gression (LR). We applied their proposed approach to all three category datasets used in our

study.

Another study that we implemented was centered on a dynamic analysis detection model

utilizing system calls presented by Bhat et al. [177]. This study employed enhanced classi-

fication algorithm techniques such as Bagging (BC), AdaBoost (AdaB), and Stacking, along

with individual classifiers like Decision Tree (DT), Support Vector Machines (SVM), Logistic

Regression (LR), and Naive Bayes (NB). As a preprocessing step to reduce feature set di-

mensionality, they omitted features with low chi-square scores, deeming them irrelevant. In a

similar manner to the previous study, we meticulously adhered to their methodology, utilizing

the same classifiers across all three categories of our datasets. Consequently, we ranked the

features based on their chi-square scores. The authors specifically selected the top 30 fea-

tures from these rankings for their classifiers, discarding the rest, and we adopted the same

approach.

Lastly, we implemented the approach described in [178]. The authors presented an Android

malware detection system that utilized only the relevant permissions, reduced using a tech-

nique called Principal Component Analysis (PCA). The number of components to be selected

is determined by the total variance value to be preserved which was set at 80-90%. Following

these steps, they obtained a reduced feature vector which was then used as input for seven ma-

chine learning algorithms such as K-Nearest Neighbors (KNN), Naive Bayes (NB), Sequential

Minimal Optimization (SMO), Multi-Layer Perceptron (MLP), Random Forest (RF), Decision

Tree (DT), and Logistic Regression (LR). Following their approach step by step, in the first

step, we ranked the three category datasets using PCA. After that, we set the threshold between

the range of 80-90% and fed the transformed feature set to the above-mentioned classifiers.
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Table 6.10: Compiled detection results to compare the performance of the proposed classifier
with other related works across the three dataset categories

Dataset cat-
egory

Approach used Number of features
used

Detection accuracy
(in %)

Static
Anupama et al. [120] 50 permissions 93.93
Bhat et al. [177] 30 permissions 94.44
Şahin et al. [178] 68 permissions 95.52
Our proposed classifier 10 permissions 99.57

Dynamic
Anupama et al. [120] 68 system calls 86.3
Bhat et al. [177] 30 system calls 88.78
Şahin et al. [178] 39 system calls 87.04
Our proposed classifier 10 system calls 98.9

Hybrid
Anupama et al. [120] 128 permissions and

system calls
96.67

Bhat et al. [177] 30 permissions and
system calls

94.19

Şahin et al. [178] 100 permissions and
system calls

97.15

Our proposed classifier 10 permissions and
system calls

99.93

Table 6.10 presents the comparative results of our proposed classifier against related works

across the three dataset categories. As can be seen from the table, for the static category, when

we followed the approach in [120], we managed to achieve a detection accuracy of 93.93%

using 50 permissions, following [177], we reported 94.44% with 30 permissions and follow-

ing [178], we observed the maximum accuracy of 95.52 using 68 permissions. Whereas, our

proposed method significantly outperforms these, achieving 99.57% with just 10 permissions.

In the dynamic category, applying [120] we attained 86.3% accuracy with 68 system calls,

with [177], we achieved 88.78% using 30 system calls, and with [178], we observed the high-

est detection accuracy of 87.04% considering 39 system calls. Our method surpasses these

results with a detection accuracy of 98.9% using only 10 system calls. Similarly, for the hy-

brid category, while using the methodology in [120], we reported 96.67% accuracy using 128

permissions and system calls, with that of [177] we achieved 94.19% using 30 permissions

and system calls and while following [178], we observed the highest detection accuracy of

97.15% considering 100 permissions and system calls. Simultaneously, our classifier demon-

strates superior performance, achieving 99.93% accuracy with only 10 permissions and system

calls, underscoring its efficiency and effectiveness. Hence, we can conclude that our proposed

approach outperforms the similar work of Android malware detection performing feature se-

lection on permissions or system calls.

Furthermore, we compare some other similar works of Android malware detection utilizing

hybrid analysis in terms of detection accuracy. Table 6.11 summarizes this comparison. Most

studies have attempted to detect malware using conventional ML or DL classifiers, whereas

some have ranked the features using tests such as chi-square or information gain. As shown in
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the table, our model outperforms all these studies in terms of detection accuracy. Hence, we

can conclude that our proposed model is better than many state-of-the-art techniques presented

in the literature for Android malware detection.

Table 6.11: Comparison of proposed work with the existing literature based on hybrid malware
detection models

Related Work Methodology Detection accu-
racy (in %)

Surendran et al. [121] TAN (Tree Augmented naive Bayes) based malware detection
model by employing the conditional dependencies features

97

Lu et al. [122] Hybrid detection model employing Deep belief Network
(DBN) and Gated Recurrent Unit (GRU) algorithms

96.82

Zhang et al. [179] Utilized subgraph isomorphism matching for malware detec-
tion using hybrid features

95

Taher et al. [180] Feature reduction using fuzzy and meta-heuristic optimiza-
tion techniques followed by using the Harris Hawks Opti-
mization (HHO) algorithm

98.1

Sharma and Agrawal
[181]

Adapted a meta-heuristic swarm-based algorithm to reduce
the feature set, followed by using Intelligent Water Drop Al-
gorithm (IWD) for detection

99.12

Mahdavifar et al.
[182]

Utilized Pseudo-Label Stacked Auto-Encoder (PLSAE) for
detection

97.7

Ficco [183] Ensemble approach combing multiple algorithms and fea-
tures

93.28

PattMatch classifier
(our proposed ap-
proach)

Classifier employing the combination of an Average
Weighted Pattern Score (AWPS) technique with Attribute
Score-based Ranking (ASR) for feature selection

99.93

6.6 Conclusion and Future Work

In conclusion, this chapter discussed two hybrid detection models leveraging the merits of

both static and dynamic features. First, we introduced AndroV-Rank, a robust framework for

Android malware detection that integrates permissions and system calls to extract a refined set

of class-distinguishing features. By employing the VIKOR method for feature ranking, our ap-

proach not only enhances detection accuracy but also streamlines the feature set to a mere 65

attributes, resulting in a remarkable accuracy of 96.55%. Additionally, we proposed another

novel hybrid detection model for Android malware that even bypasses the use of conven-

tional data mining algorithms. Our approach centered on PattMatch, an instance-based pattern-

matching classifier that combines Average Weighted Pattern Scoring (AWPS) with Attribute Score-

based Ranking (ARS). This model effectively identifies the class labels of unlabeled test samples

by focusing on a reduced feature set, achieving optimal classification accuracy. Experimental

results have demonstrated the superiority of our hybrid detection model. The hybrid model,

which integrates both static and dynamic features, achieved an impressive accuracy of 99.93%

using just 10 attributes. Unlike traditional data mining, machine learning, and deep learning

algorithms, our classifier demonstrated superior detection accuracy on the same dataset, high-
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lighting the robustness and efficiency of the proposed hybrid detection model. Additionally,

our model surpasses various state-of-the-art Android malware detection techniques in terms of

detection accuracy. The performance of both models significantly exceed traditional static and

dynamic analysis methods in terms of detection accuracy, underscoring the limitations of these

standalone techniques. In our future work, we aim to enhance the capabilities of our model

by including malware category and family classification along with the binary classification

performed in this study.



