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ABSTRACT 

 

 
This work presents an in-depth investigation into the analog and radio-

frequency (RF) performance characteristics of a novel Junction-Less Double-Gate 

Metal-Oxide-Semiconductor Field-Effect Transistor (JL-DG-MOSFET) architecture 

featuring a gate oxide stack. The study specifically targets the influence of device 

scaling and structural modifications on analog performance metrics and their 

suitability for high-performance, low-power analog/RF circuit applications. A 

significant aspect of the device's operation is the emergence of quantum mechanical 

effects due to aggressive channel length scaling, which plays a vital role in determining 

its small-signal behavior. 

 

Key Figures of Merit (FOMs) for analog design are analyzed to evaluate 

the efficiency and robustness of the JL-DG-MOSFET. These include the cut-off 

frequency (fT), gain-frequency product (GFP), transconductance-frequency product 

(TFP), output conductance (gd), Early voltage (VEA), intrinsic gain (AV), 

transconductance efficiency (gm/ID), and the transconductance (gm) itself. The behavior 

of these parameters is critically assessed to determine the device's amplification 

capabilities, signal bandwidth handling, and overall analog reliability. 

 

All simulations and characterizations are conducted using the ATLAS 

device simulator, which allows for precise numerical modeling of the JL-DG-

MOSFET under varying biasing and geometrical conditions. The simulated results 

consistently align with theoretical expectations, validating the physical modeling and 

demonstrating the potential of this device structure for future analog and RF integrated 

circuits. The results not only confirm the benefits of using a junction-less structure in 

reducing leakage and variability but also highlight the advantages of double-gate 

control in enhancing electrostatic integrity and analog responsiveness. 

 

This research provides a valuable framework for understanding the analog 

design trade-offs in emerging multi-gate, junction-less transistors and contributes to 

the broader effort of developing energy-efficient, scalable analog devices for next-

generation nanoscale CMOS technologies. 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

Double gate MOSFETs are emerging as one of the most encouraging ways 

to lessen SCEs (Short-channel-effects) as CMOS scaling moves closer to its ideal state. 

Quantum effects [1] are now important in downsized devices in addition to SCEs, 

particularly when the gate length is less than 20 nm. When the gate length of a device 

falls below 20 nm, its electrostatic control rapidly declines. Due to the impact of 

quantum confinement on the carrier's motion, the distribution phenomena and 

transport characteristics of charge carriers differ from those of classical carriers [1]. 

Several analytical models for Junctionless Transistors have been published, including 

Dual Metal Gate engineered Surrounding Gate structure (DMSG) [2], Gate and Drain 

work function engineered Double Gate structure [3, 4], Gate All Around structure 

(GAA) [5], and Electrostatic potential distribution, subthreshold current, threshold 

voltage, and SCEs for Double Gate structure (DG) [6–8]. According to reports, the 

device's performance will be enhanced by inserting the gate-stack, by developing a 

high-K layer over the SiO₂ [9–11]. The JL DG FET's preliminary analysis and result 

are likely to be successful, and they highlight the necessity of a thorough examination 

of the devices' applicability for contemporary wireless communication systems, 

including radio frequency integrated circuit (RFIC) design, cellular phones, wireless 

networks, navigation systems, radio broadcasting, etc. 

 

As semiconductor fabrication technologies push the boundaries of 

miniaturization, traditional transistor architectures increasingly struggle with 

performance degradation. Key challenges include threshold voltage roll-off, poor 

subthreshold swing, and increased leakage currents, all of which can compromise 

power efficiency and signal fidelity. To address these limitations, researchers have 

proposed various multigate structures, among which the Double-Gate (DG) 

configuration stands out due to its superior electrostatic integrity. Meanwhile, the 

junctionless approach simplifies fabrication by eliminating abrupt junctions, offering 

process-friendly characteristics and reduced variability in ultra-scaled nodes [12]. By 

merging the double-gate architecture with junctionless operation, the resulting device 

benefits from improved control over channel potential and suppression of short-

channel effects. This synergy also enables a more uniform electric field distribution 

along the channel, which can enhance carrier transport and device reliability [13]. For 

analog and RF circuit designers, these characteristics translate into better linearity,  
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increased transconductance, and lower noise – all critical in modern high-

performance electronics. Furthermore, incorporating a gate stack that uses high-κ 

dielectric materials improves gate capacitance without compromising gate leakage, 

ensuring high-frequency compatibility while maintaining power efficiency [14]. 

 

The analog/RF performance of conventional double gate devices has been 

studied by several researchers [15-17], but there are just a few papers on JL DG devices 

that explore their usefulness for analog/mixed-signal system-on-chip applications [18, 

19]. Cho et al. [18] investigated the RF performance of JL nanowire devices in a recent 

work; however, the impact of downscaling on the RF/analog performance was not 

thoroughly examined and is still largely unknown. Therefore, better RFIC design for 

wireless communication systems requires an understanding of how gate-length down 

scaling affects the DG JL FET's performance figure-of-merits. To ensure low inter-

modulation and higher-order, the RF system must be linear [19]. Numerous system-

level methods that need for intricate circuitry are currently available to reduce these 

unwanted signals with frequencies distinct from the input signal. 

 

With increasing demands for compact and power-efficient transceivers in 

5G, IoT, and wearable technologies, the focus has shifted toward intrinsic linearity at 

the transistor level. While system-level linearization techniques such as feedback and 

digital predistortion are widely used, they come with trade-offs in complexity and 

energy consumption [20]. By achieving better linearity within the device itself, circuit 

designers can build simplified and more efficient RF systems. Junctionless DG 

MOSFETs, owing to their symmetric architecture and undoped channel, provide a 

promising platform for these applications [21]. 

 

Thus, it becomes beneficial to make an effort to improve linearity at 

device-level. Analog & RF (radio-frequency) performance analysis of nanoscale 

devices is made possible by current research. Linearity, noise figure, cutoff frequency, 

and inherent gain make up the performance requirements for analog and radio 

frequency circuits [22–27]. 

 

In addition to linearity, parameters like high gain-bandwidth product and 

low output conductance are essential for RF amplifier stages and analog signal 

processing. Junctionless DG MOSFETs inherently demonstrate low parasitic 

resistance due to their uniformly doped channel, which also reduces sensitivity to 

random dopant fluctuations—a major source of mismatch in scaled CMOS [28]. Their 

simplified structure and robust control over the conduction path make them suitable 
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candidates for integration into RF front-end components, including low-noise 

amplifiers (LNAs), voltage-controlled oscillators (VCOs), and mixers [29]. 

 

Moreover, the electrostatic potential across the channel in JL DG devices 

tends to remain more stable across process variations, allowing more predictable 

behavior in both analog and digital domains. This is crucial when transistors are used 

in systems-on-chip (SoCs), where maintaining analog integrity alongside high-speed 

digital blocks becomes increasingly difficult due to substrate noise coupling and 

voltage fluctuations [30]. 

 

Another vital consideration is the role of quantum effects in ultra-scaled 

devices. As dimensions shrink below 10 nm, the assumptions of classical charge 

transport models begin to break down. Instead, phenomena like quantum confinement 

and tunneling become dominant, altering capacitance, threshold voltage, and mobility 

[31]. Accurate modeling of such effects is essential not only for understanding device 

physics but also for correctly predicting performance under real operating conditions. 

Advanced simulation platforms, including Silvaco ATLAS TCAD, incorporate 

quantum-corrected drift-diffusion models that help bridge this gap [32]. 

 

Therefore, in this paper, our main interest is to investigate both, the analog 

application for the Junctionless Double-Gate Stack MOSFET whilst considering 

quantum mechanical effects. To investigate analog & RF performance parameters of 

the device for wireless-communication applications, section IV depicts the results for 

the same. The section is divided in four parts respectively studying the analog, RF and 

linearity for the proposed device. Parameters like intrinsic gain (AV), TGF, gd, gm, VEA, 

fT, Gain-Bandwidth Product, S parameters, VIP2, VIP3 & others are extensively 

discussed here. Simulations are done using the Silvaco ATLAS TCAD software show 

that the device parameters are suitable for better performance. 

 

Ultimately, the ability of JL DG MOSFETs to meet the rigorous demands 

of modern analog/RF applications lies in their unique blend of structural simplicity, 

robust scalability, and superior electrostatics. When accurately modeled with quantum 

effects and verified through simulation, these devices show great promise for 

integration into next-generation wireless communication systems and analog signal 

chains [33, 34]. 
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CHAPTER 2 

 

LITERATURE SURVEY 

 

 

 

2.1 EVOLUTION OF MOSFET ARCHITECTURES FOR SCALING 

 

The relentless pursuit of Moore's Law has driven the miniaturization of 

MOSFETs, leading to significant challenges in maintaining device performance at 

nanometer scales. Traditional bulk MOSFETs suffer from short-channel effects 

(SCEs), including threshold voltage roll-off, drain-induced barrier lowering (DIBL), 

and increased leakage currents, which degrade device reliability and performance [35]. 

To mitigate these issues, multi-gate structures such as Double-Gate (DG) MOSFETs 

have been proposed. DG MOSFETs offer superior electrostatic control over the 

channel, effectively suppressing SCEs and improving subthreshold characteristics 

[36]. The symmetrical gate configuration in DG MOSFETs enhances gate control, 

leading to improved scalability and performance in analog and RF applications [37]. 

 

2.2 JUNCTIONLESS TRANSISTOR CONCEPT AND INTEGRATION WITH 

DG ARCHITECTURE 

 

The Junctionless (JL) transistor concept emerged as a solution to the 

complexities associated with junction formation in traditional MOSFETs. In JL 

transistors, the channel is uniformly doped, and current conduction is modulated by 

gate-induced depletion, eliminating the need for abrupt junctions [38]. 

 

Colinge et al. introduced the JL transistor, demonstrating its potential for 

simplified fabrication and reduced variability [39]. Integrating the JL concept with DG 

architecture combines the benefits of both approaches, resulting in Junctionless 

Double-Gate (JL DG) MOSFETs that exhibit excellent electrostatic control and 

simplified manufacturing processes [40].  Analytical and simulation studies have 

explored various JL DG structures, including Dual Material Gate (DMG) 

configurations, which further enhance device performance by modulating the electric 

field distribution along the channel [41]. These advancements have shown promise in 
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improving analog and RF characteristics, making JL DG MOSFETs suitable for high-

frequency applications. 

 

2.3 GATE STACK ENGINEERING AND HIGH-Κ INTEGRATION 

 

As device dimensions shrink, gate leakage becomes a significant concern. 

Incorporating high-κ dielectrics into the gate stack has been a pivotal development in 

addressing this issue. High-κ materials, such as HfO₂, allow for increased gate 

capacitance without the associated leakage currents of traditional SiO₂ dielectrics [42]. 

 

In JL DG MOSFETs, gate stack engineering with high-κ materials 

enhances gate control, reduces leakage currents, and improves overall device 

performance. Studies have shown that integrating high-κ dielectrics leads to better 

subthreshold swing, increased transconductance, and improved analog gain, which are 

critical parameters for analog and RF applications [43]. 

 

Furthermore, the combination of high-κ dielectrics with metal gates allows 

for work function tuning, enabling precise threshold voltage control. This integration 

is essential for optimizing the performance of JL DG MOSFETs in analog and RF 

circuits, where device linearity and gain are paramount [44]. 

 

2.4 ANALOG AND RF PERFORMANCE METRICS IN SCALED DEVICES 

 

The analog and RF performance of MOSFETs is characterized by 

parameters such as transconductance (gm), output conductance (gd), intrinsic gain (AV), 

cutoff frequency (fT), and maximum oscillation frequency (fmax). These metrics are 

crucial for evaluating device suitability in high-frequency applications. In JL DG 

MOSFETs, the elimination of junctions and the double-gate configuration contribute 

to enhanced analog and RF performance. Studies have reported improvements in gm 

and AV, as well as higher fT and fmax values, compared to conventional MOSFETs [45]. 

However, scaling down the gate length in JL DG MOSFETs presents challenges. 

Shorter gate lengths can lead to increased SCEs, affecting device linearity and gain. 

Research has indicated that careful optimization of device dimensions and materials is 

necessary to maintain high analog and RF performance in scaled JL DG MOSFETs 

[46]. 
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2.5 LINEARITY AND NOISE IN NANOSCALE MOSFETS 

 

Linearity is a critical parameter in analog and RF circuits, as nonlinearities 

can lead to signal distortion and intermodulation. JL DG MOSFETs offer advantages 

in linearity due to their uniform doping and symmetrical structure, which result in a 

more uniform electric field distribution along the channel [47]. Noise performance, 

particularly flicker (1/f) noise and thermal noise, is another important consideration. 

The absence of abrupt junctions in JL DG MOSFETs reduces carrier trapping and 

scattering, leading to lower noise levels. This characteristic makes JL DG MOSFETs 

attractive for low-noise amplifier applications in RF circuits [48]. 

