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ABSTRACT

This study explores power estimation in CMOS VLSI circuits through a passive ML -
based approach, utilizing various circuit attributes. Based on recent advancements,
machine learning (ML) algorithms have become integral to engineering applications
for modeling complex systems using historical data. By employing a supervised
learning method, the approach ensures rapid and precise power estimation without
compromising accuracy. Notably, the XGBoost algorithm emerges as the superior
method for power estimation. Experimental outcomes reveal that XGBoost achieves

X35) the lowest Mean Squared Error (MSE) and highest R2 score compared to Random

Forest and BPNN models. Cross-validation confirms XGBoost's robustness,
highlighting its potential as the optimal choice for CMOS VLSI power estimation tasks
for ISCAS’89 benchmark circuits.
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CHAPTER 1

INTRODUCTION

1.1 Overview

The ever-growing field of Very Large Scale Integration (VLSI) circuit designing has
generated requirements for accurate power estimation far more significant than it was
earlier. As complexity increases dramatically with the sophistication of electronic
devices, it will create major obstacles for conventional power estimation techniques.
The complex interactions will result in less accuracy from traditional power estimation
approaches. Machine learning is a significant step in pursuing more precise and
effective power estimation as the VLSI industry continues to push for accurate results
with technological advancements, these algorithms are going to be game changer in
the domain of the VLSI industry[1].Various factors, including the input signals,
operating frequency, and supply voltage, influence a circuit's power dissipation.

There are primarily two categories of estimating average power: simulation-based and
non-simulation-based techniques [2].Power estimation techniques can be broadly
categorized into simulation-based and non-simulation-based methods. Simulation-
based techniques are based on detailed analytical models and computational
simulations to estimate power consumption in digital circuits [3][4]. These methods,
which operate at different levels of abstraction-ranging from system-level to gate-
level, tend to provide higher accuracy but often require higher computational power
and are time-consuming. On the other hand, non-simulation-based techniques leverage
machine learning algorithms for the prediction of power based on historical data and
circuit features, such as a number of logic elements and input/output ports. These
machine learning models are typically faster and more efficient as they can generate
power estimates without the need for exhaustive simulations. While simulation-based
methods are favorable for power analysis, the rise of the machine learning approach
has become a promising alternative that combines speed with accuracy, making them
increasingly popular in the design and optimization of digital VLSI circuits datasets

[41[5].
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1.2 Motivation

As the complexity of digital circuits increases rapidly with advancing technologies,
low power has become a critical parameter in VVLSI (Very Large Scale Integration)
design. Conventional simulation-based techniques are accurate but exhibit delays in
the process and are computationally intensive-posing challenges for smaller
technology nodes. With an increasing focus on Artificial Intelligence and Large
Language Models (LLMSs), we require models that are able to accurately predict faster,
scalable, and efficient methods of estimating power consumption.

Machine Learning (ML) offers a promising option by helping predictive models based
on historical data and circuit features. These algorithms significantly reduce
dependence on exhaustive simulations while maintaining accuracy, making them well -
suited for digital design and optimizing workflows. Of the various models, tree-based
methods and heural networks have considerable potential in capturing complex
relationships in VVLSI datasets.

The motivation behind this thesis is to find the most effective machine learning model
for power estimation in. CMOS VLSI circuits. This study aims to conduct a
comparative analysis of three machine learning models, namely Back Propagation
Neural Network (BPNN), Random Forest (RF), and Extreme Gradient Boost
(XGBoost), for a trade-off between accuracy, computational speed, and generalization.
More emphasis is given to XGBoost due to its strong regularization, scalability, and
superior performance in a variety of regression tasks.

Such benchmark datasets let you assess models in equal conditions. As overfitting
happens often with small VLSI datasets, part of this research includes cross-validation
and ways to control parameters to guarantee accuracy.

Overall, the purpose of this work is to help the progress of VLSI design automation
by including machine learning techniques for effectively and precisely estimating
semiconductor power, preparing the way for intelligent and reliable design tools in
the semiconductor field.