Chapter 7

Android Malware Multi-Category

Classification via Highly Discriminative

Feature Ranking

In this chapter, we discuss two models for Android malware multi-category classification

into the four categories: Adware, Fraudware Trojans, Ransomware, and Spyware, by using the least

number of features while simultaneously ensuring higher classification accuracy. In Section

7.1, we explain the motivation behind proposing a Android malware multi-category classifi-

cation model and a brief overview of the two models proposed. In Section 7.2, we explain

in detail the methodology behind our first model. Section 7.3 explains the results obtained

from the proposed model - I. In Section 7.4, we explain the methodology behind our second

proposed multi-category classification model named AndroMultiCat. Section 7.5 discusses the

results obtained from the second model and finally, we conclude the chapter in Section 7.6.

7.1 Introduction

Android malware has emerged as a significant threat, compromising user privacy, device

functionality, and overall security. The pervasive adoption of Android devices, coupled with

their open architecture, makes them particularly susceptible to malicious software. These

181
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threats, collectively referred to as Android malware, not only disrupt device operations but

also endanger sensitive user data.

Android malware is broadly classified into categories such as Adware, Fraudware, Ransomware,

and Spyware. Each type poses distinct risks, ranging from financial exploitation to data breaches.

Among these, malware that exploits root privileges is of particular concern. Such variants fa-

cilitate extortion, as seen in ransomware attacks, or enable persistent access and data theft,

exemplified by spyware.

1. Adware: This category displays intrusive advertisements on user devices, often without

consent. Adware generates revenue for developers by coercing users to view or interact

with unwanted ads, thereby degrading the user experience.

2. Fraudware Trojans: Fraudware, or Trojans, masquerades as legitimate applications to de-

ceive users into installation. Once active, these programs steal sensitive information,

send premium SMS messages, or download additional malicious software, causing fur-

ther harm.

3. Ransomware: Ransomware encrypts data or locks devices, demanding payment to restore

access. These attacks cause significant distress and financial loss for affected users,

making ransomware a particularly insidious threat.

4. Spyware: Operating covertly, Spyware captures sensitive user data, including keystrokes,

browsing activity, and communications. The collected information is often used for

identity theft or financial fraud, amplifying its impact.

The increasing sophistication of Android malware requires robust detection mechanisms to

effectively mitigate these threats.

As discussed in Chapter 2, binary classification, which differentiates between benign and

malicious samples, serves as an essential initial step. However, multi-category classification,

which further identifies the specific type of malware is also an additional step taken up by many

researchers using a range of static and dynamic features. Hence, in this chapter, we present

two Android malware multi-category detection models aimed at performing multi-category

classification of malware into the four categories: Adware, Fraudware trojans, Ransomware, and

Spyware, by using the least number of features that exhibit higher distinguishing power between

different malware categories while simultaneously ensuring higher classification accuracy.
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7.2 Proposed Multi-Category Detection model-1

Despite the advantages of static analysis, its limitations have led researchers to explore dy-

namic analysis as a solution to overcome these challenges. Hence, in this work we propose a

dynamic Android malware detection model that leverages system call monitoring to accurately

detect and classify malware into the four categories: Adware, Fraudware trojans, Ransomware,

and Spyware, by using the least number of features while simultaneously ensuring higher clas-

sification accuracy. To achieve this, we employ the ReliefF algorithm as a feature ranking and

selection technique, which formulates a ReliefF Score that assesses the contribution of each fea-

ture to the classification task. This method is particularly suited for categorical datasets, such

as ours, as it effectively evaluates the relevance of features in distinguishing between multiple

malware categories. By identifying and ranking features based on their ability to differentiate

between classes, ReliefF enables us to select the most impactful features that enhance classifi-

cation accuracy while discarding irrelevant or lower-ranked features. This approach not only

streamlines the feature set but also improves the overall robustness of our malware category

classification model.

The proposed model’s methodology is primarily divided into two modules, Ranking and

Classification. Initially, we compile an extensive dataset that includes dynamic features (system

calls). Subsequently, we split this dataset into two segments: the Training dataset and the

Testing dataset. In the Ranking module, we begin by inputting the Training dataset and ranking

the features based on their ReliefF scores. In the Classification module, we propose a novel

algorithm that applies Machine Learning (ML) and Deep Learning (DL) techniques to get the

best features that can provide higher classification accuracy.

RANKING MODULE

7.2.1 Data collection

To initiate this research, we employed the Kronodroid dataset [170] also used in chapter

6. More details about the dataset have been discussed in 6.2.1. In order to build a dynamic

analysis-based Android multi-category classification model, we focused only on dynamically

extracted system calls, where call frequency data records non-zero values for occurrences and

zero for absences. The dataset categorizes samples into Adware, Fraudware, Ransomware, and

Spyware. For training, we used 50% of each category (10,000 samples), with the remaining
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50% for testing (10,000 samples). This approach aims to leverage dynamic features for a

robust multi-category classification of Android malware, addressing the limitations inherent

to static analysis. We processed the dataset into Training and Testing, with each encompassing

289 system calls. Details of the dataset composition are presented in Table 7.1.

Table 7.1: Details of the dataset including malware categories and the families comprising
each category.

Malware Category Families comprising the category
Adware Airpush, Agent, FakeApp, Kuguo, Dowgin and Youmi
Fraudware Boxer, FakeInst and SMSreg
Ransomware Slocker
Spyware DroidKungFu, GinMaster, BankBot, Simhosy and Malap

7.2.2 Feature Ranking

In this study, we applied the ReliefF algorithm to rank features based on their relevance for

multi-category malware classification. ReliefF is a feature selection technique designed to esti-

mate the importance of each feature by assessing how well it distinguishes between instances

from different classes. For a given multiclass dataset with n applications and p attributes,

where samples belong to m classes, ReliefF evaluates each feature’s ability to separate samples

by iteratively selecting instances and calculating feature weights based on intra- and inter-class

distances.

The algorithm operates as follows: for each randomly selected instance i, ReliefF finds its

nearest neighbors within the same class (nearest hits) and from different classes (nearest misses).