 

2.6 QUANTUM EFFECTS AND THE NEED FOR ACCURATE MODELING 

 

As MOSFET dimensions approach the nanometer scale, quantum 

mechanical effects become significant. Quantum confinement and tunneling 

phenomena can alter carrier transport, affecting device characteristics such as 

threshold voltage and subthreshold swing. 

 

Accurate modeling of these quantum effects is essential for predicting 

device behavior and performance. Advanced simulation tools, such as TCAD, 

incorporate quantum mechanical models to analyze the impact of quantum effects on 

JL DG MOSFETs. Studies have shown that quantum confinement can lead to increased 

threshold voltage and reduced carrier mobility, necessitating careful design 

considerations [49]. 

 

 

2.7 IDENTIFIED RESEARCH GAPS 

 

Despite the advancements in JL DG MOSFET research, several areas 

require further investigation: 

• Comprehensive Analysis: While individual aspects of JL DG MOSFET 

performance have been studied, a holistic analysis encompassing analog, RF, linearity, 

and noise characteristics is lacking. 

• Quantum Effects: The impact of quantum mechanical effects on analog and RF 

performance metrics in JL DG MOSFETs needs more in-depth exploration.  

• Scaling Challenges: Understanding the trade-offs and limitations associated with 

scaling JL DG MOSFETs for high-frequency applications remains an open area of 

research. 
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Addressing these gaps is crucial for the development of JL DG MOSFETs optimized 

for analog and RF applications in advanced integrated circuits. 
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CHAPTER 3 

 

QUANTUM EFFECTS IN MOSFETS 

 

 

 

3.1 SCALING OF MOSFET 

 

Challenge 1: Threshold Voltage and Leakage Trade-Offs 

To preserve the switching speed of MOSFETs at lower supply voltages, it 

is necessary to proportionally reduce the threshold voltage (VT). However, this 

reduction introduces unintended consequences. A lower VT leads to an increase 

in subthreshold leakage current, which significantly impacts the power 

efficiency and performance reliability of the device. Moreover, achieving a 

lower threshold voltage often necessitates thinning the gate oxide layer. This, 

in turn, results in an increase in gate oxide tunneling current—a form of leakage 

that further deteriorates the device’s performance by diminishing the Ion/Ioff 

current ratio, thus reducing switching precision and operational control. 

 

 

Challenge 2: Short-Channel Effects and Electrostatic Control 

The continual miniaturization of MOSFETs also introduces electrostatic 

integrity issues. As the channel length shrinks, two-dimensional electrostatic 

interactions between the gate and the source/drain regions become more prominent. 

This electrostatic charge sharing leads to a further decline in threshold voltage and an 

increase in subthreshold swing. Consequently, the gate’s control over the channel 

weakens, leading to a lower Ion/Ioff  ratio and degraded switching behavior. These short-

channel effects limit the scalability and reliability of conventional MOSFET 

architectures. 
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Fig. 3.1  Tunneling current in a MOSFET. Igs: tunneling between gate and source; Igc: 

tunneling between gate and channel; Igd: tunneling between gate and drain 

 

 

3.2 BLOCH’S THEOREM 

 

A Bloch wave (or Bloch function) describes the quantum behavior of 

particles, such as electrons, in a periodic potential—typically a crystal lattice. It is 

mathematically represented as a plane wave modulated by a function with the 

periodicity of the lattice[50]. According to Bloch's theorem, the wave function Ψ of an 

electron in a crystalline solid can be written in the form: 

 

                                                         𝛹𝑟 = ⅇⅈk⋅ru(r) (3.1) 

 

Here, u(r) is a periodic function with the same periodicity as the crystal 

lattice. This theorem implies that the energy eigenstates in a crystal can be completely 

described using Bloch waves, laying the foundation for understanding electronic band 

structures [50]. In semiconductors, the periodic function uc(r) satisfies: 

 

                                                            𝑢𝑐 = 𝑢𝑟(𝑟 + 𝑅⃗⃗) (3.2) 

 

where R is a lattice vector. Similarly, in reciprocal space, for a wave vector 

k, there exists a periodic function ϕk such that: 

   ɸ (k) =ɸ (k)(r ⃗+R ⃗ )             (3.3)                              

ɸ 𝑐 =  𝑒𝑖𝑘𝑟 ɸ 𝑘(𝑘⃗⃗, 𝑟) (3.4) 
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Solving Eqns (3.1) and (3.2) provides the E–k relationship, which 

describes the dependence of energy on wave vector, ultimately determining the band 

structure. Carrier motion in semiconductors follows this E–k relationship, and for 

weak electric fields, electrons and holes can be treated as quasi-classical particles with 

an effective mass m∗ defined by: 

𝑚∗ =

1
ℏ2 𝜕2𝐸

𝜕ĸ2
(3.5) 

 

 

In such conditions, the carriers’ quantum behavior is masked, and their 

motion can be modeled using classical mechanics. However, when dimensions become 

comparable to the de Broglie wavelength or when subjected to strong external fields, 

this approximation breaks down. The external field can no longer be treated as a small 

perturbation, and quantum mechanical effects (QMEs) such as tunneling and quantized 

energy levels become significant. In such nanoscale regimes, one must solve the time-

independent Schrödinger equation, incorporating both the periodic crystalline 

potential UC(r) and the external potential VE(r): 

 

−
ℏ2

2𝑚0
∇2𝛹𝑐 + [𝑈𝐶(𝑟) + 𝑉𝐸(𝑟)]Ψ𝑐(𝑟) = 𝐸𝛹𝑐(𝑟) (3.6) 

 

 

where: 

• ℏ=h/2𝜋= 1.054 x 10-34 J.S is the reduced Planck constant, 

• m0=0.911×10-27 kg is the electron rest mass, 

• 𝑈𝐶(𝑟)  is the periodic potential from the crystal lattice, 

• 𝑉𝐸(𝑟) represents the potential due to an external electric field. 

 

In large crystals, 𝑉𝐸(𝑟) is usually negligible compared to 𝑈𝐶(𝑟), and the equation 

simplifies to: 

−
ℏ2

2𝑚0
∇2𝛹𝑐 + 𝑈𝐶(𝑟)Ψ𝑐(𝑟) = 𝐸𝛹𝑐(𝑟) (3.7) 

 

This simplified model is valid only when quantum interference and boundary effects 

are negligible [51]. 
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3.3 QUANTUM MECHANICAL EFFECTS 

 

3.3.1 Introduction to Quantum Tunneling 

 

Quantum tunneling is a fundamental phenomenon of quantum mechanics 

wherein a subatomic particle transitions through a potential energy barrier, despite 

possessing insufficient kinetic energy to overcome it classically. This effect is 

explained through the probabilistic nature of wavefunctions, where a particle’s 

presence vanishes from one side of a potential well and reappears on the other side 

without any conventional current flowing within the barrier itself. This non-intuitive 

behavior, although negligible in larger devices, becomes increasingly significant in 

nanoscale semiconductor structures such as modern MOSFETs (Metal-Oxide-

Semiconductor Field-Effect Transistors). 

 

 

3.3.2 Tunneling Concerns in Scaled MOSFETs 

 

With aggressive downscaling of MOSFETs, reducing the gate oxide 

thickness is essential to enhance gate control and suppress short-channel effects. 

However, this approach introduces a critical challenge—quantum tunneling of carriers 

through the thin gate oxide. Though the resulting gate leakage current might be minor 

compared to the drain current (Id), its cumulative impact substantially elevates the 

standby power consumption of the integrated circuit, especially in low-power 

applications. 

 

The thickness of the gate dielectric directly influences the tunneling 

probability. A thicker oxide layer limits the extension of electron wavefunctions into 

the barrier, reducing tunneling effects. Conversely, in sub-2 nm silicon dioxide layers, 

electron wavefunctions penetrate the barrier easily, resulting in considerable gate 

leakage current due to tunneling [50][51]. 

 

 

3.3.3 Tunneling Mechanisms in MOSFETs 

 

In scaled devices, several tunneling processes are observed: 

• Electron Conduction Band (ECB) Tunneling: Dominates in n-MOSFETs, 

where electrons tunnel from the gate into the conduction band of the channel. 
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• Hole Valence Band (HVB) Tunneling: Prominent in p-MOSFETs, with holes 

tunneling into the valence band. 

 

• Electron Valence Band (EVB) Tunneling: Occurs only under high gate 

voltages that exceed typical digital CMOS operating levels, rendering it negligible for 

practical circuit operation [52]. 

 

The prevalence of tunneling is strongly influenced by the energy band 

alignment and the barrier height, which itself is determined by the electron affinity 

difference between the oxide and the adjacent materials (metal or semiconductor). This 

creates a potential barrier given by: 

 

𝐸 = 𝑞𝜒 (3.8) 

 

Where 𝜒 is the electron affinity of the oxide and q is the elementary charge. 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.2 Energy band diagram for tunneling components in an MOS structure 

 

 

 

 

 

 



13 
 

3.3.4 Trapezoidal Potential Barrier and WKB Approximation 

 

Fig 3.3 Potential at the junction 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.4 Potential distribution in the gate-to-channel direction for a metal-gate 

MOSFET 

 

Due to the applied gate-to-source voltage Vgs, the potential barrier assumes 

a trapezoidal shape. The voltage drop across the oxide is given as[53]: 

      Vox = Vgs - VFB - ϕS            (3.9) 
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Where VFB is the flat-band voltage and ϕS is the surface potential. Consequently: 

       qVgs = EFs - EFm           (3.10) 

 

Using the Wentzel–Kramers–Brillouin (WKB) approximation, the 

tunneling probability through a trapezoidal barrier is estimated as: 

𝐷(𝐸𝑥) = −
2

ℏ
∫ √2𝑚𝑂𝑋(𝐸𝑏(𝑥) − 𝐸𝑥) 𝑑𝑥

𝑥2

𝑥1

(3.11) 

 

Where: 

• Ex is the electron's kinetic energy in the x-direction. 

• tox is the oxide thickness. 

• 𝑚𝑂𝑋 = 0.35𝑚𝑜, the effective mass of the electron in the oxide. 

• Eb is the average potential barrier height: 

𝐸𝑏(𝑥) = 𝑞𝜒 + 𝑞𝑉𝑜𝑥.
𝑥

𝑡𝑜𝑥

(3.12) 

 

 

 

 

3.3.5 Many-Electron Case and Fermi-Dirac Statistics 

 

 

For systems with many electrons, individual electrons can occupy a 

continuum of energy states. The probability of occupancy of any energy level E is 

defined by the Fermi-Dirac distribution: 

𝑓(𝐸) =
1

1 + ⅇxp (
𝐸 − 𝐸𝑓

𝑘𝑇
)

(3.13)
 

 

Where Ef is the Fermi energy, k is Boltzmann's constant, and T is the absolute 

temperature. Although hole tunneling is theoretically possible, the higher potential 

barrier for holes compared to electrons renders hole tunneling significantly less 

probable in typical device conditions. 

 

3.3.6 Tunneling Effects in Polysilicon Gate Structures 

 

In MOSFETs using polysilicon gates, the voltage drop across the gate itself 

must be accounted for. This causes an upward band bending near the polysilicon/oxide 

interface. The oxide voltage drop becomes: 
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𝑉𝑂𝑋 = 𝑉𝑔𝑠 − 𝜑𝑠 − 𝑉𝑝 (3.14) 

 

Where Vp is the voltage drop within the polysilicon gate given by: 

𝑉𝑝 =
1

2
(

𝑞

𝜖𝑆𝑖
) 𝑁𝐺𝑎𝑡𝑒𝑋𝐺𝑎𝑡𝑒

 2 (3.15) 

 

Here, NGate is the doping concentration and XGate is the gate depletion depth. For Vgs> 

VT, the depletion width becomes: 

𝑋𝐺𝑎𝑡𝑒 =
𝜖𝑆𝑖

𝜖𝑜𝑥
𝑡𝑜𝑥√(1 +

2𝜖𝑜𝑥
2 (𝑉𝑔𝑠 − 𝜑𝑠 − 𝑉𝐹𝐵)

𝑞 𝑁𝐺𝑎𝑡𝑒𝜖𝑆𝑖𝑡𝑜𝑥
2

) − 1 (3.16) 

 

 

 

 

 

 

 

 

 

Fig. 3.5 Potential diagram for the poly-silicon gate MOSFET 

 

As the gate voltage increases, polysilicon depletion leads to reduced 

electric field at the oxide interface. Therefore, the tunneling density in polysilicon 

gates is typically lower than that in metal gates at the same gate bias. 

 

3.3.7 High-κ Gate Dielectrics as a Solution 

 

To suppress direct tunneling while preserving gate control, the 

semiconductor industry has transitioned from conventional SiO₂ to high-dielectric 

constant (high-κ) materials like hafnium oxide (HfO₂) and hafnium silicate (HfSiO₂). 

These materials enable an increase in physical thickness while maintaining or 
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improving the gate capacitance, which is crucial for controlling short-channel effects 

without incurring excessive leakage[54]. 