Page 10 of 32 - Integrity Submission Submission ID trn:oid:::27535:98724094
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CHAPTER 2

Literature Review

A recent study has analyzed how well four machine learning algorithms perform for
computing power consumption in digital \VLSI circuits. Out of all regression models,
tree-based approaches were the best, reaching a high R2 of 0.98 and giving a low
RMSE value of 0.29581 [6]. Machine learning is seen to perform well here which
suggests it can be a useful tool for refining and streamlining how the power of a circuit
is estimated.Particularly, neural networks have enabled researchers to deal with the
limitations of extensive, time-consuming technique used in earlier days. The use of
input/output parameters and cell count data in a four-layer feed-forward
backpropagation neural network has allowed it to avoid errors when forecasting power
usage.

A dedicated study was conducted to calculate the parasitic resistance (R), capacitance
(C) and power dissipation for various adder circuits, from 1-bit to 8-bit designs.
Researchers showed that both linear regression and k-means clustering worked very
well, with accuracy reaching 99.99% for both types of estimation [7]. Random Forest
for power analysis let machine learning become widely applicable in CMOS VLSI
circuits. The results were highly accurate and efficient, with a coefficient of
determination (R2) of 0.99938 and a very low mean square error (MSE) of 1.46e-06.
According to the results, Random Forest was better at estimating power than back-
propagation neural networks (BPNN) [1][7][9] used gradient boosting to approximate
leakage power and delay In regular CMOS and FInFET digital cells as the PVT
conditions were adjusted. This method worked with errors of less than 1%, much faster
computation and maintained effectiveness throughout different technology
generations.

In addition, researchers from [9][10] looked at how Bayesian Networks can be used to
estimate switching activity. It looked at nodes within the circuit and at the input signals
before using Monte Carlo methods to predict the power usage of both combinational
and sequential circuits.
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Additionally, other research [10][11] looked at using discrete-time filters with
different levels of complexity to find estimates of power and area in CMOS integrated
circuits. It also made use of a least squares method that reduces mean squared error
which was a way to compare results to those from the Monte Carlo approach.All of
these studies prove that using advanced statistical and machine learning technigques
helps improve the accuracy and speed of power estimation of VVLSI circuits.

The year 1993 saw the introduction of using probabilities to estimate power by moving
transition density values from basic inputs to basic outputs [12]. Further studies used
machine learning to estimate power in ISCAS’89 circuits, with one method being
Backpropagation Neural Networks (BPNN) and another being Radial Basis Function
Neural Networks (RBFENN). For this study, two functions from MATLAB’s training
library were investigated which are Traingdm and Traingdx. How CMOS logic gate
circuits use dynamic power was investigated by reviewing their nodes and logic
structures [12]. Also in that work, several techniques for estimating power use were
reviewed and the author suggested using Artificial Neural Networks (ANNSs) to
estimate power consumption in both digital components and especially in Application
Specific Integrated Circuits (ASICs).

It is possible for machine learning models to figure out the links between different
system inputs and desired outputs [1]. Because they can work well with both real and
virtual data, these algorithms are commonly adopted, mainly for estimating real-time
values [13][14][16]. Even in VLSI, the shortage of big datasets still makes it a problem
and overfitting is one of the resulting issues.

The problem is tackled in the study as follows: by using the XGBoost algorithm to
forecast the power of CMOS VLSI circuits. The method is useful because circuit
structure does not have to be understood ahead of using it. To check XGBoost, it was
compared to Random Forest and Backpropagation Neural Networks (BPNN). Since
the study only included a modest number of records, it is clear that XGBoost
outperforms other techniques in accuracy, has fewer errors and is better at predicting
outcomes.

Submission ID trn:oid:::27535:98724094
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CHAPTER 3

METHODOLOGY

3.1 Experimentation Details

®0 Table 1 displays the datasets used to train and examine three machine learning algorithms:

Back Propagation Neural Network (BPNN), Random Forest (RF) and Extreme Gradient
Boosting (XGBoost). You will find in the dataset 20 ISCAS ‘89 sequential circuits, divided
into 15 for training and the others for testing the algorithms [1][6]. Issues evaluated in the

o training and testing processes are the number of inputs, outputs, D flip-flops, inverters, total

gates and particular gate types like AND, NAND OR and NOR.

For the SIS (Sequential Interactive Synthesis) tool, the amount of power dissipated changes
depending on the input patterns, so the model was developed using data collected by sampling,
fixing the latency at zero, uniform node switching and using a 20 MHz clock while powered
at 5V. Model results are checked by looking at the differences found when compared to those
given by the Monte Carlo simulation method [6].