The weight W (A) of each attribute A is updated to reflect its ability to distinguish between

classes. The update rule for feature weights is given by:

W (A) =W (A)− 1
k

k

∑
j=1

(
diff(A, i,hit j)

)
+

1
k(m−1) ∑

l ̸=class(i)

k

∑
j=1

P(l)diff(A, i,miss j,l) (7.2.1)

where:

- k is the number of nearest neighbors considered,

- diff(A, i, j) represents the difference between instances i and j on attribute A,

- P(l) is the prior probability of class l,

- hit j is the j-th nearest neighbor within the same class as i,

- miss j,l is the j-th nearest neighbor from a different class l.
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Using ReliefF with our multiclass dataset of Android malware, the algorithm ranks features,

i.e. system calls, by prioritizing those that contribute most to distinguishing between categories

namely Adware, Fraudware, Ransomware, and Spyware. This ranking allows our model to focus

on the most discriminatory features for improved classification accuracy.

7.2.3 Machine Learning and Deep Learning Classifiers

We used several ML and DL algorithms in our classification approach. We applied five

widely used techniques, namely Decision Trees (DT), Random Forest (RF), Bagging classi-

fier (BC), Gaussian Naive Bayes (NB) as ML classifiers and Multilayer Perceptron (MLP)

as DL classifier. All experiments with these classifiers were performed using ten-fold cross-

validation.

Classification Module

7.2.4 Proposed Malware Multi-Category Classification Algorithm

Following the ranking of features using the ReliefF algorithm, we obtained a sorted list of

system calls based on their effectiveness in distinguishing between various malware categories.

Our objective now is to identify the optimal subset of features that maintains the highest clas-

sification accuracy while minimizing the number of features used.

We begin by incorporating all available features in the first iteration and recording the classi-

fication accuracy achieved by the classifiers utilized in this study. Subsequently, we eliminate

the lowest-ranked ten features from the Testing dataset and assess the resulting accuracy. In

the next iteration, we remove an additional ten features, continuing this process iteratively by

excluding the next ten lowest-ranked features in each round. This procedure is repeated until

we observe a decline in classification accuracy.

Ultimately, the output will yield the minimal feature set that achieves the best classification

performance, thereby optimizing the feature selection for our multi-category malware classifi-

cation model.
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7.3 Results and Discussion: Multi-Category Model - I

In this section, we present the experimental results obtained by applying the proposed mal-

ware multi-category classification model to the dynamic category dataset. As previously dis-

cussed, we utilized the ranking method on the Training dataset to compute the ReliefF scores of

the system calls. Subsequently, within the Classification module, we applied various ML and

DL classifiers to the Testing dataset.

7.3.1 ReliefF Ranking Results

In this section, we present the results of the ReliefF ranking applied to the system calls

dataset. Table 7.2 displays the top ten system calls, sorted by their effectiveness in distin-

guishing between malware classes. Notably, the system call eventfd2 ranks highest in the table,

achieving the ReliefF score of 0.0920. The rankings of the remaining system calls are de-

tailed in the table. With getpid coming out to be the least scored, indicating its relatively low

capability to differentiate between malware classes.

Table 7.2: Top 10 system calls ranked in order of their ReliefF Score

System Call ReliefF Score
eventfd2 0.0920
epoll create1 0.0920
fstatfs64 0.0739
flock 0.0690
readlinkat 0.0687
fchmod 0.0643
ugetrlimit 0.0568
socketpair 0.0555
mkdirat 0.0541
sendmsg 0.0494

7.3.2 Classification Results on the Testing Dataset

In this section, we present the classification results obtained on the Testing dataset by itera-

tively reducing the feature set based on system call rankings given by the ReliefF algorithm.

Initially, with all 289 system calls included, we achieved an accuracy of 94.01%. In subsequent

iterations, system calls were removed in increments of ten, beginning with the least important

features, as determined by the ReliefF ranking.

With each iteration, the classification accuracy was evaluated to identify the optimal subset

of features. By the 23rd iteration, reducing the feature set to the top 70 system calls yielded



187

the highest observed accuracy of 94.50%. Beyond this point, further reduction in features led

to a decline in accuracy. Thus, the optimal subset of features was determined to be 70 system

calls, achieving the highest accuracy while reducing the feature set by approximately 75.6%.

Table 7.3 below summarizes the classification accuracy across iterations.

Table 7.3: Classification Accuracy Across Iterations of Feature Reduction

Features used Accuracy (%) Features used Accuracy (%)

50 88.39 170 94.05
60 93.94 180 94.07
70 94.50 190 94.20
80 94.11 200 94.12
90 94.05 210 94.07

100 94.05 220 94.01
110 94.10 230 94.06
120 94.10 240 93.99
130 94.14 250 94.08
140 94.10 260 94.02
150 94.10 270 94.08
160 94.11 280 94.03

7.4 Proposed Multi-Category Detection model - II

Static analysis examines application code without execution, efficiently identifying known

malware signatures and patterns but struggles with obfuscated or polymorphic malware. Dy-

namic analysis executes applications to observe behavior, revealing hidden malicious activi-

ties like network communication, yet it is resource-intensive for large-scale screening. Hybrid

analysis combines static code examination with dynamic behavioral analysis, offering a bal-

anced approach to enhance detection accuracy and overcome evasion tactics. In this research,

we propose a hybrid classification model, integrating static permissions and dynamic system

calls, aimed at performing multi-category classification of malware into the four categories:

Adware, Fraudware trojans, Ransomware, and Spyware, by using the least number of features that

exhibit higher discriminative power between different malware categories while simultane-

ously ensuring higher classification accuracy.

To accomplish this, we implement a ranking technique that formulates a Class Discrimina-

tion Strength vector [184], which is used to sort individual features based on their ability to

differentiate between classes. This ranking process enables the selection of the top features

that contribute to the best classification accuracy, while irrelevant lower-ranked features are
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omitted. Our approach combines permissions from the static feature set and system calls from

the dynamic feature set to improve the robustness of malware category classification.

Contributions - The major contributions of this study are highlighted below:

• We designed a hybrid detection model that harnesses the benefits of both static and

dynamic analysis, mitigating the shortcomings of each method.

• We employed a ranking technique centering around the Class Discrimination Strength vec-

tor and a new metric, the Discrimination Score, to sort features based on their ability to

distinguish between malware classes.

• We proposed a novel algorithm that leverages attribute rankings to develop an efficient

Android malware multi-category classification system, achieving higher accuracy with

minimal features.

Figure 7.1: AndroMultiCat System Design

The proposed model AndroMultiCat’s methodology is primarily divided into two modules,

Ranking and Classification module as shown in Figure 7.1. Initially, we compile an extensive

dataset that includes static features (permissions) and dynamic features (system calls). Sub-

sequently, we split this dataset into two segments: the Training dataset and the Testing dataset.

In the Ranking module, we begin by inputting the Training dataset and ranking the features

based on their discrimination strength. This is achieved by calculating the class discrimination
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strength vector for each individual feature. In the Classification module, we propose a novel

algorithm that applies Machine Learning (ML) and Deep Learning (DL) techniques to get the

best features that can provide higher classification accuracy.