The equivalent oxide thickness (EOT) of a high-κ dielectric compared to SiO₂ is 

defined as: 

𝐸𝑂𝑇 =
𝜖𝑜𝑥

ĸ𝜖𝑜
𝑡1 (3.17) 

 

Where t1 is the physical thickness of the high-κ dielectric, and κ is its relative dielectric 

constant. A higher κ value effectively reduces the EOT, enhancing gate control while 

suppressing quantum tunneling currents[55]. 
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CHAPTER 4 

 

QUANTIZATION MODEL 

 

 

 

The quantization model is instrumental in mitigating short-channel effects 

(SCEs) in MOSFETs. Advancements in device technology have led to the adoption of 

highly doped channels and ultra-thin gate oxides. While the increased vertical electric 

field aids in maintaining gate control over the channel against drain potential 

influences, it also confines the movement of the narrow potential well[56]. 

 

From quantum theory, the energy levels of channel carriers are discrete 

rather than continuous, as predicted by classical models. This quantization leads to a 

redistribution of carrier density near the Si/SiO₂ interface compared to classical 

predictions. 

 

 

 

 

 

 

 

 

Fig. 4.1 Probability distribution 

 

To analyze quantum mechanical effects (QMEs) in MOSFETs, it's 

essential to introduce the wave function characterizing inversion charges based on the 

Schrödinger equation: 

−
ℏ2

2𝑚∗
∇2Ψ(x, y) − 𝑞𝜙(𝑥, 𝑦)Ψ(𝑥, 𝑦) = 𝐸Ψ(𝑥, 𝑦) (4.1) 
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Where: 

• ℏ is the reduced Planck's constant, 

• m∗ is the effective mass of electrons in silicon, 

• Ψ(x,y) is the electron wavefunction, 

• q is the electron charge, 

• ϕ(x,y) is the electric potential, 

• E is the energy of the electrons. 

The electric potential ϕ(x,y) is determined by the Poisson equation: 

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝜙(𝑥, 𝑦)

𝜕𝑦2
=

𝑞

𝜖𝑆𝑖
(𝑁𝐴 + 𝑛(𝑥, 𝑦)) (4.2) 

 

Where: 

• εSi is the permittivity of silicon, 

• NA is the doping concentration of the channel, 

• n(x,y) is the electron density. 

 

 

 

 

 

 

 

 

 

 

Fig. 4.2  Cross-sectional view of double gate junctionless transistor 

 

Figure 2.1 illustrates a double-gate (DG) junctionless n-MOSFET. Here, 

HG, tox, and d represent the thicknesses of the metal layer, oxide layer, and channel, 

respectively. L, Lsp, LS, and LD denote the lengths of the channel, spacer, source, and 

drain regions, respectively. The coordinate system is defined with the Y and X 

directions along and perpendicular to the channel, respectively, and the Z direction 
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along the channel's width. To solve for the actual DG junctionless MOSFET, we first 

consider a simplified approach by solving a one-dimensional (1D) Schrödinger 

equation for an infinite potential well. 

 

4.1 ONE-DIMENSIONAL INFINITE POTENTIAL WELL 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.3 Potential Well 

 

 

In this model, the potential V(x)V(x)V(x) is defined as: 

𝑉(𝑥) = {
0, 0 < 𝑥 < 𝑎

∞, 𝑥 ≤ 0
(4.3) 

 

The wave function Ψ(x)must vanish where V(x)=∞, leading to the boundary 

conditions: 

𝛹(𝑥) = 0∀𝑥 < 0, 𝑥 > 𝑎 (4.4) 

 

Within the interval 0<x<a0 < x < a0<x<a, the time-independent Schrödinger equation 

becomes: 

𝑑2𝛹

𝑑𝑥2
= −

2𝑚𝐸

ℏ2
𝛹 (4.5) 
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Letting  𝑘2 =
2𝑚𝐸

ℏ2 , we have: 

⇒
𝜕2𝛹

𝜕𝑥2
= −𝑘2𝛹 (4.6) 

 

The general solution is: 

  
𝛹(𝑥) = 𝑐1co s(𝑘𝑥) + 𝑐2si n(𝑘𝑥) (4.7) 

 

Applying the boundary conditions: 

1. Ψ (0) =0 implies c1=0, 

2. Ψ(a)=0 leads to c2sin(ka)=0, which implies ka=nπ, where n=1,2, 3…n 

Therefore, the normalized wave function is: 

 

                                                𝛹𝑛 = √
2

𝑎
 sin(𝑛𝜋𝑥 / 𝑎)            (4.8) 

The corresponding energy levels are: 

 

𝐸 =
ℏ2𝑘2

2𝑚
=

ℏ2𝜋2𝑛2

2𝑚𝑎2
∀𝑛 = 1,2,3,4, … (4.9) 

 

 

This model provides a foundational understanding of quantum confinement in 

semiconductor devices. 

 

4.2 TWO-DIMENSIONAL SCHRÖDINGER EQUATION IN A     

RECTANGULAR POTENTIAL WELL 

 

Extending the analysis to two dimensions, consider a rectangular potential 

well where the potential energy U(x,y) is[57]: 

𝑈(𝑥, 𝑦) = {
0, 𝑥 ≤

𝑑

2

∞, 𝑥 ≥
𝑑

2

(4.10) 
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Assuming electron motion in the x and y directions, the two-dimensional Schrödinger 

equation is: 

−
ℏ2

2𝑚∗
∇2𝛹𝑛(𝑥, 𝑦)⬚ − 𝑞ϕ(𝑥, 𝑦)Ψ𝑛(𝑥, 𝑦) = 𝐸𝑛𝛹𝑛(𝑥, 𝑦) (4.11) 

 

Within the well, where U(x,y)=0, the equation simplifies to[58]: 

−
ℏ2

2𝑚∗ [
𝜕2𝛹𝑛(𝑥,𝑦)

𝜕𝑥2 +
𝜕2𝛹𝑛(𝑥,𝑦)

𝜕𝑦2 ]     = 𝐸𝑛𝛹𝑛(𝑥, 𝑦)                    (4.12)

    

 

Employing separation of variables: 

𝛹(𝑥, 𝑦) = 𝑋(𝑥)𝑌(𝑦) (4.13) 

 

Substituting into the equation yields: 

1. For X(x): 

     ⇒  −
ℏ2

2𝑚∗ [
𝜕2𝛹𝑛(𝑥,𝑦)

𝜕𝑥2 ]     = 𝐸𝑥𝑋(𝑥)         (4.14) 

 

2. For Y(y): 

     ⇒ −
ℏ2

2𝑚∗ [
𝜕2𝛹𝑛(𝑥,𝑦)

𝜕𝑦2 ]     = 𝐸𝑥𝑌(𝑦)          (4.15) 

 

 

Where E=Ex+Ey. 

Solving for X(x): 

𝑋(𝑥) = 𝐴𝑥 sin(𝑘𝑥𝑥) + 𝐵𝑥co s(𝑘𝑥𝑥) (4.16) 

 

Applying boundary conditions: 

• X(
𝑑

2
)=0,               (4.17) 

• X(−
𝑑

2
)=0,               (4.18) 

We find that: 

𝑘 =
𝑛𝜋

𝑑
∀𝑛 = 1,2,3, … (4.19) 

 

Similarly, for Y(y), assuming infinite potential walls at y=0 and y=L: 
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𝑌(𝑦) = 𝐴𝑦 sin(𝑘𝑦𝑦) + 𝐵𝑦co s(𝑘𝑦𝑦) (4.20) 

 

Applying boundary conditions: 

• Y(0)= 0,                (4.21) 

• Y(L)= 0,                (4.22) 

We deduce: 

𝑘 =
𝑚𝜋

𝐿
∀𝑛 = 1,2,3, … (4.23) 

The normalized wave function is[59]: 

Ψ𝑛,𝑚(𝑥, 𝑦) = √
2

𝑑
sin

𝑛𝜋𝑥

𝑑
. √

2

𝐿
sin

𝑚𝜋𝑦

𝐿
 (4.24) 

 

The energy levels are: 

𝐸𝑛,𝑚 =
ℏ2𝜋2

2𝑚∗
(

𝑛2

𝑑2
+

𝑚2

𝐿2
) (4.25) 

 

These quantized energy states are pivotal in understanding the behavior of electrons in 

confined systems, such as quantum wells and nanostructures. 
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CHAPTER 5 

 

BAND STRUCTURE AND PROPERTIES 

 

 

 

The band structure of a solid is a fundamental concept in solid-state 

physics that describes the range of energy levels that electrons within a material can 

occupy. It is critical in determining whether a material behaves as a conductor, 

semiconductor, or insulator, based on the distribution and separation of these energy 

levels. Specifically, a band structure represents the allowed energy states of electrons 

as a function of their wave vector 𝑘⃗⃗⃗, which corresponds to momentum in a periodic 

crystal lattice [60][61]. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.1 Band Structure of Silicon 

 

 

A band structure diagram is a graphical representation that maps the 

relationship between electron energy and momentum within the first Brillouin zone, a 

uniquely defined region in reciprocal space. These diagrams are often referred to as 
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“spaghetti plots” due to the tangled appearance of multiple energy bands. Despite their 

complexity, they allow researchers to extract crucial information about a material’s 

electronic behavior. For instance: 

• If the valence band maximum (VBM) and the conduction band minimum 

(CBM) do not overlap and are separated by an energy gap, the material is an 

insulator or a semiconductor, depending on the size of the gap [60]. 

• If these bands overlap or touch, the material exhibits metallic or semi-metallic 

behavior. 

• The nature of the band gap (direct or indirect) is determined by whether the 

VBM and CBM occur at the same 𝑘⃗⃗⃗-point in the Brillouin zone. 

• The curvature of the energy bands around the extrema indicates the effective 

mass of charge carriers, and thus provides insight into carrier mobility [62]. 

 

For instance, the band structure of silicon (Si) reveals that its CBM and 

VBM are located at different 𝑘⃗⃗⃗-points. The conduction band minimum lies near the X 

point, while the valence band maximum is near the Γ point. This results in an indirect 

band gap of approximately 1.1 eV at room temperature (though some computational 

models may estimate it around 0.62 eV due to underestimation in Density Functional 

Theory without advanced corrections) [63]. This indirect gap makes Si less efficient 

for optoelectronic applications like LEDs, where direct recombination of electrons and 

holes is desired. 

 

The energy eigenvalues E(𝑘⃗⃗⃗) that constitute the band structure are 

calculated using solutions to the Schrödinger equation with a periodic potential, as 

described by Bloch’s theorem. These calculations are carried out in reciprocal space 

(k-space), which reflects the momentum characteristics of electrons rather than their 

positions [60][61]. The use of wave vector 𝑘⃗⃗⃗, representing the electron’s crystal 

momentum, simplifies the problem by taking advantage of the periodicity of the lattice. 

 

The crystal momentum (also known as quasi-momentum) is defined by: 

𝑝⃗𝑐𝑟𝑦𝑠𝑡𝑎𝑙 = ℏ 𝑘⃗⃗⃗ (5.1) 

 

Where: 

• 𝑝⃗𝑐𝑟𝑦𝑠𝑡𝑎𝑙 is the crystal momentum, 

• ℏ  is the reduced Planck’s constant, 

• 𝑘⃗⃗⃗ is the wave vector. 
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In crystals, the allowed 𝑘⃗⃗⃗-values are constrained to the first Brillouin zone, 

which is the Wigner-Seitz cell in reciprocal space [61]. This zone contains all the 

unique momentum states of electrons due to the periodic nature of the lattice. 

 

For face-centered cubic (FCC) lattices—common in semiconductors such 

as GaAs, Si, and Ge—the Brillouin zone exhibits high-symmetry points labeled as Γ 

(center), X, L, and K, among others. The electronic band extrema often lie at or near 

these symmetry points. For example: 

• In Silicon, the CBM is at the X point, and the VBM is at Γ → indirect gap [4]. 

• In Gallium Arsenide (GaAs), both CBM and VBM are at Γ → direct gap, which 

is optimal for photon emission [62]. 

 

Thus, band structure analysis serves as a powerful predictive tool for 

determining the electronic, optical, and transport properties of materials. 

Understanding how these bands arise, shift with strain, doping, or size (as in 

nanostructures), and interact with external fields is crucial for the design of 

semiconductor devices like transistors, solar cells, photodetectors, and quantum dots 

[62][63]. 

 

Fig. 5.2- Brillouin Zone for fcc lattice 

 

To understand the origin of electronic band structures, it is necessary to 

begin with the quantum mechanical treatment of a free particle, particularly how its 

energy relates to its wavenumber k. This foundation is essential for progressing to the 

more complex periodic systems found in crystalline solids. 
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We start by solving the time-independent Schrödinger equation for a free 

particle moving in one dimension, where no external potential is acting on the system. 