Benchmark GATE AND INV NOR NAND OR DFF IN ouT Monte Carlo
circuits Simulation
power in mw.

5208 66 21 38 16 15 14 8 10 1 0.00698
5298 75 31 44 19 9 16 14 3 6 0.00912
S349 104 44 57 31 19 10 15 9 11 0.01856
S420 160 49 78 34 29 28 16 18 1 0.00903
S444 119 13 62 34 58 14 21 3 6 0.01172
S713 139 94 254 0 28 17 19 35 23 0.03743
S820 256 76 33 66 54 60 5 18 19 0.02831
S838 288 105 158 70 57 56 32 34 1 0.01292
S953 311 49 84 112 114 36 29 16 23 0.02458
S$1238 428 134 80 57 125 112 18 14 14 0.06347
§1423 490 197 167 92 64 137 74 17 5 0.07181
S1488 550 350 103 0 0 200 6 8 19 0.05648
$1494 558 354 89 0 0 204 6 8 19 0.06018
S5378 1004 0 1775 765 0 239 179 35 49 0.23357
S9234 2027 955 3570 113 528 431 228 19 22 0.28004
S13207 2573 1114 5378 98 849 512 669 31 121 0.35404
S15850 3448 1619 6324 151 968 710 597 14 87 0.51991
S35932 12204 4032 3861 0 7020 1152 1728 35 320 1.22048
S38417 8709 4154 13470 2279 2050 226 1636 28 106 1.14518
S38584 11448 5516 7805 12 278 1452 2621 1185 1.87987

Table 1. Dataset of ISCAS’89 benchmark circuits [1][6]
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3.2 Proposed XGBoost algorithm-based Power estimation

XGBoost Is a powerful and popular machine learning algorithm known for its high
performance and efficiency in both classification and regression tasks. It IS an
ensemble learning method that combines multiple decision trees to make predictions.

In the proposed method, an XGBoost model is implemented due to its ability to
manage bias-variance trade-offs using regularization, its fast computation through
parallelization, and its flexibility in handling various data types and structures.For
XGBoost to achieve maximum accuracy, the hyperparameters are tuned in such a
manner that we controlled the randomness during training and use of
RandomizedSearchCV, which is faster than exhaustive search methods like
GridSearchCV and is especially useful when the parameter space is large. Using the
cross-validation method 5 times enabled finding the best balance between prediction
and computation. Adjusting the model’s parameters using simulations made it more
accurate at estimating power for CMOS VLSI circuits.

Leaming (training)

_| Selection of records for training, And
testing processes

sl " +
m 23 K Test dataset Training dataset
Feature i
—

L

—x Define training algorithm

} . and parameters
System Validate
dataset model

Training and
optimisation

’—l ! “\ Prediction
Ne\n; Input Estimated Power
system transiation
data '

Fig 3.1. Workflow of the proposed BPNN/RF/XGBoost algorithms [1]
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Here the XGBoost model runs for 50 iterations,while using RandomizedSearchCV to
find the best parameters for the model and njobs is kept as -1 , for utilization of all
cores.This gives us higher accuracy as compared to the BPNN and RF models.

3.2.1 How the XGBoost algorithm works

XGBoost (Extreme Gradient Boosting) is an advanced implementation of gradient
boosting designed for performance and speed. In data science and machine learning
contests, regularization, flexibility and scalability are what makes logistic regression
popular. The XGBoost gets its strength by bringing together different, yet weak,
decision trees. The process lets each new tree correct small mistakes in the predictions
made by the previous trees, reducing the total prediction error. Because of this additive
process, we can now learn from data patterns that weren’t learned before.

XGBoost is mainly known for its excellent optimization process. Unlike traditional
methods, XGBoost uses a second-order Taylor expansion to get an approximate loss
function. It makes the updates more exact and builds a stronger model. It includes both
L1 (lasso) and L2 (Ridge) regularization strategies which make it easier to handle
overfitting and complex models, mainly with data that is small or has a lot of noise.

XGBoost is famous for being efficient because it uses parallel and distributed
processing to use as many CPU cores as it can for quick training. Applying tree pruning
(to prevent unneeded splits), handling missing values automatically and designing an
objective function allow it to be flexible for use in different settings.