The subsequent subsections provide a detailed discussion of both modules in the proposed

model.

Ranking Module

7.4.1 Dataset Accumulation

To initiate our research, we utilized the Kronodroid dataset [170], the largest hybrid-feature

Android dataset spanning from 2008 to 2020. This dataset uniquely includes both static fea-

tures like permissions, intents, and metadata, and dynamic features represented by system

calls. Malware samples were sourced from repositories such as Drebin, AMD, VirusTotal, and

VirusShare. The permissions dataset uses a binary format where ‘1’ indicates permission re-

quests, and ‘0’ indicates absence. Similarly, the system call dataset records the frequency of

calls with non-zero values, and ‘0’ for absence. The dataset comprises 34,335 rows catego-

rized into Adware, Fraudware, Ransomware, and Spyware. For training, 70% of each category

was selected, leaving 30% for testing, resulting in 24,033 samples for training and 10,302 for

testing. After preprocessing, we retained 167 permissions and 289 system calls for analysis.

Our goal is to develop a model leveraging hybrid features, capable of performing Android

malware multi-category classification, that addresses the limitations of both static and dynamic

analysis models. To enable a comprehensive comparison among the three analysis techniques,

we further processed the dataset to create three distinct categories for both the Testing and

Training datasets: static, dynamic, and hybrid. The static category includes datasets with 167

permissions, the dynamic category includes datasets with 289 system calls, and the hybrid

category combines both permissions and system calls, totaling 456 features.

Permissions provide an overview, while system calls offer detailed insights. This enhances

detection system robustness by scrutinizing suspicious activities comprehensively. Permis-

sions assess app requests pre-installation, identifying potentially malicious apps early. Real-

time system call monitoring detects malware activities as they occur, optimizing our hybrid

detection model.
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7.4.2 Feature Ranking

Assume in the given multi-class Training dataset there are n samples or applications, each

with p attributes, and these n samples belong to m classes. In the following, we define and

employ a vector representation for attributes, which can differentiate their class recognition

strength [184].

Let Fi j denote whether the j-th attribute is requested by the i-th application. That is, in the

application attribute matrix, each column represents an attribute, Fj =F1 j,F2 j, . . . ,Fn j, indicating

if the attribute is requested (1) or not (0) by each application.

For the j-th feature, its mean request level in the k-th class is denoted as F̄jk for k = 1,2, . . . ,m.

The value |F̄jk− F̄jl| captures the difference between the mean request levels of the j-th feature

in the k-th class and in the l-th class. Obviously, if this value is small, then the j-th feature

would not be effective in discriminating samples from these two classes, but it could be effec-

tive otherwise. Therefore, we define the Class Discrimination Strength vector, (F̄j) , for the j-th

feature as

F̄j =|F̄j1− F̄j2|, |F̄j1− F̄j3|, . . . , |F̄j1− F̄jm|, |F̄j2− F̄j3|, . . . , |F̄j2− F̄jm|, . . . , |F̄jm−1− F̄jm| (7.4.1)

After defining the Class Discrimination Strength vector, F̄j, we compute the Discrimination

Score for each attribute by taking the absolute modulus of the vector with each having m(m−1)
2

entries. This process ensures that the discrimination power of each attribute is accurately

quantified, facilitating the identification of features that are most effective in distinguishing

between different classes. In our study, which aims to classify malware into four distinct cate-

gories—Adware, Fraudware, Ransomware, and Spyware—the value of m is defined as 4. With the

Training dataset comprising a total of 24,033 applications, the value of n is therefore 24,033.

For the static category datasets, the value of p is set to 167, corresponding to the total number

of permissions in the dataset. For the dynamic category, p is 289, reflecting the number of

system calls. In the hybrid category, the value of p is established as 456, representing the sum

of both permissions and system calls.
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7.4.3 Machine Learning and Deep Learning Classifiers

We used several ML and DL classifiers [135] in our classification approach. We applied nine

widely used techniques, namely Decision Trees (DT), Random Forest (RF), Support Vector

Machine (SVM), Bagging classifier (BC), Gaussian Naive Bayes (NB), Logistic Regression

(LR), as ML classifiers and Multilayer Perceptron (MLP), Artificial Neural Networks (ANN),

Dense Neural Network (DNN) as DL classifiers. All experiments with these classifiers were

performed using ten-fold cross-validation.

Classification Module

7.4.4 Proposed Malware Multi-Category classification Algorithm

This section outlines our classification algorithm for identifying effective features in mal-

ware classification. We start by ranking features from our Training dataset based on their

Discrimination Scores, which indicate how well they differentiate between malware types. Ini-

tially, we select the top-ranked feature and evaluate only its classification accuracy using ML

and DL methods on the Testing dataset. We update the maximum accuracy whenever a higher

accuracy is achieved in subsequent iterations. Each iteration involves adding the next highest-

ranked feature to our set and assessing classification accuracy with the expanded feature set.

We continue this process until no further improvement in accuracy is observed. The algo-

rithm terminates when the classification accuracy no longer exceeds the current maximum. It

then outputs the highest achieved accuracy along with the set of features that contributed to it,

optimizing our approach to malware classification.

The results derived from the proposed approach are discussed in the subsequent section.

7.5 Results and Discussion: Multi-Category Detection model

- II

In this section, we present the experimental results obtained by applying the proposed mal-

ware multi-category classification model to the three types of datasets: static, dynamic, and

hybrid. As previously discussed, we utilized the ranking method on the Training dataset to
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compute the discrimination scores of the attributes. Subsequently, within the Classification

module, we applied various ML and DL classifiers to the Testing dataset.

7.5.1 Discrimination Score-based Ranking results

In this subsection, we discuss the rankings obtained using the proposed Class Discrimination

Score-based ranking method when applied to the three dataset categories. Tables 7.4 and 7.5

illustrate the ranked features and their corresponding Discrimination Scores.

As shown in Table 7.4, the top 10 permissions ranked using the proposed method for the

static category datasets are presented. The permission READ PHONE STATE ranks highest

with a discrimination score of 6.904831664, indicating its superior capability to distinguish

between malware categories. Conversely, the permission WRITE VOICEMAIL is the lowest

ranked among the total lot of 167 permissions. The rankings of the other permissions are

also depicted in the table. Similarly, the top 10 system calls when the discrimination strength

ranking method was applied to the dynamic category Training dataset are shown alongside.

The system call sysinfo resides at the top of the table with the highest discrimination score of

3.431581, while SYS 369 is the lowest ranked amongst the other 289 attributes.