The governing equation is: 

−

ℏ2

2𝑚 𝜕2𝛹(𝑥)

𝜕𝑥2
= 𝐸𝛹(𝑥) (5.2)

 

where: 

• ℏ is the reduced Planck constant, 

• m is the mass of the particle, 

• Ψ(x) is the spatial part of the wave function, 

• and E is the total energy of the particle. 

A trial solution to this differential equation, motivated by the wave-like nature of 

particles, is: 

Ψ(𝑥) = 𝐶𝑒𝑖𝑘𝑥 (5.3) 

 

where C is a normalization constant, i=√−1, and k is the wavenumber, which 

characterizes the number of wave cycles per unit length. Substituting this into the 

Schrödinger equation yields: 

𝜕2𝛹(𝑥)

𝜕𝑥2
= 𝑖2𝑘2𝐶𝑒𝑖𝑘𝑥 = −𝑘2𝐶𝑒𝑖𝑘𝑥 (5.4) 

⇒

ℏ2

2𝑚 𝜕2𝛹(𝑥)

𝜕𝑥2
=

ℏ2

2𝑚
𝑘2𝐶𝑒𝑖𝑘𝑥 (5.5)

 

⇒ 𝐸𝛹(𝑥) =
ℏ2

2𝑚
𝑘2𝛹(𝑥) (5.6) 

Therefore, we obtain the energy–wavevector relation: 

𝐸 =
ℏ2

2𝑚
𝑘2 (5.7) 

 

This quadratic dependence of energy on the wavevector k is a defining 

characteristic of free particle dispersion and forms the basis for understanding electron 

motion in crystalline solids [64][65]. 

 

To develop an intuitive understanding of the wavenumber k, we turn to the 

de Broglie hypothesis, which postulates the wave-particle duality of matter. The de 

Broglie relation is given as: 
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𝜆 =
ℎ

𝑚𝑣
=

ℎ

𝑝
(5.8) 

where: 

• λ is the de Broglie wavelength of the particle, 

• h is Planck's constant, 

• p= mv is the linear momentum of the particle. 

Instead of wavelength λ, we often use the wavenumber defined as: 

𝑘 =
2𝜋

𝜆
(5.9) 

which describes how many wave cycles fit into a unit distance. Combining the two 

expressions, the momentum p can be expressed as: 

𝑝 = ℏ𝑘 (5.10) 

Substituting this into the classical kinetic energy expression: 

𝐸 =
1

2
𝑚𝑣2 =

𝑝2

2𝑚
(5.11) 

⇒ 𝐸 =
ℏ2

2𝑚
𝑘2 (5.12) 

 

This re-derives the quantum mechanical result obtained from solving the 

Schrödinger equation, thereby reinforcing the consistency between classical and 

quantum interpretations of a free particle's energy [66]. 

 

The implications of this relation are profound. Even though kkk is defined 

in terms of inverse length (1/ length), it connects directly to momentum, wavelength, 

and energy. This is particularly crucial in the context of solid-state physics, where 

electrons are not entirely free but instead experience a periodic potential due to the ion 

cores in a crystal lattice. 

 

By extending this simple model to periodic systems using Bloch’s 

theorem, and considering the electron’s behavior in the first Brillouin zone, one derives 

the electronic band structures fundamental to understanding semiconductors, 

insulators, and conductors. In such periodic systems, the same energy–wavevector 

relationship becomes more complex, leading to the formation of allowed energy bands 

and band gaps [64][67]. This foundational understanding is critical for interpreting 
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more advanced topics such as effective mass theory, density of states, and carrier 

dynamics in semiconductors. 

 

5.1 JUSTIFICATION FOR PARABOLIC ENERGY BANDS 

To explore the origin of parabolic energy bands, consider a one-

dimensional chain of atoms. Suppose n atoms are arranged linearly, each separated 

by a uniform distance aa. The position of the nth atom is denoted by xn, while its 

equilibrium position is: 

  xn
eq =na           (5.13) 

The displacement from equilibrium is given by: 

𝛿𝑥𝑛 = 𝑥𝑛 − 𝑥𝑛
𝑒𝑞 (5.14) 

For simplicity, we restrict our analysis to motion along a single spatial dimension. 

 

 

Fig. 5.3 The one-dimensional monatomic harmonic chain. Each ball has mass m and 

each spring has spring constant κ. The lattice constant, or spacing between 

successive masses at rest, is a. 

 

At sufficiently low temperatures, atomic vibrations can be approximated 

using a harmonic potential, similar to that of a simple harmonic oscillator. Under this 

assumption, the total potential energy of the system becomes: 

𝑉𝑇𝑂𝑇 = ∑ 𝑉(𝑥𝑖+1 + 𝑥𝑖) = ∑
𝑘

2
(𝑥𝑖+1 − 𝑥𝑖 − 𝑎)2 (5.15) 

⇒ 𝑉𝑇𝑂𝑇 = ∑
𝑘

2
(𝛿𝑥𝑖+1 − 𝛿𝑥𝑖)2 (5.16) 

The force acting on the nth atom is derived from the gradient of the total potential 

energy: 
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𝐹𝑛 = −
𝜕𝑉𝑇𝑂𝑇

𝜕𝑥𝑛
= 𝑘(𝛿𝑥𝑛+1 − 𝛿𝑥𝑛) + 𝑘(𝛿𝑥𝑛−1 − 𝛿𝑥𝑛) (5.17) 

Which simplifies to: 

𝐹𝑛 = 𝑘(𝛿𝑥𝑛+1 + 𝛿𝑥𝑛−1 − 2𝛿𝑥𝑛) (5.18) 

Assuming a wave-like solution of the form: 

𝛿𝑥𝑛 = 𝐴𝑒𝑖𝑤𝑡−𝑖𝑘𝑥𝑛
𝑒𝑞

= 𝐴𝑒𝑖𝑤𝑘−𝑖𝑘𝑛𝑎 (5.19) 

Substituting into the equation of motion yields: 

−𝑚𝜔2𝐴𝑒𝑖𝜔𝑡−𝑖𝑘𝑛𝑎 = 𝑘𝐴𝑒𝑖𝜔𝑡𝑒−𝑖𝑘𝑎(𝑛+1) (5.20) 

𝑚𝜔2 = 2𝑘(1 − cos 𝑘𝑎) = 4𝑘𝑠𝑖𝑛2
𝑘𝑎

2
(5.21) 

Solving this leads to the dispersion relation: 

𝜔 = 2√
𝑘

𝑚
|sin

𝑘𝑎

2
| (5.22) 

 

 

Fig. 5.4 Dispersion relation for vibrations of the one-dimensional monatomic 

harmonic chain. The dispersion is periodic in k → k +2π/a 

 

This expression describes the dispersion relation, which is inherently 

periodic due to the sinusoidal dependence on k. In the long-wavelength limit (small 

k), the sine function can be approximated linearly, leading to a quadratic dependence 

of energy on wavevector. This quadratic behavior is characteristic of parabolic energy 

bands. A similar approach can be extended to tight-binding models and three-
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dimensional lattices, where the resulting energy-momentum relations also exhibit 

parabolic characteristics near the band extrema. 

 

 

5.2 RECIPROCAL LATTICE AND THE BRILLOUIN ZONE 

 

In the previous discussion, we plotted the dispersion relation only within 

the interval −
𝜋

𝑎
≤ 𝑘 ≤

𝜋

𝑎
. This restriction is not arbitrary—it reflects a fundamental 

property of periodic systems: the dispersion relation is inherently periodic in 

wavevector, such that: 

𝑘 → 𝑘 +
2𝜋

𝑎
(5.23) 

 

This periodicity arises from the underlying periodic structure in real space. 

More generally, any system with spatial periodicity aa will exhibit a corresponding 

periodicity of 
2𝜋

𝑎
 in reciprocal space (also known as k-space). 

 

This concept implies that if a system remains unchanged under a spatial 

translation 𝑥 → 𝑥 + 𝑎, then in reciprocal space, the dispersion relation remains 

invariant under 𝑘 → 𝑘 +
2𝜋

𝑎
. The smallest repeating unit in k-space is referred to as the 

Brillouin zone, with the first Brillouin zone defined as the region centered around k=0, 

typically spanning from −π/a to π/a. The points 𝑘 = ±
𝜋

𝑎
 are symmetric about the origin 

and are separated by 
2𝜋

𝑎
. 

 

It is worth reflecting on why the dispersion curve repeats with 𝑘 → 𝑘 +
2𝜋

𝑎
. 

This periodicity means that a wavevector shifted by 
2𝜋

𝑎
 describes a physically 

indistinguishable oscillation mode from the original. Mathematically, this is because: 

 

𝑒−𝑖2𝜋𝑛𝑝 = 1 (5.24) 

for any integer pp, which implies that wavefunctions differing by integer multiples 

of 2π/a in wavevector are identical at all lattice points. 

This leads to the definition of the reciprocal lattice—a set of wavevectors 

in k-space that are physically equivalent to k=0. In contrast, the original set of atomic 

positions xn=na forms the direct lattice (or real-space lattice). These can be expressed 

as: 



31 
 

𝑥𝑛 = ⋯ − 2𝑎, −𝑎, 0, 𝑎, 2𝑎, … (5.25) 

𝐺𝑛 = ⋯ − 2 (
2𝜋

𝑎
) , −

2𝜋

𝑎
, 0,

2𝜋

𝑎
, 2 (

2𝜋

𝑎
) , … (5.26) 

 

A defining property of the reciprocal lattice is that for any reciprocal lattice 

vector Gm, the following condition holds for all real-space lattice points xn: 

𝑒𝑖𝐺𝑚𝑥𝑛 = 1 (5.27) 

This condition ensures that Gm is a valid member of the reciprocal lattice. 

 

However, this equivalence between k and k+Gm can be conceptually 

challenging. For instance, we often associate a wavevector kk with a wavelength 

λ=2π/k. But if k and k+Gm are physically indistinguishable, which wavelength should 

we use—
2𝜋

𝑘
 or 

2𝜋

𝑘+𝐺𝑚
? 

 

 

Fig. 5.5  Symmetry Points 

 

The resolution lies in recognizing that this equivalence only holds at discrete 

lattice points xn=na. Between these points, the wavefunctions corresponding to k and 

𝑘 +
2𝜋

𝑎
 differ. Therefore, it is meaningless to assign a unique wavelength based solely 

on the wavevector when sampling is restricted to lattice points. This phenomenon, 

where different wavevectors yield indistinguishable results at discrete sampling points, 

is known as aliasing. 
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CHAPTER 6 

 

EFFECTIVE MASS AND ORIENTATION 

 

 

 

6.1 EFFECTIVE MASS AND DISPERSION 

 

Within the framework of the tight-binding model, the energy spectrum of 

electrons in a periodic potential is given by: 

 

𝐸 = 𝐸0 − 2𝑡𝑐𝑜𝑠𝑘𝑎 (6.1) 

 

Unlike the case of free electrons, this dispersion relation exhibits both a 

maximum and a minimum energy, meaning that electrons can only occupy states 

within a specific energy range—referred to as an energy band. The term "band" is used 

to describe both this energy interval and the continuous segment of the dispersion 

curve associated with it. 

 

The dispersion relation—the functional dependence of energy on 

wavevector k—plays a central role in determining how electrons respond to external 

forces. In quantum mechanics, electrons behave as wave packets, and their motion is 

governed by the group velocity, which is derived from the dispersion relation. When 

an electric field is applied, it shifts the wavevectors of the components of the wave 

packet, causing the electron to accelerate. Thus, the electron's response to forces is 

entirely dictated by the shape of the dispersion curve [68]. For a free electron, the 

dispersion is: 

 

𝐸 =
ℏ2k2

2𝑚
(6.2) 

 

where m is the actual mass of the electron. However, near the bottom of a conduction 

band in a solid, the dispersion takes the form: 
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𝐸 =
ℏ2k2

2𝑚∗
(6.3) 

 

Here, m* is the effective mass, which characterizes how the electron 

behaves under external forces in the crystal. This effective mass is not a physical mass 

but a parameter derived from the curvature of the band structure. 

 

 

Fig. 6.1 Different type of bandgap 

 

Interestingly, near the top of the valence band, the dispersion still has the 

same form but with a negative effective mass. This implies that electrons near the 

valence band maximum move in the opposite direction to the applied force. This 

counterintuitive behavior arises purely from the curvature of the band and is 

independent of whether the band is full or empty. If a single electron were placed near 

the top of the valence band (a hypothetical and unstable scenario), it would move 

"backward" in response to a force. 

 

The bandwidth—the energy difference between the top and bottom of the 

band—defines the range of energies for which k-states exist. Outside this range, no 

such states are available. The formation of this band structure is due to hopping 

between atomic orbitals, which causes some states to shift below and others above the 
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original atomic energy level ϵ0. This is analogous to the formation of bonding and 

antibonding orbitals in molecular systems [69] 

 

When the band is partially filled, the total energy of the electrons decreases 

as atoms are brought closer together and the bandwidth increases. This energy 

reduction contributes to the metallic bonding in solids. The mobility of electrons in 

metals allows them to adjust their positions as the lattice deforms, which explains why 

metals are typically soft and malleable. 