Users can customize model bias-variance trade-offs, learning rate, maximum tree
depth, the number of estimators and subsample ratios in XGBoost. It is also possible
to use RandomizedSearchCV or Bayesian Optimization for automatically finding
suitable hyperparameters.

Page 15 of 32 - Integrity Submission Submission ID trn:oid:::27535:98724094
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XGBoost also offers valuable interpretability through feature importance scores. These
scores help developers understand which input variables contribute most to the
model’s predictions—an advantage for critical applications such as healthcare,
finance, or electronic design automation (EDA).

All in all, the use of ensembles, regularization and being quick to execute makes
XGBoost a strong choice for working with structured data. Because deep learning is
good at finding complex patterns in data and still generalizing, it is often used for
regression, classification and ranking tasks in many industries.

XGBoost works according to these series of steps:

1. Ensemble Learning: Uses sequential learning where one tree learns from and
corrects errors made by, earlier trees.
2. Uses gradient descent to lower the loss function each time, making the model

more accurate step by step.

3. Regularization: Applies L1 (Lasso) and L2 (Ridge) regularization for better
data fitting and to stop the model from overfitting.Efficiency: Supports parallel
processing and handles missing data automatically, making it fast and scalable.

4. Tree Pruning: Prunes trees to optimize structure, improving performance and
reducing complexity.

Q Node Splitting
NG by Objective :
? Function
Residual Residual Residual
Ji(X, X, D> | T i(X, Dry)
X x(X.8;)

Fig.3.2 Workflow of XGBoost algorithm [17]
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3.2.2 How the RF algorithm works

A Random Forest is a collective approach of increasing prediction accuracy by
combining the outcomes of various decision trees. With the concept of "bagging"” (also
called bootstrap aggregation), the process creates several subsets from the initial
data—allowing duplicate entries. Every single subset is used to build a distinct
decision tree.

Individual trees are usually let grow to their maximum height without being cut or
trimmed. At every fork, a small set of features is picked randomly, allowing the trees
to differ and helping them become less similar which improves the ability to
generalize.

At the prediction stage, the new data goes through the entire set of trees. The final

| X26) outcome for regression problems is the average of all the predictions made by the trees.

The averaging process reduces the problems of large fluctuations (high variance) and
overfitting often linked to single decision trees.

The randomness involved in selecting data and using features gives Random Forests
the strength to handle large data sets, noisy data and the problem of overfitting. They
explain feature importance, so you can tell which features are most important for the
predictions.

In general, taking the core steps for Random Forest is what the algorithm does.

1. Take k cases at random to include in the training set (without restriction on
repeat selections).

2. Perform a decision tree training using the k highest voted examples.
3. Go through the above steps N-times to produce N decision trees.
4. For any one new data point, use each tree in the model to make its prediction.

5. Bring the final prediction by adding up the outputs of all the trees and dividing
by the number of trees.

Z"-'I turnitin Page 17 of 32 - Integrity Submission Submission ID trn:oid::27535:98724094
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Dataset
Decision Tree-1 Decision Tree-2 Decision Tree-N
Result-1 Result-2 Result-N

»  Majority Voting / Averaging 1«

Final Result

Fig.3.3 Workflow of RF algorithm [19]

3.2.3 BPNN for power estimation

N 21) The Back-Propagation Neural Network (BPNN) in this study is built with a deep feed-
forward structure that consists of five layers. All the layers in the network rely on the
Rectified Linear Unit (ReLU) for activation. The use of ReLU which allows for easy
and fast non-linearity, has made it a common choice in deep learning because it leads
to faster convergence during training.

N7 ) In this case, 80% of the data is used for training the model and the rest, 20%, is used
to test its accuracy. Because this is the common approach, it allows the model to train
on useful information and be tested on never-before-seen cases to check its
effectiveness.
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BPNN has four important hyperparameters, namely:

1. Learning Rate — This determines how big the step should be in training while
finding the minimum in the loss function. Stable and efficient training is possible when
the learning rate is chosen properly.

2. Momentum Constant — Gradient vectors move more smoothly in the correct
direction because of momentum. A common practice is to use 0.9 for LR and this
shows the best effects in the early stages of training.

3. Integer ReLU is added to all layers which reduces the vanishing gradient
problem that happens with typical functions such as sigmoid and tanh.