Table 7.4: Top 10 features ranked according to their Discrimination scores for the static and
dynamic category

Static Category Dynamic Category
Permissions Discrimination Score System calls Discrimination Score
READ PHONE STATE 6.904831664 sysinfo 3.431581
INTERNET 6.264180883 getpriority 3.203326
SEND SMS 6.089840222 SYS 333 3.1282
ACCESS NETWORK STATE 5.850882026 setrlimit 3.04046
RECEIVE SMS 5.431887402 socketpair 3.024955
READ SMS 4.272869115 getrlimit 2.943412
ACCESS COARSE LOCATION 4.141156216 uname 2.881312
ACCESS WIFI STATE 3.833775255 setsockopt 2.571311
CALL PHONE 3.76863352 SYS 312 2.190685
ACCESS FINE LOCATION 3.731631844 SYS 339 2.053392

Table 7.5 presents the top 20 permissions and system calls when the proposed ranking

method was applied to the hybrid category Training dataset. The permission READ PHONE STATE

again ranks highest with a score of 6.904832, while WRITE VOICEMAIL is at the bottom of the

list comprising 456 attributes.
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Table 7.5: Top 20 features ranked according to their Discrimination scores for the Hybrid
category

Permissions and System calls Discrimination Score
READ PHONE STATE 6.904832
INTERNET 6.264181
SEND SMS 6.08984
ACCESS NETWORK STATE 5.850882
RECEIVE SMS 5.431887
READ SMS 4.272869
ACCESS COARSE LOCATION 4.141156
ACCESS WIFI STATE 3.833775
CALL PHONE 3.768634
ACCESS FINE LOCATION 3.731632
sysinfo 3.431581
KILL BACKGROUND PROCESSES 3.223883
getpriority 3.203326
SYSTEM ALERT WINDOW 3.176393
SYS 333 3.1282
setrlimit 3.04046
socketpair 3.024955
BIND DEVICE ADMIN 2.970807
getrlimit 2.943412
nr permissions 2.925607

7.5.2 Classification results on the Testing dataset

In this subsection, we present the classification results obtained by applying ML and DL

algorithms to the Testing datasets for three categories analyzed in our study. Figure 7.2 illus-

trates the highest classification accuracy obtained as the number of features used in the three

category datasets is varied. It is important to note that classification accuracies were recorded

for the entire set of features. However, the figure only displays the range from five to 130

features to highlight that no significant improvement in classification accuracy was observed

beyond a certain number of iterations.

Figure 7.2 illustrates our classification results. Initially, we applied ML and DL classifiers

to the static Testing dataset, ranking features by the Discrimination Score-based ranking method.

Starting with the top-ranked feature, we measured classification accuracy for identifying mal-

ware categories. As more features were added, accuracy improved. Using the top five per-

missions yielded 78.58% accuracy with the Bagging Classifier (BC). Accuracy increased with

additional permissions, reaching a peak of 94% with 45 permissions using the Random For-

est (RF) classifier. Thus, 45 permissions were deemed optimal, achieving 94% accuracy with

27% of the total 167 permissions. Next, for the dynamic Testing dataset, ML and DL algo-

rithms were applied to system calls. With 5 system calls, we achieved 56.1% accuracy using

the Support Vector Machine (SVM) classifier. Accuracy improved with more system calls,

peaking at 90.99% with 115 system calls, using 40% of the total 289 system calls.
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Figure 7.2: Classification results obtained by applying the ML and DL classifiers to the static,
dynamic, and hybrid category datasets

Lastly, we evaluated the hybrid dataset with both permissions and system calls using the

Discrimination Score-based method. Initially, the top five features yielded 78.58% accuracy

with the BC classifier. As more features were added, the highest accuracy reached 95.6% with

65 combined features, utilizing 14% of the total 456 features in our study.

To provide a concise understanding of the classification results, Table 7.6 presents the multi-

category classification outcomes using ML and DL classifiers on the three-category Testing

datasets. The results show that using 45 permissions achieves the highest accuracy of 94% for

static analysis, while dynamic analysis with 115 system calls reaches a maximum accuracy of

90.99%.

Table 7.6: Compiled classification results obtained by applying the ML and DL classifiers to
the static, dynamic, and hybrid category datasets

Number of features
used

Classfication accuracy using various machine learning and deep learning classifiers
(in %)
DT RF SVM BC NB LR MLP ANN DNN

45 permissions 92.86 94 85.21 93.47 72.67 86.72 93.15 41.7 41.7
115 system calls 85.67 90.99 54.75 89.64 30.49 64.98 71.97 40.66 40.66
65 permissions and
system calls

93.52 95.6 55.85 94.79 67.35 76.91 84.41 45.64 45.84

These findings highlight that while static and dynamic analyses each have their strengths, they

also have limitations when used independently. Static analysis may miss dynamic behaviors, and

dynamic analysis can overlook critical static attributes. However, a hybrid approach combining

both techniques leverages their strengths. The proposed model achieved a higher accuracy of

95.6% with only 65 features, demonstrating its superior efficacy in accurately classifying the
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datasets.

To further demonstrate the applicability and robustness of the proposed hybrid detection

framework, an additional experiment was conducted to explore malware family classifica-

tion. Although the primary focus of this research remains on multi-category classification, this

extended analysis aimed to assess whether the proposed model could also capture finer dis-

tinctions among malware belonging to different families, such as Agent, FakeApp, Fakeinst, and

Boxer. Family-level classification represents a more granular task, where malware samples are

grouped according to shared traits such as code structure, behavioural signatures, or propaga-

tion methods. In practical cybersecurity scenarios, this level of analysis is highly valuable, as

it provides deeper insights into the lineage, intent, and operational mechanisms of malicious

applications.

While binary and multi-category classification identify whether an application is harmful

and the general type of threat it poses, family classification enables a more context-aware un-

derstanding of malware behaviour. Recognizing that two samples belong to the same family

often reveals shared attack strategies, persistence techniques, or common origins, which aids in

threat intelligence, forensic analysis, and targeted mitigation. Such information allows security

professionals to design more precise countermeasures and track the evolution of malware cam-

paigns over time. However, it must also be acknowledged that the Android malware ecosystem

contains a vast and continuously expanding set of families, making exhaustive family-level de-

tection an extensive and challenging research problem.

In this study, a preliminary attempt was made to classify a limited set of eight representative

malware families—namely Airpush, Agent, FakeApp, Kuguo, Dowgin, Youmi, Fakeinst, and Boxer.

The experiment employed the same testing dataset and the top 65 ranked hybrid features used

in the primary classification framework. The proposed model achieved a maximum accuracy

of 86% in distinguishing between these families, indicating that the selected hybrid features

retained strong discriminative capability even at a finer level of granularity. Although this

experiment does not represent comprehensive family classification, it effectively demonstrates

the scalability and adaptability of the proposed hybrid approach. Future research may expand

on this direction by incorporating larger and more diverse malware family datasets, thereby

further enhancing the practical relevance and generalization ability of the framework in real-

world Android malware detection environments.
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7.6 Conclusion and Future Work

In conclusion, our research highlights the effectiveness of an Android malware multi-category

classification model centering on Discrimination Score-based ranking that integrates static and

dynamic features for superior classification accuracy. Static analysis achieved 94% accuracy

using 45 permissions (27% of 167 permissions), while dynamic analysis reached 90.99% with

115 system calls (40% of 289 system calls). However, our hybrid model outperformed both,

achieving 95.6% accuracy with just 65 features (14% of 456 permissions and system calls).