 

Near the bottom of the band, the dispersion can be approximated as 

parabolic. Expanding for small kk, we get: 

𝐸(𝑘) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 + 𝑡𝑎2𝑘2 (6.4) 

 

For t<0, the energy minimum occurs at the Brillouin zone boundary k=π/a, 

and the expansion would be centered around that point instead. This parabolic behavior 

mirrors that of free electrons: 

𝐸𝑓𝑟𝑒𝑒(𝑘) =
ℏ2

2𝑚
𝑘2 (6.5) 

 

To match this form, we define the effective mass m∗ such that: 

ℏ2𝑘2

2𝑚∗
= 𝑡𝑎2𝑘2 (6.6) 

⇒ 𝑚∗ =
ℏ2

2𝑡𝑎2
(6.7) 

Thus, the effective mass encapsulates how the electron behaves 

dynamically in the crystal, and it depends entirely on the hopping parameter t, not on 

the actual electron mass. It's also important to note that the wavevector k in this context 

represents the crystal momentum, a quantum number arising from the periodicity of 

the lattice. 

 

 

6.2 EFFECTIVE MASS OF THE ELECTRON 

 

Near the bottom of the conduction band, the energy of an electron can be 

approximated by a quadratic expansion: 
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𝐸 = 𝐸𝑚𝑖𝑛 + 𝛼(𝑘 − 𝑘𝑚𝑖𝑛)2 + ⋯ (6.8) 

 

From this expression, the effective mass m∗ is defined through the second 

derivative of energy with respect to wavevector k: 

ℏ2

𝑚∗
=

𝜕2𝐸

𝜕𝑘2
= 2𝛼 (6.9) 

 

This effective mass characterizes how an electron responds to external 

forces within the crystal. Importantly, it is not the actual mass of the electron but a 

parameter derived from the curvature of the energy band [70] 

 

In modern solid-state physics, it is conventional to define the effective 

mass of holes—which are the absence of electrons near the top of the valence band—

as positive, even though the curvature of the band is downward. The energy of a hole 

near the valence band maximum is given by: 

𝐸ℎ𝑜𝑙𝑒 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 +
ℏ2(𝑘 − 𝑘𝑚𝑎𝑥)2

2𝑚∗
ℎ𝑜𝑙𝑒

(6.10) 

 

Additionally, the energy associated with the absence of an electron in a 

given k-state is the negative of the energy of the electron in that state: 

 

𝐸(𝑎𝑏𝑠𝑒𝑛𝑐𝑒 𝑜𝑓 𝑒− 𝑖𝑛 𝑘 𝑠𝑡𝑎𝑡𝑒) = −𝐸(𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑛 𝑖𝑛 𝑘 𝑠𝑡𝑎𝑡𝑒) (6.11) 

 

This inversion is essential in understanding hole dynamics in semiconductors. 

 

6.3 VALLEYS IN BAND STRUCTURES 

 

For simplicity, we neglect the spin of the electron in this discussion. 

However, in general, spin–orbit coupling can influence the dispersion relation, leading 

to spin-dependent band structures and modifying properties such as the effective g-

factor of electrons. 

 

In many semiconductors, the conduction band minimum does not occur at 

a single point in the Brillouin zone. Instead, there may be multiple equivalent minima, 
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known as valleys, located at different k-points but having the same energy. This 

phenomenon arises due to the crystal symmetry. 

 

 

Fig. 6.2  Valleys at conduction bandedge 

 

 

For instance, in silicon, which has a face-centered cubic (FCC) lattice with 

a basis, there are six equivalent conduction band minima located approximately at 

(±5.3/a, 0,0), (0,±5.3/a,0), and (0,0,±5.3/a). These are referred to as valleys, and the 

presence of multiple valleys is a key feature in valleytronics and advanced 

semiconductor physics[71]. 

 

Each valley exhibits anisotropic effective mass, characterized by: 

• A longitudinal mass me,l
*  along the direction of the valley. 

• Two transverse masses me,t
* in the perpendicular directions. 

In silicon, these values are: 

me,l
*=0.97m0 , me,t

*=0.19m0 

where m0=9.11×10−31 kg is the free electron mass. This anisotropy significantly 

affects charge transport and mobility in semiconductors. 

 

 

6.4 MILLER INDICES AND ⟨100⟩ ORIENTATION 

 

Miller indices are a standardized notation system used in crystallography 

to describe the orientation of planes and directions within a crystal lattice. Each set of 
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planes is identified by a triplet of integers (hkℓ), known as the Miller indices, which 

correspond to the intercepts of the plane with the crystallographic axes. These indices 

are derived from the reciprocal of the intercepts and are typically reduced to their 

smallest integer values [72] 

 

Fig. 6.3 Miller Indices 

 

In this notation: 

• Negative integers are denoted with a bar (e.g., 3 for −3). 

• The indices are written in parentheses (hkl) to denote planes. 

• Square brackets [hkl] indicate a specific direction. 

• Angle brackets ⟨hkl⟩ represent a family of equivalent directions due to crystal      

symmetry. 

• Curly braces {hkl} denote a family of equivalent planes. 

 

For example, in a cubic crystal system, the directions [100],[010], and 

[001] are all symmetry-equivalent and collectively represented as ⟨100⟩. Similarly, the 

planes (100), (010), and (001) are grouped as {100} [73]. 

 

Although the primitive lattice vectors in face-centered cubic (FCC) and 

body-centered cubic (BCC) structures are not orthogonal, Miller indices are typically 

defined with respect to the cubic supercell, allowing them to align with Cartesian 

directions for simplicity. 
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In this research, we focus on the ⟨100⟩ orientation of silicon, a choice 

driven by its favorable surface properties. The ⟨100⟩ surface of silicon exhibits a lower 

atomic density compared to other orientations, which results in fewer dangling bonds. 

This reduction in surface states leads to enhanced carrier mobility, making it a 

preferred orientation in semiconductor device fabrication. 
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CHAPTER 7 

 

DENSITY OF STATES 

 

 

 

In solid-state and condensed matter physics, the density of states (DOS) 

describes the number of quantum states available for occupation at each energy level. 

It is typically expressed as a probability density function and represents an average 

over space and time for the system's accessible states. The DOS is fundamentally 

linked to the system’s dispersion relation, which defines how energy varies with 

wavevector k. A high DOS at a particular energy implies a large number of available 

states at that energy[74]. 

 

In semiconductors, the DOS plays a critical role near the band edges. For 

instance, in the conduction band, as the electron energy increases, more states become 

available. Conversely, within the band gap, the DOS is zero, indicating no available 

states. This implies that an electron at the conduction band edge must lose at least the 

band gap energy to transition to the valence band. 

 

The DOS can be defined for various quantum systems—electrons, 

phonons, or photons—and can be expressed as a function of either energy or 

wavevector. To convert between these forms, the dispersion relation E(k) must be 

known[75]. The mobile charge carrier density n(x) is given by: 

𝑛(𝑥) =
1

∆𝑉
∑ [𝑔𝑖=1 ∫ |𝜓(𝑥)|2𝜕𝑥

𝑑
2

−
𝑑
2

]

𝑗=2

𝑖=1.𝑗=1

(7.1) 

 

Where gi=1 is the degeneracy of the ith valley and ΔV=WdΔL is the volume element. 

Alternatively: 

𝑛(𝑥) = ∫ 𝑔(𝐸)𝑓(𝐸)𝜕𝐸
∞

𝐸𝑖,𝑗

(7.2) 

Or       

𝑛(𝑥) = ∫ 𝐷(𝐸)𝑓(𝐸)𝜕𝐸
∞

𝐸𝑖,𝑗
(7.3) 
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Here, D(E) is the 1D density of states, and f(E) is the Fermi-Dirac 

distribution function. In 1D systems, the allowed wavevectors are: 

𝑘𝑥 =
𝑛𝜋

𝑑
(7.4) 

 

The total number of states is calculated by evaluating the volume of 1/8 of 

a sphere in k-space and dividing by the volume of a single state: 

𝑁 = 2 ×
1

8
× (

𝑑

𝜋
)

3

×
4

3
× 𝜋 × 𝑘3 (7.5) 

 

Differentiating with respect to energy: 

𝑑𝑁

𝑑𝐸
=

𝑑𝑁

𝑑𝑘
×

𝑑𝑘

𝑑𝐸
=

(
𝑑
𝜋)

3

𝜋𝑘3𝑑𝑘

𝑑𝐸
(7.6)

 

 

Given: 

𝐸 =
ℏ2𝑘2

2𝑚∗
⇒

𝑑𝑘

𝑑𝐸
=

𝑚∗

ℏ2𝑘
(7.7) 

 

 

 

 

Fig. 7.1 Solution of different value of k 

 

The 1D density of states becomes: 

𝑔𝑐,1𝐷 =
𝑑𝑁1𝐷

𝑑𝐸
= √

2𝜋𝑚∗

ℏ2 

1

√𝐸 − 𝐸𝑚𝑖𝑛

∀𝐸 ≥ 𝐸𝑚𝑖𝑛 (7.8) 
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7.1 MAIN CALCULATIONS 

 

Assuming a ⟨100⟩ orientation of silicon, we consider two valleys with 

effective masses 0.19m0 (i = 1) and 0.97m0 (i = 2). Since over 90% of electrons occupy 

the lowest sub-band E1,1 we simplify the Poisson equation as: 

𝜕2𝜑(𝑥)

𝜕𝑥2
=

𝑞

𝜖𝑆𝑖
𝑁𝐷 +

𝑄1,1

𝑞𝜖𝑆𝑖
+

𝑄1,2 

𝑞𝜖𝑆𝑖

(7.9) 

 

The 1D mobile charge carrier density is: 

𝑛1𝐷(𝑥) =
𝑔𝑖=1√2𝑚𝑑,𝑖

∗

𝑊ℏ𝑑𝜋
∫

(𝐸 − 𝐸𝑖,𝑗)
−

1
2𝑑𝐸

1 + 𝑒
𝐸−𝐸𝐹𝑛

𝑘𝑇

∞ 

𝐸𝑖,𝑗

(7.10) 

Using the substitution 𝜀 =
𝐸−𝐸𝑖.𝑗

𝑘𝑏𝑇
,  we get: 

𝑛1𝐷(𝑥) =
𝑔𝑖=1

𝑤𝑑

√
2𝑚𝑑,𝑖

∗ 𝑘𝑇

𝜋ℏ2
∫ (

𝜀−
1
2

1 + 𝑒𝜀−𝜂𝐹
) 𝜕𝜀 (7.11) 

⇒ 𝑛1𝐷(𝑥) =
𝑔𝑖=1

𝑤𝑑

√
2𝑚𝑑,𝑖

∗ 𝑘𝑇

𝜋ℏ2
𝐹

−
1
2

(𝜂𝐹) (7.12) 

Where: 

𝜂𝐹 =
𝐸𝐹 − 𝐸𝑖,𝑗

𝑘𝑇
(7.13) 

 

7.2 FERMI DIRAC SOLUTION 

 

The general Fermi-Dirac integral is defined as: 

𝐹𝑗 =
1

⎾(𝑗 + 1)
∫

𝜀𝑗𝜕𝜀

1 + ⅇxp(𝜀 − 𝜂𝐹)

∞

0

(7.14) 

For degenerate semiconductors: 

𝐹𝑚(𝑥) = (
𝐸𝐹𝑛 − 𝐸𝑖.𝑗

𝑘𝑇
)

𝑚+1

(7.15) 

For non-degenerate semiconductors: 
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𝐹𝑚(𝑥) = 𝑒𝑥𝑝 (
𝐸𝐹𝑛 − 𝐸𝑖.𝑗

𝑘𝑇
) (7.16) 

 

Thus, the final charge densities are: 

𝑄1,1 =
𝑔𝑖=1

𝑊𝑑
√

2𝑚𝑑,1
∗ 𝑘𝑇

𝜋ℏ2
𝑒

𝐸𝐹𝑛−𝐸1,1
𝑘𝑇 (7.17) 

 

𝑄1,2 =
𝑔𝑖=1

𝑊𝑑
√

2𝑚𝑑,1
∗ 𝑘𝑇

𝜋ℏ2
𝑒

𝐸𝐹𝑛−𝐸1,2
𝑘𝑇 (7.18) 

These expressions are essential for modeling carrier distributions in low-dimensional 

semiconductor systems [74][75][76]. 
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CHAPTER 8 

 

SURFACE POTENTIAL AND THRESHOLD VOLTAGE MODEL 

 

 

 

8.1 SURFACE POTENTIAL  

 

The electrostatic potential in the surface region of a silicon semiconductor 

is governed by Poisson’s equation, which relates the electric field to the local charge 

distribution. The energy expression is given by: 

𝐸2(𝑥) = (
𝜕𝜓

𝜕𝑥
)

2

=
2𝑘𝑇𝑁𝑎

𝜀𝑆𝑖
[(𝑒−

𝑞𝜓
𝑘𝑇 +

𝑞𝜓𝑠

𝑘𝑇
− 1) +

𝑛𝑖
2

𝑁𝑎
2

(𝑒
𝑞𝜓
𝑘𝑇 −

𝑞𝜓𝑆

𝑘𝑇
− 1)] (8.1) 

 

This equation typically requires numerical methods for a full solution. 