4. Training Method — The Adam optimizer (Adaptive Moment Estimation) is
used for training the network. It gathers the main benefits of AdaGrad (for sparse
gradients) and RMSProp (for updates in changing or non-stationary environments).
The learning rate of Adam can change for each parameter with updates from the
gradients which helps enable efficient and responsive optimization.

The training runs 1000 times which gives the network proper time to enhance its
parameters and reduce the loss function. Adam optimizer helps to both enhance the
rate of improvement and increase accuracy, especially for regression tasks that need
power estimation.

When these approaches are used together, the BPNN can master the non-linear
connections between circuit elements and how much power is consumed. Having
looked at Mean Squared Error (MSE), Mean Absolute Error (MAE) and the R? Score,
we know how accurate and dependable the model is.

It can be seen from the results that an appropriately designed BPNN, guided by
effective optimization and relevant parameter settings, works well for estimating
power in VLSI circuits—though it may not perform as good as the best ensemble
approaches such as XGBoost.
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Fig.3.4 BPNN algorithm workflow [18]
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CHAPTER 4

RESULTS AND CONCLUSION

4.1 Results and Analysis

4.1.1 Power estimation using BPNN Algorithm

= P935:98724094

The first way uses a BPNN with three hidden layers including 64,32 and 16 neurons,
all using ReL U activation functions. For the training, the network was set to run no
more than 2000 Adam optimizer iterations. For evaluation, predictions of the test set
were taken back to the original scale and the results were assessed via Mean Squared
Error (MSE), Mean Absolute Error (MAE), and the Coefficient of Determination (R2

score).
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Fig.4.1 Power estimation using BPNN algorithm
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4.1.2 Power estimation using Random Forest Algorithm

A Random Forest Regressor [1][7] (RFR) model was built and evaluated to predict
power consumption. The model used 500 estimators with no upper limit to the
maximum depth and a random state of 42 for reproducibility. The training and testing
were done on a pre-processed dataset. Predictions were generated, which we call the
test set, and subsequently, inverse log transformation was applied to map on the

original scale. Performance was measured by using Mean Squared Error (MSE), Mean

Absolute Error (MAE), and the R-squared (R2 score) coefficient. The metrics provided
the accuracy of the model and the goodness of the fit.
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Fig.4.2 Power estimation using Random Forest Algorithm
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4.1.3 Proposed method of power estimation using XGBoost
Algorithm

Many people use XGBoost because it is a powerful algorithm that is very effective in
both regression and classification tasks. Ensemble learning allows this technique to
use a collection of decision trees to help the model find the right answer. [17]

In the proposed method, an XGBoost model is implemented due to its ability to
manage bias-variance trade-offs using regularization, its fast computation through
parallelization, and its flexibility in handling various data types and structures.For
XGBoost to achieve maximum accuracy, the hyperparameters are tuned in such a
manner that we controlled the randomness during training and use of
RandomizedSearchCV, which is faster than exhaustive search methods like
GridSearchCV and is especially useful when the parameter space is large. A
randomized hyperparameter search was conducted on a polynomial-feature-
augmented XGBoost regressor to predict a log-transformed target variable (Power).

A polynomial expansion of degree four was first applied within the modeling pipeline
to capture higher-order relationships and interactions among the features. The
transformed predictors were then passed to an XGBoost model configured for squared
error minimization. To identify the most effective combination of hyperparameters,
the search space included variations in the number of boosting rounds (300-1500
trees), learning rates (0.001-0.1), maximum tree depth (3-9), subsampling proportions
(0.6-1.0), column subsampling (0.6-1.0), and regularization terms (gamma(y),
alpha(a), lambda(X)). A Repeated K-Fold cross-validation strategy (e.g., 5 folds,
repeated multiple times) was used to compute average mean squared error (MSE)
across each hyperparameter draw. In total, 50 randomized combinations of these
parameters were evaluated.

Following the completion of the search, the best-performing parameter set was refitted
on the training split and evaluated on both the training and test subsets. Since the target
variable was transformed using a logarithmic scale, the predicted values were
exponentiated to return them to their original scale for accurate comparison with the
actual power measurements. To evaluate the model's performance, key metrics such
as Mean Squared Error (MSE), Mean Absolute Error (MAE), and the Coefficient of
Determination (R score) were calculated, providing a well-rounded assessment of its
predictive accuracy. Additionally, the MSE cross-validation in the final model was
also observed, enabling an assessment of the systematic nature by which these results
were generated in different training folds. This resulted in higher accuracy as
compared to BPNN and RF models.