This significant reduction in features while improving accuracy underscores the advantage of

combining static and dynamic methods. Introducing the Class Discrimination Strength vector and

Discrimination Score-based ranking methods have been crucial in enhancing feature selection

and model efficiency. Our findings advocate strongly for hybrid models in malware detection

to combat evolving cyber threats. Future work will focus on expanding our model to include

comprehensive malware family classification alongside multi-category classification.



Chapter 8

Conclusion, Future Scope, and Social

Impact

Smartphones have surpassed desktop systems in popularity due to their feature-rich applica-

tions, offering a wide range of services from online shopping and gaming to location-based

functionalities. They have become integral to daily life, often considered more powerful than

early personal computers. However, the increasing reliance on smartphones has led to a signif-

icant surge in malware attacks, particularly targeting Android devices. Malicious applications

can infiltrate smartphones through SMS, MMS, Bluetooth, internet downloads, or app stores,

including both official and third-party platforms. These attacks pose serious risks such as sys-

tem damage, financial loss, and data breaches. Consequently, Android malware detection has

garnered substantial attention within the research community in recent years, driven by the

escalating frequency of attacks.

This chapter concludes the thesis by summarizing its key contributions, reviewing the pro-

posed models for Android malware detection, and demonstrating their alignment with the

established objectives. Additionally, it highlights several open challenges in the literature,

underscoring critical areas that require further investigation in future research. Finally, it con-

cludes with a subsection on the social impact of this work, emphasizing its significance in

fostering a safer digital environment in today’s malware-prone world.”

8.1 Conclusion

In this section, we summarize the findings and contributions made in this thesis:

197
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1. Features in the AndroidManifest file, such as permissions, intents, and hardware com-

ponents, often overlap between benign and malicious applications. For instance, the

INTERNET permission is widely used across both classes, making it difficult to distin-

guish malicious behavior. To address this challenge, Chapter 3 introduced PHIGrader, a

system that ranks and evaluates static features—permissions, intents, and hardware com-

ponents—using frequency-based Multi-Criteria Decision-Making (MCDM) techniques, in-

cluding TOPSIS, EDAS, and WASPAS. First, features are ranked to identify the most dis-

criminative ones. Leveraging these ranked features with machine learning and deep

learning classifiers, PHIGrader achieved optimal detection performance. Notably, se-

lecting the top 46 features via TOPSIS yielded a detection accuracy of 99.10%, outper-

forming models based on single feature types or other MCDM methods. Building on the

idea of combining feature strengths to mitigate individual limitations, Chapter 4 intro-

duced PHIAnalyzer, which explores seven distinct combinations of the three feature types

to identify the most effective subset. The proposed model employs a frequency-based

Chi-square ranking test followed by a novel detection algorithm. PHIAnalyzer achieved

98.49% accuracy using only 12 features—a balanced combination of six permissions

and six intents—demonstrating better accuracy and efficiency compared to state-of-the-

art methods.

Despite their success, both approaches were limited by static analysis, which struggles

with the inability to capture runtime behavior. To overcome these drawbacks, the sub-

sequent chapter proposed a dynamic, network traffic-based detection mechanism. This

approach offers deeper behavioral insights, addressing the limitations of static analysis

and improving malware detection.

2. Analyzing network traffic usage patterns has proven to be an effective approach for de-

tecting malware, making network traffic flows a key resource in Android malware detec-

tion. However, significant similarities exist in traffic feature patterns between benign and

malicious applications. Chapter 5 introduced a robust and efficient Android malware de-

tection system based on dynamic analysis, leveraging critical features derived from the

TCP flows of application network data. To address feature-class and feature-feature

correlations, we rank features using the statistical measure crRelevance and reduce re-

dundancy through Normalized Mean Residue Similarity (NMRS). The experimental results

highlighted that our NMRS-based detection algorithm, applied to crRelevance rankings,

effectively reduced the feature set while achieving 99.50% accuracy by considering two
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network traffic features: Packet size received and Time interval between packets received.

Moreover, the proposed algorithm outperforms various state-of-the-art Android mal-

ware detection techniques. While dynamic analysis addresses many limitations of static

analysis, it introduces challenges of itself too. For instance, not all malware samples

generate detectable network traffic, as some discreetly transmit data in the background.

Hence, we can say both static and dynamic analyses have demonstrated significant mer-

its, as evidenced by their widespread adoption among researchers and practitioners for

Android malware detection. However, each method, when used in isolation, suffers from

inherent limitations. In order to integrate the strengths of both methods, the next chapter

proposed a hybrid detection approach.

3. Chapter 6 emphasized the importance of hybrid detection models by introducing two hy-

brid analysis-based methods. Firstly, we introduced AndroV-Rank, a novel Android mal-

ware detection framework leveraging the VIKOR MCDM approach based on frequency,

attributes, and criteria. This approach ranked static permissions and dynamically ex-

tracted system calls to identify optimal class-distinguishing features for enhanced detec-

tion accuracy. The proposed hybrid algorithm, combining machine learning (ML) and

deep learning (DL) techniques, further optimized feature selection. Experimental results

demonstrated a detection accuracy of 96.55% using only 65 features, reducing the fea-

ture set to approximately 24.9% of the original size. In our prior works, we employed

various machine and deep learning algorithms, widely adopted in Android malware de-

tection for their advantages. However, traditional methods often face challenges, such

as being hindered by computational demands despite their higher accuracy. Moreover,

for machine learning models like Decision Trees, SVM, and Naive Bayes, imbalanced

data—where one class significantly outweighs others—can lead to the underrepresenta-

tion of minority classes.

These limitations in static and dynamic analysis, coupled with challenges in ML-based

approaches, motivated the development of a simple yet robust hybrid detection model.

Hence, we further introduced PattMatch, an instance-based pattern-matching classifier

utilizing Average Weighted Pattern Scoring (AWPS) and Attribute Score-based Ranking (ASR).

This model predicted class labels by matching test sample patterns with training pat-

terns, significantly reducing the feature set to the most relevant attributes. Experimental

results validated its performance, achieving 99.93% accuracy with only 10 attributes.

Unlike conventional ML and DL classifiers, PattMatch demonstrated superior detection
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accuracy, underscoring the robustness and efficiency of the proposed hybrid framework.

Binary classification is crucial for distinguishing Android apps as benign or malicious,

laying the foundation for malware detection. However, modern malware, including Ad-

ware, Fraudware Trojans, Spyware, and Ransomware, varies widely in signatures and at-

tack methods. Researchers have moved beyond binary classification to explore multi-

category classification to address these complexities. The next chapter focuses on this

advanced approach to categorize malware types more effectively.