However, in the depletion region, where 2𝜓𝐵 > 𝜓 >
𝑘𝑇

𝑞
 , the dominant term simplifies 

the expression to: 

𝐸 = √
2𝑞𝑁𝑎𝜓

𝜖𝑆𝑖
,
𝜕𝜓

𝜕𝑥
= −√

2𝑞𝑁𝑎𝜓

𝜖𝑆𝑖

(8.2) 

 

Integrating both sides: 

∫
𝜕𝜓

√𝜓

𝜓

𝜓𝑆

= ∫ √
2𝑞𝑁𝑎

𝜖𝑆𝑖
𝑑𝑥

𝑥

0

(8.3) 

⟹ 𝜓 = 𝜓𝑆 (1 − √
2𝑞𝑁𝑎

2𝜀𝑆𝑖𝜓𝑆
𝑥)

2

(8.4) 

 

This parabolic potential profile is a standard approximation in MOS capacitor 

modelling[77]. 
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Assuming a 2D potential of the form: 

𝜑(𝑥, 𝑦) = 𝜑1(𝑦) + 𝑥𝜑2(𝑦) + 𝑥2𝜑3(𝑦) (8.5) 

 

and applying boundary conditions: 

• 𝜑 (±
𝑑

2
, 𝑦) = 𝜑𝑆(𝑦)                                                                                        (8.6) 

• 
𝜕𝜑(𝑥,𝑦)  

𝜕𝑥 𝑥=0
= 0                                                                                                 (8.7) 

• 
𝜕𝜑(𝑥,𝑦)

𝜕𝑥
|

𝑥=±
𝑑

2

=
𝐶𝑜𝑥

𝜖𝑆𝑖
[𝑉𝐺𝑆 − 𝜑𝑆(𝑥) − 𝑉𝐹𝐵]                                              (8.8) 

 

we derive: 

𝜑(𝑥, 𝑦) = 𝜑𝑠(𝑦) [1 +
𝑑𝐶𝑜𝑥

4𝜀𝑆𝑖
] −

𝑑𝐶𝑜𝑥

4𝜀𝑆𝑖
[𝑉𝑔𝑠 − 𝑉𝑓𝑏] −

𝑥2𝐶𝑜𝑥

𝑑𝜀𝑆𝑖
[𝑉𝑔𝑠 − 𝑉𝑓𝑏 − 𝜑𝑠(𝑦)] (8.9) 

This expression captures the electrostatic potential distribution in the channel under 

gate control [78]. 

 

Now the 2D Poisson equation for the electrostatic potential becomes: 

 

𝜕2𝜑(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝜑(𝑥, 𝑦)

𝜕𝑦2
=

𝑞𝑁𝐷

𝜀𝑆𝑖
+

1

𝜀𝑆𝑖
[𝑄(1,1) + 𝑄(1,2)] (8.10) 

This can be separated into: 

• A 1D Poisson equation: 

𝜕2𝜑(𝑥, 𝑦)

𝜕𝑥2
=

𝑞𝑁𝐷

𝜀𝑆𝑖
+

1

𝜀𝑆𝑖
[𝑄(1,1) + 𝑄(1,2)] (8.11) 

• And a 2D Laplace equation: 

𝜕2𝜑(𝑥, 𝑦)

𝜕𝑥2
+

𝜕2𝜑(𝑥, 𝑦)

𝜕𝑦2
= 0 (8.12) 

 

Solving this using Fourier series expansion and boundary conditions, we obtain: 

𝜑𝑆(𝑥, 𝑦) = ∑
1

sinh 𝜌𝑦
× [𝑉𝑟

, sinh 𝜌𝑦 + 𝑉𝑟 sinh 𝜌(𝐿 − 𝑦)] × [sin 𝜌𝑥 +
𝜀𝑆𝑖 

𝜀𝑜𝑥
𝑑𝜌 cos 𝜌𝑥]

∞

𝑟=1

(8.13) 

 

The final expression for the potential includes: 
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𝜑(𝑥, 𝑦) =
𝑒𝜌𝐿 − 1

2 sinh 𝜌𝐿
[𝑒−𝜌𝑦 + 𝑒𝜌(𝑦−𝐿)](𝑉𝑏 + 𝛽) +

𝑉𝑑𝑠 cos 𝜌𝑦

2 sinh 𝜌𝐿
− 𝛽 (8.14) 

Where: 

𝜌 =

4𝐶𝑜𝑥

𝑑

√1 +
𝑑𝐶𝑜𝑥

4𝜀𝑆𝑖
−

𝑥2𝐶𝑜𝑥

𝑑

(8.15)  

 

And the minimum surface potential is: 

𝜑𝑠|𝑚𝑖𝑛 = 2√𝑐1𝑐2 − 𝛽 (8.16) 

 

These expressions are essential for modeling short-channel effects, threshold voltage 

roll-off, and electrostatic integrity in modern nanoscale MOSFETs[79]. 

 

8.2 THRESHOLD VOLTAGE  

 

To evaluate the impact of quantum mechanical effects (QME) on the 

threshold voltage of a double-gate (DG) junctionless MOSFET, we define the shift in 

threshold voltage as: 

∆𝑉𝑇𝐻 = 𝑉𝑇𝐻1𝑄𝑀 − 𝑉𝑇𝐻1𝐶𝐿 (8.17) 

 

This difference is derived based on the depletion depth in both classical and quantum 

mechanical models[80]. 

 

8.2.1 Classical Model 

 

The classical depletion charge is given by: 

𝑄𝐶𝐿 = ∫ 𝑞𝑁𝐷 ⅇxp (−
𝑞𝜑𝑆

𝑘𝑇
) 𝑑𝑥

∞

0

(8.18) 

 

Assuming ϕp(x)≡ψS, and applying the 1D Poisson equation: 

𝜕2𝜑𝑠

𝜕𝑥2
=

𝑞𝑁𝐷

𝜀𝑆𝑖
[1 + 𝑒

𝑞𝜑𝑠
𝑘𝑇 ] (8.19) 



46 
 

 

Integrating: 

∫
𝑑𝜑𝑠

𝑑𝑥
𝑑 (

𝑑𝜑𝑠

𝑑𝑥
)

𝑑𝜑𝑠
𝑑𝑥

0

=
𝑞𝑁𝐷

𝜀𝑆𝑖
∫ 1 + ⅇxp (

𝑞𝜑𝑠

𝑘𝑇
) 𝑑𝜑

𝜑

0

(8.20) 

 

Thus, the total charge density becomes: 

𝑄𝑇 = 𝜀𝑆𝑖𝐸|
𝑥=±

𝑑
2

(8.21) 

 

With boundary conditions: 

𝑑𝜑

𝑑𝑥
|𝑥=0 = 0𝑎𝑛𝑑𝜑 (±

𝑑

2
) = 𝜑𝑠 (8.22) 

 

This leads to: 

𝑄𝑇 = √2𝑞𝑁𝐷𝜀𝑆𝑖 [𝜑𝑠 − 𝜑0 +
1

𝛽
(𝑒𝜑𝑠𝛽 − 𝑒𝜑0𝛽)]

1
2

∀𝛽 =
𝑞

𝑘𝑇
(8.23) 

 

Approximating: 

𝑄𝑇 =
𝑞𝐿𝐷

2 𝑁𝐷

𝑥𝑑.𝐶𝐿
{1 − 𝑒

−
𝑞2𝑁𝐷𝑑2

8𝑘𝑇𝜀𝑆𝑖 } 𝑒
𝑞𝜑𝑠
𝑘𝑇 (8.24) 

 

Where: 

𝐿𝑑𝑖𝑠𝑡ℎ𝑒𝑑𝑒𝑏𝑦𝑒𝑙𝑒𝑛𝑔𝑡ℎ𝑔𝑖𝑣𝑒𝑛𝑏𝑦: √
𝜀𝑆𝑖

𝑞𝑁𝐷𝜆
∀𝜆 =

𝑘𝑇

𝑞
(8.25) 

 

At threshold: 

𝑄𝑇(𝜑𝑆)|𝜑𝑠=2𝜑𝐹
=

𝑞𝐿𝐷
2 𝑁𝐷

𝑥𝑑,𝐶𝐿

(8.26) 
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8.2.2 Quantum Mechanical Effects 

 

In the quantum model, the inversion charge is: 

𝑄1,1 = 𝑞𝑁1𝐷,𝐷𝑂𝑆𝑒
𝐸𝐹−𝐸1,1

𝑘𝑇 (8.27) 

 

Taking logarithms: 

𝑘𝑇𝑙𝑛 (
𝑄1,1

𝑞𝑁1𝐷,𝐷𝑂𝑆
) = 𝐸𝐹 − 𝐸1,1 (8.28) 

 

At threshold, the gate voltage shifts the Fermi level: 

𝑞𝑉𝑔𝑠 = 𝑞𝜑𝑠 − 𝑞𝜑𝐹 −
𝐸𝑔

2
(8.29) 

 

Substituting: 

𝑞𝑁𝐷𝑥𝑑,𝑄𝑚
2

2𝜀𝑆𝑖
= 𝐸1,1 + 𝑞𝜑𝐹 +

𝐸𝑔

2
+ 𝑘𝑇𝑙𝑛 |

𝑄1,1

𝑞𝑁1𝐷.𝐷𝑂𝑆
| − 𝜑0 (8.30) 

 

Comparing with the classical model: 

𝑥𝑞𝑚
2 − 𝑥𝑑,𝐶𝐿

2 =
2𝜀𝑆𝑖

𝑞2𝑁𝐷
{𝐸1,1 − 𝑞𝜑0} + 2𝐿𝐷

2 l n (

𝑄1,1

𝑞𝑁𝐷
𝑁𝐷𝑂𝑆3

𝑁𝐷𝑂𝑆1
) (8.31) 

𝑥𝑑.𝑞𝑚 = 𝑥𝑑.𝐶𝐿 {1 +
{𝐸1,1 − 𝑞𝜑0}

2𝑞𝜑𝐹
}

1
2

(8.32) 

 

 

 

8.2.3 Combined Model 

 

The shift in depletion depth is: 
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∆𝑥 = 𝑥𝑑.𝑞𝑚 − 𝑥𝑑.𝐶𝐿 = √
4𝜀𝑆𝑖

𝑞𝑁𝐷 
[√1 +

{𝐸1,1 − 𝑞𝜑0}

2𝑞𝜑𝐹
− 1] (8.33) 

 

The corresponding shift in surface potential: 

∆𝜙𝑠 =
𝑞𝑁𝐷

2𝜀𝑆𝑖
×

2𝜀𝑆𝑖

𝑞2𝑁𝐷
[𝐸1,1 − 𝑞𝜙0] (8.34) 

 

Now, using: 

∆𝑉𝐺𝑆 = ∆𝜑𝑠 [
𝑑𝑉𝐺𝑆

𝑑𝜑𝑠
|𝜑𝑠=2𝜑𝐹

] (8.35) 

 

From MOS capacitor theory: 

𝑉𝐺𝑆 = 𝑉𝐹𝐵 + 𝜑𝑆 +
√2𝜀𝑆𝑖𝜑𝑆𝑞𝑁𝐷

𝐶𝑜𝑥

(8.36) 

 

Differentiating: 

𝑑𝑉𝐺𝑆

𝑑𝜑𝑠
|𝜑𝑠=2𝜑𝐹

= 1 +
1

2𝐶𝑜𝑥
√

𝑞𝜀𝑆𝑖𝑁𝐷

2𝜑𝐹

(8.37) 

 

Thus, the final expression for threshold voltage shift is: 

∆𝑉𝑇ℎ = ∆𝑉𝐺𝑆 = ∆𝜑𝑠 (
𝑑𝑉𝐺𝑆

𝑑𝜑𝑠
|𝜑𝑠=2𝜑𝐹

) =
𝐸1,1 − 𝑞𝜑0

𝑞
(1 +

1

2𝐶𝑜𝑥
√

𝑞𝜀𝑆𝑖𝑁𝐷

2𝜑𝐹
) (8.38) 

 

This model captures the quantum confinement-induced shift in threshold voltage for 

DG junctionless MOSFETs [80][81][82]. 
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CHAPTER 9 

 

DEVICE DESIGN 

 

 

 

With continuous downscaling of CMOS technology nodes, traditional bulk 

MOSFETs face serious challenges including short-channel effects (SCEs), leakage 

current, variability, and increased fabrication complexity. One promising alternative to 

conventional transistor architecture is the Junctionless Double-Gate MOSFET (JLDG-

MOSFET). Unlike conventional transistors, junctionless devices do not require 

source/drain junction formation and use a uniformly doped channel of the same 

polarity as the source and drain regions. This not only simplifies the fabrication process 

but also improves control over the channel electrostatics due to the double-gate 

structure, making the architecture highly suitable for analog and RF applications at 

nanoscale geometries [83]. 