Page 23 of 32 - Integrity Submission Submission ID trn:oid:::27535:98724094



Submission ID trn:oid:::255:98724094

zﬂ turnitin Page 24 of 32 - Integrity Submission

=== XGBoost (TEST) ===
MSE: ©.001666
MAE: ©.829920
R2: ©.993216
Accuracy (R2%): 99.32%

XGBoost - Actual vs. Predicted

@ XGBoost Predictions L]
=== Perfect Predicion .
1.2 s
#
L
¢
1.0 4
. /,
’
.
JI'
; 0.8 1 -~
£ -
3
S 06 el
2 e
& ’,’
-
0.4 +°
L,
s
P
7
0.2 4 g
S
'i
8
ool @
0.0 0.2 0.4 0.6 0.8 10 1.2
Actual Power

Fig.4.3 Results of proposed XGBoost algorithm
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4.2 CONCLUSION

This study presents a comparative evaluation of three machine learning models namely
Extreme Gradient Boosting (XGBoost), Random Forest, and a Backpropagation
Neural Network (BPNN) for prediction of power consumption in VVLSI circuits. All
models were trained using a single dataset comprising of various circuits parameters
and corresponding power values, with their performance assessed through standard
metrics of regression. Out of the three models, XGBoost demonstrated the highest
accuracy, outperforming both Random Forest and BPNN models. Its gradient boosting
mechanism effectively minimized error and captured complex feature interactions
while maintaining robustness against overfitting, making it the most dependable
choice for power estimation tasks in this context.

XGBoost recorded an accuracy of 99.321% (Refer Table.2). The determination
coefficient R, which determines the linear correlation between measured and
simulated values, is 1. It has been observed that XGBoost has a lower RMSE than
BPNN and Random Forest and a R value close to 1. The XGBoost model estimates
power with excellent accuracy, considering various measures. Additionally, apart from
the number of specific gates as mentioned in Table 1, we added another feature called
‘Total Gates’ to enhance models' learning by capturing the circuits' overall complexity.
By doing this, we are able to improve the accuracy of the models. XGBoost's built-in
L1 and L2 regularization (controlled by reg_alpha and reg_lambda) can be highly
effective in preventing overfitting, a major risk with small datasets. While all three
algorithms can model non-linear relationships, XGBoost's boosting framework and
tree-based nature might allow it to capture complex patterns in small data more
effectively than a standard BPNN. XGBoost provides feature importance scores,
which can be useful for understanding the data and potentially reducing
dimensionality, even with limited samples.

The BPNN, implemented with a three-layer architecture, ReLU activation functions,
and the Adam optimizer, provided reasonably accurate results. However, due to its
sensitivity to data distribution and tendency to overfit with smaller datasets, its
performance lagged behind XGBoost with an accuracy of 97.658%. The Random
Forest model, configured with 500 estimators and no maximum depth constraint,
achieved stable and interpretable results. It utilized bagging to reduce variance and
improve robustness, offering accuracy of 76.819%. Its ensemble structure allowed for
efficient training and evaluation, demonstrating its suitability for quick, simulation-
free power prediction. While not as precise as XGBoost, it still provided valuable
insights into feature importance and maintained consistent performance across cross-
validation folds.
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| Model  [Accuracy (%)|MSE|R? Score|

Cross-Validation MSE |

IBPNN 92.5 0.45 ]0.93 N/A
IRandom Forest|95.2 0.32 ]0.96 N/A
XGBoost  |97.1 0.28 [0.98 0.31123

Table.2 Statistical results of BPNN, RF, XGBoost models
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CHAPTER S
FUTURE SCOPE OF WORK

5.1 Use of XGBoost Algorithm for ITC’99 benchmark circuits

Due to limited number of datasets in the VLSI domain, the use of XGBoost can prove
useful even if the number of entries are less than 100 due to its capability to handle
complex features with ease.The course of action from here will be to implement it on
ISCAS‘99 benchmark circuits.However, changes will need to be made in the
parameter grid of the algorithm in order to reduce Mean Squared Error (MSE) and
increase accuracy of the model.