4. Chapter 7 presented two models developed for the multicategory classification of An-

droid malware into four distinct categories: Adware, Fraudware Trojans, Ransomware, and

Spyware. These models focused on achieving high classification accuracy while reducing

the feature set size. The first model, leveraging dynamic analysis, utilized system calls

ranked through the ReliefF algorithm. Experimental results demonstrated that the opti-

mal feature subset included 70 system calls out of 289, yielding an accuracy of 94.50%

and reducing the feature set by approximately 75.6%.

In contrast, the second model, AndroMultiCat, employed a hybrid analysis approach by

integrating static permissions with dynamic system calls for improved performance.

The model prioritized features based on a Discrimination Score-based ranking. In-

dividually, static analysis achieved 94% accuracy with 45 permissions (27% of 167),

and dynamic analysis achieved 90.99% accuracy with 115 system calls (40% of 289).

However, the hybrid model surpassed both, attaining 95.6% accuracy with just 65 fea-

tures—comprising 14% of the combined 456 permissions and system calls. This high-

lights the efficacy of hybrid analysis in optimizing feature usage while enhancing detec-

tion accuracy.

8.2 Future Scope

Recent and stealthier Android Malware still poses many challenges for the research commu-

nity that need to be further studied. This section identifies some future research scope where

research is needed.

1. In this thesis, we primarily focused on classification tasks, including a decent attempt

at multi-category classification of Android malware. However, malware also exists in

various families, each with distinct characteristics and attack patterns, such as the Droid-

KungFu, DroidDream, and BankBot families. These families represent groups of malware
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with shared behaviors or origins, making their detection and accurate classification cru-

cial for devising targeted defense mechanisms. In our future work, we aim to expand the

capabilities of our model by incorporating malware family classification ([140], [141],

[142]) alongside the binary and multi-category classification explored in this thesis .

This enhancement will enable more comprehensive malware analysis and facilitate bet-

ter understanding of familial traits, thereby improving detection and mitigation strate-

gies.

2. At the current stage, the proposed detection frameworks have been developed and eval-

uated as a standalone model rather than a fully deployed Android application or web-

based system. Hence, the present work primarily focuses on classification accuracy

and feature optimization, without extending the analysis to real-time operational aspects

such as processing latency, memory footprint, or energy consumption. These factors are

crucial for practical deployment, as excessive processing time, memory usage, or battery

drain can reduce system performance and user acceptance.

Future research will therefore aim to integrate the proposed model within an actual An-

droid environment or emulator to quantitatively evaluate these metrics under real device

conditions. Assessing processing speed will ensure responsiveness during detection,

memory evaluation will confirm compatibility with resource-constrained devices, and

energy analysis will determine long-term usability. Such evaluation, combined with real-

world testing on physical or emulated devices, will strengthen the framework’s practical

relevance and ensure that it performs efficiently not only in offline analysis but also in

real-world Android ecosystems.

3. Another important direction for future research involves evaluating the robustness of the

proposed detection framework against adversarial malware and evasion techniques. Ad-

versarial malware refers to malicious applications that are intentionally modified to de-

ceive machine learning classifiers by altering features such as permissions, API calls, or

network behaviors without changing their harmful intent. Similarly, evasion techniques

enable malware to disguise its behavior or structure to avoid detection, using methods

such as code obfuscation, dynamic code loading, or mimicry of benign applications.

These techniques pose significant challenges to static, dynamic, and hybrid detection

models, as they can effectively bypass conventional analysis mechanisms. Investigating

how the proposed model performs when exposed to such adversarial or evasive samples
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will be essential for assessing its real-world resilience. Incorporating adversarial training

and robust evaluation strategies in future work can therefore enhance the framework’s

capability to withstand evolving Android malware that deliberately adapts to evade de-

tection.

4. The models proposed in this thesis, in their current form, do not address the detection

of colluding apps. Colluding apps refer to a group of malicious applications that com-

municate covertly to share permissions or data, bypassing security measures to execute

malicious activities collectively. As this poses a significant threat to Android security,

future work will focus on extending our models to identify and mitigate such collusion

by incorporating inter-app communication patterns and advanced contextual analysis

techniques.

5. The research community typically identifies Android malware only after it has emerged

in the market and infected numerous mobile devices globally. To address this, detection

mechanisms must be designed to identify stealthier malware as soon as it enters official

or third-party app stores. Existing anti-malware solutions, including Google’s Bouncer,

have consistently struggled to mitigate new or zero-day malicious applications. There-

fore, robust and proactive solutions are essential to detect Android malware before it

compromises mobile devices.

8.3 Social Impact of the proposed research

The rapid adoption of Android as the dominant mobile operating system has revolutionized

connectivity, communication, and productivity. However, this ubiquity has also made An-

droid devices a prime target for malware developers, leading to an alarming rise in malicious

applications. The increasing dependency on Android devices for sensitive activities, such as

financial transactions, health monitoring, and personal communication, amplifies the societal

risks posed by malware. Our work addresses this pressing challenge by developing advanced

detection models that improve malware identification and safeguard users’ digital lives.

The hybrid detection models proposed in this research combine static and dynamic analysis

techniques, ensuring comprehensive coverage against a diverse range of malware. By lever-

aging cutting-edge algorithms and feature-ranking methods, these models enhance detection

accuracy, enabling early identification and prevention of malware attacks. This contributes
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not only to the protection of individual devices but also strengthens the broader cybersecurity

infrastructure, which is critical in today’s interconnected digital ecosystem.

The societal relevance of this work extends beyond technical advancements, as it promotes

user trust in digital technologies. By mitigating threats posed by malicious entities, this re-

search helps ensure the continuity of secure and efficient mobile applications, benefiting busi-

nesses, institutions, and individuals alike. In a world increasingly reliant on mobile devices,

these contributions are pivotal in fostering a safer digital environment, protecting personal

privacy, and enabling equitable access to technology without fear of exploitation.
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A B S T R A C T

The popularity of the Android operating system has itself become a reason for privacy concerns. To deal
with such malware threats, researchers have proposed various detection approaches using static and dynamic
features. Static analysis approaches are the most convenient for practical detection. However, several patterns
of feature usage were found to be similar in the normal and malware datasets. Such high similarity in both
datasets’ feature patterns motivates us to rank and select only the distinguishing set of features. Hence, in this
study, we present a novel Android malware detection system, termed as PHIGrader for ranking and evaluating
the efficiency of the three most commonly used static features, namely permissions, intents, and hardware
components, when used for Android malware detection. To meet our goals, we individually rank the three
feature types using frequency-based Multi-Criteria Decision Making (MCDM) techniques, namely TOPSIS and
EDAS. Then, the system applies a novel detection algorithm to the rankings involving machine learning and
deep learning classifiers to present the best set of features and feature type with higher detection accuracy
as an output. The experimental results highlight that our proposed approach can effectively detect Android
malware with 99.10% detection accuracy, achieved with the top 46 intents when ranked using TOPSIS, which
is better than permissions, hardware components, or even the case where other popular MCDM techniques
are used. Furthermore, our experiments demonstrate that the proposed system with frequency-based MCDM
rankings is better than other statistical tests such as mutual information, Pearson correlation coefficient, and
t-test. In addition, our proposed model outperforms various popularly used feature ranking methods such as
Chi-square, Principal Component Analysis (PCA), Entropy-based Category Coverage Difference (ECCD), and
other state-of-the-art Android malware detection techniques in terms of detection accuracy.