 

 

Fig. 9.1 Two-D Exhibit for  Gate--Stack Device 

 

 

The device design discussed in this work is simulated using the Silvaco 

ATLAS TCAD tool, which allows precise control of process parameters, doping 

profiles, and physical modeling. Quantum mechanical effects and advanced mobility 

models are included to achieve an accurate analysis of analog and RF behavior under 

real operating conditions. 

 



50 
 

9.1 DEVICE STRUCTURE 

 

The simulated JLDG MOSFET features a double-gate configuration with 

symmetrical gates on either side of a uniformly doped silicon channel. The gate stack 

comprises a dual dielectric—high-κ hafnium dioxide (HfO₂) layered over a thin silicon 

dioxide (SiO₂) interfacial layer. The gates are made of heavily doped n⁺ polysilicon to 

reduce series resistance and support high-frequency operation[84]. The choice of 

materials ensures better gate capacitance and reduced leakage while allowing for 

aggressive scaling. The key structural benefits include: 

• Enhanced gate electrostatics due to symmetrical double-gate control. 

 

• Elimination of junction formation steps, enabling reduced process complexity. 

 

• Improved scalability and drive current performance at low supply voltages. 

 

• Minimized short-channel effects and improved subthreshold characteristics. 

 

The channel is uniformly n-type doped, which facilitates the junctionless 

operation by keeping the entire channel in depletion mode under zero gate bias. 

Current modulation is achieved by electrostatically depleting or accumulating carriers 

within the channel via the gate voltage, rather than by forming inversion layers as in 

traditional MOSFETs. 

 

9.2 PHYSICAL DIMENSIONS AND DOPING PROFILE 

 

The dimensions and doping parameters of the simulated device are 

selected to reflect realistic values in alignment with sub-22 nm technology nodes. 

These are summarized below: 
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Table 9.1 Device Parameters 

Parameter Value Description 

Channel Length (L) 20 nm Distance between source and drain 

contacts 

Channel Thickness 

(Tch) 

10 nm Thickness of the uniformly doped 

silicon film 

Gate Oxide Stack 1 nm SiO₂ + 2 nm 

HfO₂ 

Dual-layer dielectric for better 

control and leakage 

Gate Material n⁺ polysilicon High conductivity and 

compatibility with process flow 

Doping Concentration 

(Channel) 

1×1019cm−31  Uniformly applied to source, 

drain, and channel 

Spacer Region 5 nm Electrically inactive region to 

isolate the gate 

Substrate Lightly doped 

silicon bulk 

Acts as a mechanical support and 

isolation 

 

The selection of a thin body helps to ensure full depletion of the channel, 

which is essential for proper junctionless transistor operation [85]. 

 

9.3 SIMULATION ENVIRONMENT AND CONFIGURATION 

 

All simulations were conducted using Silvaco ATLAS, a 2D physics-based 

Technology Computer-Aided Design (TCAD) simulator. This tool provides accurate 

solutions to the Poisson and drift-diffusion equations along with optional quantum 

corrections for modeling nanoscale semiconductor devices. 

 

9.3.1 Physical Models Enabled 

 

To ensure accurate representation of the real-world physics, several 

important physical models were activated: 

• FERMI: To include Fermi-Dirac statistics for high doping. 

• BGN (Bandgap Narrowing): Accounts for band structure modification due to 

heavy doping in the source, drain, and channel regions. 
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• CVT (Concentration and Field-Dependent Mobility): Models reduction in 

carrier mobility at high fields and concentrations. 

• FLDMOB (Field-Dependent Mobility): Refines mobility further by 

modeling velocity saturation. 

• SRH (Shockley-Read-Hall): Handles recombination-generation processes in 

the channel. 

• QME (Quantum Mechanical Effects): Enables the density-gradient model 

to account for quantization of carriers due to confinement in thin channels 

[85][86]. 

 

 

9.3.2 Mesh Design and Biasing Conditions 

 

A non-uniform mesh was employed to achieve higher resolution in critical 

regions such as the oxide–semiconductor interface and the channel near the source and 

drain contacts. The grid density was increased in these regions to capture sharp 

gradients in carrier concentrations and electric fields. 

Biasing Conditions: 

• Gate Voltage (VGS): Varied from 0 V to 1.2 V. 

• Drain Voltage (VDS): 0.05 V for analog characteristics; swept up to 1.0 V for 

RF parameters. 

• Source: Grounded. 

• Substrate: Grounded for simplicity and symmetry. 

 

9.4 QUANTUM MECHANICAL EFFECTS IN THIN CHANNELS 

 

In ultra-thin body devices such as the one designed here, quantum 

confinement becomes non-negligible. At channel thicknesses of 10 nm or less, 

electrons experience spatial confinement perpendicular to the current flow, which 

leads to discrete energy levels and alters the carrier distribution in the channel. 

 

To account for these effects, the density-gradient quantum correction 

model was enabled in ATLAS. This model approximates quantum behavior by 

introducing an additional potential derived from the second derivative of the carrier 

density. It is particularly useful when solving the Schrödinger equation directly is 

computationally expensive. 
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These quantum corrections lead to: 

• Threshold voltage shifts due to centroid displacement of carriers. 

• Reduced inversion capacitance, impacting transconductance (gm). 

• Modified subthreshold behavior, especially in short-channel devices 

[84][86]. 

 

 

9.5 MATERIAL AND PROCESS CONSIDERATIONS 

 

The choice of high-κ materials such as HfO₂ is driven by the need to 

maintain high gate capacitance without incurring leakage current penalties. The use of 

a thin SiO₂ interfacial layer ensures compatibility with silicon and minimizes interface 

traps. 

 

The n⁺ polysilicon gate is retained for this simulation setup to maintain 

consistency with existing CMOS flow, although alternative work-function-tunable 

materials like TiN could also be explored in future work. The uniformly doped silicon 

layer simplifies process integration by avoiding the need for abrupt junctions, which 

are difficult to form at nanoscale dimensions. 
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CHAPTER 10 

 

RESULTS AND DISCUSSION 

 

 

 

This chapter presents an extensive evaluation of the analog, radio-

frequency (RF), and linearity performance characteristics of the proposed Junctionless 

Double-Gate Stack MOSFET (JL DG-Gate Stack MOSFET) structure, with quantum 

mechanical effects (QMEs) included using the Bohr Quantum Potential (BQP) model. 

All simulations were carried out using the Silvaco ATLAS TCAD tool, which employs 

advanced numerical iteration methods such as Newton-Raphson and Gummel 

decoupling to solve the drift-diffusion and Poisson equations self-consistently. 

 

The performance analysis in this section is organized into four main 

subsections: (A) analog performance, (B) RF performance, (C) linearity metrics, and 

(D) summary of findings. Key parameters such as transconductance (gm), output 

conductance (gd), intrinsic gain (AV), cutoff frequency (fT), and linearity metrics 

(VIP2, VIP3, IIP3) are thoroughly examined across varying gate lengths of 10 nm, 15 

nm, and 20 nm. 

 

10.1 ANALOG-PERFORMANCE PARAMETERS 

 

The analog-performance of the JL DG-Gate Stack-MOSFET has been 

examined in this section. Here, the most crucial variables, including intrinsic gain 

(AV), trans-conductance-generation-factor (TGF), output conductance (gd), trans-

conductance (gm) and early-voltage (VEA), are simulated and shown. Eqn. 10.1 

formulates the transconductance of the MOSFET, which is responsible for determining 

the amplifier's gain. For analog applications, the enhanced transconductance with 

increased carrier transport efficiency is preferable for gate stack topologies. Plotting 

the transconductance change with respect to VGS at VDS = 0.5 V, is exhibited in 

Figure 10.1. It clearly displays, that as the channel-length is reduced, the 

transconductance decreases. 
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Fig 10.1  gm VGS for varied channel lengths and VDS=0.5V 

 

As a useful metric for gauging the effectiveness of current translation into 

transconductance, Figure 10.2 displays the transconductance generation factor (TGF). 

Input device capability is decreased and power dissipation is increased with a lower 

TGF. To attain a desired value of transconductance, TGF illustrates how to use current 

efficiently.  

 

In order to implement analog circuits that run at lower operating voltage, 

higher value of TGF is useful. This is exhibited in Eqn. 10.2 as: 

 

            

 D
m

GS

I
g

V


=


               (10.1)

      

 

   m

D

g
TGF

I
=                (10.2)

       

 

Figure 10.2 clearly shows that as channel length decreases, the TGF for 

the device starts degrading from 85.61253 V-1 in 20nm device to 22.6873 V-1 in 10nm 

device. This occurs due to the rise in ID value as L is curtailed, resulting in a low gm/ID 

ratio. A higher-TGF is undesirable for microwave systems with superior linearity, 

while a lower value of TGF is not a disadvantage, as the power-consumption in the 

subthreshold region is minimal. 

The output conductance, gd, is determined using Eqn. 10.3. 
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Fig. 10.2 TGF as a function of VGS for varied channel lengths with VDS=0.5V 

 

Achieving a high gain in CMOS circuits (analog), requires transistors with 

lower gd. A higher gd signifies low output resistance, which increases the drain-current, 

as VDS rises in the region of saturation. The increase is influenced by factors such as 

DIBL and channel length modulation (CLM). 

 

Furthermore, a low gd leads to a higher ratio of drain-current to output-

conductance, which corresponds to the device’s early-voltage as shown in Eqn. 10.4.  

 

Figure 10.3 shows how output conductance (gd) varies for varying channel 

lengths in relation to gate-to-source voltage (VGS). The standard output requirement 

must be met with a high output resistance. However, when the gain electric field 

penetrates more deeply, preventing the current from saturating, Figure 10.3 clearly 

shows that output-resistance decreases, with the downscaling of gate-length. 

According to Figure 10.3, the device with channel length 20nm has a low g- value that 

allows it to have strong control over CLM and DIBL. 
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Fig. 10.3 Output Conductance(gd) versus VGS for varied channel lengths with 

VDS=0.5V 

 

Because there are competing requirements on a device, power –dissipation 

and gain are traded off. Although the higher drain-current results in higher gain values, 

it also causes more power loss. This dissipation of power may cause the device's 

temperature to rise, thereby impacting its functionality. Since the ratio of gm to gd 

indicates a device's inherent gain, gm (gate-control) and gd (drain-control) are crucial 

small-signal-parameters in analog circuit design. The intrinsic gain and early voltage 

for a device is given by: 
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Figure 10.4 and 10.5 exhibits the modulation of Intrinsic-Gain and Early-

Voltage for device length varying from 20nm down to 10nm. It is shown that as the 

channel length is downscaled to 10nm, the intrinsic gain of the device reduces. A 

similar trend can be observed in early voltage. As the channel length decreases, early 

voltage for the device reduces for operating voltages. 
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Fig. 10.4 Early-voltage with respect to VGS for varied channel-lengths at VDS=0.5V 

 

Fig. 10.5 Intrinsic gain (AV) versus VGS for varied channel length at VDS=0.5V 

 

The parameters for analog performance have been tabulated in Table 10.1 

summarising the trend for different channel length for VDS=0.5V and VGS=0.5V. 

 

Table 10.1 Device parameter variation for different channel length at VDS=0.5V & 

VGS=0.5V 
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Table 10.1 Device parameter variation for different channel length at VDS=0.5V & 

VGS=0.5V 

 

 

 

 

 

 

 

10.2 RADIO-FREQUENCY-PERFORMANCE PARAMETERS 

 

This section examines the RF-performance using common figures of 

merit, including the following: (a) fT (cut-off frequency); (b) GBW; (c)S parameters 

as well as several others. 

It is evident that the parasitic-resistances and the Miller-capacitance ratio 

CGD/CGS, have a significant impact on RF performances. The plot of CGD & CGS against 

VGS for varied gate-lengths is exhibited in Figure 10.6 and 10.7 respectively. Figure 

10.6 and 10.7 shows that when channel length reduces, CGD/CGS falls as well. When 

comparing multiple gate devices to single gate devices, it was shown that the CGD/CGS 

ratio rises [11]. A decrease in SCEs is indicated by an improvement in this ratio, and 

when L decreases, this results in a decrease in Miller capacitance. Consequently, an 

enhanced frequency of operation results from the decrease in Miller capacitances 

compensating for the rise in parasitic capacitances. It has been noted that as VGS rises 

to saturation, both CGS and CGD begin to rise. As anticipated, after saturation, both 

values stabilize since the connection is unaffected by the extra VDS. 

 

The cut-off frequency may be defined as the lowest-frequency, at which 

the current-gain becomes unity. 