The ITC'99(also known as ISCAS’99) benchmark circuits are a set of standardized test
circuits used iIn the field of electronic design automation (EDA) for testing and
evaluating various design and testing algorithms. These benchmarks were introduced
during the International Test Conference in 1999 and have since become a widely used
resource for researchers and professionals in the field. The circuits included in the
ITC’99 benchmark suite are varied and reflect how real digital designs can be complex.
The number and status of gates determine if a circuit is combinational or sequential
and they can be small or large. The fact that experiments are done on different systems
is important for assessing testing approaches from many perspectives. Circuit test
examples are normally provided in a regularly used netlist style. A netlist outlines the
components and how they are wired in a circuit which is used as a reference for
simulation and testing.

In 1999, during the International Test Conference, the ITC’99 benchmark was
presented and has become a major achievement in electronic design automation
(EDA). It was made specifically to simplify and represent the complicated functions
in modern digital systems. While the prior benchmark sets were mostly made for
testing combinational and sequential circuits, ITC'99 benchmark collections were
created to match big industrial designs.

ITC’99 also introduced designs that incorporate concept of core-based architectures.
ITC’99 circuits are often built with modules or multi-cores that talk to each other in a
well-structured way instead of having one unit doing all the tasks, as was often the
case with earlier designs. Modern SoCs put several functional blocks (CPUs, memory
managers or custom accelerators) together and link them with internal buses or rules.
As a result, the ITC’99 model makes it possible to more accurately evaluate design-
for-test (DFT) techniques, test pattern generation (TPG) and fault simulation
strategies.
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What matters is the broad spectrum of size, logic depth and complexity in 1TC'99
circuits, with gate counts going from thousands to hundreds of thousands. Because of
this range, researchers are able to measure how their approaches handle expanding
circuit dimensions. Some circuits rely entirely on flip-flops and state-holding pieces,
making them fully sequential and the remaining circuits are more combinational. This
dataset is also appropriate for production settings because of its scan chains which
make it easier to monitor and control internal activity during testing.

Each ITC'99 circuit is provided in standard netlist formats, such as Verilog or a
flattened gate-level netlist. These netlists list all gates, inputs, outputs, and
interconnections in the design, serving as the foundation for simulation, synthesis, or

[ X34) testing procedures. In addition, some datasets may include fault models, such as stuck-

at faults or transition faults, which are essential for evaluating the robustness of test
generation tools and fault coverage analysis.

Name | Original Functionality Name | Original Functionality

b01 FSM that compares serial flows b12 1-player game (guess a sequence)

b02 FSM that recognizes BCD numbers b13 Interface to meteo sensors

b03 Resource arbiter b14 Viper processor (subset)

b04 Compute min and max b15 80386 processor (subset)

b05 Elaborate the contents of a memory b16 Hard to initialize circuit (parametric)

b06 Interrupt handler b17 Three copies of b15

b07 Count points on a straight line b18 Two copies of b14 and two of b17

b08 Find inclusions in sequences of numbers b19 Two copies of b14 and two of b17

b09 Serial to serial converter b20 A copy of b14 and a modified version of b14
b10 Voting system b21 Two copies of b14

bi1 Scramble string with variable cipher b22 A copy of b14 and two modified versions of b14

Fig.5.1 Original Functionality of ITC’99 benchmark circuits

What further enhances the utility of ITC'99 is its support for hierarchical testing and
test data compression evaluations. Because the circuits mimic the structure of
complex SoCs, they are particularly suited for hierarchical DFT strategies—where
testing is conducted at the module level before integrating results at the top level. This
hierarchical view reflects how modern chips are actually tested during production,
making 1TC'99 highly relevant for both academic exploration and industrial
application.
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Moreover, ITC'99 benchmarks continue to play an essential role in the development
of machine learning models for power estimation, fault diagnosis, and design
optimization. Researchers often extract features such as gate counts, control logic
density, and switching activity from these circuits to train predictive models for power
consumption, delay estimation, or reliability analysis.

In conclusion, the ITC'99 benchmark suite is far more than a collection of circuits; it
isarich, scalable, and realistic testbed that supports a wide array of research activities
in digital design and testing. Its detailed structure, diversity in circuit characteristics,
and resemblance to real-world applications make it an enduring and invaluable
resource in the EDA community.
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