1. Introduction

In the present age and time, there exists an app for almost every
diversified service required by man, such as online shopping, social
networking, positioning, and navigation. As the statistics report, the
Google Play Store, which now serves as an official app store for the
Android operating system, has witnessed a huge rise in the number
of applications over the span of 14 years. If we take a closer look at
the numbers, it has grown from 16 thousand applications in 2009 to
3.553 million applications until 2023, i.e., a huge increase of 3.537
million.2 Android dominates the market share with a whooping 68.79%
of the total smartphones being used worldwide, followed by Apple
iOS with around 30% share.3 The openness and popularity of Android
makes it the primary target of malicious attackers who attempt to steal

∗ Corresponding author.
E-mail addresses: ysharma2098@gmail.com (Y. Sharma), anshul15arora@gmail.com (A. Arora).
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3 https://gs.statcounter.com/os-market-share/mobile/worldwide
4 https://www.quickheal.co.in/documents/threat-report/

private information, transfer credit into their account by subscribing
to premium services, start unwarranted premium-rate subscriptions of
SMS services, or even commit advanced frauds.

Requirement of Android Malware Detection Systems
In simple words, mobile malware can be defined as any type of

malicious code designed specifically to disrupt the functionality and
integrity of a mobile system without the user’s consent. The ‘‘Quick
Heal Annual Threat Report 2022’’ shows that there were 1,11,894
malware detections in 2022, which accounts for 1 malware per minute4

and these numbers are expected to steadily grow in the coming years,
especially due to the trend of mobile banking and electronic payment,
to perform various illegal acts such as malicious charges, system dam-
ages, and privacy breaches. The most common malware types include

https://doi.org/10.1016/j.jnca.2024.104021
Received 30 October 2023; Received in revised form 5 August 2024; Accepted 4 September 2024

Journal of Network and Computer Applications 232 (2024) 104021 

Available online 6 September 2024 
1084-8045/© 2024 Elsevier Ltd. All rights are reserved, including those for text and data mining, AI training, and similar technologies. 
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Abstract
The first Android-ready “G1” phone debuted in late October 2008. Since then, the growth of Android malware has been
explosive, analogous to the rise in the popularity of Android. The major positive aspect of Android is its open-source nature,
which empowers app developers to expand their work. However, authors with malicious intentions pose grave threats to
users. In the presence of such threats, Android malware detection is the need of an hour. Consequently, researchers have
proposed various techniques involving static, dynamic, and hybrid analysis to address such threats to numerous features in
the last decade. However, the feature that most researchers have extensively used to perform malware analysis and detection
in Android security is Android permission. Hence, to provide a clarified overview of the latest and past work done in Android
malware analysis and detection, we perform a comprehensive literature review using permissions as a central feature or in
combination with other components by collecting and analyzing 205 studies from 2009 to 2023. We extracted information
such as the choice opted by researchers between analysis or detection, techniques used to select or rank the permissions feature
set, features used along with permissions, detection models employed, malware datasets used by researchers, and limitations
and challenges in the field of Android malware detection to propose some future research directions. In addition, on the basis
of the information extracted, we answer the six research questions designed considering the above factors.

Keywords Android security · Android malware · Permissions based detection · Static detection ·Mobile security · Literature
review

1 Introduction

In the last decade, we have witnessed exponential growth of
the Android operating system in the mobile market. Accord-
ing to a recent report, the Android system constitutes more
than 80% of the entire market of smart phones.1 The main
reasonbehindAndroid’s success is its free, open-source code,
which empowers smartphone manufacturers to transform
their devices with pre-installed applications and customized
user interfaces for a beautiful customer experience. How-
ever, Android’s open-source nature is both a boon and a bane.
Although it brings the benefits of technological broadband

1 https://www.tenda.com.cn.
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and updates, it also allows criminals to use it for ill practices.
Nowadays, mobile phones are not only used for communica-
tion purposes, but they have gradually become a crucial part
of our lives, containing the smallest to the most critical and
private user data.

The Android OS was released in 2008, and the first
Android malware was spotted in 2010, which targeted users
by subscribing to premium SMS services. Since then, mal-
ware attacks have been on the rise, and security attempts have
beenmade to keep upwith the ever-increasing and constantly
changing malicious attacks. The total amount of Android
malware worldwide has already increased from 22,088 in
2012 to 33,237,653 in January 2023.2 Looking closer at
the real-time threat analysis and statistics of Android mal-
ware worldwide, we will understand how desperately the
Android Market needs Android security and malware detec-
tion systems. For instance, the Judy auto-clicking adware
stands out as a significant incident that affected the Google

2 https://portal.av-atlas.org/malware.
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Abstract
Android malware has been growing in scale and complexity, spurred by the unabated uptake
of smartphones worldwide. Millions of malicious Android applications have been detected
in the past few years, posing severe threats like system damage, information leakage, etc.
This calls for novel approaches to mitigate the growing threat of Android malware. Among
various detection schemes, permission and intent-based ones have been widely proposed in
the literature. However, many permissions and intents patterns are similar in normal and
malware datasets. Such high similarity in both datasets’ permissions and intents patterns
motivates us to rank them to find the distinguishing features. Hence, we have proposed a
novel Android malware detection system named IPAnalyzer that first ranks the permissions
and intents with a frequency-based Chi-square test. Then, the system applies a novel detec-
tion algorithm that combines ranked permissions and intents and involves various machine
learning and deep learning classifiers. As a result, the proposed system gives the best set
of permissions and intents with higher detection accuracy as an output. The experimental
results highlight that our proposed approach can effectively detect Android malware with
98.49% detection accuracy, achieved with the combination of the top six permissions and
top six intents. Furthermore, our experiments demonstrate that the proposed system with the
Chi-square ranking is better than other statistical tests like Mutual Information and Pearson
Correlation Coefficient.Moreover, the proposedmodel can detect Androidmalware with bet-
ter accuracy and less number of features than various state-of-the-art techniques for Android
malware detection.

Keywords Android security · Mobile malware · Malware detection · Permissions · Intents ·
Feature selection
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