2 ( )
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            (10.6) 

 

L=20nm L=15nm L=10nm

Transconductance(S) 0.00288594 0.00267668 0.00217819

Output Conductance(S) 0.000309459 0.00103454 0.00214021

Early Voltage(V) 0.792679179 0.699889615 0.546303473

Gain(dB) 67.86327106 25.64057455 20.39420431

TGF(V
-1

 ) 85.6125314 36.63516933 22.68739795

Channel Length

Device Parameters
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Fig. 10.6 CGS versus VGS for varied channel-lengths at VDS=0.5V 

 

 

Fig. 10.7 CGD versus VGS for varied channel-lengths at VDS=0.5V 

 

Variation in fT with regard to ID is depicted in Figure 10.8. Given that gm 

is directly proportional to 1/L and CGD/CGS is proportional to L, fT is exhibiting a 1/L2 

dependence. fT achieves a maximum value at a certain gate bias after reaching a lower 

value at the subthreshold region and rising with ID.  The transconductance is at its 

highest & the gate-to-source/drain-capacitance is at its lowest at the fT peak. A trade-

off between power-efficiency and bandwidth is demonstrated by the fact that fT 

decreases as the channel length (L) increases. However, a higher fT can be attained by 

increasing the interface-charge-trap-density. 

 

One way to analyse a device's AC analysis is to think of it as a 2-port 

network. The scattering-parameters, S11 and S22, which represents the reflection-

coefficients, at ports 1 and 2, respectively, are the device metrics used to match the 

terminal and port impedances. In order to achieve optimal matching at the ends and 

minimal reflection, the values for these reflection coefficients should be as low as 

possible, preferably zero. The variation in reflection coefficients with regard to 

frequency is seen in Figure 10.9 and 10.10. The statistics clearly show that the DG-JL-
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MOSFET with channel length 10nm has the lowest reflection coefficient values, which 

also drop as the frequency rises. 

 

 

Fig. 10.8 fT with respect to VGS for varied channel-lengths at VDS=0.5V 

 

 

Fig. 10.9 Reflection coefficient (S11) with respect to VGS for varied channel-lengths 

at VDS=0.5V 

 

This, results from improved channel gate control, which enhances the 

band-to-band-carrier-generation-rate & gm and ID, lowers reflection, and ultimately 

improves port matching. 

 

The stability of a device at higher frequencies is significantly influenced 

by the reverse transmission coefficient, or S12, also known as the reverse voltage gain. 

Its magnitude should thus be greater in order to provide better stability and voltage 

gain. 
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Fig. 10.10 Reflection coefficient (S22) with respect to VGS for varied channel-lengths 

at VDS=0.5V 

 

 

The transmission coefficient was shown in Figure 10.11, and it is evident 

that, in comparison to the other device designs and as the frequency increases, the DG-

JL-Gate-Stack MOSFET displays the largest magnitude of S12 which slowly then 

decreases. Also as the channel-length is reduced, the S12 decrements.  This is as a result 

of the device's enhanced performance, which reduces SCEs. 

 

 

Fig. 10.11 Transmission coefficient (S12) with respect VGS for varied channel-lengths 

at VDS=0.5V 

 

Since the forward voltage gain, also known as the transmission coefficient, 

S21, determines the device's gain, its magnitude should be as high as achievable. As 

seen in Figure 10.12, the device with channel length as 20nm has the highest 

magnitude of S21 when compared to other channel length and when the frequency is 

increased. 
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Fig. 10.12 Transmission coefficient (S21) with respect to VGS for varied channel-

lengths at VDS=0.5V 

 

Figure 10.13 illustrate the current gain versus VGS for various channel-

lengths. It is thus evident, that, as the channel-length is decreased, the current gain for 

the device increases. This is because as the channel length is curtailed, the electric field 

has superior channel control, owing to higher electron velocity, which in turn leads to 

increased current gain, as evidently seen in the figure. 

 

Fig. 10.13 Current gain(dB) versus VGS for varied channel-lengths at VDS=0.5V 

 

10.3 LINEARITY PERFORMANCE PARAMETERS 

 

Trans-conductance & output-conductance are the two main reasons for 

nonlinearity in a MOSFET. When frequency is taken into consideration, the 

transconductance linearity is the main emphasis of this research because, to its whip-

hand feature in modern RF systems & circuits. The second derivative of the 
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transconductance is inversely-proportional to linearity, which is directly-proportional 

to transconductance. The following provides gm1, gm2, and gm3 in the linearity analysis 

for a JL DGMOS: 

 

2 3

1 2 32 3
, ,DS DS DS

m m m

GS GS GS

I I I
g g g

V V V

  
= = =
  

            (10.7) 

 

The extrapolated gate-voltage-amplitudes at which, the 2nd & 3rd order-

harmonics, align with the fundamental-tone of the device’s ID, are represented by VIP2 

and VIP3, respectively. To achieve higher linearity and lower distortion, these figure-

of-merits (FOMs) should be optimized to the highest possible values. They are the 

proper ones that determine the distortion characteristics from DC parameters. 
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Fig. 10.14 VIP2 versus VGS for varied channel-lengths at VDS=0.5V 

 

Figure 10.14 & 10.15 exhibits the modulation in VIP2 and VIP3 

respectively with respect to VGS for varied channel-lengths. It can be seen that the 

highest value of VIP2 is obtained for channel length 20nm and starts degrading as the 
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channel length starts reducing. This is due to reduced harmonic distortion, which 

improves carrier transport efficiency, gate leakages, and ultimately device gain.  

 

 

Fig. 10.15 VIP3 versus VGS for varied channel-lengths at VDS=0.5V 

 

The VIP3 peak is a manifestation of the 2nd order-interaction effect & the 

suppression of the 3rd order non-linearity by device internal-feedback within the 

device, which operates around a second-order nonlinearity. As seen in Figure 10.15, 

this peak is more linear than its dominant counterparts, since it is the strongest in the 

10-nm channel-length range. 

 

As stated in Eqn. 10.10, IIP3 depicts the extrapolated input-power at 

which, the powers of the fundamental & 3rd order-harmonics are equivalent. 
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           (10.10) 

 

Where, RS = 50 Ω for RF and analog applications. 

 

Figure 10.16 illustrates the modulation in IIP3 with respect to gate-to-

source voltage for varied channel lengths. IIP3 decreases significantly at 10 nm channel 

length compared to 15 or 20 nm channel length. 
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Fig. 10.16 IIP3 versus VGS for varied channel-lengths at VDS=0.5V 

 

The GTFP, which is expressed in Eqn. 10.11 and displayed in Figure 10.17 

by both the intrinsic-gain & the switching-speed, is a distinctive figure of merit for 

analog/RF performances. 

 

 ( )( ) *m m
T V

d D

g g
GTFP f A TFP

g I
= =            (10.11) 

 

It's noteworthy that the switch from mild to strong inversion coincides with 

the GTFP peak value occurring at a remarkably low gate-to-source voltage level. As a 

result, we obtain useful data that circuit designers may use to determine the ideal area 

that attains the optimum overall trade-off between speed, gain, and conductance. 

 

 

Fig. 10.17 GTFP versus VGS for varied channel-lengths at VDS=0.5V 
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In moderate to high-speed devices, the product of gm/ID & fT, or TFP, as 

determined by Eqn. 10.12 indicates a trade-off between power & bandwidth. 
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Similarly, a crucial characteristic for operational-amplifiers in high-

frequency applications is the gain frequency product, or GFP, as stated in Eqn. 10.13. 

Figure 10.19 plots the GFP versus VGS at VDS=0.5V, whereas Figure 10.18 plots the 

TFP against VGS at VDS= 0.5V. According to the Figure, GFP and TFP begin to rise 

linearly as VGS rises in the zone of subthreshold, reach an optimal value, and then begin 

to fall in the saturation zone. 

 

 

Fig. 10.18 TFP versus VGS for varied channel-lengths at VDS=0.5V 

 

The power-level that causes the gain to decrease by 1-dB, from its small-

signal value, is represented as the 1-dB compression-point. For an amplifier circuit, 

this value is important since it gives a general idea of the highest input-power, that the 

circuit can sustain while maintaining a given level of gain. 
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Fig. 10.19 GFP versus VGS for varied channel-lengths at VDS=0.5V 

 

 

Figure 10.20 makes it abundantly evident that, owing to superior gate-

control & therefore stronger trans-conductance, JL DG- Gate Stack MOSFET devices 

with channel-lengths (15 & 20 nm) have a lower 1-dB compression point than devices 

with channel-lengths of 10 nm. 

 

The JL DG- Gate Stack MOSFET device's shorter channel length 

characteristic makes it a favourable and advantageous candidate for high-linearity, 

ultra-wide-band (UWB), low-noise-amplifier (LNA) design & RF applications. The 1-

dB compression-point should be increased to ensure lower distortion-operation. 

 

 

Fig. 10.20 1-dB compression point versus VGS for varied channel-lengths at 

VDS=0.5V 
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CHAPTER 11 

 

CONCLUSION, FUTURE SCOPE, AND SOCIAL IMPACT 

 

 

 

In this thesis, a comprehensive study of the Junctionless Double-Gate Stack 

MOSFET (JL DG-Stack MOSFET) has been carried out with an emphasis on analog 

and RF performance under the influence of quantum mechanical effects (QMEs). The 

device structure, modeled in Silvaco ATLAS, utilizes a high-κ dielectric stack over a 

uniformly doped silicon channel, eliminating the need for junction formation. The 

double-gate configuration further enhances electrostatic control and channel 

modulation. 

 

The quantum effects were incorporated using the Bohr Quantum Potential 

(BQP) model, which successfully captured confinement phenomena in ultra-thin 

channels. The drift-diffusion simulations, augmented with QME corrections and 

advanced mobility models, allowed the extraction of vital device parameters like gm, 

gd, fT, AV, VIP2, VIP3, and IIP3 across gate lengths of 10 nm, 15 nm, and 20 nm. 

 

The key conclusions drawn from this study are summarized below: 

 

• Transconductance (gm) is highest for longer gate lengths, with degradation 

observed at sub-15 nm due to velocity saturation and short-channel effects. 

 

• Intrinsic gain (AV) and Early voltage (VEA) drop with scaling, indicating that 

analog performance is sensitive to electrostatic degradation at nanoscale. 

 

• RF metrics such as cut-off frequency (fT) and gain-bandwidth product (GBW) 

improve significantly with downscaling due to shorter carrier transit time and 

reduced gate capacitance. 
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• Linearity metrics such as VIP3 and IIP3 show optimum values at longer gate 

lengths (20 nm), suggesting better linear response for high-frequency analog 

applications. 

 

Thus, the junctionless DG stack configuration demonstrates a well-

balanced profile between scaling feasibility, fabrication simplicity, and analog/RF 

performance, making it a strong candidate for future nanoscale RF-CMOS and mixed-

signal technologies. 

 

11.1 FUTURE SCOPE 

 

While this work has explored various performance dimensions of the 

proposed JL DG-Stack MOSFET, several avenues remain for further investigation: 

 

• Inclusion of variability analysis: Process variations such as random dopant 

fluctuation (RDF), oxide thickness variation, and work function instability 

could be analyzed to assess the robustness of the design. 

 

• 3D TCAD simulations: Extension to 3D geometry would allow more accurate 

modeling of parasitics, especially fringing fields and layout-dependent effects 

in realistic IC environments. 

 

• Thermal performance studies: At nanoscale, self-heating and thermal noise 

could impact analog and RF figures of merit and deserve in-depth analysis. 

 

• Alternate gate materials: Exploring metal gates with tunable work functions 

could enhance threshold control and reduce gate resistance. 

 

• Integration into circuit-level design: Simulating the device in RF amplifier 

topologies (e.g., LNA or mixer circuits) can validate its practical viability. 

 

Furthermore, incorporation of non-conventional channel materials such as 

III-V semiconductors, 2D materials (e.g., MoS₂), or strain engineering could further 

push the device's capabilities beyond current CMOS limits. 
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11.2 SOCIAL IMPACT 

 

The continued scaling of CMOS technology is central to next-generation 

electronics, from high-speed communication systems to ultra-low-power IoT devices. 

The junctionless double-gate MOSFET proposed and analyzed in this work aligns with 

the industry's goal of simplifying fabrication while maintaining high-performance 

operation at reduced power supply voltages. 

 

Some of the anticipated societal impacts of this work include: 

 

• Energy-efficient electronics: By enabling low-power analog and RF operation, 

the device contributes to greener and more sustainable semiconductor 

technologies. 

 

• Accessible communication infrastructure: The potential for high-frequency 

performance supports development in 5G/6G and wireless sensor networks, 

extending digital connectivity to underserved regions. 

 

• Educational and research advancement: The modeling framework and 

simulation methodology serve as a foundation for future academic projects and 

device innovation. 

 

By proposing a realistic, scalable, and performance-oriented transistor 

architecture, this work offers a meaningful step toward next-generation CMOS 

technologies with broad industrial and societal relevance. 
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